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Abstract

Visual localization and mapping are core problems that must be successfully tackled for

the proliferation of mobile Augmented Reality (AR) applications in arbitrary indoor and

outdoor environments on hand-held and wearable devices.

Localization and mapping are tightly interconnected problems, as localization refers to

continuously estimating the motion of a moving camera with respect to a virtual model,

while mapping refers to creating exactly these models. An AR system may benefit from

the knowledge of an existing model such as a 3D city reconstruction, as this model can

provide an advanced understanding of the scene, including object semantics, and annota-

tions, which are registered in the model coordinate system that ideally has metric scale

and is globally aligned. In general, however, an AR system cannot assume to operate

in an a-priori modeled environment. In this latter case, without any world knowledge,

an AR system must first build up such a model from scratch, online and in real-time,

using Structure from Motion (SfM) and Simultaneous Localization and Mapping (SLAM)

methods.

Most SLAM algorithms do not make any prior assumptions about the user-performed

camera motion, or the geometry and the semantics of the observed scene. In many cases,

however, the scene contains higher-level geometric primitives such as lines and planes.

Additionally, it is possible to take advantage of a constrained camera motion model. We

propose to approach certain limitations and problems of monocular visual SLAM by ex-

ploiting specific combinations of these constraints. These constraints allow for developing

localization and mapping algorithms, which we integrated into efficient SLAM systems

suited for hand-held devices such as phones and tablets. In particular, we have developed
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the following techniques:

• Two techniques for mapping and tracking of arbitrary camera motion and scene

structure, depending on the environment knowledge. First, in unknown environ-

ments, we modeled hybrid maps that contained features with finite or infinite depth.

Second, in partially modeled urban outdoor environments, we simulated a wide-range

depth camera by rendering synthesized depth images.

• A geo-localization technique suited for the initialization of metric-scale 3D SLAM

maps in urban outdoor environments. Given a single image and a coarse initial 6D

pose prior as input, our geo-localization method employed computer vision tech-

niques to estimate a refined 6D pose with respect the global coordinate system

provided by an untextured 2.5D city model.

• A technique for mapping planar scenes by exploiting the homography motion model.

Homographies provide strong constraints on both camera motion and scene struc-

ture, which we employed to implement a very efficient mapping algorithm especially

suited for lo-fi mobile devices.

In our practical experiments, we found that, by handling parallax-free camera move-

ments, we could considerably extend the total camera tracking time and, thus, the usability

of AR applications. Our geo-localization algorithm was found very versatilely applicable

and efficiently performing, and allowed for rendering geo-referenced annotations such as

navigation hints in urban AR scenarios. Running at least a magnitude faster than bundle

adjustment, our homography-based SLAM algorithm was suited for mapping high-level

maps of planar scenes, which we found on numerous human-made structures. In summary,

we developed multifunctional and practical localization and mapping methods, which could

be successfully applied in mobile AR applications for registration in outdoor as well as

indoor environments.

Keywords: augmented reality, mobile devices, SLAM, localization, geo-localization.

tracking, mapping, initialization, metric scale, planes, lines, scene understanding.



Kurzfassung

Bildbasierte Lokalisierung und Kartografierung sind Kernprobleme, die für die weitere

Verbreitung von mobilen Augmented Reality (AR) Anwendungen auf mobilen Geräten in

beliebige Innen- und Außenbereichen erfolgreich in Angriff genommen werden müssen.

Lokalisierung und Kartografierung sind eng miteinander verschränkte Probleme.

Lokalisierung bezieht sich auf das kontinuierliche Schätzen der Bewegung einer

mobilen Kamera in Bezug auf ein virtuelles Modell, während Kartografierung sich

auf die Erzeugung genau dieser Modelle bezieht. Ein AR-System kann aus der

Kenntnis eines bestehenden Modells, wie zum Beispiel einer 3D Stadt-Rekonstruktion,

profitieren, da dieses Modell ein erweitertes Verständnis der Szene liefern kann, darunter

Objektsemantik und virtuelle Annotationen, die in einem idealerweise metrischen und

global ausgerichteten Koordinatensystem registriert sind. Im Allgemeinen jedoch kann

ein AR-System nicht annehmen, sich ein einer a-priori modellierten Umgebung zu

befinden. In diesem Fall, ohne Wissen über die Welt, muss ein AR-System zunächst von

Grund auf ein solches Modell erstellen, und zwar zur Laufzeit und in Echtzeit. Das

ist ein Vorgang der in der englischen Fachliteratur mit den Begriffen Structure from

Motion (SfM) und Simultaneous Localization and Mapping (SLAM) (dt. ”Simultane

Lokalisierung und Kartografierung”) bezeichnet wird.

Die meisten SLAM-Algorithmen machen keine Annahmen über die Bewegung der vom

Benutzer geführten Kamera oder über die Geometrie und Semantik der beobachteten

Szene. In vielen Fällen jedoch enthält die Szene einschränkende geometrische Elemente

wie Linien und Ebenen. Zusätzlich ist es möglich, aus einem eingeschränkten Kamerabewe-

gungsmodell Vorteile zu ziehen. In dieser Arbeit schlagen wir vor, spezielle Kombinationen
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dieser geometrischen und semantischen Einschränkungen für das Lösen von bestimmten

Problemen von visuellem SLAM zu nutzen. Die Verwendung dieser Einschränkungen er-

laubten uns die Entwicklung von Lokalisierungs- und Kartografierungs-Algorithmen, die in

effiziente SLAM-Systemem auf mobilen Geräten wie Mobiltelefonen oder Tablets integriert

werden können. Im Speziellen haben wir die folgenden Techniken entwickelt:

• Zwei Techniken zum Kartografierung und Lokalisieren von beliebigen Kamerabe-

wegung und beliebigen Szenen, in Abhängigkeit vom Wissen über die Umgebung.

Erstens, in unbekannten Umgebungen, modellierten wir Hybridkarten, die Features

mit endlicher oder unendlicher Tiefe enthalten. Zweitens, in teilweise modellierten

städtischen Außenbereichen, simulierten wir eine Tiefenkamera durch das Rendern

synthetisierter Tiefenbilder.

• Eine Geo-Lokalisierungstechnik für das Initialisieren von metrischen 3D-SLAM

Karten in städtischen Außenbereichen. Gegeben ein einzelnes Bild und eine grobe

initiale 6D Kamera-Pose, verwenden wir Computer Vision Techniken um eine

genaue 6D Kamera-Pose bezüglich eines globalen Koordinatensystems, das durch

ein untexturiertes 2.5D Stadtmodell gegeben ist, zu berechnen.

• Eine Technik zum Abbilden planarer Szenen durch Ausnutzung des Homographie-

Bewegungsmodells. Homographien schränken sowohl die Kamerabewegung als auch

die Szenenstruktur stark ein. Wir haben Homographien verwendet, um einen sehr

effizienten Kartografierungs-Algorithmus zu implementieren, der besonders für leis-

tungsschwache mobile Geräte ausgelegt war.

In unseren praktischen Experimenten haben wir festgestellt, dass durch die Berücksich-

tigung von parallaxenfreien Kamerabewegungen die Anzahl der lokalisierten Kamerabilder

und damit die Nutzbarkeit von AR-Anwendungen deutlich gesteigert werden konnte. Weit-

ers haben wir festgestellt, dass unser Geolokalisierungs-Algorithmus sehr vielseitig einset-

zbar und effizient ist und die Darstellung von georeferenzierten Annotationen, wie zum

Beispiel Navigationshinweisen, in städtischen AR-Szenarien erlaubt. Unser Homographie-

basierter SLAM-Algorithmus stellte sich als mehr als eine Zehnerpotenz schneller als der

übliche Bündelblockausgleichung heraus, und erlaubte planare Szenen zu kartografieren,

die in zahlreichen alltäglichen Umgebungen zu finden sind. Zusammenfassend haben wir

vielseitige und praktische Lokalisierungs- und Kartografierungs-Methoden entwickelt, die

wir erfolgreich für die Registrierung von mobile AR Anwendungen in Innen- wie Außen-

bereichen eingesetzt haben.
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1
Introduction

1.1 Mobile augmented reality

Augmented Reality (AR) aims to provide new forms of human-computer interfaces in

which “the world becomes the user interface” [63]. More formally, AR refers to the idea of

mixing the physical-real with digital-virtual elements in order to enhance the perception

of a user [102]. While we are concentrating on sight, this mixture applies to all human

senses including hearing, taste, smell and touch.

The ultimate goal of our research is to make mobile AR applications practically avail-

able everywhere (e.g., in- and outdoors), anytime (e.g., day and night, at any season of

the year), and for everybody (e.g., the “average” as well as the “expert” user). The re-

alization of this broad and ambitious vision requires the availability of a set of hardware

and software technologies including wearable computers, mobile networks, digital content

providers, locations based services, and – finally – convenient AR applications.

The envisioned ubiquitous AR experience requires wearable or hand-held computing

devices. In 2007, an important milestone was reached with the introduction of the Apple

iPhone. Since then, “smart” phones have made steady progress in providing more and

increasing-quality hardware and software features. In the course of these developments,

ever more types of mobile devices become available on the consumer market: tablets (e.g.,

Apple iPad), glasses (e.g., Google Glass), and watches (e.g., Apple Watch), just to name

a few. While not all of these devices are equally suited or reap for AR applications, the

current generation of camera phones and tablets (see Figure 1.1) provide all hardware

components that are required for interactive see-through AR with real-time 3D graph-

ics: megapixel camera sensors, satellite navigation receivers, motion and inertial sensors,

multi-core central processing units (CPU), graphics processing units (GPU), and multi-

1



2 Chapter 1. Introduction

(a) (b)

(c) (d)

Figure 1.1: Selection of hand-held devices employed in this thesis: (a) Nokia N900

(2009), (b) Samsung Galaxy S2 (2011), (c) Apple iPad Air (2013), (d) Apple iPhone 6

(2014)

touch displays. However, compared to desktop and laptop computers, their computational

capabilities naturally lag behind due to the form factor: CPUs are less powerful, memory

capacity and bandwidth are restricted, cameras have low-quality sensors and narrow-field-

of-view lenses, satellite navigation receivers as well as motion and inertial sensors are con-

sidered inferior compared to the state of the art, and general-purpose computing on mobile

GPUs is still up in the air. Nevertheless, hand-held and wearable devices are considered

to be the most widely available and promising hardware platform for the proliferation of

mobile AR applications today.

Another important enabling technology for retrieving data from the internet and ex-

changing data between mobile devices are local and wide area communication networks.

Local connectivity between mobile devices and other networked computers is enabled by

technologies such as WiFi, Bluetooth and Near Field Communication (NFC). Wide-area

mobile telecommunication networks are steadily improved in terms of coverage as well as
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data transmission throughput and latency and enable the communication with the internet

and access to cloud services such as Geographic Information Systems (GIS).

Mobile AR requires digital content provided by location-based services. For example,

Geographic Information Systems such as Google Maps and Microsoft Bing allow for re-

trieving information about the local environment. Similarly, community-driven services,

such as OpenStreetMap, steadily make more and improved data available. Consequently,

mobile AR applications require Application Programming Interfaces (APIs) and cloud

storage infrastructure that allow for authoring and storing user-generated content.

To give a better idea of what we mean by mobile AR, consider the following application

scenario:

A user is sitting in a hotel lobby of a foreign city, browsing the news on his

smartphone, and discovers an exhibition she wants to visit. Leaving the hotel

towards the museum, she makes use of 2D map navigation to orient herself.

At an ambiguous junction, however, she chooses to directly superimpose the

correct walking directions over streets and buildings. Arriving at the museum,

ticket and digital exhibition catalog can be purchased online with a few clicks.

Moments later, she stands in front of an interesting piece and augments the

object with information about its making and history in a perspectively correct

manner via her device. After the visit, she can similarly visualize and explore a

virtual version of the piece in an arbitrary environment, e.g., at the airport gate

waiting for her plane, or back home in her living room. In the public space at

the airport gate, the visualization may be unregistered with the environment,

providing a purely virtual view. In the private space of her living room, the

visualization may be spatially registered, providing an augmented view.

In this example, the user employs the hand-held device for various purposes, including

navigation, information browsing, and product purchase. The corresponding applications

may employ different user interface and interaction metaphors, which fit best with the

users’ needs. For example, the navigation application may provide both a conventional

2D map as well as an AR interface. Any application that employs AR has to master a

couple of tough requirements in order to provide a convincing AR experience, including

geometric and photometric registration, visually coherent rendering, and intuitive and

convenient user interfaces.



4 Chapter 1. Introduction

Figure 1.2: Illustration of an urban mobile AR user interface. c© Layar

1.2 Registration problem

In this thesis, we concentrate on the geometric registration problem to enable mobile AR

applications in indoor and outdoor, especially urban, environments. In particular, we aim

to perform registration on hand-held computers using its built-in sensors and the camera.

At its core, a geometric AR registration system must solve the problem of aligning real-

world physical objects with computer-generated virtual objects, for example, to augment

real streets and buildings with virtual navigation hints. The requirements for convincing

AR experiences are tough: registration must work at interactive frame-rates and, thus,

process the incoming sensor input data and interaction events efficiently and robustly in

real-time, producing a highly accurate registration output. These requirements regularly

involve a tradeoff between different AR system components (e.g., registration, 3D graphics

rendering, interaction event handling), considering the available resources, in particular

on restricted computing platforms such as hand-held devices. The requirements contrast

with registration systems, which may neglect real-time constraints or have all input data

available at once for batch processing (e.g., offline Structure from Motion), or do not have

such excessive accuracy requirements (e.g., Virtual Reality).
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Figure 1.3: Extent of World Knowledge (EWK) continuum. c© [102]

1.3 Extent of world knowledge

In order to analyze the AR registration problem in more detail, let us have a look at Fig-

ure 1.3: The Extent of World Knowledge (EWK) continuum by Milgram and Koshino [102]

refers to the question about how much an AR system knows about the world being per-

ceived (displayed or tracked) at a certain point in time. In particular, the continuum raises

the following questions:

“Where is the real object?”

Refers, e.g., to localization with respect to a geometric model, and to mapping of a

geometric model of a real-world object.

“What is the real object?”

Refers, e.g., to high-level geometric and semantic scene understanding.

The answers to the “Where?” and “What?” questions are independent of each other:

On the one hand, the system may know the location of a real object (the “Where”), but

not its semantics (the “What”). On the other hand, the system may know that within

the environment a certain known object (the “What”) should exist, but does not know

its location (the “Where”). In the above example, in order to provide navigation hints in

the urban environment, the AR system must localize itself with respect to the city map:

based on the coarse GPS position, the system assumes that a certain building must be

in the perceived environment (“What”), but has not yet localized its exact position and

orientation with respect to the user (“Where”). Later on at the museum, the received

virtual model of the exhibition piece provides both means for localization and semantic

annotations (“Where” and “What”). Finally, the same virtual exhibition piece may be

rendered on top of a table in the users’ living room. In this case, the AR system may

observe and reconstruct the living room including the table at runtime, and employs the

corresponding geometric model for continuous localization (“Where”). However, while the
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system may not know that the geometric model contains a table object, it might know

that the table provides a planar surface for placing the virtual exhibition piece (“What”).

In general, models may provide information about geometry (for answering the

“Where”) and semantics (for answering the “What”). The geometric representation

of a model can be very different ranging from sparse point clouds to dense surface

reconstructions. Furthermore, many geometric models are merely untextured

approximations of physical objects, lacking details or entire perspectives, e.g., when

only the street side of a building is modeled. Semantic modeling can well be considered

an even harder problem compared to geometric modeling. For example, consider the

extraction of planes or cubes from geometric models. Compared to points, these

geometric primitives may already provide valuable semantic hints to AR applications.

On the flip side, models may contain 2D semantic, but no 3D geometric information,

e.g., consider images which have been classified to contain “cars” or “sky”. An important

property of any virtual model is its coordinate system constituting the reference for

localization, which can be a local (relative) or global (absolute) coordinate system, such

as Universal Transverse Mercator (UTM) or World Geodetic System (WGS). In the

latter case, the models have metric scale, compared to arbitrary scales in the case of local

coordinate systems.

Overall, registration systems gravely depend on the quality of the virtual models and

have to work around or deal with related problems. Where do these virtual models come

from? The digitalization of the world is steadily ongoing, with models of outdoor (e.g.,

Google Earth or OpenStreetMap models) and indoor environments (e.g., the aforemen-

tioned digital museum exhibition catalog) being created or extended every day. However,

there are further problems: For example, as the world is constantly changing (e.g., due

to construction activities in cities), virtual models, understandably, lag behind as they

cannot be updated at the same pace. A specific problem of models captured from images

are seasonal (winter vs. summer) and daytime (day vs. night) appearance changes, which

lead to very different extracted geometric information.

Depending on the a priori world knowledge, an AR system may employ different

approaches for registration. We can distinguish the following cases of world knowledge:

Completely or partially modeled environments

I.e., complete or partial world knowledge.

Unmodeled environments

I.e., no world knowledge.
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While the distinction between complete and partial world knowledge is fuzzy, and the

transition is fluent, we think that complete world knowledge is the absolute exception and

hardly ever the case.

In the case of complete or partial world knowledge, an AR system perceives environ-

ments which are modeled or prepared. Prepared environments may be equipped with

outside-in “open-loop” tracking systems (e.g., optical, electromagnetic, ultrasonic) or – in

outdoor environments – Global Navigation Satellite Systems (GNSS) such as the Global

Positioning System (GPS). Global satellite navigation can be considered as partially mod-

eled environment, because satellite signals cannot be perceived everywhere equally or not

in sufficient quality for AR applications. Furthermore, inside-out “closed-loop” registra-

tion systems may operate in environments which are prepared with fiducial markers, or

employ digital models which contain perceived real-world objects. The latter generally

refers to visual model-based tracking and detection algorithms. Similarly, partial world

knowledge implies that only some of the perceived world objects may be digitally mod-

eled, or perhaps not modeled in sufficient quality for AR applications. Overall, in case of

complete or partial world knowledge, an AR system can answer the “What” and “Where”

questions depending on model completeness and quality. To extend that knowledge, an

AR system may perform modeling at runtime, and thus attempt to extend the partial

model.

It is important to note that a registration system may benefit from a-priori known

virtual models of real-world objects and environments, as models may provide valuable

information such as a global coordinate system, or metric scale, or object semantics. In

general, however, an AR registration system cannot assume an a-priori modeled environ-

ment.

In the case of no world knowledge, an AR system perceives environments which are

unmodeled, or at least no model is known a priori to the AR system. In this case, an

AR system must first create a model in order to answer “What” and “Where” questions.

Milgram and Koshino [102] suggest to “make quantitative measurements of the observed

real world. With each measurement that is made, we are therefore effectively increasing

our knowledge of that world, and thereby migrating away from the left hand side of the

EWK axis, as we gradually build up a partial model of that world.” This statement

anticipates localization and mapping algorithms.
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1.4 Visual localization and mapping

When observing a real-world scene with a moving digital video camera, we can extract

measurements from the rich information encoded in the individual images of the video

stream, and use these visual measurements to reconstruct a virtual model that consists of

the geometric scene structure as well as the motion path of the camera in 3D space. In the

Computer Vision literature, this 3D reconstruction process is regularly called Structure

from Motion (SfM), and includes the localization of individual camera images with respect

to the scene geometry, as well as the mapping of the scene geometry.

Both, localization and mapping, rely on matching corresponding measurements (obser-

vations) of the same 3D landmarks within two or more images. Employing the underlying

projective geometry, we can estimate the location and orientation (6D/6DOF pose) from

where the camera images were taken and the 3D position of the measured image features

(e.g., point or line features). The reconstruction process is typically bootstrapped by es-

tablishing feature correspondences between a stereo pair of images that provide two views

with sufficient parallax (i.e., the ratio of the baseline between the camera centers vs. the

observed scene depth) for robust estimation of motion and structure.

Visual localization and mapping approaches can roughly be classified in the following

way: Approaches which are primarily interested in receiving a consistent model (e.g.,

sparse or dense 3D reconstructions), rather than in concurrent localization and mapping

in real-time, are referred to as Structure from Motion (SfM) [58]. Furthermore, Visual

Odometry (VO) [114, 135, 50] approaches are laid out for real-time localization with

respect to a temporary model, but neglect mapping a consistent model. And finally,

Simultaneous Localization and Mapping (SLAM) [149, 32, 72, 109, 110, 41] approaches

are interested in both, motion and consistent model estimation, concurrently and in real-

time.

With MonoSLAM, Davison [32] introduced monocular visual SLAM, that is, SLAM

using a single “agile” RGB camera as the only sensor input. MonoSLAM, as most of

the SLAM work at the time, employed a probabilistic filtering framework, the Extended

Kalman Filter (EKF). In contrast, Nister et al . [114] showed in their Visual Odometry

work that is was possible to employ SfM methods for real-time localization and map-

ping. However, in contrast to SLAM, Nister et al . performed localization with respect

to a temporary 3D model that was mapped from the most recent N camera frames only.

Klein et al . [72] considerably extended these concepts in their Parallel Tracking and Map-

ping (PTAM) work that was based on the idea of separating the real-time localization and
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keyframe-based mapping tasks on multi-core CPUs, creating the first optimization-based

– using bundle adjustment [163] – SLAM algorithm that eventually was found more ro-

bust and efficient compared to filter-based SLAM [152]. In the AR community, monocular

visual SLAM systems such as MonoSLAM and, particularly, PTAM became popular for

the registration of hand-held cameras in unmodeled environments.

1.5 Problem statement

In this thesis, we aim to shift the “What” and “Where” markers alongside the EWK

continuum and increase the world knowledge for partially modeled and unmodeled envi-

ronments by employing the SLAM approach.

Our own contributions on real-time localization and mapping presented in this thesis

are based on Klein and Murray’s work on PTAM [72, 73, 74]. We aim for even more

“agile” monocular visual SLAM algorithms, which entirely and autonomously run on

hand-held computers such as phones and tablets, using the built-in RGB camera of these

devices as primary input sensor. In particular, we tackled several important limitations

and problems of keyframe-based SLAM dealing with restrictions on estimating arbitrary

camera motion and scene structure, providing geometric scene understanding (i.e., high-

level feature mapping), initializing metric-scale SLAM maps and geo-localization in urban

outdoor environments.

Overall, SLAM is considered a “chicken and egg” problem. PTAM’s camera local-

ization relies on high-quality 3D features contained in the model, required for robust 6D

pose estimation. In turn, mapping relies on high-quality keyframes poses, required for ro-

bust 3D feature location (depth) estimation. This mutual dependence is best reflected in

bundle adjustment optimization, which iteratively refines both 6D poses and 3D features.

Furthermore, a SLAM system depends on the user input, especially on what kind

of camera motion the user performs, and what kind of scene environment the camera

observes. These runtime parameters heavily influence robustness and accuracy of both

localization and mapping components. How are the connections between SLAM and user

input? The 3D location (depth) of a feature is inferred from at least two camera frames

providing corresponding 2D image observations of a real-world landmark, in a process

called triangulation. Triangulation requires sufficient motion parallax, which is the angle

between the rays going from the landmark to the camera centers (along the bearings

of the 2D image observations). In theory, any parallax angle greater zero is sufficient

for triangulation. In practice, however, triangulation error also depends on the image
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measurement quality, including noise and outliers.

Parallax itself is a function of camera motion and scene depth. In other words, there are

two reasons why an observed landmark does not exhibit sufficient parallax: either because

of insufficient camera motion or because of extreme depth of the landmark. For example,

one can walk a long way and the stars in the sky will not exhibit parallax. Additionally,

rotation-only movements, a prominent motion pattern often executed by hand-held device

users [106], does not induce parallax and is considered a degenerate motion for depth

triangulation (and 3D reconstruction).

Degenerate camera motion detection and keyframe selection are well-known problems

in SfM [160], and similarly apply to visual SLAM. Monocular SLAM systems such as

PTAM aim to avoid mapping camera frames which do not induce parallax to prevent

the worst case, model corruption. For example, bundle adjustment optimization may

converge to local minima, resulting in model corruption. This keyframe filtering comes at

the price of mapping starvation and localization loss, because the observed scene regions

are missing in the 3D model. This essentially means that SLAM systems such as PTAM

cannot process arbitrary camera motion and scene structure.

The initialization of a 3D SLAM model requires – analog to the aforementioned tri-

angulation problem – parallax-inducing general camera motion. Performing this kind of

general camera motion is a tedious task for non-expert users, who often fail in initializing

a SLAM system [106]. With increasing camera-scene distances, as it is often the case

in outdoor environments, the problem only gets worse, as spanning the required paral-

lax baseline forces the user to easily walk more than 10 meters in an awkward sideways

motion [169].

Furthermore, two-image stereo initialization [45, 113] yields SLAM models with a

local coordinate system and arbitrary scale. Arbitrary scales and coordinate systems are

a problem for AR applications when displaying virtual objects: Where should it put the

virtual objects and at at which size? The original PTAM initialization procedure employed

a workaround by declaring the convention that the initial camera image pair should be

manually taken roughly 10cm apart and perceive a planar scene structure such as a table

surface, which was then extracted as the dominant plane from the initial 3D point cloud

and provided the “playground” for top-level AR applications. Of course, these kind of

assumptions and heuristics cannot be applied in general scenes.

In contrast, localizing the SLAM model with respect to known, ideally metric-scale

and global coordinate systems such as UTM or WGS has many advantages. For example,
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location-based services such as geographic information systems can be queried using the

same reference coordinate system, allowing for retrieving and uploading digital content.

Visual wide-area localization, i.e., self-estimation of the full 6DOF pose of a mobile camera

device with respect to a given reference coordinate system, has been explored extensively.

The literature includes approaches using motion sensors (e.g., GPS, magnetometer and

inertial sensors) [46], image databases [137], 3D reconstructions [66], textured 3D mod-

els [125], and digital elevation models [157]. However, wide-area localization algorithms

that fulfill the practical requirements of AR applications in terms of ubiquitous availability,

registration accuracy, and (near) real-time performance, are rare and still an open issue.

For example, geo-localization algorithms for outdoor, and, especially, urban environments

using hand-held camera devices require 3D reconstructions [6] and image databases [155],

which are usually only available in selected regions. In contrast, untextured 2D city maps

are available for nearly all urban environments of the world and can be retrieved from

geographic information services such as OpenStreetMap.

Localization and mapping algorithms laid out for desktop computers often cannot

be ported in a straight forward way to hand-held computers. For example, the PTAM

algorithm defied trivial porting from the desktop to the mobile platform and required

considerable modification and redevelopment. Still, the mobile version was considered “far

less accurate and robust” [74]. As computational and sensorial limitations apply, SLAM

on mobile devices is often restricted to low-level geometric features such as points and

edges. However, high-level geometric map features such as planes would provide valuable

information to AR applications for the generation of ortho-images and panoramas, as

well as giving an advanced semantic understanding of the observed scene that allows for

rendering meaningful annotations.

1.6 Approach

Most SLAM algorithms focus on the most general SfM case, that is, cameras which move

in 6DOF and features which are located in 3D space. In other words, general SfM and

SLAM algorithms do not make any prior assumptions about the scene structure or camera

motion. As noted by Szeliski [154], in many cases, however, the scene contains higher-level

geometric primitives such as lines and planes. These can provide information complemen-

tary to interest points and also serve as useful building blocks for SLAM. Furthermore,

these primitives are often arranged in particular relationships, i.e., many lines and planes

are either parallel or orthogonal to each other. This is especially true of urban architectural
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scenes and models. Additionally, it is possible to take advantage of a constrained camera

motion model. For example, when the camera moves in a fixed arc around some center

of rotation, specialized techniques can be used to recover this motion and the observed

structure.

We propose to approach the outlined limitations and problems of monocular visual

SLAM by exploiting specific combinations of constraints on the performed camera mo-

tion, and on the observed scene structure and its semantics. In particular, we aim to

exploit constraints on parallax-free camera movements, geometric primitives such as lines

and planes, and semantic information extracted from images. These constraints allow us

developing localization and mapping algorithms, which we integrate into efficient SLAM

systems suited for restricted computing platforms such as hand-held devices.

Depending on the performed camera motion and the observed scene structure, features

may exhibit a varying amount of parallax and can be modeled differently by a SLAM

system. General visual SLAM approaches [32, 72, 110] assume parallax-inducing camera

motion and perform 6DOF localization and finite 3D mapping. In contrast, panoramic

visual SLAM approaches [104, 35, 90, 173] assume pure-rotation camera motion (or scenes

with “infinite” depth). Thus, constrained panoramic SLAM models only allow to track

the 3DOF rotation of the camera (and not the 3D location). We aim for the hybrid

case, that is a SLAM algorithm which allows for models with mixed finite and infinite

feature representations [25, 54, 119, 61]. These “unconstrained” SLAM systems truly

allow for arbitrary camera motion and scene structure. Additionally, features may exhibit

an increasing amount of parallax, when repeatedly observed over time. For example,

a feature may initially be modeled with infinite depth, but later observed again with

sufficient parallax to estimating a finite 3D location. This idea refers to inverse depth

parameterization applied in filter-based SLAM [104] and deferred triangulation applied in

keyframe-based SLAM [119, 61].

As one can observe easily, indoor as well as outdoor environments contain many human-

made structures, such as walls, tables, billboards, and building façades, that can be geo-

metrically modeled as planes. Observing these planar structures, the camera motion can

be estimated with homographies, which describe the perspective transformation between

two camera images via a plane. Homographies encode (up to scale) the relative Euclidean

pose transformation (i.e., the relative 6DOF pose) between the two cameras, as well as

the corresponding plane. Thus, homographies provide strong constraints on both camera

motion and scene structure, which we aim to employ for mapping planar scenes. Addi-
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tionally, a homography can be decomposed [96] into a pose and plane equation, allowing

to back-project 2D image features onto the estimated plane, as well as rendering ortho-

graphic images of the plane that can be used as localization templates by model-based

tracking and detection algorithms.

Furthermore, certain architectural structures in urban environments, such as building

façades, can be modeled as planes. These building façades usually provide many edge

features located on windows, doors and other structures that can be modeled as vertical

and horizontal lines. Vertical and horizontal lines allow estimating vanishing points and

give strong constraints on the relative plane orientation. Again, this knowledge allows

for rendering orthographic images of the façade. More than that, matching the extracted

image lines and planes with a virtual reference model, possibly as simple as an untextured

2D city map, allows for geo-localization, that is, full global 6DOF pose estimation within

the coordinate system of the reference model. Additionally, the matching of line corre-

spondence between image and model can be facilitated by semantic knowledge retrieved

from the image.

1.7 Contributions

With the outlined constraints at hand, we developed several visual SLAM algorithms espe-

cially for hand-held devices that enable – besides localization and mapping – applications

such as geo-localization and high-level model generation (e.g., orthographic and panoramic

images). In particular, we describe the following contributions:

Homography-Based Planar Mapping and Tracking In Chapter 3, we present a

real-time camera pose tracking and mapping system, which uses the assumption of a pla-

nar scene to implement a highly efficient mapping algorithm. Our light-weight mapping

approach is based on keyframes and plane-induced homographies between them. We solve

the planar reconstruction problem of estimating the keyframe poses with an efficient im-

age rectification algorithm. Camera pose tracking uses continuously extended and refined

planar point maps and delivers robustly estimated 6DOF poses. We compare system and

method with bundle adjustment and monocular SLAM on synthetic and indoor image se-

quences. We demonstrate large savings in computational effort compared to the monocular

SLAM system, while the reduction in accuracy remains acceptable.
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Handling Pure Camera Rotation in Keyframe-Based SLAM Handling degen-

erate rotation-only camera motion is a challenge for keyframe-based simultaneous local-

ization and mapping with six degrees of freedom. Existing systems usually filter corre-

sponding keyframe candidates, resulting in mapping starvation and tracking failure. In

Chapter 4, we propose to employ these otherwise discarded keyframes to build up local

panorama maps registered in the 3D map. Thus, the system is able to maintain tracking

during rotational camera motions. Additionally, we seek to actively associate panoramic

and 3D map data for improved 3D mapping through the triangulation of more new 3D map

features. We demonstrate the efficacy of our approach in several evaluations that show

how the combined system handles rotation only camera motion, while creating larger and

denser maps compared to a standard feature-based SLAM system.

Urban Outdoor Localization and SLAM Initialization In Chapter 5, we present

a method for large-scale geo-localization and global tracking of mobile devices in urban

outdoor environments. In contrast to existing methods, we instantaneously initialize and

globally register a SLAM map by localizing the first keyframe with respect to widely

available untextured 2.5D maps. Given a single image frame and a coarse sensor pose

prior, our localization method estimates the absolute camera orientation from straight line

segments and the translation by aligning the city map model with a semantic segmentation

of the image. We use the resulting 6DOF pose, together with information inferred from the

city map model, to reliably initialize and extend a 3D SLAM map in a global coordinate

system, applying a model-supported SLAM mapping approach. We show the robustness

and accuracy of our localization approach on a challenging dataset, and demonstrate

unconstrained global SLAM mapping and tracking of arbitrary camera motion on several

sequences.
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2
Background

In the fictional Augmented Reality (AR) interface shown in Figure 2.1, the view of the

world is enhanced with digital information about what the user (a humanoid robot, in this

case) is seeing. This example foreshadows that AR is a interdisciplinary field, which draws

from diverse other fields such as photogrammetry (making measurements from images and

other sensor data), computer vision (estimating scene geometry, structure from motion),

computer graphics (3D coherent rendering), human-computer interaction (having the user

in the loop), and artificial intelligence (learning and interpreting the scene).

The classical definition of Augmented Reality comes from Azuma [7]: AR systems

combine real and virtual objects, are interactive in real-time, and registered in 3D. This

definition deliminates AR from offline and non-interactive computer graphics applications

employed in movie and computer game industries. Furthermore, according to Feiner [47],

Virtual Reality (VR) “aims to replace the real world”, whereas AR “respectfully supple-

ments it”. AR is also related to Mediated Reality (MR) and Diminished Reality (DR)

concepts, where the world is modified by adding virtual objects or removing real objects,

especially by means of wearable computers or hand-held devices [97].

Figure 2.1: Augmented Reality user interfaces shown in the movie Terminator 2: Judg-

ment Day (1992).

17
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One core component of each AR system is registration, which aligns real and virtual

worlds. The registration problem includes the following sub-problems:

Localization

Depending on community and context, also known as tracking, detection,

re-localization, pose recognition, place recognition, self-localization, ego-motion

estimation.

Mapping

Depending on community and context, also known as reconstruction, modeling.

The localization problem refers to continuously estimating the motion (e.g., the 6D pose

consisting of 3D orientation and 3D position) of the camera (or the computing device, the

user, etc.) with respect to a coordinate system given by a virtual model. The resulting

motion estimate is used to render a perspectively correct mixed-world AR view. The

mapping tasks refers to creating the required virtual models, e.g., reconstructing the 3D

scene structure visible within a given set of images.

There is a vast amount of literature describing algorithms for localization and mapping

problems, not only in the field of AR, but also in the fields of photogrammetry, computer

vision, robotics, and others. The algorithms differ in many respects including the employed

computer platform and sensors, the achieved real-time performance, the required user

intervention, the intended application environment, and the assumed a-priori knowledge.

In the context of this thesis, we cannot provide a comprehensive literature overview.

Instead, we are present a selection of relevant work with respect to the contributions of

this thesis. In the following, we want to state more precisely the scope of this chapter.

Computing platforms We give a focus on algorithms that have been developed for

hand-held devices or have been applied on hand-held devices. Algorithms may be laid out

for such diverse platforms as computer clusters, desktop/laptop computers, and hand-held

computers, as well as for network-connected combinations of these platforms. In Table 2.1,

we show the specifications of two mobile phones, which also illustrates the rapid evolution

of their hardware capabilities. However, in comparison to hand-held devices, desktop and

cluster computers have a processing power that is several magnitudes higher.

Motion and inertial sensors In our contributions, we are partially using the motion

and inertial sensors built into hand-held devices. Generally, localization and mapping

algorithms may employ very different kinds of sensors, and each kind may range from
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Nokia N900 Samsung Galaxy S6

Year 2009 2015
CPU 600 MHz Quad-core 2.1 GHz
GPU PowerVR SGX530 Mali-T760MP8
RAM 256 MB 3 GB

Camera 5 MP, 2576 x 1936 pixels 16 MP, 2988 x 5312 pixels
GPS A-GPS A-GPS, GLONASS, Beidou

Display 800 x 480 pixels 1440 x 2560 pixels

Table 2.1: Comparison between Nokia N900 (2009) and Samsung Galaxy S6 (2015).

high-end state-of-the-art to low-end consumer-device quality. For example, hand-held de-

vices mostly provide assisted GPS (A-GPS) receivers, whereas state-of-the-art differential

or real-time kinematic GPS (D-GPS, RTK-GPS) provides much more accurate position es-

timates (e.g., several meter vs. centimeter accuracy w.r.t. ground truth). This is similarly

true for motion and inertial sensors, such as magnetometers, gyroscopes and accelerome-

ters, as well as for camera hardware.

Camera sensors We give a focus on algorithms that employ monocular RGB cameras

(i.e., cameras with a single lens), preferably built into hand-held devices. Hand-held de-

vices are typically equipped with comparably small field-of-view lenses and low-quality

camera sensors, resulting in images with small dynamic range and heavy motion blur,

even under relatively good lighting conditions. Catadioptric (e.g., fisheye, omnidirec-

tional) camera systems providing wide field-of-view or panoramic imagery are not avail-

able on hand-held devices without special externally mounted lens extensions. With a few

exceptions, hand-held devices also do not provide stereo camera rigs.

Depth sensors We will also briefly describe algorithms using RGB+Depth (RGB-D)

camera sensors, because it is likely that these sensors will be deployed to consumer hand-

held devices in the future. Since the release of the Microsoft Kinect in 2011, depth and 3D

motion sensors have become immensely popular in the research community, especially for

real-time Simultaneous Localization and Mapping (SLAM). Since then, similar products

were presented, either based on time-of-flight or structured light approaches. Depth sen-

sors are usually combined with RGB cameras and, thus, called RGB-D sensors, providing

synchronized RGB and depth buffers. Popular examples for RGB-D sensors are Apple

PrimeSense and Mantis. The latter is installed in the experimental Google Tango device,

making it the first hand-held device prototype with a built-in RGB-D sensor. The depth
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range depends on the parallax baseline, i.e., the baseline between the structured infrared

light projector and the corresponding infrared camera. For example, the Google Tango

depth sensor gives values between 0.5 and 4 meters.

Real-time performance We focus on real-time localization and mapping algorithms.

Another major distinction between registration algorithms is whether or not they can

cope with real-time constraints. AR requires algorithms with real-time or near real-time

performance, as they must process the incoming input and present an output within

specified time constraints, e.g., the live video stream of an camera must be processed online

at frame-rate. In contrast, for example, certain structure from motion algorithms assume

all input data available at once for offline batch processing, rendering these algorithms

unusable for AR.

Interactivity We focus on algorithms which run automatic with minimal user interac-

tion. In contrast, there are algorithms which require users to provide hints for localization

and mapping, in particular interactive and semi-interactive modeling algorithms. How-

ever, an AR system is implicitly interactive, since the user is in the loop, moving the

hand-held device and providing system input, e.g., by operating the camera and observing

a certain desired scene. Additionally, in certain situations, such as localization failure,

the user is required to adopt its behavior and provide input that lets the system recover.

During normal operation, however, our algorithms do not require any specific manual

intervention. Moreover, our algorithms should adopt to arbitrary user input, leaving a

maximum of freedom to the user.

Scene environments We focus on algorithms with practical value, i.e., for usage in

tough real-world conditions. Algorithms may be laid out for very different environments,

e.g., indoor or outdoor environments. The conditions outside of the laboratory are usu-

ally way more tough, including difficult lighting conditions (sunlight, shadows), dynamic

objects (occlusions), larger camera-scene distances, etc.

A-priori knowledge The related work can be categorized by their assumed input,

especially the a-priori knowledge about their runtime environment. We focus on the

representation of the virtual models, which can be very different, with implications on

the difficulty of the problem and, consequently, the real-time performance and practical

applicability for AR. Following the Extent of World Knowledge (EWK) continuum by
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Milgram and Kishino [102], we distinguish between algorithms which assume:

• Completely or partially modeled environments (Section 2.2)

• Unmodeled environments (Section 2.3)

We discuss localization and mapping approaches for the first category in Section 2.2

and the second category in Section 2.3.

Structure from Motion Since we focus on real-time mapping algorithms, offline Struc-

ture from Motion (SfM) approaches are beyond the scope of this thesis. However, 3D

reconstruction and modeling may provide the virtual models which are employed by real-

time localization algorithms. For instance, the interested reader is referred to Musial-

ski et al . [107] which provide a recent and comprehensive survey of interactive and auto-

matic reconstruction techniques from computer graphics, computer vision, photogramme-

try and remote sensing communities. Furthermore, the survey of Yin et al . [182] covers

manual reconstruction techniques, including the generation of 3D building models from

2D architectural drawings. We also want to refer to automatic and semi-automatic SfM

systems, including offline batch SfM [150, 1, 49], interactive modeling based on offline

SfM [167], incremental SfM [180], and real-time SfM [120]. The latter closes a circle, as

Photogrammetry and Computer Vision research, in general, and Structure from Motion,

in particular, provide the fundamentals for real-time localization and mapping.

2.1 Vision-based registration fundamentals

Overall, we focus on computer vision-based registration approaches that have been enabled

by advances in feature detection and matching, feature-based alignment, structure from

motion, and 3D reconstruction. Szeliski has written an excellent textbook covering these

and further topics [154].

Feature detection and matching allows for establishing correspondences between two

or more images. Feature detection refers to measuring so-called natural features or interest

points, such as corners [57, 141, 129], edges [57, 18], line segments [56] and blobs [86, 98].

Corresponding features between two or more images can either be found using local or

wide-baseline matching techniques. Local template matching involves the computation

of image correlation such as Normalized Cross Correlation (NCC) [186], or direct image

alignment techniques such as Kanade-Lucas-Tomasi (KLT) [94, 161, 11]. Wide-baseline
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matching usually involves computing feature descriptors [92, 13, 17]. Feature descrip-

tors provide a condensed information about a feature location, and allow for descriptor

matching which should be invariant to affine or even perspective image transformations,

as well as to illumination changes. In this context, we recommend the surveys on image

registration/alignment by Zitova [187] and Szeliski [153].

The resulting image feature correspondences are employed for feature alignment. Fea-

ture alignment involves the robust estimation of intrinsic and extrinsic camera parameter

as well as motion models such as homographies and epipolar geometry. In this thesis,

we employ a-priori internally calibrated cameras based on established parameterization

and distortion models [59, 185], which we estimated using the GML Camera Calibration

Toolbox of Alexander Velizhev1, an extension of the well-known calibration framework

of Bouguet2. Robust pose and motion model estimation refers to minimal solvers3 such

as the three-point absolute pose problem [48] and five-point relative pose problem [113].

Furthermore, we have adopted the mathematical notation introduced by Lepetit and Fua

in Chapter 2 of their survey on model-based tracking [81]. This text covers fundamental

tools for computer vision, including internal and external camera pose parameterization,

as well as robust estimation and iterative minimization techniques such as RANSAC [48],

robust least-squares using M-estimators [65], and bundle adjustment [163]. Additionally,

we found the lecture notes of Drummond [37] on Lie groups and algebras very helpful,

e.g., for the parameterization of Euclidean transformations in 3D space.

Feature detection, matching and alignment are important fundamentals for Structure

from Motion and 3D reconstruction. The corresponding standard textbook from Hartley

and Zisserman [58] extensively covers topics such as projective geometry (e.g., projective

transformations), single view geometry (e.g., camera models, pose estimation, vanishing

points), two- and multi-view geometry (e.g., epipolar geometry, homographies, triangula-

tion, 3D reconstruction), and robust least squares minimization techniques (e.g., iterative

estimation, bundle adjustment). The survey papers on Visual Odometry from Scaramuzza

and Fraundorfer [135, 50] cover similar topics.

1GML C++ Camera Calibration Toolbox: http://graphics.cs.msu.ru/en/node/909

2Camera Calibration Toolbox for Matlab: http://www.vision.caltech.edu/bouguetj/calib_doc/

3Minimal problems in computer vision: http://cmp.felk.cvut.cz/minimal/index.php

http://graphics.cs.msu.ru/en/node/909
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://cmp.felk.cvut.cz/minimal/index.php
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2.2 Localization in modeled environments

This section discusses registration in at least partially modeled environments, in particular

localization methods with respect to some a-priori known virtual environment model. In

the following, we want to distinguish between two sub-problems:

Initial localization

Also known as self-localization, tracking by detection, re-localization.

Continuous localization

Also known as tracking, recursive tracking.

Initial localization is performed from scratch without or with only a coarse prior, e.g., re-

ferring to pose estimation using correspondences from wide-baseline matching. Continuous

localization is performed after initialization, when already having a reasonable prior, e.g.,

referring to iterative pose estimation using correspondences from local template matching

with the previous frame or a keyframe. Generally, initial localization is considered a harder

problem than continuous localization and, consequently, requires more computation effort

and time.

In the following, we want to classify localization approaches with respect to the repre-

sentation of the employed virtual model. The model representation can be very different,

including sparse models (e.g., consisting of point, edge features), and dense models (e.g.,

consisting of image pixel or volumetric voxel features, and polygonal vertex meshes). Fur-

thermore, models can be textured or untextured, and have two (2D), two-point-five (2.5D),

or three dimensions (3D). In particular, we want to distinguish the following cases:

Localization in prepared environments (Section 2.2.1)

Prepared environments are equipped with localization infrastructure that can be

used to register with respect to a given model coordinate system.

Localization with respect to untextured models (Section 2.2.2)

Untextured models consist of vertices, but have to texture, including 2.5D digital

elevation models, 2D and 3D polygonal models.

Localization with respect to reference images (Section 2.2.3)

The reference images (a.k.a. keyframes) itself are registered with respect to a model.

Furthermore, the complexity of the localization problem depends very much on the

scope of the model. By model scope, we understand the area or volume covered by of the
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model, up to scale. For example, localization with respect to a model covering an entire

city (let’s say, Paris) is considered a much harder problem than with respect to model

that contains only a single object (let’s say, the Eiffel tower). The scale of the model,

however, makes no fundamental difference. Whether to localize the real-world Eiffel tower

or its small-scale paper model is considered a similar problem, except for environmental

issues such as lighting. Naturally, it will make a difference on the accuracy of the pose in

metric scale (e.g., localization with respect to the smaller model will likely give a higher

accuracy than the large real-life model). For AR purposes, however, the major camera

pose accuracy concern is the achievable quality of the real-virtual overlay, which will likely

be the same.

Consequently, in the following discussion, we will roughly distinguish between wide-

area and local-area localization. However, the distinction is fuzzy, and the related work

difficult to classify. One can say that wide-area localization expects the model to exist

where the user is, while local-area localization requires the user to go where the model

exists.

2.2.1 Prepared environments

Localization infrastructure in prepared environments includes Global Navigation Satellite

Systems (GNSS), registered WiFi access points, and mobile telecommunication base sta-

tions. This infrastructure provides coordinate systems to which an AR system can register,

and which we take advantage of as priors for vision-based geo-localization in Chapter 5.

Several global and regional GNSS systems are in operation, including the United States’

Global Positioning System (GPS) and Russia’s GLONASS system. GNSS allow for de-

termining the 3D position of a satellite signal receiver with respect to global coordinate

systems such as Universal Transverse Mercator (UTM) or World Geodetic System (WGS).

The precision and latency of the positioning depends very much on the receiver quality and

on satellite signal availability. For example, satellite signals interfere with human-made

structures such as buildings, and consequently can only be received with limited quality

in indoor and certain urban environments (e.g., urban canyons).

Early on, mobile AR registration systems have exploited GPS receivers in combination

with other sensors, such as digital compass and inertial orientation sensors, to perform

global 6D localization in outdoor environments. Being one of the first such systems,

Feiner et al . [46] found that normal GPS readings were only accurate within about 100m,

while differential GPS allowed to achieve about one-meter accuracy. Differential GPS is
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(a) c© [184] (b) c© [136]

Figure 2.2: Outdoor localization using GPS: (a) Zandbergen et al . [184] evaluated A-

GPS on off-the-shelf mobile devices and achieved accuracies within 5.0m and 8.5m. (b)

Schall et al . [136] achieved sub-meter to centimeter-accuracies using high-end D-GPS and

RTK-GPS sensors.

coupled with the correction signal of another receiver at a known location that contains

information about how far it is off. More recently, Schall et al . [136] presented a system

that employed high-end sensors and implemented Kalman filtering for fusion of Differential

or Real-Time Kinematic GPS (D-GPS, RTK-GPS). They report sub-meter to centimeter

accuracy position estimates. Current generation phones and tablets are typically equipped

with Assisted GPS (A-GPS) receivers, which allow for accelerated 3D positioning. Accord-

ing to a recent study by Zandbergen et al . [184], using A-GPS techniques enables mobile

phones to achieve positioning even in urban canyons and indoor locations. Outdoors, the

median horizontal position error lies between 5.0m and 8.5m. Indoor errors are larger.

However, very large errors are very uncommon and lie within 30m outdoors and within

100m indoors. See also Figure 2.2.

2.2.2 Untextured models

Another class of localization approaches relies on untextured models, such as 3D CAD

models, or widely available 2D cadastral maps, which are additionally annotated with
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(a) c© [157, 123] (b) c© [24]

Figure 2.3: Urban outdoor localization with untextured models. (a) Taneja et al . [157]

align panoramic query images with 2.5D elevation models. (b) Chu et al . [24] align query

images with 2D city maps using building façade outlines.

per-building height information or digital elevation data (often from LIDAR), resulting in

2.5D models. Our contributions on geo-localization and SLAM initialization described in

Chapter 5 employ such untextured 2.5D models.

Untextured models have been used for initial and continuous localization in both local

and wide areas. In particular, we are going to discuss initial geo-localization in wide areas

with respect to 2D cadastral and 2.5D digital elevation models which use single or multiple

images. Furthermore, we will explain the restrictions made by previous work in this area.

In particular, we observe that the methods either do not provide real-time performance

or accuracy which is insufficient for AR purposes.

2.5D digital elevation models Ramalingam et al . [123] establish the registration be-

tween an image and a 2.5D model by computing 3D-2D line and point correspondences.

However, an already registered second image is required to establish the 3D-2D correspon-

dences by first matching 2D-2D SIFT features between the two images. Consequently, the
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first image of a sequence needs to be manually annotated. In contrast, our methods are

fully automatic and only require a single input image.

Baatz et al . [8] use contour matching and refinement of sky silhouettes between a

digital elevation model and mountain images. Similarly, Bansal et al . [12] verify pose

hypotheses by matching the pictured image skyline with the model. In AR, users should

not have to point the camera at the skyline. In dense urban areas, the skyline may not

even be easily visible. Therefore, we do not rely on a visible skyline in our input images.

Another work from Baatz et al . [9] registers semantically labeled images with respect

to labeled 3D digital terrain models. The idea of semantic segmentation is related to our

method, but Baatz et al . process landscape images, whereas we process urban images.

They state that “it is still extremely challenging to accurately identify the semantics”

and restrict themselves to four of the easier classes (sky, water, settlements, other). This

approach allows Baatz et al . to estimate only the orientation of the image with respect to

the model. In contrast, our method computes both absolute orientation and 3D location.

With Taneja et al . [157], we share the idea of using semantic image segmentation

as input for the registration with a 2.5D map (see Figure 2.3). However, Taneja et al .

optimize the pose over a continuous 6D cost space, while we are verifying pose hypotheses

at discrete positions within a 2D cost space, which makes our method arguably much

faster. Taneja et al . use comparably detailed 2.5D models and Google StreetView images

for their queries, which are high-resolution panoramas with a rather accurate initial geo-

location. The quality of this data likely allows them to optimize all 6DOF simultaneously

without getting stuck in local minima.

2D cadastral maps David et al . [31] register panoramic images with 2D maps using

a building façade orientation descriptor. As shown by Arth et al . [6], the higher amount

information contained in wide field-of-view images significantly increases the success rate

of localization. Mobile devices have a narrow field of view, and a descriptor such as the

one used by David et al . is not discriminant enough in such situations.

Cham et al . [21] also consider panoramic images and aim to detect vertical building

outlines and façade normals, resulting in 2D fragments which are matched with a 2D map.

Chu et al . [24] report to outperform Cham et al . [21]. Chu et al . compute a descriptor

from vertical building outlines in perspective input images, which is then matched with

a 2D map. They published their code and dataset online: Upon careful analysis, the

dataset consist of only 11 scenes that mostly show free-standing buildings with rectangular

footprint. Matching requires the exact detection of the left, middle and right building
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outline in the input image. To facilitate the detection of vertical edge and vanishing

points, they partially annotated the input images manually. In contrast, we aim at a fully

automatic method.

We share the assumption of horizontal and vertical image lines with Chu et al . [24] (see

Figure 2.3). In contrast, however, we use a robust algorithm for orientation estimation,

and consider a large number of potential vertical building outlines. The resulting pose

hypotheses are verified based on a semantic segmentation of the image, which adds another

layer of information to the pose estimation process. This allows our method to be applied

to much more complex images compared to Chu et al .

2.2.3 Reference images and models

In this section, we review localization methods which employ a collection of reference

images. The reference images (a.k.a. keyframes, image databases) are registered with

respect to a model, such as untextured 3D CAD models or 3D models reconstructed from

the reference images.

Image-based methods have been widely used for both initial and continuous localization

in local as well as wide areas. In the AR context, initial and continuous localization usually

refers to model-based detection and tracking, respectively. These techniques are also

relevant for keyframe-based SLAM, where they are referred to as re-localization and map

tracking, respectively. Initial localization in wide-areas with respect to a global coordinate

system is often called geo-localization. In particular we describe the following techniques:

• Recursive homography tracking of manually selected planar scene models.

• Detection and tracking of keyframes which are registered with a 3D model.

• Planar target detection and tracking on mobile phones which uses collections of

reference images as individual planar tracking targets.

• Tracking by synthesis which uses textured 3D models.

• Place and pose recognition which uses reference image databases, registered with

3DOF or 6DOF within a model, respectively. Consequently, the 3D position or 6D

pose of a query images is returned.
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(a) c© [148] (b) c© [83]

Figure 2.4: Model-based detection and tracking. (a) Skrypnyk et al . [148] first re-

construct a sparse point-feature model of the “mug” scene for later camera tracking by

detection. (b) Lepetit et al . [83] use a CAD model and registered keyframes for point and

edge feature-based real-time tracking.

2.2.3.1 Planar recursive tracking

Related to our contributions on planar SLAM presented in Chapter 3, the following meth-

ods perform recursive homography tracking with respect to a planar scene model, which

is acquired at runtime. The model consists of one or more planar scene regions, which

are manually defined by the user at runtime, e.g., by selecting the vertices of a delin-

eating polygon within the live camera view. These methods have several disadvantages:

As no real-time mapping is performed, the selected plane has to stay within the camera

frame, and recursive pose tracking starts to drift very quickly. Pioneering the real-time

tracking of natural features and robust homography estimation, Simon et al . [147] pre-

sented a “markerless” recursive camera tracking system designed for unprepared envi-

ronments which contain one or more planes. The actual 6D camera pose of the current

frame is computed recursively by homography chaining, i.e., multiplication of the previous

pose with the current homography, which is estimated between the previous and current

frame. Prince et al . [122] proposed a similar system. Later on, Simon et al . [146] and

Lourakis et al . [88] suggested to employ the gathered knowledge about scene structure

and camera motion for offline planar scene reconstruction.
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2.2.3.2 Model-based detection and tracking

The following systems expect a 3D model with registered reference images to perform

real-time camera detection and tracking. The applied techniques are important precur-

sors for keyframe-based SLAM and wide-area image-based localization. We want to point

out the fundamental difference between detection (initial localization) and tracking (con-

tinuous localization). Furthermore, we review two approaches for 3D model acquisition,

one employing SfM models and the other Computer Aided Design (CAD) models.

Skrypnyk et al . [148] present a system for camera tracking by detection (initial local-

ization) using SIFT that operated with 4-6 fps at the time. The system operates in two

stages. First, in the offline stage, the manually selected reference images are registered

with respect to a sparse point model using a “classic” SfM pipeline (see Figure 2.4). Sec-

ond, in the online stage, the 6D camera pose is estimated with respect to the model by

matching the current frame with the reference images (and implicitly, the 3D model). Both

stages employ SIFT feature detection, description and matching to generate the required

2D-2D and 2D-3D feature correspondences.

Employing a 3D CAD model with registered reference images (they call them

keyframes), Lepetit et al . [83] and Vacchetti et al . [166] combine initial detection with

continuous real-time tracking (see Figure 2.4). For their real-time tracker, they detect

corner features in the current frame, which are matched with both the previous frame

and a selected keyframe, effectively combining recursive with keyframe tracking. For the

latter, patches sampled from the keyframes are warped (with an affine transformation

that sufficiently approximates a homography) into the current camera viewpoint,

producing a synthesized image. The real-time tracker was reported to run with 15fps

to 25fps. Later on, these pure point-based methods were extended with edge-feature

tracking capabilities [165]. Thus, they achieved a tracking system which combines point

and edge tracking and that can handle both textured and untextured models.

2.2.3.3 Planar target detection and tracking on mobile phones

Applying many lessons learned from desktop approaches, the work of Wagner et al . [174,

176, 175] pioneered real-time visual detection and tracking on mobile phone computing

platforms. They use constrained models, that is, collections of reference images, where each

image is registered onto a 2D plane, resulting in a database consisting of planar tracking

targets. Essentially, Wagner et al . introduced three enabling techniques: First and second,

for detection they adopted the original SIFT [93] and Ferns [82] wide-baseline matching
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Figure 2.5: The mobile planar target detection and tracking method of Wag-

ner et al . [175] is capable of handling considerable amounts of occlusion, tilt, motion

blur, light reflection with respect to the template (top left). c© [175]

frameworks for the mobile platform, resulting in the heavily modified PhonySIFT and

PhonyFerns descriptors. Third, they presented a very efficient and robust template-based

patch-matching tracker.

Using PhonySIFT in comparison to the original SIFT, the Difference of Gaussian

(DoG) blob detector is replaced with the FAST corner detector [129] on an image pyramid,

the descriptor length is truncated from 128 to 36 elements, and, instead of a k-d tree, a

forest of spill trees is used as the feature database. Tracking by detection is performed by

establishing feature matches between the current camera frame and the feature database,

resulting in 2D-3D correspondences, which are geometrically verified with RANSAC using

a homography motion model. The verified 6D pose can be immediately used as initial prior

by the template-based tracker. Based on this prior, this tracker transforms known corner

features from the reference image into the current frame. More specifically, it warps small

patches using local affine transformations, followed by a search within a small window

using NCC to match the best fit. To enable robust tracking fast camera motion, this

warp/search strategy is performed on multiple image scales (see Figure 2.5). At devices

of the time (e.g., an ASUS P552W with an 624MHz CPU), this algorithm allowed for

tracking up to six planar target at 17fps using a resolution of 320x240 pixels. For a single

target, detection ran with about 15fps, while the template tracker was only limited by the

frame rate of the camera.
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Figure 2.6: The tracking by synthesis method of Reitmayr and Drummond [124] renders

a textured 3D CAD model using a pose prior, and performs edge matching with the current

frame to estimate an updated 6D pose. c© [124]

2.2.3.4 Tracking by synthesis

Tracking by synthesis methods employ a textured 3D model. Given a pose prior, the 3D

model can be efficiently rendered with Graphics Processing Units (GPUs), resulting in

depth and color buffers which are used for point [145] and edge [124] feature tracking.

However, tracking by synthesis requires pose initialization. As part of our contributions

presented in Chapter 5, we propose to employ rendered depth buffers of untextured models

for 3D SLAM map initialization.

In contrast to edge-base tracking systems which employed untextured 3D CAD mod-

els [38, 70], Reitmayr and Drummond [124] presented a real-time visual registration system

that combines inertial-visual sensor fusion [71] and edge-based tracking by synthesis of tex-

tured 3D models (see Figure 2.6). Given a pose prior, the textured 3D model is rendered

with OpenGL, and both the frame buffer and the depth buffer are read back. First, an edge

detector [18] is applied to the framebuffer. Then, the frame buffer is used to match the

detected edge features with the current frame using NCC. Finally, the depth buffer pro-

vides the required depth information to establish the 2D-3D correspondences for 6D pose

estimation. The system also integrates a point-based recovery mode, which was inspired

by Lepetit et al . [83] (see above), but selects the required keyframes automatically.

Applied in urban outdoor environments, the system was later extended with a GPS-

based initialization method [125]. The visual system is initialized with the 2D GPS position

plus 1D average user height and the absolute 3DOF orientation from the inertial sensor

fusion. However, since the visual tracker required a rather accurate initial camera pose

(sub-meter position accuracy), they apply a search strategy in the local neighborhood of

the GPS estimate.
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(a) c© [66] (b) c© [2]

Figure 2.7: Image-based urban outdoor 6D pose recognition with respect to 3D point-

cloud reconstructions and reference image databases. (a) Irschara et al . [66] use virtual

views and small field-of-view query images. (b) Arth et al . [2] use wide field-of-view

panoramic query images.

2.2.3.5 Image-based localization: place and pose recognition

Image-based localization, i.e., place or pose recognition, refers to wide-area localization

methods which take one or more query images and optionally a sensor prior (e.g., location

from GPS, orientation from compass and magnetometer) to perform appearance-based

image retrieval with respect to large reference image databases. The reference images

are pre-registered within models, e.g., 3D reconstructions built from the reference images

itself. The models allow for localization with varying degrees of freedom. Collectively,

these methods employ content-based image retrieval, vocabulary trees and similar data

structures that help to manage the enormous amounts of data, and query the databases

efficiently.

The major disadvantages of image-based localization approaches remain that they do

not scale well: Many images need to be captured for each new location, and, even with

sufficiently dense sampling, it is still very challenging to match images under changing

conditions due to illumination, season, construction activity and many other sources of

change.

With respect to our contributions on wide-area localization presented in Chapter 5,
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we discuss place and, especially, pose recognition methods which allow for registering the

full 6D pose of the query (and reference) images.

Place recognition Place recognition methods only allow for registering the 3D location

of the query (and reference) images. Schindler et al . [137] demonstrated image-based 3D

place recognition using databases that contain 20 km of urban street-side imagery, orga-

nized in a vocabulary tree [115] that is aimed to contain only the most informative features

to improve the retrieval performance and to allow for increasing the number of reference im-

ages. Applying similar techniques, Zamir et al . [183] and, later, Vaca-Castano et al . [164]

showed that it was possible to use existing image collections, such as Google StreetView, to

perform city-scale place recognition. In the same spirit, Takacs et al . [155] implemented a

distributed place recognition system by partitioning a server-based feature database, con-

taining about 2500 images and covering roughly a city block, into “loxels”. Per request,

only the relevant loxels are transmitted to mobile phone clients based on a location prior

received from GPS. Only the remaining reference images contained in the transmitted

loxels are compared with the query image directly on the mobile client.

Pose recognition Being one of the first papers on image-based localization, Robert-

son et al . [128] performed pose recognition with respect to reference images showing

building façades which are registered within a city model. They perform image-based

content retrieval and pose estimation based on wide-baseline matching between the recti-

fied façade views of the query and reference images.

Depicted in Figure 2.7, Irschara et al . [66] presented a 6D image registration algorithm

with respect to large 3D point-cloud reconstructions that performed in real-time on a

powerful desktop computer. The algorithm is enabled by an efficient vocabulary tree-

based search strategy that returns entire 3D model fragments instead of individual feature

descriptors. Upfront, reference images are registered within a reconstructed 3D model,

and complemented with synthetic views that represent 3D model fragments visible from

the their perspective. Furthermore, the registration of the query image is accelerated by

GPU-based extraction and matching of SIFT features.

Sattler et al . [134] and Li et al . [84] further improved the scalability of image-based

pose recognition systems and, particularly, the performance and robustness of

matching between 2D query image features and 3D features of large point-cloud

models. Sattler et al . [134] proposed to combine expensive-but-accurate 2D-to-3D with

efficient-but-coarse 3D-to-2D correspondence matching in an active tree-based search
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framework, achieving sub-second registration and rejection times on scenes comparable to

Irschara et al . [66]. Similarly, Li et al . [84] propose a bidirectional matching scheme that

scales with 105s of images and 107s of 3D points, covering several hundreds of landmarks

spread throughout the world. In comparison, Irschara et al . [66] only processed 103s of

images and 105s 3D points. However, the algorithm of Li et al . typically requires several

seconds per query.

In several works, Arth et al . [6, 2, 3] investigated image-based self-localization on mo-

bile phones. They partition pre-computed 3D point-cloud models into Potentially Visible

Sets (PVS). In a first version [6], a single small-FOV query image is employed to retrieve

similar reference images using a vocabulary tree of a single PVS, followed by robust pose

estimation using SIFT features matched between the query image and the retrieved ref-

erence images. On a wide-area indoor dataset, their pose recognition system achieved

real-time performance on mobile phones. Building upon this work [6], Arth et al . describe

how localization accuracy and runtime behavior can be considerably improved by using

wide-FOV panoramic query images acquired with a SLAM system [2] and by exploiting

mobile phone sensors [3] (see Figure 2.7). In the latter case, sensor values are employed

to assign gravity and normal vectors to SIFT feature descriptors, resulting in improved

feature culling and descriptor matching performance.

Furthermore, Arth et al . [5] investigated pose recognition with respect to globally

aligned models which contain reference images only registered with a known 3D location

(in contrast to a full 3D reconstruction with reference images registered in 6D). Exploit-

ing epipolar and planar homography constraints between a single query image and the

reference images, they can, despite not in real-time, estimate the full 6D pose.

Most recently, SLAM systems have been used for wide-area localization. SLAM does

not require an a-priori known model, but is capable of mapping and tracking arbitrary

scenes at runtime. However, the local coordinate system of the SLAM map only allows for

tracking “relative” poses. Ventura et al . [169] presented a localization method to align a

local 3D SLAM map with a globally registered 3D model over time, and showed real-time

SLAM on a mobile devices with globally registered 6D pose tracking in urban outdoor

environments. A similar system was concurrently developed by Middelberg et al . [101].

However, before global localization can take place, a local 3D SLAM map needs to be

initialized from a stereo image pair, which requires a translational camera motion. In

urban outdoor environments, this requires the user to walk several meters to span the

required baseline. By contrast, we show in Chapter 5 how to use the first keyframe
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(a) (b)

Figure 2.8: MonoSLAM [32] and PTAM [72] point-feature 3D maps when observing the

same scene. In comparison to the (a) sparse probabilistic map of MonoSLAM, (b) PTAM

reconstructs far more features (black), including some outliers. Additionally, (b) depicts

the keyframe trajectory and the initial dominant plane estimated by PTAM. c© [72]

acquired by the SLAM system to perform geo-localization and SLAM map initialization.

2.3 Real-time localization and mapping

In the following, we discuss methods for real-time registration in unmodeled environments

with a focus on monocular visual Simultaneous Localization and Mapping (SLAM), and,

in particular, the Parallel Tracking and Mapping (PTAM) algorithm (Section 2.3.1), which

plays a central role throughout this thesis. Furthermore, we review methods which em-

ploy constrained camera motion and scene structure assumptions, including planar and

panoramic mapping and tracking (Section 2.3.2), which inspired parts of our contribu-

tions. Finally, we present unconstrained hybrid SLAM approaches, which aim to allow

for arbitrary camera motion and scene structure (Section 2.3.3), particularly related to

Chapter 4.

We begin with an overview of important milestones within the rich literature on

real-time localization and mapping, including Simultaneous Localization and Mapping

(SLAM), Visual Odometry (VO) and real-time Structure from Motion (SfM) methods.

We focus on methods which use a single monocular camera, but also briefly discuss meth-

ods which employ other input sensors such as RGB-D cameras.
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Monocular visual localization and mapping The first SLAM algorithms emerged

from the robotics community in the late 1980s, predominantly for the task of autonomous

self-localization of mobile robots [149]. These robotics systems, however, were typically

using a rich array of sensors, including visual sensors.

The first monocular visual SLAM system has been shown by Davison et al . [32, 33]. In

contrast to offline and batch SfM methods at the time, they achieved real-time performance

on desktop computers by employing an Extended Kalman Filter (EKF) approach. The

EKF allows for representing a probabilistic 3D map consisting of the camera pose and

a number of real-world 3D landmark features in a state vector (plus covariance matrix).

The state is continuously adapted to measurements taken in the incoming camera images

in constant time. For each incoming camera image, a predict-measure-update cycle is

traversed: first, a constant velocity motion model is used to predict the state (i.e., the

6D camera pose and the 3D feature locations) and its uncertainty, followed by active

feature search and matching within the camera image, and, finally, given the new image

measurements, a state update is performed and the uncertainty reduced.

Approaching the SLAM problem from the Structure from Motion (SfM) perspective,

Nister et al . [114] presented the first Visual Odometry (VO) system, which allowed for

reconstructing the trajectory of a stereo or monocular camera in real-time. Their system

builds upon efficient corner feature detection and template matching, minimal solvers,

and robust RANSAC estimation [111] to reconstruct a temporary 3D point feature map

and to estimate the camera pose. Initially, the system performs frame-to-frame tracking

and estimates the relative camera pose with the five-point algorithm [113] to triangulate

a 3D point feature map. The 3D map is used to estimate the absolute camera pose with

a three-point pose solver [112] and to triangulate further 3D features. Inserting “firewall”

frames into the incoming camera stream, however, the 3D map is intentionally kept small

by regularly discarding 3D features and effectively using only frames between the latest

“firewall” and the current frame for reconstruction.

Going further in employing SfM techniques in their Parallel Tracking and Mapping

(PTAM) work, Klein and Murray [72, 73, 74] presented a keyframe- and optimization-

based SLAM system, that, in particular, incorporated the following innovations: the se-

lection of discrete keyframes for mapping, the separation of tracking and mapping on

multi-core CPUs, allowing for full camera frame-rate tracking and keyframe-rate map-

ping, and the usage of bundle adjustment for local and global map optimization. In

comparison to filter-based SLAM, PTAM was found more robust and more computation-
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ally efficient [152]. Since filter-based SLAM does not scale well with the size of the state

vector, it only allows for a small number of (high quality) 3D landmark features (see Fig-

ure 2.8). In comparison to Visual Odometry (VO), PTAM was found less affected by drift

due to the usage of global map optimization and keyframe-based map tracking. Having

these properties, PTAM still represents the gold standard monocular visual SLAM ap-

proach on hand-held and mobile hardware platforms. We discuss the PTAM algorithm

and its extensions in more detail in Section 2.3.1.

More recently, Newcombe et al . [108, 110] presented a Dense Tracking and Mapping

(DTAM) algorithm, that, in contrast to the sparse point and edge feature maps of filter-

and keyframe-based SLAM, reconstructed dense textured 3D surface mesh models con-

sisting of millions of vertices. Real-time performance on powerful desktop computers is

enabled though GPGPU parallelization on high-end commodity graphics hardware.

Most recently, the Large-Scale Direct (LSD) SLAM algorithm of Engel et al . [42, 41]

builds maps consisting of a pose graph of keyframes associated with semi-dense depth

maps, that, in contrast to DTAM, only contain depth values at pixels with non-negligible

image gradients. Consequently, their method runs in real-time on the CPU of desktop

machines, and – in a VO variant without consistent mapping capabilities – even on mobile

phones [139].

All of the monocular visual SLAM algorithms presented above are general SLAM

algorithms, since they implicitly assume parallax-inducing camera motion. The presence

of parallax-free camera motion, however, causes inherent problems, because different kinds

of tracking and mapping techniques would be required. This refers us to constrained

and unconstrained hybrid SLAM algorithms, which are discussed in Section 2.3.2 and

Section 2.3.3, respectively.

Computing platforms Over time, SLAM has been successfully explored in many differ-

ent configurations, including varying computing platforms and sensor inputs. For example,

in addition to the original desktop version of PTAM [72], a heavily modified and stripped-

down PTAM version has been shown to run on Apple’s iPhone 3GS [74]. On the other end

of the computing platform spectrum, SLAM algorithms such as DTAM [108, 110] require

a powerful desktop computer with high-end GPGPU support, which is not available on

hand-held devices today. Consequently, localization and mapping workload has also been

distributed between network-connected computers, such as a mobile device and a powerful

server [177] for the purpose of dense 3D model reconstruction.

Most recently, Tanskanen et al . [158] and Kolev et al . [75] investigated dense metric
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3D model reconstruction of small-scale objects using standalone SLAM on mobile phones.

The system of Tanskanen et al . performs visual-inertial sensor fusion, combining feature-

based tracking and mapping similar to PTAM with metric scale and pose estimation using

the mobile phones’ inertial sensors. Moreover, they compute filtered depth maps using a

photometric criterion between a binocular stereo image pair, which takes 2-3 seconds for

a 640 × 480 pixel image. Building upon this framework, Kolev et al . later described an

improved method for the fusion of multiple depth maps into a consistent 3D model.

Sensors Besides single monocular cameras available on hand-held devices, SLAM al-

gorithms have also employed more powerful sensors such as catadioptric (e.g., fisheye,

omnidirectional) cameras [159], stereo rigs [120, 100] and combinations of these [30]. The

usage of Light Detection and Ranging (LiDAR) sensors also has a long tradition in SLAM

research [78]. More recently, RGB+Depth (RGB-D) cameras based on Time of Flight

(ToF) or structured light sensors have become very popular. These sensors work particu-

larly well in indoor environments, but not outdoors and in sunny conditions. Additionally,

they have a limited range.

Employing the Microsoft Kinect, a commodity infrared structured light sensor, New-

combe et al . [109] describe a real-time dense volumetric surface mapping and tracking

method dubbed “KinectFusion”. They fuse the sensor depth maps into a global implicit

surface model, which is directly used to estimate the sensor pose with an Iterative Closest

Point (ICP) algorithm. Both, fusion and ICP, are accelerated with GPGPU, resulting in

real-time performance on desktop computers.

In contrast to ICP tracking of KinectFusion, the RGB-D SLAM system of

Kerl et al . [69] performs probabilistic tracking by both minimizing the photometric error

of the RGB image as well as the depth error of the current RGB-D frame with respect to

a reference keyframe. The keyframes are organized in a pose graph, where every vertex is

a relative pose between two keyframes and has an uncertainty weight. The pose graph

allows for loop closure detection and global map refinement with generic optimization

frameworks such as g2o [77] or Ceres4.

2.3.1 Parallel tracking and mapping

Since all our contributions presented in this thesis are related to the Parallel Tracking and

Mapping (PTAM) algorithm, we explain its most important concepts and components,

4http://ceres-solver.org

http://ceres-solver.org
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(a) c© [72] (b) c© [74]

Figure 2.9: User interface of the Parallel Tracking and Mapping (PTAM) system running

on (a) the PC [72] and (b) the mobile phone [74]. In comparison, the 3D map of the PC

version contains much more point features which can be tracked.

and some of its limitations. Additionally, we review the original design and a selection

of extensions. The original method was introduced by Klein and Murray [72], and its

robustness and agility were considerably extended in a follow-up work [73]. Furthermore, a

heavily modified and stripped-down version has been demonstrated on a mobile phone [74],

depicted in Figure 2.9.

The original PTAM algorithm is composed of tightly coupled tracking (a.k.a. localiza-

tion) and mapping components, which are executed in parallel on different synchronized

CPU threads, exchanging keyframes and a 3D model. The tracking component estimates

the 6D camera pose of the incoming frames with respect to the given 3D model and dis-

cretely selects keyframes from the image stream. Keyframes are employed by the mapping

thread to extend and refine the 3D model. Most importantly, the separation of tracking

and mapping allows for two diverging processing paces. While the tracking thread runs

at real-time camera frame-rate, the mapping thread is not subject to strict real-time con-

straints as it may run at keyframe-rate. Naturally, the threading concept can and has

been extended, e.g., to fully exploit quad-core CPUs. We understand PTAM as a very

general framework, that has been interpreted and implemented in many different ways.

Map In general, PTAM allows for arbitrary map layouts, features, representations and

parametrizations. Typically, PTAM maps consist of point and edge features, keyframes

and corresponding 2D camera image observations, represented in 3D space (6D camera
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poses, 3D feature locations). Due to the separation of tracking and mapping, PTAM

can usually manage maps with a much higher feature density compared to filter-based

SLAM (e.g., a few dozens vs. thousands of features). In comparison to the truly dense

maps of DTAM or RGB-D SLAM, however, the PTAM maps are still considered sparse.

In addition, PTAM has been shown to work with multiple submaps [19]. It is worth

noticing, that without performing special computations, each map has an arbitrary and

distinct scale.

Initialization Starting from scratch at system startup, SLAM must first initialize its

map, typically from a stereo pair of keyframes. The bootstrapping process depends on the

map representation. For example, the 2D panoramic SLAM maps can be initialized from

a single keyframe. In general, however, the initialization of a 3D map requires parallax-

inducing camera motion between two keyframes.

Between selecting a first and a second keyframe, 2D features are tracked and a mo-

tion model is estimated using techniques familiar from model-based tracking (minimal

solvers plus RANSAC, and iterative refinement using M-estimators). For example, the

5-point algorithm of Nister et al . [113] allows for estimating the epipolar geometry (essen-

tial/fundamental matrices) and relative 6D poses. Another option is the plane-induced

homography motion model, which can be decomposed into a relative pose and the plane

equation using homography decomposition methods [45, 96]. Recently, Mulloni et al . [106]

investigated the issue of stereo initialization in detail, presenting a novel stereo pose esti-

mation method based on bundle adjustment, and also performing a user study. The study

revealed that users regularly fail in performing the required parallax-inducing camera mo-

tion (e.g., a simple sideways translation or general camera movement similar to an orbit).

Instead, users often performed parallax-free pure-rotation movements.

Tracking and relocalization (recovery) After initialization, PTAM performs drift-

free 6D camera pose tracking with respect to the given 3D map. Given the prior pose

from the previous frame, the current pose is predicted using a motion model, e.g., using

second-order minimization [15] to estimate the inter-frame rotation. Consequently, 2D-

3D correspondences are matched between the map and the current frame (on multiple

image pyramid levels). The predicted pose is used to project 3D map features into the

current frame. In the current frame, corners are detected using FAST [129] and Shi-

Tomasi [141], which are tentatively matched with projected neighboring 3D map features

using SSD scoring. The final matches are found using KLT-based [10] sub-pixel refinement
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between the current frame and reference keyframes. Alternatively, the template-based

patch-matching algorithm of Wagner et al . [175] or wide-baseline SIFT matching [156]

can be applied. Given the final 3D-2D correspondences, the 6D camera pose is computed

with a robust M-estimator.

Despite the remarkable robustness of map tracking, tracking may fail due to effects

such as rapid camera motion, motion blur, untextured or unmapped scene regions. For

these cases, the original PTAM integrates a recovery component, which performs imme-

diate camera relocalization. SLAM relocalization is related to model-based detection in

the sense that the camera pose must be estimated from scratch (without having a pose

prior) with respect to entire SLAM map. This capability is particularly important when

switching between multiple submaps [19]. Furthermore, the classic SLAM “kidnapped

robot problem” is related.

In contrast to immediate recovery, Eade and Drummond [40] proposed a fundamentally

different approach which they called “loop closing = recovery”. The term implies that after

tracking failure, the system continues tracking, and eventually initializes a new submap,

which is added to the overall map. Furthermore, the system continuously attempts to

detect loops between submaps. Given that there is sufficient overlap, a loop closure is

detected, and two submaps are merged, similarly resulting in recovery as with immediate

relocalization. The obvious advantage of this approach is that the system does not stop

tracking and mapping. The price is, however, that until a loop between two submaps

is found, global map consistency is violated, as each submap has its distinct scale and

coordinate system.

Relocalization and loop closure are related topics. Klein and Murray themselves

present a simple but effective relocalization method based on small blurry images [73],

which are matched with existing keyframes using direct second-order minimization [15].

Furthermore, Williams et al . [178] distinguish between map-to-map [28], image-to-

image [29], and image-to-map [179] approaches. Map-to-map refers to matching the

features two submaps, which reminds us of the estimation of the 7D relationship between

two coordinate systems based on 3D-3D correspondences [64]. Image-to-image refers to

image-based localization using wide-baseline matching, and content-based image retrieval

(a.k.a. object detection). The image-to-map algorithm of Williams et al . [179] is based

on the Ferns classifier [82] and is applied in the original PTAM.

Keyframe selection One important task of the PTAM tracking component is the se-

lection of keyframes which are passed to the mapping component to extend and refine the
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Figure 2.10: Keyframes selected by PTAM on an indoor “small workspace” scene such

as depicted in Figure 2.9. c© [72]

map (see Figure 2.10). Keyframes should either provide new perspectives onto already

mapped scene parts in order to refine the model, or observe previously unmapped scene

regions in order to extend the model. Keyframes are the building blocks for mapping,

and their selection is a crucial component of the PTAM system. Even more, as keyframes

might damage or corrupt the map, e.g., when selecting keyframes which do not induce

parallax.

The keyframe selection problem is well known in the SfM literature [121, 160, 127].

One common approach to distinguish between parallax-inducing and parallax-free mo-

tion are model selection algorithms such as the Geometric Robust Information Criterion

(GRIC) [162]. Due to real-time constraints, however, estimating multiple motion mod-

els for each frame is difficult for SLAM, at least on mobile devices. PTAM thus merely

employs heuristics based on time, motion parallax, and frame coverage. In order to give

the mapping component sufficient time for processing one keyframe, a (small) time offset

must be awaited until selecting the next keyframes. Based on map tracking statistics,

the motion parallax with respect to existing keyframes can be approximated. Similarly,

the coverage of the current frame with map features can be estimated. Recently, Her-

rera et al . [61] presented a PTAM system which tracks both infinite 2D and finite 3D map

features, and which allowed for implementing clear criteria for keyframe selection: (1) A

given number of new 2D features can be created from areas not covered by the map. (2)

A given number of 2D features can be triangulated. (3) A given number of 3D features

have been observed from a significantly different angle.
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Mapping The mapping component initializes, extends and refines the map based on

the selected keyframes. Furthermore, and most importantly, the map is globally and

locally optimized with bundle adjustment, providing a the best possible foundation for

map tracking.

Given a new keyframe, mapping aims to create new 3D map features using triangu-

lation. Triangulation requires at least two corresponding 2D observations in keyframes

which exhibit sufficient motion parallax. Given the keyframe poses, corresponding 2D ob-

servations are found with local search along the epipolar line or wide-baseline matching.

Similarly, mapping aims to add new keyframe observation to existing map features.

One core component of the PTAM mapping algorithm is bundle adjustment. Ac-

cording to the standard text of Triggs et al . [163], bundle adjustment is “the problem of

refining a visual reconstruction to produce jointly optimal structure and motion parameter

estimates”. Optimal means with respect to some cost (objective, error) function, which

is typically the reprojection error. Bundle adjustment is usually formulated as non-linear

least squares problem, robustified against outliers with M-estimators, and typically carried

out with Gauss-Newton or Levenberg-Marquardt approximations. In practice, bundle ad-

justment requires an approximate (as good as possible) initialization in order to converge

to the global optimum. Additionally, it usually has cubic time complexity (e.g., in the

number of observations), and, thus, requires considerable processing resources, especially

for larger reconstruction problems. In order to make it suitable for real-time applica-

tions such as SLAM, the runtime behavior of bundle adjustment has been improved by

clever mathematical formulations and sparsifications [43, 68], and has been distributed

over multiple CPU cores and GPUs [181]. However, it often remains as the computational

bottleneck in optimization-based SLAM algorithms.

The runtime behavior and robustness of SLAM highly depends on the map data volume

(number of features, keyframes, observations) and on its quality, referring to data associa-

tion problems of filter-based SLAM. Given sufficient processing resources, the maps can be

densified and outlier features somewhat ignored, since they are handled by robust estima-

tors. With limited processing resources, such as on hand-held devices, however, a tradeoff

between robustness and real-time constraints must be made, and issues such as map data

volume optimization and data association considered. First and foremost, PTAM sys-

tems have to carefully select keyframes, measure features, and furthermore detect outlier

observations and features as part of their mapping process. Furthermore, the large-scale

SLAM reconstruction literature proposes several approaches for dynamically managing the
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(a) c© [126] (b) c© [55] (c) c© [20]

Figure 2.11: Detection of high level SLAM map features, providing scene understanding

hooks for AR annotations: (a) polygons and ellipses [126], (b) planes [55], (c) planar object

detection [20]. For (a)-(c), AR view (top) the map view (bottom) are depicted.

mapping problem, including employing local/windowed/relative bundle adjustment [143],

active windows [105] or pose graph optimization [116, 78, 85, 151]. Essentially, these

approaches aim for dynamically keeping the size of the “active” mapping problem small

enough to meet the real-time constraint, while maintaining overall map consistency. In

particular, loop closure is an important topic, using relocalization techniques presented

above.

The estimation and integration of high-level map features provides valuable scene

understanding hints for AR applications and the PTAM system itself. As part of map

tracking, template matching benefits from a good approximation of the assumed local

planar surface of the tracked 3D features. Molton et al . [103] employ a gradient-based

image alignment method to estimate the surface normals. Aiming to provide a planar

“playground” for AR applications, the original PTAM assumes to observe a planar scene

during initialization, and places the origin of the coordinate system into the detected

dominant (x, y) plane.

As depicted in Figure 2.11, the detection of further scene planes and planar scene

mapping has been investigated in multiple works [126, 55, 170]. Reitmayr et al . [126] use

a point-based SLAM system to simplify the online authoring of annotations in unknown
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environments. As part of the SLAM algorithm, they automatically detect and track high-

level features (polygons, ellipses) indicated by the user. Gee et al . [55] integrated plane

detection into filter-based SLAM. When a plane is detected, the corresponding low-level

features are replaced with a high-level plane feature representation in the filter state. Based

on this system, Chekhlov et al . [23] presented an AR game application that required the

player to navigate a virtual character through a real-world planar scene by interactively

creating a planar SLAM map of the environment, supported by systems’ automatic plane

detection. Ventura et al . [170] integrated RANSAC-based plane fitting into the PTAM

mapping component and allow for computing synthesized views that can be used for

occlusion rendering.

Integrating object detection techniques in the mapping component, the PTAM system

of Castle et al . [20] contains a SIFT feature database, which is matched with each keyframe

to detect known planar objects in the scene. Known objects are integrated into the map,

providing hooks for AR annotations.

PTAM on the Apple iPhone 3G Adapting for the deficiencies of hand-held com-

puting platforms in comparison to desktop computers, Klein and Murray [74] created a

heavily modified PTAM algorithm, that compensated for poor camera (e.g., rolling shut-

ter, narrow field-of-view) and processing (e.g., single-core CPU) capabilities of the Apple

iPhone 3G. Since Bundle Adjustment (BA) optimization turned out to be the computa-

tional bottleneck, the map size required to be considerably limited by both minimizing

the quantity and maximizing the quality of keyframes, point features and observations.

In particular, Klein and Murray introduced keyframe culling, e.g., by removing redundant

keyframes, as well as measurement and point feature culling, e.g., by employing the BA

information matrix to improve the data association quality within the map. Similarly, the

number of point features used for map tracking was reduced and template matching only

performed on the first level of the image pyramid (having a 160 × 120px resolution) for

efficiency reasons. In summary, while the modified PTAM system was capable of map-

ping and augmenting small maps, it was considered as “far less accurate and robust” in

comparison to the desktop version.

2.3.2 Constrained SLAM

General SLAM and SfM algorithms do not make prior assumptions about the camera

motion and scene geometry. Related to our contributions on planar and hybrid SLAM
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(a) c© [91] (b) c© [90]

(c) c© [35] (d) c© [173]

(e) c© [90]

Figure 2.12: Constrained SLAM motion models and maps: (a) planar motion model [91],

(b) spherical map [90], (c) cube map texture atlas [35], (d) cylindrical mapping [173],

(e) spherical panoramic image mosaic [90].
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presented in Chapter 3 and Chapter 4, we review a selection of recent mapping and tracking

algorithms, which exploit constraints on planar scenes, and constraints on parallax-free

camera motion, as shown in Figure 2.12.

2.3.2.1 Planar mapping and tracking

Based on single- or multi-planar scene assumptions, special mapping and tracking tech-

niques can be applied. As already discussed in Section 2.3.1, this includes the automatic

detection of real-world planes in 3D feature maps as part of SLAM mapping [55, 170] with

the aim to generate high-level scene descriptions.

Similarly, interactive modeling systems [16, 168, 144] are concerned with creating high-

level 3D models which are essentially composed of planar 2D polygons manually defined

by the user. These in-situ AR systems use the moving camera as interaction device and

combine image-based modeling with model-based camera tracking or SLAM.

Fraundorfer et al . [51] describe an automatic offline algorithm for the reconstruction

of piecewise planar 3D models. In particular, they propose to automatically segment the

planar scene regions observed within multiple images by inserting “seed points” which are

verified with plane-induced homographies in a RANSAC framework.

Given a single camera image and user-selected planar patch location, the system of

Lee et al . [80] uses the phones’ accelerometer to approximate the camera orientation and

render a fronto-parallel view of the scene (assumed to be vertical or horizontal). Based on

this view, the system learns the patch, using a perspective patch recognition algorithm [62].

After the learning stage, the patch can be detected and tracked in further camera images,

but no larger 3D model is reconstructed.

Lovegrove et al . [91] describe an visual odometry method for a rear-parking camera,

rigidly mounted on a moving car. The camera observes the planar road surface. For track-

ing the self-similar texture of the road surface, their visual odometry method employs a

GPU-enabled whole image alignment algorithm based on direct second order minimiza-

tion [95, 99]. It is shown that the raw GPS-trajectory is considerably improved when

being fused with the camera trajectory resulting from the visual odometry tracking.

Our planar SLAM system for mobile devices described in Chapter 3. We solve the

planar reconstruction problem of estimating the keyframe poses with an efficient image

rectification algorithm and plane-induced homographies.
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2.3.2.2 Panoramic mapping and tracking

Panoramic mapping and tracking algorithms assume parallax-free camera motion (also

known as panoramic camera motion). Parallax-free camera motion is either the result

of the camera rotating around its center (a.k.a. pure-rotation or rotation-only camera

motion), or camera translation which is insignificant with respect to large or extreme depth

of the observed scene. Both cases allow for panoramic mapping, which is reconstructing

features with infinite depth in 2D on the plane at infinity. Map representations include

sparse feature maps and dense image mosaics which are mapped onto geometric shapes

such as cubes, cylinders and spheres. Panoramic mapping is a well-known technique in

offline SfM, pioneered by Szeliski et al . Their tutorial [153] elaborates on methods for the

creation of seamless panoramic image mosaics. In particular, they discuss direct (pixel-

based) and feature-based alignment methods for pairs of images using different motion

models, as well as and local and global optimization methods (e.g., parallax removal, loop

closure) for a larger number of input images.

Real-time panoramic filter-based SLAM has first been described by Montiel and Davi-

son [104]. Their Extended Kalman Filter-based “visual compass” system assumes a pure-

rotation angular velocity motion model and encodes map features as spherical coordi-

nates with infinite depth in its EKF state. This system has later been extended by

Civera et al . [26] to build up spherical image mosaics in real-time. The sparse point fea-

ture map is used to create a triangular mesh on a sphere, which is textured with patches

taken from the camera images where the map features have first been observed. The mesh

is synchronized with the EKF state over time, incorporating important refinements such

as loop closures.

In their “Envisor” system, DiVerdi et al . [35] performed real-time panoramic mapping

and tracking for the purpose of reconstructing environment maps which represent the

local light distribution and allow for shading virtual objects. For the reconstruction of an

environment map, the camera video stream is projected onto a cubemap using hardware-

accelerated graphics operations. The orientation of the camera pose required for the

cubemap projection is computed by frame-to-frame tracking, combined with map feature

tracking to avoid drift.

The spherical mosaicing system of Lovegrove and Davison [90] combines direct whole

image alignment tracking with global optimization of a spherical map, which consists of

a set of keyframes. Orientation tracking employs direct image alignment between the

current frame and a reference keyframe. The alignment is based on Efficient Second-
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order Minimization [95], which is implemented on the GPU to exploit parallelism and to

achieve real-time performance on desktop computers. Similarly, global map optimization

minimizes a photometric cost function between the set of keyframes.

Panoramic mapping and tracking on mobile phones was demonstrated by

Wagner et al . [173] using a cylindrical map that can be unwrapped into a fixed size

2D image (the vertical range of the map is thus limited). The image itself is split into

a regular grid of square cells which are filled with pixels from the incoming camera

images according to their orientation with respect to the map. Once pixels of a cell are

filled, corner features are detected within the cell, and the features continuously used for

camera tracking. The map is initialized from the first camera frame which is projected

with the canonical rotation. The system performed with 30Hz on mobile phones.

2.3.3 Unconstrained hybrid SLAM

Unconstrained SLAM systems are capable of processing arbitrary camera motion and

scene structure. For that purpose, hybrid SLAM systems have to detect and differentiate

between parallax-inducing and parallax-free camera motion, and apply appropriate map-

ping and tracking techniques. This includes the management of hybrid maps consisting of

features with both finite and infinite depth, either in a single consistent global map, or in

multiple non-consistent submaps.

Civera et al . [25] integrated a Bayesian motion model framework and inverse feature

depth parameterization [27] into their EKF-based SLAM system. The detection of the

current camera motion (stationary, parallax-free, parallax-inducing) allows for adopting

feature depth and confidence parameters in the filter such that smooth transitions are

possible. Features are restricted to infinite depth until parallax-inducing camera motion is

detected. With features becoming finite, cameras become estimated in 6DOF rather than

in 3DOF.

Gauglitz et al . [53, 54] presented a keyframe-based real-time SLAM system that ap-

plies a generalized GRIC model selection algorithm [162] to explicitly distinguish between

parallax-inducing and parallax-free motion models. Depending on the availability of a

map, a specific motion model pair is estimated in the tracking component: (1) 6D pose

and 3D rotation during tracking phases with respect to an available map. (2) homog-

raphy and epipolar geometry during frame-to-frame tracking phases with respect to the

previous keyframe. Depending on the selected model, either panoramic or 3D mapping

is performed. With each model selection context switch, a new panorama/3D submap is
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(a) c© [54]

(b) c© [61]

Figure 2.13: Hybrid SLAM feature maps. (a) One panoramic map topologically aligned

with two 3D feature maps by the system of Gauglitz et al . [54]. (b) The maps of Her-

rera et al . [61] contain features with finite (blue) and infinite depth (green).

created (see Figure 2.13). The system attempts to merge submaps in the background,

applying a “loop closing = recovery” strategy.

In Chapter 4, we propose to employ parallax-free keyframes to build up local panorama

maps registered in a global consistent 3D map. Thus, our system is able to maintain

tracking during rotational camera motions. Additionally, we seek to actively associate

panoramic and 3D map data for improved 3D mapping through deferred triangulation.

Due to the availability of a global map, our system can perform robust camera tracking
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and immediate relocalization.

Most recently, Herrera et al . [61] described a hybrid SLAM system which manages

multiple submaps containing features with both finite and infinite depth (see Figure 2.13).

They employ all features for camera tracking, matching them independently of a specific

motion model. Based on the distribution of the matched features types (finite/infinite),

only one motion model is estimated. In particular, an elegant motion model estimation

cost function gives notion about the parallax of the matched features, allowing them

to perform deferred triangulation, i.e., triangulation of originally infinite features which

exhibit sufficient parallax in later observations.



3
Homography-Based Planar Mapping and Tracking

In this chapter, we propose a light-weight mapping approach that assumes the scene is

composed of a single plane only. A planar scene will induce homographies between images

of the plane, which relates to panoramic orientation tracking approaches that assume

pure camera rotation [173, 90]. In contrast to pure camera rotations, we allow for full 6D

camera motion, which is tracked from the planar scene. While panoramic approaches work

best with large camera-object distances, e.g., in outdoor scenes, our system is primarily

intended for indoor use, where we can find many human-made planar structures such as

tables and walls.

Our system is a tool to rapidly map and track a planar surface within the user’s reach.

Examples include a background to a board or construction game that is created every time

from scratch and extended during the game play: a poster, painting or layout drawing on

a wall that needs to be refined with further annotations. In addition to registering virtual

content, we also envision a combination with detection and tracking of known real-world

objects such as game cards in front of a static planar background that is mapped with

our system. To reconstruct the planar environment, we adopt an efficient planar image

rectification algorithm. Note that image rectification in its common meaning, e.g., aligning

stereo image pairs for point matching in a 1D search space [87], is not our primary goal.

Our system builds on an efficient non-linear optimization scheme for planar rectifica-

tion [131]. The algorithm computes a 2DOF transformation, which relates a canonical

world plane with a single reference camera pose, while optimizing a constraint on all

keyframe camera poses (see Section 3.1). This optimization scales linearly in the number

of inter-frame homographies, providing a more efficient method to estimate the camera

poses than bundle adjustment. Traditional homography decomposition [45, 96] performs a

53
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Figure 3.1: Orthoimage sampled from keyframe views of a planar indoor scene and

created in real-time on the mobile phone.

similar task for pairs of cameras only and, therefore, does not consider all other keyframes.

Knowing the 2DOF plane-camera transformation, the remaining camera poses can be

computed from the inter-frame homographies. Once all keyframe poses are known, we can

create a planar map for tracking by back-projecting salient points in the images onto the

canonical plane (see Section 3.2). The tracking component matches the map points with

the current image and employs the resulting point correspondences in a robust 6-DOF

refinement algorithm yielding the camera pose for the current frame (see Section 4.2).

The contribution of this chapter is a planar mapping and tracking system that operates

essentially in linear time in the number of inter-keyframe homographies measured. We

complement the original image rectification with a simple parameterization and explore

various properties of the optimization problem. Furthermore, we developed and evaluated

different approaches to robustly apply the optimization to a network of reference frames
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MappingTracking

Camera Pose Tracking Keyframe Candidate Queue

Map (Points, Keyframes) Map (Graph, Quad Tree)

Figure 3.2: System Components. The pose tracking component pushes keyframes onto

the mapping candidate queue. The mapping component processes keyframes and delivers

enlarged and refined maps to ensure tracking.

connected with redundant measurements. We evaluate our system against PTAM and

standard bundle adjustment to explore performance and accuracy of our approach (see

Section 5.5). Finally, we demonstrate real-time operation on a mobile device (see Section

3.5).

3.1 Planar Mapping and Tracking

Our system is composed of tightly coupled tracking and mapping components (see Figure

3.2) similar to PTAM [72]. The tracking component processes the image stream of a

calibrated monocular camera, computes 6DOF camera poses and selects keyframes, which

are passed to the mapping component.

The mapping component establishes a persistent map representation of an unknown

textured planar scene, which is continuously extended and refined, as new views become

available (see Figure 3.3). Keyframes show diverse views of the 2D scene and are used

to compute plane-induced homographies, mapping pixels from one keyframe to another.

The resulting relations are managed in a pose graph. Maps are composed of 3D points,

which sample the planar surface. Point observations originate either from salient keyframe

corners or from feature matching as part of pose or homography estimation. We organize

our planar map points in a quad tree resulting in fast point retrieval employed, e.g., during

search for unpopulated map regions on different scale levels.

3.1.1 Pose Graph

The main inputs to our mapping approach are a set of keyframes and the homographies

measured between them. The camera pose corresponding to keyframe Ii is represented as
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Figure 3.3: Planar map consisting of points organized in a quad tree. Keyframes provide

salient image measurements and are related with the plane via camera poses P . Homo-

graphies H project points between keyframes I. Both are stored as nodes and edges in a

graph.

a 3× 4 transformation matrix Pi = (Ri|ti) representing the rigid transformation from the

world coordinate system into the local camera coordinate system for subsequent projection.

For some keyframe pairs (i, j), a homography Hj,i is measured that maps points from

keyframe Ii to keyframe Ij .

The keyframe-homography relations are managed in a directed graph, having

keyframes as nodes and homographies as edges. For each homography Hj,i estimate

connecting a keyframe pair (i, j), we add a directed edge which connects the

corresponding nodes Ii and Ij . Our graph is directed, since we estimate homographies

between keyframe pairs in both directions to obtain independent measurements.

As new keyframes are generated, new homography pairs to neighboring keyframes are

measured and added to the graph. To preserve our planar map assumption, we need to
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Figure 3.4: Geometric interpretation of the planar image rectification parameterization.

The plane rotates on a unit half-sphere around the reference camera. The camera remains

in canonical position after the rectifying transformation consisting of x- and z-axis rota-

tions respectively. The final plane coordinate system is defined by intersecting the camera

z-ray with the plane resulting in a similarity transformation.

ensure to only include keyframes that show the same plane. Most importantly, we aim to

filter keyframes which predominantly show views of outlier regions (e.g., regions depicting

a different plane or a non-planar object), which would induce homographies that are not

consistent with the main scene plane. Therefore, we employ a consistency check on new

keyframes (see Section 3.2.2). Candidate keyframes which fail in this check are rejected.

Candidates passing the consistency check are accepted and added to the graph.
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3.1.2 Plane Estimation

To create a map of 3D points, we need to estimate the unknown camera poses Pi corre-

sponding to the keyframes. For the calculation of unknown keyframe camera poses with

respect to the plane we employ a rectification algorithm [131].

We found two general approaches for solving the problem of estimating the plane using

known homographies between images. Homography decomposition refers to computing the

camera motion, given a homography matrix between two images of a planar object [45, 96].

Image rectification algorithms compute projective transformations from known epipolar

geometry (or homographies, in the planar case), which are applied to image pairs, aligning

their epipolar lines, e.g., for the purpose of point matching in a 1D search space [87].

In that spirit, Ruiz et al . [131] propose a computationally very efficient non-linear

optimization scheme with only 2DOF, which uses a variable number of homography mea-

surements between a dedicated reference camera and other cameras.

3.1.2.1 Cost Function and Parameterization

In the following, we describe the mathematical formulation of the optimization scheme

given by Ruiz et al . [131] for completeness. We define the scene plane to be located in the

canonical position z = 0, corresponding to the (x, y) plane. Thus, points on the plane have

a z-coordinate equal zero and can be written as (x, y, 0, 1) in homogeneous coordinates.

The unknowns in the optimization are the camera poses Pi relative to this plane. Under

the assumption that all world points are located on the plane, camera poses can easily be

re-formulated as 2D homographies by eliminating the third column of the pose matrix Pi:


u

v

1

 ∼ (R|t)


x

y

0

1

 = (r1|r2|t)


x

y

1

 , (3.1)

The resulting pose homographies have the following important property based on the

observation that their first and second columns are ortho-normal vectors, where r1 and r2

are the first and second column of R respectively:

CT · C =


rT1

rT2

tT

 (r1|r2|t) =


1 0 ·
0 1 ·
· · ·

 (3.2)
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Additionally, given a pose homography C1 and the homography H2,1 mapping from

camera C1 to C2, the corresponding pose homography C2 can be computed as follows:

C2 = H2,1 · C1. (3.3)

C1 must observe the constraint (3.2). Moreover, by substituting (3.3) into (3.2) we

obtain the following additional constraint for C1:

CT2 · C2 = (CT1 H
T
21) · (H21C1) =


1 0 ·
0 1 ·
· · ·

 . (3.4)

We can formulate the constraint as a cost function on C1 by enforcing that the off-

diagonal entries are 0 and the diagonal entries have the same value. Thus, we define the

following cost function for one homography Hi,1:

(Hi,1C1)
T (Hi,1C1) =


a1,1 a1,2 ·
a1,2 a2,2 ·
· · ·

 , (3.5)

ei(C1) = (a1,2/a1,1)
2 + (a2,2/a1,1 − 1)2. (3.6)

The resulting cost function (3.6) exploits well-known orthogonality constraints over

the image of the absolute conic [58] and holds for any homography Hi,1 mapping from

the reference camera to another camera i. For a set of cameras Ci, all connected with

individual homographies Hi,1 to a reference camera C1, we construct a cost function by

adding up individual costs, obtaining a single cost function for the unknown reference

camera pose C1

e(C1) =
∑
i

ei(C1). (3.7)

Overall, the whole problem of estimating all camera poses Ci can be reduced to finding

one camera pose C1 that minimizes the total cost function (3.7).

A homography H2,1 between two cameras has eight degrees of freedom, because it is

defined up to scale. By fixing the unknown plane and allowing the second camera C2 to

move freely, the first camera C1 has only two degrees of freedom left. Ruiz et al . [131]

propose to fix the camera position and vary the camera tilt (x-axis) and roll (z-axis)
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Figure 3.5: Motion encoded in single homographies and rectification cost surface depths.

Translational motion along a single axis results in quadratically increasing depth values.

angles, but remain vague concerning the valid 2DOF parameter range. Geometrically,

we interpret the parameterization as depicted in Figure 3.4. Plane and reference camera

are defined to be located in canonical position, the plane aligning with the world (x, y)

plane and the reference camera located at position (0, 0,−1) such that world and camera

coordinate systems align. We assume that the plane rotates and the camera stays fixed.

The first rotation around the x-axis lets the plane move along a circle aligned with the

(y,z) camera plane. The second rotation lets the plane move along another circle aligned

with the (x, y) camera plane. Avoiding the plane to be rotated behind the camera, we

define (−π/2, π/2) as range for the x-rotation parameter. For the z-rotation parameter

we define [−π/2, π/2) as the valid range to avoid solution symmetry.

3.1.2.2 Properties

We analyzed the cost function (3.7) and the shape and depth of the resulting 2DOF cost

surface. Depending on the selection of reference camera and motion between keyframes,

we found various effects, which are described in the following.

We found the motion encoded in the input homographies to considerably influence the

depth of the cost surface. The experiment illustrated in Figure 3.5 shows the cost range

of the error function, when passing a single homography estimated between images of a

fixed camera C1 and camera C2 gradually moving along the x-axis. The cost surface depth

range increases quadratically with the magnitude of the translation.

In turn, cost depth and motion influence the solution multiplicity of the error function.
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Generally, we aim to find the global minimum of the cost surface, which yields a unique

2DOF solution. However, the cost surface regularly shows two local minima, which corre-

spond to solutions describing the camera pose in front and behind the plane. Increasing

the amount of motion encoded in the homographies lets the local minima vanish in favor

of the correct global minimum describing the camera pose in front of the plane.

We encountered degenerate motion cases, which do not change the cost function, and,

thus, do not yield a valid solution. Such cases include pure rotation and translation

along the plane normal, which are already described as degenerate in the homography

decomposition literature [45]. For homographies encoding such motion, the cost function

(3.6) yields values equal zero for all input parameters.

3.2 Homography-Based Planar Mapping

The mapping component processes keyframe candidates selected by the tracking com-

ponent. Candidates provide new information about the planar scene, which is used to

improve the planar reconstruction, and results in refined and extended maps.

3.2.1 Connecting Keyframes

For each keyframe candidate, we select a set of adjacent keyframe nodes from the graph

with respect to the subsequent homography estimation. For that purpose, we compute

pairwise frame overlap.

The overlap of a source/target keyframe pair is computed by projecting the frame

corners of the source keyframe onto the target keyframe with a homography. The homog-

raphy is derived from the known keyframe poses. The resulting four-point polygons are

intersected and unified resulting in another two polygons. The desired overlap is the ratio

r(A,B) of these polygon areas:

r(A,B) =
area(A ∩B)

area(A ∪B)
. (3.8)

A given candidate keyframe is paired with each of the existing keyframes in the graph,

resulting in a corresponding list of overlap ratios. The actual selection is done by sorting

this list in descending order and retrieving a limited set of keyframes (e.g., five) from the

front of the list, resulting in the adjacent keyframe set.
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Figure 3.6: Pose consistency check of candidate keyframe F : Tracker pose PF is com-

pared with multiple homography-pose observations. Observations are computed by mul-

tiplying homography estimates between candidate and adjacent keyframes with adjacent

keyframe poses (e.g., homography HFB with pose PB). Position offsets between tracker

pose and homography-pose observations result from homographies which are induced by

different planes or outlier objects shown by keyframe images.

3.2.2 Pose Consistency Check

Combining the candidate keyframe with the previously selected adjacent keyframe set,

we pairwise estimate homographies in both directions. We employ a RANSAC algorithm

for robust estimation. Resulting homographies may be induced by planes which conflict

with our currently mapped plane. Estimation errors might occur, e.g., from poor frame

overlap, uneven feature distribution, or low correspondence count (due to high noise or

outliers).

We aim to detect candidate keyframes which feature erroneous homographies by com-

paring the tracker pose provided by the candidate with pose observations computed from

the adjacent keyframes poses and estimated homographies (see Figure 3.6). For each ad-

jacent keyframe Ii, we compute the pose Oi by combining the pose with the corresponding

homography and measure the position difference to the candidate camera pose position P

obtained from the planar tracker:

err =

√∑
i

‖Oi − P‖2 . (3.9)

If the resulting RMS error is below a certain threshold, the candidate and the estimated

homographies are inserted in the graph as node and edges respectively. Otherwise, the

candidate is rejected.
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3.2.3 Reference Keyframe Selection

The selection of the reference keyframe has a considerable impact on the overall quality

of the reconstruction, since we compute all keyframes poses with respect to the reference.

We propose two reference keyframe approaches based on observations of different cam-

era trajectory types. As depicted in Figure 3.7, we consider exploration and orbit trajec-

tory types which yield very different graph patterns and suggest different reference selec-

tions. For the exploration type, we assume the reference near the frontal (latest) keyframe

as superior compared to the orbit type, which suggests the selection of the graph center.

For both reference types, we have implemented piecewise linear scoring functions,

which are parameterized with values retrieved from breath-first graph operations. For the

central reference node approach, we search the keyframe node with the minimum overall

path depth. For the leading reference node approach, we search the graph node with

the minimum distance from the latest keyframe minus some variable offset (e.g., two).

The evaluation of the scoring functions for each keyframe requires the knowledge of the

minimum overall path depth and the minimum path depth to the latest keyframe.

3.2.4 Reference Pose Estimation

After the selection of a reference keyframe, we initialize the plane estimation algorithm

with a set of input homographies and, subsequently, recalculate all keyframe poses with

respect to the updated camera pose of the reference.

We propose two input homography retrieval approaches as depicted in Figure 3.8. The
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Figure 3.7: Reference keyframe selection using linear scoring functions: central graph

node (left) and leading graph node near the latest keyframe (right).
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Figure 3.8: Homography retrieval approaches yielding different path sets given the same

reference keyframe C: (a) Computing paths which contain all graph edges aims for redun-

dant motion between keyframes. (b, c) Computing shortest paths along edges weighted

with cost depth values from the rectification algorithm aims for (b) minimal or (c) maximal

(using inverted weights) motion between keyframes.

first approach aims for redundancy to mitigate the risk that single erroneous homographies

corrupt the rectification algorithm cost surface. For a given root node, we retrieve paths

to all other nodes which contain all edges (in either direction) of the graph. Incorporating

a maximum number of edges assures a high amount of motion and provides multiple paths

to target nodes. Thus, we aim to compensate for composed homographies which contain

individual erroneous homographies. The second approach retrieves the shortest paths from

root to target nodes using the Dijkstra algorithm. Assigning uniform weights to the edges

results in paths with minimum edge counts. Alternatively, we may assign weights which

reflect the motion of individual homographies to the corresponding edges. These weights

are calculated with the rectification cost function (see Figure 3.5). In the latter case, we

aim to compute paths which maximize the motion between reference and other keyframes
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to achieve rectification cost surfaces which feature unique minima which in turn should

result in reliable reference keyframe poses. Since the Dijkstra algorithm delivers the path

with the minimum weight sum, we invert the edge weights by subtracting them with the

overall maximum edge weight.

We obtain the pose of the reference keyframe by minimizing the cost function (3.7) with

the homographies corresponding to the retrieved paths. For a given set of homographies

we compute the least-cost global minimum solution within the valid parameter ranges

(see Figure 3.9). We start by sampling the cost surface discretely (e.g., each 10◦ in each

parameter dimension) and compute a set of sample minima by comparing sampled cost

values with their eight-neighbors. From the set of sample minima, we compute a set of

local minima. Each sample minimum is refined with a Nelder-Mead downhill simplex

solver to find the optimized parameters. Resulting local minima which feature parameters

outside of the valid ranges are discarded to avoid symmetric solutions. Furthermore,

we compare local minima pairwise and discard duplicates. From the remaining local

minima, we select the least-cost global minimum as final solution. From the resulting

2DOF rotation parameters (x, z), we compute the reference keyframe pose by multiplying

the two corresponding rotation matrices:

Cr = RzRx. (3.10)

3.2.5 Map Creation

At this point of the reconstruction, we know the pose of the reference keyframe with respect

to the plane. The remaining keyframe poses are computed by multiplying the reference

pose with inter-keyframe homographies. The map creation is completed by recalculating

the 3D positions of map points.

3.2.5.1 Keyframe Pose Update

Keyframe poses Pk are computed by multiplying the reference pose homography Cr result-

ing from the plane estimation algorithm with a homography Hk,r to obtain the keyframe

pose homography Ck. The full pose Pk is recovered through calculating the 3rd column of

the rotation matrix. Additionally, we apply a similarity transformation S, which moves

the plane coordinate system origin into the back-projected principle point of the first

keyframe:
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Figure 3.9: Plane estimation algorithm (a) cost surface example and (b) outline for

computing the global minimum. This cost surface features three sample minima (gray

circles) and two valid local minima (white). Local minimum (3) is discarded, since it is

located outside the valid parameter range. The least-cost global minimum (1) is selected

as solution (crossed white).

Ck = Hk,rCrS. (3.11)

For the retrieval of the homography Hk,r we compute the shortest path from reference

to keyframe using the Dijkstra algorithm. Similar to the homography retrieval operation

described in Section 3.2.4 and as depicted in Figure 3.8(c), we assign weights which reflect

the motion of individual homographies to the graph edges. Here, we aim to minimize the

motion encoded in the resulting path, since we assume that the corresponding homography

is less error prone. Alternatively, uniform weights can be assigned to edges resulting in

the path with minimum edge count.

3.2.5.2 Map Point Update

We recalculate the positions of map points on the canonical plane using the refined

keyframe poses. Each map point is associated with a set of keyframe image observations.

We determine the position of each map point by projecting its 2D image observations onto

the plane using the updated keyframe poses and computing the centroid of the resulting

3D point observations (having z = 0 coordinates). Gross outlier observations are detected
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by calculating the mean distance of the observations to the centroid and discarding obser-

vations which are outside a certain threshold (e.g., two times the mean distance). In such

cases, the centroid is computed again using the inlier observations only.

3.3 Planar Tracking

The tracking component processes the incoming image stream from a calibrated monocular

camera and computes 6DOF camera poses relative to the planar point map provided by the

mapping component. At system startup, the map does not yet exist and is initialized from

two keyframes. Subsequently, we estimate camera poses using a motion model and a robust

pose refiner. Keyframe candidates are selected and passed to the mapping component,

resulting in extended and refined maps.

3.3.1 Initialization

The mapping and tracking system is initialized by the user, who selects a first keyframe

manually. Continuously, we estimate homographies between the keyframe and the current

input frame. Additionally, we pass the single homography to the plane estimation algo-

rithm (see Section 3.2) and calculate pose estimates for the first keyframe and the current

frame.

3.3.1.1 Homography Estimation

Keyframes feature a fixed set of salient image measurements on different image scale levels.

We generate a low-pass image pyramid with three levels to improve scale invariance.

On each pyramid level, we apply a FAST-10 corner detector [129], generating a set of

corner measurements. We additionally apply a measurement filter on the corner set,

which distributes the corners into a fixed size (e.g., 40x40) image grid and selects the

corners having high FAST scores up to a maximum number of features (e.g., 100/50/25

on the three image levels). Thus, we partially compensate for non-uniform texturedness

within the keyframe and restrict the subsequent computational cost.

We use a robust RANSAC estimation algorithm for homography estimation from 2D-

2D point correspondences between source and target keyframes. For each frame level

(going from coarsest to finest), we iterate the salient image measurements provided by the

source keyframe and perform point matching in the target keyframe. After point matching
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on the level image, the homography is refined with all available correspondences. The

RANSAC outlier threshold is set in relation to the known internal camera parameters.

Point correspondences are computed with a sub-pixel accurate affine patch matching

algorithm by active search over a search window with normalized cross correlation [186].

Given two frames and an initial homography, we establish a local 1x1 pixel coordinate

system at the source point location in the source frame. We generate a local affine warping

matrix by projecting the local coordinate system into the target frame. After adjusting

the source frame level, we sample an 8x8 patch from the source frame which is correlated

with the target frame over a search window with given radius (e.g., 3-5 pixels) using NCC

as the error measure. If the NCC value of a target image point is above a certain threshold

(e.g., > 0.9), source and target points are considered correlated.

3.3.1.2 Initial Map

With the automatic selection of a second keyframe, the mapping component computes an

initial map from the resulting keyframe pair and corresponding homography. The second

keyframe is selected based on frame overlap and the plane estimate quality. If frame

overlap between first keyframe and current frame exceeds a certain threshold (e.g., 0.75)

and the rectification algorithm yields a valid and non-ambiguous plane estimate using the

first keyframe as reference, we select the second keyframe and initialize a map.

Map initialization comprises the estimation of the homography from second to first

keyframe, the pose estimation for both keyframes and the population of the map with

points projected from the keyframes. Planar map point positions are defined by the cen-

troid of the back-projected associated image observations. The world coordinate system

origin is defined by back-projecting the principle point of the first keyframe image. Addi-

tionally, we setup the initial graph by adding two nodes and two edges.

3.3.2 Map Tracking

After the creation of the initial planar map, the tracking component estimates camera

poses using 3D map points and matching them with the current frame. Additionally,

keyframes are selected from the image stream and passed to the mapping component.

3.3.2.1 Pose Estimation

The tracking component robustly estimates a 6DOF camera pose relative to the pla-

nar map provided by the mapping component using the methods described by Wag-
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ner et al . [175].

A constant decaying motion model predicts the pose of the current frame based on

previous pose observations. The motion model pose is used to initialize a camera frustum,

which allows for discarding map points invisible to the current frame, achieving a consid-

erable performance gain especially on large and densely populated maps. The resulting

visible point set is filtered to obtain a fixed-sized (e.g., 100/50/25 for the three image

levels) uniformly distributed salient point set over the current frame image.

Point matching is consecutively executed for each image level, starting at the coarsest

level. After completing a level, we add the matched level correspondences and perform

a pose refinement step. The employed pose refinement algorithm aims to minimize the

re-projection error using a robust Tukey M-estimator to discard outliers.

After completing point matching on all levels the validity and quality of the resulting

pose is examined. Pose quality is defined by the ratio of salient vs. inlier feature counts.

If the ratio is above a certain threshold (e.g., > 0.75) it is considered good, if it is below a

certain threshold (e.g., < 0.5) it is considered bad, otherwise it is considered medium. If the

pose estimator indicates an invalid pose (e.g., because of too little point correspondences),

we switch into the re-localization mode.

3.3.2.2 Relocalization

We provide a very basic camera pose re-localization approach based on a cache of sub-

sampled keyframes images (e.g., with 40x30 resolution). In case the camera pose becomes

invalid, the current frame image is matched with the sub-sampled keyframe images from

the cache using normalized cross correlation. If the NCC score is above a certain threshold,

we initialize the motion model with the associated keyframe pose and try to track the pose.

3.3.2.3 Keyframe Selection and Map Update

We select keyframe candidates based on current pose quality and frame overlap from the

image stream. Only frames which yield pose estimates with good quality are considered

as keyframes. If we find no existing keyframe (and candidate) which overlaps the current

frame sufficiently (e.g., the maximum overlap ratio is below 0.75), the frame is pushed

onto the keyframe candidate queue processed by the mapping component.

The mapping component indicates the completion of a refined map by setting a cor-

responding flag. Since refined maps might change considerably (e.g., due to a change

in the reference keyframe), we store the correspondences from the last two frames and
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Figure 3.10: Camera trajectories of test image sequences. The sequences in detail:

(a) exploration (synthesized motion, 500 frames, with GT), (b) robot arm (programmed

motion, 500 frames, with GT), (c) closed loop (handheld motion, 1200 frames, no GT),

(d) scale and rotation (handheld motion, 1400 frames, no GT). Scale is illustrated by

dotted frames (size of selected images on the ground plane).

re-estimate their poses with respect to the new map. We update the motion model from

these two new poses.

3.4 Results

We compare the proposed system and method with well-known bundle adjustment and

3D SLAM system implementations. We use synthesized and handheld camera image

sequences to compare accuracy and performance observations. The evaluations have been
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performed on a standard PC equipped with a dual-core 2.66 GHz CPU and images with

a resolution of 640× 480 pixels.

Our test image sequences show well-textured planar indoor scenes and feature no

gross outliers. The corresponding camera trajectories simulate motion patterns ranging

from explorations to orbits (see Figure 3.10). Loop-closing exploration trajectories feature

mainly translational motion, while orbit trajectories provide rich rotational motion and

large differences in scale. Sequences comprise 500 to 1400 images and were recorded using

rendering tools, robot arms and handheld cameras. Camera pose ground truth is available

for half of the sequences (exploration, robot arm).

In the course of the evaluation, we vary a number of parameters of our system acting

as independent variables in controlled experiments and observe a number of depending

variables. We select the following system parameters for the evaluation:

Keyframe Selection Overlap The overlap ratio parameter influences the frequency

of keyframe selection, which has a strong impact on the connectivity of the pose graph,

reference keyframe selection and reconstruction, as well as the resulting map data volume

and mapping performance. We compare the overlap ratio set {60%, 70%, 80%}. For the

evaluation, we disabled the pose consistency check to reduce the required number of ad-

jacency keyframes to one (instead of two). However, smaller overlaps than 60% regularly

result in candidate keyframe rejection, because the mapping component fails to estimate

any homographies.

Reference Keyframe Selection We are interested in the effects of either using central

or leading keyframes as reference for the reconstruction of the different trajectory types.

Reconstruction Approaches We compare four combinations of homography path re-

trieval approaches for plane estimation and pose update respectively. These are (plane

estimation approach / pose update approach): (1) paths using all edges / shortest paths

using uniform edge weights, (2) paths using all edges / shortest paths using homography

motion edge weights, (3) shortest paths using homography motion edge weights / short-

est paths using homography motion edge weights, (4) shortest paths using uniform edge

weights / shortest paths using uniform edge weights.

We process the test sequences with all resulting 24 system parameter combinations

and measure a number of dependent output variables for comparison:
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Accuracy. We record structure and motion information including the keyframe camera

poses, 3D points and corresponding 2D image observations. The resulting camera trajecto-

ries are registered with ground truth, where available, to compute re-projection and object

space error. Re-projection error is defined as the RMS of pixel differences of projected 3D

points with their corresponding 2D observations. Object space error is defined as RMS of

camera position differences with the ground truth. The object space RMS is normalized

using the trajectory size, which is defined as the 3D range of the volume spanned by the

ground truth camera positions.

Performance and Data Volume. To assess the performance of our method, we mon-

itor the timings of the individual mapping components. Additionally, we track the data

volume kept in the map, including number of keyframes, 3D points and homographies.

The amount of data to be processed naturally influences the overall system performance.

Besides our own system, we evaluate the publicly available PC-version of PTAM [72]

on the same test sequences. We modified the software with logging and monitoring func-

tionality. We run PTAM three times on each sequence to compensate for outlier tests and

averaged the results for the evaluation.

Both PTAM and our system provide structure and motion information, which is passed

to the SBA bundle adjustment software package [89] for refinement. We pass camera poses,

3D point estimates and 2D observations to the algorithm, which is configured to compute

optimal results disregarding time constraints. For the two of four sequences where no

ground truth is available, we use the SBA output as reference to compute the re-projection

and object space error of PTAM and our system, respectively.

3.4.1 System Parameters

We evaluate the effects of individual parameters by varying one parameter and averaging

the corresponding subset of all other parameter combinations and compare the resulting

accuracy and performance results. For each test sequence, we performed 24 trials using

all system parameter combinations. Our system successfully processed all trials on all

test sequences except the “loop” sequence, where the system failed in five trials to close

the loop resulting in a defunct tracking component, because of inconsistent map point

observations. We cannot discover any specific parameter closely related to the failure

cases.

We reviewed the computational complexity of our mapping method depending on the
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(a) (b)

Figure 3.11: Times in milliseconds spent by our mapping method components for pro-

cessing maps with an increasing number of keyframes. Separate diagrams for plane esti-

mation approaches retrieving (a) shortest paths from reference to other keyframes and (b)

paths using all graph edges. For these diagrams we employed the “exploration” sequence

with the following system parameters: 80% keyframe selection overlap ratio and central

reference keyframe. The maps having 35 keyframes both feature 210 homographies. Point

counts are (a) 2391 and (b) 2395 respectively.

number of keyframes, map points and homographies, as depicted in Figure 3.11, which

shows the timings of individual components in milliseconds. Homography estimation is

expensive, but constant in the number of additional homographies which are computed

for each keyframe candidate. Map point management refers to the addition of a constant

number of new points and point observations for a new keyframe and includes checking the

map region state for each point using the quad tree, a logarithmic operation in the number

of map points P . Graph management incorporates the constant time for adding new

keyframe nodes and homography edges as well as the computation of edge weights using

the rectification algorithm. The graph operations (e.g., breath-first searches), required for

reference keyframe selection, can be done in O(F (F + H)) in the number of keyframes

F and homographies H. Reconstruction comprises of pose update in O(F ) and point

evaluation in O(P ) after estimating the plane. The expense for plane estimation, however,

depends on the reconstruction approach: retrieving paths using all H edges (see Figure
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(a) (b)

Figure 3.12: Effects of varying keyframe selection overlap ratios on the number of (a)

keyframes and (b) homographies.

3.11(b)) is significantly more expensive than retrieving solely the shortest paths from

reference to other keyframes (see Figure 3.11(a)). Overall, we see mostly constant and

linear asymptotic behavior in the number of keyframes, points and homographies.

The overlap parameter has considerable effects on the map data volume, thus on the

overall system performance (see Figure 3.12). With increasing overlap, the number of

keyframes steadily increases resulting in a denser sampling of the 3D space. In turn,

candidate keyframes feature more adjacent keyframes allowing the estimation of more

homographies and influencing the connectivity of the graph.

The impact of the overlap parameter on accuracy yields no significant results. Surpris-

ingly, more data does neither improve object space nor re-projection error significantly.

We conclude that already with 60% overlap, our mapping method receives sufficient data

to solve the planar reconstruction in good quality with re-projection errors below 3 pixels

and object space errors below 1.5% of the trajectory sizes. Similarly, the accuracy results

for the different reference key and reconstruction approaches do not show clear trends. For

both parameters, re-projection and object space errors remain within ± 10%, respectively.
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3.4.2 Accuracy

We compare the accuracy of our method with the bundle adjustment implementations of

SBA and PTAM. The structure and motion information of each test run of our system and

PTAM, respectively is passed to SBA for refinement, resulting in two camera trajectories

each. Registration to ground truth is performed for the resulting camera trajectories

individually. For test sequences without ground truth (loop, scale and rotate), the system

trajectories are registered to the respective SBA trajectory, resulting in the zero object

space errors of the SBA trajectories. For the diagrams of Figure 3.13, we averaged the

results of the 24 test runs of our system and the three test runs of PTAM, respectively.

Our system features object space errors between 0.5% and 1.5% of the trajectory sizes,

thus performs similar to PTAM and SBA on the ground truth sequences. We consider

the bad result of PTAM on the robot arm sequence as an outlier. On the handheld image

sequences, PTAM performs with a significantly lower object space error. We conclude that

our plane estimation and pose update components do not range on the same accuracy level

as bundle adjustment, but keep up, with some trade-offs.

The re-projection errors of our system range between 0.5 and 2.5 pixels and are two to

(a) (b)

Figure 3.13: Accuracy comparison of our method with SBA and PTAM: (a) re-projection

error as RMS of pixel differences, (b) object space error as RMS of camera position dif-

ferences with ground truth (normalized using test sequence trajectory sizes).
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five times larger compared to SBA and PTAM. Overall, SBA yields the least re-projection

error as expected. We reason that this result is due to our optimization method, which

minimizes an algebraic cost function (3.6, 3.7) rather than the re-projection error, as done

by SBA and PTAM. We calculate the location of 3D points efficiently, but coarsely as

centroid of back-projected 2D image observations. In comparison, the optimization of

SBA and PTAM has additional degrees of freedom concerning the placement of 3D points

with a variable z-coordinate. Thus, as our system places 3D points strictly on the canonical

plane (with z-coordinates equal zero), we do not account for noise and non-planar outliers.

Overall, we see our method perform well in comparison to state-of-the-art bundle

adjustment techniques on the selected indoor test sequences.

3.4.3 Performance and Data Volume

The performance of our system is compared to PTAM. We contrast the data volume used

for map optimization and the total time spent for mapping when processing the individual

test sequences as shown in Figure 3.14. The depicted values are averaged results of all test

runs of our system and PTAM, respectively, and normalized with respect to our system.

Our system manages a considerably smaller amount of data concerning the number

of keyframes and map points. The number of keyframes selected by PTAM is up to

2.5 times higher. We perform keyframe selection based on overlap, which both accounts

for translational and rotational frame differences, while PTAM selects keyframes solely

based on translational differences. The difference in the number of map points is even

more obvious, with PTAM adding up to eight times more. We manage the points on the

canonical plane in a quad tree, which allows to detect well-populated and unpopulated

map regions efficiently. By performing these checks, our systems may considerably reduce

the number of points inserted into the map.

Comparing the total mapping times over entire test sequences, our system outperforms

PTAM with factors between three and 45. Using optimized system parameters, e.g., 70%

keyframe selection overlap combined with a reconstruction approach using shortest paths,

we may raise factors up to 15 on the “exploration” sequence, which stays behind in com-

parison to the other sequences. This result validates our system design that focuses on

performance at the expense of reduced accuracy.
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(a) (b)

(c)

Figure 3.14: Data volume and performance comparison with PTAM: (a) Keyframe and

(b) map point counts. (c) Total time spent for mapping over the entire test sequences.

All values are normalized with respect to our system (having values equal one).

3.5 Mobile Phone Results

We employed the Nokia N900 phone to explore our systems’ scalability, performance and

robustness on a mobile platform. The Nokia N900 is equipped with a single-core ARMv7

600 MHz CPU and 256 MB memory. We processed camera images with a resolution of

320x240 pixels and configured the following system parameters: 70% keyframe selection
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Figure 3.15: Examples of planar indoor and outdoor scenes mapped and tracked with

our system (left to right): carpeted floor (with additional texture), wall with tableau,

brick wall, outdoor billboard.

overlap, central reference keyframe and reconstruction using shortest paths with uniform

edge weights.

Mapping and tracking table-sized indoor scenes such as depicted in Figure 5.1 at

different scales, our system reports frames rates of 6-12 FPS on the Nokia N900 phone.

One specific test with a map consisting of 15 keyframes, 1069 points and 76 homographies

yielded 15-16 FPS during the initialization phase and 6-12 FPS during the map tracking

and mapping phase while consuming roughly 16 MB of memory. In the initialization

phase, our system performs homography tracking and estimates the plane using a single

homography, resulting in a planar map. Subsequently, pose tracking ran with 10-12 FPS

largely depending on the density of map points projected into the current frame. Mapping

single keyframes took 250 milliseconds on average with timings increasing from 170 to

430ms. Tracking and mapping are executed in separate threads. However, the single-core
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(a) (b)

Figure 3.16: Robustness test on the mobile phone: (a) scene with outlier objects results

in (b) distorted maps due to homography estimation errors.

CPU of the Nokia N900 does not allow for running these threads in parallel. Alternatively,

we schedule mapping in a round-robin fashion and prioritize tracking. Keyframe mapping

is performed in several time slices by suspending the thread after a timeout (e.g., 20ms),

thus switching to the tracking thread. This strategy preserves tracking and resulted in

frame rates of 6-9 FPS. Yet, running threads in parallel on modern multi-core CPU phones

should yield considerable performance gains.

We added outlier objects of various sizes to the scene to assess the robustness of our

system. Outliers influence our mapping system via the homographies estimated between

keyframe images showing these objects. The resulting maps become distorted which, in

turn, degrades pose tracking. In Figure 3.16 we depict our system mapping and tracking

a scene which contains several outlier objects. The book in the background defines a

completely different plane. The depicted map image shows the effects of outlier objects on

map quality. However, our pose consistency check rejected candidate keyframes showing

larger portions of the background outlier plane.

3.6 Summary

This chapter presented a planar mapping and tracking system capable of operating ro-

bustly in real time on mobile phones by restricting the mapping problem to a single scene
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plane. Considered as one of the computationally most light-weight mapping algorithms in

the literature, it provides a profitable trade-off between accuracy and performance. Our

approach uses a fraction of the computational resources required by comparable monoc-

ular 3D SLAM systems, while incurring a moderate decrease in accuracy. Overall, the

algorithm scales either linearly or quadratically in the number of keyframes, depending on

the system configuration. Therefore, as we demonstrated, our system is also suitable for

mobile devices with a single-core CPU and works on planar scenes in indoor and outdoor

environments (see Figure 3.15).

Similar to PTAM, our system provides the dominant scene plane as a “playground”

for the annotations of top-level AR applications. Additionally, by rendering the mapped

planes as orthographic images, the system allows for scanning and generating persistent

map representations. These image templates could either be employed online, e.g., in

combination with object detection algorithms, or saved and reused later on by other

applications such as model-based tracking and detection, or image-based modeling.

To further increase the understanding of the environment, the system could be ex-

tended towards explicitly detecting different planes and starting to extend the map to

these new planes. This could lead to an overall system that explicitly represents the en-

vironment as a set of planar surfaces instead of sparse clouds of point or line features.

Meanwhile, Salas-Moreno et al . [133] have demonstrated a fusion-based SLAM system of

this kind, but only on the desktop and by employing an RGB+Depth (RGB-D) camera.

Due to the constrained planar scene assumption, the mapping algorithm is not partic-

ularly robust against outlier measurements. While we attempt to detect violations of the

planar map model, such as objects sitting on a table surface, the system cannot compete

with the robustness of general SLAM systems, which perform explicit 3D mapping.
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Handling Pure Camera Rotation in Keyframe-Based SLAM

In this chapter, we present a keyframe-based hybrid SLAM algorithm, which handles both

general, that is, parallax-inducing, as well as rotation-only, that is, parallax-free, camera

motion. In the past, SLAM systems have been presented which specialize in mapping

and tracking either general or rotation-only camera motion. General SLAM systems with

six degrees of freedom (6DOF) [33, 39, 72, 110] assume general camera motion and apply

structure-from-motion techniques to create 3D feature maps. Robust triangulation of 3D

map features from observations of multiple camera viewpoints requires sufficient parallax

induced by translational or general camera motion. In contrast, panoramic SLAM systems

[35, 26, 90, 173] assume rotation-only camera motion and track the camera in 3DOF.

Because no parallax is observed, feature points are not triangulated and, consequently,

can only be thought of as rays. In the following, we call such rays infinite features, while

3D points from 6DOF SLAM are called finite features.

Panoramic and 6DOF SLAM have complementary strengths and weaknesses: 6DOF

SLAM cannot handle pure rotational camera movements well. Tracking may be lost, and

in unfortunate situations, erroneously measured finite features may corrupt the map. In

contrast, panoramic SLAM can only handle rotational motion. Any translational motion

component may be encoded as additional rotation, also leading to a degradation of map

quality.

The inherent problem of handling both general and rotation-only camera motion is

partly created by the real-time processing constraint of SLAM systems. As incoming

video frames can only be triangulated with respect to the map known up to the current

moment, it is rather straightforward to discard frames that cannot be triangulated yet.

However, keeping more potential keyframes around would increase the likelihood of match-

81
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Figure 4.1: Rotation-only camera movements are handled by tracking and mapping

local panorama maps registered within a global 3D map. The information contained in

the panorama maps is also used for 3D reconstruction.

ing observations in later frames. This is in contrast to full structure-from-motion systems

that have complete information available and, therefore, can match with both past and

future frames.

We propose to combine the advantages of 6DOF and panoramic SLAM into a hy-

brid keyframe-based system that accepts both fully triangulated keyframes for normal

6DOF operation as well as keyframes with only rotational constraints. This combination

contributes in several ways to an optimization-based SLAM system:

• Tracking can cope with pure rotation and provide a more seamless experience to the

user.

• Mapping has more keyframes available to estimate new parts of the 3D SLAM map.

• As we extend state-of-the-art approaches, we obtain a system that performs as least



4.1. System overview and map representation 83

as well as a normal 6DOF SLAM.

The tracking component can dynamically and seamlessly switch between full 6D and

panoramic tracking modes, depending on current motion performed by the user. It is

designed to handle temporary rotations away from the mapped part of the scene that

users often make in practice. We detect these rotations and select special “panorama”

keyframes that are used to build up local panorama maps. The local panorama maps are

registered in a single consistent 3D map. The observed finite and infinite map features

allow for robust tracking of alternating phases of general and rotation-only motion with a

unified pose estimator. Additionally, we support re-localization.

The transition from a panorama map to another 3D sub-map is not intended, since

global map scale consistency would be lost. However, we explicitly exploit observations

of infinite features measured in panorama keyframes in the construction of the global 3D

map, if they can be combined with observations in later keyframes allowing for deferred

full triangulation of the feature.

We demonstrate the efficacy of our approach in several evaluations that show how the

combined system handles rotation only camera motion, while creating larger and denser

maps, compared to a standard SLAM system (see Section 4.5).

4.1 System overview and map representation

The system architecture of our hybrid approach follows the standard two-component de-

sign of optimization-based SLAM [72]. Tracking and mapping components are executed

in separate threads and synchronize via dedicated keyframe and map interfaces. The

keyframe interface allows the tracker to submit keyframes, which are asynchronously pro-

cessed by the mapper. The map interface allows the tracker to retrieve a snapshot of the

current map.

The tracking component performs robust frame-rate map tracking of 6DOF or rotation-

only camera motion and selects new keyframe candidates. In our system, keyframes can

either be fully localized with a 6DOF pose or panorama keyframes that are described

with a rotation relative to a reference pose. The mapping component adds keyframes to

a single global map, comprising both types of keyframes and finite and infinite features.

Additionally, it also refines the map through establishing new data associations and bundle

adjustment optimization.

Our system builds and maintains a single global map that has a consistent scale. The
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(a) (b)

Figure 4.2: Relationships in our hybrid map representation between keyframes and fea-

tures depicted in two stages. In stage (a), 6DOF keyframes observe finite map features. Lo-

cal panorama maps are registered in the 3D map via reference panorama keyframes (green)

that have finite and infinite feature observations, while the remaining dependent panorama

keyframes (dark blue) observe infinite features only. In stage (b), infinite features are tri-

angulated from corresponding observations matched between additional 6DOF keyframes

and/or localized panorama keyframes from different local panorama maps. Note that the

additional features enable the localization of further dependent panorama keyframes.

map is composed of finite and infinite point features, which have 2D image observations

in regular 6DOF and panorama keyframes. Figure 4.2 shows the relationships within our

hybrid map representation.

The map is represented as a collection of keyframes that store the camera pose Ci of the

keyframe and an image pyramid for tracking points and finding new correspondences. We

use the pose Ci to denote the keyframe itself. Keyframes generally fall into two categories,

either full 6DOF frames or panorama keyframes. Full 6DOF keyframes are denoted by the

set K = {Ck}. Panorama keyframes are organized in local panorama maps Pj = {Ci,j}
that are registered in the 3D map with its center of rotation. The center of rotation is

determined by a dedicated reference panorama keyframe Crj which is both a 6DOF frame

and part of the panorama map, thus {Crj } = K ∩Pj . The remaining panorama keyframes

Ci,j are dependent and effectively have only a 3DOF rotation pose relative to the reference

keyframe Crj .

Point features are represented as homogeneous 4-vectors Xi = (x, y, z, w)T , where
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w = 1 for finite points with known 3D location, and w = 0 for infinite points that

were only observed in panorama keyframes. Infinite points are observed in one or more

panorama keyframes of a single local panorama map.

4.2 Tracking

The tracking component processes the video stream of a single calibrated camera at frame-

rate and tracks both general and rotation-only camera motion with respect to a global map

that consists of finite and infinite features. The pose estimation combines measurements of

both finite (known 3D location) and infinite features, and automatically computes either

a 6DOF or 3DOF pose update. In case of incremental pose estimation failure, we provide

a re-localization method (see Section 4.2.2) based on small blurry images [73].

4.2.1 Incremental pose tracking

Starting with a known pose from the previous input frame, the current camera pose is

predicted by a simple decaying constant-velocity motion model.

We select a feature set for matching from all map features by filtering features for (1)

visibility from the predicted camera pose, (2) only infinite features of the currently enabled

panorama map, (3) overlapping feature re-projections, where we prefer finite over infinite

features. At any point in time, either none or exactly one panorama map is enabled for

tracking. Thus, we are only considering infinite features, if the center of rotation of the

corresponding panorama map is located close to the camera. Note that panorama maps

and keyframes are always used for mapping.

Then, the following steps are executed for each image pyramid level of the current

frame, starting at the lowest level. We actively search for each selected feature in the

current frame using NCC as score function. Matches with a sufficiently high NCC score

are added to the correspondence set that is processed by our unified relative pose refiner.

This yields a set of 2D observations Oi for map features Xi.

Given a pose prior and the set of observations, we iteratively estimate incremental

pose updates. We optimize the re-projection error

E(C) =
∑
i

Wi‖Proj(C ·Xi)−Oi‖2 (4.1)

using standard Gauss-Newton iteration both for finite and infinite map points, where

Proj(·) is the camera projection including radial distortion.
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For a given camera pose C =
(
R T

)
, the transformation of a map point X =

(x, y, z, w) is

C ·X = R


x

y

z

+ T · w. (4.2)

Thus, finite points add a constraint on the camera translation (w = 1), while infinite

points do not (w = 0). To ensure that the system is stable, even if no finite points are

observed (as in a pure panoramic tracking mode), we add a small regularization term to

the linear system.

Additionally, we also apply a weight Wi to each measurement to balance the influence

of infinite and finite features. Typically, we want to rather follow finite features (weighted

with Wi = 1), therefore we weight infinite features with a factor Wi = 0.01 that was

empirically determined.

4.2.2 Relocalization

We perform relocalization based on small blurry images (SBIs) that work with both 6DOF

and panorama frames. A small blurry image is a small downscaled version of a video frame

(40x30) with Gaussian blur applied. A history of SBIs is recorded with frames added at

regular time intervals together with their 6DOF tracking poses. We query the history

with an SBI computed from the current frame, resulting in a sorted set of similar SBI

candidates. Each candidate is verified: First, the stored candidate pose is updated by

estimating a relative 3DOF rotation between candidate and current frame with ESM [15].

Next, we execute the active search map tracker using the updated 6DOF pose as prior.

If tracking succeeds for any of the candidates, the resulting pose is used to re-initialize

relative pose tracking.

4.3 Keyframe selection and insertion

Selecting and inserting new keyframes into the map is an essential step in an efficient

optimization-based SLAM system. To keep processing requirements low, only important

keyframes should be chosen from the video stream. Important keyframes have two prop-

erties: (1) They image new parts of the scene, or known parts from different directions;

(2) they have enough observations of known structure to ensure good connectivity in the

map. Enabling the system to take more keyframes is essential to have a more detailed
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Figure 4.3: State diagram for the different states of keyframe selection during mapping.

After initialization, the system starts to operate in full 6DOF mapping mode (1). If pure

rotation motion is detected, the system switches to 3DOF mapping mode and creates

a new panorama map (2). 6DOF measurements move the system back to full 6DOF

operation (3b). In case of tracking failure, relocalization always recovers a full 6DOF pose

(3a).
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or expansive map. Our system is able to record more keyframes by relaxing the sec-

ond requirement. Keyframes that are not well constrained in 6DOF through known 3D

map features, but only through 2D-2D observations, are recorded as well, if they image

substantially new parts of the scene.

The top priority of keyframe insertion is to avoid map corruption by carefully selecting

6DOF keyframes and robustly localizing panorama keyframes. For 6DOF keyframe selec-

tion, we require a large number of correspondences for pose estimation and a conservative

threshold for parallax. For panorama keyframe selection, we relax the rules: the pure

rotation tracking may drift due to small camera translations. However, the relaxation

does not harm the 3D map, as panorama keyframes are used for mapping only after they

have been robustly localized later on. For localization, we again enforce strict thresholds

on the pose estimation.

Similar to PTAM [72], our method uses heuristics for keyframe selection. We have

adopted parallax and tracking quality criteria, and combined it with coverage and camera

view angle criteria. In practice, distinguishing between true rotation-only motion and

small translations is impossible due to measurement noise. Therefore, we use the parallax

criterion to detect camera motion that allows for robust triangulation and 3D reconstruc-

tion. In the following, we describe the selection of keyframes in more detail. Figure 4.3

shows an overview of the different keyframe selection modes during operation.

4.3.1 6DOF mapping

6DOF keyframes can be selected whenever we have a camera pose that is fully constrained

in 6DOF. This is the case, if enough finite feature points are part of the pose estimation,

as described in Section 4.2.1. Furthermore, we select regular 6DOF keyframes when they

generate enough parallax to existing keyframes, while imaging a new part of the scene.

Parallax is required for robust feature triangulation. New parts of the scene are charac-

terized by areas in the image where few or no known features project into.

Parallax is the angle α between the viewing directions of two camera frames (e.g.,

between the current frame and an existing keyframe) onto the commonly viewed scene

geometry. It can be approximated as α = 2 arctan(d/(2f)), where f is the mean depth

of the finite map features observed in both frames, and d is the relative distance between

the 3D locations of the frame pair. Note that, in contrast to distances, the parallax angle

is scale-independent. We empirically determined a parallax angle of α > 5◦ as sufficient

for 6DOF keyframe selection.
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(a)

(b)

Figure 4.4: Handling pure-rotation camera motion at the map boundary. The same

three non-consecutive frames as processed by (a) 6DOF SLAM and (b) hybrid SLAM

(our approach). 6DOF SLAM discards low-parallax candidate keyframes, resulting in

tracking failure due to a lack of new finite map features (rendered in red). Hybrid SLAM

detects the pure-rotation camera motion, creates a local panorama map, and continues

camera tracking from infinite map features (rendered in cyan).

To estimate low coverage, we compute the frame area ratio that is covered with finite

feature projections. We divide frames into a regular grid with 4×3 cells and project finite

map features. Grid cells with a minimum number of contained features are considered

covered. The coverage is the ratio c of the number of covered to all grid cells. We

empirically determined that a frame is not well covered if the coverage ratio c < 0.75.

When inserting the 6DOF keyframe into the map, we add new finite map feature

observations and new finite map features. New observations are added to features which

have been successfully tracked in the keyframe. New finite 3D map features arise from

frame-to-frame 2D feature tracking between the previous and the current 6DOF keyframe.

With the insertion of the current keyframe, the new correspondences are added as new

finite features having triangulated 3D positions (x, y, z, 1) and two observations.
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4.3.2 Localized panorama keyframe insertion

When the system detects low coverage (e.g., c < 0.75) but not enough parallax (e.g.,

α < 5◦) between the current frame and existing keyframes, then tracking may fail, if all

known features become invisible. Low coverage indicates that the camera points towards

unmapped scene regions. However, a regular 6DOF keyframe cannot be taken, due to

low parallax of pure-rotation camera motion. Thus, we select a panorama keyframe that

is localized with respect to the 3D map. Figure 4.4 illustrates the different behavior of

standard 6DOF SLAM and our approach.

We detect pure rotation camera motion based on the history of tracked 6DOF poses.

Tracked 6DOF poses are stored chronologically in a history. We compute the parallax

angle between the current pose and the history and discard all poses with a sufficiently

high parallax (e.g., α > 5◦). The remaining history poses have similar 3D locations as

the current frame. Finally, we compute the angles between viewing directions and detect

pure rotation, if we find a pose in the history that has low parallax and a sufficient angle

with respect to the current frame. The view difference angles β are normalized with the

field-of-view angle γ of the calibrated camera, resulting in a angle ratio r = β/γ. We

empirically determined a ratio r > 0.2 as sufficient for pure-rotation detection.

The selection of a localized panorama keyframe marks the beginning of a local

panorama map. The system creates a new local panorama map Pj and assigns its

reference keyframe Crj that defines the center of rotation.

When inserting the localized panorama keyframe into the map, we add new observa-

tions and new infinite features. New observations are added to finite features which have

been successfully tracked in the keyframe. New infinite features are initialized from 2D

image features. We apply a corner detector on the keyframe, resulting in a 2D image fea-

ture set and subtract the projections of existing map features. The remaining 2D image

features (u, v) are converted into rays (x, y, z, 0) in world space and added as new infinite

map features with a single observation.

4.3.3 Transition to 3DOF mapping

As soon as we do not observe sufficient finite features in the current frame, the hybrid pose

estimation only updates the 3D orientation from infinite map features around a fixed 3D

position using the local panorama map Pj . Slight camera translation may be estimated

as additional rotation into the 3DOF poses.
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4.3.4 Panorama keyframe insertion

The system continues to select panorama keyframes based on low coverage (e.g., c < 0.8)

and sufficient rotation. Low coverage indicates the camera continues to explore unmapped

scene regions. Rotation is computed as the difference angle between the viewing direc-

tions of the current frame and keyframe poses of the current panorama map. Again, we

normalize the view difference angle with the camera field-of-view angle, and determined

sufficient rotation if the ratio r > 0.2.

When inserting the panorama keyframe into the map, we add new infinite feature

observations and new infinite features. New observations are added to infinite features

which have been successfully tracked in the keyframe. New infinite features are computed

the same way as with localized panorama keyframes (see above).

4.3.5 Transition back to 6DOF mapping

The system implicitly moves back to the full 6DOF operation, if it observes parts of the

3D map again. Then the same criteria as before apply, and a new 6DOF keyframe can be

created.

With the transition, the panoramic tracking session ends, and the current panorama

map is disabled. Observations of map features within panorama keyframes of this session

are disabled so that they are ignored by tracking future frames. We disable all feature

observations of non-localized panorama keyframes. Localized keyframes keep their finite

feature observations.

4.4 Mapping

The mapping component refines the map through establishing new data associations and

bundle adjustment optimization. In particular, it also estimates full 6DOF poses for

panorama keyframes and triangulates infinite features to extend the 3D map. As part

of data association refinement, we seek new keyframe-feature observations to further con-

strain existing feature locations and keyframe poses. We apply active search and descriptor

matching techniques to establish 2D-2D correspondences.

We robustly localize panorama keyframes with respect to finite map features.

Panorama keyframes are initialized with poses from panoramic tracking that are

considered unreliable since we cannot estimate the poses in full 6DOF from infinite

features and, thus, cannot measure camera translation. However, by establishing
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correspondences to existing finite map features, we can estimate full 6DOF poses. Thus,

we effectively convert panorama keyframes into regular 6DOF keyframes.

We exploit the information stored in local panorama maps for 3D mapping by tri-

angulating infinite feature observations. We employ descriptor matching to find 2D-2D

correspondences between robustly localized keyframes, e.g., in separate local panorama

maps that view the same scene regions. Correspondences which pass the verification tests

constitute additional finite map features. Thus, we effectively convert infinite to finite

features.

Finally, we also optimize the map with bundle adjustment [43]. Bundle adjustment

updates the 6DOF poses of localized keyframes and the 3D positions of finite map features

by minimizing again the reprojection error between feature locations and observations in

keyframes. Non-localized panorama keyframes and infinite features are not optimized.

However, we maintain map consistency by adjusting the registration of panorama maps

within the optimized 3D map.

4.4.1 Panorama keyframe localization

Robust localization of panorama keyframes is an iterative process that finds new correspon-

dences between infinite features in the panorama keyframes and finite features observed

in normal keyframes. Once enough such correspondences are established, a dependent

panorama frame contained in a local panorama map can be localized with a full 6DOF

pose and converted to a normal keyframe. This, in turn, can lead to further triangulation

of infinite feature points, which again may allow for localizing other panorama keyframes.

To find correspondences to finite features, we employ both active search and wide-

baseline matching using visual descriptors. The active search technique is borrowed from

relative pose tracking. We iterate over all finite map features. If a particular feature does

not have an observation in the panorama keyframe, we project the feature and perform

NCC matching in the neighborhood of the projected 2D image location. If we get a

sufficiently high NCC score, we have found a 3D-2D correspondence and add a new feature

observation.

Since the active search method relies on a reasonably accurate panorama keyframe

pose, we additionally perform wide-baseline descriptor matching. We maintain a database

(see Section 4.4.4) that contains descriptors of all finite feature observation patches in its

leaves. The database is queried with a set of input descriptors from a panorama keyframe.

These input descriptors are created from 2D image features. The query delivers a set
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of correspondences between 3D finite map features and 2D image features. We iterate

over the correspondences and check whether the panorama keyframe already has an inlier

observation of the map feature. If not, we add a new observation.

Finally, we attempt to localize the panorama keyframe with its current 3D-2D corre-

spondences. We retrieve all of the keyframes’ finite features observations, resulting in a

set of 3D-2D correspondences. The correspondences are passed to a RANSAC algorithm

which employs a three-point-pose estimator [58]. The output pose is additionally refined

with our robust relative pose estimator using the RANSAC inlier correspondences only.

If the pose result is valid, we consider the panorama keyframe as robustly localized. Lo-

calized panorama keyframes are removed from their native local panorama map and are

declared as reference of a new local panorama map.

4.4.2 Infinite feature triangulation

We triangulate infinite features which have observations in localized keyframe pairs with

sufficient baseline. Since infinite features cannot be projected into keyframes outside of

their native local panorama map, we apply descriptor matching to find relevant 2D-2D

correspondences.

We maintain a second database (see Section 4.4.4) that keeps descriptors of infinite fea-

ture observations contained in localized panorama keyframes. After major modifications,

e.g., after descriptors from a new keyframe have been added, the tree is queried with all

localized keyframes. For each keyframe, we create a input descriptor set that contains 2D

image features that do not coincide with existing finite feature observations. We receive a

set of 2D-2D correspondences between two localized keyframes. Using the difference pose,

we run an epipolar point-line check and discard outliers. We triangulate the 3D points and

check if they are in front of both cameras. Finally, we enforce a minimum triangulation

angle to avoid spurious depth estimates.

The remaining correspondences are converted into finite map features. We add the

matched observation from the second key-frame and assign the triangulated 3D position.

4.4.3 3D and panorama map consistency

We do not include non-localized panorama keyframes and infinite map features in bundle

adjustment. Since the poses of localized keyframes may be updated, the registration of

local panorama maps within the 3D map becomes incorrect. We correct the registration

of local panorama maps and its infinite features.
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The pose of local panorama maps is defined by their reference keyframes, which are

localized within the 3D map and updated in bundle adjustment. For each local panorama

map we compute the difference pose of its reference keyframe before and after bundle

adjustment. We apply this difference pose to the dependent non-localized keyframes. The

infinite feature rays are re-evaluated by transforming the observations into world space

with the updated poses and computing the centroid.

4.4.4 Feature descriptor database

We use offline-trained hierarchical k-means trees for nearest neighborhood matching that

contain PhonySIFT descriptors [175] in its leaves. The PhonySIFT descriptor has 36 ele-

ments computed from 3x3 subregions with four bins each. For each map feature observa-

tion, we compute descriptors on multiple image pyramid levels to increase scale invariance.

The trees have a fixed structure (branching factor of 8, 4 levels, resulting in 4096 leaves)

and are trained offline from a large set of images. The trees allow adding and removing

descriptors efficiently and are synchronized with the map as part of the mapping process.

4.4.5 Map initialization

At system start-up, we employ a model-based detector and tracker [175] to create the initial

map. Upon detection of a known planar image target, a first keyframe is created. The

system continues to track the camera in 6DOF from the image target and, additionally,

performs frame-to-frame tracking of 2D features. The second keyframe is selected as

soon as sufficient 2D-2D correspondences can be robustly triangulated. Thus, two regular

keyframes and the resulting finite map features constitute the initial map.

4.5 Results

The implementation of our method builds upon a state-of-the-art optimization-based

6DOF SLAM system that runs in real-time on modern mobile phones (see Section 4.5.1).

We compared our hybrid SLAM method with standard 6DOF SLAM on several image

sequences. The two methods perform equal on image sequences that show general camera

motion, such that the scene can be mapped with 6DOF keyframes only. This is no surprise,

since tracking and mapping procedures are identical when operating with 6DOF keyframes

and finite features only. Thus, to demonstrate the additional capabilities of our method,
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Figure 4.5: Tracking status timelines of (a) 6DOF and (b) hybrid SLAM. Each time-

line depicts the tracking state for each frame. Filled bars indicate successful tracking or

relocalization, empty bars indicate tracking failure. For hybrid SLAM, we distinguish be-

tween camera tracking from only finite 3D map features (rendered in blue) and camera

tracking from infinite panorama map features (rendered in red), including the hybrid case

of camera tracking from both finite and infinite map features. For standard SLAM, the

camera is tracked from finite features only.

we recorded a 2000-frame image sequence that shows several rotation-only camera pans

that, in order to maintain tracking, require the selection of panorama keyframes.

The image sequence used for the comparison was recorded with a handheld camera and

captures a well-textured room-sized indoor scene. The scene comprises a table-sized AR

workspace in the foreground and the walls of the room in the background. We processed

the image sequence with both hybrid and standard 6DOF SLAM methods and logged

tracking and mapping statistics. The evaluation was performed on a laptop PC equipped

with a quad-core 2.5GHz CPU and 8GB of RAM. We used a PointGrey Firefly MV

handheld camera and recorded the images with a resolution of 640× 480 pixels.

We present several timelines that depict tracking and mapping statistics for each frame

of the image sequence. The timeline graphs do not consider the common map initialization

phase and start with the first frame tracked from the initial 3D feature map having two

6DOF keyframes.

Tracking timeline. In Figure 4.5, we observe that the hybrid SLAM method tracked

98% of the frames, while the standard SLAM method only tracked 53% of the frames.

Hybrid SLAM detected nine pure-rotation camera pans, resulting in an equal number
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of local panorama maps. While our method continues tracking from infinite features,

standard SLAM tracking fails. For example, consider the period between frames 100

and 300: earlier, between frames 50 and 100, a pure-rotation camera movement started

that was detected by hybrid SLAM around frame 80, resulting in the creation of a local

panorama map. In contrast, standard SLAM discards keyframe candidates and runs out

of map features around frame 110. The camera returns to the 3D mapped region around

frame 270. Hybrid SLAM smoothly transitions from the local panorama map back onto

the 3D map, while standard SLAM resumes finite map feature tracking after successful

relocalization.

We conclude, that the detection of temporary pure-rotation camera movements and

their mapping as local panorama maps improves the tracking performance of the hybrid

SLAM method compared to the standard 6DOF SLAM method.

Keyframe timeline. In Figure 4.7 we observe that hybrid SLAM selects about three

times as many keyframes as standard SLAM over the sequence. Even if we consider that

standard SLAM only tracked half of the sequence and, thus, could have potentially selected

twice as many keyframes, that is an increase of about one third (0.03 vs. 0.02 keyframes

per successfully tracked frame). The increase mostly comes from additional panorama

keyframes, while the number of 6DOF keyframes is even slightly lower.

We also see that hybrid SLAM quickly localizes panorama keyframes within the 3D

map. The number of non-localized keyframes stays very low over the entire sequence.

(a) (b)

Figure 4.6: Panoramas generated from keyframes of two local panorama maps. The

local panorama map (a) was created in the period during frame 800 and 1200. The local

panorama map (b) was created in the period during frame 1500 and 1800. Both panoramas

depict the scene from two different view points with sufficient parallax for triangulation

(e.g., the wall on the right-hand side).
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Figure 4.7: Keyframe timelines of (a) 6DOF and (b) hybrid SLAM. Each timeline shows

the number of mapped keyframes over the sequence. For hybrid SLAM, we distinguish be-

tween 6DOF (blue), panorama (red) and localized panorama keyframes (green). Standard

SLAM selects only full 6DOF keyframes in blue.

Furthermore, the localization of panorama keyframes enables the triangulation of infinite

map features.

Map feature timeline. As we can see in Figure 4.8, hybrid SLAM maps contain

about three to four times as much features as standard SLAM maps. Considering the

finite map features only, hybrid SLAM maps are still two times larger than standard

SLAM maps.

The ratio between finite and infinite features in hybrid SLAM maps is about 1:1.

From Figures 4.8(b) and 4.8(c), we observe that about every third infinite feature was

triangulated and, thus, contributed to 3D mapping. We assume some redundant infinite

map features, since in our current implementation, we are not merging finite and infinite

feature correspondences.

Figures 4.9 and 4.10 depict the reconstructed 3D maps of hybrid and standard SLAM,
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Figure 4.8: Map feature timelines of (a) 6DOF and (b) hybrid SLAM. Each graph shows

the number of map features over the sequence. Standard SLAM maps consist of finite

features only (blue). For hybrid SLAM, we distinguish between finite (blue) and infinite

(red) map features. Additionally, in (c), finite map features are split into finite features

triangulated from 6DOF keyframes (blue) and converted infinite features triangulated

from panorama keyframes (green).

respectively. We see that the hybrid SLAM map reconstruction is considerably larger.

More importantly, the hybrid mapping approach was able to reconstruct far more back-

ground detail, e.g., the wall on the right is almost entirely reconstructed from infinite

features, but not reconstructed at all by standard SLAM. Many of these infinite features

have been triangulated with correspondences between keyframes two local panorama maps
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(a) (b)

Figure 4.9: Final reconstructed 3D point feature maps of (a) 6DOF and (b) hybrid

SLAM projected onto the XY-plane. Finite features triangulated from 6DOF keyframes

are rendered in black, converted infinite features triangulated from panorama keyframes

are rendered in purple. The keyframes are located south of the table that hosts the AR

workspace.

(a) (b)

Figure 4.10: Reconstructed camera trajectories and keyframe locations of (a) 6DOF and

(b) hybrid SLAM projected onto the XZ-plane. Local panorama maps of hybrid SLAM

are rendered as spheres.

that have sufficient parallax, as can be seen in Figure 4.6.

Mapping time requirements. The increased map data volume and the additional

operations for panorama keyframe localization and infinite feature triangulation require

additional computational resources for mapping. Figure 4.11 shows the time requirements
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Figure 4.11: Major mapping tasks and its time requirements in seconds along the se-

quence. The tasks are triggered by diverse keyframe events. See text for further explana-

tions.

of (a) bundle adjustment, (b) panorama keyframe localization and (c) infinite feature

triangulation mapping tasks along the image sequence. Each timing slot refers to either

a (1) 6DOF or (2) panorama or (3) localized panorama keyframe event that triggers the

execution of the mapping thread. Depending on the keyframe event type, the mapping

tasks behave differently. Currently running tasks may be interrupted by an upcoming

high-priority keyframe event.

The effort for bundle adjustment increases quadratically with the number of local-

ized keyframes. Non-localized panorama keyframes are not included in the optimization.

Note that bundle adjustment is executed with a varying number of iterations. The effort

for panorama keyframe localization depends on the number of non-localized panorama

keyframes. The effort for infinite feature matching and triangulation increases linearly

with the number of localized keyframes which are used to query the descriptor database.

The number of query keyframes depends on the type of keyframe event. For a new 6DOF

keyframe, the database is queried with this single keyframe only, while, for a new local-

ized panorama keyframe, the database is updated with this keyframe and queried with all

available localized keyframes. For new panorama keyframes, the database is not queried

at all.

In our current implementation, the effort for infinite feature matching and triangu-
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lation sometimes exceeds the effort for bundle adjustment optimization. However, this

can be improved with better mapping task scheduling and selection of input features for

descriptor matching. We also consider a dedicated mapping task that removes redundant

6DOF and localized panorama keyframes with a similar method as described by Klein and

Murray [74].

We conclude that the information contained in local panorama maps can be fruitfully

used for 3D reconstruction resulting in SLAM maps with an increased number of 3D

features. Furthermore, we see that the map is built quicker and covers a larger extent,

both due to the possibility for delayed matching of infinite features. Larger and denser

finite feature maps allow for continued and more robust camera tracking.

4.5.1 Mobile phone application

Our hybrid SLAM system runs in real-time on modern mobile phones. We used a Sam-

sung Galaxy S2 equipped with a dual-core 1.2GHz ARM CPU and 2GB RAM running

Android OS 4 for our tests. As expected, we found the overall robustness and perfor-

mance restricted in comparison to the PC version. However, we applied the system in

indoor and outdoor environments and created maps with about 100 keyframes and 4000

map features, including finite map features of 25 local panorama maps. Irrespective of the

map size, tracking is mostly running with 20 to 30Hz. However, with increasing map sizes,

we noticed congestion symptoms in the mapping thread, resulting in delayed map updates

and, consequently, incremental pose tracking problems. Our implementation is not fully

optimized yet, and we did not adjust all system parameters to the mobile phone platform.

Figure 4.12 shows the mobile application handling a pure-rotation camera motion.

Figure 4.12: Hybrid SLAM system handling a pure-rotation camera movement in real-

time on the mobile phone.
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(a) (b)

Figure 4.13: Sample images of (a) indoor and (b) outdoor image sequences.

4.5.2 Panoramic SLAM accuracy and robustness

With the following experiment, we want to access the effects of camera translation onto

the accuracy and robustness of 3DOF panoramic SLAM.

We created a virtual model that is used to render synthesized image sequences. The

virtual model is depicted in Figure 4.14(a,b) and consists of a textured cylinder that is

observed with a 64◦ FOV camera that moves along a circular trajectory with varying ra-

dius. With this model, we simulate the real world situation where users perform imperfect

camera rotation movements. Starting with the ideal case of a camera rotating around its

nodal point, we introduce more and more camera translation to challenge the panoramic

SLAM method. The cylinder has a fixed diameter of 100cm and has its center in the

coordinate system origin. The circular camera trajectories are located in the XZ-plane

and have a varying radius r ∈ {0, 5, 10, 20, 30cm}, resulting in the ground truth camera

poses Pi = [Ri|(0, 0,−r)t] with R1 = I. We animated the camera to rotate 90◦ around

the Y-axis. For each camera trajectory radius, we rendered a 100-frame image sequence.

We processed the synthesized image sequences with our hybrid SLAM system. The

system selects the first frame as panorama keyframe, assigns the initial pose P1 = [I|0],

and initializes a map consisting of infinite features. The remaining images are processed in

panoramic SLAM mode: Further keyframes are mapped, while the camera is tracked from

infinite features, resulting in poses Pi = [Ri|0] with 3DOF rotation matrices Ri, while the

camera location stays fixed at the origin.

We recorded tracking and mapping statistics depicted in Figure 4.14(c, d, e). The

hybrid SLAM system tracked and mapped all image sequences successfully. In Figure
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Figure 4.14: Effects of camera translation on panoramic SLAM accuracy and robust-

ness: (a,b) virtual model used to generate synthesized image sequences. For each camera

trajectory radius: (a) Y-axis rotation error in degrees, (b) number of successfully tracked

map features, and (c) number of mapped keyframes.

4.14(c), we depict the Y-axis rotation error of the estimated camera pose of the final

sequence image for all radii, e.g., the pose estimated for the final 100th image frame with

radius r = 5 has a relative error of about 5◦. The camera translation encoded as additional

rotation by the pose estimator results in a quadratically increasing error.

We observe in Figure 4.14(d) that the number of successfully tracked map features

drops with increasing radius. That means that local active search fails for an increasing

number of map features since their projected location in the current frame is too far away

from their actual location.

Figure 4.14(e) shows the number of mapped keyframes, which increases with the ra-

dius. This behavior is a consequence of (c) in combination with the “view angle dif-

ference” keyframe selection criterion: With increasing translation, more virtual rotation
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is estimated, the threshold is reached quicker, and keyframes are selected earlier in the

sequence.

We conclude that panoramic SLAM can handle a considerable amount of translation.

In our system, we select panorama keyframes in a greedy manner, as our main priority is

to maintain tracking. We accept erroneous poses resulting from camera translation, since

panorama keyframes are localized in 6DOF anyway before being used for mapping.

4.6 Discussion

In the following, we discuss certain issues (aspects, limitations) of our system and provide

comparisons with the original PTAM system and our closest related work.

Our system combines 6DOF and panoramic SLAM methods and dynamically switches

between these operation modes depending on the camera motion. While in panorama

mode, we do not support transitions from pure rotation to general camera motion. This is

due to the fact that panoramic SLAM only allows for tracking the camera pose as 3DOF

rotation. Any camera translation is encoded as additional rotation, resulting in inaccurate

poses. While panoramic SLAM shows quite some robustness against translation (see

Section 4.5.2), there are cases where these inaccuracies result in tracking failure, e.g., due

to undetected camera loops. In rare cases, panorama maps may even become corrupted

beyond recovery. While this does not harm the global 3D map, tracking requires to be

reinitialized by relocalization with respect to the 3D map.

As described above, camera translation cannot be measured during 3DOF panoramic

tracking. When returning from the panorama map onto the 3D map, the unrecognised

camera translation results in 6DOF pose offsets. If these offsets are sufficiently large, local

active search fails to match projected finite map features, resulting in tracking failure due

to a lack of correspondences. In these cases, relocalization is required. Otherwise, we

iteratively track mixed sets of finite and infinite map features and transition seamlessly.

Infinite feature matching and triangulation generates a moderate number of outliers.

While we have not found these outliers severely disturbing our system, the system could

be improved with a mapping task that removes outlier observations and features, e.g., by

verifying reprojection errors. Additionally, the runtime behaviour of our mapping method

can be improved by revisiting descriptor matching and introducing redundant keyframe

removal. The performance of feature matching can be improved with better selection of

input features. Removing redundant keyframes and its map feature observations should

reduce the computational complexity of bundle adjustment optimization as well as track-
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Figure 4.15: Evaluating PTAM on the 2000-frame image sequence of Section 4.5: (a)

tracking status timeline indicating tracking success/failure comparable to Figure 4.5, (b)

final reconstructed 3D point feature map. See text for discussion.

ing.

4.6.1 Comparison with Klein et al .

We processed the 2000-frame image sequence from Section 4.5 with the publicly available

PTAM software1 described in the seminal paper of Klein et al . [72]. We modified the soft-

ware to automatically select first and second keyframes and to log mapping and tracking

statistics. The results are depicted in Figure 4.15.

From the tracking timeline in Figure 4.15(a), we see that PTAM tracks 63% of the

frames successfully. The image sequence contains five major rotation movements as ap-

parent in the tracking timeline of hybrid SLAM in Figure 4.5(b). PTAM fails to track

two of the rotation movements completely, but manages to track three movements at least

1http://www.robots.ox.ac.uk/ gk/PTAM/
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partially. Note that the comparison between PTAM and our SLAM system may not be

entirely fair, since the tracking success criteria of PTAM is less strict than ours (e.g.,

PTAM expects to track less map features to report tracking success).

The PTAM system selects 19 keyframes to reconstruct a map containing about 9000

point features. The initial map created from two keyframes already consists of about 5000

features. The PTAM method is well-known to gain its tracking robustness in large parts

from assembling large amounts of map features. In particular, PTAM does not verify if

landmarks have been mapped already, resulting in many redundant map features. The

3D map view in Figure 4.15(b) shows that PTAM triangulates many features despite

little parallax, resulting in spurious depth estimates. For example, consider the scattered

features along the camera view rays from bottom right to top left. Instead of unreliably

triangulating features from keyframes with insufficient parallax, our hybrid SLAM system

inserts these features as rays with infinite depth to local panorama maps.

Klein et al . [74] presented a heavily modified PTAM method that managed maps with

dramatically less features and was thus running in real-time on the iPhone 3G. We argue

that, even years later, the original PTAM method cannot be applied to modern mobile

phones, regardless of their increased computational power. The goal must be to cre-

ate high-quality maps with an optimized data volume that achieve similar robustness as

PTAM. In this respect, we consider our system to be better suited for mobile phones. We

provide two arguments: Firstly, comparing the reconstructed 3D maps of hybrid SLAM

(Figure 4.9(b)) and PTAM (Figure 4.15(b)), we see that our system reconstructed a con-

siderably larger portion of the scene with far less finite map features (1500 vs. 9000).

Secondly, we evaluated the total time used for mapping tasks over the entire image se-

quence: PTAM uses about 36 seconds and thus about two times more than hybrid SLAM,

which uses 18 seconds for mapping.

4.6.2 Comparison with Gauglitz et al .

In the following, we compare our method with Gauglitz et al . [53] - our closest related work.

Both methods share the idea of supporting general and pure-rotation camera motion by

combining 6DOF and panoramic SLAM methods. However, when looking at the details,

the methods differ in many respects and appear as rather complementary approaches.

Mapping. The system of Gauglitz et al . handles arbitrary switches between general

and pure-rotation camera motion, resulting in the creation of a new 3D/panorama submap

with each context switch. Separate 3D submaps have distinct scales. Within a feature
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track, successive 3D and panorama maps are linked via a common keyframe. Upon track-

ing failure, a new feature track is started. Our system handles general camera motion

alternated by temporary pure-rotation camera motions, resulting in local panorama maps

that are registered within a single consistent 3D map. Given keyframe pairs with suffi-

cient overlap exist, their system merges pairs of 3D-3D or panorama-panorama submaps.

However, their system does not merge pairs of 3D-panorama submaps, while our system

exploits the information contained in registered local panorama maps for 3D reconstruc-

tion.

Tracking. The system of Gauglitz et al . performs frame-to-frame tracking between

the current frame and the latest keyframe of the current 3D or panorama map. From the

resulting 2D-2D correspondences, multiple motion models are estimated. To get a global

6DOF camera pose, the existing keyframe poses are combined with a relative 6DOF pose

converted from the motion models. The conversion of the motion models into a relative

6DOF pose is potentially ambiguous. In contrast, our system performs global 6DOF

pose tracking by establishing 3D-2D correspondences between the current frame and the

projected features of the optimized map, and robustly estimating a 6DOF pose. Thus, we

additionally gain notion on whether the camera observes already mapped scene geometry,

which allows for more fine-grained keyframe selection.

Keyframe selection. The system of Gauglitz et al . employs the generalized GRIC

algorithm to distinguish homography/rotation and essential motion models, which may

result in ambiguities, if (1) the scene is planar (2) the camera motion is not a true rotation.

Our system employs the robustly tracked camera pose trajectory and scale-independent

thresholds for parallax and camera view angles for the detection of pure-rotation camera

motion.

Relocalization. The system of Gauglitz et al . performs delayed loop-closing=recovery

relocalization, which actually refers to the merging of 3D-3D or panorama-panorama

submap pairs that is done in the mapping backend. Our system performs immediate

relocalization in the tracking frontend with respect to the optimized map.

Summary. The system of Gauglitz et al . aims at rapidly reconstructing the scene with

potentially multiple submaps by continuously collecting image data in a visual-odometry-

style tracking frontend. Our “classic” SLAM system aims at supporting interactive aug-

mented reality applications by providing a persistent map coordinate system and 6DOF

camera poses that allow to register and render virtual content on top of the reconstructed

scene geometry.
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4.7 Summary

The presented hybrid SLAM system demonstrates that the extension of a standard 6DOF

optimization-based SLAM system with a dedicated panorama mode yields several im-

provements.

Most importantly, by employing a hybrid 3D map representation that contains finite

as well as infinite features, the system is able to track camera motions and scene environ-

ments which cannot be handled by typical monocular keyframe-based SLAM systems. In

particular, camera motions characterized as pure rotations and environments with large

camera-scene distances can be tracked. Thus, we showed that the total tracking time can

be substantially extended.

Employing a unified incremental map tracker, we obtain a robust and well-performing

system, because it always has a known map to track from. Therefore, it can use active

search combined with motion models, which has been demonstrated to work well under

fast motions and difficult lighting situations. Similarly, Gauglitz et al . have extended their

original work [53] with incremental map tracking capabilities, resulting in a considerably

more accurate and stable system [54].

Furthermore, our local panorama maps created during pure-rotation motion phases can

contribute substantially to a richer map. They allow estimating more points in less time in

the near field of the camera as well as mapping background structure through wide baseline

matching between these local panorama maps. This is enabled by making panorama

keyframes available for matching against later incoming keyframes. This concept has been

continued by Herrera et al . [61], who employ deferred triangulation of infinite features in

background mapping as well as during pose tracking and keyframe selection.

Additionally, the local panorama maps represent high-level scene features that enable

additional applications. For example, the local panorama maps could be rendered into

wide field-of-view images employed as environment maps for the reconstruction of the

local lighting conditions within the observed scene [34, 35] and, thus, enable photometric

registration and visually coherent rendering.

Overall, we believe that the present hybrid approach is a valuable combination that

naturally extends the design of optimization-based monocular SLAM systems. The ap-

proach contains ideas that have been taken on in follow-up works [54, 61]. In addition,

these works tackle the major limitation of our system, that is measuring parallax-inducing

camera motion during panoramic tracking of infinite features. Consequently, these algo-

rithms build up and manage multiple, however, only topologically connected sub-maps
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having distinct scales.

In order to detect these transitions, Gauglitz et al . [54] employ finite or infinite features

to perform model estimation and selection with generalized Geometric Robust Information

Criterion (GRIC) [162], while Herrera et al . [61] developed a cost function for iterative pose

estimation (as well as bundle adjustment) that takes both finite and infinite features into

account, and additionally allows for observing infinite features moving along the epipolar

line until they exhibit sufficient parallax for triangulation.

However, both of these algorithms are computationally expensive, such that our work

remains the only system having “unconstrained” camera motion and scene structure ca-

pabilities, that has also been demonstrated to run in real-time on hand-held devices.





5
Urban Outdoor Localization and SLAM Initialization

In this chapter, we introduce a novel method for instant geo-localization of the video

stream captured by a mobile device (see Figure 5.1). The first stage of our method

registers the image to an untextured 2.5D map (2D building footprints + approximate

building height), providing an accurately and globally aligned pose. This is done by first

estimating the absolute camera orientation from straight-line segments, then, estimating

the camera translation by segmenting the façades in the input image and matching them

with those of the map. The resulting pose is suitable to initialize a SLAM system. The

SLAM map is initialized by back-projecting the feature points onto synthetic depth images

rendered from the augmented 2.5D map.

Our system has several major advantages over the state-of-the-art: First, the global

localization component requires only OpenStreetMap-style data, which is widely available.

Second, the global localization does not require searching through a large database and is,

therefore, suitable for mobile devices with limited memory and computational capacity1.

Third, the initialization of the SLAM system from the first frame avoids the need to

tediously cover a sufficient outdoor baseline for stereo triangulation. Fourth, there is no

restriction on the camera motion: Tracking and mapping are possible even in the case of

purely rotational motion. This combination of features brings outdoor urban tracking a

significant step closer to use in practice.

111
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(a) (b)

(c) (d)

Figure 5.1: Outdoor urban usage of real-time SLAM with our novel localization tech-

nique. (a) User with a mobile device running our software. (b) Map view with sensor

pose (blue) and the pose estimate from our method (green). (c) Reprojection of a glob-

ally aligned building model into the image using the sensor pose (blue) and the same

reprojection after correction with our method (green). (d) Live camera view on the

mobile device with globally aligned augmentations. We use the corrected pose to synthet-

ically render a depth map from the building model and initialize a SLAM system, which

starts tracking the camera motion. We can then instantly augment the scene with virtual

elements. In contrast to previous systems, we do not need large translations for initializing

the SLAM system, and we can handle both purely rotational and general 3D motions.

5.1 Method overview

As depicted in Fig. 5.2, our method first obtains a single image (camera) and a pose esti-

mate from mobile sensors (GPS, compass, accelerometer), i.e., the first keyframe acquired

with a SLAM system running on a mobile device, plus a record of the built-in sensor values.

From the sensor data, a first 6DOF pose estimate is compiled, using the fused compass

and accelerometer input to provide a full 3× 3 rotation matrix w.r.t. north/east and the

earth center, and augmenting it with the WGS84 GPS information in metric Universal

1Note that our current unoptimized, single-threaded Matlab implementation of the global localization

component is one order of magnitude away from real-time operation. However, the SLAM component runs

at 30Hz, and we discuss later how the localization can be accelerated to meet real-time requirements.
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Figure 5.2: An overview of our method. The SLAM component provides image and

sensor data to the localization module, returning an accurate pose estimate for depth map

creation and SLAM initialization.

Transverse Mercator (UTM) coordinates to create a 3 × 4 pose matrix. This estimate is

used to retrieve a 2.5D map containing the surrounding buildings, i.e., using 2D building

and height data from OpenStreetMap. Note that, however, that this pose can be off by

30◦ and 15 m, which is not accurate enough for SLAM initialization.

For our localization method, we assume that most image line segments extracted from

the visible building façades are either horizontal or vertical. This is a common assumption

used in vanishing point and relative orientation estimation, valid for many urban envi-

ronments. Based on this assumption, we essentially solve a 2D-3D line correspondence

problem. Three correct image-model correspondences allow for computing the 6DOF pose.

However, our correspondence problem is profoundly non-trivial, since we find very little

matching information in our input data. Additionally, the pose prior provided by the

mobile sensors can be very noisy.

For the estimation of the global camera orientation (Section 5.2), we require a single

correspondence between a horizontal image line and a model façade plane. This problem

is robustly solved using minimal solvers in RANSAC frameworks.

For the subsequent estimation of the global 3D camera location (Section 5.3), we

require two correspondences between vertical image lines and model façade outlines. This

problem is tackled by first extracting potential vertical façade outlines in the image and

matching them with corresponding model façade outlines, resulting in a sparse set of 3D

location hypotheses. To improve the detection of potential vertical façade outlines in
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the image, we first apply a multi-scale window detector, before extracting the dominant

vertical lines. We verify the set of pose hypotheses with an objective function that scores

the match between a semantic segmentation of the input image and the reprojection of

the 2.5D façade model. The semantic segmentation is computed with a fast light-weight

multi-class support vector machine.

The resulting global 6DOF keyframe pose, together with the retrieved 2.5D model, is

used by the SLAM system to initialize its 3D map (Section 5.4). We render a depth map

and assign depth values to 2D keyframe features and thus initialize a 3D feature map.

This procedure is repeated for subsequent keyframes to extend the 3D map, allowing for

absolute 6DOF tracking of arbitrary camera motion in a global coordinate system.

5.2 Orientation estimation

We describe the estimation of the absolute orientation of the given camera image with

respect to the 2D map. We start by computing the pitch and roll (Section 5.2.1), i.e., the

orientation of the vertical camera axis with respect to gravity, followed by computing the

yaw (Section 5.2.2), i.e., the remaining degree-of-freedom of the rotation in the absolute

coordinate system of the 2D map.

5.2.1 Estimating the vertical axis

We want to estimate a rotation matrix Rv that aligns the camera’s vertical axis with

the gravity vector. We do so by determining the dominant vertical vanishing point in

the image, using line segments extracted from the image. We rely on the Line Segment

Detector (LSD) algorithm [56], followed by three filtering steps: (1) We only retain line

segments exceeding a certain length. (2) Lines below the horizon line computed from the

sensor rotation estimate are removed, since these segments are likely located on the ground

plane or foreground object clutter. (3) Line segments are removed, if the angle between

their projection and the gravity vector given by the accelerometer sensor is larger than a

threshold [79].

The intersection point p of the projections l1 and l2 of two vertical lines is the ver-

tical vanishing point. It can be computed with as a cross product using homogeneous

coordinates:

p = l1 × l2 . (5.1)

As suggested by Rother et al . [130], we search pairs of lines in order to find the dominant
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vanishing point. For each pair of vertical line segments, we compute the intersection point

and test it against all line segments, using an angular error measure:

err(p, l) = acos

(
p · l

||p|| · ||l||

)
. (5.2)

The dominant vertical vanishing point pv is chosen as the one with the highest number of

inliers using an error threshold of σ degrees, evaluated in a RANSAC framework.

Given the dominant vertical vanishing point pv, we compute the rotation which aligns

the camera’s vertical axis with the vertical vanishing point of the 2D map. The vertical

direction of the 2D map is assumed as z = [0 0 1]>. Besides that, no other information

from the 2D map is needed.

Using angle-axis representation, the axis of the rotation is u = pv × z, and the angle

is θ = acos(pv · z), assuming that the vertical vanishing point is normalized. The rotation

Rv can be constructed using SO(3) exponentiation:

Rv = expSO(3)

(
u · θ

||u||

)
. (5.3)

5.2.2 Orientation in absolute coordinates

At this point, the camera orientation is determined up to a rotation around its vertical

axis (yaw). In this section, we explain how to estimate this last degree of freedom for the

orientation in the absolute coordinate system of the 2D map. The procedure is illustrated

in Fig. 5.3: The image line segments are rotated and and back-projected onto an extruded

2D model. The optimal rotation R makes the back-projections as vertical and horizontal

as possible. Note that for estimating R, we do not require the building façade heights,

but only rely on a 2D map that provides oriented line strips which allow for retrieving the

building façade normals.

Given a façade f from the 2D map, its horizontal vanishing point is found as the cross

product of its normal nf and the vertical axis z:

ph = nf × z . (5.4)

After orientation correction through Rv, the horizontal image lines l lying on f should

intersect ph. Thus, given a horizontal vanishing point ph and a rotated horizontal line

segment l3 = R>v l, we can compute the rotation Rh about the vertical axis to align the
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rotation ransac: sInlierMethod(AllMin), nIdxPlane(21)
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Figure 5.3: Estimating rotation R. Top: line segments identified as vertical (yellow)

and horizontal (cyan, white) in 3D compared to the reprojection (green) of the model after

rotation correction, but before translation correction. Bottom left: Back-projection of

the line segments using the sensor pose. Bottom right: Back-projection after rotation

correction, which aligns the vertical and horizontal line segments with the façade model.

camera’s horizontal axis with the horizontal vanishing point of f . This rotation has one

degree of freedom, φz, the amount of rotation about the vertical axis:

Rh =


cosφz −sinφz 0

sinφz cosφz 0

0 0 1

 . (5.5)

Using the substitution q = tanφz2 , we get cosφz = 1−q2
1+q2

and sinφz = 2q
1+q2

[76]. We can
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parameterize our rotation matrix in terms of q:

Rh =
1

1 + q2


1− q2 −2q 0

2q 1− q2 0

0 0 1 + q2

 . (5.6)

The intersection constraint between l3 and the horizontal vanishing point ph is expressed

as

ph · (Rhl3) = 0 . (5.7)

The roots of this quadratic polynomial in q determine two possible rotations. This ambi-

guity is resolved by choosing the rotation which best aligns the camera’s view vector to

the inverse normal −nf .

Finally, the absolute rotation R of the camera is computed by chaining the two previous

rotations Rv and Rh:

R = RvRh . (5.8)

In practice we create pairs < l, f > from line segments l assigned to visible façades

f , identified from the 2D map using the initial pose estimate from the sensors. We use a

Binary Space Partition (BSP) tree for efficient search the 2D map for visible façades – a

BSP tree is a data structure from Computer Graphics to efficiently solve visibility problems

[52]. We evaluate the angular error measure from Eq. (5.2) for a rotation estimate from

the pair < l, f > in a RANSAC framework, choosing the hypothesis with the highest

number of inliers.

We have to consider the following case of < l, f > pairs, where l is actually located

on a perpendicular façade plane f⊥, resulting in rotation hypotheses R which are 90◦ off

the ground truth. Given a visible façade set where all façades are pairwise perpendicular,

such a rotation hypothesis may receive the highest number of inliers. We discard such

< l, f⊥ > pairs by computing the angular difference between the sensor pose and the

rotation hypothesis R and discard the hypothesis, if it exceeds a threshold of 45◦.

The case of < l, f > pairs where l is actually located on a parallel façade f‖ does not

cause any problems, because in this case f‖ and f have the same horizontal vanishing

point ph.
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Figure 5.4: Generating translation hypotheses. (a): Vertically rectified image. (b):

Image gradients. (c): Histogram of the sums of the gradient magnitude over the columns.

(d): Segmentation of the façades in cyan and window detections in black. (e): Image

gradients only for the pixels lying on a façade, but not on a window. (f): Histogram

of gradient sums and selected vertical image lines. (g): Selected image lines overlaid on

the original image. (h): 3D model lines from building corners overlaid on the original

image using the ground truth pose. Most of the visible building outlines were successfully

detected with our method.

5.3 Translation estimation

The vertical and horizontal segments on the façades allow estimation of the camera’s

orientation in a global coordinate system. Unfortunately, the segments do not provide

any useful constraint to estimate the translation, since we do not know their exact 3D

location. In theory, the pose could be computed from correspondences between the edges
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Figure 5.5: Pixel-wise segmentations obtained with a multi-class SVM for two different

images. Cyan corresponds to façades, blue to sky, orange to roofs, green to vegetation,

and yellow to ground plane.

Figure 5.6: Computing the log-likelihood. Left: Probability map for cf , the façade

class. Middle: Probability maps for cs, cr, cv and cg. Right: Reprojection Proj(M, p)

for a pose close to the ground truth.

of the buildings in the 2D map and their reprojections in the images. In practice, it

is virtually impossible to directly obtain such matches reliably in absence of additional

information.

We approach this problem by aligning the 2D map with a semantic segmentation of the
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image. We can estimate the translation of the camera as the one that aligns the façades

of the 2D map with the façades extracted from the image.

To speed up this alignment and to make it more reliable, we first generate a small set

of possible translations, given the line segments in the image that potentially correspond

to the edges of the buildings in the 2D map. We keep the hypotheses that best aligns the

2D map with the segmentation. We give details on these two steps below.

5.3.1 Generating translation hypotheses

In practice, the translation along the vertical axis is the most problematic one to estimate

from the image, because the bottoms of the buildings are typically occluded by foreground

clutter (cars, pedestrians). We, therefore, simply set the height of the camera at 1.6 m,

which is reasonable for a handheld device.

For the remaining two degrees of translational freedom, we generate possible horizontal

translations (parallel to the ground plane) for the camera by matching the edges of the

buildings with the image. However, this is a very challenging task, as the images are very

cluttered in practice.

As shown in Fig. 5.4, we generate a set of possible image locations for the edges of the

buildings with a heuristic. We first rectify the input image using the orientation, so that

vertical 3D lines also appear vertical in the image, and we sum the image gradients along

each column.

The columns with a large sum are likely corresponding to the border of a building.

However, since windows also have strong vertical edges, they tend to generate many wrong

hypotheses. To reduce their influence, we trained a multi-scale window detector based on

the work of Viola and Jones [172] on the ZuBud building database [140]. Only almost

frontally viewed windows were manually extracted and used for training, resulting in a set

of 1170 positive images. As negatives, a set of private images from travels and parties was

used. The resulting detector has 28 stages with a total of 651 features. Despite this simple

procedure, the detector works reasonably well, still leaving a lot of room for optimization,

both in terms of overall cascade depth as well as the selection of negative imagery given

the expected urban streetview domain (see e.g., [67]).

Pixels lying on the windows found by the detector are ignored, when computing the

gradient sums over the columns. We also use the façade segmentation result described in

Section 5.3.2 to consider only the pixels that lie on façades, but not on windows. Since

the sums may take very different values for different scenes, we use a threshold estimated
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automatically for each image. We fit a Gamma distribution to the histogram of the sums

and evaluate the quantile function with a fixed inlier probability.

Finally, as shown in Fig. 5.4(g) and Fig. 5.4(h), we generate translation hypotheses for

each possible pair of correspondences between the vertical lines extracted from the image

and the building outlines. The building outlines come from the corners in the 2D maps

that are likely to be visible, given the location provided by the GPS and the orientation

estimated during the first step, again using the BSP tree for efficient retrieval. Given

two vertical lines in the image, l1 and l2, and two 3D points which are the corresponding

building corners, x1 and x2, the camera translation t in the ground plane can be easily

computed by solving the following linear system:{
l1 · (x1 + t) = 0

l2 · (x2 + t) = 0
. (5.9)

We filter the hypotheses set based on their estimated 3D location. First, hypotheses

which have a location outside of a sphere whose radius is determined by the assumed

GPS error of 12.5 m [184] are discarded. Second, we remove hypotheses which are located

within buildings.

5.3.2 Aligning the 2.5D map with the image

To select the best translation among the ones generated using the method described above,

we evaluate the alignment of the image and the 2.5D map after projection, using each

generated translation.

We use a simple pixel-wise segmentation of the input image, by applying a classifier to

each image patch of a given size to assign a class label to the center location of the patch.

The segmentation uses a multi-class Support Vector Machine (SVM) [138, 22], trained

on a dataset of images from a different source than the one used in our evaluations, man-

ually segmenting the images using the LabelMe service [132]. We use the integral features

introduced by Dollar et al . [36], and consider five different classes C = {cf , cs, cr, cv, cg} for

façade, sky, roof, vegetation and ground, respectively. By applying the classifier exhaus-

tively, we obtain a probability estimate p for each image pixel over these classes. Fig. 5.5

shows an example of a segmentation for a typical input image.

As illustrated in Fig. 5.6, given the 2D projection Proj(M, p) of our 2D map+height
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M into the image using pose hypothesis p, we compute the log-likelihood of the pose:

sp =

Proj(M, p)∑
i

log pi(cf ) +

¬Proj(M, p)∑
i

log (1− pi(cf )) , (5.10)

where ¬Proj(M, p) denotes the set of pixels lying outside the reprojection Proj(M, p).

The pixels lying on the projection Proj(M, p) of the façades should have a high probability

to be on a façade in the image, and the pixels lying outside should have a high probability

to not be on a façade. We keep the pose p̂ that maximizes the log-likelihood:

p̂ = arg max
p

sp . (5.11)

In practice, the 3D location estimated from the sensors is often not accurate enough to

directly initialize our method. We therefore sample six additional initial locations around

the sensor pose in a hexagonal layout, and combine the locations with the previously

estimated orientation. We execute our method initialized from each of these seven poses,

searching within a sphere having 12.5 m radius [184] for each initial pose. Thus, our

method can find the correct image location within a region of up to 40x40 m. Finally, we

keep the computed pose with the largest likelihood.

Note that this approach naturally extends to more complex building models, for ex-

ample, if the roofs of the buildings are also present in the model. The log-likelihood then

becomes:

sp =
∑
c∈CM

Proj(Mc, p)∑
i

log pi(c) +

¬Proj(M, p)∑
i

log

1−
∑
c∈CM

pi(c)

 , (5.12)

where CM is a subset of C and made of the different classes that can appear in the buildings

model, and Proj(Mc, p) is the projection of the components of the buildings model for

class c.

Much more sophisticated methods could be used [142, 44], but we have empirically

verified that the camera translation is reliably computed, despite the relatively limited

quality of our segmentation.
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Figure 5.7: Top row: Two keyframes from the globally aligned SLAM system on a test

sequence. Bottom row: Corresponding depth images rendered from the actual camera

pose.

5.4 SLAM initialization using depth from 2.5D models

Recent SLAM systems for indoor use often rely on depth sensors for superior robustness

and instant initialization. These sensors are not available outdoors, but we can use the

2.5D map to generate and use synthetic depth images as a cue for mapping and tracking.

We use a keyframe-based SLAM system, similar to PTAM [72]. The tracking and

the mapping thread run asynchronously and periodically exchange keyframe and map

information. Our localization approach registers the first keyframe to the 2.5D map.

Using this pose estimate, we render a polygonal model using the graphics hardware and

retrieve the depth buffer to assign depth to those map points which correspond to observed

façades. We arrive at a full 3D map already for the first keyframe. Previous approaches

required establishing a baseline of several meters between the first two keyframes for initial

triangulation [169].

As the SLAM system acquires more keyframes, the procedure is repeated, and tracked

map points collect multiple observations for real triangulation, once the baseline between

keyframes is sufficient. Fig. 5.7 shows two keyframes of a test sequence and the corre-

sponding depth images.
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5.5 Experimental results

In this section, we first describe the dataset we built to evaluate our localization approach,

and then report and discuss the results of the evaluation. Finally, we demonstrate its

application to globally-aligned instant urban outdoor SLAM.

5.5.1 Dataset

To demonstrate the applicability of our approach, we captured a dataset of 32 images with

an Apple iPad Air in urban and suburban environments of Graz, Austria.

The images were captured without any special consideration for satellite shadowing

or surrounding metallic structures. As a consequence, the accuracy of the pose estimated

with the sensors only ranges from very accurate, about 0.4 m position and 2◦ rotation

error, to very poor, up to 16.5 m position and about 30◦ rotation error. Since altitude

estimates from sensors tend to be very poor, we overrode these estimates of the poses

predicted by the sensors with a default value of 1.6 m. For each test image, we calculated

a ground truth pose by manually matching 2D image locations with 3D points from the

maps.

We retrieved 2D maps of the surroundings from OpenStreetMap and extruded them

with a coarse estimate of the height of the building façades. OpenStreetMap data consists

of oriented line strips, which we converted into a triangle mesh including face normals.

Each building façade plane is modeled as 2D quad with four vertices, two ground plane

vertices and two roof vertices. The heights of the vertices were taken from aerial laser

scan data. All vertical building outlines were aligned with the global vertical up-vector.

5.5.2 Orientation and Translation accuracy

Fig. 5.8, top, plots the angular error of the camera pose predicted by the sensors and after

correction with our method. The error is calculated as the angular difference between the

estimated rotation and the ground-truth rotation in angle-axis representation. We ranked

the images from the one with the largest error after correction to the one with the smallest

error. The sensor error can become as large as 30◦. With our method, all our orientation

estimates have an angle error below 5◦, with the exception of a single outlier image which

contains very few horizontal lines. 90.6% of the estimates are below 3◦, 84.4% below 2◦

and 50% below 1◦ of angular error w.r.t. the ground truth rotation.

Fig. 5.8, bottom, gives the results of our translation estimation method. As for the
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Figure 5.8: Pose estimates accuracy. Top: Orientation, and Bottom: Translation. We

ranked the images from the one with the largest error after correction to the one with

the smallest error. Our method significantly improves the accuracy of the orientation and

translation estimates.

rotation, we ranked the images from the one with the largest error after correction to the

one with the smallest error. The sensor errors range from about 0.4 m to about 16.5 m,

with an average error of about 8 m. Our method significantly decreases the translation

error in most of the cases. The worst results are due to adjacent buildings, with edges

that cannot be extracted correctly. Overall, our method is able to considerably improve

the position estimates from the sensors, with the pose estimates for 87.5% of the images

being below 4 m, 68.8% below 2 m and 59.4% below 1 m of error w.r.t. the ground truth

position.

5.5.3 Visual inspection

Fig. 5.9 presents the final results of our algorithm for a wide variety of test images, showing

the reprojection of the model using both the sensor pose and the pose retrieved from our



126 Chapter 5. Urban Outdoor Localization and SLAM Initialization

139

139

139

121

121

121 139

139

139

139

139

139

121
121

121

−40 −30 −20 −10 0 10 20

−70

−60

−50

−40

−30

−20
4546

47
484950

128

51

129

127

130

126

52

131

53

125

132

139

121

147

140

138122

120148

146110

133
134

137

123

136

135

124

119

145

149
150

152
151

114

114127

126
130

130

1303

3

3

114

114

126

126

126

126

130

130 4

4

4

4
4

−40 −30 −20 −10 0 10 20

−35

−30

−25

−20

−15

−10

−5

0

5

10

4

23
24
25
26
2728

37

2930

36

313233

35

34

53

63

64

65

54

62

666768

55

697071

61

56

727374

60

757677

57

59

78

58

79
80
81
82
83
84

144

114

126

145

143115

113127

125131

142

112

120

124

121

123

122

176

176

176

237

237

235

235

235

235

234

234

176

176
236

236

234

234

234

98

98

98

98

232

232232

237

237

237

237

235

235

235

235

234

234236

236

234

234

234

98

98

98

98

232

232232

187

187

187

35

162

162

161

161

161

36

36

162

162

162

164

164

−40 −30 −20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

25

30

114

115

48

237

195

49

236

5051

52

53

235234

233

176

232

99231
98

177

212211178

210179

213

24

24

24

16

16

1684

84

24

24

24

24

24
24

24

24

16

16

1684

84

84

84 24

24

24

24

24

74

−30 −20 −10 0 10 20 30

−30

−25

−20

−15

−10

−5

0

5

10

15

20

103

77

76

108

102

23

7822

79

21

24

6

20

8317
16

92112

15

8218
8119

7
9

91

80

8
57

84

101

11

8512
1458

100

13

11498

99

39

113

4041

38

123

42

102

102

102

102

101
144

144

101

101 100 100100

100

100

100 116

116

116

116

144

144

144
102

102

102

102

101144

144

101

101 100

100

100

100

100

100
100

100

100 116

116

116

116144

144

144

−50 −40 −30 −20 −10 0 10 20

−20

−10

0

10

20

30

13387

204

131

25

137

130

121

129

122

128127
126
123
125124

26136

134

203

135

202

219

218
217
216

215

60

61

5359

101

102

58
575655

62

54

100

103143

6369

68
67

97

96

142

98

141

11799

70

118119

116

120

4671

112
113

21

21
25

25

25

25

21
24

245

5

5

5

8

8

7

7

7 6

6

23

23

23

24

243

3

10

10

109

9

9

10

10

10

3

3

3

13

13

13

13

14

14

14

20

20

20

21

21

2125

25

25

25

21

21
24

24
20

2023

23

23

24

24

38
20

20

38

38

38

38

20

20

20 41

41

41

42

42

42

46

4645

16

16

16

16

17

17

46

46

46

−40 −30 −20 −10 0 10 20 30

−60

−50

−40

−30

−20

−10
16

41

17

4039

18

29

19

28

38

55

27

36

54

37

20

53

26

23
22

21

24
25

16

16

17

37

37

37

11

11

11

167

167

167

167

167

167

167

16

16

16

8282

8282
16

16

16

17

17

1718

18

82

82

37

37

37

18

18

18

37

37

37

37

37

150
151

151

151
151
151

16

16

16

16

16121

120

120

120

120

−30 −20 −10 0 10 20 30
−50

−40

−30

−20

−10

0

62

63

54

120

106

64

104

105

15121

16

14
13

17

3619

83

18

101

82

84

95

100

73

74

81

134

75

135

76
77

133131

78

88

79

89

80

132

90

87

128

91

86

9392

85

74

74

74

74

74

74

121

121

121

75

75
104

104

104

103
103

103

−40 −30 −20 −10 0 10

−30

−25

−20

−15

−10

−5

0

5

10

9

118

102

119

77
78
79

12076

80

103

5

8173

75

6789

74

140

44

41

43

42

139

47

48

46

155

15449
156115

50

157

5368

46

46

46

6060

60

60

52

52

60

6052

52

52

52

52

52

52

52

52

52

52

5256

56

102

102

102

102

46

4647

47

47

101

101

101

46

46

46

60

60100

100

60

60

60

60

52

52

60

6052

52

52

−10 0 10 20 30 40 50 60 70

−20

−10

0

10

20

30

40

45

4

6
5

742
8

9

36

37

47

101102
100
103104

9998

48

97
95
96

46

94

38

93

49

92
91

50

81
80

6151

82

39

62
83

60

67

63

90

68

66

69

29

30

28

53

70

64

71

757476
77

12365

54

122

5

5

92

39

39

39

40

40

40

39

39

39

39

39

36

36

36
35

35

35

46

46

4

4

4

39

39

39

40

40

40
44

44

44

39

39

39

39

39

36

36

36 35

3546
46

46

−30 −20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

25 11

24

10

1

9

2

8

56

4

7

3

40

44

41

43

25

42

39

2627

38

28

37

145

145

144
144

144144
144

144

170169

131

131
144 144 144144

144

144

144

132

143

143

143143

143

143

143

143

143143

143

170

143

143

143

169169

169

169

169

169

169

169

169

−20 −10 0 10 20 30

−25

−20

−15

−10

−5

0

5

10

15

106

157

66

158160

194

161

65

162

73

70

163

72

159

71

164

62

165

61

63

166

128

168

167
188

189

60

64

187

90

91

89

118

92117

93127

186

131

129

126
125

124

119

130145

123122

146

48120

47121

144

46

147

148

49

149
132

133
134135

50

51

85

8452

143
28

2828

28

28
94

94

94

94

93

15

15

15

15

3

3
93 94

94

94

94

93

15

15

15

15

3

3
93

93

93

93

93

93

93
61

61

61 61

61

−50 −40 −30 −20 −10 0 10 20
−20

−10

0

10

20

30

40

60

156

158

57

61

565591

9262

155

159

90

160161162

96

89

80

88

81

87

163

86
85
82
8483

295

93

154

164110

94

153

170

169
168
167

109108

166

165

106
107

105

27

28

68

69

29

67

70102

3036

64

63

101

65

100

6676

29

29

28

28

26

26

26

29

29

30

30

31

3133

33
73

73

43

43

33

3343

4344

44

45

45

4547

47

44

44

4443

4347

47

47

4756

56

56

47

47

47

55

56

56

29

29

29

28

28

28

26

26

26

29

29

29

30

30

30

31

31

3133

33

73

73

7374

11

11

11

11

12

12

1213

13

1373

73

73

43

43

33

3343

4344

44

45

45

4547

47

44

44

4443

4347

47

47

47
56

47

47

55

56

56

−40 −30 −20 −10 0 10 20 30 40 50 60

−40

−30

−20

−10

0

10

20

30

40

137

131

134

141

144143

150

149

142

151

148

152

103

153154155
156

102

146

145

101

29
30

28
27

3132

26

74

33

73

7525

13

43

23

42

22
24

17

44

21

18

76

15

20

7214

19
16

62

45

63

41

46

64

68
69

67

70

40

71

65

47

66

1

159

2

158

3

48

4

16039

5

55

36
37
3534

165

157

38

166

161

56

167

164

162

6

545253
51

168

83

50

85
84

86

82

49

8788

81

57

89

80

163

58

121

59

61

79

120

78

117

90

122

118

169

119

60

77

116

123124125

10592

76

76

76

71

71

71

72

75

75

75

71

71

71

72

72
104

104

104

103

103

103

76

76

76

76

71

71

71

72

75

75

75

71

71

71

72

72
104

104

104

103

103

103

76

76

−10 0 10 20 30 40 50 60

−70

−60

−50

−40

−30

−20

85

82

84

66

83

80

91

67

9089

68

79

69

78

88

105

77

86

104

87

70

103

76

73
72

71

74
75

139

139

139

139

139

139

121

121
139

139

139
121

121

121148

148 147

147

−40 −30 −20 −10 0 10 20
−70

−60

−50

−40

−30

−20

−10

46
47

484950

128

56

51

127

126

55

52

54
53

125

132

139

121

147

109

140

138122

148120

146110

133
134

137
123

136

135

124

119

145

107

149
150

152
151

217217

101

101

101

93

217

217

217

101

101

101

101

93

217

217

217

217

217

152

151

151

151

165

164

164

164

164

164

190185

189

189

189

186

186

186185

−35 −30 −25 −20 −15 −10 −5 0 5 10 15

0

5

10

15

20

25

30

35

8

87

52

94

12695

53

96
97

54

93

62

98

61
60

69

101

24

2575

103

76

102

106

107

40

14

2

109

109

109139

139
109

109

109

109

118

117

117139

139

139

−30 −20 −10 0 10 20

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

46
47

48

58

49

57

50

56

51

55

52

54
53

121

139

109

140120

138110

108118

119

137

107

111

126

126

114

114

114

144

144

126

126

114

114

114

144

144

−40 −30 −20 −10 0 10

−35

−30

−25

−20

−15

−10

−5

0

5

54

62

666768697071

61

727374

60

757677

57

59

78

58

79
80
81
82

144

114

126

115143

113127

142

112

120

124

121

123

122

79

7911

11

11

139

−20 −15 −10 −5 0 5 10 15 20 25

−30

−25

−20

−15

−10

−5

0

5

31

26

3619

30

42

29

28

10541

27

104

10640

157107

15439

37

15699

38

155

79

82

11

7812

139

77

14010

9

141

80

80

11

80

80

84

84

84

65

65

65

65

65

80

80

11

80

80

84

84

−20 −10 0 10 20 30

−25

−20

−15

−10

−5

0

5

10

15

46

2122

32

45

23

14

24

44

13

43

25

31

26

3619

30

42

29

28

18

10641

27

105

10740

158108

15539

37

157100

38

156

80

8381

11

7912

140

78

14110

132139

9

143145

142

2

90

24

24

242525

25

2526
24

24

24
16

16 16

16

16

24

24

2425

25

25

34

34

34

34

26

26

11

11

11

11
24

24

24
16

1616

16

−30 −20 −10 0 10 20 30

−20

−15

−10

−5

0

5

10

15

20

25

30

49

50

454488

8951

152

156157158159

84

160

90

151

161
107

150

167

166
165
164

106105

163

162

103
104

25

65

66

26

100

64

6799

63 132

119
119

119

119

119

119

119

119

119

150

150

150

58

58

58

5959

59

60

58

5858

5858

5858

58

58

−35 −30 −25 −20 −15 −10 −5 0 5 10 15

−20

−15

−10

−5

0

5

10

15

104

162

68

163

159

69

164

49

165

48

50

166

116

168

167
188

47

51

220190

187

88

89

87

106

90105

91
115

119

117

113
112

107

133118

111110

134

35108

34109

132

135

136

36

137

120

121
122

Figure 5.9: Results of our approach on test images. For each triplet of images: Left:

Model reprojection into the image using the initial sensor pose. Middle: Model repro-

jection into the image using the final estimated pose. Right: Map view, sensor pose (in

blue) and the corrected pose (in green).
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Figure 5.10: Images with the largest pose errors. For each triplet of images: Left: Model

reprojection into the image using the initial sensor pose. Middle: Model reprojection into

the image using the final estimated pose. Right: Map view, sensor pose (in blue) and

the corrected pose (in green). Even for these images, the model reprojection tends to be

close to the expected position.

approach. After pose estimation, the outlines of the models nicely fit the building outlines,

even for very challenging scenes with many façades visible and a considerable rotation and

position error in the sensor estimate. The amount of correction can be assessed from the

map view, as both the rotation and translation undergo a significant correction during the

application of our method.

Fig. 5.10 shows the images with the largest pose errors. In the upper left scene, the

algorithm is fooled by a street lamp, in the upper right scenario the classification result is

bad around the window areas, finally resulting in a wrong estimate of the scene distance.

In the lower left scenario, a model of the background building is missing. In the lower right

case, the classification result and the model line selection is bad, causing the translation

estimation to fail.

5.5.4 Unconstrained SLAM using depth images

We evaluated the integration of the single image geo-localization for initializing our SLAM

system on multiple sequences, featuring both rotation-only and general camera motion.

Our new approach has noticeable benefits over conventional SLAM in urban outdoor

environments, as it provides accurate 6DOF localization right from the start. Usability

is considerably improved, in particular, for panoramic camera motion, which users can

hardly avoid [53, 119]. A direct comparison to Ventura et al . [169] with frames of a SLAM

sequence is given in Fig. 5.11. In the previous approach, it takes more than 12 seconds

for the system to successfully initialize, while our approach provides a globally accurate

6DOF pose for SLAM starting from the first captured image. Note that the estimated

camera trajectory is considerably smoother, because the 3D locations of feature points are
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Frame #1 Frame #125 Frame #261

Frame #750 Frame #1500 Frame #2250

Figure 5.11: Comparison of previous work and our approach, together with the estimated

camera trajectories. Top row: Results from previous work [169]. Due to the required

baseline between keyframes, the system initializes after about 12 seconds. Middle row:

Results from our approach. Bottom row: Trajectories estimated by previous work (blue)

and our approach (red). Note that the trajectory estimated by our new approach is

considerably smoother.
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Figure 5.12: Top row: Annotation results from a rotation-only sequence. Bottom

row: Expanding SLAM map, while the user rotates a handheld device. The map nicely

resembles the structure of the surrounding buildings.

constrained by projecting them onto the façades.

Fig. 5.12 shows results of augmentations for a rotation-only sequence together with the

evolving SLAM map over time as the user rotates the device. Note that the planar labels

nicely align with the real building façades, and the recovered 3D SLAM maps resemble

the surrounding building structure quite accurately.

5.6 Discussion

In the following, we critically discuss our results with respect to the current status of our

framework and potential improvements.
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5.6.1 Localization method

Our localization method gives good results on a large number of diverse scenes. The

method is very versatile, since it only sets one strict requirement onto an input image:

the visibility of two vertical building façade outlines – meaning that a façade may also be

truncated towards the sky and/or towards the ground plane. Furthermore, we can cope

with considerable sensor pose errors, potentially as much as 45◦ rotation offset and up to

40 m of position offset.

We identified the main reasons for a complete failure of our method to be cases where

the pose prior from sensors is unusable – either, because it is inside a building, or, because

it is misplaced in an a incorrect street segment, where the correct building façades cannot

be observed. A simple improvement for the former case is to move the pose prior to the

nearest street location, but this heuristic is not guaranteed to solve the problem in all

cases.

The main reason for errors in our orientation estimation is an insufficient number of

suitable vertical or horizontal lines found in an image to allow for robust vanishing point

estimation. Tweaking the line detection parameters might partially overcome this problem

for certain scenes.

Errors in our translation estimation are mainly due to the inability of our algorithm to

detect the correct façade outlines for various reasons, e.g., because the orientation estimate

is bad, adjacent façades look too similar, the façade texture contains too much clutter or

the window detector does not properly filter out windows. Similarly, the scoring function

might select the wrong hypothesis, because of a bad semantic segmentation result or a bad

reprojection result owed to insufficient model detail. All individual steps might undergo

additional tuning to improve the overall performance of the approach.

Currently, the pose computation is implemented as unoptimized, single-threaded Mat-

lab code and requires about 30 seconds per frame on a single CPU core on a 2011 Intel

2.5 GHz i5 Macbook Pro for a 640×360 image. The execution time for the individual

major parts of the algorithm are given in Table 5.1. However, each of these steps have

been demonstrated at much higher speed with optimized code and a GPU. For example,

most of the time for the window detection step is used for image warping. Using the GPU

would provide a significant speedup.
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Part Algorithm Approx. Time [s]

(i) Window detection 10

(ii) Segmentation 14

(iii) Translation estimation 6

Table 5.1: Timings of major parts of our unoptimized localization procedure running

mainly in Matlab on a single CPU core on a 2011 Intel 2.5 GHz i5 MacBook Pro for a

640×360 image

5.6.2 SLAM

The SLAM system is very robust, runs in real-time on current mobile devices and works

sufficiently well even under difficult lighting conditions outdoors. Currently, the system

uses a single localization result to initialize the 3D map and to maintain it over time

through rendering new keyframes and extending the map with new 3D points. However,

even a small rotational error (< 1 degree) or a position error below 25cm accumulated

through drift in the system over time might create a noticeable offset in the visualization

of annotations in the distance. Therefore, the use of multiple localization results over

time and the inclusion of more advanced methods in the iterative optimization of the sys-

tem (i.e., bundle adjustment) would improve the overall system robustness and accuracy

considerably. We consider this a future work topic.

5.6.3 AR content and models

Our entire approach is designed to only take into account the minimum information one

might hope for to be available anywhere globally: a 2D map and some building height

information. Naturally, with more detailed and accurate models, even better results could

be achieved. Also note Eq. (5.12), where we mentioned the natural extension of our

approach in terms of semantic information in the segmentation stage.

In AR, this raises an important point where synergies can be exploited: As there needs

to be annotated content to be visualized, this information can, in turn, feed back into the

localization approach to improve localization performance. For example, using the AR

annotations of windows or doors can be used in connection to our window detector to

add another semantic class to the scoring function. We therefore argue that certain AR

content might itself be used to improve localization performance within our framework,

although this content is largely missing at this point in time.



132 Chapter 5. Urban Outdoor Localization and SLAM Initialization

5.7 Summary

We have presented a novel approach for accurate and efficient 6D pose geo-localization and

mapping which relies only on components readily available for urban outdoor AR: open-

source 2.5D maps as well as motion and camera sensors, which are built into modern hand-

held devices. Given a single narrow field-of-view image, our method considerably improves

the coarse 6D pose priors retrieved from motion sensors (GPS, compass, accelerometer)

using computer vision techniques. In particular, we are exploiting vertical and horizontal

line segments located on planar building façades. Essentially, our method only requires the

input image to depict two – possibly truncated – vertical building façade outlines, and can

correct as much as 45◦ orientation and up to 40m position offsets. Our approach, therefore,

offers new opportunities for making AR practical in outdoor urban environments.

One major advantage of our method is the independence from reference image

databases and related problems. The collection and maintenance of image databases is

expensive and cumbersome. Community images are usually only available for certain

popular regions within a city, such as touristic hotspots. Additionally, image-based

geo-localization approaches suffer from appearance discrepancies between query and

reference images. In contrast, the untextured 2.5D maps required by our method are

available for almost all countries and city regions and can be retrieved from geographic

information services such as the community-driven OpenStreetMap project. While

OpenStreetMap at the moment provides building height annotations for certain regions

only, we believe that the availability will steadily increase. Alternatively, the 2D cadastral

maps can be combined with aerial laser scan data, provided by public local authorities

and private vendors. Usually, these geographic information services adapt their maps

very quickly to changes in the urban environment, e.g., due to construction activity.

We provide a 6D pose exploitable by SLAM applications for 3D map initialization

in the global coordinate system of the 2.5D model. Furthermore, we support the SLAM

system in mapping and tracking arbitrary camera motion and structure by providing depth

maps rendered from the 2.5D model, effectively synthesizing a wide-range depth camera.

Thus, the SLAM system can track and map pure-rotation camera motion, and reconstruct

structure which could otherwise not be triangulated due to insufficient parallax. Since the

3D maps are registered within a global coordinate system, such as UTM, AR applications

can easily query location bases services, and display geo-referenced information as well

as enable end-user content authoring. Additionally, we may integrate the building façade

planes into the 3D SLAM map and provide a high-level scene representation.
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In contrast to other localization methods using untextured models, we believe that our

method has the potential to provide accurate geo-localization close to real-time, even on

computationally restricted mobile platforms. Besides offering evidence in this respect, the

SLAM geo-localization can be improved the following way: the geo-localization method

may run in a dedicated thread and periodically provide global 6D pose updates for cer-

tain frames. These updates can be used to adopt and refine the 3D map. Additionally,

the depth-map based mapping method should be more closely integrated with the na-

tive SLAM mapping. Native SLAM mapping may reconstruct foreground scene regions

which exhibit sufficient parallax, while depth maps are employed to reconstruct the dis-

tant background. The resulting foreground/background segmented 3D reconstructions

may also allow for generating interesting virtual visualizations.





6
Conclusions

6.1 Summary

In this thesis, we presented a set of techniques which make visual real-time localization

and mapping more user-friendly and practical. We investigated several severe problems

and limitations of general monocular SLAM algorithms. In particular, we investigated the

mapping and tracking of arbitrary camera motion and scene structure, the initialization

of 3D SLAM maps with respect to metric global coordinate systems, and the mapping

of high-level scene features for global map optimization and scene understanding. In de-

veloping SLAM algorithms that tackle these problems, we exploited specific combinations

of constraints on the camera motion performed by the user, as well as constraints on

geometry and semantics of the observed scene structure.

We approached the mapping and tracking of arbitrary camera motion and scene struc-

ture with two techniques depending on the environment knowledge. First, in unknown

environments, we modeled hybrid maps that contained features with finite or infinite

depth. Second, in partially modeled urban outdoor environments, we simulated a wide-

range depth camera by rendering synthesized depth images from a given untextured 2.5D

city model. Both techniques tackle the parallax problem that stems from pure-rotation

camera motion or scenes with large camera-object distances. Neither provide sufficient

parallax for robust triangulation of 3D map features. Using synthesized depth images,

the required 3D feature locations can be directly computed. Using hybrid feature maps,

we combined general SLAM and constrained panoramic SLAM methods into a hybrid

method: features with exhibit insufficient parallax were mapped with infinite depth into

local panorama maps on the plane at infinity, while features which exhibit sufficient par-

allax were mapped with finite depth in 3D. Additionally, we were constantly seeking to

135
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repeatedly observe infinite features, until they exhibit sufficient parallax for deferred tri-

angulation. Our hybrid maps allowed for tracking arbitrary camera motion in full 6DOF.

Moreover, our tracking algorithm allowed for smooth transitions between 3D and local

panorama maps by estimating the 6D pose from both features with finite and infinite

depth. In practice, we found that, by handling parallax-free camera movements and ap-

plying deferred triangulation, we could considerably extend the successful camera tracking

time and thus the usability of AR applications. Deferred triangulation, e.g., using wide-

baseline matching between local panorama maps, led to the reconstruction of additional

scene regions in 3D.

We approached the initialization of 3D SLAM maps in urban outdoor environments

with a geo-localization technique suited for hand-held devices. Given a single image and

a coarse initial 6D pose as input, our geo-localization method employed computer vision

techniques to estimate a refined 6D pose with respect the global coordinate system pro-

vided by an untextured 2.5D model of the urban neighborhood. The untextured 2.5D

model, composed of the 2D city map and corresponding building height information,

was retrieved from the community-driven OpenStreetMap geographic information service.

Our geo-localization algorithm exploited constraints on the geometric and semantic scene

structure. In particular, we employed horizontal and vertical line features exhibited by

planar building façades for 3DOF orientation estimation by matching vanishing points on

the plane at infinity. Furthermore, we segmented the input image into semantic classes

such as “façade”, “sky” and “ground”, and employed this additional layer of informa-

tion to formulate an objective function for 3D position estimation. Our geo-localization

algorithm was found very versatilely applicable and efficiently performing, having the po-

tential to run near real-time even on hand-held devices, as the individual components

could be implemented using CPU and GPU parallelization. Finally, the resulting globally

aligned 6DOF pose was employed to initialize the 3D map of a SLAM system, using the

synthesized depth map rendering technique described above.

We approached the mapping of high-level scene features by exploiting homography

constraints. Homographies provide strong constraints on both camera motion and scene

structure, which we employed to implement a very efficient mapping algorithm, running

at least a magnitude faster than bundle adjustment. Especially suited for SLAM on

lo-fi hand-held devices, this algorithm allowed for mapping and tracking unmodeled pla-

nar scenes, which we found indoors and outdoors on numerous human-made structures.

In addition, the reconstructed planes could be rendered as ortho-images and reused by
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other model-based detection and tracking systems. Similarly, our hybrid SLAM approach

allowed for rendering panoramic mosaics, which could be used for photometric reconstruc-

tion, i.e., estimation of the local lighting situation. Both, planar and panoramic maps

provided high-level features, which increased the scene understanding of AR applications.

Extent of World Knowledge With respect to Milgram and Koshino’s Extent of World

Knowledge (EWK) continuum [102], our contributions increased both the geometric and

semantic world knowledge in partially modeled as well as in unmodeled environments.

Starting in unmodeled environments, our SLAM algorithms reconstructed both parallax-

inducing and parallax-free scene structure and camera motion into hybrid, panoramic

and planar models. The models provided scene understanding to AR applications and

could be exported and reused (“What”). In turn, the models could be used for online

and offline camera localization (“Where”). Starting in partially modeled environments,

we employed untextured 2.5D models for geo-localization in urban outdoor environments

(“Where”), and initialized 3D SLAM maps with the resulting globally aligned 6D pose

(“What”). The 3D SLAM maps allowed for continuous tracking of arbitrary camera

motion (“Where”). Overall, we believe that our contributions shifted the “What” and

“Where” markers alongside the EWK continuum and increased the knowledge about the

world that, in turn, could be fruitfully utilized by mobile AR applications.

Mobile augmented reality We want reconsider the mobile AR application scenario

we introduced earlier to discuss our achievements and improvements:

A user is sitting in a hotel lobby of a foreign city, browsing the news on his

smartphone, and discovers an exhibition she wants to visit. Leaving the hotel

towards the museum, she makes use of 2D map navigation to orient herself.

At an ambiguous junction, however, she chooses to directly superimpose the

correct walking directions over streets and buildings. Arriving at the museum,

ticket and digital exhibition catalog can be purchased online with a few clicks.

Moments later, she stands in front of an interesting piece and augments the

object with information about its making and history in a perspectively correct

manner via her device. After the visit, she can similarly visualize and explore a

virtual version of the piece in an arbitrary environment, e.g., at the airport gate

waiting for her plane, or back home in her living room. In the public space at

the airport gate, the visualization may be unregistered with the environment,
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providing a purely virtual view. In the private space of her living room, the

visualization may be spatially registered, providing an augmented view.

The user investigates a museum exhibition piece in a-priori unknown environments.

We presented hybrid SLAM algorithms, which allow for real-time tracking and mapping of

arbitrary camera motion and scene structure, extending the agility of the user. Further-

more, our reconstructed models contained high-level geometric features such as planes,

which allow for registering the exhibition piece in 3D space, and enable perspectively

correct visualization and exploration.

The user navigates in the city by superimposing walking directions over streets and

buildings on her held-held device. This requires self-localization with respect to a global

coordinate system. We presented a geo-localization method that allows for near real-time

initialization of a SLAM system.

6.2 Taxonomy

We propose a unified registration system for mobile Augmented Reality (AR), which can

be created by combining our contributions with the distinguished methods of others. The

combination of these methods yields a multifunctional localization and mapping system,

that can be applied in indoor, and, in particular, in urban outdoor environments. Running

an AR application on a mobile device in an arbitrary environment, the proposed system

aims at providing robust camera pose tracking as early as possible after startup, and

ideally in a global coordinate system such as Universal Transverse Mercator (UTM). Since

we cannot generally assume the immediate availability of a globally registered model at

system startup, we differentiate between the following operation phases:

1. Localization with respect to a local coordinate system, e.g., by initializing and map-

ping a SLAM map.

2. Registration with an existing offline-generated environment model, e.g., by globally

aligning the SLAM map.

3. Localization with respect to the updated global coordinate system of the SLAM

map, possibly including further mapping of the scene.

The proposed system aims at minimizing the time span until local and global lo-

calization by making the best possible use of the available resources, including camera
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Stationary

Parallax-free

Parallax-inducing

Arbitrary 3D 
scene

Plane
(single or multi 
planar scene)

Camera Motion Scene Structure

Panoramic 2D 
Map

Planar 2D Map

3D Map
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Two-View 
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Rotation
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(relative pose + 3D 

plane)

Epipolar Geometry
(relative pose + 3D 

structure)
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Figure 6.1: Summary of configuration options for a unified registration system. (1) Given

the input of a mobile user, i.e., the specifically performed camera motion and observed

scene structure, (2) an online SLAM system can use diverse motion models to reconstruct

a map, which can be registered with (3) available offline-generated globally aligned models.

and motion sensors on the mobile device, networking, and cloud services. In particular,

constraints which facilitate the localization problem are exploited, including constraints

resulting from the observed scene structure and device sensor measurements (e.g., GPS

location, compass orientation). Concurrently, the system aims to support a wide range

of user inputs, including parallax-free and parallax-inducing camera motion. Figure 6.1

depicts all possible options which can be combined to specific system configurations.

During the first operation phase, the system supports the following configurations for

initializing and building up a SLAM map, that can be used for camera localization in a

local coordinate system:
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• parallax-free → rotation → panoramic 2D map

Parallax-free camera motion can be estimated with a rotation motion model, result-

ing in a panoramic 2D map [35, 173, 90], which can be represented as a panorama

image.

• parallax-inducing + plane → homography → planar 2D map

Parallax-inducing camera motion, when observing a single or multi-planar scene, can

be estimated with a homography motion model, resulting in planar 2D maps [118,

133], which can be represented as an orthoimage, as described in Chapter 3.

• parallax-inducing → epipolar → 3D map

Parallax-inducing camera motion, when observing arbitrary scene geometry, can be

estimated with an epipolar motion model, resulting in a 3D map [72].

• parallax-free/-inducing → hybrid 2D/3D map

Alternating parallax-free and parallax-inducing camera motion can be estimated

with the appropriate motion models, resulting in hybrid 2D/3D maps [53, 119, 61],

as described in Chapter 4.

• stationary → images

A stationary camera simply delivers RGB images. Without further single-view scene

assumptions, no geometric reconstruction is possible.

• stationary + plane + lines → homography → planar 2D map

A single stationary camera image, when observing a planar scene providing vertical

and horizontal lines, can be used to estimate vertical and horizontal vanishing points,

resulting in a planar 2D map [14].

• { panoramic 2D map } → 3D map

A set of two or more overlapping panoramic 2D maps can be used to reconstruct a

full 3D map [117].

The resulting SLAM maps are composed of one or more registered small field-of-view

camera images from the mobile device, which can be stitched to wide field-of-view images

in certain configurations (e.g., from panoramic or planar maps). Besides camera tracking,

these images can be employed for registration with offline-generated environment models

providing a global coordinate frame. These models can be stored directly on the mobile

device, or retrieved in-situ from Geographic Information System (GIS) cloud services using
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a sensor pose prior. Depending on what type of SLAM map and what type of offline model

is available, the following registration options are available:

• [ images, panoramic map, planar map ] ↔ untextured model

Single images, and potentially also panoramic and orthographic images, can be lo-

calized with respect to untextured 2D [31, 24] or 2.5D models [157, 4], as described

in Chapter 5.

• [ images, panoramic map, planar map ] ↔ textured 3D model

Single images can be localized with respect to textured 3D models, i.e., 3D models

composed of a set of registered reference images, using image-based localization

methods [66, 6, 134]. Similarly, panoramic images, and potentially also ortho-images

can be used as query images [2, 3].

• 3D map ↔ textured 3D model

The registration of a 3D map with a textured 3D model is possible, e.g., with the

anchor point method of Ventura et al . [169].

Additionally, the registration with a global model allows for upgrading 2D SLAM

maps into full 3D maps, e.g., by rendering synthesized depth images from a dense global

model such as a 2.5D digital elevation model, using the estimated global pose. The latter

technique has been described in Chapter 5. Alternatively, the SLAM map can also be

replaced or extended with information from the registered global model, followed by model-

based detection and tracking, as proposed by Ventura et al . [171].

Subsequently, the SLAM system allows for continuous localization and mapping of

the environment, providing globally aligned 6D poses. The 6D poses allow for displaying

geo-referenced in-situ information, such as navigation hints, retrieved from location-based

services.

6.3 Outlook

In conclusion, while we believe that the proposed unified registration system, including the

contributions presented in this thesis, represent important steps towards the realization of

the envisioned ubiquitous mobile AR experience, we have to ask ourselves: What could be

the next steps to make mobile AR applications practically available everywhere, anytime,

and for everybody?
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Feature-based visual Simultaneous Localization and Mapping (SLAM) in the spirit of

Parallel Tracking and Mapping (PTAM) has meanwhile reached a considerable degree of

maturity on mobile computing platforms such as phones and tablets. Having invested

many hours of research and careful engineering, commercial vendors including Qualcomm

and Apple Metaio meanwhile integrate SLAM components are into their Software Devel-

opment Kits (SDKs). Yet, visual feature-based SLAM must fail in conditions when camera

images simply do not provide features, for example due to untextured scene surfaces, bad

lighting conditions, motion blur, rapid camera motion, or combinations of these effects.

Concerning mobile devices, two important ongoing hardware developments may open

up opportunities to overcome the limitations of visual feature-based SLAM. First, phones

and tablets are expected to be equipped with GPUs which will truly provide general

purpose computing capabilities. Second, time-of-flight and structured light depth sensors

will likely be installed on mobile devices in the future. For example, the experimental

Google Tango is the first device that is equipped with a GPGPU-enabled chipset and an

RGB+Depth (RGB-D) sensor.

With these hardware capabilities available, RGB-D SLAM [69] and fusion-based

SLAM [109] become feasible on mobile devices. However, depth sensors also have

their weaknesses: most severely, they do not provide depth measurements on reflective

surfaces, e.g., in sunny outdoor conditions. Additionally, the depth sensor range is

limited, e.g., the Google Tango depth sensor gives values between 0.5 and 4 meters.

However, by exploiting complementary strengths and weaknesses, visual and depth-based

SLAM techniques could be combined to make SLAM more versatile and robust.

Furthermore, dense [110] and semi-dense [41] monocular visual SLAM algorithms grad-

ually become available with more powerful and capable GPUs and CPUs implemented in

mobile devices. These SLAM methods perform direct photometric image alignment, and

probabilistic depth map estimation and fusion, resulting in more detailed maps and more

robust camera tracking.

The problems related to alternating parallax-free and parallax-inducing camera mo-

tion, however, remain the same for these SLAM methods and thus there will be a demand

for even more robust and advanced hybrid unconstrained SLAM methods. Especially

since, as we observed in practice, untrained users regularly have severe problems when

applying SLAM, often resulting in frustration, particularly when a SLAM system imposes

to understand its limitations and inner workings.

Since current feature-based SLAM algorithms largely lack the capabilities to provide
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the scene knowledge that is required to develop more sophisticated AR applications, the

mentioned “next-generation” SLAM methods and their (semi-)dense maps could provide

the means to perform more advanced geometric scene understanding, including automatic

detection of geometric primitives and shapes (planes, cubes, spheres), as well as semantic

scene understanding, including detection of complex shapes and objects.

Alternatively or complementary to performing scene understanding in the local SLAM

map, in-situ scene information can also be retrieved from location based cloud services.

Cloud-based map services such as Microsoft Bing, Apple Maps and Google Earth con-

tain massive amounts of geo-referenced information, similar to community-driven services

such as OpenStreetMap. Retrieving information from these services, however, requires

registration within a common reference coordinate system.

In outdoor environments, the accuracy and availability of Global Navigation Satellite

Systems (GNSS) will likely improve in the future, as several GNSS are pending, including

China’s BeiDou and the European Union’s Galileo, which will both become globally avail-

able by 2020. For the time being, we expect, however, that the accuracy of pure mobile

motion sensor-based registration will remain insufficient for rendering convincing virtual

AR overlays over real-world objects. Consequently, registration with existing environment

models will remain an important research topic.

Localization with respect to large image databases and textured 3D models suffers

from problems related to appearance changes and scalability. While Structure from Mo-

tion (SfM) has reached the point where world-scale 3D reconstructions from several tens

of millions of images can be computed on a desktop computer within a few days [60],

appearance changes between imagery taken at different times of day, weather conditions,

or seasons, remain a big challenge for place and pose recognition systems. One approach

to address this issue could be databases that contain redundant information, i.e., reference

images that depict the same objects multiple times covering different appearance “states”.

In contrast, untextured cadastral maps are basically available everywhere, but unfortu-

nately, as we found, often in insufficient quality for geo-localization purposes (yet). Many

of our failure cases were related to completely missing or erroneous model details such as

building façade heights. Furthermore, although our method only required the visibility

of two vertical building façade outlines in the query images, we observed that users often

stood too close to the buildings and could not picture the entire façade with the narrow

field-of-view phone cameras. These and further problems need to be addressed in the

future to meet the practical requirements of mobile AR.





A
Videos

A.1 Related to Chapter 3

Available at: https://youtu.be/TxKCju5bIT0

Related publication: C. Pirchheim and G. Reitmayr. Homography-based planar mapping

and tracking for mobile phones. In Proceedings of the International Symposium on Mixed

and Augmented Reality (ISMAR’11), pages 27–36. IEEE, Oct. 2011
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A.2 Related to Chapter 4

Available at: https://youtu.be/oDsNPUhXuEU

Related publication: C. Pirchheim, D. Schmalstieg, and G. Reitmayr. Handling pure

camera rotation in keyframe-based SLAM. In Proceedings of the International Symposium

on Mixed and Augmented Reality (ISMAR’13), pages 229–238. IEEE, Oct. 2013

A.3 Related to Chapter 5

Available at: https://youtu.be/PzV8VKC5buQ

Related publication: C. Arth, C. Pirchheim, J. Ventura, D. Schmalstieg, and V. Lepetit.

Instant Outdoor Localization and SLAM Initialization from 2.5D Maps. In Proceedings of

the International Symposium on Mixed and Augmented Reality (ISMAR’15), 2015

https://youtu.be/oDsNPUhXuEU
https://youtu.be/PzV8VKC5buQ


Acronyms

A-GPS Assisted GPS.

AI Artificial Intelligence.

API Application Programming Interface.

AR Augmented Reality.

BA Bundle Adjustment.

CAD Computer Aided Design.

CG Computer Graphics.

CGI Computer-Generated Imagery.

CPU Central Processing Unit.

CUDA Compute Unified Device Architecture.

CV Computer Vision.

DoF Degrees of Freedom.

DoG Difference of Gaussian.

DR Diminished Reality.

DTAM Dense Tracking and Mapping.

EKF Extended Kalman Filter.
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ESM Efficient Second-order Minimization.

EWK Extent of World Knowledge.

FoV Field Of View.

GIS Geographic Information System.

GNSS Global Navigation Satellite System.

GPGPU General Purpose computing on Graphics Processing Units.

GPS Global Positioning System.

GPU Graphics Processing Unit.

GRIC Geometric Robust Information Criterion.

HCI Human-Computer Interaction.

HMD Head-Mounted Display.

ICP Iterative Closest Point.

IDE Integrated Development Environment.

INS Inertial Sensor.

KLT Kanade-Lucas-Tomasi.

LBS Location Based Service.

LiDAR Light Detection and Ranging.

MAV Micro Aerial Vehicle.

MR Mediated Reality.

NCC Normalized Cross Correlation.

NFC Near Field Communication.

OpenCL Open Computing Language.

P3P Perspective Three Point.

PTAM Parallel Tracking and Mapping.

RANSAC Random Sample Consensus.

RGB-D RGB+Depth.
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ROI Region Of Interest.

RTK Real-Time Kinematic.

SBI Small Blurry Images.

SDK Software Development Kit.

SfM Structure from Motion.

SIFT Scale-Invariant Feature Transform.

SL Structured Light.

SLAM Simultaneous Localization and Mapping.

ToF Time of Flight.

UTM Universal Transverse Mercator.

VO Visual Odometry.

VR Virtual Reality.

WGS World Geodetic System.
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[78] R. Kümmerle, B. Steder, C. Dornhege, A. Kleiner, G. Grisetti, and W. Burgard.

Large scale graph-based SLAM using aerial images as prior information. Autonomous

Robots, 30(1):25–39, Aug. 2010. (page 39, 45)

[79] D. Kurz and S. Benhimane. Gravity-aware handheld augmented reality. In 2011 10th

IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2011,

pages 111–120. Ieee, Oct. 2011. (page 114)

[80] W. Lee, Y. Park, V. Lepetit, and W. Woo. Point-and-shoot for ubiquitous tagging

on mobile phones. In 9th IEEE International Symposium on Mixed and Augmented

Reality 2010: Science and Technology, ISMAR 2010 - Proceedings, pages 57–64.

Ieee, Oct. 2010. (page 48)

[81] V. Lepetit and P. Fua. Monocular Model-Based 3D Tracking of Rigid Objects. Foun-

dations and Trends in Computer Graphics and Vision, 1(1):1–89, 2005. (page 22)

[82] V. Lepetit and P. Fua. Keypoint recognition using randomized trees. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 28(9):1465–1479, 2006.

(page 30, 42)

[83] V. Lepetit, L. Vacchetti, D. Thalmann, and P. Fua. Fully automated and stable

registration for augmented reality applications. In The Second IEEE and ACM In-

ternational Symposium on Mixed and Augmented Reality, 2003. Proceedings., pages

93–102. IEEE Comput. Soc, 2003. (page 29, 30, 32)

[84] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua. Worldwide pose estimation using

3d point clouds. In ECCV, 2012. (page 34, 35)

[85] J. Lim, J.-M. Frahm, and M. Pollefeys. Online environment mapping. In CVPR

2011, pages 3489–3496. IEEE, June 2011. (page 45)

[86] T. Lindeberg. Scale-space theory: a basic tool for analyzing structures at different

scales. Journal of Applied Statistics, 21(1):225–270, 1994. (page 21)

[87] C. Loop and Zhengyou Zhang. Computing rectifying homographies for stereo vision.

In Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, volume 1, pages 125–131. IEEE, 1999. (page 53, 58)

[88] M. I. Lourakis and A. A. Argyros. Efficient, causal camera tracking in unprepared

environments. Computer Vision and Image Understanding, 99(2):259–290, Aug.

2005. (page 29)



160

[89] M. I. a. Lourakis and A. a. Argyros. SBA: A software package for generic sparse

bundle adjustment. ACM Transactions on Mathematical Software, 36(1):1–30, 2009.

(page 72)

[90] S. Lovegrove and A. J. Davison. Real-time spherical mosaicing using whole image

alignment. In ECCV, volume 6313, pages 73–86, 2010. (page 12, 47, 49, 53, 81, 140)

[91] S. Lovegrove, A. J. Davison, and J. Ibañez Guzmán. Accurate visual odometry from
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