
Dissertation

Testing of Hybrid Systems using Qualitative
Models

Harald Brandl
Graz, 2011

Institute for Software Technology
Graz University of Technology

Supervisor/First reviewer: Univ.-Prof. Dipl.-Ing. Dr. techn. Franz Wotawa
Second reviewer: Prof. Dr. Ivan Bratko

Co-Supervisor: Ass.Prof. Dipl.-Ing. Dr. techn. Bernhard K. Aichernig

Abstract

Today’s software, which runs in an increasing amount of electronic devices, demands efficient
testing techniques to meet quality and safety standards. For checking the functional requirements
of a system, model-based testing has proven valuable. In the embedded systems domain many
devices perform a continuous interaction with their environment. Such systems which show both,
discrete and continuous behavior, are called hybrid systems. This thesis deals with the model-
based testing of continuous and hybrid systems.

Software failures often occur only under certain environmental conditions. Modeling the con-
tinuous system environment allows to generate more meaningful test cases which reflect certain
scenarios. Usually, continuous behavior is described with differential equations. This work em-
ploys a technique called Qualitative Reasoning to abstract the infinite state space of continuous
behavior to a finite state representation. A testing approach based on a new conformance relation
is presented which allows to decide the correctness of a continuous system with respect to a given
qualitative model. Test cases can be generated due to formal test objectives (test purposes) or a
class of coverage criteria.

In order to specify test models for hybrid systems this thesis combines the existing formalism of
action systems with qualitative reasoning. By abstracting continuous changes to discrete events
it is possible to apply standard input-output conformance testing to hybrid systems. A major
question in model-based testing is how to select a finite set from a possibly infinite set of test
cases. For hybrid systems this work follows a fault-based test selection strategy. Here, a test case
is obtained from the discriminating behavior between an original and a mutated specification.
A mutant results from inserting a single fault into a specification. The generated test cases are
able to verify if an implementation contains any of the modeled faults or, due to the coupling
effect, a class of related faults. Finally, this thesis investigates different approaches to minimize
fault-based test suites.

i

ii

Zusammenfassung

Die heutige Software, welche in einer zunehmenden Anzahl von elektronischen Geräten vorhan-
den ist, verlangt nach effizienten Testverfahren um Qualitäts- und Sicherheitsstandards zu er-
füllen. Für die Überprüfung der funktionalen Anforderungen an ein System hat sich das mod-
ellbasierte Testen als geeignetes Werkzeug erwiesen. Im Embedded-Systems-Bereich betreiben
viele Geräte eine kontinuierliche Interaktion mit ihrer Umwelt. Solche Systeme, die sowohl
diskretes als auch kontinuierliches Verhalten zeigen, werden hybride Systeme genannt. Diese
Arbeit beschäftigt sich mit dem modellbasierten Testen von kontinuierlichen und hybriden Sys-
temen.

Software-Ausfälle treten oft nur unter bestimmten Umgebungsbedingungen auf. Eine Model-
lierung der kontinuierlichen Systemumgebung ermöglicht es, sinnvollere Testfälle zu generieren,
welche bestimmte Szenarien darstellen. Üblicherweise wird kontinuierliches Verhalten mit Dif-
ferentialgleichungen beschrieben. Diese Arbeit beschäftigt sich mit der Methode des qualitativen
Schließens, um den unendlichen Zustandsraum kontinuierlicher Systeme in einen endlichen Zu-
standsraum zu abstrahieren. Ein Testverfahren, welches auf einer neu entwickelten Konformität
basiert, erlaubt es die Korrektheit eines kontinuierlichen Systems in Bezug auf ein bestimmtes
qualitatives Modell zu entscheiden. Dabei können Testfälle durch formal definierte Testziele oder
einer Klasse von Abdeckungskriterien erzeugt werden.

Um Testmodelle von hybriden Systemen zu spezifizieren, kombiniert diese Arbeit den ex-
istierenden Action-Systems-Formalismus mit dem qualitativen Schließen. Durch die Abstrak-
tion von kontinuierlichen Vorgängen zu diskreten Ereignissen wird es möglich, das bekannte
input-output Konformitätstesten bei hybriden Systemen anzuwenden. Eine wichtige Frage beim
modellbasierten Testen ist, wie man eine endliche Menge aus einer möglicherweise unendlichen
Menge von Testfällen auswählt. Für hybride Systeme folgen wir in dieser Arbeit einer fehler-
basierten Testauswahlstrategie. Hierbei ergibt sich ein Testfall aus dem unterschiedlichen Ver-
halten zwischen einer originalen und einer mutierten Spezifikation. Ein Mutant entsteht durch
das Einführen eines Fehlers in einer Spezifikation. Die erzeugten Testfälle sind in der Lage
festzustellen, ob eine Implementierung einen der modellierten Fehler oder, aufgrund des Kop-
plungseffektes, eine Klasse von verwandten Fehlern enthält. Schließlich untersucht diese Arbeit
verschiedene Ansätze, um die Anzahl fehlerbasierter Testfälle zu minimieren.

iii

iv

Acknowledgement

I would like to thank my adviser Franz Wotawa for giving me the opportunity to start my PhD
studies on an interesting topic and for his help during the course of this work. I would also like to
thank Bernhard Aichernig for his support. He taught me a lot in the area of formal methods and
model-based testing.

Further thanks go to my colleagues at the institute. First of all, I would like to mention
Willibald Krenn. We shared an office and it was fun to work with him during the course of
two projects. I also want to thank Gordon Fraser for his assistance when I was writing my first
papers and for helpful discussions via the chat window. Thanks go to Elisabeth Jöbstl for the
good teamwork in the Mogentes project and to Martin Weiglhofer and Stefan Galler for interest-
ing discussions. Further thanks go to Stefan Tiran for his collaboration in the Mogentes project.

I want to thank my parents for their support throughout all the years. Finally, thanks go to my
former colleagues at FH Joanneum and especially to Hubert Berger who enabled me to work in
part-time while starting my PhD studies.

This work was funded by the FIT-IT research project Self Properties in Autonomous Sys-
tems (SEPIAS), and the EU project ICT-216679, Model-based Generation of Tests for Depend-
able Embedded Systems (MOGENTES).

vi

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources/resources, and that I have explicitly marked all material which has been quoted either
literally or by content from the used sources.

. .
place, date (signature)

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und in-
haltlich entnommenen Stellen als solche kenntlich gemacht habe.

. .
Ort, Datum (Unterschrift)

vii

viii

Contents

List of Figures xiii

List of Tables xv

List of Algorithms xvii

1. Introduction 1
1.1. Model-based Testing . 1
1.2. Hybrid Systems . 1
1.3. Qualitative Reasoning . 3
1.4. Motivation . 3
1.5. Problem Statement . 4
1.6. Thesis Statement . 5
1.7. Research Context . 5
1.8. Contributions . 6
1.9. Organization . 8

2. Model-based Testing 9
2.1. Testing Strategies . 11

2.1.1. Exhaustive Testing . 11
2.1.2. Testing With Equivalence Classes . 12
2.1.3. Testing With Purposes . 13
2.1.4. Random Testing . 13
2.1.5. Fault-Based Testing . 14

2.2. Conformance Relations . 14
2.2.1. Refinement . 15
2.2.2. Conformance between Labeled Transition Systems 17
2.2.3. HIOCO . 21
2.2.4. RTIOCO . 21

2.3. Hybrid Systems . 22
2.3.1. Testing from Hybrid System Models . 23

ix

Contents

2.4. Discussion . 24

3. Qualitative Reasoning 25
3.1. Qualitative Simulation . 27

3.1.1. Discrete Representation of Continuous Change 27
3.1.2. Qualitative Models . 32
3.1.3. Sign Algebra . 34
3.1.4. Behavior Inference from Qualitative Models 35

3.2. Simplification of Qualitative Models . 40
3.3. Modeling Continuous Systems with Garp3 . 45
3.4. Qualitative Behavior - A formal Model . 47

4. Testing of Continuous Systems 49
4.1. Conformance between Qualitative Models - qrioconf 49
4.2. Test Case Selection with Test Purposes . 51
4.3. Coverage-based Test Purposes . 58
4.4. Execution of Qualitative Test Cases . 62

4.4.1. Water Tank – A Continuous System . 62
4.4.2. Mapping between Abstract and Concrete Data 64
4.4.3. Test Case Execution . 67
4.4.4. Experimental Evaluation . 69

5. Testing of Hybrid Systems 73
5.1. Qualitative Action Systems . 74

5.1.1. Hybrid Modeling . 75
5.1.2. Refinement of Qualitative Actions . 83
5.1.3. Testing . 85

5.2. Automated Conformance Verification of Hybrid Systems 86
5.2.1. On-the-fly Conformance Checking . 87

5.3. Mutation-based Test Case Generation . 92
5.3.1. Ensuring Controllability in Presence of Non-determinism 92
5.3.2. Test Case Selection . 94
5.3.3. Experimental Results . 98

6. Generation of Efficient Test Suites 101
6.1. Testing Object-oriented Systems . 102
6.2. Car Alarm System . 103
6.3. Experimental Results . 105

6.3.1. Test Case Generation . 106
6.3.2. Test Case Execution . 109

7. Conclusions 113
7.1. Summary . 113
7.2. Related Research . 115
7.3. Future Work . 116

x

Contents

List of Acronyms 120

Bibliography 121

xi

xii

List of Figures

1.1. Process of model-based testing. 2
1.2. A hybrid system: the controller operating in its continuous environment. 2

2.1. The implementation i is not ioco to the specification s. 19
2.2. Hybrid Automaton describing a temperature controller (taken from [83]). 22

3.1. Models of physical systems and their according behaviors. 27
3.2. (Diagram bottom, right.) Function t_abs partitions time into equivalence classes.

(Diagram on top.) Function v_abs partitions the range of f into equivalence
classes. Equivalence classes are denoted by shaded areas. (Diagram to the left.)
The resulting qualitative function q is depicted on the left. The qualitative slope is
represented by circle, triangle up, and triangle down symbols. Thereby the circle
stands for “0”, triangle up denotes “+”, and triangle down represents “-”. 31

3.3. QSIM model of the oscillator example. 40
3.4. Qualitative cosine oscillation (A), and oscillations (B) and (C) with 90° and 180°

phase shift respectively. 41
3.5. Model of the oscillator. 46
3.6. Scenario. 46
3.7. Cycle in the transition system. 46
3.8. Value history. 46

4.1. Conformance between QR transition systems: I1 qrioconf S and I2 ����qrioconf S . . 51
4.2. SEPIAS Container Tracking Unit. 52
4.3. Garp3 model of a battery. 52
4.4. Labeled QTS. 54
4.5. Minimization of a QTS. 55
4.6. Test case for an empty battery. 58
4.7. A possible trace through the test case. 58
4.8. Two-tank system. 61
4.9. Qualitative model for controlling the level in the tank with the outlet valve. . . . 61
4.10. Water Tank with two Outlets. 63
4.11. Hybrid Automaton of the Water Tank. 63

xiii

List of Figures

4.12. Tank Model Fragment for Mode S0 and S1. 63
4.13. Interleaving of two increasing Quantities. 65
4.14. Mapping between Abstract and Concrete Data. 65
4.15. Landmarks as Real Valued Intervals. 66
4.16. Slope of observed Values. 66
4.17. Simulink Model of the Water Tank. 70
4.18. Execution of TC1 on I and M1. 71
4.19. Execution of TC2 on I and M2. 72

5.1. Two-Tank Pump System. 74
5.2. Example Test Case consisting of four Evolutions. 86
5.3. Labeled QAS of the Two-Tank System. 87
5.4. Two suspension automata showing the behavior of the water tank example and of

a mutated version. 88
5.5. Conformance verification result with a mutated action ’out_pump1_off’. 90
5.6. Computation steps of Ulysses. 92
5.7. Internal choice between an input and an output action. 94
5.8. Product LTS and test case (transitions between shaded states depict the test case). 99
5.9. Example execution of the test case. 99

6.1. Tool chain for test case generation from UML models. 102
6.2. Car Alarm System - state machine. 103
6.3. Suspension automaton of the Car Alarm System. 104
6.4. The two LTSs on the left show parts of the suspension automata of the CAS

specification and a mutant. The two LTSs on the right depict the resulting ioco
product and a selected test case. 106

xiv

List of Tables

3.1. Qualitative Addition . 34
3.2. Qualitative Multiplication . 34
3.3. Time Point Successors . 38
3.4. Time Interval Successors . 38

4.1. All Test Cases per Test Purpose . 62
4.2. One Test Case per Test Purpose . 62

5.1. Semantics of discrete actions. 75
5.2. Results when applying conformance verification to mutated specifications. 98

6.1. Number of generated test cases . 106
6.2. Injected faults into the CAS implementation. 109
6.3. Overview of how many faulty SUTs could not be killed by the test cases generated

with different approaches. 110
6.4. Number of generated test cases (hand-written OOAS model) 110

xv

xvi

List of Algorithms

4.1. Qualitative Test Case . 56
4.2. execute . 68

5.1. getSuccessors(qas,s1) : L∪{δ} 7→ P (S) . 90
5.2. getTC(s,Goal) : P (S×L∪δ× (S∪ inconc)) . 96

xvii

xviii

Chapter 1
Introduction

1.1. Model-based Testing

Model-based testing has proven to be a very important instrument to ensure the quality of soft-
ware [80, 4]. Figure 1.1 illustrates the process of model-based testing. At first, a test engineer
builds a formal model from the system requirements which are given in some document format.
When the model gets accepted after validation, the testing process can be started. The test case
generator takes the model and a test goal, which depends on the selection strategy, as input and
produces a set of abstract test cases as output. A collection of test cases is also called test suite.
The test execution tool applies all test cases to the system under test (SUT) and gives verdicts
about each test run. In terms of software testing the SUT is often referred to as implementation
under test (IUT) . During execution the events of abstract test cases have to be translated to events
which the SUT understands and vice versa. This is handled by the test adapter. A SUT passes a
test suite if all runs in the test results were successful. In this work we deal with the model-based
testing of hybrid systems.

In model-based testing different test selection strategies are available. This thesis covers three
different approaches:

• Test goals can be formally defined and used to derive tests.

• Test cases can be generated according to coverage criteria. For instance, a set of test cases
should cover all states of the model.

• In mutation-based test case generation tests are derived from the discriminating behavior
between an original and a mutated specification. This technique is also denoted as fault-
based testing.

1.2. Hybrid Systems

A hybrid system combines both, discrete and continuous behavior. For instance, a digital con-
troller operating the fuel injection of a car engine builds a hybrid system. Figure 1.2 depicts

1

Chapter 1. Introduction

requirements

model

test goal

test case
generator

execution tool

adapter

SUT

abstract
test cases

test results

Figure 1.1.: Process of model-based testing.

controller

plant

A/DD/A

Figure 1.2.: A hybrid system: the controller operating in its continuous environment.

the layout of a hybrid system. The digital outputs of the controller are converted to analog sig-
nals which influence processes in the plant, e.g. increasing the speed of a motor. On the other
hand measurements from the plant are quantized to digital input values for the controller. The
combined operation of controller and plant is called closed-loop behavior. According to control
theory the closed-loop view on a system allows to draw important conclusions like stability and
long term behavior.

The discrete behavior of the controller is described with computer programs or difference equa-
tions. For the continuous behavior differential equations are used. A common formalism to model
hybrid systems are hybrid automata by Henzinger [83]. Here, the system state depends on two
parts: The discrete state is represented by so-called control locations or modes, i.e. the states of
the automaton. The continuous state consists of the valuation of all continuous variables, gov-
erned by the differential equations. Section 2.3 shows as an example the hybrid automaton of a
temperature controller.

Because of the infinite state space of hybrid systems resulting from the valuation of continuous
variables various abstraction techniques exist [32, 33, 119, 90, 152]. This work applies a qualita-
tive abstraction to the continuous dynamics of hybrid systems mainly for two reasons: there exist

2

1.3. Qualitative Reasoning

general purpose solvers to infer behavior from qualitative models and it is possible to specify
generic test models at an user-defined level of abstraction.

1.3. Qualitative Reasoning

Qualitative Reasoning (QR) is a technique from artificial intelligence to reason about the be-
havior of physical systems. The idea is to use an abstract concept of physical knowledge like
humans do when they comprehend incidents in the real world. For example, a person knows
what happens when throwing a stone in the air without solving any mathematical equations. In
QR so-called reasoning engines are able to predict the behavior of a system given a qualitative
system description and an initial state.

The theory of QR relies on the abstract interpretation of continuous, time-dependent functions
and relations between them. From functions, only their piecewise monotonic behavior is of
interest, i.e. if a function is increasing, steady, or decreasing. Furthermore, the range of a function
is partitioned into points and adjacent intervals. The points are denoted as landmarks. The domain
is mapped to a sequence of time points and time intervals. At each time point a qualitative change
happens: either the function changes its qualitative direction or its qualitative value. A value
change occurs when the function reaches a point or it enters an interval coming from a point.

In contrast to abstractions with a fixed resolution, qualitative abstraction provides a dynamic
resolution which depends on the number of landmarks in the range of a function and the frequency
of its qualitative changes. A visualization of this relationship can be found in Figure 3.2.

1.4. Motivation

According to Dijkstra “Testing shows the presence, not the absence of bugs” [50]. However,
testing increases the confidence in programs and, in contrast to proof techniques, can be fully
automated and applied to large systems. When testing is already applied in early development
phases the costs of repairing discovered faults are significantly lower than in late phases. In the
worst case, faults have to be eliminated in already delivered software which may lead to very high
costs or even the end of a company. Today the estimated costs of software testing is about 50%
of the overall product costs [126]. Because of this high effort an automation via model-based
testing is desirable.

Beside the cost factor software has to be tested thoroughly to ensure safety standards. There
have been some well-known software bugs in history which caused threats or injuries to people.
For instance from 1985–1987 a bug in the Therac-25 medical accelerator led to injuries and to
the death of at least five patients [31]. The system was an improvement over its predecessor by
providing two kinds of radiation: a low-power electron beam and X-rays. The root cause of the
system failure was a race condition resulting in the configuration of the electron beam in high-
power mode without the metal X-ray target being in the right position. Hence, patients were
directly exposed to the high-power electron beam.

3

Chapter 1. Introduction

In many cases software faults lead to the loss or destruction of systems. The first flight of the
Ariane 5 on the 4th of June 1996 ended in a disaster [66]. According to the failure report the cause
was an error in the Inertial Reference System (SRI). This system was almost identical with the
one used in the Ariane 4. The higher speed of Ariane 5 resulted in larger data values within the
SRI and finally to an uncaught exception of a data conversion instruction. In particular a 64 Bit
floating point number could not be converted to a 16 Bit signed integer number. The exception
occurred in a software module which actually serves no purpose after the liftoff of Ariane 5.
The flight program could not switch to a second hot-standby system as it had crashed one data
cycle before due to the same reason. Based on invalid flight data the control program caused an
high attack angle. Self-destruction was triggered about 40 seconds after liftoff when the boosters
separated from the main stage.

On the 11th of February 2007 a group of F-22 Raptor jets lost all navigation and communication
systems when they crossed the international dateline [56]. The jets had to follow their tankers
by visual contact back to the air base. In the case of bad weather this incident would have ended
worse.

Mission critical systems in space travel require high testing standards. The work in [120]
presents some cases of software problems and analyzes the reasons which led to the damage or
loss of space crafts. A further summary and analysis of software related accidents can be found
in [166].

Many software bugs only lead to failures when systems get into certain environmental condi-
tions. Therefore, testing should also consider scenarios in the system environment. This thesis
deals with the modeling of continuous environments with a technique called Qualitative Rea-
soning. The closed loop view on a discrete controller operating in a continuous environment
represents a hybrid system, see Figure 1.2. We present a methodology to generate test cases for
continuous and hybrid systems.

Since manual testing is a time consuming task the testing coverage is much lower than can be
achieved with model-based approaches. Furthermore, in the manual case, changes in the system
specification would require to adapt all existing test cases while in the model-based case a new
test suite can be generated merely by pushing a button.

1.5. Problem Statement

The challenge of testing continuous and hybrid systems originates from infinite state spaces in
the valuation of real-valued variables. This thesis investigates the applicability of Qualitative
Reasoning in the domain of model-based testing of continuous and hybrid systems. While there
exist various approaches to abstract continuous to finite state behavior most of them rely on
numerical information. We follow a purely symbolic approach by abstracting ordinary differential
equations to qualitative differential equations. In the qualitative domain real-valued variables
correspond to variables having a finite domain of symbolic values.

The behavior of continuous and hybrid systems often depend on many parameters. Sometimes
the exact numerical dynamics may not be known or are not reflected in the system requirements.

4

1.6. Thesis Statement

In such cases Qualitative Reasoning enables the specification of generic system models. When
it comes to testing the controller of a hybrid system the approach is well suited to restrict the
behavior of a continuous environment. This usually leads to significantly smaller state spaces
than testing in unrestricted environments.

The content of this thesis covers the following topics:

Qualitative Modeling In order to build a qualitative model of a continuous process it is required
to capture its qualitative properties at an appropriate level of abstraction. What are the
landmark values of a system where behavior changes from a qualitative point of view?

The size of the model state space mainly depends on the number of variables and the
cardinality of their domains. How can the number of variables of a model be reduced while
preserving its expressiveness?

Testing of Continuous Systems For deciding the correctness of the behavior of a continuous
system regarding a given qualitative model a conformance relation is necessary. How can
such a conformance relation be applied in the derivation of qualitative test cases? What are
the demands on the execution of qualitative test cases?

Testing of Hybrid Systems There exist several languages to model hybrid systems. We are
interested in a formalism which allows to apply standard input-output conformance testing.
This demands the abstraction of continuous changes to discrete events. What is the relation
between continuous changes and discrete events? How can we verify the conformance
between two given hybrid system models and derive test cases from the discriminating
behavior?

Test Case Selection Given a formal specification and a conformance relation the question arises
which and how many test cases should be selected. Since our models can be nondetermin-
istic, generated test cases have to be adaptive, i.e. they have a branching structure. For
testing continuous systems we generate test cases due to test purposes and coverage crite-
ria. How can we formulate test purposes to specify qualitative test cases and what coverage
criteria are applicable in this domain?

For the generation of test cases for discrete and hybrid systems we apply a mutation-based
approach. How can the size of a test suite be minimized while maintaining mutation cov-
erage?

1.6. Thesis Statement

Qualitative reasoning can be applied in model-based testing of continuous and hybrid systems in
order to detect a certain class of faults related to the qualitative behavior of such systems.

1.7. Research Context

This work was conducted within the projects SEPIAS (Self Properties In Autonomous Sys-
tems) and MOGENTES (Model-based Generation of Tests for Dependable Embedded Systems).

5

Chapter 1. Introduction

SEPIAS was a FIT-IT project in cooperation with Kapsch Carrier Com as industrial partner and
had a duration of two years. The aim of SEPIAS was to enable embedded systems to adapt
to internal faults and environmental changes while maintaining their services. One result of the
project was the development of an approach for testing whether a certain continuous environment
conforms to a given qualitative model.

A major question of test case generation is how to select a finite set from a possibly infinite
set of test cases. During the MOGENTES project we focused on the test case selection based on
fault models. Here, the derived test cases are able to verify if a given system does not contain
any of the modeled faults, and by the coupling effect assumption [62], a class of related faults.
In the course of this project we developed the Ulysses tool which generates test cases for discrete
and hybrid systems based on the input-output conformance relation (ioco) [155]. The EU project
MOGENTES with a duration of 3 years and 3 month had the following partners:

• the Austrian Institute of Technology (AIT) was the project coordinator,

• Swiss Federal Institute of Technology Zurich / University of Oxford,

• SP Technical Research Institute of Sweden,

• Budapest University of Technology and Economics,

• Ford Forschungszentrum Aachen GmbH,

• Prolan,

• Prover Technology AB,

• Re:Lab S.R.L.,

• and Thales Rail Signalling Solutions GesmbH.

1.8. Contributions

The main contributions of this thesis are:

Qualitative testing theory We have developed an approach to test continuous systems using
qualitative models. The testing theory was implemented in the prototype tool QRPathfinder
which generates test cases due to test purposes or coverage criteria. Furthermore, the tool
enables the execution of test cases and provides an adapter for testing Matlab/Simulink[13]
models.

Qualitative action systems This thesis presents the formalism of qualitative action systems to
specify abstract test models of hybrid systems. In particular, the existing framework of
action systems [15, 139] is combined with qualitative reasoning in order to describe the
continuous behavior of hybrid systems. A discrete event interpretation of qualitative action
systems allows us to apply standard input-output conformance testing to hybrid systems.

Test case selection For the mutation-based approach, we have evaluated different test selection
strategies. We eliminate mutants, which are already covered by existing test cases. Only
for mutants passing this check, new test cases are generated. This leads to smaller test

6

1.8. Contributions

suites and hence to lower costs in terms of test execution time. Furthermore, we present an
algorithm for generating adaptive test cases.

Testing tool We have developed the Ulysses tool which is a able to generate test cases for dis-
crete and hybrid systems. It is implemented in SICStus Prolog1 and is based on the theory
of qualitative action systems. The tool follows a fault-based test generation approach. For
validation purposes, Ulysses provides an animator which allows to step through a model.
Furthermore, Ulysses can generate random test cases for deterministic systems up to a
defined length. Test cases and intermediate graphs are stored in a file format which is
compatible with the CADP2 toolbox. This allows to access the CADP tools for model
simplification, graph drawing, model checking, and so on.

The following peer reviewed papers were developed during the course of this dissertation:

• The modeling of ordinary differential equations with a tool based on qualitative process
theory is presented in Brandl and Wotawa [38]. Furthermore, the work describes a first
idea how to derive test sequences from qualitative models.

• In Brandl et al. [40] we discuss the specification of test purposes and Brandl et al. [39]
presents the generation of first qualitative test cases.

• For large specifications it may get difficult to formulate sufficiently many test purposes to
achieve a certain testing coverage on the model. The work in Brandl et al. [41] deals with
the generation of qualitative test cases according to a class of coverage criteria.

• For deciding the correctness of a continuous system regarding a qualitative model a con-
formance relation is required. The conformance relation qrioconf and an approach for
executing qualitative test cases are published in Aichernig et al. [8].

• The work in Brandl [37] gives a brief overview about the testing of continuous systems
with qualitative models.

• An extension of action systems for specifying test models of hybrid systems is presented
in Aichernig et al. [6].

• By abstracting continuous changes to discrete events we are able to apply the input-output
conformance relation for testing hybrid systems. The paper by Brandl et al. [42] defines
a trace semantics of hybrid systems and presents an approach to verify the input-output
conformance between two given hybrid models.

• Mutation-based test case generation for hybrid systems is published in Aichernig et al. [5].

• The work in Aichernig et al. [9] deals with the mapping from UML models to action sys-
tems and subsequent generation of mutation-based test cases. In order to minimize test
suites due to fault coverage we apply different strategies. A case study with a compari-
son of these strategies and the formal definition of the test case selection algorithm can be
found in Aichernig et al. [10].

1www.sics.se/sicstus
2http://www.inrialpes.fr/vasy/cadp

7

Chapter 1. Introduction

1.9. Organization

The remaining chapters of this thesis are structured as follows: An introduction to the field of
model-based testing is given in Chapter 2. Chapter 3 presents the basic concepts of Qualita-
tive Reasoning. After a discussion of qualitative simulation the topic of simplifying qualitative
models is treated. Furthermore, the modeling of continuous systems with the tool Garp3 [44] is
discussed, followed by a formal definition of qualitative behavior.

Chapter 4 deals with the testing of continuous systems. First a conformance relation for qual-
itative models is defined. Then we present the test case generation due to test purposes and
coverage criteria. This chapter finishes with the execution of qualitative test cases, demonstrated
on an example.

For specifying hybrid systems the formalism of Qualitative Action Systems is introduced in
Chapter 5. After this we present the conformance verification of hybrid systems which applies in
the generation of mutation-based test cases. An algorithm for the selection of adaptive test cases
is discussed and demonstrated on an example.

In Chapter 6 we cover the generation of efficient test suites. We present a small case study
of testing an object oriented system and evaluate different test selection strategies. The gener-
ated test suites are executed on a set of mutated SUTs in order to assess their fault detection
capabilities. Finally, Chapter 7 draws conclusions and gives an outlook for future research.

8

Chapter 2
Model-based Testing

Parts of this chapter are taken from ’Model-Based Test Case Generation Techniques: A
Survey’ [7] which is joint work with Bernhard K. Aichernig, Willibald Krenn, and Rudolf

Schlatte.

Before dealing with model-based testing the question "What is testing?" has to be answered.

Testing is an activity performed for evaluating product quality, and for improving it,
by identifying defects and problems.

This definition from the IEEE Software Engineering Body of Knowledge [34] describes the gen-
eral purpose of testing. In the domain of software testing a system under test (SUT) or implemen-
tation under test (IUT) is examined with a set of test vectors and the observed output behavior
is verified against the expectations. Since testing requires the concrete execution of software it
is also referred to as dynamic verification. This is in contrast to static verification techniques
like model-checking [102] and theorem proving where programs can be proved correct regarding
certain properties without executing them. While both techniques aim for the same goal, namely
to distinct correct from incorrect programs, the approaches have their strong and weak points.

Static program verification underlies the assumption that all external components to the SUT
such as software libraries or other systems behave correct. It can only prove the correctness of the
SUT regarding these assumptions. However, if some of the assumptions are invalid in general,
because they are too abstract and ignore, e.g., timing aspects, or they do not hold in a concrete
environment, e.g., because of an old library version, a program which has been proved to be
correct may reveal faulty behavior during its execution. On the other hand a program proof can
be quite compact and efficient to compute while exhaustive testing for even small programs is
in most cases not possible. The work in [76] elaborates the relation between test and proof and
discusses how assumptions can alleviate the process of testing.

The term model-based testing refers to a specific subclass in the field of testing methodologies
where test cases are derived automatically from a specification written in some formal language.
Model-based testing is also denoted as black-box testing and verifies the functional behavior of
a system. According to the IEEE Standard Glossary of Software Engineering Terminology [95]
black-box testing is:

9

Chapter 2. Model-based Testing

Testing that ignores the internal mechanism of a system or component and focuses
solely on the outputs generated in response to selected inputs and execution condi-
tions.

In model-based testing the model serves as oracle. During test case execution the observed
outputs of the implementation are checked against the oracle, i.e. the specified outputs in the
model.

There are two different principles in model-based testing, namely online and offline testing. In
online testing the test case is constructed on-the-fly during test execution. Here, the specification
and the SUT are executed in parallel while synchronizing on common events. In a certain model
state, either the SUT sends an output event which moves the tester to the next state or the tester
nondeterministically chooses one input and sends it to the SUT. When the tester cannot follow an
output event a fail verdict is issued. Recorded online test cases are not reproducible when dealing
with nondeterministic models. Offline test cases are created prior to execution and are not subject
to this restriction as the may have a branching structure. Branching test cases are called adaptive
because they are able to follow different output decisions of a SUT.

A further distinction is made between active and passive testing. In active testing the tester
steers the SUT by sending inputs while reacting to observed outputs. For passive testing the
observed behavior of a SUT is replayed on the test model. This process is also called monitoring.
In passive testing the inputs for the SUT have to be provided separately as they do not come from
the test model. Hence, this approach can be applied to monitor the communication between two
entities, i.e. between a system and its user or between two systems.

Other testing approaches are robustness and performance testing. They do not test the func-
tional behavior of the system but test the behavior after unexpected inputs and heavy system
loads respectively. Complementary to black-box testing is white-box testing where the internal
structure of a system, i.e. the source or machine code, is used to generate test cases that meet
certain coverage criteria. Since white-box test cases contain no test oracle manual inspection
of executed test cases is required. This work concentrates on black-box testing of discrete and
hybrid systems.

Model-based testing has an analogy to natural sciences. For instance, in experimental physics
theories are tested by conducting experiments and evaluating the observations. If all observations
of sufficiently many experiments can be explained by the theory it is considered as valid. In
contrast to this, when in model-based testing an unexpected behavior is observed this indicates
that either the model or the implementation is faulty. This has to be resolved by manual inspection
of the test run.

In order to denote the cause and effect of wrong behavior in programs the IEEE Standard Glos-
sary of Software Engineering Terminology [95] distinguish between fault, error, and failure. The
definition originates in the fault tolerant systems area where a fault is an incorrect program state-
ment or data definition. An error is the difference between the computed value of an operation
and the correct, specified value. A faulty program may lead to an error when an incorrect program
statement gets executed. Finally, an error can result in a failure when the system cannot perform
its required functions anymore.

There exists a lot of literature dealing with model-based testing. The book Practical Model-

10

2.1. Testing Strategies

based Testing: A Tools Approach [159] is an introduction to the topic. It gives a motivation why
applying model-based testing is worthwhile and presents some common modeling languages like
B [1] and UML [141]. Then coverage metrics and test case generation on the presented models
is discussed. It also deals with test adaptation, which is the process of making abstract test cases
executable, shows two case studies, and elaborates the issues when adopting model-based testing.
Furthermore, the following surveys examine different kinds of model-based testing techniques:

• The survey by Hierons et al. [92] presents multiple formal specification languages and
discusses their use for model based testing.

• The bibliography by Brinksma and Tretmans [46] and the more recent tutorial by Tret-
mans [157] contain an overview of the theory, literature and tools of testing based on la-
beled transition systems, as well as an introduction to model-based testing in general.

• The book by Broy et al. [48] gives an extensive overview of model-based testing of reactive
systems. It deals with testing using finite state machines, labeled transition systems, and
timed automata. Furthermore, preorder relations and the resulting test case generation
techniques are covered.

• Belinfante et al. [24] give an extensive overview of test case generation and execution tools
for reactive systems.

• Lee and Yannakakis [118] give a survey of testing techniques using finite state machines;
they also deal with related problems such as state identification.

• The survey of Fraser et al. [73] describes test case generation using model checking tech-
niques.

• Gaudel and Le Gall [77] give an overview of theory, tools and case studies of testing against
algebraic specifications.

In the next sections we present various testing strategies.

2.1. Testing Strategies

There are different strategies that can be used to generate suitable test cases and test suites. In
this section, we introduce a classification of testing strategies and discuss their applicability.

Choosing a testing strategy depends on the desired coverage and on the testing assumptions for
the SUT. Testing assumptions enable the selection of a finite set of test cases from an infinite state
specification in order to check if an implementation is correct regarding the specification. Hence,
for a given SUT the assumptions have to hold and it has to pass all test cases. Having no testing
assumptions requires exhaustive testing to ensure correctness; the stronger the assumptions the
fewer test cases are needed.

2.1.1. Exhaustive Testing

According to the IEEE Std 2003–1997, exhaustive testing can be defined as follows:

11

Chapter 2. Model-based Testing

Exhaustive testing seeks to verify the behavior of every aspect of an element, in-
cluding all permutations. For example, exhaustive testing of a given user command
would require testing the command with no options, with each option, with each pair
of options, and so on, up to every permutation of options. The various command op-
tions and permutations rapidly approach numbers too large to reach execution com-
pletion in realistic time frame. As an example, there are approximately 37 unique
error conditions in POSIX.1. The occurrence of one error can (and often does) af-
fect the proper detection of another error. An exhaustive test of the 37 errors would
require not just one test per error but one test per possible permutation of errors.
Thus, instead of 37 tests, billions of tests would be needed (2 to the 37th power).
Exhaustive testing is normally infeasible [96].

Note, that when dealing with finite models, exhaustive testing may be feasible because of the
possibility to enumerate the complete input space. However, even for small programs this is
impractical. In most cases, programs show for many input values a similar behavior. If behaviors
of different inputs are equal then the inputs form an equivalence class.

2.1.2. Testing With Equivalence Classes

The test input data forms equivalence classes according to the observations a tester can make.
Consider a tester which observes a single output variable and only recognizes whether it is equal
to zero or not. Then the input domain can be partitioned into two classes which behave equivalent
in terms of the observed outputs. One value from each input equivalence class is sufficient to test
all observable output behaviors of the system.

However, such abstract observations require strong testing assumptions that have to be proved.
Testing assumptions are formulated as hypotheses, e.g., the uniformity hypothesis by Gaudel
[76] states that if the execution of a test case with an input value from an equivalence class leads
to a pass verdict it will pass for all input values of this class.

The work by King [108] presents the symbolic execution of programs in the context of test-
ing. The control flow of a program determines the symbolic values of input variables during
computation. Each branch taken is recorded in the so-called path condition. The path condition
determines the equivalence class of input values which lead to the according symbolic state. The
exploration of all possible paths through a program yields the symbolic execution tree which
may be infinite in the case of looping programs. The work in [105] describes the application of
symbolic execution to specifications for the purpose of test case generation.

Symbolic execution has been combined with concrete execution which is referred to as con-
colic or dynamic symbolic execution. Here, the path condition during an initial concrete program
run is recorded. From this initial path condition new ones can be obtained by negating certain
conjuncts. The feasibility of taking a new branch is computed by a constraint solver or an SMT
solver like Yices [67]. The "flipping" of the path condition provides that different parts of the
program can be executed which ensures a better coverage that pure random testing. The work by
Godefroid et al. [79] presents the tool DART which relies on dynamic symbolic execution of C
programs. Further testing tools and successors of DART are CUTE [147], jCUTE [146] for Java

12

2.1. Testing Strategies

programs, EXE [51], and Pex [150] for the .Net framework. The work in [81] presents a testing
tool for the Creol [100] language.

Notice, that dynamic symbolic execution is a whitebox method as it exploits the source code
of a program. However, it can be applied in the context of model-based testing where the test
oracle is part of the source code in terms of assertions [70] or contracts [124].

2.1.3. Testing With Purposes

A second model-based testing strategy that tries to avoid exponential growth is to use test pur-
poses. This method is used to narrow down the specification to some smaller subset before
generating test cases. A test purpose can be seen as a slicing criterion that cuts out all parts of the
specification which are not of interest for testing. Testing with test purposes opens the possibility
of inconclusive test verdicts when the system deviates from the test purpose while staying within
the full specification.

A tool using test purposes is the test case generator TGV [98], which computes the synchronous
product of a test purpose and a specification (both given as labeled transition systems), resulting
in a complete test graph (CTG). The CTG contains all test cases satisfying the stated test pur-
pose. Other approaches to testing with purposes use environmental models to restrict specifica-
tions. Such models are composed in parallel with the specification, synchronizing on common
events. Non-shared events are hidden and disappear, leading to abstract states and possible non-
determinism, but smaller specifications. Further testing tools that allow to state test purposes are
SpecExplorer [162] and STG [55].

The tool UPPAAL [89] also supports test purposes for the generation of real-time test cases.
In addition test cases can be generated randomly or due to coverage criteria. Test purposes and
coverage criteria are expressed via so-called observer automata [29] which are Extended Finite
State Machines (EFSMs) [54].

2.1.4. Random Testing

Another testing strategy, random testing, also tries to avoid the exponential blow-up of exhaustive
testing. The strategy employed by the tester is to explore the specification randomly by selecting
new input events (and reacting to the output events emitted by the SUT) until a certain bound
is reached or a test purpose is satisfied. Most approaches use random testing on-the-fly (online)
during test case execution rather than precomputing test cases off-line. A random testing tool
is TorX [158] which works on several specification languages with labeled transition system
semantics, e.g. LOTOS [97]. The tool JTorX [25], implemented in Java, is the successor of
TorX and is based on a revised version of the conformance relation ioco [157] where test cases
are input enabled.

When dealing with nondeterministic specifications, online testing has the benefit that test cases
are adaptive, i.e., they evolve depending on received outputs from the SUT. On the other hand,
online test cases are not always reproducible. A tester may not be able to replay recorded test

13

Chapter 2. Model-based Testing

cases on nondeterministic implementations. In contrast, an offline test case can handle nonde-
terminism. Furthermore, many random test cases may be needed to achieve a desired amount of
testing coverage.

2.1.5. Fault-Based Testing

A fault or mutation is a deviation from a correct program or model. Mutation testing can be used
for test case generation. The idea of this strategy is to introduce faults in either the specification
or the implementation and to generate test cases that discriminate between the original and the,
so called, mutant. The authors of [99] present a survey from the beginnings of mutation testing
to recent works in the field.

Initially, fault-based testing or mutation testing was applied to assess the quality of a given
test suite. The mutation score is the ratio of the number of killed mutants over the number of
non-equivalent mutants and indicates the effectiveness of a test suite.

Initial work in fault-based testing dates back to the late 1970s (cf. [62]) and, in case of spec-
ification mutation, the mid 1980s (cf. [49]). In general, fault-based testing is based on two as-
sumptions: the coupling effect [62] and the competent programmer hypothesis [2]. The coupling
effect states that test cases which can detect simple faults are also likely to find more complex
faults. The competent programmer hypothesis states that programs are mostly correct. Addition-
ally, the mistakes that are made are often similar, like misnamed variables or wrong conditions in
branch statements. Mutation testing uses these assumptions to form fault models comprising a set
of mutation operators. For example, Black et al. analyzed operators for specification mutation
in [28].

Relying on the competent programmer hypothesis, it is possible to anticipate properties of
a fault resulting in fault models. Fault-based testing takes advantage of this knowledge: it will
construct a mutant that includes the anticipated fault and then search for a discriminating test-case
revealing the fault (and hence, via the coupling effect, other faults as well).

The problem of detecting if a mutant is equivalent to the original program (or specification) is
undecidable. A mutant is called equivalent if the mutation will not lead to an observable differ-
ence between original and mutant. The survey in [99] discusses several approaches to deal with
this issue. Offutt and Pan [129, 128] formulate the equivalence problem as constraint satisfaction
problem. In our work we follow a similar approach which is related to a technique called bounded
model checking [27]. In particular we apply bounded conformance verification between a mu-
tated and an original model to recognize equivalent mutants and in the case of non-conformance
determine the discriminating behavior, see [42].

2.2. Conformance Relations

In formal testing, conformance is defined as a relation between a specification model and an
implementation model. If this relation does not hold, an observable failure has been detected.
Hence, what is considered a failure is defined by the conformance relation. In order to decide

14

2.2. Conformance Relations

conformance some testing hypotheses have to be stated [26]. One is that the implementation can
be represented with the same formalism as the specification.

A trivial, widely used form of conformance is observational equivalence, which demands that
a SUT produces exactly the same observations as the reference model. This is the principle of
regression testing, where new software must behave exactly as its older versions. However, this
conformance relation is rather strong – in general a specification model derived from the require-
ments will be incomplete and should leave implementation freedom for unspecified behavior.
Hence, useful conformance relations are preorder-relations rather than equivalence relations, the
order going from abstract to more concrete models. In the following, we are going to discuss the
most relevant conformance relations.

2.2.1. Refinement

Conformance is closely related to the formal notion of program refinement. A common test as-
sumption is that the implementation behaves as a formal system whose exact details and structure
are unknown [154]. The testing process is then a series of experiments to see whether that un-
known formal model conforms to (i.e. is a refinement of) the specification, which is a known
formal model.

Refinement stems from the area of program verification and answers the question of whether
a program can be safely replaced by a more efficient, refined version. The Vienna Develop-
ment Method (VDM) advocates refinement as a formal method for developing programs in a
step-wise manner from abstract models down to code, with every refinement-step being formally
verified [101]. Other formal methods supporting step-wise refinement are RAISE [134] and the
B-Method [1]. In addition, refinement calculi have been developed that allow to derive refined
programs by following a set of refinement laws [18, 125]. All these refinement techniques are
based on a refinement relation defined via the language’s semantics.

Refinement can be split into two kinds: operational refinement and data refinement. Op-
erational refinement is refinement without changing the state-space, e.g. implementing a pre-
postcondition contract specified in VDM, RAISE, B, Eiffel, OCL, JML, Spec# or a similar no-
tation [101, 134, 1, 124, 116, 23]. Data refinement maps between programs of different state-
spaces, e.g. a balanced-binary tree implementing a set functionality. In the latter, a mapping
between the abstract and concrete data is needed, e.g. mapping between binary trees and sets.
(For details on data-refinement, we refer to [63].) Such mappings are also applied in model-based
testing when abstract stimuli need to be converted to concrete data-formats of the SUT and actual
responses, being converted back in order to compare with the abstract expected responses.

Conformance, and hence refinement, depends on observations the formal semantics is defined
over. Therefore, different (operational) refinement relations have been proposed for different
semantics. In the following, we discuss the most relevant ones.

Relational Refinement

Relations between (before-after) states is a standard (denotational) semantics for imperative se-
quential programs and their abstract contracts. Here, refinement is defined as relation-inclusion,

15

Chapter 2. Model-based Testing

meaning that a refinement (implementation) does not reach states that are not allowed by the
abstract specification. If the state-relations are defined as predicates, refinement is defined as
implication from the refined to the abstract. However, this only holds for total relations (specifi-
cations). In order to allow for partial specifications, the relations are defined via pre- and post-
conditions. Then, refinement can be characterized directly via pre- and postconditions: Under
refinement preconditions are weakened and postconditions are strengthened. For example, VDM
by Jones [101], and Hoare and Jifeng [94] use this kind of refinement for sequential programs.

Weakest-Precondition Refinement

An alternative denotational semantics are weakest-preconditions used by Dijkstra and Scholten
[64], Back and von Wright [18], and Abrial [1]. Here the syntax of a modeling or programming
statement is interpreted as a predicate transformer mapping a given postcondition to the weakest
precondition such that the statement will satisfy the postcondition. Refinement is given if and
only if the weakest precondition of the refinement is implied by the weakest precondition of
its abstract specification. Therefore, compared to the relational model, the implication order is
reversed.

Axiomatic Refinement

For an algebraic semantics a refinement must satisfy all the axioms of the abstract specification.
For example, all implementations of a stack must satisfy the axioms of a stack. The advantage
of this form of refinement are the easier equational proofs, which was one of the motivations for
adopting this style in RAISE [134].

Traces Refinement

For interactive systems which may be non-terminating, different semantic models are needed.
Therefore, in CSP [93] additional points of observation are introduced: so called events mark
the synchronization points between communicating processes where data is exchanged. The
semantic domain of such systems are event traces, the possible sequences of events of a process.
Refinement is then defined as trace inclusion, the traces of the abstract including the ones of the
refined process. A consequence of this refinement notion is that the abstract models must be
complete: there is no notion of a partial model as expressed in the pre-postcondition style. For
partial modeling, a preorder relation like input-output conformance is needed (see Section 2.2.2).

Failure Refinement

Traces semantics is not strong enough to express all semantic nuances of a language. For ex-
ample, it cannot distinguish between internal and external choice of CSP. Therefore, additional
refusal sets have been introduced representing the events that cannot be accepted in a certain
state. The according refinement extends traces refinement with the additional requirement that

16

2.2. Conformance Relations

an implementation must only block, if the specification allows blocking. Hence, refinement is
extended to negative (blocking) behavior, an idea that has been adopted by the following notion
of input-output conformance.

The work of Cavalcanti and Gaudel [53] deals with conformance testing using refusal sets.
In particular the authors test for refinement in CSP and discuss issues on test case selection. A
comprehensive description of CSP and variants of refinement between CSP models can be found
in Roscoe et al. [140].

2.2.2. Conformance between Labeled Transition Systems

Labeled transition systems (LTSs) are a common formalism to express the behavior of reactive
systems. The semantic of an LTS is defined via event traces which start from an initial state. An
LTS can be infinite and nondeterministic and serves as semantic model for specification languages
like, e.g., the process algebra LOTOS [97].

Definition 2.1 (Labeled Transition System (LTS)) A labeled transition system is a tuple M =df

(S,L∪{τ},→,s0), where S is a countable, non-empty set of states, L is a finite alphabet, τ 6∈ L is
an unobservable action,→⊆ S× (L∪{τ})×S is the transition relation, and s0 ∈ S is the initial
state.

We use the following common notations:

Definition 2.2 Given a labeled transition system M = (S,L∪{τ},→,s0) and let s,s′, si ∈ S,a(i) ∈
L and σ ∈ L∗.

s a→ s′ =df (s,a,s′) ∈→
s a→ =df ∃s′ • (s,a,s′) ∈→

s
a
6→ =df 6∃s′ • (s,a,s′) ∈→

s ε⇒ s′ =df s = s′∨∃s0 . . .sn • s = s0
τ→ s1

τ→ . . .
τ→ sn−1

τ→ sn = s′

s a⇒ s′ =df ∃s1,s2 • s ε⇒ s1
a→ s2

ε⇒ s′

s a1...an⇒ s′ =df ∃s0, . . . ,sn • s = s0
a1⇒ s1

a2⇒ . . .
an⇒ sn = s′

s σ⇒ =df ∃s′ • s σ⇒ s′

Furthermore, for an LTS M we define:

init(s) =df {a ∈ L∪{τ} | s a→}

traces(M) =df {σ ∈ L∗ | s0
σ⇒}

s after σ =df {s′ | s
σ⇒ s′}

17

Chapter 2. Model-based Testing

The first relation init(s) defines the set of events enabled in state s. The next definition asso-
ciates to an LTS the according set of event sequences starting from the initial state. The re-
lation after determines the set of states reachable after a trace σ starting from an initial state.
Moreover, an LTS M has finite behavior if all traces have finite length and it is deterministic if
∀σ ∈ L∗ • |s0 after σ| ≤ 1 holds. For conformance relations which employ interaction with in-
puts and outputs the alphabet L of an LTS is partitioned into input and output labels LI and LU

respectively.

There exist many conformance relations for labeled transition systems [156]. In the following
we present some of the more relevant ones for testing, namely conf, ioconf, and ioco.

CONF

In contrast to classical conformance relations like trace preorder, which requires inclusion of
implementation trace sets in specification trace sets, and testing preorder [47], which additionally
requires implementation deadlocks to be specification deadlocks as well, the conf relation [45,
155] only deals with traces that are part of the specification. This makes it more suitable for
testing especially against incomplete specifications, since the large complement of traces that are
not in the specification do not need to be considered.

The conf relation states that for all traces in the specification the observational behavior of a
trace in the implementation, including deadlock behavior, must be a subset of the same trace in
the specification.

IOCONF

Testing preorder and conf are symmetric relations which synchronize events of a tester and the
implementation, where the models do not differentiate between input and output. In contrast,
input-output relations deal with models that differentiate between input and output behavior
(whereby an output event of the tester synchronizes with an input event of the SUT and vice
versa).

The input-output variant of testing preorder is the input-output testing relation. The input-
output variant of the conf relation is called ioconf [155]. Informally, ioconf requires that for all
traces of the specification, the output behavior of the implementation is a subset of the output
behavior of the specification.

In the following subsection we discuss ioco at length, a more powerful conformance relation
than ioconf in that it can distinguish traces that differ in time-outs (quiescence) only.

IOCO

For the ioco relation SUTs are considered to be weak input enabled, i.e. all inputs (possibly
preceded by τ transitions) are enabled in all states: ∀a ∈ LI,∀s ∈ S • s a⇒. This class of LTS is
referred to as IOT S(LI,LU) where IOT S(LI,LU)⊂ LT S(LI ∪LU). A state s from which the sys-
tem cannot proceed without additional inputs from the environment is called quiescent, denoted

18

2.2. Conformance Relations

Specification spec

?coin

δ

?button

δ

!choc

δ

Implementation i

?coin

?button ?button

!choc

Figure 2.1.: The implementation i is not ioco to the specification s.

as δ(s). In such a state all output and internal events are disabled: ∀a ∈ LU ∪ τ• s aY→. The special
label δ /∈ L denotes the absence of any output event in a state. Hence, the transition relation→ is
extended by adding δ self-loops at quiescent states: →δ=df→∪{(s,δ,s) | s ∈ S∧ δ(s)}. Let Mδ

be the LTS over the alphabet L∪{τ,δ} resulting from adding δ self-loops to an LTS M. Then the
deterministic version of Mδ is called suspension automaton Γ. The set of suspension traces is

Straces(Mδ) =df {σ ∈ (L∪δ)∗ | s0
σ⇒}.

The following definitions state the set of outputs in a state s ∈ S and in a set of states S′ ⊆ S
respectively.

out(s) =df {a ∈ LU | s
a→}∪{δ | δ(s)}

out(S′) =df

⋃
s∈S′

out(s)

Informally, the input-output conformance relation says that for all suspension traces in the
specification the outputs of the implementation after such a trace must be included in the set of
outputs produced by the specification after the same trace. More formally we define:

Definition 2.3
For implementation models i∈ IOT S(LI,LU) and specifications spec∈ LT S(LI∪LU) the relation
ioco is defined as follows:

i ioco spec =df ∀σ ∈ Straces(spec)•out(i after σ)⊆ out(spec after σ)

A couple of variations of ioco have been defined [157]. These variations include definitions
of symbolic ioco [72], hybrid ioco [160], versions of real-time ioco [111, 89], and distributed
ioco [91]. Note, that in difference to [156] in recent work [157] test cases are redefined to be
input enabled. This ensures that test cases cannot block outputs from the SUT.

Figure 2.1 shows the specification of a chocolate vending machine, modeled as an input-output
labeled transition system that takes a coin (?coin) and dispenses a piece of chocolate (!choc)

19

Chapter 2. Model-based Testing

after the user presses a button (?button). (We use the common convention of denoting out-
puts with ’!’ and inputs with ’?’.) It has to be noted that the distinction between inputs and
outputs is made from the implementation’s point of view. The LTS for the specification is aug-
mented with δ labels (quiescence) in each state where no output event is possible. The deter-
ministic automaton of the augmented LTS is called suspension automaton. The specification
in Figure 2.1 is a suspension automaton. The implementation i shows strange behavior: some-
times the chocolate is delivered as output, sometimes the machine goes quiescent after the button
press. This misbehavior is detected, because ioco can recognize the absence of the output event
– after the two input events quiescence (δ “output”) is not allowed by the specification, since
out(i after ?coin?button) = {δ, !choc}* {!choc}= out(spec after ?coin?button).

Alternating Simulation

Alternating simulation is introduced in [11] as a refinement relation between alternating transition
systems that can be used to model composite systems. Each transition in an alternating transition
system corresponds to a possible move in a game between components.

An informal definition of alternating simulation can be found in [60]:

Consider two systems P and Q. Alternating simulation is a relation between the states
of P and the states of Q such that, at related states, all the outputs that can be gener-
ated by P can also be generated by Q, and all the inputs that can be accepted by Q
can be accepted by P; moreover, corresponding inputs and outputs lead to states of P
and Q that are again related.

It was shown in [161] that alternating simulation is equivalent to ioco for deterministic systems
and input-enabled test cases, which is interesting since in contrast to ioco, alternating simulation
is not a global property and hence is composable.

Based on alternating simulation, it is possible to define a notion of refinement: Informally, the
system P refines Q, if there exists an alternating simulation between the initial states. Having
this refinement relation that is based on compatibility of input assumptions and output guaran-
tees, [60] builds the theory for a modeling framework for component-based design and verifica-
tion.

Microsoft’s SpecExplorer [162] builds on Spec# and distinguishes between input (controllable
actions) and output (observable actions) for testing. The tool employs alternating simulation as
conformance relation.

Queued-quiescence Testing

The work in [130] proposes an approach to test input/output transition systems (IOTS) with
queues. The approach provides input-enabledness of test cases so that the tester does not need to
choose between inputs and outputs. The testing process is separated into two tasks, one generates
input sequences and the other one observes according output sequences. The two tasks maintain
queues where the SUT consumes inputs from the input process queue and stores according out-
puts in the output process queue. When the observer process encounters an empty output queue,

20

2.2. Conformance Relations

recognized as quiescence, it judges about the system’s behavior. A system state where the imple-
mentation produces no outputs is referred to as stable. A trace which transfers the system into a
stable state is called quiescent trace.

2.2.3. HIOCO

The work in [160] introduces the conformance relation hioco for hybrid systems, which is similar
to the ioco testing theory. The conformance relation is defined for Hybrid Transition Systems
where transitions are labeled with actions that can be discrete or continuous. Continuous actions
are called trajectories σ ∈ Σ where σ =de f (0, t]→ val(V) valuates a set of real-valued variables
V . Furthermore, the set of actions is partitioned into input and output actions. Note that actions
are denoted as events in the context of labeled transition systems.

The hioco relation states that for all traces in the specification the following must hold: First
the subset inclusion of output actions is defined according to ioco. As second condition the
trajectories of the implementation must be a subset of the trajectories of the specification after
the same system trace. This second subset inclusion is strengthened by filtering trajectories due
to specified input trajectories.

The authors propose a test case generation algorithm which needs adjustments in order to be
implementable. For instance, the theory deals with infinite state sets since trajectories are defined
over dense time and values. In practice one needs to introduce sampling intervals and also deal
with the selection of inputs. Furthermore, the theory applies synchronous composition of a test
case with an SUT for test case execution. A tester has to process discrete and continuous actions
in parallel such that the timing behavior is not influenced by the test driver.

2.2.4. RTIOCO

The authors of [89] introduce the definition of Relativised Timed Conformance for timed sys-
tems. The relation is based on the semantics of timed input/output transition systems (TIOTSs).
These automata extend the output actions of untimed input/output transitions with a set of clock
variables d ∈ R≥0. Timed automata can be interpreted as extended finite state machines with a
set of real-values clocks that can guard the enabledness of transitions. Traces through the system
contain beside input and output actions time information about clocks.

The rtioco relation assumes non-blocking and weakly input enabled systems/environments.
This conformance relation is consistent with the untimed input/output conformance relation ioco.
It considers traces in the environment to discriminate the output behavior of two TIOTS S and
T composed in parallel with their environment E. One can see the environment similar to a
test purpose used in TGV [98] to constrain the behavior of interest. The parallel execution
of the specification with the environment yields a set of timed traces; the same applies for
the implementation. In rtioco the output events and the progress of time are observable, i.e.
Out(s) =df {a ∈ Aout∪R≥0 | s

a⇒} where s is a given state. The relation requires that the observa-
tions of the implementation have to be a subset of the observations of the specification after the
same environmental trace.

21

Chapter 2. Model-based Testing

Figure 2.2.: Hybrid Automaton describing a temperature controller (taken from [83]).

The UPPAAL tool [89] provides a model checker for black-box conformance testing of real-
time systems. Since real-valued clock variables in timed automata lead to infinite state spaces
appropriate abstraction methods are applied, see [65], which enable the application of efficient
constraint solving techniques [137]. The tool UPPAAL cover [87, 88] implements a test case
generation algorithm based on observer automata [29]. For online testing UPPAAL-TRON[113]
is available. It provides an API for programming test adapters. An industrial case study for an
electronic refrigerator controller can be found in [114].

Kronos [36, 59] is another model checking tool for real-time systems. It offers an interface to
various real-time formalisms as well as to conventional labeled transition systems.

2.3. Hybrid Systems

Hybrid systems combine discrete and continuous behavior. There exist several modeling lan-
guages like χ [122] and CHARON [12] which provide compositional modeling. The work
in [139] presents an extension of action systems [14] to hybrid action systems. The authors de-
scribe the parallel composition of two hybrid action systems where global variables are merged
and local variables are hidden. The composition is restricted to systems of linear differential
equations.

Another formalism for hybrid systems provides the language Modelica [74]. It is an object
oriented language for modeling hybrid systems with combined continuous and discrete time. It
follows the data flow principle and synchronizes continuous flows with discrete time events. In
Modelica system components are specified via a set of variables and algebraic equations.

A common formalism for modeling hybrid systems are hybrid automata by Henzinger [83].
Hybrid automata are finite state machines where the symbolic states, called control modes, rep-
resent the continuous evolution of real-valued variables. Automaton states comprise assignments
to variables, definition of state invariants, and flow conditions. Flow conditions are differential
equations that describe the continuous behavior of variables between state transitions. Figure 2.2
depicts the well known example of a temperature controller [83].

The variable x represents the temperature with 20° Celsius as initial value. In control mode
Off the differential equation ẋ =−0.1 · x denotes a flow condition, i.e., the temperature x follows
the function e−0.1·t . Further the state contains the invariant x ≥ 18 declaring that the state is left
when the invariant is violated at the latest. The state can be left before as soon as the temperature
falls below 19°Celsius. In the On control mode a heater causes the temperature to increase. The

22

2.3. Hybrid Systems

invariant of control mode On together with the guarded transition to control mode Off causes the
heater to be turned off somewhere between 21°and 22°.

Timed automata are a subset of hybrid automata as they comprise one flow condition per clock
variable. The flow condition describes the progress of time, i.e., ẋ = 1.

Due to infinite state spaces the analysis of hybrid systems is very complex. The work in [85]
shows that checking reachability for even a simple class of hybrid systems is undecidable, thus
various abstraction techniques have been developed [32, 33, 119, 90, 152]. The tools HYTECH [86]
and HYPERTECH [84] are model checkers for hybrid systems.

The work in [131] presents the Differential Dynamic Logic for Hybrid Systems and a calculus
for proving properties of hybrid systems. The theory is implemented in the hybrid theorem prover
KeYmaera [132]. The approach has been successfully applied in the verification of a train control
system [133] and in the air traffic domain [153].

The work in [90] deals with the modeling of hybrid systems using interval arithmetic con-
straints. Interval arithmetic provides a means to deal with rounding errors where the real value of
a variable is located somewhere within an interval. Systems are specified in the CLP(F) language
which can state constraints over real numbers and analytic constraints over differentiable func-
tions. The underlying constraint solver calculates, similar to QSIM [112], an over approximation
of the solution of a system of ODEs. Due to over approximation the solver returns a set of solu-
tion intervals. If there is a correct solution to a query it will be in one of the returned intervals.
On the other hand not all solutions in the returned set may contain actual solutions. The CLP(F)
system solves analytic constraints by using power series to approximate analytic functions. It
is also possible to handle non-linear ODEs. A drawback of the approach is the high resource
consumption with increasing modeling time scale. This is because of an increase of constraints
over Taylor coefficients in the according power series.

Matlab/Simulink[13] is an IDE commonly used in industry for designing and simulating con-
trol systems, e.g., in the automotive area. The models can be hybrid containing discrete and
continuous parts. When the simulation of a model meets the expectations one can use a code
generator like Realtime Workshop to get an implementation with certifiable code. Discrete com-
ponents are modeled with Simulink Stateflow. The authors in [52] present an approach to trans-
form time-discrete Simulink models to the data flow language Lustre [82].

2.3.1. Testing from Hybrid System Models

The authors of [103] propose a test case generation algorithm for hybrid systems and strategies
to ensure coverage. Given a testing trajectory the method computes a neighborhood of the initial
state of the trajectory. Trajectories with an initial state located inside this neighborhood visit
the same control locations of the hybrid system while avoiding unsafe regions. This approach
generates test cases based on equivalence classes and ensures coverage on the tested system.

The work in [20] presents an automated test generation approach for hybrid systems with
discrete time. As specification formalism Time Discrete Input-Output Hybrid Systems (TDIOHS)
are used. They build symbolic test cases and in a second step refine them with constraint solving

23

Chapter 2. Model-based Testing

techniques to executable test cases. The authors applied their tool in the embedded systems
domain for testing avionics and railway systems.

The work in [68] deals with randomized test case generation for hybrid systems. Based on the
notation of hybrid automata the approach refers to states as (x,q) tuples where x ∈ Rn is a valua-
tion of the continuous variables and q is a set of discrete variables which index the system mode.
The idea is to explore the state space by building Rapidly Exploring Random Trees (RRTs) [115].
The RRT algorithm has been used in robotics for path planning by computing control signals for
trajectories in high dimensional spaces. A RRT consists of nodes (states) which are connected
with edges (input actions). For testing, the RRT algorithm is used to find counter examples, i.e.
input sequences that drive the system into states that are not in a defined specification set. The
authors in [127, 58] extend the random exploration technique with coverage information. Less
explored regions are preferred in the exploration process. The usability and performance of RRTs
depends on finding appropriate metrics in a system’s state space.

2.4. Discussion

This chapter presented various testing techniques and conformance relations which are suited for
different kinds of system models. Based on the underlying conformance relation certain types
of faults can be detected during testing. We are interested in active testing requiring a notion of
conformance which considers inputs and outputs. Furthermore, system models should be partial.
This means that the specified behavior may describe only a part of the system behavior. Con-
formance relations like ioconf or ioco support partial system models as they only consider the
behavior after specified traces. For testing hybrid systems the correctness of continuous behav-
ior has to be considered too. From this demands the conformance relation hioco would be the
right choice to test hybrid systems. However, there are some practical problems in the applica-
tion of hioco since it covers real-valued functions. Thus, we apply the abstraction technique of
qualitative reasoning to get a finite state representation of the behavior of continuous and hybrid
systems. Based on this abstraction we have developed the Qualitative Reasoning conformance
relation qrioconf in order to test continuous systems. By giving hybrid systems a discrete event
semantics we are able to apply the standard ioco testing theory.

The following chapter gives an introduction to qualitative reasoning.

24

Chapter 3
Qualitative Reasoning

Parts of this chapter have been published in Aichernig et al. [6].

After explaining the basic concepts of Qualitative Reasoning (QR) this chapter presents our
theory to simplify qualitative models. Furthermore, we show how to build qualitative models of
differential equations with the QR tool Garp3. This chapter concludes with the formal definition
of qualitative behavior which serves as our test model.

Qualitative Reasoning is a technique from Artificial Intelligence for reasoning about physical
systems with incomplete knowledge. Humans only have limited knowledge about the incidents
in the physical world but still are able to cope with them. This kind of common sense reason-
ing relies on learned, abstract models rather than on detailed, numerical models like differential
equations used in physics. Numerical models mostly contain too much information which is
not necessary to understand the qualitative properties of a mechanism. Qualitative Reasoning
provides a framework to model physical systems and reason about their behavior based on a
well-founded theory. Three of the most important works in the area are [109, 71, 112].

The work by De Kleer and Brown [109] presents a qualitative physics based on confluences.
Confluences are Qualitative Differential Equations (QDEs) which are an abstraction of Ordinary
Differential Equations (ODEs) . Furthermore, a qualitative calculus is introduced which allows
to solve a set of QDEs. Given an initial state and a qualitative model in the form of QDEs, the
so-called envisionment reflects the qualitative behaviors which may evolve over time. The envi-
sionment is a state graph with possible loops. Each path starting from the initial state represents a
qualitative behavior. The work shows the process of qualitative modelling and behavior inference
on a water valve example. A central point in qualitative modelling is the no function in structure
(NFIS) principle. This means that behavioral information of a system should not be incorporated
into its description. Following the NFIS principle allows the specify context independent models
which can be collected in a library and reused as components to model different systems. For
instance, the model of a battery can be applied as component in various models of electric cir-
cuits. The NFIS principle has been questioned and considered to be rather a design guideline
since it cannot be obeyed in general, see [57, 107]. The main argument against NFIS is the claim

25

Chapter 3. Qualitative Reasoning

that the context in which a component is used may be required. In certain contexts the structural
description of a device may be inadequate in order to infer its function.

Forbus [71] introduces the Qualitative Process Theory which refers to the dynamics in a system
as a process. The work claims that the theory should provide compositional modeling which
supports the NFIS principle by De Kleer. Qualitative variables are denoted as quantities and their
domains as quantity spaces. A quantity space consists of a total ordered set of symbolic values
which represent the interesting points where the system’s behavior changes from a qualitative
point of view. For instance water freezes to ice below 0°C and it is liquid above 0 and below
100°C. All the values below or in between this two points form equivalence classes regarding
the qualitative behavior of water. A system is modelled as a collection of individual views. An
individual view consists of four parts:

1. A set of individuals, i.e. the physical objects that must exist in order to apply the view.

2. Quantity conditions which are inequalities between the quantities of the individuals in the
view.

3. Preconditions which must hold.

4. Relations between the quantities which must be true.

In Qualitative Process Theory a view is a process if it contains at least one influence. Influences
are a means of integration and introduce changes over time in a system. The QR engine Garp3
by Bredeweg et al. [44] is based on the Qualitative Process Theory and provides a graphical
modeling language.

Kuipers [112] followed, similar to De Kleer, a mathematical approach based on QDEs. The
work presents the QSIM algorithm for simulating the behavior of qualitative models and shows
how to build models of physical systems. Furthermore, dynamic qualitative simulation introduces
new landmarks during the simulation of a given system. Additional landmarks do not influence
the overall behavior but only the behavior following the state where the landmark was introduced.
The dynamic introduction of landmarks allows to draw more conclusions about a system’s be-
havior like increasing, steady, or decreasing oscillations. The work also treats the concept of
semi-quantitative simulation. Here, the symbolic real values of landmarks are associated with
real-valued intervals. In addition to the model QDEs numerical constraints are stated. These
constraints are used to rule out qualitative behaviors for which the additional constraints do not
hold.

We started our QR studies with Garp3 but then recognized that the performance of behavior
inference for even small models was not satisfactory. This is because Garp3 does not support
the hiding of model quantities which results in a complete valuation of all quantities and hence
in a large number of qualitative behaviors. We then evaluated QSIM [112] and used its Prolog
implementation ASIM [22]. ASIM maps qualitative constraints to integer-arithmetic constraints
and employs a constraint solver during qualitative simulation. Furthermore, it supports the hiding
of model quantities, applies constraint propagation, and defers the enumeration of variables as
long as possible. This provides a very efficient implementation of the QSIM algorithm.

In the following section we give an introduction to qualitative simulation and elaborate the
basic concepts of Qualitative Reasoning.

26

3.1. Qualitative Simulation

Physical
System

Differential
Equation

Actual
Behavior

Continuous
Functions

Qualitative
Model

Qualitative
Behavior

Figure 3.1.: Models of physical systems and their according behaviors.

3.1. Qualitative Simulation

Qualitative Reasoning is based on ordinal relations between quantities. According to [112] a
quantity is a real-valued attribute of a physical object. Landmark values denote the "natural
joints" that break a continuous set of values into qualitatively distinct regions. A landmark is a
symbolic name for a particular real value which might be known or unknown. The qualitative
properties of a real value depend on the ordinal relations to the landmark values. For instance,
when we consider the temperature of water from a qualitative point of view we can map the
temperature to the domain: below 0°C water is frozen, at 0°C ice melts, above 0°C water is
liquid, and around 100°C, depending on the pressure it starts boiling. Above 100°C it changes to
steam. This yields the landmark values AbsZero . . .Freezing . . .Boiling . . .∞. Here, we neglect the
fact that steam changes somewhere in the interval above the boiling point into plasma. Hence, the
distinct values of the quantity water temperature are the landmark values and the open intervals
between them.

3.1.1. Discrete Representation of Continuous Change

The continuous behavior of a physical system is usually described with differential equations
which represent the structure of a system. The variables form the state while mathematical re-
lations between them constrain the possible values the variables can take on over time. A dif-
ferential equation model of a system can be used to infer the system’s behavior in the form of
continuous functions of time starting from a given initial state. Such a model allows to make
accurate predictions about the behavior of a physical system.

Figure 3.1 shows the relation between physical systems, models, and behaviors in a commuting
diagram [112]. No matter what path is followed from the physical system to its continuous func-
tions the result must be the same. This means that the solution of the differential equation model
has to match the observations of the system. The lower part of the diagram depicts the abstraction
from differential equations to qualitative models. Here, the numerical information is abstracted to
symbolic values. If the qualitative model is a valid abstraction of the differential equation model

27

Chapter 3. Qualitative Reasoning

then it is guaranteed that the according qualitative behavior will cover the qualitative behavior of
the continuous functions.

By having equations over symbolic values one is able to model a system where the exact
numerical is not known. The equations are called Qualitative Differential Equations (QDEs) and
are an abstraction of ODEs.

Definition 3.1 According to [112] a QDE is defined as a tuple (Q,QS,C,T) where

• Q is a set of variables, each of which is a "reasonable" function of time.

• QS is a set of quantity spaces, one for each variable in Q.

• C is a set of constraints applying to the variables in Q. Each variable in Q must appear in
some constraint.

• T is a set of transitions, which are rules defining the boundary of the domain of applicability
of the QDE.

In contrast to [112] we denote the set of variables and quantity spaces with Q and QS respectively.
Qualitative variables Q represent time-varying quantities. In order to be compatible with the
notation of Qualitative Process Theory we refer to qualitative variables as quantities.

In order to express a time-dependent function with a finite set of symbols we have to define
a link between these two domains. As stated in Definition 3.1 such functions f (t) have to be
reasonable. This means, that f (t) must be continuously differentiable, i.e. f (t) and its first
derivation f ′(t) are continuous. We denote the set of functions satisfying this property with
C1. Furthermore, we assume functions to be defined over the extended reals R∗ which include
the endpoints −∞ and ∞. A function f : [0,∞] 7→ R

∗ is considered to be continuous at ∞ iff
lim
t→∞

f (t) exists. By using the extended reals it is ensured that the value of a variable is always
enclosed between landmark values (or lies on a landmark value). The consideration of infinite
time intervals allows to reason about the asymptotic behavior of a function. For instance et

and e−t are reasonable functions on [0,∞], but sin t is not. A further constraint on reasonable
functions is that they do not change infinitely often in a finite time interval. For example, sin 1/t
is continuous differentiable but is not reasonable since it oscillates infinitely quickly around t = 0.

For capturing the qualitative behavior of a reasonable function only a few landmark values
are required. According to [112] a quantity space is a finite, totally ordered set of landmarks
values, i.e. l0 < l1 < .. . < lk. A landmark is a symbolic name for a certain value in R∗ which
might be unknown. The QSIM tool supports the dynamic creation of additional landmarks for
critical values of f (t), i.e. where f ′(t) = 0. When using the so-called envisionment simulation
no additional landmarks are created. This has as consequence that critical points of a function
may lie between landmarks. Thus, there are fewer distinct states in simulated behaviors. In the
following we consider the implicit, open intervals between landmarks as part of a quantity space
forming an ordered set 〈l0, l0..l1, l1, . . . , lk−1..lk, lk〉.

Time is represented with the qualitative variable time which has the quantity space t0 < t1 <
.. . < tn <∞. A time point t ∈ [a,b] is a distinguished landmark time point of a reasonable function
f if it has a boundary element of the set

{t ∈ [a,b] | f (t) = x,where x ∈ R∗ is represented by a landmark value of f}

28

3.1. Qualitative Simulation

, see [112]. If a function remains constant at a landmark value for a certain time interval only
the endpoints of such an interval are landmark time-points. The qualitative values of a function
f over time regarding a given quantity space QSq are (qmag,qdir) tuples. Here, qmag ∈ QSq

is either a landmark value l j if f (t) = l j or is an interval value l j..l j+1 if f (t) ∈ (l j, l j+1). The
qualitative gradient qdir ∈ δ is defined as follows:

δ =df

+ if f ′(t)> 0
0 if f ′(t) = 0
− if f ′(t)< 0.

Here, the special values + and − denote the intervals (0,∞) and (−∞,0) respectively. Because
quantity spaces form a strict total order, we can define an indexing function indq : QSq 7→ {i | 0≤
i < |QSq|} that returns the index i ∈ N0 of a given value from a quantity space QSq.

In [6] we describe the abstraction from continuous functions to qualitative behaviors (traces):

αq : C1 7→ (N0
∼7→ QSq×δ).

The abstraction function αq maps a continuous function f to a qualitative trace q, i.e. αq. f = q.
The abstraction process is two-fold: (1) concrete real values are mapped to qualitative values and
(2) continuous time is mapped to a sequence of states. For a time-dependent function f : C1,
iterated application with progressing time values will give a trajectory, i.e. a trace through the
range of this function. Given such a trajectory, we use a value abstraction function v_absq : C1 7→
(R+

0
∼7→ QSq×δ) that maps quantitative values into the qualitative domain and a time abstraction

function t_absq : C1 7→ (R+
0 7→ N0) that maps continuous time to discrete states to derive the

qualitative trace q : N0
∼7→ QSq×δ.

We define the abstraction from continuous values to qualitative values as follows:

Definition 3.2 (Value Abstraction) Given a continuous function f : C1, its corresponding quan-
tity space QSq, and a value abstraction function

v_absq : C1 7→ (R+
0
∼7→ QSq×δ).

For each concrete value f .t in the range of the continuous function f the corresponding quali-
tative value is calculated by the function application v_absq(f)(t).

Note, that our v_absq results in a partial mapping modeling the case where the abstract quantity
space (landmarks, intervals) does not cover the full range of f . For example, given a quantity
space 〈0,max〉 with max = 10 and the function f exceeding this maximum, i.e. ∃t ∈ dom(f) •
f (t)> 10, the abstraction is undefined. Here, dom gives the domain of a function. Therefore, in
QR special landmarks covering the border intervals up to ±∞ are usually added. Hence in the
following, we assume v_absq being total.

Value abstraction is necessary but not sufficient: abstracting from time is also needed for our
qualitative abstraction mapping αq.

29

Chapter 3. Qualitative Reasoning

Definition 3.3 (Qualitative Abstraction) The abstraction αq is a mapping of continuous time-
dependent functions f : R+

0 7→ R
∗ to qualitative traces q : N0

∼7→ QSq×δ such that:

∀ f : C1,∀t : R+
0 ,∃s : N0 •αq(f)(s) = q(s) = v_absq(f)(t) (3.1)

Furthermore, a state and its successor must not have equal values:

∀s1,s2 ∈ dom(q)• s2 = s1 +1 =⇒ q(s1) 6= q(s2) (3.2)

Corollary 3.1 (Time Abstraction) By skolemization of the existential quantifier in (3.1), we in-
troduce a function t_absq : C1 7→ (R+

0 7→ N0) partitioning the domain of f : R+
0 7→ R

∗ into quali-
tative equivalence classes:

∀ f : C1,∀t : R+
0 •αq(f)(t_absq(f)(t)) = q(t_absq(f)(t)) = v_absq(f)(t)

= ∀ f : C1 •αq(f)◦ t_absq(f) = q◦ t_absq(f) = v_absq(f)

This mapping t_absq represents our time abstraction.

Furthermore, function t_abs has the following properties:

∀ f : C1,∀t1, t2 : R+
0 • t1 < t2 =⇒ t_absq(f)(t1)≤ t_absq(f)(t2) (3.3)

∀ f : C1,∀t : R+,∃ε > 0 : R• t_absq(f)(t)− t_absq(f)(t− ε)≤ 1 (3.4)

t_absq(f)(0) = 0 (3.5)

The properties basically say that t_abs has to be increasing over time and that it must not step-
over a state, in other words, it has to sequentially visit all numbers ∈ N0 up to the current value.
A property of time abstraction is the fact, that finite trajectories result in finite qualitative traces
but the reverse may not be true. For instance the finite trace 〈(0,+),(0..max,+),(max,0)〉 may
be refined into an infinite exponential function which has the landmark max as limit value:
lim
t→∞

max · (1− e−t) = max.

In practice we may not have access to the function definition of f but we may have access
to samples of f . The well known sampling theorem describes conditions under which f can be
reconstructed from samples. Similarly, given a sampling interval Ts > 0 :R, a sample number t$,
and a trace of abstracted samples 〈v_abs(f)(0 · Ts), . . . ,v_abs(f)(t$ · Ts), . . .〉, it is not always
possible to reconstruct an abstract qualitative function q from these qualitative values: Within a
qualitative function q, the values may change to the next value of the quantity space or the next
value of the qualitative derivation in one discrete time-step. The following definition, in which v1
and v2 denote qualitative values, states this property formally.

Definition 3.4 (Continuity of Qualitative Samples)

∃Ts > 0 : R,∀0≤ ε < Ts,∀t$: N0,∃v1,v2 : QSq×δ•
v_absq(f)(t$ ·Ts + ε) = v1∧ v_absq(f)((t$+1) ·Ts + ε) = v2∧Cont(v1,v2)

where

Cont((qmag1,qdir1),(qmag2,qdir2)) =df

|indq(qmag1)− indq(qmag2)| ≤ 1∧|indδ(qdir1)− indδ(qdir2)| ≤ 1

30

3.1. Qualitative Simulation

t_abs.f.t

0
1
2

0
1
2

t
zero

med

high

max

q.s t

v_abs.f.t f.t

Figure 3.2.: (Diagram bottom, right.) Function t_abs partitions time into equivalence classes.
(Diagram on top.) Function v_abs partitions the range of f into equivalence classes.
Equivalence classes are denoted by shaded areas. (Diagram to the left.) The resulting
qualitative function q is depicted on the left. The qualitative slope is represented by
circle, triangle up, and triangle down symbols. Thereby the circle stands for “0”,
triangle up denotes “+”, and triangle down represents “-”.

Theorem 3.1 Whenever a system conforms to Definition 3.4 ,we are able to compute a qualitative
function q that represents the continuous function f out of the observed sample values.

Proof 3.1. Let us assume that the sampling interval TS approaches zero. Then discrete time
changes to continuous time which leads to a complete qualitative abstraction q of the continuous
function f . Depending on the change rate of f the sampling interval can be increased up to a
critical value where the continuity law still holds.

In practice the choice of the sampling interval should result in a high enough oversampling of f
such that the fastest signal changes of interest can be captured.

Figure 3.2 shows a sketch of the abstraction of a given continuous function f according to
four landmarks, i.e. 〈zero,med,high,max〉. Therefor, we have to associate each landmark with
a numerical value. In the upper-right diagram the domain of f is partitioned into three intervals.
The vertical lines denote changes in the qualitative behavior of f obtained by applying the value
abstraction function v_abs. For example, at time point zero the output of the continuous function
is below the landmark med but above the landmark zero, hence in the interval zero..med, and
the slope of the function is zero. The second abstraction we need to employ in order to map a
continuous function to a qualitative one is time-abstraction (t_abs). Starting again at the upper-
right diagram in Figure 3.2 we can see the operation of time abstraction in the diagram below
(bottom right). Informally stated, as long as value abstraction returns the same qualitative value

31

Chapter 3. Qualitative Reasoning

over passing time on a continuous function, the “qualitative time” is the same, i.e. there is no
need to create a new qualitative state within the qualitative function that is being constructed.
Taking value abstraction and time abstraction together, we get the resulting qualitative function q
depicted in the diagram on the bottom to the left.

According to [112] a qualitative behavior of a continuous function f on an interval [a,b] is
a sequence of qualitative values QV (f , t0),QV (f , t0, t1),QV (f , t1), . . . ,QV (f , tn−1, tn),QF(f , tn),
which alternate between values at time points and values on intervals between time points. The
time points and time intervals of a qualitative behavior are referred to as states. Furthermore, a
system is a set F = { f1, . . . , fn} of reasonable functions fi : [a,b] 7→ R∗ where each function has
its own set of landmarks and distinct time points. The qualitative behavior of the system consists
of states where the distinguished time points are the union of the time points of the individual
functions. The values of qualitative states are n-tuples of the values of the individual functions:

QS(F, ti) = (QV (f1, ti), . . . ,QV (fn, ti))

QS(F, ti, ti+1) = (QV (f1, ti, ti+1), . . . ,QV (fn, ti, ti+1))

If ti is not a distinct time point of f j, then it must be contained within an interval (tk, tk+1) of f j.
Hence, there occurs no qualitative change at ti, i.e. QV (f j, tk, ti) = QV (f j, ti) = QV (f j, ti, tk+1) =
QV (f j, tk, tk+1). Since at each transition from a time point to an interval or from an interval to
a time point at least one function (quantity) changes its value there are no two successive states
with the same valuation, see Definition (3.3). The progress of time is represented as a sequence
of states alternating between time points and intervals.

3.1.2. Qualitative Models

Commonly, ordinary differential equations are used to specify continuous behavior instead of
continuous functions. Similar to ordinary differential equations in the continuous domain, in QR
qualitative differential equations (QDEs) are used to describe qualitative behavior. QDEs are
composed of a set of qualitative constraints, see Definition 3.1, which state relations between
model variables (quantities). The QSIM tool is the reference implementation of the Qualitative
Simulation [112] and in the following we present the most important types of constraints. A
complete list can be found in the user manual [69].

(add x y z) =df x(t)+ y(t) = z(t)

(mult x y z) =df x(t) · y(t) = z(t)

(minus x y) =df x(t) =−y(t)

(d/dt x y) =df

d
dt

x(t) = y(t)

(constant x) =df

d
dt

x(t) = 0

For expressing functional constraints QSIM provides a monotonic function relation:

(M+ x y) =df y(t) = f (x(t)), f ∈M+ (3.6)

(M− x y) =df y(t) =− f (x(t)), f ∈M+ (3.7)

32

3.1. Qualitative Simulation

where M+ denotes the set of monotonic increasing functions f : [a,b] 7→ R
∗ with f ′ > 0 over

(a,b). The monotonic function relation states that the functions x and y both have the same direc-
tion of change in the interior of the domain, i.e. (a,b), of the mapping function f , For example
a function y(t) = x(t)2 + 3x(t) gets (M+ x y) since y′(t) = 2x(t) + 3∧∀t ≥ 0 • y′(t) > 0. We
are able to model continuous systems by mapping ODEs to qualitative constraints. The mapping
process is called structural abstraction where a given ODE is decomposed into a set of simulta-
neous equations which are then mapped to qualitative constraints. Any ODE F(y,y′, . . . ,yn) = 0
of order n can be rewritten into a system of n first-order differential equations:

y′1 = y2

y′2 = y3

...

y′n−1 = yn

y′n = F(y1, . . . ,yn)

where yi := y(i−1).

Let us consider the ODE 3y′′+ky′− 1
y = 0. Since qualitative constraints have arity two or three

we have to decompose equations into sub expressions. For the given ODE we get the following
five equations (a) which we map to the corresponding qualitative constraints (b):

(a) (b)
v1 = y′ (d/dt y v1)
v2 = 3v′1 (d/dt v1 v2)
v3 = kv1 (mult k v1 v3)

v4 =
1
y (M− y v4)

v2 + v3− v4 = 0 (add v2 v3 v4)

Because the reciprocal function v4 has a negative gradient, i.e. d
dy

1
y = − 1

y2 , it is mapped to the
M− constraint. After assembling the constraints one has to define the according landmarks for
the variables y and v1 to v4. Variables have a basic quantity space 〈−∞,0,∞〉 which can be
extended with user-defined landmarks. The landmarks represent domain and range boundaries of
monotonic functions or denote certain constants. Furthermore, the constraints can be enhanced
with corresponding values between variables. Corresponding values relate qualitative constraints
with values that the constraint variables can take on simultaneously. Such corresponding values
are tuples with an arity of the associated constraint. For example, the constraint on variable v4
has the corresponding values (−∞,0), (0,∞) and (∞,0) or for an add constraint the triple (a,b,c)
states that a+ b = c. The statement of corresponding values add further constraints and are a
means to reduce the nondeterministic behavior branching during qualitative simulation. In the
process of qualitative abstraction coefficients c > 0 of the ODE are neglected. This is because
they do not influence the monotonic behavior of functions but rather act as a scale factor. For
example, the coefficient 3 is ignored in function v2. The choice of constants have an influence
on the behavior of a QDE because they can change the sign of a term. Hence, Equation v3 with
constant k is mapped to the according multiplication constraint. A QDE is a structural abstraction
of an ODE if all solutions of the ODE are also solutions of the QDE. However, the reverse may
not be true since different ODEs may be mapped to the same QDE.

33

Chapter 3. Qualitative Reasoning

3.1.3. Sign Algebra

The QSIM algorithm applies the sign algebra for solving qualitative constraints. In sign algebra
the landmark 0 divides the Reals into positive (+) and negative (–) numbers. According to [112]
the set of qualitative values is called the Domain of Signs:

S =df {+,0,−}.

For checking qualitative constraints against certain valuations the signs of these values with re-
spect to certain reference points are sufficient. Therefore, we define sign-valued operators ac-
cording to [112] which return the signs of values in R∗:

• [x]0 = sign(x) =

+ if x > 0
0 if x = 0
− if x < 0.

[x] is used as abbreviation for [x]0 where the context is clear.

• [x]x0 = sign(x− x0), where x0 is a reference value for the variable x.

• [ẋ] = [dx/dt] = sign(dx/dt).

• [x]∞ =

+ if x = ∞

0 if x is finite
− if x =−∞.

We can use the operators above to describe qualitative behaviors. For instance, the trace
〈(a..b,0),(a..b,−),(a,0)〉 of a variable x(t) with landmarks 〈0,a,b〉 can be represented as fol-
lows:

QSIM [x]0 [x]a [x]b [ẋ]
x(t0) (a..b,0) + + − 0
x(t0..t1) (a..b,−) + + − −
x(t1) (a,0) + 0 − 0

Here, the notation t0..t1 denotes a time interval.

Based on the domain of signs, Table 3.1 and 3.2 define the qualitative addition and multiplica-
tion respectively. While the multiplication of signs is unambiguous the addition is not. When

add + 0 −
+ + + +/0/−
0 + 0 −
− +/0/− − −

Table 3.1.: Qualitative Addition

mult + 0 −
+ + 0 −
0 0 0 0
− − 0 +

Table 3.2.: Qualitative Multiplication

adding opposing signs the result cannot be uniquely determined. Thus, operations in the qualita-
tive domain are represented as relations rather than as functions. The types of the addition and
multiplication are add : S×S×S 7→Bool and mult : S×S×S 7→Bool respectively. An elaboration
of the algebraic properties of qualitative operations can be found in [112].

34

3.1. Qualitative Simulation

3.1.4. Behavior Inference from Qualitative Models

The whole process of qualitative simulation is mapped to a Constraint Satisfaction Problem
(CSP). Given an initial state and a qualitative model (QDE), the set of next states are obtained by
solving a constraint system. Then the next states from the newly discovered states are calculated
and so on. The constraint system for the next state relation basically consists of two parts:

• the set of constraints from the model,

• and state transition rules imposed by the underlying theory.

The set of qualitative model constraints are an invariant for each state in the inferred behavior
while the state transition rules relate the valuation of model variables between the current and the
next state. For efficient constraint solving the various types of constraints are mapped to condi-
tions over sign-algebraic properties. If a value tuple satisfies a constraint C, then its associated set
of conditions {P1, . . . ,Pn} must evaluate to true, i.e. C =⇒ P1∧ . . .∧Pn. For constraint solving
the reverse direction of the implication, i.e.

¬P1∨ . . .∨¬Pn =⇒ ¬C (3.8)

is used to filter value tuples which violate the constraint. For example, the two conditions for the
monotonic function constraint (M+ x y) are:

1. [ẋ] = [ẏ], provided that x or y is not at the endpoint of its domain. The condition states that
x and y both have the same direction of change in the interior of the domain [a,b] of the
monotonic function f .

2. If (xi,yi) is a pair of corresponding values, then [x]xi = [y]yi . This means that the two values
must be on the same side of the landmarks in each pair of the corresponding values.

The condition for the qualitative derivation constraint (d/dt x y) is that [ẋ] = [y]0. The conditions
states that the sign of y determines the direction of change of x. A description of the conditions
of further qualitative constraints can be found in [112].

In QSIM the domain of a QDE is defined via so called transitions. A transition consists of a
condition and a transition function. The condition expresses the limits of the QDE via properties
over the state variables. When a certain state satisfies the condition, the transition function is
called which changes to another QDE, or when no function is defined, stops simulation. The
transitions between QDEs are analogous to the mode switches in a hybrid automaton.

It has to be noted, that quantity spaces of different variables, even if they have landmarks with
the same name, are completely unrelated. If there exists a relationship between landmarks of
different quantity spaces it has to be expressed via explicit constraints. For instance, in order to
assert that two landmarks a and b for A = 〈0,a〉 and B = 〈0,b〉 are equal one would write some-
thing like A.a = B.b. However, QSIM does not support to state equality between landmarks but
one has to use qualitative constraints and corresponding values. For the example above the con-
straint (add X Y Z) (a,0, t),(0,b, t), with X : A,Y : B,Z : some quantity space with a landmark t,
expresses the equality between a and b.

35

Chapter 3. Qualitative Reasoning

Constraint Solving In qualitative simulation new states are computed by solving Constraint
Satisfaction Problems (CSPs). An introduction to CSP can be found in [142]. A CSP is a triple
(V,D,P), where V = {v1, . . . ,vn} is a set of variables, D = {D1, . . . ,Dn} are the domains of V ,
and P is a set of constraints over the variables. A value tuple (x1, . . . ,xn) is a valid assignment if
it is consistent with all constraints in D. The solution of a CSP is the set of all valid assignments.
CSPs can be represented as graphs. In a system with only binary constraints the vertices are the
variables and the edges are the constraints. In order to express constraints with an arity larger
than two, so called hyper graphs are used. Here, one hyper edge links several variables. A further
possible representation is the dual constraint graph. In such a graph the constraints are nodes
while the edges link nodes that share common variables.

A straightforward approach to solve a constraint system is to enumerate all value tuples, i.e.
the crossproduct of the domains of the variables, and check if the tuples satisfy all constraints.
However, because of large state spaces, this approach may even for small constraint systems
be intractable. Thus, more efficient techniques like constraint propagation are applied to re-
duce search spaces and computation times. In constraint propagation the valid assignments to a
variable x are used to filter values of another variable y given that x and y are related by some
constraints. For example, x and y have the domains Dx = Dy = {0,1,2,3} and we have the two
constraints C1 : x < 2,C2 : y = x+1. After evaluating constraint C1 we get all valid assignments to
variable x, i.e. {0,1}. The consistency of a variable with all unary constraints, in our example C1,
is called node consistency. The propagation of the valid assignments to x from C1 to C2 provides
arc consistency. Here, arc refers to an edge between two nodes in the constraint graph. Arc con-
sistency ensures that two adjacent nodes assign the same value to shared variables. Hence, we get
the value tuples {(0,1),(1,2)} as valid assignments to the variables (x,y). The extension of arc
consistency is called path consistency where three nodes are connected by two arcs. Consistency
checks can be generalized to k-consistency (consistency along a sequence of k nodes) which, with
increasing k, reduces backtracking during search. On the other hand, larger values for k result in
longer computation times for performing consistency checks which, in worst case, is exponential
in k.

The QSIM algorithm applies constraint propagation by maintaining node and arc consistency.
CSPs are represented as dual constraint graphs. According to [112] the algorithm Cfilter applies
the following four steps:

Given a QDE and a partial state information D̄, generate a CSP (V,D,P) and solve
it. The partial state information can be provided by a user when defining an initial
state or originates from successor rules during simulation.

1. (Domain restriction): Determine the domains Di ∈D of each variable vi ∈V by
intersecting the partial state information D̄i ∈ D̄ with the full set of qualitative
values obtained from the quantity spaces of the variables vi.

2. (Node consistency): The conditions Pj from all QSIM constraints Ci in the
QDE form the set P. For each constraint Ci with arity k, applying to a tuple
(vi1 , . . . ,vik) of variables, form all tuples (xi1 , . . . ,xik) of values, where xi j ∈Di j .
Filter each tuple of values against each condition associated with Ci according
to Proposition (3.8). Tuples which violate any of the conditions are discarded.

36

3.1. Qualitative Simulation

3. (Arc consistency): For each QSIM constraint Ci in the QDE, and each QSIM
constraint C j sharing a common variable v the following is applied: For each
value tuple associated with Ci, where v is assigned some value x, the tuple is
discarded unless some tuple associated with C j also assigns x to v.

4. (Exhaustive search):Generate all possible complete assignments (x1, . . . ,xn)
from the remaining tuples. This gives the set of valid assignments to the CSP.

Simulation In order to infer the behavior of a system evolving from a given initial state, qual-
itative simulation is applied. A behavior is a sequence of states alternating between time points
and time intervals. In general, due to nondeterminism, the result of simulating a model is a set
of behaviors. Some behaviors may even not be possible to occur in any physical system. Such
behaviors are called spurious and are artefacts resulting from qualitative abstraction. However,
in our application of model-based testing this issue causes no problem since spurious behavior
is filtered out during test case execution. Here, the actual observations of the implementation
ensure that we cannot follow spurious behavior branches. Testing provides a constant alignment
between model and reality.

The next-state-relation in qualitative behaviors is mainly governed by the continuity law, see
Definition 3.4. In addition there are some global filter constraints which impose rules on se-
quences of states. For example, the no change filter states that two successive states cannot have
equal valuations, see Equation 3.2. A discussion of further global filters can be found in [112].
Given the next state relation there are two possible representations of qualitative behavior:

• Behavior tree. The dynamic introduction of landmarks during simulation prevents the
matching between states resulting in a tree structure. Simulation can start from one or
several initial states. A tree explicitly represents the behaviors as paths from the root to the
leaves.

• Envisionment. The envisionment is a graph with one or more initial states where the be-
haviors are paths in the graph. Furthermore, there is a distinction between attainable and
total envisionment. The former starts from given initial states while the latter applies the
transition relation to all possible system states.

In our work we use envisionments since they can represent infinite behavior as a finite transi-
tion system with loops. In the envisionment graph newly discovered states are matched against
existing states in the graph. If there is a positive match, an according transition is added. Other-
wise a transition to the new state is added to the graph.

The determination of successor states in qualitative simulation is also known as limit analysis.
Depending on whether the current state is a time point or time interval only certain changes
in the valuation of quantities can happen at the transition to a successor state [112]. Table 3.3
describes all possible state transitions from time points and Table 3.4 shows transitions possible
from time intervals. The three landmarks l j−1 < l j < l j+1 are part of the quantity space of variable
v.The successor rules ensure that the inferred behaviors comply with the continuity law. An
increasing or decreasing value cannot be changed instantly. Thus, such a change will last for a
time interval, which is expressed by the rules 4 to 7 in Table 3.3 for landmark and interval values
respectively. The remaining rules in Table 3.3 describe the displacement of a steady value. The

37

Chapter 3. Qualitative Reasoning

rules in Table 3.4 show the possible values at the time point after a time interval. One can observe
that increasing or decreasing values are unchanged, or reach an adjacent landmark, or change
their sign to steady. A steady value remains unchanged.

QV (v, ti) =⇒ QV (v, ti, ti+1)

1 (l j,0) (l j,0)
2 (l j,0) (l j..l j+1,+)
3 (l j,0) (l j−1..l j,−)
4 (l j,+) (l j..l j+1,+)
5 (l j,−) (l j−1..l j,−)
6 (l j..l j+1,+) (l j..l j+1,+)
7 (l j..l j+1,−) (l j..l j+1,−)
8 (l j..l j+1,0) (l j..l j+1,0)
9 (l j..l j+1,0) (l j..l j+1,+)

10 (l j..l j+1,0) (l j..l j+1,−)

Table 3.3.: Time Point Successors

QV (v, ti, ti+1) =⇒ QV (v, ti+1)

1 (l j,0) (l j,0)
2 (l j..l j+1,+) (l j+1,0)
3 (l j..l j+1,+) (l j+1,+)
4 (l j..l j+1,+) (l j..l j+1,+)
5 (l j..l j+1,+) (l j..l j+1,0)
6 (l j..l j+1,−) (l j,0)
7 (l j..l j+1,−) (l j,−)
8 (l j..l j+1,−) (l j..l j+1,−)
9 (l j..l j+1,−) (l j..l j+1,0)

10 (l j..l j+1,0) (l j..l j+1,0)

Table 3.4.: Time Interval Successors

After having a means to solve qualitative constraints and the definition of the successor state
relation we present the QSIM algorithm [112]:

Given a QDE and an initial state information, the QSIM algorithm applies the fol-
lowing steps for behavior inference:

1. Initialize the simulation agenda, i.e. a QSIM data structure for maintaining the
current states to be explored, with the set of complete initial states consistent
with the QDE and initial state information.

2. If the agenda is empty, or a resource limit is reached, stop the simulation. Oth-
erwise, pop a state S from the agenda.

3. For each variable vi in the QDE, use the qualitative successor tables to deter-
mine the possible successors to QV (vi,S). These are domain restrictions D̄i on
the possible qualitative values of vi.

4. Determine all successor states {S1, . . . ,Sk} of S consistent with the domain re-
strictions D̄i and the constraints in the QDE. If there is a successor state Si

which has the same qualitative values as S, then this state is removed according
to the no-change rule.

5. Add the new states from Step 4 to the behavior graph.

6. Apply the global filter constraints to each successor state Si. A global filter
restricts the behavior between states. One example is the No Change filter
which requires that there are no equal successive states.

7. Add each eligible successor state to the agenda. A state is eligible for succes-
sors if it does not satisfy any of the global filter constraints.

8. Continue from Step 2.

38

3.1. Qualitative Simulation

Since qualitative simulation only filters inconsistent behavior the inferred behavior is sound.
After having discussed the principles of qualitative simulation we now present a small example.

Example 3.1. Let us consider the ODE of a harmonic oscillator y′′+ y = 0. We can solve this
equation analytically with the approach y= eλ·t . Applied to the ODE this yields (λ2+1) ·eλ·t = 0.
From this polynomial we get the conjugate-complex root λ1,2 =±i. Hence, the general solution
of the ODE is y(t)= c1 ·ei·t +c2 ·e−i·t . By considering the boundary conditions y(0)= 1, y′(0)= 0
and by exploiting the connection to trigonometric functions, i.e. ei·t = cos(t)+ i ·sin(t), we obtain
y(t) = cos(t) as solution.

We now lift the example to the qualitative domain. The QSIM model in Figure 3.3 is a struc-
tural abstraction of the given ODE. Since QSIM is implemented in Lisp, the models are loaded
as Lisp files. In Lines 2-5 we define three variables with quantity spaces 〈minf ,0, inf 〉, where
minf and inf stand for −∞ and ∞ respectively. These course quantity spaces are sufficient for
our purpose. Lines 7-10 show the qualitative constraints, where the M− constraint is associated
with three corresponding value tuples. The corresponding values ensure that the values of a and
c add up to zero according to the ODE. Thus, valuations like a > 0 and c = 0 are excluded since
their sum cannot be zero. Line 12 states which variables should be displayed in the simulation
output. The remaining lines specify the scenario for which the model should be simulated. The
statement in Line 23 starts the qualitative simulation with a limit of 1000 states. We choose the
envisionment mode and define an initial state where a is set to a positive, decreasing value.

In a physical interpretation of the oscillator this corresponds to an initial deviation from the
rest position of a system, e.g. a pendulum. The initial valuation of the remaining variables can
be determined automatically by constraint solving. After loading the model file, the simulation is
started by calling “(osc)” from the Lisp console. Figure 3.4 shows the behavior of the oscillator.
The diagrams use the already known notation of arrows pointing up and down for increasing and
decreasing behavior respectively, see Figure 3.2. Circles denote steady behavior where the first
derivation is zero. The time points T0 till T4 partition the time axis into time intervals. The last
interval after T4 is the interval T0..T1. This is denoted by the ”\” in the last state of the lasso-
shaped state sequence in the upper-right corner and the state number to be repeated, i.e. 3. Here,
black circles are time points and white circles are time intervals.

For this small example the qualitative behavior is a 1:1 abstraction of the continuous behavior.
However, in almost all larger systems qualitative simulation will produce many behaviors in the
form of transition systems. Since qualitative simulation only filters inconsistent behavior it is
ensured that the solution of the continuous system will be included in the qualitative solution.
On the other hand some qualitative behaviors may not describe a solution of any continuous
system. As already stated before such behavior is called spurious. In the continuous domain we
are interested in the solution of an ODE regarding a given state, i.e. some boundary conditions.
This is called an initial value problem. We call the counterpart in the qualitative domain an initial
state problem. With this notions we can formulate the concept of spurious behavior as follows:
A behavior is spurious if it describes no solution of any initial value problem which is consistent
with the given initial state problem.

The work in [61] deals with qualitative simulation and describes the occurrence of three kinds
of spurious behaviors: spurious states, spurios transitions between states, and spurious sequences

39

Chapter 3. Qualitative Reasoning

1 (define-QDE oscillator
2 (quantity-spaces
3 (a (minf 0 inf))
4 (b (minf 0 inf))
5 (c (minf 0 inf)))
6
7 (constraints
8 ((d/dt a b))
9 ((d/dt b c))

10 ((M- a c) (minf inf) (0 0) (inf minf)))
11
12 (layout (a b c)))
13
14 (defun osc()
15 (with-envisioning
16 (let ((initial-state
17 (make-new-state
18 :from-qde oscillator
19 :assert-values
20 ’((a ((0 inf) dec))))))
21
22 (qsim initial-state)
23 (q-continue :new-state-limit 1000)
24 (qsim-display initial-state))))

Figure 3.3.: QSIM model of the oscillator example.

of states. Depending on the system it is possible to design appropriate global filter constraints to
prevent spurious behavior. However, it cannot be avoided in general. Say and Akin [144] have
shown that qualitative simulation cannot be sound and complete. Here, completeness means that
the solution of any given QDE contains no spurious behavior. The authors relate the problem of
the existence of a complete QSIM algorithm to Hilbert’s tenth problem:

“Find an algorithm for deciding whether a given multivariate polynomial with integer
coefficients has integer solutions”.

It has been proved that such an algorithm does not exist [123].

This finishes our section about qualitative simulation and we proceed with an elaboration of the
algebraic properties of monotonic function constraints. We exploit these properties to simplify
qualitative models.

3.2. Simplification of Qualitative Models

During structural abstraction from a continuous system it may be possible to simplify chains of
functional relations with n variables to qualitative constraints with m quantities, where m < n.
Such a chain builds a transitive link between two variables. We have developed a law that allows

40

3.2. Simplification of Qualitative Models

Structure: cosine oscillation.
Initialization: (ONE-OF-SEVERAL-COMPLETIONS-OF S-0) (S-2)
Behavior 1 of 1: (S-2 S-3 S-5 S-7 S-8 S-11 S-13 S-15 S-16 S-19).
Final state: (GF CROSS-EDGE COMPLETE), (NIL), T<INF.

↓↓
.
.
.
.
.
↓

.
.
.
.
.
↓°↑

.
.
.
.
.
↑

.
.
.
.
.
↑°↓

INF

0

MINF

T0 T1 T2 T3 T4

A

↓↓°↑
.
.
.
.
.
↑

.
.
.
.
.
↑°↓

.
.
.
.
.
↓

.
.
.
.
.
↓

INF

0

MINF

T0 T1 T2 T3 T4

B

↑↑
.
.
.
.
.
↑

.
.
.
.
.
↑°↓

.
.
.
.
.
↓

.
.
.
.
.
↓°↑

INF

0

MINF

T0 T1 T2 T3 T4

C

2 3 5 7 8 11 13 15 16 19 = 3
1

Figure 3.4.: Qualitative cosine oscillation (A), and oscillations (B) and (C) with 90° and 180°
phase shift respectively.

41

Chapter 3. Qualitative Reasoning

to eliminate quantities when they occur in chained monotonic function constraints and if they are
not referenced by other constraints. Let us consider the constraints (M+ a b) and (M+ b c). If
quantity b is not referenced by any other constraint we can omit b and substitute both constraints
by (M+ a c).

In the following we use for brevity a pointfree notation. For a quantity a which represents a
time dependent function and a predicate P we write P(a) instead of ∀t •P(a(t)). Similarly, for
expressions of functions and their derivatives we may omit the argument where appropriate. For
instance we write f ′ for the first derivation of f with respect to its argument which is left open.

We define the hiding of a quantity q in a set of constraints C as follows:

hide q in C =df ∃q•C (3.9)

The following definition is a generalization of the monotonic function relations, defined in Equa-
tions 3.6 and 3.7:

(Ms a b) =df ∃ f ∈M •b = f (a)∧ sign(f ′(a)) = s (3.10)

Here, s represents the variable for the sign and M denotes the set of monotonic functions. The
notations f ′(x) = d

dx f (x) stand for the derivation of f with respect to its argument x and if x is a
function we write f ′ ◦ x. The following corollary expresses the resulting sign of the composition
of two monotonic functions:

Corollary 3.2 ∀ f , f1, f2 ∈M • f = f2 ◦ f1 =⇒ sign(f ′) = sign(f ′2 ◦ f1) · sign(f ′1)

Proof 3.2. The proof follows directly from the application of the chain rule from differential
calculus to function f :

sign((f2 ◦ f1)
′)

≡ {chain rule}
sign((f ′2 ◦ f1) · f ′1)

≡ {sign algebra}
sign(f ′2 ◦ f1) · sign(f ′1)

Lemma 3.1 (Composition of signs)

f = f2 ◦ f1∧ sign(f ′2 ◦ f1) = x∧ sign(f ′1) = y =⇒ sign(f ′) = x · y

Proof 3.3.

f = f2 ◦ f1∧ sign(f ′2 ◦ f1) = x∧ sign(f ′1) = y =⇒ sign(f ′) = x · y
≡
f = f2 ◦ f1 =⇒ sign(f ′) = sign(f ′2 ◦ f1) · sign(f ′1)

≡ {Corollary 3.2}
f = f2 ◦ f1 =⇒ sign(f ′) = sign(f ′)

≡ true

42

3.2. Simplification of Qualitative Models

Theorem 3.2 (Simplification Law) Given two monotonic function constraints which share a
common quantity. By hiding the shared quantity we obtain a new constraint which is the compo-
sition of the original ones.

(hide b in (Mx a b)∧ (My b c)) =⇒ (Mx·y a c)

Proof 3.4.

(hide b in (Mx a b)∧ (My b c))

≡ {Definition (3.9),Definition (3.10)}
∃ f1, f2 ∈M,b•b = f1(a)∧ sign(f ′1(a)) = x∧ c = f2(b)∧ sign(f ′2(b)) = y

≡ {one point rule}
∃ f1, f2 ∈M • sign(f ′1(a)) = x∧ c = (f2 ◦ f1)(a)∧ sign((f ′2 ◦ f1)(a)) = y

≡ {auxiliary function f = f2 ◦ f1}
∃ f , f1, f2 ∈M • sign(f ′1(a)) = x∧ f = f2 ◦ f1∧ c = f (a)∧ sign((f ′2 ◦ f1)(a)) = y

=⇒ {Lemma 3.1}
∃ f ∈M • c = f (a)∧ sign(f ′(a)) = x · y
≡ {Definition (3.10)}
(Mx·y a c)

Theorem 3.3 M+ is an equivalence relation over the set of quantities.

A binary relation is an equivalence relation iff it is reflexive, symmetric, and transitive [149],
shown in the following lemmas.

Lemma 3.2 (Reflexivity)

(M+ a a)

Proof 3.5.

(M+ a a)

≡ {Definition (3.10)}
∃ f ∈M •a = f (a)∧ sign(f ′(a)) = +

≡ { f = id}
sign(id′(a)) = +

≡ {id′(a) = 1,sign(1) = +}
true

43

Chapter 3. Qualitative Reasoning

In the following we denote the inverse of a function f with f̄ . According to differential calculus
the derivatives of inverse functions have the following property:

(f̄ ◦ f)(x) = x | d
dx

(f̄ ′ ◦ f)(x) · f ′(x) = 1 | sign algebra

sign((f̄ ′ ◦ f)(x)) · sign(f ′(x)) = + (3.11)

Due to sign algebra the multiplication of equal signs results in a positive sign. Hence, we can
conclude from Equation 3.11 the equality:

sign((f̄ ′ ◦ f)(x)) = sign(f ′(x)) (3.12)

Corollary 3.3 (Monotonicity of inverse functions)

∃ f̄ •a = (f̄ ◦ f)(a)∧ sign((f̄ ′ ◦ f)(a)) = s ⇐⇒ sign(f ′(a)) = s

Proof 3.6. Corollary 3.3 follows directly from Proposition 3.12.

Lemma 3.3 (Symmetry)

(M+ a b) =⇒ (M+ b a)

Proof 3.7.

(M+ a b) =⇒ (M+ b a)

≡ {Definition (3.10)}
∃ f1 •b = f1(a)∧ sign(f ′1(a)) = + =⇒ ∃ f2 •a = f2(b)∧ sign(f ′2(b)) = +

≡ {predicate calculus : (∃x•P(x)) =⇒ c≡ ∀x•P(x) =⇒ c}
b = f1(a)∧ sign(f ′1(a)) = + =⇒ ∃ f2 •a = f2(b)∧ sign(f ′2(b)) = +

≡
sign(f ′1(a)) = + =⇒ ∃ f2 •a = (f2 ◦ f1)(a)∧ sign((f ′2 ◦ f1)(a)) = +

≡ {Corollary 3.3}
sign(f ′1(a)) = + =⇒ sign(f ′1(a)) = +

≡
true

Lemma 3.4 (Transitivity)

(M+ a b)∧ (M+ b c) =⇒ (M+ a c)

Proof 3.8. This follows directly from Theorem 3.2.

The result that M+ is an equivalence relation is a required property for the structural abstrac-
tion from ODEs. In particular the equality in ODEs corresponds to the M+ relation in QDEs.
Furthermore, if two quantities with compatible quantity spaces are related by M+ we can choose
one of them as representative. This provides a further source of model simplification in addition
to Theorem 3.2.

44

3.3. Modeling Continuous Systems with Garp3

3.3. Modeling Continuous Systems with Garp3

The modeling and simulation tool Garp3 [44] is based on Qualitative Process Theory [71]. Garp3
is implemented in SWI Prolog and provides every means to build and simulate QR models. It has
a graphical modeling language which is well suited to express cause-effect relationships without
considering differential equations. However, the underlying qualitative process theory also relies
on the concepts of QDEs. A detailed description of the modeling primitives can be found in the
user manual [35], and [43] provides an elaborate user guide for building proper QR models.
Garp3 has been used in sustainable development to model and analyze ecosystems. For instance,
the master thesis in [21] investigates population dynamics of predator-prey models.

In Garp3 a model is comprised of a set of model fragments which are the basic blocks that
describe behavior. Within a model fragment the main modeling primitives are entities, quantities,
and qualitative relations. Entities are the components of the system that have certain properties
expressed through associated quantities. The quantities are the qualitative variables which have
associated quantity spaces. For example the entity battery has the quantities voltage, current,
and charge. Model fragments are collected in a library. The idea is to reuse basic blocks which
are assembled to complex systems. Model fragments have conditions and consequences. The
consequences are qualitative constraints. During model simulation a fragment gets active when
all its conditions are satisfied. A model fragment can be seen as a QDE where the domain is
restricted by conditions. Simulation stops at states where no model fragment is active. There are
three types of model fragments: static, dynamic fragments, and agent fragments. Static fragments
represent the proportional relations between model quantities like that the amount of water in a
vessel is proportional to the water level. They may contain all modelling primitives except so
called influences and agents. A process describes the dynamics of a system and contains at least
one influence. Influences cause changes between quantities, for example a positive flow rate into
a vessel will increase the amount of liquid and hence the liquid level over time. Agents are used
to model exogenous influences on the system. For instance, a quantity may increase from its
minimum to its maximum or remains steady at some value. Agents can be seen as signal sources
that can be connected to the model.

In Garp3 qualitative constraints are represented as unary or binary relations. The Propor-
tionalities P+ and P− correspond to the monotonic function constraints M+ and M− of QSIM.
Ordinal relations are expressed via inequalities and provide a means to constrain possible behav-
ior. Furthermore, influences are the cause of dynamic changes in a system and provide means
for integration. A positive influence I+(A,B) or negative influence I−(A,B) corresponds to the
integral B =

∫
A · dt respectively B = −

∫
A · dt in the continuous domain. Here lies one differ-

ence between the qualitative constraints of Garp3 and QSIM: while Garp3 provides influences,
QSIM has the time derivation constraint d/dt. Furthermore, in Garp3 the qualitative derivation
δ =df {dec,std, inc} stands for decreasing, steady, and increasing behavior respectively.

The initial state of a system is described with a scenario. Given a scenario and a model, Garp3
creates an attainable envisionment, i.e. a transition system containing all possible behaviors
which may evolve over time. The user can mark states in the qualitative transition system and
gets the valuation of selected quantities along the sequence of states.

In order to model the oscillator example from the previous section in Garp3 we have to rewrite

45

Chapter 3. Qualitative Reasoning

Oscillator
Oscillator

A

Mzp
Plus
Zero
Min

B

Mzp
Plus
Zero
Min

C

Mzp
Plus
Zero
Min

Figure 3.5.: Model of the oscillator.

Oscillator
Oscillator

A

Mzp
Plus
Zero
Min

B

Mzp
Plus
Zero
Min

Figure 3.6.: Scenario.

1

2

3

4
5

6

7

8

Figure 3.7.: Cycle in the transition system.

Oscillator: A

Min

Zero

Plus

1 2 3 4 5 6 7 8

Oscillator: B

Min

Zero

Plus

1 2 3 4 5 6 7 8

Oscillator: C

Min

Zero

Plus

1 2 3 4 5 6 7 8

Figure 3.8.: Value history.

the given ODE into an integral equation: y(t)+
s

y(t) ·dt = 0. From this integral equation we are
able to directly model the oscillator, see Figure3.5. Here we see the entity oscillator associated
with three quantities A =̂ y(t), B =̂

∫
y(t) ·dt, and C =̂

s
y(t) ·dt. In contrast to QSIM, in Garp3

the intervals between landmarks have explicit names. The special landmark Zero denotes 0. The
quantity space 〈Min,Zero,Plus〉 stands for 〈(−∞,0),0,(0,∞)〉. The two influences (I+) between
the quantities introduce the required integrals. The negative proportionality (P−) from C back
to A completes the equation. Similar to the QSIM oscillator model, which has corresponding
values associated with the monotonic function relation, we add here an inverse value constraint.
It ensures that the values of A and C have an inverse correspondence.

The scenario in Figure 3.6 shows the initial state. The initial value of quantity C is determined
by the value correspondence between A and C. Figure 3.7 presents the state graph and Figure 3.8
shows the valuation of quantities during one cycle in the graph. In terms of control theory each
integration step causes a phase shift of -90°. After twofold integration the phase shift at quantity

46

3.4. Qualitative Behavior - A formal Model

C is -180°. Through the negative proportionality back to A this is turned into a positive feedback
with 0° phase shift causing the oscillation.

By rewriting derivatives to integrals we are able to model any ordinary differential equation in
Garp3.

3.4. Qualitative Behavior - A formal Model

In the application of model-based testing we use the transition system, obtained by simulating a
QR model, as formal test specification.

Definition 3.5 (Qualitative Transition System (QTS)) Given a QR model, see Definition 3.1,
and an initial state, then QT S =df (S,s0,T,v) where

• S⊂ N0 denotes a set of states,

• s0 =df 0 is the initial state,

• T : S×S is the transition relation obtained by simulating the QR model,

• and v : S 7→ (Q 7→ QSq×δ) is a valuation function binding states to value assignments for
all quantities q ∈ Q.

Between two linked states exactly one quantity changes its value:

∀s1,s2 ∈ S• (s1,s2) ∈ T =⇒ ∃!q ∈ Q• v(s1)(q) 6= v(s2)(q).

Furthermore, we use s→ s′=df (s,s′)∈ T to denote state transitions. We define the trace semantics
of a QTS as the set of all behaviors. A behavior is a sequence of qualitative values along a path
of states in the QTS, starting from the initial state.

Definition 3.6 (Trace semantics of a QTS M)

traces(M) =df {〈v(t0),v(t1), . . .〉 | ti ∈ S∧ t0 = s0∧ t0→ t1→ ···}

For testing we are interested in the set of finite traces of a system. In practice, infinite traces
which arise in the case of loops are bounded to a certain number of loop iterations. Based on
the trace semantics we are able to define a conformance relation between two given QTS. In the
following chapter we deal with the model-based testing of continuous systems.

47

48

Chapter 4
Testing of Continuous Systems

Parts of this chapter have been published in Brandl and Wotawa [38], Brandl et al. [40],
Brandl et al. [41], Brandl et al. [39], Brandl [37], and Aichernig et al. [8].

In the area of embedded systems, interactions with the environment are in many cases contin-
uous. The discrete controller in a continuous environment forms a hybrid system. For example, a
weather station sensing the temperature etc. or a fuel injection controller, are of this kind. When
such systems are safety critical, difficult to access, or far away like Mars rovers, it is very impor-
tant to test them thoroughly. Because of the system complexity of real world applications it is
virtually impossible to derive enough test cases by hand in order to meet certain testing coverage
metrics. We apply model-based testing and generate test cases due to test purposes or coverage
criteria. The initial idea to apply qualitative models in testing of embedded systems was published
in [167].

This chapter deals with the testing of continuous system environments regarding a given qual-
itative model. Garp3 [44] is used as modeling and simulation tool. In contrast to sequential
systems, the inputs and outputs in continuous systems evolve simultaneously. It can be seen as a
stream of input/output vector tuples

〈([in1, . . . , inn]
T , [out1, . . . ,outm]T),([in1, . . . , inn]

T , [out1, . . . ,outm]T), . . .〉.

We consider sampled systems where time and signal values are quantized due to certain res-
olutions. Furthermore, systems are strongly responsive, i.e. for every input sample exists an
according output sample. Hence, in continuous systems there is no notion of quiescence like in
the ioco theory [156] since we can always observe values on a certain output port.

4.1. Conformance between Qualitative Models - qrioconf

In active testing a system under test interacts with a tester, i.e. the environment, symmetrically by
sending inputs and receiving outputs. The outputs of the tester are the inputs to the system and
vice versa. By convention we denote outputs of the implementation as observable events, and

49

Chapter 4. Testing of Continuous Systems

inputs to the implementation as controllable events. In passive testing the monitored traces of a
running system are replayed on the specification. For this purpose there is no need to distinguish
between input and output events since there happens no direct communication between system
and tester.

However, we focus on active testing which is able to drive the SUT into certain modes which
are of interest for testing. We partition the set of system quantities Q into controllable quantities
LI , observable quantities LU , and internal quantities Q\L. Here, L are the quantities at the system
interface, i.e. L=df LI∪LU . For black-box testing only the visible behavior at the system interface
is of relevance. We obtain the visible behavior of a qualitative transition system M by projecting
it onto its interface, i.e. traces(M) ↓ L. For a given trace σ over quantities V ⊆ Q, the operator
α yields the set of ordered quantities of that trace, i.e. V = α(σ). In the following we refer to
the values of quantities within a state in a row vector form, i.e. [q1, . . . ,qn]. For instance, the
projection of the trace σ = 〈[1,1], [1,2], [2,2], [2,1]〉 ↓ a with α(σ) = [a,b] yields 〈[1], [1], [2], [2]〉.

For deciding whether a continuous system conforms to a qualitative model we introduce our
Qualitative Reasoning input-output conformance relation qrioconf [8] which is similar to the
input-output conformance relation ioconf by Tretmans [156].

Definition 4.1
Since we are interested in traces were all successive states are distinct we apply the merge func-
tion m to projected traces in order to merge equivalent states, e.g. m(〈[1], [1], [2], [2]〉) = 〈[1], [2]〉.

i qrioconf s =df ∀σ ∈ m(traces(s) ↓ LI) •out (i after σ)⊆ out (s after σ)

where i is an implementation under test and s is the specification (QTS). For a given input trace
σ ∈ m(traces(s) ↓ LI) the set

s after σ =df {tn | ∃t0, . . . , tn ∈ S,σ′ •σ = m(σ′)∧ t0 = s0∧ t0→ ·· · → tn∧
σ
′ = 〈qv0, . . . ,qvn〉∧qvi = v(ti) ↓ α(σ)}

yields all states reachable after such a trace. Here, out (s) determines the values of the observ-
able quantities in a given state s, and out (S′) for a given set of states S′ ⊆ S:

out (s) =df v(s) ↓ LU

out (S′) =df {out (s) | s ∈ S′}

Figure 4.1 shows three QTS where we use integers as qualitative values. The implementation
I1 is qrioconf to S since the outputs of I1 after both input traces of S are allowed, i.e.

out (I1 after 〈[2]〉) = {[1,1], [1,2]} ⊆ out (S after 〈[2]〉) = {[1,1], [1,2]} and

out (I1 after 〈[2], [1]〉) = {[1,1]} ⊆ out (S after 〈[2], [1]〉) = {[1,1]}.

50

4.2. Test Case Selection with Test Purposes

i1 = 2

o1 = 1
o2 = 1

i1 = 2

o1 = 1
o2 = 2

s1

s0

i1 = 1
o1 = 1

o2 = 1

s2

i1 = 2
o1 = 1

o2 = 1

i1 = 1

o1 = 1
o2 = 1

i1 = 2
o1 = 1

o2 = 2

s1

s0

i1 = 3

o1 = 1
o2 = 1

s3

s2

I1

i1 = 2

o1 = 1
o2 = 1

i1 = 1

o1 = 1
o2 = 1

s1

s0

i1 = 2
o1 = 2

o2 = 1

s2

I2S

Figure 4.1.: Conformance between QR transition systems: I1 qrioconf S and I2 ����qrioconf S

The input trace 〈[2], [3]〉 of I1 is not specified in S. Due to implementation freedom the behav-
ior following unspecified inputs is not considered by the conformance relation. For I2 we get
I2 after 〈[2]〉 = {s0,s2}. However, the outputs out ({s0,s2}) = {[1,1], [2,1]} of I2 are not a
subset of out (S after 〈[2]〉) = {[1,1], [1,2]}. Hence I2 is not qrioconf S.

Note that a qualitative transition system M is deterministic if each trace leads to at most one
state, i.e. ∀σ ∈ traces(M) • |M after σ| ≤ 1. The result of simulating a qualitative model
is by definition a deterministic QTS. However, the projection of traces on the inputs leads to
nondeterminism. In particular we obtain nondeterministic output behavior after a given input
trace. We have developed the conformance relation qrioconf since an equivalence relation cannot
be applied in the presence of nondeterminism.

We have implemented our qualitative testing theory in the prototype tool QRPathfinder which
is written in Java1.6. The tool employs the InterProlog1 interface for connecting to the QR tool
Garp3. QRPathfinder loads a qualitative transition system which is obtained by simulating a
Garp3 model, generates test cases according to test purposes or coverage criteria, and provides a
test adapter for executing test cases on Simulink[13] models. The details on test generation and
execution are the topic of the subsequent sections.

4.2. Test Case Selection with Test Purposes

The simulation of qualitative models of system environments usually yields a large number of
behaviors. For testing it is of interest to generate test cases for selected behaviors. This is realized
via test purposes. Test purposes can be seen as a slicing criterion for extracting a part of a possibly
infinite specification. For instance, the testing tool TGV [98] generates test cases for LOTOS [97]
specifications due to test purposes. Test purpose, test case, specification, and implementation are
ordered under refinement as follows:

T Pv TC v Specv Impl (4.1)

1http://www.declarativa.com/interprolog/

51

Chapter 4. Testing of Continuous Systems

Figure 4.2.: SEPIAS Container Track-
ing Unit.

Battery
Battery

Battery

Charge

Zpm

Max

Plus

Zero

Current

Zp

Plus

Zero

Discharge

Zp

Plus

Zero

Temperature

Mzp

Plus

Zero

Min

Voltage

Zpm

Max

Plus

Zero

Figure 4.3.: Garp3 model of a battery.

The work in [117] discusses the relation between test purposes and test cases. A test case refines
a test purpose in the context of a specification. As presented in [3] a specification can be seen as
a refinement of a test case. The authors discuss the generation of mutation-based test cases in the
Unified Theories of Programming (UTP) framework.

During the work in the SEPIAS project we have developed environmental models of a container
tracking unit. The project name stands for Self Properties In Autonomous Systems. An excerpt of
the project description says:

The goal is to provide tools and techniques for enabling the mobile systems to react
to environmental changes and internal faults in an intelligent way such that they can
still fulfil their tasks. Because of limited possibilities for human intervention and
even interaction during operation autonomous systems need to solve the problems
and unexpected situations by their own. As a consequence, the autonomous system
has to have knowledge about the surrounding environment, its task, and itself.

The block diagram in Figure 4.2 depicts the basic components of the container tracking unit.
The system is powered by a solar panel and a rechargeable battery. The controller receives data
from a GPS device and from some attached sensors like an acceleration sensor, a temperature
sensor, etc. Based on the perception of its environment and its own state the control program
adapts its operation in order to maximize the availability of its service, i.e. transmitting position
data to a server. This involves power management as well as recognizing faults and according
recovery by exploiting redundant services. For instance, a failed GSM connection can be replaced
by routing data via near field communication (ZigBee) to another proximate container tracking
unit and from there to the server.

One aspect of the continuous environment is the power supply of the system. In [40, 39] we
have modeled the solar panel and the battery in Garp3. Figure 4.3 shows the model of the battery.
The condition for the discharging process is satisfied if the charge level of the battery is greater
than zero. A self-discharge rate, greater than zero, is defined (the arrow on the plus value) which
is directly proportional to the temperature. The negative influences from the quantities Current
and Discharge represent the draining of the battery. The value of Current is determined by some
load attached to the battery. The voltage of a battery is direct proportional to its charge. There

52

4.2. Test Case Selection with Test Purposes

is a value correspondence (Q arrow) between voltage and charge. Furthermore, an empty battery
implies that there cannot by any load current (V arrow). This simplified model ignores the voltage
drop on the internal resistance caused by a load current.

In order to generate test cases from qualitative transition systems derived from QR models,
we adapt techniques from LTS testing. Therefor, we augment the transitions of a QTS with a
labeling function L : T 7→ 2P, where T is the transition relation and P is a set of atomic propo-
sitions S 7→ bool. This is similar to the definition of a Kripke structure [102], however we label
transitions rather than states. The propositions are associated with symbolic names which we use
to formulate test purposes in the form of regular expressions. The idea is to formally specify both
test purpose and test model as LTS, and then to derive test cases by computing the synchronous
product between specification and test purpose, as initially proposed by Jard and Jéron [98]. The
LTS of the test purpose is obtained by converting the regular expression into its equivalent deter-
ministic finite automaton (DFA).

We use single characters as symbolic names where ’a’ =df true is reserved and stands for
any proposition. Furthermore, a global proposition can be defined which is conjoined to every
proposition in P. This is useful when specifying invariant properties. The global proposition may
be referenced in the test purpose via the reserved symbol ’b’.

Definition 4.2 (Labeling of a QTS) Given a QTS and a set of atomic propositions P, we aug-
ment all transitions (s,s′) ∈ T with the set of labels {p ∈ P | p(s′)}. One can observe, that the
label ’a’ is always in this set. A transition with n labels means that we have n transitions, one

for each label: s
{a1,...,an}−→ s′ ≡ {s a1→ s′, . . . ,s an→ s′}. The time complexity of the labeling algorithm

equals the number of transitions times the number of propositions, i.e. O(|T | · |P|).

Atomic propositions are composed of conjunctions and disjunctions of ordinal relations be-
tween quantities and their values. As an example, let us consider our battery model with a propo-
sition stating that the charge is greater than zero, i.e. battery : charge > zero. Here, battery is the
entity name and charge the name of the quantity. We can also refer to the qualitative derivation
of a quantity via the dx operator. For instance, the proposition battery : charge dx = dec states
that the battery charge is decreasing.

The proposition symbols are used in the regular expression for specifying the test purpose.
The language of the equivalent deterministic automaton are all symbol sequences that lead to an
accept state. Suppose we are interested in the the cyclic occurrence of a property p, e.g., for
three times and thereafter a path leading to property q. The regular expression ([ˆp]∗p){3}[ˆq]∗q
describes such a test purpose. Although theoretically possible, our current implementation does
not make use of reject states, which are used, e.g. by TGV, to consider only parts of the state
space during product calculation. Via reject states the product calculation between test purpose
and specification can be explicitly stopped when reaching such states.

Figure 4.4 shows an example QTS consisting of three states where integers represent qualitative
values. The three symbols c, d, and e denote three different propositions on the state variables.
The QTS is labeled according to Definition 4.2 using these symbols. Because state s1 only
satisfies property c, the transition from s0 to s1 is only labeled with c. State s2 satisfies all
properties, therefore the transition from s0 to s2 is labeled with all symbols. Finally, s3 satisfies
propositions c and d resulting in the according labeling.

53

Chapter 4. Testing of Continuous Systems

c
d
e

c d

ec d

c

Figure 4.4.: Labeled QTS.

Definition 4.3 (Synchronous Product) Let S = (QS,AS,→S,qS
0) be a labeled QTS and T P =

(QT P,AT P,→T P,qT P
0) be a test purpose with AT P = AS and AcceptT P ⊆ QT P. The synchronous

product S×T P is a labeled transition system SP = (QSP,ASP,→SP,qSP
0) with ASP = AS(= AT P),

QSP ⊆ QS×QT P, and the initial state qSP
0 = (qS

0,q
T P
0). The transition relation→SP is defined by:

qS a−→S q′S qT P a−→T P q′T P

(qS,qT P)
a−→SP (q′S,q′T P) .

The accept states in the product are AcceptSP = QSP∩ (QS×AcceptT P).

After product calculation we obtain a QTS that contains the behavior of interest for testing.
We apply Tarjan’s algorithm as a framework, see [104], for determining the set of states leading
to an accept state. It computes the set of strongly connected components (SCCs) while updating
reachability information for the visited states. A strongly connected component is defined as a
subset of graph states, within which every pair of states can reach each other via transitions to
states inside that set. A state can reach an accepting state if itself or another state in the same SCC
can reach an accepting state. The computed subgraph is called Complete Test Graph (CTG) which
consists of three types of states: states leading to an accept state, accept states, and inconclusive
states. A state is inconclusive if there exists no path to an accept state. This means that from such
a state the test purpose cannot be achieved anymore.

In the next step we project the CTG onto its visible behavior, i.e. traces(CTG) ↓ L. When
two connected states have the same valuation of visible quantities L, they are considered to be
qualitatively equivalent:

s1 ≡ s2 iff ∀q ∈ L• (s1,s2) ∈ T ∧ (v.s1).q = (v.s2).q.

We merge equivalent states and update the transitions accordingly.

Figure 4.5(a) shows an example QTS with six states and three quantities. Assume that quantity
a is hidden. Consequently, states s2 and s3 are equivalent and can be merged. Figure 4.5(b) shows
the result of this merge, with the updated transitions. Now a problem of non-determinism arises
in state s2. The successor states s1 and s4 are equivalent and are merged due to determinization

54

4.2. Test Case Selection with Test Purposes

a = 6
b = 1
c = 2

s5

a = 1
b = 1
c = 1

s0

a = 2
b = 2
c = 1

s2

a = 3
b = 2
c = 1

s3

a = 5
b = 2
c = 2

s1

a = 4
b = 2
c = 2

s4

(a) Original QT S

a = 6
b = 1
c = 2

s5

a = 1
b = 1
c = 1

s0

a = 2
b = 2
c = 1

s2

a = 5
b = 2
c = 2

s1

a = 4
b = 2
c = 2

s4

(b) QT S ↓ L

a = 6

b = 1
c = 2

s5

a = 1

b = 1

c = 1

s0

a = 2

b = 2

c = 1

s2

a = 5

b = 2

c = 2

{s1, s4}

(c) Observable behavior

Figure 4.5.: Minimization of a QTS.

via subset construction. The deterministic QTS representing the observable behavior is depicted
in Figure 4.5(c). If all hidden quantities are constant the minimized QTS remains deterministic.
This is because constant quantities cannot discriminate two states. Otherwise the QTS, in terms
of visible quantities, may become non-deterministic. At the end of the state-merging process
we convert the QTS into its equivalent deterministic form using the standard subset construction
technique. After having a minimized, deterministic automaton, i.e. the CTG, we can extract test
cases from it.

Controllable Test Cases According to the ioco theory test cases have to be controllable. This
means that the tester never has the choice between applying an input and observing an output or
between applying different inputs. Since test cases are executed synchronously with the SUT,
this may cause problems. If a test case is in a state where it sends an input to the SUT and, at the
same time, the implementation is sending an output this would not be allowed. However, an SUT
cannot be blocked from sending outputs. In recent work [157] Jan Tretmans has given up the
demand for controllability by making test cases input-complete. This means that the tester can
accept all outputs of the SUT in any state. During test case selection only input controllability is
ensured, i.e. in every state there is at most one input transition.

Qualitative test cases are input enabled since we treat inputs and outputs synchronously, in an
alternating manner. We ensure input controllability by extracting one test case for each input
decision the tester can make. Since our specifications are non-deterministic, test cases are not
linear sequences but transition systems that are able to handle alternative output behavior. Since
test cases may have loops the test driver has to ensure that a verdict is given after an upper bound
of state transitions executed or time passed.

During test case execution a state transition occurs because of either of two reasons: the tester
applies a new input value or an output quantity changes its value. Since a qualitative test case
must always be able to react to changes of observed quantities they are output complete (here
the outputs are inputs to the test case). If the test case has the choice between applying different
inputs in the next state we derive a separate test case for each choice. In the example of Figure 4.4

55

Chapter 4. Testing of Continuous Systems

Algorithm 4.1 Qualitative Test Case

TC(s) =df return (s,pass)

2

Inputs := {s′ | ∃q ∈ LI,s′ • (s,s′) ∈ T ∧ (v.s).q 6= (v.s′).q};
nondeterministically choose one x ∈ Inputs;

Next := x∪ ({s′ | ∃s′ • (s,s′) ∈ T}\Inputs);

return {(s1,s2) | ∃s′ • (s1 = s∧ s2 ∈ Next)∨ (s′ ∈ Next∧ (s1,s2) ∈ TC(s′))}

the valuation of input quantities i1 and i2 leads to two test cases with transitions {(s0,s1),(s0,s2)}
and {(s0,s1),(s0,s3)} respectively.

A test purpose based test case is a qualitative transition system with two types of sink states:
pass and inconclusive. The pass states are the accept states in the CTG which are reached by
the test case. As already mentioned before, inconclusive states denote states from which a pass
state is not reachable anymore. Fail states are implicit as they are reachable in every state after
the observation of an unspecified event. Furthermore, a test suite T is a set of test cases. Algo-
rithm 4.1 recursively defines the structure of a qualitative test case. Starting from the initial state
the test case either ends in a pass state or is extended by states with possibly one input and several
output value changes. By the nondeterministic choices at the selection of inputs and pass states
the algorithm enumerates all possible test cases of a given QTS.

We extract test cases due to test purposes from a given CTG by applying a path search based
algorithm which preserves the properties defined in Algorithm 4.1. Test case selection aims for
transition coverage of the CTG.

In the soundness theorem of qualitative test cases we refer to the set of all possible traces.
Given a set of quantities L we define the set of all possible traces via the total envisionment of the
weakest model, i.e. true, with traces(L). The only restriction to such traces is the continuity rule,
see 3.4. Remember, that the total envisionment of a qualitative model consists of all possible
states connected by the transition relation. The behaviors of a total envisionment are all paths
starting from any state.

The execution of a qualitative test case t on an implementation i is denoted with the syn-
chronous parallel composition operator te|i, see [157]. An implementation fails a test case if the
following holds:

i fails t =df ∃σ• te|i σ
=⇒ faile|i′. (4.2)

Theorem 4.1 (Soundness of qualitative test cases) A test case t obtained with Algorithm 4.1
from a QTS s is sound regarding qrioconf if

∀σ ∈ traces(LI), i•∃i′• (te|i
σ

=⇒ faile|i′) =⇒
out (i after σ)* out (s after σ). (4.3)

56

4.2. Test Case Selection with Test Purposes

Proof 4.1. We proof this by contradiction. Let t be unsound. Then there exists an implementation
i such that i conforms to s but fails the test case:

∃i• i qrioconf s∧ i fails t

≡{Definition 4.2}

∃i, i′ • i qrioconf s∧∃σ ∈ traces(LI)• te|i σ
=⇒ faile|i′

=⇒{condition of (4.3)}
∃i• i qrioconf s∧∃σ ∈ traces(LI)•out (i after σ)* out (s after σ)

=⇒{Definition 4.1}
∃i• i qrioconf s∧¬i qrioconf s

=⇒ false.

According to Algorithm 4.1, during test case selection only input decisions are pruned. The set
of output values in a test case after a test input trace is equal to the set of output values in the spec-
ification after the same trace, i.e. ∀σ∈m(traces(t) ↓ LI)•out (t after σ) = out (s after σ).
This structural property preserves the soundness of generated test cases.

Example Test Case In order to create test cases for our battery example we have to define the
inputs and outputs of the system. The battery model consists of five quantities. The charge of the
battery and the discharge rate are internal quantities as they are neither directly observable nor
controllable. In operation the battery current and the temperature are controlled by the battery’s
environment, hence they are input quantities LI . We neglect the fact, that the battery temperature
also depends on the load current. On the other side the battery voltage is an observable quantity
LU . Let us assume that the battery is charged by some fluctuating supply current. We model
this by declaring the supply current as exogenous, sinusoidal changing quantity. Varying loads
are emulated with a sinusoidal changing battery current. The temperature is set to some constant
value. In the initial state the charge level and the load and charge currents are set to some values
greater than zero.

Assume we are interested in the behavior that leads to an empty battery. Therefor, we de-
fine the two proposition symbols: c for battery : charge > zero and d for battery : charge =
zero∧ battery : charge dx = zero. The regular expression c∗d describes the test purpose. This
test purpose is fulfilled by paths containing any number of states where the battery charge is
greater than zero (c), followed by a state where the battery charge is zero and the battery is not
charging (d). After simulating the model and computing the complete test graph we are ready to
select test cases. Figure 4.6 shows an example test case. States are annotated with their state IDs
as used in the QTS. The test case contains cyclic behavior. For test case execution this means that
there must be some defined boundary after which execution stops resulting in an inconclusive
verdict. Rectangle-shaped states are accept states, see state 47. The triangle-shaped state with ID
43 denotes an inconclusive state. In this state the battery is already full and is continued to be
charged. This overcharging results in a sink state from which an accept state cannot be reached.
Hence state 43 is marked as inconclusive.

57

Chapter 4. Testing of Continuous Systems

Figure 4.6.: Test case for an empty battery.
Battery: Current

Zero

Plus

13 14 18 28 45 52 1 5 1 47

Battery: Voltage

Zero

Plus

Max

13 14 18 28 45 52 1 5 1 47

Figure 4.7.: A possible trace through the test case.

Depending on the magnitudes of the load and charge currents various paths through the test
case are possible. Figure 4.7 depicts one execution sequence leading to an empty battery. The
trace shows the valuation of the input and output quantities.

4.3. Coverage-based Test Purposes

In the field of model-based testing there always arises the question of how many test cases should
be generated and what parts of the specification are covered by these test cases. The methodology
discussed in the previous section requires to think of scenarios in order to formulate test purposes.
For larger specifications this might be a time-consuming task and for generated test cases there is
no direct relation to structural coverage on the specification.

Given a transition system derived from a QR model, we are facing the classical testing problem

58

4.3. Coverage-based Test Purposes

of which test cases to select out of a very large possible number. In this section we deal with
the automated generation of test suites according to certain coverage criteria. This allows to
determine how well a system is tested with respect to its environment. The presented technique
can be seen as a complementary technique for traditional testing methods.

Coverage criteria have been successfully used as stopping criteria when generating test cases,
to evaluate test suites, and to automatically derive test cases. A coverage criterion describes a
set of items that the testing process should exercise. Many different coverage criteria have been
defined based on both source code and specifications. For example, given a transition system we
might aim to cover each transition of every state at least once.

When using explicit environment models the question of which test cases to select remains.
Therefore, we define a set of coverage criteria for QR models: domain coverage, delta coverage,
full delta coverage, as well as the traditional state and transition coverage. Below we define a
set of different coverage criteria. A coverage value according to these coverage criteria can be
measured as the ratio of covered items to items in total as defined in the coverage criterion.

In a QTS, the state of the environment is given by a value assignment to the model’s quantities.
Each quantity q ∈ Q has a finite domain (we omit here the abstract derivation δ), its quantity
space : QSq = {d0,d1, . . . ,dn}, therefore it is feasible to require each quantity to take on all of its
quantity space values. This coverage criterion is called Domain Coverage.

Definition 4.4 (Domain Coverage) A test suite T achieves domain coverage, if for each quan-
tity q ∈ Q, there is a test case t = (St ,st

0,T
t ,vt) ∈ T for each d ∈ QSq, such that ∃s ∈ St ,d′ :

δ• vt(s)(q) = (d,d′).

Because testing all possible environment states might be impractical, domain coverage offers
a compromise by ensuring that each possible domain value occurs at some point. That is, given a
test suite that satisfies domain coverage we know that each possible environment value has been
exercised at least once.

As quantities change their values according to the description given in the QR Model, errors
might only be detected when considering value changes. Consequently, we define Delta Coverage
such that each quantity has changed its value in every direction at least once.

Definition 4.5 (Delta Coverage) A test suite T achieves delta coverage, if for each quantity
q ∈ Q, there are test cases t1 ∈ T , t2 ∈ T , and t3 ∈ T such that ∃d1,d2,d3 : QSq,s1 ∈ St1 ,s2 ∈
St2 ,s3 ∈ St3 • vt1(s1)(q) = (d1,dec)∧ vt2(s2)(q) = (d2,std)∧ vt3(s3)(q) = (d3, inc).

Delta coverage ensures that every quantity eventually changes its direction. Note that in Def-
inition 4.5 t1, t2, and t3 can be the same test case. Changes of direction adhere to the continuity
law 3.4. Sudden, non-continuous jumps on domain values or deltas cannot happen.

Delta coverage can miss cases where some value change causes an error but a different value
change for the same delta is chosen for testing. Consequently, we define Complete Delta Cover-
age as a stricter variant of delta coverage.

59

Chapter 4. Testing of Continuous Systems

Definition 4.6 (Complete Delta Coverage) A test suite T achieves complete delta coverage, if
for each quantity q∈Q with quantity space QSq, there are test cases t1, t2, and t3 for each d ∈QSq
such that ∃s1 ∈ St1 ,s2 ∈ St2 ,s3 ∈ St3 • vt1(s1)(q) = (d,dec)∧ vt2(s2)(q) = (d,std)∧ vt3(s3)(q) =
(d, inc).

Complete delta coverage is a combination of delta and domain coverage demanding that every
domain value of a quantity changes its direction. Depending on the number of quantities and the
sizes of their quantity spaces, complete delta coverage might be hard to achieve. Complete delta
coverage might also contain infeasible test goals; for example it might not be possible to decrease
a value at the lower bound of a quantity’s domain.

In addition to the above coverage criteria, we can apply traditional coverage criteria for tran-
sition systems to the QTS. State coverage requires that each state of the QTS is visited at least
once, and Transition coverage requires that every transition of the QTS is executed.

Definition 4.7 (State Coverage) A test suite T achieves state coverage for QTS M = (S,s0,T,v),
if for every s ∈ S there is a test case t = (St ,st

0,T
t ,vt) ∈ T such that s ∈ St .

Definition 4.8 (Transition Coverage) A test suite T achieves transition coverage for QTS M =
(S,s0,T,v), if for every (s,s′) ∈ T there is a test case t = (St ,st

0,T
t ,vt) ∈ T such that (s,s′) ∈ T t .

The presented coverage criteria can be used to evaluate existing test suites and they can also
be applied to automatically derive test suites from qualitative models. For automated test case
derivation we generate regular expressions specifying a test purpose which satisfies the coverage
criterion. We generate test purposes and furthermore test cases for all input and output quantities
of the test model. Given a set of test purposes corresponding to a coverage criterion we create
test cases according to the technique, presented in the previous section.

Consider a quantity space 〈a, . . . ,b〉. With the domain’s boundary values a and b we can for-
mulate a test purpose ([ˆa]∗a[ˆb]∗b)|([ˆb]∗b[ˆa]∗a) ensuring domain coverage. It reads as follows:
start from any value in the domain, try to reach one of the endpoints and from there the other end
point. The disjunction in the regular expression allows to start the traversal of domain values in
either direction. Such a test purpose covers all domain values of a certain quantity. If it is not
possible to visit all domain values within one test case, we have to formulate test purposes as
classical reachability problem targeting at single, uncovered domain values di, i.e. [ˆdi]

∗di.

We can describe delta coverage with the same regular expression as for domain coverage, but
with fixed boundary values dec and inc since δ ∈ {dec,std, inc}. In order to express complete
delta coverage we generate test purposes for each possible pair of domain value and delta, e.g.,
(value1,dec),(value1,std),(value1, inc), . . ., resulting in ∑

q∈Q
3 · |QSq| pairs. Such a test purpose

looks like [ˆp]∗p, where p is the property to be searched for.

For state coverage we create test purposes like for complete delta coverage but the properties
we search for are complete quantity assignments corresponding to a certain state. We generate
test purposes for every state in the specification. To ensure transition coverage we use a test
purpose of the form [ˆp]∗pq for every transition in the specification. Here p specifies the start
state and q the end state of the transition to be covered.

60

4.3. Coverage-based Test Purposes

Figure 4.8.: Two-tank system.

Tanks

Entity
Tank1

Entity
Tank2

Connected

Level

Zpm
Max
Plus
Zero

Level

Lv
Max
High
Set
Low
Zero

Flow

Zpm
Max
Plus
Zero

Flow

Zpm
Max
Plus
Zero

Diff

Mzp
Plus
Zero
Min

Diff

Mzp
Plus
Zero
Min

Figure 4.9.: Qualitative model for controlling the level in the
tank with the outlet valve.

Example – Two-Tank System Consider the two-tank system from Figure 4.8. The two tanks
are connected via a pipe at the bottom. Water can flow in both directions through the pipe. The
flow rate depends on the difference of water levels. The control system has to hold the water level
of tank2 constant at a specified height while the water level and inflow rate of tank1 varies. The
control system can set the inflow to tank1 and the outflow of tank2 via controlling the valves. The
water levels of both tanks are inputs of the control system. Figure 4.9 shows the Garp3 model
fragment representing the physical relations and the control loop of the two-tank system.

The water level of tank1 is the integral of the inflow rate over time, represented via a positive
influence from flow to level. Tank1 has an auxiliary quantity diff for calculating the difference
in water levels. This difference determines the water flow through the pipe while influencing the
water levels of both tanks. The quantity space of level in tank2 contains a set point for controlling
the water level. We use the auxiliary quantity diff of tank2 to calculate the control deviation. The
control loop is closed via a P and an I arrow to the actuator controlling the outflow valve resulting
in a PI-controller. According to control theory the proportional part ensures quick response to
changes and the integration part eliminates permanent control deviations. The setting of the
outflow valve has a negative influence to the water level of tank2. Finally, equalities between
the maximum tank water levels and valve flow rates makes them comparable while reducing
ambiguity.

The QTS resulting from simulation of the two-tank system comprises 113 states with 305
transitions. In order to evaluate our proposed coverage criteria we use transition coverage of
obtained test suites on the specification as reference measure. The results shown in Tables 4.1 and
4.2 were generated with QRPathfinder and list from left to right the coverage criterion, the number
of generated test purposes #TPs, the number of obtained test purposes #TCs, and the transitions
coverage on the specification. For Table 4.1 we exhaustively extract test cases from CTGs until
all transitions of the according CTG have been considered. Table 4.2 lists each criterion for only
one generated test case per test purpose.

As expected, the experiments show that the different criteria can be used to vary the amount of
test cases generated from a QR model. It has to be noted that redundant test cases have not been

61

Chapter 4. Testing of Continuous Systems

Table 4.1.: All Test Cases per Test Purpose
Coverage Criterion #TPs #TCs Transition Cov. [%]
Domain 5 120 220/305 72
Delta 5 133 217/305 71
Complete Delta 60 850 297/305 97
State 113 1434 305/305 100
Transition 305 2256 305/305 100

Table 4.2.: One Test Case per Test Purpose
Coverage Criterion #TPs #TCs Transition Cov. [%]
Domain 5 5 35/305 12
Delta 5 5 60/305 20
Complete Delta 60 42 119/305 39
State 113 113 168/305 55
Transition 305 305 305/305 100

filtered from the test suites. The generation of all test cases per test purpose results in quite good
coverage on the model but leads also to large test suites. One can see that the large number of test
cases achieve for both, state and transition coverage, the same coverage on the model, i.e. 100%.
In the experiment where we generated one test case per test purpose the reached coverage values
are lower. However, the test suites are significantly smaller than in Table 4.1. In the following
section we deal with the execution of qualitative test cases.

4.4. Execution of Qualitative Test Cases

Between qualitative test cases and a continuous SUT lies big gap in abstraction. On the one hand
we have no exact numerical information about the evolution of continuous variables, on the other
hand qualitative behavior contains no knowledge about real time. In this section we present the
design of a test driver for executing qualitative test cases.

4.4.1. Water Tank – A Continuous System

The water tank with two outlets, depicted in Figure 4.10, is a switched, continuous system. The
system comprises several different modes of continuous behavior. A change between two modes
is called switch. Such systems are commonly described via a set of partially defined differential
equations:

ẋ =

i− k1

√
x− k2

√
x−h if x≥ h ∧ v = open; S0

i− k2
√

x−h if x≥ h ∧ v = closed; S1
i− k1

√
x if x < h ∧ v = open; S2

i otherwise. S3

(4.4)

62

4.4. Execution of Qualitative Test Cases

inflow

outflow 1

le
v
e
l

outflow 2

h
e
ig

h
t

Figure 4.10.: Water Tank with two Outlets.

S0 S1

S2 S3

Figure 4.11.: Hybrid Automaton of the Water
Tank.

The example comprises four modes S0 − S3, and x denotes the amount of water in the tank. The
outlet at the bottom can be controlled continuously with a valve v between the states open and
closed. The water level is the amount of water in the tank divided by the tank’s base area and h is
the height of the upper outlet. The constants k1 and k2 are the cross sections of the two outlets.
In our example we use the cross section k1 of the bottom outlet as variable which depends on the
position of the valve.

Figure 4.11 depicts the hybrid automaton of the tank model. The labels in the four modes
denote the according invariant and differential equation defined in (4.4). The edges of the au-
tomaton have no conditions. The automaton moves between states as the state invariants, i.e. the
conditions associated with each partially defined differential equation, change.

Tank Entity
Tank

Level

Lv

Max

High

Set

Low

Zero

Inflow

Zpm

Max

Plus

Zero

Outflow

Zpm

Max

Plus

Zero

Valve

Zpm

Max

Plus

Zero

Diff a

Mzp

Plus

Zero

Min
Diff b

Mzp

Plus

Zero

MinDiff c

Mzp

Plus

Zero

Min

Figure 4.12.: Tank Model Fragment for Mode S0 and S1.

Next, we develop a qualitative model of the water tank. Figure 4.12 shows the Garp3 model

63

Chapter 4. Testing of Continuous Systems

fragment which describes the system behavior in mode S0 and S1. A second model fragment (not
shown here) specifies the modes S2 and S3. The effect of the valve on the outflow at the bottom is
common in all four modes. Therefore, only two model fragments are needed. The further mode
distinctions in the hybrid automaton result from the fact that a closed valve causes no outflow.

The entity Tank comprises the quantities Inflow, Outflow, Valve, Level, Diff a, Diff b, and
Diff c. The model contains three difference relations, i.e. Inflow−Outflow = Diff a, Level−
Level.Set = Diff b, and Diff a−Diff b = Diff c. We use them to calculate the effective flow rate
Diff c that influences the water level. The Landmark Level.Set represents the level of the upper
outlet. The flow rates through the outlets are direct proportional to the water level. Furthermore,
correspondences between quantity space values (V-arrows) reduce ambiguities during behavior
inference. For instance, there can only be an outflow at the bottom valve if the valve is not closed
and there is some water in the tank.

The positive difference in height between the water level and the height of the upper outlet, i.e.
Diff b, is proportional to a flow rate. This means that both quantities have the same monotonicity
and are equivalent regarding M+, see section 3.2. If in addition the values of the quantity spaces
correspond to each other we can directly use Diff b as a flow rate. This is the case since a zero
difference in height corresponds to a flow rate equal to zero, and a positive difference corresponds
to a positive flow rate. The flow rate through the upper valve cannot get negative which is ensured
by the condition on the water level. Furthermore, the outflow at the bottom is directly proportional
to the valve position.

Given the qualitative model we generate test cases according to test purposes, and coverage
criteria as described in Sections 4.2 and 4.3. Generated test cases have to be controllable regarding
the selection of inputs.

For offline test case generation we apply the envisionment simulation, i.e. the simulation of
all possible behaviors starting from an initial scenario. This can lead to quite big state spaces. In
order to deal with the state space explosion problem the simulation engine can be constraint to
produce fewer possible behaviors. Another option is to state additional constraints between quan-
tities that reduce ambiguities. For instance in a two-tank-system the information that one tank is
higher than the other can be expressed by a constraint between landmark values: Tank1.Height >
Tank2.Height.

For test case execution a link has to be established between the abstract behavior of a test case
and the continuous behavior of a system under test. Therefore, we have to map between the
domains accordingly. Such a link has the mathematical properties of a Galois Connection and we
describe the mapping functions in the following subsection.

4.4.2. Mapping between Abstract and Concrete Data

In QR the timing behavior of physical systems are represented by all possible interleavings of
quantity valuations. Figure 4.13 depicts the behavior of two unrelated, increasing quantities
which start from landmark zero. The left diagram represents the QTS and the diagram on the right
side shows that valuation of all states (not to be confused with a qualitative trace). The simulation
predicts three possibilities: in state sequence 〈1,2,5,3〉 quantity A reaches the maximum before

64

4.4. Execution of Qualitative Test Cases

1

2

3

4

5

(a) State Graph.

Quantity: A

Zero

Plus

Max

1 2 3 4 5

Quantity: B

Zero

Plus

Max

1 2 3 4 5

(b) Qualitative values.

Figure 4.13.: Interleaving of two increasing Quantities.

Figure 4.14.: Mapping between Abstract and Concrete Data.

quantity B, in state sequence 〈1,2,4,3〉 quantity B reaches the maximum before quantity A, and
in state sequence 〈1,2,3〉 both quantities increase in-phase to the maximum. Interleavings can be
reduced by stating corresponding values between quantities.

Qualitative test cases are abstract in two dimensions: time and magnitude. In order to ex-
ecute them on a real implementation we have to map between abstract and concrete domains.
This is commonly presented in a commuting diagram, see Figure 4.14, where α is a refine-
ment function and β is an abstraction function. It states that after mapping an abstract input
is ∈ LI to a concrete input it ∈ It , applying it to an implementation, and then mapping the ob-
served output ot ∈ Ot to an abstract, qualitative output os ∈ LU must be the same as applying
the abstract input is to the specification. The subscript s denotes state dependency and sub-
script t stands for time dependency. In the following we denote (ot(t), ∂

∂t ot(t)) ∈ R×R as con-
crete output and is ∈ LI = QSis × δ as abstract (qualitative) input. For test case execution we
have to associate the abstract quantity spaces of each observable quantity q ∈ LU with a con-
crete domain CDq, i.e. an ordered set of real valued intervals. For instance quantity space
QSlevel of a quantity level with QSlevel = 〈zero, low,medium,high,max〉 corresponds to a con-
crete domain CDlevel = 〈[0,0],(0,5), [5,5],(5,10), [10,10]〉. We can map between an abstract
value qVal∈QSq and a real valued interval ci ∈CDq by the functions intervalq : QSq 7→CDq, and
qualityq : CDq 7→ QSq.

For qualitative inputs LI we refine the infinite set of monotonic increasing and decreasing func-

65

Chapter 4. Testing of Continuous Systems

Figure 4.15.: Landmarks as Real Valued Inter-
vals.

Figure 4.16.: Slope of observed Values.

tions to linear functions It by applying the refinement function α. For calculating the slope of It
we assume a certain time interval TI within which the linear function is a refinement of the qual-
itative input value (QS,δ). Whenever we enter a new qualitative state we continue the piecewise
linear function starting from the last concrete value of the previous state. Let us consider the
following example. We want to map the abstract input is = (A, plus) to a concrete linear function.
Every abstract value matches a concrete real valued interval by definition, e.g., A =df [3.7,5.8].
Assume that the last concrete value cVal = it(t) is 4.1 and the time interval is one second. Then
the slope is (5.8− 4.1)/1 = 1.7. By multiplying the slope with the time step deltaT we get the
increment value deltaY that updates the function at each time step. The choice of the sampling
interval deltaT must be fine-grained enough to detect the fastest signal changes of interest, see
Definition 3.4.

In order to decide the output conformance of an implementation we have to abstract the ob-
served, concrete outputs Ot to qualitative outputs LU = QS×δ by applying the abstraction func-
tion β. Since outputs are pairs we have to deal with the two cases β1(ot) and β2(

∂

∂t ot). We start
with abstracting a concrete value cVal = ot(t) to an abstract value qVal∈QSq. It is not possible to
observe a constant real value from a physical system over time. Due to sensor resolution, noise,
and drifts constant values will follow some distribution. In order to prevent that small oscilla-
tions of cVals around landmark values cause flipping between intervals, we have to blur the sharp
separation due to landmark values. Therefore, we extend landmarks to intervals themselves, see
Figure 4.15, and call them hysteresis intervals. The term hysteresis refers to the fact that the ab-
straction function is dependent on the abstract state, i.e. the last mapped value. According to the
last qVal, denoted qValn−1, we can decide which new qVal is the right abstraction of the current
concrete value. Hence, the type of the value abstraction function β is: R×QS→ QS.

For example, a quantity space 〈zero,plus,max〉 can be mapped to the concrete domain CD =
[0,3.14]±0.01 where 0.01 is the tolerance around the landmark values. The corresponding over-
lapping intervals are: 〈[0,0.02], [0.01,3.13], [3.12,3.14]〉. Note, the special treatment of boundary
values (0 and 3.14) as they cannot be expanded symmetrically: an overlap in the size of the toler-
ance (0.01) with their neighboring interval is generated (by setting their interval size to twice the
tolerance value, here 0.02). Consequently for a quantity q ∈ LU with a concrete domain CDq, we

66

4.4. Execution of Qualitative Test Cases

can map observed cVals to abstract qVals by the following function:

qValn = β1(cVal,qValn−1) =

qValn−1 if cVal ∈ ci;
quality(c j) if ∃c j : cVal ∈ c j;
undef if ¬∃c j : cVal ∈ c j,

where ci = intervalq(qValn−1) and c j ∈ CDq\{ci}.

We compute the slope of the measured quantities with a regression line of the last n samples,
see Figure 4.16. The length of the delay line determines the degree of noise suppression. De-
pending on a defined boundary slope bs we abstract a gradient ∂

∂t to a qualitative δ. In order to
improve the abstraction we use methods of curve sketching. Therefore we compute the first three
derivations dt, ddt, dddt and map accordingly:

δn = β2(
∂

∂t
ot ,δn−1) =

min if dt <−bs;
plus if dt > bs;
zero if ¬(−bs < ddt < bs∧−bs < dddt < bs);
δn−1 otherwise.

If ddt is the first non-zero derivation we can conclude the occurrence of an extremum. If dddt
is the first non-zero derivation we have encountered a saddle point. By considering higher order
derivations we get a better assurance that the first derivation is zero not only because of the choice
of the boundary slope bs. In the case that the magnitude of all derivations is below the boundary
slope we cannot conclude anything. For such points we assume the δ of the previous point (δn−1).

The introduction of tolerances during abstraction is necessary because it is impossible to detect
infinitesimal small changes. The tolerances have to be reflected by the system requirements, e.g.
a defined boundary slope must be accurate enough to detect the smallest relevant slopes of system
quantities. We consider the tolerances and the choice of the time step deltaT as part of the system
specification. Provided that chosen values are valid assumptions, the implementation relation
qrioconf is preserved. It can be seen analogous to the choice of the quiescence time interval in
the ioco testing theory.

4.4.3. Test Case Execution

Within the traces of a QTS inputs and outputs are coupled. During test case execution the decision
of which transition should be taken next depends on the enabledness of successor states. Either
an increasing or decreasing input quantity becomes consistent with a successor state because its
associates concrete function reaches a landmark value or the change of an output quantity enables
the transition to a successor state.

Qualitative test cases are adaptive to implementations that differ in their timing behavior. De-
pending on the rise times of the signals on the implementation level different traces of a test case
are executed. Note, that a possible occurrence of spurious behavior in a test case causes no prob-
lems since it is filtered out automatically during test case execution. This is because spurious
behavior cannot be observed in any physical system.

67

Chapter 4. Testing of Continuous Systems

Due to the nondeterministic behavior of QTS, obtained test cases are transition systems with
possible loops. The implementation can decide which branch in the test case is taken next and
how many iterations a loop is run through before taking a transition which exits the loop. A test
case has two types of final states: accept and inconclusive. A third type, which is not represented
explicitly, is the fail state. It can be reached from any state that is not final by completing the
inputs with unexpected outputs. In an accept state the behavior of interest has been observed and
from an inconclusive state the test purpose can never be satisfied.

Algorithm 4.2 describes the abstract test case execution. At first we initialize the inputs for the

Algorithm 4.2 execute
1: ∀q ∈ LI : initialize(q.cVal)
2: s := initialState
3: while s ∈ S∧ s 6= inconclusive∧ s 6= accept do
4: for all q ∈ LI do
5: (qVal,qDir) := (v.s).q
6: ci := intervalq(qVal)
7: if qDir = zero then
8: deltaY := 0.0
9: else if qDir = plus then

10: deltaY := ci.max−q.cVal
11: else
12: deltaY := ci.min−q.cVal
13: end if
14: q.deltaY := deltaY ·deltaT/T I
15: end for
16: repeat
17: for all q ∈ LI do
18: q.cVal := q.cVal +q.deltaY
19: send(q.cVal)
20: end for
21: for all q ∈ LU do
22: q.cVal := receive(q)
23: end for
24: until getSuccessor(s) 6= /0∨¬(inputInvariant(s)∧outputInvariant(s))
25: s := getSuccessor(s)
26: end while
27: if s = accept then
28: return pass
29: else if s = inconclusive then
30: return inconclusive
31: else
32: return fail
33: end if

implementation. To each concrete input we assign the mean value of the interval corresponding
to the abstract initial value. Starting from the initial state we branch through the states of the test
case until we reach a final state. For each visited state we first map the abstract inputs, i.e. (QS, δ)
pairs, to concrete, linear functions. This is realized in the for loop from line 4 to 15 by computing

68

4.4. Execution of Qualitative Test Cases

the according slopes.

The repeat-until loop from line 16 to line 24 sends inputs to the implementation and observes
outputs from the implementation. We stay in the current state until a valid successor state is
encountered or the applied inputs or outputs get inconsistent with the current state. The boolean
functions inputInvariant(s) and outputInvariant(s) check the consistency between abstract values
and concrete trajectories. Test case execution continues until a final state is reached which is
either fail, accept, or inconclusive.

Transitions between qualitative states may only be enabled for certain amounts of time. Let
us consider an example test case with one input and one output quantity 〈i,o〉, both having
the quantity space 〈zero,max〉 (we omit the named interval between zero and max). The test
case may contain a state s1 = 〈(zero,std),(zero..max,dec)〉 which has one successor state s2 =
〈(zero..max, inc),(zero..max,dec)〉. If we would stay in state s1 until the output quantity has de-
creased to zero, i.e. o = (zero,0), and becomes inconsistent with s1 the window of opportunity
for a state change is over. This is because there is no consistent successor state available since
out (i after σ) = (zero,0)* out (s after σ) = (zero..max,dec) with σ = 〈(zero,std)〉. In
such a case a fail verdict would be spurious. A fail verdict can only be issued if there exists no
point in time where a successor state can be reached. Hence we traverse states in a test case by
taking transitions as soon as they become enabled. This ensures that we do not miss transitions.
To verify that an SUT passes a given test case it is sufficient to show that there exists one execu-
tion sequence to the test purpose. The SUT conforms to the specification if it passes all test cases
from a complete test suite.

The function getSuccessor(s) checks the set of outgoing transitions for enabled successor
states. It returns a state that is consistent with the current inputs and outputs. Depending on
the reached final state the test case execution yields the verdicts:

• pass for an accept state,

• fail if execution leads to a state that is not reachable according to qrioconf ,

• inconclusive for an inconclusive state.

When execution leads to an inconclusive state the verdict is given after a certain timeout interval
if no successor state gets enabled. This provides us to find longer traces that may hit an accept
state instead of immediately stopping with an inconclusive verdict. Furthermore, if a test case has
cycles and an execution sequence does not reach a final state after some time passed or an upper
bound of states visited the tester can end the execution with an inconclusive verdict.

4.4.4. Experimental Evaluation

We model the water tank in Matlab/Simulink[13] which we consider as our implementation under
test, see Figure 4.17. In the implementation the height of the upper outlet is defined with the
constant h = 5m. The Gain block represents the outflow friction of the upper outlet and is set to 3.
Depending on the invariants the selector block switches between the partially defined differential
equations accordingly. Furthermore, the model contains a scope to visualize the simulation result.
We use TCP/IP blocks to communicate with our external test application. This provides a generic
interface for writing different kinds of test adapters.

69

Chapter 4. Testing of Continuous Systems

h

5

TCP/IP Send

192.168.1.163
Port: 3333

Data

TCP/IP Receive

192.168.1.163
Port: 3333

Data

Scope

selector

h

x

v

in

out

Quantizer

Product
Math

Function1

sqrt

Math
Function

sqrt

Integrator

1
s

Gain M1

M2

3

Figure 4.17.: Simulink Model of the Water Tank.

In order to evaluate the fault detection capability of our approach we create two mutants by
introducing mutation M1 and M2 in the Simulink model, see Figure 4.17. Let us assume for mu-
tation M1 that a developer has swapped the invariants of modes S0 and S1 of the partially defined
differential equations in (4.4). In mutation M2 the plus and the minus sign in the difference node
are exchanged.

We define a test scenario with the following initial values: tank level is set to zero, the in-
flow rate changes sinusoidal starting from zero, and the valve position is steady at plus. We
map the input quantities inflow and valve having the quantity space 〈zero, plus,max〉 to the
concrete domains [0,5]± 0.01 and [0,3]± 0.01 respectively. The output quantity level with
〈zero, low,set,high,max〉 corresponds to the real valued intervals [0,5,10]±0.1.

The following test purpose expresses that the inflow rate has to reach its maximum twice.
Therefor we define two propositions: c =df inflow = max and d =df inflow 6= max. The regular
expression (d+c+){2} over the proposition symbols specifies the test purpose which accepts
sequences of states containing two maxima of the inflow rate. For calculating the slope of the
concrete inputs we define a time interval of one second. Furthermore, the time step deltaT is
defined with one millisecond.

In a second scenario we set the initial tank level to a height of 8m which is located in the quali-
tative interval high. In addition we set the inflow rate to the steady abstract value plus and change
the valve position sinusoidal starting from zero. The concrete domain for the valve position is
[0,5]±0.01. As test purpose we specify that the valve position has to reach its maximum twice.
The test purpose reads similar to the one of the first test scenario. Figure 4.18 shows the input
and output trajectories of the executed test case TC1 on the implementation I and on the mutant
M1. Figure 4.19 depicts the execution of TC2 on I and M2. As can be seen both generated test
cases pass the implementation and detect the mutants. Additionally, test case TC1 kills mutant
M2 and test case TC2 kills mutant M1.

70

4.4. Execution of Qualitative Test Cases

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time offset: 0

inflow

level

(a) The Implementation passes TC1.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

Time offset: 0

inflow

leve l

(b) The Mutant M1 fails TC1.

Tank: Inflow

Zero

Plus

Max

1 2 3 4 12 86 95 157 165 216 225 343 352 430 560 585 675 673 754

Tank: Level

Zero

Low

Set

High

Max

1 2 3 4 12 86 95 157 165 216 225 343 352 430 560 585 675 673 754

FAIL PASS

(c) Value History of TC1 executed on I and M1.

Figure 4.18.: Execution of TC1 on I and M1.

71

Chapter 4. Testing of Continuous Systems

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

Time offset: 0

level

valve

(a) The Implementation passes TC2.

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8

Time offset: 0

level

valve

(b) The Mutant M2 fails TC2.

Tank: Valve

Zero

Plus

Max

6 18 84 92 137 147 160 170 161 185 195 199 208 92 137

Tank: Level

Zero

Low

Set

High

Max

6 18 84 92 137 147 160 170 161 185 195 199 208 92 137

FAIL PASS

(c) Value History of TC2 executed on I and M2.

Figure 4.19.: Execution of TC2 on I and M2.

72

Chapter 5
Testing of Hybrid Systems

Parts of this chapter have been published in Aichernig et al. [6], Brandl et al. [42], Aichernig
et al. [10], and Aichernig et al. [5].

This chapter deals with the modeling of hybrid systems and the test case generation from
such models. Hybrid systems combine both, discrete and continuous behavior. We present a new
modeling approach called Qualitative Action Systems (QAS) which adapts Hybrid Action Systems
(HAS) by Rönkkö et al. [139] with the technique of QR, presented in the previous sections. The
underlying theory is based on the weakest precondition semantics of action systems by Back et
al. [15, 16, 17].

Like other existing works in the hybrid systems area [83, 131, 139, 19] we concentrate on Or-
dinary Differential Equations (ODEs). Furthermore, we assume ODEs to be autonomous which
means that they do not explicitly refer to the independent variable, in our case time. For instance
d
dt y(t)+ y(t) = 0 is an autonomous ODE while d

dt y(t)+ y(t)+3t = 0 is not. For an autonomous
ODE the solution is independent of the time when the initial condition is applied. This is a
required property for hybrid systems since discrete switches between ODEs may occur at any
time.

The two-tank system in Figure 5.1 serves as running example through the subsequent sections.
It consists of a controller operating in its continuous environment forming a hybrid system. The
first step towards a system model is to know the (informal) system requirements:

In the two-tank system tank T 1 is on a lower level than the tank T 2. T 1 is being
filled with water having some inflow rate in. Both tanks are connected by the pump
P1 that is controlled such that: if the water level in T 2 decreases below a certain
Reserve mark and T 1 is full, pump P1 starts pumping water until T 2 is full or T 1
gets empty. In addition, the controller needs to control the pump P2 that is pumping
water out of T 2: P2 shall be turned on as long as a button WaterRequest is pressed
and there is enough water in T 2 (T 2 not Empty). Note, that the signal WaterRequest
and the inflow rate in are not controllable by the system, hence T1 may overflow.

Given these requirements, one is able to derive a formal model. The continuous dynamics of the

73

Chapter 5. Testing of Hybrid Systems

Full

Empty

T1 Empty

Reserve
Full

T2

P2G2
inout

in

outG1 P1

Figure 5.1.: Two-Tank Pump System.

system is expressed by the two coupled differential equations:

ẋ1 = (in− inout)/A1 and ẋ2 = (inout−out)/A2. (5.1)

Here, A1 and A2 are the base areas of the two tanks and x1 and x2 denote the current level in the
tanks. The variables in, inout, and out denote the flow rates into T 1, between T 1 and T 2, and out
of T 2 respectively.

In the following section we present the theory of QAS and develop a QAS model of the exam-
ple system.

5.1. Qualitative Action Systems

We start with an introduction to conventional action systems which provide a framework for de-
scribing discrete and distributed systems. The actions are statements in the form of Dijkstra’s
guarded commands where the semantics is defined via weakest precondition predicate transform-
ers. An action system, see Equation 5.2, consists of a block of variable declarations followed by
an initialization action S0 giving to each variable an initial value, and a do od block looping over
the nondeterministic choice of all actions. The action system terminates if no action is enabled.
Variables declared with a star are exported by an action system and can be imported by others in
the import list I at the end of the action system block.

AS =df |[var Y : T •S0;do A12 . . .2Anod]| : I (5.2)

In order to specify distributed concurrent systems several action systems can be composed in
parallel. Parallel composition of two action systems is done by joining all actions and variables.
(Some variables may be shared between the systems.) As an example, the parallel composition
A1 ‖ A2 of two action systems

A1 = |[var x : T 1 •S1
0;do A1

12 . . .2A1
mod]| : u1

A2 = |[var z : T 2 •S2
0;do A2

12 . . .2A2
nod]| : u2

74

5.1. Qualitative Action Systems

Action Notation wp(Statement,post)
Abort abort false
Skip skip post
Assignment y := expr post[y := expr]
Nondet. Assignment y := y′|r ∀y′ ∈ r.y•post[y := y′]
Sequential Composition A;B wp(A,wp(B,post))
Guarded Command p→ A p =⇒ wp(A,post)
Nondet. Choice A2B wp(A,post)∧wp(B,post)
Assertion {p} p∧post
Assumption [p] p =⇒ post
Angelic update {R}.post.σ ∃γ ∈ Γ•R.σ.γ∧post.γ
Demonic update [R].post.σ ∀γ ∈ Γ•R.σ.γ =⇒ post.γ

Table 5.1.: Semantics of discrete actions.

yields A1‖2:

A1‖2 = |[var x : T 1,z : T 2 •S1
0;S2

0;do A1
12 . . .2A1

m2A2
12 . . .2A2

nod]| : (u1∪u2)\ (v1∪ v2)

where vi denotes all variables exported from action system Ai.

Table 5.1 shows the semantics of conventional actions. Here, Σ and Γ are the set of states
before and after a computation with predicates p : Σ 7→ Bool and post : Γ 7→ Bool respectively.
The notation term[y := x] denotes the textual substitution of all occurrences of y in term by x.
A,B and R are relations between pre and post states, i.e. Σ 7→ (Γ 7→ Bool). An action A can be
executed if the enabledness guard g holds:

g(A) =df ¬wp(A, false). (5.3)

The execution of an action from states which do not satisfy the enabledness property behaves
as magic, i.e. any postcondition may be established. When program statements A are totally
defined for all possible initial states they satisfy the strictness property: wp(A, false) = false.
Furthermore, the termination guard

t(A) =df wp(A, true) (5.4)

ensures that when action A is executed it will terminate in some post state. The guard p of an
action A must not be weaker than its enabledness guard. This always holds when the actions are

strict: p =⇒ g(A)≡ p =⇒ ¬wp(A, false)
strictness≡ p =⇒ true≡ true.

5.1.1. Hybrid Modeling

The work in Rönkkö et al. [139] presents an approach for specifying hybrid systems within the
action systems framework. The methodology is well suited for showing that one hybrid system
is a refinement of another one. However, this is a (manual) proof technique. We want to check
refinement between a model and an implementation by conformance testing.

75

Chapter 5. Testing of Hybrid Systems

Per definition, a hybrid system comprises discrete and continuous parts. In our two-tank ex-
ample, the discrete part is formed by the controller that needs to start and stop different pumps.
The environment, i.e. the tanks and the water, form the continuous part. We will take advantage
of the compositionality of action systems to express this separation of concerns. More precisely,
our hybrid model is formed as parallel composition of the controller and the environment:

system≡ controller||environment.

This approach yields important consequences: we are working with a closed system and all test
cases we derive are tests for the whole system.

Discrete Part: Controller

For a detailed controller design the requirements given in the introduction are too imprecise. We
therefore need to give a more precise picture of the discrete part of our hybrid system:

1. If a button WaterRequest is pressed (on) and provided T 2 is not empty (water
level above Reserve), start pump P2 and pump water out of tank T 2.

2. If P2 is running and WaterRequest is not pressed then stop P2.

3. If P2 is running and the water level of T 2 drops to Empty stop P2.

4. If tank T 2 gets empty (water level below Reserve mark), and T 1 is full then
pump water out of tank T 1 into tank T 2 by starting pump P1.

5. If pump P1 is running and the water level in tank T 1 drops to Empty then stop
P1.

6. If pump P1 is running and the water level in tank T 2 reaches Full then stop P1.

The given requirements can be mapped to a conventional action system to model the controller
of the system. We need to create at least four guarded commands (actions) in order to reflect
the requirements: we have to turn on/off both pumps P1 and P2. By setting a state variable
px_running to true/false we are modeling switching on/off the pump PX . In addition, we set the
flow rate produced by the pump PX . Hence, a guarded command for turning on P2 might look
like

g3→ p2_running := true;out := (0,Max]

with g3 standing for some guard and out := (0,Max] for a non-deterministic assignment of some
flow-rate from the interval (0,Max] to the out-pipe. The action system of the controller can be

76

5.1. Qualitative Action Systems

specified as follows.

Controller =df |[var p1_running,p2_running : Bool,
out∗, inout∗ : Real

• p1_running := false;p2_running := false;
out := 0; inout := 0;wr := false

do g1→ p1_running := true; inout := (0,Max]
2 g2→ p1_running := false; inout := 0
2 g3→ p2_running := true;out := (0,Max]
2 g4→ p2_running := false;out := 0

od
]| : x1,x2,wr

The two sensors for sampling the water levels and the request button for pumping water out of
tank T 2 are modeled as imported variables x1,x2 and wr. The given action system still has general
guards g1 to g4 instead of concrete ones. Hence, we need to find the correct guards so that our
controller behavior matches the requirements. Starting with the first requirement that specifies
when P2 should be enabled we can replace g3 by

g3 =df wr∧¬p2_running∧ x2 > Empty

Requirements 2 and 3, dealing with cases when to stop P2, can be translated into guard g4:

g4 =df p2_running∧ (¬wr∨ x2 ≤ Empty)

Similarly, g1 and g2 can be given as follows.

g1 =df x2 < Reserve∧ x1 = Full∧¬p1_running

g2 =df p1_running∧ (x1 < Empty∨ x2 = Full)

Continuous Part: Environment

While the controller can be modeled as a discrete system, the environment model depends on
continuous evolutions. Hence, we have to use an extended version of conventional action systems,
namely hybrid action systems, to model the environment. In HAS the continuous behavior is
specified with so called differential actions e :→ d where e is the evolution guard and d is a
system of autonomous ODEs. Differential actions are atomic, i.e. the continuous state of the
system evolves as long as the evolution guard is true. The evolution terminates in states where the
guard does not hold anymore. Differential actions are defined via weakest precondition semantics
and are relations between states before and after continuous evolutions. The states in-between
are internal and hence hidden from an outside view. Combining discrete and differential actions
yields a hybrid action system.

77

Chapter 5. Testing of Hybrid Systems

Definition 5.1 (Hybrid Action System)

HS =df |[var X : T •X := E;alt H with DH]| : I

where H are discrete actions (guarded commands) and DH differential actions.

The hybrid action system of the environment contains the differential equations describing the
water flows as differential action in the with clause:

Environment =df |[var x∗1,x
∗
2 : Real,

• x1 := 0;x2 := 0;
alt
with true :→

ẋ1 = (in− inout)/A1∧ ẋ2 = (inout−out)/A2
]| : in,out, inout

Notice that in our case the evolution guard is true, hence the system will never leave the con-
tinuous evolution. However, the enabledness guard of such a differential action is false since
enabledness requires termination. Nontermination of environmental evolutions would be a prob-
lem since we also have discrete actions in our system which would never be eligible candidates
for execution. Hence, for a reactive system, it must be ensured that the evolution guard becomes
false eventually. This happens when the environment changes its behavior (mode switch to an-
other continuous action) or the controller interacts with the environment.

In order to constrain interleavings between discrete and differential actions, so called priori-
tized alternation is applied. This means that whenever a discrete action is enabled it has priority
over all differential actions. For reactive systems this is an important property which allows to
control the environment. Hence, the environment cannot block the controller from performing its
function. In the other direction the controller eventually has to reach stable states in its computa-
tion where it interacts with the environment. Otherwise the environment and hence the progress
of time is blocked. Since actions are atomic, interrupting behavior can be realized by interlock-
ing qualitative and discrete actions. We achieve this by conjoining all negated guards of discrete
actions to the evolution guards of differential actions. This execution model underlies the as-
sumption that the controller is fast enough to reach a stable state before the next environmental
interaction takes place. For details on different types of hybrid alternations, see [139, 138].

In the following we give a more formal definition of differential actions. We use this theoretical
framework later on to lift differential actions to qualitative ones.

Differential actions in hybrid action systems express initial value problems of ordinary differ-
ential equations (ODEs). Given a set of continuous variables related by a set of ODEs and a set
of initial values, there exists a unique solution to the initial value problem. The ODEs in differ-
ential actions are autonomous: this property means that the variable used for differentiation does
not occur otherwise in the ODE. Because we are differentiating with respect to time-variable t,
differential actions must not contain t.

A differential action e :→ d consists of an evolution guard e : PRED(X ,Y) and a differential
relation d : PRED(X , Ẋ ,Y). Both, the evolution guard and the differential relation, are predicates

78

5.1. Qualitative Action Systems

over sets of discrete model variables Y and continuous model variables X . Differential actions
also provide the possibility to underspecify continuous evolutions via differential relation, e.g.
ẋ = [−1,1], meaning that ẋ has some value in the interval [−1,1]. Relations over higher order
derivatives can be modeled via additional variables. The following definition characterizes the
evolution φ of a differential action.

Definition 5.2 (Evolutions)

φ is an evolution of e :→ d iff SFc(φ,e,d)∧∆c(φ,e)> 0 (5.5)
SFc(φ,e,d) =df φ.0 = X ∧ φ̇.0 = Ẋ∧

∀τ : R+
0 • (e =⇒ d)[X := φ.τ, Ẋ := φ̇.τ]

(5.6)

∆c(φ,e) =df inf{τ : R+
0 •¬e[X := φ.τ]} (5.7)

an evolution φ is terminating iff ∆c(φ,e)< ∞ (5.8)

A function φ is a solution to the differential action if it satisfies the predicate SFc as shown in
Formula 5.6. The predicate demands that the function has to start at the current system state and
fulfills the differential relation d as long as the evolution guard is true. The termination time ∆c

(see Equation 5.7) states the boundary time when the evolution guard is not satisfied by φ. Notice,
that ∆c is defined as ∆c(φ,e) =df ∞ when φ satisfies e forever. Function φ is called an evolution if
it satisfies Proposition 5.5 and it is said to be terminating if it lasts for a finite period of time, cf.
Proposition 5.8.

The semantics of a differential action is expressed by its weakest precondition:

Definition 5.3 (WP of Differential Actions)

wp(e :→ d, post) =df

∀φ•SFc(φ,e,d)∧∆c(φ,e)> 0 =⇒
∆c(φ,e)< ∞∧ post[X := φ.(∆c(φ,e)), Ẋ := φ̇.(∆c(φ,e))]

The weakest precondition says that of all continuously differentiable functions, those that are
evolutions for the given differential action must be terminating and end in a state fulfilling the
post-condition. Because in qualitative reasoning the first derivation is part of the state space, Def-
inition 5.3 extends the definition in [139] with Ẋ as additional state variable. The same adaptation
applies to the initial value condition in (5.6), Definition 5.2.

Putting It All Together

In order to get the complete system model, we need to compose the controller and the environ-
ment model in parallel. Unfortunately, parallel composition of hybrid action systems is more
complicated than that of ordinary action systems because linear superposition of differential ac-
tions is necessary. The intuitive reason for this is the fact that only one differential action can be

79

Chapter 5. Testing of Hybrid Systems

executed at a time, thus the parallel composition of two systems executing two differential actions
at the same time can only be modeled by superposition of the two actions.

In our two-tank example, however, we only have one differential action, hence we do not need
to apply any superposition calculation. The parallel composition of Controller and Environment
becomes trivial as we only need to combine the elements of both action systems, and correct the
import statement. Before doing so, however, we need to fix one issue: because we want our con-
troller (= discrete actions) to interrupt the continuous flow, we need to change the evolution guard
of our differential action. Instead of making it trivially true, we need to insert the conjunction
of all negated guards of the discrete actions which ensures the interrupting prioritized alternation
semantics.

Merging controller and environment under interrupting prioritized alternation yields the fol-
lowing result. Notice, that the guards g1 to g4 do not change.

System =df |[var p1_running,p2_running : Bool
x1,x2,out, inout : Real

• x1 := 0;x2 := 0;out := 0; inout := 0;
P1_running := false;P2_running := false;

alt PUMP1_ON : g1→ p1_running := true; inout := (0,Max]
2 g2→ p1_running := false; inout := 0
2 g3→ p2_running := true;out := (0,Max]
2 g4→ p2_running := false;out := 0

with ¬(g1∨g2∨g3∨g4) :→
ẋ1 = (in− inout)/A1∧ ẋ2 = (inout−out)/A2

]| : in,wr

The hybrid model adequately represents our controlled system. The only external variable left
is the inflow in into tank T 1. However, for testing our requirements we are only interested in the
qualitative aspects of the environment. In the following we present the qualitative abstraction of
continuous behaviors in hybrid (action) systems.

Qualitative Action Systems

A Qualitative Action System (QAS) is obtained from a Hybrid Action System (HAS) by replacing
the differential actions with qualitative actions.

Definition 5.4 (Qualitative Action) A qualitative action eq :⇁ dq comprises an abstract, quali-
tative evolution guard eq : PRED(Y,Q) and a set of qualitative differential equations dq : PRED(Q).

Note, that in contrast to differential actions, we can not use discrete state variables Y within dq

because of incompatible types. Whenever the guard of a qualitative action becomes true the
action is a candidate for execution by simulating (solving) the according QDEs with the current
initial values, i.e. the system state. As in differential actions, the execution of a qualitative action
terminates in states where the evolution guard does not hold anymore. However, in contrast to

80

5.1. Qualitative Action Systems

differential actions based on differential equations, there might exist several different evolutions,
all starting from the same initial value1. Hence, several different final states can exist.

In order to obtain the qualitative action of our example system we have to rewrite the differ-
ential equations to according QDEs. However, before we can do this, we need to think about
the landmarks that describe qualitatively distinct states of the system. Fortunately, most of the
landmarks are already given within Figure 5.1: the model quantities x1 and x2 have the quantity
spaces T 1 = 〈0,Empty,Full〉 and T 2 = 〈0,Empty,Reserve,Full〉 respectively. For simplicity we
omit an additional landmark Overflow for tank T 1 and assume that when the water climbs above
Full it will overflow. The flow rates have the quantity space FR = 〈0,Max〉. We also need to
introduce auxiliary quantities in order to be able to set up the QDEs. The auxiliary quantities are
used to link different QDEs, so they only need a coarse quantity space, NZP = 〈−∞,0,∞〉. It is
in the response of the designer to find the right resolution of quantity spaces for expressing the
system requirements appropriately.

The following qualitative constraints are written in QSIM like notation (predicates rather than
Lisp expressions). As already discussed in Chapter 3, during qualitative abstraction constant
factors, in this example the base areas of the tanks A1 and A2, are neglected. Hence, given the
ordinary differential equation describing the change of the water level of the first tank in our
example, ẋ1 = (in− inout)/A1, we can deduce following qualitative differential equations:

d/dt(x1,diff 1)∧add(diff 1, inout, in)

The abstraction for the second ordinary differential equation is equally straight forward. By
taking everything together, we get the resulting qualitative action system.

QSystem =df |[var x1 : T 1,x2 : T 2,out, inout : FR
diff 1,diff 2 :: NZP
P1_running,P2_running : Bool

• x1 := (0,0);x2 := (0,0);
out := (0,0); inout := (0,0);
P1_running := false;P2_running := false;

alt g1→ P1_running := true; inout := (0..Max,0)
2 g2→ P1_running := false; inout := (0,0)
2 g3→ P2_running := true;out := (0..Max,0)
2 g4→ P2_running := false;out := (0,0)

with ¬(g1∨g2∨g3∨g4) :⇁
add(diff 2,out, inout)∧add(diff 1, inout, in)∧
d/dt(x1,diff 1)∧d/dt(x2,diff 2)

]| : in,wr

Note that x1,x2,out, inout are now quantities, i.e. qualitative model variables, and that the con-
tinuous (but qualitative) evolution of the system is interrupted every time one of the guards g1 to
g4 becomes true.

1Note that differential actions based on differential relations may also yield several different evolutions.

81

Chapter 5. Testing of Hybrid Systems

After presenting the fundamental idea behind qualitative action systems, we discuss the ex-
act semantics in the remainder of this subsection. Similar to differential actions, solutions to
qualitative actions have the following properties:

Definition 5.5 (Qualitative Evolutions) Let σ be a qualitative trace and σ[i] the valuation of the
i-th state in σ.

σ is an evolution of eq :⇁ dq iff SFq(σ,eq,dq)∧∆q(σ,eq)> 0 (5.9)

an evolution σ is terminating iff ∆q(σ,eq)< ∞ (5.10)

SFq(σ,eq,dq) =df σ[0] = Q∧∀s : dom(σ)• (eq =⇒ dq)[Q := σ[s]] (5.11)

∆q(σ,eq) =df

{
i i ∈ N0∧¬eq[Q := σ[i]]∧∀0≤ j < i• eq[Q := σ[j]]
0 else

(5.12)

Predicate SFq (5.11) states that a qualitative trace σ is a valid solution to the qualitative action
if it is contained in the solution of the qualitative differential equation whenever the evolution
guard is satisfied. Furthermore the initial value must match the current system state. Formula
(5.12) takes a qualitative trace and returns the state number when it first violates the evolution
guard. Propositions (5.9) and (5.10) define when a qualitative trace is an evolution and terminat-
ing respectively.

Similar to differential actions, we define the weakest precondition of a qualitative action as
follows:

Definition 5.6 (WP of Qualitative Actions) Let ψ be a qualitative transition system obtained
by simulating dq from a given initial state.

wp(eq :⇁ dq, post) =df

∀ψ : QTS•∀σ ∈ traces(ψ)•SFq(σ,eq,dq)∧∆q(σ,eq)> 0 =⇒
∆q(σ,eq)< ∞∧ post[Q := σ.∆q(σ,eq)]

The definition specifies all initial states from which all evolutions of the given qualitative action
terminate in states satisfying the post condition post.

The execution of a qualitative action eq :⇁ dq can be seen as a nondeterministic assignment
Q := σ[i] where σ ∈ traces(M), M is the simulated behavior of dq, and i = ∆(σ,eq). It states that
the qualitative state Q is updated to a new state Q′ which is the termination state of σ. If there
exists no such state Q′, then the action does not terminate.

As already mentioned the parallel composition of differential/qualitative actions has to be
treated differently than for discrete actions. While discrete actions are combined via nonde-
terministic choice, qualitative composition is applied to qualitative actions. The composition of
two qualitative actions is defined as follows:

82

5.1. Qualitative Action Systems

Definition 5.7 Let qual1 = e1 :⇁ d1 and qual2 = e2 :⇁ d2 be two qualitative actions then their
composition, denoted by qual1 �qual2, is defined as follows

qual1 �qual2 =df

 (e1∧¬e2) :⇁ d1
2 (e1∧ e2) :⇁ (d1∧d2)
2 (¬e1∧ e2) :⇁ d2

The result is a nondeterministic choice over three actions with disjoint guards: Either the

first action is enabled, both actions are enabled, or the second action is enabled. In the case
where both actions are enabled the corresponding QDEs are conjoined. It has to be noted, that a
composite QDE can be inconsistent although the individual QDEs are consistent. Here, consistent
means that the qualitative constraint system has a solution. Since the enabledness guard of an
inconsistent QDE does not hold the according action is never executed.

5.1.2. Refinement of Qualitative Actions

For blackbox testing the behavior of a system might be specified on different abstraction levels.
This abstraction level determines the data refinement relation which is usually implemented in the
test adapter. This means that observed events from the implementation are translated to events in
the specification language and vice versa. In the following we describe the refinement between
qualitative and differential actions in more detail.

The work in [63] studies simulation-based proof techniques and their implications on sound-
ness and completeness of data refinement. It has been shown that L simulation α−1;C ⊆ A;α−1

(also called downward or forward simulation) and L−1 simulation C;α⊆α;A (also called upward
or backward simulation) are sound and jointly complete. Here, α is an abstraction relation, A is
an abstract, and C a concrete action. The semicolon denotes sequential composition between rela-
tions. For model-based testing we apply U simulation α−1;C;α⊆ A which means that the current
abstract state is refined, the concrete action C is executed, and the resulting state is abstracted to
the specification level. This state must be included in the set of states reachable after executing
the corresponding abstract action A. The principle of U simulation is shown in Figure 4.14.

When the abstraction relation α is functional, which is the case for v_absq (see Definition 3.2),
L simulation implies U simulation, see [63]. Data refinement is shown by applying the following
data refinement relation r:

Definition 5.8 (Refinement Relation)

r =df Q = α.(X , Ẋ) where α.(φ.t, φ̇.t) =df (v_absq.φ).t

As described in [143] the weakest precondition semantics of differential actions covers not only
the relation between pre- and post-states but also the flow between these states. This provides an
ordering on the pre-states with respect to time. However, since the points of observation are only
at pre/post states on the action level the intermediate flow states are hidden.

In order to characterize refinement between qualitative and hybrid action systems it is worth-
while to note that both can be rewritten into a pre/post condition normal form:

83

Chapter 5. Testing of Hybrid Systems

Lemma 5.1 (Conjunctive Normal Form) Since both, differential actions C and qualitative ac-
tions A are conjunctive predicate transformers they can be rewritten into a normal form [18]:
{p}; [R]. Here, the predicate p is an assert statement establishing the precondition. If the precon-
dition holds the demonic update statement [R] is executed and the statement aborts otherwise.

C = {pC}; [RC] =

{∀φ : C1 •SFc(φ,e,d)∧∆c(φ,e)> 0⇒ ∆c(φ,e)< ∞};
∃φ : C1 •SFc(φ,e,d)∧∆c(φ,e)> 0∧X := φ.(∆c(φ,e))∧ Ẋ := φ̇.(∆c(φ,e))

and

A = {pA}; [RA] =

{∀ψ : QTS•∀g ∈ traces.ψ•SFq(g,eq,dq)∧∆q(g,eq)> 0⇒ ∆q(g,eq)< ∞};
∃ψ : QTS,g ∈ traces.ψ•SFq(g,eq,dq)∧∆q(g,eq)> 0∧Q′ = g.∆q(g,eq)

The rewriting of wp semantics into normal form is straightforward and can be found in [139].

Given this normal form, the following refinement law expresses the well-known fact that under
refinement preconditions are weakened and postconditions are strengthened.

Theorem 5.1 (Refinement Law) A qualitative action A is refined by a continuous action C, writ-
ten Avr C, iff

[[[¬∞q(Q,eq,dq)∧ r =⇒ ¬∞c(X ,ec,dc))]]] and

[[[(¬∞q(Q,eq,dq)∧ r∧ (∃φ : C1 •SFc(φ,ec,dc)∧∆c(φ,ec)> 0

∧X ′ = φ.∆c(φ,ec)∧ Ẋ ′ = φ̇.∆c(φ,ec)))

=⇒
∃Q′,ψ : QTS,g ∈ traces.ψ• (SFq(g,eq,dq)∧Q′ = g.∆q(g,eq)∧ r)]]]

with [[[]]] denoting universal quantification over the observations before (X , Ẋ ,Q) and after execu-
tion (X ′, Ẋ ′,Q′). The termination predicates are defined as:

¬∞q(Q,eq,dq) =df ∀ψ : QTS,g ∈ traces.ψ•SFq(g,eq,dq)∧
∆q(g,eq)> 0 =⇒ ∆q(g,eq)< ∞

¬∞c(X ,ec,dc) =df ∀φ : C1 •SFc(φ,ec,dc)∧∆c(φ,ec)> 0 =⇒ ∆c(φ,ec)< ∞

84

5.1. Qualitative Action Systems

Proof 5.1.

Avr C

≡ {L simulation,Lemma 5.1}
{pA}; [RA]; [r]⊇ [r];{pC}; [RC]

≡ {wp of sequential composition}
wp({pA},wp([RA],wp([r], post))) =⇒ wp([r],wp({pC},wp([RC], post)))

≡ {wp definitions}
∀σ,γ•wp({pA},∀σ′ •RA.σ.σ

′∧ r.σ′ ⊆ γ) =⇒ wp([r],∀σ′ • pC.σ
′∧RC.σ

′ ⊆ γ)

≡ {wp definitions}
∀σ,γ• pA.σ∧∀σ′ •RA.σ.σ

′∧ r.σ′ ⊆ γ =⇒ (∀σ′ • r.σ.σ′ =⇒ pC.σ
′∧RC.σ

′ ⊆ γ)

≡ {⇒ by specialization (γ := RA;r),⇐ by transitivity of ⊆}
∀σ,σ′ • pA.σ∧ r.σ.σ′ =⇒ pC.σ

′∧RC.σ
′ ⊆ RA;r

≡ {definition of ⊆}
(∀σ,σ′ • pA.σ∧ r.σ.σ′ =⇒ pC.σ

′)∧
(∀σ,σ′,γ• pA.σ∧ r.σ.σ′∧RC.σ

′.γ =⇒ ∃σ′′ •RA.σ.σ
′′∧ r.σ′′.γ)

≡ {definitions Lemma 5.1}
[[[¬∞q(Q,eq,dq)∧ r =⇒ ¬∞c(X ,ec,dc))]]] and

[[[(¬∞q(Q,eq,dq)∧ r∧ (∃φ : C1 •SFc(φ,ec,dc)∧∆c(φ,ec)> 0∧
X ′ = φ.∆c(φ,ec)∧ Ẋ ′ = φ̇.∆c(φ,ec)))

=⇒
∃Q′,ψ : QTS,g ∈ traces.ψ• (SFq(g,eq,dq)∧Q′ = g.∆q(g,eq)∧ r)]]]

This formal proof follows the refinement calculus style of Back and von Wright [18].

5.1.3. Testing

In contrast to work presented in the previous chapter, where whole trajectories are tested against
specified traces, this approach builds on the weakest precondition semantics of differential/quali-
tative actions. This has as consequence, that only the pre/post states of actions are observable but
not the trajectories/traces in between. Figure 5.2 shows a concrete trajectory and the according
abstract trace through the example system consisting of four evolutions. For visualization we also
show the behavior in between the pre/post states of evolutions.

The system may be initialized with both tanks being empty and both pumps turned off. (1) In
the first evolution both pumps are turned off and the inflow in fills tank T 1 up to the Full level.
(2) When T 1 is full pump P1 is activated and delivers water to T 2, hence the water level x2 is
increasing. (3) When the water level x1 drops to Empty the pump P1 is turned off. Since P2 still
is turned off, x2 remains constant. Due to the inflow, the water level in tank T 1 increases. (4) In
the last evolution pump P2 is started which empties tank T 2 below the Reserve water level.

85

Chapter 5. Testing of Hybrid Systems

Empty

Full

x1

x2

Zero

Empty

Full

Zero

Empty

Reserve

Full

P1/P2 OFF P1 ON
P2
ON

P1
OFF

x1

x2

t

x1 x2

Empty

Reserve

Full

Figure 5.2.: Example Test Case consisting of four Evolutions.

The visible behaviors of the example system are the traces consisting of the valuation of model
variables before and after action executions. In the next section we introduce a further level of
abstraction by labeling all actions with names that may have parameters. The execution of a
named action corresponds to an event and the set of all possible execution sequences, starting
from the initial state, gives a QAS an LTS semantics. Thus, the valuation of the state variables
becomes internal.

5.2. Automated Conformance Verification of Hybrid Systems

In order to apply model-based testing using labeled transition systems, actions are augmented
with names (labels) which may have parameters. Unnamed actions are internal and, when ex-
ecuted, cause τ events. The set of labels L is partitioned into inputs LI and outputs LU . Then
state space exploration of the action system yields an LTS which can be used for test case gen-
eration. In particular we derive mutation-based test cases by verifying the conformance between
an original and a mutated specification QAS. The approach of fault or mutation based testing was
presented in Section 2.1.5. The generation of mutation-based test cases is covered in Section 5.3.

Figure 5.3 shows the labeled QAS of our two-tank example. Discrete actions have the form
label : guard→ body. The actions with guards g1 to g4 are controlled by the system and hence
are observable by the tester. In order to control the system we have added a further discrete action
WATER_REQ(X) which is an input action to the system. The Boolean parameter X determines
if water is required or not, and the guard g5 describes a simple user scenario: A user turns on the
water when the tank T 2 is full and turns it off again when the water drops below the reserve level.

g5 =df (¬wr∧ x2 = Full∧X = true)∨ (wr∧ x2 < Reserve∧X = false)

The imported quantity in represents the inflow into tank T1. As we do not define an external
system which controls the inflow we set it to some constant rate, in =df (0..Max,0). Hence, the
system is closed and the inflow is actually part of the state variables.

86

5.2. Automated Conformance Verification of Hybrid Systems

QSystem =df |[var x1 : T 1,x2 : T 2,out, inout : FR
diff 1,diff 2 :: NZP
P1_running,P2_running : Bool

• x1 := (0,0);x2 := (0,0);out := (0,0); inout := (0,0);
P1_running := false;P2_running := false;wr := false

alt PUMP1_ON : g1→ p1_running := true; inout := (0..Max,0)
2 PUMP1_OFF : g2→ p1_running := false; inout := (0,0)
2 PUMP2_ON : g3→ p2_running := true;out := (0..Max,0)
2 PUMP2_OFF : g4→ p2_running := false;out := (0,0)
2 WATER_REQ(X) : g5→ wr := X

with ¬(g1∨g2∨g3∨g4∨g5) :⇁
add(diff 2,out, inout)∧add(diff 1, inout, in)∧
d/dt(x1,diff 1)∧d/dt(x2,diff 2)

]| : in

Figure 5.3.: Labeled QAS of the Two-Tank System.

Notice, that qualitative actions have no name as they are treated in a different manner than
input and output actions. Since the QDEs of qualitative actions are an abstract representation of
ODEs, inputs and outputs evolve in parallel over time. The continuous behavior is a vector of two
functions [in(t),out(t)]T where in and out evolve simultaneously. Hence, for qualitative actions
we introduce a special label qual which may have parameters. A qual event denotes the end of an
evolution and assigns to possible parameters the according values of qualitative state variables.
For a tester qual events are observable, or internal if they are not visible at the testing interface.

5.2.1. On-the-fly Conformance Checking

A conformance relation is defined between two formal models. Usually one of the models is
the implementation model, however we determine the conformance between two specifications.
These specifications represent the behaviors of hybrid systems which are derived on-the-fly dur-
ing the exploration of our specification models, i.e. labeled QAS.

The labeled transition system of a QAS M is given by considering action names as labels in
the LTS. Then the LTS semantics of a QAS M is given by the set of traces M can produce after a
finite number of computation steps. More formally: Given a QAS M, and an initial state s0 ∈ S,
the set of traces is defined as:

traces(M) =df {σ ↓ L | (σ ∈ (L∪ I)∗• (5.13)

σ = 〈a0, . . . ,an〉∧ s0
a0→ s1

a1→ . . .sn
an→∧∀0≤ i≤ n•g(ai)(si))}

Here, g(ai) is the enabledness guard of action ai and I denotes the set of internal actions. If
the current state si satisfies the enabledness guard the according action is executed and the event

87

Chapter 5. Testing of Hybrid Systems

SystemSystem

qual

out_pump1_on

qual

out_pump1_off

MutantMutant

qual

out_pump1_off

out_pump1_on

out_pump1_off

out_pump1_off

qual

in_water_req[1]

δ

Figure 5.4.: Two suspension automata showing the behavior of the water tank example and of a
mutated version.

name ai is appended to the trace which led to si. Furthermore, the action execution updates state
si to si+1. Note, that internal actions, when enabled, cause τ transitions: ∀i∈ I,s∈ S•g(i)(s) =⇒
s τ→. Since we are only interested in traces over the alphabet L, internal actions are removed by
projecting σ onto L, see (5.13).

We explore the LTS of a QAS by forward execution starting from a given initial state. In order
to execute a guarded command p→ A its enabledness g guard must hold:

g(p→ A)≡ ¬wp(p→ A, false)≡ ¬(p =⇒ wp(A, false))≡ p∧g(A).

In terms of enabledness, a nondeterministic demonic choice between two action becomes an
angelic choice for forward execution:

¬wp(A2B, false)≡ ¬(wp(A, false)∧wp(B, false))≡ g(A)∨g(B).

A demonic choice between two actions means that it must be ensured that both actions establish
the post condition, no matter which one is chosen. This corresponds to the conjunction of the
weakest preconditions. For an angelic choice at least one action has to satisfy the post condition
which corresponds to the disjunction of weakest preconditions.

Example 5.1. Figure 5.4 shows two suspension automata obtained from the system specification,
see Figure 5.3, and from a mutant. A mutant is a faulty version of the original. The “in_” and
“out_” prefixes in the LTSs denote input and output events respectively, qual is per definition an
output event. One can observe that the mutant does not conform with respect to ioco because
out(Mutant after 〈〉) = {qual,out_pump1_off} 6⊆ {qual}= out(System after 〈〉).

Let us consider the generation of the LTS “System” from the specification QAS. Starting from
the initial state only the qualitative action is enabled. This is because all guards (g1, . . . ,g5) eval-
uate to false in the initial state. The execution of the action leads to the qual event after the initial
state. The qualitative action updates x1 from (0,0) to (full,0). In this state the guard g1 evaluates
to true. Hence, the action PUMP1_ON can be executed. This results into the out_pump1_on-
labeled transition in the LTS. The other parts of the system are derived in a similar manner. For

88

5.2. Automated Conformance Verification of Hybrid Systems

the sake of brevity, we do not show the complete LTS of the system. Note, that the Mutant LTS
shows parts of an LTS obtained by negating the guard g2 in the original specification. Also here
only parts of the whole LTS are shown.

The conformance verification between two LTSs, i.e LTS1 ioco LTS2, is achieved by comput-
ing the synchronous product modulo the conformance relation [163], i.e. LT S1×ioco LT S2. Here,
LTS1 is the implementation. In the case of non-conformance the resulting product LTS will con-
tain special fail states. The conformance verification is then achieved by a reachability analysis
of fail states. Any trace leading to a fail state is a counter-example showing non-conformance.
The conformance is verified up to a defined search depth. A mutant is called equivalent regarding
the search depth if it shows no deviating behavior.

Informally, the synchronous product LT S1 ×ioco LT S2 is calculated by applying one of the
following rules:

• Transitions that are possible in both LTSs are transitions of the synchronous product.

• Inputs that are allowed in LT S1 but are not allowed in LT S2 lead to a sink state labeled
with pass. This rule reflects the fact that implementations may behave arbitrarily after
unspecified inputs.

• For any output that is allowed in LT S2 but not in LT S1 a transition to a pass state is added.

• For inputs that are enabled in LT S2 but not in LT S1 the labeled transition system LT S1 is
made input-enabled, i.e. such transitions are part of the synchronous product.

• If an output of the left hand LTS LT S1 is not an output of the right hand LTS LT S2 a
transition leading to a fail state is added to the synchronous product.

We have developed the prototype tool Ulysses written in SICStus Prolog2 which explores two
given QAS while checking conformance on-the-fly. The name for the tool originates from the
similarity between the search in the state space for fail states and an odyssey. For solving the
qualitative differential equations we employ the tool ASIM [22]. Remember, ASIM is a Prolog
implementation of the QSIM algorithm. We have ported ASIM, which is originally implemented
in GNU Prolog3, to SICStus Prolog.

Example 5.2. The calculation of the synchronous product between the two labeled transition
systems of Figure 5.4 leads to the LTS shown in Figure 5.5 (generated with Ulysses). For exam-
ple, the qual-action is enabled in both LTS, thus it is part of the synchronous product. The output
action out_pump1_off is not allowed by the specification. Consequently, this action leads to a
fail state in the synchronous product. After the qual-action the out_pump1_off action is still not
allowed by the specification. Thus, again this action leads to a fail state. The ’delta’ label denotes
quiescence, i.e. the absence of any observations, see Section 2.2.2. Note, that Figure 5.5 shows
the synchronous product for the larger LTSs than those depicted in Figure 5.4.

The product calculation is performed on-the-fly. Ulysses explores two given Qualitative Ac-
tion Systems state by state and computes the synchronous product according to the ioco product

2www.sics.se/sicstus
3www.gprolog.org

89

Chapter 5. Testing of Hybrid Systems

out_pump1_off qual

fail

fail

fail

pass fail pass

in_water_req(1) delta out_pump1_off

out_pump1_off qual

out_pump1_off out_pump1_on

Figure 5.5.: Conformance verification result with a mutated action ’out_pump1_off’.

rules. On-the-fly computation can be quite efficient when traces which reveal the fault are rather
short. However, in the worst case the complete specification has to be unfolded during product
calculation.

Algorithm 5.1 getSuccessors(qas,s1) : L∪{δ} 7→ P (S)

1: s2 := tauClosure(R,s1,τ);
2: qstates := s2\{s ∈ s2 |∃ev ∈ LU ∪ τ,s′ ∈ P (S)• s′ = R(s,ev)};
3: succ := [ev 7→ {s |∃s′ ∈ s2,s′′ ∈ P (S)• s′′ = R(s′,ev)∧ s ∈ s′′}|ev 6= τ];
4: if qstates 6= /0 then
5: succ := succ∪ [δ 7→ qstates];
6: end ifreturn succ;

Algorithm 5.1 computes the successor events and successor states in the suspension automaton
Γ of a given QAS. Because of determinization via subset construction the states in Γ are sets
of states. Given a specification qas and a state s1 getSuccessors returns a map from events to
successor states. For the successor computation we apply a relation R(s,ev) which takes a state
s and an event ev and calculates the successor states of s that are reachable by event ev. More
formally,

R(s,ev) = {s1 | ∃s2 • int(qas,s,s2,ev)∧ s1 ∈ s2}

Here, the predicate int : QAS×S×P (S)× (L∪{τ}) 7→ bool interprets the given QAS specifi-
cation by nondeterministically interpreting all actions.

First, in Line 1 all states reachable via internal actions are computed. This process is called

90

5.2. Automated Conformance Verification of Hybrid Systems

τ-closure computation. We assume that specifications are strongly converging, i.e. there are no
infinite sequences of internal computations. Because of its pattern matching and backtracking
capability Prolog is well suited to describe search and exploration problems. Listing 5.1 shows
that tauClosure can be written quite compact with only three Prolog clauses.

Listing 5.1: tauClosure

1 tauClosure(QAS, S1, S2) :- tauClosure(QAS, S1, S1, S2).
tauClosure(_, [], Cl, Cl) :- !.

3 tauClosure(QAS, S1, A, Cl) :-
findall(S2, (member(S, S1), int(QAS, S, S2, tau)), S3),

5 flatten(S3, States),
difference(States, A, Frontier),

7 union(Frontier, A, A1),
tauClosure(QAS, Frontier, A1, Cl).

Here, the predicates difference(A, B, C) and union(A, B, C) are the conventional set operations
C = A\B and C = A∪B, respectively. When an action is enabled the interpreter executes it and
returns its label plus the set of successor states. In the current version of our tool actions are
interpreted with concrete values, thus nondeterministic updates of state variables yield a set of
successor states.

For the purpose of τ-closure computation the event variable of the int predicate is instantiated
with tau. This ensures that only internal actions are interpreted. The built-in predicate findall
collects all successor states S2 of executed internal actions, that are enabled in state S, in a list
stored in variable S3. The member predicate enumerates all states S ∈ S1. Since S2 is a list of
states, S3 is a list of lists. In Line 7 the built-in predicate flatten converts S into a single list of
states States. The set difference in Frontier contains new states to be explored and the set union
in A1 are the states which have already been visited. When the base case in Line 3 is reached the
exploration agenda in Frontier is empty. Then the variable S2 in Line 1 is unified with the list of
all states reachable by the execution of internal actions.

Coming back to the description of Algorithm 5.1, the set of states after τ-closure computation,
from which no internal or output action is enabled, are quiescent states and stored in qstates
(Line 2). Next, the specification is interpreted for all states s′ ∈ s2. All successor events ev 6= τ

and successor states s are entered into the successor map succ : L∪ {δ} 7→ P (S) via the map
comprehension in Line 3. If there are some quiescent states then the successor map is extended
with a δ event associated with the set of quiescent states (Line 5). Finally, the successor map is
returned by GetSuccessors.

During exploration the interpretation of qualitative actions requires to solve QDEs. When the
evolution guard of a qualitative action holds in a certain state then the QR tool ASIM [22] is
called to compute the qualitative transition system. Then, according to Definition 5.5, a breadth-
first search determines the set of states where the evolution terminates. From these states the
exploration of further actions proceeds.

Starting from an initial state and by recursively applying the getSuccessor algorithm to two
given specifications we compute the synchronous product by following the rules described above.

91

Chapter 5. Testing of Hybrid Systems

� �

�������
��	�

����

�����������������
��

�
�

����

����
�	�������	�������

��������	������

����
�����

��

���������� ����� �������
���

����

���

��

�

����
�	���

Figure 5.6.: Computation steps of Ulysses.

5.3. Mutation-based Test Case Generation

For test case generation we follow a mutation-based approach: test cases are derived from the dis-
criminating behavior regarding a conformance relation between an original and a mutated spec-
ification. Each mutant contains exactly one syntactic manipulation of the original specification.
Equivalent mutants are recognized and ignored for test case generation.

We prefer the term conformance checking to equivalence checking because of the fact that our
models are non-deterministic. Therefore, conformance is formally a pre-order relation, but not
an equivalence relation. For testing we are interested in partial system models. This restricts the
choice of conformance relations to those that only consider the traces of the specification rather
than the complement of traces of the implementation. Furthermore, we want to apply active
testing by sending inputs to and observing outputs from the implementation, and we want to
check if quiescence is allowed in certain states. Considering these requirements the ioco relation
is the right choice.

Figure 5.6 depicts the computation steps of Ulysses. The tool expects two labeled action sys-
tems as input: (1) a system specification QAS and (2) a mutated version of the same specification
QASM. The explored LTSs are augmented with quiescence transitions and subsequently con-
verted into a deterministic automaton. By executing these steps, which are depicted in the first
box of Figure 5.6, we obtain a so-called suspension automaton.

Ulysses generates the suspension automata for both input models QAS and QASM. Afterwards,
the ioco check for these two models is performed (see the central box in Figure 5.6), which
generates a product graph. From this graph we extract controllable test cases (last box in the
Ulysses process). Note that the calculation of the suspension automata and the synchronous
product calculation modulo ioco (SPioco) are performed on-the-fly, which means that the automata
are only unfolded as required by the conformance check.

5.3.1. Ensuring Controllability in Presence of Non-determinism

The ioco relation is a global property referring to traces of the specification rather than to states
like simulation relations. This implies that the local information in a certain state, in general, is
not enough to decide conformance. That is the case for non-deterministic specifications where
the same trace leads to different states. Here the outputs of both states have to be considered by
ioco which requires preceded determinization. Ulysses applies the computation of the suspension
automaton on-the-fly while determining the product LTS of two given QAS. However, care has

92

5.3. Mutation-based Test Case Generation

to be taken during determinization regarding the enabledness of events. In action systems, events
can only occur if the action’s enabledness guard is satisfied in the current state. This guard ensures
that the action will not terminate in an undefined post-state.

In the case of black-box testing, the state of a system is internal and cannot be observed from
outside. If an action system model contains non-determinism, i.e., internal actions and nondeter-
ministic updates, determinization of its labeled transition system via subset construction leads to
sets of states. In the action system model, however, for each of these states different subsequent
events (actions) could be enabled. Due to the abstraction to an LTS we lose this state information
and in the LTS the union of all enabled events would be indicated as valid subsequent actions.
This information loss leads to a problem during test case execution, as the implementation might
make another internal decision than the test driver. In the end, the tester might not know in which
state the SUT is in and worse, which events are allowed. Because we require the SUT to be
input-enabled, the tester might not even notice the loss of synchronization immediately: the SUT
has to ignore all inputs that are not allowed. Of course, if the tester subsequently encounters an
unexpected observation, it would issue a fail verdict - which would be wrong in this case, as the
SUT made a valid internal choice.

To overcome this problem, we need to synchronize the test case execution with the internal state
decisions of the implementation. Since this is not possible in blackbox testing, the alternative is to
disallow input events with guards that do not hold for all internal states. We denote the occurrence
of an event a in a state s as s a→. The following definition states that an action from the set of
input actions LI is enabled in a state s ∈ S of the suspension automaton iff the action is enabled in
all sub-states of s:

∀a ∈ LI,s ∈ S• (∀si ∈ s•g(a)(si))⇐⇒ s a→ (5.14)

According to ioco this is a valid abstraction in the sense of less choices in the environment, i.e.
inputs can be removed. This leads to a reduction in the number of testing scenarios. If this causes
the loss of many input events then this is an indication that the tester needs more observations to
control the implementation. The work in [164] exploits the observation of quiescence to resolve
the internal decision of the implementation to either accept inputs or to produce outputs. The
enabledness of (additional) output events causes no problem since the ioco relation allows weaker
output behavior in the specification. For events in the output alphabet LU we define:

∀a ∈ LU ,s ∈ S• (∃si ∈ s•g(a)(si))⇐⇒ s a→ (5.15)

In conclusion, the suspension automaton is a valid abstraction of the event traces generated
during the exploration of an action system regarding ioco.

Example 5.3. Consider an internal choice between two events, i.e., (τ; ?a) 2 (τ; !b), where
τ denotes an internal event, ?a is an input event, !b is an output event, the semicolon denotes
sequential composition, and 2 is the nondeterministic choice. The LTS 1 in Figure 5.7 shows
the LTS of the internal-choice example. Notice, that states with output quiescence are augmented
with δ self loops. The suspension automaton in LTS 2 is obtained after determinization of LTS 1
by computing the τ closure. A problem arises here since both events ?a and !b can occur at the

93

Chapter 5. Testing of Hybrid Systems

LTS 1

τ τ

?a
δ

δ

!b
δ

LTS 2

δ

δ

?a
δ

!b

?a
δ

δ

LTS 3

δ

δ

!b
δ

?a
δ

Figure 5.7.: Internal choice between an input and an output action.

initial state which is not the behavior specified by the internal choice. We can only apply input
?a if the implementation is in the according internal state. Hence, we forbid event ?a in the initial
state, see LTS 3. Then two things can happen: either the output event !b or no output is observed.
In the case of quiescence, the tester changes to a state where the input event is enabled.

Due to the inherent non-determinism of qualitative actions, controllability is a major issue. It
may occur that a tester loses controllability over the IUT if there are not enough observations for
the tester to synchronize. In such a case the introduction of additional observations is required to
resolve the problem.

5.3.2. Test Case Selection

In the following we first show the required properties of our selected test cases and then present
a selection algorithm for adaptive test cases.

Given a product LTS (SP,LP,T P,sP
0) being the result of an ioco check and a set Fail ⊂ SP

denoting the set of fail states. Note, that fail states in the product LTS denote special fail states
that reflect the fault in the model. They are used as test goal however, since fail states are implicit
they are not part of a test case. We define an unsafe state as a state after which we may fail.

Unsafe =df {s ∈ SP | ∃a ∈ LU • s a→ f ∧ f ∈ Fail} (unsafe states)

Unsafe states play the central role in our test case generation strategy, since they are the test goal
a test case should cover. Below, we present the general properties of a generated test case LTS
TC = (STC,LTC,T TC,sTC

0) that is selected from a product.

STC\{pass, inconc} ⊆ SP∧LTC ⊆ LP∧ sTC
0 = sP

0 (inclusion)

s 6 a→⇐⇒ s ∈ {pass, inconc} (sink states)

s = pass ⇐⇒ ∃u ∈ Unsafe,a ∈ LU •u a→ s∧ s 6∈ Fail (passing)

(s ∈ STC ∧ s a⇒∧s b⇒) =⇒ (a,b ∈ LI ∧a = b)∨a,b ∈ LU (controllability)

∃! u ∈ STC • (u ∈ Unsafe)∧∃a ∈ LU •u a→ pass (test goal unique)

∃ σ• sTC
0

σ⇒ u∧u ∈ Unsafe (test goal reachable)

94

5.3. Mutation-based Test Case Generation

A test case is a sub-transition system of the calculated product extended with two additional
verdict states pass and inconc (controllability). In the test case, a sink state is a verdict state
pass or inconc. Note, fail verdicts are implicit and not included (sink states). The pass verdict
is characterized by successfully passing an unsafe state (passing). A test case does not contain
choices over controllables, see also [156] (controllability). According to the work in [156]
controllability also prohibits the occurrence of inputs and outputs in a state.

Reaching an unsafe state is the test goal of our mutation testing strategy. Hence, per test case
exactly one unsafe state precedes a pass verdict state (test goal unique). In highly nondeterminis-
tic specifications it may make sense to generate test cases due to several or all unsafe states in a
product graph. This increases the change of reaching the test goal and hence reduces the number
of inconclusive verdicts. Finally and most importantly, the test case must be able to reach its test
goal, i.e., the unsafe state (test goal reachable).

There are two kinds of test cases that may reach our test goal, i.e., a given unsafe state: First, a
linear test case that includes one path to the unsafe state. Second, a branching adaptive test case
that may include several paths to an unsafe state. In the following, we discuss the properties of
the two kinds.

Linear Test Cases are necessary if the target test harness does not support branching behavior.
The following two additional properties characterize linear test cases:

∃! σ• sTC
0

σ⇒ u∧u ∈ Unsafe (linear test case)

sTC a→ inconc ⇐⇒ sTC σ⇒ u∧u ∈ Unsafe ∧ ∃s′ • ((sTC,a,s′) ∈ T P∧a ∈ Lu ∧a 6∈ hd(σ))
(inconclusive linear)

Such a test case contains exactly one path to the unsafe state (linear test case). Since a model’s
behavior may branch, an observation may lead away from the linear path. In this case, the test
has to be stopped with an inconclusive verdict (inconclusive linear). Here, the head operator hd
returns the first element in the trace σ.

Adaptive Test Cases integrate several paths to the unsafe state into one test case. They only
give an inconclusive verdict if it is impossible to reach the unsafe state:

sTC a→ inconc ⇐⇒ sTC σ⇒ u∧u ∈ Unsafe ∧∃s′ • ((sTC,a,s′) ∈ T P∧a ∈ Lu ∧ s′ 6 σ
′
⇒ u)

(inconclusive adaptive)

Note the difference to the linear test case in the last conjunct. A linear test case reports incon-
clusive if an observation leads away from the single path to the unsafe state. In contrast, in the
adaptive case, inconclusive is only reported, if after an observation we are unable to reach the
unsafe state.

For the generation of adaptive test cases we apply a shortest-trace based search strategy. We
define a trace as a sequence of labels which can be traversed along transitions between two nodes
in the product graph. Definition 5.16 states the set of traces between a start node and a set of
destination nodes in a graph, in our case the product LTS. After having the notion of traces

95

Chapter 5. Testing of Hybrid Systems

Definition 5.17 denotes a shortest trace between a start and a set of destination nodes. Note, that
there can exist several shortest traces having the same length. Since we are only interested in an
arbitrary shortest trace we choose one nondeterministically.

traces(sa,Sb) =df {σ ∈ L∗ | ∃sb ∈ Sb • sa
σ⇒ sb} (5.16)

shortestTrace(sa,Sb) =df σ ∈ traces(sa,Sb) | ∀σ′ ∈ traces(sa,Sb)• |σ| ≤ |σ′| (5.17)

Algorithm 5.2 getTC(s,Goal) : P (S×L∪δ× (S∪ inconc))

1: if s ∈ Goal then
2: return /0

3: else
4: σ := shortestTrace(s,Goal)
5: if σ = 〈〉 then
6: return {(s,a, inconc) | ∃s′ • s a→ s′ ∧ a ∈ LU ∧ s′ /∈ Fail}
7: else
8: E := edges(σ)
9: Goal := Goal∪ states(E)

10: return E ∪
⋃
{{(s1,a,s2) ∈ T P}∪getTC(s2,Goal) |
∃a′,s′2 • (s1,a′,s′2) ∈ E ∧a,a′ ∈ LU ∧a 6= a′∧ s2 /∈ Fail}

11: end if
12: end if

Algorithm 5.2 describes the selection of adaptive test cases. In the following we denote set
variables with capital letters. Given a product LTS and an unsafe state u, we obtain an adaptive
test case TCu by calling getTC(s0,{u}). A test case is a selection of transitions in the product
LTS plus transitions to the test verdict states pass and inconc. Hence, a test case has the type
P (S× (L∪ δ)× (S∪ pass∪ inconc)). By searching for the shortest trace from the initial state
to an unsafe state and recursively extending this trace for all branching output transitions, the
obtained test case complies with the controllability requirement (controllability).

In Line 1 it is checked if the current state is already a goal state. If it is a goal state the empty set
is returned. In Line 4 the shortest trace between a state s and one state in the set of goal states is
determined. Note that there can exist several shortest traces of same length. In this case, we non-
deterministically choose one. If there exists no such trace then all observations in state s terminate
in an inconclusive state. Otherwise the transitions E along trace σ (Line 8) are part of the test case.
The transitions of a trace are determined by the function: edges : (L∪δ)∗ 7→ P (S× (L∪δ)×S).

In Line 9, the set of states in E obtained by the function states are added to the set of goal
states. Hence, the goal becomes to reach one state of the test case which in turn leads to an
unsafe state. Next, the test case is recursively extended by all branching observable events along
the trace σ (Line 10). Here, the set comprehension creates a set of sets of transitions. Each set
corresponds to a subgraph in the test case after a branching observation. Here, a′ are the labels
on the shortest path σ. The recursive algorithm terminates when all branching outputs have been
processed. Finally, the graph obtained from getTC is extended with the transitions to the pass
state, see Definition (adaptive test case).

96

5.3. Mutation-based Test Case Generation

TCu =df getTC(s0,{u})∪{(u,a,pass) | ∃s•u a→ s ∧a ∈ LU ∧ s /∈ Fail}
(adaptive test case)

Example 5.4. Figure 5.8 shows the conformance verification result between the system speci-
fication and a mutant. The shaded states in the figure depict a test case which was created with
our adaptive test case algorithm. For presentation purposes we have applied strong bisimulation
minimization, using the CADP toolbox4, to the product LTS obtained from Ulysses. In the mu-
tant, the guard of the action WATER_REQ(X) has been set to false. As can be seen, the mutation
is revealed when the tester tries to turn on pump P2 via a water request. According to Defini-
tion (unsafe states) State 6 is an unsafe state. By coincidence state Number 2 is a pass state in the
product as well as in the test case. However, these two different types of sink states should not
be confused. A pass state in the product denotes the end of the specified behavior. This occurs
when the implementation (in our case the mutant) applies an unspecified input or produces fewer
outputs than specified. A pass state in the test case denotes the achievement of the test goal, i.e.
to pass an unsafe state. Notice, that for each label on the edges between State 15 to State 16 and
State 9 to State 16 there exists a corresponding labeled transition.

By applying Algorithm 5.2 to the product LTS we obtain the test case which consists of the
shaded states and according transitions between them. We start with the shortest trace σ from
the initial to the unsafe state, i.e. one trace over the sequence of states 〈0,14,9,16,8,6〉. Next,
we complete all states along trace σ which have an outgoing observable event with all other
observable events leaving these states. This extends the test case with transitions to the states
13,5, and 10. Then the algorithm is recursively applied to these new states. From state 10 we
cannot reach the test goal, hence it is marked inconclusive. From state 13 there is exactly one
trace back to the test case, thus this branch is closed. The recursion in state 5 adds transitions
between states 5,3,7,15, and 16. Finally, in state 15 two transitions to states 5 and 10 are added
which completes the test case.

The resulting test case is able to adapt to different parameterizations of the given system. For
instance the volumes of both tanks or the flow rates of pumps may vary. Consider the example
trace of the test case executed on a concrete implementation in Figure 5.9. Here, after turning on
pump P1 twice the upper tank T 2 has been filled which enables the activation of pump P2 satis-
fying the test goal. Observe, that the continuous evolution stops in state 16 since the execution of
the last three discrete actions is considered to consume no time. During test case execution the
state sequence 〈0,14,9,5,3,7,15,16,8,6,2〉 is visited until reaching the pass verdict.

There may also exist implementations where the upper tank is not completely filled after the
last pumping phase of P1. In such a case the test case execution would end up in the inconclusive
state. Furthermore, it may require several pumping phases of P1 such that the water level in tank
T 2 crosses a landmark value to the next interval. This is reflected by the two loops in states
{14,9,13,12} and {5,3,7,15} respectively.

97

Chapter 5. Testing of Hybrid Systems

Table 5.2.: Results when applying conformance verification to mutated specifications.
Mut. No. Avg.Time Average No. =
Op. Mutants [s] States Trans.

6=
No. Perc.

ASO 10 13.9 64 117 7 3 30%
ENO 6 7.6 68 120 5 1 17%
ERO 20 12.9 62 110 20 0 0%
LRO 13 12.8 93 168 9 4 31%
MCO 16 12.8 70 126 10 6 38%
RRO 12 12.0 40 73 10 2 17%
Total 77 12.0 66 119 61 16 21%

5.3.3. Experimental Results

Applying the conformance verification step to several different mutants yields the results shown
in Table 5.2. We manually applied some well known mutation operators [28] to the QAS spec-
ification. In the first column ASO stands for the Association Shift Operator which changes the
association between variables in Boolean expressions. ENO is the shorthand for the Expression
Negation Operator, ERO means the Event Replacement Operator, LRO stands for Logical Oper-
ator Replacement, MCO denotes the Missing Condition Operator, and RRO is the abbreviation
for the Relational Replacement Operator. The second column shows the number of generated
mutants for each of the different operators. The average time needed for the conformance verifi-
cation is given in the third column. The average number of states and transitions of the resulting
product graphs are given in the fourth and fifth column, while the next to last column shows how
many equivalent mutants were found: from a total of 77 mutants, 16 (about 21%) were found
to be equivalent and cannot contribute any test cases. All conformance results were derived us-
ing unbounded search, i.e., the results are exact. The state space of the original specification
comprises 59 states and 107 transitions.

4http://www.inrialpes.fr/vasy/cadp

98

5.3. Mutation-based Test Case Generation

0

1 2

3

4

5

6

7 8

9

12

13

14

15

16
qual([t1:zero..empty/dec,t2:empty..reserve/inc])

qual([t1:empty..full/dec,t2:full/inc])

qual([t1:full/inc,t2:zero/std])

out_pump1_off

qual([t1:empty/dec,t2:full/inc])

fail

in_water_req(1)

qual([t1:zero..empty/dec,t2:reserve..full/inc])

qual([t1:zero..empty/dec,t2:zero..empty/inc])

pass

qual([t1:zero..empty/dec,t2:empty..reserve/inc])

qual([t1:full/inc,t2:empty..reserve/std])

out_pump1_off

out_pump1_off

11 delta

out_pump2_on

qual([t1:full/inc,t2:zero..empty/std])

out_pump1_off

out_pump1_off

out_pump2_on

out_pump1_on

delta

qual([t1:full/std,t2:full/inc])

out_pump1_on

delta

qual([t1:full/inc,t2:full/inc])

in_water_req(1)

qual([t1:empty..full/std,t2:full/inc])

qual([t1:empty/std,t2:full/inc])

qual([t1:full/std,t2:full/inc])

qual([t1:empty..full/inc,t2:full/inc])

qual([t1:full/inc,t2:full/inc])

qual([t1:empty..full/dec,t2:full/inc])

qual([t1:empty/std,t2:full/inc])

qual([t1:empty/dec,t2:full/inc])

qual([t1:empty..full/std,t2:full/inc])

qual([t1:zero..empty/dec,t2:reserve..full/inc])

qual([t1:empty..full/inc,t2:full/inc])

10
inconc

Figure 5.8.: Product LTS and test case (transitions between shaded states depict the test case).

Empty

Full

x1

x2

t

x1 x2

Empty

Reserve

P1_on P1_on

qual qualqual qual

P1_off

Full

water_req(1)

P1_off

pass

P2_on

Figure 5.9.: Example execution of the test case.

99

100

Chapter 6
Generation of Efficient Test Suites

Parts of this chapter have been published in Aichernig et al. [9] and Aichernig et al. [10].

A major part of this thesis was developed in the European FP7 project MOGENTES. The
acronym stands for Model-based Generation of Tests for Dependable Embedded Systems and the
aim of the project was to investigate methods for efficient test case generation as well as the
applicability of such methods in industry.

Since the industry partners in the project employ the Unified Modeling Language (UML) in
their work flows it was agreed to generate test cases from UML models. There is already exist-
ing work for test case generation from UML state charts, see [78] and [106]. However, these
approaches do not fully support the required language features for our specification models. Ad-
ditionally, we want to apply the well established input-output conformance relation for generated
test cases. Therefore, our project partner Austrian Institute of Technology (AIT) developed with
our collaboration an UML to action system translator. In particular UML state machines and class
diagrams with OCL (Object Constraint Language) annotations are converted to so-called Object
Oriented Action Systems (OOASs) [30]. These intermediate OOAS models are then flattened
by the tool Argos, which was also developed within the MOGENTES project, into conventional
action systems, see the work in [110]. Figure 6.1 depicts the complete tool chain for generat-
ing mutation-based test cases from UML models. Starting with an original and a mutated UML
model the tool chain generates test cases due to certain test selection strategies.

The semantics of the UML language is not formally defined and leaves room for interpreta-
tions. The standard itself refers to such ambiguities as semantic variation points. Our translation
scheme from UML to action systems gives UML a formal semantics suited for specifying our
test models.

Since QAS models are an extension of conventional action systems (they contain an additional
section for specifying qualitative actions) we can use Ulysses to generate test cases for purely
discrete systems as well. Most of the project demonstrators are discrete systems or at least can be
modeled as such without the need for stating qualitative actions. This chapter discusses the test
case generation for object-oriented systems and approaches how to minimize test suites while

101

Chapter 6. Generation of Efficient Test Suites

� �

�����

����	
����������
���

��
��

�	�	

�
�����	
�
��

�
	���
�
���

����
�
��

����
��������
����	���

�	��
	���������

	���������

���

�����	����� �
�	� �������
���

����

����

���

��

����
�����

Figure 6.1.: Tool chain for test case generation from UML models.

preserving coverage of model mutations. Furthermore, we present a small case study of a car
alarm system (CAS) provided by Ford.

6.1. Testing Object-oriented Systems

In order to alleviate the modeling of object-oriented systems we have extended our action system
models. We represent an action system AS comprising a vector of variables V of types T , initial-
ized with values I, n methods M, m named actions A, d action calls Ci ∈ A composed via one of
the operators op=df 2 | ; | //, and a set MI of imported methods syntactically as follows:

ASO =df |[var V : T = I
methods
M1, . . . ,Mn

actions
A1, . . . ,Am

do C1 op C2 . . .op Cd od
]| : MI

(6.1)

Methods have a name, a body and may have a return value. Named actions are similar to methods
but have no return value. The box-operator (“2”) stands for non-deterministic, demonic choice.
The operator “;” denotes sequential composition, and the “//” operator stands for prioritizing
composition [145]. A prioritizing composition A//B means that if A is enabled it will be executed,
otherwise action B is executed. This operator can be rewritten into a non-deterministic choice,
namely A2¬g(A)→ B, where g(A) denotes the enabledness guard of action A.

Methods and named actions are composed of atomic actions which are linked with the oper-
ators op. Atomic actions are guarded commands, (nondeterministic) assignments, method calls,
skip, and abort. Given the definition of methods and actions the behavior of action executions is
specified in the do od section. In contrast to conventional action systems where all actions are
composed via nondeterministic choice we allow here arbitrary compositions with the operators
op. This brings the advantage that one is able to specify the behavior of state machines without
encoding the transition relation via an additional state variable and according conditions in action
guards.

We assume that named actions may only be called from within the do od (that is, not from
within named actions or methods), and that method calls must not be recursively nested. We also
demand that each named action has the form of a guarded command. Relying on these assump-
tions, we are allowed to rewrite the action system into the classical form, see Definition 5.2, where

102

6.2. Car Alarm System

AlarmSystem_StateMachine

Alarm
Activate Alarms /entry
Deactivate Alarms /exit

Flash

FlashAndSound

Armed

Show Armed /entry
Show Unarmed /exit

ClosedAndLocked

OpenAndUnlocked

ClosedAndUnlocked OpenAndLocked

SilentAndOpen

Unlock

30 / Deactivate Sound

300

Open

Unlock

20

Close

Unlock OpenLock Close

Close LockOpen Unlock

Figure 6.2.: Car Alarm System - state machine.

only the actions within the do od are left. This requires the elimination of method calls by re-
placing the calls with their method bodies (method inlining). Furthermore, referenced variables,
which are external, have to be added to the import list.

In a first version of Ulysses the actions of a given model were interpreted. However, for
larger models interpretation results in quite long test generation times. Thus, we implemented
a compilation mode where purely discrete action systems are translated to plain Prolog clauses.
The exploration of a compiled action system is at an exponential factor faster than the exploration
in interpretation mode.

The development of specifications is easier when they are “executable” which is usually the
case for formal models. Since our models are nondeterministic, execution means model anima-
tion. Ulysses features a model animator that provides a user the choice of the next events in the
suspension automaton of a given (qualitative) action system. This enables the designer to try out
what has been modeled so far and is an important means for model validation.

6.2. Car Alarm System

The UML testing model for the car alarm system (CAS) was created from the following list of
requirements:

R1: Arming. The system is armed 20 seconds after the vehicle is locked and the bonnet,
luggage compartment, and all doors are closed.

R2: Alarm. The alarm sounds for 30 seconds if an unauthorized person opens the door, the
luggage compartment, or the bonnet. The hazard flasher lights will flash for five minutes.

R3: Deactivation. The CAS can be deactivated at any time, even when the alarm is sounding,
by unlocking the vehicle from outside.

103

Chapter 6. Generation of Efficient Test Suites

17

0 1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

ctr Open

obs AcousticAlarm_SetOff

obs after(270)

ctr Lock

ctr Unlock

obs after(20)

obs OpticalAlarm_SetOffobs AlarmArmed_SetOff

ctr Close

ctr Unlock

obs AlarmArmed_SetOn

ctr Lock

obs OpticalAlarm_SetOff

ctr Close

obs delta

obs delta

ctr Open

obs delta

ctr Close

ctr Unlock

obs delta

obs delta

ctr Open

ctr Unlock

ctr Unlock

obs AcousticAlarm_SetOn

ctr Unlock

obs after(30)

obs AlarmArmed_SetOff

obs AcousticAlarm_SetOff

obs OpticalAlarm_SetOn

obs AcousticAlarm_SetOff

Figure 6.3.: Suspension automaton of the Car Alarm System.

When someone constructs a formal specification based on textual requirements, often conflicts
or underspecified situations become apparent. One might think that the simplistic car alarm
system is sufficiently described by these three textual requirements – the contrary is the case.
What is left unspecified is the case of what happens when an alarm is ended by the five minutes
timeout: does the system go back to armed directly, or does it need to wait for all doors to be
closed again before returning to armed? For our model, we chose the latter option.

State Machine. Figure 6.2 shows the CAS state machine diagram. The events Lock, Un-
lock, Close, and Open are controllable while the events AlarmArmed, AcousticAlarm, and Op-
ticalAlarm are observable by the tester.

From the state OpenAndUnlocked one can traverse to ClosedAndLocked by closing all doors
and locking the car. Actions of closing, opening, locking, and unlocking are modeled by cor-
responding signals Close, Open, Lock, and Unlock. As specified in the first requirement, the
alarm system is armed after 20 seconds in ClosedAndLocked. Upon entry of the Armed state, the
model calls the method AlarmArmed.SetOn. Upon leaving the state, which can be done by either
unlocking the car or opening a door, AlarmArmed.SetOff is called. Similar, when entering the

104

6.3. Experimental Results

Alarm state, the optical and acoustic alarms are enabled. When leaving the alarm state, either via
a timeout or via unlocking the car, both acoustic and optical alarm are turned off. When leaving
the alarm state after a timeout, turning off the acoustic alarm after 30 seconds, as specified in the
second requirement, is reflected in the time-triggered transition leading to the Flash sub-state of
the Alarm state.

Figure 6.3 depicts the suspension automaton of the CAS model. The “ctr” and “obs” prefixes
denote controllable and observable events respectively. The visible behavior of the UML model is
quite small, however the mapping from UML to action systems results in an overhead of internal
actions which should not be underestimated. The CAS input model for Ulysses contains 750
lines.

Mutations. As we want to create test cases that cover particular fault models, we need to de-
liberately introduce ’bugs’ in the specification model. In order to do that, we rely on different
mutation operators. As an example, one mutation operator sets guards of transitions to false1,
while others remove entry actions, signal triggers, or change signal events. Applying these oper-
ators to our CAS specification model yields 76 mutants: 19 mutants with a transition guard set
to false, 6 mutants with a missing entry action, 12 mutants with missing signal triggers, 3 with
missing time triggers, and 36 with changed signal events.

Example 6.1. Let us consider a mutant which lacks the transition from OpenAndUnlocked to
OpenAndLocked. This means that the system simply ignores the Lock event when being in the
OpenAndUnlocked state instead of proceeding to OpenAndLocked.

The first two LTSs in Figure 6.4 show the partial suspension automata of the specification
and the mutant. The mutant is not ioco to the specification because the subset inclusion of the
observations after the trace 〈Lock,Close〉 does not hold, i.e., out(Mutant after 〈Lock,Close〉) =
{δ} 6⊆ out(Spec after 〈Lock,Close〉) = {after(20)}. The product LTS (depicted on the right-
hand side) may contain states with pass self-loops. They indicate that the specified behavior
is left after an unspecified controllable event or ends after a not implemented observable event.
Furthermore, fail states, i.e., states with fail self-loops, denote that an unspecified observable
event has occurred. In this case, we are able to derive a controllable test case that is able to detect
this unspecified behavior (cf. LTS on the right-hand side).

6.3. Experimental Results

This section presents an evaluation of our tool chain where we apply eight different test case
generation approaches to the car alarm system. We start our discussion with a summary of the
different test case generation approaches before evaluating their fault detection capabilities.

1 This may lead to a transition transforming into a self loop as the model will ’swallow’ the trigger event

105

Chapter 6. Generation of Efficient Test Suites

Specification

ctr Lock

δ

ctr Close

δ

obs after (20)

Mutant

ctr Lock δ

ctr Close

δ

ctr Lock

Product

δ

ctr Close
pass ctr Lock

δ

ctr Close

obs after (20)

ctr Lock pass

δ

fail

Test Case

ctr Lock

ctr Close

obs after (20)

pass

Figure 6.4.: The two LTSs on the left show parts of the suspension automata of the CAS specifi-
cation and a mutant. The two LTSs on the right depict the resulting ioco product and
a selected test case.

A1 A2 A3 A4 A5 A6 A7 A8
Max. Depth 10 14 23 23 23 150 (19) 150 30
Gen. TCs [#] 16 210 302 504 129 63 11 3 9
Duplicates [#] 12 179 174 217 0 0 0 0 0
Unique [#] 3 469 110 269 123 59 11 3 9
Gen. Time [min] 188 91 23 70 23 10 0.25 -

Table 6.1.: Number of generated test cases

6.3.1. Test Case Generation

We compare eight different test case generation approaches called A1 to A8. Generally speaking,
A1 to A6 are fault-based approaches, A7 is based on random testing, and approach A8 uses test
cases that were manually designed. All fault-based approaches use the set of 76 faulty specifi-
cations as input to test case generation. Note that because the car alarm system is deterministic,
all test cases are linear. While the test cases in approach A1 and A2 have been generated via
straightforward path search the approaches A3–A6 employ the test selection Algorithm 5.2. In
A6 we generate test cases randomly and due to Algorithm 5.2. Table 6.1 highlights the main
differences between the approaches regarding generated test cases.

Approach A1 Within the first approach, the product graph of the ioco check is first transformed
into a tree structure with a maximum depth of 10 and a two-times maximum visit per state per
trace. After tree unfolding the graph, we generate linear test cases for all paths that lead to an
unsafe state in the tree. As can be seen in the table, this greedy test case generation strategy
produces a very large number of tests. Also, approximately 75% of the generated tests are dupli-
cates. From the non-duplicate test cases, we could exclude another 562 tests that are a complete
subsequence of one of the other remaining test cases. Hence, about 3500 tests remain. Due to
the vast amount of test cases generated by A1, we refrained from executing the tests on the CAS
implementations.

106

6.3. Experimental Results

Approach A2 The second test case generation strategy directly works on the product graph and
extracts only one arbitrary linear test per unsafe state. Notice that one mutant may still involve
more than one unsafe state in the product graph. This time, we could identify 58% of duplicate
test cases and another 22 were covered as a subsequence in other test cases. It has to be said that
we allowed for tests with a maximum length of 14 in this approach, thus generation times are not
directly comparable between A1 and A2. We verified that all unique test cases with a length of
up to 10 that were produced by this approach were included in the set of tests generated by the
first approach.

Approach A3 The third approach is similar to the second one, except that the depth is theoret-
ically unbounded since the test case generator applies algorithm 5.2. Therefore, the generation
time is not comparable with approaches A1 and A2 (but with A4 to A7).

Approach A4 The fourth approach builds on A3 but avoids creating test cases for unsafe states
in a given product graph which are already covered by existing test cases. In order to check if a
certain unsafe state is already covered by an existing test case we generate a test purposes tp for
that unsafe state. Then the existing test cases are checked by computing the synchronous product
with tp. This is similar to the synchronous product calculation in the tool TGV[98], however TGV
computes it between test purpose and specification. A test case tc satisfies a test purpose if the
product calculation prunes no transitions from tc, i.e. tc× tp = tc.

The generated test purpose ensures that a given test case passes through the unsafe state to
a pass state. Given an unsafe state u we determine the set of states L2U which lead to u,
i.e. L2U =df {s ∈ S | ∃σ • s σ⇒ u}. The set of pass states associated with u are Pass =df {s ∈
S | ∃a ∈ LU • (u,a,s) ∈ T ∧ s /∈ Fail}. The resulting test purpose tpu has the transition relation
Tu =df {(s1,a,s2) ∈ T | s1,s2 ∈ L2U ∨ (s1 = u∧ s2 ∈ Pass)}∪{(s,∗,s) | s ∈ Pass}. The remaining
behavior after reaching a state s ∈ Pass is not of interest, denoted by the ∗ label allowing any
transitions to occur thereafter.

This approach yields one test case per unsafe state. Note however, that generated test cases
still can be included in other test cases. This depends on the order of processed unsafe states. If
we would start with deep unsafe states and proceed to shallow ones it is theoretically possible
that no generated test case is included in another one.

While the total number of generated test cases decreases to 129 (from 504), the time used to
generate them increases to 70 minutes (from 23). This is because we compute the check for every
unsafe state and in the worst case for all test cases generated so far. In effect, A4 checks whether
an existing test case already covers an unsafe state in the ioco product before creating a new test
case. If an unsafe state (there may be several per mutated specification) is not covered, a new test
case is emitted.

Approach A5 Approach A5 also avoids creating duplicate test cases. However, A5 further
tries to minimize the size of the generated test suite. Before creating test cases for a mutated
specification, A5 first checks whether any of the previously created test cases is able to kill the
mutated specification. Therefor, the synchronous parallel execution e| of the test case tc with

107

Chapter 6. Generation of Efficient Test Suites

the mutated specification under test m is applied. The following rules define the operational
semantics for killing a mutated specification.

tc a→ tc′ m a→ m′

tce|m a→ tc′e|m′
(1)

a ∈ LI tc a→ tc′ m a9 m′

tce|m a→ tc′e|m
(2)

a ∈ LU tc a9 tc′ m a→ m′

tce|m a→ faile|m′
(3)

Rule (1) describes the case where tc and m synchronize on common events and proceed to their
next state. Due to the input enabledness assumption the mutated specification has to accept all
input events in every state. This is realized by making every state of m input complete by adding
self loops for the remaining input events, see Rule (2). Rule (3) states that the test case reaches
a fail state when the mutant produces an output event which the test case cannot follow. Given
these rules a mutant is killed when a fail state can be reached, i.e.

∃σ ∈ (L∪δ)∗ • tce|m σ⇒ faile|m′.

The check is done without calculating the full ioco product between the specification and the
mutant, which is the first difference to A4. A4 always calculates the full ioco product. If an
existing test is able to kill the mutant, the test suite is considered strong enough and no new test
cases are generated for the mutant. Notice that this is the second difference to A4 as A4 will only
skip test case generation for covered unsafe states, while A5 does never generate any additional
test case for a killed mutant. Due to this minimization, approach A5 is sensitive to the ordering
of mutants. Notice that A5 starts with an empty test suite.

Approach A6 Approach A6 is like A5 but instead of starting with an empty test suite, A6 uses
one randomly generated test case to start with. In effect, A6 is a combination of random (A7) and
fault based testing (A5). Within Table 6.1, the maximum depth not put in brackets is the depth of
the randomly generated initial test case while the figure in brackets is the maximum depth of the
additionally generated tests to cover all faulty specifications.

Approach A7 This approach uses a random selection strategy in order to generate test cases.
Put differently, A7 is not a fault-based test case generation approach and included for evaluation
purposes only.

Approach A8 Finally, we compare our test case generation approach based on UML with man-
ually created test cases. More precisely, we generated 9 different test purposes by hand and
let TGV [98] create test cases. 3 out of the 9 test cases check for observable timeouts (time-
triggered transitions: 20, 30, 300 sec. delay). 4 test cases check the entry and exit actions of
the states Armed and Alarm. One test case checks for the deactivation of the acoustic alarm after
the timeout and one more complex test case has a depth of 30 transitions going once through the
state SilentAndOpen to Armed before going to Alarm again and leaving after the acoustic alarm
deactivation by an unlock event. Hence, each observable event is covered by at least one test
case. During the creation of the test purposes, we relied on a printout of the UML state machine.

108

6.3. Experimental Results

Mutants Equiv. Pairwise Different
Equiv. Faults

SetState 6 0 1 5
Close 16 2 6 8
Open 16 2 6 8
Lock 12 2 4 6
Unlock 20 2 8 10
Constr. 2 0 1 1
Total 72 8 26 38

Table 6.2.: Injected faults into the CAS implementation.

6.3.2. Test Case Execution

We applied classical mutation analysis in order to evaluate the effectiveness of our different test
suites. For this purpose, we have implemented the CAS in Java based on the state machine of
Figure 6.2. In order to derive a set of faulty implementations, we used the µJava [121] tool: in
total, µJava gave us 72 mutated implementations. After careful inspection, 8 of these mutated
implementations were found to be equivalent to the original program, and another set of 26 mu-
tants was found to be equivalent to other mutants - forming 26 equivalent pairs. Hence, a sum of
38 (72−8−26) different faulty implementations of the CAS remain. Further details are shown
in Table 6.2. For each method, the table lists the total number of mutated implementations, the
number of mutants that turned out to be equivalent to the original implementation, and the num-
ber of equivalent pairs of mutated implementations. The methods Close, Open, Lock, and Unlock
are public ones and handle the equally named external events while SetState and the constructor
(Constr) are internal methods. From the table, one can observe that the mutation on internal
methods has a strong effect on the external behavior since there are no equivalent mutants for
these methods.

In the following, we use the 38 unique faulty CAS implementations to evaluate the effective-
ness of our generated test cases. Of course, all tests were validated on the non-mutated CAS
implementation.

Table 6.3 gives an overview of the number of survived faulty implementations for each test
case generation approach. As can be seen from the table, the approaches A3, A4, and A6 were
able to reveal all faults. The table also shows that the minimization algorithm applied in approach
A5 reduces the fault-detection capabilities. Despite random testing (A7) did not find all faulty
implementations, it proved quite effective in our setting. It has to be noted, however, that we
allowed for an appropriate depth of the random test cases. Summing up, A5 and A7 still have
a fault detection rate of 97%. The reason for the bad performance of A2 is the fact that the
two surviving faulty implementations need tests with a depth of more than 14 interactions to be
revealed and A2’s tests are restricted to a depth ≤ 14.

The last column shows the results of running the manually designed tests (A8). Overall, 25 mu-
tants were killed which results in a detection rate of 66%. Clearly, the figures show that in order
to have a meaningful test suite, more (diverse) test cases have to be generated. Partly, this lack

109

Chapter 6. Generation of Efficient Test Suites

A2 A3 A4 A5 A6 A7 A8
SetState 0 0 0 0 0 0 0
Close 1 0 0 0 0 0 2
Open 0 0 0 1 0 0 4
Lock 0 0 0 0 0 0 2
Unlock 1 0 0 0 0 1 5
Constr. 0 0 0 0 0 0 0
Total 2 0 0 1 0 1 13
Detection Rate [%] 95 100 100 97 100 97 66
Impl. Coverage [%] 99 99 99 99 99 99 88

Table 6.3.: Overview of how many faulty SUTs could not be killed by the test cases generated
with different approaches.

A3 A4 A5
Gen. TCs [#] 469 58 32
Gen. Time [min] 10:05 21:52 14:49

Table 6.4.: Number of generated test cases (hand-written OOAS model)

of diverse test cases is based on the deterministic test selection behavior of TGV: all TGV based
tests have almost the same test sequence from OpenAndUnlocked to ClosedAndLocked, although
alternative paths are possible.

Often, coverage metrics on the implementation’s source code serve as a quality measure to
describe the adequacy of a test suite. Therefore, we have measured the coverage on the imple-
mentation in terms of basic block coverage. The approaches A2 - A7 achieve a coverage of 99%,
whereas A8 (TGV) only results in a basic block coverage of 88%. By comparing the last two rows
of Table 6.3, it becomes obvious that a high code coverage does not automatically guarantee high
fault detection rates, which we aim for.

In summing up, the results show that our approaches are powerful in covering the implemen-
tation’s source code and more importantly in detecting faults. However, the depth of our con-
formance analysis is critical as too less depth results in missing test cases and, in this example,
in undetected faults. The results also show that the 3500 test cases of the first approach were
by far too many: for the given model mutations, one path per mutation is sufficient to detect all
faults, provided this path is long enough. Finally, the combined approach (A6) proved to be a
nice trade-off between generation time and effectiveness.

Beside using UML models we directly modeled the CAS in OOAS language. The transfor-
mation from UML to OOAS brings quite an overhead in lines of code: while the hand-written
OOAS model contains 113 lines the transformed UML model, as already stated, results in 750
lines. This is mainly because UML is intended to specify systems on the implementation level
rather than on an abstract requirements level. For instance, the whole event signaling mechanism
of UML has to be transformed to OOAS constructs.

For a comparison with the UML-based approach we implemented a mutation tool which cre-

110

6.3. Experimental Results

ated 442 mutated OOAS specifications. Table 6.4 shows the number of test cases with according
generation times for approaches A3-A5. Each test suite of the three approaches was able to detect
all faulty implementations. The results show that our selection strategies are able to efficiently
minimize test suites for a large number of mutated specifications.

111

112

Chapter 7
Conclusions

This chapter presents a summary of the previous chapters, draws some conclusions, and gives an
outlook for future work.

7.1. Summary

After an introduction to the content of this theses we discussed its broader context of model-based
testing. Next, Qualitative Reasoning and its application for modeling continuous systems was
covered. We discussed how qualitative models can be simplified while preserving the behavior
which is of interest for testing.

We covered the application of model-based testing of continuous systems using qualitative
models. In order to decide the correctness of an implementation regarding a qualitative model
the conformance relation qrioconf was introduced. All results were generated with the prototype
tool QRPathfinder which is implemented in Java1.6. The tool employs the InterProlog1 interface
for connecting to the QR tool Garp3 [44]. QRPathfinder loads a qualitative transition system
which is obtained by simulating a Garp3 model, generates test cases according to test purposes
or coverage criteria, and provides a test adapter for executing test cases on Matlab/Simulink [13]
models.

The experiments showed that our approach is able to detect certain kinds of faults in continuous
systems. Qualitative models are well suited to specify a wider class of implementations than is
possible by using parameterized ODEs. A further benefit of QR is that some system parameters
may even be unknown. Numerical values become only relevant during test case execution for
variables at the testing interface.

The good fault detection capability of qualitative test cases can be explained due to the transfer
behavior of continuous systems. A fault in such a system either changes a transfer function, or
the transitions between transfer functions. Depending on the number of system modes, more

1http://www.declarativa.com/interprolog/

113

Chapter 7. Conclusions

or less different test cases are required to exercise the different behaviors. Usually, a faulty
transfer function immediately propagates an error from the inputs to the outputs. Thus, a faulty
implementation can be detected after applying only a few input samples.

While conducting the experiments it turned out that state spaces for even medium sized qual-
itative models grow quite fast. This is because Garp3 supports no hiding of variables. Thus,
uninteresting, internal behavior is enumerated as well. Also, simulation times and memory con-
sumptions are an issue. Therefore, it would be beneficial to apply online testing where the qual-
itative transition system is only unfolded as required. However, the simulation engine has to be
fast enough to follow the responses of an IUT. If such timing issues cannot be met, passive testing
is another alternative. Here, recorded traces of the implementation are replayed on the qualitative
model.

For specifying test models of hybrid systems conventional action systems [15], more precisely
a hybrid version thereof [139], were extended to so-called qualitative action systems (QAS) [6].
Each action is associated with a name (label) and the execution of a labeled action system re-
sults in a labeled transition system (LTS). The LTS semantics enables the application of standard
conformance relations like input-output conformance [156].

After this, we presented the automated input-output conformance verification between two
given QAS and its application in mutation-based test case generation. The ioco relation is defined
over traces rather than over states like simulation relations. This requires the determinization of
LTSs which we carry out on-the-fly. However, determinization and the associated merging of
states may lead to enabledness problems of actions. This occurs when in a certain state an action
is not enabled for all its substates. We discussed this problem and proposed an approach how to
resolve it.

We applied several mutation operators to the model of a two-tank system and showed the
results of the conformance check between original and mutated model. The presented test case
selection algorithm produces minimal and adaptive test cases by computing shortest traces which
reveal the mutation. The obtained test cases are able to check the behavior of a control program
as well as the outcomes after continuous changes.

In mutation-based test case generation, the question arises which mutant can be killed by test
cases generated from other mutants and for which mutant new test cases have to be generated.
The answer to this question allows to create a minimal test suite for a given number of mutants.
However, the check to determine what test case is able to kill which mutants can get very costly.
The asymptotic runtime is O(m · (n−1)), where m is the number of non-equivalent mutants and
n is the total number of generated test cases. Thus, we applied different strategies that reduce
the size of a test suite on-the-fly during test case selection. A comparison of these strategies was
conducted on a small industrial case study. The results showed that the number of test cases can
be significantly reduced while maintaining a high fault detection rate.

All results for the mutation-based test case generation from (qualitative) action system models
were produced with our tool called Ulysses. It was implemented in SICStus Prolog2 and employs
the QR tool ASIM [22] for solving qualitative differential equations. Ulysses applies an exhaustive
search strategy for exploring the behavior of QAS models. The conformance checker searches the

2www.sics.se/sicstus

114

7.2. Related Research

state space until a difference with respect to ioco between original and mutated model is found or
a defined search depth is reached. Due to interleavings of parallel behavior and the enumeration
of data types the size of state spaces can grow to large numbers.

7.2. Related Research

While there exist various approaches to abstract continuous behavior to finite state representa-
tions [32, 33, 119, 90, 152] most of them rely on concrete values. With the technique of Quali-
tative Reasoning we follow a purely symbolic approach which allows us to build generic models
of continuous and hybrid systems.

Our approach of generating qualitative test cases for continuous systems is mostly related
to the approach implemented in the tool TGV [98]. In contrast to TGV, where test purposes
are formulated as automata, we specify test purposes with regular expressions over symbolic
properties. As a second strategy we generate qualitative test cases due to coverage criteria. This
is similar to the approach in [75] where a model checker is used to create test cases according
to so-called trap properties. We have developed the conformance relation qrioconf which is
based on the ioco relation by Tretmans [156]. To our best knowledge this is the first work which
employs qualitative reasoning for testing continuous and hybrid systems.

In this thesis the part of testing hybrid systems is based on the concepts of qualitative rea-
soning [112] and action systems [15]. Most relevant to our research are different extensions to
action systems that allow modeling of hybrid systems. The work in [19] presents continuous ac-
tion systems. They are similar to conventional action systems except for the fact that continuous
functions are used as values for variables (attributes). The implicit attribute now represents the
current time and starts at zero. Our approach of testing hybrid systems is based on the framework
of hybrid action systems [139]. The weakest precondition semantics of discrete as well as contin-
uous actions enable us to define a labeled transition system (LTS) semantics of hybrid systems.
We apply the conformance relation ioco for generating mutation-based test cases, similar to the
work in [163]. The authors in [163] apply the ioco check between an original and a mutated
specification in order to derive a test purpose which is then used by the tool TGV [98] for test
case generation. In our work we directly extract adaptive test cases from the result of the ioco
check.

This work is related to mutation-based test case generation. The authors of [49] present a
first work on this topic. Aichernig and Jifeng [3] introduce a mutation-based testing approach
in the Unifying Theories of Programming (UTP). Weiglhofer et al. [165] present the application
of mutation testing to an industrial protocol specification. A survey on mutation testing can be
found in [99].

Abstractions of hybrid systems are a common way to deal with inherent system complexity.
The authors of [135] summarize results for property-preserving abstractions of hybrid systems. A
combination of ideas taken from predicate abstraction and qualitative reasoning has been recently
proposed in [151]: based on hybrid automata, the author presents a procedure for constructing
sound abstractions for hybrid systems and also discusses which abstractions should be chosen.
Abstract models of hybrid systems, besides being useful in automated verification, are also a

115

Chapter 7. Conclusions

common way of specifying systems. This is the intended use of our qualitative action systems.
Related work in qualitative modeling of hybrid systems can be found, e.g., in [148] where the
authors present Qualitative Charon, a qualitative modeling language that is based on Charon [12]
and qualitative reasoning [112].

The authors in [33] present a hybrid denotational semantics for hybrid systems. The presented
approach provides a means to analyze hybrid systems by considering the continuous behavior
only at certain points in time which are defined by the discrete system. For instance if the discrete
system does not access sensor data from the environment it is not necessary to compute the state
of the environment. The weakest-precondition semantics of our qualitative action systems is also
denotational, but on the abstract qualitative level.

Reactis [136] is a common test generation tool for Simulink models. It produces test cases
regarding certain coverage criteria on the Simulink model. Test cases can be used to ensure
conformance of a source code implementation or to validate the behavior of the model itself.
Reactis does not deal with mutation testing and works on the implementation level. It is designed
for white-box testing, our tools target black-box testing.

The work in [68] deals with randomized test case generation for hybrid systems. The approach
is based on the notation of hybrid automata and the idea is to explore the state space by building
Rapidly Exploring Random Trees (RRTs) [115]. The RRT algorithm has been used in robotics
for path planning by computing control signals for trajectories in high dimensional spaces. For
testing, the RRT algorithm is used to find counter examples, i.e. input sequences that drive the
system into states that are not in a defined specification set. The authors in [127] extend the
random exploration technique with coverage information. Less explored regions are preferred in
the exploration process. The usability and performance of RRTs depends on finding appropriate
metrics in a system’s state space. In random testing a large number of long test runs might be
necessary in order to achieve a sufficient testing coverage. Our approach is more costly in the
generation of test cases, however execution times are lower because of fewer, and more diverse
test cases.

The selection of test cases for hybrid systems is addressed in [103]. The idea is that a test case
with certain parameters has many test cases with slightly changed parameters in its neighborhood
which all show the same qualitative behavior. The work deals with the generation of test cases
based on coverage metrics. Similarly, in our work we apply qualitative reasoning as abstraction
technique.

7.3. Future Work

As a next step the elaboration of online testing of continuous systems would be interesting. This
approach eliminates the exploration of spurious behavior at all and reduces behavior branching
only to the relevant choices of the current test run. Online testing promises to allow the handling
of larger models.

For future extensions of Ulysses we identify three approaches for which an evaluation would be
interesting:

116

7.3. Future Work

• the integration of online testing into Ulysses to counter state space explosion,

• in order to reduce unnecessary interleavings a technique called partial order reduction can
be applied,

• and the evaluation of a symbolic test case generation approach may lead to better com-
putation times and lower memory consumptions. Symbolic test case generation could be
further improved by employing counterexample guided abstraction refinement (CEGAR).

Writing formal specifications is similar to writing programs. The performance of analyzing a
model mainly depends on its structure and the constructs used. Thus, a profiler for examining the
bottlenecks in the exploration time of a model can be helpful.

The conformance relation hioco by van Osch [160] covers two parts. First, the discrete events
have to obey the ioco relation. Secondly, trajectories of the implementation must be allowed
by the specification. The implementation trajectories are filtered due to specified inputs. By
replacing the trajectory inclusion check with our qrioconf relation we obtain a qualitative version
of hioco. This allows to discover faults within continuous changes rather than only at their end.
It would be interesting to compare such a relation with ioco in terms of their fault detection
capabilities in hybrid systems.

117

118

List of Acronyms

API Application Programming Interface
ASO Association Shift Operator
CAS Car Alarm System
CLP Constraint Logic Programming
CSP Communicating Sequential Processes
CSP Constraint Satisfaction Problem
CTG Complete Test Graph
CUTE Concolic Unit Testing Engine
DART Directed Automated Random Testing
DFA Deterministic Finite Automaton
EFSM Extended Finite State Machine
ENO Expression Negation Operator
ERO Event Replacement Operator
GPS Global Positioning System
GSM Global System for Mobile Communications
HAS Hybrid Action System
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers
IOCO Input Output Conformance
IOTS Input Output Transition System
IUT Implementation Under Test
JML Java Modeling Language
LOTOS Language Of Temporal Ordering Specification
LRO Logical Operator Replacement
LTS Labeled Transition System
MCO Missing Condition Operator
MOGENTES Model-based Generation of Tests for Dependable Embedded Systems
NIFS No Function In Structure
OCL Object Constraint Language

119

Chapter 7. Conclusions

ODE Ordinary Differential Equation
OOAS Object Oriented Action System
QAS Qualitative Action System
QDE Qualitative Differential Equation
QR Qualitative Reasoning
QTS Qualitative Transition System
RAISE Rigorous Approach to Industrial Software Engineering
RRO Relational Replacement Operator
RRT Rapidly exploring Random Tree
SCC Strongly Connected Components
SEPIAS Self Properties In Autonomous Systems
SMT Satisfiability Modulo Theories
STG Symbolic Test Generator
SUT System Under Test
TDIOHS Time Discrete Input Output Hybrid System
TIOTS Timed Input Output Transition System
UML Unified Modeling Language
UTP Unified Theories of Programming
VDM Vienna Development Method

120

Bibliography

[1] J.-R. Abrial. The B-book: assigning programs to meaningsp. Cambridge University Press,
New York, NY, USA, 1996. ISBN 0-521-49619-5. (Cited on pages 11, 15, and 16.)

[2] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Mutation
analysis. Technical report, School of Information and Computer Science, Georgia Inst. of
Technology, Atlanta, Ga., Sept. 1979. (Cited on page 14.)

[3] Bernhard K. Aichernig and He Jifeng. Mutation testing in UTP. Form. Asp. Comput.,
21:33–64, February 2009. ISSN 0934-5043. doi: 10.1007/s00165-008-0083-6. URL
http://portal.acm.org/citation.cfm?id=1501948.1501955. (Cited on pages 52
and 115.)

[4] Bernhard K. Aichernig, Bernhard Peischl, Martin Weiglhofer, and Franz Wotawa. Proto-
col conformance testing a SIP registrar: An industrial application of formal methods. In
Mike Hinchey and Tiziana Margaria, editors, Proceedings of the 5th IEEE International
Conference on Software Engineering and Formal Methods, pages 215–224, London, UK,
2007. IEEE. (Cited on page 1.)

[5] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald Krenn. Model-
based mutation testing of hybrid systems. In Frank S. de Boer, Marcello M. Bonsangue,
Stefan Hallerstede, and Michael Leuschel, editors, Formal Methods for Components and
Objects (FMCO), volume 6286 of Lecture Notes in Computer Science, pages 228–249.
Springer, 2009. (Cited on pages 7 and 73.)

[6] Bernhard K. Aichernig, Harald Brandl, and Willibald Krenn. Qualitative action systems.
In Karin Breitman and Ana Cavalcanti, editors, Proceedings of the 11th International Con-
ference on Formal Engineering Methods (ICFEM), volume 5885 of LNCS, pages 206–225.
Springer, 2009. (Cited on pages 7, 25, 29, 73, and 114.)

[7] Bernhard K. Aichernig, Harald Brandl, Willibald Krenn, and Rudolf Schlatte. Model-
based test case generation techniques: A survey. Technical report, Institute for Software
Technology, TU Graz, 2009. (Cited on page 9.)

121

http://portal.acm.org/citation.cfm?id=1501948.1501955

Bibliography

[8] Bernhard K. Aichernig, Harald Brandl, and Franz Wotawa. Conformance testing of hybrid
systems with qualitative reasoning models. Electron. Notes Theor. Comput. Sci., 253(2):
53–69, 2009. ISSN 1571-0661. doi: http://dx.doi.org/10.1016/j.entcs.2009.09.051. (Cited
on pages 7, 49, and 50.)

[9] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald Krenn. UML in
action: A two-layered interpretation for testing. In UML&FM, ACM Software Engineering
Notes (SEN), 2010. in press. (Cited on pages 7 and 101.)

[10] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald Krenn. Efficient
mutation killers in action. In Proceedings of the fourth IEEE International Conference on
Software Testing, Verification and Validation (ICST), March 2011. in press. (Cited on
pages 7, 73, and 101.)

[11] Rajeev Alur, Thomas Henzinger, Orna Kupferman, and Moshe Vardi. Alternating refine-
ment relations. In Davide Sangiorgi and Robert de Simone, editors, CONCUR’98 Con-
currency Theory, volume 1466 of Lecture Notes in Computer Science, pages 163–178.
Springer Berlin / Heidelberg, 1998. URL http://dx.doi.org/10.1007/BFb0055622.
10.1007/BFb0055622. (Cited on page 20.)

[12] Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Kumar, and Insup Lee. Modular specifica-
tion of hybrid systems in charon. In HSCC ’00: Proceedings of the Third International
Workshop on Hybrid Systems: Computation and Control, pages 6–19, London, UK, 2000.
Springer-Verlag. ISBN 3-540-67259-1. (Cited on pages 22 and 116.)

[13] Anne Angermann, Michael Beuschel, and Martin Rau. Matlab - Simulink - Stateflow.
Grundlagen, Toolboxen, Beispiele. Oldenbourg, 5., aktualisierte edition, 2007. ISBN
3486582720. (Cited on pages 6, 23, 51, 69, and 113.)

[14] R. J. R. Back and F. Kurki-Suonio. Distributed cooperation with action systems. ACM
Trans. Program. Lang. Syst., 10(4):513–554, 1988. ISSN 0164-0925. doi: http://doi.acm.
org/10.1145/48022.48023. (Cited on page 22.)

[15] Ralph-Johan Back and Reino Kurki-Suonio. Decentralization of process nets with cen-
tralized control. In Proceedings of the 2nd ACM SIGACT-SIGOPS Symp. on Principles of
Distributed Computing, pages 131–142, Montreal, Quebec, Canada, 1983. ACM. (Cited
on pages 6, 73, 114, and 115.)

[16] Ralph-Johan Back and Kaisa Sere. Stepwise refinement of action systems. Structured
Programming, 12:17–30, 1991. (Cited on page 73.)

[17] Ralph-Johan Back and Joakim von Wright. Trace refinement of action systems. In B Jon-
sson and J. Parrow, editors, CONCUR-94:Concurrency Theory, volume 836 of Lecture
Notes in Computer Science, pages 367–384, Uppsala, Sweden, Aug 1994. Springer-Verlag.
(Cited on page 73.)

[18] Ralph-Johan Back and Joakim von Wright. Refinement Calculus, a Systematic Introduc-
tion. Graduate Texts in Computer Science. Springer, 1998. (Cited on pages 15, 16, 84,
and 85.)

122

http://dx.doi.org/10.1007/BFb0055622

Bibliography

[19] Ralph-Johan Back, Luigia Petre, and Ivan Porres. Continuous action systems as a model
for hybrid systems. Nordic Journal of Computing, 8(1):2–21, 2001. (Cited on pages 73
and 115.)

[20] Bahareh Badban, Martin Fränzle, Jan Peleska, and Tino Teige. Test automation for hybrid
systems. In SOQUA ’06: Proceedings of the 3rd international workshop on Software
quality assurance, pages 14–21, New York, NY, USA, 2006. ACM. ISBN 1-59593-584-3.
doi: http://doi.acm.org/10.1145/1188895.1188902. (Cited on page 23.)

[21] Elinor Bakker. Qualitative models of population dynamics. Master’s thesis, University of
Amsterdam, 2006. (Cited on page 45.)

[22] Aleksander Bandelj, Ivan Bratko, and Dorian Šuc. Qualitative simulation with CLP. In In
Proc. of 16th International Workshop on Qualitative Reasoning (QR’02, 2002. (Cited on
pages 26, 89, 91, and 114.)

[23] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. In Construction and Analysis of Safe, Secure, and Interoperable Smart De-
vices, volume 3362 of Lecture Notes in Computer Science, pages 49–69. Springer-Verlag,
2005. (Cited on page 15.)

[24] A. F. E. Belinfante, L. Frantzen, and C. Schallhart. Tools for test case generation. In
M. Broy, B. Jonsson, J. P. Katoen, M. Leucker, and A. Pretschner, editors, Model-Based
Testing of Reactive Systems: Advanced Lectures, volume 3472 of Lecture Notes in Com-
puter Science, pages 391–438. Springer Verlag, 2005. ISBN 3 540 26278 4. (Cited on
page 11.)

[25] Axel Belinfante. JTorX: A tool for on-line model-driven test derivation and execution.
In Javier Esparza and Rupak Majumdar, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 6015 of Lecture Notes in Computer Science, pages
266–270. Springer Berlin / Heidelberg, 2010. URL http://dx.doi.org/10.1007/
978-3-642-12002-2_21. (Cited on page 13.)

[26] Gilles Bernot. Testing against formal specifications: A theoretical view. In Samson
Abramsky and T. S. E. Maibaum, editors, TAPSOFT ’91: Proceedings of the International
Joint Conference on Theory and Practice of Software Development, Volume 2: Advances
in Distributed Computing (ADC) and Colloquium on Combining Paradigms for Software
Developmemnt (CCPSD), volume 494 of Lecture Notes in Computer Science, pages 99–
119, London, UK, 1991. Springer-Verlag. ISBN 3-540-53981-6. (Cited on page 15.)

[27] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded model checking. Advances in Computers, 58:118–149, 2003. (Cited on page 14.)

[28] Paul E. Black, Vadim Okun, and Yaacov Yesha. Mutation Operators for Specifications.
In Proceedings of the Fifteenth IEEE International Conference on Automated Software
Engineering (ASE’00), Washington, DC, USA, 2000. IEEE Computer Society. (Cited on
pages 14 and 98.)

123

http://dx.doi.org/10.1007/978-3-642-12002-2_21
http://dx.doi.org/10.1007/978-3-642-12002-2_21

Bibliography

[29] Johan Blom, Anders Hessel, Bengt Jonsson, and Paul Pettersson. Specifying and gener-
ating test cases using observer automata. In Jens Grabowski and Brian Nielsen, editors,
Formal Approaches to Software Testing, 4th International Workshop, FATES 2004, Linz,
Austria, September 21, 2004, Revised Selected Papers, volume 3395 of Lecture Notes in
Computer Science, pages 125–139, 2004. (Cited on pages 13 and 22.)

[30] Marcello M. Bonsangue, Joost N. Kok, and Kaisa Sere. An approach to object-orientation
in action systems. In Mathematics of Program Construction, LNCS 1422, pages 68–95.
Springer, 1998. (Cited on page 101.)

[31] Cari Borrás. Overexposure of Radiation Therapy Patients in Panama: Problem Recogni-
tion and Follow-Up Measures. Rev Panam Salud Publica, 20(2/3):173–187, 2006. URL
http://journal.paho.org/uploads/1162234952.pdf. (Cited on page 3.)

[32] Olivier Bouissou and Matthieu Martel. Abstract interpretation of the physical inputs of
embedded programs. In Francesco Logozzo, Doron Peled, and Lenore Zuck, editors, Ver-
ification, Model Checking, and Abstract Interpretation, volume 4905 of Lecture Notes
in Computer Science, pages 37–51. Springer Berlin / Heidelberg, 2008. URL http:
//dx.doi.org/10.1007/978-3-540-78163-9_8. (Cited on pages 2, 23, and 115.)

[33] Olivier Bouissou and Matthieu Martel. A hybrid denotational semantics for hybrid sys-
tems. In Sophia Drossopoulou, editor, ESOP’08/ETAPS’08: Proceedings of the Theory
and practice of software, 17th European conference on Programming languages and sys-
tems, volume 4960 of Lecture Notes in Computer Science, pages 63–77, Berlin, Hei-
delberg, 2008. Springer-Verlag. ISBN 3-540-78738-0, 978-3-540-78738-9. (Cited on
pages 2, 23, 115, and 116.)

[34] P. Bourque and R. Dupuis. Guide to the software engineering body of knowledge 2004
version. Guide to the Software Engineering Body of Knowledge, 2004. SWEBOK, 2004.
(Cited on page 9.)

[35] A. Bouwer, J. Liem, and B. Bredeweg. User Manual for Single-User Version of QR Work-
bench. Naturnet-Redime, STREP project co-funded by the European Commission within
the Sixth Framework Programme (2002-2006), 2005. Project no. 004074. Project deliver-
able D4.2.1. (Cited on page 45.)

[36] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and Ser-
gio Yovine. Kronos: A model-checking tool for real-time systems. In Anders Ravn and
Hans Rischel, editors, Formal Techniques in Real-Time and Fault-Tolerant Systems, vol-
ume 1486 of Lecture Notes in Computer Science, pages 298–302. Springer Berlin / Heidel-
berg, 1998. URL http://dx.doi.org/10.1007/BFb0055357. 10.1007/BFb0055357.
(Cited on page 22.)

[37] Harald Brandl. Testing of hybrid systems using qualitative models. volume Proceedings of
Formal Methods 2009 Doctoral Symposium, pages 46–52, 11 2009. URL http://www.
win.tue.nl/~mousavi/fm09ds.pdf. (Cited on pages 7 and 49.)

124

http://journal.paho.org/uploads/1162234952.pdf
http://dx.doi.org/10.1007/978-3-540-78163-9_8
http://dx.doi.org/10.1007/978-3-540-78163-9_8
http://dx.doi.org/10.1007/BFb0055357
http://www.win.tue.nl/~mousavi/fm09ds.pdf
http://www.win.tue.nl/~mousavi/fm09ds.pdf

Bibliography

[38] Harald Brandl and Franz Wotawa. Test case generation from QR models. In Ngoc
Nguyen, Leszek Borzemski, Adam Grzech, and Moonis Ali, editors, New Frontiers in Ap-
plied Artificial Intelligence, volume 5027 of Lecture Notes in Computer Science, pages
235–244. Springer Berlin / Heidelberg, 2008. URL http://dx.doi.org/10.1007/
978-3-540-69052-8_25. (Cited on pages 7 and 49.)

[39] Harald Brandl, Gordon Fraser, and Franz Wotawa. A report on QR-based testing. In
22nd International Workshop on Qualitative Reasoning, pages 1–9, 2008. URL www.cs.
colorado.edu/~lizb/qr08/papers/Brandl.pdf. (Cited on pages 7, 49, and 52.)

[40] Harald Brandl, Gordon Fraser, and Franz Wotawa. QR-model based testing. In AST ’08:
Proceedings of the 3rd international workshop on Automation of software test, pages 17–
20, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-030-2. doi: http://doi.acm.org/
10.1145/1370042.1370046. (Cited on pages 7, 49, and 52.)

[41] Harald Brandl, Gordon Fraser, and Franz Wotawa. Coverage-based testing using qualita-
tive reasoning models. In SEKE, pages 393–398, 2008. (Cited on pages 7 and 49.)

[42] Harald Brandl, Martin Weiglhofer, and Bernhard K. Aichernig. Automated conformance
verification of hybrid systems. In Proceedings of the 2010 10th International Conference
on Quality Software, QSIC ’10, pages 3–12, Washington, DC, USA, 2010. IEEE Computer
Society. ISBN 978-0-7695-4131-0. doi: http://dx.doi.org/10.1109/QSIC.2010.53. URL
http://dx.doi.org/10.1109/QSIC.2010.53. (Cited on pages 7, 14, and 73.)

[43] B. Bredeweg, J. Liem, A. Bouwer, and P Salles. Curriculum for learning about QR mod-
elling. Naturnet-Redime, STREP project co-funded by the European Commission within
the Sixth Framework Programme (2002-2006), 2005. Project no. 004074. Project deliver-
able D6.9.1. (Cited on page 45.)

[44] Bert Bredeweg, Anders Bouwer, Jelmer Jellema, Dirk Bertels, Floris Floris Linnebank,
and Jochem Liem. Garp3 - a new workbench for qualitative reasoning and modelling.
In Proceedings of 20th International Workshop on Qualitative Reasoning (QR-06), pages
21–28, Hannover, New Hampshire, USA, 2006. (Cited on pages 8, 26, 45, 49, and 113.)

[45] Ed Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. Sabnani, edi-
tors, Protocol Specification, Testing, and Verification VIII, pages 402–416. North-Holland,
1988. (Cited on page 18.)

[46] Ed Brinksma and Jan Tretmans. Testing transition systems: An annotated bibliography.
In Franck Cassez, Claude Jard, Brigitte Rozoy, and Mark Ryan, editors, Modeling and
Verification of Parallel Processes, volume 2067 of Lecture Notes in Computer Science,
pages 187–195. Springer Berlin / Heidelberg, 2001. URL http://dx.doi.org/10.
1007/3-540-45510-8_9. (Cited on page 11.)

[47] Ed Brinksma, Giuseppe Scollo, and Chris Steenbergen. Lotos specifications, their imple-
mentations and their tests. In Richard Jerry Linn and M. Ümit Uyar, editors, Conformance
testing methodologies and architectures for OSI protocols, pages 468–479, Los Alamitos,
CA, USA, 1995. IEEE Computer Society Press. ISBN 0-8186-5352-3. (Cited on page 18.)

125

http://dx.doi.org/10.1007/978-3-540-69052-8_25
http://dx.doi.org/10.1007/978-3-540-69052-8_25
www.cs.colorado.edu/~lizb/qr08/papers/Brandl.pdf
www.cs.colorado.edu/~lizb/qr08/papers/Brandl.pdf
http://dx.doi.org/10.1109/QSIC.2010.53
http://dx.doi.org/10.1007/3-540-45510-8_9
http://dx.doi.org/10.1007/3-540-45510-8_9

Bibliography

[48] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander
Pretschner, editors. Model-Based Testing of Reactive Systems, volume 3472 of Lecture
Notes in Computer Science, 2005. Springer. ISBN 3-540-26278-4. (Cited on page 11.)

[49] Timothy A. Budd and Ajei S. Gopal. Program testing by specification mutation. Comput.
Lang., 10:63–73, January 1985. ISSN 0096-0551. doi: 10.1016/0096-0551(85)90011-6.
URL http://portal.acm.org/citation.cfm?id=3806.3811. (Cited on pages 14
and 115.)

[50] J. N. Buxton and B. Randell, editors. Software Engineering Techniques: Report of a
conference sponsored by the NATO Science Committee, Rome, Italy, 27-31 Oct. 1969,
Brussels, Scientific Affairs Division, NATO. 1970. (Cited on page 3.)

[51] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler.
Exe: automatically generating inputs of death. In ACM Conference on Computer and
Communications Security, pages 322–335, 2006. (Cited on page 13.)

[52] Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis, and Stavros Tripakis. Trans-
lating discrete-time simulink to lustre. In Embedded Software, volume 2855 of Lecture
Notes in Computer Science, pages 84–99. Springer Berlin / Heidelberg, 2003. URL
http://dx.doi.org/10.1007/978-3-540-45212-6_7. (Cited on page 23.)

[53] Ana Cavalcanti and Marie-Claude Gaudel. Testing for refinement in CSP. In Michael
Butler, Michael Hinchey, and María Larrondo-Petrie, editors, Formal Methods and
Software Engineering, volume 4789 of Lecture Notes in Computer Science, pages
151–170. Springer Berlin / Heidelberg, 2007. URL http://dx.doi.org/10.1007/
978-3-540-76650-6_10. (Cited on page 17.)

[54] Kwang Ting Cheng and A. S. Krishnakumar. Automatic functional test generation using
the extended finite state machine model. In Proceedings of the 30th international Design
Automation Conference, DAC ’93, pages 86–91, New York, NY, USA, 1993. ACM. ISBN
0-89791-577-1. doi: http://doi.acm.org/10.1145/157485.164585. URL http://doi.acm.
org/10.1145/157485.164585. (Cited on page 13.)

[55] Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. STG: A symbolic test
generation tool. In Joost-Pieter Katoen and Perdita Stevens, editors, Tools and Algorithms
for the Construction and Analysis of Systems, volume 2280 of Lecture Notes in Computer
Science, pages 151–173. Springer Berlin / Heidelberg, 2002. URL http://dx.doi.org/
10.1007/3-540-46002-0_34. (Cited on page 13.)

[56] CNN. CNN transcripts, February 2007. URL http://transcripts.cnn.com/
TRANSCRIPTS/0702/24/tww.01.html. (Cited on page 4.)

[57] Enrico Coiera. The qualitative representation of physical systems. The Knowledge Engi-
neering Review, 7:55–77, 1992. (Cited on page 25.)

[58] Thao Dang and Tarik Nahhal. Using disparity to enhance test generation for hybrid
systems. In Kenji Suzuki, Teruo Higashino, Andreas Ulrich, and Toru Hasegawa, ed-
itors, Testing of Software and Communicating Systems, volume 5047 of Lecture Notes

126

http://portal.acm.org/citation.cfm?id=3806.3811
http://dx.doi.org/10.1007/978-3-540-45212-6_7
http://dx.doi.org/10.1007/978-3-540-76650-6_10
http://dx.doi.org/10.1007/978-3-540-76650-6_10
http://doi.acm.org/10.1145/157485.164585
http://doi.acm.org/10.1145/157485.164585
http://dx.doi.org/10.1007/3-540-46002-0_34
http://dx.doi.org/10.1007/3-540-46002-0_34
http://transcripts.cnn.com/TRANSCRIPTS/0702/24/tww.01.html
http://transcripts.cnn.com/TRANSCRIPTS/0702/24/tww.01.html

Bibliography

in Computer Science, pages 54–69. Springer Berlin / Heidelberg, 2008. URL http:
//dx.doi.org/10.1007/978-3-540-68524-1_6. (Cited on page 24.)

[59] Conrado Daws, Alfredo Olivero, and Sergio Yovine. Verifying ET-LOTOS programmes
with KRONOS. In Proceedings of the 7th IFIP WG6.1 International Conference on For-
mal Description Techniques VII, pages 227–242, London, UK, UK, 1995. Chapman &
Hall, Ltd. ISBN 0-412-64450-9. URL http://portal.acm.org/citation.cfm?id=
646213.681510. (Cited on page 22.)

[60] Luca de Alfaro. Game models for open systems. In Verification: Theory and Practice,
volume 2772 of Lecture Notes in Computer Science, pages 269–289, 2003. (Cited on
page 20.)

[61] Hidde De Jong. Qualitative simulation and related approaches for the analysis of dynamic
systems. Knowl. Eng. Rev., 19(2):93–132, 2004. ISSN 0269-8889. doi: http://dx.doi.org/
10.1017/S0269888904000177. (Cited on page 39.)

[62] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on Test Data Selection: Help for
the Practicing Programmer. Computer, 11:34–41, April 1978. ISSN 0018-9162. doi: 10.
1109/C-M.1978.218136. URL http://portal.acm.org/citation.cfm?id=1300736.
1301357. (Cited on pages 6 and 14.)

[63] W. DeRoever and Kai Engelhardt. Data Refinement: Model-Oriented Proof Methods
and Their Comparison. Cambridge University Press, New York, NY, USA, 1999. ISBN
0521641705. (Cited on pages 15 and 83.)

[64] Edsger W. Dijkstra and Carel S. Scholten. Predicate calculus and program semantics.
Springer-Verlag New York, Inc., New York, NY, USA, 1990. ISBN 0-387-96957-8. (Cited
on page 16.)

[65] David Dill. Timing assumptions and verification of finite-state concurrent systems. In
Joseph Sifakis, editor, Automatic Verification Methods for Finite State Systems, volume
407 of Lecture Notes in Computer Science, pages 197–212. Springer Berlin / Heidelberg,
1990. URL http://dx.doi.org/10.1007/3-540-52148-8_17. (Cited on page 22.)

[66] Mark Dowson. The ARIANE 5 Software Failure. ACM SIGSOFT Software Engineering
Notes, 22(2):84, 1997. ISSN 0163-5948. URL http://portal.acm.org/citation.
cfm?id=251992. (Cited on page 4.)

[67] B. Dutertre and L. de Moura. The Yices SMT solver. Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, August 2006. (Cited on page 12.)

[68] J.M. Esposito. Randomized test case generation for hybrid systems: metric selection.
System Theory, 2004. Proceedings of the Thirty-Sixth Southeastern Symposium on System
Theory, pages 236–240, 2004. doi: 10.1109/SSST.2004.1295655. (Cited on pages 24
and 116.)

[69] Adam Farquhar, Benjamin Kuipers, Jeff Rickel, David Throop, and The Qualitative Rea-
soning Group. QSIM: The program and its use, July 1993. (Cited on page 32.)

127

http://dx.doi.org/10.1007/978-3-540-68524-1_6
http://dx.doi.org/10.1007/978-3-540-68524-1_6
http://portal.acm.org/citation.cfm?id=646213.681510
http://portal.acm.org/citation.cfm?id=646213.681510
http://portal.acm.org/citation.cfm?id=1300736.1301357
http://portal.acm.org/citation.cfm?id=1300736.1301357
http://dx.doi.org/10.1007/3-540-52148-8_17
http://portal.acm.org/citation.cfm?id=251992
http://portal.acm.org/citation.cfm?id=251992

Bibliography

[70] Robert W. Floyd. Assigning meanings to programs. Proceedings of Symposium on
Applied Mathematics, 19:19–32, 1967. URL http://laser.cs.umass.edu/courses/
cs521-621.Spr06/papers/Floyd.pdf. (Cited on page 13.)

[71] Kenneth D. Forbus. Qualitative process theory. Artif. Intell., 24:85–168, December 1984.
ISSN 0004-3702. doi: 10.1016/0004-3702(84)90038-9. URL http://portal.acm.org/
citation.cfm?id=2719.2721. (Cited on pages 25, 26, and 45.)

[72] Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse. A symbolic framework for model-
based testing. In 1st Combined International Workshops on Formal Approaches to Soft-
ware Testing and Runtime Verification, volume 4262 of LNCS, pages 40–54. Springer,
2006. (Cited on page 19.)

[73] Gordon Fraser, Franz Wotawa, and Paul E. Ammann. Testing with model checkers:
a survey. Softw. Test. Verif. Reliab., 19:215–261, September 2009. ISSN 0960-0833.
doi: 10.1002/stvr.v19:3. URL http://portal.acm.org/citation.cfm?id=1600258.
1600261. (Cited on page 11.)

[74] Peter Fritzson. Modelica - a language for equation-based physical modeling and high
performance simulation. In Proceedings of the 4th International Workshop on Applied
Parallel Computing, Large Scale Scientific and Industrial Problems, PARA ’98, pages
149–160, London, UK, 1998. Springer-Verlag. ISBN 3-540-65414-3. URL http://
portal.acm.org/citation.cfm?id=645781.666514. (Cited on page 22.)

[75] Angelo Gargantini and Constance Heitmeyer. Using model checking to generate tests
from requirements specifications. In Oscar Nierstrasz and Michel Lemoine, editors, Soft-
ware Engineering — ESEC/FSE ’99, volume 1687 of Lecture Notes in Computer Sci-
ence, pages 146–162. Springer Berlin / Heidelberg, 1999. URL http://dx.doi.org/
10.1007/3-540-48166-4_10. (Cited on page 115.)

[76] Marie-Claude Gaudel. Testing can be formal too. In TAPSOFT’95: Theory and Practice
of Software Development, 6th International Joint Conference CAAP/FASE, volume 915 of
Lecture Notes in Computer Science, pages 82–96. Springer-Verlag, May 1995. (Cited on
pages 9 and 12.)

[77] Marie-Claude Gaudel and Pascale Le Gall. Testing data types implementations from alge-
braic specifications. In Robert M. Hierons, Jonathan P. Bowen, and Mark Harman, editors,
Formal Methods and Testing 2008, volume 4949 of LNCS, pages 209–239, 2008. (Cited
on page 11.)

[78] Stefania Gnesi, Diego Latella, and Mieke Massink. Formal test-case generation for UML
statecharts. In ICECCS ’04: Proc. of the 9th IEEE Int. Conf. on Engineering Complex
Computer Systems Navigating Complexity in the e-Engineering Age, pages 75–84. IEEE
Computer Society, 2004. (Cited on page 101.)

[79] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated random
testing. SIGPLAN Not., 40:213–223, June 2005. ISSN 0362-1340. doi: http://doi.acm.org/
10.1145/1064978.1065036. URL http://doi.acm.org/10.1145/1064978.1065036.
(Cited on page 12.)

128

http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf
http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf
http://portal.acm.org/citation.cfm?id=2719.2721
http://portal.acm.org/citation.cfm?id=2719.2721
http://portal.acm.org/citation.cfm?id=1600258.1600261
http://portal.acm.org/citation.cfm?id=1600258.1600261
http://portal.acm.org/citation.cfm?id=645781.666514
http://portal.acm.org/citation.cfm?id=645781.666514
http://dx.doi.org/10.1007/3-540-48166-4_10
http://dx.doi.org/10.1007/3-540-48166-4_10
http://doi.acm.org/10.1145/1064978.1065036

Bibliography

[80] Wolfgang Grieskamp, Nicolas Kicillof, Keith Stobie, and Victor Braberman. Model-based
quality assurance of protocol documentation: tools and methodology. Software Testing,
Verification and Reliability (STVR), 2010. (Cited on page 1.)

[81] Andreas Griesmayer, Bernhard Aichernig, Einar Broch Johnsen, and Rudolf Schlatte. Dy-
namic symbolic execution for testing distributed objects. In Catherine Dubois, editor,
Proceedings of the 3rd International Conference on Tests and Proofs, volume 5668 of
Lecture Notes in Computer Science, pages 105–120, Berlin, Heidelberg, 2009. Springer-
Verlag. ISBN 978-3-642-02948-6. doi: http://dx.doi.org/10.1007/978-3-642-02949-3_9.
URL http://dx.doi.org/10.1007/978-3-642-02949-3_9. (Cited on page 13.)

[82] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow program-
ming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, September 1991.
URL citeseer.ist.psu.edu/halbwachs91synchronous.html. (Cited on page 23.)

[83] T. A. Henzinger. The theory of hybrid automata. In LICS ’96: Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science, page 278, Washington, DC, USA,
1996. IEEE Computer Society. ISBN 0-8186-7463-6. (Cited on pages xiii, 2, 22, and 73.)

[84] Thomas Henzinger, Benjamin Horowitz, Rupak Majumdar, and Howard Wong-Toi. Be-
yond HyTech : Hybrid Systems Analysis Using Interval Numerical Methods. In Nancy
Lynch and Bruce Krogh, editors, Hybrid Systems: Computation and Control, volume 1790
of Lecture Notes in Computer Science, pages 130–144. Springer Berlin / Heidelberg, 2000.
URL http://dx.doi.org/10.1007/3-540-46430-1_14. (Cited on page 23.)

[85] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decid-
able about hybrid automata? In STOC ’95: Proceedings of the twenty-seventh annual
ACM symposium on Theory of computing, pages 373–382, New York, NY, USA, 1995.
ACM. ISBN 0-89791-718-9. doi: http://doi.acm.org/10.1145/225058.225162. (Cited on
page 23.)

[86] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech: A model checker for
hybrid systems. STTT, 1(1-2):110–122, 1997. (Cited on page 23.)

[87] Anders Hessel and Paul Pettersson. A test case generation algorithm for real-time systems.
In QSIC ’04: Proceedings of the Quality Software, Fourth International Conference, pages
268–273, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2207-6.
doi: http://dx.doi.org/10.1109/QSIC.2004.5. (Cited on page 22.)

[88] Anders Hessel and Paul Pettersson. Model-based testing of a wap gateway: An industrial
case-study. In Lubos Brim, Boudewijn R. Haverkort, Martin Leucker, and Jaco van de
Pol, editors, FMICS/PDMC, volume 4346 of Lecture Notes in Computer Science, pages
116–131, 2006. (Cited on page 22.)

[89] Anders Hessel, Kim Larsen, Marius Mikucionis, Brian Nielsen, Paul Pettersson, and Arne
Skou. Testing real-time systems using UPPAAL. In Robert Hierons, Jonathan Bowen,
and Mark Harman, editors, Formal Methods and Testing, volume 4949 of Lecture Notes
in Computer Science, pages 77–117. Springer Berlin / Heidelberg, 2008. URL http:
//dx.doi.org/10.1007/978-3-540-78917-8_3. (Cited on pages 13, 19, 21, and 22.)

129

http://dx.doi.org/10.1007/978-3-642-02949-3_9
citeseer.ist.psu.edu/halbwachs91synchronous.html
http://dx.doi.org/10.1007/3-540-46430-1_14
http://dx.doi.org/10.1007/978-3-540-78917-8_3
http://dx.doi.org/10.1007/978-3-540-78917-8_3

Bibliography

[90] Timothy J. Hickey and David K. Wittenberg. Rigorous modeling of hybrid systems us-
ing interval arithmetic constraints. In Rajeev Alur and George J. Pappas, editors, Hy-
brid Systems: Computation and Control, volume 2993 of Lecture Notes in Computer Sci-
ence, pages 139–142. Springer Berlin / Heidelberg, 2004. URL http://dx.doi.org/
10.1007/978-3-540-24743-2_27. (Cited on pages 2, 23, and 115.)

[91] Robert Hierons, Mercedes Merayo, and Manuel Núñez. Implementation relations for the
distributed test architecture. In Kenji Suzuki, Teruo Higashino, Andreas Ulrich, and Toru
Hasegawa, editors, Testing of Software and Communicating Systems, volume 5047 of Lec-
ture Notes in Computer Science, pages 200–215. Springer Berlin / Heidelberg, 2008. URL
http://dx.doi.org/10.1007/978-3-540-68524-1_15. (Cited on page 19.)

[92] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Derrick,
Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul Krause, Gerald
Lüttgen, Anthony J. H. Simons, Sergiy A. Vilkomir, Martin R. Woodward, and Hussein
Zedan. Using formal specifications to support testing. ACM Computing Surveys, 41(2),
2009. (Cited on page 11.)

[93] C.A.R. Hoare. Communicating Sequential Processes. International Series in Computer
Science. Prentice-Hall, 1985. (Cited on page 16.)

[94] C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall Interna-
tional, 1998. (Cited on page 16.)

[95] IEEE. IEEE standard glossary of software engineering terminology. IEEE Std 610.12-
1990, December 1990. (Cited on pages 9 and 10.)

[96] IEEE. IEEE standard for information technology - requirements and guidelines for test
methods specifications and test method implementations for measuring conformance to
POSIX(R) standards. IEEE Std 2003-1997, pages –, 2 Sep 1998. (Cited on page 12.)

[97] ISO. ISO 8807: Information processing systems – open systems interconnection – LO-
TOS – a formal description technique based on the temporal ordering of observational
behaviour, 1989. (Cited on pages 13, 17, and 51.)

[98] Claude Jard and Thierry Jéron. TGV: theory, principles and algorithms. International
Journal on Software Tools for Technology Transfer, 7(4):297–315, August 2005. (Cited
on pages 13, 21, 51, 53, 107, 108, and 115.)

[99] Yue Jia and Mark Harman. An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering, 99(PrePrints), 2010. ISSN 0098-5589. doi:
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.62. (Cited on pages 14 and 115.)

[100] Einar B. Johnsen and Olaf Owe. An asynchronous communication model for distributed
concurrent objects. In SEFM ’04: Proceedings of the Software Engineering and Formal
Methods, Second International Conference, pages 188–197, Washington, DC, USA, 2004.
IEEE Computer Society. doi: http://dx.doi.org/10.1109/SEFM.2004.6. URL http://dx.
doi.org/10.1109/SEFM.2004.6. (Cited on page 13.)

130

http://dx.doi.org/10.1007/978-3-540-24743-2_27
http://dx.doi.org/10.1007/978-3-540-24743-2_27
http://dx.doi.org/10.1007/978-3-540-68524-1_15
http://dx.doi.org/10.1109/SEFM.2004.6
http://dx.doi.org/10.1109/SEFM.2004.6

Bibliography

[101] Cliff B. Jones. Systematic Software Development Using VDM. Series in Computer Science.
Prentice-Hall, second edition, 1990. (Cited on pages 15 and 16.)

[102] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model Checking. The MIT
Press, 1999. ISBN 0262032708. (Cited on pages 9 and 53.)

[103] A. Julius, Georgios Fainekos, Madhukar Anand, Insup Lee, and George Pappas. Robust
test generation and coverage for hybrid systems. In Alberto Bemporad, Antonio Bic-
chi, and Giorgio Buttazzo, editors, Hybrid Systems: Computation and Control, volume
4416 of Lecture Notes in Computer Science, pages 329–342. Springer Berlin / Heidel-
berg, 2007. URL http://dx.doi.org/10.1007/978-3-540-71493-4_27. (Cited on
pages 23 and 116.)

[104] Thierry Jéron and Pierre Morel. Test generation derived from model-checking. In Nicolas
Halbwachs and Doron Peled, editors, Computer Aided Verification, volume 1633 of Lec-
ture Notes in Computer Science, pages 108–122. Springer Berlin / Heidelberg, 1999. URL
http://dx.doi.org/10.1007/3-540-48683-6_12. (Cited on page 54.)

[105] Elisabeth Jöbstl, Martin Weiglhofer, Bernhard K. Aichernig, and Franz Wotawa. When
BDDs fail: Conformance testing with symbolic execution and SMT solving. In Pro-
ceedings of the 2010 Third International Conference on Software Testing, Verification
and Validation, ICST ’10, pages 479–488, Washington, DC, USA, 2010. IEEE Computer
Society. ISBN 978-0-7695-3990-4. doi: http://dx.doi.org/10.1109/ICST.2010.48. URL
http://dx.doi.org/10.1109/ICST.2010.48. (Cited on page 12.)

[106] Supaporn Kansomkeat and Wanchai Rivepiboon. Automated-generating test case using
uml statechart diagrams. In Proceedings of the 2003 annual research conference of the
South African institute of computer scientists and information technologists on Enablement
through technology, SAICSIT ’03, pages 296–300. South African Institute for Computer
Scientists and Information Technologists, 2003. ISBN 1-58113-774-5. URL http://
portal.acm.org/citation.cfm?id=954014.954046. (Cited on page 101.)

[107] Anne Keuneke and Dean Allemang. Exploring the no-function-in-structure principle.
J. Exp. Theor. Artif. Intell., 1:79–89, January 1990. ISSN 0952-813X. doi: 10.1080/
09528138908953694. URL http://portal.acm.org/citation.cfm?id=104943.
104948. (Cited on page 25.)

[108] James C. King. Symbolic execution and program testing. Commun. ACM, 19:385–394,
July 1976. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/360248.360252. URL http:
//doi.acm.org/10.1145/360248.360252. (Cited on page 12.)

[109] Johan De Kleer and John Seely Brown. A qualitative physics based on confluences.
Artif. Intell., 24(1-3):7–83, 1984. ISSN 0004-3702. doi: http://dx.doi.org/10.1016/
0004-3702(84)90037-7. (Cited on page 25.)

[110] Willibald Krenn, Rupert Schlick, and Bernhard K. Aichernig. Mapping UML to labeled
transition systems for test-case generation – a translation via object-oriented action sys-
tems. In Proc. of Formal Methods for Components and Objects (FMCO) 2009, volume
6286 of Lecture Notes in Computer Science. Springer, 2010. (Cited on page 101.)

131

http://dx.doi.org/10.1007/978-3-540-71493-4_27
http://dx.doi.org/10.1007/3-540-48683-6_12
http://dx.doi.org/10.1109/ICST.2010.48
http://portal.acm.org/citation.cfm?id=954014.954046
http://portal.acm.org/citation.cfm?id=954014.954046
http://portal.acm.org/citation.cfm?id=104943.104948
http://portal.acm.org/citation.cfm?id=104943.104948
http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252

Bibliography

[111] Moez Krichen and Stavros Tripakis. Conformance testing for real-time systems.
Form. Methods Syst. Des., 34:238–304, June 2009. ISSN 0925-9856. doi: 10.1007/
s10703-009-0065-1. URL http://portal.acm.org/citation.cfm?id=1541661.
1541692. (Cited on page 19.)

[112] Benjamin Kuipers. Qualitative Reasoning: Modeling and Simulation with Incomplete
Knowledge. MIT Press, 1994. (Cited on pages 23, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37,
38, 115, and 116.)

[113] Kim G. Larsen, Marius Mikucionis, and Brian Nielsen. Online testing of real-time systems
using uppaal: Status and future work. In Ed Brinksma, Wolfgang Grieskamp, and Jan Tret-
mans, editors, Perspectives of Model-Based Testing, number 04371 in Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany, 2005. <http://drops.dagstuhl.de/opus/volltexte/2005/326>
[date of citation: 2005-01-01]. (Cited on page 22.)

[114] Kim G. Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou. Testing real-time
embedded software using uppaal-tron: an industrial case study. In EMSOFT ’05: Pro-
ceedings of the 5th ACM international conference on Embedded software, pages 299–306,
New York, NY, USA, 2005. ACM. ISBN 1-59593-091-4. doi: http://doi.acm.org/10.1145/
1086228.1086283. (Cited on page 22.)

[115] Steven M. LaValle and James J. Kuffner Jr. Randomized kinodynamic planning. I. J.
Robotic Res., 20(5):378–400, 2001. (Cited on pages 24 and 116.)

[116] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for detailed design.
In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Behavioral Specifications
of Businesses and Systems, pages 175–188. Kluwer Academic Publishers, 1999. URL
citeseer.ist.psu.edu/leavens99jml.html. (Cited on page 15.)

[117] Y. Ledru, L. du Bousquet, P. Bontron, O. Maury, C. Oriat, and M.-L. Potet. Test pur-
poses: Adapting the notion of specification to testing. In Proceedings of the 16th IEEE
international conference on Automated software engineering, ASE ’01, pages 127–134,
Washington, DC, USA, 2001. IEEE Computer Society. URL http://portal.acm.org/
citation.cfm?id=872023.872569. (Cited on page 52.)

[118] David Lee and Mihakus Yannakakis. Principles and methods of testing finite state ma-
chines – a survey. Proceedings of the IEEE, 84(8):1090–1123, August 1996. (Cited on
page 11.)

[119] Marie-Anne Lefebvre and Hervé Guéguen. Hybrid abstractions of affine systems. Nonlin-
ear Analysis, 65(6):1150 – 1167, 2006. ISSN 0362-546X. doi: DOI:10.1016/j.na.2005.12.
016. URL http://www.sciencedirect.com/science/article/B6V0Y-4JFGF71-2/
2/9f7f4ee86fb16bf7f463a65950bc6feb. Hybrid Systems and Applications (5). (Cited
on pages 2, 23, and 115.)

[120] Nancy G. Leveson. The role of software in spacecraft accidents. AIAA Journal of Space-
craft and Rockets, 41:564–575, 2004. (Cited on page 4.)

132

http://portal.acm.org/citation.cfm?id=1541661.1541692
http://portal.acm.org/citation.cfm?id=1541661.1541692
citeseer.ist.psu.edu/leavens99jml.html
http://portal.acm.org/citation.cfm?id=872023.872569
http://portal.acm.org/citation.cfm?id=872023.872569
http://www.sciencedirect.com/science/article/B6V0Y-4JFGF71-2/2/9f7f4ee86fb16bf7f463a65950bc6feb
http://www.sciencedirect.com/science/article/B6V0Y-4JFGF71-2/2/9f7f4ee86fb16bf7f463a65950bc6feb

Bibliography

[121] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. MuJava: a mutation system for Java.
In ICSE ’06: Proceedings of the 28th international conference on Software engineering,
pages 827–830, New York, NY, USA, 2006. ACM. ISBN 1-59593-375-1. doi: http:
//doi.acm.org/10.1145/1134285.1134425. (Cited on page 109.)

[122] K.L. Man and R.R.H. Schiffelers. Formal Specification and Analysis of Hybrid Systems.
PhD thesis, Eindhoven University of Technology, 2006. (Cited on page 22.)

[123] Yuri V. Matiyasevich. Hilbert’s tenth problem. MIT Press, Cambridge, MA, USA, 1993.
ISBN 0-262-13295-8. (Cited on page 40.)

[124] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall Professional Tech-
nical Reference, 1997. ISBN 0-13-629155-4. (Cited on pages 13 and 15.)

[125] Carroll C. Morgan. Programming from Specifications. Series in Computer Science.
Prentice-Hall International, 1990. (Cited on page 15.)

[126] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley & Sons,
2004. ISBN 0471469122. (Cited on page 3.)

[127] Tarik Nahhal and Thao Dang. Test coverage for continuous and hybrid systems. In Werner
Damm and Holger Hermanns, editors, Computer Aided Verification, volume 4590 of Lec-
ture Notes in Computer Science, pages 449–462. Springer Berlin / Heidelberg, 2007. URL
http://dx.doi.org/10.1007/978-3-540-73368-3_47. (Cited on pages 24 and 116.)

[128] A. Jefferson Offutt and Jie Pan. Automatically detecting equivalent mutants and infeasible
paths. Software Testing, Verification and Reliability, 7:165–192, 1997. (Cited on page 14.)

[129] A.J. Offutt and Jie Pan. Detecting equivalent mutants and the feasible path problem. Com-
puter Assurance, 1996. COMPASS ’96, ’Systems Integrity. Software Safety. Process Secu-
rity’. Proceedings of the Eleventh Annual Conference on, pages 224 –236, jun. 1996. doi:
10.1109/CMPASS.1996.507890. (Cited on page 14.)

[130] Alexandre Petrenko and Nina Yevtushenko. Queued testing of transition systems with
inputs and outputs. In Rob Hierons and Thierry Jéron, editors, Proceedings of the Work-
shop on Formal Approaches to Testing Of Software (Fates’02), A Satellite Workshop of
Concur’02, pages 79–94, Brno, Czech Republic, August 2002. (Cited on page 20.)

[131] André Platzer. Differential dynamic logic for hybrid systems. Journal of Automated Rea-
soning, 41(2):143–189, 2008. ISSN 0168-7433. doi: 10.1007/s10817-008-9103-8. (Cited
on pages 23 and 73.)

[132] André Platzer and Jan-David Quesel. Keymaera: A hybrid theorem prover for hybrid sys-
tems (system description). In Alessandro Armando, Peter Baumgartner, and Gilles Dowek,
editors, Automated Reasoning, volume 5195 of Lecture Notes in Computer Science, pages
171–178. Springer Berlin, Heidelberg, 2008. (Cited on page 23.)

[133] André Platzer and Jan-David Quesel. Logical verification and systematic parametric anal-
ysis in train control. In Magnus Egerstedt and Bud Mishra, editors, Hybrid Systems:

133

http://dx.doi.org/10.1007/978-3-540-73368-3_47

Bibliography

Computation and Control, volume 4981 of Lecture Notes in Computer Science, pages
646–649. Springer Berlin / Heidelberg, 2008. URL http://dx.doi.org/10.1007/
978-3-540-78929-1_55. (Cited on page 23.)

[134] The RAISE Language Group. The RAISE Development Method. BCS Practitioner Series.
Prentice Hall, 1995. (Cited on pages 15 and 16.)

[135] Alur Rajeev, Thomas A. Henzinger, Gerardo Lafferriere, and George J. Pappas. Discrete
abstractions of hybrid systems. Proceedings of the IEEE, 88(7):971–983, 2000. (Cited on
page 115.)

[136] Reactive Systems. Model-based testing and validation with Reactis. Technical report,
Reactive Systems, Inc., 2003. (Cited on page 116.)

[137] Tomas Rokicki and Chris Myers. Automatic verification of timed circuits. In David
Dill, editor, Computer Aided Verification, volume 818 of Lecture Notes in Computer Sci-
ence, pages 468–480. Springer Berlin / Heidelberg, 1994. URL http://dx.doi.org/
10.1007/3-540-58179-0_76. (Cited on page 22.)

[138] Mauno Ronkko and Anders P. Ravn. Switches and jumps in hybrid action systems. Tech-
nical report, 1997. (Cited on page 78.)

[139] Mauno Rönkkö, Anders P. Ravn, and Kaisa Sere. Hybrid action systems. Theor.
Comput. Sci., 290(1):937–973, 2003. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/
S0304-3975(02)00547-9. (Cited on pages 6, 22, 73, 75, 78, 79, 84, 114, and 115.)

[140] A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997. ISBN 0136744095. (Cited on
page 17.)

[141] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language Refer-
ence Manual, The (2nd Edition). Pearson Higher Education, 2004. ISBN 0321245628.
(Cited on page 11.)

[142] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (2nd Edi-
tion). Prentice Hall, 2002. ISBN 0137903952. (Cited on page 36.)

[143] Mauno Rönkkö and Kaisa Sere. Refinement and continuous behaviour. In Frits Vaandrager
and Jan van Schuppen, editors, Hybrid Systems: Computation and Control, volume 1569
of Lecture Notes in Computer Science, pages 223–237. Springer Berlin / Heidelberg, 1999.
URL http://dx.doi.org/10.1007/3-540-48983-5_21. (Cited on page 83.)

[144] A. C. Cem Say and H. Levent Akin. Sound and complete qualitative simulation is impos-
sible. Artif. Intell., 149(2):251–266, 2003. ISSN 0004-3702. doi: http://dx.doi.org/10.
1016/S0004-3702(03)00077-8. (Cited on page 40.)

[145] Emil Sekerinski and Kaisa Sere. A theory of prioritizing composition. Technical report,
1996. (Cited on page 102.)

134

http://dx.doi.org/10.1007/978-3-540-78929-1_55
http://dx.doi.org/10.1007/978-3-540-78929-1_55
http://dx.doi.org/10.1007/3-540-58179-0_76
http://dx.doi.org/10.1007/3-540-58179-0_76
http://dx.doi.org/10.1007/3-540-48983-5_21

Bibliography

[146] Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic Unit Testing and Explicit Path
Model-Checking Tools. In Thomas Ball and Robert Jones, editors, Computer Aided Ver-
ification, volume 4144 of Lecture Notes in Computer Science, pages 419–423. Springer
Berlin / Heidelberg, 2006. URL http://dx.doi.org/10.1007/11817963_38. (Cited
on page 12.)

[147] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for c. In
ESEC/FSE-13: Proceedings of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium on Foundations of software en-
gineering, pages 263–272, New York, NY, USA, 2005. ACM. ISBN 1595930140. doi: 10.
1145/1081706.1081750. URL http://portal.acm.org/citation.cfm?id=1081750.
(Cited on page 12.)

[148] Oleg Sokolsky and Hyoung Seok Hong. Qualitative modeling of hybrid systems. In IN
PROC. OF THE MONTREAL WORKSHOP, 2001. (Cited on page 116.)

[149] Ian Stewart and David Tall. The Foundations of Mathematics. Oxford University Press,
1977. (Cited on page 43.)

[150] Nikolai Tillmann and Jonathan de Halleux. Pex–White Box Test Generation for .NET. In
Bernhard Beckert and Reiner Hähnle, editors, Tests and Proofs, volume 4966 of Lecture
Notes in Computer Science, pages 134–153. Springer Berlin / Heidelberg, 2008. URL
http://dx.doi.org/10.1007/978-3-540-79124-9_10. (Cited on page 13.)

[151] Ashish Tiwari. Abstractions for hybrid systems. Form. Methods Syst. Des., 32:57–
83, February 2008. ISSN 0925-9856. doi: 10.1007/s10703-007-0044-3. URL http:
//portal.acm.org/citation.cfm?id=1331427.1331462. (Cited on page 115.)

[152] Ashish Tiwari and Gaurav Khanna. Series of abstractions for hybrid automata. In Claire
Tomlin and Mark Greenstreet, editors, Hybrid Systems: Computation and Control, volume
2289 of Lecture Notes in Computer Science, pages 425–438. Springer Berlin, Heidelberg,
2002. URL http://dx.doi.org/10.1007/3-540-45873-5_36. (Cited on pages 2, 23,
and 115.)

[153] C. Tomlin, G.J. Pappas, and S. Sastry. Conflict resolution for air traffic management: a
study in multiagent hybrid systems. Automatic Control, IEEE Transactions on, 43(4):509
–521, April 1998. ISSN 0018-9286. doi: 10.1109/9.664154. (Cited on page 23.)

[154] Jan Tretmans. A formal approach to conformance testing. In Proceedings of the
IFIP TC6/WG6.1 Sixth International Workshop on Protocol Test systems VI, pages 257–
276, Amsterdam, The Netherlands, The Netherlands, 1994. North-Holland Publishing
Co. ISBN 0-444-81697-6. URL http://portal.acm.org/citation.cfm?id=648128.
747730. (Cited on page 15.)

[155] Jan Tretmans. Test generation with inputs, outputs, and quiescence. In Tiziana Margaria
and Bernhard Steffen, editors, Tools and Algorithms for the Construction and Analysis of
Systems, volume 1055 of Lecture Notes in Computer Science, pages 127–146. Springer
Berlin / Heidelberg, 1996. URL http://dx.doi.org/10.1007/3-540-61042-1_42.
(Cited on pages 6 and 18.)

135

http://dx.doi.org/10.1007/11817963_38
http://portal.acm.org/citation.cfm?id=1081750
http://dx.doi.org/10.1007/978-3-540-79124-9_10
http://portal.acm.org/citation.cfm?id=1331427.1331462
http://portal.acm.org/citation.cfm?id=1331427.1331462
http://dx.doi.org/10.1007/3-540-45873-5_36
http://portal.acm.org/citation.cfm?id=648128.747730
http://portal.acm.org/citation.cfm?id=648128.747730
http://dx.doi.org/10.1007/3-540-61042-1_42

Bibliography

[156] Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software
- Concepts and Tools, 17(3):103–120, 1996. (Cited on pages 18, 19, 49, 50, 95, 114,
and 115.)

[157] Jan Tretmans. Model based testing with labelled transition systems. In R.M. Hierons, J.P.
Bowen, and M. Harman, editors, Formal Methods and Testing, volume 4949 of Lecture
Notes in Computer Science, pages 1–38. Springer, 2008. (Cited on pages 11, 13, 19, 55,
and 56.)

[158] Jan Tretmans and Ed Brinksma. TorX: Automated model based testing. In A. Hartman and
K. Dussa-Zieger, editors, Proceedings of the 1st European Conference on Model-Driven
Software Engineering, pages 13–25, Nurnburg, Germany, 2003. (Cited on page 13.)

[159] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006. (Cited on page 11.)

[160] Michiel van Osch. Hybrid input-output conformance and test generation. In Klaus
Havelund, Manuel Núñez, Grigore Rosu, and Burkhart Wolff, editors, Formal Approaches
to Software Testing and Runtime Verification, volume 4262 of Lecture Notes in Computer
Science, pages 70–84. Springer Berlin / Heidelberg, 2006. URL http://dx.doi.org/
10.1007/11940197_5. (Cited on pages 19, 21, and 117.)

[161] Margus Veanes and Nikolaj Bjørner. Input-output model programs. In Martin Leucker and
Carroll Morgan, editors, Theoretical Aspects of Computing - ICTAC 2009, volume 5684 of
Lecture Notes in Computer Science, pages 322–335. Springer Berlin / Heidelberg, 2009.
URL http://dx.doi.org/10.1007/978-3-642-03466-4_21. (Cited on page 20.)

[162] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Till-
mann, and Lev Nachmanson. Model-based testing of object-oriented reactive systems
with spec explorer. In Robert Hierons, Jonathan Bowen, and Mark Harman, edi-
tors, Formal Methods and Testing, volume 4949 of Lecture Notes in Computer Science,
pages 39–76. Springer Berlin / Heidelberg, 2008. URL http://dx.doi.org/10.1007/
978-3-540-78917-8_2. (Cited on pages 13 and 20.)

[163] Martin Weiglhofer and Franz Wotawa. "On the fly" input output conformance verification.
In Proceedings of the IASTED International Conference on Software Engineering, SE ’08,
pages 286–291, Anaheim, CA, USA, 2008. ACTA Press. ISBN 978-0-88986-716-1. URL
http://portal.acm.org/citation.cfm?id=1722603.1722655. (Cited on pages 89
and 115.)

[164] Martin Weiglhofer and Franz Wotawa. Asynchronous input-output conformance testing.
In Proceedings of the 2009 33rd Annual IEEE International Computer Software and Ap-
plications Conference - Volume 01, pages 154–159, Washington, DC, USA, 2009. IEEE
Computer Society. ISBN 978-0-7695-3726-9. doi: 10.1109/COMPSAC.2009.194. URL
http://portal.acm.org/citation.cfm?id=1632705.1632998. (Cited on page 93.)

[165] Martin Weiglhofer, Bernhard K. Aichernig, and Franz Wotawa. Fault-based conformance
testing in practice. Int. J. Software and Informatics, 3(2-3):375–411, 2009. (Cited on
page 115.)

136

http://dx.doi.org/10.1007/11940197_5
http://dx.doi.org/10.1007/11940197_5
http://dx.doi.org/10.1007/978-3-642-03466-4_21
http://dx.doi.org/10.1007/978-3-540-78917-8_2
http://dx.doi.org/10.1007/978-3-540-78917-8_2
http://portal.acm.org/citation.cfm?id=1722603.1722655
http://portal.acm.org/citation.cfm?id=1632705.1632998

Bibliography

[166] W. Eric Wong, Vidroha Debroy, Adithya Surampudi, HyeonJeong Kim, and Michael F.
Siok. Recent catastrophic accidents: Investigating how software was responsible. In Pro-
ceedings of the 2010 Fourth International Conference on Secure Software Integration and
Reliability Improvement, SSIRI ’10, pages 14–22, Washington, DC, USA, 2010. IEEE
Computer Society. ISBN 978-0-7695-4086-3. doi: http://dx.doi.org/10.1109/SSIRI.2010.
38. URL http://dx.doi.org/10.1109/SSIRI.2010.38. (Cited on page 4.)

[167] Franz Wotawa. Generating test-cases from qualitative knowledge – preliminary report. In
Proceedings of the 21st Annual Workshop on Qualitative Reasoning, Aberystwyth, U.K.,
June 2007. (Cited on page 49.)

137

http://dx.doi.org/10.1109/SSIRI.2010.38

	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Model-based Testing
	1.2 Hybrid Systems
	1.3 Qualitative Reasoning
	1.4 Motivation
	1.5 Problem Statement
	1.6 Thesis Statement
	1.7 Research Context
	1.8 Contributions
	1.9 Organization

	2 Model-based Testing
	2.1 Testing Strategies
	2.1.1 Exhaustive Testing
	2.1.2 Testing With Equivalence Classes
	2.1.3 Testing With Purposes
	2.1.4 Random Testing
	2.1.5 Fault-Based Testing

	2.2 Conformance Relations
	2.2.1 Refinement
	2.2.2 Conformance between Labeled Transition Systems
	2.2.3 HIOCO
	2.2.4 RTIOCO

	2.3 Hybrid Systems
	2.3.1 Testing from Hybrid System Models

	2.4 Discussion

	3 Qualitative Reasoning
	3.1 Qualitative Simulation
	3.1.1 Discrete Representation of Continuous Change
	3.1.2 Qualitative Models
	3.1.3 Sign Algebra
	3.1.4 Behavior Inference from Qualitative Models

	3.2 Simplification of Qualitative Models
	3.3 Modeling Continuous Systems with Garp3
	3.4 Qualitative Behavior - A formal Model

	4 Testing of Continuous Systems
	4.1 Conformance between Qualitative Models - qrioconf
	4.2 Test Case Selection with Test Purposes
	4.3 Coverage-based Test Purposes
	4.4 Execution of Qualitative Test Cases
	4.4.1 Water Tank – A Continuous System
	4.4.2 Mapping between Abstract and Concrete Data
	4.4.3 Test Case Execution
	4.4.4 Experimental Evaluation

	5 Testing of Hybrid Systems
	5.1 Qualitative Action Systems
	5.1.1 Hybrid Modeling
	5.1.2 Refinement of Qualitative Actions
	5.1.3 Testing

	5.2 Automated Conformance Verification of Hybrid Systems
	5.2.1 On-the-fly Conformance Checking

	5.3 Mutation-based Test Case Generation
	5.3.1 Ensuring Controllability in Presence of Non-determinism
	5.3.2 Test Case Selection
	5.3.3 Experimental Results

	6 Generation of Efficient Test Suites
	6.1 Testing Object-oriented Systems
	6.2 Car Alarm System
	6.3 Experimental Results
	6.3.1 Test Case Generation
	6.3.2 Test Case Execution

	7 Conclusions
	7.1 Summary
	7.2 Related Research
	7.3 Future Work

	List of Acronyms
	Bibliography

