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Abstract

A common problem encountered in mechanical engineering is the fatigue
failure of mechanical components hence fatigue lifetime assessment of me-
chanical components becomes one of the research hotspots in mechanical
engineering at present. Fatigue test is one of the most effective methods to
validate fatigue lifetime of mechanical components. Test rigs with electro-
hydraulic servo control system are the commonly used loading system for
such fatigue tests. This dissertation focuses on research of solutions for
some practical dominant problems related to robust and accurate control
of electro-hydraulic servo systems.

Firstly a novel system modeling and identification method for electro-
hydraulic servo systems is proposed so as to obtain accurate models of
electro-hydraulic servo systems which are essential for controller design
and system simulation. The effectiveness of the developed methods is ver-
ified by experimental results.

Secondly the exact linearization method based on differential geometry
is applied in electro-hydraulic servo position control systems. Since the
traditional approximate linearization method based on Taylor expansion
is commonly used in engineering, performance of the two linearization
methods is compared and discussed. Furthermore robustness of the control
system based on the exact linearization method is discussed. Additionally
on the basis of exact linearization a sliding mode variable structure control
method is proposed to effectively attenuate disturbances within the control
loop.

Finally many fatigue test applications are based on cyclic loading of sinu-
soidal signal or arbitrary functions. In those cases the method of iterative
learning control can be utilized as an effective tool to obtain and ensure
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accurate and robust control performance of such fatigue test systems. Con-
sequently three types of iterative learning control methods are investigated
for fatigue test applications throughout this dissertation, including the dis-
cussion on the convergence conditions of these methods. The control per-
formance of the three iterative learning control methods in uni-axial fatigue
test applications is compared and discussed with respect to robustness and
control accuracy.

Simulation and experimental results indicate that the developed method-
ology can greatly improve the quality of fatigue tests with respect to load
application and reproducibility.
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1. Introduction

1.1. Background and Motivation

In mechanical engineering, a lot of mechanical components work under
cyclic loading and, generally speaking, the working stress is less than the
yield stress of the materials. The failure of the components, after long time
operation under cyclic loading, is called fatigue failure.

Fatigue failure is the main form of premature failure of mechanical parts.
According to statistics, 80% of the fracture failure of mechanical parts is
fatigue fracture [1]. Since many mechanical parts have to work under se-
vere working conditions of high temperature, high pressure, high friction,
heavy load and corrosion, fatigue failure accidents emerge in endlessly.
Consequently it is necessary to research on the fatigue strength and fatigue
design of mechanical parts so as to improve the reliability and prolong the
working life of mechanical products. At present fatigue test is one of the
effective methods to validate fatigue lifetime of mechanical components.

At first researchers and engineers apply general material testing machines
to complete fatigue test. Nevertheless with the development and wide ap-
plication of material technology and fatigue theory, general material test-
ing machines can not meet the requirements, therefore professional fatigue
testing machines appeared. There are several types of professional fatigue
testing machines. The earliest professional fatigue testing machines were
mechanical ones, of which load was less than 1 kN and frequency was less
than 10 Hz. With the development of electric and electronic technology,
electrodynamic fatigue testing machines and electro-hydraulic fatigue test-
ing machines appeared. Due to the different principles, the three types of
fatigue testing machines have different properties. Table 1.1 introduces the
main properties of the three fatigue testing machines.
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1. Introduction

According to the table, it is clear that mechanical fatigue testing machines
have many disadvantages such as limited maximum force, complex struc-
ture and so on. Moreover mechanical fatigue testing machines are not pro-
grammable, hence the computer technology can not be applied. Further-
more it is impossible to change the mechanical fatigue testing machines
to meet the different requirements when they are manufactured. Conse-
quently the application of mechanical fatigue testing machines is much
less than before. However electro-hydraulic fatigue testing machines do
not have such problems. The maximum force of electro-hydraulic fatigue
testing machines is the biggest of all the three types of fatigue testing ma-
chines. Electro-hydraulic fatigue testing machines can work in both low fre-
quency range with long stroke and high frequency range with short stroke.
Furthermore the waveforms of electro-hydraulic fatigue testing machines
can be modified by computer so as to realize automatic control. More-
over engineers can use several cylinders to realize parallel operation when
higher force is required since electro-hydraulic fatigue testing machines
have the properties of small volume and compact structure. Although the
frequency range of electro-hydraulic fatigue testing machines is less wide
than that of electrodynamic fatigue testing machines and waveform distor-
tion of electro-hydraulic fatigue testing machines is more serious than that
of electrodynamic fatigue testing machines, electro-hydraulic fatigue test-
ing machines have broader applications than the other two types because
the performance-price ratio of electro-hydraulic ones is higher.

Electro-hydraulic fatigue testing machine is a technology intensive system
and it is relevant to hydraulics, electronics, surveying, mechanical engi-
neering, material science and automatic control theory. Furthermore many
high technologies such as closed-loop servo control, digital display, elec-
tromechanical integration and computer technology are applied in electro-
hydraulic fatigue testing machines which play an important role in the
field of industry and scientific research, for instance development of new
material, structural design, mechanical design, ship design and research
on aeronautic and astronautic technology. Electro-hydraulic fatigue testing
machines can be divided into two types: static fatigue testing machines and
dynamic fatigue testing machines.

2
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1. Introduction

The static fatigue testing machines use servo technology and can complete
different tests by modifying several parameters. They can acquire, process,
display and print test data and results automatically so as to decrease work-
ing strength and improve testing efficiency. They can realize static stretch
test, static compress test, static bending test, static creep test, low cycle fa-
tigue test and so on.

The dynamic fatigue testing machines are servo mechanisms composed of
mechanical, hydraulic and electronic systems. They use closed-loop control
rather than open-loop control so as to improve test precision. They can
apply many types of signals such as sinusoidal, triangular, rectangular,
sawtooth and trapezoidal signals to the specimen. Moreover they can apply
alternating random load to the specimen according to the alternating load
spectrum which is recorded in real world. Consequently the test results can
reflect the real working condition so as to provide basis for optimal design.
Now all the important project has to be tested by fatigue testing machines
or no one can ensure the safety of the project design.

Furthermore according to different hydraulic control components, electro-
hydraulic servo system can be divided into pump-controlled system and
valve-controlled system. Moreover according to different hydraulic valves,
valve-controlled system can be divided into servo valve-controlled system,
proportional valve-controlled system and so on. Additionally according to
different hydraulic actuators, servo valve-controlled system can be divided
into cylinder system and motor system. In our laboratory the servo valve-
controlled cylinder system is applied as the core component of electro-
hydraulic fatigue testing system hence this dissertation focuses on solutions
for some practical control problems of this kind of electro-hydraulic servo
system.

The characteristics of modern electro-hydraulic servo systems are briefly
described in the following [2]:

• The environment and task of electro-hydraulic servo systems is com-
plicated, for example the parameters are time varying and the distur-
bances always exist.
• The electro-hydraulic servo systems have high requirements on the

frequency range and test precision.

4



1.2. Objectives

• The influence of nonlinearity caused by throttle characteristics and
flow saturation of electro-hydraulic servo valves becomes more and
more serious since the requirements of the fatigue test increase.
• The stability theorems and controller design methods based on tradi-

tional discrete system theory are less useful than before because of the
nonlinear sampling characteristics of many digital electro-hydraulic
components.

Consequently modern electro-hydraulic servo systems have new require-
ments on the control strategies, some of which are [2]:

• The control strategies should improve the dynamic characteristics of
the servo systems as greatly as possible under the premise of ensuring
steady precision so that the controller can control the objects as fast
as possible without overshoot.
• The control system should have excellent robustness to eliminate ef-

fects of parameters variation, external disturbances, cross coupling
and other nonlinear factors.
• The control system should have excellent intelligence.
• The control algorithm should be as simple as possible and the func-

tion of real-time control should be as powerful as possible.
• The maximum control variable provided by controller should give

full play to maximum driving capability of the power mechanism so
as to improve the efficiency of the electro-hydraulic servo system.

In a word, there are a lot of influencing factors in electro-hydraulic servo
systems such as strong nonlinearity, time-varying parameters, external dis-
turbances and cross coupling which affect control performances of the sys-
tems. Therefore carrying out research on improving control performances
of electro-hydraulic servo system is of significance for popularization and
application of modern electro-hydraulic servo system.

1.2. Objectives

With the development of electro-hydraulic servo control technology, the
application fields and ranges of electro-hydraulic servo control system are

5



1. Introduction

expanding constantly. However because of the high demands for modern
product research and development, the requirements on electro-hydraulic
fatigue testing system regarding control performance become higher and
higher i.e. electro-hydraulic servo control system should operate with high
control precision, strong robustness and good stability.

To realize this control target, researchers have to solve a lot of practical con-
trol problems such as accurate system modeling and identification, dealing
with nonlinear factors, eliminating or attenuating effects of external dis-
turbance, compensating time delay, decoupling and so on. Consequently
in this dissertation three of these practical control problems are consid-
ered: accurate system modeling and identification, dealing with nonlinear
factors and improving control precision. The specific goal of this disserta-
tion is to research and develop solutions which are effective and feasible in
practical engineering aiming at the three control problems so that electro-
hydraulic servo control system can obtain optimal control performances
with the valid boundary conditions of the given problems.

1.3. Outline

This dissertation focuses on solutions for some practical problems which
influence the control precision of electro-hydraulic servo system. The re-
search conducted for this work includes system modeling, system identifi-
cation, exact linearization and iterative learning control.

In Chapter 2 the development of control strategies and algorithms for
electro-hydraulic servo control system is reviewed.

In Chapter 3 based on the analysis of valve-controlled cylinder system, a
novel system modeling method for electro-hydraulic servo position control
system is presented. And then a novel system identification method is pro-
posed to estimate the unknown parameters of the model. Finally system
identification experiment is made in order to verify the effectiveness of the
system modeling and identification methods.

In Chapter 4 firstly development of nonlinear control theory is introduced.
Then the theory and method of the exact linearization based on differential

6



1.3. Outline

geometry is discussed. Finally the methods of disturbance decoupling and
attenuation based on exact linearization are presented.

The application of the exact linearization method based on differential ge-
ometry in electro-hydraulic servo position control system is introduced in
Chapter 5. Moreover control effects of the exact linearization method and
the approximate linearization method based on Taylor expansion are com-
pared with simulation. Additionally robustness of the control system based
on exact linearization method is analyzed. Finally the methods of distur-
bance decoupling and attenuation are applied in electro-hydraulic servo
position control system.

In Chapter 6 firstly development of iterative learning control (ILC) the-
ory is reviewed. Then three types of iterative learning control methods are
proposed: PID-type ILC, adaptive ILC and inverse model ILC. Their al-
gorithms are introduced and their convergence conditions are discussed
respectively.

The purpose of Chapter 7 is to verify the effectiveness of the three types
of iterative learning control algorithms. Firstly the control effects of the
three ILC algorithms in electro-hydraulic servo position control system are
compared and discussed with simulation results. And then their control
effects in electro-hydraulic servo position control system are further com-
pared and discussed with experimental results. Furthermore the P-type
ILC algorithm and the adaptive ILC algorithm are applied in real world
electro-hydraulic servo force control system respectively to validate their
control performances in force control system.

Finally conclusions are presented in Chapter 8. Moreover prospects of fu-
ture work in these important research fields related to electro-hydraulic
servo control system are also discussed.

7
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2. Literature Review

Electro-hydraulic servo systems can be divided into two types: single-input-
single-output (SISO) systems and multi-input-multi-output (MIMO) sys-
tems. Generally speaking MIMO system is composed of several SISO sys-
tems hence MIMO system is much more complex than SISO system. The
development situation of control strategies of SISO and MIMO system will
be described respectively in the following. Additionally since this disserta-
tion focuses on servo valve-controlled cylinder system, only the literatures
related to this kind of electro-hydraulic servo system will be reviewed.

2.1. Control Strategies of SISO System

As far as the historical path of the research and development of electro-
hydraulic servo system is concerned, the control strategies of SISO systems
can be classified into four types:

• Classical control strategy (including PID control and improved PID
control, linear controller and so on)
• Modern control strategy (state feedback control, nonlinear control,

adaptive control, variable structure control, H2/H∞ robust control
and so on)
• Intelligent control strategy (neural control, fuzzy control, learning

control and so on)
• Advanced intelligent compound control strategy (neural fuzzy con-

trol, sliding mode variable structure control, adaptive learning con-
trol, fuzzy PID control based on evolutionary algorithm and so on)

The development of the four types of control strategies of SISO systems
will be introduced in the next subsections.
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2.1.1. Classical Control Strategy

In [3] Murrenhoff uses the integrated electronic technology to linearize the
nonlinear valve so as to eliminate the influences of nonlinearity of flow
pressure characteristics. For hydraulic servo force and torque control sys-
tem, he applies force feedback and speed feedback proportional controller
and obtains satisfying results of torque control. For hydraulic servo posi-
tion and speed control system, he uses PID control or state feedback control
and achieves good transient performance of the system.

2.1.2. Modern Control Strategy

(1) State Feedback Control

In [4], Mare and Moulaire provide the selection principles of feedback con-
troller of electro-hydraulic servo position control system. They ignore the
dynamic characteristics of the servo valve but consider the effects of non-
linear factors.

In [5], Guglielmino and Edge use a special state feedback to design the fric-
tion damping controller for the semi-active vehicle suspension system.

(2) Nonlinear Control

The disadvantages of linear control strategies of valve-controlled hydraulic
position control servo system expose day by day [6]. In [7], they solve the
control problem of high precision Hydraulic Die-Casting System success-
fully with the switch control technology. The results show that when the
Die-Casting tool is close to the goal position, switch function is necessary
in traditional PI controller to eliminate the negative influences of the in-
tegral action in the whole process. Furthermore the results reveal that the
optimal switch point is relevant to the load pressure.

To improve the static and dynamic characteristics of position tracking of
electro-hydraulic servo system, in [8, 9] they apply the switch control strat-
egy which is switching between position control loop and speed control
loop based on the actual position error as shown in Figure 2.1. In this con-
trol strategy position tracking error will be feedback to the speed control
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loop so as to improve the position tracking precision. The results show
that this nonlinear switch control strategy has excellent robustness against
inertia load changes.

Figure 2.1.: Switch Control System based on Speed Control Loop and Position Control
Loop [8, 9]

To eliminate the influences of dead zone and throttle characteristics of
servo valves, in [10] a nonlinear compensation technology is proposed by
Maekinen and Virvalo. The effectiveness of this technology in water hy-
draulic system is confirmed by the experiments. Meanwhile in [11] Whit-
ing uses the control strategy of valve pressure/flow compensation based on
local feedback. Moreover the research on the control strategies of compen-
sation for the nonlinear characteristics of valve pressure/flow have gotten
progress [12].

In [13] Garstenauer and Kurz apply the gain tuning technology of combi-
nation form of gain weight based on actual valve position in the nonlinear
control of electro-hydraulic servo valve.

In [6] a nonlinear control strategy based on singular perturbation is pro-
posed and applied in the hydraulic servodrives successfully by Manharts-
gruber and Scheidl. The dynamic characteristics of the nonlinear control is
better than the traditional linear control.

In [14] Alleyne solves the problem of force tracking control for hydraulic
servo systems with nonlinear control strategy which has good robustness
against some model errors.

11



2. Literature Review

(3) Adaptive Control

In [15] Edge introduces the conception of adaptive control of hydraulic
servo system. The adaptive control of hydraulic servo system have two
types: one is self-regulation adaptive control and the other is (direct or
indirect) model reference adaptive control (MRAC).

In [16] they research the adaptive control of hydraulic servo system which
is a non-minimum phase system. They use δ transform method to discretize
the system. The advantage is that if the continuous system of a controlled
plant is a minimum phase system then its discrete system which is gotten
with δ transform method is still a minimum phase system as long as the
sampling period is sufficiently small. Consequently the adaptive control
theory can be applied in the hydraulic servo system directly.

In [17] Zhang and Alleyne design an indirect model reference adaptive
controller for the valve-controlled servo cylinder of the active vibration
isolation system to realize high performance speed tracking.

In [18] they design a model reference adaptive controller for the hydraulic
excavators and the results show that this controller is better than the state
feedback controller.

(4) Variable Structure Control

Utkin firstly proposed variable structure control (VSC) strategy in 1950s
[19]. After 50 years development great attention has been paid to VSC.
VSC is suitable for linear and nonlinear system, continuous and discrete
system, deterministic and uncertain system, lumped parameter and dis-
tributed parameter system, centralized control and decentralized control
system and so on. VSC is a control strategy which changes the structure
of the controller according to the system state and sliding mode deviations
in order to improve the performance of the system [20]. One of the ad-
vantages of VSC is that the sliding mode of VSC can keep invariant to the
parameter perturbation of the system and external disturbances however
this advantage is based on ideal switching condition while in real system
ideal switching condition can not be realized because of the inertia of con-
trolled object and constraint of control energy hence chattering problem of
VSC always exists. Nevertheless VSC has been widely applied in electro-
hydraulic servo systems.
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In [21, 22] the sliding mode control of electro-hydraulic servo position con-
trol system is investigated by Handroos and Liu. They introduce the chat-
tering problem of VSC and try to use sliding surfaces which have boundary
layers to weaken chattering effects while at the expenses of the loss of sys-
tem robustness.

In [23] they apply online estimator of load inertia and gaining regulator
to solve the steady-state chattering problem of variable structure control of
electro-hydraulic servo system. The results show that the robustness of the
system can be strengthened as long as the parameters of the controller can
vary with the inertia estimated.

In [24] a frequency-shaped sliding mode control based on the crossover fre-
quency of systems with unmodeled dynamics is proposed. The principle
is to use low-pass filter in the driving signal of electro-hydraulic servo sys-
tems. However this method will lead to the loss of robustness against the
steady-state disturbance consequently disturbance observer is necessary to
compensate it.

In [25] a variable structure control with proportional and integral com-
pensation for electro-hydraulic servo position control system is proposed
and the results show that the response speed of variable structure control
with proportional and integral compensation is faster than that of variable
structure control only with integral compensation. Moreover one of the ad-
vantages of VSC with proportional and integral compensation is that the
system has zero steady state error under external disturbance.

Considering the influence of friction on electro-hydraulic servo position
control systems, in [26] they design a sliding mode controller which has
the function of nonlinear friction compensation. The principle is to use
adaptive estimation of friction however they do not consider external load.
The test results show that the system has good performance on friction
estimation and signal tracking. Furthermore this sliding mode controller
with the function of nonlinear friction compensation is applied in a low-
pressure water hydraulic cylinder system and the effectiveness of sliding
mode control strategy is confirmed by the test results [27].

Aiming at typical problems of variable structure control of electro-hydraulic
servo systems such as chattering problem, reaching condition and reaching
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law, in [28] they complete some research both in continuous and discrete
time domain. They consider Slotine’s boundary layer method [29], Gao’s
reaching law method [20, 30] and Feng’s continuous integral approxima-
tion [31] comprehensively and then illustrate the contradiction between de-
creasing chattering and improving robustness. Moreover several new types
of variable structure control strategies are proposed. They complete exper-
imental study on variable structure control strategy with integral compen-
sation in pump controlled hydraulic motor rotating speed system and the
conclusion of theoretical analysis is verified.

To solve the tracking problems of electro-hydraulic servo systems with non-
linearity and uncertainty, in [32] a second-order sliding mode control strat-
egy based on time optimal law and Lyapunov function is proposed by
Li, Yang and Zhang. They analyze the existing optimal second-order slid-
ing mode control strategies and then an improved second-order sliding
mode control algorithm with nearly time-optimal control is developed to
effectively reduce chattering and enhance responding speed without los-
ing robustness of the system. Taking the steering system model of practical
transporting and lifting machinery as example, the simulation study on the
algorithm is carried out, and its effectiveness is confirmed.

In [33] an optimal variable structure control with integral compensation
is proposed. They use linear quadratic optimal control to determine the
sliding mode switching plane however there is no quantitative relation-
ship between weighting matrix and system performance index hence the
switching plane achieved is not always ideal. Nevertheless this problem
can be solved if proper pole assignment method is applied.

(5) H2/H∞ Robust Control

Robust control has important value in improving the robustness of electro-
hydraulic servo systems. In [15] Edge researches the basic robust control
problems of electro-hydraulic servo systems.

In [34] Sanada designs a force controller for a water-hydraulic servo system
with robust control principle. He considers the influences of load stiffness,
bulk modulus of the oil and flow characteristics of valves thus solves the
parameter uncertain problem of hydraulic system nevertheless it is difficult
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to determine the upper bound and lower bound of the uncertain parame-
ters in system identification.

In [35] they develop a new type robust control for electro-hydraulic servo
systems and then they compare the control results with that of traditional
PID control. This control strategy can ensure the stability of the system and
robustness against the variation of load stiffness and nonlinear friction.

In [36] Plummer expounds that the main factors which influence the ro-
bustness of electro-hydraulic servo systems are saturation limiting of var-
ious physical quantities, one of which is the saturation limiting of servo
valve opening. To ensure the asymptotic stability of the system he then de-
velops the evaluation theory of robustness of electro-hydraulic servo sys-
tems which have the saturation limiting of servo valve opening and more-
over he proposes a new type of design method which can eliminate the
effects of the saturation limiting of servo valve opening.

2.1.3. Intelligent Control Strategy

(1) Artificial Neural Network Control

In [37] they apply neural network control strategy to solve the problems
caused by hydraulic system leakage and friction. The input signal of neu-
ral network controller is pressure difference and velocity while the output
signal is transformed to PWM signal. The results show that the steady pre-
cision of the system is improved.

In [38] when they design the neural network controller they use both feed-
forward and feedback channel signal to generate the driving signal for
servo valve. Furthermore they use linear second-order transfer function
as the reference model. They apply this control strategy in a servo valve
controlled hydraulic cylinder system and the results show that the perfor-
mance index of square error integration of neural network control is better
than that of constant gain control.

In [39] when Burton designs the neural network controller, he considers
the effects of nonlinear friction in the valve controlled hydraulic cylinder
system. Although the performance of the system in zero velocity region
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is worse than that in other regions, it can be solved by using single pulse
signal in dead zone range. The results show that the performance of this
control strategy is better than that of traditional PID control.

(2) Fuzzy Control

Becker research the application of forward channel fuzzy controller in hy-
draulic position control system [40]. The input signal of fuzzy controller is
position error and its changing rate. He uses four on-off valves to control
inflow and outflow of oil and determines the parameters of fuzzy controller
with trial-and-error method. The results show that the dynamic character-
istic of the system is better than that of sliding control system.

In [41] they design a self-organising fuzzy logic controller for water hy-
draulic system so as to adapt to the variation of process dynamics however
the effects of adaptive control is worse than MRAC.

In [42] a self-tuning fuzzy control method is applied in the hydraulic multi-
speed control system. The rapidity index of speed step response of the
system is improved while the transient performance is not ideal.

(3) Learning Control

The basic principle of learning control is tuning the current control infor-
mation of the system according to the past control information. To solve the
position tracking problem of valve controlled hydraulic cylinder system, an
iterative learning control method is proposed in [43]. The experimental re-
sults show that this control strategy is better than traditional PID control
however the iteration number required is too big.

In [44] they research the application of self-learning control algorithm in
an injection moulding machine and then they expound that reasonable se-
lection of learning gain is important to decrease the iteration times.

Aiming at electro-hydraulic vibration testing machine, an iterative learning
control strategy in frequency domain of acceleration control is proposed in
[45]. They use the adaptive frequency response function of the system and
the tracking performance achieved is almost perfect.
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2.1.4. Advanced Intelligent Compound Control Strategy

Based on neural network learning algorithm, a learning control strategy of
hydraulic robots is proposed in [46].

In [47] they propose a real-time adaptive learning control based on evolu-
tionary algorithm which is introduced into the weight calculation of neu-
ral network controller in the forward channel. The experimental results
show that the system has ideal robustness against the variation of external
load.

A neuro-fuzzy control strategy is proposed in [48]. It is applied in the
electro-hydraulic servo systems and the simulation results show that the
system has ideal transient performance.

2.2. Control Strategies of MIMO System

Generally speaking, MIMO system is a multi-variable system, hence the
development of control strategies of MIMO system is relevant to the the
development of control strategies of multi-variable system.

The objective of multi-variable system control is to ensure that every con-
trolled variable should follow the given value and should not be influ-
enced by other variables while in most cases engineers only can make the
influences of other variables as little as possible. Furthermore the system
should has excellent static and dynamic characteristics. Hence the system
need decoupling control. When engineers want to complete control design
of strong coupling multi-variable system with tradition control strategies,
they have to know the object parameters in advance, then design the com-
pensator, decoupler and controller separately. It is difficult to measure the
parameters of strong coupling multi-variable system, consequently design,
implementation and coordination of the compensator, decoupler and con-
troller is not so easy. In a word traditional control strategies can not realize
the effective control of strong coupling multi-variable system.
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The controlled systems become more and more complex hence the con-
trolled objects have more factors such as uncertainty, nonlinearity, hystere-
sis, multi-disturbances, non minimum phase property and so on which
influence control precision. As a result the design requirements of cou-
pling control system is higher and higher so that the design difficulty is
greater and greater. In practical engineering applications, since coupling
phenomenon exists, there are several problems:

• In a multi-channel system with coupling phenomenon, different chan-
nels can not be considered separately hence the parameters of control
system require many times of tuning however it is still difficult to get
a satisfactory result.
• Analysis and design of coupling system requires much more informa-

tion than that of decoupling system. It is convenient for engineers to
design controller for decoupling system with standard design method
while no one can find a universal simple design method for coupling
system as yet. Especially it is difficult to realize exact decoupling de-
sign when the system has too many variables.
• It is convenient to realize on-line tuning for every channel of decou-

pling system which means that on-line tuning in closed-loop is possi-
ble. However it is difficult to realize on-line tuning in coupling system
because there are too many relating factors in the system.

Hence the decoupling problems of multi-variable systems have caused the
extensive concern.

As same as the development of other control strategies, the decoupling con-
trol theory develops from simple to complex, from primary to advanced,
from classical to modern, from single to composite, from linear to nonlin-
ear, from static to dynamic, from continuous to discrete, from non-robust
decoupling to robust decoupling, from traditional decoupling to intelligent
compound decoupling.

The development of decoupling control theory can be divided into six
stages:

• Preliminary stage: Boksenbom and Hood proposed the irrelevant con-
trol principle based on algebraic method of multi-variable system in
1949 [49].
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• Morgan problem stage: Morgan proposed the decoupling problem
of input and output of MIMO linear system based on state-variable
feedback [50].
• Traditional decoupling control stage (decoupling control of linear sys-

tem): there are a lot of traditional decoupling control methods which
focus on deterministic MIMO linear system such as diagonally domi-
nant matrix method [51, 52, 53, 54], relative gain analysis method [51],
characteristic curve analysis method [51], state variable method [51],
inverse Nyquist array method [53, 55], dyadic expansion method [56],
sequential difference method [56] and singular value decomposition
method [57].
• Modern decoupling control stage (decoupling control of nonlinear

system): adaptive decoupling control [58, 59, 60, 61, 62], variable struc-
ture decoupling control [63, 64], robust decoupling control [65, 66,
67], state feedback decoupling control [68, 69], output feedback de-
coupling control [70, 71, 72, 73, 74], energy decoupling control [75,
76, 77, 78] and modern compound decoupling control [79, 80, 81].
• Intelligent decoupling control stage: neural network decoupling con-

trol [82, 83, 84, 85, 86] and fuzzy decoupling control [87, 88, 89, 90].
• Advanced intelligent compound decoupling control stage: compound

decoupling control which contains adaptive control, predictive con-
trol, neural network control, fuzzy control, human-simulated intelli-
gent control, genetic algorithm and so on [91, 92, 93].

In a word multi-variable system decoupling control theory is developing
however the research on the decoupling strategy is based on traditional
decoupling theory. The research results focus on the design of the decou-
pling controller and most of them come from trial-and-error method and
its optimization. Consequently the research on the theory of decoupling
stability and convergence is not yet perfect. Furthermore most of the appli-
cation results of decoupling controller only can be used in lower dimension
systems. In addition many of the decoupling theory can not be applied in
engineering practices because the design method and algorithm is too com-
plicated. Hence there is still a lot of work of theory research and practical
application for researchers to do.

In MIMO electro-hydraulic servo system coupling means that the output
signal of one channel is coupled with the input signals of other channels
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while generally speaking the control signals and output signals of all the
channels will influence each other especially when many actuators connect
to the same load system. This is called load coupling which may cause in-
stability of the system. Many of the MIMO electro-hydraulic servo systems
can not be applied because of the coupling. Decoupling control is one of the
effective means to solve the problem. Most of the MIMO electro-hydraulic
servo systems have norm structure which can be called V-Norm coupling
control system proposed by Mesarovic [2, 94]. Decoupling control of this
kind of systems can be realized by diagonal matrix method.

Conclusively decoupling control of MIMO electro-hydraulic servo systems
is worth studying. Although research results of MIMO systems are not as
deep and wide as that of SISO systems, the application of MIMO electro-
hydraulic servo systems is wider and the control requirements are higher
than before consequently research on decoupling control of MIMO sys-
tems has caused the extensive concern and many research results have
been obtained. The development of decoupling control strategy of MIMO
electro-hydraulic servo systems is briefly described in the following.

2.2.1. Classical Decoupling Control Strategy

The classical control theory represented by PID control strategy are also ap-
plied widely in MIMO electro-hydraulic servo systems. In addition modern
control strategy and artificial intelligence control strategy get experiences
from PID control. Similarly PID control of MIMO electro-hydraulic servo
systems is also based on the linear combination of current, past and future
information of system error and it has many advantages such as simple
structure and algorithm. However PID decoupling control can not coor-
dinate the contradiction between rapidity and stability of the system and
moreover it does not have ideal robustness against parameters variation
and external disturbances because of the linear time-invariant composite
structure of system error. Since the requirements on the system perfor-
mance become higher and higher, traditional PID decoupling control can
not meet the demands. Consequently by using the methods from adap-
tive control, fuzzy control and intelligent control engineers can develop
adaptive PID decoupling control, fuzzy PID decoupling control, intelligent
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PID decoupling control and nonlinear PID decoupling control with com-
puter technology so as to meet the new decoupling control requirements
of MIMO electro-hydraulic servo systems.

2.2.2. Modern Decoupling Control Strategy

(1) Feedforward/Feedback Decoupling Control

Aiming at the cross-coupling effects of two-axis hydraulic manipulator,
Tochizawa and Edge propose the control strategy of disturbance observer
(DO) and compare it with PI controller [95]. In designing the disturbance
observer, they treat the cross-coupling of two-axis hydraulic manipulator
as disturbances and design the controller for each axis respectively. For
small inertial load the performance of disturbance observer is as the same
as that of PI controller while for the big inertial load the performance of
disturbance observer is better than that of PI controller.

In [96] decoupling of the electro-hydraulic multi-variable position coupling
system is designed and experimented using diagonal matrix method. The
feedback decoupling and feedback complete decoupling schemes are ap-
plied respectively to eliminate the effects of structure coupling and outside
disturbance force on the decoupling control. The results show that it has
distinct decoupling effect. This method can be realized only with position
value of two hydraulic cylinder piston, so that the algorithm is simple and
easy to be applied in engineering. Nevertheless it is impossible to realize
the exact decoupling because the decoupling unit structure is complicated.
Furthermore there are errors in the system model hence only approximate
decoupling can be realized. However the coupling effects are reduced obvi-
ously when this approximate decoupling method is applied consequently
it has practical application value.

Hydraulic loading system with secondary regulation is designed based on
secondary regulation technique including two parts, rotational speed con-
trol and torque control, which are connected stiffly and coupled heavily
with each other. In [97], the operational principle is analyzed in detail and
the coupled phenomenon in the system is studied, meanwhile, decoupling
of the system is carried out and the results are effective through simulation.
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The facts demonstrate that the coupled phenomenon in the system can be
eliminated by using decoupling method.

In [98] the problem of compensating cross-linking disturbance and load
change of multi-variable electro-hydraulic servo system is researched.

In [99] they complete the theoretical research on the coupled load in rolling
mill and the dissolution of interference which provides the theory basis for
further study on decoupling control of multi-variable hydraulic systems.

In [100] the influence of hydraulic and mechanical coupling on control
property is analyzed in the secondary regulation load-simulation test equip-
ment for the drive axle of heavy vehicle. Simulation results show that dis-
turbance error caused by mechanical coupling between the speed control
subsystem to simulate the drive and the torque control subsystem to sim-
ulate the loads on the secondary axle and wheel edges are comparatively
large and may obviously decrease the control accuracy of the whole system.
Certain decoupling control elements can be installed to the system so as to
make each subsystem almost independent of each other, realize decoupling
of secondary regulation load-simulation system, eliminate deteriorating ef-
fect of coupling and finally significantly improve control property. The de-
coupling strategy proposed provides an efficient way to realize decoupling
control of the secondary regulation load simulation test equipment and to
enhance its performance.

In [101], a position decoupling control strategy of electro-hydraulic servo
drive system based on feedforward and feedback decoupling control is
proposed and applied in the hydraulic servo control system of B2 and A340
Aircrafts and the results are satisfactory.

In [102] a novel decoupling control method is presented for multi-variable
electric-hydraulic servo system. It uses only output and input signals for
feedforward and feedback complex decoupling control so that the com-
plete decoupling and poles assignment of the closed-loop system can be
realized for the electric-hydraulic servo system which is a minimum phase
nonlinear system. The simulation and experimental results show that the
decoupling control strategy is satisfactory.

(2) Adaptive Decoupling Control
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In the process of designing decoupling control system, if some parame-
ters or some parts of the structure of the system are unknown researchers
have to estimate the unknown parameters and at the same time modify
the decoupling control parameters. This method is called adaptive decou-
pling control strategy. Adaptive decoupling control strategy can be divided
into two types: self tuning decoupling control (STDC) and model reference
adaptive decoupling control (MRADC). STDC need a long time for on-
line system parameters identification hence it is suitable for systems which
have slowly time-varying parameters. However it can not be applied in the
coupling electro-hydraulic systems with parameter jump and sudden ex-
ternal disturbance. Consequently in most cases engineers use MRADC or
its variant in electro-hydraulic servo systems. One of the disadvantages of
adaptive decoupling control strategy is that it has strict requirements on the
mathematical models of the controlled system. In addition the robustness
of adaptive decoupling control is not ideal.

Aiming at the hydraulic servo system of CNC pipe bending machines, in
[103] Zhu applies time series modeling method, decoupling control theory
and self-tuning control principle, and then analyzes the modeling and con-
trol strategy of multi-variable electro-hydraulic servo systems. He builds
the low order mathematical model of the system and furthermore changes
the system from a multi-variable coupling electro-hydraulic servo system
to several single-variable systems which can track the reference signals and
will not interfere with each other.

In [104] a novel control algorithm is developed in connection with the con-
trol of nonlinear multi-variable electro-hydraulic servo system. The new
control scheme is a combination of generalized minimum variance adaptive
control, predictive control and model reference control. Using this scheme,
it is not necessary to identify the model of nonlinear factors. Hence it is
rapid in calculation and is applicable to a quick response system. Digital
simulation and real-time control showed that it acquires good results in
overcoming the bad influence of nonlinear factors such as saturation, dead
zone and hysteresis.

(3) Sliding Mode Variable Structure Decoupling Control

Three-axis hydraulic simulator has the characteristics of moment coupling
among frames, complex friction moment disturbance and system param-

23



2. Literature Review

eter perturbation. In [105] they propose to equal the term of coupling to
outer disturbance, and use the dynamic full-order sliding mode variable
structure controller with integral compensation to make three-axis move
within their own sliding modes and realize the aim of decoupling and
robust to disturbance and parameter perturbation. Simulation and experi-
mental results show that the proposed approach has a quite accuracy servo-
tracking result.

(4) Robust Decoupling Control

Generally speaking the model of multi-variable system may have uncertain
factors, however researchers still hope that the control system has excellent
performance consequently they need robust decoupling control strategy.
There are a lot of uncertain factors in multi-variable electro-hydraulic servo
systems and furthermore unmodeled dynamics also exist. In recent years
many robust control strategies for uncertain factors are proposed [106].
These strategies require that the upper bound of H∞ mode of frequency re-
sponse function is extreme small. They apply classical function theory and
operator theory successfully and thus they solve the stabilizing compensa-
tion problems of multi-variable time-invariant systems with the limitation
of H∞ mode. H∞ method has the advantages of state space method in
calculation and moreover has the intuitional feature of frequency method.
In addition, the design of controller can be completed in MATLAB. Nev-
ertheless the problem can not be solved if it is not a small disturbance
problem.

Based on the decoupling theory of state feedback, a design method is
presented for the decoupling robust controller with state feedback [69].
The proposed control strategy can be effectively used to control more-link
robot.

2.2.3. Intelligent Decoupling Control

Fuzzy decoupling control is suitable for the system of which the controlled
parameters and their relationship can not be described accurately. Fuzzy
decoupling control has excellent robustness while its control precision is
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not ideal. Hence researchers have to modify the strategy rationally so as to
apply it in electro-hydraulic servo systems.

Neural network decoupling control works by imitating the working prin-
ciple of sense organs and brain cells of human. It can receive, process and
output mass data simultaneously. In the system the hardware is used to
imitate the network of the neurons while the software imitate the working
mode of the neurons. One of the advantages is that the system can pro-
cess complex problem rapidly however the neural network need learning
and training before processing some problem. Furthermore the neural net-
work is a self-learning system. Nevertheless research on neural network
decoupling control succeeds only in simulation and moreover convergence
of the learning algorithm and stability of the whole system remains to be
improved.

In [107] they research on the neural network adaptive control strategy of
MIMO electro-hydraulic servo system. Firstly they decouple the MIMO
electro-hydraulic servo system into two subsystems: the position control
system of the driving hydraulic cylinder and the force control system of
the load hydraulic cylinder so as to solve the decoupling problem of system
position and system force. Secondly they use a linear second-order transfer
function as the system reference model so as to complete off-line training of
neural network. The performance index of the integral square error verifies
the validation of the decoupling control strategy and further shows that the
method is better than PID control with fixed gain. However the tracking
performance of the system is not ideal when the reference signal is in high
frequency range.

2.2.4. Intelligent Compound Decoupling Control

In [108] a compound control strategy of main controller combined with
fuzzy controller based on wavelet transform is proposed and applied in
the multi-variable control of electro-hydraulic servo system. The main con-
troller is composed of neural network which contains PID control rules and
it plays a leading role in the whole system. The fuzzy controller is used to
realize compensation control so as to ensure rapid response performance of
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the system. The main aim is to eliminate the mutual interference between
the different closed-loops of the system and the influence of load variation
and external disturbance so as to improve the precision and robustness of
self-learning and adaptive decoupling control of the system.

Aiming at the control problems of multi-variable system which is time
varying and has strong coupling, Liu, Yi and Tong propose a new type of
neural network [109]: PID neural network which is different from the PID
control system. To be specific the parameters of the PID controller can be
selected and modified by neural network. PID neural network is a kind
of feed-forward multilayered neural network which can select the input-
output function of neurons in hidden layer according to the PID control
rules so as to make them become proportion, integral and differential parts
respectively. Furthermore it can complete connection weight initialization
of the neural network based on PID control rules so as to stabilize the initial
state of the system and improve the convergence rate of learning algorithm.
Moreover it is not necessary to measure or identify the internal structure
or parameters of the controlled objects when engineers use the PID neural
network controller. In addition the PID neural network can complete a lot
of work such as self-learning, parallel calculation, tuning network weight
and decoupling control of the system by measuring the reference signal
and output signal of the system so as to improve the static and dynamic
performance of the multi-variable system which is time varying and has
strong coupling.

Overall, the control problems of MIMO electro-hydraulic servo systems
contain the control problems of both MIMO systems and SISO systems
which means that researchers have to solve both the decoupling problems
of the MIMO systems and the control problems of each decoupled SISO
system. Particularly An effective comprehensive control scheme of MIMO
electro-hydraulic servo systems has important theoretical and practical sig-
nificance.
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2.3. Control Strategies of Commercial Products

Although studies on the control strategies of electro-hydraulic servo sys-
tems have made progress, many of the research results have strict restrict
conditions which means that they can be applied only in laboratory. How-
ever the reason why researchers do the research on the control strategies
of electro-hydraulic servo systems is that they want to apply them in the
practical projects rather than laboratory. When a control strategy can be
applied in the practical industrial fields widely it will become a commer-
cial product. The development situation of control strategies of commercial
products will be described as follows.

2.3.1. Null Pacing

Null pacing ensures that desired levels are reached on initial cycle without
over-programming. There are two types of null pacing: static null pacing
and dynamic null pacing [110].

(1) Static Null Pacing

If the error is too large, static null pacing holds the command at its seg-
ment boundaries, allowing the sensor feedback more time to reach its tar-
get peak. As the error comes within the user-specified error tolerance, static
null pacing resumes the command.

Figure 2.2.: Static Null Pacing [110]
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(2) Dynamic Null Pacing

If the error is too large, dynamic null pacing reduces the command fre-
quency allowing the sensor feedback more time to track the command.
The frequency decreases until either of the following occurs:

• The error comes within the user-specified error tolerance, at which
time the command frequency starts increasing towards the command
frequency.
• The frequency decreases to the minimum frequency value (20% of

the original frequency). The command is then held at this frequency
as long as the error remains out of tolerance. This condition is also
known as low cycle.

Figure 2.3.: Dynamic Null Pacing [110]

2.3.2. Peak Valley Control

Peak valley control (PVC) adapts as specimen compliance changes to en-
sure peaks and valleys are maintained for any constant amplitude periodic
waveform. The algorithm is described as follows [110]:

• PVC boosts the command amplitude if roll-off is detected.
• PVC adjusts the commanded mean level if mean level divergence is

detected.
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Figure 2.4.: Peak Valley Control [110]

2.3.3. Amplitude Phase Control

Amplitude phase control (APC) monitors feedback from sine and sine ta-
pered commands for amplitude roll-off and phase lag. APC works well
when engineers need to control the amplitude of the fundamental fre-
quency component. However if engineers want to achieve peaks, partic-
ularly if the feedback is distorted, using APC is not a good choice. The
algorithm is described in the following [110]:

• APC boosts the command amplitude if roll-off is detected.
• APC alters the command phase if phase lag is detected.

2.3.4. Adaptive Inverse Control

Adaptive inverse control (AIC) is a linear compensation technique that au-
tomatically adjusts a compensation filter that filters the command signal to

29



2. Literature Review

achieve the desired response signal. AIC is an effective digital control tech-
nique for improving tracking accuracy in mainly linear servo hydraulic test
systems. AIC can be applied to any waveform, including random profiles
or remote parameter control (RPC) time history files in linear systems.

The presence of dynamics in a test system can result in large tracking er-
rors, especially at higher frequencies. The AIC compensator identifies these
dynamics and actively adjusts an inverse-dynamics compensation filter be-
tween the function generator and the test system. This active adjustment
pre-corrects the command signal for system dynamics, resulting in optimal
tracking [110].

Figure 2.5.: Adaptive Inverse Control [110]

2.3.5. Arbitrary End Level Control

Arbitrary end level control (ALC) can adapt for linear or nonlinear spec-
imens with periodic or random waveforms. ALC is an adaptive compen-
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sation technique that improves the tracking accuracy of spectrum profiles.
This technique is also known as “From-To Matrix Compensation”.

ALC compensates for peak and valley errors by building and continually
updating a matrix of amplitude compensation factors. The matrix is two-
dimensional, with axes mapped to either plus or minus full scale of a sub
range of full scale. Each axis is divided into 16, 32 or 64 equal parts, with
each part representing a fraction of the defined range. The horizontal axis
is labeled “From Level” and the vertical axis is labeled “To Level”. With
each pass of the spectrum, the peak/valley errors are calculated, and an
estimated compensation factor is stored in the matrix. Before the command
generator generates a new segment, it notes the required “From” and “To”
levels, and refers to the matrix to determine how much to over-program
the segment [110].

Figure 2.6.: Arbitrary End Level Control [110]

2.3.6. Peak Valley Phase Control

Peak valley phase control (PVP) adapts for phase as well amplitude for
multi-channel cyclic tests. PVP can correct for phase even with distorted
waveforms. The PVP compensator combines amplitude phase compensa-
tion (APC) with peak valley compensation (PVC) algorithms to improve
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the amplitude and phase tracking of the command and sensor feedback.
The advantages of this technique are [110]:

• PVP compensates for phase error, unlike PVC.
• PVP provides good amplitude tracking on nonlinear specimens, un-

like APC.

However the PVP compensator may have difficulty compensating com-
mand waveforms below 0.5 Hz.

The PVP is a phase compensator cascading into a peak valley compensator.
The phase algorithm is similar to the one used by APC. The peak/valley
algorithm is identical to the one used by PVC.

Figure 2.7.: Peak Valley Phase Control [110]

2.3.7. Motion Isolated Load Control

Motion isolated load control allows actuators which are acting typically
in load control to achieve high levels of control accuracy when connected
to a test piece which is subject to an external motion. This is achieved
by feeding forward in the control loop, information which describes the
external motion in terms of acceleration and velocity [111].
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2.3.8. Modal Control

Modal control allows the direct control of user defined motions such as for
example X, Y and Z pitch roll and yaw in the case of a multi-axis shake
table [111]. Feedback cross-compensation allows virtual transducers to be
defined from a combination of up to four real transducers. Servo valve
cross compensation allows the drive for a servo valve to be compensated
by the output from up to four other control channels. Both these features
can be activated independently, but when they are used in combination,
full modal control is achieved. As well as allowing the user direct control
of deterministic command signals, modal control allows each of the vir-
tual control loops to be independently tuned, providing increased control
bandwidth.

In addition, servo valve cross compensation can be used to provide geo-
metric compensation on a test rig by enabling the servo valve drive on one
axis to be modified in sympathy with sensor information from other axes
in accordance with a pre-defined compensation equation.

2.3.9. High Order Control

In addition to a conventional control loop, some products provide cascade
control and a notch filter. These have the capability to achieve a much
higher level of control particularly in cases where backlash or resonances
are present. The inner controlled variable is (normally position), provides a
robust control loop. The outer controller (normally load) contains a parallel
PIDF control loop and a notch filter to compensate for system resonances.
Using these techniques the control bandwidth is significantly increased and
the control loop is more stable and less sensitive to changes in the dynamic
behaviour of the test piece [111].

2.3.10. Delta-P Gain Control

The delta-P gain control is used with two pressure transducers, or a differ-
ential pressure transducer and an additional DC conditioner card to form
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an inner feedback loop. The delta-P gain inner feedback loop is often used
with compliant systems (i.e. not stiff, vibration systems with large mass,
and or long thin actuator) to increase stability. Delta-P gain stabilization
measures the hydraulic oil pressure difference in both chambers of the ac-
tuator by a differential pressure transducer, then feeds this signal back into
the control loop. By setting up the appropriate phase and gain the signal
will stabilize displacement control in the control loop by offsetting the AC
feedback [112].

Figure 2.8.: Delta-P Gain Control [112]

2.3.11. New Types of PID Control

A combined stroke-force control method, called PIDM for mixed control,
is provided by Walter and Bai AG [113]. In this mode stroke is being con-
trolled but the force is kept within user supplied limits. As the force in-
creases the system switches over softly from stroke to force control. This is
particularly useful when setting up delicate samples. The PIDM strategy is
fully parameterized.
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Furthermore the company provide the system which is equipped with two
PID based peak control algorithms. A peak controller is an adaptive strat-
egy to ensure that peak values of a periodic output function remain con-
stant and reach the desired value. This is extremely helpful in cases where
a periodic output function suffers from severe distortions, for example due
to disturbance from the mechanical setup or when the probe changes its
state and hence its behaviour during the test. A conventional PID con-
troller fails under such circumstances. The self-adjusting peak controllers
can cope with such situations very well. In the background they constantly
measure the transfer behaviour of the entire control loop. Based on the re-
sults they are able to automatically improve the control performance. There
are two typical scenarios for using these algorithms:

• During an initial training phase the controller quickly adjusts its in-
ternal states. At the end of the training the states are freezed. From
then on the optimized controller is ready for testing.
• Testing starts with a neutral or conservative initial setup of the adap-

tive states. During the test the adaptive controller softly adjusts its
internal states to optimize the total performance. When the probe or
some other component within the control loop starts to change its be-
havior the adaptive controller follows and compensates for the drift.
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3. System Modeling and
Identification

A system is a set of elements which have specific function and are mutually
related and influenced. Control system is one of the typical systems in engi-
neering. In control theory, system simulation is one of the important means
to research on control system and system model is the direct object of sim-
ulation research. System model is an abstraction of the practical system
and describes the essential property or other characteristics of the system.
System model can be divided into entity model and mathematical model.
The entity model is also called physical effect model which is built ac-
cording to the similarity principle. The mathematical model includes origi-
nal mathematical model and simulation mathematical model. The original
mathematical model is the original mathematical description of the sys-
tem while the simulation mathematical model is such a model that can be
applied in computer. To be specific the simulation mathematical model is
transformed from the original mathematical model by researchers accord-
ing to the operation characteristics, simulation mode, calculation method
and precision requirement of the computer. The mathematical model can
be divided into a lot of types. For instance it can be divided into dynamic
system model and static system model according to the system state. Fur-
thermore the dynamic system model includes continuous system model
and discrete system model.

Especially according to how much system information one can achieve, the
system model can be divided into white box model, grey box model and
black box model. If one can obtain all the system information, the white
box model can be built while if one can only know part of the system
information, the grey box model can be built. A black box model means
that one can know little information about the system. Grey box model
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and black box model can not be applied in simulation directly hence re-
searchers need system identification to help them achieve a determined
system model which is accurate enough.

System identification is a kind of theory and method to build the mathe-
matical model of the system based on the input-output data of the system
while in essence system identification is a type of optimization problem.
The basic idea of the commonly used identification algorithm is to build
the parameter model of the system so that the problem of system identifi-
cation is converted to the problem of parameter estimation.

Particularly aiming at the electro-hydraulic servo system one can derive
the mathematical model structure of the system based on the hydraulic
equation and mechanical principle however there are some variables which
can not be measured directly in the system therefore it is difficult to obtain
the exact values of some parameters of the system model based merely on
theory and experiences. One of the direct and effective methods is to apply
proper identification algorithm according to the model structure so as to
estimate the values of the system parameters accurately.

Hence in this chapter firstly the position control model of the electro-
hydraulic servo system is built with some parameters unknown and then
system identification is made with Matlab to estimate these unknown pa-
rameters so as to achieve the accurate mathematical models of the practical
electro-hydraulic servo position control systems. Furthermore the contri-
butions of this chapter are as follows:

• introducing a simple linear friction model into modeling of valve-
controlled cylinder with friction which is not negligible so that the
dynamic performance of friction can be described by a simple system
model;
• developing a novel system identification method so that the model

with unknown initial parameters can also be identified accurately.
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3.1. System Modeling

A typical test rig with electro-hydraulic servo system is an integrated sys-
tem composed of controller, process, sensor and the assisting components
such as cabling, mechanical connections and so on where the process in-
cludes the cylinder, the servo valve and/or the unit under test (UUT). Fig-
ure 3.1 is one of the test rigs with electro-hydraulic servo system used in
our laboratory. The controller compares the reference signal and system
output signal and then calculates the control signal which is sent to the
servo valve. The servo valve can accurately control the cylinder. With the
position sensor and the force sensor the system can realize precise position
control and force control respectively so that fatigue test of the UUT can be
completed. Furthermore Figure 3.2 describes the control structure diagram
of the test rig which uses closed-loop feedback control.

To build an accurate model of the valve-controlled cylinder system which
can be applied in simulation one should derive the model of the cylinder,
the servo valve and the sensor respectively. Especially in our laboratory
only the double-acting double-rod cylinders are used. These cylinders can
be divided into two types: the cylinders with hydrostatic bearing and the
cylinders with bearing strip. The friction of the former is negligible while
the friction of the latter is non-negligible. Hence when researchers want to
build the model of the system which applies the cylinder with touching
sealing, they have to build the friction model. Finally these sub-system
descriptions can be combined to obtain the overall model of the system.

3.1.1. Modeling of Cylinder

Figure 3.3 describes the structure of the valve-controlled cylinder system
composed of a four-way valve, a double-rod cylinder and a UUT. To build
the model for this valve-controlled cylinder of the electro-hydraulic servo
position control system three basic equations are necessary: the pressure-
flow equation of the control valve, the continuity equation of fluid and the
pressure-load equation.
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Figure 3.1.: Real World Test Rig with Electro-Hydraulic Servo System

Figure 3.2.: Control Structure Diagram of Test Rig Using Closed-Loop Feedback Control
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Figure 3.3.: Structure of Valve-Controlled Cylinder System [2]

3.1.1.1. Pressure-Flow Equation of the Control Valve

Before deriving the pressure-flow equation, several assumptions are made:

• The ideal constant pressure source is used which means that the sup-
ply pressure ps is constant. In addition it is assumed that the return
pressure pr is zero. If pr is not zero then ps is treated as the pressure
difference between the supply pressure and the return pressure.
• The pressure loss in the pipes and valve chambers can be ignored

because it is much smaller than the throttle loss at the valve ports.
• The flow coefficients at each valve port are the same.
• The ideal critically centered four-way spool valve will be used which

means that when the valve spool is centered all the four ports will be
closed.

41



3. System Modeling and Identification

When the valve spool moves to the right then the displacement of the valve
spool xv > 0 and one can have:

q1 = Cvxv

√
2
ρ
(ps − p1) (3.1)

q2 = Cvxv

√
2
ρ

p2 (3.2)

with

Cv the flow coefficient,

ρ the density of the oil,

q1 the flow of the inlet oil chamber of the cylinder,

q2 the flow of the outlet oil chamber of the cylinder,

p1 the pressure of the inlet oil chamber of the cylinder, and

p2 the pressure of the outlet oil chamber of the cylinder.

If xv remains constant, the cylinder piston will move with a steady speed.
Since the symmetrical hydraulic cylinder is used, one can have q1 = q2 and
furthermore one can get

ps = p1 + p2. (3.3)

In the dynamic process one can have ∆p1 ≈ −∆p2 because of the structural
symmetry thus Eq. (3.3) still keeps true. The load pressure pl is defined
as

pl = p1 − p2 (3.4)

hence one can get

p1 =
1
2
(ps + pl) (3.5)

p2 =
1
2
(ps − pl). (3.6)
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Substituting Eq. (3.5) into Eq.(3.1) and Eq. (3.6) into Eq. (3.2) yields the load
flow ql as

ql = q1 = q2 = Cvxv

√
1
ρ
(ps − pl). (3.7)

When the valve spool moves to the left then xv < 0 and Eq. (3.1) becomes

q1 = Cvxv

√
2
ρ

pl. (3.8)

Substituting Eq. (3.5) into Eq.(3.8) yields

ql = q1 = q2 = Cvxv

√
1
ρ
(ps + pl). (3.9)

According to Eq. (3.7) and Eq. (3.9) the load flow ql is given by

ql = Cvxv

√
1
ρ
[ps − sign(xv)pl] (3.10)

where sign(xv) =


1 (xv > 0)

0 (xv = 0)

−1 (xv < 0)

.

Eq. (3.10) is the pressure-flow equation of the electro-hydraulic servo valve.

3.1.1.2. Continuity Equation of Fluid of the Cylinder

Before deriving the continuity equation of fluid, several assumptions are
made:

• The pipes which connect the servo valve and the cylinder are short,
thick and symmetrical.
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• The pressure loss in the pipes can be ignored.
• The temperature and bulk modulus of the oil keeps constant.
• The internal and external leakage of the cylinder is laminar flow.

The flow q1 of the inlet oil chamber of the cylinder is given by

q1 = A
dxp

dt
+ Cip(p1 − p2) + Cep p1 +

V1

Ko

dp1

dt
(3.11)

with

A the piston working area of the cylinder,

xp the displacement of the piston rod of the cylinder,

Cip the internal leakage coefficient,

Cep the external leakage coefficient,

Ko the bulk modulus of oil, and

V1 the volume of oil in the inlet cylinder chamber, pipes and servo

valve.

Similarly the flow q2 of the outlet oil chamber of the cylinder can be written
as

q2 = A
dxp

dt
+ Cip(p1 − p2)− Cep p2 −

V2

Ko

dp2

dt
(3.12)

where V2 is the volume of oil in the outlet cylinder chamber, pipes and
servo valve.

In Eq. (3.11) and Eq. (3.12), the first part on the right side of the equal sign
is the flow which propels the cylinder piston, the second part is the flow
of the internal leakage which passes through the piston sealing, the third
part is the flow of the external leakage which passes through the piston
rod sealing and the fourth part is the flow caused by oil compression and
chambers transformation.

The volume of the working chambers of the cylinder is given by

V1 = V01 + Axp (3.13)
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V2 = V02 + Axp (3.14)

with

V01 the initial volume of the inlet oil chamber, and

V02 the initial volume of the outlet oil chamber.

According to Eq. (3.11), Eq. (3.12), Eq. (3.13) and Eq. (3.14) one can derive
the continuity equation of fluid as

ql =
q1 + q2

2

= A
dxp

dt
+ Cip(p1 − p2) +

Cep

2
(p1 − p2)

+
1

2Ko
(V01

dp1

dt
−V02

dp2

dt
) +

Axp

2Ko
(

dp1

dt
+

dp2

dt
). (3.15)

In Eq. (3.11) and Eq. (3.12) the flow of the external leakage Cep p1 and Cep p2
is so small that it can be ignored. Furthermore if the flow of compression
V1
Ko

dp1
dt is equal to −V2

Ko

dp2
dt then q1 = q2. In addition it is assumed that the

servo valve is symmetrical hence the flow which passes through the throttle
1 is equal to that passes through the throttle 2. Consequently ps = p1 + p2
is approximately valid in the dynamic process. Since pl = p1 − p2 one can
have p1 = 1

2(ps + pl) and p2 = 1
2(ps − pl). Thus one can obtain

dp1

dt
=

1
2

dpl
dt

= −dp2

dt
. (3.16)

To make sure that the flow of compression is the same, the initial volume
V01 should be equal to V02 which means

V01 = V02 = V0 =
1
2

Vt (3.17)

where V0 is the volume of each working chamber when the piston is in the
middle position and Vt is the total volume of the cylinder chambers.
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When the piston is in the middle position, the influence of the oil compres-
sion is the largest, the natural frequency of the hydraulic components is the
lowest and the damping ratio is the smallest. Hence the stability of the sys-
tem is the worst. Consequently when researchers analyze the system they
should choose the middle position as the initial position of the piston.

Since Axp � V0 and dp1
dt + dp2

dt ≈ 0, Eq. (3.15) can be reduced to

ql = A
dxp

dt
+ Ctp pl +

Vt

4Ko

dpl
dt

(3.18)

where Ctp is the total leakage coefficient of the cylinder, Ctp = Cip +
Cep
2 .

Eq. (3.18) is the continuity equation of fluid of the cylinder. The first part
on the right side of the equal sign is the flow which propels the cylinder
piston, the second part is the flow of total leakage and the third part is the
flow caused by oil compression and chambers transformation.

3.1.1.3. Pressure-Load Equation

The dynamic characteristics of the hydraulic components are influenced
by the load characteristics. The load force contains inertia force, kinetic
damping force, elastic force and any external load force.

The pressure-load equation is given by

Apl = mt
d2xp

dt2 + Bp
dxp

dt
+ Kxp + Fl (3.19)

with

mt the mass (including piston and piston rod),

Bp the kinetic damping coefficient,

K the spring stiffness, and

Fl the external load force.
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Now the three important equations have been derived: the pressure-flow
equation of the control valve which is given by Eq. (3.10), the continu-
ity equation of fluid of the cylinder which is given by Eq. (3.18) and the
pressure-load equation which is given by Eq. (3.19). In Eq. (3.10) ql has
a nonlinear relationship with xv and pl therefore one has to linearize the
equation. The exact linearization method will be introduced in Chapter 4

while in this section the approximate linearization method based on Taylor
series is used thus Eq. (3.10) can be linearized as [114]:

ql = Kqxv − Kc pl (3.20)

where Kq is the flow gain and Kc is the flow-pressure coefficient.

Applying Laplace transform to Eq. (3.20), Eq. (3.18) and Eq. (3.19) one can
obtain:

Ql = KqXv − KcPl, (3.21)

Ql = AsXp + (Ctp +
Vt

4Ko
s)Pl, (3.22)

APl = mts2Xp + BpsXp + KXp + Fl. (3.23)

Furthermore in position control it can be assumed that Fl = 0. In this case
by combining Eq. (3.21), Eq. (3.22) and Eq. (3.23) one can derive the open
loop transfer function of the cylinder in position control system without
friction as:

Xp(s)
Q0(s)

=
1
A

Vtmt
4Ko A2 s3 + (mtKce

A2 +
BpVt

4Ko A2 )s2 + (1 + BpKce
A2 + KVt

4Ko A2 )s +
KKce
A2

(3.24)

where Xp(s) is the Laplace transform of the displacement signal of the
piston rod, Q0(s) is the Laplace transform of the no-load flow signal of the
servo valve and Kce = Kc + Ctp.

Considering that in position control spring stiffness is negligible i.e. K = 0
and Matlab will be applied to complete system identification, Eq. (3.24) is
simplified to

Xp(s)
Q0(s)

=
1
A

s( s2

ω2
h
+ 2ξh

ωh
s + 1)

(3.25)

where ωh is the natural frequency and ξh is the damping ratio.
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3.1.2. Modeling of Friction

Eq. (3.25) is the open loop transfer function of the cylinder with hydrostatic
bearing however when researchers use the cylinder with bearing strip they
have to consider the influence of friction i.e. they should build a proper
friction model. There are a lot of friction models nevertheless engineers
should apply the friction model which is as simple as possible so that it is
applicable in engineering. In our paper [114] we introduce a simple friction
model which is described by

Ff = B f
dxp

dt
(3.26)

where Ff is the friction force and B f is the friction coefficient.

Thus the friction can be treated as part of the system damping consequently
Eq. (3.25) can also be the open loop transfer function of the cylinder with
bearing strip.

3.1.3. Modeling of Servo Valve

Generally speaking servo valve is a complex system since several parame-
ters may only be estimated within some (wide) range, or even completely
unknown. According to engineering practice servo valve can be described
as a second order system

Xv(s)
I(s)

=
Ksc

s2

ω2
sv
+ 2ξsv

ωsv
s + 1

(3.27)

where I is the input (current), Xv is the output (spool displacement of servo
valve), Ksc is the gain of servo valve, ωsv is the natural frequency and ξsv is
the damping ratio.

Sometimes servo valve can also be described as a first order system

Xv(s)
I(s)

=
Ksc

s
ωsv

+ 1
. (3.28)
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Especially in fatigue test engineers often use low frequency signal as the
reference signal thus the dynamic characteristics of servo valve can be ig-
nored hence it can be treated as a proportional part

xv = Ksc × i. (3.29)

In this chapter the G761 series of servo valves from MOOG company will
be used. According to the datasheet [115] of the servo valve a first order
model can describe the dynamic characteristics of the servo valve com-
pletely. Consequently the open loop transfer function of the servo valve is
given by

Q0(s)
I(s)

=
Ksv

s
ωsv

+ 1
(3.30)

where Ksv is the flow-current gain of the servo valve: Ksv = KqKsc.

3.1.4. Modeling of Position Sensor

In position control a high quality MTS Temposonics R-Series position sen-
sor is attached inside the cylinder. This sensor has a linear position mea-
surement uncertainty which is less than 0.01% and negligible. Moreover
the dynamic non-ideality for this type of position sensor is significantly
far above the bandwidth of the servo valve and the cylinder. Consequently
the sensor-amplifier system can be considered ideal and thus its open loop
transfer function reduces to

F(s) = 1. (3.31)

3.1.5. Overall Model of the Electro-Hydraulic Servo
Position Control System

The overall mathematical model of the electro-hydraulic servo position con-
trol system is achieved by combining the previously derived transfer func-
tions of the cylinder, the servo valve, the friction and the position sensor
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thus it can be written as

Xp(s)
I(s)

=
Ksv
A

s( s2

ω2
h
+ 2ξh

ωh
s + 1)( s

ωsv
+ 1)

. (3.32)

3.2. System Identification

Now the position control model of the electro-hydraulic servo system has
been built with some parameters unknown. One method to build the sim-
ulation mathematical model is to estimate the values of the unknown pa-
rameters based on measurement and experiences. Nevertheless on the one
hand some parameters of the system such as the flow-pressure coefficient
are difficult to be measured and on the other hand some parameters such
as the bulk modulus are time-varying. Consequently although the simu-
lation mathematical model estimated can describe the time domain and
frequency domain characteristics of the system to some extent, it can not
meet the requirements of controller design and stability analysis. Therefore
it is necessary to apply system identification to obtain the accurate mathe-
matical model of the electro-hydraulic servo position control system.

In this section system identification will be made for the electro-hydraulic
servo position control system using the test cylinder with hydrostatic bear-
ing and the system using the test cylinder with bearing strip respectively.

3.2.1. Experimental System Description

When engineers run the experiments to acquire data for system identifica-
tion, they connect the valve-controlled cylinder system of which the model
is derived above to a digital control system where a state-of-the-art PID
controller is implemented [116]. Thus the overall experimental system is
composed of the PID controller and the valve-controlled cylinder system as
shown in Figure 3.4. Moreover Figure 3.5 gives the photograph of the real
world experimental system which includes the PID controller, the servo
valve and the test cylinder with hydrostatic bearing and Figure 3.6 gives
the photograph of the system using the test cylinder with bearing strip.
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3.2. System Identification

Figure 3.4.: Schematic Diagram of the Experimental System for Identification

Figure 3.5.: Real World Valve-Controlled Cylinder System, Including the Cylinder with
Hydrostatic Bearing, the Servo Valve and the Controller
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Figure 3.6.: Real World Valve-Controlled Cylinder System, Including the Cylinder with
Bearing Strip, the Servo Valve and the Controller

3.2.2. Design of Reference Signal

When researchers select the reference signal for system identification they
have to ensure that within the experimental time the input-output data can
describe the dynamic characteristics of the system sufficiently i.e. the fre-
quency spectrum of the reference signal should cover that of the system
from the view of spectral analysis. In addition the selection of reference
signal should improve the precision of system identification. There are sev-
eral different types of signal which can be used as reference signal while
here two kinds of proper colored noise signals are applied as the reference
signals:

• zero mean white Gaussian noise which is filtered by a 1st order low-
pass filter with the cutoff frequency of fc = 10 Hz;
• zero mean white Gaussian noise which is filtered by a 6th order band-

pass filter with the low and high cutoff frequencies of fl = 150 Hz and
fh = 450 Hz.
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Furthermore an assumption is made that the valve-controlled cylinder sys-
tem can be considered linear so that the low frequency signal is super-
imposed on the high frequency signal for identification and verification
[114].

3.2.3. Parameter Identification with Matlab

Given the grey box model of the electro-hydraulic servo system, the initial
estimated values of unknown parameters and the input-output data from
the experiment, one can use Matlab to complete system identification to
achieve an accurate system model for controller design and system analy-
sis. The general process is described as follows [117]:

• estimating the values of the unknown parameters based on theory,
datasheet and experiences so as to provide an initial model for Mat-
lab;
• describing the initial model of the system which need to be identified

with Matlab function;
• completing system identification by using the well-known prediction

error method (PEM) provided in the System Identification Toolbox of
Matlab with the input-output data.

In this dissertation most parameters of the valve-controlled cylinder system
are unknown i.e. all the four parameters ωh, ξh, ωsv and Ksv in the over-
all mathematical model of the valve-controlled cylinder system described
by Eq. (3.32) are unknown. Therefore in the next section values of these
parameters will be estimated with system identification.

3.2.4. Results Analysis

3.2.4.1. Results Analysis of the System Using the Cylinder with
Hydrostatic Bearing

In our laboratory there is a 250kN cylinder which uses the hydrostatic
bearing i.e. the friction of the cylinder is negligible. And a MOOG G761-

53



3. System Modeling and Identification

3005 servo valve is attached to the cylinder. Based on the datasheet of the
cylinder and the servo valve and the experiences, the initial values of the
unknown parameters can be estimated so that the System Identification
Toolbox of Matlab can be used with the input-output data to obtain an
accurate mathematical model. Table 3.1 gives the comparison of the initial
values and the identified values of the unknown Parameters. Furthermore
Figure 3.7 gives the comparison of the frequency response function (FRF)
of the real valve-controlled cylinder system, the initial model and the iden-
tified model. In Figure 3.7 the red line is the power spectral density (PSD)
curve of the real system calculated with the input-output data; the green
line is the FRF of the initial system model based on the datasheet and expe-
riences and the blue line describes the FRF of the improved system model
with system identification. Observing Table 3.1 and Figure 3.7 one can find
that according to the datasheet and the experiences a system model which
describes the dynamic characteristics of the system roughly can be built
and with system identification one can greatly improve the accuracy of the
system model which is the basis of controller design and stability analy-
sis.

Table 3.1.: Comparison of the Initial Values and Identified Values of the Unknown
Parameters

Parameter Initial Value Identified Value

ωh (rad/s) 891 930.8491

ξh 0.2 0.1966

ωsv (rad/s) 500 623.35

Ksv (m3/(s ·A)) 0.02625 0.0368

To further verify the result of system identification, simulation is made
with the identified system model, the same PID controller and the same
reference signal as that used in experiment. Simulink of Matlab is used
to complete simulation and the result is given by Figure 3.8 from which
one can observe that the output displacement signal of the real system ob-
tained from measurement and the signal of the identified system model
obtained from simulation are basically in coincidence i.e. the identified
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Figure 3.7.: Comparison of the Frequency Response of the Real Valve-Controlled Cylinder
System, the Initial Model and the Identified Model

Figure 3.8.: Comparison of the Displacement Signal of the Real System Obtained from
Measurement and the Identified System Model Obtained from Simulation
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Figure 3.9.: Details of Comparison of the Displacement Signal of the Real System Ob-
tained from Measurement and the Identified System Model Obtained from
Simulation

system model can describe the dynamic characteristics of the system com-
pletely and the model accuracy is satisfying. Moreover to compare the two
different system output signals more deeply, the green rectangular region
in Figure 3.8 is zoomed in and the result is shown in Figure 3.9. According
to Figure 3.9 it is obvious that the two different system output signals fit
well while the error is mainly caused by high frequency signal. Neverthe-
less the result meets the accuracy requirements.

3.2.4.2. Results Analysis of the System Using the Cylinder with Bearing
Strip

In our laboratory there is a 40kN cylinder which uses the bearing strip i.e.
the friction of the cylinder is non-negligible. At the same time a MOOG
G761-3003 servo valve is attached to the cylinder. Since there is not any
information about the friction, it is difficult to estimate the initial values of
the unknown parameters only on the base of the datasheet and the experi-
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ences. Consequently a novel method of system identification is developed
which is called black-grey box model identification method and is intro-
duced in [114]. The main points of this method are as follows:

• calculating the PSD of the real system with the input-output data
(black box model identification);
• estimating the values of the unknown parameters based on the PSD

result, the datasheet and the experiences so as to provide an initial
system model for system identification;
• completing system identification with the System Identification Tool-

box of Matlab so as to achieve an accurate system model (grey box
model identification).

Table 3.2.: Comparison of the Initial Values and Identified Values of the Unknown
Parameters

Parameter Initial Value Identified Value

ωh (rad/s) 2000 2157.2

ξh 0.7 0.9766

ωsv (rad/s) 816.814 1005.3

Ksv (m3/(s ·A)) 0.0079167 0.0114

Table 3.2 is the comparison of the initial values and identified values of
the unknown parameters. Moreover Figure 3.10 provides a comparison of
the identified system model with the real system. The red curve describes
a plot of the frequency response of the real system obtained from input-
output data and particularly the FRF of the real system is obtained by a
non-parametric PSD estimation which can be regarded as a kind of black
box model identification process. The green curve shows the FRF of the
grey box model where the unknown parameters have been improved based
on the prior PSD result and by utilizing this model as the initial model of
the grey box model identification one can obtain an accurate mathematical
model of the valve-controlled cylinder system. The corresponding FRF es-
timation is provided by the blue curve. By comparing the three results one
can come to the conclusion that the result of black box model identification
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Figure 3.10.: Comparison of the Frequency Response of the Real Valve-Controlled Cylin-
der System, the Initial Model and the Identified Model

Figure 3.11.: Comparison of the Displacement Signal of the Real System Obtained from
Measurement and the Identified System Model Obtained from Simulation
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Figure 3.12.: Details of Comparison of the Displacement Signal of the Real System Ob-
tained from Measurement and the Identified System Model Obtained from
Simulation

(PSD) can improve the accuracy of the theoretical model which is then ap-
plicable as the initial model of the grey box model identification so as to
achieve the mathematic model of the electro-hydraulic servo system which
meets the requirements of precision.

Likewise to further test the result of system identification simulation is
made once more in Simulink with the identified system model, the same
PID controller and the same reference signal as that used in experiment.
Figure 3.11 describes the output displacement signal measured from the
experiment, to be compared with the signal obtained from the simulation.
It is very obvious that the waveform of the simulated system output sig-
nal is close to that of the measured output signal which shows a nearly
perfect agreement between identified model and practical system also for
a comparison based on the time series. Additionally to compare the two
different system output signals more deeply, the green rectangular region
in Figure 3.11 is zoomed in and the result is shown in Figure 3.12. Accord-
ing to Figure 3.12 it is clear that the two different system output signals fit
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well while the error is mainly caused by high frequency signal and friction.
However the result satisfies the precision requirements.

3.3. Summary

In this chapter the position control model of electro-hydraulic servo sys-
tem is built based on the characteristics of the hydraulic components and
dynamic equations of the valve-controlled cylinder system. Particularly a
simple friction model is proposed for practical applications. And then since
some parameters of the model are unknown, the values of these parameters
are estimated with system identification. Especially a novel identification
method called black-grey box model identification method is presented.
This method is useful when the initial values of the unknown parameters
of the model are difficult to achieve for system identification. Additionally
the force control model of electro-hydraulic servo system can also be built
and identified with the same methods. Finally the effectiveness of the sys-
tem modeling and identification methods is verified by the experimental
results.
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4.1. Introduction

It is well known that the majority of the control systems in engineering
are nonlinear. The traditional analysis and control method of nonlinear
system is to linearize the system approximately with Taylor Series and
then research into the system with linear control theory. The accuracy of
this linearization method depends on the working point and the range in
which the system deviate from the working point. However this lineariza-
tion method cannot provide effective system model for system analysis
and control when the system is strongly nonlinear and has large variation
range. When researchers design controller based on the approximately lin-
earized model, the control effect is not satisfying. Particularly there are
many nonlinear factors in fatigue test rigs with electro-hydraulic servo sys-
tems. These nonlinear factors influence the control precision greatly while
the requirements of fatigue tests on control accuracy becomes higher and
higher. Consequently to build the new system of exact linearization theory
is necessary.

The differential geometric method which can be applied in the analysis and
control of nonlinear system originates in the 1970s. It uses the differential
manifold theory to realize exact linearization of nonlinear system by con-
structing the diffeomorphism transform [118] and feedback transform. The
advantages of this exact linearization are as follows [119]:

• The method does not have errors in theory and is always effective in
the linearizable region hence it is called exact linearization method.
• The linearizable region is large enough even if engineers only use

local linearization therefore the result from local linearization can be
treated as global result in engineering.
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Consequently great attention has been paid to this problem how to realize
exact linearization of nonlinear control system based on differential geo-
metric method in both of theory and engineering in recent years. At present
the differential geometric theory of nonlinear control system preliminarily
forms and becomes a new branch of control theory. In this chapter first
the development of nonlinear control theory is introduced, then the basic
concepts of nonlinear control theory, the design principles of the nonlin-
ear controller and the disturbance decoupling and attenuation theory are
discussed, which lays a foundation of further application of differential
geometric method in electro-hydraulic servo control system.

4.2. Literature Review of Nonlinear Control
Theory

4.2.1. The Nonlinearity and Existing Processing Methods of
Electro-Hydraulic Servo System

Nonlinearity is the difficult problem which exists universally in electro-
hydraulic servo system and has not been solved effectively yet. The non-
linearity of electro-hydraulic servo system is caused by the throttle charac-
teristics of the electro-hydraulic element and control element (servo valve,
throttle valve and so on) and the inherent problems of hydraulic power
mechanism such as hysteresis, dead zone, limiting properties and so on.
As far as the nonlinearity caused by the latter which is called essential
nonlinearity generally, researchers can achieve good results with describ-
ing function method [120] while for the nonlinearity caused by the former
there is no satisfying processing method. The existing processing method
is incremental linearizing method near the working point which can lin-
earize the nonlinear part of the system dynamic equation. To be specific
the nonlinear system will be transformed to a increment linearized system
near the working point which researchers can analyze with linear system
theory. The well known parameters of the servo valve such as flow gain
and flow-pressure coefficient come from this method. The incremental lin-
earizing method is effective for the electro-hydraulic servo system which
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has small setpoint signals and external loads and often works near the
rated point. However in modern projects the electro-hydraulic servo sys-
tem should have the ability to track any curve function point by point and
can endure big external disturbance. Consequently the working point of
the system will change greatly in a wide range so that the incremental lin-
earizing theory is not applicable any more. There are two methods to solve
the problem. The first one is to apply the robust control strategy which
has good adaptability and intelligence based on the linear model of the
controlled object to deal with the uncertainty caused by the system non-
linearity and the variation of the working point. The second method is to
linearize the nonlinear system exactly in a wide range and design nonlinear
controller with the geometric control theory for the nonlinear system.

4.2.2. The Differential Geometric Control Theory of
Nonlinear System

Over the last twenty years by combining the design problem of nonlin-
ear control system with modern differential geometric method, researchers
achieve the differential geometric control theory of nonlinear system. In
this theory there is one branch called the exact linearization theory via
state feedback of nonlinear system which develops quickly and is applied
in practical engineering systems such as manipulator, helicopter, electric
power system and so on [121]. The basic principle of the exact linearization
theory is to find a nonlinear feedback u = a(x) + b(x)ν so that with the se-
lected coordinate transformation z(t) = φ(x(t)) the original nonlinear sys-
tem can be converted to a linear system which is completely controllable
thus researchers can use the linear system theory to analyze and synthesize
the system [122].

Some nonlinear control systems can be described by nonlinear ordinary
differential equation. The development of nonlinear system theory can be
divided into two stages [123]. In the first stage before 1970s researchers
developed the classical theory of nonlinear system which included phase
plane method, harmonic linearization method, Lyapunov direct method,
the stability theory of Lur’e systems and so on. The main features of this
stage are [124]:
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• All the methods are aiming at certain special and simple basic system
respectively hence the conclusions achieved are not systematic.
• No effective methods are developed to solve the synthesis problem of

the nonlinear system.
• The analysis of the system only focuses on the absolute stability and

only the sufficient conditions are achieved.

Since 1970s the development of the nonlinear system theory enters the sec-
ond stage. The outstanding characteristic of this stage is that researchers
try to explore the basic characteristics and research on the synthesis meth-
ods of nonlinear system and moreover several design methods of nonlinear
control system such as inverse system theory [125] are proposed. Especially
when Brockett [126] found the ”interface” between differential geometry
and control system, the differential manifold concept and differential ge-
ometry method becomes the powerful mathematical tool to research on
nonlinear system. The essential points of differential geometry method of
nonlinear system are described as follows. First the nonlinear system on
one differential manifold should be defined thus the state equation of the
system can be described by the vector field on the manifold. And then sci-
entists can research on the properties of the nonlinear system by exploring
the properties of various submanifolds, distribution and dual distribution
determined by the nonlinear system with the mathematical tool in differ-
ential geometry such as submanifold, distribution, Lie algebra and so on.
Although there are still several imperfections in the study of basic proper-
ties of nonlinear system, with the differential geometry method researchers
begin to research on the problems which can not be solved in the past
therefore this method plays an important role in revealing the essence of
nonlinear system.

When researchers design the nonlinear control system they try to simplify
the system first. The general method is to convert the original system into
linear system or single input system and the differential geometry method
plays a key role in researching on the exact linearization problem and the
decoupling problem (including disturbance decoupling control and non-
interaction control) of nonlinear system. The so called exact linearization
method via state feedback is to convert the nonlinear system into the linear
system which is completely controllable with differential homeomorphism
and state feedback linearization [122]. Fliess discusses the realization prob-
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lem of the affine nonlinear systems and he describes the input-output rela-
tionship of the system with the Fliess expansions determined by Lie deriva-
tive [127]. In [128] Cheng gives the nonlinear system set which can be lin-
earized only with differential homeomorphism which is a pioneering result
of exact linearization theory. In [129] Cheng gives the theory and design
method of exact linearization feedback control of affine nonlinear systems.
Sampei and Furuta change the time scale so that the system can be lin-
earized with the new time scale nevertheless using this method researchers
have to solve several partial differential equations [130]. This method is not
applicable when the system has high dimension. Arapostathic and Nam
research on the linearization problem of the discrete nonlinear system re-
spectively [131, 132]. Liu proposes the linearizable condition of nonlinear
singular systems [133, 134].

Focusing on the design method of nonlinear control system based on ex-
act linearization model, Lu proposes two design schemes of nonlinear sta-
ble control system: zero dynamics method and exact linearization method
[135]. Bymes defines the concept of zero dynamics of nonlinear system so
that the nonlinear system can be divided into two parts: linear part which
is controllable and zero dynamics part. The zero dynamics method is to
design the stable control law aiming at the linear part so that the output
of the nonlinear system keeps stable. When the zero dynamics part is not
stable researchers can apply exact linearization method which is to design
the stable control law aiming at the exact linearization model. In [135] Lu
illustrates that compared with traditional linear controller the nonlinear
excitation controller of the large generator designed with the method in-
troduced above can adapt to the state change in a wider range so as to
improve the stability of the electric power system with great disturbance to
a greater extent. Meyer applies the nonlinear transformation theory to the
design of helicopter flight control system [136]. Here the nonlinear trans-
formation is just the differential homeomorphism transformation designed
with differential geometry method. One of the prerequisites of exact lin-
earization of nonlinear system is that the input output map is nonsingular.
When the input output map is nearly singular the system requires large
control input which is sometimes not allowed. Rapidly maneuvering air-
craft is one of the examples and Singh solves the problem [137]. Moreover
Li [138, 139] applies the geometry control theory of nonlinear system to the
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hydraulic servo control field and then proposes the theory and method of
nonlinear control and nonlinear optimal design of hydraulic servo system.
In [140, 141] the nonlinear control method of electro-hydraulic servo speed
control system and single-rod cylinder system has been further studied.

4.2.3. Disturbance Decoupling and Attenuation

It is well known that disturbance exists universally in practical system.
Generally speaking disturbance effect means the influence of the external
disturbance input on the control system output. The research on the dis-
turbance problem is a very important part of the development history of
control system. In general the disturbance problem can be divided into two
types: disturbance decoupling and disturbance attenuation.

4.2.3.1. Disturbance Decoupling

The so-called disturbance decoupling means to eliminate the influence of
the external disturbance on the system output completely. Disturbance de-
coupling method is closely related to the development of differential ge-
ometry theory of nonlinear system. Under the promotion of differential
geometry theory the research on the linearization and decoupling prob-
lems of nonlinear system develops rapidly. In [142] they discuss the related
problems about the control and decoupling of nonlinear system compre-
hensively and deeply. It is generally believed that the differential geometry
theory of nonlinear system is of great theoretical significance but is not
suitable for practical application in engineering. However in [143, 144] they
apply the decoupling method based on differential geometry theory to the
control of induction motor and achieve satisfying results. In [145] they re-
search on the disturbance decoupling problem of a class of nonlinear SISO
systems with delay based on the concept of relative degree and give the
necessary and sufficient existing condition of system decoupling control.
In [146] they discuss the disturbance decoupling problem of a class of SISO
nonlinear systems with input and state multi-delay and give the neces-
sary and sufficient existing condition of bicausal feedback controller and
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the sufficient existing condition of a class of compensators. When the ex-
ternal disturbance is measurable, the disturbance can be considered as the
feedback variable consequently Xia researches on the disturbance decou-
pling problem of SISO nonlinear system based on measurement feedback
and gives the necessary and sufficient condition of disturbance decoupling
based on static and dynamic measurement feedback [147]. In [148] they
discuss the disturbance decoupling problem for a class of SISO nonlinear
systems with time delays on the input and state and then give the necessary
and sufficient solvable condition of the disturbance decoupling problem of
nonlinear system based on the concept of relative degree.

4.2.3.2. Disturbance Attenuation

When the influence of the external disturbance on the system can not be
eliminated completely, researchers try to reduce the influence of the exter-
nal disturbance to the acceptable level. This is called disturbance attenu-
ation which can also be called almost disturbance decoupling, robust dis-
turbance decoupling, H∞ disturbance decoupling and so on since different
researchers have different emphasis points. In [149, 150] they discuss the
adaptive tracking and regulation problems with almost disturbance decou-
pling for a class of nonlinear systems respectively. In [151] they research
on the robust almost disturbance decoupling problem for a class of non-
linear systems with uncertain dynamic input. They construct the robust
state feedback controller with backstepping design method so that, for any
uncertain dynamic input which is allowed, the L2 gain from disturbance
to output of the closed loop system with zero initial state is arbitrarily
small and the closed loop system is globally asymptotically stable in the
absence of disturbance. In [152] they make the feedback design with the
so-called adding one power integrator and backstepping method and then
they give the design method of one smooth control law which ensures that
the closed loop system can realize disturbance attenuation on the basis of
internal stability. In [153] the disturbance attenuation problem of a class of
affine nonlinear systems is researched with measurement feedback so that
the L2 gain from disturbance to output has minimum value and in [154]
they widen the constraint condition so as to propose two different meth-
ods. The work [155] proposes a new output feedback stabilization method,
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which has L2 disturbance attenuation, for the nonlinear system with dy-
namic uncertainty. When they design the output feedback they apply a
new method of nonlinear processing and linear gain adjustment which is
state-dependent. When the system satisfies certain conditions the influence
of the disturbance on the output can be reduced to an arbitrary small level
and it ensures that the system is asymptotically stable.

4.3. Basic Conceptions of Nonlinear Control
Theory

4.3.1. Nonlinear Coordinate Transformation and Differential
Homeomorphism

Generally speaking in linear control system researchers only consider lin-
ear coordinate transformation such as the translation and rotation of the
coordinate system. Nevertheless nonlinear coordinate transformation plays
a very important role in solving the control problems in nonlinear control
system. Nonlinear coordinate transformation can be expressed as z = φ(x)
where z and x are the vectors of the same dimension and φ(x) is the non-
linear functional vector. z = φ(x) can be expanded as [119]:

z1 = φ1(x1, x2, · · · , xn)

z2 = φ2(x1, x2, · · · , xn)
...

zn = φn(x1, x2, · · · , xn)

. (4.1)

If the inverse transformation x = φ−1(z) of z = φ(x) exists, and more-
over, both of φ(x) and φ−1(x) are smooth functions which means that their
arbitrary rank partial derivative functions exist and these partial deriva-
tive functions are continuous, then the formula z = φ(x) is a qualified
coordinate transformation and the coordinate transformation expression
z = φ(x) is called a differential homeomorphism between two coordinate
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spaces. If the conditions of differential homeomorphism are satisfied only
in the neighborhood of some specific point x0, it is called local differential
homeomorphism. If the conditions of differential homeomorphism are sat-
isfied in the whole space, it is called global differential homeomorphism.

Differential homeomorphism can be used to realize the conversion from
one nonlinear system to another nonlinear system which is expressed by
new states hence it plays an important role in nonlinear analysis. In some
condition nonlinear systems can be transformed into the systems which
have the simple structures such as linear structures, triangular structures,
chained structures and so on [122].

4.3.2. Affine Nonlinear System

In engineering there are a lot of nonlinear systems such as power system,
hydraulic servo system, robot system, helicopter control system, chemical
process control system and so on, of which the mathematical models have
the same form i.e. the state equation can be expressed as:

ẋ1 = f1(x1, · · · , xn) + g11(x1, · · · , xn)u1 + · · ·+ gm1(x1, · · · , xn)um

ẋ2 = f2(x1, · · · , xn) + g12(x1, · · · , xn)u1 + · · ·+ gm2(x1, · · · , xn)um
...

ẋn = fn(x1, · · · , xn) + g1n(x1, · · · , xn)u1 + · · ·+ gmn(x1, · · · , xn)um

(4.2)
and the output equation can be expressed as:

y1 = h1(x1, x2, · · · , xn)

y2 = h2(x1, x2, · · · , xn)
...

ym = hm(x1, x2, · · · , xn)

. (4.3)
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According to Eq. (4.2) and (4.3) the following expression can be derived:
ẋ(t) = f (x(t)) +

m
∑

i=1
gi (x(t)) ui(t)

y(t) = h (x)
(4.4)

where x ∈ Rn is state vector, ui(i = 1, 2, · · · , m) are control variables, f (x)
and gi(x)(i = 1, 2, · · · , m) are n-dimensional function vectors and h(x) is
m-dimensional output function vector.

From the equations above it can be found that one of the characteristics
of this kind of systems is that: it has a nonlinear relationship with the
state vector x(t) while it has a linear relationship with the control variables
ui(i = 1, 2, · · · , m). This kind of nonlinear systems is called affine nonlinear
system. Electro-hydraulic servo system is one of the typical affine nonlinear
systems [122].

4.3.3. Vector Field

Let f (x) be a n-dimensional function vector which means:

f (x) =


f1(x1, x2, · · · , xn)

f2(x1, x2, · · · , xn)
...

fn(x1, x2, · · · , xn)

 . (4.5)

Every component of f (x) is the function of the vector xT = (x1, x2, · · · , xn).
Generally speaking, any definite point of the state space corresponds to a
definite state x0 so as to corresponds to a definite vector of this point:

f (x0) =
(

f1(x0), f2(x0), · · · , fn(x0)
)T

. (4.6)

According to the analysis above it can be known that any definite point x0

of the state space corresponds to a vector f (x0) which depends on f (x),
hence f (x) is called one of the vector fields of the state space [118].
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4.3.4. Induced Function of Vector Field

The induced function of vector field plays an important role in the exact
linearization algorithm of affine nonlinear systems.

Firstly a differential homeomorphism mapping φ : z = φ(x) from an n-
dimensional space Rn with X-coordinate to another n-dimensional space
with Z-coordinate is defined as:

z1 = φ1(x1, x2, · · · , xn)

z2 = φ2(x1, x2, · · · , xn)
...

zn = φn(x1, x2, · · · , xn)

and a vector of Rn space:

f (x) =


f1(x1, x2, · · · , xn)

f2(x1, x2, · · · , xn)
...

fn(x1, x2, · · · , xn)

 .

It is defined that Jφ(x) is the Jacobian matrix of the space mapping φ(x):

Jφ(x) =
∂φ(x)

∂x
=



∂φ1
∂x1

∂φ1
∂x2

· · · ∂φ1
∂xn

∂φ2
∂x1

∂φ2
∂x2

· · · ∂φ2
∂xn

...
... · · · ...

∂φn
∂x1

∂φn
∂x2

· · · ∂φn
∂xn

 . (4.7)

Then the induced function φ( f ) of f (x) based on the space mapping φ(x)
can be expressed as [118]:

φ( f ) = Jφ(x) f (x)|
x=φ
−1

(z)
. (4.8)
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4.3.5. Lie Derivative and Lie Bracket

The research on nonlinear control systems cannot be separated from the
concepts and basic principles of Lie derivative and Lie bracket which are
parts of the kernel of the differential geometric method of nonlinear sys-
tems.

4.3.5.1. Lie Derivative [118]

It is defined that there is a scalar function of x:

λ(x) = λ(x1, x2, · · · , xn) (4.9)

and a vector field:

f (x) =


f1(x1, x2, · · · , xn)

f2(x1, x2, · · · , xn)
...

fn(x1, x2, · · · , xn)


then L f λ(x) can be defined as:

L f λ(x) =
∂λ(x)

∂x
f (x) =

n

∑
i=1

∂λ(x)
∂xi

fi(x). (4.10)

The new scalar function L f λ(x) is called Lie derivative which is the deriva-
tive of the scalar function λ(x) along the vector field f (x). Consequently
Lie derivative is the change rate of scalar function λ(x) along the direc-
tion of the vector field f (x). According to the definition of Eq. (4.10) it can
be found that Lie derivative is a scalar function hence one can calculate
the Lie derivative once more along another vector field g(x) which can be
expressed as:

LgL f λ(x) =
∂[L f λ(x)]

∂x
g(x). (4.11)

72



4.3. Basic Conceptions of Nonlinear Control Theory

Certainly the scalar function λ(x) can be differentiated 2 times along the
vector field f (x) so one can get the second order Lie derivative and with
the same method one can get the Lie derivative of order k:

L f [L f λ(x)] = L2
f λ(x) =

∂[L f λ(x)]
∂x f (x)

...

L f [Lk−1
f λ(x)] = Lk

f λ(x) =
∂[Lk−1

f λ(x)]

∂x f (x)

(4.12)

where the Lie derivative Lk
f λ(x) of order k of λ(x) along f (x) is still a

scalar function, consequently it can be differentiated along another vector
field g(x):

LgLk
f λ(x) =

∂[Lk
f λ(x)]

∂x
g(x). (4.13)

4.3.5.2. Lie Bracket [118]

It is defined that there are two vector fields f and g, both of them defined
on the same space:

f (x) =


f1(x1, x2, · · · , xn)

f2(x1, x2, · · · , xn)
...

fn(x1, x2, · · · , xn)

 , g(x) =


g1(x1, x2, · · · , xn)

g2(x1, x2, · · · , xn)
...

gn(x1, x2, · · · , xn)

 .

Then a new type of calculation can be defined as follows:

[ f , g] = ad f g =
∂g
∂x

f −
∂ f
∂x

g (4.14)

which is a new vector field called the Lie bracket of f and g.

From Eq. (4.14) it can be found that in fact the Lie bracket is the derivative

of one vector field along another vector field. In Eq. (4.14)
∂g
∂x and

∂ f
∂x are the

Jacobian matrices of the vector fields g(x) and f (x) respectively.
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Similarly one can repeat bracketing of a vector field g(x) with the same
vector field f (x) until the Lie bracket of order k is obtained:

ad2
f g(x) = [ f , [ f , g]](x)

...

adk
f g(x) = [ f , adk−1

f g](x)

. (4.15)

4.3.5.3. Operation Rules of Lie Derivative and Lie Bracket

The main operation rules of Lie derivative and Lie bracket are introduced
as follows [122]:

• Skew commutative: if f and g are vector fields then

[ f , g] = −[g, f ]. (4.16)

• Bilinear: if f , f1, f2, g, g1 and g2 are smooth vector fields, a1 and a2
constant scalars then[

a1 f1 + a2 f2, g
]
= a1

[
f1, g

]
+ a2

[
f2, g

]
[

f , a1g1 + a2g2

]
= a1

[
f , g1

]
+ a2

[
f , g2

] . (4.17)

• Jacobi identity: if f , g and p are vector fields then

[ f , [g, p]] + [g, [p, f ]] + [p, [ f , g]] = 0. (4.18)

• If f and g are vector fields and λ is a scalar function then

L[ f ,g]λ(x) = L f Lgλ(x)− LgL f λ(x). (4.19)

All these operation rules of Lie derivative and Lie bracket above constitute
a new type of algebraic operation called Lie Algebra.
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4.3.6. Distribution and Involution of Vector Field

4.3.6.1. Distribution of Vector Field [118]

Given a group of smooth vector fields { f1, f2, · · · , fm}, then the distribution
∆(x) can be defined as:

∆(x) = span{ f1, f2, · · · , fm} (4.20)

which means that ∆(x) is the spanned subspace which is expressed in
terms of the linear combination of f1, f2, · · · , fm. The element of ∆(x) can
be expressed as:

a1 f1 + a2 f2 + · · ·+ am fm (4.21)

where ai(i = 1, 2, · · · , m) are scalars.

If F(x) ∈ Rn+m is the matrix which is defined by { f1, f2, · · · , fm} then

∆(x) = image[F(x)]. (4.22)

It is defined that the rank m(x) of F(x) is the rank of the distribution at
x. If the rank m(x) is constant in one neighborhood of x, then x is called a
regular point of the distribution, otherwise it is called a singular point. If
all the points are regular, then the distribution is regular.

4.3.6.2. Involution of Vector Field [118]

It is defined that there are k n-dimensional vector fields:

g1(x) =


g11(x1, x2, · · · , xn)

g12(x1, x2, · · · , xn)
...

g1n(x1, x2, · · · , xn)

 , · · · , gk(x) =


gk1(x1, x2, · · · , xn)

gk2(x1, x2, · · · , xn)
...

gkn(x1, x2, · · · , xn)
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and then a matrix which is composed of these vector fields can be defined
as:

G =


g11 g21 · · · gk1

g12 g22 · · · gk2
...

... · · · ...

g1n g2n · · · gkn

 =
[

g1(x) g2(x) · · · gk(x)
]

. (4.23)

The rank of the matrix is k at x = x0. Furthermore if the rank of the
augmented matrix

[
g1(x) g2(x) · · · gk(x) [gi(x), gj(x)]

]
is still k at

x = x0 for any integers i and j(1 ≤ i, j ≤ k), then the set of the vector fields
is involutive. From the perspectives of geometry involution means that: the
new vector field from the Lie bracket calculation between any two vector
fields of the set of the vector fields {g1, g2, · · · , gk} and the k vector fields of
the set are linearly dependent. Involutive distribution ensures the closure
of Lie bracket calculation.

Several properties of involution are as follows [156]:

• Constant vector field is always involutive. In fact the Lie bracket of
two constant vector fields is a zero vector which is the trivial linear
combination of vector fields.
• The set which is composed of only one vector field is always involu-

tive. Actually:

[g, g] = adgg =
∂g
∂x

g−
∂g
∂x

g = 0.

• Inspecting whether the set of the vector fields {g1, g2, · · · , gk} is in-
volutive is equivalent to inspecting whether the following equality
holds for any x, i and j:

rank[g1(x) · · · gk(x)] = rank[g1(x) · · · gk(x) [gi, gj](x)].

If [gi, gj] can be expressed in terms of the linear combination of the
vector fields g1, g2, · · · , gk, the rank of the two matrices should be
equivalent.
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4.3.7. Relative Degree of Nonlinear System

It is assumed that there is a SISO nonlinear system: ẋ = f (x) + g (x) u

y = h(x)
(4.24)

where x ∈ Rn is state vector, u ∈ R and y ∈ R denote input and output
signal of the system respectively, f (x) and g(x) are vector fields, which are
sufficiently smooth, of the space Rn and h(x) is a nonlinear function which
is sufficiently smooth.

If:

• the value of the Lie derivative of the k-order Lie derivative of the
output function h(x) along the vector field f (x) along the vector field
g(x) is zero in some neighborhood of x = x0, that is

LgLk
f h(x) = 0, (0 ≤ k < r− 1) (4.25)

• the value of the Lie derivative of the (r-1)-order Lie derivative of the
output function h(x) along the vector field f (x) along the vector field
g(x) is not zero in some neighborhood of x = x0, that is

LgLr−1
f h(x) 6= 0 (4.26)

then the nonlinear system expressed by Eq. (4.24) has relative degree r in a
neighborhood of x = x0 [156].

4.3.8. Normal Form of Linearization of Nonlinear System

Suppose the nonlinear system is described by Eq. (4.24) and the relative
degree of the system is r < n. If the coordinate transformation can be
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expressed as: z = φ(x), then:



z1 = φ1(x) = h(x)

z2 = φ2(x) = L f h(x)
...

zr = φr(x) = Lr−1
f h(x)

zr+1 = φr+1(x)
...

zn = φn(x)

(4.27)

where φr+1, φr+2, · · · , φn satisfy the relations:

L f φi(x) = 0 (r + 1 ≤ i ≤ n) (4.28)

and moreover the Jacobian matrix of φ(x) at x = x0 is nonsingular.

If it is set that:

a(z) = Lr
f h
(

φ−1(z)
)

b(z) = LgLr−1
f h

(
φ−1(z)

) (4.29)

and

qr+1(z) = L f φr+1

(
φ−1(z)

)
...

qn(z) = L f φn

(
φ−1(z)

) (4.30)
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then the original nonlinear system can be expressed as:

ż1 = z2

ż2 = z3
...

żr = a(z) + b(z)u

żr+1 = qr+1(z)
...

żn = qn(z)

. (4.31)

The system model described by Eq. (4.31) is called the normal form of
linearization of the nonlinear system described by Eq. (4.24) [119].

4.4. Design Principles of Nonlinear Controller

4.4.1. Exact Linearization via State Feedback

In recent years research on nonlinear control system has gotten progress.
The results show that with nonlinear state feedback and proper coordinate
system one affine nonlinear system can be linearized exactly under certain
conditions and furthermore the state feedback can ensure that the system
will have good stability and dynamic characteristics [119]. In this part it will
be introduced how to linearize the SISO affine nonlinear system exactly.

4.4.1.1. Linear Design Principles When Relative Degree r Is Equal to
System Order n [119]

Given a SISO nonlinear system: ẋ = f (x) + g (x) u

y = h(x)
(4.32)
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where x ∈ Rn is state vector, u ∈ R and y ∈ R are control input and output
of the nonlinear system respectively, f (x) and g (x) are sufficiently smooth
vector fields of Rn and h (x) is sufficiently smooth nonlinear function.

Suppose the relative degree r of the nonlinear system is equal to the system
order n i.e. r = n. According to the discussion in §4.3.7 one can choose the
coordinate transformation as follows:

z = φ(x) =


h(x)

L f h(x)
...

Lr−1
f h(x)

 (4.33)

so as to linearize the original nonlinear system to the normal form as fol-
lows: 

ż1 = z2

ż2 = z3
...

żn−1 = zn

żn = α(x) + β(x)u|
x=φ
−1

(z)

(4.34)

where α(x) and β(x) are nonlinear scalar functions of x. In the normal form
described by Eq. (4.34), the last equation żn = α(x) + β(x)u|

x=φ
−1

(z)
which

contains the control variable u is nonlinear while all the other equations,
none of which contain the control variable u, are linearized.

In order to linearize the system described by Eq. (4.34) exactly and com-
pletely, It is defined that:

ν = α(x) + β(x)u (4.35)

and from §4.3.7 and §4.3.8 it can be known that:

α(x) = Ln
f h(x)

β(x) = LgLn−1
f h(x) 6= 0

.

80



4.4. Design Principles of Nonlinear Controller

Consequently two conclusions are obtained as follows:

• The completely controllable and exactly linearized system described
by the new coordinate system z = [z1 z2 · · · zn]

T is achieved:

ż1 = z2

ż2 = z3
...

żn−1 = zn

żn = ν

. (4.36)

Eq. (4.36) is called Brunovszky normal form [156] and can be ex-
pressed as:

ż = Az + bν (4.37)

where A =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 0 1

0 0 0 · · · 0 0


, b =



0

0
...

0

1


and z =



z1

z2
...

zn−1

zn


.

• The expression of the control variable u can be achieved as:

u = −α(x)
β(x)

+
1

β(x)
ν. (4.38)

In Eq. (4.38) only ν remains to be ascertained however the value of
ν can be determined by a lot of methods such as pole assignment,
linear optimal control, ITAE (integral of time-weighted absolute error)
and so on. Since the control variable u of the system expressed by
Eq. (4.32) and the control variable ν of the exactly linearized system
expressed by Eq. (4.37) have the relationship shown in Eq. (4.38), once
the control variable ν is determined then the control variable u is
determined according to Eq. (4.38).
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4.4.1.2. Linear Design Principles in General Case [119]

In some cases of reality the output equation of the system is indeterminate.
Sometimes the physical meaning of the output equation of the system is
determinate but the relative degree r is less than the system order n. In
these two cases it is difficult to write out the output equation or it is impos-
sible to linearize the original nonlinear system into the Brunovszky normal
form by utilizing the known output equation. At this time one can try to
find out a new output equation of the system such that the relative degree
r of the original system according to the new output equation is equal to
the system order n and then the system can be linearized exactly with the
method introduced in §4.4.1.1. It is proved that under certain condition this
kind of output equation exists [119].

4.4.2. Design Principles and Methods Based on Zero
Dynamics

The design principles based on exact linearization via state feedback is
introduced in §4.4.1. This method compensates or counteracts the nonlin-
ear characteristics of the original system dynamically so as to transform
the original system into the controllable linear system which has satisfying
dynamic characteristics. Nevertheless the control law designed according
to this method is complicated and the solving process is tedious. Conse-
quently in this section the design method based on zero dynamics is in-
troduced. It is not necessary to exact linearize all the state equations with
this method. Generally speaking the dynamic behavior of one system can
be divided into two parts: internal dynamics and external dynamics. From
an application standpoint the external state of the system is more impor-
tant which means that the external states should have good stability and
dynamic performance while the internal states only need to be stable. The
control law based on this method is simple and practical and moreover
this is the basic thinking of the zero dynamics design method [157]. The
design principles and methods based on zero dynamics are introduced as
follows.
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4.4.2.1. The First Design Method Based on Zero Dynamics [119]

Given a SISO nonlinear system: ẋ = f (x) + g (x) u

y = h(x)

where x ∈ Rn is state vector, u ∈ R and y ∈ R are control input and output
of the nonlinear system respectively, f (x) and g (x) are sufficiently smooth
vector fields of Rn and h (x) is sufficiently smooth nonlinear function. The
relative degree r of the system according to output equation y = h(x) is
less than the system order n. Thus the system can be transformed into the
normal form as follows with the mapping z = φ(x):

ż1 = z2

ż2 = z3
...

żr = Lr
f h
(

φ−1(z)
)
+ LgLr−1

f h
(

φ−1(z)
)

u

żr+1 = L f φr+1

(
φ−1(z)

)
...

żn = L f φn

(
φ−1(z)

)
(4.39)

where

φ(x) =



φ1(x)

φ2(x)
...

φr(x)

φr+1(x)
...

φn(x)


=



z1

z2
...

zr

zr+1
...

zn


=



h(x)

L f h(x)
...

Lr−1
f h(x)

φr+1(x)
...

φn(x)
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and the selected functions φr+1(x), φr+2(x), · · · , φn(x) satisfy the relations:

Lgφr+1(x) = Lgφr+2(x) = · · · = Lgφn(x) = 0 (4.40)

and furthermore the Jacobian matrix of φ(x) is nonsingular.

Generally speaking one can select output equation h(x(t)) such that the
value of the equation at the equilibrium point x0 is zero. Thus the output
y(t) = h(x(t)) is the dynamic deviation between the actual output (dy-
namic response) of the system and the equilibrium point output. If one can
use some control strategy to make sure that the dynamic deviation of the
system output is zero at any time which means:

y(t) = h(x(t)) = 0 (0 ≤ t ≤ ∞) (4.41)

thus from the perspectives of the external dynamics of control system, the
system is highly stable so that the output remains constant with any inter-
ferences. The conditions which can ensure that the system output remains
zero at any time contain two aspects:

• The external dynamics of the system are asymptotically stable.
• The system output has the optimal dynamic performance because

zero is always less than or equal to the minimum value of quadratic
form performance function.

Since y(t) = z1(t) is set to be zero at any time, the following can be
achieved

z2(t) = ż1(t) = 0. (4.42)

In the same way z3(t), z4(t), · · · , zr(t) are always zero, hence

żr = Lr
f h(x) + LgLr−1

f h(x)u = 0. (4.43)

According to Eq. (4.43) the control variable u can be calculated by

u = −
Lr

f h(x)

LgLr−1
f h(x)

. (4.44)
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Consequently under this condition, the first r equations are always equal
to zero and the rest dynamic equations are given by



żr+1 = L f φr+1(0, 0, · · · , 0, zr+1, zr+2, · · · , zn)

żr+2 = L f φr+2(0, 0, · · · , 0, zr+1, zr+2, · · · , zn)
...

żn = L f φn(0, 0, · · · , 0, zr+1, zr+2, · · · , zn)

. (4.45)

Since the external dynamics of the system is identically equal to zero under
the action of control law described by Eq. (4.44), the differential equations
given by Eq. (4.45) describe the internal dynamic behavior of the system
and are called zero dynamic equations (in short, zero dynamics) of the
original system. If the zero dynamics are stable then under the action of
control law described by Eq. (4.44) the whole system is stable and the out-
put of the system remains constant with any disturbances.

4.4.2.2. The Second Design Method Based on Zero Dynamics [119]

The first design method based on zero dynamics need solve the partial
differential equations

L f φi(x) = 0 (r + 1 ≤ i ≤ n)

to obtain the solutions of zr+1 = φr+1(x), zr+2 = φr+2(x), · · · , zn = φn(x).
However in general case it is difficult to solve partial differential equations.
Therefore to avoid solving partial differential equations one can utilize the
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incomplete normal form given by

ż1 = z2

ż2 = z3
...

żr−1 = zr

żr = Lr
f h
(

φ−1(z)
)
+ LgLr−1

f h
(

φ−1(z)
)

u

żr+1 = q(ξ, η) + p(ξ, η)u

(4.46)

where

q(ξ, η) =


qr+1(z)

qr+2(z)
...

qn(z)

 =


L f φr+1

(
φ−1(x)

)
L f φr+2

(
φ−1(x)

)
...

L f φn

(
φ−1(x)

)


ξ = [z1 z2 · · · zr]

T

η = [zr+1 zr+2 · · · zn]
T .

Since the state feedback variable can force the output of the system to be
identically equal to zero i.e. when one applies the state feedback expression
above to control the system, the states can be forced to satisfy the constraint
conditions as follows

y(t) = h(x(t)) = 0

ẏ(t) = L f h(x(t)) = 0
...

y(r−1)(t) = Lr−1
f h(x(t)) = 0

(4.47)

where r is the relative degree of the system.
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4.4.2.3. Discussion of Several Problems about Zero Dynamics [119]

(1) About Control Variable

The state feedback control variables achieved by the first design method
and the second design method based on zero dynamics have the same
form which can be written as

u = −
Lr

f h
(

φ−1(z)
)

LgLr−1
f h

(
φ−1(z)

) |z=φ(x).

Nevertheless the coordinate transformations utilized by the two design
methods are different hence actually the state feedback variables are dif-
ferent. The state feedback control variable above can be expressed with the
coordinate system X of the original system as

u = −
Lr

f h(x)

LgLr−1
f h(x)

.

Since this state feedback variable can force the output y(t) = h (x(t)) of
the system to be identically equal to zero which means that when the state
feedback variable u (x(t)) expressed above is used to control the system,
the state x(t) can be forced to satisfy the constraint conditions in the fol-
lowing 

y(t) = h(x(t)) = 0

ẏ(t) = L f h(x(t)) = 0
...

y(r−1)(t) = Lr−1
f h(x(t)) = 0

where r is the relative degree of the system.

(2) Advantages and Disadvantages of the Two Design Methods Based on
Zero Dynamics
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When one uses the two design methods the selections of the coordinate
transformations zr+1, zr+2, · · · , zn are different:

zr+1 = φr+1(x)

zr+2 = φr+2(x)
...

zn = φn(x)

hence the zero dynamic equations of the system are not the same. Generally
speaking when researchers utilize the first design method, they have to
solve the partial differential equations

L f φi(x) = 0 (r + 1 ≤ i ≤ n)

of which the solving process are complicated nevertheless the zero dy-
namic equations obtained by the first method are more simple than those
obtained by the second method consequently it is much easier to analyze
the zero dynamic equations with the first method. Therefore each of the
two methods has its own advantages and disadvantages and one should
select the proper method according to the actual system.

(3) Limitations of the Design Method Based on Zero Dynamics [157]

The design method based on zero dynamics has limitations because the
control law obtained by this method can not ensure the stability of the zero
dynamic equations of the system. If the zero dynamics of the system are
unstable one has to modify the scheme according to the system structure
or design the control law of the nonlinear system anew with other methods
to make sure that the zero dynamics of the system are stable. Furthermore
this method is limited by the system order such that this method is not
suitable for the system which has high order state equations. When re-
searchers utilize the zero dynamic method to obtain the control law of the
high order nonlinear system it is difficult for them to achieve the ultimate
zero dynamic equations which are the expression with linear equations af-
ter coordinate transformation. Hence it is difficult to verify whether the
zero dynamics are stable and whether the control law is suitable.
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4.5. Disturbance Decoupling and Attenuation

Strictly speaking, any practical system in the real world works under the
effects of external disturbance. Consequently the study on anti-disturbance
has great significance. In this section the principles when and how can one
eliminate or weaken the influence of the external disturbance based on the
state feedback linearization theory will be introduced.

4.5.1. Disturbance Decoupling

4.5.1.1. Disturbance Relative Degree [119]

Considering one type of SISO nonlinear system: ẋ = f (x) + g (x) u + p (x)w

y = h (x)
(4.48)

where x ∈ Rn is state vector, u ∈ R and y ∈ R are control input and
output of the nonlinear system respectively, w ∈ R is external disturbance,
f (x), g (x) and p (x) are sufficiently smooth vector fields of Rn and h (x) is
sufficiently smooth nonlinear function. The objective is to find a static state
feedback control as

u = a(x) + b(x)ν (4.49)

where a(x) and b(x) are the functions of system states respectively and ν is
the new control input so that the output y of the system expressed by Eq.
(4.48) and Eq. (4.49) is completely independent of the disturbance w.

To solve this problem one has to define the disturbance relative degree.
Considering the system (4.48), it can be defined that the system has the
relative degree ρ with respect to disturbance w in a neighborhood of x = x0

if
LpLk

f h(x) = 0, (0 ≤ k < ρ− 1) and LpLρ−1
f h(x) 6= 0.
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4.5.1.2. Disturbance Decoupling [119]

Proposition 4.1. Suppose the system (4.48) has the relative degree r and the
relative degree ρ with respect to disturbance w, the state feedback control
u = a(x) + b(x)ν can be found so that the system output y is decoupled
from the disturbance input w if and only if r < ρ.

The proof of this proposition is given in [119]. If system (4.48) satisfies this
proposition, one can choose the coordinate transformation (4.27) and then
the system can be written as:



ż1 = z2

ż2 = z3
...

żr−1 = zr

żr = Lr
f h
(

φ−1(z)
)
+ LgLr−1

f h
(

φ−1(z)
)

u

η̇ = q(ξ, η) + k(ξ, η)w

and

y = z1

where ξ = [z1 z2 · · · zr]
T and η = [zr+1 zr+2 · · · zn]

T .

If one chooses the state feedback as follows:

u = −
Lr

f h
(

φ−1(z)
)

LgLr−1
f h

(
φ−1(z)

) +
1

LgLr−1
f h

(
φ−1(z)

)ν (4.50)

90



4.5. Disturbance Decoupling and Attenuation

then with this feedback the system can be described by:

ż1 = z2

ż2 = z3
...

żr−1 = zr

żr = ν

η̇ = q(ξ, η) + k(ξ, η)w

(4.51)

from which it can be found that the system output y i.e. the state variable
z1 is decoupled from the external disturbance w completely.

4.5.2. Disturbance Attenuation

When the system does not satisfy the proposition 4.1 one can not elimi-
nate the influence of external disturbance on the system output completely.
Hence one can only choose to reduce the influence of external disturbance
to the acceptable level. This is called disturbance attenuation.

There are several linear control methods which can realize disturbance at-
tenuation. Since the original nonlinear system can be treated as a linear
system after exact linearization via state feedback one can use these lin-
ear control methods. Consequently in this section sliding mode variable
structure control theory will be used to design the controller for the linear
system after linearization so as to reduce the disturbance effects.

4.5.2.1. Sliding Mode Variable Structure Control Theory [158]

Linear system plays an important role in modern control theory and appli-
cation and its theory develops quite well. Sliding mode variable structure
control theory is one of the important research results. The principle of
sliding mode variable structure control is to design the switching hyper-
plane and reaching law so that the system can reach the hyperplane. Once
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the system reaches the hyperplane and makes sliding mode motion on the
hyperplane, it will have strong robustness. Hence when conventional feed-
back controller with variable structure control is used, one can improve the
anti-disturbance ability of the system.

The basic steps of designing sliding mode variable structure controller
are:

(1) Designing switching function so that the sliding mode dynamics which
is determined by this function is asymptotically stable and has good dy-
namic characteristics.

(2) Selecting proper control law so that the system can reach the switching
hyperplane and realize sliding mode motion on the hyperplane.

Considering the single input linear system:

ẋ = Ax + bu (4.52)

where x ∈ Rn is state vector, u ∈ R is control input, A and b are matrix
and vector with corresponding dimensions and rankb = 1. The switching
function is selected as s = cTx where c is n× 1 undetermined coefficient
vector.

Since rankb = 1 there exists a nonsingular linear transformation x = Mz so
that system (4.52) can be described by ż1

ż2

 =

 A11 a12

A21 a22

 z1

z2

+

 0

b2

 u (4.53)

where z1 ∈ Rn−1, z2 ∈ R and b2 is non-zero real number. Furthermore one
can derive:

M−1AM =

 A11 a12

A21 a22

 ; M−1b =

 0

b2

 . (4.54)

With this transformation, the corresponding switching surface is

s = cT Mz = c1
Tz1 + c2z2 = 0 (4.55)
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where c2 is non-zero real number. Consequently on the switching surface
one can have

z2 = −c−1
2 c1

Tz1 = −dTz1. (4.56)

Consequently the sliding mode motion equation satisfies Eq. (4.56) and the
reduced-order equation as follow:

ż1 = A11z1 + a12z2. (4.57)

Thereupon the sliding mode of the linear system can be treated as a n− 1
dimensional subsystem described by Eq. (4.57) with the feedback (4.56).
Thus one can calculate the feedback vector d with the usual linear feed-
back design methods such as pole assignment method, optimal method,
eigenvector assignment method, geometric method and so on. Finally one
can get the coefficient vector c of the switching function s = cTx. When
the system realize sliding mode motion z2 can be expressed by z1 linearly,
therefore once z1 inclines to zero with proper exponential decay rate, z2
will incline to zero with the same exponential decay rate. If it is defined
that c2 = 1 then c1 = d. Consequently according to Eq. (4.55) the switch-
ing coefficient matrix, which can make sure that the sliding mode of the
original linear system has good dynamic characteristics, can be calculated
by

cT = (dT, 1)M−1. (4.58)

When researchers design the switching function s = cTx and get the switch-
ing hyperplane s = 0, the next step is to design the reaching law so that
the system can move to the hyperplane. This motion is called reaching
motion.

There are four typical reaching laws:

(1) Constant reaching law

ṡ = −ε · sgn(s), ε > 0 (4.59)

where ε is the reaching rate with which the system moves to the hyper-
plane. The smaller ε is, the lower the reaching rate is. Conversely the bigger
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ε is, the more quickly the system will move to the hyperplane nevertheless
the more serious the chattering of the system will be.

(2) Exponential reaching law

ṡ = −ε · sgn(s)− k · s, ε > 0, k > 0 (4.60)

where −k · s is the exponential reaching part because the solution of the
equation ṡ = −k · s is s = s(0)e−kt. This part ensures that the system can
reach the hyperplane quickly and moreover when the system is near the
hyperplane the reaching rate is low. In exponential reaching law, to increase
reaching rate and eliminate chattering one should increase k and decrease
ε.

(3) Power reaching law

ṡ = −k|s|αsgn(s), k > 0, 0 < α < 1 (4.61)

which ensures that the wording point of the system can enter into the
sliding mode smoothly.

(4) General reaching law

ṡ = −ε · sgn(s)− f (s), ε > 0 (4.62)

where f (0) = 0 and when s 6= 0, s f (s) > 0.

Aiming at the linear system (4.52), with some reaching law the control
input u can be derived as follows.

Based on the switching function s = cTx one can get:

ṡ = cT ẋ = slaw (4.63)

where slaw is some reaching law.

Substituting Eq. (4.52) into Eq. (4.63) yields

u = (cTb)−1(−cT Ax + slaw). (4.64)
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4.5.2.2. Sliding Mode Variable Structure Control Based on Exact
Linearization

Considering the SISO nonlinear system (4.48), it is assumed that the system
satisfies the matching condition:

rank[g, p] = rank[g] = 1. (4.65)

Then the design problem of the sliding mode dynamic characteristics is
considered. Supposing the relative degree of the system is r, according to
the matching condition (4.65) one can define

p = a · g

where a ∈ R is a constant. Thus one can have

LpLk
f h(x) =

∂Lk
f h(x)

∂x
· p = a ·

∂Lk
f h(x)

∂x
· g = a · LgLk

f h(x) = 0, (0 ≤ k < r− 1).

If the relative degree of the system r is equal to the system order n, one
can select the coordinate transformation (4.33) and the original nonlinear
system can be expressed by

ż = Az + bν + ew (4.66)

where A =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 0 1

0 0 0 · · · 0 0


, b =



0

0
...

0

1


, e =



0

0
...

0

LpLn−1
f h(x)


,

ν = Ln
f h(x) + LgLn−1

f h(x)u and z = [z1 z2 · · · zn]
T.

Thus with the new coordinate system, one can select the switching function
as:

s(z) =
n−1

∑
i=1

cizi + zn. (4.67)
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Hence when the system makes sliding mode motion, one can have:

zn = −
n−1

∑
i=1

cizi (4.68)

and the sliding mode equation is given by


ż1

ż2
...

żn−1

 =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 0 1

0 0 0 · · · 0 0




z1

z2
...

zn−1

+



0

0
...

0

1


zn. (4.69)

Thereupon one can derive a linear subsystem described by Eq. (4.69) with
the feedback (4.68). Consequently according to §4.5.2.1 one can calculate
the parameters ci (1 ≤ i ≤ n − 1) and further the control input ν of the
linear system. Finally with Eq. (4.38) one can get the control input u of the
original nonlinear system.

It is noticed that the system (4.66) satisfies the matching condition:

rank[b, e] = rankb = 1

hence the sliding mode of the system will not be influenced by the distur-
bance [20].

If the relative degree of the system r is not equal to the system order n,
one can select a new output equation of the system so as to realize exact
linearization according to §4.4.1.2 and the detailed content is given in [119].
Then based on the exact linearization result one can design the sliding
mode variable structure controller with the method mentioned above.

4.6. Summary

In this chapter firstly the development of nonlinear control theory is in-
troduced. One of the core ideas of modern nonlinear control theory is to
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exactly linearize or partially linearize the nonlinear system with proper
coordinate transformation and state feedback. Consequently several basic
conceptions of exact linearization theory are presented. These conceptions
are linked closely. Moreover since affine nonlinear system is often used in
practical engineering, the controller design methods of SISO affine non-
linear system are then discussed. One of the methods is based on exact
linearization via state feedback and the other is based on zero dynamics.
Finally since all the control systems have to work with external disturbance,
the disturbance decoupling and attenuation strategies are discussed.
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5. Design and Simulation of
Control System Based on Exact
Linearization

In Chapter 3 the nonlinear model of the electro-hydraulic servo position
control system is built and in Chapter 4 the nonlinear control theory and
the design principles of nonlinear controller are introduced. In this chapter
the nonlinear control theory will be applied in the SISO nonlinear electro-
hydraulic servo position control system. Particularly the contributions of
this chapter are as follows:

• applying exact linearization method based on differential geometry
in SISO nonlinear electro-hydraulic servo position control system;
• comparing control performances of SISO nonlinear electro-hydraulic

servo position control system with exact linearization method and
approximate linearization method;
• analyzing robustness of the nonlinear controller of SISO nonlinear

electro-hydraulic servo position control system with exact lineariza-
tion method;
• combining sliding mode variable structure control method and ex-

act linearization method so as to attenuate the influence of external
disturbance.
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5.1. Feasibility of Application of Exact
Linearization via State Feedback in
Electro-Hydraulic Servo System

In practical control system there is a class of simple and common nonlinear
systems which is called affine nonlinear system. This kind of nonlinear sys-
tem has a nonlinear relationship with the system state x while has a linear
relationship with the control variable u [122]. For affine nonlinear system,
many research achievements about exact linearization with nonlinear state
feedback and local differential homeomorphism transform are obtained so
as to replace the original nonlinear system with the equivalent linear sys-
tem. The control variable of the equivalent linear system can be determined
based on linear control theory and then the control variable of the original
nonlinear system is obtained by using coordinate transformation. Practical
application shows that almost all the hydraulic servo systems are affine
nonlinear system [159] therefore the application of exact linearization con-
trol via state feedback in hydraulic servo system is feasible. Furthermore
the application and popularization of computer control technology lays a
foundation for engineering application of exact linearization control via
state feedback. Since most of the hydraulic servo systems are required that
the output y(t) can track the reference signal r(t) with external disturbance,
y(t) can be selected as the output function h(x(t)) of the nonlinear system.
Consequently in this chapter the exact linearization method via state feed-
back based on the geometric control theory of nonlinear system will be
applied to design controller.

5.2. Building the Nonlinear Model

Electro-hydraulic servo position control system contains many nonlinear
factors hence essentially it is a type of nonlinear system. One of the impor-
tant characteristics of nonlinear system is that the response of the system
depends on the form and amplitude of system input. Nonlinear factors may
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cause static error and self-sustained oscillation. When self-sustained oscil-
lation happens, system precision will be influenced seriously and system
energy will be consumed unnecessarily. Furthermore self-sustained oscilla-
tion will cause abrasion and deformation of mechanical components thus
the life span of the system will be shorted.

The nonlinear factors of electro-hydraulic servo position control system can
be divided into two types. The first type is the flow-pressure characteris-
tics of electro-hydraulic servo valve and the second type contains several
typical nonlinearities such as saturation nonlinearity, dead zone nonlinear-
ity, backlash nonlinearity, hysteretic nonlinearity and so on. In this chapter
only the first type of nonlinear factors will be analyzed.

According to the system equations built in §3.1, one can build the nonlinear
model for the electro-hydraulic servo position control system.

Generally speaking the frequency width of electro-hydraulic servo valve
is higher than 80 Hz while the frequency width of position control sys-
tem is only 5 . . . 20 Hz. Consequently according to the simplification result
in [160] the electro-hydraulic servo valve can be treated as a proportional
component. Thus Eq. (3.30) can be reduced to

xv = Ksc × i. (5.1)

Substituting Eq. (5.1) into Eq. (3.10) yields

ql = CvKsci

√
1
ρ
[ps − sign(i)pl]. (5.2)

According to Eq. (5.2), Eq. (3.18) and Eq. (3.19), the physical equations of
the system can be written as Apl = mt ẍp + Bp ẋp + Kxp + Fl

CvKsci
√

1
ρ [ps − sign(i)pl] = Aẋp +

Vt
4Ko

ṗl + Ctp pl
. (5.3)
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It is selected that x1 = xp, x2 = ẋp and x3 = pl thus according to Eq. (5.3)
one can derive the state equation

ẋ1 = x2

ẋ2 = 1
mt
(−Kx1 − Bpx2 + Ax3 − Fl)

ẋ3 = 4Ko
Vt

(−Ax2 − Ctpx3 + K̂
√

ps − sign(i)x3i)

(5.4)

where K̂ = CvKsc

√
1
ρ and the output equation

y = xp = x1. (5.5)

5.3. Simplified Nonlinear Model

According to the content in §3.1 one can have K = 0 and Bp = 0, then the
state equation can be reduced to

ẋ1 = x2

ẋ2 = 1
mt
(Ax3 − Fl)

ẋ3 = 4Ko
Vt

(−Ax2 − Ctpx3 + K̂
√

ps − sign(i)x3i)

(5.6)

and the output equation is y = xp = x1. Hence one can get
ẋ =


x2

A
mt

x3 − Fl
mt

−4AKo
Vt

x2 −
4KoCtp

Vt
x3

+


0

0
4KoK̂

Vt

√
ps − sign(i)x3

 i

y = xp = h(x) = x1

(5.7)

where ẋ = (ẋ1, ẋ2, ẋ3)
T.
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5.4. Exact Linearization via State Feedback

The nonlinear model of electro-hydraulic servo position control system
given by Eq. (5.7) can be expressed as ẋ = f (x) + g (x) u

y = h(x)

where x = (x1, x2, x3)
T = (xp, ẋp, pl)

T, ẋ = (ẋ1, ẋ2, ẋ3)
T, u = i, y = xp =

h(x) = x1,

f (x) =


x2

A
mt

x3 − Fl
mt

−4AKo
Vt

x2 −
4KoCtp

Vt
x3

 and g(x) =


0

0
4KoK̂

Vt

√
ps − sign(i)x3

.

Based on the differential geometric method introduced in Chapter 4 the
different order derivatives can be calculated as

h(x) = x1

Lgh(x) =
∂h(x)

∂x
g(x) = [1 0 0]


0

0
4KoK̂

Vt

√
ps − sign(i)x3


= 0

L f h(x) =
∂h(x)

∂x
f (x) = [1 0 0]


x2

A
mt

x3 − Fl
mt

−4AKo
Vt

x2 −
4KoCtp

Vt
x3


= x2

LgL f h(x) =
∂[L f h(x)]

∂x
g(x) = [0 1 0]


0

0
4KoK̂

Vt

√
ps − sign(i)x3


= 0
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L2
f h(x) =

∂[L f h(x)]

∂x
f (x) = [0 1 0]


x2

A
mt

x3 − Fl
mt

−4AKo
Vt

x2 −
4KoCtp

Vt
x3


=

A
mt

x3 −
Fl
mt

LgL2
f h(x) =

∂[L2
f h(x)]

∂x
g(x) = [0 0

A
mt

]


0

0
4KoK̂

Vt

√
ps − sign(i)x3


=

4AKoK̂
mtVt

√
ps − sign(i)x3

L3
f h(x) =

∂[L2
f h(x)]

∂x
f (x) = [0 0

A
mt

]


x2

A
mt

x3 − Fl
mt

−4AKo
Vt

x2 −
4KoCtp

Vt
x3


= −4A2Ko

mtVt
x2 −

4AKoCtp

mtVt
x3.

According to the definition of relative degree of nonlinear system in §4.3.7,
one can get that the relative degree of nonlinear system is r− 1 = 2 hence
r = 3. Since the order of the nonlinear system is n = 3, the relative degree r
equals to the system order n: r = n = 3. Consequently one can linearize the
original nonlinear system with the method of exact linearization via state
feedback.

Based on the theory of nonlinear coordinate transformation which is de-
scribed in Chapter 4, the coordinate transformation equation is given by

z = φ(x) =


z1

z2

z3

 =


h(x)

L f h(x)

L2
f h(x)

 =


x1

x2

A
mt

x3 − Fl
mt

 . (5.8)
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Then one can get 
ż1 = z2

ż2 = z3

ż3 = α(x) + β(x)u

(5.9)

where α(x) = L3
f h(x) and β(x) = LgL2

f h(x).

The feedback transformation can be selected as

u =
−α(x) + ν

β(x)
(5.10)

where β(x) 6= 0.

Thus one can have 
ż1 = z2

ż2 = z3

ż3 = ν

. (5.11)

Finally the original nonlinear model can be transformed to the linear model
as 

ż =


ż1

ż2

ż3

 =


0 1 0

0 0 1

0 0 0




z1

z2

z3

+


0

0

1

 ν

y = cTz = [1 0 0]


z1

z2

z3


(5.12)

which is  ż = Az + bν

y = cTz
.
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5.5. Comparison between Exact Linearization and
Approximate Linearization

5.5.1. Introduction

In this section the stabilization problem of nonlinear electro-hydraulic servo
system will be solved i.e. a state feedback controller will be designed so
that the closed loop system is a stable system. The general method is to
linearize the nonlinear system and then design the controller based on the
stability theory of linear system. Generally speaking there are two different
linearization methods: one is the approximate linearization method based
on Taylor expansion and the other is the exact linearization method based
on differential geometry. The exact linearization method is introduced in
§5.4 and the exact linear model is given by Eq. (5.12). The approximate
linear model of the nonlinear system ẋ = f (x) + g (x) u can be derived
by

ẋ1

ẋ2
...

ẋn

 =



∂ f1(x)
∂x1

∂ f1(x)
∂x2

· · · ∂ f1(x)
∂xn

∂ f2(x)
∂x1

∂ f2(x)
∂x2

· · · ∂ f2(x)
∂xn

...
...

...
...

∂ fn(x)
∂x1

∂ fn(x)
∂x2

· · · ∂ fn(x)
∂xn


x0

·


x1

x2
...

xn

+


g1(x0)

g2(x0)
...

gn(x0)

 · u (5.13)

where x0 is the equilibrium point of the system.

Hence the approximate linear model of the nonlinear electro-hydraulic
servo system which is expressed by Eq. (5.7) can be written as:


ẋ1

ẋ2

ẋ3

 =


0 1 0

0 0 A
mt

0 −4AKo
Vt

−4KoCtp
Vt

 ·


x1

x2

x3

+


0

0
4KoK̂

Vt

√
ps

 · i
y = x1

(5.14)

with the equilibrium point x0 = [0 0 0]T.
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One can apply the pole assignment method of linear system to design the
feedback controller of the system based on the exact linear model expressed
by Eq. (5.12) or the approximate linear model expressed by Eq. (5.14). The
difference is that the control variable obtained by the former feedback con-
troller is ν rather than the control variable u of the original system hence
one need the transformation from ν to u which is given by Eq. (5.10) to con-
trol the original system while the latter feedback controller can be applied
to the original nonlinear system directly and is effective in a small working
range.

By comparing these two methods, one can find that the main shortcom-
ing of the classical approximate linearization method is that it has errors
and the errors will increase when the system deviates from the equilib-
rium point x0. Nevertheless the exact linearization method can work in a
large range no matter how seriously the system deviates from the equilib-
rium point x0 consequently the exact linearization method is applicable to
the high precision control of nonlinear system especially when the system
always deviates from the equilibrium point.

5.5.2. Simulation and Comparison

In this section two different state feedback controllers will be designed
based on exact linearization method and approximate linearization method
respectively and then their control performances in different conditions
will be compared.

5.5.2.1. Controller Design

(1) Controller Design Based on Exact Linearization Method

According to linear system theory the state feedback controller which sta-
bilizes the exact linear model given by Eq. (5.12) is

ν = −ke
Tz = −ke1z1 − ke2z2 − ke3z3

107



5. Design and Simulation of Control System Based on Exact Linearization

and ke should satisfy that s3 + ke3s2 + ke2s + ke1 is a Hurwitz polynomial.
Furthermore the state feedback controller which can stabilize the original
nonlinear system is given by Eq. (5.10).

(2) Controller Design Based on Approximate Linearization Method

The state feedback controller which stabilizes the approximate linear model
given by Eq. (5.12) is

u = −ka
Tx = −ka1x1 − ka2x2 − ka3x3

and ka should satisfy that all the eigenvalues of the matrix (A − bka
T)

must have negative real parts where A =


0 1 0

0 0 A
mt

0 −4AKo
Vt

−4KoCtp
Vt

 and

b =


0

0
4KoK̂

Vt

√
ps

.

5.5.2.2. Simulation

The 250kN cylinder and the G761-3005 type MOOG servo valve is used in
simulation with Simulink. The necessary parameters are as follows:

A = 8.34× 10−3 m2

Vt = 1.126× 10−3 m3

mt = 217.8 kg

Ko = 2× 109 Pa

Ctp = 7.6042× 10−12 m4 · s/kg

ps = 22× 106 Pa

K̂ = 1× 10−5 m4/(A · s ·
√

N).
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Setting the three poles as

s1 = −100

s2 = −7.07 + 7.07i

s3 = −7.07− 7.07i

one can derive the two controllers’ parameters as

ke = [10000 1510 114.1]T

ka = [−7.8366× 10−4 0.1777 − 1.8027× 10−10]T.

Figure 5.1 and Figure 5.2 are the structure diagrams of the state feedback
controllers based on exact linearization method and approximate lineariza-
tion method respectively.

Figure 5.1.: State Feedback Controller Based on Exact Linearization Method

5.5.2.3. Result

In this section the step signal is used as the reference input r and the sim-
ulation is run in Simulink to compare the results.

(1) Fl = 0
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Figure 5.2.: State Feedback Controller Based on Approximate Linearization Method

With the external load force Fl = 0 the original nonlinear system can work
near the equilibrium point x0. The simulation results of the system with
the two controllers are shown in Figure 5.3 and Figure 5.4 respectively.

From Figure 5.3 and Figure 5.4 it can be found that when the system works
in a small range of the equilibrium point, both of the two controllers are
satisfying.

(2) Fl = −8.34× 103N

When the system has a large external load force, the value of the state x3
(= pl) will increase according to Eq. (3.19) which means that the system has
to work far away from the equilibrium point x0. The simulation results of
the system with the two controllers are shown in Figure 5.5 and Figure 5.6
respectively.

Figure 5.5 shows that the state feedback controller based on exact lineariza-
tion method is still effective. However Figure 5.6 shows that the state feed-
back controller based on approximate linearization method can not work
and the whole system is not stable when it deviates from the equilibrium
point x0. The results prove the conclusion in §5.5.1.
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Figure 5.3.: System Output with State Feedback Controller Based on Exact Linearization
Method When Fl = 0

Figure 5.4.: System Output with State Feedback Controller Based on Approximate Lin-
earization Method When Fl = 0
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Figure 5.5.: System Output with State Feedback Controller Based on Exact Linearization
Method When Fl = −8.34× 103N

Figure 5.6.: System Output with State Feedback Controller Based on Approximate Lin-
earization Method When Fl = −8.34× 103N
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5.6. Robustness Analysis of the Control System

5.6.1. Presentation of Robustness Problem

Generally speaking when researchers build the system model and estimate
the values of the model parameters based on datasheet or system identi-
fication, they can not make sure that the values of the model parameters
are completely identical to the real values. Furthermore the industrial con-
trol system has to work in the harsh environment and various disturbances
will enter the system through the input and output channels. Moreover
most of the controlled systems are time variant which means that even if
the real values of the system parameters are achieved, they will change
with the time. All these cases are called model uncertainty. The control sys-
tem is based on the system model G(s) while the closed-loop stability and
the closed-loop performance index is on the premise of the assumption
G(s) = G0(s) where G0(s) is the real controlled object. Nevertheless the
model uncertainty i.e. the case when G(s) 6= G0(s) is not negligible. Sup-
posing G(s) 6= G0(s) or there exists the external disturbance, the ability of
the control system to keep closed-loop stability is called stability robustness
and the one to keep closed-loop performance index is called performance
robustness. Thus whether the control system designed with model uncer-
tainty can operate stably and has anticipant performance index is called
robustness problem which has received great concerns recently. In addition
robustness of the system is closely related to the control algorithm which
means that robustness of the same system will change with the different
control strategies. Consequently researchers should research robustness of
the system under certain control algorithm.

5.6.2. Robustness of Electro-Hydraulic Servo System under
Nonlinear Control

In practical electro-hydraulic servo system some parameters such as total
leakage coefficient are difficult to estimate and in addition some parame-
ters such as bulk modulus of oil are time variant. Therefore one only can
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achieve the comparatively accurate estimated value (nominal value) rather
than exact value of these parameters through system analysis and identi-
fication. When the parameters deviate from the nominal value, the system
will also deviate from the nominal mathematical model. Hence it should
be known whether the control law based on the ideal model still works
well when the system deviates from the ideal model i.e. whether the non-
linear control strategy derived has robustness. Now this problem will be
discussed with simulation results when bulk modulus Ko, total leakage co-
efficient Ctp, flow coefficient K̂ and load mass mt change. Figure 5.5 (with
Fl = −8.34× 103N) is used as the reference simulation result while the re-
sults with modified parameters are shown from Figure 5.7 to Figure 5.11.

5.6.2.1. Influence of Modified Bulk Modulus

Bulk Modulus Ko depends on the air content in oil and changes frequently.
Here it is assumed that the value of Ko decreases by 50% (from 2000 MPa to
1000 MPa) and the simulation result is given by Figure 5.7. Bulk Modulus
embodies the relationship between volume variation and pressure change.
The decrease of bulk modulus means that one can achieve more volume
variation with the same pressure and thus in dynamic system it is possi-
ble that the oscillation increases. Nevertheless comparing Figure 5.7 with
Figure 5.5 one can find that there is no significant change.

5.6.2.2. Influence of Modified Total Leakage Coefficient

From theoretical point of view, when total leakage coefficient Ctp increases,
leakage of the whole system will increase which means that the practical
working flow of servo valve with the same current will decrease so that the
overshoot will be reduced and the response time will be prolonged. Here it
is assumed that the total leakage coefficient Ctp increases by 100% and the
simulation result is shown in Figure 5.8 from which one can see that the
response curve has no obvious changes compared with Figure 5.5.
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Figure 5.7.: System Output with State Feedback Controller Based on Exact Linearization
Method When Bulk Modulus Changes

Figure 5.8.: System Output with State Feedback Controller Based on Exact Linearization
Method When Total Leakage Coefficient Changes
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5.6.2.3. Influence of Modified Flow Coefficient

Generally speaking when flow coefficient decreases, the output flow of
servo valve with the same current will decrease so as to reduce the over-
shoot and prolong the response time. Now it is assumed that the flow
coefficient K̂ decreases by 25% and the result is given by Figure 5.9 from
which one can find that the overshoot of the response curve is reduced a
little and the response time is prolonged by 0.2 s compared with Figure 5.5.
However this variation is acceptable.

Figure 5.9.: System Output with State Feedback Controller Based on Exact Linearization
Method When Flow Coefficient Changes

5.6.2.4. Influence of Modified Load Mass

When load mass increases the inertia of the system load will also increase
so that the response time will be prolonged. Supposing that the load mass
mt increases by 50% one can get the simulation result as shown in Fig-
ure 5.10. It can be observed that the response curve does not change signif-
icantly compared with Figure 5.5.
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Figure 5.10.: System Output with State Feedback Controller Based on Exact Linearization
Method When Load Mass Changes

5.6.2.5. Influence of Multi Modified Parameters

Now it can be assumed that all the four parameters change simultane-
ously according to the content above and the simulation result is given by
Figure 5.11 from which one can notice that the overshoot of the response
curve is reduced a little, the response time is prolonged by 0.2 s and the
regulating time of the modified system increases slightly compared with
Figure 5.5. Nevertheless the result is satisfying.

All the analysis shows that when the system parameters change, not only
can the modified system keep stable but also have good dynamic and static
performance. Consequently in summary the electro-hydraulic servo system
has good robustness with the state feedback controller after exact lineariza-
tion.
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Figure 5.11.: System Output with State Feedback Controller Based on Exact Linearization
Method When Multi Parameters Change

5.7. Disturbance Decoupling and Attenuation

In practical electro-hydraulic servo system engineers have to face the effects
of external disturbance. In §4.5 the problems when and how one can elim-
inate or weaken the influence of external disturbance have been discussed.
In this section the nonlinear model of electro-hydraulic servo system de-
rived in §5.3 with disturbance model will be studied by simulation so as to
check whether the influence of external disturbance can be eliminated or
weakened.

5.7.1. Disturbance Decoupling

The nonlinear model of electro-hydraulic servo system is given by Eq. (5.7)
and it is assumed that the external disturbance model is p(x)w hence the
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nonlinear model of the system with disturbance can be written as: ẋ = f (x) + g (x) u + p (x)w

y = h (x)
(5.15)

where f (x) =
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c

 (a, b and c are unknown parameters), h (x) = x1, u ∈ R and

w ∈ R are system input and disturbance input respectively.

Now whether the system output y can be decoupled from the disturbance
input w completely should be verified. According to Proposition 4.1 the
system relative degree r should be less than the disturbance relative degree
ρ if the complete decoupling can be realized. In §5.4 it is obtained that
r = 3 consequently it is expected that ρ ≥ 4. According to the definition of
disturbance relative degree ρ in §4.5.1.1 one can have:

LpLk
f h(x) = 0, (0 ≤ k ≤ 2).

Therefore one can have:
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= x2
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Hence one can get the conclusion that if the output y of electro-hydraulic
servo system can be decoupled from the disturbance input w completely,
p(x) should be a zero vector however it is not possible when the system
has external disturbance. So in electro-hydraulic servo system the complete
disturbance decoupling can not be realized.

5.7.2. Disturbance Attenuation

Since the disturbance decoupling method is not effective, one can only
choose to weaken the influence of external disturbance with the method
introduced in §4.5.2. The nonlinear model of electro-hydraulic servo system
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with external disturbance can be expressed by ẋ = f (x) + g (x) u + p (x)w

y = h (x)
(5.16)

where f (x) =
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, h (x) = x1, u ∈ R and w ∈ R are system input and distur-

bance input respectively. Furthermore one can have:

rank[g, p] = rank[g] = 1 (5.17)

hence the system satisfies the matching condition.

Since the relative degree of the system r is equal to the system order n
according to §5.4 one can select the coordinate transformation (5.8) and the
original nonlinear system can be transformed to:

ż = Az + bν + ew (5.18)

where A =


0 1 0
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,
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f h(x)u and z = [z1 z2 z3]
T.

Furthermore according to §4.3.5 and §5.4 one can have

LpL2
f h(x) =

∂[L2
f h(x)]

∂x
p(x) = [0 0

A
mt

]


0

0

1



121



5. Design and Simulation of Control System Based on Exact Linearization
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Then the switching function can be selected as:

s(z) = cTz = c1z1 + c2z2 + z3 (5.19)

where c = [c1 c2 1]T. Thus when the system makes sliding mode motion,
one can have:

z3 = −c1z1 − c2z2 (5.20)

and the sliding mode equation is given by ż1

ż2

 =

 0 1

0 0

 z1

z2

+

 0

1

 z3. (5.21)

Thus a linear subsystem described by Eq. (5.21) with the feedback (5.20) is
derived. Now one can calculate the values of c1 and c2 with the pole as-
signment method based on linear control theory. Supposing the two poles
required are

s1 = −7.07 + 7.07i

s2 = −7.07− 7.07i
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one can derive that c1 = 99.9698 and c2 = 14.14 so as to achieve

c = [c1 c2 1]T = [99.9698 14.14 1]T. (5.22)

Then the exponential reaching law is selected thus according to Eq. (4.64)
the equivalent control input ν is given by:

ν = (cTb)−1(−cT Az− ε · sgn(s)− k · s) = −c1z2 − c2z3 − ε · sgn(s)− k · s.
(5.23)

Here it is set that ε = 1 and k = 10000. Thus one can calculate the control
input u of the original nonlinear system with Eq. (5.10). Now the state feed-
back controller with exact linearization method derived in §5.5.2.2 and the
sliding mode variable structure controller with exact linearization method
is achieved therefore one can compare the disturbance resistance of them
with simulation. It is assumed that the external disturbance is a sinusoidal
signal: w = 106 · sin(2π · t) where t is time. The simulation results are
shown in Figure 5.12 and Figure 5.13.

Figure 5.12.: System Output with State Feedback Controller Based on Exact Linearization
Method with External Disturbance
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Figure 5.13.: System Output with Sliding Mode Variable Structure Controller Based on
Exact Linearization Method with External Disturbance

From Figure 5.12 one can find that the system output y is influenced by
the external disturbance w i.e. the general state feedback controller with
exact linearization method does not have enough anti disturbance ability
while from Figure 5.13 one can observe that the system output still has
good dynamic and static performance and furthermore the effects of exter-
nal disturbance are negligible. This verifies that the sliding mode variable
structure controller with exact linearization method has satisfying anti dis-
turbance performance.

5.8. Summary

In this chapter the nonlinear model of electro-hydraulic servo position con-
trol system built in Chapter 3 is linearized with the exact linearization
method via state feedback. Then the state feedback controllers is designed
based on exact linearization method and approximate linearization method
respectively and simulation is run in Simulink. The results show that the
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control effect of the exact linearization controller is better than that of ap-
proximate linearization controller when the system works far away from
the equilibrium point. This is due to the factor that the exact linearization
method via state feedback is essentially different from the approximate
linearization method based on Taylor expansion. The latter method is ef-
fective only near the working point (equilibrium point) because it loses
parts of system information while the former method is a kind of coor-
dinate transformation. As long as the physical equations of the original
nonlinear system are accurate, the linearized system based on exact lin-
earization method is accurate. Consequently the original nonlinear system
can be linearized completely with the exact linearization method via state
feedback.

Furthermore the robustness of the electro-hydraulic servo system with state
feedback controller based on exact linearization method is researched. This
is significant because modeling errors always exist and real system is time
variant. The simulation results show that the system still has satisfying
dynamic and static performance even if some of the parameters deviate
from the nominal values greatly. It verifies the strong robustness of the
control system.

Finally the external disturbance problem is discussed since in practical sys-
tem external disturbance always exists. Firstly it is proved that the system
output of electro-hydraulic servo position control system can not be decou-
pled from the disturbance input completely. Then the sliding mode variable
structure controller based on exact linearization method via state feedback
is applied. The effectiveness of this controller is confirmed by the simula-
tion results.
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6. Iterative Learning Control
Theory

6.1. Introduction

6.1.1. Background and Motivation

Generally speaking the task of control system is to seek for the control
signal u(t) so that the output signal y(t) can meet the requirements. For in-
stance one of the control tasks is to make the output signal y(t) as small as
possible (or as close as possible to some equilibrium point) while another
one is to make the error signal e(t) = r(t)− y(t) as small as possible where
r(t) is the reference signal. The former is called regulating problem and the
latter is called tracking problem. Obviously regulating problem is the spe-
cial case of the tracking problem. Currently most of the control algorithms
realize control tasks asymptotically that is to find the control signal u(t)
so as to achieve lim

t→∞
y(t) = 0 (asymptotically regulating) or lim

t→∞
e(t) = 0

(asymptotically tracking). In engineering researchers often use the transient
performance index and the steady-state performance index to evaluate the
control effects of asymptotically regulating or asymptotically tracking.

There also exists another kind of tracking problem in engineering of which
the task is to seek for the control signal u(t) so that the output signal y(t)
can realize zero-error tracking along the whole desired trajectory in the
finite time interval [0, T] that is e(t) = 0, t ∈ [0, T]. This is called perfect
tracking problem in finite time interval. This kind of tracking problem has
practical background such as industrial robots with repetitive tasks of han-
dling, welding and assembly; numerical control machines; servo systems
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with periodic reference signal and so on. Nevertheless it is difficult for
researchers to apply the conventional control methods to realize perfect
tracking consequently researchers try to find a new control algorithm to
complete this control task.

One of the essential characteristics of creatures is ”learning”. Learning is
also one of the basic intelligent behaviors of human beings and plays a very
important role in human’s evolutionary process. Learning control is one
of the attempts to imitate various excellent control and regulation mech-
anisms of human being itself. To give control system the learning ability
so that the system can improve control performance continuously by itself
in the operation process is one of the aims pursued by researchers and
engineers.

Learning control system is such an automatic control system that it can
achieve the information of controlled process and environment, accumu-
late control experiences and improve control performance progressively in
the operation process. The theory and technology of learning control has
become one of the important branches of intelligent control. Obviously to
realize intelligent control researchers should introduce ”learning” into con-
trol system.

Iterative learning control (ILC) is one of the new fields of research on con-
trol theory and application and is one of the branches which have strict
mathematical description in intelligent control. The classical iterative learn-
ing control theory is based on contraction mapping theory and it requires
that the system should be Lipschitz continuous. Furthermore the system
should satisfy the assumed conditions as follows [161]:

• Every trial (iteration, repetition and so on) should be in a fixed finite
time interval that is t ∈ [0, T];
• The desired output signal yd(t), t ∈ [0, T] is given a priori;
• The initial state of the system should be the same at the beginning of

each iteration that is xk(0) = x(0) for k = 1, 2, · · ·;
• The dynamic performance of the system keeps invariant in each iter-

ation, that is to say, the system is repeatable;
• The output signal yk(t) of the system in each iteration can be mea-

sured;
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• The dynamics of the system is invertible, that is, for a given desired
output signal yd(t), t ∈ [0, T] there exists a unique control signal ud(t)
that drives the system to produce the output signal yd(t).

Hence the control task of ILC is to realize perfect tracking in a finite time
interval in an environment of repetitive operation. This control task can
not be completed by the conventional control methods independently and
directly because with these methods the control system can not ”learn”
anything from the previous operations. Without learning even if the control
system executes the same task repeatedly, the system can only achieve the
same performance without improvement.

The basic idea of ILC is to use information from previous control processes
to improve the control effects of current operation so that the control system
can track the desired trajectory as accurately as possible in a given time
interval after several iterations. The algorithm of ILC is based on learning
with memory.

ILC has a lot of advantages. For example ILC can deal with the uncertain
dynamic system with simple algorithm and little prior knowledge. More-
over it is not necessary for controller to identify system parameters in the
process of operation. Furthermore since ILC is a kind of algorithms with
memory it can adjust the control signal according to the information from
memory quickly.

6.1.2. Mathematical Description of ILC

Considering the dynamic system with repetitive operation as follows: ẋk(t) = f [xk(t), uk(t), t]

yk(t) = h[xk(t), uk(t), t]
(6.1)

where xk(t) ∈ Rn, uk(t) ∈ Rr and yk(t) ∈ Rm are system states, control
signals and output signals on trial k respectively. Given the desired output
signals yd(t) ∈ Rm in the given time interval [0, T], one can have the er-
ror signals ek(t) = yd(t) − yk(t) of the system on trial k thus the general
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learning law of ILC is given by

uk+1(t) = L[uk(t), ek(t)] (6.2)

which is called open-loop ILC and

uk+1(t) = L[uk(t), ek+1(t)] (6.3)

which is called closed-loop ILC. Note that L is the general learning operator
and has a lot of different forms.

Figure 6.1.: Typical Control Structure of Open-Loop ILC

If the error signals ek(t) tend to zero or some constants uniformly as k →
∞ then the learning law of ILC above is convergent. Convergence is one
of the most important problems of ILC. The ILC algorithm has practical
significance only when the process of iterative learning is convergent.

An effective ILC algorithm not only makes the output errors of the system
smaller after each iteration but also has fast convergence rate so that the
algorithm is applicable in engineering. Furthermore the convergence of ILC
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algorithm should be independent of desired trajectory, that is, given a new
desired trajectory the ILC algorithm should be still effective without any
modification.

In practical applications the control signals of each iteration can be calcu-
lated after last iteration and moreover they can also be calculated and saved
online in last iteration. Therefore compared with the conventional control
algorithms, ILC can utilize more system information from each iteration.

A typical control structure of open-loop ILC is given in Figure 6.1. Please
note that in some cases the “process” in Figure 6.1 can be regarded as a sub
control system. For example in the next chapter the “process” is a feedback
control system composed of a PI controller and valve-controlled cylinder
system thus the control signal uk(t) on trial k is the reference signal of the
feedback control system.

6.2. Literature Review of Iterative Learning
Control Theory

In 1978 Uchiyama introduced the conception of learning based on repeti-
tive training in his Japanese paper which is regarded as the earliest research
results of ILC. In 1984 Arimoto and his colleagues expanded this concep-
tion [162]. They proposed the first ILC algorithm for linear time-invariant
system and then proved the convergence of the algorithm with the norm
of time weighted function (λ norm). From then on ILC has attracted wide
attention of researchers.

Through approximately 30 years development, a lot of research results on
the theory and application of ILC are achieved by researchers and engi-
neers. For example ILC algorithms have developed from open-loop learn-
ing to closed-loop learning. The application fields of ILC have expanded
from SISO systems to MIMO systems and from linear systems to nonlinear
systems. More and more mathematical theories are introduced to analyze
ILC such as contractive mapping theory, geometry theory and so on. The
control structures of ILC have developed from single structures to complex
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structures such as robust ILC, adaptive ILC and so on. The development of
ILC is introduced briefly as follows.

6.2.1. Algorithms

6.2.1.1. PID-Type ILC

ILC algorithm has a lot of forms while the basic and simple one is the
PID-type ILC which uses the proportional, integral and derivative values
of the system output errors to update reference signal and also has several
different types. Arimoto and his colleagues have made enormous contribu-
tion to this field of research. They firstly propose the D-type [162], PD-type
and PID-type [163] ILC algorithm. Especially they introduce the λ norm
which is an important mathematical tool and then with this tool they ob-
tain the sufficient condition of convergence of the ILC algorithms above.
The λ norm has become the basic method to analyze the convergence of
various ILC algorithms. Moreover, aiming at the robot system, they propose
the P-type and PI-type ILC algorithm and then analyze the robustness and
the uniform convergence of these ILC algorithms with passivity condition
and λ norm [164].

Aiming at more general systems such as nonlinear systems, time-variant
systems and so on, researchers have done lots of work and achieved many
results. In [165] a P-type ILC algorithm is proposed for a class of uncer-
tain nonlinear time-variable systems and the robustness, convergence and
performance of this algorithm is studied. In [166] an open-closed-loop D-
type ILC algorithm is investigated for a class of nonlinear time-variable
systems and the sufficient convergence condition is given and proved. In
[167] they show that the integral value of the system tracking error in ILC
algorithm is helpful for system convergence and then they realize the op-
timal design of PI-type ILC scheme. In [168] they propose a PD-type ILC
algorithm for a class of nonlinear systems and then they give and prove
the sufficient condition for guaranteeing the convergence of the system. In
[169] an open-closed-loop PID-type ILC algorithm is studied for uncertain
time-delay systems and then the robustness and convergence of the system
is discussed.
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Furthermore some scientists research on the improved PID-type ILC and
obtain some results. In [170] Hu and Xiao propose three kinds of higher-
order ILC algorithms:

P-type:

uk+1(t) =
r

∑
j=1

Λj uk−j+1 +
r

∑
j=1

Pj ek−j+1 (6.4)

D-type:

uk+1(t) =
r

∑
j=1

Λj uk−j+1 +
r

∑
j=1

Dj ėk−j+1 (6.5)

and PD-type:

uk+1(t) =
r

∑
j=1

Λj uk−j+1 +
r

∑
j=1

(Pj + Dj

d
dt

)ek−j+1 . (6.6)

Compared with conventional PID-type ILC algorithms, higher-order ones
utilize not only the input-output information of last iteration but also the
information of previous several iterations so as to provide the control signal
more accurately and effectively.

PID-type ILC algorithms are sensitive to perturbation of initial error or
output error. To overcome this shortcoming Heinzinger and his colleagues
propose the D-type learning law with forgetting factor [171]. And then
Arimoto and his colleagues propose the P-type learning law with forgetting
factor [172]. The general form of PID-type ILC algorithms with forgetting
factor is given by:

uk+1(t) = αu0(t) + (1− α)uk(t) + (KP + KI

∫
dt + KD

d
dt

)ek(t) (6.7)

where α ∈ [0, 1) is the forgetting factor. Introducing the forgetting factor,
the influence of early information will decrease with the increase of itera-
tion times so that the variation of control signal can be more smooth.

PID-type ILC algorithm has a lot of advantages. For example the conver-
gence condition is simple and relevant to only a few parameters; the PID-
type ILC algorithm has good robustness to the uncertain systems; the algo-
rithm is simple and useful with low computational complexity; it requires
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little prior knowledge. Consequently PID-type ILC algorithm is one of the
most mature ILC strategies. Nevertheless it has some disadvantages. For
instance with the derivative part the ILC algorithm is easily influenced by
noise while without it the convergence condition of the ILC algorithm is
not so easy to satisfy. Furthermore the desired control input signal maybe
does not exist thus the learning parameters from convergence condition
is not proper so as to cause significant error between the desired output
signal and the real one. Finally it is difficult to find the proper values for
the learning parameters which can satisfy the requirements of both conver-
gence rate and system stability.

6.2.1.2. Robust ILC

In practical engineering, control system should be stable and have good
dynamic and static performance. Furthermore it should be robust to un-
certainties and disturbances of the system. The research on the robustness
of ILC system mainly focuses on whether the system can keep convergent
and stable when there exist external disturbances, system uncertainties and
desired trajectory varying with iterations.

(1) Robustness to External Disturbances

In [173] Pi and Panaliappan discuss the robustness of discrete nonlinear
system with open-closed-loop ILC algorithm to the bounded uncertainty
of system state, output disturbance and initial error. In [174] Kim et al. pro-
pose a higher-order ILC algorithm for the discrete system and then discuss
the robustness of the system to external disturbance. In [175] Shao et al.
propose a design method of robust ILC and then give the sufficient and
necessary condition to ensure robust bounded-input bounded-output sta-
bility when the system tracks arbitrary bounded output. The control sys-
tem is robust to uncertain initial condition and external disturbance and
furthermore can improve control performance gradually. In [176] aiming at
uncertain linear controlled object with initial error and input-output distur-
bance, Liu and Lin propose an ILC framework and then give the sufficient
condition of robust convergence in frequency domain.

(2) Robustness to System Uncertainties
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Aiming at a class of uncertain systems, of which the uncertain part can
be treated as the product of unknown state-independent functions and
known state-dependent functions, Xu and Viswanathan propose an adap-
tive robust iterative learning controller with dead zone scheme [177]. The
iterative learning controller deals with the structured system uncertainties
and the dead zone scheme ensures that the tracking error of the system is
bounded. In [178] aiming at uncertain robotic systems Yang et al. design an
adaptive robust iterative learning controller which is robust to both of the
structured and unstructured uncertainty. In [179] aiming at uncertain lin-
ear time-invariant system Tayebi and Zaremba propose an ILC algorithm
based on internal model control. They discuss the convergence of ILC and
then transform it into robust control problem. Finally they design the ro-
bust controller with the µ synthesis method. In [180] Yang and Li propose
an adaptive robust ILC algorithm for a class of uncertain nonlinear sys-
tems. The learning control deals with the periodic system uncertainty and
the adaptive sliding mode control deals with the nonperiodic one. More-
over they use the radial basis function (RBF) neural network to learn the
uncertain upper bound of the system adaptively.

(3) Robustness to Desired Trajectory Varying with Iterations

Most of the conventional ILC algorithms work according to the desired tra-
jectory of the system directly hence generally speaking the prerequisite for
the convergence of ILC algorithms is that the desired trajectory should keep
the same with iterations, that is, the desired trajectory should have strict re-
peatability. Nevertheless the application range of ILC algorithms is limited
according to this prerequisite. Aiming at the desired trajectory which varies
with iterations, researchers have done a lot of work and achieved some im-
portant results. Saab et al. apply a PID-type ILC law with forgetting factor
to solve the problem of tracking slowly varying trajectories [181]. Choi and
Park introduce the neural network into ILC system to learn the new trajec-
tory so as to solve the problem of tracking the desired trajectory varying
with iterations. However it is still difficult to track the trajectory precisely
[182]. In [183] based on the conventional open-closed-loop ILC, Liu dis-
cusses in frequency domain the sufficient condition of robust convergence
of ILC algorithm which is robust to external disturbance and initial error
when the desired trajectory varies slowly. Furthermore aiming at linear
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system with multiplicative uncertainty, he designs the robust ILC law with
the µ synthesis method.

6.2.1.3. Adaptive ILC

Adaptive control and ILC have the same characteristic of learning, that is,
adaptive control is a kind of learning process aiming at parameter while
ILC is the one aiming at control input. Consequently researchers try to
combine adaptive control theory and ILC theory thus the adaptive ILC
algorithms are proposed.

The basic idea of adaptive ILC is to make full use of the prior knowl-
edge of the system and then apply adaptive iterative learning aiming at
the uncertain parameters of the system and the unknown control gain of
the controller. French and Rogers propose an adaptive ILC algorithm aim-
ing at the nonlinear system with uncertain parameters using the Lyapunov
method [184]. The adaptive learning for parameters is along the direction
of time axis however this algorithm is suitable only for the systems with
time invariant or slow time-varying parameters. Xu and Tan propose an
ILC method for the nonlinear systems with time-varying parametric un-
certainties based on the composite energy function and obtain the learning
law for the time-varying parameters through learning along the direction
of iterative axis [185]. Aiming at uncertain robotic systems Park and his
colleagues propose an adaptive iterative learning controller and both of
the parameter estimation and learning control are along the direction of it-
erative axis [186]. Choi and Lee propose an adaptive ILC algorithm for the
uncertain robotic systems with external disturbance [187]. This algorithm
estimates the uncertain parameters in the time domain and identifies and
compensates the repetitive disturbances in the iteration domain so that the
tracking error converges uniformly in the iteration domain. In [188] Liu dis-
cusses the adaptive ILC problems of time-delay systems with time-varying
parameters. Aiming at two kinds of nonlinear systems with unknown con-
trol gains, he applies the Nussbaum function and Lyapunov-Krasovskii
function respectively to design the adaptive ILC law with backstepping
technology. All of the research results above expand the application range
of adaptive control and ILC.
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6.2.1.4. Optimal ILC

The control objective of ILC is to reduce tracking error gradually through
iterative learning hence the problem of minimizing the error can be trans-
formed into the optimization problem.

Furuta and his colleagues firstly introduce the conception of optimization
into ILC [189]. They use the steepest descent method to calculate optimal
control signal. This algorithm achieves good results in the controllable sys-
tem with delays. In [190] Buchheit et al. propose another ILC algorithm
based on optimization, which uses Newton-Raphson method to calculate
ideal input signal. Moreover to reduce the sensitivity of the system to noise,
researchers propose several other ILC algorithms based on optimization.
Tao et al. propose a discrete ILC algorithm based on optimization by using
the quadratic function with penalty term as the objective function of opti-
mization [191]. This algorithm can reduce the sensitivity of the system to
noise effectively nevertheless the convergence speed is decreased.

Furthermore genetic algorithm is a kind of highly-parallel random adap-
tive search algorithm based on natural selection theory and evolutionism
of biology. It works without constraint conditions such as differentiability,
continuity and so on and moreover it does not require other auxiliary infor-
mation. Furthermore it has a lot of advantages such as simplicity, univer-
sality, robustness and so on. Consequently it becomes one of the important
tools to solve optimization problem. For instance aiming at the nonlinear
ILC problem based on norm optimization, Hatzikos et al. propose the ge-
netic algorithm to solve the norm optimization problem of ILC and then
they achieve good result, that is, the norm of the error decreases mono-
tonically [192]. However the algorithm supposes that the controlled object
does not have uncertainties which is not reasonable in practical ILC sys-
tems. How to solve this problem is the key to apply genetic algorithm in
practical engineering.

6.2.1.5. Model Reference ILC

Model reference ILC algorithms have several different forms. One of them
is to update parameters of the system model with system identification
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methods according to operation information of the system in each iteration
and then construct the ILC algorithm with model parameters. This model
reference ILC algorithm is a kind of PID-type ILC algorithm with system-
atic design method for learning parameters essentially. However the rela-
tionship between the designed learning parameters, the convergence rate
and the tracking performance is not clear. For instance Oh and his col-
leagues construct the ILC algorithm with the inverse model of the system
[193]. The convergence condition of the algorithm is very simple and is rel-
evant to only a few parameters of the system model hence it allows large
model errors.

Another commonly used model reference ILC algorithm is the one com-
bined with predictive control. This algorithm utilizes the design idea of
model prediction, rolling optimization and feedback correction of predic-
tive control, that is, based on conventional control it applies model predic-
tion after each iteration, replaces rolling optimization with global optimiza-
tion and finally obtains ILC algorithm according to the optimum index. For
example Bone proposes a novel ILC law combined with generalized pre-
dictive control (GPC) and the simulation results show that compared with
ordinary GPC this novel control law can improve the tracking precision of
the system while compared with general ILC it can improve the robust-
ness of the algorithm [194]. In [195] they propose the predictive optimal
ILC algorithm based on predictive control technology. Based on the same
quadratic criterion Lee and his colleagues propose a model-based ILC algo-
rithm and then they analyze the robustness of the system with disturbance
[196]. Furthermore Kim and his colleagues obtain the reduced-order design
method of the model reference ILC algorithm based on quadratic criterion
with the singular value decomposition technology [197].

6.2.1.6. Feedback-Feedforward ILC

As two main means for control, feedback and feedforward are widely used
in control systems. ILC is a kind of feedforward control technology essen-
tially. However in practical engineering if the controlled system is not sta-
ble, it is not allowed to apply open-loop ILC algorithm individually. Even
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if the controlled system is stable, before the iterative learning process con-
verges, open-loop ILC algorithms might cause large control error which is
not acceptable in many practical applications. Applying feedback control
technology can stabilize the system and decrease the error. Kuc and his
colleagues propose a feedback-feedforward ILC algorithm [198]:

uk(t) = u
f

k
(t) + u

b

k
(t)

u
b

k
(t) = F(ek(t))

u
f

k+1
(t) = u

f

k
(t) + L(ek(t))

(6.8)

where u
f

k
(t) is the feedforward learning input and u

b

k
(t) is the feedback

error input.

Aiming at the linear plant G, Amann and his colleagues propose the gen-
eral form of ILC algorithms with feedback-feedforward effects [199]:

uk+1 = uk + K0 [ek ] + K1 [ek+1 ] (6.9)

where K0 [ek ] is a trial-to-trial feedforward control and K1 [ek+1 ] is termed a
current trial feedback control. Then they obtain the sufficient condition of
convergence of the algorithm above with the contractive mapping theory:∥∥∥(I + GK1)

−1
(I + GK0)

∥∥∥
∞
< 1 (6.10)

and furthermore according to the sufficient condition of convergence they
propose the design procedure for the feedback-feedforward ILC algorithm
with H∞ optimization technique.

The early ILC algorithms mainly use open-loop structure. In recent years
most of the ILC algorithms adopt composite structure which combines the
open-loop control and closed-loop control. Generally speaking these algo-
rithms are feedback-feedforward ILC algorithms [200].

6.2.2. Convergence Speed

Stability of ILC algorithm is the prerequisite of system operation, which
ensures that the control system will not diverge with the increment of it-
eration number. However it is meaningless to consider only the stability
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of ILC. The control signal obtained is the optimal one only when the it-
erative learning process can converge to the desired value. Stability and
convergence of the ILC algorithm is given by the convergence condition
nevertheless the convergence speed is not embodied because all the con-
vergence conditions are given when iteration number k → ∞. Aiming at
this problem researchers have made a lot of work and achieved some re-
sults.

In [201] Togai and Yamano propose several optimal algorithms such as
steepest descent method, Newton-Raphson method and Gauss-Newton
method however the prerequisite is that the structure and parameters of
the dynamic process should be known accurately which means that ILC
gives up its advantages. More researchers focus on the research on learn-
ing laws in the hope of achieving the fastest learning convergence speed.
When Bien and Hub propose the higher order ILC algorithm they point
out that utilizing the information from previous multiple learning simulta-
neously can increase the learning speed significantly [202].

ILC is a kind of feedforward control technology essentially. Although the
sufficient conditions for convergence of most learning laws are proved, the
convergence speed is not satisfying. Nevertheless utilizing the real time
system information or the feedback control part to update the control vari-
able can accelerate the convergence speed greatly. In [203] they use current
error information to update control variable which is a kind of closed-
loop learning law. The proof and simulation results show that this learning
law has fast convergence. In [204] aiming at linear system Xu and Yang
apply the H∞ control theory to optimize the ILC algorithm so as to in-
crease learning convergence speed. In [205] Wang analyzes various factors
which influence the convergence rate of ILC theoretically and makes de-
tailed derivation aiming at the P-type open-loop learning law. Finally the
theoretical results are given.

6.2.3. Initial State

When researchers use ILC technology to design controller they only need
error signals and/or error derivative signals of the controlled objects from
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each iteration. Using this technology, iterative learning always starts from
some initial point which is the initial state or initial output of the sys-
tem. Nearly all the sufficient conditions for convergence require that the
initial point of each iteration should keep the same. Solving the initial con-
dition problem of ILC theory effectively is one of the goals pursued by
researchers. Currently most of the ILC algorithms proposed require that
the initial state of the controlled system in each iteration is the same as that
of desired trajectory, that is, the initial condition should be satisfied:

xk(0) = xd(0) k = 0, 1, 2, · · · (6.11)

where xk is the system state on trial k and xd is the desired one.

However in practical engineering applications it is difficult for ILC sys-
tem to obtain the initial state of the desired tracking trajectory. Moreover
there exists initial state deviation and measurement noise in each itera-
tion. Aiming at this problem researchers make a lot of work and obtain
some achievements. Heinzinger and Fenwick point out that the stability
and convergence of the system will not be influenced by initial state when
it is repeatable [206]. In [207] they utilize the forgetting factor to control the
influence of initial state error. On the premise that the system is conver-
gent, they propose an initial state learning scheme so that the initial state
can tend to the desired one thus the controlled system can track the desired
trajectory accurately. In [208] they research on the influence of non-zero ini-
tial error on the convergence of learning law and discuss the function of
the parameters of the learning law in control system in detail. Finally they
analyze the robustness of the learning law and propose a method called
“ILC with multi-modal input”. In [209] aiming at linear time-invariant sys-
tems Ren and Gao propose a new ILC scheme with input and initial state
learning, which can neglect the limitation on the initial state of the control
system.

6.2.4. Analysis Methods

The commonly used methods for system analysis and convergence proof
are norm theory, Lyapunov stability theory, operator theory, frequency do-
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main analysis theory, 2-D stability theory, H∞ method, geometric method
and so on.

Most of the published papers on convergence analysis of ILC system are in
the sense of norm however norm is only a mathematical concept designed
for convergence analysis of ILC and it ignores the dynamic characteristics
of the system along the time axis. Although λ-norm is equal to sup-norm,
in the tracking tasks sup-norm can achieve more accurate measurement
results than λ-norm. In [210] they find that huge overshoot in the output
error may happen although the ILC algorithm is proved to be convergent
with respect to λ-norm. In [211] Sun and Wang prove the convergence of
sampled-data ILC with sup-norm.

French and Rogers design the ILC algorithm for a class of nonlinear sys-
tems based on adaptive Lyapunov stability theory so that the tracking er-
ror decreases monotonically [184]. In [193] they firstly use operator theory
to prove the convergence of ILC algorithm for a class of linear periodic
systems. In [212] they propose a design method in frequency domain for
iterative learning controller and then they give the sufficient condition for
convergence of ILC algorithm in arbitrary initial states. In [213] they build
the Roessor discrete model of MIMO discrete linear system with 2-D sys-
tem theory and prove the learning convergence condition of ILC system
with asymptotic stability theory of 2-D model by analyzing the 2-D error
equations. Padieu and Su analyze the convergence of ILC of linear time-
invariant system with H∞ method and then give the sufficient condition for
convergence [214]. In [215] they analyze the vector diagram from Arimoto’s
algorithm with geometric method and then achieve a new ILC algorithm.

6.2.5. Applications

ILC theory is firstly proposed to solve the tracking control problems of
robot systems. After several decades of development ILC has achieved a
lot of results in the field of robotics in the world. In [216] they propose
a new linear ILC algorithm aiming at the trajectory tracking problems of
robotic manipulators. They combine the traditional PI control algorithm
and the ILC algorithm so that the tracking errors of position, velocity and
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acceleration can be asymptotically stable in the case of high nonlinearity.
In [217] Luca and Ulivi propose an ILC algorithm based on frequency do-
main analysis aiming at robotic manipulators with elastic joints and solve
the output tracking problems of robotic manipulators. In [218] aiming at
high-geared industrial manipulators they propose an ILC algorithm in the
frequency domain. This algorithm includes a PD controller with fixed gain
and ILC algorithm so as to improve the tracking performance.

The analysis above shows that ILC is widely applied in the field of robot
systems because of the characteristics of ILC and robots. Moreover re-
searchers also try to expand the application areas of ILC so that this method
can be applied in other industrial processes which have the characteristics
of repetitive motion obviously so as to improve the dynamic performance
of control systems. In [175] they propose a robust ILC algorithm and ap-
ply it in injection molding machine system successfully. Pandit and Buch-
heit apply ILC algorithm in the cyclic process of aluminum extruder and
achieve good control effects [219]. In [196] they present new model-based
ILC algorithms with quadratic performance criteria for chemical process
control. In [220] the applications of ILC in autonomous underwater ve-
hicles are discussed. Aiming at repeatability of operation of high speed
hydraulic press, Pang and Li apply the PID-type iterative learning con-
troller in control system of high speed hydraulic press so that the error
from each forging process will be used in the next control process [221]. In
[222] they apply ILC in excitation control of synchronous generator so as to
modify control input by iterative learning. The simulation results show that
the quality of the terminal voltage and the stability of the power systems
is improved. In [223] they apply ILC algorithm in temperature control of
batch reactor and achieve satisfying results. In [224] they combine the ILC
and biomedicine and get achievements in functional neuromuscular stim-
ulation system. It is difficult to build the dynamic models for tobacco fer-
mentation process because of its complexity nevertheless the process is re-
peatable. Aiming at this characteristic Yao and Yang make the preliminary
research on application of ILC in ferment system of tobacco leaf [225].

Especially in most cases the desired output signal of electro-hydraulic servo
system is periodic signal in fatigue testing. In the circumstances it is worth-
while to research how to apply ILC algorithm in electro-hydraulic servo
system. In [226] they develop a discrete closed-loop D-type ILC scheme
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for electro-hydraulic position servo system with parameter uncertainties.
In [227] a feedback-feedforward ILC algorithm is proposed to control hy-
draulic motion platform. The feedforward part can improve the control pre-
cision and the feedback part can improve the robustness of the system. In
[228] the control algorithms of open loop and closed loop ILC are designed
to raise the control accuracy of the system and eliminate the influences of
dead zone and time lag nonlinearities.

Furthermore ILC also can be applied in other industrial processes such as
industrial packaging machine [229], linear motor [230], numerical control
machine tool [231], batch processes [232], video cassette recording servo
system [233], semiconductor manufacturing [234] and so on.

6.3. PID-Type ILC Based on Frequency Domain
Filtering

6.3.1. PID-Type ILC

As the earliest and simplest form of ILC, PID-type ILC has been widely
studied. In [162] Arimoto and his colleagues firstly propose the D-type
ILC:

uk+1(t) = uk(t) + KD ėk(t) (6.12)

where KD is the constant gain. Once KD is given, the tracking performance
and convergence rate of the learning system is then determined. To im-
prove the control effects of the system, researchers try to add some ad-
justable parameters into the learning law. Thus many different learning
forms such as P-type, PI-type and PD-type learning laws are proposed and
applied in practical engineering. Generally speaking all of them can be re-
garded as the special forms of PID-type ILC:

uk+1(t) = uk(t) + (KP + KI

∫
dt + KD

d
dt

)ek(t) (6.13)

where KP, KI and KD are the proportional, integral and derivative gains
respectively. Here ek(t) is used as the error information hence it is called
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open-loop PID-type ILC. Similarly, if ek+1(t) is used as the error informa-
tion, the algorithm is called closed-loop PID-type ILC.

6.3.2. Convergence Analysis

Many researchers use norm theory to prove the convergence of ILC algo-
rithms however this causes some problems. For instance norm is only a
mathematical concept designed for convergence analysis of ILC algorithms
and it ignores the dynamic characteristics of the system along the time axis.
Consequently by using norm theory for reference, Zhang and Lin prove the
convergence of the D-type ILC algorithm with operator theory [235]. This
proof method is better than the one only based on norm theory because
it considers the dynamic characteristics of the system along the time axis.
Based on their results the convergence of the PID-type ILC algorithm can
be proved as follows.

6.3.2.1. Mathematical Foundation

(1) Definition of Norm

Definition 6.1. Let X be a linear space and ‖x‖ be a mapping from X to
[0,+∞). If they satisfy:

• ∀ constant a, ‖a · x‖ = |a| · ‖x‖;
• ∀x, y ∈ X, ‖x + y‖ ≤ ‖x‖+ ‖y‖;
• ‖x‖ = 0 if and only if x is a zero element;

then the mapping ‖ · ‖ is called the norm of x and the space X on which
the norm ‖ · ‖ is defined is then called a normed space.

Definition 6.2. Let C[a, b] be the set of all the continuous functions on [a, b]
interval thus ∀ f ∈ C[a, b] the norm of f can be defined as:

‖ f ‖ = | f (t)|max , (a ≤ t ≤ b).
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Definition 6.3. Let Cr[a, b] be the set of all the continuous r-dimensional
vector valued functions on [a, b] interval thus ∀ f = [ f1(t), f2(t), · · · , fr(t)] ∈
Cr[a, b] the norm of f can be defined as:

‖ f ‖ = | fi(t)|max , (1 ≤ i ≤ r, a ≤ t ≤ b).

(2) Spectrum and Spectral Radius of Operator

Definition 6.4. Let X and Y be normed spaces and S be a mapping from
X to Y, then S is called an operator from X to Y and can be denoted as
S : X → Y.

Definition 6.5. Let X and Y be normed spaces and S : X → Y be an operator.
If ∀x, y ∈ X and ∀ constants a, b the operator S satisfies:

S(ax + by) = aS(x) + bS(y)

then S is called linear operator.

Definition 6.6. Let X and Y be normed spaces and S : X → Y be a linear
operator. If

sup‖S(x)‖ < +∞, (‖x‖ ≤ 1)

then S is called bounded linear operator. Furthermore sup‖S(x)‖ is called
the operator norm of S which can be denoted as ‖S‖.

Moreover if S : X → Y is a bounded linear operator, then ∀x ∈ X, one can
have:

‖S(x)‖ ≤ ‖S‖ · ‖x‖.

Definition 6.7. Let X be a normed space and S : X → X be a bounded linear
operator. Then the spectrum of S is a set of all the constants λ which satisfy
that the mapping λI − S is neither injection nor surjection. The spectrum
of S is denoted as σ(S), that is

σ(S) = {λ|λI − S is neither injection nor surjection}

where I : X → X is the identity mapping i.e. ∀x ∈ X, Ix = x.
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Furthermore the conception that λI− S is not injection means that ∃x1, x2 ∈
X, (x1 6= x2), (λI − S)x1 = (λI − S)x2. And the conception that λI − S is
not surjection means that the image set of λI − S is not equal to X.

Definition 6.8. Let S : X → X be a bounded linear operator then the spectral
radius ρ(S) of S is:

ρ(S) = sup{λ|λ ∈ σ(S)}.

Especially if the operator S can be regarded as a matrix: S(x) = S · x, then
the spectral radius of S is:

ρ(S) = max{|λk|, k = 1, 2, · · · , n}

where λk are the eigenvalues of the matrix S. If λk is a complex number
(λk = a + bi) then:

|λk| =
√

a2 + b2.

(3) Lemmas

Lemma 6.1 [236]. (Bellman-Gronwall Lemma) Let u(t), α(t) and β(t) be
real-valued continuous functions defined on [0, T]. In addition β(t) is non-
negative on [0, T]. If u(t) satisfies

u(t) ≤ α(t) +
∫ t

0
β(s)u(s)ds, ∀t ∈ [0, T]

then

u(t) ≤ α(t) +
∫ t

0
α(s)β(s)e

∫ t
s β(r)dr ds, ∀t ∈ [0, T].

Especially if α(t) is non-decreasing on [0, T] then

u(t) ≤ α(t)e
∫ t

0 β(s)ds, ∀t ∈ [0, T].

Lemma 6.2 [236]. Let {bk}k≥0 (bk ≥ 0) be a convergent sequence of con-
stants. The operator Qk : Cr[0, T]→ Cr[0, T] satisfies

‖Qk[u(t)]‖ ≤ M(bk +
∫ t

0
‖u(s)‖ds) (∀u(t) ∈ Cr[0, T])
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where M ≥ 1 is a constant. Let P(t) be a r× r continuous function matrix.
Then P(t) can be regarded as an operator P : Cr[0, T]→ Cr[0, T]:

P[u(t)] = P(t)u(t).

If the spectral radius ρ(P) < 1 then

lim
n→∞
‖(P + Qn)(P + Qn−1) · · · (P + Q0)[u(t)]‖ ≤ M0 lim

k→∞
bk

where M0 is a constant and only related with ρ(P) and M.

6.3.2.2. Problem Description

The following SISO linear time-varying system is considered: ẋ(t) = A(t)x(t) + b(t)u(t)

y(t) = cT(t)x(t)
(6.14)

where x(t) ∈ Rn is system state, y(t) ∈ R is system output signal, u(t) ∈ R
is control signal, A(t) is state matrix with proper dimension, b(t) and c(t)
are input and output parametric vectors respectively with proper dimen-
sion. The control requirement is that the system output y(t) should track
the desired output yd(t) precisely in the time interval [0, T].

6.3.2.3. Convergence Proof

If the ILC algorithm is applied to realize the control target above, the dy-
namic equation of the ILC system on trial k can be described as: ẋk(t) = A(t)xk(t) + b(t)uk(t)

yk(t) = cT(t)xk(t)
(6.15)

and the output error on trial k is defined as

ek(t) = yd(t)− yk(t). (6.16)
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Furthermore it can be defined that δxk(t) = xd(t)− xk(t), δyk(t) = yd(t)−
yk(t) and δuk(t) = ud(t)− uk(t) where xd(t), yd(t) and ud(t) are the desired
system state, output and input respectively. Now one can apply the PID-
type ILC algorithm given as

uk+1(t) = uk(t) + [KP(t) + KI(t)
∫

dt + KD(t)
d
dt

]ek(t) (6.17)

so that the convergence theorem is given as follows.

Theorem 6.1. It is supposed that the controlled system is described by Eq.
(6.14) and the ILC algorithm is given by Eq. (6.17). If in the time interval
[0, T] the whole system satisfies the following conditions:

(A1) A(t)x(t) satisfies the Lipschitz condition for x i.e. ∃M > 0 so that

‖A(t)x1(t)− A(t)x2(t)‖ ≤ M‖x1(t)− x2(t)‖ (∀t ∈ [0, T], ∀x1, x2 ∈ Rn);

(A2) the ordered list of initial state error of each iteration {δxk(0)}k≥0 is a
sequence converging to zero;

(A3) there exists the unique desired input ud(t) so that the system has the
desired state and output;

(A4) ċ(t) exists in the time interval [0, T] and moreover b(t), c(t) and ċ(t)
are bounded;

(A5) KP(t), KI(t) and KD(t) are bounded;

then the sufficient condition that for arbitrary initial input u0(t) and ini-
tial state xk(0) of each iteration, the sequences {xk(t)}k≥0, {yk(t)}k≥0 and
{uk(t)}k≥0 uniformly converge to xd(t), yd(t) and ud(t) respectively for
t ∈ [0, T] is that the spectral radius satisfies:

ρ[1− KD(t)cT(t)b(t)] < 1 ∀t ∈ [0, T]. (6.18)

Proof. According to Eq. (6.14) one can have

δẋk(t) = ẋd(t)− ẋk(t)
= A(t)xd(t) + b(t)ud(t)− A(t)xk(t)− b(t)uk(t)
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= A(t)δxk(t) + b(t)δuk(t) (6.19)

δyk(t) = cT(t)xd(t)− cT(t)xk(t) = cT(t)δxk(t) (6.20)

δuk+1(t) = ud(t)− uk+1(t)

= δuk(t) + uk(t)− uk+1(t)

= δuk(t)− KP(t)δyk(t)− KI(t)
∫ t

0
δyk(s)ds− KD(t)δẏk(t)

= δuk(t)− KP(t)cT(t)δxk(t)− KI(t)
∫ t

0
cT(s)δxk(s)ds

−KD(t){ċT(t)δxk(t) + cT(t)[A(t)δxk(t) + b(t)δuk(t)]}

= δuk(t)− KP(t)cT(t)δxk(t)

−KI(t)
∫ t

0
cT(s)δxk(s)ds− KD(t)ċT(t)δxk(t)

−KD(t)cT(t)[A(t)δxk(t) + b(t)δuk(t)]. (6.21)

Then the operator P : C[0, T]→ C[0, T] can be defined as

P[u(t)] = [1− KD(t)cT(t)b(t)]u(t) (6.22)

and the operator Qk : C[0, T]→ C[0, T] as

Qk[u(t)] = −KP(t)cT(t)x(t)− KI(t)
∫ t

0
cT(s)x(s)ds

−KD(t)ċT(t)x(t)− KD(t)cT(t)A(t)x(t) (6.23)

where x(t) ∈ Cn[0, T] is the solution of the system (6.14) with the initial
state x(0). Thus one can have

δuk+1(t) = P[δuk(t)] + Qk[δuk(t)]
= (P + Qk)[δuk(t)]
= (P + Qk)(P + Qk−1) · · · (P + Q0)[δu0(t)]. (6.24)
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Now Qk should be estimated. If x(t) is the solution of the dynamic equation
(6.14) then according to conditions (A1) and (A4) ∃M > 0 and N > 0 so
that

‖x(t)‖ = ‖x(0) +
∫ t

0
A(s)x(s)ds +

∫ t

0
b(s)u(s)ds‖

≤ ‖x(0)‖+ M
∫ t

0
‖x(s)‖ds + N

∫ t

0
‖u(s)‖ds. (6.25)

Thus based on Lemma 6.1 one can have

‖x(t)‖ ≤ ‖x(0)‖+ N
∫ t

0
‖u(s)‖ds

+
∫ t

0
M
[
‖x(0)‖+ N

∫ s

0
‖u(σ)‖dσ

]
e
∫ t

s M dr ds

= ‖x(0)‖+ N
∫ t

0
‖u(s)‖ds

+
∫ t

0
M
[
‖x(0)‖+ N

∫ s

0
‖u(σ)‖dσ

]
eM(t−s) ds

≤ ‖x(0)‖+ N
∫ t

0
‖u(s)‖ds + MeMT

∫ t

0
‖x(0)‖ds

+ MNeMT
∫ t

0

∫ s

0
‖u(σ)‖dσ ds

= ‖x(0)‖+ N
∫ t

0
‖u(s)‖ds + MeMTt‖x(0)‖

+ MNeMT
∫ t

0

∫ t

σ
‖u(σ)‖ds dσ

= ‖x(0)‖+ N
∫ t

0
‖u(s)‖ds + MeMTt‖x(0)‖

+ MNeMT
∫ t

0
(t− σ)‖u(σ)‖dσ
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≤ ‖x(0)‖+ N
∫ t

0
‖u(s)‖ds + MTeMT‖x(0)‖

+ MTNeMT
∫ t

0
‖u(σ)‖dσ

= (1 + MTeMT)‖x(0)‖+ N(1 + MTeMT)
∫ t

0
‖u(s)‖ds

≤ M1

[
‖x(0)‖+

∫ t

0
‖u(s)‖ds

]
(6.26)

where M1 = max{(1 + MTeMT), N(1 + MTeMT)}.

Then according to conditions (A4) and (A5) ∃M2 > 0, M3 > 0 and M4 > 0
so that

‖ − KP(t)cT(t)x(t)− KI(t)
∫ t

0
cT(s)x(s)ds‖

≤ ‖KP(t)cT(t)x(t)‖+ ‖KI(t)
∫ t

0
cT(s)x(s)ds‖

≤ M2‖x(t)‖+ M3

∫ t

0
‖x(s)‖ds

≤ M2‖x(t)‖+ M3

∫ t

0
M1

[
‖x(0)‖+

∫ τ

0
‖u(s)‖ds

]
dτ

= M2‖x(t)‖+ M3M1

∫ t

0
‖x(0)‖dτ + M3M1

∫ t

0

∫ τ

0
‖u(s)‖ds dτ

= M2‖x(t)‖+ M3M1

∫ t

0
‖x(0)‖dτ + M3M1

∫ t

0

∫ t

s
‖u(s)‖dτ ds

= M2‖x(t)‖+ M3M1

∫ t

0
‖x(0)‖dτ + M3M1

∫ t

0
(t− s)‖u(s)‖ds

≤ M2‖x(t)‖+ M3M1T‖x(0)‖+ M3M1T
∫ t

0
‖u(s)‖ds
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≤ M2M1

[
‖x(0)‖+

∫ t

0
‖u(s)‖ds

]
+ M3M1T‖x(0)‖

+ M3M1T
∫ t

0
‖u(s)‖ds

= (M2M1 + M3M1T)‖x(0)‖+ (M2M1 + M3M1T)
∫ t

0
‖u(s)‖ds

= M4

[
‖x(0)‖+

∫ t

0
‖u(s)‖ds

]
(6.27)

where M4 = M2M1 + M3M1T.

Similarly according to conditions (A4) and (A5) ∃M5 > 0 and M6 > 0 so
that

‖ − KD(t)ċT(t)x(t)− KD(t)cT(t)A(t)x(t)‖

≤ ‖KD(t)ċT(t)x(t)‖+ ‖KD(t)cT(t)A(t)x(t)‖

≤ M5‖x(t)‖

≤ M5M1

[
‖x(0)‖+

∫ t

0
‖u(s)‖ds

]

= M6

[
‖x(0)‖+

∫ t

0
‖u(s)‖ds

]
. (6.28)

Consequently ∃M7 > 0 so that

‖Qk[u(t)]‖ ≤ ‖ − KP(t)cT(t)x(t)− KI(t)
∫ t

0
cT(s)x(s)ds‖

+ ‖ − KD(t)ċT(t)x(t)− KD(t)cT(t)A(t)x(t)‖

≤ M4

[
‖x(0)‖+

∫ t

0
‖u(s)‖ds

]
+ M6

[
‖x(0)‖+

∫ t

0
‖u(s)‖ds

]
= M7

[
‖x(0)‖+

∫ t

0
‖u(s)‖ds

]
(6.29)
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where M7 = M4 + M6.

Therefore one can have

‖Qk[δu0(t)]‖ ≤ M7

[
‖δx0(0)‖+

∫ t

0
‖δu0(s)‖ds

]
. (6.30)

Thus according to Lemma 6.2, Eq. (6.24) and Eq. (6.30) one can achieve the
following result.

If ρ(P) < 1 then

lim
n→∞
‖δun+1(t)‖ = lim

n→∞
‖(P + Qn)(P + Qn−1) · · · (P + Q0)[δu0(t)]‖

≤ M0 lim
k→∞

bk

= M0‖δx0(0)‖ (6.31)

where bk = ‖δx0(0)‖, k = 0, 1, 2, · · ·.

Similarly replacing δu0(t) with δu1(t) one can obtain the following result.

If ρ(P) < 1 then

lim
n→∞
‖δun+1(t)‖ = lim

n→∞
‖(P + Qn)(P + Qn−1) · · · (P + Q1)[δu1(t)]‖

≤ M0 lim
k→∞

bk

= M0‖δx1(0)‖ (6.32)

where bk = ‖δx1(0)‖, k = 0, 1, 2, · · ·.

In the same way one can achieve

lim
n→∞
‖δun+1(t)‖ ≤ M0‖δxk(0)‖ (∀k ≥ 0). (6.33)

According to condition (A2) the following equation holds:

lim
k→∞
‖δxk(0)‖ = 0. (6.34)

Hence one can obtain
lim

n→∞
‖δun+1(t)‖ ≤ 0. (6.35)
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Then since norm is nonnegative one can get

lim
n→∞
‖δun+1(t)‖ = 0 (6.36)

that is
lim

n→∞
δun(t) = 0 (6.37)

holds uniformly with respect to t.

6.3.3. Frequency Domain Filtering

As discussed in §6.2.1.1 PID-type ILC algorithm has a lot of advantages
however it also has several disadvantages. For example it is difficult to se-
lect the proper values of learning parameters because of the contradiction
between convergence speed and system stability. On the one hand with the
large learning parameters the control system converges fast nevertheless
the algorithm is not stable. On the other hand with the small learning pa-
rameters the algorithm is stable however it converges slowly. Considering
the process dynamics, excessive learning parameters will cause mutation
and oscillation of control signal outputted by iterative learning controller
and finally cause system instability with the iterations.

Consequently researchers try to apply time-domain filters so as to make the
control signal smooth thus the contradiction between convergence speed
and system stability can be solved. However applying time-domain filters
will cause new problems. For instance time domain filtering (TDF) causes
phase lag. Especially different frequency components have different phase
lag thus the filtered signal is distorted.

Hence in this dissertation frequency domain filtering (FDF) will be applied
so as to make control signal smooth. The principle of digital frequency do-
main filtering is to apply discrete Fourier transform to the sampled data of
input signal with fast Fourier transform (FFT) method. Then according to
the requirement of filtering one can set the frequency components, which
need to be removed, to zero directly. However sometimes the abrupt trun-
cation of frequency-domain data will cause leakage of power spectrum
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which causes the distortion of filtered signal. In this case one has to set
them to zero by adding a gradually changed transitional frequency band.
For example one can add a transitional frequency band composed of cosine
window function between the passband and stopband. Finally discrete in-
verse Fourier transform is applied to the data filtered with the inverse fast
Fourier transform (IFFT) method so as to obtain the time domain signal.

The digital frequency domain filtering can be denoted as

y(r) =
1
N

N−1

∑
k=0

H(k)X(k)ej2πkr/N (r = 0, 1, · · · , N − 1) (6.38)

where X(k) is the discrete Fourier transform of input signal, y(r) is the fil-
tered discrete time domain signal, H(k) is the frequency response function
of filter which determines the filtering mode and characteristics, r is the
order number of sampling points in time domain, k is the order number of
sampling points in frequency domain and N is the number of sampling.

FDF method has good frequency selectivity and flexibility. Furthermore the
filtering process is multiplication of the Fourier spectrum of the signal and
the frequency characteristics of the filter therefore the calculation speed of
FDF is faster than that of TDF which is a process of convolution. Moreover
FDF will not cause problems of time shift and distortion.

Consequently a frequency domain filter will be added in this open-loop
PID-type ILC algorithm. To be specific, firstly the system error signal ek(t)
will be filtered by the frequency domain filter. Then the iterative learn-
ing controller will calculate the new system input signal uk+1(t) with the
filtered system error signal e fk(t). Thus the algorithm is given by

uk+1(t) = uk(t) + [KP(t) + KI(t)
∫

dt + KD(t)
d
dt

]e fk(t). (6.39)

And the control structure of open-loop PID-type ILC algorithm based on
digital frequency domain filtering technology is given in Figure 6.2.
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Figure 6.2.: Control Structure of Open-Loop PID-Type ILC with Frequency Domain Filter

6.4. Adaptive ILC

6.4.1. Algorithm Description

PID-type ILC algorithm based on FDF allows engineers to select large
learning parameters while both the convergence rate and algorithm sta-
bility is still satisfying. However it is not so convenient for researchers to
find the proper values of the learning parameters. As discussed in §6.2.1.3,
adaptive control is a learning process aiming at parameter while ILC is the
one aiming at control input hence researchers combine adaptive control
and ILC thus they propose the conception of adaptive ILC algorithm. In
the adaptive ILC algorithm the values of the learning parameters of the
iterative learning controller are updated by the adaptive algorithm while
the control input of controlled system is updated by the ILC algorithm.
The advantage is that it is convenient to apply this algorithm in practical
system since engineers do not have to estimate the values of the learning
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parameters.

There are many adaptive algorithms which can estimate the values of the
learning parameters of iterative learning controller. The adaptive algorithm
with Nussbaum function is one of them. It has a lot of advantages. For
instance the algorithm is simple and easy to be implemented. Moreover
it does not need the prior information of controlled system. Consequently
it is studied by many researchers [237], [238], [239], [240]. Based on their
research results, the adaptive ILC algorithm with Nussbaum-type gain is
proposed as follows.

6.4.1.1. Problem Description

The following SISO linear time-invariant system is considered: ẋ(t) = Ax(t) + bu(t)

y(t) = cTx(t)
(6.40)

where x(t) ∈ Rn is system state, y(t) ∈ R is system output signal, u(t) ∈ R
is control signal, A is state matrix with proper dimension, b and c are input
and output parametric vectors respectively with proper dimension. The
control requirement is that the system output y(t) should track the desired
output yd(t) precisely in the time interval [0, T].

If the ILC algorithm is applied to realize the control target above, the dy-
namic equation of the ILC system on trial k can be described as: ẋk(t) = Axk(t) + buk(t)

yk(t) = cTxk(t)
(6.41)

and the output error on trial k is defined as

ek(t) = yd(t)− yk(t). (6.42)
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Furthermore the desired system state xd(t), output yd(t) and input ud(t)
satisfy  ẋd(t) = Axd(t) + bud(t)

yd(t) = cTxd(t)
. (6.43)

Moreover three assumptions are made as follows:

• xk(0) = xd(0) = x0 (k = 1, 2, 3, · · ·);
• 0 < θmin ≤ |cTb| ≤ θmax where | • | means absolute value, θmin and

θmax are positive constants;
• cT Axk(t), cT Axd(t), cTb, ud(t) and uk(t) are bounded.

6.4.1.2. Nussbaum Function

The Nussbaum function is selected as follows [237]

ν(ξ) = cos(
π

2
ξ)exp(ξ2) (6.44)

where ξ ∈ R is the parameter of the Nussbaum function. In addition one
can define

γ =

 γa, ν(ξ) ≥ 0

γb, ν(ξ) < 0
(6.45)

where γa ∈ R, γb ∈ R, γa > 0 and γb > 0.

Lemma 6.3 [237]. ∀s0 ∈ R the Nussbaum function ν(•) satisfies lim
s→∞

sup 1
s

∫ s
s0

γν(ξ)dξ = +∞

lim
s→∞

in f 1
s

∫ s
s0

γν(ξ)dξ = −∞
(6.46)

where sup means supremum which is referred to the least upper bound of
the function and in f means infimum which is referred to the greatest lower
bound of the function.
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6.4.1.3. Adaptive ILC Algorithm

The adaptive ILC algorithm with the Nussbaum type gain is given by
[237]:

uk(t) = ν[pk(t)]ek(t) + uk−1(t) (6.47)
ṗk(t) = e2

k(t) (6.48)
pk(0) = pk−1(T) (6.49)

and the corresponding control structure of the adaptive ILC algorithm is
given in Figure 6.3.

Figure 6.3.: Control Structure of Adaptive ILC

6.4.2. Convergence Analysis

In [237] Jiang and Chen propose the adaptive ILC algorithm with the
Nussbaum type gain for SISO system and then discuss the convergence of
the algorithm in detail. Consequently here their results will be introduced
briefly.

Theorem 6.2. It is supposed that the controlled system is described by Eq.
(6.40) and the ILC algorithm is given by Eq. (6.47), Eq. (6.48) and Eq. (6.49).
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If in the time interval [0, T] the whole system satisfies the three assumptions
in §6.4.1.1 then ek(t) can converge to 0 uniformly when k→ ∞.

Proof. An auxiliary function is defined as follows

V(ξ) =
1
2

ξ2. (6.50)

Thus one can get

V[ek(t)] =
1
2

e2
k(t) (6.51)

hence

dV[ek(t)]
dt

= ek(t)ėk(t)

= ek(t){ẏd(t)− ẏk(t)}

= ek(t){cT ẋd(t)− cT ẋk(t)}

= ek(t){cT Axd(t) + cTbud(t)

− cT Axk(t)− cTbuk(t)}

= ek(t){cT A[xd(t)− xk(t)] + cTbud(t)

− cTbuk−1(t)− cTbν[pk(t)]ek(t)}. (6.52)

According to the assumptions one can obtain

cT A[xd(t)− xk(t)] + cTbud(t)− cTbuk−1(t) ≤ w|ek(t)| (6.53)

where w ∈ R is positive and bounded.

When cTb > 0 (if cTb < 0 the proof procedure is similar) i.e. 0 < θmin ≤
cTb ≤ θmax, one can define

θ =

 θmin, ν[pk(t)] ≥ 0

θmax, ν[pk(t)] < 0
(6.54)
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thus one can have
−cTbν[pk(t)] ≤ −θν[pk(t)]. (6.55)

Consequently one can derive

dV[ek(t)]
dt

≤ ek(t)w|ek(t)| − ek(t)θν[pk(t)]ek(t)

≤ w|ek(t)|2 − θν[pk(t)]e2
k(t)

= {w− θν[pk(t)]}e2
k(t)

= {w− θν[pk(t)]} ṗk(t). (6.56)

Thus with integration one can achieve

0 ≤ V[ek(t)]

≤
∫ t

0
{w− θν[pk(t)]} ṗk(t)dt

=
∫ pk(t)

pk(0)
{w− θν[pk(t)]}dpk(t), t ∈ [0, T]. (6.57)

Then according to Eq. (6.49) one can obtain

0 ≤
k−1

∑
j=1

V[pj(T)] + V[pk(t)]

= w[pk(t)− p1(0)]−
∫ pk(t)

p1(0)
θν(p)dp. (6.58)

It is assumed that when k → ∞, pk(t) is unbounded then according to
Eq. (6.48) and Eq. (6.49) one can get pk(t)→ +∞ when k→ ∞.

Thus one can achieve

0 ≤ 1
pk(t)

w[pk(t)− p1(0)]−
1

pk(t)

∫ pk(t)

p1(0)
θν(p)dp

= w[1− p1(0)
pk(t)

]− 1
pk(t)

∫ pk(t)

p1(0)
θν(p)dp. (6.59)
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However when pk(t) → +∞, Eq. (6.59) is in contradiction with Eq. (6.46).
Hence pk(t) should be bounded when k→ ∞. Thus according to Eq. (6.48)
and Eq. (6.49) when k→ ∞, ek(t) will converge to 0 uniformly.

6.5. Inverse Model ILC

6.5.1. Algorithm Description

One of the advantages of PID-type ILC and adaptive ILC is that researchers
do not need the information of controlled system when they apply the ILC
algorithms in the practical system. However some researchers think that
if they can achieve the information of controlled system, such as system
model, so as to combine the ILC algorithms and system information, the
control effects will be improved [241]. Hence they propose some ILC algo-
rithms based on system information. One of them is the inverse model ILC
algorithm which is effective and realizable in practical engineering. In [242]
the researchers propose the inverse model ILC algorithm and then give the
convergence condition of the algorithm. Therefore here their results is in-
troduced briefly.

6.5.1.1. Problem Description

SISO linear system is considered here. Supposing that Gp is the transfer
function of the process then one can obtain

Y = GpU (6.60)

where Y is the system output signal and U is the control signal. The control
requirement is to obtain the desired control signal Ud so that the process
can track the desired output signal Yd precisely.
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If the ILC algorithm is applied to realize the control target above, the sys-
tem on trial k should satisfy:

Yk = GpUk (6.61)

and the output error on trial k is defined as

Ek = Yd −Yk. (6.62)

Furthermore the desired output signal Yd and control signal Ud satisfy

Yd = GpUd. (6.63)

6.5.1.2. Inverse Model ILC Algorithm

If on the next trial k + 1 the perfect convergence of the system signals to
the desired ones is achieved i.e. Uk+1 = Ud and Yk+1 = Yd, then according
to Eq. (6.61), Eq. (6.62) and Eq. (6.63) one has

Uk+1 = Ud = Uk +
1

Gp
Ek. (6.64)

If both the process Gp and the data of the previous trials can be known
perfectly, the desired control signal Ud can be calculated directly with Eq.
(6.64). This implies that Eq. (6.64) is a good ILC algorithm which can ob-
tain perfect control effects. However it is impossible to know the process
Gp perfectly. Fortunately in most cases with system modeling and identifi-
cation one can achieve the estimation G∗p of the process which can replace
Gp. Thus the inverse model ILC algorithm is given by

Uk+1 = Uk +
1

G∗p
Ek (6.65)

and the corresponding control structure of the inverse model ILC algorithm
is given in Figure 6.4.
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Figure 6.4.: Control Structure of Inverse Model ILC

6.5.2. Convergence Analysis

Theorem 6.3. It is supposed that the controlled system is described by
Eq. (6.60) and the ILC algorithm is given by Eq. (6.65). It is assumed that
the initial conditions of the system are nearly the same on each trial. If the
estimated transfer function G∗p of the process satisfies that

sup
ω

∣∣∣∣∣1− Gp(jω)

G∗p(jω)

∣∣∣∣∣ < 1 (6.66)

then the output error can converge to 0 uniformly when k→ ∞.

Proof. According to Eq. (6.61) the following expression is achieved

Yk+1 −Yk = Gp(Uk+1 −Uk). (6.67)

And then according to Eq. (6.62) and Eq. (6.65) one can obtain

Uk+1 = Uk +
1

G∗p
(Yd −Yk). (6.68)
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Multiplying both sides of Eq. (6.68) by Gp one can achieve

GpUk+1 = GpUk +
Gp

G∗p
(Yd −Yk) (6.69)

and thus one can have

Gp(Uk+1 −Uk) =
Gp

G∗p
(Yd −Yk). (6.70)

Substituting Eq. (6.70) into Eq. (6.67) the following relationship can be
achieved

Yk+1 =

(
1−

Gp

G∗p

)
Yk +

Gp

G∗p
Yd (6.71)

and by multiplying both sides of Eq. (6.71) with −1 one can obtain

−Yk+1 = −
(

1−
Gp

G∗p

)
Yk −

Gp

G∗p
Yd. (6.72)

Adding Yd to the both sides of Eq. (6.72), it is then arranged as follows

Ek+1 =

(
1−

Gp

G∗p

)
Ek. (6.73)

Now the Euclidean norm ‖ • ‖2 is introduced as follows

‖E‖2
2 =

1
2π

∫ +∞

−∞
|E(jω)|2 dω =

∫ ∞

0
|e(t)|2 dt. (6.74)

Thus taking the Euclidean norm to the both sides of Eq. (6.73) one can
derive

‖Ek+1‖2 =

∥∥∥∥∥
(

1−
Gp

G∗p

)
Ek

∥∥∥∥∥
2

≤
∥∥∥∥∥1−

Gp

G∗p

∥∥∥∥∥
2

· ‖Ek‖2 (6.75)
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where ‖1− Gp/G∗p‖2 is the induced operator norm which is defined by∥∥∥∥∥1−
Gp

G∗p

∥∥∥∥∥
2

= sup
ω

∣∣∣∣∣1− Gp(jω)

G∗p(jω)

∣∣∣∣∣ . (6.76)

Consequently if the estimated model G∗p of the process satisfies that

sup
ω

∣∣∣∣∣1− Gp(jω)

G∗p(jω)

∣∣∣∣∣ < 1

then the output error can converge to 0 uniformly when k→ ∞.

6.6. Summary

In this chapter the basic concepts of ILC are introduced. Moreover the de-
velopment of ILC theory is presented. Furthermore three typical ILC algo-
rithms are discussed. Firstly a PID-type ILC algorithm based on frequency
domain filtering technology is introduced. One of the advantages of this
algorithm is that it is simple. Additionally with filtering technology both
of the convergence rate and algorithm stability is satisfying. However one
problem of the algorithm is that it is not so easy to determine the values of
the learning parameters. Aiming at this problem an adaptive ILC algorithm
with Nussbaum type gain is proposed. With this algorithm the values of
the learning parameters can be calculated adaptively thus researchers do
not have to estimate the proper values for the learning parameters. Finally
since sometimes system information can be obtained (for example with
system modeling and identification one can estimate the model of con-
trolled system), an inverse model ILC algorithm is introduced. In a word
all the three ILC algorithms are simple and thus they are realizable in prac-
tical engineering. At the same time the convergence conditions of the three
ILC algorithms are given and proved. In the next chapter the three ILC al-
gorithms will be applied in electro-hydraulic servo system respectively to
verify and compare their control performances.
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7. Simulation and Experimental
Research on Iterative Learning
Control

In Chapter 6 three ILC algorithms are proposed: PID-type ILC algorithm
based on frequency domain filtering technology, adaptive ILC algorithm
with Nussbaum type gain and inverse model ILC algorithm. Now whether
these ILC algorithms derived are applicable should be verified. There are
two methods to verify the control algorithms: simulation verification and
experiment verification. The direct way is experiment verification since the
final purpose of the research on ILC algorithms is to apply them in prac-
tical engineering. However simulation verification has a lot of advantages
such as rapidity, convenience, economy and so on. Consequently in this
chapter simulation and experiment will be made respectively so as to ver-
ify and compare the control effects of the ILC algorithms developed in
Chapter 6 comprehensively and completely. Especially the contributions of
this chapter are as follows:

• designing iterative learning controllers with PID-type ILC algorithm,
adaptive ILC algorithm and inverse model ILC algorithm respec-
tively;
• applying the iterative learning controllers designed with the three ILC

algorithms respectively in valve-controlled cylinder system in simu-
lation and experiment;
• comparing and analyzing the control performances of the three ILC

algorithms.
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7.1. Simulation of SISO Electro-Hydraulic Servo
Position Control System

In this section the ILC algorithms will be applied in the electro-hydraulic
servo position control system respectively in simulation. Since ILC is a
kind of feedforward control which can not improve the stability of the con-
trol system, a PI controller is introduced for the valve-controlled cylinder
system to realize feedback control [243]. Given proper values of the control
parameters of the PI controller the feedback control system can stabilize the
plant. Fig. 7.1 shows the structure of the feedback control system which is
the “process” in Figure 6.2, Figure 6.3 and Figure 6.4. Thus one only has to
consider the convergence and stability of the ILC algorithm itself [243].

Figure 7.1.: Structure of the Feedback Control System Composed of a PI Controller and
the Valve-Controlled Cylinder System

Furthermore in position control the valve-controlled cylinder system con-
tains a 40kN cylinder which works under friction, a MOOG G761-3003
servo valve of which the rated flow is 19 l/min and a position sensor. The
model of the valve-controlled cylinder system is given by Eq. (3.32) and the
values of the model parameters are given by Table 3.2.

Most of the signals can be regarded as the sum of a series of sinusoidal
signals according to the result of fourier transform, consequently sinusoidal
signal plays an important role in signal analysis and processing. Thus in
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simulation a sinusoidal signal is used, of which the amplitude is 10 mm
and the frequency is 5 Hz, as the desired output signal yd of the system.

Moreover the sample rate of the digital control system is fs = 5 kHz. Addi-
tionally the simulation environment is Simulink/Matlab. Especially please
note that the phase lag of the system output is compensated manually not
only in simulation results but also in experimental results.

Figure 7.2.: Comparison of the Desired Output and the Actual Output of the System with-
out ILC Algorithm

Firstly yd is used as the setpoint signal directly so as to achieve the control
results without ILC algorithm i.e. only an ordinary PI controller is used.
Figure 7.2 shows the simulation result which is the comparison between
the desired output signal and the simulated system output signal. From
Figure 7.2 one can find that the output error between the desired output
signal and the actual output signal is too big which is not acceptable in
engineering. Therefore simulation will be made with the three ILC algo-
rithms respectively to verify whether they can improve the control effects.
Moreover with simulation one can know which algorithm can achieve the
best control effects. The simulation results are given as follows.
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Figure 7.3.: RMS Errors of Open-Loop P-Type ILC System without Filtering Technology

7.1.1. Simulation of P-Type ILC Algorithm

There are many different forms of PID-type ILC algorithm. The simplest
one is the P-type ILC algorithm. Hence here open-loop P-type ILC algo-
rithm is applied in the electro-hydraulic servo position control system. In
Eq. (6.17) the learning parameters are given by

KP = 0.5

KI = 0

KD = 0

(7.1)

thus one can get the traditional open-loop P-type ILC algorithm without fil-
tering technology. After simulation the calculated root mean square (RMS)
errors of the system between the desired output signal and the actual out-
put signal for each iteration are given by Figure 7.3.

Figure 7.3 shows that with a large learning parameter KP = 0.5 the control
system converges fast i.e. after 8 iterations the RMS error of the system is
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very small. Nevertheless from the 12th iteration the algorithm is not stable
any more since the RMS error increases dramatically.

Now the FDF-extended open-loop P-type ILC algorithm described by Eq.
(6.39) is applied with the same learning parameters given by Eq. (7.1). The
overall control structure is given by Figure 6.2. Moreover the cutoff fre-
quency of the lowpass frequency domain filter is fc = 20 Hz. Figure 7.4 to
Figure 7.6 are the simulation results for it.

Figure 7.4 shows the comparison of the desired output and actual output
of the system after 20 iterations and Figure 7.5 describes the relative error
of the system output after 20 iterations where the relative error er

k
(t) on

trial k is defined by

er
k
(t) =

ek(t)
|yd(t)|max

.

Figure 7.4.: Comparison of the Desired Output and the Actual Output of the System with
Open-Loop P-Type ILC Algorithm Based on FDF after 20 Iterations

Observing Figure 7.4 and Figure 7.5 one can find that after 20 iterations
the actual output curve of the system is almost coincident with the desired
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Figure 7.5.: Relative Error of the System Output with Open-Loop P-Type ILC Algorithm
Based on FDF after 20 Iterations

output one and the relative error of the system output is very small. There-
fore with the FDF technology the convergence speed of the ILC algorithm
is still satisfying.

Furthermore Figure 7.6 shows the RMS errors of the system output with
iterations. It is clear that on the one hand the RMS error of the system is al-
ready very small after approximately 8 iterations i.e. the ILC system based
on FDF technology has fast convergence rate and on the other hand the
ILC algorithm remains stable after 100 iterations. In a word the open-loop
P-type ILC algorithm based on FDF technology obtains good control effects
i.e. both the convergence speed and algorithm stability is satisfying.

7.1.2. Simulation of Adaptive ILC Algorithm

In this part the adaptive ILC algorithm with the Nussbaum type gain given
by Eq. (6.47) to Eq. (6.49) is applied in the electro-hydraulic servo position
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Figure 7.6.: RMS Errors of the Control System Using Open-Loop P-Type ILC Algorithm
Based on FDF

control system. Furthermore Figure 6.3 describes the overall control struc-
ture of the algorithm. Figure 7.7 to Figure 7.9 are the simulation results for
it.

Figure 7.7 represents the comparison of the desired output and actual out-
put of the system after 20 iterations and Figure 7.8 represents the relative
error of the system output after 20 iterations.

Note from Figure 7.7 and Figure 7.8 that after 20 iterations the actual output
curve of the system is almost coincident with the desired output one and
the relative error of the system output is very small. Thus the convergence
speed of the adaptive ILC algorithm remains satisfying.

Especially Figure 7.9 shows the RMS errors of the system output with it-
erations. It is obvious that on the one hand the RMS error of the system
output is already very small after approximately 5 iterations i.e. the adap-
tive ILC algorithm has fast convergence rate and on the other hand the ILC
algorithm still keeps stable after 100 iterations. In short the adaptive ILC
algorithm with the Nussbaum type gain achieves good control effects i.e.
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Figure 7.7.: Comparison of the Desired Output and the Actual Output of the System with
Adaptive ILC Algorithm after 20 Iterations

Figure 7.8.: Relative Error of the System Output with Adaptive ILC Algorithm after 20
Iterations
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Figure 7.9.: RMS Errors of the Control System Using Adaptive ILC Algorithm

both the convergence speed and algorithm stability is satisfying.

7.1.3. Simulation of Inverse Model ILC Algorithm

Now the inverse model ILC algorithm described by Eq. (6.65) is applied in
the electro-hydraulic servo position control system. The original model of
valve-controlled cylinder system is given by Eq. (3.32) and the values of the
model parameters are given by Table 3.2. Thus according to Fig. 7.1, given
proper parameters of the PI controller, the model of closed-loop control
system composed of the PI controller and valve-controlled cylinder system
can be calculated. Especially this model calculated is the process model
Gp in the inverse model ILC algorithm. Then with the inverse of Gp, the
inverse model ILC algorithm for electro-hydraulic servo position control
system can be established.

However the model described by Eq. (3.32) is a fourth order system thus
the process model Gp will be a high order system. Hence the inverse model
ILC algorithm established based on the inverse of Gp will be complex. In
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SISO system control the algorithm is still realizable nevertheless in MIMO
system control the algorithm will bring great computation load to the con-
troller. Consequently one has to simplify the model of valve-controlled
cylinder system. Fortunately in [160] it is introduced that the model of
valve-controlled cylinder system can be reduced to a low order system if
the frequency of setpoint signal of the system is low enough (< 20 Hz).
Therefore here a second order system is used to replace the fourth order
model of valve-controlled cylinder system as follows

Gvc =
Ksv
A

s2

ω2
h
+ 2ξh

ωh
s + 1

(7.2)

where Gvc is the reduced order model of valve-controlled cylinder system.
Moreover the values of the model parameters are still given by Table 3.2.

Consequently according to Fig. 7.1, given proper parameters of the PI con-
troller, the model of closed-loop control system composed of the PI con-
troller and valve-controlled cylinder system can be calculated with the re-
duced order model Gvc i.e. the simplified process model Gsim is obtained.
In most cases the order of the numerator of the inverse of Gsim is higher
than that of the denominator of the inverse of Gsim which is not realizable
in practical system. One method to solve this problem is adding a low pass
filter in series to the inverse of Gsim. The cutoff frequency of the low pass
filter should be much higher than that of setpoint signal. Additionally the
order of the low pass filter depends on the order difference between the
numerator and denominator of the inverse of Gsim. Here a first order iner-
tial element will be used, of which the cutoff frequency is 200 Hz and the
gain is adjustable. Thus the inverse model 1/G∗p used in the ILC algorithm
is given by

1
G∗p

=
Gine

Gsim
(7.3)

where Gine is the transfer function of the first order inertial element.

Thus one can apply the inverse model ILC algorithm described by Eq. (6.65)
in simulation. Moreover Figure 6.4 shows the overall control structure of
the algorithm. Figure 7.10 to Figure 7.12 are the simulation results for it.
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Figure 7.10 shows the comparison of the desired output and actual output
of the system after 20 iterations and Figure 7.11 shows the relative error of
the system output after 20 iterations.

Figure 7.10.: Comparison of the Desired Output and the Actual Output of the System with
Inverse Model ILC Algorithm after 20 Iterations

Observing Figure 7.10 and Figure 7.11 one can find that after 20 iterations
the actual output curve of the system is almost coincident with the de-
sired output one and the relative error of the system output becomes very
small. Hence the convergence rate of the inverse model ILC algorithm is
satisfying.

Particularly Figure 7.12 describes the RMS errors of the system output with
iterations. It is clear that on the one hand the RMS error of the system
output is already very small after approximately 8 iterations i.e. the inverse
model ILC algorithm has fast convergence rate and on the other hand the
ILC algorithm remains stable after 100 iterations. In a word the inverse
model ILC algorithm obtains good control effects i.e. both the convergence
rate and algorithm stability is satisfying.

Finally the control performances of the three ILC algorithms should be
compared. Observing Figure 7.5 one can find that by using the open-loop

179



7. Simulation and Experimental Research on Iterative Learning Control

Figure 7.11.: Relative Error of the System Output with Inverse Model ILC Algorithm after
20 Iterations

Figure 7.12.: RMS Errors of the Control System Using Inverse Model ILC Algorithm
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P-type ILC algorithm based on FDF technology the relative error of the
system output is within a range of ±0.06% after 20 iterations. Moreover
from Figure 7.8 one can find that by using the adaptive ILC algorithm with
the Nussbaum type gain the relative error of the system output is within
a range of ±0.05% after 20 iterations. The control effects of the adaptive
ILC algorithm are similar as that of the P-type ILC one. Furthermore from
Figure 7.11 one can observe that by using the inverse model ILC algorithm
the relative error of the system output is within a range of ±0.02% after 20
iterations i.e. the inverse model ILC algorithm can achieve the best control
effects of the three ILC algorithms. The reason is that given the informa-
tion of controlled system, the ILC algorithm is more pertinent. Especially
observing Figure 7.6, Figure 7.9 and Figure 7.12 one can find that the con-
vergence speed of the three ILC algorithms is nearly the same.

In summary the open-loop P-type ILC algorithm based on FDF technology
has the simplest form of the three ILC algorithms and the control effects
are satisfying however researchers have to estimate the proper value for
the learning parameter of the algorithm. The adaptive ILC algorithm with
the Nussbaum type gain can solve this problem. The value of the learn-
ing parameter of the adaptive ILC algorithm can be updated adaptively
thus researchers do not have to estimate the proper value for the learning
parameter. Furthermore the control effects of the adaptive ILC algorithm
are similar as that of the P-type ILC algorithm nevertheless the adaptive
ILC algorithm is more complex than the P-type ILC algorithm. The inverse
model ILC algorithm can achieve the best control effects of the three ILC al-
gorithms but to use this algorithm researchers have to build proper model
for controlled system.

7.2. Experiment of SISO Electro-Hydraulic Servo
Position Control System

In this section the three ILC algorithms obtained in Chapter 6 will be ap-
plied in the real world electro-hydraulic servo position control system re-
spectively to verify and compare the control effects of the three ILC algo-
rithms. In simulation many non-ideal factors such as nonlinearity, distur-
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bance, time-variant factor and so on are ignored. However these non-ideal
factors exist in practical electro-hydraulic servo system and lead to dete-
rioration of control effects of the system. Hence the reference values of
the simulation results are limited. Furthermore the final purpose of the
research on ILC algorithms is to apply them in practical engineering. Con-
sequently it is necessary to experimentally study the ILC algorithms.

As introduced in §7.1 ILC can not improve the stability of control system
therefore the PI controller will still be used for the valve-controlled cylin-
der system to realize feedback control so that the electro-hydraulic servo
control system can be stabilized with proper control parameters of the PI
controller. Thus one only has to consider the convergence and stability of
the ILC algorithm itself [243]. Hence the structure of the feedback control
system is still described by Fig. 7.1.

Furthermore the valve-controlled cylinder system contains a 40kN cylin-
der which works under friction, a MOOG G761-3003 servo valve of which
the rated flow is 19 l/min and a position sensor. The model of this valve-
controlled cylinder system is already used in the simulation of SISO electro-
hydraulic servo position control system in §7.1. Additionally the control pa-
rameters of the PI controller are the same as that used in simulation, to real-
ize feedback control. Thus in simulation and experiment the same electro-
hydraulic servo position control system are used which is the basis of com-
parison between the simulation results and experimental results. Moreover
Figure 7.13 shows the photograph of the real world electro-hydraulic servo
position control system for the experiment.

It is introduced in §7.1 that sinusoidal signal is an important tool in signal
analysis and processing. Hence here the same sinusoidal signal as that used
in simulation will be used i.e. the sinusoidal signal, of which the amplitude
is 10 mm and the frequency is 5 Hz, is used as the desired output signal yd
of the system. Additionally to further verify the effectiveness of the three
ILC algorithms, random signal is also used as the desired output signal yd
of the system. Figure 7.14 shows the frequency spectrum of the random
signal used in the experiment.

Additionally the sample rate of the digital control system is fs = 5 kHz and
the filter-limited signal bandwidth is reduced to the range of 0 . . . 300 Hz
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Figure 7.13.: Real World Electro-Hydraulic Servo Position Control System

Figure 7.14.: Frequency Spectrum of the Random Signal Used in the Experiment
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[243]. Particularly the time delay of the whole system, which seriously af-
fects the control effects, can not be compensated by the ILC algorithms
themselves. Consequently the appearing time delay is estimated based on
measurement results and then is compensated prior to any signal compar-
ison inside the ILC system [243].

In the experiment firstly the sinusoidal signal is used as the setpoint sig-
nal directly so as to achieve the control results without ILC algorithm i.e.
only an ordinary PI controller is used. Figure 7.15 shows the experimental
results which are the comparison between the desired output signal and
the actual system output signal. Observing Figure 7.15 one can find that
the valve-controlled cylinder system with an ordinary PI controller reveals
a significant difference between the desired output signal and the actual
output signal which is not allowed in engineering. Consequently the three
ILC algorithms will be applied respectively in the experiment to verify
whether they can improve the control effects. Furthermore based on the
experimental results one will know which algorithm can achieve the best
control effects. The experimental results are given as follows.

Figure 7.15.: Comparison of the Desired Output and the Actual Output of the System
without ILC Algorithm
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Figure 7.16.: RMS Errors of Open-Loop P-Type ILC System without Filtering Technology

7.2.1. Experiment of P-Type ILC Algorithm

In this part firstly the traditional open-loop P-type ILC algorithm with-
out filtering technology is applied in the real world electro-hydraulic servo
position control system. The algorithm is described by Eq. (6.17) and the
learning parameters are given by Eq. (7.1) i.e. the same algorithm and learn-
ing parameters as that used in simulation are used. After experiment the
calculated RMS errors of the system between the desired output signal and
the actual output signal for each iteration are given by Figure 7.16.

Figure 7.16 indicates that given a large learning parameter KP = 0.5 the
control system converges fast i.e. after 10 iterations the RMS error of the
system is small enough. However from the 20th iteration the algorithm is
not stable any more since the RMS error increases greatly.

Hence the FDF-extended open-loop P-type ILC algorithm described by Eq.
(6.39) is applied with the same learning parameters given by Eq. (7.1). The
overall control structure is given by Figure 6.2. Moreover the cutoff fre-
quency of the lowpass frequency domain filter is fc = 20 Hz. Figure 7.17 to
Figure 7.19 are the experimental results for it.
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Figure 7.17.: Comparison of the Desired Output and the Actual Output of the System with
Open-Loop P-Type ILC Algorithm Based on FDF after 20 Iterations

Figure 7.18.: Relative Error of the System Output with Open-Loop P-Type ILC Algorithm
Based on FDF after 20 Iterations
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Figure 7.19.: RMS Errors of the Control System Using Open-Loop P-Type ILC Algorithm
Based on FDF

Figure 7.20.: RMS Errors of the Control System Using Open-Loop P-Type ILC Algorithm
Based on FDF with Random Signal
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Figure 7.17 shows the comparison of the desired output and actual output
of the system after 20 iterations and Figure 7.18 describes the relative error
of the system output after 20 iterations.

Observing Figure 7.17 and Figure 7.18 one can find that after 20 iterations
the actual output curve of the system is almost coincident with the desired
output one and the relative error of the system output is very small. There-
fore with the FDF technology the convergence speed of the ILC algorithm
remains satisfying.

Moreover Figure 7.19 indicates the RMS errors of the system output with
iterations. It is clear that on the one hand the RMS error of the system
is already very small after approximately 20 iterations i.e. the ILC system
based on FDF technology has fast convergence rate and on the other hand
the ILC algorithm remains stable after 100 iterations.

To further verify the effectiveness of the open-loop P-type ILC algorithm
based on FDF technology, a type of random signal is used as the desired
output signal yd of the system. Figure 7.14 shows the frequency spectrum
of the random signal. Figure 7.20 indicates the RMS errors of the system
output with iterations. Confined to the length of the dissertation, other ex-
perimental results of the open-loop P-type ILC algorithm based on FDF
technology with random signal are given in appendix. Comparing Fig-
ure 7.19 and Figure 7.20 it can be found that the ILC system still achieves
satisfying control performance with random signal. In a word the open-
loop P-type ILC algorithm based on FDF technology obtains good control
effects i.e. both the convergence speed and algorithm stability is good.

7.2.2. Experiment of Adaptive ILC Algorithm

In this part the adaptive ILC algorithm with the Nussbaum type gain given
by Eq. (6.47) to Eq. (6.49) is applied in the real world electro-hydraulic
servo position control system. Moreover Figure 6.3 shows the overall con-
trol structure of the algorithm. Figure 7.21 to Figure 7.23 are the experi-
mental results for it.

188



7.2. Experiment of SISO Electro-Hydraulic Servo Position Control System

Figure 7.21.: Comparison of the Desired Output and the Actual Output of the System with
Adaptive ILC Algorithm after 20 Iterations

Figure 7.22.: Relative Error of the System Output with Adaptive ILC Algorithm after 20
Iterations
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Figure 7.23.: RMS Errors of the Control System Using Adaptive ILC Algorithm

Figure 7.24.: RMS Errors of the Control System Using Adaptive ILC Algorithm with Ran-
dom Signal
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Figure 7.21 represents the comparison of the desired output and actual out-
put of the system after 20 iterations and Figure 7.22 represents the relative
error of the system output after 20 iterations.

Note from Figure 7.21 and Figure 7.22 that after 20 iterations the actual
output curve of the system is almost coincident with the desired output
one and the relative error of the system output is very small. Hence the
convergence speed of the adaptive ILC algorithm is satisfying.

Particularly Figure 7.23 describes the RMS errors of the system output with
iterations. It is obvious that on the one hand the RMS error of the system
output is already very small after approximately 3 iterations i.e. the adap-
tive ILC algorithm has fast convergence rate and on the other hand the ILC
algorithm still keeps stable after 100 iterations.

To further verify the effectiveness of the adaptive ILC algorithm with the
Nussbaum type gain, a type of random signal is used as the desired output
signal yd of the system. Figure 7.14 shows the frequency spectrum of the
random signal. Figure 7.24 indicates the RMS errors of the system output
with iterations. Confined to the length of the dissertation, other experi-
mental results of the adaptive ILC algorithm with the Nussbaum type gain
with random signal are given in appendix. Comparing Figure 7.23 and
Figure 7.24 it can be observed that the ILC system still obtains satisfying
control performance with random signal. In short the adaptive ILC algo-
rithm with the Nussbaum type gain achieves good control effects i.e. both
the convergence speed and algorithm stability is good.

7.2.3. Experiment of Inverse Model ILC Algorithm

In this part the inverse model ILC algorithm described by Eq. (6.65) is ap-
plied in the real world electro-hydraulic servo position control system. The
same inverse model 1/G∗p as that used in simulation in §7.1.3 is used and
moreover Figure 6.4 shows the overall control structure of the algorithm.
Figure 7.25 to Figure 7.27 are the experimental results for it.
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Figure 7.25.: Comparison of the Desired Output and the Actual Output of the System with
Inverse Model ILC Algorithm after 20 Iterations

Figure 7.26.: Relative Error of the System Output with Inverse Model ILC Algorithm after
20 Iterations
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Figure 7.27.: RMS Errors of the Control System Using Inverse Model ILC Algorithm

Figure 7.28.: RMS Errors of the Control System Using Inverse Model ILC Algorithm with
Random Signal
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Figure 7.25 shows the comparison of the desired output and actual output
of the system after 20 iterations and Figure 7.26 shows the relative error of
the system output after 20 iterations.

Observing Figure 7.25 and Figure 7.26 one can find that after 20 iterations
the actual output curve of the system is almost coincident with the desired
output one and the relative error of the system output becomes very small.
Consequently the convergence rate of the inverse model ILC algorithm is
good.

Especially Figure 7.27 describes the RMS errors of the system output with
iterations. It is clear that on the one hand the RMS error of the system
output is already small enough after approximately 20 iterations i.e. the
inverse model ILC algorithm has fast convergence rate and on the other
hand the ILC algorithm remains stable after 100 iterations.

To further verify the effectiveness of the inverse model ILC algorithm, a
type of random signal is used as the desired output signal yd of the sys-
tem. Figure 7.14 shows the frequency spectrum of the random signal. Fig-
ure 7.28 indicates the RMS errors of the system output with iterations.
Confined to the length of the dissertation, other experimental results of the
inverse model ILC algorithm with random signal are given in appendix.
Comparing Figure 7.27 and Figure 7.28 it can be found that the ILC system
still achieves satisfying control performance with random signal. In a word
the inverse model ILC algorithm obtains good control effects i.e. both the
convergence rate and algorithm stability is satisfying.

Now the control effects of the three ILC algorithms should be compared.
Observing Figure 7.18 one can find that by using the open-loop P-type
ILC algorithm based on FDF technology the relative error of the system
output is within a range of ±0.25% after 20 iterations. Furthermore from
Figure 7.22 one can find that by using the adaptive ILC algorithm with
the Nussbaum type gain the relative error of the system output is within
a range of ±0.25% after 20 iterations. The control effects of the adaptive
ILC algorithm are similar as that of the P-type ILC one. Moreover from
Figure 7.26 one can observe that by using the inverse model ILC algo-
rithm the relative error of the system output is within a range of ±0.4%
after 20 iterations i.e. the control effects of the inverse model ILC algo-
rithm are worse than that of the P-type ILC and adaptive ILC algorithms.
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Particularly from Figure 7.19, Figure 7.23 and Figure 7.27 one can observe
that the convergence speed of the P-type ILC and the inverse model ILC
algorithms is nearly the same while the adaptive ILC algorithm obtains
the fastest convergence speed of the three ILC algorithms. The reason is
that the value of the learning parameter of the adaptive ILC algorithm can
be continuously adjusted according to the practical error. Nevertheless the
convergence speed of all the three ILC algorithms is acceptable.

Furthermore comparing the simulation results with the experimental re-
sults it is found that the control precision of the three ILC algorithms in
experiment is not as high as that in simulation. It is because in simula-
tion the electro-hydraulic servo system is ideal i.e. all the non-ideal factors
such as external disturbance, nonlinearities, time variation and so on are ig-
nored while in experiment all these non-ideal factors influence the control
precision largely. Especially it can be found that in simulation the inverse
model ILC algorithm achieves the best control effects while in experiment
it obtains the worst control effects of the three ILC algorithms. The reason
is that the model which is applied in the inverse model ILC algorithm is
a simplified linear model but the real world electro-hydraulic servo sys-
tem is a complex nonlinear system, which leads to the error between the
model and the practical system. Moreover the P-type ILC and adaptive ILC
algorithms do not need the information of controlled system while the in-
verse model ILC algorithm relies on system model hence in experiment the
control accuracy of the inverse model ILC algorithm is more easily to be
affected by the error between simulation model and practical system. Any-
way, the control performances of all the three ILC algorithms in experiment
are satisfying in engineering.

In summary the control performance the open-loop P-type ILC algorithm
based on FDF technology in real world electro-hydraulic servo position
control system is satisfying. The advantage of the P-type ILC algorithm is
that it has a very simple form while the disadvantage is that researchers
have to estimate a proper learning parameter for it. Furthermore the adap-
tive ILC algorithm with the Nussbaum type gain can achieve the same
control performance as that of P-type ILC algorithm. The advantage of the
adaptive ILC algorithm is that the value of the learning parameter can be
updated adaptively while the disadvantage is that the algorithm is com-
plex. Moreover although the control performance of the inverse model ILC
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algorithm is not as good as that of the P-type ILC and adaptive ILC al-
gorithms, it is still satisfying in engineering. However the prerequisite for
applying inverse model ILC algorithm is to build an accurate model for
controlled system which is time consuming thus this algorithm is not ap-
plicable in practical engineering. Therefore the P-type ILC and adaptive
ILC algorithms are recommended for real world electro-hydraulic servo
position control systems.

7.3. Experiment of SISO Electro-Hydraulic Servo
Force Control System

In the last section the conclusion is obtained that the inverse model ILC al-
gorithm is not applicable in practical engineering. Consequently in this
section the P-type ILC and adaptive ILC algorithms will be applied in
the real world electro-hydraulic servo force control system respectively to
further verify and compare the control performances of the two ILC al-
gorithms. The valve-controlled cylinder system contains a 40kN cylinder
which works under friction, a MOOG G761-3003 servo valve of which the
rated flow is 19 l/min, an aluminium bar as the unit under test (UUT) and
a force sensor. Likewise, a PI controller is used to realize feedback control
and Fig. 7.1 shows the structure of the feedback control system. Moreover
Figure 7.29 shows the photograph of the real world electro-hydraulic servo
force control system for the experiment.

As introduced in §7.1 sinusoidal signal is important in signal analysis and
processing. Thus in this experiment a sinusoidal signal, of which the am-
plitude is 1 kN and the frequency is 5 Hz, is used as the desired output
signal yd of the system. Furthermore the sample rate of the digital control
system is fs = 5 kHz and the filter-limited signal bandwidth is reduced to
the range of 0 . . . 300 Hz [243]. Especially since the time delay of the whole
system can not be compensated by the ILC algorithms themselves, it is es-
timated based on measurement results and then compensated prior to any
signal comparison inside the ILC system [243].
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Figure 7.29.: Real World Electro-Hydraulic Servo Force Control System

In the experiment firstly the sinusoidal signal is used as the setpoint signal
directly so as to achieve the control results without ILC algorithm i.e. only
an ordinary PI controller is used. Figure 7.30 describes the experimental
results which are the comparison between the desired output signal and
the actual system output signal. From Figure 7.30 one can observe that
the valve-controlled cylinder system with an ordinary PI controller nearly
can not work. It leads to a large difference between the desired output
signal and the actual output signal which is not acceptable in engineering.
Especially it is found that there is a contradiction between stability and
accuracy i.e. with large parameters of PI controller the output error will be
decreased however the system is not stable while with small parameters
the system is stable nevertheless the output error is big. The reason is that
the force control system works under many non-ideal factors such as low
stiffness, nonlinear factors and so on. Therefore the two ILC algorithms
will be applied respectively in the experiment to verify whether they can
improve the control effects. Furthermore based on the experimental results
one can compare the control performances of the two ILC algorithms so as
to know which algorithm is better. The experimental results are given as
follows.
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Figure 7.30.: Comparison of the Desired Output and the Actual Output of the System
without ILC Algorithm

7.3.1. Experiment of P-Type ILC Algorithm

It is already revealed in §7.2.1 that given a large learning parameter the
P-type ILC algorithm converges fast however the algorithm is not stable
without FDF technology. Consequently here the FDF-extended open-loop
P-type ILC algorithm described by Eq. (6.39) is directly applied in the real
world electro-hydraulic servo force control system and the learning param-
eters are given by 

KP = 0.8

KI = 0

KD = 0

(7.4)

The overall control structure is given by Figure 6.2. Furthermore the cutoff
frequency of the lowpass frequency domain filter is fc = 20 Hz. Figure 7.31

to Figure 7.33 are the experimental results for it.

Figure 7.31 represents the comparison of the desired output and actual out-
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put of the system after 40 iterations and Figure 7.32 represents the output
error of the system after 40 iterations.

Note from Figure 7.31 that after 40 iterations the waveforms of the actual
output signal and the desired output one fit well however there exists fluc-
tuation in the actual output signal which leads to output error. The reason
of system fluctuation is that in this experiment the electro-hydraulic servo
force control system works under severe conditions. For example compared
with other units under test, the stiffness of the aluminium bar is deficient.
Moreover the clearance between the aluminium bar and the fixtures is too
large. The output error caused by system fluctuation can not be compen-
sated by P-type ILC algorithm. Furthermore observing Figure 7.32 one can
find that after 40 iterations the output error of the system is within a range
of ±0.05 kN which is similar as the amplitude of system fluctuation. Any-
way, the control accuracy and the convergence speed of the P-type ILC
algorithm in this experiment is satisfying.

Figure 7.31.: Comparison of the Desired Output and the Actual Output of the System with
Open-Loop P-Type ILC Algorithm Based on FDF after 40 Iterations

Particularly Figure 7.33 describes the RMS errors of the system output with
iterations. It is obvious that on the one hand the RMS error of the system

199



7. Simulation and Experimental Research on Iterative Learning Control

Figure 7.32.: Output Error of the System with Open-Loop P-Type ILC Algorithm Based on
FDF after 40 Iterations

Figure 7.33.: RMS Errors of the Control System Using Open-Loop P-Type ILC Algorithm
Based on FDF
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output is small after approximately 40 iterations i.e. the P-type ILC algo-
rithm has fast convergence rate and on the other hand the ILC algorithm
still keeps stable after 100 iterations. In short the open-loop P-type ILC al-
gorithm based on FDF technology achieves good control effects i.e. both
the convergence speed and algorithm stability is satisfying.

7.3.2. Experiment of Adaptive ILC Algorithm

In this part the adaptive ILC algorithm with the Nussbaum type gain given
by Eq. (6.47) to Eq. (6.49) is applied in the real world electro-hydraulic servo
force control system. Figure 6.3 shows the overall control structure of the
algorithm. Figure 7.34 to Figure 7.36 are the experimental results for it.

Figure 7.34.: Comparison of the Desired Output and the Actual Output of the System with
Adaptive ILC Algorithm after 40 Iterations

Figure 7.34 shows the comparison of the desired output and actual output
of the system after 40 iterations and Figure 7.35 represents the output error
of the system after 40 iterations.
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Figure 7.35.: Output Error of the System with Adaptive ILC Algorithm after 40 Iterations

Figure 7.36.: RMS Errors of the Control System Using Adaptive ILC Algorithm
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Observing Figure 7.34 one can find that after 40 iterations the waveforms
of the actual output signal and the desired output one fit well nevertheless
there still exists fluctuation in the actual output signal which leads to out-
put error. The reason of system fluctuation is already explained in §7.3.1.
Moreover the output error caused by system fluctuation can not be com-
pensated by adaptive ILC algorithm neither. Furthermore from Figure 7.35

one can observe that after 40 iterations the output error of the system is
within a range of ±0.065 kN which is a little larger than that of the system
using P-type ILC algorithm. Anyway, the control accuracy and convergence
speed of the adaptive ILC algorithm in this experiment is still acceptable.

Especially Figure 7.36 shows the RMS errors of the system output with
iterations. It is clear that on the one hand the RMS error of the system out-
put becomes acceptable after approximately 40 iterations i.e. the adaptive
ILC algorithm has fast convergence rate and on the other hand the ILC
algorithm remains stable after 100 iterations. In a word the adaptive ILC
algorithm with the Nussbaum type gain obtains good control effects i.e.
both the convergence speed and algorithm stability is acceptable.

In summary the real world electro-hydraulic servo system works under se-
vere conditions in this force control experiment. The valve-controlled cylin-
der system with an ordinary PI controller nearly can not work. Therefore
the P-type ILC and adaptive ILC algorithms are applied respectively in
the control system to improve control performance. Experimental results
show that both of the two ILC algorithms are effective. Although the out-
put error caused by system fluctuation can not be compensated by the
two ILC algorithms, their control performances are acceptable. Particularly
their convergence speed and algorithm stability is satisfying.

7.4. Summary

In this chapter the three ILC algorithms developed in Chapter 6 are ap-
plied in electro-hydraulic servo system respectively so that their control
performances can be verified and compared.
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Firstly they are applied in electro-hydraulic servo position control system
respectively in simulation. The results show that all the three ILC algo-
rithms can obtain good control performances. Particularly the control ef-
fect of the inverse model ILC algorithm is the best of the three ILC algo-
rithms.

Secondly they are applied in real world electro-hydraulic servo position
control system respectively. The experimental results show that the con-
trol performances of all the three ILC algorithms are satisfying. However
the control effect of the inverse model ILC algorithm is not as good as
that of the P-type ILC and adaptive ILC algorithms. The reason is that the
P-type ILC and adaptive ILC algorithms do not need the information of
controlled system while the inverse model ILC algorithm relies on system
model hence in experiment the control accuracy of the inverse model ILC
algorithm is more easily to be affected by the error between simulation
model and practical system. Moreover considering that the prerequisite
for applying inverse model ILC algorithm is to build an accurate model for
controlled system which is time consuming thus this algorithm is not appli-
cable in practical engineering. Consequently the P-type ILC and adaptive
ILC algorithms are recommended for real world electro-hydraulic servo
position control systems.

Finally the P-type ILC and adaptive ILC algorithms are applied in real
world electro-hydraulic servo force control system respectively so as to fur-
ther validate and compare their control performances. Especially in this ex-
periment the electro-hydraulic servo force control system works under se-
vere conditions. The experimental results indicate that the valve-controlled
cylinder system with an ordinary PI controller nearly can not work. And
then when the two ILC algorithms are added respectively in control system,
the control performances of the force control system are improved greatly
although the output error caused by system fluctuation can not be com-
pensated by the two ILC algorithms. Anyway, the control performances of
the two ILC algorithms are acceptable. Therefore it can be concluded that
the P-type ILC and adaptive ILC algorithms are effective and applicable
not only in real world electro-hydraulic servo position control system but
also in force control system.
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8. Conclusion and Prospect

8.1. Conclusion

This dissertation focuses on solutions for several practical problems related
to high precision control of electro-hydraulic servo system. Firstly by ana-
lyzing the structure and working principle of electro-hydraulic servo sys-
tem, the position control model of electro-hydraulic servo system is built.
Particularly the friction of the cylinders with bearing strip is not negligible
i.e. an extra model for the friction is necessary. In this dissertation a simple
linear friction model is used. The friction is proportional to the velocity of
the piston rod so that the friction can be treated as part of system damp-
ing. Since some parameters of the system model are unknown, then system
identification is used to estimate the values of these unknown parameters
so that the deterministic position control model of electro-hydraulic servo
system can be obtained. Especially a novel system identification method
called black-grey box model identification method is developed to improve
the identification accuracy. The experimental results of system identifica-
tion show that the modeling method is correct and the precision of the
identified model is satisfying.

Secondly in practical electro-hydraulic servo system there are two types of
nonlinear factors: the first type comes from the flow-pressure characteris-
tics of electro-hydraulic servo valve and the second type contains several
other typical nonlinearities while this dissertation focuses on the first type
of nonlinear factors. First the exact linearization theory based on differen-
tial geometry is introduced. Then the nonlinear model of electro-hydraulic
servo position control system is built and simplified. Furthermore the non-
linear model is exactly linearized via state feedback.
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Especially the performance of two linearization methods is compared: ap-
proximate linearization method based on Taylor expansion and exact lin-
earization method based on differential geometry. Simulation results in-
dicate that the approximate linearization method is locally effective i.e.
when the controlled system operates within a small range of the equilib-
rium point the control effect is good nevertheless when it deviates from the
equilibrium point seriously the control effect is not acceptable; while the ex-
act linearization method is globally effective i.e. within the whole working
range of the controlled system the control effect is satisfying. Furthermore
the robustness of electro-hydraulic servo position control system based on
exact linearization is discussed. Simulation results show that even if some
of the system parameters deviate from the nominal values greatly, the per-
formance of the control system is still satisfying i.e. the control system
has strong robustness. At last the external disturbance problem of electro-
hydraulic servo position control system is presented. Theoretical analysis
indicates that the system output of electro-hydraulic servo position control
system can not be decoupled from the disturbance input completely and
simulation results show that by using the sliding mode variable structure
controller based on exact linearization method via state feedback, the con-
trol system has good anti disturbance performance when the disturbance
satisfies certain conditions.

Finally in this dissertation three ILC algorithms are presented: PID-type
ILC algorithm, adaptive ILC algorithm and inverse model ILC algorithm.
Firstly basic principles and convergence conditions of the three ILC algo-
rithms are introduced. Then control effects of the three ILC algorithms in
electro-hydraulic servo system are compared and discussed with simula-
tion and experiment.

First the three developed ILC algorithms are applied in electro-hydraulic
servo position control system respectively in simulation. The simulation re-
sults show that the control performances of all the three ILC algorithms are
satisfying. Then the three ILC algorithms are applied in real world electro-
hydraulic servo position control system respectively. The experimental re-
sults indicate that the control performances of all the three ILC algorithms
are satisfying. Nevertheless considering the prerequisite for applying in-
verse model ILC algorithm and comparing the control performances of the
three ILC algorithms in real world electro-hydraulic servo system, the in-
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verse model ILC algorithm is not applicable in practical applications i.e.
the P-type ILC and adaptive ILC algorithms are recommended for real
world electro-hydraulic servo systems. At last, the two recommended ILC
algorithms are applied in real world electro-hydraulic servo force control
system respectively to further verify their effectiveness. The experimental
results show that although the real world force control system works un-
der severe conditions, the control performances of the two ILC algorithms
are still acceptable. Consequently it is concluded that the P-type ILC and
adaptive ILC algorithms are effective and applicable not only in real world
electro-hydraulic servo position control system but also in force control
system.

8.2. Prospect

In this dissertation several control problems related to electro-hydraulic
servo system are studied and some positive results are achieved. However
there are still a lot of interesting topics which deserve further study.

Firstly in this dissertation the accurate position control model of SISO
electro-hydraulic servo system are built and identified. Nevertheless force
control system is also very important in fatigue tests consequently future
work in this area could be expanded to modeling and identification of
SISO electro-hydraulic servo force control system. Furthermore many fa-
tigue tests need MIMO electro-hydraulic servo system hence the focus of
the future study in this area could be placed on modeling and identification
of MIMO electro-hydraulic servo system.

Secondly in this dissertation the nonlinear model of SISO electro-hydraulic
servo position control system is linearized with the exact linearization
method based on differential geometry therefore future work in this area
might aim at how to exactly linearize the nonlinear model of SISO electro-
hydraulic servo force control system and MIMO electro-hydraulic servo
system. In addition this dissertation only considers the nonlinear factor
from the flow-pressure characteristics of electro-hydraulic servo valve con-
sequently future work in this area could be extended to the exact lineariza-
tion problems of other types of nonlinear factors such as saturation nonlin-
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earity, dead zone nonlinearity, backlash nonlinearity, hysteretic nonlinear-
ity and so on.

Finally in this dissertation three types of commonly used ILC algorithms
are applied in SISO electro-hydraulic servo system hence the focus of the
future study in this area could be placed on application of the three ILC
algorithms in MIMO electro-hydraulic servo system. Furthermore there are
other types of ILC algorithms such as neural network ILC algorithm, fuzzy
ILC algorithm, optimal ILC algorithm and so on however these algorithms
have some problems which lead to difficulties of applying them in practical
engineering. Therefore future work in this area could be expanded to the
research on application of these ILC algorithms in electro-hydraulic servo
system.
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Appendix A.

Experimental Results of P-Type
ILC Algorithm with Random Signal

In the experiment firstly the random signal is used as the setpoint sig-
nal directly so as to achieve the control results without ILC algorithm i.e.
only an ordinary PI controller is used. Figure A.1 shows the experimental
results which are the comparison between the desired output signal and
the actual system output signal. Observing Figure A.1 one can find that
the valve-controlled cylinder system with an ordinary PI controller reveals
a significant difference between the desired output signal and the actual
output signal which is not allowed in engineering.

Then the FDF-extended open-loop P-type ILC algorithm described by Eq.
(6.39) is applied in the real world electro-hydraulic servo position control
system with the learning parameters given by Eq. (7.1). The overall control
structure is given by Figure 6.2. Moreover the cutoff frequency of the low-
pass frequency domain filter is fc = 20 Hz. Figure A.2 to Figure A.4 are the
experimental results for it.

Figure A.2 shows the comparison of the desired output and actual output
of the system after 20 iterations and Figure A.3 describes the relative error
of the system output after 20 iterations. Observing Figure A.2 and Fig-
ure A.3 one can find that after 20 iterations the actual output curve of the
system is almost coincident with the desired output one and the relative er-
ror of the system output is very small. Therefore with the FDF technology
the convergence speed of the ILC algorithm remains satisfying. Moreover
Figure A.4 proves the stability of the algorithm.
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Appendix A. Experimental Results of P-Type ILC Algorithm with Random Signal

Figure A.1.: Comparison of the Desired Output and the Actual Output of the System with-
out ILC Algorithm with Random Signal

Figure A.2.: Comparison of the Desired Output and the Actual Output of the System with
Open-Loop P-Type ILC Algorithm Based on FDF after 20 Iterations with Ran-
dom Signal
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Figure A.3.: Relative Error of the System Output with Open-Loop P-Type ILC Algorithm
Based on FDF after 20 Iterations with Random Signal

Figure A.4.: RMS Errors of the Control System Using Open-Loop P-Type ILC Algorithm
Based on FDF with Random Signal
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Appendix B.

Experimental Results of Adaptive
ILC Algorithm with Random Signal

In the experiment firstly the random signal is used as the setpoint signal
directly so as to achieve the control results without ILC algorithm i.e. only
an ordinary PI controller is used. Figure B.1 shows the experimental re-
sults which are the comparison between the desired output signal and the
actual system output signal. Observing Figure B.1 one can observe that
the valve-controlled cylinder system with an ordinary PI controller reveals
a significant difference between the desired output signal and the actual
output signal which is not allowed in engineering.

Then the adaptive ILC algorithm with the Nussbaum type gain given by
Eq. (6.47) to Eq. (6.49) is applied in the real world electro-hydraulic servo
position control system. Figure 6.3 shows the overall control structure of
the algorithm. Figure B.2 to Figure B.4 are the experimental results for it.

Figure B.2 represents the comparison of the desired output and actual out-
put of the system after 20 iterations and Figure B.3 represents the relative
error of the system output after 20 iterations. Note from Figure B.2 and
Figure B.3 that after 20 iterations the actual output curve of the system is
almost coincident with the desired output one and the relative error of the
system output is very small. Hence the convergence speed of the adaptive
ILC algorithm is satisfying. Furthermore Figure B.4 proves the stability of
the algorithm.
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Appendix B. Experimental Results of Adaptive ILC Algorithm with Random Signal

Figure B.1.: Comparison of the Desired Output and the Actual Output of the System with-
out ILC Algorithm with Random Signal

Figure B.2.: Comparison of the Desired Output and the Actual Output of the System with
Adaptive ILC Algorithm after 20 Iterations with Random Signal
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Figure B.3.: Relative Error of the System Output with Adaptive ILC Algorithm after 20
Iterations with Random Signal

Figure B.4.: RMS Errors of the Control System Using Adaptive ILC Algorithm with Ran-
dom Signal
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Appendix C.

Experimental Results of Inverse
Model ILC Algorithm with
Random Signal

In the experiment firstly the random signal is used as the setpoint signal
directly so as to achieve the control results without ILC algorithm i.e. only
an ordinary PI controller is used. Figure C.1 shows the experimental re-
sults which are the comparison between the desired output signal and the
actual system output signal. Observing Figure C.1 one can observe that
the valve-controlled cylinder system with an ordinary PI controller reveals
a significant difference between the desired output signal and the actual
output signal which is not allowed in engineering.

Then the inverse model ILC algorithm described by Eq. (6.65) is applied in
the real world electro-hydraulic servo position control system. Figure 6.4
shows the overall control structure of the algorithm. Figure C.2 to Fig-
ure C.4 are the experimental results for it.

Figure C.2 shows the comparison of the desired output and actual output
of the system after 20 iterations and Figure C.3 shows the relative error of
the system output after 20 iterations. Observing Figure C.2 and Figure C.3
one can find that after 20 iterations the actual output curve of the system is
almost coincident with the desired output one and the relative error of the
system output becomes very small. Consequently the convergence rate of
the inverse model ILC algorithm is good. Additionally Figure C.4 proves
the stability of the algorithm.
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Appendix C. Experimental Results of Inverse Model ILC Algorithm with Random Signal

Figure C.1.: Comparison of the Desired Output and the Actual Output of the System with-
out ILC Algorithm with Random Signal

Figure C.2.: Comparison of the Desired Output and the Actual Output of the System with
Inverse Model ILC Algorithm after 20 Iterations with Random Signal
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Figure C.3.: Relative Error of the System Output with Inverse Model ILC Algorithm after
20 Iterations with Random Signal

Figure C.4.: RMS Errors of the Control System Using Inverse Model ILC Algorithm with
Random Signal
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