
Doris Prieling

Computational investigation of liquid
film flow on rotating disks

————————————–

Thesis
submitted to

Graz University of Technology

in partial fulfillment of the requirements for the degree of
Doctor of Engineering Sciences

Graz, March 2013





  
Senat 

 
 
Deutsche Fassung: 
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008 
Genehmigung des Senates am 1.12.2008 
 
 
 
 
 
 

EIDESSTATTLICHE  ERKLÄRUNG 
 
 
 
Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die 
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich 
entnommenen Stellen als solche kenntlich gemacht habe. 
 
 
 
 
 
 
Graz, am ……………………………    ……………………………………………….. 
         (Unterschrift) 
 
 
 
 
 
 
 
 
 
Englische Fassung: 
 
 

STATUTORY DECLARATION 
 

 

I declare that I have authored this thesis independently, that I have not used other than the declared 

sources / resources, and that I have explicitly marked all material which has been quoted either 

literally or by content from the used sources.  

 
 
 
 
 
……………………………    ……………………………………………….. 
 date        (signature) 
 
 





I would like to dedicate this thesis to Bine & Amy.

My old grandmother always used to say, summer friends will
meltaway like summer snows, but winter friends are friends forever.

- George R.R. Martin





ACKNOWLEDGEMENTS

I would like to thank everyone who supported me during my studies and in writing this
thesis, in particular, my research supervisor Prof. Helfried Steiner for his patient guidance,
assistance, and enthusiastic encouragement.
Moreover, I would like to show my gratitude to Prof. Günter Brenn for his advice and
useful critiques of this research work. My grateful thanks are also extended to the second
referee, Prof. Hendrik Kuhlmann, for scientific support and several constructive comments.
The research presented in this thesis has been carried out at the Institute of Fluid Mechanics
and Heat Transfer at Graz University of Technology in cooperation with Lam Research
AG. I am obliged to many of my colleagues from the institute who supported me and
boosted me morally, in particular, Christian Walchshofer, Erich Wimmer, Klaus Czaputa,
Daniel Heidorn, Tania García-Libreros, Nikolett Kiss, Bernd Langensteiner, Emil Baric,
and Carole Planchette. I would also like to thank all the members of staff at the ISW, in
particular, Prof. Walter Meile and Sabine Gruber.
I like to express greatest thanks to Markus Junk, Felix Staudegger, Frank Ludwig Holsteyns,
and Harald Okorn-Schmidt from Lam Research AG for their support and the fruitful
discussions on the various aspects and issues of the research project. I owe sincere and
earnest thankfulness to various colleagues from other institutions, who delivered valuable
information for this project, in particular, Bernhard Gschaider and Petr Vita from ICE
Strömungsforschung GmbH.

I would like to gratefully acknowledge the financial support from the Austrian Research
Promotion Agency FFG (ModSim-program) and the industrial parter Lam Research AG.

Finally I am truly thankful to my parents, my granny, my sister Astrid, my friends, and
Sabine for their ongoing encouragement, their friendship and their love.

Doris Prieling

Graz, March 2013

vii





KURZFASSUNG

Spinning-Disk-Apparate spielen eine bedeutende Rolle in einer Vielzahl von industriellen
Anwendungen. Das Ziel der vorliegenden Arbeit ist die rechnerische Untersuchung der
Geschwindigkeits-, Temperatur- und Konzentrationsfelder innerhalb Zentrifugalkraft ge-
triebener Dünnfilmströmungen auf rotierenden Siliziumplatten. Da der Rechenzeitaufwand
einer vollaufgelösten direkten numerischen Simulation der Strömung untragbar hoch ist,
wird in der vorliegenden Arbeit eine Näherungslösung, die auf der Dünnfilmapproximation
und dem von Kármán-Pohlhausen Verfahren basiert, als rechnerisch effiziente Alternative
verwendet. Die Ergebnisse dieser Näherungslösung wurden mit experimentellen Daten,
sowie mit numerischen Ergebnissen von achsensymmetrischen CFD Simulationen ver-
glichen, wobei eine gute Gesamtübereinstimmung gefunden wurde. Vereinfachte Modelle
für das nasschemische Ätzen in den Grenzfällen reaktions- sowie diffusionskontrollierter
chemischer Prozesse, basierend auf der lokalen Temperaturverteilung, sowie dem lokalen
Stofftransport des Hauptreaktanden, werden eingeführt. Die Ergebnisse dieser Näherungs-
modelle sind in guter Übereinstimmung mit experimentellen Ätzabträgen.
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ABSTRACT

Spinning disk devices are commonly used in a wide variety of industrial applications.
The objective of the present work is to analyze computationally the hydrodynamic, ther-
mal and species mass transfer characteristics of thin film flow on rotating disks, which is
radially driven by the centrifugal forces. As a fully resolved three-dimensional direct nu-
merical simulation of the flow is associated with prohibitively high computational costs,
an integral boundary layer (IBL) approximation, which represents a computationally less
costly alternative approach, is used. The results obtained with the IBL model are compared
against experimental data as well as against numerical predictions from an axisymmetric
CFD analysis using the Volume-of-Fluid method, where a very good overall agreement is
observed. Simplified models for surface etching in the limit of reaction and diffusion con-
trolled chemistry are introduced on top of the temperature distribution across the disk, and
the mass transport of the primary etchant component, respectively. The predictions of these
simplified models are compared against experimental results showing good agreement.
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1 INTRODUCTION

1.1 Motivation

Thin liquid films are encountered in a wide range of technical devices. They are also met
in everyday life in the flow along a window or the windshield of a car. Thin film flow
is also observed in a number of natural phenomena, as for example in lava flows, snow
avalanches, and gravity currents. They are part of the general class of free boundary and
interfacial flows and have received considerable attention over the past decades. Numerous
technological applications are based on thin film flow, including for example distillation,
water desalinization, blood oxygenation, coating, heat pumps and chemical reactors. Es-
pecially for heat and mass transfer applications thin liquid films are of great interest, since
they provide a big potential for high heat and mass transfer rates on large substrates. In
most cases thin liquid films are either driven by gravity or by centrifugal forces. An exam-
ple of both types is shown in Fig. 1.1.
Thin film flows which are driven by the centrifugal forces are of high relevance in a variety
of industrial applications. The machinery essentially uses spinning disk devices, which al-
low to control the film thickness by the rotational speed producing very thin liquid layers.
The key benefits of these devices include strongly increased heat and mass transfer rates on
the rotating surface, and furthermore, they offer the possibility of a cost-saving reduction
of the working liquid.

(a) Falling film. Exps. by Park and Nosoko [1] (b) Thin film flow on a spinning disk. Exps. [2]

Figure 1.1: Thin film flow driven by (a) gravity and (b) centrifugal acceleration.
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In the semiconductor industry a spinning-disk device, as the one sketched in Fig. 1.2, is
used for the surface preparation of silicon wafers. To increase the efficiency of the device,
the consumption of working liquid has to be kept as small as possible, while at the same
time a continuous wetting of the surface has to be guaranteed to achieve uniform process
results. Besides cleaning, which is one of the major tasks of the spin processor, the wet
chemical etching represents a further important application. For this dissolution process of
the surface of the wafer two asymptotic regimes, associated with very fast and very slow
chemistry, respectively, can be distinguished. For an optimization of the surface etching
process in either case a detailed analysis of the thin film flow and the associated heat and
mass transfer rates is required.

Figure 1.2: Spin Processor, Lam Research AG.

Due to the exceedingly high spatial resolution requirements, which arise from the thin film
nature of the flow, resulting in a large disparity between the two governing length scales in
the radial and vertical directions, a fully resolved numerical simulation is unfeasible. The
spatial resolution requirements are further increased by including heat and mass transfer,
as in this case the small thermal and molecular diffusivities, associated with large Prandtl
and Schmidt numbers, respectively, eventually result in thin temperature and concentration
boundary layers.
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The complex physics which governs the flow results in a variously shaped free surface.
Fig. 1.3 depicts the effect of an increase of the volumetric flowrate Q on the topology of
the free surface. For moderate flow rates large scale wave structures can be observed in
the radially outer region, see Fig. 1.3a. As the volumetric flowrate is increased, these large
scale structures tend to break up into small-scale, three-dimensional wave structures, see
Figs. 1.3b-1.3c. This highly irregular free surface, associated with complex wave dynam-
ics, additionally challenges any numerical simulation of the flow.

(a) Q=0.36 lpm (b) Q=0.6 lpm (c) Q=1.2 lpm

Figure 1.3: Waves encountered on a spinning disk using a high-speed camera (2000 fps)
considering a constant revolution speed of n=200 rpm and water as working
liquid. Exps. [2].

The present work attempts to analyze computationally the wavy thin film flow and the
associated heat and mass transfer characteristics on a spinning disk in order to describe
and to investigate the salient features of the process of wet chemical surface etching in two
asymptotic regimes, associated with very fast and very slow chemistry.
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1.2 Review of previous work

Due to their high technical relevance and the complexity of the wave dynamics of the free
surface flow, thin film flows have been and are still subject of numerous specific papers
and scientific monographs (e.g. Chang and Demekhin [3], Kalliadasis et al. [4]). Compre-
hensive reviews on the dynamics of thin liquid films were presented by Oron et al. [5] and
Craster and Matar [6].
While thin films driven by centrifugal forces are attracting increasingly attention in various
engineering applications, due to the fact that the film thickness can be controlled by the
rotational speed, historically, most effort has been put into analyzing thin liquid films flow-
ing under the action of gravity. For these films, which are falling down a vertical wall or an
inclined plane, a wide variety of waves was found and classified in various experimental
studies. Typical flow quantities, such as the thickness of the liquid film, have been mea-
sured and the stability of the flow was analyzed. The modeling efforts of falling films can
be basically divided in mathematical models for systems with negligible and significant
inertia, resulting in a lubrication approximation for the former, and an integral boundary
layer (IBL) approximation for the latter case.
Thin film flows driven by centrifugal acceleration bear in many aspects close resemblance
to the falling film problem and many of the typical flow features apply to both cases. There-
fore, for the sake of completeness, the present review starts with a section on falling liquid
films, before it continues with thin liquid films driven by centrifugal forces.

1.2.1 Falling liquid films

In 1916 Nusselt [7] presented a steady-state base solution to the Navier-Stokes equations
for a thin liquid film falling under the influence of gravity. This mathematically simple
solution, which is essentially represented by a semi-parabolic streamwise velocity profile,
is often referred to as Nusselt flat-film solution. In real falling liquid films flow instabilities
in general produce a wide variety of surface waves, as first analyzed experimentally by
Kapitza and Kapitza [8]. In a first analytical attempt to analyze the wave dynamics, the
linear stability of the Nusselt flat-film solution to small perturbations was studied by several
authors (e.g., Benjamin [9], Yih [10]). Applying a classical Orr-Sommerfeld linear stability
analysis, the film was found to be unstable to long-wavelength disturbances above a critical
Reynolds numberRecrit, due to inertial forces. The waves at the inception of the instability
were found to travel with twice the interface velocity. Benjamin [9] found the critical
Reynolds number to be

Recrit =
5
6

cot(θ) , (1.1)

with θ denoting the angle of inclination of the substrate. This correlation was confirmed in
experiments by Binnie [11, 12], whereas the experimental findings of Tailby and Portalski
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[13] on the stability of the film did not agree with Eq. (1.1). Wave inception on falling
films was shown to be a convective instability (Joo and Davis [14], Cheng and Chang [15]).
Disturbances at the inlet are convected downstream, where they are amplified and trigger
secondary instabilities. The linear theory is therefore only applicable in the inception re-
gion. Additionally, the wave dynamics can be supposed to be very sensitive to upstream
flow noise, which is often hard to control.
The extension of the stability analysis to the nonlinear regime was initiated by Benney [16],
who presented a single evolution equation for the film thickness, known as Benney equa-
tion. For small Reynolds numbers this equation describes the onset of waves correctly, but
it fails in practically relevant settings with moderate Reynolds numbers, since it assumes
only a weak influence of inertia, which is on the other hand the key instability mechanism.
In the limit of small amplitudes the Benney equation can be further reduced to an equation
known as Kuramoto-Sivashinsky equation. This type of equation is often found in nonlin-
ear long-wave simplifications of the Navier-Stokes equations, and it has been extensively
studied. So it was considered by Chang [17] and Yang [18] to analyze traveling waves on
falling films.
For practically relevant cases from moderate to high Reynolds numbers, a method based
on a combination of the boundary-layer theory and the von Kármán-Pohlhausen integral
approximation has been widely used (Kapitza [19], Shkadov [20]). This approach, often
referred to as Shkadov model, leads to a coupled system of nonlinear hyperbolic partial dif-
ferential equations for the film thickness and the instantaneous local flowrate. The system
of equations is solved for the depth-averaged flow variables assuming polynomial profiles
for the velocity variation inside the film. Wilkes and Nedderman [21] and Portalski [22]
experimentally found that the streamwise velocity profile can be approximated reasonably
well by a second-order polynomial, even inside a wavy film.
The equations of the Shkadov model are often referred to as integral-boundary-layer (IBL)
equations. The solution of this nonlinear system of hyperbolic partial differential equa-
tions, is basically non-unique. This implies that for a fixed wave frequency and fixed pro-
cess parameters several sets of solutions can exist. These sets of solutions are called wave
families. The solutions in one family are categorized by the phase velocity and the height
of the wave peak. The different wave families were analyzed by Shkadov [20], Bunov et
al. [23] and Sisoev and Shkadov [24]. Sisoev and Shkadov [25, 26] also introduced the
concept of dominating waves. These are attracting wave regimes, which are most likely
to be realized, independently of the initial conditions. The dominating waves were also
shown to be the waves with the greatest velocity and the largest peak height in a family.
Applying the concept of dominating waves, the predictions of the Shkadov model were in
good agreement with the experimental results of Alekseenko et al. [27].
An improvement to the Shkadov model was presented in the work of Ruyer-Quil and
Manneville [28, 29]. They proposed a refined model for the flow inside the film by apply-
ing the method of weighted residuals to expand the streamwise velocity field on a poly-
nomial basis. Scheid et al. [30] carried out numerical simulations for a two-dimensional
formulation of this improved model in order to obtain solutions for three-dimensional film
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flow. In a comparison against results from a direct numerical simulation by Salamon et
al. [31], very good agreement for several traveling-wave families was found. Malamataris
et al. [32] found in a direct numerical simulation (DNS) of the Navier-Stokes equations
significant deviations from a semi-parabolic shape, especially in the vicinity of large soli-
tary waves. The weighted-residual integral-boundary-layer (WRIBL) model was proven
as capable to reproduce even such velocity profiles. The numerical results of the WRIBL
model were also compared against experimental results of Liu and Gollub [33], Liu et
al. [34], Alekseenko et al. [27, 35] and Park and Nosoko [1]. Good qualitative agreement
was found and typical features, like herringbone and horseshoe shaped structures, could
be reproduced.

Direct numerical simulations of the Navier-Stokes equations were considered by a num-
ber of researchers to analyze the falling film problem without any model assumptions on
the velocity distributions inside the liquid. Malamataris et al. [36] and Salamon et al. [31]
applied this computationally demanding approach and solved the governing set of equa-
tions numerically with a finite-element method. In these studies, similar to the numerical
study carried out by Jayanti and Hewitt [37], the upper boundary condition was imposed
at the interface, so that the ambient air was not part of the solution. Gao et al. [38] carried
out a direct numerical simulation of the Navier-Stokes equations using the volume-of-fluid
(VoF) method. They imposed a periodic forcing at the inlet to reproduce the experimentally
observed wave structures. Small amplitude waves with sinusoidal-shape and a wave veloc-
ity in close agreement with the experimental observations of Kapitza [39] were found. For
the large amplitude waves, the experimentally observed tendency of these waves to inherit
the forcing frequency (Nosoko et al. [40]) was confirmed. Recirculation zones were found
inside very large amplitude waves, located inside a confined region beneath the peak of
the surface. The velocity profiles inside the liquid film were analyzed and a good over-
all agreement with the semi-parabolic analytical velocity profile was found in regions of
the wave crests and slopes. In the wave troughs, however, where capillary ripples precede
the large amplitude waves, significant deviations from the semi-parabolic velocity pro-
files were found. In this region also the pressure variation was found to be largest, as the
strong variation of the surface curvature translates into a strong variation of the capillary
pressure.

Heat and mass transfer in falling films

Heat and mass transfer in falling films was also studied with considerable interest. A de-
tailed review on modeling advances was, for example, presented by Yih [41]. Kapitza [39]
proposed an approximate model to predict transfer coefficients in a wavy film to account
for the experimentally observed intensifying effect of wavy flow on the transfer character-
istics. The decrease of the average film thickness due to waviness of the surface was found
to provide a substantial contribution to the intensification of the heat and mass transfer
rates. Other modeling efforts were rather based on constant film thickness assumptions,
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which include an empirically determined eddy diffusivity to account for the intensified
transfer due to the waviness.
Experimental investigations dealing with the heat transfer in falling liquid films (see, e.g.
Kirkbride [42], Chun and Seban [43]) indicated an increase of the heat transfer coefficient
over the steady-state Nusselt prediction. Hirshburg and Florschuetz [44, 45] used an in-
tegral method to model the wavy thin film flow and the associated heat transfer based on
the semi-parabolic Nusselt profile and a linear approximation for the temperature profile.
The results were found to be in good agreement with experimental data. In the numerical
study of Miyara [46] the effect of local film thinning together with a convection effect of
circulation flow in large amplitude waves was found to be responsible for the enhancement
of the heat transfer coefficient in a falling wavy liquid film.
As for the mass transfer especially the gas-liquid mass transfer across the film surface
has received considerable attention. Emmert and Pigford [47] experimentally observed
an enhancement of about a factor of 2.5 for the absorption of CO2 by water, as com-
pared against theoretical predictions using the flat-film solution for the flow field. Solu-
tions from an approximate model, in which a Kapitza-type velocity distribution was used
to solve the convection-diffusion equation (e.g. Ruckenstein and Berbente [48]), predicted
enhanced transfer rates, but the obtained magnitude of the mass transfer coefficient was
still smaller than the experimentally observed magnitude. Wasden and Dukler [49] used a
semi-empirical model, in which the flow solution is constructed from experimental data,
to solve the diffusion equation in a coordinate system moving with the wave. The results
for the absorption rates were in good agreement with the experimental findings. Sisoev et
al. [50] modeled the gas absorption process in the presence of regular waves, by utilizing
the dominating wave solution to solve a two-dimensional convection-diffusion equation. A
number of studies were also concerned with the solid-liquid mass transfer rates at the wet-
ted substrate. Hirose et al. [51] analyzed the dissolution of solid material from the substrate
under laminar flow conditions experimentally and analytically. Analytical solutions were
obtained by introducing the semi-parabolic Nusselt flat-film profile for the streamwise ve-
locity component. They found, that in the smooth regions of the flow, the predictions of
the steady-flow model matched the experimental results well. For wavy flow an enhance-
ment in the solid-liquid mass transfer process was found and the reduction of the mean
film thickness was identified as main reason for this enhancement. Brauner and Moalem-
Maron [52] observed by means of simultaneous measurements of the instantaneous film
thickness and the local transfer rate, a close correlation between the motion of the waves
and the local mass transfer. In the same study, the major enhancement effect was found
to be due to the large amplitude waves, where the transfer rates reached a local maximum
beneath the propagating front of the wave.
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1.2.2 Rotating films

Thin films driven by centrifugal forces bear resemblance to the problem of falling films
in many aspects. The main differences, which exacerbate the modeling of these flows,
arise from the radially varying acceleration and the presence of the Coriolis force. To
characterize the flow it is therefore useful to consider the Rossby number Ro and the
Ekman number Ek, which rate the importance of the Coriolis force relative to the inertial
and viscous forces, respectively. As shown by Rauscher et al. [53] at large radii r̃, where
the thickness of the liquid film δ̃ is sufficiently small, an asymptotic solution can be found
in terms of a series expansion of the Navier-Stokes equations. In the asymptotic limit of
large radii the radial momentum equation is essentially governed by the balance of the
centrifugal and viscous forces. This balance can be written as

O
(
Ω2r̃

)
∼O

(
ν

Q

2πr̃δ̃3

)
, (1.2)

involving the volumetric flowrate Q and the kinematic viscosity ν of the fluid. It then
follows that

νQ

2πΩ2r̃2δ̃3
∼O (1) , (1.3)

which can be rewritten as the product of the local Ekman and the Rossby numbers
(

ν

Ωδ̃2

)

︸ ︷︷ ︸
Ek

(
Q/2πr̃δ̃
r̃Ω

)

︸ ︷︷ ︸
Ro

∼O (1) . (1.4)

Since the inertial forces become insignificant at very small Rossby numbers, Ro� 1, the
neglect of the inertial forces in the asymptotic limit, requires a sufficiently high Ekman
number, so that

Ek ·Ro∼O (1) (1.5)

is satisfied. It immediately follows that the more the Ekman number exceeds unity the
less effect have the inertial forces. At the same time, being defined as the ratio of the vis-
cous forces to the Coriolis forces, a large Ekman number implies negligibly small Coriolis
forces.
From Eq. (1.4) it follows that the film thickness at large radii is proportional to

δ̃ ∝

(
1

2π
Qν

Ω2r̃2

)1/3

.

(1.6)

In this asymptotic limit, the centrifugal force term is driving the radial motion equivalently
the gravitational force term in the Nusselt flat-film solution for falling liquid films.
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Based on the order of magnitude of the convective terms, which are O
(
Ro2) relative to

the leading order centrifugal term, and a length scale in vertical direction defined as

δ0 =
( ν
Ω

)1/2
, (1.7)

Rauscher et al. [53] suggested to introduce

l0 =

(
9Q2

4π2νΩ

)1/4

(1.8)

for the characteristic radial length scale.

Experimental work

Experimental investigations on rotating films were mostly dedicated to the classification of
different wave regimes and measurements of the local film thickness. The film thickness
measurements were carried out using either mechanical, optical or electrical measurement
techniques.

Espig and Hoyle [54] carried out the first systematic experimental investigation, utilizing a
needle probe method. They reported four different flow types, including uniformly smooth
film flow, flow with concentric waves, and flow with helical waves. For wavy flow the
maximum film thickness, corresponding to the amplitudes of the waves, was found to be
up to 40% higher than the film height predicted by the Nusselt flat-film analogon, which is
proportional to Eq. (1.6) with the constant of proportionality given as 31/3. This flat-film
analogon was shown to represent the asymptotic solution of the boundary-layer equations
in the limit of small Rossby numbers, Ro� 1, (Aroesty et al. [55]).
Leshev and Peev [56] measured the film thickness using alternatively water or glycerol-
water solutions to investigate the validity of the asymptotic solution. While the maximum
film thickness for water was found to be significantly higher than predicted by the asymp-
totic solution, there were only slight deviations for the higher viscous liquids, suggesting
an attenuation of the waviness due to an increase of the viscosity.

While most mechanical methods constrain the film thickness measurements to the peak
height of the waves, optical or electrical methods allow to obtain the time-averaged mean
film thickness. Charwat et al. [57] used an infrared-absorption technique to measure the
local mean film thickness of water, a water-glycerin solution, and a number of alcohols
on a rotating a disk made of optical glass. The measured film thickness was found to be
significantly lower than predicted by the asymptotic smooth-film solution. The smooth-
film predictions exceeded the experimental results with a maximum deviation up to 50%.
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Based on their experimental data Charwat et al. [57] modified the exponent as well as the
pre-factor of the asymptotic smooth-film solution to obtain the correlation

δ̃

r̃
= 1.6

(
Qν

Ω2r̃5

)0.4

, (1.9)

which provides the best fit to their film thickness measurements. Based on qualitative ob-
servations they further distinguished three wave regimes, with concentric waves, spiral
waves, and irregular, wedge-like wavelets. Waveless flow was found only for small volu-
metric flowrates and low rotational speeds. The speed of the concentric waves was found
to be a factor of 1.7-2.8 faster than the surface velocity of the smooth-film flow. The peak
height of the waves was found to be up to 50% higher than the local mean film thickness.

Woods [58] measured the intensity of light that passed through a dye impregnated water
film. This optical method allows for accurate measurements of the instantaneous shape of
the wavy surface, see e.g., Fig. 1.4. The scaling used in Fig. 1.4 is based on the definitions
(1.7) and (1.8), introduced as r̃= rl0, and δ̃= δδ0, as suggested by Rauscher et al. [53]. The
observed waves were classified as two- or three-dimensional, and the peak height of the
waves was found to be very large, with a maximum of about four times the local mean film
thickness. This maximum occurred at a radial transition point, where the two-dimensional
waves broke up into three-dimensional wavelets.
Ozar et al. [59] utilized the reflection of laser-light from the free surface to determine the

location of the liquid-air interface. The inflow conditions were controlled by a co-rotating
collar with fixed height and length. A local maximum in the film height was observed
and identified as hydraulic jump. The radial position of the hydraulic jump was observed
to depend on the rotational speed and a Reynolds number, which was defined using the
initial velocity of the liquid and the height of the film at the exit of the collar as velocity
and length scales, respectively. Three flow-regions were distinguished: an inner, inertia-
dominated region, a transition region and a rotation-dominated outer region. Wavy flow
with increasing wave amplitudes was observed with increasing Reynolds number.
Thomas et al. [60] considered a similar experimental setup. The local mean film thickness
was measured using a capacitance technique. They observed wavy flow, in the super- and
subcritical regions, before and after the hydraulic jump, respectively.

A non-intrusive technique was also used by Miyasaka [61], who focused on the radially
inner flow region. In his experiments the change in the electrical resistance of a glycerin-
solution was utilized to measure the film thickness with an accuracy of ± 0.01 mm. The
same measurement principle was utilized by Muzhilko et al. [62], who found the mean film
thickness in the radially outer region to be about 20% less than predicted by the asymptotic
smooth-film solution.
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Figure 1.4: Instantaneous film thickness profile as obtained by Woods [58].
Operating conditions Q=0.78 lpm, n=400 rpm and ν=1×10−6 m2/s.

Leneweit et al. [63] measured the velocity of the free surface. The film thickness was eval-
uated by assuming, that the radial and azimuthal components of the velocity agree to the
leading order terms with the asymptotic smooth-film solution. They investigated the evo-
lution of spiral waves triggered by local perturbations at the entrance of the liquid. For low
flowrates, the wave velocity was found to be about twice the local surface velocity, which
is in accordance with predictions from the linear stability theory.
Lim [64] used a microdensiometer technique to measure the local mean film thickness. It
was found to be about 20% less than predicted by the asymptotic smooth-film solution and
correlated in terms of two dimensionless groups.

Burns et al. [65] measured the time-averaged film thickness by utilizing the fact, that the
film thickness is inverse proportional to the electrical resistance. The film thickness mea-
surements were carried out for four different liquids and the results were found to be on
average about 9% less than predicted by the asymptotic smooth-film solution. Three zones
were identified, based on the occurrence of turning points in the radial velocity profile: an
injection zone, an acceleration zone, and a synchronized zone. An estimate for the radial
extensions of the two inner, inertia dominated zones was proposed as well. In Fig. 1.5 the
experimental results of Burns et al. [65] are compared against the leading order term of the
asymptotic solution, using the scaling quantities suggested by Rauscher et al. [53]. These
results illustrate the typical observations from experimental studies in which the local mean
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Figure 1.5: Measurements of the film thickness by Burns et al. [65] for Q=1.80 lpm,
ν=1.3×10−6 m2/s and (a) n=296 rpm, (b) n=401.1 rpm, (c) n=496.6 rpm, (d)
n=601.6 rpm, (e) n=697.1 rpm, (f) n=802.1 rpm, (g) n=987.6 rpm, (h) leading-
order term of asymptotic solution.

film thickness was analyzed. In the radially inner region, inertial effects dominate and the
asymptotic solution is not valid. In the radially outer region the waviness of the film leads
to a lower local mean film thickness than predicted by the asymptotic far-field solution.

Numerical studies of rotating films

There exist only a few studies in which the film flow on the rotating disk is investigated by
performing detailed numerical simulations of the governing Navier-Stokes equations. Rice
et al. [66] carried out a DNS assuming an axisymmetric flow field on an Eulerian mesh us-
ing the VoF method to track the evolution of the two-phase flow field. They compared
their results for the film thickness against the experimental results of Thomas et al. [60]
and Ozar et al. [59], where satisfactory agreement was found for the first, while overpre-
dicted film heights were found for the latter.
Rahman and Faghri [67] used a curvilinear boundary-fitted coordinate system for the nu-
merical calculation of the three-dimensional flow in a pie-shaped slice of the disk. In their
approach the free surface is used as an upper boundary of the computational domain, and
therefore the ambient gas was not part of the solution. In a comparison against experimen-
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tal data of Thomas et al. [60] a satisfactory agreement was found. The profiles of the radial
velocity component were assessed as well and found to be approximately semi-parabolic.
Alike in the numerical study of Rice et al. [66], no waves were apparent, which is in con-
trast to the experimental findings.

Kaneko et al. [68] performed an axisymmetric simulation using the VoF method to ana-
lyze the flow on a spinning disk. They also included species transport in a binary mixture
to model the diffusion controlled process of wet chemical etching of silicon wafers. The
computational fluid dynamics (CFD) study was complemented by experiments, and the nu-
merical predictions were found to be in good agreement with the experimentally observed
etching rates.

Approximate models for rotating films

The mathematical modeling of films which are driven by centrifugal forces is closely re-
lated to that of falling films. The concepts for providing approximate solutions for both
types of flow is therefore often based on the same methodologies. This affinity becomes
obvious in the asymptotic solution of the boundary layer equations for large values of the
radius. Applying the perturbation method using the dimensionless radius r = r̃/l0 as ex-
pansion parameter, the leading order term of the radial velocity component resembles the
Nusselt smooth-film solution (Aroesty et al. [55]) with g replaced by Ω2r̃.
Rauscher et al. [53] analyzed axisymmetric film flow on a spinning disk using an asymp-
totic expansion in terms of r of the full Navier-Stokes equations, imposing free-surface
boundary conditions on the liquid-gas interface. This series expansion yielded leading
zeroth-order terms of O

(
r−1/3

)
for the radial component of the velocity, which are iden-

tical to the smooth-film solution derived by Aroesty et al. [55].
Needham and Merkin [69] used the method of matched asymptotic expansions and found
that the asymptotic structure of the steady-state solution consists of an inner and an outer
region. In the inner region there is a rapid adjustment from the inlet conditions to the thin
film regime, which can cause an increase of the film thickness. In the radially outer region,
the film thickness is continuously decreasing. A linear stability analysis for the outer re-
gion led to an instability criterion similar to the one obtained for the falling film problem
by Benjamin [9], cf. Eq. (1.1),

Recrit =
5
6
, (1.10)

with a critical Reynolds number for the rotating film defined as Recrit = (QΩ2)/(2πgν).
In this stability analysis the effect of surface tension was neglected.
An analytical model for the linear stability of the rotating film was also presented by
Charwat et al. [57]. In this model, which is only valid for large values of the radius and

13



1 Introduction

small wave numbers, the largest amplification factors were obtained for axisymmetric per-
turbations, and the Coriolis force was shown to exert a stabilizing influence.
Myers and Lombe [70] analyzed the applicability of the lubrication approximation to the
rotating thin film flow. They showed, that in the framework of the lubrication approxima-
tion, which is based on the assumption that inertial forces are negligible, also the contri-
butions from the Coriolis force will be negligible, since both terms appear in the radial
momentum equation with the same order of magnitude. When applying the lubrication ap-
proximation (e.g. Emslie et al. [71], Momoniat and Mason [72]), a typical feature of the
rotating thin film flow is therefore omitted.

In most practically relevant settings and experimental studies the Ekman number is not
large, so that the Coriolis force has to be considered. The theoretical analysis of rotat-
ing films with finite Ekman numbers is mostly based on the thin film approximation,
which leads to boundary-layer-type equations. Steady-state solutions of these boundary-
layer equations were obtained numerically by Dorfman [73].

In a more popular approach, the IBL approximation, which essentially relies on the method-
ology of the Shkadov falling-film model, is extended to the rotating disk problem. Accord-
ingly, the von Kármán-Pohlhausen integral approximation is used to reduce the dimen-
sionality of the problem. This method, which was for example considered by Miyasaka
[61], leads to a coupled system of nonlinear hyperbolic partial differential equations for
the film thickness and the radial- and azimuthal flowrates. The reduction of the dimension-
ality of the problem via depth-averaging requires assumptions for the profiles of the radial-
and azimuthal velocity components. A popular choice for the profile of the radial veloc-
ity component is a semi-parabola (e.g. Sisoev et al. [74]). This choice is motivated by the
dominating balance between the viscous and the centrifugal forces at large radii, where a
parabolic velocity profile is analytically obtained, but it has also a number of shortcomings
in the inner region. In the analysis of Kim and Kim [75] a quartic profile is therefore con-
sidered instead, as this fourth-order polynomial properly accounts for the effect of inertia
in the radially inner region. Due to the better representation of the inertial forces in the ra-
dially inner region the results obtained using the IBL approximation with quartic velocity
profiles are generally in better agreement with results from numerical simulations of the
full Navier-Stokes equations, than the results obtained with an IBL approximation using a
parabolic radial velocity profile. Sisoev et al. [74] and Kim and Kim [75] furthermore car-
ried out a linear stability analysis of the IBL equations and found the wave lengths, phase
velocities, and amplification factors to be in good agreement with results obtained from
an eigenvalue analysis of the linearized Navier-Stokes problem, which was carried out in
the work of Sisoev and Shkadov [76]. The stability analysis results obtained using the IBL
approximation with quartic velocity profiles (Kim and Kim [75]) also included the effect
of surface tension, and were in better agreement with the results from the Navier-Stokes
equations than those of Sisoev et al. [74]. For large radii and zero surface tension the insta-
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bility criterion of Needham and Merkin [69], see Eq. (1.10), was reproduced. Moreover,
the leading order terms of a series expansion in r of the IBL equations for large radii were
shown to be nearly identical to the leading order terms of the asymptotic expansion of the
full Navier-Stokes equations.
In the limit of large Ekman numbers, i.e. negligible Coriolis forces, the IBL equations for
the rotating disk problem reduce to those of the falling film (Shkadov [77]). Therefore,
Sisoev et al. [78] considered in a first attempt the regular wave solutions of the falling
film problem to model waves on a rotating disk. The fairly good agreement of these quasi-
steady periodic waves with experimental data of Woods [58] motivated an extension of the
regular wave model to finite Ekman numbers. In this extended model (Sisoev et al. [74]) a
proper scaling allowed a further truncation of the IBL equations yielding localized versions
of the IBL equations, where the flow is assumed to be locally homogeneous. A linear stabil-
ity analysis of the localized IBL equations provided amplification factors, phase velocities
and unstable wavelengths, which were close to results from the linearized Navier-Stokes
problem. It was therefore concluded, that the truncated equations comprise adequately the
features of the full problem. In order to obtain non-linear travelling wave solutions for the
truncated IBL equations, a corresponding non-linear eigenvalue problem was solved. The
dominating waves were compared against experimental data of Woods [58], where a very
good quantitative and qualitative agreement was found. The stabilizing influence of the
Coriolis force in the axisymmetric wave regime was confirmed.
Matar et al. [79] demonstrated that transient numerical solutions of the full IBL equa-
tions exhibit finite-amplitude waves, whose wave structure is similar to the periodic, quasi-
steady wave solutions from the bifurcation analysis of the localized model. Large ampli-
tude waves, separated by long flat-film regions were observed. Furthermore they observed
a coincidence between the maxima of the depth-averaged radial flow rates and the minima
of the depth-averaged azimuthal flowrates, so that the resulting Coriolis forces can effec-
tively exert a stabilizing influence on the flow. Due to this retarding effect of the Coriolis
force, waves on falling films travel faster than waves on rotating films. Furthermore it was
shown, that with increasing effect of inertia the flow becomes more unstable.

Heat and mass transfer in rotating films

Experimental work

A number of experimental investigations were carried out with the focus on the heat and
mass transfer in thin liquid films on rotating disks.
Among these studies are the work of Ozar et al. [80], who proposed a correlation for the
local Nusselt number. Aoune and Ramshaw [81] studied the local heat transfer rates be-
tween the disk and the film. High heat transfer coefficients were found in the radially inner
region, which was supposed to be a thermal entrance effect. Also in the radially outer re-
gion the heat transfer coefficients were found to be significantly higher than predicted by
a simplified Nusselt smooth-film analysis.
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Staudegger [82] measured the radial variation of the liquid temperature and of the etching
abrasion of a silicon-dioxide layer covering the solid surface of the rotating disk. Convec-
tive cooling at the downside of the disk was realized in these experiments with a stream
of nitrogen as coolant medium. As can be observed from Fig. 1.6 a notable cooling of the
liquid etchant was found for increasing radii. Assuming a mainly temperature dependent
chemistry as it is applicable in the asymptotic limit of reaction controlled etching, the re-
sults for the temperature translate directly into predictions for the etching abrasion. An
appropriate computational model to predict heat transfer in the liquid film will therefore
be of high relevance for industrial chemical surface etching applications.

Aoune and Ramshaw [81] analyzed in their study the liquid-gas mass transfer characteris-
tics between the liquid surface and the ambient gas as well. The mass transfer coefficient
was found to depend mainly on the rotational speed, while there was only a weak depen-
dence on the flowrate, and on the radial position. The authors observed an enhancement of
the heat and mass transfer rates in case of wavy flow.
Lim [64] analyzed the absorption of oxygen into water and presented a correlation for the
Sherwood number. An increase in the mass transfer coefficient was observed to be related
to the wave dynamics of the unsteady flow.
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Figure 1.6: Temperature vs. radial distance. Exp. Staudegger [82], operating conditions
Q=1.0 lpm, n=500 rpm and ν=1×10−6 m2/s.
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Figure 1.7: Etching rate profiles for various rotational speeds as obtained by Staudegger et
al. [85]. Q=0.95 lpm and ν=2.87×10−6 m2/s.

The solid-liquid mass transfer on the disk was experimentally analyzed by Burns and
Jachuck [83], who utilized the limiting current technique for the process of copper de-
position on a spinning disk. They observed an increase of the mass transfer coefficient in
case of wavy flow, which is in contrast to the experimental findings of Peev et al. [84]. In
the latter study the dissolution of a rotating gypsum disk was analyzed and the waviness of
the liquid film was found to show no significant influence on the solid-liquid mass transfer
process.

Staudegger et al. [85] and Kaneko et al. [68] analyzed the etching activity of an aqueous
solution, consisting of nitric and hydrofluoric acid, flowing over a rotating silicon disk.
This process is of high relevance for the semiconductor industry, where it is used for the
thinning of silicon wafers, allowing for silicon chips with reduced thickness. As the chem-
ical etching of silicon is mainly controlled by the convection-dominated mass transfer of
the primary etchant component from the bulk liquid to the surface of the silicon wafer, it
is essentially determined by the convection based solid-liquid mass transfer coefficient.
Fig. 1.7 shows typical etching rate profiles for various rotational speeds as obtained by
Staudegger et al. [85]. The largest etching rates are observed at the center of the disk,
corresponding to the stagnation region of the impinging liquid jet. In this region the etch-
ing rates are observed to be nearly unaffected by the rotational speed. Radially further
downstream a local maximum, with a radial position depending on the rotational speed,
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was observed. At larger radii the etching rates decrease. For the higher rotational speeds
the etching rates in the radially outer region show a constant or even slightly increasing
behavior. Staudegger et al. [85] additionally analyzed the influence of an increase of the
volumetric flowrate and different etchant temperatures on the etching rates. It was found
that an increase of the rotational speed, as well as an increase of the volumetric flowrate
and an increase of the etchant temperature led in general to higher etching rates. A qual-
itative correlation between the observed etching rates and the corresponding approximate
radial velocity profiles was obtained by considering an approximate two-parameter model
for the steady-state smooth-film flow over the rotating disk.

Theoretical and computational work

Most previous theoretical work on the heat and mass transfer characteristics of the thin
film flow on a spinning disk is based on the steady-state smooth-film solution of the flow
field in the asymptotic limit of large radii.

Aoune and Ramshaw [81] extended the Nusselt solution obtained for the film condensation
in a falling film (Nusselt [7]) to the rotating film problem. The predictions of this simplified
model were compared against their experimental data. For highly viscous liquids the ex-
perimental results for the heat transfer were in satisfactory agreement with the predictions
from the simplified Nusselt analysis. Significant deviations were observed, when water
was used as liquid, suggesting an attenuation of the waviness due to an increase of the
viscosity. Additionally, the penetration model of Higbie (Higbie [86]) was applied, to pre-
dict the liquid-gas mass transfer coefficient. Using this simple model the magnitude of the
experimentally obtained mass transfer coefficient was significantly underpredicted.

Basu and Cetegen [87] applied a thin film approximation combined with the von Kármán-
Pohlhausen method to analyze the thermal characteristics of a heated film flow, assuming
alternatively a constant disk temperature, as well as a constant heat flux as thermal bound-
ary condition on the surface of the rotating disk. They did not account for the influence of
the Coriolis force, as the momentum equation in azimuthal direction was not considered.
The thermal entry length was neglected as well. Their obtained steady-state results exhibit
decreasing Nusselt numbers with increasing radii and a comparison against experimen-
tal results of Ozar et al. [80] and numerical results of Rice et al. [66] showed reasonable
agreement in the radially outer region.

Peev et al. [84] applied a method, known as method of Leveque (see, e.g., Bird et al. [88]),
to analyze the solid-liquid mass transfer coefficient. In this method, which was also utilized
by Burns et al. [83], the concentration boundary layer is assumed to be very thin, implying
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a very large Schmidt number, so that the profile of the radial velocity inside this thin layer
is approximately linear. The resulting simplified convection-diffusion equation can then be
solved analytically in terms of Gamma functions. The predictions of this approximate dif-
fusion model were compared against the experimental results of Peev et al. [84], as well as
against the experimental results of Burns et al. [83]. While in the former case, satisfactory
agreement was found, the experimentally obtained mass transfer coefficient of the latter
case was significantly underpredicted.

Rahman and Faghri [89] presented a steady-state analytical solution for the gas absorption
at the gas-liquid interface and the solid dissolution at the disk surface. In their approach
the radial convection velocity is prescribed using the semi-parabolic profile obtained for
the steady-state smooth-film. The resulting convection-diffusion equation was cast in di-
mensionless form and solved using a separation of variables, yielding solutions for the
dimensionless concentration in terms of confluent hypergeometric functions. The results
indicated a downstream increase of the mean bulk concentration, for the case of gas ab-
sorption, as well as for the case of solid dissolution, as mass is diffused into the fluid.
The Sherwood number was found to decrease with increasing radii due to the develop-
ing concentration boundary layer. The results of this asymptotic analysis were compared
against their results from a fully three-dimensional numerical simulation (Rahman and
Faghri [67, 89]), in which a curvilinear boundary-fitted coordinate system was used for
the numerical calculation of the three-dimensional flow in a pie-shaped slice of the disk.
Assuming the free surface as upper boundary of the computational domain the ambient
gas was not part of the solution. A good agreement between the numerical results and the
analytical solution was found in the radially outer region. In the radially inner region the
analytical solution did not produce satisfactory predictions, since inertial effects, which are
neglected in the far-field solution, dominate. From the numerical results a local minimum
in the Sherwood number was found in the radially inner region, where a maximum in the
film thickness was observed.

A rather few number of previous analytical and numerical studies scrutinized the effect of
wavy flow on the heat and mass transfer characteristics. Sisoev et al. [90] solved a two-
dimensional convection-diffusion equation in the framework of the localized IBL equa-
tions. Although the wave profiles were assumed to be frozen in the numerical solution
of the convection-diffusion equation for the gas concentration, the obtained results indi-
cated an enhancement of the rate of absorption due to the presence of the localized waves.
This enhancement could be attributed to the deformation of the diffusion boundary layer,
which increases the gas flux into the film. It was shown, that the local mass transfer rates
strongly depend on the wave regimes, and therefore, for given process parameters (i.e.
fixed Reynolds and Schmidt numbers), on the wave frequency. This finding attaches value
to a possible frequency forcing at the inlet, which can be of high relevance in industrial
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applications, when it comes to maximizing the transfer rates.

Matar et al. [91] solved for the full set of the unsteady IBL equations, where they also
included a convection-diffusion equation for the concentration of the gas phase which is
absorbed into the film. The necessary closure relation was provided by adopting a com-
posite profile function for the dissolved gas concentration. A single evolution equation for
the thickness of the concentration boundary layer and the base concentration is separately
solved for both variables, since their total directional derivatives appear to be alternately
zero, as it is dictated by the second law of thermodynamics. Numerical solutions for a
wide range of parameters were obtained using a finite-element method for the discretiza-
tion in space and a linear multi-step method for the time integration. While in the radially
inner region smooth film flow was observed, small-amplitude waves emerged in the outer
radial region. Propagating further downstream these waves steepened and eventually coa-
lesced forming large-amplitude waves, mostly preceded by capillary ripples. The observed
wavy film surface translated into significant radial variations in the thickness of the con-
centration boundary layer, and hence the local base concentration of the dissolved gas.
On average, the base concentration was found to increase due to the presence of the non-
linear waves. Their computational results for the averaged Sherwood number were also
compared against the experimental data of Aoune and Ramshaw [81] showing good agree-
ment. The limitations of steady-state models to describe heat and mass transfer rates were
also clearly demonstrated, as they are unable to capture any wave-induced enhancement of
the transport.

1.3 Objectives of the present work

As it is outlined in the previous section the heat and mass transfer characteristics of thin liq-
uid films on spinning disks were considered thus far only in a few theoretical and numeri-
cal studies despite the high relevance of these transport phenomena for various engineering
applications. Most of these previous studies investigate the heat transfer or the gas-liquid
mass transfer characteristics in case of waveless smooth flow. Furthermore, most of these
studies are restricted to large radii, where an asymptotic solution for the flow field can be
obtained (cf. Rauscher et al. [53]) and the influence of the inertial and Coriolis forces is
negligible.

The present work attempts to extend the scope of these previous studies by covering the
full radial extension of the rotating disk including the inner and outer region, where it puts
the focus on the effect of unsteady wavy flow on the thermal conditions near the wall, as
well as on the solid-liquid mass transfer characteristics. As such this work is also intended
to provide essential input for the modeling of surface etching processes on a rotating wafer
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in the asymptotic wet chemical etching regimes, associated with very fast and very slow
chemistry, respectively.
The wavy thin film flow on a spinning disk at finite Ekman numbers shall be analyzed per-
forming direct numerical simulations of the Navier-Stokes equations for a two-dimensional,
axisymmetric flow field. The numerical analysis is based on the finite volume method, and
the volume of fluid method is used to track the free surface. As the DNS of the flow is too
costly for use as a computational design and optimization tool, the integral-boundary-layer
method, which is less laborious in terms of computational costs, and furthermore offers
the possibility for a straightforward extension to include heat and species mass transfer,
is considered as an alternative approach. The predictive capability of the present IBL ap-
proximation shall be assessed using the CFD results obtained from the DNS as well as
experimental measurements as reference data.

The main objectives of the present study are to

• computationally investigate the unsteady, wavy motion of the liquid film on the ro-
tating disk based on CFD simulations and the IBL approximation,

• analyze the heat and species mass transfer between the disk and the liquid, with the
focus on the effect of waviness, as described by the IBL approximation, and

• model the surface etching process in the limit of large and small Damköhler numbers
on a rotating wafer.

1.4 Structure of the thesis

The present thesis is organized as follows:
In Chapter 2, the governing equations are presented. The problem is parameterized by
non-dimensionalizing the governing equations using problem intrinsic scaling quantities.
The thin film nature of the flow allows for a boundary-layer type approximation, which
considerably simplifies the governing equations. Solutions to the thin film equations for
the asymptotic case of very large Ekman numbers are reviewed and the integral boundary
layer equations for finite Ekman numbers are presented. The IBL method, which has so far
been successfully used to analyze the fluid dynamics and gas absorption into a thin film
flow on a spinning disk, is then extended to model the heat transfer assuming a constant
wall heat flux as thermal boundary condition, as well as to model the solid-liquid mass
transfer in a binary mixture, assuming a constant species mass fraction at the wall. A sim-
ple model to estimate the etching rates for wet chemical etching in the limit of large and
small Damköhler numbers is presented.
In Chapter 3 the numerical solution of the Navier-Stokes equations using the CFD sim-
ulation software ANSYS FLUENT is outlined and some details regarding the description
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of the two-phase flow using the implemented VoF method are discussed. The numerical
solution procedure to solve the IBL equations, which comprise a hyperbolic system of par-
tial differential equations, is based on a finite volume discretization and an approximate
Riemann solver. The principles of Roe’s approximate Riemann solver are recalled, and
some details regarding the underlying wave-propagation theory, which provides flux lim-
ited higher-order correction terms, are discussed.
In Chapter 4 the results of the IBL model for the hydrodynamic, thermal and species mass
transfer characteristics are presented and discussed starting with a detailed analysis of the
steady-state IBL results. The effects of wavy flow conditions on the time-averaged, as well
as on the instantaneous flow field and the heat and species mass transfer characteristics
are analyzed in detail. The predictions of the unsteady IBL model are assessed by compar-
ison against results from CFD based numerical solutions of the Navier-Stokes equations
assuming axisymmetric flow. In addition to the comparison against numerical results the
predictive capability of the unsteady IBL model is also assessed by a comparison against
available experimental data. The validation distinguishes between two different regimes
based on the maximum values of the Ekman number which are reached at the outer radius
of the disk.
In Chapter 5 the basic findings are summarized, and conclusions, as well as suggestions
for further work are presented.
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2 MATHEMATICAL MODELING AND APPROXIMATE
SOLUTIONS

2.1 Governing equations

The physical conservation laws of mass, momentum and energy provide the base for the
mathematical description of the flow and the associated heat and mass transfer. Additional
material properties, which govern the flow and the heat and species mass transfer char-
acteristics, as for example viscosity, surface tension, thermal conductivity, and molecular
diffusivity, are related to the nature of the fluid.
The following overview gives a synopsis of the mathematical description following text-
books on fluid mechanics, e.g. Batchelor [92], Spurk and Aksel [93], Kuhlmann [94],
Pedlosky [95], or Baehr and Stephan [96].

Let ϕ(~x, t̃) represent the amount of some arbitrary physical property of a continuous ma-
terial medium per unit volume. The total amount of this general physical field quantity
ϕ(~x, t̃) present in a finite volume V (t̃) is then obtained through the volume integral

∫

V (t̃)

ϕ(~x, t̃)dV. (2.1)

S0

V0−→n

−→v

Figure 2.1: Fluid material control volume.
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The Reynolds transport theorem states that the rate of change of the total amount of ϕ(~x, t̃)
within the material volume V (t̃), which is moving with the fluid velocity ~v, is given by

D

Dt̃

∫

V (t̃)

ϕdV =
∫

V0

∂ϕ

∂t̃
dV +

∫

S0

ϕ~v ·~ndS. (2.2)

Here the stationary volume V0, which is bounded by the surface ∂V0 ≡ S0, coincides with
the material volume V (t̃) at t̃= 0. The vector ~n denotes the outward pointing unit normal
vector of the boundary S0, see Fig. 2.1.

2.1.1 Conservation of mass

In a continuum model the mass m present in a finite volume V is obtained through the
volume integral

m=
∫

V (t̃)

ρ(~x, t̃)dV. (2.3)

Utilizing Reynolds transport theorem and replacing ϕ(~x, t̃) by the density ρ(~x, t̃), the con-
servation of mass is stated as

Dm

Dt̃
=
∫

V0

∂ρ

∂t̃
dV +

∫

S0

ρ~v ·d~S = 0, (2.4)

or alternatively, by applying the divergence theorem (see appendix 1), as

Dm

Dt̃
=
∫

V0

(
∂ρ

∂t̃
+∇ ·ρ~v

)
dV = 0. (2.5)

The differential form of the continuity equation is obtained in the limit V0→ 0 as

∂ρ

∂t̃
+∇ · (ρ~v) = 0. (2.6)

In a N -component system, the mass flux of the j-th species can be written as

~ηj = ρj~vj . (2.7)

Here the velocity of component j, denoted by ~vj , is defined relative to a stationary coordi-
nate system. The total mass flux of the N -component system is then given by

~η =
N

∑
j=1

~ηj = ρ~v. (2.8)
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2.1 Governing equations

The mass diffusion flux ~fj , defined relative to the motion of the mixture, reads

~fj = ρj (~vj−~v) . (2.9)

Incorporating the definition of the mass fraction c̃ for component j

c̃j = ρj/ρ, (2.10)

the mass flux of species j can be decomposed into a diffusive flux ~fj and an overall flux of
the mixture weighted with c̃j

~ηj = ~fj+ c̃jρ~v. (2.11)

The rate of change of species j in an arbitrary control volume Vj(t), moving with the
species velocity ~vj is balanced by the rate of production of species j, denoted by Γ̇j ,

D

Dt̃

∫

Vj

ρj dV =
∫

Vj

Γ̇j dV. (2.12)

Utilizing Reynolds transport theorem, Eq. (2.2), together with the divergence theorem, the
differential form for the mass conservation in a N -component system, is obtained as

∂ρj
∂t̃

+∇ · (ρj ~vj) = Γ̇j . (2.13)

Employing the definition of the mass diffusion flux, Eq. (2.9), and assuming to the conti-
nuity equation for a N -component system can be rewritten in terms of the species mass
fraction as

ρ
∂c̃j
∂t̃

+ρ~v ·∇c̃j =−∇ · ~fj+ Γ̇j . (2.14)

In a two-component mixture with j = A,B, the diffusive flux ~fA is assumed to be well
approximated by Fick’s law

~fA =−ρD∇c̃A. (2.15)

Considering a liquid with constant density and a constant coefficient of diffusion D, the
convection-diffusion equation for the species transport in a binary mixture is given by

∂c̃A
∂t̃

+~v ·∇c̃A =D∇
2c̃A+ Γ̇A/ρA. (2.16)

2.1.2 Conservation of momentum

The conservation of momentum states that the rate of change of momentum is equal to the
total vector sum of the acting forces, written as

D~I

Dt̃
= ~F . (2.17)

25



2 Mathematical modeling and approximate solutions

In a continuum model the momentum is defined as

~I =
∫

V

ρ(~x, t̃)~v(~x, t̃)dV. (2.18)

The acting forces can be classified into long-range volume forces and short-range surface
forces,

~F =
∫

V

ρ~fB dV +
∫

S

~τ dS. (2.19)

Therein the stress vector ~τ is defined as

~τ = ~n ·T, (2.20)

with the surface normal vector ~n and the stress tensor T. The conservation of momentum
then reads ∫

V0

∂ (ρ~v)

∂t̃
dV +

∫

S0

ρ~v~v ·~ndS =
∫

V0

ρ~fB dV +
∫

S0

~τ dS, (2.21)

or alternatively by applying the divergence theorem
∫

V

(
∂ (ρ~v)

∂t̃
+∇ · (ρ~v~v)

)
dV =

∫

V

(
ρ~fB+∇ ·T

)
dV. (2.22)

In the present work only Newtonian fluids are considered. This implies a linear stress-strain
relation,

T =−p̃1+µ
[

∇~v+(∇~v)T − 2
3
(∇ ·~v)1

]
+χ(∇ ·~v)1, (2.23)

with the dynamic viscosity µ and the volume viscosity χ. Furthermore the present anal-
ysis is restricted to the flow of incompressible fluids with constant densities of all fluids
involved. Within such a framework the continuity equation, Eq. (2.6), reduces to

∇ ·~v = 0, (2.24)

and the stress tensor of Eq. (2.23) is given by

T =−p̃1+µ
[
∇~v+(∇~v)T

]
. (2.25)

Rotating reference frame

For the mathematical modeling of thin liquid films on spinning disks, a reference frame
rotating with the disk’s angular speed Ω represents a natural choice. The conservation of
momentum stated in Eq. (2.17) is only valid in an inertial frame of reference. In order to
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2.1 Governing equations

describe the rate of change of an arbitrary vector in a rotating reference frame correctly, an
extra term, which accounts for the time derivatives of the rotating unit vectors, has to be
added. The rate of change of an arbitrary vector ~s for an observer in an inertial reference
frame is given by (

D~s

Dt̃

)

I

=

(
D~s

Dt̃

)

R

+ ~Ω×~s. (2.26)

Therein the first term on the right hand side (RHS) is the rate change of ~s as seen by an
observer in the rotating reference frame, and the second term gives the rate of change of the
unit vectors of the rotating reference frame as seen by an observer in the inertial reference
frame. The velocity in the inertial reference frame, ~vI = (D~x/Dt̃)I , can be decomposed
into the sum of the velocity of the origin of the rotating reference frame ~vO, the relative
velocity in the rotating reference frame ~vR = (D~x/Dt̃)R, and the circumferential velocity
Ω×~x,

~vI = ~vO+~vR+ ~Ω×~x. (2.27)

The acceleration in the inertial frame of reference is

(
D~vI
Dt̃

)

I

=

(
D~vO
Dt̃

)

I

+

(
D~vR
Dt̃

)

I

+



D
(
~Ω×~x

)

Dt̃



I .

(2.28)

Using Eq. (2.26) the total change of the relative velocity can be rewritten as
(
D~vR
Dt̃

)

I

=

(
D~vR
Dt̃

)

R

+ ~Ω×~vR. (2.29)

Denoting the acceleration of the origin of the rotating system with ~aO = (D~vO/Dt̃)I , and
rewriting the rightmost term in Eq. (2.28) using again Eq. (2.26) the acceleration in the
inertial frame can be rewritten in terms of the rotating reference quantities

(
D~vI
Dt̃

)

I

= ~aO+

(
D~vR
Dt̃

)

R

+ 2 ~Ω×~vR︸ ︷︷ ︸
Coriolis acc.

+ ~Ω×
(
~Ω×~x

)

︸ ︷︷ ︸
centrifugal acc.

+
d ~Ω

dt̃
×~x

︸ ︷︷ ︸
Euler acc.

. (2.30)

Considering only a non-moving origin, i.e. ~aO = ~0, three additional forces, which arise
from the motion of the reference frame itself, have to be account for. These are the Cori-
olis force, the centrifugal force, and the Euler force. Accordingly, the conservation of mo-
mentum for an incompressible Newtonian fluid in a reference frame rotating with constant
angular velocity Ω is given by

ρ

[
∂~vR
∂t̃

+(~vR ·∇)~vR+2 ~Ω×~vR+ ~Ω×
(
~Ω×~x

)]
=−∇p̃+µ∇

2~vR+ρ~g. (2.31)
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It should be noted here, that the continuity equation (2.24) has the same form in the inertial
and the rotating reference frame,

∇ ·~vI = ∇ · (~vR+Ω×~x) = ∇ ·~vR = 0, (2.32)

since the divergence of the curl is identical zero.
Rewriting the left hand side (LHS) of the convection-diffusion equation (2.16), as

∂c̃A
∂t̃

+
(
~vR+ ~Ω×~x

)
·∇c̃A =

[
∂

∂t̃
+
(
~Ω×~x

)
·∇
]
c̃A+ ~vR ·∇c̃A

=

(
∂c̃A
∂t̃

)

R

+ ~vR ·∇c̃A, (2.33)

it is clear, that it remains in the same form as Eq. (2.16), when rewritten in terms of the
relative velocity vR, using the time derivative, as well as the spatial operator ∇ relative to
the rotating frame.
Since in the following a rotating coordinate system is always used as reference frame, the
relative velocity vR is denoted by v, for reasons of readability.

2.1.3 Conservation of thermal energy

The conservation of thermal energy is considerably simplified when the fluid is assumed
to be incompressible and Newtonian with constant thermal conductivity λ and constant
heat capacity cp. Assuming furthermore only conductive heat flux q, which is described by
Fourier‘s law

q =−λ∇T, (2.34)

the conservation of thermal energy can be rewritten as a convection-diffusion equation for
the temperature T ,

∂T

∂t̃
+~v ·∇T = a∇

2T. (2.35)

Here a denotes the thermal diffusivity defined as

a=
λ

ρcp
. (2.36)
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2.1 Governing equations

2.1.4 Non-dimensionalization of the governing equations

The liquid film flow and the associated heat and species mass transfer for an incompressible
Newtonian liquid with constant fluid properties in a reference frame rotating with the disks
angular speed Ω, are governed by the following system of partial differential equations

∇ ·~v = 0, (2.37)

∂~v

∂t̃
+(~v ·∇)~v =−1

ρ
∇p̃− ~Ω×

(
~Ω×~x

)
−2 ~Ω×~v+ν∇

2~v+~g, (2.38)

∂T

∂t̃
+~v ·∇T = a∇

2T, (2.39)

∂c̃

∂t̃
+~v ·∇c̃=D∇

2c̃. (2.40)

Therein, the body force due to gravity, ~fB =~g, is accounted for, while chemical reactions,
as well as heat sources and dissipation are considered to be negligible.

The problem is considered in a cylindrical coordinate system with base vectors (~er, ~eφ, ~ez).
The angular velocity vector is aligned with ~ez and is represented by ~Ω = (0,0,Ω)T . The
body force vector reads ~g = (0,0,−g)T , and the position vector is given by ~x= (r̃, φ̃, z̃)T .
The individual components of the velocity vector are denoted by ~v = (ũ, ṽ, w̃)T .

The Coriolis term from the momentum equation (2.38) becomes

2 ~Ω×~v =



−2ṽΩ
2ũΩ

0


 , (2.41)

and the centrifugal term is

~Ω× ( ~Ω×~x) =



−r̃Ω2

0
0


 . (2.42)

To parameterize the problem the governing equations are non-dimensionalized, using the
characteristic scaling quantities suggested by Rauscher et al. [53]. These scaling quantities
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Figure 2.2: Schematics of a spinning disk device.

can be deduced from an order-of-magnitude estimate of the balance of the centrifugal and
viscous forces,

− r̃Ω2 = ν
∂2ũ

∂z̃2 , (2.43)

which represents the asymptotic limit of Eq. (2.38) obtained in the radial direction for large
radii (see Sec. 2.3.1). Denoting the velocity scale for the radial component of the velocity
with u0, and the length scale in vertical direction with δ0, the relevant length scale in radial
direction, l0, is obtained from Eq. (2.43) as

l0 ∼
νu0

Ω2δ2
0
. (2.44)

The film thickness δ̃ will basically depend on the kinematic viscosity ν of the liquid and the
angular speed Ω of the disk. From dimensional arguments it then follows for the vertical
length scale (z̃-direction)

δ0 =

√
ν

Ω
. (2.45)

From Eq. (2.44) the velocity scale for the radial component is obtained as u0 ∼ l0Ω. Intro-
ducing the volumetric flow rate Q via the expression

Q∼ 2πl0δ0u0, (2.46)

the radial length scale l0 is obtained as

l0 ∼
(

Q2

4π2νΩ

)1/4

. (2.47)
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Rauscher [53] introduced an extra factor of 91/4, yielding the length scale into the radial
direction as

l0 =

(
9Q2

4π2νΩ

)1/4

, (2.48)

which is used in the present work as well. The velocity scales v0 and w0 for the azimuthal
and the vertical components of the velocity, respectively, are obtained from an order-of-
magnitude analysis of the continuity equation. They are obtained as

v0 = u0, (2.49)

and

w0 =Ωδ0. (2.50)

The pressure scale is taken to be

p0 = ρΩ2l20, (2.51)

and the timescale is given by

t0 = l0/u0 = 1/Ω. (2.52)

The heat transfer is investigated assuming a constant wall heat flux boundary condition at
the surface of the spinning disk. Accordingly, a dimensionless temperature, which is based
on the constant heat flux prescribed at the wall, qw, and the given inflow temperature of the
liquid Ti, is introduced as

θ =
λ

qwδ0
(T −Ti) . (2.53)

The solid-liquid mass transfer in a binary mixture is analyzed considering a constant
species mass fraction equal to zero, c̃w = 0, at the wall. In the present scaling the con-
stant inflow species mass fraction, c̃i, is used as reference quantity

c=
c̃

c̃i
. (2.54)

Introducing the characteristic scales given by Eqs. (2.45), (2.48)-(2.52), the non-dimen-
sionalized Navier-Stokes equations read

1
r

∂

∂r
(ru)+

1
r

∂v

∂φ
+
∂w

∂z
= 0, (2.55)

∂u

∂t
+u

∂u

∂r
+
v

r

∂u

∂φ
+w

∂u

∂z
− v

2

r
=

− ∂p
∂r

+2v+ r+
∂2u

∂z2 + ε2
[
∂2u

∂r2 +
1
r

∂u

∂r
+

1
r2
∂2u

∂φ
− 2
r2
∂v

∂φ
− u

r2

]
, (2.56)
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∂v

∂t
+u

∂v

∂r
+
v

r

∂v

∂φ
+w

∂v

∂z
+
uv

r
=

− 1
r

∂p

∂φ
−2u+

∂2v

∂z2 + ε
2
[
∂2v

∂r2 +
1
r

∂v

∂r
+

1
r2
∂2v

∂φ2 +
2
r2
∂u

∂φ
− v

r2

]
, (2.57)

ε2
(
∂w

∂t
+u

∂w

∂r
+
v

r

∂w

∂φ
+w

∂w

∂z

)
=

− ∂p
∂z
− εFr−1 + ε2∂

2w

∂z2 + ε4
[
∂2w

∂r2 +
1
r

∂w

∂r
+

1
r2
∂2w

∂φ2

]
. (2.58)

Using the definition (2.53) the thermal convection-diffusion equation is obtained as

∂θ

∂t
+u

∂θ

∂r
+
v

r

∂θ

∂φ
+w

∂θ

∂z
=

1
RePr

[
1
r

∂

∂r

(
r
∂θ

∂r

)
+

1
r2
∂2θ

∂φ2 +
1
ε2
∂2θ

∂z2

]
, (2.59)

and using the definition (2.54) the convection-diffusion equation for the species mass trans-
port in a binary mixture becomes

∂c

∂t
+u

∂c

∂r
+
v

r

∂c

∂φ
+w

∂c

∂z
=

1
ReSc

[
1
r

∂

∂r

(
r
∂c

∂r

)
+

1
r2
∂2c

∂φ2 +
1
ε2
∂2c

∂z2

]
. (2.60)

Five dimensionless parameters appear in the present non-dimensionalized formulation.
These are the

• aspect ratio, ε= δ0/l0,

• Froude number, Fr =Ω2l0/g,

• Reynolds number, Re= u0l0/ν,

• Prandtl number, Pr = ν/a, and the

• Schmidt number, Sc= ν/D.

The thin film Reynolds number,Reδ = εRe=u0δ0/ν, does not explicitly appear in Eqs. (2.55)-
(2.58), since

εReδ =
δ0

l0

u0δ0

ν
= 1. (2.61)
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The boundary conditions for Eqs. (2.55)-(2.58) are no-slip conditions for the individual
velocity components on the disk’s surface and the kinematic boundary condition, as well
as the stress-free conditions on the free surface, which bring about a further dimensionless
parameter, a

• reduced inverse Weber number, W−1 = ε3We−1 = ε3 σ
ρΩ2l0δ

2
0
= 4π2σν3/2

9ρΩ3/2Q2
.

The assumed hydrodynamic, thermal and species mass transport boundary conditions will
be discussed in more detail in the next section.

From Eqs. (2.59)-(2.60) the analogy between heat and species mass transfer is obvious.
Accordingly, the solutions for the temperature and species mass fraction can be related
through the ratio of the Schmidt to the Prandtl number. This ratio is represented by the
Lewis number

Le=
a

D
=
Sc

Pr
, (2.62)

which is basically defined as the ratio of the thermal to the molecular diffusivity. For unity
Lewis number, Le= 1, and identical non-dimensional boundary conditions Eqs. (2.59) and
(2.60) would yield identical non-dimensional solutions for θ and c.
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2.2 Thin film approximation

2.2.1 Governing equations and boundary conditions

Due to the thin film nature of the flow, the aspect ratio is small, ε� 1, so that terms of order
O(ε2) and smaller are neglected, yielding a boundary layer type thin film approximation
for the flow on the spinning disk. In this limit the governing equations, Eqs. (2.55)-(2.60),
reduce to

1
r

∂

∂r
(ru)+

1
r

∂v

∂φ
+
∂w

∂z
= 0, (2.63)

∂u

∂t
+u

∂u

∂r
+
v

r

∂u

∂φ
+w

∂u

∂z
− v

2

r
=−∂p

∂r
+2v+ r+

∂2u

∂z2 , (2.64)

∂v

∂t
+u

∂v

∂r
+
v

r

∂v

∂φ
+w

∂v

∂z
+
uv

r
=−1

r

∂p

∂φ
−2u+

∂2v

∂z2 , (2.65)

0 =−∂p
∂z
− εFr−1, (2.66)

∂θ

∂t
+u

∂θ

∂r
+
v

r

∂θ

∂φ
+w

∂θ

∂z
=

1
Pr

∂2θ

∂z2 , (2.67)

∂c

∂t
+u

∂c

∂r
+
v

r

∂c

∂φ
+w

∂c

∂z
=

1
Sc

∂2c

∂z2 . (2.68)

The Reynolds number does not explicitly appear in Eqs. (2.67)-(2.68), since

1
ε2Re

=
l20
δ2

0

ν

u0l0
= 1. (2.69)

Incorporating the continuity equation (2.63) into the left hand sides of equations (2.64)-
(2.68) and assuming the flow to be axisymmetric, the thin film equations can be rewritten
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2.2 Thin film approximation

in conservative form as

1
r

∂

∂r
(ru)+

∂w

∂z
= 0, (2.70)

∂u

∂t
+

1
r

∂

∂r

(
ru2)+ ∂

∂z
(uw)− v

2

r
=−∂p

∂r
+2v+ r+

∂2u

∂z2 , (2.71)

∂v

∂t
+

1
r

∂

∂r
(ruv)+

∂

∂z
(vw)+

uv

r
=−2u+

∂2v

∂z2 , (2.72)

0 =−∂p
∂z
− εFr−1, (2.73)

∂θ

∂t
+

1
r

∂

∂r
(ruθ)+

∂

∂z
(wθ) =

1
Pr

∂2θ

∂z2 , (2.74)

∂c

∂t
+

1
r

∂

∂r
(ruc)+

∂

∂z
(wc) =

1
Sc

∂2c

∂z2 . (2.75)

Hydrodynamic boundary conditions

The boundary conditions for the boundary layer approximation are the no-slip conditions
on the disk’s surface

z = 0 : u= v = w = 0, (2.76)

and the kinematic boundary condition

z = δ : w =
∂δ

∂t
+u

∂δ

∂r
, (2.77)

and stress-free conditions on the free surface at z = δ:

τrz =
∂u

∂z
= 0, (2.78)

τφz =
∂v

∂z
= 0, (2.79)

0 =−p−W−1
(

1
r

∂

∂r

(
r
∂δ

∂r

))
. (2.80)

In Eq. (2.80) the reduced inverse Weber number, W−1 = σδ0/ρΩ
2l40, which accounts for

the influence of surface tension σ, occurs.

Thermal boundary conditions

The thermal characteristics of the flow are investigated by assuming a constant heat flux
boundary condition at the surface of the spinning disk. Based on the definition of the
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dimensionless temperature in Eq. (2.53), the prescribed heat flux qw at the wall yields the
condition

z = 0 :
∂θ

∂z

∣∣∣∣
z=0

=
1
qw
λ
∂T

∂z̃

∣∣∣∣
z̃=0

=−1 (2.81)

for the dimensionless temperature.
Evaluating the thermal convection-diffusion equation Eq. (2.74) at z = 0 in the limit of
steady-state conditions yields a further boundary condition at the wall as

z = 0 :
∂2θ

∂z2

∣∣∣∣
z=0

= 0. (2.82)

In the thermal entry region, r < rT , the evolution of a thermal boundary layer δT is distin-
guished from the film height δ. The thermal entry length rT , which is determined as the
radial extension, where δT reaches δ, depends on the magnitude of the Prandtl number. At
the height of the thermal boundary layer a zero gradient boundary condition is imposed

z = δT :
∂θ

∂z

∣∣∣∣
z=δT

= 0. (2.83)

Analogously, once the thermal boundary layer has reached the liquid film height, i.e. for
r ≥ rT , the boundary condition at the free surface reads

z = δ :
∂θ

∂z

∣∣∣∣
z=δ

= 0. (2.84)

This basically neglects the convective heat transfer between the liquid surface and the am-
bient air. The effect of a possible convective heat flux at the liquid surface is addressed in
Sec. 2.3.4 and its implication on the finally obtained solution will be further discussed in
Sec. 4.1.2.

For completeness it is noted here, that defining the non-dimensional alternatively as

θ? =
T −Tw
Ti−Tw

, (2.85)

instead of using Eq. (2.53) would cover the case with constant wall temperature, which is
not considered in the present work. The definition (2.85) would imply a Dirichlet boundary
condition

z = 0 : θ∗ = 0 (2.86)

at the wall, while the other boundary conditions (2.82)-(2.84) would remain the same.
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2.2 Thin film approximation

Boundary conditions for the species transport

When considering the species transport in a binary mixture, the boundary conditions are
given as

z = 0 : c= 0, (2.87)

and

z = 0 :
∂2c

∂z2

∣∣∣∣
z=0

= 0, (2.88)

at the wall, where the latter is obtained by evaluating the convection-diffusion equation
Eq. (2.75) at z = 0.

For large Schmidt numbers it is necessary to distinguish a concentration boundary layer
with thickness δc from the film height. In the region for r < rc, associated with a develop-
ing concentration boundary layer, i.e. δc < δ, a zero-gradient upper boundary condition is
imposed

z = δc :
∂c

∂z

∣∣∣∣
z=δc

= 0. (2.89)

Analogously, once the concentration boundary layer has reached the liquid film height, i.e.
for r ≥ rc, the boundary condition at the free surface reads

z = δ :
∂c

∂z

∣∣∣∣
z=δ

= 0. (2.90)

It is noted that for unity Lewis number, Le= a/D= 1, the solution obtained for the species
mass fraction c would be identical with the solution for non-dimensional wall temperature
for the case with constant wall temperature defined by Eq. (2.85).

2.2.2 Far field asymptotic solution for Ek� 1

As discussed in Sec. 1.2.2, an order-of-magnitude analysis yields in the limit of large radii
the expression

Ek ·Ro∼O (1) ,

which implies that for high Ekman numbers, Ek� 1, the inertial, as well as the Coriolis
forces are negligible. Assuming an axisymmetric and steady flow, far-field asymptotic so-
lutions for the velocity and the film thickness can be analytically obtained in the case of
Ek� 1. Based on this far-field solution for the velocity, it is possible to obtain analytical
steady-state solutions for the heat and mass transfer as well.
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Asymptotic momentum balance

For large radii the radial momentum balance is governed only by the viscous and cen-
trifugal forces. Thus, assuming the flow to be axisymmetric and steady, the asymptotic
momentum balance at large radii becomes

0 = r+
∂2u

∂z2 , (2.91)

which is decoupled from the momentum equation into the azimuthal direction written as

0 =−2u+
∂2v

∂z2 . (2.92)

Integration of Eq. (2.91), applying the boundary conditions of Eq. (2.76) and (2.78), and
introducing the rescaled wall normal coordinate ζ = z/δ, results in

u(r,ζ) = uδ
(
2ζ− ζ2) . (2.93)

The maximum velocity uδ is reached at the free surface (ζ = 1), and it is related to the
mean radial velocity by

u=
1
δ

δ∫

0

udz =
2
3
uδ. (2.94)

The semi-parabolic velocity profile given by Eq. (2.93) represents an exact asymptotic
solution in the limit of large radii, where the viscous and centrifugal forces dominate.
Introducing the volumetric flowrate,

Q= 2r̃πδ̃ũ, (2.95)

and recalling the length and velocity scales δ0, l0, and, u0 = l0Ω, specified in Eqs. (2.45)
and (2.48), the substitution of Eq. (2.93) with uδ = (3/2)u due to (2.94) into Eq. (2.91)
yields the following radial variation of the film thickness written in dimensional form

δ̃ =

(
3

2π
Qν

Ω2r̃2

)1/3

[m]. (2.96)

The asymptotic momentum balance for large radii into the azimuthal direction, Eq. (2.92),
is governed by the balance between the viscous and the Coriolis forces. Integration of
Eq. (2.92) using the parabolic profile for u as given by Eq. (2.93) leads to the quartic
polynomial

v(r,ζ) = vδ

(
8
5
ζ− 4

5
ζ3 +

1
5
ζ4
)
. (2.97)
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2.2 Thin film approximation

The mean velocity into the azimuthal direction is then obtained as

v =
1
δ

δ∫

0

vdz =
16
25
vδ, (2.98)

and the maximum velocity vδ, corresponding to the maximum tangential slip, is reached
at the free surface, where ζ = 1.

Asymptotic higher-order expansion

Based on the far-field solution δ = r−2/3 for the film thickness, Rauscher et al. [53] intro-
duced the similarity variable η as

η =
z̃

δ̃
=

z̃

δ0
r2/3, (2.99)

so that the radial component of the flow velocity, Eq. (2.93), expressed in terms of η is
given by

ũ= u0r
−1/3

(
η− 1

2
η2
)
. (2.100)

To obtain higher-order terms of the asymptotic solution for the axisymmetric flow-field,
Rauscher reformulated the Navier-Stokes equations together with the corresponding bound-
ary conditions in terms of η and r = r̃/l0, and obtained the following higher-order expan-
sions in terms of r

δ = r−2/3 +

(
62

315
− 2

9
εFr−1

)
r−10/3 +O(r−4), (2.101)

u=
1
3
r−1/3− 1

3

(
62

315
− 2

9
εFr−1

)
r−3 +O(r−11/3), (2.102)

v =− 4
15
r−5/3−

(
1156
14175

− 8
135

εFr−1
)
r−13/3 +O(r−5). (2.103)

Far-field solutions for the solid-liquid mass transfer

Based on the asymptotic solution for the flow field it is possible to obtain an analytical
solution for species mass transfer as well. Rahman and Faghri [89], for example, presented
an analytical solution for species transport in case of solid dissolution at the disk surface.
Neglecting convection into the vertical direction the asymptotic momentum and species
transport equations (r� 1) are given by

∂2ũ

∂z̃2 =−Ω
2r̃

ν
, (2.104)
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and

ũ
∂c̃

∂r̃
=D

∂2c̃

∂z̃2 . (2.105)

The solution of Eq. (2.104) applying no-slip and zero-gradient boundary conditions at
the disk and the free surface respectively, yields the semi-parabolic velocity profile of
Eq. (2.93), which can now be substituted into Eq. (2.105), yielding

3ũ
[
z̃

δ̃
− 1

2
z̃2

δ̃2

]
∂c̃

∂r̃
=D

∂2c̃

∂z̃2 . (2.106)

Rahman and Faghri [89] non-dimensionalized Eq. (2.106) by introducing the dimension-
less variables

Ξ =
c̃w− c̃
c̃w− c̃i

, Z =
δ̃− z̃
δ̃

, r∗ =
r

ri
, (2.107)

and

X = 0.1733R̂e
−4/3
i Êk

−2/3
i Sc−1

(
r∗8/3−1

)
. (2.108)

Here the Reynolds and Ekman numbers are defined using the values at the inflow, i.e.
R̂ei = ũiδ̃i/ν, and Êki = ν/Ωr̃2

i . The non-dimensionalized convection-diffusion equation
for the species transport in case of solid dissolution is then given by

(
1−Z2) ∂Ξ

∂X
=
∂2Ξ

∂Z2 , (2.109)

and the boundary conditions read

Z = 0 :
∂Ξ

∂Z
= 0, (2.110)

Z = 1 : Ξ = 0, (2.111)

and

X = 0 : Ξ = 1. (2.112)

Solutions can be obtained in terms of an infinite series of confluent hypergeometric func-
tions,M(a,b,c),

Ξ (X,Z) =
∞

∑
n=1

Cn exp
(
−λ2

nX
)

exp
(−λnZ2

2

)
M
(

1−λn
4

,
1
2
,λnZ

2
)
, (2.113)
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2.2 Thin film approximation

as shown by Rahman and Faghri [89], who present in their study the first 15 values of the
eigenvalues λn and coefficients Cn.

A number of authors, (see, e.g., Burns et al. [83], or Peev et al. [84]) considered a method,
known as method of Leveque, to model the solid-dissolution on a spinning disk. In this
method a linear approximation for the velocity profile is assumed, presuming a very thin
concentration boundary layer. The resulting approximate convection-diffusion equation
reads

3z̃
δ̃
ũ
∂c̃

∂r̃
=D

∂2c̃

∂z̃2 , (2.114)

which can be cast into dimensionless form using the dimensionless concentration

Ξ̂ = 1−Ξ =
c̃− c̃i
c̃w− c̃i

(2.115)

and a similarity variable

η̂ = z̃

(
3ũ
δ̃

1
9Dr̃

)1/3

= z̃

(
Ω2δ̃

9Dν

)1/3

.

(2.116)

Applying the transformation into these new variables Eq. (2.114) becomes

d2Ξ̂

dη̂2 +3η̂2dΞ̂

dη̂
= 0, (2.117)

with the boundary conditions

Ξ̂ = 1 at η̂ = 0, (2.118)

and

Ξ̂ = 0 for η̂→ ∞. (2.119)

The solution of Eq. (2.117), is then obtained as

Ξ̂(η̂) = 1− γ
(1

3 , η̂
3)

Γ
(1

3

) . (2.120)

Here

γ(a,x) =

x∫

0

ta−1e−tdt, (2.121)

denotes the incomplete gamma function, and

Γ (a) =

∞∫

0

ta−1e−tdt (2.122)

is the complete, or Euler, gamma function.
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2 Mathematical modeling and approximate solutions

2.3 Integral boundary layer approximation

A popular approach for the analysis of rotating films with finite Ekman numbers is the IBL
approximation, in which depth-averaged quantities, defined by the integral average over
the film thickness

Υ =
1
δ

δ∫

0

Υ dz, (2.123)

are considered. The governing set of partial differential equations for the IBL model is
obtained by averaging the thin film equations Eqs. (2.70)-(2.75) over the film thickness.

2.3.1 IBL approximation for hydrodynamics

Using the kinematic boundary condition Eq. (2.77), and considering the flow as axisym-
metric, the depth-averaging of the continuity equation Eq. (2.70) yields

∂δ

∂t
+

1
r

∂

∂r

δ∫

0

rudz = 0, (2.124)

which can be written in terms of the depth-averaged velocity u as

∂δ

∂t
+

1
r

∂

∂r
[ruδ] = 0. (2.125)

The integration of the thin film limit for the vertical component of the momentum equation,
Eq. (2.73), yields an expression for the pressure written as

p= pδ+ εFr
−1 (δ− z) . (2.126)

Here pδ denotes the pressure at the free surface, which can be computed from the stress-
free boundary condition given by Eq. (2.80). The depth-averaged pressure is then obtained
as

p=
1
δ

δ∫

0

pdz = pδ+
1
2
εFr−1δ =

1
2
εFr−1δ−W−1

(
1
r

∂

∂r

(
r
∂δ

∂r

))
. (2.127)
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2.3 Integral boundary layer approximation

Depth-averaging the radial component of the momentum equation, Eq. (2.71), yields

∂

∂t

δ∫

0

udz+
1
r

∂

∂r

δ∫

0

ru2 dz− 1
r

δ∫

0

v2 dz =

− ∂

∂r

δ∫

0

pdz+pδ
∂δ

∂r
+ rδ+2

δ∫

0

vdz− ∂u

∂z

∣∣∣∣
z=0

. (2.128)

Herein, the boundary condition Eq. (2.78) was used and again the kinematic boundary
condition Eq. (2.77) was applied to substitute the vertical component of the surface velocity
wδ.
Similarly, the depth-averaging of the azimuthal component of the momentum equation,
Eq. (2.72), yields

∂

∂t

δ∫

0

vdz+
1
r

∂

∂r

δ∫

0

ruvdz+

δ∫

0

uv

r
dz =−2

δ∫

0

udz− ∂v

∂z

∣∣∣∣
z=0

. (2.129)

Rewriting the nonlinear convective fluxes in terms of

1
δ

δ∫

0

u2 dz = kau
2,

1
δ

δ∫

0

uvdz = kbu v,

1
δ

δ∫

0

v2 dz = kcv
2, (2.130)

involving the profile constants ka, kb, kc, and introducing the expression

P = εFr−1δ−W−1
(

1
r

∂

∂r

(
r
∂δ

∂r

))
, (2.131)

the depth-averaged continuity and momentum equations can be compactly rewritten as

∂

∂t



δ
δu
δv


+

1
r

∂

∂r




rδu
kar(δu)

2/δ
kbr(δu)(δv)/δ


= (2.132)




0
kc(δv)

2/(rδ)+2(δv)+ b1
(
r− ∂P

∂r

)
δ− b2(δu)/δ

2

−kb(δu)(δv)/(rδ)−2(δu)−5(δv)/(2δ2)



.
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2 Mathematical modeling and approximate solutions

Therein, u, v are the depth-averages of the radial and azimuthal components of the ve-
locity, respectively, and the constants b1 and b2 result from the derivatives of the radial
and azimuthal components of the velocity at z = 0, appearing on the right hand side of
Eq. (2.128) and Eq. (2.129). The depth-averaged continuity and momentum equations in
Eq. (2.132) are identical to the formulation obtained by Kim and Kim [75].

The reduction of the spacial dimensionality of the problem based on depth-averaging re-
quires approximate assumptions for the profiles of the radial and azimuthal velocity com-
ponents to compute the values of the profile constants ka, kb, kc, defined by Eq. (2.130), as
well as b1 and b2. The presently assumed profiles will be discussed in the following.

Profile assumptions

Radial velocity component

A popular choice for the profile of the radial component of the velocity is the semi-parabola
(e.g. Sisoev et al. [74])

u(r,ζ) = uδ
(
2ζ− ζ2) , (2.133)

which is basically identical to the exact asymptotic solution in the limit of large radii,
Eq. (2.93), where the viscous and centrifugal forces dominate (see Sec. 2.2.2). The second-
order polynomial exhibits, however, a number of shortcomings in the radially inner region,
where inertial and Coriolis forces are relevant. Therefore, the assumption of a quartic poly-
nomial was proposed as an alternative (Kim and Kim [75]) written as

u(r,ζ) = uδ

(
8
5
ζ− 4

5
ζ3 +

1
5
ζ4
)
+
κδ2

5
ζ (1− ζ)2

(
1− ζ

2

)
. (2.134)

This profile function introduces an additional profile parameter κ, which can be determined
from the radial momentum equation evaluated at z = 0,

∂2u

∂z2

∣∣∣∣
z=0

=−r+ ∂p

∂r

∣∣∣∣
z=0

:=−κ. (2.135)

Azimuthal velocity component

The azimuthal component of the velocity is approximated by the quartic polynomial (see
Sec. 2.2.2)

v(r,ζ) = vδ

(
8
5
ζ− 4

5
ζ3 +

1
5
ζ4
)
, (2.136)

which alike Eq. (2.133) represents an exact analytical solution obtained in the limit of large
radii.
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2.3 Integral boundary layer approximation

Quadratic vs. quartic approximation

Substituting straightforwardly the quartic profile assumption Eq. (2.134) into Eq. (2.130)
would result in very complex expressions for the integrations of the non-linear flux terms.
It was therefore suggested by Kim and Kim [75] to compute the values of the profile con-
stants ka, kb and kc using rather the quadratic approximation Eq. (2.133) for the radial
component of the velocity in the nonlinear integrands occurring in Eq. (2.130). The profile
parameters b1 and b2 are still obtained using the quartic profile assumption Eq. (2.134).
This approach is adopted in the present work as well, and it is referred to as quartic ap-
proximation (IBL quart.) in the following. The profile constants used for the quartic and
quadratic IBL approximation of the momentum equations are listed in Tab. 2.1.

profile parameter ka kb kc b1 b2
IBL quad. 6/5 17/14 155/126 1 3
IBL quart. 6/5 17/14 155/126 5/6 5/2

Table 2.1: Profile constants for the IBL approximation of the momentum equations.

Vertical velocity component

The profile of the vertical velocity follows implicitly from the assumptions for the other
two velocity components to satisfy the continuity equation. Although the vertical veloc-
ity profile is never needed in the solution of the depth-averaged equations, the insight
into the implicitly used w-profile can be helpful for the interpretation of the obtained IBL
results. Considering for example the quadratic radial velocity profile, Eq. (2.133), the pro-
file for the vertical velocity component is obtained by integrating the continuity equation,
Eq. (2.63), rewritten for axisymmetric flow

∂w

∂z
=−1

r

∂

∂r

[
ruδ

(
z

δ
− z

2

δ2

)]

.

(2.137)

Using the no-slip condition at z = 0 integration of Eq. (2.137) yields the third-order poly-
nomial

w(r,z) =
z3

δ3

(
uδδ

3r
− 2uδ

3
∂δ

∂r
+

1
3
δ
∂uδ
∂r

)
+
z2

δ2

(
−uδδ

r
+uδ

∂δ

∂r
− δ∂uδ

∂r

)

.

(2.138)

It can be shown that this w-profile satisfies the kinematic boundary condition, Eq. (2.77),
by rewriting the depth-averaged continuity equation (2.125) assuming the quadratic u-
profile, Eq. (2.133), associated with uδ = (3/2)u, as

∂δ

∂t
=− 2

3r
∂

∂r
[ruδδ] . (2.139)
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Using (2.139) it can be easily verified, that

wδ =
∂δ

∂t
+uδ

∂δ

∂r
=−2

3
δuδ
r
− 1

3
uδ
∂δ

∂r
− 2

3
δ
∂uδ
∂r

, (2.140)

which is identical to the RHS of Eq. (2.138) evaluated at z = δ. Introducing the notation

aw(r) =−
3ruδ ∂δ∂r

2ruδ ∂δ∂r +4δ
(
uδ+ r

∂uδ
∂r

) , (2.141)

the profile for the vertical velocity component can be compactly rewritten as

w(r,ζ) = wδ

[
ζ2
(

3
2
−aw(r)

)
+ ζ3

(
aw(r)−

1
2

)]

.

(2.142)

The depth-averaged vertical velocity is then obtained as

w = wδ

(
3
8
− aw(r)

12

)

.

(2.143)

The validity of this implicit assumption for the profile of the vertical component of the
velocity will be discussed in detail in Sec. 4.2.3.
It should be noted here, that in case of steady-state smooth flow the vertical component
of the velocity tends to zero for large radii. This can easily be verified by substituting the
far-field solutions (r� 1) for the film thickness δ = r−2/3, and the radial surface velocity,
uδ =(1/2)r−1/3, into the asymptotic steady-state representation of the kinematic boundary
condition, Eq. (2.140), which yields

lim
r→∞

(wδ) = lim
r→∞

(
uδ
dδ

dr

)
≈ lim
r→∞

(
2

3r2

)
= 0, (2.144)

so that the vertical velocity profile given by Eq. (2.142) becomes identical zero.

2.3.2 IBL approximation for heat transfer

The thermal characteristics of the flow are investigated assuming a constant wall heat flux
boundary condition. Depth-averaging of the thermal convection-diffusion equation (2.74)
and using the boundary conditions Eq. (2.81) and (2.84) yields

∂

∂t

δ∫

0

θdz+
1
r

∂

∂r

δ∫

0

ruθdz =
1
Pr

. (2.145)
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2.3 Integral boundary layer approximation

To evaluate the integrals appearing on the LHS of the depth-averaged transport equation
Eq. (2.145), a profile assumption for the dimensionless temperature is required. For this
purpose a third-order polynomial ansatz function

θ(z) = a0 +a1
z

δT
+a2

z2

δ2
T

+a3
z3

δ3
T

(2.146)

was chosen. Introducing the dimensionless wall temperature given as

θw = θ|z=0 , (2.147)

and using the boundary conditions Eqs. (2.81)-(2.82) together with Eq. (2.83), before the
thermal boundary layer has reached the film surface (δT < δ), or, together with Eq. (2.84)
thereafter (δT = δ), a composite profile for the dimensionless temperature is obtained as

δT < δ : θ =
2
3
δT + δT

(
1
3
z3

δ3
T

− z

δT

)
, (2.148)

δT = δ : θ = θw+ δ

(
1
3
z3

δ3 −
z

δ

)
. (2.149)

In the thermal entry region, r < rT , associated with δT < δ, the non-dimensional wall
temperature is directly related to the thickness of the thermal boundary layer as

δT < δ : θw =
2
3
δT . (2.150)

Since the film in the radially inner region generally remains smooth, steady-state condi-
tions are assumed within the thermal entry zone 0 < r < rT . Using the composite profile
function given by Eqs. (2.148)-(2.149) produces the following expression for the depth-
averaged temperature

θ =
1
δ

δ∫

0

θdz =

{
1
4
δ2
T
δ for δT < δ,

θw− 5
12δ for δT = δ.

(2.151)

The integration of the convective heat transport term uses for simplicity again only the
quadratic profile assumption of the radial velocity u given by Eq. (2.133), which yields

1
δ

δ∫

0

uθdz =

{
u

120
δ3
T
δ3 (24δ−5δT ) for δT < δ,

θwu− 61
120δu for δT = δ.

(2.152)

Incorporating these expressions into the approximation for the transport of heat Eq. (2.145)
yields evolution equations for the thickness of the thermal boundary layer δT < δ

∂

∂t

(
δ2
T

4

)
+

1
r

∂

∂r

[
ruδ

(
δT
δ

)3(1
5
δ− 1

24
δT

)]
=

1
Pr

(2.153)
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within the thermal entry region r < rT , and further downstream, when δT = δ, for the the
dimensionless wall temperature θw,

∂

∂t

(
δθw−

5
12
δ2
)
+

1
r

∂

∂r

(
rδuθw−

61
120

rδ2u

)
=

1
Pr

. (2.154)

2.3.3 IBL approximation for species mass transfer

Depth-averaging the species mass fraction convection-diffusion equation (2.75) and using
the boundary condition Eq. (2.90) yields

∂

∂t

δ∫

0

cdz+
1
r

∂

∂r

δ∫

0

rucdz =− 1
Sc

∂c

∂z

∣∣∣∣
z=0 .

(2.155)

The necessary closure for the solution of the depth-averaged convection-diffusion equation
can be provided by choosing a third-order polynomial ansatz function for the profile of
species mass fraction c, generally written as

c

cδ(r)
= a0 +a1

z

δc
+a2

z2

δ2
c
+a3

z3

δ3
c
. (2.156)

Here δc denotes the thickness of the concentration boundary layer, and cδ = c|z=δ denotes
the value of c at the surface, which is constant in the region r < rc, where the concentration
boundary layer is distinguished from the film thickness. Accordingly, the surface value cδ
equals unity before the concentration boundary layer has reached the film surface (δc < δ),
and varies with the radial position further downstream,

cδ =

{
1 δc < δ

cδ(r) δc = δ.
(2.157)

The coefficients of the third-order polynomial are evaluated from the boundary conditions
Eqs. (2.87)-(2.90), so that Eq. (2.156) is rewritten as

c

cδ(r)
=

3
2
z

δc
− 1

2
z3

δ3
c .

(2.158)

The entry length rc, which is determined as the radial extension, where the concentration
boundary layer δc reaches the free surface δ, depends on the magnitude of the Schmidt
number. The diffusion coefficients of the considered species in the aqueous working liquid
solutions are of the order of D=O(10−9 m2/s), yielding a large Schmidt number of the
order of Sc=O(103). Thus, the evolution of the thin concentration boundary layer will not
be confined to the radially inner region associated with smooth flow. Unlike the thermal
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2.3 Integral boundary layer approximation

boundary layer the concentration boundary layer has therefore to be accounted for as well,
when modeling the species mass transfer in the unsteady wavy film occurring in the outer
radial region.
The evolution of the concentration boundary layer under wavy flow conditions is mathe-
matically described by introducing the variable β = δc/δ, which denotes the relative thick-
ness of the concentration boundary layer. The composite profile assumption (2.158) can
then be rewritten in terms of the rescaled wall normal coordinate ζ = z/δ, and β, as

c(ζ) =

{
cδ

(
3

2β ζ− 1
2β3 ζ

3
)

0≤ ζ ≤ β,
cδ β < ζ ≤ 1.

(2.159)

Using the composite profile function written as Eq. (2.159) produces the following expres-
sion for the depth-averaged species mass fraction c

1
δ

δ∫

0

cdz =
1
δ



δc∫

0

cdz+

δ∫

δc

cdz


=

β∫

0

cdζ+

1∫

β

cdζ = cδ

(
1− 3

8
β

)
. (2.160)

The integration of the convective transport term yields

1
δ

δ∫

0

ucdz = cδu−
3

10
β2cδu+

1
16
β3cδu. (2.161)

Herein, only the quadratic profile assumption of the radial velocity u, given by Eq. (2.133),
was used for simplicity again.

Incorporating the expressions (2.160)-(2.161) into the IBL approximation for the species
transport Eq. (2.155) yields the following depth-averaged evolution equation

∂

∂t

[
δcδ−

3
8
βδcδ

]
+

1
r

∂

∂r

[
rδucδ−

3
10
rδucδβ

2 +
1

16
rδucδβ

3
]
=− 1

Sc

1
δ

3cδ
2β

. (2.162)

Evidently, the transport equation (2.162) contains the two unknown dependent variables β
and cδ. These two quantities are by definition alternately varying or constant, i.e.

• β varies, if cδ = 1 = const.,

• cδ varies, if β = 1 = const.,
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so that the transport equation (2.162) can be separately solved for each case. The solution
follows a concept suggested by Matar et al. [91] in an IBL-based computation of gas
absorption into liquid films. According to this approach Eq. (2.162) is rewritten using a
newly introduced variable ω = β2, and recalling the depth-averaged continuity equation,
Eq. (2.125), to substitute ∂δ/∂t, which yields

(
16
√
ω

3cδ
− 2ω
cδ

)[
∂cδ
∂t

+
80−24ω+5ω3/2

80−30
√
ω

u
∂cδ
∂r

]

−
[
∂ω

∂t
+

(
8
5
√
ω− 1

2
ω

)
u
∂ω

∂r

]
=

− 8
Sc

1
δ2 −

1
δ

1
r

∂

∂r
(ruδ)

(
2ω− 8

5
ω3/2 +

1
3
ω2
)

.

(2.163)

Defining the square-bracketed terms as total directional derivatives

D1cδ :=

[
∂

∂t
+u

80−24ω+5ω3/2

80−30
√
ω

∂

∂r

]
cδ, (2.164)

and

D2ω :=
[
∂

∂t
+u

(
8
5
√
ω− 1

2
ω

)
∂

∂r

]
ω, (2.165)

and abbreviating the RHS as Θ, Eq. (2.163) is compactly rewritten as
(

16
√
ω

3cδ
− 2ω
cδ

)
D1cδ−D2ω =Θ. (2.166)

Equation (2.166) is separately solved for ω and cδ as their total directional derivatives
become alternately zero, dependent on two distinct scenarios, which are described in the
following. The first scenario is associated with ω < 1. This implies that δc < δ and cδ =
const., so that D1cδ = 0 and Eq. (2.166) reduces to

ω < 1 : D2ω =−Θ. (2.167)

The second scenario is associated with ω = 1 = const., so that the total directional deriva-
tive of ω is zero, D2ω = 0, and hence, Eq. (2.166) reads

ω = 1 : D1cδ =
3cδ
10
Θ. (2.168)

The second scenario further requires Θ < 0 to avoid an unphysical increase of the surface
mass fraction cδ. This implies that the case Θ > 0 is always associated with the occurrence
of a concentration boundary layer δc < δ, and, therefore, falls into the first scenario.
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2.3 Integral boundary layer approximation

Thus, the decision on which of the total directional derivatives D1cδ and D2ω becomes
alternatively zero, so that the transport equation (2.162) can be separately solved for ω and
cδ, is finally based on the value of ω and the sign of Θ:

• ω < 1 OR Θ > 0:

∂ω

∂t
+u

(
8
5
√
ω− 1

2
ω

)
∂ω

∂r
=−Θ, (2.169)

• ω = 1 AND Θ < 0:

∂cδ
∂t

+u
61
50
∂cδ
∂r

=
3cδ
10
Θ. (2.170)

The distinction between the two scenarios given by (2.169) and (2.170) is mathematically
incorporated introducing the unit step function

H(x) =
{

0 x<0,
1 x≥0,

(2.171)

so that Eq. (2.166) is partitioned into the two separate evolution equations

∂ω

∂t
+u

(
8
5
√
ω− 1

2
ω

)
∂ω

∂r
=−Θ [1−H(−Θ)H(ω−1)] , (2.172)

and
∂cδ
∂t

+u
61
50
∂cδ
∂r

=
3cδ
10
ΘH(−Θ)H(ω−1). (2.173)

Equations (2.172)-(2.173) cover mathematically all the possibilities described by the sce-
narios given by Eqs. (2.169)-(2.170).

2.3.4 Steady-state smooth film solutions

Steady-state hydrodynamics

Assuming steady-state conditions the IBL equations governing the hydrodynamics defined
by Eqs. (2.132) are considerably simplified, as they reduce to ordinary differential equa-
tions for the film thickness and the depth-averaged velocity components u and v,

d

dr
(ruδ) = 0, (2.174)

1
r

d

dr

(
karu

2δ
)
− kcv

2δ

r
= 2vδ+ b1δ

(
r− εFr−1dδ

dr

)
− b2

u

δ
, (2.175)

1
r

d

dr
(kbru vδ)+

kbu vδ

r
=−2uδ− 5

2
u

δ
. (2.176)
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Since the steady-state solution can only produce smooth film flow the influence of the
capillary pressure will be negligible, and the pressure expression Eq. (2.131) reduces to

P = εFr−1δ. (2.177)

The integration of the continuity equation Eq. (2.174) provides a simple relation for the
film thickness and the depth-averaged radial velocity,

ruδ = const.=
1
3
. (2.178)

The value of the integration constant is chosen to be 1/3, so that (2.178) is consistent with
the volumetric flow rate Q,

Q= 2π(rl0)(δδ0)(uu0). (2.179)

Using Eq. (2.178) the radial momentum equation Eq. (2.175) can be rewritten in terms of
an ordinary differential equation for the film thickness δ as

dδ

dr
=
−3β2r

2 +kaδ+9r2(β1r
2 +v(2r+kcv))δ3

−kar+9β1εFr−1r3δ3 . (2.180)

Similarly, the azimuthal momentum equation can be rewritten in terms of dv/dr, which
yields

dv

dr
=
−5r−4rδ2−4kbδ2v−2kbrδv (dδ/dr)

2kbrδ2 . (2.181)

To solve Eq. (2.180) and Eq. (2.181) appropriate inflow conditions have to be prescribed
at the radially inner boundary, which is located at r= ri. Appropriate values for ui, vi, and
δi may be obtained from experimental data, or from a numerical simulation of the central
impingement region. Extending the formulation to track the development of the boundary
layers for the radial and azimuthal velocities allows for a less specific prescription of the
inflow conditions. This extended concept will be discussed at the end of this section.

Far-field solution of the IBL equations

Kim and Kim [75] used the perturbation method to obtain a far-field asymptotic solution
of Eqs. (2.174)-(2.176) in terms of a series expansion with r� 1 as expansion parameter
written as

δ = r−2/3 +

(
44

225
− 2

9
εFr−1

)
r−10/3 +O(r−4), (2.182)

u=
1
3
r−1/3− 1

3

(
44
225
− 2

9
εFr−1

)
r−3 +O(r−11/3), (2.183)

v =− 4
15
r−5/3−

(
1912

23625
− 8

135
εFr−1

)
r−13/3 +O(r−5). (2.184)
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2.3 Integral boundary layer approximation

These results are in excellent agreement with the results from the asymptotic expansion of
the full Navier-Stokes equations, Eqs. (2.101)-(2.103), obtained by Rauscher et al. [53],
which were presented in section 2.2.2.

Kim and Kim [75] also analyzed the asymptotic behavior in the limit of small radii, r� 1.
In this limit the radial momentum balance is governed by the inertial and viscous forces,
while the azimuthal momentum balance is governed by the Coriolis force as well. The
asymptotic solution obtained in this inner radial region reads (cf. Kim and Kim [75])

δ =
C

r
+

5r2

2ka
, (2.185)

u=
1

3C+15r3/(2ka)
, (2.186)

v =− r

kb
+

2r4

Ck2
b

+O(r7), (2.187)

involving a constant parameter C, which has to be determined from an appropriate inflow
condition.

Steady-state heat transfer

The steady-state solution for heat transfer distinguishes a radial inner region, r < rT , where
the boundary layer of the temperature has not reached the surface of the film (δT < δ), from
a outer region associated with δT = δ. The solution in the inner radial region r < rT is
obtained by integrating Eq. (2.74), rewritten without the transient terms and incorporating
the depth-averaged continuity equation ruδ = 1/3,

1
r

d

dr

[
1
3

(
δT
δ

)3(1
5
δ− 1

24
δT

)]
=

1
Pr

. (2.188)

The integration of Eq. (2.188) yields the evolution of the thermal boundary layer thickness
until it reaches the surface, such that δT = δ at r = rT .
For r ≥ rT the steady-state depth-averaged temperature transport equation Eq. (2.154)
reduces to

dθw
dr

=
61

120
dδ

dr
+

3r
Pr

. (2.189)
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2 Mathematical modeling and approximate solutions

IBL far-field solution for heat transfer

In the limit of large radii thermally developed flow conditions are met, i.e., r > rT and
δT = δ, and the steady-state approximation for the film thickness is given by δ = r−2/3, so
that Eq. (2.189) becomes

dθw
dr

=− 61
180

1
r5/3

+
3r
Pr .

(2.190)

The integration of Eq.(2.190) using Eq. (2.148) evaluated at r= rT as radially inner bound-
ary condition

r = rT : θw = 2δ/3 (2.191)

yields

θw =
61
120

r−2/3 +
19
120

r
−2/3
T +

3
2
r2

Pr
− 3

2
r2
T

Pr .
(2.192)

The computation of the far-field solution for heat transfer can also be useful for estimating
the effect of a possible convective heat flux at the liquid surface written as

∂θ

∂z

∣∣∣∣
z=δ

=−αδ0(θa− θδ)
λ

, (2.193)

where θδ and θa denote the dimensionless temperatures at the liquid surface and the ambi-
ent air, respectively. The required values for the heat transfer coefficient α can be obtained
using a correlation proposed for laminar flow (Wagner [97]), which is valid for subcritical
values of the rotational Reynolds number, ReΩ = r̃2Ω/νa <ReΩ,crit = 250.000,

Nu=
αr̃

λa
= ĈRe

1/2
Ω . (2.194)

The parameter Ĉ is set to 0.335, which is proposed for the value of the ambient Prandtl
number Pr=0.74. Prescribing the convective heat flux given by Eq. (2.193) as upper non-
adiabatic boundary condition modifies the profile function Eq. (2.149), which was obtained
for the dimensionless temperature using an adiabatic upper boundary condition Eq. (2.84)
to

θ = θw+ δ

[
1
3

(
1− αδ0(θa− θδ)

λ

)
z3

δ3 −
z

δ

]

.

(2.195)
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2.3 Integral boundary layer approximation

Using this modified profile function for the integral of the convective term in Eq. (2.145)
the steady-state depth-averaged heat transfer equation in the limit of large radii is obtained
as

dθw
dr

=
3λr2/3

(
540r8/3−61Pr

)

180r5/3Pr
(
3λr2/3−αδ0

)+

αδ0

[
Pr
(

61+42r+63r5/3θa

)
+9r5/3θw

(
180r5/3−7Pr

)]

180r5/3Pr
(
3λr2/3−αδ0

) . (2.196)

For α= 0 equation (2.196) is identical to Eq. (2.190), which is based on the adiabatic up-
per boundary condition.

A comparison of the results for the dimensionless wall temperature obtained from the
far-field solutions Eqs. (2.190) and (2.196), using the adiabatic and non-adiabatic surface
boundary conditions, respectively, will be shown in Sec. 4.1.2.

Steady-state species mass transfer

Assuming steady-state conditions for the species mass transfer Eq. (2.163) reduces to

(
16
√
ω

3cδ
− 2ω
cδ

)[
80−24ω+5ω3/2

80−30
√
ω

u
dcδ
dr

]
−
[(

8
5
√
ω− 1

2
ω

)
u
dω

dr

]
=− 8

Sc

1
δ2 (2.197)

The RHS, formerly denoted withΘ, is always negative in case of steady-state smooth flow,
so that Eq. (2.197) can be separately solved for ω or cδ depending on the development of
the boundary layer δc:

• δc < δ, ω < 1:

cδ = 1, u

(
8
5
√
ω− 1

2
ω

)
dω

dr
=

8
Sc

1
δ2 , (2.198)

• δc = δ, ω = 1:

ω = 1, u
dcδ
dr

=−120
61

cδ
Sc

1
δ2 . (2.199)

The transition between both regions occurs at δc = δ, corresponding to a fixed radial posi-
tion r = rc, which can be determined from the condition

cδ(rc) = 1. (2.200)
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Using the steady-state continuity equation ruδ= 1/3 Eqs. (2.198)-(2.199) can be rewritten
as

ω < 1 :
dδc
dr

= β
dδ

dr
+

r

Sc

(
120

16β2−5β3

)
, (2.201)

ω = 1 :
dcδ
dr

=−360
61

rcδ
δSc

. (2.202)

It becomes evident that for ω < 1 the thickness of the boundary layer δc is monotonically
increasing, and for ω= 1 the species mass fraction at the free surface, cδ, is decreasing with
increasing radii. The latter behavior guarantees a monotonic decrease of depth-averaged
species mass fraction c.

IBL far-field solution for species transport

Considering the steady-state approximation for the film thickness to be given by δ= r−2/3,
an asymptotic solution in the limit of large radii for the species mass fraction at the free
surface is obtained as

cδ(r) = exp
[
− 135

61Sc

(
r8/3− r8/3

c

)]
. (2.203)

Boundary layer assumption (BLA) for the central impingement region

A physically more accurate description of the flow in the central impingement region can
be obtained by distinguishing the boundary layers of the radial and azimuthal velocities
inside the liquid, δr and δφ, respectively, developing both from the point of impingement,
as sketched in Fig. 2.3. Analogously to the temperature and the species mass fraction,
where the thermal and the concentration boundary layers, δT and δc, are distinguished
as separate sublayers, respectively, the depth-averaging procedure of the governing thin
film momentum equations (2.71)-(2.72) has accordingly to be split into the subintervals
0≤ z ≤ δm, and δm ≤ z ≤ δ, symbolically written as

δ∫

0

[· · · ] dz =
δm∫

0

[· · · ] dz
︸ ︷︷ ︸

(?)

+

δ∫

δm

[· · · ] dz

︸ ︷︷ ︸
(??)

, (2.204)

where δm represents the thickness of the considered boundary layer. Assuming constant
free-stream values for the velocity, the dimensionless temperature, and the species mass
fraction outside the corresponding boundary layer the contribution of the second integra-
tion (??) is identically zero, so that only the first integral (?) has to be considered. This
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2.3 Integral boundary layer approximation

can be, for example, easily shown for the depth-averaging of the radial momentum equa-
tion, Eq. (2.71), assuming u|z>δr = ui = const., v|z>δφ =−r, and p= const., so that the
contributions of the integration (??) cancel

δ∫

δr

−rdz =
δ∫

δr

(−2r+ r)dz. (2.205)

Similarly, for the depth-averaging of the azimuthal momentum equation, Eq. (2.72), as-
suming v|z>δφ =−r, the contributions of the integration (??) cancel as well

δ∫

δφ

(
−u− ur

r

)
dz =

δ∫

δφ

−2udz. (2.206)

Thus, assuming constant free-stream velocities, u|z>δr = ui, and v|z>δφ =−r, the depth-
averaging of the steady-state momentum equations for the radial and azimuthal momentum
is written as

1
r

d

dr

δr∫

0

ru2 dz−
δr∫

0

v2

r
dz = 2

δr∫

0

vdz+ rδr− δrεFr−1dδr
dr
− ∂u

∂z

∣∣∣∣
z=0

, (2.207)

δ

r

δT

III

δr
δφ

δc

δ

rr rφ0

Figure 2.3: Sketch of the radial development of the boundary layers of the radial velocity,
azimuthal velocity, temperature, and species mass fraction, δr, δφ, δT , and δc,
respectively.
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and

1
r

d

dr

δφ∫

0

ruvdz+

δφ∫

0

uv

r
dz =−2

δφ∫

0

udz− ∂v

∂z

∣∣∣∣
z=0

, (2.208)

respectively. Inside the boundary layers, z ≤ δr, and z ≤ δφ, the velocity profile assump-
tions are applied, while constant free-stream values are used beyond. The stress-free bound-
ary conditions, Eqs. (2.78) and (2.79), are consistently imposed at z = δr and z = δφ,
respectively. Once the radially growing thickness of an individual boundary layer has
reached the liquid surface, the corresponding upper boundary is set to the film height
δr = δ, and δφ = δ, respectively.
Accounting for the development of boundary layers also in the momentum transport ba-
sically allows for a physically sounder description of the flow in the central impingement
region, as no presumptions for the film thickness and the depth-averaged velocity compo-
nents are required at the inflow boundary. At the center r = 0 only the free stream velocity
has to be prescribed as inflow boundary condition. Assuming a frictionless redirection of
the vertically impinging jet the free-stream velocity, ui = ũi/u0, is set to the value of the
vertical impingement velocity w̃imp/u0. As such the radial inflow velocity is computed de-
pendent of the volumetric flow rateQ, the nozzle radius r̃n, and the nozzle-to-disk distance
h̃n, following Bernoulli’s equation

ui =
w̃imp
u0

=
1
u0

√(
Q

r̃2
nπ

)2

+2gh̃n
.

(2.209)

Assuming constant free-stream values, θ|z>δT = 0, for the non-dimensional temperature,
and, c|z>δc = 1, for the mass species concentration the subdivided integration, Eq. (2.204),
of the convection-diffusion equations for the heat and species mass transfer, Eq. (2.74) and
Eq. (2.75), respectively, yields

1
r

d

dr

δT∫

0

ruθdz =
1
Pr

, (2.210)

and

1
r

d

dr

δc∫

0

rucdz =− 1
Sc

∂c

∂z

∣∣∣∣
z=0

. (2.211)

All the free-stream values which are imposed at the corresponding upper boundaries in the
regions I and II are summarized in table 2.2.
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2.3 Integral boundary layer approximation

impingement region I impingement region II
independent variable u xx v xx c xx θ xx uxx vxx c xx θxx
upper boundary at δm = δr δφ δc δT δ δφ δc δT
imposed value at z = δm: ui −r 1 0 uδ −r 1 0

Table 2.2: Free-stream values imposed at upper boundary z= δm when using the boundary
layer assumption (BLA) for the central impingement region.

Using the quartic profile assumption described in section 2.3.1 the evaluation of equa-
tions (2.207)-(2.208) yields inside the impingement region I two coupled ordinary differ-
ential equations for the thickness of the radial and azimuthal boundary layers written as

dδr
dr

(
δrεFr

−1− 2
15
u2
i

)
=

2
15
u2
i

r
δr−

rδr
5
− 8ui

5δr
+

1763
7875

rδφ, (2.212)

and

dδφ
dr

(
28r
75

δφ
δr
− 12r

105

δ2
φ

δ2
r

)
=

8r
5δφui

+
4

35

δ3
φ

δ2
r

− 14
25

δ2
φ

δr
− dδr
dr

(
8r

105

δ3
φ

δ3
r
− 14r

75

δ2
φ

δ2
r

)
, (2.213)

respectively. The film thickness in the inner impingement region I can then simply be
obtained from the continuity restriction

Q= 2r̃πδ̃ũ= 2r̃πũi
(
δ̃− δ̃r

)
+2r̃πδ̃rũδ̃r , (2.214)

resulting in

δ =
Q

2r̃πũi
−
δ̃rũδ̃r
ũi

+ δ̃r. (2.215)

The system Eqs. (2.212)-(2.213) is extended by analogously coupled ODE’s

dδT
dr

=
180rδ3−24Pruiδ2δ3

T +5Pruiδδ4
T +24rPruiδδ3

T
dδ
dr −10rPruiδ4

T
dδ
dr

72rPruiδ2−20rPruiδδ3
T

, (2.216)

for the thermal boundary layer, and by

dδc
dr

(
1
8
δ2
c

δ2
r
− 2

5
δc
δr

)
=− 3

2Scδcui

− 1
r

(
1

24
δ3
c

δ2
r
− 1

5
δ2
c

δr

)
− dδr
dr

(
1
5
δ2
c

δ2
r
− 1

12
δ3
c

δ3
r

)
, (2.217)
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for the concentration boundary layer, when including the heat transfer, and species mass
transport in a binary mixture, respectively.

In the region II the boundary layer of the radial velocity component has reached the free
surface, δr = δ, and the following two ordinary differential equations for the film thickness
and the thickness of the azimuthal boundary layer are obtained:

dδ

dr

(
δεFr−1− 125

864r2δ2 −
10δ
432

+
5r2δ2

4320

)
=

125
864r3δ

− 5
6rδ2 −

3rδ5

4320

+
5δ2

432r
− rδ

6
+

1763
7875

rδφ, (2.218)

and

dδφ
dr

(
14
75
δφ
δ2 −

6
105

δ2
φ

δ3

)
=

8r
5δφ

+
4

105r

δ3
φ

δ3 −
14
75r

δ2
φ

δ2

− dδ
dr

(
6

105

δ3
φ

δ4 −
14
75

δ2
φ

δ3

)
. (2.219)

If heat and mass transfer are included the system (2.218)-(2.219) is extended by Eq. (2.188)
and Eq. (2.201) to compute δT and δc, respectively.

Radially downstream from the position, where the boundary layer of the azimuthal velocity
component reaches the free surface, δφ= δ, the original formulation given by Eqs. (2.174)-
(2.176) is solved assuming steady state. The system is extended by Eqs. (2.188)-(2.189),
or by Eqs. (2.201)-(2.202), when heat or species mass transfer are included, respectively.

Boundary layer assumption (BLA) vs. developed film assumption (DFA)

In the following the IBL approximation, which starts the radial integration from the center,
ri = 0, considering the development of the velocity boundary layers (inside region I and II,
as shown in Fig. 2.4),is referred to as boundary layer assumption (BLA). On the other hand
the IBL approximation, which starts the integration at a certain radial inner boundary r= ri
with prescribed inlet values for δi, ui, and vi, is referred to as developed film assumption
(DFA), as this approach assumes that both the velocity boundary layers δr and δφ have
already reached the free surface upstream of the inner radial boundary r = ri. The film
thickness needed by the DFA at the inner boundary, δi = δr=ri , has to be assumed, or can
be taken from CFD results, if available. The required depth-averaged inflow velocities,
ui = u|r=ri , vi = v|r=ri , can be computed from the asymptotic solutions for small radii,
r� 1, given by Eqs. (2.186) and (2.187).
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δ

r0

III

δTδr
δφ

δc

δ

rr rφ ri,DFAri,BLA

Figure 2.4: Scope of boundary layer assumption (BLA) and developed film assumption
(DFA).

2.4 Modeling wet chemical surface etching

In the semiconductor industry spin processors are widely used for the surface preparation
of silicon wafers. One major application in this particular spin-processing technology is
the wet chemical etching. A useful parameter to determine the reaction regime of the wet
chemical etching process is the Damköhler number Da. It basically relates the time scale
of the chemical reaction, τchem, to the time scale of the mass transport of the etchant into
the reactive layer, τdiff , such that

Da=
τdiff
τchem .

(2.220)

As the mass transport essentially relies on the diffusive transport towards the wall, the
corresponding time scale can be estimated in terms of the diffusivity of the etchant D and
the characteristic film height δ0 = (ν/Ω)1/2,

τdiff ≈
δ2

0
D .

(2.221)

The reactive time scale τchem is determined by the governing chemical etching mechanism,
such that it scales with the inverse of the rate determining reaction rate

τchem ≈
1
ω̇ .

(2.222)
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Figure 2.5: Schematic representation of main rate limiting mechanisms involved in wet
chemical etching.

Based on the Damköhler number two asymptotic limits can be distinguished. The first
asymptotic limit is associated with small Damköhler number and very slow chemistry as
compared to the transport of the etchant towards the solid surface. In this case the etching
rate will be mainly controlled by the timescale of the chemical reaction kinetics. Since
the reaction kinetics strongly depends on the temperature of the liquid near the wall, one
can also speak of a temperature controlled limit. In the second asymptotic limit, associated
with large Damköhler number and very fast chemistry, the etching process is controlled by
the mass transfer of the primary etchant component towards the solid surface.

2.4.1 Reaction controlled chemistry (Da� 1)

As an example for a reaction controlled wet chemical etching process, the present study
considers the etching of silicon-dioxide (SiO2) with diluted hydrofluoric acid (HF ) as
chemical system. Assuming a global one-step mechanism the overall dissolution of SiO2
is governed by the following chemical reaction (see, e.g. Monk et al. [98])

SiO2 +6HF →H2SiF6 +2H2O.

Following Staudegger [82] the rate of this reaction can be described by an Arrhenius type
equation

k = Aexp
[
−Ea
Rg

1
T

]

,

(2.223)

where the prefactor A has the dimension of a velocity, Ea denotes the activation energy,
and Rg is the molar gas constant with a value of Rg=8.3145 J/(Kmol).

Staudegger [82] measured the etching abrasion

∆zetch = k · t̃etch (2.224)
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2.4 Modeling wet chemical surface etching

for a given exposure time t̃etch in a number of experiments to obtain several values of k
at varying temperature T . A best fit of Eq. (2.223) to these experimental data gave the
values Ea/Rg=3978 K and A=8.29×105 Å/s. The so obtained reaction velocity in the
considered range of temperature is always of the order of k=O(10−10 m/s). The diffusion
coefficient of hydrofluoric acid in an aqueous solution is of the order of D=O(10−9 m2/s)
(see, e.g. Noulty et al. [99]). Assuming a typical film height of the order of δ0=O(10−4 m)
as a characteristic length scale the Damköhler number for this particular surface etching
process can be estimated as

Da=
δ0

D
k =O

(
10−5

)
� 1, (2.225)

so that τchem� τflow, and the assumption of a strongly temperature dependent, reaction
controlled chemistry with abundance of the main reactive agent is justified.

2.4.2 Diffusion controlled chemistry (Da� 1)

The present study considers the etching of silicon (Si) with an aqueous etchant consisting
basically of nitric acid (HNO3) and hydrofluoric acid (HF ) as an example for a diffusion
controlled wet chemical etching process. Schwartz and Robbins [100] proposed a simpli-
fied two-step fast reaction mechanism for the dissolution of Si as

Si+4HNO3→ SiO2 +4NO2 +2H2O

SiO2 +6HF →H2SiF6 +2H2O.

Following Kaneko et al. [68], for low HNO3 and high HF concentrations, the rate of
this reaction is essentially controlled by the first reaction step. Since this key reaction is
assumed as very fast, the Damköhler number is very high, Da� 1. This implies that
the etching reaction is limited by the diffusive flux of the nitric acid molecules towards
the surface of the wafer. The diffusion coefficient of nitric acid in an aqueous solution
is D=2.4×10−9 m2/s, and the typical film height is of the order of δ0=O(10−4 m). The
velocity of diffusion is thus approximately in the order of D/δ0 ≈O(10−5 m/s).
The etching abrasion rate R is proportional to the mass flux of dissolved silicon jSi, i.e.

R ∝
jSi
ρSi

[m/s]. (2.226)

Assuming a stoichiometric oxidation of silicon by nitric acid,

jSi
MSi

=−1
4
jHNO3

MHNO3

, (2.227)
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Eq. (2.226) can be rewritten as

R ∝−jHNO3

1
4ρSi

MSi

MHNO3

[m/s]. (2.228)

The diffusive mass flux of the primary etchant species is given by

jHNO3 =−ρD
∂c̃

∂z̃

∣∣∣∣
z̃=0

[kg/(m2s)], (2.229)

which can be rewritten as in terms of the local Sherwood number

Sh=
∂c

∂z

∣∣∣∣
z=0

, (2.230)

as
jHNO3 =−ρD

c̃i
δ0
Sh. (2.231)

The etching rate for a diffusion controlled chemistry is proportional to the Sherwood num-
ber and computed from

R= k̂
1
ρSi

MSi

4MHNO3

ρD
c̃i
δ0
Sh [m/s] (2.232)

using the values ρSi=2329 kg/m3, MSi=28.09 g/mol, MHNO3=63.01 g/mol, and an em-
pirical proportionality constant k̂.
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3 NUMERICAL SOLUTIONS

3.1 Numerical solution of the Navier-Stokes equations

In the CFD based approach, the unsteady, axisymmetric Navier-Stokes equations (2.37)-
(2.38), as well as the energy equation (2.39), or, alternatively, the convection-diffusion
equation for a species in a binary mixture, Eq. (2.40), are discretized and numerically
solved using the flow simulation software ANSYS FLUENT [101, 102]. In this general
purpose CFD code a cell-centered finite-volume method is employed.

3.1.1 Finite Volume Method

The general transport equation for an arbitrary tensorial flow quantity ϕ(~x,t) is given by

∂ρϕ

∂t︸︷︷︸
(i)

+∇ · (ρ~vϕ)︸ ︷︷ ︸
(ii)

= ∇ · (Γ∇ϕ)︸ ︷︷ ︸
(iii)

+Sϕ(ϕ)︸ ︷︷ ︸
(iv)

. (3.1)

Here Γ denotes the diffusivity and Sϕ(ϕ) represents a source term. The individual terms
in Eq. (3.1) represent the change per unit volume (i), the flux due to convection (ii), the
transport due to diffusion (iii), and the rate of production (iv), respectively.

A finite volume discretization of Eq. (3.1) is obtained by integrating over a finite control
volume VP and time ∆t,

t+∆t∫

t



∫

VP

∂ρϕ

∂t
dV +

∫

VP

∇ · (ρ~vϕ)dV


dt=

t+∆t∫

t



∫

VP

(∇ · (Γ∇ϕ)+Sϕ(ϕ))dV


dt. (3.2)

The volume integral with the transient term can be approximated first-order accurate in
time as

∫

V

∂ρϕ

∂t
dV ≈ ρn+1

P ϕn+1
P −ρnPϕnP
∆t

VP , (3.3)
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3 Numerical solutions

with ϕn+1 = ϕ(t+∆t) denoting the new value at the cell center (index P ) at the time step
which is solved for.

The volume integral with the convection term is discretized by transforming the volume
integral into a surface integral using Gauss‘s theorem,

∫

VP

∇ · (ρ~vϕ)dV =
∫

S

d~S · (ρ~vϕ)≈∑
f

~S · (ρ~v)f ϕf . (3.4)

For the interpolation of the cell-centered values (ϕP ) to the values at the cell faces (ϕf )
typically second-order-accurate schemes are used.

The discretization of the volume integral with the diffusion term involving the scalar dif-
fusion coefficient Γ , is obtained analogously to the convective flux, written as

∫

VP

∇ · (Γ∇ϕ)dV =
∫

S

d~S · (Γ∇ϕ)≈∑
f

Γf

(
~S ·∇fϕ

)
. (3.5)

The required gradients at the cell faces, ∇fϕ, are computed using a second-order-accurate
least-squares cell-based approach.

Introducing all the approximations for the volume integrals shown above into Eq. (3.2) the
semi-discretized from of the transport equation reads

t+∆t∫

t

[
ρn+1
P ϕn+1

P −ρnPϕnP
∆t

VP +∑
f

~S · (ρ~v)f ϕf
]
dt=

t+∆t∫

t

[
∑
f

Γf

(
~S ·∇fϕ

)
+SϕVP

]
dt. (3.6)

For the temporal discretization the Euler implicit method is used, which implies for the
corresponding time integrals

t+∆t∫

t

(· · ·) dt≈ (· · ·)n+1∆t. (3.7)

The finally obtained discretized formulation constitutes a set of algebraic equations for
each control volume. This algebraic system of equations can be expressed in matrix form
involving a sparse coefficient matrix, which is solved using an appropriate linear solver.

Dealing with incompressible flow, the continuity is satisfied based on a velocity-pressure
coupling, for which a PISO-type segregated algorithm is used.
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3.1.2 Volume of Fluid Method

The description of the two-phase flow is accomplished using the implemented Volume-
of-Fluid method (Hirt and Nichols [103]). In this one-fluid formulation, both phases are
treated as single continuum, distinguished by a phase-marker function, which is defined
as

γ(~x,t) =





1 liquid phase,
0 gas phase,
0 < γt < 1 transitional zone.

(3.8)

The interface between the phases is tracked solving the phase-marker transport equation

∂γ

∂t
+~v ·∇γ = 0. (3.9)

The transitional zone basically represents the interface, where the fluid properties like den-
sity or viscosity exhibit a discontinuous step in reality. This transitional zone is here con-
sidered to have a small finite thickness t, which is necessary to model the two fluids as
a continuum, using the continuity and the momentum equations. The fluid properties, for
example the density of the fluid, are determined using the volume-weighted average

ρ= γρL+(1−γ)ρG. (3.10)

Here the indices L andG denote the properties of the liquid and the gas phase, respectively.

To guarantee the boundedness of the phase-marker function γ, and to prevent an unphys-
ical smearing of the step-like change at the phase interface an adequate discretization of
the phase-marker transport equation has to be employed. For this purpose, the simulation
package offers different numerical methods for correcting the fluxes across the faces of
the control volumes, from which the High Resolution Interface Capturing scheme (HRIC,
Muzaferija et al. [104]) was chosen. This HRIC scheme represents a hybrid scheme based
on the blending of bounded downwind and upwind differencing schemes.

In the framework of the implemented VoF method the effect of surface tension is modeled
based on the continuum surface force (CSF) model, which was proposed by Brackbill et
al. [105]. In this model the capillary force is incorporated in the momentum equations
in terms of an appropriate volume force, which is proportional to the curvature of the
interface.
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3 Numerical solutions

3.1.3 Setup

The computational domain and the boundary conditions used in the CFD simulations are
sketched in Fig. 3.1. At the liquid inflow boundary a uniform inlet velocity boundary con-
dition, equivalent to the considered volumetric flowrate, was prescribed. The inflow tem-
perature, or alternatively the inflow species mass fraction, were assumed to be constant.
The radially inner boundary represents an axis of symmetry, so that symmetry boundary
conditions, which are basically zero-gradient conditions, apply. At the upper and radially
outer boundaries, pressure outlet boundary conditions were imposed. This boundary con-
dition implies, that the static pressure is prescribed relative to the operating pressure, while
all other flow quantities are extrapolated from the interior.

At the surface of the rotating disk a solid wall boundary condition is used, which is as-
sociated with no-slip conditions setting the velocity of the liquid equal to the rotational
speed of the disk. Furthermore a constant heat flux was assumed for the thermal boundary
condition at the wall, while a constant species mass fraction was assumed when modeling
the mass transport in a binary mixture.

The steady-state smooth film solutions of the IBL model, presented in Sec. 2.3.4, were
used to initialize the volume fraction distribution and the flow field inside the film.
The properties of the three different fluids considered as the liquid phase in the CFD sim-
ulations are listed in Tab. 3.1. For the ambient gas phase the properties of air were used,
with ρG = ρa =1.225 kg/m3, νG = νa =1.46×10−5 m2/s.
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Figure 3.1: Computational domain and boundary conditions.
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3.2 Numerical solution of the integral boundary layer equations

ρ [kg/m3] ν [m2/s] σ [N/m]
L1 998.2 1.0×10−6 0.072
L2 990 1.3×10−6 0.072
L3 998.2 2.87×10−6 0.072

Table 3.1: Properties of liquids considered in the CFD simulations.

The computational domain shown in Fig. 3.1 was discretized using approximately 124
thousand cells. The rectangular-shaped cells were layered in five rows. The first layer ex-
tended from the surface of the disk to z̃=0.005 mm and consisted of 10 rows of equally
sized cells. In the second layer, which extended to z̃=0.1 mm, 40 rows of equally sized cells
were stacked upon each other. From the third layer onwards the vertical height of the cells
was successively increased. The radial region was subdivided in three evenly spaced cell
columns, with a radial cell size of ∆r̃=0.1 mm. In the region covered by liquid additional
refinement was performed using a twice as fine resolution in both directions.

The time step size for the simulation was allowed to vary depending on the flow conditions
using the Courant-Friedrichs-Lewy (CFL) criterion. The time step size typically varied
between 1÷5×10−5 s.

3.2 Numerical solution of the integral boundary layer equations

The IBL approximation leads to a nonlinear system of hyperbolic partial differential equa-
tions (PDEs), defined by Eqs. (2.132), extended by Eqs. (2.154) to model the heat transfer,
and by Eq. (2.162) to model the species mass transfer.

In the following the single spacial dimension is denoted by x and the vector of the de-
pendent state variables by ~U(x,t) ∈Rm. Considering furthermore the m-dimensional flux
function to be denoted with ~F (~U(x,t)) ∈Rm, and the vector of source terms to be written
as ~S(~U(x,t),x, t) ∈ Rm, the nonlinear system of hyperbolic partial differential equations
can be written in general form as

∂~U(x,t)

∂t
+
∂ ~F (~U(x,t))

∂x
= ~S(~U(x,t),x, t). (3.11)

Such time-dependent systems of PDEs are frequently encountered when modeling convec-
tion dominated transport processes. For the special case of a system of conservation laws,
which is associated with ~S ≡ 0, a change in the state variables can only be due to a net
flux.
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3 Numerical solutions

3.2.1 Hyperbolic systems

The system defined in Eq. (3.11) is called hyperbolic, if the m×m Jacobian matrix

J(~U) =
∂ ~F (~U)

∂~U
(3.12)

• has real eigenvalues λp(~U) and a corresponding complete set of m linearly indepen-
dent eigenvectors ~rp(~U), (p= 1, ...,m), and

• is diagonalizable: J =RΛR−1.

Therein, Λ is a diagonal matrix holding the real eigenvalues λp andR is the invertible right
eigenvector matrix, with the corresponding eigenvectors ~rp as its columns.
Numerical methods for solving such time-dependent hyperbolic systems are based on solv-
ing Riemann problems. For this reason the concepts of solving Riemann problems are
recalled (see, e.g. Toro [106], LeVeque [107, 108]), before proceeding to the numerical
approach.

Riemann problem for a linear hyperbolic system

The initial value problem (IVP) for a linear hyperbolic system

∂~U(x,t)

∂t
+A

∂~U(x,t)

∂x
= 0, (3.13)

with constant coefficient matrix A, defined together with an initial condition of the form

~U(x,0) = ~U0(x) , −∞ < x < ∞ (3.14)

can be explicitly solved. For this purpose a transformation into so called characteristic
variables, defined by

~W =R−1~U, (3.15)

is performed. The flux function is in this case simply given as

~F (~U(x,t)) = A~U(x,t). (3.16)

Multiplication of Eq. (3.13) from left with R−1 results in

R−1∂
~U(x,t)

∂t
+ΛR−1∂

~U(x,t)

∂x
= 0. (3.17)
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3.2 Numerical solution of the integral boundary layer equations

Here the identity A = RΛR−1, or rather R−1A = ΛR−1, was used. Since A is constant,
Eq. (3.17) can be written in terms of the characteristic variables,

∂ ~W (x,t)

∂t
+Λ

∂ ~W (x,t)

∂x
= 0. (3.18)

Due to the diagonal form of Λ, the linear system therefore decouples into m independent
scalar advection equations

∂wp(x,t)

∂t
+λp

∂wp(x,t)

∂x
= 0, p= 1, ...,m. (3.19)

The solution of an IVP for a linear scalar advection equation,

∂v

∂t
+a

∂v

∂x
= 0, (3.20)

with initial condition v(x,0) = v0, is simply obtained as

v(x,t) = v0(x−at) for t≥ 0. (3.21)

Thus the initial data distribution v0 propagates with characteristic speed a and the solution
v(x,t) is constant on parametric curves x(t) = x0 +at in the x-t plane. The family of the
so called characteristics of the PDE is defined by the ordinary differential equation

dx(t)

dt
= a, (3.22)

and a particular characteristic is determined by supplying an initial condition at t = 0 as
x(t= 0) = x0.
The rate of change of v along x(t) = x0 +at is therefore zero,

dv

dt
=
∂v

∂t
+

dx

dt︸︷︷︸
a

∂v

∂x
= 0. (3.23)

In Fig. 3.2 characteristics for the linear advection equation with a positive characteristic
speed a > 0 are sketched in the x− t plane.

For the linear system defined in Eq. (3.19) this means that the solution for each of the char-
acteristic variables wp(x,t) corresponds to the initial profiles, which have been propagated
at the characteristic speed λp over the time t, so that

wp(x,t) = wp(x−λpt,0). (3.24)
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3 Numerical solutions

The solution of the original system, defined in Eq. (3.13), is finally obtained by the inverse
transformation,

~U(x,t) =R ~W (x,t). (3.25)

This procedure can be written in terms of an eigenvector expansion of ~U(x,t) with coeffi-
cients wp(x,t) as

~U(x,t) =
m

∑
p=1

wp(x,t)~rp, (3.26)

or, when using Eq. (3.24), as

~U(x,t) =
m

∑
p=1

wp(x−λpt,0)~rp. (3.27)

Thus, the solution can be interpreted as superposition of m waves with constant shape
wp(x,0)~rp, which propagate independently with speed λp.
Denoting the rows of matrix R−1 by (~lp)

T , the p-th component of R−1~U can be written as
(cf. (3.15))

wp(x,t) =
(
~lp

)T
· ~U(x,t). (3.28)

Substituting this expression into the coefficients of the eigenvector expansion Eq. (3.27)
can be rewritten as

~U(x,t) =
m

∑
p=1

[
(~lp)

T · ~U(x−λpt,0)
]
~rp. (3.29)

A Riemann problem is generally defined by a hyperbolic PDE system together with a

0x

x=x
0
+at

t

x

0

Figure 3.2: Sketch of the characteristics of the linear advection equation for a characteristic
speed a > 0 in the x− t plane.
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3.2 Numerical solution of the integral boundary layer equations

piecewise constant initial condition of the form

~U(x,0) =

{
~UL x < 0
~UR x > 0.

(3.30)

For the simple case of a linear hyperbolic system with a constant coefficient matrix A
(Eq. (3.13)) the general solution is provided by Eq. (3.29). Assuming additionally, that the
real eigenvalues of A are distinct and ordered,

λ1 < λ2 < ... < λm, (3.31)

the initial condition can be written as eigenvector expansion with constant coefficients α
and β as

~UL =
m

∑
p=1

αp~rp and ~UR =
m

∑
p=1

βp~rp. (3.32)

As sketched in Fig. 3.3 the general solution of this linear Riemann problem can then be
interpreted as a superposition ofmwaves, which originate from the point (0,0) in the x− t
plane.

Each of these waves carries a discontinuity in each component of ~U and travels at constant
speed λp. In terms of the characteristic variables, the initial condition is provided by

wp(x,0) =

{
αp, x < 0
βp, x > 0

(3.33)

and the solution to the scalar Riemann problems is obtained as

wp(x,t) = wp(x−λpt,0) =
{
αp, x−λpt < 0
βp, x−λpt > 0.

(3.34)

0
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Figure 3.3: Sketch of the solution structure of a linear Riemann problem withm= 5 waves.
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Figure 3.4: Sketch of the values of the solution in different sectors of a Riemann problem
with m= 3 waves.

The solution to the original system can finally be written as

~U(x,t) =
P (x,t)

∑
p=1

βp~rp+
m

∑
P (x,t)+1

αp~rp. (3.35)

Therein, the integer P (x,t) denotes the maximum value of p ∈ [1, ...,m], for which the
inequality,

x−λpt > 0, (3.36)

holds.

Fig. 3.4 provides an illustration for the determination of ~U(x,t) in case of a linear Rie-
mann problem with m= 3 waves. For any point in between two characteristics, defined by
dx/dt = const., the solution is the same. To the left of the λ1-characteristic the solution
is simply the initial data ~UL. Similarly, to the right of the λ3-characteristic, the solution
is given by the initial data ~UR. The coefficients of the eigenvector expansion for the so-
lutions in between the waves are determined from Eq. (3.34). As soon as one crosses the
p-th characteristic, dx/dt = λp, the value of x− λpt changes from negative to positive,
corresponding to a change of the coefficient from αp to βp.

3.2.2 Numerical solution of hyperbolic PDE systems

Finite volume methods, which are based on the integral form of the transport equations,
are especially suited for the numerical solution of hyperbolic PDE systems. The integral

74



3.2 Numerical solution of the integral boundary layer equations

form for a system of conservation laws reads

d

dt

x2∫

x1

~U(x,t)dx= ~F (~U(x1, t))− ~F (~U(x2, t)) ∀x1,x2. (3.37)

Discretizing the x-t plane utilizing a mesh of width h=∆x, and a time step size k =∆t,
the discrete points (xj , tn) are given as

xj = jh, j = ...,−1,0,1,2, ...
tn = nk, n= 0,1,2, ... .

(3.38)

The coordinates of the left and right faces of the j-th cell are denoted by xj−1/2 = xj−h/2
and xj+1/2 = xj +h/2, respectively. The pointwise value of an approximation to the cell
average of ~U(x,t) is then defined as

Unj =
1
∆x

xj+1/2∫

xj−1/2

~U(x,tn)dx. (3.39)

Integration of Eq. (3.37) with respect to time, between tn and tn+1, and division by ∆x
finally provides the discretized time integration scheme for the numerical approximation
of the cell average of the j-th cell

Un+1
j = Unj −

∆t

∆x

[
Fnj+1/2−Fnj−1/2

]
. (3.40)

Here Fnj±1/2 is the numerical approximation of the flux vector ~F (~U) at the left and right
cell faces,

Fnj±1/2 ≈
1
∆t

tn+1∫

tn

~F (~U(xj±1/2, t))dt. (3.41)

As sketched in Fig. 3.5, the finite volume based discretization leads to a piecewise-constant
distribution of the cell averaged state variables, constituting a sequence of local Riemann
problems at the cell interfaces. Thus, the task of the numerical solution of the hyperbolic
PDE system is to solve these local Riemann problems to update the solution to the new
time level Un+1

j .

Using Godunov’s method, which was developed in 1959 for gas dynamics, the indepen-
dent Riemann problems are solved exactly over a short time interval. Since for nonlinear
problems the solution of the sequence of Riemann problems at each time step is computa-
tionally expensive, the approximate Riemann solver is used as a more efficient approach.
This approximation approach is also justified by the fact that even the Godunov scheme is
only first-order accurate in space and time, due to the piecewise constant representation of
the state variables.
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x

n
U
j

j−2 j−1 j j+1 j+2

Figure 3.5: Piecewise constant distribution of a cell averaged state variable.

Roe’s approximate Riemann solver

One of the most popular approximate Riemann solvers goes back to Roe [109] and is
based on a linearization of the nonlinear problem. In this approach the nonlinear hyperbolic
system

∂~U(x,t)

∂t
+
~F (~U(x,t))

∂x
= 0, (3.42)

with initial conditions

~U(x,0) =

{
~UL x < 0
~UR x > 0,

(3.43)

which results in a sequence of nonlinear Riemann problems at the individual cell interfaces,
is replaced by a linear approximation

∂~U(x,t)

∂t
+ Â

∂ ~U(x,t)

∂x
= 0, (3.44)

with a constant coefficient matrix Â. This Roe matrix Â is assumed to be constant between
two cells and is assumed to be a function of the corresponding states to the left and right of
these cells, which are denoted by the subscripts L and R, respectively. As such the approx-
imation is essentially based on a linearization together with the assumption of constant
average states at the cell interfaces.

The constant coefficient Roe matrix Â must guarantee the

• hyperbolicity of the system, that is Â has to be diagonalizable with real eigenvalues,
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3.2 Numerical solution of the integral boundary layer equations

• conservation across discontinuities, that is

~F (~UR)− ~F (~UL) = Â(~UR− ~UL), (3.45)

• consistency with the exact Jacobian, that is

~UL, ~UR→ ~U : Â→ ∂ ~F (~U)

∂~U
. (3.46)

A suitable approximate Jacobian Â for the numerical solution of the IBL equations can be
obtained using the arithmetic average for the film thickness

δ̂ =
1
2
(δL+ δR) , (3.47)

and Roe averages for the remaining state variables, which is for example for the depth-
averaged radial velocity u given by

û=

√
δLuL+

√
δRuR√

δL+
√
δR

. (3.48)

The obtained sequence of linearized Riemann problems is then solved exactly. For this
purpose, considering exemplarily the Riemann problem at the face xj−1/2, the left and
right states at the cell interface, UnL = Unj−1 and UnR = Unj , respectively, are decomposed
into a linear combination of right eigenvectors of Â

Unj−1 =
m

∑
p=1

αpj−1r̂
p,

Unj =
m

∑
p=1

βpj r̂
p.

(3.49)

Here and below the summation index p is displayed as superscript, while the superscript
denoting the current time level n is dropped in the sums on the RHS for reasons of read-
ability.
The change in the state variables across the face between the neighboring cells is decom-
posed into a superposition of m wavesW ,

(∆U)nj−1/2 = Unj −Unj−1 =
m

∑
p=1

(
βpj −α

p
j−1

)
r̂p =

=
m

∑
p=1

γp
j−1/2r̂

p =
m

∑
p=1
Wp
j−1/2.

(3.50)
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The coefficients of the eigenvector expansion are determined according to Eq. (3.28), so
that the p-th wave in the Riemann solution at time level n is obtained as

Wp
j−1/2 =

(
l̂p
j−1/2

)T
(Uj−Uj−1) r̂

p
j−1/2. (3.51)

These jumps propagate with velocities λ̂p, respectively, the eigenvalues of the system. The
fluxes required for updating the averaged cell value in the j-th cell (cf. Eq. (3.40)) are
determined from several right going waves with positive velocity (λ̂p)+, starting from the
j− 1/2 cell interface, and several left going waves with negative velocity (λ̂p)−, starting
from the j+1/2 cell interface, respectively. The expression for updating the cell average
reads

Un+1
j = Unj −

∆t

∆x

[
m

∑
p=1

(
λ̂p
)+Wp

j−1/2−
m

∑
p=1

(
λ̂p
)−Wp

j+1/2

]
. (3.52)

Introducing the notation

Â− = R̂ diag
(
(λ̂p)

−)R̂−1, λ̂− =min(λ̂,0),

Â+ = R̂ diag
(
(λ̂p)

+
)
R̂−1, λ̂+ =max(λ̂,0),

(3.53)

this scheme can also be written as

Un+1
j = Unj −

∆t

∆x

[
Â+∆Uj−1/2 + Â

−∆Uj+1/2
]
. (3.54)

Higher order correction terms and flux limiter

An extension to a high resolution method is achieved by adding an additional term, which
provides limited second-order correction fluxes,

Un+1
j = Unj −

∆t

∆x

[
Â+∆Uj−1/2 + Â

−∆Uj+1/2
]
− ∆t

∆x

[
F̃j+1/2− F̃j−1/2

]
. (3.55)

The correction fluxes are given by

F̃j±1/2 =
1
2

m

∑
p=1

(
1− ∆t

∆x

∣∣∣λpj±1/2

∣∣∣
)∣∣∣λpj±1/2

∣∣∣W̃p
j±1/2. (3.56)

Here W̃p
j±1/2 represents a limited version of the wave, which is obtained by multiplication

with a limiter function χ
(
µp
j±1/2

)
, which measures the smoothness of the solution, as

W̃p
j±1/2 = χ

(
µp
j±1/2

)
Wp
j±1/2. (3.57)
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3.2 Numerical solution of the integral boundary layer equations

The parameter µ of the limiter function, is defined as

µp
j−1/2 =

Wp
J−1/2W

p
j−1/2∣∣∣Wp

j−1/2

∣∣∣
, (3.58)

with

J =

{
j−1 if λp > 0
j+2 if λp < 0.

(3.59)

For smoothly varying data the limiter function approaches unity and the additional term in
Eq. (3.55) provides a useful correction, improving the accuracy of the numerical solution.
Near discontinuities the limiter modifies the wave, typically by reducing its magnitude. A
popular high-resolution limiter is the superbee limiter

χ(µ) = max [0,min(1,2µ) ,min(2,µ)] , (3.60)

which was used in the present work. Linear alternative approaches are for example the
upwind method (χ(µ) = 0) and the unstable Lax-Wendroff scheme with χ(µ) = 1.

Source term treatment

To properly account for the presence of source terms in the numerical solution of a hyper-
bolic PDE system, a popular approach is to split the problem of solving

∂~U(x,t)

∂t
+
∂ ~F (~U(x,t))

∂x
= ~S(~U(x,t),x, t). (3.61)

into two sub-problems

∂~U(x,t)

∂t
+
∂ ~F (~U(x,t))

∂x
= 0, (3.62)

∂~U(x,t)

∂t
= ~S(~U(x,t),x, t). (3.63)

The main advantage using this operator splitting approach is that for each subproblem
an appropriate scheme can be chosen. Therefore, this fractional step scheme was used in
the present work for the numerical solution of the governing IBL equations. In particular,
Roe’s approximate Riemann solver with flux-limited second-order correction terms was
applied to the sub-problem associated with the homogeneous conservation laws, defined
by Eq (3.62), while a two-stage Runge-Kutta scheme was chosen for the integration of the
ODEs defined by Eq. (3.63).
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3.2.3 Setup

For the practical implementation of the hyperbolic solver numerical routines from the
Fortran-library CLAWPACK (Conservation Laws Package) [110] were used. This Fortran-
library provides the wave-propagation algorithm of Eq. (3.55), which requires

• the fluctuations Â±∆Uj−1/2,

• the wavesWp
j−1/2, and

• the local speeds λ̂p
j−1/2,

for the considered system of IBL equations. To provide these input data a proper routine
was programmed and implemented along with a source term routine for the fractional-step
method.
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Figure 3.6: Initial conditions for the film thickness and position of the inflow boundary
ri for the numerical solution of the unsteady IBL equations (a) including heat
transfer, (b) including species mass transfer.

Initialization and boundary conditions

Generally the unsteady flow simulation is initialized from the corresponding steady-state
solutions of the IBL model using the boundary layer assumption, as discussed in Sec. 2.3.4,
computed for the whole disk.
The inflow conditions are set at a certain radial inner position ri, where a smooth film
solution can be expected, so that appropriate inlet conditions can be obtained from the
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3.2 Numerical solution of the integral boundary layer equations

corresponding steady-state solutions. In the case of heat transfer the unsteady simulation
starts from the radial position ri = rT , where the film is hydrodynamically and thermally
fully developed, as shown in Fig. 3.6(a). On the other hand, in the case of species mass
transfer, the unsteady IBL simulation starts from an inner radius where the flow is hydro-
dynamically fully developed, associated with ri = r|δφ=δ, as shown in Fig. 3.6(b). This
different setting of the radial inner boundary is due to the very high Schmidt numbers,
which are considered in the present case. For the here relevant Schmidt number of the or-
der of O

(
10−3) the concentration boundary layers are very thin, so that they may never

reach the film surface throughout the domain as exemplarily shown in Fig. 3.6(b).
At the radially outer boundary the flow quantities are linearly extrapolated from the inte-
rior.
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4 RESULTS AND DISCUSSION

The following discussion of the computational results starts with a comprehensive analysis
of the steady-state solutions. It is followed by the analysis of the unsteady solutions, which
shall particularly highlight the effect of the unsteady surface waves on the hydrodynamics,
the heat and species mass transfer. The whole discussion is based on three cases listed with
their determining parameters in Tab. 4.1.

The considered cases were specially selected to cover smooth film as well as wavy film
conditions, and providing also experimental data for validation.

Case Q [lpm] n [rpm] ν [m2/s] εFr−1 W Pr Sc

C1 1.8 401 1.3×10−6 5×10−4 1.9×10−7

C2 1 500 1×10−6 4.5×10−4 3×10−6 7
C3 1.25 500 2.87×10−6 1.03×10−3 9.35×10−6 1196

Table 4.1: Considered test cases for steady-state smooth film and for wavy flow conditions.

The discussion of the hydrodynamic characteristics is mainly based on the case C1. For
this particular case experimental data for the film thickness are available from Burns et
al. [65]. The case C2 is focused on the investigation of the thermal characteristics of the
film flow, while the case C3 is focused on the description of the species mass transfer in a
binary mixture on the spinning disk. Assuming the asymptotic regimes of very small and
very large Damköhler numbers for the process of wet chemical etching, the predictions for
the temperature considered in case C2, and the species mass transport considered in case
C3, translate directly into predictions for the etching rates, for which experimental results
are available from Staudegger et al. [82, 85]. The validation of the present unsteady IBL
model against the experimental data is comprehensively discussed in Sec. 4.3.

4.1 Steady-state solutions

In this section the steady-state results of the IBL equations for smooth, axisymmetric flow
are discussed and compared against results from the analytical far-field solutions. The
analysis of the predictions obtained for the heat transfer also includes a comparison against
CFD results.
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4.1.1 Hydrodynamics

The results of the steady-state solution of the IBL approximation using the developed
film assumption (DFA) obtained for the case C1 are depicted in Fig. 4.1. The corre-
sponding asymptotic solutions, which are given by Eqs. (2.185)-(2.187) for r � 1, and
by Eqs. (2.182)-(2.184) for r� 1, are shown as well.

From Fig. 4.1 basically three regions can be distinguished. In the inner, inertia-dominated
region, the film height is increased to a local maximum, due to the retarding effect of the
viscous and Coriolis forces on the outwards directed radial motion of the liquid. In this in-
ner region, the radial as well as the azimuthal velocities decrease from their initial values.
The minima in the radial and azimuthal velocities are observed around the radial posi-
tion where the local maximum in the film thickness occurs. Further downstream, beyond
roughly r > 2, the accelerating effect of the increasing centrifugal force becomes more and
more dominant and causes a continuous thinning of the liquid film. In this radially outer
region the azimuthal component of the fluid velocity converges towards the disk’s angular
speed and the steady IBL model essentially produces the variation of the film thickness in
the asymptotic limit of large radii, δ = r−2/3, with the asymptotic depth-averaged radial
velocity u= (1/3)r−1/3.

The distinction between a radial inner inertia-dominated region, where the outwards di-
rected radial motion of the liquid is retarded by the viscous and Coriolis forces, and a
radial outer region dominated by centrifugal forces is also reflected by variation of the
Ekman number along the disk. As can be seen from Fig. 4.2, the radial extension of the
inertia dominated inner region r / 2 is associated with values of the local Ekman num-
ber Ek / 3. Since small local Ekman numbers imply comparatively high Coriolis forces,
which effectively exert a stabilizing influence on the flow, wavy flow conditions are to be
expected only in the outer radial region (r ' 2), where the Ekman numbers become large
(Ek ' 3) and the flow is increasingly destabilized by the centrifugal acceleration. Results
for the radial location of the maximum growth rate of perturbations obtained from a linear
stability analysis of the IBL equations (see, e.g., Kim and Kim [75]) support this distinc-
tion concerning local onset of waviness.

Effect of the reduced inverse Froude number

To assess the influence of the only dimensionless parameter

εFr−1 =
2πgν
3QΩ2 , (4.1)
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(a) Film thickness vs. radial distance.

 

 

asympt. r ≫ 1

asympt. r ≪ 1

IBL quart.

u

r

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

(b) Depth-averaged radial velocity vs. radial distance.
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(c) Depth-averaged azimuthal velocity vs. radial distance.

Figure 4.1: Solutions of the steady-state IBL equations for the case C1 together with the
asymptotic solutions in the radially inner and outer regions.
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Figure 4.2: Ekman number Ek = ν/Ωδ̃2 vs. radial distance for the case C1.

which appears in the governing set of equations for the steady-state smooth film flow,
Eqs. (2.174)-(2.176), a parametric study was carried out varying the values of the reduced
inverse Froude number between 8× 10−5 - 6× 10−2. This range of the reduced inverse
Froude number covers most available experimental data, and is also practically relevant for
the semiconductor industry, where spinning disk devices are used for the surface prepara-
tion of silicon wafers.

Fig. 4.3(a) depicts the results from the steady-state IBL model, assuming a quartic ra-
dial velocity profile (IBL quart.), obtained for a sub-range with the lower values εFr−1 ∈[
8×10−5,9.3×10−4]. The predictions for the film thickness remain very close to each

other, indicating no significant effect of the reduced inverse Froude number in this sub-
range. In Fig. 4.3(b) the results for the sub-range with the larger values of the reduced
inverse Froude number, εFr−1 ≥ 10−3, are shown. The local maximum in the film height
is evidently shifted to smaller radii with increasing values of εFr−1. Furthermore, the film
thickness is found to decrease in the region of the local minimum as εFr−1 becomes larger.

The denominator in Eq. (2.180) vanishes for a critical value

(
εFr−1)

crit
=

ka
9β1r2δ2 , (4.2)

which makes the formulation singular. Due to this singularity a radially continuous integra-
tion is not possible anymore, as can for example be seen in Fig. 4.3(b) from the unphysical
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Figure 4.3: Influence of the dimensionless parameter εFr−1. Film thickness vs. radial dis-
tance obtained from the steady-state smooth film IBL model.
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Figure 4.4: Results for a sub- and a supercritical value of εFr−1 together with asymptotic
solutions for the radially inner and outer regions obtained from the steady-state
smooth film IBL model.

solution for the supercritical value εFr−1 = 6×10−2. Nonetheless, cases with very small
rotational speeds, corresponding to large values of εFr−1, can be described reasonably
well by the asymptotic solutions on both sides of the singularity, given by Eqs. (2.185)-
(2.187) for r� 1, and by Eqs. (2.182)-(2.184) for r� 1, as exemplarily shown for the
film height for εFr−1 = 6×10−2 in Fig. 4.4.

Evaluation of profile assumptions for the velocity

The influence of the two different profile assumptions for the radial velocity component,
given by Eq. (2.133) and Eq. (2.134), on the results of the IBL approximation is examined
in detail in Fig. 4.5. As seen from Fig. 4.5(b), the quartic profile predicts a lower local
minimum of the radial mean velocity in the inner region downstream of the impingement,
where the viscous forces successively decelerate the flow. The evidently stronger effect of
the viscous forces is also indicated by bulkier quartic velocity profiles, shown at different
radial positions in Fig. 4.6(a), as compared to the quadratic profile given by Eq. (2.133).
The steeper gradients at the wall translate into higher wall shear rates (leading to higher
wall shear stresses) shown in Fig. 4.6(b).
The retarding influence of the Coriolis force is evident in Fig. 4.5(c). The azimuthal com-
ponent of the velocity lags behind the disk speed, reaching a minimum around the radial
position where the maximum film thickness can be observed. The smaller negative values
of v exhibited by the solution obtained with the quartic profile for u indicate a more pro-
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nounced retarding effect of the Coriolis force. Accordingly, the assumption of a quartic
profile produces a higher film thickness at radii r > 1 as seen from Fig. 4.5(a).
Towards the radial outer boundary of the domain, the differences between the results for the
two profile assumptions disappear. This can also be mathematically shown in the formula-
tion of the profile assumption given by Eq. (2.134). For large radii, the flow is determined
only by the balance of viscous and centrifugal forces, so that Eq. (2.175) can be rewritten
as

u=
β1

β2
rδ2 =

1
3
rδ2. (4.3)

Considering steady-state smooth flow in the radially outer region (r � 1) the pressure
gradient is zero, so that the boundary condition Eq. (2.135) yields κ= r, and Eq. (4.3) can
be rewritten as

u=
1
3
κδ2. (4.4)

Using the quartic velocity profile Eq. (2.134), the expression for the surface velocity is
given by (cf. appendix 2)

uδ =
25
16
u− κδ

2

48
. (4.5)

Substituting u= κδ2/3 into Eq. (4.5) yields

κ=
2uδ
δ2 . (4.6)

Introducing this expression for κ into the quartic velocity profile Eq. (2.134), the quartic
profile becomes identical with the quadratic velocity profile, Eq. (2.133). Physically speak-
ing, the convergence of both profile assumptions in the radially outer region indicates the
vanishing effect of inertia, as this effect can only be reflected by the quartic profile.

Boundary layer assumption (BLA) for the central impingement region

As discussed in Sec. 2.3.4 the IBL approximation with BLA, which considers the devel-
opment of boundary layers of the radial and azimuthal velocity components in the radially
inner region, basically provides a physically more accurate description of the flow, the heat
and the species mass transfer near the center.
As shown in Fig. 4.7 the predictions of the IBL model using the BLA are very close to the
predictions of the IBL model using the previously discussed developed film assumption
(DFA). The boundary layer of the radial velocity component, δr grows very fast due to the
high shear rates in the impingement region. The boundary layer of the azimuthal velocity
component, δφ, reaches the free surface at a radial position farther downstream than δr, as
the growth of δφ is counteracted by the Coriolis force.
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(a) Film thickness vs. radial distance.
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(b) Depth-averaged radial velocity vs. radial distance.
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(c) Depth-averaged azimuthal velocity vs. radial distance.

Figure 4.5: Steady-state smooth film IBL predictions for the case C1 using alternatively
the quadratic and quartic polynomials for the radial velocity component.
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Figure 4.6: Influence of the two different profile assumptions in the steady-state IBL ap-
proximation for the case C1.
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Figure 4.7: Steady-state IBL predictions for the film thickness using the developed film
assumption (DFA) and the boundary layer assumption (BLA) for the case C1.

The main benefit of the IBL model using the BLA discussed in Sec. 2.3.4 resides in its role
of providing a reliable description of the flow in the impingement region starting from the
center, r = 0, with no need for prescribing any inflow conditions at an inner radius r = ri.

4.1.2 Heat transfer

The heat transfer in the liquid film was examined in detail for a case assuming cooling
conditions with a constant wall heat flux of qw = −5500 W/m2. The other flow relevant
parameters were chosen as Q=1.0 lpm, n=500 rpm, and ν=1×10−6 m2/s, which translates
into the dimensionless parameters εFr−1 = 4.5×10−4, W = 3×10−6, and Pr = 7. This
parameter setting refers to the case C2 in table 4.1. The results of the steady-state solution
of the IBL approximation using these parameters are depicted in Figs. 4.43(a)-(b). The
radial extension of the thermal entry region, which is associated with δT < δ is roughly
rT ≈ 1, which lies within the radially inner inertia-dominated region, where the outwards
directed radial motion of the liquid is retarded by viscous and Coriolis forces, so that the
film height is increased to a local maximum. Within the thermal entry zone 0 < r < rT ,
where smooth, hence steady, film flow can be assumed the steady-state solution already
gives a physically realistic description of the flow. As such it also provides reliable inner
boundary conditions at r = rT for the unsteady solution, which is computed in the radially
outer region for r ≥ rT , where wavy flow is expected (cf. Sec. 4.2.2).
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(a) Film thickness and thickness of individual boundary layers vs. radial distance.
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Figure 4.8: IBL predictions for the case C2 assuming steady-state smooth film conditions,
Pr = 7.
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In Fig. 4.43(b) the steady-state IBL predictions for the radial variation of the depth-averaged
dimensionless temperature θ are shown. The local dimensionless temperatures at the disk
and the liquid surface are depicted as well. The liquid surface temperature remains expect-
edly at its initial value in the region of the thermal entry for r < rT ≈ 1 and δT < δ, and
starts to increase significantly downstream. For r < rT the radial variation of the wall tem-
perature clearly reflects the development of the thermal boundary layer, as θw increases
markedly faster than the depth-averaged temperature θ. Further downstream the tempera-
ture profiles tend to converge into one curve which indicates that the temperature inside
the film becomes more and more uniform.

To assess the possible effect of the assumption of zero heat flux between the liquid surface
and the ambient air, the predictions of the steady-state IBL model, using either an adiabatic
boundary condition, or a non-adiabatic condition, are compared in Fig. 4.9(a). The far-field
solution, which was obtained with the non-adiabatic upper boundary conditions using the
Nusselt number correlation Eq. (2.194) for the heat transfer coefficient and assuming a
typical ambient temperature Ta=25 ◦C, evidently remains fairly close to the predictions of
the IBL model using an adiabatic upper boundary condition.
This observation could also be confirmed by a CFD-based analysis. The numerical results
obtained from two axisymmetric CFD simulations, using either adiabatic or non-adiabatic
surface conditions, respectively, show no significant differences (Fig. 4.9(b)), although the
CFD simulations capture the effects of the surface waviness. As only minor differences are
observed in the results for the temperature variations, the assumption of an adiabatic free
surface appears to be justified.

4.1.3 Species mass transfer

As explained in section 2.4.2 the species mass transfer has to be included in the IBL so-
lution in order to model the process of wet chemical surface etching in the limit of large
Damköhler numbers. The operating liquid is assumed as a binary mixture of a primary
etchant component diluted into a chemically inert carrier component. Due to the typically
small molecular diffusivities the values of the considered Schmidt numbers are large when
compared against the considered Prandtl numbers for aqueous solutions. Thus, the radial
extension of the region, in which a concentration boundary layer has to be distinguished,
is considerably larger. This exacerbates the modeling of diffusion controlled etching pro-
cesses.

The mass transfer characteristics are examined in detail for a case which is referred to
as case C3 in table 4.1. The flow parameters of this case were chosen as Q=1.25 lpm,
n=500 rpm, and ν=2.87×10−6 m2/s, which translates into the dimensionless parameters
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Figure 4.9: Dimensionless wall temperature vs. radial distance. Effect of convective heat
transport between the liquid surface and the ambient air for the case C2
(Ta=25 ◦C) assuming cooling conditions with qw=-5500 W/m2.
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εFr−1 = 1.03×10−3, W = 9.35×10−6, and Sc= 1196.
Fig. 4.10(a) shows the film thickness together with the thickness of the individual boundary
layers, including the concentration boundary layer, δc. The concentration boundary layer
monotonously increases up to a local maximum which coincides with the local maximum
of the film thickness. In the radial inner region the radial variation of δc evidently follows
quite closely the trend of the film height, which indicates that the first term on the RHS of
Eq. (2.201) dominates over the second term representing the diffusive transport. Further
downstream the common trend disappears as the film height δ decreases, while the con-
centration boundary layer δc restarts growing. This opposite trend points at a dominance
of the second (diffusive) term on the RHS of Eq. (2.201).
As can be seen from Fig. 4.10(b) the species mass fraction at the free surface, cδ, decreases
from its initial value, radially downstream of r = rc ≈ 6, where the concentration bound-
ary layer reaches the film surface. It is interesting to note that the also depicted variation of
the depth-averaged species mass fraction decreases almost linearly with the radial distance
throughout the domain showing no sensitivity to the development of the boundary layers,
especially not to δc.

In Fig. 4.11 the radial variation of the Sherwood number is examined. Assuming a third-
order polynomial for the profile of the species mass fraction, the Sherwood number is de-
termined by the following expression for the dimensionless species mass fraction gradient
at the wall

Sh=
∂c

∂z

∣∣∣∣
z=0

=
3cδ
2δc .

(4.7)

This implies that for r < rc, where cδ = 1, the diffusive flux at the wall is proportional to
the inverse of the thickness of the concentration boundary layer, i.e.,

∂c

∂z

∣∣∣∣
z=0

∝
1
δc
. (4.8)

For r > rc, where cδ decreases, the diffusive flux at the wall is proportional to the ratio

∂c

∂z

∣∣∣∣
z=0

∝
cδ
δ
. (4.9)

so that it scales with the inverse of the film height. The first proportionality can be clearly
seen from Figs. 4.10(a) and 4.11, where the local minimum in the Sherwood number cor-
responds to the local maximum in the thickness of δc, located at a dimensionless radius of
about r≈ 0.9. The monotonic increase of δc occurring further downstream translates into a
slow radial decrease of Sh. Downstream of the radial position r = rc, where the boundary
layer thickness δc reaches the film height δ the Sherwood number exhibits a plateau-like
variation. According to Eq. (4.9) the decrease of cδ starting at r = rc is evidently compen-
sated by the decrease of the film height resulting in nearly constant Sherwood numbers.
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(b) Surface and depth-averaged species mass fraction vs. radial distance.

Figure 4.10: Steady-state IBL solutions for the case C3 including results for the solid-
liquid mass transfer in a binary mixture, Sc= 1196.
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Figure 4.11: Local Sherwood number for the case C3, Sc= 1196.

Evaluation of profile assumptions for the species mass fraction

In Figs. 4.12-4.13 the influence of the order of the polynomial ansatz function for the pro-
file of the species mass fraction is examined. The available boundary conditions allow the
coefficients of a third-order polynomial to be fully determined. If a second-order poly-
nomial is considered instead (see appendix 3 for details) the IBL model predicts a faster
growth of the concentration boundary layer, as can be seen from Fig. 4.12. The faster
growth of δc immediately follows from the larger concentration gradient of the second-
order polynomial at the wall, since

∂

∂z

[
cδ

(
2
z

δc
− z

2

δ2
c

)]

z=0
>

∂

∂z

[
cδ

(
3
2
z

δc
− 1

2
z3

δ3
c

)]

z=0
. (4.10)

The larger gradient results in faster decrease of the bulk concentration, and thus a faster
growth of δc. Furthermore, the use of a second-order polynomial conflicts with the zero-
curvature condition at the wall, Eq. (2.88), as the second derivative reads

∂2

∂z2

[
cδ

(
2
z

δc
− z

2

δ2
c

)]
=−2

cδ
δ2
c
. (4.11)

The shortcomings of the second-order polynomial in the near wall region are therefore
greatest in the radially inner region, where the thickness of the concentration boundary
layer is smallest. Radially further downstream the error introduced by the quadratic ap-
proximation for the c-profile will decrease as the surface species mass fraction approaches
zero, cδ → 0. The faster increase of the thickness of the concentration boundary layer is
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Figure 4.12: Evaluation of second-order (dashed-dotted) and third-order (solid line) c-
profile assumptions for the case C3. Film thickness and thickness of indi-
vidual boundary layers.

associated with an upstream shift of the radial position of rc. This effectively leads to a
faster decrease of the depth-averaged mean species mass fraction c in the film, as shown
in Fig. 4.13. In this figure the results from the analytical far-field solutions for the species
mass fraction, which were discussed in Sec. 2.2.2, are depicted as well. These analytical
solutions, which are assumed to be valid for large radii, r� 1, were obtained by consid-
ering alternatively the semi-parabolic radial velocity profile given by Eq. (2.93) (Rahman
and Faghri [89]), which represents an exact asymptotic solution in the limit of large radii,
or alternatively, by assuming a linear approximation for the u-profile, which implies a very
thin concentration boundary layer.
Fig. 4.13 makes evident, that the IBL predictions for the depth-averaged mean species mass
fraction using the third-order polynomial for the c-profile are in very good agreement with
the analytical far-field solution provided by Rahman and Faghri [89] in the radially outer
region. The IBL prediction using the second-order polynomial for the profile of the species
mass fraction lies significantly below this far-field solution, due to the faster growth of the
concentration boundary layer, which finally leads to a faster decrease of the bulk concen-
tration as noted above.
The analytical solution obtained assuming a very thin concentration boundary layer and
approximating the radial velocity profile by a linear function deviates most significantly
from all other solutions.

Fig. 4.14 shows a comparison between the the species mass fraction profiles using either
the second- or the third-order polynomial ansatz functions for several radial positions in-
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Figure 4.13: Depth-averaged mean species mass fraction vs. radial distance. Steady-state
IBL predictions and analytical far-field solutions (Rahman and Faghri [89])
for the case C3, Sc= 1196.

side the liquid film. The analytical far-field solutions are depicted as well. As can be seen
from Figs. 4.14(a)-(b), there is a good agreement between the IBL solutions and the exact
analytical solution using the quadratic u-profile (Rahman and Faghri [89]), especially in
the near wall region. The IBL predictions for the height of the concentration boundary
layer using the third-order polynomial are in very good agreement with the exact far-field
solution, while the IBL results using a second-order polynomial predict a faster increase of
the concentration boundary layer. At larger radii, where δc = δ, (see Figs. 4.14(c)-(d)), the
second-order polynomial predicts significantly lower values for the surface species mass
fraction cδ than the IBL model using the third-order polynomial and the analytical far-
field solution, which show good agreement. This behavior is due to the fast growth of the
concentration boundary layer and the resulting more rapid decrease of the species mass
fraction at the free surface when using the second-order polynomial ansatz function.

Significant deviations from the other solutions are observed in the analytical far-field re-
sults using a linear approximation for the radial velocity profile. This analytical solution
exhibits generally lower wall gradients, and a markedly higher thickness of the concentra-
tion boundary layer at r = 4. The assumption of a linear velocity profile inside the liquid
film is evidently inadequate at larger radii, where the analytical far-field solution yields
the semi-parabola (2.93), and the radially continuously increasing concentration boundary
layer is not significantly thinner than the film thickness.
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Figure 4.14: Profile assumptions for species mass fraction for the case C3. IBL predictions
using the second and third-order polynomial ansatz functions vs. analytical
far-field solutions (Rahman and Faghri [89]).
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Figure 4.15: Steady-state IBL results for film thickness, thickness of individual boundary
layers and depth-averaged species mass fraction for varying Schmidt num-
bers.
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4.1 Steady-state solutions

In summary, it can be stated that the predictions of the IBL approximation assuming a
third-order polynomial profile for the species mass fraction are generally in very good
agreement with the analytical results, which are obtained by integrating the asymptotic
species mass transport equation in the far-field for large radii assuming a semi-parabolic
velocity profile.

Effect of the Schmidt number

In Figs. 4.15(a)-(d) the effect of an increase of the Schmidt number on the thickness of
the concentration boundary layer δc and the depth-averaged mean species mass fraction c
is examined. The setting of the hydrodynamical parameters follows again case C3 in table
4.1 For the lowest Schmidt number, Sc = 250, the radial extension of the entry length
0< r < rc is smallest as expected. The concentration boundary layer increases rapidly and
reaches the free surface already at rc≈ 3.3. The depth-averaged mean species mass fraction
decreases fastest with increasing radii and approaches zero in the radially outer region. An
increase of the Schmidt number results in a shift of rc radially further downstream, as
can be seen from Figs. 4.15(b)-(d). Consistently the radial decrease of the depth-averaged
mean species mass fraction becomes slower the larger the Schmidt number.
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4 Results and discussion

4.2 Effect of wavy flow

In this section the effects of wavy flow conditions on the dynamics and the heat and species
mass transfer characteristics are analyzed in detail, considering again the three cases which
were discussed in the analysis of the steady-state smooth film solutions (cf. Tab. 4.1).
To validate the predictions of the unsteady IBL model comparisons against results from
numerical CFD simulations are shown as well.

4.2.1 Hydrodynamics

In Fig. 4.16 the predictions of the unsteady IBL model for the instantaneous radial vari-
ations of the film thickness for the case C1, are depicted together with result from an
axisymmetric CFD simulation. In the radially inner region both computational results ex-
hibit a smooth film and are in very good agreement. Radially further downstream small dis-
turbances are amplified and the generated sequence of small waves with nearly sinusoidal-
shape merges into large amplitude waves with steep fronts, preceded by capillary ripples.
Good agreement is found for the radial position of wave inception and their evolution radi-
ally downstream. The integral method evidently reproduces waves with similar amplitudes
and wave lengths as obtained in the axisymmetric CFD simulation. It is interesting to note
that at larger radii the radial extension of the thin film regions, which separate the large
amplitude waves, increases.
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Figure 4.16: Instantaneous profiles of the film thickness for the case C1.
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4.2 Effect of wavy flow

Fig. 4.17 shows the time-averaged profiles of the film thickness predicted by the unsteady
IBL model together with the time-averaged profiles obtained from the axisymmetric CFD
simulation. The asymptotic far-field solution in the limit of large radii, δ = r−2/3, is de-
picted as well. In the radial inner region, which is associated with small Ekman numbers,
both results exhibit smooth non-wavy film surfaces, so that the shown time-averages do
not differ from the instantaneous solution presented in Fig. 4.16. In the wavy region further
downstream a very good agreement is seen only between the predictions of the unsteady
IBL model and the predictions of the CFD simulation. In this outer radial region the predic-
tion of the asymptotic far-field solution, which basically represents the steady-state smooth
film IBL solution for large radii, lies well above the time-averaged film height of the un-
steady wavy film results. This decrease of the average film thickness associated with wavy
flow, which is very well reproduced by the unsteady IBL model, exerts a significant effect
on the heat and mass transfer as well, as will be discussed in Sec. 4.2.2 and Sec. 4.2.3,
respectively. It is therefore of central importance to capture this salient flow feature when
modeling the etching process.
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Figure 4.17: Time-averaged radial variation of the film thickness for the case C1.

As seen from Fig. 4.18, the time-averaged wall shear rates of the numerical results and the
predictions of the IBL model are also in very good agreement. As a salient feature, the
radial wall shear rates of the wavy film lie always well below the prediction of the steady-
state smooth-film solution in the radially outer region, where waviness appears. The largest
difference between the predictions of the unsteady IBL model, using either a quartic or a
quadratic profile for the radial component of the velocity, is again observed in the inertia
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4 Results and discussion

dominated radially inner region (r ≤ 2), where, as to be expected, the quartic approxima-
tion gives a slightly better estimate for the local wall shear rates when compared against
the CFD results. Radially further downstream due to the vanishing effect of the inertial
forces no significant discrepancies can be observed in the time-averaged predictions of the
IBL model using either profile assumptions for the radial component of the velocity.
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Figure 4.18: Time-averaged wall shear rates for the case C1.

To examine the profile assumptions, which were required for the depth-averaging in the
framework of the IBL model, a comparison with the instantaneous profiles obtained from
the CFD simulation was carried out. Figs. 4.19 and 4.20 show a comparison between the
assumed profile functions and the instantaneous velocity profiles obtained from the CFD
analysis at several radial positions inside a single wave. While the assumed profiles agree
very well with the instantaneous profiles obtained from the CFD simulation at position 1
(Fig. 4.19(b)), some deviations from the CFD results are observed upstream of the wave
crests, at positions 2 and 3 (Figs. 4.19(c)-(d)). At position 2, the quartic profile assumption
comes closer to the CFD prediction, giving a better approximation for the radial component
of the surface velocity. Still, both profile assumptions slightly overpredict the magnitude of
the numerically obtained result for the surface velocity of the radial velocity component.
An opposite tendency can be observed at position 3, where both profile assumptions of
the IBL model practically coincide. At this position the profile obtained from the CFD
simulation indicates a faster moving layer at the top of the film. At positions 4-6, the
analytically assumed profiles again match the instantaneous velocity profiles obtained with
the CFD simulation very well, as shown in Fig. 4.20.
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Figure 4.19: Instantaneous profiles of the radial velocity component at different radial po-
sitions inside a single wave for the case C1.
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Figure 4.20: Instantaneous profiles of the radial velocity component at different radial po-
sitions inside a single wave for the case C1.
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4.2 Effect of wavy flow

Very importantly, it has to be noted that no significant deviation of the velocity profiles in
the near wall region was observed. This can be considered as a promising aspect, when
extending the IBL approximation to include heat and species mass transfer between the
liquid and the disk‘s surface.
Concerning the assumption for the profile of the radial velocity it is further noted that the
quartic profile (IBL quart.) was used in all IBL results presented in the following, unless it
is specifically indicated as quadratic (IBL quad.).

The reduction of the time averaged film height observed in the wavy region can be ex-
plained by taking a closer look at the evolution of the instantaneous flow quantities.

In Fig. 4.21(a) the predictions of the unsteady IBL model for the film thickness are depicted
together with the instantaneous depth-averaged radial velocity u. The shown signals are
evidently well in phase, so that the spatial maxima in δ and u coincide. From Fig. 4.21(b)
it can be observed that the azimuthal component of the velocity significantly lags behind
the disk speed beneath the wave peaks, while it differs only slightly from the speed of the
solid body rotation in the wave troughs. This indicates the retarding effect of the azimuthal
component of the velocity on the flow caused by the Coriolis force, which has already
been pointed out by Matar et al. [79, 90]. Due to this effect waves are propagated at lower
speeds in rotating films than in corresponding falling films.

In Fig. 4.22 the instantaneous profiles of the film thickness, the radial component of the
velocity at the free surface, and the local wall shear rates are examined in detail. From the
numerical results of the axisymmetric CFD based solution of the Navier-Stokes equations,
depicted in Fig. 4.22(a), it is obvious that the variations of the surface velocity are in phase
with to the film thickness, and the values become obviously largest at the wave peaks and
smallest in the wave troughs. Exactly the same behavior is observed in the predictions of
the IBL model, which are shown in a close-up view in Fig. 4.22(b).
The radial position of the maximum in the local wall shear rate predicted by the CFD
simulation is observed in the strongly ascending part on the tail side of the waves, while
the minima are reached in the wave troughs. In the results of the IBL model local min-
ima and maxima in the wall shear rates appear at the same positions relative to the wave.
Adomeit and Renz [111] experimentally observed the same positions for the extrema of
the local wall shear rate relative to the waves in the case of falling liquid films. They ana-
lyzed the instantaneous, laminar falling film flow for a large range of Reynolds numbers. In
their experimental study the maxima in the instantaneous flow rate always coincided with
wave crests. Moreover the radial velocity profile was found to be approximately parabolic
throughout the wavy domain. As such these experimental observations for falling films are
well in line with the computational results of the IBL model and the CFD results for the
instantaneous flow on the spinning disk obtained in the present study.
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Figure 4.21: Instantaneous profiles of the film thickness and the depth-averaged radial and
azimuthal velocity components obtained by the unsteady IBL model for the
case C1.
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Figure 4.22: Instantaneous profiles of the film thickness, the radial surface velocity and the
local wall shear rate for the case C1.
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Figure 4.23: IBL predictions for the case C2. Temporal evolution of film thickness and
radial velocity at r= 3. Dashed horizontal lines: time-averaged predictions of
unsteady IBL model. Dotted horizontal lines: steady-state smooth film IBL
predictions.

A closer look at the evolution of the instantaneous flow quantities in time is shown in
Fig. 4.23 for the case C2. This particular case will also be considered in the next sec-
tion, where the effect of the wavy flow on the heat transfer is examined. In Fig. 4.23 the
evolution of the instantaneous film thickness is plotted together with the evolutions of the
instantaneous depth-averaged radial velocity u, at a fixed radial position r = 3. The cor-
responding time-averaged mean values of the unsteady and the steady-state smooth film
solutions are indicated by the horizontal dashed and dotted lines, respectively. The shown
time signals make evident again that the depth-averaged radial velocity is in phase with the
film height. It can be inferred from the coincidence of the maxima/minima in δ and u that
a considerable part of the liquid volume passes the disk in shape of fast moving solitary
waves. The comparatively longer periods associated with a very thin film coverage occur-
ring between the passage of the large waves effectively lead to smaller time-averaged film
heights.

The present findings based on the temporal evolution of the relevant dynamic quantities
predicted by the unsteady IBL model are again supported by numerical results obtained
from a CFD simulation. As seen from Fig. 4.24, the different time signals from the CFD
analysis feature the same wave pattern as it was obtained from the unsteady IBL solution.
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Figure 4.24: CFD results for the case C2. Temporal evolution of film thickness and depth-
averaged radial velocity at r= 3. Dashed horizontal lines: time-averaged pre-
dictions of unsteady IBL model. Dotted horizontal lines: steady-state smooth
film IBL predictions.

Summing up, it can be stated that the present unsteady IBL model is capable to capture the
essential instantaneous hydrodynamic features of the thin film flow at a high descriptive
level.

4.2.2 Heat transfer

Fig. 4.25(a) shows the time-averaged profiles of the film thickness for the case C2 as
obtained from the IBL model using the steady-state and the unsteady formulation, as well
as the results of the axisymmetric CFD simulation. In the radial inner region for r / 2,
which is associated with small Ekman numbers Ek / 3, both the steady and the unsteady
IBL solutions exhibit smooth non-wavy film surfaces. This behavior is also shown by the
CFD results. In the wavy region further downstream for r > 2 and larger values of the
local Ekman number the steady IBL model essentially produces the variation of the film
thickness in the asymptotic limit of large radii, δ = r−2/3, which again evidently lies well
above the time-averaged film height of the unsteady wavy film results. This decrease of
the time-average film thickness associated with wavy flow is again very well reproduced
by the unsteady IBL model.
The radial variations of the dimensionless wall temperature predicted by the unsteady IBL
model and the axisymmetric CFD simulation clearly reflect the effect of waviness as well,
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as it is seen from Fig. 4.25(b). Both the predictions of the unsteady IBL model and the
CFD show in good agreement an enhanced radial increase of 〈θw〉 in the wavy region (r >
2.5). In contrast, the smooth film solution of the steady IBL model predicts a considerably
slower radial increase of 〈θw〉 resulting in markedly lower values for the dimensionless
wall temperature in the outer radial region, associated with local Ekman numbers Ek ' 3
and surface waves.
According to the definition (2.53) a higher dimensionless wall temperature corresponds to
a lower wall temperature Tw, when cooling conditions, prescribed in terms of a negative
wall heat flux qw, are assumed. Thus, the unsteady IBL solution, which captures the for-
mation and propagation of the surface waves, evidently produces on average lower wall
temperatures as compared to the steady-state smooth film results. Analogously, in the case
of a heated film, associated with a positive wall heat flux (qw > 0) in the definition (2.53),
the wall temperature in the wavy film solution would be higher.

The increase of the time-averaged dimensionless wall temperature θw, observed in the
wavy region can again be explained by taking a closer look at the evolution of the instan-
taneous flow and thermal quantities in time.
Fig. 4.26(a) shows the evolution of the instantaneous film thickness plotted together with
the evolutions of the instantaneous depth-averaged radial velocity u and the depth-averaged
dimensionless temperature θ, at a fixed radial position r = 3. The corresponding time-
averaged mean values of the unsteady and the steady-state smooth film solutions are indi-
cated by the horizontal dashed and dotted lines, respectively. The temporal maxima/minima
in δ and u are found again to coincide. Furthermore, the time signals of the shown dimen-
sionless temperatures are all in phase with the film height and the velocity as well, but here
the minima in the θ-values coincide with the maxima in δ, or u, and vice versa. Assuming
heated film flow conditions (qw > 0), this implies that during the periods with small film
heights and slow radial motion the temperature of the thin liquid layer is increased very
fast by the heating from below. The temperature inside the liquid also becomes more uni-
form as seen from the converging tendency of the individual θ-signals (Fig. 4.26(a)). The
comparatively long periods associated with higher temperature levels of the liquid finally
explains the increased temporal averages of the non-dimensional wall temperature θw ob-
tained for the unsteady IBL solution in the wavy region.

The present findings based on the temporal evolution of the relevant dynamic and thermal
quantities are also supported by numerical results obtained from a CFD simulation. As
seen from Fig. 4.26(b), the different time signals show the same behavior, as it was seen in
the results of the unsteady IBL solution.

An assessment of the instantaneous velocity and temperature profiles at several time in-
stants inside a single wave is shown in Figs. 4.27-4.28. The velocity profiles are normal-
ized with the corresponding absolute value of the surface velocity, so that the signs of the

114



4.2 Effect of wavy flow

 

 

2D CFD

IBL steady

IBL unsteady
〈δ
〉

r
1.5 2.5 3.5 4.5
0

0.2

0.4

0.6

0.8

1

(a)

 

 

2D CFD

IBL steady

IBL unsteady

〈θ
w
〉

r
1.5 2.5 3.5 4.5
0

2

4

6

(b)

Figure 4.25: Time-averaged IBL predictions and 2D CFD results for the case C2, (a) film
thickness vs. radial distance, (b) wall temperature vs. radial distance.
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Figure 4.26: Temporal evolution of film thickness, depth-averaged radial velocity, and
depth-averaged temperature at r= 3 for the case C2. Dashed horizontal lines:
time-averaged predictions of unsteady IBL model. Dotted horizontal lines:
steady-state smooth film IBL predictions.
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4.2 Effect of wavy flow

normalized velocities indicate the orientation of the motion at the surface relative to the
rotating disk. One should also bear in mind that in the wavy region the maximum values
of the relative azimuthal and wall normal velocity components are at least one order of
magnitude smaller than the radial surface velocities. The dashed curves always refer to the
profiles of the IBL model, where the radial and the azimuthal velocity components are de-
termined by the assumed quartic polynomials, Eqs. (2.134) and (2.136), respectively, and
the vertical wall normal velocity is computed from Eq. (2.142).
At the instants of time associated with the passage of a wave trough, Figs. 4.27(b)-(c), a
fairly good agreement between the assumed velocity profiles and the instantaneous pro-
files obtained from the CFD simulation is found. Moreover, also the assumed third-order
polynomial for the temperature reproduces very well the temperature distribution obtained
from the CFD results. Between time instant 2 and 3 the sign of the vertical surface velocity
switches from negative to positive. Within this short interval of time (see e.g. Fig. 4.27(d))
a steep wave front passes by, and all profiles associated with the IBL model significantly
deviate from the corresponding CFD results. Here the CFD results suggest a two-layered
flow with a fast moving surface layer and a slowly moving bottom layer. These short pe-
riods associated with the passage of steep wave fronts make the limitations of the current
IBL model, or rather its profile assumptions, evident. Aside from these discrepancies, as
can be observed from Fig. 4.28, a very good agreement between the IBL profiles and the
instantaneous profiles obtained from the CFD simulation is found again at instants 4-6.
These instants of time refer to the passage of the descending tail side parts of the waves.

Dynamically speaking, the observed wave propagation is driven by the centrifugal force,
which pushes the liquid towards the front faces of the waves crests. In effect, as indicated
by the sign of the vertical component of the surface velocity, the liquid motion is directed
upwards when the steep front faces of the waves are passing, while it is directed down-
wards otherwise. Thus, the action of the centrifugal force effectively steepens the waves
resulting in the formation of large solitary waves, which are separated by relatively large
thin film regions. The wave crests are moving relatively faster than the liquid in the bottom
layer as indicated by the S-shaped profile seen in Fig. 4.27(d).

Since the deviations of the profiles used for the IBL model from the corresponding CFD
results occur only during comparatively short periods of time, the predictions of the present
unsteady IBL model still provide a very reliable description of the wavy film flow includ-
ing heat transfer. Nonetheless, the assumed profile functions required by the IBL approach
still represent an important limitation of this model when considering wavy flow.
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Figure 4.27: Instantaneous profiles of the radial (red), azimuthal (blue) and vertical (green)
velocity components together with the dimensionless temperature profiles
(black) at selected instants of time inside a single wave at r= 2.8. The dashed
lines refer to IBL predictions, the solid lines to CFD results.
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Figure 4.28: Instantaneous profiles of the radial (red), azimuthal (blue) and vertical (green)
velocity components together with the dimensionless temperature profiles
(black) at selected instants of time inside a single wave at r= 2.8. The dashed
lines refer to IBL predictions, the solid lines to CFD results.
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4.2.3 Species mass transfer

To assess the predictive capability of the unsteady IBL model for species mass transfer in
wavy films the case referred to as C3 in table 4.1 was considered. Fig. 4.29(a) shows the
IBL predictions for the instantaneous film thickness and the thickness of the concentration
boundary layer, together with the corresponding time-averaged results denoted by the red
lines. The corresponding results for the film thickness and the height of the concentration
boundary layer of a CFD simulation, which was carried out as well to validate the results
of the unsteady IBL solution, are shown in Fig. 4.29(b). In the radially inner region, the
CFD results as well as the predictions of the IBL model exhibit a smooth film. The time-
averaged film thickness and the thickness of the concentration boundary layer remain close
to the steady-state solution in the region associated with r / 2, and both computational re-
sults agree well with each other. Radially further downstream the formation of nonlinear
waves on the film surface leads to strong variations of the thickness of the concentra-
tion boundary layer in the predictions of the IBL model. With growing amplitudes of the
surface waves the local maxima in the thickness of the concentration boundary layer in-
crease as well. As a consequence, a fast radial increase of the time-averaged concentration
boundary layer is observed in the region 2.5 / r / 3. In contrast, the time-averaged con-
centration boundary layer thickness increases notably more slowly in the CFD results in
this interval. Radially further downstream the time-averaged thickness of the concentration
boundary layer predicted by the IBL model follows closely the trend of the time-averaged
film height.

Fig. 4.30 shows the time-averaged results for the radial variation of the film thickness,
the surface species mass fraction, and the Sherwood number. While for the time-averaged
film thickness again very good agreement between the predictions of the unsteady IBL
model and the CFD results is found, the time-averaged results for the species transport
differ significantly. The IBL model predicts a much faster decrease of the species mass
fraction at the surface from its initial value in the radially outer region. Moreover, the pre-
dictions of the unsteady IBL model show a very fast radial decrease of the time-averaged
non-dimensional concentration gradient at the wall represented by the Sherwood number
in comparison to the steady-state smooth film solution. This behavior results from the sud-
den increase of the thickness of the concentration boundary layer as can be immediately
seen from Eq. (4.7). In contrast to the unsteady IBL predictions the time-averaged local
Sherwood number of the CFD solution remains almost constant in this region. In the outer
radial region they even come very close to the results of the steady-state smooth film IBL
model.

The inability of the present unsteady IBL model to capture correctly the effect of waviness
on the species transport can be explained by taking a closer look at the evolution of the in-
stantaneous flow quantities and the assumed profile functions for the velocity components
and the species mass fraction in time.
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Figure 4.29: Instantaneous film and concentration boundary layer thickness (black lines)
together with the corresponding time-averages (red lines) for the case C3.
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Figure 4.30: Time-averaged results for the film thickness, the surface species mass frac-
tion, and the Sherwood number for the case C3.
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Figs. 4.31(a)-(b) show the evolution of the instantaneous film thickness at the radial posi-
tion r = 2.11 as obtained from the CFD simulation and the IBL model, respectively. This
radial position is associated with small amplitude waves, whose evolution is shown here for
two typical representatives taken from the CFD and IBL results, respectively. The predic-
tions of the IBL model and the CFD simulation for the species transport agree very well, as
seen from Figs. 4.31(e) and 4.31(f), where the temporal evolution of the Sherwood number
is depicted. Figs. 4.31(c) and 4.31(d) show the temporal evolution of the components of the
surface velocity. While the IBL predictions for the radial and azimuthal surface velocities
agree very well with the CFD results, the IBL predictions for the vertical component of the
velocity significantly exceed the CFD results in the interval between the instants 1 and 3,
or correspondingly, i and iii, associated with the passage of the wave front. In Figs. 4.32-
4.33 the instantaneous velocity and species mass fraction profiles at the selected instants
of time marked by dashed lines in Figs. 4.31(a)-(f) are depicted. In the left columns (i.e. in
Figs. 4.32(a),(c) and Figs. 4.33(a),(c)) the CFD results are compared against the polyno-
mial profile functions for the individual velocity components and the species mass fraction,
which were obtained using the local instantaneous CFD results for δ, δc and cδ as input into
the formulation of the polynomials. For the shown instantaneous conditions the shapes of
the polynomial profiles reproduce very well the simulated counterparts obtained in the
CFD. The profiles taken from the unsteady IBL solutions at corresponding instantaneous
flow conditions at instants i-iv, which are shown in Figs. 4.32(b) and (d), and Figs. 4.33(b)
and (d), respectively, are in good agreement with the CFD results, as well.

Next, the temporal evolutions of the instantaneous flow quantities and the profiles of the
velocity components and the species mass fraction are examined at the radial position
r= 2.82, which is associated with large amplitude waves, considering again two compara-
ble representative conditions taken from the CFD and the IBL solutions, respectively. As
can be seen from Figs. 4.34(a)-(d) a good agreement between the CFD results and the IBL
predictions for the film thickness and the radial and azimuthal components of the surface
velocities is found again. During the passage of the steep wave front occurring closely
before instant 2 and, correspondingly, instant ii, the IBL model predicts again a signifi-
cantly higher magnitude of the vertical component of the surface velocity in comparison
to the CFD results. Unlike in the IBL results obtained radially upstream at r = 2.11 shown
in Fig. 4.31(f) the rapid strong increase of the vertical surface velocity is reflected by a
significant temporal variation of the local Sherwood number, as seen from Fig. 4.34(f). In
contrast, the CFD simulation predicts a notably higher Sherwood number, which remains
almost constant showing no sensitivity to the variations of the vertical velocity component,
as seen from Fig. 4.34(e).

Figs. 4.35 and 4.36 show the instantaneous profiles of the radial, azimuthal, and verti-
cal velocity components, as well as the species mass fraction profiles obtained from the

123



4 Results and discussion

31 2 4

δ

t

0 0.1 0.2 0.3 0.4
0

0.5

1

(a) 2D CFD: film height at r = 2.11.

ivi iiiii

δ

t
0 0.2 0.4

0

0.5

1

(b) IBL model: film height at r = 2.11.

 

 

wδ

vδ

uδ

su
rf
ac
e
ve
lo
ci
ty

t
0 0.1 0.2 0.3 0.4

−1

0

1

2

(c) 2D CFD: surface velocity

 

 

wδ

vδ

uδ

su
rf
ac
e
ve
lo
ci
ty

t

0 0.2 0.4
−1

0

1

2

(d) IBL model: surface velocity

 

 

S
h

t
0 0.1 0.2 0.3 0.4

5

6

7

8

(e) 2D CFD: Sherwood number

 

 

S
h

t
0 0.2 0.4

5

6

7

8

(f) IBL model: Sherwood number

Figure 4.31: Evolution of the film height, the surface velocity, and the Sherwood number
at r = 2.11. Vertical dashed lines indicate selected instants of time.
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Figure 4.32: Instantaneous profiles of the radial, azimuthal, and vertical velocity compo-
nents together with the species mass fraction profile at selected instants of
time inside a single wave at r= 2.11 for the case C3. The dashed-dotted lines
refer to the results of the unsteady IBL model, the solid lines to the simu-
lated profiles of the CFD, and the dashed lines refer to the polynomial profile
functions evaluated with the CFD results as input.
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Figure 4.33: Instantaneous profiles of the radial, azimuthal, and vertical velocity compo-
nents together with the species mass fraction profile at selected instants of
time inside a single wave at r= 2.11 for the case C3. The dashed-dotted lines
refer to the results of the unsteady IBL model, the solid lines to the simu-
lated profiles of the CFD, and the dashed lines refer to the polynomial profile
functions evaluated with the CFD results as input.
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CFD and the IBL solution at four selected instants of time within the interval shown in
Fig. 4.34. While a fairly good agreement between the CFD results and the polynomial
profile assumptions is generally found for the radial and azimuthal velocity components,
large deviations are observed for the vertical component of the velocity, especially at the
instant 2 associated with the passage of the peak of the wave. At the instants of time 3 and
4, and correspondingly, iii and iv, i.e., after the passage of the wave peak, a fairly good
agreement with the CFD results is observed again for all components. This observation
applies to the polynomial functions using the CFD solution as input, as well as those taken
from the unsteady IBL solution.
Marked deviations in the w-profiles do not only appear during the passage of the wave
peaks. They were also observed, less pronounced, after the passage of the large solitary
waves, as seen from Fig. 4.37 showing conditions obtained further downstream at r= 4.23.
As for the mass transfer, the simulated profiles for the species mass concentration exhibit
always a higher wall gradient than the polynomial functions. This explains the higher level
of the local Sherwood number predicted by the CFD seen from Figs. 4.34(e)-(f), which is
also reflected by the radial variations of the time-averaged Sherwood number in the outer
wavy region shown in Fig. 4.30(c).

The detailed discussion of the velocity profiles above suggests that the observed deficits
of the unsteady IBL model in the description of the species mass transfer can be mainly
attributed to some inherent limitations of the assumed profile functions required by the
depth-averaging. These limitations become most evident in the discrepancies observed
for the w-profiles, which are implicitly determined by the polynomials assumed for the
radial and azimuthal velocities. According to the definition of the profiles for u, v, c, and
implicitly, for w, they essentially scale with the thickness of the film δ, so that a strong
temporal variation of the height of the liquid surface in the wavy region practically rescales
the whole profiles down to the wall while leaving the prescribed shape of the polynomials
unchanged. As a consequence, the onset of surface waviness always leads to a very fast
increase of the thickness of the concentration boundary layer, which in turn leads to a
marked radial decrease of the time-averaged Sherwood number due to Sh ∝ 1/δc, as seen
from Fig. 4.30(c). This inherent feature is especially problematic for the here considered
high Schmidt number, Sc = 1196. High Schmidt numbers imply very thin concentration
boundary layers, which are expected to be less sensitive to the unsteady motion of the
liquid in the wavy surface layer, than it is inherently imposed by the polynomial profile
functions.

The present reasoning is also supported by a simple test assuming quasi-steady “frozen
waves“ by neglecting the transient term in the kinematic boundary condition, Eq. (2.77),
such that

wδ = uδ
∂δ

∂r
. (4.12)

Using this quasi-steady formulation in the depth-averaged mass transport equation (2.163)
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Figure 4.34: Evolution of the film height, the surface velocity, and the Sherwood number
at r = 2.82. Vertical dashed lines indicate selected instants of time.
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Figure 4.35: Instantaneous profiles of the radial, azimuthal, and vertical velocity compo-
nents together with the species mass fraction profile at selected instants of
time inside a single wave at r= 2.82 for the case C3. The dashed-dotted lines
refer to the results of the unsteady IBL model, the solid lines to the simu-
lated profiles of the CFD, and the dashed lines refer to the polynomial profile
functions evaluated with the CFD results as input.
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Figure 4.36: Instantaneous profiles of the radial, azimuthal, and vertical velocity compo-
nents together with the species mass fraction profile at selected instants of
time inside a single wave at r= 2.82 for the case C3. The dashed-dotted lines
refer to the results of the unsteady IBL model, the solid lines to the simu-
lated profiles of the CFD, and the dashed lines refer to the polynomial profile
functions evaluated with the CFD results as input.
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Figure 4.37: (a)-(b): Evolution of film height at r= 4.23. The vertical dashed line indicates
the selected instant of time.
(c)-(d): Instantaneous profiles of the radial, azimuthal, and vertical velocity
components together with the species mass fraction profile at the selected
instant of time inside a single wave at r = 4.23 for the case C3. The dashed-
dotted lines refer to the results of the unsteady IBL model, the solid lines to
the simulated profiles of the CFD, and the dashed lines refer to the polynomial
profile functions evaluated with the CFD results as input.
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Figure 4.38: Results of unsteady IBL model using a quasi-steady kinematic boundary con-
dition for the species mass transport.

132



4.2 Effect of wavy flow

practically decouples the solution for the species mass transfer from the local temporal
change of the film thickness represented by the transient term ∂δ/∂t.
A comparison of Fig. 4.38(a) against Fig. 4.29(a) makes evident that using the quasi-
steady kinematic boundary condition leads to a much slower increase of the thickness of
the concentration boundary layer downstream of r = 2.5. The resulting radial variation
of the time-averaged Sherwood number shown in Fig. 4.38(b) remains in the outer wavy
region on even a higher level than the CFD solution.
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4.3 Validation against experiments

In addition to the comparison against numerical results from CFD simulations, which was
presented in the previous section, the predictive capability of the present unsteady IBL
model is also assessed by a comparison against available experimental data. The validation
distinguishes between two different regimes based on the maximum values of the Ekman
number which are reached at the outer radius of the disk.

4.3.1 Small Ekman numbers

Small values of the maximum Ekman number (Ekmax / 3) imply that the whole flow
domain basically belongs to the inner radial region, which is essentially governed by a bal-
ance of the inertial and the retarding Coriolis and viscous forces. The accelerating centrifu-
gal forces are too small to destabilize the flow, generating a wavy surface. The considered
cases for this regime are listed in Tab. 4.2.

Case E1 E2 E3
(a) (b) (a) (b)

Exp. reference Thomas et al. [60] Ozar et al. [80] Kaneko et al. [68]
Q [lpm] 7 3 0.7
n [rpm] 200 100 200 100 200
ν ×106 [m2/s] 1 0.66 2.87
Ekmax 2.2 2.6 3.3 2.8 3.6
εFr−1 ×104 4 24.6 6.16 482 120
W ×106 0.24 2 0.7 364 129
Pr 4.36
Sc 1196

Table 4.2: Considered cases with small Ekman numbers.

Hydrodynamics

The first considered case was experimentally investigated by Thomas et al. [60], who ap-
plied a capacitance technique to measure the local mean film thickness. The experimental
conditions of this case correspond to dimensionless parameters εFr−1 = 4.0× 10−4 and
W = 2.4× 10−8. This case is associated with a fairly small maximum Ekman number
(Ekmax = 2.2) evaluated at the outer edge of the disk. Fig. 4.39 shows a comparison of the
predicted film thickness against the experimental data. The shown instantaneous results of
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Figure 4.39: Radial variation of the film thickness predicted by unsteady IBL model. Case
E1, experimental data from Thomas et al. [60].

the unsteady IBL model were obtained using alternatively quadratic and quartic polynomi-
als for the radial velocity component, Eq. (2.133) and Eq. (2.134), respectively, to examine
the effect of the profile assumption.

Dealing with a low Ekman number regime the unsteady IBL model produces expectedly
a non-wavy surface, which basically represents the steady-state smooth film solution, and
is evidently in close agreement with the experimental data. Assuming a quartic radial ve-
locity profile (IBL quart.) produces a slightly higher film thickness, which translates into a
better prediction for the radial position of the local maximum in the film thickness.
Apart from this test case all IBL results presented in the following were obtained using the
quartic profile assumption.

Heat transfer

The case E2 in table 4.2 was considered to evaluate the predictive capability of the present
IBL model for film flow with heat transfer. For this particular case experimental as well
as numerical results for the radial variation of the Nusselt number are available from Ozar
et al. [80] and Rice et al. [66], respectively. Ozar et al. [80] experimentally measured the
local Nusselt number for a film of water on a rotating disk uniformly heated from below at
constant power ofH=4500 W. The water was supplied at a constant volumetric flowrate of
Q=3 lpm through an annular gap with a certain height at the center of the disk. The inflow
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temperature of the water was Ti=40 ◦C. Accordingly, the fluid properties used for the IBL
computation were set to ν=0.658×10−6 m2/s, λ=0.629 W/(mK) and cp=4179 J/(kgK).
Given the uniformly heated area in the experiments the constant heat flux imposed at the
wall is simply obtained as

qw =
H

π(r̃2
D− r̃2

i )
. (4.13)

As suggested by Ozar et al. [80], the constant wall heat flux is also used in the definition
of the local Nusselt number written as

Nu=
qwr̃i

λ(Tw−Ti)
. (4.14)

According to this definition, the Nusselt number varies only dependent of the local wall
temperature Tw. The comparison against the IBL predictions considers the experimen-
tal and computational results obtained for two different rotation speeds, n=100 rpm and
n=200 rpm. Based on the aforementioned flow rate and material properties the dimension-
less parameters read εFr−1 = 24.6×10−4, W = 1.9×10−6, and Pr = 4.36, for the case
E2(a), and εFr−1 = 6.16× 10−4, W = 7× 10−7, and Pr = 4.36, for the case E2(b). For
both considered cases the maximum Ekman number is again fairly small (Ekmax ≤ 3.3),
and the unsteady IBL model consistently produced non-wavy smooth film solutions.

The radial variation of the Nusselt number, defined in Eq. (4.14), obtained for the rota-
tional speeds n=100 and 200 rpm are shown in Figs. 4.40(a) and (b) respectively. In both
cases the predictions of the IBL model agree evidently very well with the experimentally
obtained results in the whole flow region covered by the measurements. It is interesting to
note that the observed overall agreement is even better than for the numerical results of
Rice et al. [66], which show notable deviations at small radii.

Species mass transfer

As discussed in Sec. 2.4.2, the wet chemical etching of silicon using an etchant, which
basically consists of nitric acid, is associated with large values of the Damköhler num-
ber and very fast chemistry. Thus, the etching process is mainly controlled by the mass
transfer of the HNO3 molecules towards the solid surface. In this limit of very large
Damköhler numbers the etching rate is therefore proportional to the local Sherwood num-
ber, see Eq. (2.232).
Fig. 4.41 shows a comparison of the IBL predictions for the etching rate obtained from
Eq. (2.232) against experimental data from Kaneko et al. [68]. The liquid etchant was sup-
plied at a constant volumetric flowrate of Q =0.67 lpm through an impinging jet emerg-
ing from a nozzle with a diameter dn =6.5 mm. Two rotational speeds, n=100 rpm and
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Figure 4.40: Nusselt number vs. radial distance for the cases E2(a)-(b), IBL predictions
compared against experimental data of Ozar et al. [80] and numerical results
of Rice et al. [66], (a) 100 rpm, (b) 200 rpm.
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n=200 rpm were considered, which yield together with the aforementioned operating con-
ditions the dimensionless parameters referred to as cases E3(a)-(b) in Tab. 4.2.

As can be seen from Fig. 4.41, the IBL predictions capture evidently very well the essential
features of the etching activity on the disk in the small Ekman number regime (Ek / 3.6),
so that a good agreement with experimental results from Kaneko et al. [68] is observed.
Aside from some deviations around r̃ ≈20 mm the IBL model also predicts very well the
highly intensified etching activity in the impingement region near the center. The devel-
opment of the concentration and velocity boundary layers, and the associated near-wall
conditions determining the wall fluxes, are evidently described very reliably by the present
model. A quantitative case-to-case comparison of the etching behavior in the outer radial
region further unveils that the etching rates reach a higher level for the higher rotational
speed. This tendency is conceivable, as for increasing rotational speeds the film height δ is
decreasing, which in turn leads to a thinner concentration boundary layer being related to
δ through the given Schmidt number. The reduced thickness of the concentration boundary
layer finally leads to increased wall gradients, and hence, wall mass fluxes, or, equivalently
etching rates. The quantitative behavior is also reflected by the IBL model very well.
Recalling the dependence

∂c

∂z

∣∣∣∣
z=0

∝
1
δc
,

valid in this region (cf. Fig. 4.42), it can be concluded that the etching rate in the small
Ekman number regime (Ek / 3.6) is essentially determined by the growth of the concen-
tration boundary layer at the given Schmidt number Sc= 1196.

4.3.2 Large Ekman numbers

For many practically relevant operation conditions the local Ekman number reaches in the
outer radial region of the disk values considerably larger thanEk= 3. Due to the prevailing
effect of the accelerating centrifugal forces the regime with Ek ' 3 is associated with
a wavy flow pattern emerging in the outer radial region. The three considered cases for
this regime are basically the same as those listed in Tab. 4.1 in section 4.1. The essential
parameters of these cases are rewritten below in table 4.3 including the corresponding
experimental references and the maximum Ekman numbers.

Hydrodynamics

The case C1 involves a maximum Ekman number of Ekmax = 5.1. The film thickness
measurements for this case were carried out by Burns et al. [65], where they investigated
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Figure 4.41: Etching rate vs. radial distance for the cases E3(a)-(b), IBL predictions com-
pared against experimental data of Kaneko et al. [68], (a) 100 rpm, (b) 200
rpm.
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Figure 4.42: IBL results for the radial variation of the film thickness, the thickness of the
concentration boundary layer, and the depth-averaged species mass fraction
for the case E3(b) with n=200 rpm.

a setup with a volumetric flowrate of Q=1.8 lpm, a rotational speed of n=401 rpm and a
liquid with viscosity ν=1.3×10−6 m2/s.

Fig. 4.43 shows the time-averaged profiles of the film thickness predicted by the unsteady
IBL model together with the time-averaged profiles obtained from an axisymmetric CFD
simulation, and the experimental data of Burns et al. [65]. In the radially inner smooth
region, associated with r < 2 and Ek < 3, the IBL predictions again capture very well
the height and the radial position of the local maximum of the film thickness and show a
satisfactory overall agreement with the experimental as well as the numerical results.

Case C1 C2 C3
Exp. reference Burns et al. [65] Staudegger [82] Staudegger et al. [85]
Q [lpm] 1.8 1 1.25
n [rpm] 401 500 500
ν ×106 [m2/s] 1.3 1 2.87
Ekmax 5.1 4.3 5.3
εFr−1 ×104 5 4.5 10.3
W ×106 0.19 3 9.35
Pr 7
Sc 1196

Table 4.3: Considered cases with large Ekman numbers.

140



4.3 Validation against experiments

 

 

Asympt. r ≫ 1

IBL unsteady

2D CFD

Exp.

〈δ
〉

r

0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.5
0.3

0.7

1.1

1.5
1.6

Figure 4.43: IBL predictions and CFD results for the time-averaged film thickness for the
case C1. Experimental data from Burns et al. [65].

In the radially outer region (Ek≥ 3) a very good agreement between the predictions of the
unsteady IBL model and the predictions of the CFD analysis is observed. As a salient fea-
ture both computational results exhibit a reduced time-averaged film thickness in the wavy
outer region. This is clearly indicated by their deviation from the corresponding asymptotic
smooth film solution obtained in the limit of large radii r� 1. Yet, in comparison to the
experiments, both computational results still predict somewhat higher average heights in
the outer radial region. This discrepancy may be due to three-dimensional effects, which
are not captured by both computational approaches, but can also be attributed to higher
uncertainties in the measurements of the average film height in wavy films.

Heat transfer

The case C2 listed in table 4.3 is very close to a real industrial process of surface etching.
As this case also provides experimental data on a chemical etching process, the validation
of the unsteady IBL model includes the predictions for the chemical abrasion as well.
The operating conditions of the considered experiments were Q=1.0 lpm, n=500 rpm, and
ν=1×10−6 m2/s. The maximum Ekman number, which is calculated at the radius of the
outer edge of the disk of r̃=100 mm, is Ekmax = 4.3. The experiments were carried out
by Staudegger [82], who measured the radial variation of the liquid temperature and of
the etching abrasion of the SiO2 layer covering the solid surface of the rotating disk. The
inflow temperature of the aqueous etchant was Ti=60 ◦C. The convective cooling at the
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Figure 4.44: Time and depth-averaged temperature vs. radial distance for the case C2.
Cooling conditions qw=-5500 W/m2. Experimental results from Staudegger
[82].
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Figure 4.45: Etching abrasion vs. radial distance for the case C2. Cooling conditions qw=-
5500 W/m2. Experimental results from Staudegger [82].
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4.3 Validation against experiments

downside of the disk, which was realized in the experiments with a stream of nitrogen as
coolant medium, was prescribed in terms of a constant wall heat flux qw=-5500 W/m2 in
the computation.
As seen from Fig. 4.44, the time-averaged predictions from the IBL approximation for
the depth-averaged temperature agree very well with the experimentally obtained data. A
comparison against the corresponding steady-state smooth film solution underlines again
the importance of capturing the unsteady waviness in the outer radial region. This aspect
is also clearly reflected by the predictions for the etching abrasion shown in Fig. 4.45.
Assuming a mainly temperature dependent model for the chemistry, as it is applicable in
the here considered limit of very small Damköhler numbers (cf. Sec. 2.4.1), the improved
predictions for the temperature translate directly into better predictions for the etching
results.

Species mass transfer

The here considered case is referred to as C3 in Tab. 4.3. In contrast to the reaction con-
trolled case C2, the case C3 involves a diffusion controlled chemistry assuming very fast
etching reactions. In this limit of high Damköhler number the etching rate is basically de-
termined by the species mass flux of the etchant into the wall as given by Eq. (2.232). As
such the etching rate is equivalent to the Sherwood number.

In Fig. 4.46 the computed time-averaged etching rate is compared against experimental
data obtained by Staudegger et al. [85]. In the radially inner smooth region, associated
with r / 2 and Ek / 3, the IBL predictions again capture very well the experimentally
observed etching rates. Dealing with high Schmidt number flow the thickness of the con-
centration boundary layer remains smaller than the film thickness in this region, (compare,
e.g. Fig. 4.29, for the case C3 with Sc = 1196), so that the radial variation of the etch-
ing rate is essentially determined by the growth of the concentration boundary layer. The
region, where good agreement with the experiments is observed, is evidently restricted to
the inner and middle region associated with Ek / 4, as can be seen from Fig. 4.46(b).
In the outer region, the unsteady IBL solution predicts a significant decrease of the local
time-averaged Sherwood number, which translates into a decrease of the etching rate. This
peculiar feature is evidently not supported by the experiments, as seen from the significant
deviations in the radially outer region.

A very similar tendency is seen in the predictions for the etching rates obtained for a
wide range of operating conditions, as shown in Figs. 4.47-4.48. While generally very
good agreement is found in the radially inner and middle regions, the unsteady IBL model
always underpredicts the experimentally observed rates in the radially outer region associ-
ated withEk' 4. As seen from Figs. 4.49(a)-(b), which exemplarily depict the steady-state
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(a) Etching rate vs. radial distance.
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Figure 4.46: Radial variation of time-averaged etching rates and of the Ekman number for
the case C3. Experimental results from Staudegger et al. [85].
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Figure 4.47: Radial variation of time-averaged etching rates, Q=0.78 lpm. Experimental
results from Staudegger et al. [85] (markers), unsteady IBL model (solid
lines), steady-state IBL model (dashed lines).

predictions of the IBL model for cases with the operating conditions set to Q=0.78 lpm,
n=700 rpm, and Q=0.95 lpm, n=1100 rpm, respectively, the steady-state IBL model still
gives better results in this region, although it does not account for any waviness. The pos-
sible reasons for the underpredicted etching rates observed for the unsteady IBL model
were already addressed in the discussion of the predicted species mass concentration pro-
files and the resulting wall fluxes in section 4.2.3.

Using the quasi-steady “frozen wave” formulation for the kinematic boundary condition,
Eq. (4.12), which was introduced to decouple the solution for the species mass transfer
from the instantaneous changes of the film height, produces a better agreement with the
experiments, especially in the radially outer region, as shown in Fig. 4.50. This underlines
again, that the significant deviations produced by the unsteady IBL model can be attributed
to the strong coupling between the wall gradients and the instantaneous film thickness,
which is inherently imposed by the assumed profile functions. Possible further improve-
ments of the present unsteady IBL model should address this issue aiming at a consistently
modified formulation rather than introducing the ad hoc assumption of quasi-steady frozen
waves.
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Figure 4.48: Radial variation of time-averaged etching rates, Q=0.95 lpm. Exps. Staudeg-
ger et al. [85] (markers), unsteady IBL model (solid lines), steady-state IBL
model (dashed lines).

 

 
Ek = 4

Exp.

IBL model

R
[µ
m
/m

in
]

r̃ [mm]

0 20 40 60 80 100
0

5

10

15

(a) Q=0.78 lpm, n=700 rpm, Ekmax = 8.2
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Figure 4.49: Steady-state IBL predictions for the etching rate compared against experi-
mental data of Staudegger et al. [85].
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Figure 4.50: Solution of unsteady IBL model using quasi-steady “frozen-wave“ kinematic
boundary condition for Q=0.78 lpm, n=1100 rpm.
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5 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER
WORK

The present work investigated computationally the hydrodynamic, heat and species mass
transfer of thin liquid film flow on rotating disks using an unsteady integral boundary layer
(IBL) model. In the framework of this model the governing unsteady boundary layer type
equations are averaged over the film height, assuming polynomial ansatz functions for
the profiles of the individual velocity components, the dimensionless temperature, and the
species mass fraction. Aside from the analysis of the salient steady-state features met in
the smooth film regime the focus was particularly put on the effect of the unsteady surface
waves on the momentum, heat and species mass transfer.

In the inner radial region, r / 2, associated with small Ekman numbers, Ek / 3, where
Coriolis forces exert a stabilizing influence, the predictions of the present unsteady IBL
model consistently exhibit a non-wavy smooth surface. It can be inferred that the small
Ekman number regime allows for the computationally simpler steady-state IBL model,
which can describe only smooth film flow. The results which were obtained with the IBL
model in this region for the radial variation of the film thickness, the Nusselt number, and
the Sherwood number are in very good agreement with corresponding experimental data.
In the cases with larger values of the local Ekman number, Ek ≥ 3, the unsteady com-
putations reproduced very well the formation and further propagation of surface waves
triggered by the destabilizing influence of the radially increasing centrifugal forces. A
comparison of the time-averaged results of the unsteady IBL model against correspond-
ing steady-state smooth film solutions unveiled a reduced averaged film thickness as one
of the major effects of the waviness. As for the heat transfer the waviness led to an in-
creased/decreased film temperature in the heating/cooling wall heat flux cases. The reason
for these most salient effects, which are also observed in experiments, could be identified
by a close analysis of the evolution of the instantaneous flow and thermal quantities. In
the wavy region most of the liquid volume is transported by fast moving surface waves,
whose passage is generally intermittent with comparatively longer periods with very thin
liquid coverage, which effectively reduces the average film thickness. The thin liquid lay-
ers occurring between the surface waves are more easily heated-up/cooled-down by the
heating/cooling wall heat flux, which explains the increased/decreased film temperatures
in the wavy regime.
The practical importance of accounting appropriately for the effects of surface waviness is
highlighted by including a wet chemical etching model valid for low Damköhler numbers.

149



5 Conclusions and recommendations for further work

Applying the so extended unsteady IBL model to a technically relevant test case yielded
a markedly improved agreement with available experimental data as compared to a corre-
sponding steady-state smooth film solution.

The high level of description demonstrated by the present unsteady IBL model for the
hydrodynamics and the heat transfer in the unsteady wavy regime was not observed for
the species mass transfer. In contrast to experiments and CFD simulations the IBL results
always exhibited a rapid decrease in the wall mass flux at the onset of waviness.
In a detailed analysis of the velocity and mass fraction profiles it was found that the ob-
served deficits of the present unsteady IBL model can be mainly attributed to some in-
herent limitations of the assumed profile functions. In particular, large discrepancies were
observed for the w-profile, which is implicitly determined by the polynomials assumed
for the radial and azimuthal components of the velocity. In addition the assumed profile
functions scale with the film height. This inherently imposes a strong coupling between
the instantaneous local variations in the height of the liquid and the near wall conditions
inside the concentration boundary layer, which finally produces an exaggeratedly strong
thickening of the concentration boundary layer when the surface becomes wavy. This de-
scriptive limitation is specially relevant for the high Schmidt number cases considered in
this work (Sc ≈ 1200). The very thin concentration boundary layers are expected to be
less influenced by the flow condition at the liquid surface, which speaks against the strong
coupling incorporated by the assumed profile functions.

Summing up, it can be stated that the present unsteady IBL method was shown to capture
the essential hydrodynamic and thermal features of the wavy thin film flow on a spinning
disk at a high level of description. Major restrictions only become evident when consider-
ing species mass transfer in a binary mixture for the particular case with very large Schmidt
numbers. Aside from this limitation, the present unsteady IBL approximation has proven
as a reliable and computationally efficient approach to investigate wavy flow on rotating
disks, including heat and mass transfer. As such the present concept offers a great potential
as computational design and optimization tool for spinning disk devices, which are widely
used for various wet processing applications.

Recommendations for further work

Relevant topics for further studies are an improvement of the present IBL model by uti-
lizing the weighted residual integral boundary layer (WRIBL) approach (see, e.g. Ruyer-
Quil & Manneville [28, 29], Trevelyan et al. [112]) instead of simple polynomial profile
assumptions, as the major limitations of the present model were found to be related to
the polynomial ansatz functions, which are required for the depth-averaging. In the frame-
work of the WRIBL approach it should be possible to model the recirculation zones, which
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appear inside solitary waves. An appropriate modeling of these recirculation zones is ex-
pected to improve also the predictions for heat and species mass transfer.

Furthermore the present IBL model should be extended to model three-dimensional flow
(2D IBL model, see e.g. appendix 4), as the assumption of axisymmetric conditions is only
valid in a very restricted range of operating conditions. A three-dimensional model would
additionally offer the possibility to model cases with off-center impingement, which are
highly relevant for various industrial applications. In this framework also a proper ansatz
for the description of the formation of dry spots will have to be included.
It may be also interesting to include edge effects, as the fluid flow over disk edge typically
results in the formation of a liquid rim due to the increased pressure caused by the surface
tension.

A further validation of the IBL predictions and the CFD results against more comprehen-
sive experimental data, including experimental data describing instantaneous flow features,
would be desirable.
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1 Divergence (Gauss’s) theorem

1 Divergence (Gauss’s) theorem

Gauss’s theorem relates the volume integral of the divergence of a vector, ∇ · ~F , over the
volume V , with the surface integral over the boundary of this volume, ∂V ≡ S, by

∫

V

(
∇ · ~F

)
dV =

∫

S

~F ·d~S. (1)

Physically this can be interpreted as conservation law, which states that the net flux across
the boundary S equals the source rate inside V .

2 Relations and profile parameters for the IBL model

2.1 Quadratic approximation

u=
1
δ

δ∫

0

u(z)dz =

ζ∫

0

uδ
(
2ζ− ζ2)dζ = 2

3
uδ (2)

v =
1
δ

δ∫

0

v(z)dz =

ζ∫

0

vδ

(
8
5
ζ− 4

5
ζ3 +

1
5
ζ4
)
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25
vδ. (3)

w =
1
δ

δ∫

0

w(z)dz =

ζ∫

0

wδ

[
ζ2
(

3
2
−aw(r)

)
+ ζ3
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1
2
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dζ

= wδ

(
3
8
− aw(r)

12

)
. (4)

ka =

∫ ζ
0 u

2
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(
2ζ− ζ2)2

dζ

u2 =
6
5

(5)
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kb =

∫ ζ
0 uδ

(
2ζ− ζ2)vδ

(8
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∫ ζ
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2.2 Quartic approximation
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3 Second-order polynomial ansatz function for the species mass fraction

3 Second-order polynomial ansatz function for the species mass
fraction

The necessary closure for the solution of the depth-averaged convection-diffusion equation
(2.155) can be provided by choosing a second-order polynomial ansatz function for c,
generally written as

c

cδ(r)
= a0 +a1

z

δc
+a2

z2

δ2
c
. (16)

The surface value cδ equals unity before the concentration boundary layer has reached
the film surface, and varies with the radial position further downstream, as defined in
Eq. (2.157). The coefficients of the second-order polynomial are evaluated from the bound-
ary conditions Eqs. (2.87), (2.89), and (2.90), yielding

c

cδ(r)
= 2

z

δc
− z

2

δ2
c
. (17)

Introducing the variable β= δc/δ, the composite profile assumption (17) is written in terms
of the rescaled wall normal coordinate ζ , and β, as

c(ζ) =

{
cδ

(
2
β ζ− 1

β2 ζ
2
)

0 < ζ < β

cδ β < ζ < 1.
(18)

Using the composite profile function rewritten as Eq. (18) produces the following expres-
sion for the depth-averaged species mass fraction c

1
δ

δ∫

0

cdz =
1
δ



δc∫

0

cdz+

δ∫

δc

cdz


=

β∫

0

cdζ+

1∫

β

cdζ = cδ

(
1− 1

3
β

)
. (19)

The integration of the convective transport term yields

1
δ

δ∫

0

ucdz = cδu−
1
4
β2cδu+

1
20
β3cδu. (20)

Incorporating these expressions into the IBL approximation for the species transport equa-
tion (2.155) yields the following depth-averaged evolution equation

∂

∂t

[
δcδ−
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βδcδ

]
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1
δ

2cδ
β
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Reformulating Eq. (21) in terms of the total directional derivatives, considering addition-
ally the flow to be axisymmetric, yields

(
6
√
ω

cδ
− 2ω
cδ

)[
∂cδ
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20
√
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3
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10
ω2
)
. (22)

Again Eq. (22) can be separately solved for ω and cδ as their total directional derivatives
become alternately zero.

Steady-state species mass transfer

Utilizing the second-order polynomial ansatz function given by Eq. (17), the depth-averaged
convection-diffusion equation for the steady-state species mass transfer reduces to

β < 1, cδ = 1 :
dδc
dr

= β
dδ

dr
+

r

Sc

(
360

30β2−9β3

)
,

β = 1, cδ < 1 :
dcδ
dr

=−15
2
rcδ
δSc

.

(23)

Considering the steady-state approximation for the film thickness to be given by δ= r−2/3,
an asymptotic solution in the limit of large radii for the species mass fraction at the free
surface is obtained as

β = 1, cδ < 1 : sδ(r) = exp
[
− 45

16Sc

(
r8/3− r8/3

c

)]
. (24)
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4 IBL approximation for three-dimensional film flow

4 IBL approximation for three-dimensional film flow

In the limit of the thin film approximation the governing equations for the three-dimensional
flow on a spinning disk are given by Eqs. (2.63)-(2.68). The kinematic boundary condition
reads

z = δ : w =
∂δ

∂t
+u

∂δ

∂r
+
v

r

∂δ

∂φ
, (25)

and the stress-free conditions on the free surface at z = δ are given by

τrz =
∂u

∂z
= 0, (26)
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0 =−p−W
(

1
r

∂

∂r

(
r
∂δ

∂r

)
+

1
r2
∂2δ

∂φ2

)
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The depth-averaged continuity equation for the three-dimensional flow is obtained as

∂δ
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+

1
r

∂

∂r
[ruδ]+

1
r

∂

∂φ
[vδ] = 0. (29)

Introducing an improved profile assumption for the azimuthal component of the velocity
as (see, e.g., Kim & Kim [75])
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the depth-averaged momentum equations in radial and azimuthal direction read
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respectively.
Depth averaging of the convection-diffusion equation for the transport of a general passive
scalar quantity, denoted by s, yields

∂

∂t
[δΦ]+

1
r

∂

∂r
[rδΨ ]+

1
r

∂

∂φ
[δΠ] =− 1

K

∂s

∂z

∣∣∣∣
z=0

. (33)

Here K is the characteristic dimensionless variable for the transport of the passive scalar,
e.g. the Schmidt number in case of species transport (s ≡ c). The capital Greek letters
supersede the integrals

Φ=
1
δ

δ∫

0

sdz, (34)

Ψ =
1
δ

δ∫

0

usdz, (35)

and

Π =
1
δ

δ∫

0

vsdz. (36)

Assuming a Dirichlet boundary condition for the passive scalar

s|z=0 = 0, (37)

the depth-averaged transport equation is obtained as
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Therein a third-order polynomial ansatz function was chosen as closure relation. Reformu-
lating Eq. (38) in terms of ω, utilizing the depth-averaged continuity equation, Eq. (29) to
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4 IBL approximation for three-dimensional film flow

substitute ∂δ/∂t, yields
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