
Biological and Functional Models
of Learning in Networks of

Spiking Neurons

by

Lars Holger Büsing

D ISSERTATION

submitted for the degree of

Doctor Rerum Naturalium

Institute for Theoretical Computer Science

Graz University of Technology

Thesis Advisor: Univ. Prof. DI Dr. Wolfgang Maass

defended on August 24, 2010

i

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst,

andere als die angegebenen Quellen / Hilfsmittel nicht benutzt, und die den be-

nutzten Quellen wörtlich und inhaltlich entnommene Stellen als solche kenntlich

gemacht habe.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used

other than the declared sources / resources, and that I have explicitly marked

all material which has been quoted either literally or by content from the used

sources.

Graz, 1st August 2010 ..

Lars Büsing

iii

Abstract

Neural circuits generally process information in a massively parallel way and ex-

hibit a communication between the constituent units based on spikes, i.e. binary

events, therefore differing fundamentally from many artificial information pro-

cessing and learning systems. In such neural circuits, synaptic plasticity is widely

considered to be the main biophysical correlate of learning. This thesis investi-

gates synaptic plasticity and learning in neural networks with the help of data-

driven, i.e. “bottom-up”, and theory-driven, i.e. “top-down”, models and focuses

in particular on the implications of their distributed architecture and spike-based

communication for learning.

In Chapter 2, a novel model of experimental data on synaptic plasticity, uni-

fying multiple previous models, is presented. The proposed model is able to re-

produce the experimentally observed effect of spike timing-dependent plasticity as

well as plasticity effects parametrized by postsynaptic firing rate or depolarization.

Chapters 3 and 4 propose learning rules that enable spiking neurons to perform

clustering of input data taking into account side-information. These rules, which

implement the Information Bottleneck method in spiking networks, are designed

to operate in distributed architectures exclusively using biologically plausible com-

munication mechanisms.

In Chapter 5 and 6, the capabilities of recurrent neural networks as multi-

purpose preprocessors for diverse learning problems are studied. In this context,

essential differences between spiking and non-spiking network models are revealed

especially with respect to the influence of the network connectivity statistics on

the preprocessing capabilities.

v

Zusammenfassung

Neuronale Schaltkreise verarbeiten Informationen zumeist auf eine massiv par-

allele Weise und weisen eine spikebasierte Kommunikation zwischen den einzel-

nen Teilstrukturen auf, worin sie sich sich fundamental von vielen künstlichen

Datenverarbeitungs- und Lernsystemen unterscheiden. Synaptische Plastizität in

dieser Art neuronaler Netze wird als wichtigstes Korrelat von Lernprozessen ange-

sehen. In dieser Dissertation wird synaptische Plastizität und Lernen in spik-

enden, neuronalen Netzwerken mit Hilfe von datengestützten, sog. “botton-up”,

sowie theoretischen, sog. “top-down”, Modellen untersucht mit besonderem Au-

genmerk auf die Auswirkungen ihrer parallelen Architektur und spikebasierten

Kommunikation.

In Kapitel 2 wird ein neues Plastizitätsmodell, welches direkt experimentelle

Daten beschreibt, vorgestellt. Dieses Modell kann erfolgreich sowohl Plas-

tizitätseffekte, die durch Spikezeiten als auch solche, die durch die postsynaptische

Feuerrate oder Depolarisation parametrisiert werden, reproduzieren.

In Kapitel 3 und 4 werden Lernregeln eingeführt, die Clustering unter

Berücksichtigung von Nebeninformationen in spikenden neuronalen Netzen im-

plementieren. Diese Lernregeln, welche aus dem Information Bottleneck Formal-

ismus abgeleitet sind, sind so entworfen, dass sie in verteilten Systemen mithilfe

ausschließlich biologisch realistischer Kommunikationskanäle funktionieren.

In Kapitel 5 und 6 wird die Leistungsfähigkeit rekurrenter neuronaler Netze als

Mehrzweckpräprozessoren für verschiedene Lernprobleme untersucht. In diesem

Zusammenhang werden tiefgreifende Unterschiede zwischen spikenden und nicht-

spikenden Netzwerkmodellen aufgezeigt, im Besonderen bezüglich des Einflusses

der Netzwerkverbindungsstatistik auf die Leistungsfähigkeit als Präprozessor.

vii

Acknowledgments

I want to thank my advisor Wolfgang Maass, for inspiring my research and for his

continuous support.

I am also very grateful to Benjamin Schrauwen, Wulfram Gerstner and Eleni

Vasilaki for the fruitful collaborations and their guidance.

Furthermore I would like to show my gratitude to my friends and former colleagues

that I met at the EPFL and Sheffield University.

My thanks also go to my colleagues at the TU Graz for making the stay in beautiful

Austria unforgettable.

I am grateful for the financial support provided by the research programs of the

European Union.

Last but not least, I would like to thank my parents and my sister as well as my

friends and you, Emma, for massively supporting me.

Contents

1 Introduction 1

2 Voltage-Based STDP 7

2.1 Introduction . 7

2.2 Results . 9

2.2.1 Fitting the Plasticity Model to Experimental Data 9

2.2.2 Functional Implications . 13

2.2.3 Development of Localized Receptive Fields 17

2.3 Discussion . 21

2.4 Acknowledgments . 26

3 Simplified Spiking Information Bottleneck 29

3.1 Introduction . 29

3.2 Neuron Model and Learning Rule for IB Optimization 31

3.3 Analytical Results . 33

3.4 A Concrete Example for IB Optimization 34

3.5 Relevance-Modulated PCA with Spiking Neurons 36

3.6 Discussion . 39

3.7 Acknowledgments . 39

4 Extended Spiking Information Bottleneck 41

4.1 Neuron Model and Objective Function 44

4.1.1 The Information Bottleneck Method 44

4.1.2 Neuron Model . 45

4.1.3 Applying the IB framework to Spiking Neurons 46

4.2 The IB Learning Rule for Spiking Neurons 50

4.2.1 The Online Learning Rule . 50

4.2.2 A Simple Example . 51

4.2.3 Neural Implementation of the Relevance Signal Preprocessing . . 54

4.3 Application: Predictive Coding . 56

4.4 Discussion . 59

4.4.1 Relation to Existing Work . 59

4.4.2 A Possible Biological Implementing of IB Optimization with Spik-

ing Neurons . 63

4.4.3 Summary . 64

4.5 Acknowledgments . 66

5 Computational Power in Reservoir Computing 67

5.1 Introduction . 67

5.2 Online Computations with Quantized ESNs 69

5.3 Phase Transitions in Binary and High Resolution Networks 71

x Contents

5.4 Mean-Field Predictor for Computational Performance 74

5.5 Discussion . 76

6 Connectivity and Dynamics in Reservoir Computing 79

6.1 Introduction . 80

6.2 Quantized ESNs and Their Dynamics 82

6.3 Online Computations with Quantized ESNs 87

6.4 Phase Transitions in Quantized ESNs 89

6.5 Mean-Field Predictor for Computational Performance 93

6.6 An Annealed Approximation of the Memory Function 97

6.7 Sparse Network Activity and Computational Power 99

6.8 Discussion . 102

6.9 Acknowledgments . 105

A Publications 107

B Voltage-Based STDP 111

B.1 Neuron Model . 111

B.2 Plasticity Model . 112

B.3 Analysis of Plasticity Model . 113

B.4 Calculations for the Functional Implications 115

B.4.1 Rate Coding . 115

B.4.2 Temporal Coding . 115

B.5 Parameters and Data Fitting . 116

B.6 Protocols and Mathematical Methods 117

C Simplified Spiking Information Bottleneck 121

C.1 Further Simulation Results . 121

C.2 Derivation of the Information Bottleneck Learning Rules 123

C.2.1 The Spike-Based Learning Rule 123

C.2.2 The Rate-Based Learning Rule 132

C.3 The Conditional Expectated Value of the Membrane Potential 132

C.4 A Volterra Series for the Relevance Signal Operator 135

C.5 Comparison with the Derivation Presented in Previous Work 136

C.5.1 Differences Concerning the Continuous Time Limit 137

C.5.2 Other Differences . 138

C.6 The Fokker-Planck Equation . 139

D Extended Spiking Information Bottleneck 143

D.1 Derivation of the Learning Rules . 143

D.1.1 The IB Learning Rule . 143

D.1.2 An InfoMax Learning Rule . 144

D.2 Details of the Numerical Examples . 144

D.2.1 Example of Section 4.2.2 . 144

D.2.2 Example of Section 4.2.3 . 144

Contents xi

D.2.3 Details to the Predictive Coding Application 145

E Computational Power in Reservoir Computing 147

E.1 Computational Performance for Further Example Tasks 147

E.2 Definition and Calculation of p∞ . 147

E.2.1 Notation . 147

E.2.2 Definition of p∞ . 148

E.2.3 The Annealed Approximation . 148

E.2.4 Separation approximation . 150

F Connectivity in Reservoir Computing 153

F.1 Lyapunov Exponents via Branching Processes 153

F.2 Dependence of Computational Performance on Task Delay and Network

Size . 155

F.3 Input Separation d(k) in the Annealed Approximation 155

F.4 Bound for the Memory Function . 158

F.4.1 Upper Bound for the Memory Function 158

F.4.2 An Annealed Approximation for ‖A−1‖2 159

References 161

Chapter 1

Introduction

Seen through the eyes of a scientist, the human brain is probably the most remarkable

agglomeration of matter known. It is of extraordinary complexity and flexibility, which

becomes manifest in the brain’s unsurpassed abilities to react and adapt to sensory

input data. These reactions and adaptations are highly nontrivial processes that take

place on many different time scales. On the one end of the spectrum, i.e. on time scales

of less than a second, e.g. sensory processing is able to adapt to fluctuations of the

environmental background conditions and motor responses can be initiated to react to

sensory cues. On the other end of the spectrum, i.e. on time scales extending over years

or decades, e.g. memories can be maintained and precisely recalled at suitable points

in time, whereas the storing process itself only requires the brain to be exposed to the

sensory stimuli to be memorized for as few as some seconds. Cerebral properties like

the ones mentioned above, give rise to the astonishing human capabilities to carry out

complex computations (e.g. to anticipate trajectories of moving objects or to weight

“pros” and “cons” of an intended action) as well as to solve complex learning tasks

(e.g. to learn categories of objects as well as highly abstract concepts). Surprisingly

many of theses information processing tasks, being highly demanding for artificial sys-

tems, are carried out by humans online without conscious effort. Developing suitable

mathematical concepts and understanding the biological mechanisms that underlying

the impressive cognitive capabilities of humans is of greatest scholarly interest as well

as of immense technological relevance.

The agenda of Computational Neuroscience, i.e. the scientific effort to quantitatively

understand neural information processing such as computations, adaptation and learn-

ing, is largely based on the fundamental hypothesis that neural structures and processes

serve a purpose, i.e. that questions such as “What is the functionality of this neural

structure?” or “Why do these processes interact in this specific, experimentally ob-

served way?” are actually scientifically sensible. To see the relevance and impact of the

aspect of purpose (shared among all Life Sciences), one has only to compare Computa-

tional Neuroscience with Physics. In the latter discipline answers to questions containing

“Why” never refer to a purpose but always point to “lower”, more fundamental levels

of description, of which the lowest does not offer a sensible answer to “Why?”-questions

apart from pointing to experimental measurements. The notion of purpose in Life Sci-

ences itself can of course be grounded in Darwin’s Evolutionary Theory. The principles

of variation and selection imply that physiological structures and processes, being costly

to grow and maintain, have to increase the fitness of the agent in question. There-

fore, many neural structures are considered to be extrema, i.e. optimal solutions, in

the “fitness landscape”, the latter being shaped by the task these neural structures are

hypothesized to solve. A research program in Computational Neuroscience that makes

2 Chapter 1. Introduction

use of the principle of evolutionary purpose, such as the program underlying this the-

sis, is partially similar to engineering work (which can also be characterized as finding

near-optimal solutions to certain problems) in the following sense. The researcher takes

a task or problem that a biological agent faces and tries to solve this problem in an

optimal way (the engineering aspect). He then compares his solution, the model, with

experimental data on the “evolutionary solution” existing in the agent. In case no major

discrepancies are noticed, the researcher has found a valid hypothesis about the func-

tionality (the purpose) and the mode of operation of the studied neural system. Then,

further experiments may strengthen the belief in or falsify this hypothesis. This method

based on the “optimality-hypothesis” is very powerful for analyzing neural systems and

will also be used in the theoretical part of this thesis presented in Chapters 3-6.

However, from the mathematical discipline of optimization as well as from engineer-

ing, it is well known that it is crucial to also take into account constraints that possible

solutions of optimization problems have to satisfy. Indeed, all engineering problems

trivially only make sense if they are posed with sensible constraints. These constraints

can be of different forms, they can be either formalized as hard constraints, i.e. equality

or inequality constraints, or soft constraints, which are associated to costs. Analogously

to engineering, “evolutionary optimization” is also subject to hard and soft constraints

of course. As a trivial example one might imagine that a superior neural system could

be designed based on Tantalum (a very scarce metal), however poor availability would

make an evolutionary step in this direction impossible. Thus, a profound understanding

of biological systems requires taking into account the environmental constraints these

systems are subject to. Unfortunately, for many evolutionary situations it is impossible

to obtain exact knowledge of the constraints merely due to their amount and complexity,

reflecting the full complexity of the environment in which evolutionary processes often

take place. This problem is a serious obstacle for modelling and understanding biological

systems with the help of the “optimality-hypothesis”. This especially holds for neural

systems, such as the ones considered in this thesis, as their evolutionary purposes and

environmental conditions are particularly complex.

An approach that is often used to overcome the problem of largely unknown evolu-

tionary constraints is the following. When modelling a certain neural systems in order

to determine their purpose and functionality, instead of explicitly modelling the un-

known constraints, one often directly constraints the set of considered mathematical

models to those that feature characteristic properties of this neural system, such as

its anatomical architecture. In Computational Neuroscience e.g. , connectionist models

are often considered, as these models reflect the fact that biological neural system are

distributed information processing systems consisting of units which communicate over

low-capacity channels, without knowing the evolutionary reasons that actually lead to

this massively parallel architecture. This general procedure is motivated by the consid-

eration that all models in the constraint model set fulfill the evolutionary constraints

which are largely unknown. Two important constraints of neural systems, which were

used to constrain the set of models considered in thesis and which are hence in the focus

of the investigation presented here, are described in the following two paragraphs.

This first constraint is the following. Earliest anatomical and electrophysiological

3

findings regarding nervous systems reveal that they process information in an highly

distributed way. In contrast to common personal computer architectures, having a

central processing unit, the visual system of vertebrates e.g. works in an essentially

non-sequential, parallel manner. The main problem that comes with mathematical

models of distributed learning systems is the fact that information, that is needed for

updating model parameters during learning, must be available at the locations of the

parameters. This constraint is often referred to as locality of information. Consider

e.g. the problem of matrix inversion. Stating an abstract algorithm (e.g. the recursive

scheme known as “Cramer’s rule”) for this problem is rather simple compared to actually

designing circuits that perform matrix inversion purely locally with respect to their

spatial (mostly “two-plus-epsilon” dimensional) embedding (Singh, Prasad, & Balsara,

2007). As can be seen from this example, possible hypotheses for computations and

learning in local, distributed systems seriously differ from unconstrained hypotheses

and require additional modelling effort.

The second constraint on neural information processing models applied in this the-

sis, is the fact that neurons, often considered the “atomic” units of information process-

ing, communicate via binary, stereotyped electric events, so-called action potentials or

spikes1. Although been known long before the work of Hodgkin and Huxley (Hodgkin

& Huxley, 1952), the binary nature of biological neural networks was often neglected

in early models in favor of continuous models due to their advantageous mathematical

properties. Spiking models of neural networks (additionally having an inherent temporal

aspect), are indeed profoundly different from continuous (static) models and therefore

demand different (or at least highly adapted) mathematical hypothesis for computa-

tions and learning. Error-Backpropagation (Rumelhart, Hinton, & Williams, 1986) in

its initial form is a typical example of an implausible learning hypothesis for spiking

networks, as it requires C1 (continuously differentiable) activation functions, and could

only be rendered a plausible hypothesis with serious alternations.

The considerations above illustrate that in order to profoundly understand the pur-

pose and functionality of neural systems, it is essential to sensibly constrain the set of

models to those reflecting the most crucial anatomical and electrophysiological charac-

teristics of biological neural circuits. The main theme of this thesis is to investigate the

phenomenon of learning in neural networks using “bottom-up” models of experimen-

tal data on synaptic plasticity (widely believed to be the main biophysical correlate of

learning), and theoretical optimality-models, so-called “top-down” models. The thesis

focuses in particular on the consequences of the constraints imposed by the distributed

architecture and the communication via electrical “all-or-nothing” events of biological

neural circuits.

Organization of the Thesis

In Chapter 2, a novel model of experimental data on synaptic plasticity is presented,

which unifies multiple previous models. Synaptic plasticity is widely considered to be the

1There are non-spiking channels of communication between neurons, such as gap junctions and
neuromodulators. These are however not subject of this thesis.

4 Chapter 1. Introduction

most important biophysical mechanism which implements learning. Early experimental

studies, in accordance with the theoretical view at that time that neurons transmit a

noisy rate (i.e. a continuous variable), investigated phenomena of synaptic plasticity

using experimental protocols that did not directly explore the discontinuous (action

potential) nature of neural information processing and its impact on learning. They were

rather based on eliciting synaptic plasticity as functions of continuous variables such as

postsynaptic firing rate or postsynaptic intracellular variables, e.g. depolarization. More

recent experimental studies of synaptic plasticity heavily focused on the significance of

the action potential-based transmission of information for learning and culminated in the

finding of spike timing-dependent plasticity. This plasticity effect fundamentally reflects

the two crucial constraints of biological neural networks mentioned above, namely the

binary and distributed nature of neural information processing. However, a simple

mathematical model of plasticity that is able to reproduce results from both classes

of stimulation protocols, spike-based on the one hand and rate / depolarization-based

protocols on the other, was missing until now. A precise and concise model is presented

that is able to unify the description of both plasticity aspects, aimed at further fostering

the understanding of the mechanism underlying learning in binary, distributed neural

networks.

Chapter 3 presents a theoretically motivated “top-down” model of synaptic plasticity

(that is especially suited for distributed, spiking circuits) implementing clustering with

side-information in neural networks. Unsupervised learning, such as clustering, has often

been hypothesized as a natural learning goal for neural circuits. Multiple algorithms

for continuous and spiking networks have been derived that enable neurons to learn

lower dimensional representations of input data. Based on previous work, a simple

learning rule is presented and analyzed that implements clustering with side-information

in neurons by learning the neural weights according to the Information Bottleneck (IB)

method. The IB framework, which is based on maximization of mutual information,

is especially well suited as a model for learning in probabilistic spiking networks (in

contrast to continuous network models) as the IB objective function in this case is a

“well-behaved”, bounded function of the networks parameters.

In Chapter 4 the IB approach for spiking circuits is extended to allow neurons to

perform clustering in the case of more complex input distributions. To demonstrate the

flexibility of the extended IB learning rule, it is applied to enable neurons to learn a

so-called predictive coding, i.e. a coding where neurons learn to predict their own future

output. Using such a predictive coding scheme, neurons learn to extract components

from their input that exhibit a high level of temporal stability, a learning objective that

is thought to be useful to extract relevant and meaningful features of sensory input such

as the presence and categories of objects. Furthermore, this chapter briefly reviews and

discusses experimentally observed plasticity mechanisms that would in principle allow

neural circuits to learn IB optimal clustering in a completely local way, rendering the

IB framework a plausible hypothesis for learning in spiking neural circuits.

In many machine learning applications, the performance of a learning algorithm on a

certain task crucially depends on a suitable preprocessing of the input data. Supposedly

this is also the case for learning problems that neural systems face. In Chapter 5 of this

5

thesis, the capabilities of neural networks as multi-purpose preprocessors for various

learning tasks are investigated. This study focuses in particular on the differences be-

tween preprocessor networks that consist of binary (spiking) neuron models compared to

analog neuron models. This approach sheds light on the consequences of the binary and

distributed nature of neural circuits in the context of preprocessors. Furthermore, the

influence of the network dynamics, which are strongly shaped by different connectivity

statistics, on the preprocessing capabilities is studied. It is shown that an intimate rela-

tionship between characteristics of network dynamics, such as the Lyapunov exponent,

and the preprocessing capabilities exists.

In Chapter 6 the investigation of the differences between analog and spiking network

models as preprocessors is extended. It is shown that important characteristic quantities

of the network dynamics of binary as well as of analog networks can be faithfully ap-

proximated analytically. These approximations can then be utilized to identify suitable

regimes of network parameters for preprocessing, revealing stark differences between

binary and analog network models. Additionally, a novel upper bound for the network

memory capacity is derived, further illustrating the close connection between network

dynamics and preprocessing capabilities of recurrent neural networks.

Chapter 2

Connectivity Reflects Coding:

A Model of Voltage-Based Spike

Timing-Dependent Plasticity

Contents

2.1 Introduction . 7

2.2 Results . 9

2.3 Discussion . 21

2.4 Acknowledgments . 26

Electrophysiological connectivity patterns in cortex often show a few strong con-

nections in a sea of weak connections. In some brain areas a large fraction of strong

connections are bidirectional, in others they are mainly unidirectional. In order to ex-

plain these connectivity patterns, we use a model of spike timing-dependent plasticity

where synaptic changes depend on presynaptic spike arrival and the postsynaptic mem-

brane potential, filtered with two different time constants. The model describes several

nonlinear effects in STDP experiments, as well as the voltage dependence of plasticity

under voltage clamp and classical paradigms of LTP/LTD induction. We show that in

a simulated recurrent network of spiking neurons our plasticity rule leads not only to

development of localized receptive fields, but also to connectivity patterns that reflect

the neural code: for temporal coding paradigms with spatio-temporal input correlations,

strong connections are predominantly unidirectional, whereas they are bidirectional un-

der rate coded input with spatial correlations only. Thus variable connectivity patterns

in the brain could reflect different coding principles across brain areas; moreover our

simulations suggest that rewiring the network can be surprisingly fast.

2.1 Introduction

Experience-dependent changes in receptive fields (Buonomano & Merzenich, 1998; Freg-

nac & Shulz, 1999; Froemke, Merzenich, & Schreiner, 2007) or in learned behavior

(Recanzone, Schreiner, & Merzenich, 1993) may occur through changes in synaptic

strength. Thus, electrophysiological measurements of functional connectivity patterns in

slices of neural tissue (Song, Sjöström, Reigl, Nelson, & Chklovskii, 2005; Lefort, Tomm,

Sarria, & Petersen, 2009) or anatomical connectivity measures (Denk & Horstmann,

8 Chapter 2. Voltage-Based STDP

2004) can only present a snapshot of the momentary connectivity – which may change

with the next set of stimuli. Indeed, modern imaging methods show that spine motility

can lead to a rapid rewiring of the connectivity pattern (Yuste & Bonhoeffer, 2004; Tra-

chtenberg et al., 2002) by formation of new synapses or by strengthening or weakening

of existing synapses. The question then arises whether the connectivity patterns and

changes that are found in experiments can be connected to basic rules of synaptic plas-

ticity, in particular to modern or traditional forms of Hebbian plasticity (Hebb, 1949)

such as Long-Term Potentiation and Depression (Malenka & Bear, 2004).

Long-term potentiation LTP and depression LTD of synapses depends on the ex-

act timing of pre- and postsynaptic action potentials (Markram, Lübke, Frotscher, &

Sakmann, 1997; Bi & Poo, 2001), but also on postsynaptic voltage (Artola, Bröcher, &

Singer, 1990; Ngezahayo, Schachner, & Artola, 2000), and presynaptic stimulation fre-

quency (Dudek & Bear, 1993). spike timing-dependent plasticity (STDP) has attracted

particular interest in recent years, since temporal coding schemes where information is

contained in the exact timing of spikes rather than mean frequency could be learned

by a neural system using STDP (Gerstner, Kempter, van Hemmen, & Wagner, 1996;

Roberts & Bell, 2000; Legenstein, Naeger, & Maass, 2005; Guyonneau, VanRullen, &

Thorpe, 2005; Gerstner & Kistler, 2002). However, the question whether STDP is more

fundamental than frequency dependent plasticity or voltage dependent plasticity rules

has not been resolved, despite an intense debate (Lisman & Spruston, 2005). Moreover

it is unclear how the interplay of coding and plasticity yield the functional connectivity

patterns seen in experiments. In particular, the presence or absence of bidirectional

connectivity between cortical pyramidal neurons seems to be contradictory across ex-

perimental preparations in visual (Song et al., 2005) or somatosensory cortex (Lefort et

al., 2009).

Recent experiments have shown that STDP is strongly influenced by postsynap-

tic voltage before action potential firing (Sjöström, Turrigiano, & Nelson, 2001), but

could not answer the question whether spike timing dependence is a direct consequence

of voltage dependence, or the manifestation of an independent process. In addition,

STDP depends on stimulation frequency (Sjöström et al., 2001) suggesting an interac-

tion between timing and frequency dependent processes – or this interaction could be

the manifestation of a single process in different experimental paradigms. We show that

a simple Hebbian plasticity rule that pairs presynaptic spike arrival with the postsynap-

tic membrane potential is sufficient to explain STDP and the dependence of plasticity

upon presynaptic stimulation frequency. Moreover, the intricate interplay of voltage

and spike timing dependence seen in experiments (Sjöström et al., 2001) as well as the

frequency dependence of STDP can be explained in our model from one single princi-

ple. In contrast to earlier attempts towards a unified description of synaptic plasticity

rule that focused on detailed biophysical descriptions (Shouval, Bear, & Cooper, 2002;

Lisman & Zhabotinsky, 2001), our model is a phenomenological one. It does not give

an explicit interpretation in terms of biophysical quantities such a Calcium concentra-

tion (Shouval et al., 2002), CaMKII (Lisman & Zhabotinsky, 2001), glutamate binding,

NMDA receptors etc. Rather it aims at a minimal description of the major phenomena

observed in electrophysiology experiments.

2.2. Results 9

The advantage of such a minimal model is that it allows us to discuss functional

consequences in small (Song & Abbott, 2001; Lubenov & Siapas, 2008; N. Levy, Horn,

Meilijson, & Ruppin, 2001), and possibly even large (Morrison, Aertsen, & Diesmann,

2007; Izhikevich & Edelman, 2008) networks. We show that in small networks of up

to 10 neurons the learning rule leads to input specificity, necessary for receptive field

development – similar to earlier models of STDP (Gerstner et al., 1996; Song & Abbott,

2001) or rate-based plasticity rules (Cooper, Intrator, Blais, & Shouval, 2004; Miller,

1994). Going significantly beyond earlier studies, we explicitly address the question

of whether functional connectivity patterns of cortical pyramidal neurons measured in

recent electrophysiological studies (Song et al., 2005; Lefort et al., 2009) could be the

result of plasticity during continued stimulation of neuronal model networks. We find

that connectivity patterns strongly depend on the underlying coding hypothesis: With

a temporal coding hypothesis, where input spikes arrive in a fixed temporal order, the

recurrent network develops a connectivity pattern with a few strong unidirectional con-

nections. However, under a rate coding paradigm, where stimuli are stationary during a

few hundred milliseconds the same network exhibits sustained and strong bidirectional

connections. This is in striking contrast to standard STDP rules where bidirectional

connections are impossible (Song & Abbott, 2001).

The mathematical simplicity of the model enables us to identify conditions under

which it becomes equivalent to the well-known Bienenstock-Cooper-Munro model

(Cooper et al., 2004) used in classical rate-based descriptions of developmental learning;

and equivalent to some earlier models of STDP (Pfister & Gerstner, 2006) — and why

our model is fundamentally different from classical STDP models (Gerstner et al., 1996;

Song & Abbott, 2001; Gerstner & Kistler, 2002), widely used for temporal coding.

2.2 Results

In order to study how connectivity patterns in cortex can emerge from an interplay of

plasticity rules and coding, we need a plasticity rule that is consistent with a large body

of experiments, not just a single paradigm such as STDP. Since synaptic depression and

potentiation take place through different pathways (O’Connor, Wittenberg, & Wang,

2005) our model uses separate additive contributions to the plasticity rule, one for LTD

and another one for LTP (see Fig. 2.1 and methods).

2.2.1 Fitting the Plasticity Model to Experimental Data

Consistent with voltage clamp (Ngezahayo et al., 2000) and stationary depolarization

experiments (Artola et al., 1990), LTD is triggered in our model if presynaptic spike

arrival occurs while the membrane potential of the postsynaptic neuron is slightly de-

polarized (above a threshold θ− usually set to resting potential) whereas LTP occurs

if depolarization is big (above a second threshold θ+, see Fig. 2.1). The mathematical

formulation of the plasticity rule makes a distinction between the momentary voltage

u and the low-pass filtered voltage variables ū− or ū+ which denote temporal averages

10 Chapter 2. Voltage-Based STDP

of the voltage over the recent past (the symbols ū− and ū+ indicate filtering of u with

two different time constants). Similarly, the event x of presynaptic spike arrival needs

to be distinguished from the trace x̄ that is left at the synapse after stimulation by

neurotransmitter. Potentiation occurs only if the momentary voltage is above θ+ (this

condition is fulfilled during action potential firing) AND the average voltage ū+ above

θ− (this is fulfilled if there was a depolarization in the recent past) AND the trace x̄ left

by a previous presynaptic spike event is nonzero (this condition holds if a presynaptic

spike arrived a few milliseconds earlier at the synapse); these conditions for plasticity are

illustrated in Fig. 2.1 B. LTD occurs if the average voltage ū− is above θ− at the moment

of a presynaptic spike arrival (see Fig. 2.1 A). The amount of LTD in our model depends

on a homeostatic process on a slower time scale (Turrigiano & Nelson, 2004). Low-pass

filtering of the voltage by the variable (ū− or ū+) refers to some unidentified intracellular

processes triggered by depolarization, e.g., increase in calcium concentration or second

messenger chains. Similarly, the biophysical nature of the trace x̄ is irrelevant for the

functionality of the model, but a good candidate process is the fraction of glutamate

bound to postsynaptic receptors.

We checked the performance of the model on a simulated STDP protocol, where

presynaptic spikes arrive a few milliseconds before or after a postsynaptic spike that is

triggered by a strong depolarizing current pulse. If a post-pre pairing with a timing

difference of 10ms is repeated 60 times at frequencies below 35Hz, LTD occurs in our

model (Fig. 2.2 A, B), consistent with experiments (Sjöström et al., 2001). Repeated

pre-post pairings (with 10ms timing difference) at frequencies above 10Hz yield LTP,

but pairings at 0.1Hz do not show any significant change in the model or in experiments

(Sjöström et al., 2001). In the model these results can be explained by the fact that

at 0.1Hz repetition frequency, the low-pass filtered voltage ū+ which increases abruptly

during postsynaptic spiking decays back to zero before the next impulse arrives, so

that LTP can not be triggered. However, since LTD in the model requires only a

weak depolarization of ū− at the moment of presynaptic spike arrival, post-pre pairings

give rise to depression, even at very low frequency. At repetition frequencies of 50Hz,

the post-pre paradigm is nearly indistinguishable from a pre-post timing, and LTP

dominates.

Since spike timing dependence in our model is induced only indirectly via voltage

dependence of the model, we wondered whether our model would also be able to account

for the intricate interactions of voltage and spike timing reported in (Sjöström et al.,

2001). If a pre-post protocol at 0.1Hz, that normally does not induce LTP, is combined

with a depolarizing current pulse (lasting from 50 ms before to 50 ms after the postsy-

naptic firing event), then potentiation is observed in the experiments (Sjöström et al.,

2001), as well as in our model (Fig. 2.2 C, F, I). Due to the injected current, the low-pass

filtered voltage variable ū+ is depolarized before the pairing. Thus at the moment of

the postsynaptic spike, the average voltage ū+ is above the threshold θ−, leading to

potentiation. Similarly, a pre-post protocol that normally leads to LTP can be blocked

if the postsynaptic spikes are triggered on the background of a hyperpolarizing current

(Fig. 2.2 E, H, I).

In order to study some nonlinear aspects of STDP, we simulate a protocol of burst

2.2. Results 11

20[ms]

2
0

[m
V

]

50 [ms]

2
0

[m
V

]

x

u- θ-

x

u
+

θ+

LTD LTP

u

A B x C

D

E

F

G

H

−80 −60 −40 −20 0

100

150

200

250

voltage [mV]

n
o

rm
a

liz
e

d
 w

e
ig

h
t

[%
]

E

F

G

H
θ- θ+

20[ms]

Figure 2.1: Illustration of the model. Synaptic weights react to presynaptic events (top)
and postsynaptic membrane potential (bottom) A: The synaptic weight is decreased if
a presynaptic spike x (green) arrives when the low pass filtered value ū− (magenta) of
the membrane potential is above θ− (dashed horizontal line) B: The synaptic weight
is increased if the membrane potential u (black) is above a threshold θ+ and the low
pass filtered value of the membrane potential ū+ (blue) higher than a threshold θ− as
well as the presynaptic low pass filter x̄ (orange) non zero. C: Step current injection
makes the postsynaptic neuron fire at 50Hz in the absence of presynaptic stimulation
(membrane potential u in black). No weight change is observed. Note the depolarizing
spike-afterpotential consistent with experimental data shown in panel D, reproduced
from (Sjöström et al., 2001). E-H: Voltage clamp experiment. A neuron receives weak
presynaptic stimulation of 2Hz during 50 s while the postsynaptic voltage is clamped to
values between −60mV and 0mV. E-G: Schematic drawing of the trace x̄ (orange) of
the presynaptic spike train (green) as well as the voltage (black) and the synaptic weight
(blue) for the experimental conditions of hyperpolarization (panel E), slight depolariza-
tion (panel F) and large depolarization (panel G). H: The weight change as a function
of clamped voltage using the standard set of parameters for visual cortex data (blue
line, voltage paired with 25 spikes at the synapse). With a different set of parameters
the model fits experimental data (red circles) in hippocampal slices (Ngezahayo et al.,
2000), see methods for details.

timing-dependent plasticity where presynaptic spikes are paired with one, two or three

postsynaptic spikes (Nevian & Sakmann, 2006) (see B). We observe that 60 pre-post

pairs at 0.1Hz do not change the synaptic weight, as discussed above. However, re-

peated triplets of the form pre-post-post generate potentiation in our model because

the first postsynaptic spike induces a depolarizing spike after potential so that ū+ is

12 Chapter 2. Voltage-Based STDP

Figure 2.2: Fitting the model to experimental data. A-B: Simulated STDP experiments.
A: Spike timing-dependent learning window. The change of the synaptic weight is shown
for different time intervals T between the presynaptic and the postsynaptic spike us-
ing 60 presynaptic/postsynaptic spike pairs at 20Hz. B: Weight change as a function
of repetition frequency for five spike pairs at frequency ρ with a time delay of +10ms
(pre-post, blue) and -10 ms (post-pre, red), repeated 15 times at 0.1Hz (only 10 times
for frequency of 0.1Hz). Weight changes are shown as a function of the frequency, dots
represent the data taken from (Sjöström et al., 2001) and lines the plasticity model simu-
lation. C-I: Interaction of voltage and STDP. C-E: Schematic induction protocols (green:
presynaptic input, black: postsynaptic current, blue: evolution of synaptic weight). C:
Low-Frequency Potentiation is rescued by depolarization, see (Sjöström et al., 2001).
Low frequency (0.1Hz) pre-post spike pairs yield LTP if a 100ms long depolarized cur-
rent is injected around the pairing. D: LTP fails in the previous scenario if an additional
brief hyperpolarized pulse is applied 14ms before postsynaptic spike so that voltage is
brought to rest. E: Hyperpolarization preceding action potential prevents potentiation.
In (Sjöström et al., 2001) it is shown that high frequency (40Hz) pairing leads to LTP.
However, when a constant hyperpolarizing current is applied on top of the short pulses
inducing the spikes, no weight change is measured. F: The simulated postsynaptic volt-
age u (black), following protocol of panel C ,is shown as well as the temporal averages ū−
(magenta) and ū+ (blue). The presynaptic spike time is indicated by the green arrow.
Using the model (B.3) this setting results in potentiation. G: Same as F, but following
protocol D. No weight change is measured. H: Same as F, but following protocol E. No
weight change is measured. I: Histogram summarizing the normalized synaptic weight
of the simulation (bar) and the experimental data (Sjöström et al., 2001) (dot, blue
bar=variance) 0.1Hz pairing (control 1); 0.1Hz pairing with the depolarization (proto-
col C); 0.1Hz pairing with the depolarization and brief hyperpolarization (protocol D);
40Hz pairing (control 2); 40Hz pairing with the constant hyperpolarization (protocol
E). The parameters are summarized in Table B.2.

2.2. Results 13

depolarized. Adding a third postsynaptic spike to the protocol (yielding quadruplets

pre-post-post-post) does not lead to stronger LTP (Fig. 2.3A). Our model also describes

the dependence of LTP upon the intra-burst frequency (Fig. 2.3B). At an intra-burst

frequency of 20Hz, no LTP occurs, because the second spike in the burst comes so late

that the presynaptic trace x̄ has decayed back to zero. At higher intra-burst frequencies,

the three conditions for LTP (u(t) > θ+ and ū+ > θ− and x̄ > 0) are fulfilled. The burst

timing dependence (Fig. 2.3C) where the timing of one presynaptic spike is changed with

respect to a burst of three postsynaptic spikes is qualitatively similar to that found in

experiments (Nevian & Sakmann, 2006), but only four of the six experimental data

points are quantitatively reproduced by the model with a given set of parameters. Since

parameter search does not give a unique result, the prediction of the model has some

uncertainty so that three different curves of burst timing-dependent plasticity, corre-

sponding to three equally good choices of parameters have been plotted. Interestingly,

our model predicts that the curve of burst timing-dependent plasticity should show a sig-

nificant change in the amount of potentiation whenever the presynaptic spike is shifted

across one of the three postsynaptic spikes (Fig. 2.3C).

2.2.2 Functional Implications

Connectivity patterns in a local cortical circuit have been shown to be non-random, i.e.

the majority of connections are weak and the rare strong ones have a high probability

of being bidirectional (Song et al., 2005). However, standard models of STDP (Gerstner

& Kistler, 2002) do not exhibit stable bidirectional connections (N. Levy et al., 2001;

Kozloski & Cecchi, 2008). Intuitively, if the cell A fires before the cell B, a pre-post

pairing for the ’AB’ connection is formed so that the connection is strengthened. The

post-pre pairing occurring at the same time in the ’BA’ connection leads to depression.

Therefore it is impossible to strengthen both connections at the same time. Moreover, in

order to assure long-term stability of firing rates, parameters in standard STDP rules are

typically chosen such that inhibition slightly dominates excitation (Gerstner et al., 1996)

which implies that under purely random spike firing connections decrease, rather than

increase. However, the non-linear aspects of plasticity in our model change such a simple

picture. If we simulate two neurons with bidirectional connections at low firing rates,

the plasticity model behaves like standard STDP and only unidirectional connections

emerge. However, from Fig. 2.2 B and 2.3 B we expect that at higher neuronal firing

rates, our model could develop a stable bidirectional connection, in striking contrast to

standard STDP rules.

We first simulated a small network of ten all-to-all connected neurons where each

neuron fires at a fixed frequency, but the frequencies vary across neurons. We found

that bidirectional connections are formed only between pairs of neurons that both fire

at high rates, not if one or both of the neurons fire at low frequencies (Fig. 2.4A). In a

second simulation, the neurons in the same network are stimulated cyclically such that

they are firing in a distinct temporal order (1, 2, 3,. . .) mimicking an extreme form of

temporal coding (Jadhav, Wolfe, & Feldman, 2009). After learning the weights form a

loop where strong connections from 1 to 2, 2 to 3, ... develop, whereas bidirectional con-

14 Chapter 2. Voltage-Based STDP

−80 −60 −40 −20 0 20 40

100
200
300

time lag [ms]

1 2 3

50

100

150

200

250

of spikesn
o

rm
a

liz
e

d
 w

e
ig

h
t

[%
]

50 100

50

100

150

200

250

frequency [Hz]
C

A B

Figure 2.3: Burst timing-dependent plasticity. One presynaptic spike is paired with a
burst of postsynaptic spikes. This pairing is repeated 60 times at 0.1Hz. A: Normalized
weight is shown as a function of the number of postsynaptic spikes at 50Hz. (dots
are data from (Nevian & Sakmann, 2006), crosses denote simulation results). The
presynaptic spike is paired +10 ms before the first postsynaptic spike (blue) or -10 ms
after (red). B: Normalized weight as a function of the frequency between the three
postsynaptic action potentials (dots indicate data, lines indicate simulation results and
blue denotes pre-post whereas red denotes post-pre pairs). C: Normalized weight as a
function of the timing between the presynaptic spike and the first postsynaptic spike of
a burst consisting of three spikes at 50Hz (dot denotes data and black lines simulation
results). A hard upper bound has been set to 250% normalized weight. The dashed
line and the dotted line represent simulations with different two alternative sets of
parameters ALTD = 21e−5 mV−1, ALTP = 50e−4 mV−2, τx = 143ms, τ− = 6ms, τ+ =
5ms and ALTD = 21e−5 mV−1, ALTP = 67e−4 mV−2, τx = 5ms, τ− = 8ms, τ+ = 5ms
respectively.

2.2. Results 15

nections (Fig. 2.4B) are depressed. These results are in striking contrast to simulation

experiments with a standard STDP rule, where connections are always unidirectional,

independently of the stimulation paradigm (Fig. 2.4C, D). Theoretical arguments (see

Appendix B) show that bidirectional connections cannot exist under the cyclic temporal

stimulation paradigm (neither for standard STDP nor for our plasticity model). Bidi-

rectional connections do develop in our nonlinear voltage dependent plasticity model

under the assumption of slowly varying rates – in contrast to standard STDP. (Fig. 2.4

C, D).

We wondered whether the same results would emerge in a more realistic network of

excitatory and inhibitory neurons driven by feedforward input. We simulated a network

of ten excitatory neurons with all-to-all connectivity and three additional inhibitory

neurons. Each inhibitory neuron receives input from eight randomly selected excitatory

neurons and randomly projects back to six excitatory neurons. In addition to the recur-

rent input, each excitatory and inhibitory neuron receives feedforward spike input from

500 presynaptic neurons j modeled as stochastic Poisson spike trains at a rate νj . The

rates of neighboring input neurons are correlated, mimicking the presence or absence

of spatially extended objects. In a rate-coding scheme, the location of the stimulus is

switched every 100 ms to a new random position. In case of retinal input, this would

correspond to a situation where the subject fixates every 100 ms on a new stationary

stimulus. Depending on the retinal position of stimulus, a given postsynaptic neuron

responds with low, medium, or high firing rate which is stationary during the 100 ms

stimulation period; ie. the firing rates of the ten neurons in the network encode the

current position of the stimulus. In a temporal-coding paradigm, the model input is

shifted every 20 ms to a neighboring location, mimicking rapid movement of an object

across an array of sensory receptors. In this scenario, a given model neuron exhibits

only short transient bursts of a few spikes so that it is the temporal structure of the

activity (as opposed to stationary firing rates) that encode the position and movement of

the stimulus. For both scenarios the network is identical. Feedforward connections and

lateral connections between model pyramidal neurons are plastic whereas connections

to and from inhibitory neurons are fixed.

During the first 100-400 s of stimulation with the rate-coding paradigm, the excita-

tory neurons develop localized receptive fields, i.e., weights from neighboring inputs to

the same postsynaptic neuron become either strong or weak together and stay stable

thereafter (Fig. 2.5 A). Similarly, lateral connections onto the same postsynaptic neuron

develop either exclusively strong or exclusively weak synapses, which remain (apart from

fluctuations) stable thereafter (Fig. 2.5 A) leading to a structured pattern of synaptic

connections (Fig. 2.5 B). While the labeling of the excitatory neurons at the beginning

of the experiment was randomly assigned, we can relabel the neurons after the formation

of lateral connectivity patterns so that neurons with similar receptive fields have similar

indices, reflecting the neighborhood relation of the network topology. After reordering

we can clearly distinguish that three groups of neurons have been formed, character-

ized by similar receptive fields and strong bidirectional connectivity within the group,

and different receptive fields and no lateral connectivity between groups (Fig. 2.5 C).

If the overall amplitude of weight change (the “learning rate”) is small (compared to

16 Chapter 2. Voltage-Based STDP

A B

neuron post

n
e

u
ro

n
 p

re

2 4 6 8 10

2

4

6

8

10

neuron post

n
e

u
ro

n
 p

re

2 4 6 8 10

2

4

6

8

10

C D

neuron post

n
e

u
ro

n
 p

re

2 4 6 8 10

2

4

6

8

10

neuron post

n
e

u
ro

n
 p

re

2 4 6 8 10

2

4

6

8

10

Figure 2.4: Weight evolution in a all-to-all connected network of 10 neurons. A: Rate
code: Neurons fire at different frequencies, neuron 1 at 2Hz, neuron 2 at 4Hz up to
neuron 10 firing at 20Hz. The weights (bottom) averaged over 100 s show that neurons
with high firing rates develop strong bidirectional connections (light blue: weak connec-
tions, ie. below 2/3 of the maximal value; yellow: strong unidirectional connections, ie.
above 2/3 of the maximal value; brown: strong bidirectional connections). The cluster is
schematically represented on top (”after”). B: Temporal code: Neurons fire successively
every 20 ms (neuron 1 then 20 ms later neuron 2,. . .). Connections (bottom) are unidi-
rectional with strong connections from presynaptic neuron with index n (vertical axis)
to postsynaptic neuron with index n+1, n+2 and n+3 leading to a ring-like topology
(top: schematic). C-D: Same but with standard STDP rule (Gerstner et al., 1996; Song
& Abbott, 2001; Gerstner & Kistler, 2002). Bidirectional connections are impossible.

2.2. Results 17

that found in the experiments), the pattern of lateral connectivity is stable and shows a

few strong bidirectional connections in a sea of weak lateral connectivity. The reason is

that two neurons with similar receptive fields are both active at high rate whenever the

stimulus is in the center region of their receptive field. Similar to the simplified model in

Fig. 2.4 A, our plasticity rule then gives rise to strong bidirectional lateral connections.

Unidirectional strong connections are nearly absent (Fig. 2.5 C and D). If the amplitude

and rate of plasticity is more realistic and in agreement with the data of Fig. 2.2, then

the pattern of lateral connectivity changes between one snapshot and another one 5 s

later, but the overall pattern is stable when averaged over 100 s (Fig. 2.6 A-C). In each

snapshot, about half of the strong connections are bidirectional (Fig. 2.6 C and D).

This connectivity pattern is in striking contrast with that shown under a temporal

coding paradigm (Fig. 2.7). Neurons develop receptive fields similar to those seen with

the rate-coding paradigm, but as expected for temporal Hebbian learning (Gerstner &

Kistler, 2002) the receptive field shifts over time (Fig. 2.7 A). With reduced learning

rate this shift is slow, as in previous models (Gerstner & Kistler, 2002; Guyonneau et

al., 2005) but with realistic learning parameters extracted from the experiments in Fig.

2.2, the shift of the receptive field is surprisingly rapid. More importantly, amongst the

lateral connections, strong reciprocal links are nearly absent, whereas strong unidirec-

tional connections from neuron n to neuron n+ 1, n+ 2, n+ 3 dominate (Fig. 2.7 B-E).

As the feedforward connections (forming the receptive fields) change, the structure of

lateral connections changes as well on the time scale of ten minutes. Nevertheless, at

each moment in time, the pattern of lateral connections is highly asymmetric, favoring

connections from neuron n to n+k (with k = 1, 2, 3) over those from n to n−k, where n

is the neuronal index after relabeling according the receptive field position (Fig. 2.7 A).

This suggests that temporal coding paradigms where stimuli are non-stationary and ex-

hibit systematic spatio-temporal correlations, are reflected in the functional connectivity

pattern by strong uni-directional connections whereas rate coding (characterized by sta-

tionary input with spatial correlations only) leads to strong bidirectional connections.

To further explore the relation between pattern and connectivity, we systematically var-

ied both the stimulus duration (between 20 and 100 ms) and the length of the cyclic

stimulation sequence (where sequence length one corresponds that a shift to the neigh-

boring location in the cycle is not preferred over a jump to an arbitrary other position

and infinity corresponds that the stimulation cycle runs forever without interruption).

Our simulation results suggest that a large number of bidirectional connections are only

possible if the input does not induce systematic spatio-temporal correlations. Moreover,

the amount of asymmetry in connections increases with cycle length, and decreases with

the duration of pattern presentation. Bidirectional connections are possible even if the

stimulation time is a short as 20 ms, but only if the stimulus has no temporal structure.

2.2.3 Development of Localized Receptive Fields

The results regarding the feedforward connectivity in the previous section lead to the

question of the behavior of our plasticity model under stimulation paradigms previously

used for rate models (Cooper et al., 2004; Blais, Shouval, & Cooper, 1998; Olshausen

18 Chapter 2. Voltage-Based STDP

A

B C

neuron post

in
p

u
t

p
re

2 4 6 8 10

100

200

300

400

500

neuron post

n
e

u
ro

n
 p

re

2 4 6 8 10

2

4

6

8

10

neuron post

in
p

u
t

p
re

2 4 6 8 10

100

200

300

400

500

neuron post

n
e

u
ro

n
 p

re

2 4 6 8 10

2

4

6

8

10

D E

n
e

u
ro

n
 p

re

2 4 6 8 10

2

4

6

8

10

neuron post
2 4 6 8 10

2

4

6

8

10
2 4 6 8 10

2

4

6

8

10

50

100

recip unidir weak

fluc = 0

Figure 2.5: Plasticity with a rate coded input and small learning amplitudes. A: A
network of ten excitatory neurons (light blue) is connected to three inhibitory neurons
(red) and receives feedforward inputs modeled as 500 Poisson spike trains with a Gaus-
sian profile of firing rates. The center of the Gaussian is shifted randomly every 100 ms.
The schematic figure shows the network before (left) and after the plasticity experiment
(right). B-E: . Model parameters are taken from Table B.2 (visual cortex data) ex-
cept for the amplitudes ALTP and ALTD which are reduced by a factor 100. B: Mean
feedforward weights (left) and recurrent excitatory weights (right) averaged over 100 s.
The grey level graph for the feedforward weights (left) indicates that neurons develop
receptive fields that are localized in the input space. The recurrent weights (right) are
classified as weak (light blue, less than 2/3 of the maximal weight), strong unidirec-
tional (yellow, more than 2/3 of the maximal weight) and strong reciprocal connections
(brown). C: Same as B but for the sake of visual clarity the neuron indices are reordered
such that neurons with similar receptive fields have adjacent numbers, highlighting that
neurons with similar receptive fields (e.g. neurons 1 to 4) have strong bilateral connec-
tions. D: Three snap shots of the recurrent connections taken 5 s apart indicating that
recurrent connections are stable. E: Histogram of reciprocal, unidirectional and weak
connections in the recurrent network averaged over 100 s as in B. The total number of
weight fluctuations during 100 s is zero (noted on the figure). The histogram shows an
average of ten repetitions (errorbars are the standard deviation).

2.2. Results 19

A B

neuron post

in
p

u
t

p
re

2 4 6 8 10

100

200

300

400

500

neuron post

n
e

u
ro

n
 p

re

2 4 6 8 10

2

4

6

8

10

neuron post

in
p

u
t

p
re

2 4 6 8 10

100

200

300

400

500

neuron post

n
e

u
ro

n
 p

re

2 4 6 8 10

2

4

6

8

10

C D

n
e

u
ro

n
 p

re

2 4 6 8 10

2

4

6

8

10

neuron post
2 4 6 8 10

2

4

6

8

10
2 4 6 8 10

2

4

6

8

10
recip unidir weak

50

100
fluc = 3400

Figure 2.6: Plasticity with a rate coded input and normal learning amplitudes (Table
B.2, visual cortex). This figure is similar to Fig. 2.5. A: Receptive fields are localized. B:
Reordering allows to visualize that the strong bidirectional give rise to clusters of neu-
rons. These clusters are stable when averaged over 100 s, but connections can change
from one time step to the next (see panel C). D: The percentage of reciprocal connec-
tions is high, but because of fluctuations more than 1000 transitions between strong
unidirectional to strong bidirectional or back occur during 100 s.

& Field, 1996). For rate coding (where pre- and postsynaptic neurons fire with Poisson

firing statistics), our plasticity rule presents structural similarities (see Appendix B) to

the so-called BCM model presented (Cooper et al., 2004). Both our spiking rule and

the rate-based BCM model require presynaptic activity in order to induce plasticity.

Furthermore, for our rule as well as for the simplest BCM rule (see (Cooper et al.,

2004)), the depression terms are linear and the potentiation terms are quadratic in the

postsynaptic variables (i.e. the postsynaptic potential or the postsynaptic firing rate).

Beyond these qualitative similarities, an approximate quantitative relation between the

BCM model and our model can be constructed under appropriate assumptions. In this

case the total weight change ∆w in our model is proportional to νpreνpost(νpost−ϑ) where

νpre and νpost denote the firing rates of the pre- and postsynaptic neurons respectively

and ϑ is a sliding threshold related to the ratio between the LTP and LTD inducing

processes (see Appendix B). The sliding threshold arises in our plasticity model because

the amount of LTD ALTD depends on the long-term average ¯̄u of the voltage on the slow

time scale of homeostatic processes. If the amount of LTD increases because of high

values of the average voltage, then the threshold ϑ in the above equation (which depends

on the ratio of LTP to LTD ALTD/ALTP) increases as well.

Due to its similarities to the BCM model, it is not surprising that our spike-based

learning rule with sliding threshold is able to support the development of localized

receptive fields, a feature related to independent component analysis (ICA) and sparse

coding, see (Cooper et al., 2004; Blais et al., 1998). In our experiments, the input

consists of small patches of natural images using standard preprocessing (Olshausen

& Field, 1996). Image patches are selected randomly and presented to the neuron for

20 Chapter 2. Voltage-Based STDP

A

B C

neuron post

in
p

u
t

p
re

2 4 6 8 10

100

200

300

400

500

neuron post

n
e

u
ro

n
 p

re

2 4 6 8 10

2

4

6

8

10

neuron post

in
p

u
t

p
re

2 4 6 8 10

100

200

300

400

500

neuron post

n
e

u
ro

n
 p

re

2 4 6 8 10

2

4

6

8

10

D E

n
e

u
ro

n
 p

re

2 4 6 8 10

2

4

6

8

10

neuron post
2 4 6 8 10

2

4

6

8

10
2 4 6 8 10

2

4

6

8

10

50

100

recip unidir weak

fluc = 27000

Figure 2.7: Plasticity with input that obeys a temporal coding. The setting is the same
as in Fig. 2.5 (parameters from Table B.2, visual cortex) but the input patterns are
moved successively every 20 ms, corresponding to a step-wise motion of the Gaussian
stimulus profile across the input neurons. A: The schematic figure shows the network
before and after the plasticity experiment. Time evolution of the weights. B: Learning
with small plasticity amplitudes, yielding localized receptive fields. In the recurrent net-
work a ring-like structure with strong unidirectional connections from neuron 8 (vertical
axis) to neuron 9 and 10 (horizontal axis) forms (for neuron 1 to neuron 2, 4, and 5
analogously etc). C: Same as B, but with normal plasticity amplitudes. D: Some of the
strong unilateral connections appear or disappear from one time step to the next, but
the ring-like network structure persists, since the lines just above the diagonal are much
more populated than the line below the diagonal. E: Reciprocal connections are ab-
sent, but unidirectional connections fluctuate several times between ’weak’ and ’strong’
during 100 s.

2.3. Discussion 21

T = 200ms, which is on the order of the fixation time between saccades. Pixel intensities

above an average grey value are converted to spike trains of ON-cells and and those below

reference intensity to spikes in OFF-cells, using the relative intensity as the rate of a

Poisson process. The spike trains from ON- and OFF-cells are the input to a cortical

model neuron. The synaptic weights undergo plasticity following our learning rule (B.3).

After learning, the weights exhibit a stable spatial structure that can be interpreted as

a receptive field (see Fig. 2.8). In contrast to principal component analysis of the image

patches (as for example implemented by Hebbian learning in linear neurons (Oja, 1982)),

the receptive fields are localized (i.e. the region with significant weights does not stretch

across the whole image patch). Nine runs of the learning experiments give receptive

fields with different locations and orientations (Fig. 2.8 D). Because of the homeostatic

control of LTD in our plasticity model, the neuron compensates for increased input

firing rates by developing smaller receptive fields that are even more localized (Fig. 2.8

E). Development of localized receptive fields has been interpreted as a signature of ICA

or sparse coding (Olshausen & Field, 1996). In contrast to most other ICA algorithms

(Hyvaerinen, Karhunen, & Oja, 2001) our rule is biologically more plausible since it is

consistent with a large body of plasticity experiments.

2.3 Discussion

Over the last decades plasticity models have primarily focused on questions of develop-

ment of receptive fields and cortical maps (Cooper et al., 2004), or memory formation

(Hopfield, 1982). Because traditional plasticity rules are rate models, the relation be-

tween coding and connectivity could not be studied. In contrast, our plasticity rule is

formulated on the level of postsynaptic voltage. Since action potentials present large and

narrow voltage peaks, they act as singular events in a voltage rule so that in the presence

of a spike our rule turns automatically into a spike timing-dependent rule. Indeed, for

spike coding (and in the absence of significant subthreshold voltage manipulations) our

plasticity rule behaves like a STDP rule where triplets of spikes with pre-post-post or

post-pre-post timing evoke LTP, whereas pairs with post-pre timing evoke LTD.

For a comparison of our model with experiments we have mainly focused on experi-

ments in slices of visual cortex, but some of the results can also be related to work in hip-

pocampus. The model can successfully reproduce the voltage dependence of LTP/LTD

seen in experiments under depolarization of the postsynaptic membrane (Artola et al.,

1990; Ngezahayo et al., 2000). Furthermore, for classical STDP experiments such as

(Bi & Poo, 2001; Sjöström et al., 2001; Wang, Gerkin, Nauen, & Bi, 2005), which have

a stimulation protocol unambiguously defined in terms of pre- and postsynaptic spike

times, the model gives a timing dependence reminiscent of the typical STDP function

(Bi & Poo, 2001). Moreover in contrast to standard STDP rules (reviewed in (Gerstner

& Kistler, 2002)), more complicated effects such as the pairing frequency dependence

(Sjöström et al., 2001) and burst timing dependence plasticity (Nevian & Sakmann,

2006) are qualitatively described. In addition the rule is expected to reproduce the

triplet and quadruplet experiments in hippocampal slices (Wang et al., 2005) (data not

shown), because for all STDP protocols the plasticity rule in this chapter is similar to a

22 Chapter 2. Voltage-Based STDP

time [s]

w
e

ig
h

t

0 50000

5

10

15

ON

OFF

Filter+

-

“ON” weights

“OFF” weights

+

-

A B

D EC

Figure 2.8: Receptive field development. A: A small patch of 16x16 pixels is chosen
from the whitened natural images benchmark (Olshausen & Field, 1996). The patch is
selected randomly and is presented as input to 512 neurons for 200 ms. The positive
part of the image is used as the firing rate to generate Poisson spike trains of the 256
”ON” inputs and the negative one for the 256 ”OFF” inputs. B: The weights after
convergence are shown for the ”ON” inputs and the ”OFF” inputs rearranged on a
16x16 image. The filter is calculated by subtracting the ”OFF” weights from the ”ON”
weights. The filter is localized and bimodal, corresponding to an oriented receptive field.
C: Temporal evolution of the weights shown in the red dashed box in panel B. D: Nine
different neurons. E. Two different neurons receiving presynaptic input with varying
firing rates from (top) 0 − 25Hz (middle) 0 − 37.5Hz (bottom) 0 − 75Hz.

2.3. Discussion 23

nonlinear STDP rule presented (Pfister & Gerstner, 2006). Deriving STDP rules from

voltage dependence has been attempted before (Sjöström et al., 2001; Saudargiene, Porr,

& Wörgötter, 2003; Brader, Senn, & Fusi, 2007). However, since these earlier models

use the momentary voltage (Brader et al., 2007) or its derivative (Saudargiene et al.,

2003), rather than a combination of momentary and averaged voltage as in our model,

they cannot account for the broad range of nonlinear effects in STDP experiments or

interaction of voltage and spike timing. The voltage-based model of (Sjöström et al.,

2001) which can account for a variety of nonlinear STDP and voltage effects, uses sep-

arate empirical functions for timing dependence (width of rectangular STDP window),

voltage dependence (sigmoidal function of depolarization just before a spike), frequency

dependence (linear dependence), and multiple spike summation with preference for LTP,

to capture the nonlinear effects of LTP and its dominance over LTD at higher frequen-

cies. Our model is similar in that it also uses momentary voltage before the spike as

one of the variables, but does not require an explicit frequency-dependent term, nor an

explicit timing-dependent term. Rather, frequency and timing dependence follow from

the model-dynamics. Our model shows similarities with LTP induction in the TagTriC

model (Clopath, Ziegler, Vasilaki, Buesing, & Gerstner, 2008), but the TagTriC model

focuses on the long-term stability of synapses, rather than spike timing dependence of

the induction mechanism.

Even though our model does not require a biophysical interpretation of the variables,

it is tempting to speculate about potential mechanisms. For the depression term in our

model, a ’trace’ ū− left by previous activity of the postsynaptic neuron is combined with

spike arrival x at the presynaptic terminal (Fig. 2.1 A). In view of the results on LTD

in layer-V neocortical neurons (Sjöström, Turrigiano, & Nelson, 2003), this trace could

be related to endocannaiboids released from the postsynaptic terminal which activate

presynaptic CB1 receptors. Coincidence of this slow trace with the activation of presy-

naptic NMDA receptors (which rapidly respond to the glutamate released by presynaptic

activity x(t)) could be the trigger signal for LTD (Sjöström et al., 2003). Indeed, the

duration of the LTD part in the STDP function increases, if the endocannabinoid trace

is artificially prolonged (see Fig 9 of (Sjöström et al., 2003)). In other neuron types

and brain areas, the same mathematical model (but with different parameters) could

correspond to different biophysical mechanisms of LTD. For example, in hippocampal

CA1 neurons, the trace ū− could reflect the calcium entry through voltage-gated ion

channels during depolarization which, when combined with synaptic signals (caused by

the presynaptic spike arrival x), would give rise to the modest calcium signals necessary

to trigger LTD (reviewed in (Lisman & Zhabotinsky, 2001; Shouval et al., 2002; Sjöström

et al., 2003)). Potentiation is induced in our model by the combination of three factors:

a momentary as well as an “averaged” postsynptic depolarization and the presence of

a ’trace’ x̄ left by presynaptic spike arrival (Fig. 2.1 A). The trace x̄ could correspond

to the amount of glutamate bound to the postsynaptic NMDA receptor even though it

has been argued that the time constant of unbinding would be too long compared to

the duration of the LTP part of the STDP function (Sjöström et al., 2003). A high

momentary voltage u can be induced by a backpropagating action potential. Interest-

ingly, backpropagation of action potentials is more likely and more reliable to occur in

24 Chapter 2. Voltage-Based STDP

the background of a weak depolarization of the dendrite (reviewed in (Sjöström et al.,

2003)) – and such a weak depolarization potentially corresponds the the term ū+ in our

model. Because in our model we have a depolarizing afterpotential after each spike (Fig.

2.1 C, similar to that seen in experiments Fig. 2.1 D), the value of ū just before the next

spike increases with the repetition frequency of the STDP protocol, in agreement with

experiments (Fig. 5 D in (Sjöström et al., 2001)). Our model is therefore consistent

with results that LTP can be induced in distal synapses only if additional cooperative

input or dendritic depolarization prevent failure of backpropagating action potentials

(Sjöström & Häusser, 2006). In the context of the classical view of the NMDA receptor

as a coincidence detector (reviewed in (Sjöström et al., 2003)), it is quite natural to

see why a sequence post-pre-post of two postsynaptic action potentials and one presy-

naptic spike are ideal for LTP: The spike-afterpotential of the first postsynaptic action

potential removes the calcium block and prepares the dendrite for successful backprop-

agation of a later action potential. If the backpropagating action potential caused by

the second postsynaptic spike occurs just slightly after presynaptic spike arrival, this

causes a sharply peaked and large calcium transient that would be sufficient to trigger

the LTP induction chain. We note that a post-pre-post sequence is also the ideal trig-

ger for potentiation in our model. Even though our model is formulated on the level

of voltage, we do not imply that voltage itself is the essential biophysical mechanism.

Rather, under physiological conditions, the voltage transient (or current or conductance

transient) caused by synaptic input or action potential firing is the starting point for

long biochemical signaling chains that, in the end lead to the induction of plasticity.

In a phenomenological model, the signature of the inputs (here the voltage transients)

are directly linked (via mathematical variables or “traces”) to the induction of plas-

ticity, jumping over the biophysical mechanisms of the signal transduction chain. For

the description of experiments where the experimentalist directly interacts with inter-

mediate steps of the signaling chain (e.g. artificial calcium release or gelator, blocking

of specific channels or kinases) a detailed biophysical model is necessary while for a

compressed summary of the electrophysiological experiments considered in this chapter

a phenomenological model is sufficient.

Our plasticity rule allows us to explain experiments from two different laboratories

by one single principle. Both the “potentiation is rescued by depolarization” (Sjöström

et al., 2001) scenario (Fig. 2.2 F) and that of burst timing-dependent LTP (Nevian

& Sakmann, 2006) (Fig. 2.3) indicate that LTP at low frequency is induced when the

membrane is depolarized before the pre-post pairing. This depolarization can be due

to a previous spike during a postsynaptic burst (Nevian & Sakmann, 2006) or to a

depolarization current. A further unexpected result is that, with the set of parameters

derived from visual cortex slice experiments, synapses fluctuate rapidly between strong

and weak weights. This aspect is interesting in view of synapse mobility reported in

imaging experiments (Yuste & Bonhoeffer, 2004).

Our phenomenological model gives a compressed description of the experimental re-

sults discussed above and we believe that it cannot be simplified further. First, voltage

is necessary as a variable whenever voltage is manipulated in experiments, and second,

dependence upon voltage must be nonlinear to account for the experimental results with

2.3. Discussion 25

stationary voltage (Artola et al., 1990; Ngezahayo et al., 2000). Phenomenological mod-

els have some freedom in the choice of the mathematical form of the nonlinearities (e.g.

exponential, polynomial or piecewise linear functions) and we chose a suitable combi-

nation of piecewise linear functions with thresholds θ+ and θ−. Third, the frequency

dependence of STDP as well as the interaction of voltage with spike timing indicates

that the temporal relation between stimulation events is important. All timing relations

in our phenomenological model have been implemented as (first-order) linear filtering,

the simplest method at hand. For the case of classical STDP experiments, where all

spikes are triggered by the experimenter our phenomenological model can be simplified

and becomes identical or closely related to existing nonlinear STDP models (Pfister &

Gerstner, 2006; Senn, Tsodyks, & Markram, 2001), but regarding the interaction be-

tween voltage and spike timing such a further simplification is not possible. Finally,

the fact that the curve of burst timing-dependent plasticity (Fig. 2.3 C) is not perfectly

reproduced indicates that our plasticity model does not have an unnecessarily large

number of free parameters.

There are, however, certain limitations to our plasticity rule. First, we did not

address the problem of weight dependence of synaptic plasticity and simply assumed

that weights can grow to a hard upper bound. Nevertheless, the rule can easily be

adapted to include soft bounds (Gerstner & Kistler, 2002) by changing the prefactors

ALTP, ALTD accordingly (Clopath et al., 2008). Second, short term plasticity (Tsodyks

& Markram, 1997) could be added for a better description of the plasticity phenomena

occurring especially during high frequency protocols. Third, our plasticity rule describes

only induction of potentiation or depression during the early phase of LTP/LTD (Frey

& Morris, 1997). Additional mechanisms need to be implemented in the model to

describe the transition from early to late LTP/LTD (Clopath et al., 2008; Barrett,

Billings, Morris, & Rossum, 2009). Finally, in modeling voltage-clamp experiments,

we assume in our model a unique voltage throughout the whole neuron. In particular

the dendrite is assumed to be equipotential to the soma. Yet, experiments controlling

the voltage at the soma do not guarantee an equal or even fixed voltage at the site

of the synapses with respect to the soma. An obvious and promising improvement

would be to use a multi-compartment neuron model (e.g. distinct compartments for the

soma and dendrites). In the presented work we did not use a more sophisticated multi-

compartment model as this would introduce a considerable number of new parameters

making overfitting more likely to occur. Interestingly, our voltage-based formulation of

plasticity applied locally in a compartmental model would allow potentiation to occur in

a dendritic branch whenever the following three conditions are met: presynaptic activity,

recent postsynaptic depolarization, and momentary large depolarization – independent

of the source of of depolarization. Hence, dendritic spikes could lead to potentiation

in the absence of somatic action potentials, in agreement with recent experiments in

hippocampal slices (Hardie & Spruston, 2009).

Our plasticity model leads to several predictions that could be tested in slice experi-

ments. First, under the assumption of voltage clamp, our rule is linear in the presynaptic

activities (see Appendix B). Thus the model predicts that in voltage clamp experiments

the weight change is only dependent on the voltage and the number of presynaptic spikes

26 Chapter 2. Voltage-Based STDP

but not on their exact timing i.e. low frequency, tetanus, burst input should give the

same result. Second, in the scenario where potentiation is rescued by depolarization,

the amount of weight change should be the same whether a depolarizing current of a

certain amplitude stops precisely when the postsynaptic spike is triggered or whether

a current of slightly bigger amplitude stops a few milliseconds earlier. Third, multiple

STDP experiments have shown that pre-post pairing (with 10 ms timing difference) re-

peated at 10Hz leads to potentiation (Sjöström et al., 2001). In our plasticity model,

LTP occurs in that case because the depolarizing spike-afterpotential of the last post-

synaptic spike leads to an increase of the filtered membrane voltage just before the next

postsynaptic spike. If this interpretation is correct, a hyperpolarizing current sufficient

to cancel the spike afterpotential during 40 ms should block LTP (note that at 10Hz

repetition frequency this is different from blocking LTP by a hyperpolarizing current a

few milliseconds before the next spike (Sjöström et al., 2001)).

The influence of STDP on temporal coding has been studied in the past primarily

with respect to changes in the feedforward connections (reviewed in (Gerstner & Kistler,

2002)). The effect of STDP on lateral connectivity has been studied much less (N. Levy

et al., 2001; Morrison et al., 2007; Izhikevich & Edelman, 2008; Lubenov & Siapas,

2008). We have shown in this chapter that, because of STDP, coding influences the net-

work topology, as different codes give rise to different patterns of lateral connectivity.

Our results are in contrast to standard STDP rules which always suppress short loops,

and in particular bidirectional connections (N. Levy et al., 2001; Kozloski & Cecchi,

2008). Our more realistic plasticity model shows that under a rate coding paradigm

(where the neuron is stimulated by different stationary patterns) bidirectional connec-

tivity and highly connected clusters with multiple loops are not only possible, but even

dominant. It is only for temporal coding (characterized by stimulation with significant

spatiotemporal correlations), that our biologically plausible rule leads to dominant uni-

lateral directions. We speculate that the differences in coding between different brain

areas could lead, even if the learning rule were exactly the same, to different network

topologies. Our model predicts that experiments where cells in a recurrent network are

repeatedly stimulated in a fixed order would decrease the fraction of strong bidirectional

connections, whereas a stimulation pattern where clusters of neurons fire at high rate

during episodes of a few hundred milliseconds would increase this fraction. In this views

it is tempting to connect the low degree of bidirectional connectivity in barrel cortex

(Lefort et al., 2009) to the bigger importance of temporal structure in whisker input

(Jadhav et al., 2009), compared to visual input.

2.4 Acknowledgments

This chapter is based on the paper Connectivity reflects coding: A model of voltage-based

STDP with homeostasis, which was written by Claudia Clopath (CC), Lars Büsing (LB),

Eleni Valsilaki (EV) and Wulfram Gerstner (WG). The plasticity model was developped

by CC and LB. CC fitted the model to experimental data, designed and carried out the

simulations. LB developped the link to the BCM rule and did the calculations for the

expected weight change presented in Appendix B. EV participated in discussions. WG

2.4. Acknowledgments 27

supervised the project and wrote most of the manuscript.

Chapter 3

Simplified Information Bottleneck

Optimization with Spiking

Neurons

Contents

3.1 Introduction . 29

3.2 Neuron Model and Learning Rule for IB Optimization 31

3.3 Analytical Results . 33

3.4 A Concrete Example for IB Optimization 34

3.5 Relevance-Modulated PCA with Spiking Neurons 36

3.6 Discussion . 39

3.7 Acknowledgments . 39

We show that under suitable assumptions (primarily linearization) a simple and

perspicuous online learning rule for Information Bottleneck optimization with spiking

neurons can be derived. This rule performs on common benchmark tasks as well as a

rather complex rule that has previously been proposed (Klampfl, Legenstein, & Maass,

2009). Furthermore, the transparency of this new learning rule makes a theoretical anal-

ysis of its convergence properties feasible. A variation of this learning rule (with sign

changes) provides a theoretically founded method for performing Principal Component

Analysis (PCA) with spiking neurons. By applying this rule to an ensemble of neurons,

different principal components of the input can be extracted. In addition, it is possible

to preferentially extract those principal components from incoming signals X that are

related or are not related to some additional target signal YT . In a biological interpreta-

tion, this target signal YT (also called relevance variable) could represent proprioceptive

feedback, input from other sensory modalities, or top-down signals.

3.1 Introduction

The Information Bottleneck (IB) approach (Tishby, Pereira, & Bialek, 1999) allows the

investigation of learning algorithms for unsupervised and semi-supervised learning on the

basis of clear optimality principles from information theory. Two types of time-varying

inputs X and YT are considered. The learning goal is to learn a transformation from

X into another signal Y that extracts only those components from X that are related

30 Chapter 3. Simplified Spiking Information Bottleneck

to the relevance signal YT . In a more global biological interpretation X might represent

for example some sensory input, and Y the output of the first processing stage for X in

the cortex. In this article Y will simply be the spike output of a neuron that receives

the spike trains X as inputs. The starting point for our analysis is the first learning

rule for IB optimization in for this setup, which has recently been proposed in (Klampfl,

Legenstein, & Maass, 2007), (Klampfl et al., 2009). Unfortunately, this learning rule is

complicated (and restricted to discrete time), and no theoretical analysis of its behavior

is feasible. Any online learning rule for IB optimization has to make a number of

simplifying assumptions, since true IB optimization can only be carried out in an offline

setting. We show here, that with a slightly different set of assumptions than those

made in (Klampfl et al., 2007) and (Klampfl et al., 2009), one arrives at a drastically

simpler and intuitively perspicuous online learning rule for IB optimization with spiking

neurons. The learning rule in (Klampfl et al., 2007) was derived by maximizing the

objective function1 L0:

L0 = −I(X,Y) + βI(Y, YT) − γDKL(P (Y)‖P (Ỹ)), (3.1)

where I(., .) denotes the mutual information between its arguments and β is a posi-

tive trade-off factor. The target signal was assumed to be given by a spike train YT .

The learning rule from (Klampfl et al., 2007) (see (Klampfl et al., 2009) for a detailed

interpretation) is quite involved and requires numerous auxiliary definitions (hence we

cannot repeat it in this abstract). Furthermore, it can only be formulated in discrete

time (steps size ∆t) for reasons we want to outline briefly: In the limit ∆t → 0 the

essential contribution to the learning rule, which stems from maximizing the mutual in-

formation I(Y, YT) between output and target signal, vanishes. This difficulty is rooted

in a rather technical assumption, made in appendix A.4 in (Klampfl et al., 2009), con-

cerning the expectation value ρ
k

at time step k of the neural firing probability ρ , given

the information about the postsynaptic spikes and the target signal spikes up to the

preceding time step k − 1 (see our detailed discussion in the appendix C.5)2. The re-

striction to discrete time prevents the application of powerful analytical methods like

the Fokker-Planck equation, which requires continuous time, for analyzing the dynamics

of the learning rule.

In section 3.2 of this chapter, we propose a much simpler learning rule for IB op-

timization with spiking neurons, which can also be formulated in continuous time. In

contrast to (Klampfl et al., 2009), we approximate the critical term ρ
k

with a linear

estimator, under the assumption that X and YT are positively correlated. Further sim-

plifications in comparison to (Klampfl et al., 2009) are achieved by considering a simpler

neuron model (the linear Poisson neuron, see (Gerstner & Kistler, 2002)). However we

show through computer simulation in the appendix C that the resulting simple learning

1The term DKL(P (Y)‖P (Ỹ)) denotes the Kullback-Leibler divergence between the distribution P (Y)
and a target distribution P (Ỹ). This term ensures that the weights remain bounded, it shortly discussed
in appendix C.

2The remedy, proposed in section 3.1 in (Klampfl et al., 2009), of replacing the mutual information
I(Y,YT) in L0 by an information rate I(Y,YT)/∆t does not solve this problem, as the term I(Y,YT)/∆t
diverges in the continuous time limit.

3.2. Neuron Model and Learning Rule for IB Optimization 31

rule performs equally well for the more complex neuron model with refractoriness from

(Klampfl et al., 2007) - (Gerstner & Kistler, 2002). The learning rule presented here

can be analyzed by the means of the drift function of the corresponding Fokker-Planck

equation. The theoretical results are outlined in section 3.3, followed by the consider-

ation of a concrete IB optimization task in section 3.4. A link between the presented

learning rule and Principal Component Analysis (PCA) is established in section 3.5. A

more detailed comparison of the learning rule presented here and the one of (Klampfl

et al., 2009) as well as results of extensive computer tests on common benchmark tasks

can be found in the appendix C.

3.2 Neuron Model and Learning Rule for IB Optimization

We consider a linear Poisson neuron with N synapses of weights w = (w1, . . . , wN). It is

driven by the input X, consisting of N spike trains Xj(t) =
∑

i δ(t− tij), j ∈ {1, . . . , N},
where tij denotes the time of the i’th spike at synapse j. The membrane potential

u(t) of the neuron at time t is given by the weighted sum of the presynaptic activities

ν(t) = (ν1(t), . . . , νN (t)):

u(t) =

N∑

j=1

wjνj(t) (3.2)

νj(t) =

∫ t

−∞
ǫ(t− s)Xj(s)ds.

The kernel ǫ(.) models the EPSP of a single spike (in simulations ǫ(t) was chosen to be

a decaying exponential with a time constant of τm = 10ms). The postsynaptic neuron

spikes at time t with the probability density g(t):

g(t) =
u(t)

u0
,

with u0 being a normalization constant. The postsynaptic spike train is denoted as

Y (t) =
∑

i δ(t− tif), with the firing times tif .

We now consider the IB task described in general in (Tishby et al., 1999), which

consists of maximizing the objective function LIB, in the context of spiking neurons.

As in (Toyoizumi, Pfister, Aihara, & Gerstner, 2007), we introduce a further term L3

into the the objective function that reflects the higher metabolic costs for the neuron

to maintain strong synapses, a natural, simple choice being L3 = −λ∑w2
j . Thus the

complete objective function L to maximize is:

L = LIB + L3 = −I(X,Y) + βI(YT , Y) − λ

N∑

j=1

w2
j . (3.3)

The objective function L differs slightly from L0 given in (3.1), which was optimized in

(Klampfl et al., 2009); this change turned out to be advantageous for the PCA learning

32 Chapter 3. Simplified Spiking Information Bottleneck

rule given in section 3.5, without significantly changing the characteristics of the IB

learning rule.

The online learning rule governing the change of the weights wj(t) at time t is

obtained by a gradient ascent of the objective function L:

d

dt
wj(t) = α

∂L

∂wj
.

For small learning rates α and under the assumption that the presynaptic input X and

the target signal YT are stationary processes, the following learning rule can be derived:

d

dt
wj(t) = α

Y (t)

u(t)
νj(t)

(

−u(t) − u(t)

u(t)
+ β

(

F [YT](t) − F [YT](t)
))

− αλwj(t),(3.4)

where the operator (.) denotes the low-pass filter with a time constant τC (in simulations

τC = 3s), i. e. for a function f :

f(t) =
1

τC

∫ t

−∞
exp

(

− t− s

τC

)

f(s)ds. (3.5)

The operator F [YT](t) appearing in (3.4) is proportional to the expectation value of the

membrane potential 〈u(t)〉X|YT
= E[u(t)|YT], given the observations (YT (τ)|τ ∈ R) of

the relevance signal; F is thus closely linked to estimation and filtering theory. For a

known joint distribution of the processes X and YT , the operator F could in principal

be calculated exactly, but it is not clear how this quantity can be estimated in an online

process; thus we look for a simple approximation to F . Under the above assumptions,

F is time invariant and can be approximated by a Volterra series (for details see the

appendix C):

〈u(t)〉X|YT
∝ F [YT](t) =

∞∑

n=0

∫

R

· · ·
∫

R

κn(t− t1, . . . , t− tn)

n∏

i=1

YT (ti)dti. (3.6)

In this article, we concentrate on the situation, where F can be well approximated by

its linearization, corresponding to a linear estimator of 〈u(t)〉X|YT
, which will be called

uT (t):

uT (t) =

∫

R

κ1(t− t1)YT (t1)dt1. (3.7)

Assuming positively correlated X and YT , κ1(t) is chosen to be a non-anticipating decay-

ing exponential exp(−t/τ0)Θ(t) with a time constant τ0 (in simulations τ0 = 100ms),

where Θ(t) is the Heaviside step function. This choice is motivated by the standard

models for the impact of neuromodulators (see (Izhikevich, 2007)), thus such a kernel

may be implemented in a realistic biological mechanism. Furthermore, the resulting

uT (t) is the causal Wiener filter3 of this estimation problem, if the autocorrelation of

3The Wiener filter is the optimal causal linear estimator in the mean-square error sense and its
kernel κ1 fulfills the Wiener-Hopf equation (equation 14-88 in (Papoulis, 1991)), for more details see the

3.3. Analytical Results 33

YT and the cross-correlation function between u and YT decay exponentially with the

time constant τ0. It turned out that the choice of τ0 was not critical, it could be varied

over a decade ranging from 10ms to 100ms.

Using the above definitions, the resulting learning rule is given by (in vector nota-

tion):

d

dt
w(t) = α

Y (t)

u(t)
ν(t)

(

−u(t) − u(t)

u(t)
+ β(uT (t) − uT (t))

)

− αλw(t). (3.8)

Equation (3.8) will be called the spike-based learning rule, as the postsynaptic spike

train Y (t) explicitly appears. An accompanying rate-base learning rule can also be

derived:

d

dt
w(t) = α

1

u0
ν(t)

(

−u(t) − u(t)

u(t)
+ β(uT (t) − uT (t))

)

− αλw(t). (3.9)

3.3 Analytical Results

The learning rules (3.8) and (3.9) are stochastic differential equations for the weights wj

driven by the processes Y (.), νj(.) and uT (.), of which the last two are assumed to be

stationary with the means 〈νj(t)〉 = ν0 and 〈uT (t)〉 = uT,0 respectively. The evolution

of the solutions w(t) to (3.8) and (3.9) may be studied via a Master equation for the

probability distribution of the weights p(w, t) (see (Risken, 1996)). For small learning

rates α, the stationary distribution p(w) sharply peaks4 at the roots of the drift function

A(w) of the corresponding Fokker-Planck equation (the detailed derivation is given in

the appendix C). Thus, for α ≪ 1, the temporal evolution of the learning rules (3.8)

and (3.9) may be studied via the deterministic differential equation:

d

dt
ŵ = A(ŵ) = α

ν0

u0

(

−1

z
Cŵ + βCT

)

− αλŵ (3.10)

z =

N∑

j=1

wj, (3.11)

where z is the total weight. The matrix C (with the elements Cij) is the covariance

matrix of the input and the vector CT quantifies the covariance between the activities

νj and the trace uT :

Cij =
1

ν2
0

〈νi(t), νj(t)〉

CT
j =

1

ν0
〈νj(t), uT (t)〉.

appendix C.
4A root w∗ of A(w) may also correspond to a minimum of p(w) at w∗, if the critical point w∗ of

(3.10) is unstable. Thus, we are only interested in stable critical points of (3.10).

34 Chapter 3. Simplified Spiking Information Bottleneck

Now the critical points w∗ of dynamics of (3.10) are investigated. These critical points,

if asymptotically stable, determine the peaks of the stationary distribution p(w) of the

weights w; we therefore expect the solutions of the stochastic equations to fluctuate

around these fixed points w∗. If β and λ are much larger than one, the term containing

the matrix C can be neglected and equation (3.10) has a unique stable fixed point w∗:

w∗ =
ν0β

u0λ
CT .

Under this assumption the maximal mutual information between the target signal YT (t)

and the output of the neuron Y (t) is obtained by a weight vector w = w∗ that is parallel

to the covariance vector CT .

In general, the critical points w∗ of (3.10) can be determined using the following fact:

Since the covariance matrix C of the input X is symmetric, every element in R
N can

be expressed as a linear combination of eigenvectors bi of C with eigenvalues λi, thus

CT =
∑

i πib
i with coefficients πi. The critical point w∗ can be written as the linear

combination w∗ =
∑

i αib
i, with the coefficients αi:

αi =
βπiz

∗

λi + λu0

ν0
z∗
. (3.12)

The total weight z∗ =
∑

j w
∗
j is the solution of the algebraic equation:

N∑

i=1

βπib
i

λi + λu0

ν0
z∗

= 1, (3.13)

where b
i

=
∑

j b
i
j. It can be shown (see appendix C for proof) that there is a unique

critical point w∗ satisfying (3.12) and (3.13); further, this critical point is asymptotically

stable. Thus, a stationary unimodal5 distribution p(w) of the weights w is predicted,

which is centered around the value w∗.

3.4 A Concrete Example for IB Optimization

A special scenario of interest, that often appears in the literature (see for example

(Klampfl et al., 2007), (Gütig, Aharonov, Rotter, & Sompolinsky, 2003) and (Meffin,

Besson, Burkitt, & Grayden, 2006)), is the following: The synapses, and subsequently

the input spike trains, form M different subgroups Gl, l ∈ {1, . . . ,M} of the same size

N/M ∈ N. The spike trains Xj and Xk, j 6= k, are statistically independent if they

belong to different subgroups; within a subgroup there is a homogeneous covariance

term Cjk = cl, j 6= k for j, k ∈ Gl, which can be due either to spike-spike correlations or

correlations in rate modulations. The covariance between the target signal and the spike

trains Xj is homogeneous among a subgroup. Thus CT is of the form CT =
∑M

l=1 πle
l,

with coefficients πl. e
l is defined as the vector, whose component elj, j ∈ {1, . . . , N} is

5Note that p(w) denotes the distribution of the weight vector, not the distribution of a single weight
p(wj).

3.4. A Concrete Example for IB Optimization 35

A B

X (t)

X (t)

X (t)

1

2

N Relevance

Output Y(t)

Signal Y (t)T

� � � � � � � � �
]s[t

� � �� � �� � �
l
w̃

C D

� � � � � � � � �
]s[t

� � 	� � �� � 	

l
w̃
 �

 �

]s[t

 ��

�
 �
l
w̃

Figure 3.1: A: The basic setup for the Information Bottleneck optimization. B-D:
Numerical and analytical results for the IB optimization task described in section 3.4.
The temporal evolution of the average weights w̃l = 1/M

∑

j∈Gl
wj of the four different

synaptic subgroups Gl is shown. B: The performance of the spike-based rule (3.8). The
highest trajectory corresponds to w̃1; it stays close to its analytical predicted fixed point
value obtained from (3.12) and (3.13), which is visualized by the upper dashed line. The
trajectory just below belongs to w̃3, for which the fixed point value is also plotted as
dashed line. The other two trajectories w̃2 and w̃4 decay and eventually fluctuate above
the predicted value of zero. C: The performance of the rate-based rule (3.9); results
are analogous to the ones of the spike-based rule. D: Simulation of the deterministic
equation (3.10).

36 Chapter 3. Simplified Spiking Information Bottleneck

one if j ∈ Gl and zero otherwise. In this setup, the el are eigenvectors of C and the

results from section 3.3 can immediately be applied: The unique stable critical point

w∗ is determined via (3.12) with the total weight z∗ =
∑

j w
∗
j given by (3.13), using

b
i
= ei = M .

As a numerical example, we consider in Fig. 3.1 a modification of the IB task pre-

sented in Fig. 2 of (Klampfl et al., 2007). The N = 100 synapses form M = 4 subgroups

Gl = {25(l − 1) + 1, . . . , 25l}, l ∈ {1, . . . , 4}. Synapses in G1 receive Poisson spike

trains of constant rate ν0 = 20Hz, which are mutually spike-spike correlated with a

correlation-coefficient6 of 0.5. The same holds for the spike trains of G2. Spike trains

for G3 and G4 are uncorrelated Poisson trains with a common rate modulation, which is

equal to low pass filtered white noise (cut-off frequency 5Hz) with mean ν0 and standard

deviation (SD) σ = ν0/2. The rate modulations for G3 and G4 are however independent

(though identically distributed). Two spike trains for different synapse subgroups are

statistically independent. The target signal YT was chosen to be the sum of two Poisson

trains. The first is of constant rate ν0 and has spike-spike correlations with G1 of coeffi-

cient 0.5; the second is a Poisson spike train with the same rate modulation as the spike

trains of G3 superimposed by additional white noise of SD 2Hz. Furthermore, the target

signal was turned off during random intervals7. The resulting evolution of the weights is

shown in Fig. 3.1, illustrating the performance of the spike-based rule (3.8) as well as of

the rate-based rule (3.9). As expected, the weights of G1 and G3 are potentiated as YT

has mutual information with the corresponding part of the input. The synapses of G2

and G4 are depressed. The analytical result for the stable fixed point w∗ obtained from

(3.12) and (3.13) is shown as dashed lines and is in good agreement with the numerical

results. Furthermore the trajectory of the solution ŵ(t) to the deterministic equation

(3.10) is plotted.

This IB task was slightly changed from the one presented in (Klampfl et al., 2007),

because for the setting used here, the covariance matrix C and CT can be calculated

analytically. The simulation results for the original setting in (Klampfl et al., 2007) can

also be reproduced with the simpler rules (3.8) and (3.9) (not shown).

3.5 Relevance-Modulated PCA with Spiking Neurons

The presented learning rules (3.8) and (3.9) exhibit a close relation to Principal Compo-

nent Analysis (PCA). A learning rule which enables the linear Poisson neuron to extract

principal components from the input X(.) can be derived by maximizing the following

objective function:

LPCA = −LIB − λ

N∑

j=1

w2
j = +I(X,Y) − βI(YT , Y) − λ

N∑

j=1

w2
j , (3.14)

6Spike-spike correlated Poisson spike trains were generated according to the method outlined in
(Gütig et al., 2003).

7These intervals were Poisson distributed (i. e. there is a constant probability density in time for
turning-off YT) with a mean rate of 10−2 Hz and were of random duration, which was normal distributed
with mean 5 s and SD 1 s.

3.5. Relevance-Modulated PCA with Spiking Neurons 37

which just differs from (3.3) by a change of sign in front of LIB. The resulting learning

rule is in close analogy to (3.8):

d

dt
w(t) = α

Y (t)

u(t)
ν(t)

(
u(t) − u(t)

u(t)
− β(uT (t) − uT (t))

)

− αλw(t). (3.15)

The corresponding rate-based version can also be derived. Without the trace uT (.)

of the target signal, it can be seen that the solution ŵ(t) of deterministic equation

corresponding to (3.15) (which is of the same form as (3.10) with the obvious sign

changes) converges to an eigenvector of the covariance matrix C. Thus, for uT (.) = 0

we expect the learning rule (3.15) to perform PCA for small learning rates α. The rule

(3.15) without the relevance signal is comparable to other PCA rules, e. g. the covariance

rule (see (Sejnowski & Tesauro, 1989)) for non-spiking neurons.

The side information given by the relevance signal YT (.) can be used to extract

specific principal components from the input, thus we call this paradigm relevance-

modulated PCA. Before we consider a concrete example for relevance-modulated PCA,

we want to point out a further application of the learning rule (3.15).

The target signal YT can also be used to extract different components from the input

with different neurons (see figure 3.2). Consider m neurons receiving the same input

X. These neurons have the outputs Y1(.), . . . , Ym(t), target signals Y 1
T (.), . . . , Y m

T (t)

and weight vectors w1(t), . . . , wm(t), the latter evolving according to (3.15). In order

to prevent all weight vectors from converging towards the same eigenvector of C (the

principal component), the target signal Y i
T for neuron i is chosen to be the sum of all

output spike trains except Yi:

Y i
T (t) =

N∑

j=1, j 6=i

Yj(t). (3.16)

If one weight vector wi(t) is already close to the eigenvector ek of C, than by means of

(3.16), the basins of attraction of ek for the other weight vectors wj(t), j 6= i are reduced

(or even vanish, depending on the value of β). It is therefore less likely (or impossible)

that they also converge to ek. In practice, this setup is sufficiently robust, if only a small

number (≤ 4) of different components is to be extracted and if the differences between

the eigenvalues λi of these principal components are not too big. For the PCA learning

rule, the time constant τ0 of the kernel κ1 (see (3.7)) had to be chosen smaller than for

the IB tasks in order to obtain good performance; we used τ0 = 10ms in simulations.

This is in the range of time constants for IPSPs. Hence, the signals Y i
T could probably

be implemented via lateral inhibition.

The learning rule considered in (Klampfl et al., 2009) displayed a close relation to

Independent Component Analysis (ICA). Because of the linear neuron model used here

and the linearization of further terms in the derivation, the resulting learning rule (3.15)

performs PCA instead of ICA.

The results of a numerical example are shown in figure 3.2. The m = 3 for the

regular PCA experiment neurons receive the same input X and their weights change

according to (3.15). The weights and input spike trains are grouped into four subgroups

38 Chapter 3. Simplified Spiking Information Bottleneck

A B neuron 1 C neuron 2

X (t)

X (t)
1

2

NX (t)

Output Y (t)

Output Y (t)1

m � � � � � � � � �
]s[t

� � �� � �� � �
l
w̃ � � � � � � � � �

]s[t

� � 	� � �� � 	

l
w̃

D neuron 1 E neuron 2 F neuron 3
 �

 �

]s[t

 ��

l
w̃ � � � � � � � �

]s[t

� � �� � �
l
w̃ � � � � � � � �

]s[t

� � �� � �
l
w̃

Figure 3.2: A: The basic setup for the PCA task: The m different neurons receive the
same input X and are expected to extract different principal components of it. B-F: The
temporal evolution of the average subgroup weights w̃l = 1/25

∑

j∈Gl
wj for the groups

G1 (black solid line), G2 (light gray solid line) and G3 (dotted line). B-C: Results for the
relevance-modulated PCA task: neuron 1 (fig. B) specializes on G2 and neuron 2 (fig.
C) on subgroup G3. D-F: Results for the regular PCA task: neuron 1 (fig. D) specialize
on G1, neuron 2 (fig. E) on G2 and neuron 3 (fig. F) on G3 .

G1, . . . , G4, as for the IB optimization discussed in section 3.4. The only difference

is that all groups (except for G4) receive spike-spike correlated Poisson spike trains

with a correlation coefficient for the groups G1, G2, G3 of 0.5, 0.45, 0.4 respectively.

Group G4 receives uncorrelated Poisson spike trains. As can be seen in figure 3.2 D

to F, the different neurons specialize on different principal components corresponding

to potentiated synaptic subgroups G1, G2 and G3 respectively. Without the relevance

signals Y i
T (.), all neurons tend to specialize on the principal component corresponding

to G1 (not shown).

As a concrete example for relevance-modulated PCA, we consider the above setup

with slight modifications: Now we want m = 2 neurons to extract the components G2

and G3 from the input X, and not the principal component G1. This is archived with an

additional relevance signal Y 0
T , which is the same for both neurons and has spike-spike

correlations with G2 and G3 of 0.45 and 0.4. We add the term γI(Y, Y 0
T) to the objective

function (3.14), where γ is a positive trade-off factor. The resulting learning rule has

exactly the same structure as (3.15), with an additional term due to Y 0
T . The numerical

results are presented in Fig. 3.2 B and C, showing that it is possible in this setup to

explicitly select the principle components that are extracted (or not extracted) by the

neurons.

3.6. Discussion 39

3.6 Discussion

We have introduced and analyzed a simple and perspicuous rule that enables spiking

neurons to perform IB optimization in an online manner. Our simulations show that this

rule works as well as the substantially more complex learning rule that had previously

been proposed in (Klampfl et al., 2009). It also performs well for more realistic neuron

models as indicated in the appendix C. We have shown that the convergence properties

of our simplified IB rule can be analyzed with the help of the Fokker-Planck equation

(alternatively one can also use the theoretical framework described in A.2 in (Intrator

& Cooper, 1992) for its analysis). The investigation of the weight vectors to which this

rule converges reveals interesting relationships to PCA. Apparently, very little is known

about learning rules that enable neurons to perform PCA (a discussion of a special

case is given in chapter 11.2.4 of (Gerstner & Kistler, 2002)). We have demonstrated

both analytically and through simulations that a slight variation of our new learning

rule performs PCA. Our derivation of this rule within the IB framework opens the door

to new variations of PCA where preferentially those components are extracted from a

high dimensional input stream that are –or are not– related to some external relevance

variable.

We expect that a further investigation of such methods will shed light on the un-

known principles of unsupervised and semi-supervised learning that might shape and

constantly retune the output of lower cortical areas to intermediate and higher cortical

areas. The learning rule that we have proposed might in principle be able to extract

from high-dimensional sensory input streams X those components that are related to

other sensory modalities or to internal expectations and goals.

Quantitative biological data on the precise way in which relevance signals YT (such

as for example dopamin) might reach neurons in the cortex and modulate their synaptic

plasticity are still missing. But it is fair to assume that these signals reach the synapse

in a low-pass filtered form of the type uT that we have assumed for our learning rules.

From that perspective one can view the learning rules that we have derived (in contrast

to the rules proposed in (Klampfl et al., 2009)) as local learning rules.

3.7 Acknowledgments

This chapter is based on the paper Simplified rules and theoretical analysis for infor-

mation bottleneck optimization and PCA with spiking neurons, which was written by

Lars Büsing (LB) and Wolfgang Maass (WM). The model was developped by LB. The

simulations were designed by LB and WM and conducted by LB. LB and WM wrote

the manuscript.

Chapter 4

Extended Spiking

Information Bottleneck

Contents

4.1 Neuron Model and Objective Function 44

4.2 The IB Learning Rule for Spiking Neurons 50

4.3 Application: Predictive Coding . 56

4.4 Discussion . 59

4.5 Acknowledgments . 66

Neurons receive thousands of presynaptic input spike trains while emitting a single

output spike train. This drastic dimensionality reduction suggests to consider a neuron

as a bottleneck for information transmission. Extending recent results, we propose a

simple learning rule for the weights of spiking neurons derived from the Information

Bottleneck (IB) framework that minimizes the loss of relevant information transmitted

in the output spike train. In the IB framework relevance of information is defined with

respect to contextual information, the latter entering the proposed learning rule as a

“third” factor besides pre- and postsynaptic activities. This renders the theoretically

motivated learning rule a plausible model for experimentally observed synaptic plasticity

phenomena involving three factors. Furthermore, we show that the proposed IB learning

rule allows spiking neurons to learn a “predictive code”, i.e. to extract those parts of

their input that are predictive for future input.

Information theory is a powerful theoretical framework with numerous important

applications, also in the context of neuroscience such as the analysis of experimental

data. Furthermore, information theory has also provided rigorous principles for learn-

ing in abstract and more biological realistic models of neural networks. Especially the

learning objective of maximizing information transmission of single neurons and neural

networks, a principle often termed InfoMax, has been intensively studied in (Linsker,

1989; Bell & Sejnowski, 1995; Chechik, 2003; Toyoizumi, Pfister, Aihara, & Gerstner,

2005; Parra, Beck, & Bell, 2009). This learning principle has been shown to be a possible

framework for Independent Component Analysis and furthermore it could successfully

explain aspects of synaptic plasticity experimentally observed in neural tissue. How-

ever one limitation of this learning objective for gaining a principled understanding of

computational processes in neural systems is the fact, that the goal of numerous types

of computations is not a maximization of information transmission (e.g. from sensory

42 Chapter 4. Extended Spiking Information Bottleneck

input neurons to areas in the brain where decision are made). Rather, a characteristic

feature of generic computations (e.g. clustering and classification of data, or sorting a

list of elements according to some relation) is that they remove some of the information

contained in the input. Similarly, generic learning processes require the removal of some

of the information originally available in order to achieve generalization capability.

(Tishby et al., 1999) created a new information theoretic framework, the Informa-

tion Bottleneck (IB) framework, that focuses on transmitting the maximal amount of

relevant information. This approach takes a step towards making computational and

learning processes more amenable to an information theoretic analysis. We examine

in this article the question whether the IB framework can foster the understanding of

organizational principles behind experimentally verified synaptic plasticity mechanisms

which involve a ”third factor” (Sjöström & Häusser, 2006; Hee et al., 2007). These

are plasticity effects where the amplitude the of synaptic weight change does not only

depend on the firing activity of the pre- and postsynaptic neuron, but in addition on a

third signal that is transmitted e.g. in form of neuromodulators or synaptic inputs from

other neurons. Such third signals are known, for example, to modulate the amplitude

of the backpropagating action potential, and thereby to critically influence the changes

of synaptic weights elicited by spike timing-dependent plasticity (STDP). Furthermore,

we examine in this article the question whether one can derive from IB principles a

rule for synaptic plasticity that establishes a generic computation in neural circuits: the

extraction of temporally stable (“slow”) sensory stimuli (see e.g. (Wiskott & Sejnowski,

2002)).

The extraction of relevant features and the neglect of irrelevant information from

given data is a common problem in machine learning and it is also widely believed

to be an essential step of neural processing of sensory input streams. However, which

information contained in the input data is to be considered relevant is of course highly

dependent on the context. In the seminal paper (Tishby et al., 1999) an information

theoretic definition of relevance wrt. to a given context was proposed, and furthermore

a batch algorithm for data compression minimizing the loss of relevant information was

presented. This framework, the Information Bottleneck method, is aimed at constructing

a simple, compressed representation Y (relevant features, the Information Bottleneck)

of the given input data X which preserves high mutual information with a relevance (or

target) signal R which provides the contextual or side information. In the IB framework

the amount of relevant information contained in a random variable is explicitly defined as

the mutual information of this variable with the relevance signal R. Multiple algorithms

rooting in the IB framework have been fruitfully applied to typical machine learning

applications such as document clustering, document classification, image classification

and feature extraction for speech recognition (see (Harremoes & Tishby, 2007) and

references therein).

Recently, it has been conjectured that the IB framework might constitute one of

the optimization principles underlying early neural processing of sensory input data

in some organisms. In (Bialek, Steveninck, & Tishby, 2006) it is argued that biological

agents maintain an internal representation of the external world that exclusively contains

information important for their survival capabilities. More precisely it is hypothesized

43

that only those parts of the sensory input X should be internally represented in some

model Y that are predictive for the future state of the agent’s environment as only this

information is relevant for the agent’s future actions which in turn increase its fitness.

This learning paradigm was formalized as an IB optimization with the relevance signal R

defined as the future sensory stimuli. As an IB optimal internal representation Y , called

a “predictive code”, apparently depends strongly on the statistics of the environment

and as many organisms exhibit a remarkable ability to adapt to different environmental

configurations it is tempting to conjecture that the internal representation Y is (at least

partially) learned during the lifetime of the agent. However in the studies mentioned

above learning rules for developing this kind of internal representation in a biologically

realistic setting, where the standard batch IB algorithms are implausible, are missing.

An attempt to fill this apparent gap has been made in (Klampfl et al., 2009) on

the level of single spiking neuron models. In this chapter a single neuron is considered

as an information bottleneck, as it maps its high dimensional input X to its one di-

mensional output spike train Y . Based on this interpretation, an online update rule

has been proposed which adjusts the synaptic weights such that the neuron’s output Y

contains the maximal amount of relevant information wrt. to a given relevance signal R,

which was also modeled as a spike train. This learning rule has been shown to reliably

solve numerous concrete IB optimization problems in a neural context. However the

proposed learning rule, which was derived by stochastic gradient ascent on the IB objec-

tive function (essentially the amount of transmitted relevant information), has several

drawbacks. The gradient of the transmitted relevant information (which determines the

learning rule) was estimated using the correlation of the bottleneck neuron output Y

and the relevance signal R within each single time step. This limits the “complexity”

of IB problems that the neuron is able to solve, e.g. this estimation cannot capture long

delays between the input X and the relevance signal R nor can it capture the impact

of higher order moments between the input X and the relevance variable R in the case

of linear bottleneck neurons. Furthermore, the learning rule of (Klampfl et al., 2009)

is complicated, making it difficult to understand the learning dynamics. In addition it

contains non-local variables which reduces its biological plausibility.

The goal of this chapter is to develop a simpler and more transparent approximate

IB learning rule for spiking neurons. This new IB learning rule is based on a different

estimation of the gradient of the relevant information contained in the neural output.

The estimation is of parametric nature, and it requires a given preprocessing of the

relevance signal R. The main assumption of this chapter is hence that the “bottleneck

neuron” has access to a rich preprocessing of the relevance signal R. This preprocessing

can be considered as a “third” factor, besides the presynaptic input X and the output

Y , which modulates synaptic plasticity in order to implement an IB optimal coding of

the inputs.

The outline of the chapter is the following. In section 4.1 the IB framework is briefly

revisited, the underlying spiking neuron model is defined and the objective function for

IB optimization for spiking neurons is introduced. We present the general IB learning

rule for spiking neurons in section 4.2 and discuss a concrete, simple example IB task.

Further, in this section we propose an implementation of the relevance signal prepro-

44 Chapter 4. Extended Spiking Information Bottleneck

cessing using a generic recurrent neural network. In section 4.3 the proposed IB learning

rule is used to model the learning of a predictive code. A detailed comparison to related

work is presented in section 4.4. Furthermore, experimental results on synaptic plas-

ticity with three factors that point out a possible implementation of the learning rule

proposed in this chapter are discussed.

4.1 Neuron Model and Objective Function

In this section, the neuron model and the objective function for IB optimization with this

model are defined. The model is formulated in discrete time of step size ∆t. To introduce

a biologically plausible time scale we assume that a single time step corresponds to one

millisecond, i.e. ∆t = 1ms. The value of a time-varying function f at time step t

will be denoted as f t. Further, the standard euclidean dot product of two vectors

d = (d1, . . . , dN) and e = (e1, . . . , eN) is written as d · e :=
∑N

i=1 diei. We start this

section by briefly revisiting the Information Bottleneck method.

4.1.1 The Information Bottleneck Method

The Information Bottleneck (IB) method, that was originally introduced in (Tishby

et al., 1999), is a data compression technique which, in its simplest version, focuses

on the following setup. Consider two random variables (RVs) a and b with a known

joint distribution p(a, b). The goal of the IB method is to construct a RV ã which is a

compact, simple representation of a via a stochastic mapping defined by the conditional

probability p(ã|a) such that ã still is informative about b. The RV b will be called

the relevance or target signal in the remainder of this chapter. This intuitive data

compression task was formalized in (Tishby et al., 1999) as a maximization problem of

the objective function LIB:

LIB = I(ã, b) − γI(ã, a).

Here I(., .) denotes the mutual information between the two arguments. The first term

I(ã, b) of LIB measures how informative the compressed representation ã is about b. The

second term I(ã, a) with the Lagrange multiplier γ > 0 penalizes complex representa-

tions ã and can be regarded as an information theoretic regularization term 1. The IB

method consists in finding a conditional probability distribution p(ã|a) that maximizes

LIB under the condition that ã, a and b form the Markov chain b → a → ã.2 The

parameter γ ∈ [0, 1] determines the degree of compression via the trade-off between

the relevant information that ã carries about b and the complexity of ã. For γ = 0

the representation ã is uncompressed and all relevant information is preserved, i.e. LIB

is maximal e.g. for the identity mapping and I(ã, b) = I(a, b). On the other extreme,

for γ = 1 the variable ã is maximally compressed and always assumes a single value

resulting in I(ã, a) = 0 and I(ã, b) = 0.

1The IB objective function in (Tishby et al., 1999) was originally introduced with the opposite sign
and it was parametrized in terms of β := γ−1.

2This condition is equivalent to requiring ã to be independent from b given a.

4.1. Neuron Model and Objective Function 45

An application in machine learning, which illustrates the merits of the IB method,

is feature selection for document classification as presented in (Slonim & Tishby, 2001).

In this setup, the uncompressed input a corresponds to words, which occur in the doc-

uments, and the relevance variable b is chosen to be the class label, i.e. the document

category, e.g. “sports” or “politics”; the joint distribution of words and document cat-

egories p(a, b) is assumed to be known for a given training set. Via the IB method it

is possible to obtain a mapping p(ã|a) yielding a simple representation ã (word clusters

instead of single words) which still carries most of the relevant information about the

document class. These low-dimensional word-clusters can then be conveniently used as

features for document classification of test data.

4.1.2 Neuron Model

We consider a simple, stochastic neuron model similar to the ones used in (Toyoizumi

et al., 2005) and (Klampfl et al., 2009), however without taking a refractory mechanism

into account. The neuron has N synapses with weights w = (w1, . . . , wN), which we

require to be non-negative. It is driven by the input X = (X1, . . . ,XN), consisting of

N spike trains Xj = (. . . , x−1
j , x0

j , x
1
j , . . .) formalized as left and right infinite sequences.

We define xt
j = 1 if there is a presynaptic spike at synapse j at time step t and xt

j = 0

otherwise. The spikes at synapse j from time step l up to t (l < t) are written as

X l,t
j = (xl

j , x
l+1
j , . . . , xt

j), further the input history up to time step t = 0 of synapse

j is denoted as X−∞
j := (. . . , x−1

j , x0
j) = X−∞,0

j and X−∞ = (X−∞
1 , . . . ,X−∞

N). The

membrane potential ut of the neuron at time t is given by the weighted sum of the

synaptic activities νt = (νt
1, . . . , ν

t
N):

ut = w · νt =

N∑

j=1

wjν
t
j

νt
j = (ǫ ∗Xj)

t =

∞∑

l=−∞

ǫlxt−l
j . (4.1)

The kernel ǫ models the EPSP of a single spike and ∗ denotes the discrete time con-

volution. Given the input X, the postsynaptic neuron spikes at time step t with the

probability p(yt = 1|X−∞,t), which is a function of the membrane potential:

p(yt = 1|X−∞,t) = g(ut) = gt.

The function g is called the activation function. Its image is assumed to be in [0, 1] and

further it is assumed to be continuously differentiable with a derivative g′(ut) =: g′t.

The postsynaptic spike train is denoted as Y = (. . . , y−1, y0, y1, . . .) with yt = 1 if an

output spike occurs at time step t, and 0 otherwise. In simulations the EPSP kernel ǫ

was chosen to be a non-anticipating, decaying exponential with a time constant of 10

time steps and the activation function g(ut) = σ(ut − u0) was chosen as the logistic

function σ(x) := (1 + exp(−x))−1 with an offset u0 = −2.

Furthermore, according to the IB framework, another external signal besides the in-

46 Chapter 4. Extended Spiking Information Bottleneck

put X is given, namely the relevance or target signal R. We consider situations where R

is given by a stochastic process denoted by the sequence R = (. . . , R−1, R0, R1, . . .) ∈ R
Z.

It is not restricted to spike trains, it may be given by a more general real valued se-

quence. It is straight forward to extend the results presented below to multi-dimensional

relevance variables. We assume that R does not directly influence the activity of the

neuron, but that it only takes part in the process of the synaptic plasticity in order to

ensure that R → X → Y is a Markov chain as required by the IB framework. For the

sake of simplicity we assume that the processes X and R are stationary.

4.1.3 Applying the IB framework to Spiking Neurons

Following the approach taken by (Klampfl et al., 2009), we apply the IB framework to a

single neuron as illustrated in Fig. 4.1. At any given time step t, without loss of generality

we may assume t = 0, the neuron under consideration, which we call the bottleneck

neuron from now on, maps its input history X−∞ to an output y0 ∈ {0, 1}. Hence

the neuron can be regarded as an information bottleneck, which compresses its high-

dimensional input historyX−∞ (corresponding to a in the notation introduced in section

4.1.1) to its one-dimensional binary output y0 (corresponding to ã). This mapping is

parametrized by the weight vector w for which we want to find the configuration giving

rise to the output of the neuron that is maximally informative about the relevance signal

R (corresponding to b in section 4.1.1). There are multiple possible ways of formalizing

this setup in the IB framework, more precisely of choosing the IB objective function.

The Choice of the IB Objective Function for Spiking Neurons

We define the amount of relevant information that is transmitted by the neuron per time

step as the mutual information I(y0, R) between the current output y0 and the whole

relevance signal R. Hence, following the IB framework we are looking for the synaptic

weight w that maximizes the IB objective function LIB with a regularization term Lreg:

LIB = I(y0, R) − γLreg (4.2)

=

〈

log

(
p(y0|R)

p(y0)

)〉

− γLreg,

where the brackets 〈.〉 denote the expected value over the input spike trains X, the

output spike train Y and the relevance signal R. Further p(y0) and p(y0|R) denote

the unconditioned spiking probability and the spiking probability conditioned on the

relevance signal respectively.

Our definition of the relevant information as I(y0, R) can be interpreted as the limit

of the mutual information I(y0, R−T,T) between y0 and the relevance signal R−T,T in

a time window of length 2T + 1 for T → ∞ (i.e. I(y0, R) = limT→∞ I(y0, R−T,T)).

This choice eliminates “cut-off” artifacts like the following: If the relevant information

contained in the input X arrived at the bottleneck neuron with a delay of T +1 relative

to the relevance signal R, the objective function I(y0, R−T,T) would be insensitive to this

statistical relation. One might reckon that the choice to maximize I(y0, R) introduces

4.1. Neuron Model and Objective Function 47

anticipatory effects, e.g. that for adapting its weights w the bottleneck neuron would

need information that will only be available in the future. Such effects will however not

show up in our approach as it is explicitly designed to only take into account information

for the IB optimization that is currently available to the neuron, as outlined in the next

section.

Alternative definitions of the relevant information are also possible of course. It

might be argued that e.g. the mutual information I(y−T,T , R−T,T) between the neu-

ron output and the relevance signal in some time window is a more natural definition

of the relevant information. However, it turned out that the online optimization of

I(y−T,T , R−T,T) is considerably more difficult than the one of I(y0, R) due to accounting

for relations between multiple outputs spikes of the bottleneck neuron. These technical

difficulties motivated the choice of optimizing I(y0, R).

As stated in section 4.1.1 the regularization Lreg in the original IB formulation from

(Tishby et al., 1999) was given by the mutual information between the input and the

output of the IB mapping, i.e. in this setup Lreg = I(y0,X−∞). This choice is also pos-

sible in the neural context considered here. However, simulation results indicate that

for this definition of Lreg sensible values of the trade-off parameter γ, i.e. those values

of γ that neither “un-regularize” nor “over-regularize” (basically the w = 0) the IB

optimization, are confined to a small interval and are thus hard to be determined nu-

merically. Therefore we replace the original regularization with a conventional quadratic

regularization of the weights w:

Lreg =
1

2
w2.

With this choice of Lreg it is considerably easier to determine sensible values of γ. Other

choices of Lreg are also possible such as penalizing deviations from an average target

firing rate. It is straight forward to incorporate such a regularization into the objective

function presented here.

Online Estimation of the Relevant Information

Eventually, we wish to maximize LIB defined in (4.2) via a stochastic gradient ascent

wrt. the weights w yielding an online update rule. However, this maximization requires

the explicit knowledge of the conditional distribution p(y0|R) of the output y0 given the

relevance signal R as can be seen from equation (4.2). Most IB algorithms resolve this

issue by estimating the joint distribution of the input data and the relevance signal (here

p(X−∞, R)) from the whole batch data set and subsequently evaluating the conditional

distribution of the compressed output variable given the relevance signal (here p(y0|R))

using the fact that R→ X → Y is a Markov chain. However, this approach only seems

plausible in an offline, batch IB optimization task where the whole data set is available

at all times. In the neural setup considered here, we do not want to assume that the

neuron has all information about the joint distribution of X−∞ and R, rather it should

estimate p(y0|R) and the relevant information I(y0, R) online. As this can be arbitrarily

difficult (depending on the “complexity” of p(X−∞, R)), we can only hope to solve the

neural IB optimization task approximately under some simplifying assumptions.

48 Chapter 4. Extended Spiking Information Bottleneck

A possible strategy that addresses the problem outlined above is the following. As its

output y0 is binary, the neuron only has to estimate p(y0 = 1|R) in order to determine

an approximation of I(y0, R) (and its gradient). We therefore assume the neuron has

access to a parametric estimation F t ≈ p(yt = 1|R) with r parameters q = (q1, . . . , qr).

For the sake of simplicity we restrict ourselves to the case where F t is of the form

F t = σ(q · ht) with σ denoting the logistic function that ensures F t ∈ [0, 1]. The

quantities h = (h1, . . . , hr) are r given filters3 operating on the relevance sequence R and

ht = (ht
1, . . . , h

t
r) denotes their values at time step t. These filters h are a preprocessing

of the relevance signal R that is currently available to the neuron. In a neural system

it might be implemented by some neural circuitry that carries out transformations of

the sequence R. In simulations, h can be modeled e.g. by moving averages or Volterra

series of the relevance signal R, concrete examples for such a preprocessing as well as for

a preprocessing with a simulated neural circuitry are given below. The concrete choice

of the form of the estimator F t, a linear model in the parameters q followed by the

logistic function, results in a simple online learning rule (due to similarities with logistic

regression). Other forms of F t which also allow simple gradient ascent could potentially

be worth studying.

Based on the estimator F t (see Fig. 4.1 for a visualization of this approach), we

propose the following objective function L to be maximized wrt. w and q:

L = LF − γLreg =

〈

log

(
F (y0, R)

p(y0)

)〉

− γ

2
w2, (4.3)

where F (y0, R) = (F 0)y
0

(1 − F 0)1−y0 ≈ p(y0|R). The term γLreg represents the regu-

larization term which remains unchanged from the objective function LIB given in (4.2).

The term LF is the approximation of the relevant information LF ≈ I(y0, R) based on

F 0 and it can easily be shown that the following relation holds:

LF =

〈

log

(
F (y0, R)

p(y0)

)〉

= I(y0, R) −
〈
DKL(p(y0|R)‖F (y0, R))

〉
(4.4)

with DKL(p(y0|R)‖F (y0, R)) =

1∑

y0=0

p(y0|R) log

(
p(y0|R)

F (y0, R)

)

,

where DKL(P‖Q) denotes the Kullback-Leibler divergence between P and Q. It can

be seen from (4.4) that optimizing L wrt. q for fixed weights w amounts to minimiz-

ing the Kullback-Leibler divergence between the estimation F (y0, R) and the “true”

conditional distribution p(y0|R). The divergence
〈
DKL(p(y0|R)‖F (y0, R))

〉
assumes its

unique minimum at F (y0, R) = p(y0|R). On the other hand, maximizing L wrt. w for

fixed q (i.e. for fixed F 0) can be interpreted as maximizing an estimation L of the “true”

IB objective function LIB. It can easily be shown that this is equivalent to maximiz-

ing the difference of the transmitted information I(y0,X−∞) and the Kullback-Leibler

3Precisely we define a filter hi : R
Z → R

Z as a mapping from left-right infinite sequences to left-
right infinite sequences with R 7→ hi[R] = (. . . , hi[R]−1, hi[R]0, hi[R]1, . . .). F t is precisely defined as
F t = σ(q · h[R]t). For the sake of simplicity in the main text the shorter notation is used.

4.1. Neuron Model and Objective Function 49

1h

2h

..

.

.

.

rh

..

.

.

.

1

q2 Σ

q

qr

NX

1

2

X

X

....

.
w1

N

w2

w

Σ
u g

F

Relevance Signal
Preprocessing

In
pu

t X

R

R
el

ev
an

ce
 S

ig
na

l R

Output Y

Figure 4.1: The general setup for Information Bottleneck optimization with a spiking
neuron. The neuron receives input spike trains Xi for i = 1, . . . , N and emits the
output Y . Furthermore, a second signal, the relevance signal R, is given which allows
to introduce the notion of relevance of information. The weights w should be learned
such that the relevant information I(y0, R) that is contained in the neuron output is
maximal (under regularization constrains). In order to carry out this optimization in
an online manner, an estimation of the gradient of I(y0, R) wrt. w is required, which is
based on the quantity F 0. The latter is a parametrized function (with parameters q)
of a given preprocessing h = (h1, . . . , hr) of the relevance signal. The parameters q are
adapted such that F 0 optimally predicts the neural output y0 given the relevance signal
R.

50 Chapter 4. Extended Spiking Information Bottleneck

divergence
〈
DKL(p(y0|X−∞)‖F (y0, R))

〉
:

LF = I(y0,X−∞) −
〈
DKL(p(y0|X−∞)‖F (y0, R))

〉

The objective function L further has the following pleasant property:

L ≤ LIB

This ansatz can hence be understood as maximizing a lower bound L of the “true” IB

objective function LIB. In a batch setting, this optimization problem could be solved by

an algorithm with two alternating steps that are iterated, reminiscent of the Expectation-

Maximization algorithm: In the first step, minimize
〈
DKL(p(y0|R)‖F (y0, R))

〉
wrt. to q

for fixed w. In the second step minimize
〈
DKL(p(y0|X−∞)‖F (y0, R))

〉
− I(y0,X−∞) +

γLreg wrt. to w for fixed q. These two steps are iterated until a termination condition

is fulfilled.

In the remainder of the chapter we investigate an online optimization scheme for w

and q that is obtained by a stochastic gradient ascent on L. For deriving this online

learning rule it is advantageous to rewrite L in the following form:

L =
〈
logF (y0, R)

〉
+H(y0) − γ

2
w2, (4.5)

where H(y0) denotes the entropy of y0.

4.2 The IB Learning Rule for Spiking Neurons

4.2.1 The Online Learning Rule

From the objective function L defined in (4.3), an online learning rule for w can be

obtained by performing a stochastic gradient ascent with a learning rate ηw:

∆wt = wt+1 − wt = ηwLw, with 〈Lw〉 =
∂L

∂w
,

and analogously for the parameters q with a learning rate ηq. As shown in Appendix

D.1 this leads to the following equations:

∆wt = ηwg
′tνt

(
σ−1(F t) − σ−1(

〈
gt
〉
)
)
− ηwγw (4.6)

∆qt = ηqh
t(yt − F t),

where σ−1 is the inverse logistic function and
〈
gt
〉

is the average firing rate of the

neuron. Further, g′t denotes the derivative of the activation function at time step t

and F t = σ(qt · ht) denotes the estimator of p(yt = 1|R). For online learning
〈
gt
〉

is

estimated by a running average ĝt of gt over an exponential time window of width η−1
g :

ĝt+1 = (1 − ηg)ĝ
t + ηgg

t.

Apart from the multiplicative term g′t, which modulates the amount of weight change

4.2. The IB Learning Rule for Spiking Neurons 51

∆wt with the sensitivity (i.e. the derivative) of the activation function, the learning

rule (4.6) consists basically of three additive terms. These terms correspond to the

gradients of the estimation
〈
logF (y0, R)

〉
≈ −H(y0|R), of the entropy H(y0) and of the

regularization Lreg which stem from the three additive terms of L in the form of (4.5).

The first term νtσ−1(F t), being proportional to the gradient of
〈
logF (y0, R)

〉
, increases

those weights wj whose synaptic activity νt
j correlates with the estimator F t (as σ−1 is

just a monotonic rescaling). Thus those weights are potentiated whose activity can be

well predicted by the estimator F t and hence carry relevant information. The second

term, which is proportional to −σ−1(
〈
gt
〉
) = log((1 −

〈
gt
〉
)/
〈
gt
〉
), stemming from the

gradient of H(y0), changes the weights in order to achieve a high entropy of the output

y0 (which is maximal at
〈
gt
〉

= 1/2). This term can be interpreted as a homeostatic

control on a long time scale, as the average
〈
gt
〉

is only slowly changing due to changes

of the weights. It pushes the activity of the neuron towards a working regime of optimal

information transmission. The last term −w from (4.6) represents the gradient of the

regularization −w2/2 and yields a conventional weight decay term.

The update rule for the parameters q is proportional to the difference of the neuron

output yt and F t. The parameters q assume stationary values if e.g. the estimation F t

fulfills4 F t =
〈
yt
〉

Y |X,R
.

4.2.2 A Simple Example

In this section, the IB learning rules (4.6) for adapting the weights w and parameters

q are applied to a simple IB optimization task. The inputs to the neuron as well as the

relevance signal consist of (discrete time) Poisson spike trains. Some of the input spike

trains exhibit a statistical dependence on the relevance signal on the level of precise spike

times, and hence carry relevant information. Using the learning rule (4.6) the neuron

should learn to exclusively potentiate the weights of these input channels and neglect

the remaining inputs.

Consider the following setup which is shown in Fig. 4.2. Let the N = 100 in-

puts X = (X1, . . . ,X100) to the bottleneck neuron be grouped into three groups

G1, G2, G3 consisting of 25, 25 and 50 neurons respectively. The inputs Xi as well

as the relevance signal R are given by spike trains (i.e. binary sequences in {0, 1}Z)

of constant rate5 νX = 0.02 and νR = 0.06 (corresponding to 20Hz and 60Hz for a

time step ∆t = 1ms). Spike trains from different input groups are statistically inde-

pendent. Furthermore, the inputs are generated such that spike trains from the in-

put groups G1 and G2 exhibit a correlation coefficient (CC) with the relevance spike

train R of c1 = 0.1 and c2 = 0.075 due to coincident spikes of Xi and R within

one time step. Spike trains of G3 are highly correlate with each other with a CC

of c3 = 0.2. Here the CC c between two spike trains xi(t) and xj(t) is defined

as c = 〈(xi(t) − 〈xi(t)〉)(xj(t) − 〈xj(t)〉)〉 /(var(xi(t))var(xj(t)))
1/2 where var(xi(t)) de-

notes the variance of xi(t). In this setup the inputs of the groups G1 and G2 carry

relevant information whereas inputs of G3 have “interesting” statistics (i.e. high correla-

4Here 〈f〉Y |X =
P

Y f · p(Y |X) denotes the expected value of f over Y conditioned on X.
5We define the rate of a spike train Xj at time step t as the current probability to spike p(xt

j = 1).

52 Chapter 4. Extended Spiking Information Bottleneck

1w∼

∼w3
w

ei
gh

t i
d

time step t

G1

G2

G3

Figure 4.2: The setup of the simple IB task described in section 4.2.2. The synapses of
the neuron are grouped into three groups G1 to G3 whose average weights are denoted
as w̃1 to w̃3. The inputs to the neuron, illustrated here by a spike raster plot (notice
that only 2/5 of the spike trains of each group are shown), as well as the relevance signal
are modeled as spike trains. The different groups convey different amounts of relevant
information in their precise spike timings, parametrized by the correlation coefficient
between the input and the relevance signal. The IB learning rule (4.6) adapts the
weights w such that eventually the output of the neuron is most informative about the
relevance signal (with regularization).

tion) but which nevertheless are irrelevant due to the definition of R. Further simulation

parameters and details can be found in appendix D.2.1. The preprocessing ht = (ht
1, h

t
2)

was chosen in the following way. The first element ht
1 = 1 is a constant bias whereas

ht
2 =

∑∞
s=0 exp(−s/τ)Rt−s is a low-pass filter of the relevance spike train with an expo-

nential window of size τ = 10.

In Fig. 4.3 the results of a simulation of this setup with a trade-off parameter γ =

8 · 10−6 are plotted. Fig. 4.3A shows the temporal evolution of the average group

weights w̃a = |Ga|−1
∑

i∈Ga
wi of group Ga for a = 1, 2, 3 with group size |Ga|. It can be

observed that the average group weights w̃a converge to a value roughly proportional to

the CC between the corresponding input spike trains and the relevance signal, e.g. the

weights of G1 are strongest after the learning. The inputs of G3 do not carry relevant

information by construction and therefore the weights decay towards zero due to the

regularization term of the objective function (4.3). The dynamics of the parameters q

are plotted in Fig. 4.3B. They eventually assume stationary values which are (possibly

locally) optimal values for estimating the output probability p(yt = 1|R) conditioned

on the relevance signal R via the estimator F t = σ(qt · ht). An estimation of the IB

objective function LIB (for details see appendix D.2.1) and of the lower bound L are

shown in Fig. 4.3C. Both measures increase over time due to the stochastic gradient

ascent learning. Furthermore, L is quite “tight” for this task and provides the neuron

with a good estimation of the “true” value of the objective function LIB as well as its

4.2. The IB Learning Rule for Spiking Neurons 53

A B

C D

Figure 4.3: The results of the simulation described in section 4.2.2. A: The trajectories of
the average group weights w̃i for i = 1, . . . , 3 as a function of the time step t. The weights
of G1 (black) and G2 (gray) are increased as they have non-vanishing mutual information
with the relevance signal R. The weights of the remaining group G3 (light gray) decay
to zero as the corresponding inputs are independent of R. B: The trajectories of the
parameters q1 (black) and q2 (gray). They evolve such that σ(qt ·ht) optimally estimates
the conditional probability p(yt = 1|R) (in terms of the Kullback-Leibler divergence).
C: Numerical estimations of the IB objective function LIB (gray) and of the lower bound
L (black) are plotted as functions of the time step t. One sees that the lower bound
gives a good estimation of LIB in this example task. Furthermore, the regularization
term Lreg is plotted (light gray). D: Results of applying an InfoMax learning rule to the
same setup. InfoMax does not take the relevance signal R into account and therefore
weights of group G3 get potentiated (color coding as in panel A).

54 Chapter 4. Extended Spiking Information Bottleneck

gradient wrt. w and q. Additionally the regularization Lreg is plotted separately to

illustrate its contribution to the total objective function L.

In Fig. 4.3D we show results of a simulation using the same setup as described above

with the only difference that the weights are not learned with the IB learning rule but

with an InfoMax learning rule. InfoMax aims at maximizing the amount of transmitted

information I(y0,X−∞) between input and output of the neuron without taking the

relevance signal R into account. It can be seen that in contrast to the results of IB

learning InfoMax potentiates the weights of G3 as their inputs exhibit the strongest

correlation with each other. The InfoMax rule is given in Appendix D.1.2 and a more

general comparison to IB learning can be found in the Discussion section 4.4.

4.2.3 Neural Implementation of the Relevance Signal Preprocessing

In section 4.2.2 a simple IB optimization task was solved assuming that the filters

h = (h1, . . . , hr) provide a suitable preprocessing of the relevance signal R (in that

case a low pass filter of the relevance signal and a constant bias). In this example the

preprocessing was quite specific for the given IB task (i.e. specific for the distribution

p(X−∞, R)), and one might argue that the neuron could not have solved other IB

tasks with this preprocessing. In this section, we address this point by proposing the

implementation of the relevance signal preprocessing by a generic neural circuit, that is

not tailored for a single IB task, but which allows the bottleneck neuron to solve a larger

class of IB tasks with the same preprocessing filters. These tasks may also feature more

complex statistically dependencies between the neural input X and the relevance signal

R, in particular in the temporal domain.

In the approach for IB optimization presented above, it is essential for the bottleneck

neuron to have a reasonable approximation F t of the conditional probability p(yt =

1|R) in order to optimize the weights w. The quality of the lower bound L which is

optimized (i.e. the difference |LIB − L|), is given by the Kullback-Leibler divergence

between the estimation F t = σ(q ·ht) and the “true” value p(yt = 1|R). Hence |LIB−L|
critically depends on the given preprocessing h of R. Ideally the preprocessing would

be powerful enough such that F t = p(yt = 1|R) for some parameters q, and optimizing

L would then be equivalent to optimizing the “true” IB objective function LIB. In

(Maass, Natschlaeger, & Markram, 2002) the authors investigate the general problem

of approximating with a fixed set of preprocessing filters (here h = (h1, . . . , hr)) and

a fixed class of memoryless readout functions (here the linear maps parametrized by

q followed by the logistic function σ) any given target filter (here p(yt = 1|R))6. A

largely positive result is given for approximating target filters that are time-invariant

(TI) and that have the fading memory (FM) property (for exact definitions and results

see (Maass et al., 2002)) under suitable assumptions concerning the set of filters and

the set of readout maps. Roughly speaking a filter has fading memory if it becomes

asymptotically insensitive to the remote history of its input. A further specific result

given in (Boyd & Chua, 1985) states that TI-FM filters can be approximated with

6The considerations in (Maass et al., 2002) focus on the case of continuous time, but similar results
also hold for discrete time.

4.2. The IB Learning Rule for Spiking Neurons 55

arbitrary precision by a finite dimensional, linear dynamical system implementing the

filters and a polynomial readout map.

Based on the theoretical results of (Maass et al., 2002), in a series of publications

(for a review see (Buonomano & Maass, 2009), for a similar approach see (Jaeger, 2001))

it was observed that various TI-FM filters can be efficiently approximated using a fixed

generic neural network implementing the filters h and exclusively learning a memoryless

linear readout function. This approach exploits that sufficiently large recurrent networks

of nonlinear neurons provide a sufficiently generic nonlinear preprocessing. Hence it

often suffices to use linear, rather than polynomial, adaptive readouts. More precisely,

in this approach the filters h are implemented by a sufficiently complex recurrent neural

network which is generated randomly (in particular the network is not designed for

approximating a specific filter) and which receives an external input given by the signal

on which the target filter operates on (here the relevance signal R). The value ht of

the filters h at time step t is then defined e.g. as the vector of neuron activations (for

continuous networks) or the output spikes of the network units at time step t. The

readout map in these studies was restricted to linear maps, i.e. qt · ht and only the

parameters q are learned in order to approximate the given specific target filter. This

neural architecture poses a sensible implementation of the preprocessing h in the IB

setup if the target filter σ−1(p(yt = 1|R)) can be assumed to have the FM property

(it is guaranteed to be TI if R and X are stationary processes). The FM property

amounts to assuming that input spikes xt
i become asymptotically independent from the

relevance signal Rt±τ for large delays τ . In the following paragraph an example IB

task is discussed that illustrates this approach. We show that in this example a generic

recurrent network with a trainable linear readout provides the bottleneck neuron with

a sufficiently accurate estimation F t = σ(q · ht) of p(yt = 1|R) and hence allowing it to

solve a given IB task.

Consider the following setup. Let the relevance signal R be a piece-wise constant,

real-valued stochastic process which assumes every 30 time steps a new value which

is iid.7 in [−0.5, 0.5], see Fig. 4.4A. The input spike trains Xi are grouped into four

subgroups G1 to G4 similar to the setup of the example given in section 4.2.2. The

inputs of the group Gj were generated as spike trains with a time-varying rate λt
j at

time step t. The rate λt
1 was defined as:

λt
1 = aRt−τ1Rt−τ2 + b, (4.7)

with delays τ1 = 10 and τ2 = 50 time steps and coefficients a, b. The remaining

rates λt
2, λ

t
3, λ

t
4 were generated with the same statistics as λt

1 but they are independent

from R. By construction only inputs of G1 contain relevant information whereas the

remaining inputs do not. The preprocessing of the relevance signal was implemented by

a recurrent network of r = 200 sigmoidal rate neurons which receives the relevance signal

R as input, i.e. the values of the filters ht at time step t were chosen as the network

activity at time step t. According to the approach proposed above, the estimation F t

was given by σ(q · ht) and the parameters q were learned by (4.6). The quantity F t

7iid. = identically, independently distributed

56 Chapter 4. Extended Spiking Information Bottleneck

A B C

Figure 4.4: Numerical results for an IB optimization task with a preprocessing of the
relevance signal R implemented by a generic recurrent network as described in section
4.2.3. A: Shown is the relevance signal R (top) as well as the spiking probability λ1

(bottom) for the inputs of group G1. By design, only λ1 is statistically dependent on R
and hence only the inputs of G1 carry relevant information. B: The trajectories of the
mean weights w̃1 (black) of G1 and w̃61 (gray) of the remaining groups G2, G3, G4 are
plotted as functions of time step t. As only the inputs of G1 have a non-vanishing mutual
information with R, w̃1 is exclusively potentiated. The average w̃61 of the remaining
weights decays due to regularization. C: Trajectories of the activation function gt =
p(yt = 1|X−∞,t) (black) and of the estimator F t (gray) are shown for an interval of 500
time steps after the weights w and the parameters q have been learned.

can be interpreted as the activity of a logistic readout neuron with input ht from the

recurrent network and weights qt. All further details and parameter can be found in

appendix D.2.2.

The simulation results of the average weights w̃1 = 1
25

∑

j∈G1
wt

j of G1 and w̃61 =
1
75

∑

j /∈G1
wt

j of the remaining groups G2, G3, G4 are presented in Fig. 4.4B. In agreement

with the learning goal, only the weights from G1 are potentiated, while the other weights

decay to zero due to the regularization term in the objective function L defined in

(4.3). In Fig. 4.4C the spiking probability gt = p(yt = 1|X−∞,t) and the estimation

F t ≈ p(yt = 1|R) are plotted for 500 time steps after learning of w and q. Although the

rates of G1 are related to the relevance signal R by a second order Volterra series defined

in (4.7) which involves temporal delays of 10 and 50 time steps, the estimation F t is

sufficiently accurate for learning an approximate IB optimal coding. Hence, this task is

an example where the preprocessing of the relevance signal R via a generic untrained

recurrent network with a trainable readout enables the neuron to extract statistical

dependencies between X−∞ and R and to solve the given IB task.

4.3 Application: Predictive Coding

In (Bialek et al., 2006) the H1 neuron of the blowfly, an extensively studied cell of

the fly sensory-motor control system, is proposed as a possible example for a biological

system providing an IB optimal coding. It is hypothesized that the output of this neuron

is maximally informative about future external stimuli, hence this coding paradigm is

4.3. Application: Predictive Coding 57

termed predictive coding. In the following section we show how such a predictive coding

scheme can be learned by a neuron using a variant of the presented IB learning rule

(4.6).

It is has often been hypothesized that biological agents maintain an internal repre-

sentation, denoted here as Xint, of the external world which is obtained and updated

via previous sensory stimuli Xpast (as sensing is a causal process which takes time). The

representation Xint allows the agent to adapt its behavior to the state of the environment

and plan future actions. The hypothesis that this representation Xint is optimal in some

information theoretic sense (for a given amount of invested resources Lreg) has drawn

much attention and served as a guideline for many intriguing studies (see references in

(Bialek et al., 2006)). In (Bialek et al., 2006) however, the authors argue that not all

sensory information contained in Xpast is equally important for the behavior and the

survival capabilities of the agent and hence not the entire sensory information should be

represented internally in Xint. More precisely, it is hypothesized that only such external

stimuli are worth being represented that are informative about the future sensory stimuli

Xfuture which encode the future state of the environment. Only this information can be

used by the agent to plan behavior and eventually improve its fitness. This predictive

coding paradigm was formalized as an IB optimization problem: The mapping from the

past sensory stimuli Xpast to the representation Xint should be chosen such that it maxi-

mizes the predictive information I(Xint,Xfuture) about the future sensory stimuli Xfuture

at fixed costs Lreg. Following this train of thought, the agent should hence maximize

the following IB objective function Lpredictive:

Lpredictive = I(Xint,Xfuture) − γLreg.

The authors of (Bialek et al., 2006) also discuss a concrete example of this predictive

coding paradigm, the H1 neuron of the blowfly. This neuron is part of the optomotor

control loop and it is known to approximately code logarithmically for the horizontal

angular velocity of the fly. In the study (Bialek et al., 2006) it is argued that this specific

coding of the H1 neuron of the external stimuli could be optimal wrt. the objective

function Lpredictive.

Here we show that a single neuron can learn to extract predictive information from

its inputs and establish a predictive coding scheme, similar to the one described in

(Bialek et al., 2006), using a slightly modified version the IB learning rule (4.6). At

any time step t, we identify the sensory input Xpast with the input history X−∞,t of

the bottleneck neuron and we identify the internal representation Xint with its output

yt. Furthermore, we define the relevance signal Xfuture as the future input Xt,t+δ to the

neuron in the time interval [t, t + δ], which extends δ time steps into the future for a

given parameter δ ∈ N. For the sake of simplicity we also assume in this section that

the activation function g = σ of the bottleneck neuron is the logistic function8.

One possible approach to learn a predictive code is the following. If we assume that

the synaptic kernel ǫ (see eqn. (4.1)) is non-anticipating and that its support is shorter

8Similar learning rules can also be derived for more general activation functions, but they turn out
to be slightly more complex.

58 Chapter 4. Extended Spiking Information Bottleneck

than δ time steps, the future activation gt+δ is exclusively a function of the future input

Xt,t+δ . Hence gt+δ can be interpreted as a preprocessing ht of the relevance signal

Xt,t+δ . Based on this observation we make the ansatz F t = gt+δ for the estimator

F t, i.e. we hypothesize that the neuron uses its own future spiking probability gt+δ to

estimate the amount of predictive (=relevant) information contained in its input at time

step t. The objective function L to maximize resulting from this approach reads:

L =

〈

log

(

(gδ)y
0

(1 − gδ)y
0

p(y0)

)〉

− γ

2
w2. (4.8)

Due to the ansatz F t = gt+δ the objective function (4.8) and consequently its gradi-

ent at time step t contains the spiking probabilities gt and gt+δ . Performing a straight

forward stochastic gradient ascent (analogously to the procedure that lead to the rule

(4.6)) would result in an anticipating learning rule, i.e. the weight update ∆wt would

involve the future spiking probability gt+δ . This can be circumvented by shifting the

time step index on the rhs of the learning rule by −δ, which is allowed in stochastic

gradient ascent as this does not change the expected value of the learning rule. This

leads to the following update equation for the weights:

η−1
w ∆wt+1 = g′

t−δ
νt−δ

(

σ−1(gt) − σ−1(〈gt−δ〉)
)

− γwt + νt(gt−δ − gt). (4.9)

The above learning rule is non-anticipating but it is still not local in time as it contains

the terms gt−δ , g′t−δ and νt−δ. Therefore the values of the activity gt as well as the

synaptic activity νt have to be buffered by the neuron for δ time steps in order to learn a

predictive code with the rule (4.9). Although an exact implementation of this buffering

seems rather implausible, approximate implementations of the predictive coding learning

rule might be biologically achievable. Assuming that the time parameter δ is not exactly

defined but is rather given by a more diffuse parameter range, running averages of g and

ν with appropriate window sizes might prove to be sufficiently informative in order to

learn an approximate predictive code. These averages could possibly be encoded in the

signaling cascades that are triggered by pre- and postsynaptic spike events.

The structure of the learning rule (4.9) is similar to the one of the general IB rule

(4.6). The first term, which is proportional to νt−δσ−1(gt), potentiates those synapses

whose input at time t− δ is correlated with the output rate gt at time step t, i.e. those

synapses are potentiated whose inputs are predictive for the future neural output. The

next term, which is proportional to σ−1(〈gt−δ〉), remains unchanged from the original

rule (4.6). The last term νt(gt−δ −gt) stems from the fact that the estimator F t := gt+δ

depends now on w itself. This term replaces the learning rule for q form (4.6) (second

line), and it drives the weights such that the past activity gt−δ can be well estimated by

the present activity gt.

We want to point out that the simple choice for the estimator F t = gt+δ made above

limits the power of the rule (4.9) for learning a predictive code. Only those weights wj

are potentiated whose inputXj is positively correlated at time t with the output at time

t+ δ. Negative correlations or higher order statistical dependencies cannot be extracted

4.4. Discussion 59

with this choice of the estimator F . In order to achieve this, a more sophisticated ansatz

for F with a more diverse preprocessing of Xt,t+δ would be required (e.g. the ansatz

proposed in section 4.2.3).

We illustrate the behavior of the learning rule (4.9) by a simple numerical example

for a delay parameter δ = 25. Consider the following setup where the synapses are again

divided into four groups G1, . . . , G4. Synapses from subgroup G1 receive spike trains

with a rate that is determined by a (discrete time) Ornstein-Uhlenbeck9 (OU) process

with a time constant τ1 = 50, mean µ1 = 0.2 and standard deviation (SD) σ1 = 0.3 ·µ1.

The inputs for group G2 are generated in a similar way, however with a time constant

τ2 = 25 and σ2 = 0.5 · µ1. A (discrete time) telegraph process with mean µ1 and SD

σ1 and a time constant τ3 = 20 determines the rate for the spike train of group G3.

Spike trains of G4 are generated with a constant rate µ1. Additional parameters and

details can be found in appendix D.2.3. The result of the simulation are plotted in

Fig. 4.5. As expected the weights of G4 rapidly decay as they transmit no relevant

information. Further, due to the long autocorrelation time constant τ1 the weights of

G1 are exclusively potentiated while the weights for G2 and G3 decay. If however the

values of the time constants τ1 and τ3 are switched (τ1 = 20, τ3 = 50) the results are

reversed, i.e. weights of G3 grow over time while those of G1 decay (results not shown).

This example illustrates that the specialized version (4.9) of the IB rule (4.6) enables

the neuron to extract predictive information from its input in simple setups.

4.4 Discussion

4.4.1 Relation to Existing Work

Here we briefly discuss existing work that is related to the IB learning rules proposed

in this contribution. Additionally, in the first paragraph the differences between the

approach presented in this chapter and other IB algorithms are described.

Other IB Algorithms

Most IB algorithms determine nonparametric mappings from the input to the output

RVs e.g. (Tishby et al., 1999; Slonim & Tishby, 1999). Hence, the approach presented

here, which determines an IB optimal mapping via gradient ascent wrt. to the model

parameters w, q might be regarded to be against the spirit of the IB framework. How-

ever we argue that in the considered neural setup, where the global structure of the IB

mapping is fixed (e.g. the dimensionality of the output and the class of transformations

that can be used), such a parametric approach is nevertheless justified. Another dif-

ference is that most IB algorithms operate in batch mode on the complete input data

(with the notable exceptions of predictive coding described below), whereas the setup we

propose maps input sequences onto an output sequence online. This approach reflects

the fact that neurons naturally operate in the temporal domain, which also requires an

online algorithm for learning the IB optimal mapping. Furthermore, most IB algorithms

9More precisely the firing rate p(xi(t) = 1) is defined as p(xi(t) = 1) = min{1, max{0, O(t)}} in
terms of the OU process O(t).

60 Chapter 4. Extended Spiking Information Bottleneck

A B

Figure 4.5: The numerical results for the predictive coding application described in
section 4.3. A: Shown are the average group weights w̃i for G1 (top curve in black), G2

(dark gray), G3 (gray) and G4 (light gray). The group G1 transmits the largest amount
of predictive information due to the long autocorrelation time constant τ1 of its input
and hence the average w̃1 is exclusively increased whereas the remaining weights decay
to zero. B: The lower bound L (black) is plotted as a function of the time step t. Also
shown is an estimation of the “true” IB objective function Lpredictive (gray), for which

the mutual information I(yt,Xt,t+δ) was approximated by
∑N

j=1 I(y
t,Xt,t+δ

j) (causing
the large offset between L and Lpredictive). The trajectories indicate that the neural
output becomes more predictive for the future input Xt,t+δ .

assume that the joint distribution p(X,R) of the input RV X and the relevance RV R is

known, hence they require a beforehand estimation of p(X,R) based on finite samples

(for an in-depth analysis of this procedure see (Shamir, Sabato, & Tishby, 2008)). In

contrast to this procedure, our approach (based on the objective function (4.3)) directly

unifies this estimation process and learning of the IB mapping. This unification however

comes at the expense of not optimizing the “true” IB objective function LIB but a lower

bound L of the latter.

The work presented here directly builds on (Klampfl et al., 2009). There, the authors

derived an online IB learning rule by gradient ascent for a quite sophisticated stochastic

neuron model assuming that the relevance signal sequence is given by a spike train of the

same neuron model. The gradient of the relevant information (the mutual information

between the output Y and the relevance signal R) was estimated by measuring the

correlation
〈
ytRt

〉
, where Rt ∈ {0, 1} is the relevance spike train at time step t. The

resulting learning rule is only sensitive to instantaneous correlations between the neural

output and the relevance signal, a fact that limits the applicability of the learning

rule. In contrast, we propose in this study the more general approach of a parametric

estimation of the gradient of I(y0, R) based on a given preprocessing ht = (ht
1, . . . , h

t
r).

The resulting rule (4.6) is as powerful as the preprocessing that is available to the neuron.

Given that neurons are strongly interconnected and receive many of recurrent inputs

resulting in highly nontrivial transformations of the external input, it seems reasonable

to assume that the preprocessing of the relevance signal, that is potentially available

4.4. Discussion 61

to the bottleneck neuron, is diverse and “rich” enough to carry out a large class of

IB optimization tasks. Further, a considerable simplification of the learning rule (4.6)

compared to the one presented in (Klampfl et al., 2009) was achieved by choosing to

maximize the mutual information I(y0, R) instead of the more complex quantity I(Y,R),

where Y = (. . . , y−1, y0, y1, . . .) 10.

InfoMax and Imax

The learning goal of maximizing the mutual information between input and output of

individual neurons or neural networks, so-called InfoMax learning, has served as a fruit-

ful theoretical principle for learning with artificial and more biologically realistic neural

models, see e.g. (Linsker, 1989; Bell & Sejnowski, 1995; Chechik, 2003; Toyoizumi et al.,

2005; Parra et al., 2009). More precisely InfoMax is defined as learning a neural mapping

X → Y of some input X to the output Y which maximizes the amount of transmitted

information defined as the mutual information I(X,Y) (with some regularization con-

straints). While InfoMax shares a common theoretical foundation with the IB method,

namely information theory, there are differences wrt. the specific learning goals and their

biological interpretation. InfoMax is an unsupervised learning principle, its formulation

only involves the input X and the output Y . There is no external “guideline” of how

the input X is to be transformed into the output Y except for maximizing the scalar

mutual information I(X,Y). InfoMax can be interpreted as a possible approach to di-

mensionality reduction techniques, to clustering as well as to blind source separation

(Bell & Sejnowski, 1995). The IB method also aims at constructing a mapping X → Y

of the input X to the output Y which exhibits certain information theoretic properties.

In contrast to InfoMax however, the IB method is not an unsupervised learning frame-

work. In the IB framework it is assumed that the environment offers information about

what can be considered relevant in the input via the given relevance signal R. It has to

be emphasized that the IB mapping, once learned, maps the input to the output X → Y

and it is not a mapping from the input and the relevance signal to the neural output

X×R→ Y . Thus, relevant information given by R which is not present in the input X

will not be encoded in the output Y . Further it should be noted that the relevance signal

R only has to be present during learning of the IB mapping. After this learning phase

the IB optimal mapping X → Y can be carried out by the neural architecture without

the presence of the relevance signal R. In a biologically plausible setting the distinction

between learning and operation phase could e.g. be implemented with a learning rate

η(‖Rt‖) that detects the presence of the relevance signal by monitoring some measure

of its intensity ‖Rt‖ over time and which stops learning if the relevance signal is absent.

To further illustrate the difference between IB and InfoMax consider the setup of the

simulation presented in section 4.2.2. The input to the IB neuron consists of three groups

G1, G2 and G3. The results presented in 4.2.2 show that if the relevance signal R is

statistically dependent on the input G1 and G2, i.e. G1, G2 convey relevant information,

the corresponding weights are potentiated, see Fig. 4.3A. If however the synapses are

10This simplification can apparently be made without reducing the power of the learning rule as all
numerical IB task presented by (Klampfl et al., 2009) can also be solved by the rule (4.6) even when
assuming only a simple preprocessing (data not shown).

62 Chapter 4. Extended Spiking Information Bottleneck

updated with an InfoMax learning rule (for details see appendix D.1.2) only the weights

of group G3 are potentiated while all other weights decay, see Fig. 4.3D. This weight

configuration maximizes the transmitted mutual information I(X,Y) since the group G3

subsumes the most afferents and its inputs exhibit the strongest spike-spike correlations.

This is an example where the learning results of IB and InfoMax differ.

(Becker, 1996; Becker & Hinton, 1992) propose a learning principle called Imax

which is similar to IB learning and can be interpreted as a special case of the latter.

The objective of Imax is to maximize the mutual information between the outputs of

two (or more) networks which receive disjoint but statistically related inputs. It is there-

fore different from InfoMax which aims as maximizing the mutual information between

input and output. More precisely in (Becker, 1996) two (multi-layer) feedforward net-

works are considered, whose two inputs X1, X2 are given by neighboring patches of

visual input. The learning objective was defined as maximizing the mutual information

I(X̂1, X̂2) between the activations X̂1, X̂2 of the output layers of the networks. Partial

derivatives of I(X̂1, X̂2) are propagated back into the hidden layers of the network to

maximize I(X̂1, X̂2). In contrast to the work presented in this chapter, the architecture

of (Becker, 1996; Becker & Hinton, 1992) does not operate in the temporal domain, i.e.

it implements an instantaneous mapping from input to output (which simplifies drasti-

cally the evaluation of the objective function I(X̂1, X̂2)). An interesting topic for future

research is to port the architecture proposed in (Becker, 1996; Becker & Hinton, 1992) to

neurons operating in time by using the learning rule presented here. This can possibly be

achieved by adopting ideas from the symmetric IB setup presented in (Friedman, Mosen-

zon, Slonim, & Tishby, 2001), where two disjoint input streams are mapped to simpler

representations while preserving as much mutual information between each other.

Predictive Coding

Predictive coding, which was formalized in the IB framework in (Bialek et al., 2006), has

been studied for linear mappings and Gaussian noise in (Creutzig & Sprekeler, 2008),

revealing an intriguing relation to slow feature analysis (for an introduction see (Wiskott

& Sejnowski, 2002)). The solutions to this past-future bottleneck are explicitly given.

Furthermore, the analysis of predictive coding was expanded to linear dynamical systems

in (Weiss, 2007) also resulting in a complete characterization of the IB optimal systems

assuming a linear dependence of the input RV X on the relevance RV R with additive

Gaussian noise. These studies provide strong, exact results to the considered restricted

setups. The spirit of the approach presented here is quite different. We provide an

iterative scheme for IB optimization, which is possibly prone to local minima, focusing

on a neural mapping while making only few assumptions about the input and relevance

processes X and R.

Predictive coding as a learning goal for sensory processing with neural architectures

was motivated in (Bialek et al., 2006) by arguing that this paradigm allows to learn an

“useful” (wrt. the agent’s fitness) internal representation or model of the environment.

It can therefore be considered to be closely related to learning a generative model of

the environment (see (Slonim & Weiss, 2003) for a relation between IB and generative

models). However it can be argued that learning a sufficiently accurate model of the

4.4. Discussion 63

environment may consume too many resources and may require too much data to be a

suitable strategy for adapting to the environment. An alternative would be a discrim-

inative approach, i.e. one might hypothesize that it is more appropriate for an agent

to directly learn a mapping from environmental configurations to behavioral decisions,

without the need for an explicit representation of the environment. Which of these

two approaches, generative versus discriminative, is the better theoretical model de-

pends amongst others on the structure and amount of data that the agent learns from.

In a machine learning context (Hinton, 2007) argues that a combination of generative

learning, making use of unlabeled data, and discriminative learning is a powerful and

promising approach. This indicates that such a combination of discriminative and gen-

erative approaches might also be a powerful model for sensory processing in biological

agents.

4.4.2 A Possible Biological Implementing of IB Optimization with

Spiking Neurons

The experimental investigation of synaptic plasticity has made significant advances in

the last decade (for reviews see (Caporale & Dan, 2008; Sjöström, Rancz, Roth, &

Häusser, 2008)). The classical picture of synaptic plasticity, as postulated by (Hebb,

1949) and later experimentally described by others, which exclusively depends on the

pre- and postsynaptic activity had to be considerably expanded over the years due to

accumulating experimental evidence. It is now known that many additional factors

modulate synaptic weight changes, e.g. neuromodulators (Hee et al., 2007), details of

the neural morphology (Sjöström et al., 2008) and extracellular subthreshold stimulation

(Sjöström et al., 2001). This large body of experimental literature poses a huge challenge

for theoretical work about the underlying functions of these mechanisms for neural

information processing. The fact that synaptic plasticity is determined by additional

quantities besides pre- and postsynaptic activity might be a suitable mechanism allowing

synaptic weight changes to fulfill complex optimization goals like IB optimization. In the

following we show that the proposed IB learning rule (4.6) fits well to recent experimental

results concerning the influence of dendritic depolarization on synaptic plasticity.

The plasticity of synapse j described by the rule (4.6) depends on the synaptic ac-

tivity νt
j, in agreement with experimental findings. Further a measure of the average

postsynaptic activity 〈gt〉 influences the weight change. This may be interpreted in a bio-

logical context as a homeostatic control of the weights. The central claim of the learning

rule (4.6) is however that a “third” factor σ−1(F t), which quantifies the influence of the

relevance signal, shapes synaptic plasticity. This contribution crucially determines the

sign and amplitude of the weight change in this plasticity model. A biological mechanism

termed “dendritic switch”, which has recently been uncovered in (Sjöström & Häusser,

2006), is a plausible candidate for a third factor modulating plasticity as required by IB

learning. It is known that plasticity of dendritic synapses depends on the backpropa-

gating action potential (bAP) in the dendrite (Caporale & Dan, 2008). Further it has

been shown that the bAP amplitude and the reliability of the bAP are shaped by the

active and passive conductance properties of the dendrite, see (Stuart & Häusser, 2001).

64 Chapter 4. Extended Spiking Information Bottleneck

These conductance properties can in turn be considerably modulated by local de- or

hyperpolarization of the dendrite as demonstrated in (Stuart & Häusser, 2001). Hence

it can be assumed that properly timed EPSPs/IPSPs in the dendrite shape synaptic

plasticity by influencing the bAP amplitude. According to (Sjöström & Häusser, 2006),

these mechanisms indeed enable proximal synapses to act as “dendritic switches” which

modulate the weight changes at distal synapses via boosting or shunting the bAP. These

“dendritic switches” were shown to be able to change the amplitude as well as the sign

of the weight change at distal synapses by modulating the bAP with EPSPs/IPSPs that

de-/hyperpolarize the proximal part of the dendrite. In the presented IB model the

proximal synapses, the dendritic switches, would convey the influence of the relevance

signal σ−1(F t), see Fig. 4.6. The weights w, which obey the rule (4.6), would correspond

to more distal synapses whose plasticity is controlled by the relevance signal. With this

correspondence the IB plasticity model predicts a boosting/shunting of bAPs leading

to potentiation/depression at active distal synapses (those with νt > 0) whenever the

weighted, preprocessed relevance signal σ−1(F t) (representing the input at the proximal

synapses) is high/low. As the dendritic switches act on a millisecond time scale this

mechanism would provide a sufficiently high temporal resolution for the relevance signal

in contrast to other factors modulating plasticity (e.g. neuromodulators).

In spite of this possible correspondence with the experimental data discussed above

we wish to point out the limitations of the IB learning rule (4.6) as a theoretical model

for experimental findings. It has to be noted that the IB learning rule presented here

cannot account e.g. for the effect of spike timing-dependent plasticity (STDP) as e.g.

reported in (Bi & Poo, 1998). The weight change given by the IB rule (4.6) does not

exhibit a dependence on the postsynaptic spike times, only on a long-term average

of the postsynaptic firing rate 〈g〉. This is in contrast to the experimental results on

STDP which report a strong dependence of plasticity on the precise timing of pre- and

postsynaptic spikes. Furthermore numerous more subtle aspects of plasticity, such as

postsynaptic voltage dependence and weight dependence of plasticity, are not reflected

by the IB rule. It is the topic of current research whether the IB approach in conjunction

with more realistic neuron models or other constraints can reproduce experimental data

more faithfully.

4.4.3 Summary

In this chapter we presented an online learning rule for IB optimization with a simple,

idealized spiking neuron model. The neuron was regarded as an information bottleneck

that maps its high dimensional input sequence on a one dimensional output sequence of

spikes. By the help of the proposed IB learning rule the neuron can adapt its weights

such that its output contains the maximal amount of relevant information, i.e. its output

is maximally informative (possibly locally optimal) about a relevance signal also given

by a sequence of RVs in time. This learning rule was derived assuming that the neuron

has access to an estimation of its currently transmitted amount of relevant information

(more precisely the gradient), which is based on a given preprocessing of the relevance

signal and an adaptable set of parameters which are learned simultaneously with the

4.4. Discussion 65

Figure 4.6: A possible biological mechanism implementing IB optimization in a single
neuron. As shown in experiments, the activity of proximal synapses can act as “dendritic
switches” that critically influence the amplitude and the sign of weight changes of distal
synapses. The IB learning rule could be implemented in the distal synapses assuming
that the proximal synapses convey the influence of the relevance signal R via F t.

weights. This approach extends previous studies on neural IB optimization (Klampfl et

al., 2007, 2009) that were based on correlations between the output of the bottleneck

neuron and the relevance signal.

We also addressed the question of how a suitable and sufficiently general preprocess-

ing of the relevance signal may be implemented in a biological neural system. Motivated

by previous theoretical, numerical and experimental studies (see (Buonomano & Maass,

2009)) we argued that a generic recurrent neural circuit, which is not learned for a

certain IB task and hence looks randomly structured from the perspective of the bottle-

neck neuron, can be considered a plausible candidate for such an implementation of the

preprocessing. Simple models of recurrent neural networks were shown in previous stud-

ies to provide a considerable amount of memory and “nonlinearity” and hence render

themselves to be a suitable preprocessing of the relevance signal enabling the bottleneck

neuron to carry out a class of IB tasks.

Further, we have discussed a biological mechanism that can in principal resolve the

problem of spacial non-locality encountered in previous IB learning rules for spiking

neurons, i.e. the problem of how the current values of quantities that are essential to the

learning rule can be made available at the location of the synapse. The recently discov-

ered mechanism of dendritic switches (Sjöström & Häusser, 2006) seems well suited as

an implementation of a learning process that is modulated by an external “third” factor

(the relevance signal in in addition to the two factors given by pre- and postsynaptic

signals) as required by IB learning.

Predictive coding has been proposed as an unsupervised learning goal for single

neurons in (Bialek et al., 2006), a hypothesis that seems to be in agreement with exper-

imental findings. As an application of IB learning with spiking neurons, we have shown

that a variant of the proposed IB learning rule enables the neuron to learn a predic-

tive code assuming simple input statistics. It has to be emphasized that several neural

learning rules exist which extract temporal regularities from the input. In a recent study

66 Chapter 4. Extended Spiking Information Bottleneck

(Creutzig & Sprekeler, 2008), a close relation between IB optimization and learning of

temporal invariances in a more machine-learning oriented setting was pointed out. The

approach presented here shows that also on a single neural level the well-known learning

goals related to temporal invariance can be motivated and a viable learning rule can be

derived from the IB framework.

The proposed learning rules are based on idealized assumptions especially wrt. the

neuron model. The applied neuron model neglects several characteristics observed in

experiments, most prominently a refractory mechanism, complex voltage dynamics (e.g.

bursting, rebound spikes) as well as spacial extension and morphology of a neuron.

We argue that studying learning in highly simplified system is nevertheless sensible as

it possibly provides a “baseline” architecture, i.e. a possible learning strategy and its

essential functional building blocks, that is not cluttered by (hopefully) unimportant

contingent details of the neural dynamics.

4.5 Acknowledgments

This chapter is based on the paper A spiking neuron as information bottleneck, which

was written by Lars Büsing (LB) and Wolfgang Maass (WM). The model was developped

by LB. The simulations were designed by LB and WM and conducted by LB. LB wrote

the manuscript.

Chapter 5

Computational Power and the

Order-Chaos Phase Transition

in Reservoir Computing

Contents

5.1 Introduction . 67

5.2 Online Computations with Quantized ESNs 69

5.3 Phase Transitions in Binary and High Resolution Networks . . . 71

5.4 Mean-Field Predictor for Computational Performance 74

5.5 Discussion . 76

Randomly connected recurrent neural circuits have proven to be very powerful mod-

els for online computations when a trained memoryless readout function is appended.

Such Reservoir Computing (RC) systems are commonly used in two flavors: with analog

or binary (spiking) neurons in the recurrent circuits. Previous work showed a fundamen-

tal difference between these two incarnations of the RC idea. The performance of a RC

system built from binary neurons seems to depend strongly on the network connectivity

structure. In networks of analog neurons such dependency has not been observed. In

this article we investigate this apparent dichotomy in terms of the in-degree of the circuit

nodes. Our analyses based amongst others on the Lyapunov exponent reveal that the

phase transition between ordered and chaotic network behavior of binary circuits qual-

itatively differs from the one in analog circuits. This explains the observed decreased

computational performance of binary circuits of high node in-degree. Furthermore, a

novel mean-field predictor for computational performance is introduced and shown to

accurately predict the numerically obtained results.

5.1 Introduction

In 2001, Jaeger (Jaeger, 2001) and Maass (Maass et al., 2002) independently introduced

the idea of using a fixed, randomly connected recurrent neural network of simple units

as a set of basis filters (operating at the edge-of-stability where the system has fad-

ing memory). A memoryless readout is then trained on these basis filters in order to

approximate a given time-invariant target operator with fading memory (Maass et al.,

2002). Jaeger used analog sigmoidal neurons as network units and named the model

68 Chapter 5. Computational Power in Reservoir Computing

Echo State Network (ESN). Maass termed the idea Liquid State Machine (LSM) and

most of the related literature focuses on networks of spiking neurons or threshold units.

Both ESNs and LSMs are special implementations of a concept now generally termed

Reservoir Computing (RC) which subsumes the idea of using general dynamical systems

(e.g. a network of interacting optical amplifiers (Vandoorne et al., 2008)) – the so-called

reservoirs – in conjunction with trained memoryless readout functions as computational

devices. These RC systems have already been used in a broad range of applications

(often outperforming other state-of-the-art methods) such as chaotic time-series pre-

diction (Jaeger & Haas, 2004), single digit speech recognition (Verstraeten, Schrauwen,

Stroobandt, & Campenhout, 2005), and robot control (Joshi & Maass, 2005).

Although ESNs and LSMs are based on very similar ideas (and in applications

it seems possible to switch between both approaches without loss of performance

(Verstraeten, Schrauwen, D’Haene, & Stroobandt, 2007)) an apparent dichotomy exists

in the influence of the reservoir’s topological structure on its computational performance.

The performance of an ESN using analog, rate-based neurons, is e.g. largely indepen-

dent of the sparsity of the network (Jaeger, 2007) or the exact network topology such

as small-world or scale-free connectivity graphs1. For LSMs, which consist of spiking or

binary units, the opposite effect has been observed. For the latter systems, the influence

of introducing e.g. small-world or biologically measured lamina-specific cortical intercon-

nection statistics (Haeusler & Maass, 2007) clearly leads to an increase in performance.

In the results of (Bertschinger & Natschlaeger, 2004) it can be observed (although not

specifically stated there) that for networks of threshold units with a simple connectivity

topology of fixed in-degree per neuron, an increase in performance can be found for

decreasing in-degree. None of these effects can be reproduced using ESNs.

In order to systematically study this fundamental difference between binary (spik-

ing) LSMs and analog ESNs, we close the gap between them by introducing in Sec. 5.2

a class of models termed quantized ESNs. The reservoir of a quantized ESN is defined

as a network of discrete units, where the number of admissible states of a single unit

is controlled by a parameter called quantization level. LSMs and ESNs can be inter-

preted as the two limiting cases of quantized ESNs for low and high quantization level

respectively. We numerically study the influence of the network topology in terms of the

in-degree of the network units on the computational performance of quantized ESNs for

different quantization levels. This generalizes and systemizes previous results obtained

for binary LSMs and analog ESNs.

In Sec. 5.3 the empirical results are analyzed by studying the Lyapunov exponent

of quantized ESNs, which exhibits a clear relation to the computational performance

(Legenstein & Maass, 2007a). It is shown that for ESNs with low quantization level, the

chaos-order phase transition is significantly more gradual when the networks are sparsely

connected. It is exactly in this transition regime that the computational power of a

Reservoir Computing system is found to be optimal (Legenstein & Maass, 2007a). This

effect disappears for ESNs with high quantization level. A clear explanation of the influ-

ence of the in-degree on the computational performance can be found by investigating

1Shown by results of unpublished experiments which have also been reported by the lab of Jaeger
through personal communication.

5.2. Online Computations with Quantized ESNs 69

the rank measure presented in (Legenstein & Maass, 2007a). This measure characterizes

the computational capabilities of a network as a trade-off between the so-called kernel

quality and the generalization ability. We show that for highly connected reservoirs with

a low quantization level the region of an efficient trade-off implying high performance

is narrow. For sparser networks this region is shown to broaden. Consistently for high

quantization levels the region is found to be independent of the interconnection degree.

In Sec. 5.4 we present a novel mean-field predictor for computational power which

is able to reproduce the influence of the topology on the quantized ESN model. It is

related to the predictor introduced in (Bertschinger & Natschlaeger, 2004), but it can be

calculated for all quantization levels, and can be determined with a significantly reduced

computation time. The novel theoretical measure matches the experimental and rank

measure findings closely.

5.2 Online Computations with Quantized ESNs

We consider networks of N neurons with the state variable x(t) = (x1(t), . . . , xN (t)) ∈
[− 1,+1]N in discrete time t ∈ Z. All units have an in-degree of K, i.e. every unit

i receives input from K other randomly chosen units with independently identically

distributed (iid.) weights drawn from a normal distribution N (0, σ2) with zero mean

and standard deviation (STD) σ. The network state is updated according to:

xi(t+ 1) = (ψm ◦ g)





N∑

j=1

wijxj(t) + u(t)



 ,

where g = tanh is the usual hyperbolic tangent nonlinearity and u denotes the input

common to all units. At every time step t, the input u(t) is drawn uniformly from

{−1, 1}. The function ψm(·) is called quantization function for m bits as it maps from

(−1, 1) to its discrete range Sm of cardinality 2m:

ψm : (−1, 1) → Sm, ψm(x) :=
2⌊2m−1(x+ 1)⌋ + 1

2m
− 1.

Here ⌊x⌋ denotes the integer part of x. Due to ψm the variables xi(t) are discrete

(“quantized”) and assume values in Sm = {(2k + 1)/2m − 1|k = 0, . . . , 2m − 1} ⊂
(−1, 1). The network defined above was utilized for online computations on the input

stream u(·). We consider in this article tasks where the binary target output at time

t depends solely on the n input bits u(t − τ − 1), . . . , u(t − τ − n) for a given delay

parameter τ ≥ 0, i.e., it is given by fT (u(t − τ − 1), . . . , u(t − τ − n)) for a function

fT ∈ {f |f : {−1, 1}n → {−1, 1}}. In order to approximate the target output, a linear

classifier of the form sign(
∑N

i=1 αixi(t) + b) is applied to the instantaneous network

state x(t). The coefficients αi and the bias b were trained via a one-shot pseudo-inverse

regression method (Jaeger, 2001). The RC system consisting of the network and the

linear classifier is called a quantized ESN of quantization level m in the remainder of

this chapter.

70 Chapter 5. Computational Power in Reservoir Computing

A m = 1 B m = 3 C m = 6

Figure 5.1: The performance pexp(C,PAR5) for three different quantization levels m =
1, 3, 6 is plotted as a function of the network in-degree K and the weight STD σ. The
networks size is N = 150, the results have been averaged over 10 circuits C, initial
conditions and randomly drawn input time series of length 104 time steps. The dashed
line represents the numerically determined critical line.

We assessed the computational capabilities of a given network based on the nu-

merically determined performance on an example task, which was chosen to be the

τ -delayed parity function of n bits PARn,τ , i.e. the desired output at time t is

PARn,τ (u, t) =
∏n

i=1 u(t − τ − i) for a delay τ ≥ 0 and n ≥ 1. A separate readout

classifier is trained for each combination of n and τ , all using the same reservoir. We

define pexp quantifying the performance of a given circuit C on the PARn task as:

pexp(C,PARn) :=
∞∑

τ=0

κ(C,PARn,τ), (5.1)

where κ(C,PARn,τ) denotes the performance of circuit C on the PARn,τ task mea-

sured in terms of Cohen’s kappa coefficient2. The performance results for PARn can

be considered representative for the general computational capabilities of a circuit C as

qualitatively very similar results were obtained for the ANDn task of n bits and random

Boolean functions of n bit (results not shown).

In Fig. 5.1 the performance pexp(C,PAR5) is shown averaged over 10 circuits C for

three different quantization levels m = 1, 3, 6. pexp(C,PAR5) is plotted as a function of

the network in-degree K and the logarithm3 of the weight STD σ. Qualitatively very

similar results were obtained for different network graphs with e.g. Poisson or scale-free

distributed in-degree with average K (results not shown). A numerical approximation of

the critical line, i.e. the order-chaos phase transition, is also shown (dashed line), which

was determined by the root of an estimation of the Lyapunov coefficient4. The critical

2κ is defined as (c − cl)/(1 − cl) where c is the fraction of correct trials and cl is the chance level.
The sum in eq. (5.1) was truncated at τ = 8, as the performance was negligible for higher delays τ > 8
for the network size N = 150.

3All logarithms are taken to the basis 10, i.e. log = log10 if not stated otherwise.
4The Lyapunov coefficient λ was determined in the following way. After 20 initial simulation steps

the smallest admissible (for m) state difference δ0(m) = 21−m was introduced in a single network unit
and the resulting state difference δ after one time step was measured averaged over 105 trials with

5.3. Phase Transitions in Binary and High Resolution Networks 71

line predicts the zone of optimal performance well for m = 1, but is less accurate for

ESNs with m = 3, 6. One can see that for ESNs with low quantization levels (m = 1, 3),

networks with a small in-degree K reach a significantly better peak performance than

those with high in-degree. The effect disappears for a high quantization level (m = 6).

This phenomenon is consistent with the observation that network connectivity structure

is in general an important issue if the reservoir is composed of binary or spiking neurons

but less important if analog neurons are employed. Note that for m = 3, 6 we see a

bifurcation in the zones of optimal performance which is not observed for the limiting

cases of ESNs and LSMs.

5.3 Phase Transitions in Binary and High Resolution Net-

works

Where does the difference between binary and high resolution reservoirs shown in Fig.

5.1 originate from? It was often hypothesized that high computational power in recur-

rent networks is located in a parameter regime near the critical line, i.e., near the phase

transition between ordered and chaotic behavior (see, e.g., (Legenstein & Maass, 2007b)

for a review; compare also the performance with the critical line in Fig. 5.1). Starting

from this hypothesis, we investigated whether the network dynamics of binary networks

near this transition differs qualitatively from the one of high resolution networks. We

estimated the network properties by empirically measuring the Lyapunov exponent λ

with the same procedure as in the estimation of the critical line in Fig. 5.1 (see text

above). However, we did not only determine the critical line (i.e., the parameter values

where the estimated Lyapunov exponent crosses zero), but also considered its values

nearby. For a given in-degree K, λ can then be plotted as a function of the STD of

weights σ (centered at the critical value σ0 of the STD for that K). This was done for

binary (Fig. 5.2A) and high resolution networks (Fig. 5.2B) and for K = 3, 12, and 24.

Interestingly, the dependence of λ on the STD σ near the critical line is qualitatively

quite different between the two types of networks. For binary networks the transition

becomes much sharper with increasing K which is not the case for high resolution net-

works. How can this sharp transition explain the reduced computational performance

of binary ESNs with high in-degree K? The tasks considered in this article require

some limited amount of memory which has to be provided by the reservoir. Hence, the

network dynamics has to be located in a regime where memory about recent inputs is

available and past input bits do not interfere with that memory. Intuitively, an effect of

the sharper phase transition could be stated in the following way. For low σ (i.e., in the

ordered regime), the memory needed for the task is not provided by the reservoir. As

we increase σ, the memory capacity increases, but older memories interfere with recent

ones, making it hard or even impossible to extract the relevant information. This intu-

ition is confirmed by an analysis which was introduced in (Legenstein & Maass, 2007a)

and which we applied to our setup. We estimated two measures of the reservoir, the so

randomly generated networks, initial states and input streams. The initial states of all neurons were iid.
uniformly over Sm. λ was then determined by λ = ln(δ/δ0(m)).

72 Chapter 5. Computational Power in Reservoir Computing

−0.1 0 0.1
−1

0

1

log(σ)−log(σ
0
)

λ

quantization m=1bit
A

−0.1 0 0.1
−1

0

1

log(σ)−log(σ
0
)

λ

quantization m=6bit

 B

K=3
K=12
K=24

Figure 5.2: Phase transitions in binary networks (m = 1) differ from phase transition in
high resolution networks (m = 6). An empirical estimate λ of the Lyapunov exponent
is plotted as a function of the STD of weights σ for in-degrees K = 3 (solid), K = 12
(dashed), and K = 24 (gray line). In order to facilitate comparison, the plot for each K
is centered around log(σ0) where σ0 is the STD of weights for which λ is zero (i.e., σ0

is the estimated critical σ value for that K). The transition sharpens with increasing
K for binary reservoirs A, whereas it is virtually independent of K for high resolution
reservoirs B.

called “kernel-quality” and the “generalization rank”, both being the rank of a matrix

consisting of certain state vectors of the reservoir. To evaluate the kernel-quality of the

reservoir, we randomly drew N = 150 input streams u1(·), . . . , uN (·) and computed the

rank of the N ×N matrix whose columns were the circuit states resulting from these in-

put streams.5 Intuitively, this rank measures how well the reservoir represents different

input streams. The generalization rank is related to the ability of the reservoir-readout

system to generalize from the training data to test data. The generalization rank is

evaluated as follows. We randomly drew N input streams ũ1(·), . . . , ũN (·) such that the

last three input bits in all these input streams were identical.6 The generalization rank

is then given by the rank of the N × N matrix whose columns are the circuit states

resulting from these input streams. Intuitively, the generalization rank with this input

distribution measures how strongly the reservoir state at time t is sensitive to inputs

older than three time steps. The rank measures calculated here will thus have predic-

tive power for computations which require memory of the last three time steps (see

(Legenstein & Maass, 2007a) for a theoretical justification of the measures). In general,

a high kernel-quality and a low generalization rank (corresponding to a high ability of

the network to generalize) are desirable. Fig. 5.3A and D show the difference between

the two measures as a function of log(σ) and the in-degree K for binary networks and

high resolution networks respectively. The plots show that the peak value of this differ-

ence is decreasing with K in binary networks, whereas it is independent of K in high

resolution reservoirs, reproducing the observations in the plots for the computational

5The initial states of all neurons were iid. uniformly over Sm. The rank of the matrix was estimated
by singular value decomposition on the network states after 15 time steps of simulation.

6First, we drew each of the last three bits ũ(13), . . . , ũ(15) independently from a uniform distribution
over {−1, 1}. For each input stream ũi(1), . . . , ũi(15) we drew ũi(1), . . . , ũi(12) independently from a
uniform distribution over {−1, 1} and set ũi(t) = ũ(t) for t = 13, . . . , 15.

5.4. Mean-Field Predictor for Computational Performance 73

−2 −1 0 1

5

10

15

20

K

m
=1

b
it

A

0

20

40

−2 −1 0 1
0

50

100

150

R
an

k

K=3
B

−2 −1 0 1
0

50

100

150 K=24
C

−2 −1 0 1

5

10

15

20

log(σ)

K

m
=6

b
it

D

10
20
30
40
50

−2 −1 0 1
0

50

100

150

log(σ)

R
an

k

K=3
E

−2 −1 0 1
0

50

100

150

log(σ)

 K=24
F

generaliz.

kernel

diff.

Figure 5.3: Kernel-quality and generalization rank of quantized ESNs of size N = 150.
Upper plots are for binary reservoirs (m = 1bit), lower plots for high resolution reservoirs
(m = 6 bit). A: The difference between the kernel-quality and the generalization rank
as a function of the log STD of weights and the in-degree K. B: The kernel-quality
(solid), the generalization rank (dashed) and the difference between both (gray line) for
K = 3 as a function of log(σ). C: Same as panel B, but for an in-degree of K = 24. In
comparison to panel B, the transition of both measures is much steeper. D,E,F: Same
as panels A, B, and C respectively, but for a high resolution reservoir. All plotted values
are means over 100 independent runs with randomly drawn networks, initial states, and
input streams.

performance. A closer look for the binary circuit at K = 3 and K = 24 is given in

Fig. 5.3B and 5.3C. When comparing these plots, one sees that the transition of both

measures is much steeper for K = 24 than for K = 3 which leads to a smaller difference

between the measures. We interpret this finding in the following way. For K = 24, the

reservoir increases its separation power very fast as log(σ) increases. However the sepa-

ration of past input differences increases likewise and thus early input differences cannot

be distinguished from late ones. This reduces the computational power of binary ESN

with large K on such tasks. In comparison, the corresponding plots for high resolution

reservoirs (Figs. 5.3E and 5.3F) show that the transition shifts to lower weight STDs σ

for larger K, but apart from this fact the transitions are virtually identical for low and

high K values. Comparing Fig. 5.3D with Fig. 5.1C, one sees that the rank measure

does not accurately predict the whole region of good performance for high resolution

reservoirs. It also does not predict the observed bifurcation in the zones of optimal

performance, a phenomenon that is reproduced by the mean-field predictor introduced

in the following section.

74 Chapter 5. Computational Power in Reservoir Computing

A m = 1 B m = 3 C m = 6

Figure 5.4: Mean-field predictor p∞ for computational power for different quantization
levels m as a function of the STD σ of the weights and in-degree K. A: m = 1. B:
m = 3. C: m = 6. Compare this result to the numerically determined performance pexp

plotted in Fig. 5.1.

5.4 Mean-Field Predictor for Computational Performance

The question why and to what degree certain non-autonomous dynamical systems are

useful devices for online computations has been addressed theoretically amongst others

in (Bertschinger & Natschlaeger, 2004). There, the computational performance of net-

works of randomly connected threshold gates was linked to their separation property

(for a formal definition see (Maass et al., 2002)): It was shown that only networks which

exhibit sufficiently different network states for different instances of the input stream, i.e.

networks that separate the input, can compute complex functions of the input stream.

Furthermore, the authors introduced an accurate predictor for the computational ca-

pabilities for the considered type of networks based on the separation capability which

was quantified via a simple mean-field approximation of the Hamming distance between

different network states.

Here we aim at extending this approach to a larger class of networks, the class of

quantized ESNs introduced above. However a severe problem arises when directly apply-

ing the mean-field theory developed in (Bertschinger & Natschlaeger, 2004) to quantized

ESNs with a quantization level m > 1: Calculation of the important quantities becomes

computationally infeasible as the state space of a network grows exponentially with m.

Therefore we introduce a modified mean-field predictor which can be efficiently com-

puted and which still has all desirable properties of the one introduced in (Bertschinger

& Natschlaeger, 2004).

Suppose the target output of the network at time t is a function fT ∈ F =

{f |f : {−1, 1}n → {−1, 1}} of the n bits u(t − τ − 1), . . . , u(t − τ − n) of the input

stream u(·) with delay τ as described in Sec. 5.2. In order to exhibit good perfor-

mance on an arbitrary fT ∈ F , pairs of inputs that differ in at least one of the n

bits have to be mapped by the network to different states at time t. Only then, the

linear classifier is able to assign the inputs to different function values. In order to

quantify this so-called separation property of a given network, we introduce the nor-

malized distance d(k): It measures the average distance between two networks states

5.4. Mean-Field Predictor for Computational Performance 75

x1(t) = (x1
1(t), . . . , x

1
N (t)) and x2(t) = (x2

1(t), . . . , x
2
N (t)) arising from applying to the

same network two input streams u1(·) and u2(·) which only differ in the single bit at

time t− k, i.e. u2(t− k) = −u1(t− k). Formally we define7:

d(k) =
1

N

〈∥
∥x1(t) − x2(t)

∥
∥

1

〉
.

The average 〈.〉 is taken over all inputs u1(·), u2(·) from the ensemble defined above, all

initial conditions of the network and all circuits C. However, a good separation of the

n bits, i.e. d(k) ≫ 0, τ < k ≤ n+ τ , is a necessary but not a sufficient condition for the

ability of the network to calculate the target function. Beyond this, it is desired that

the network “forgets” all (for the target function) irrelevant bits u(t − k), k > n + τ

of the input sufficiently fast, i.e. d(k) ≈ 0 for k > n + τ . We use the limit d(∞) =

limk→∞ d(k) to quantify this irrelevant separation which signifies sensitivity to initial

conditions (making the reservoir not time invariant). Hence, we propose the quantity

p∞ as a heuristic predictor for computational power:

p∞ = max {d(2) − d(∞), 0} .

As the first contribution to p∞ we chose d(2) as it reflects the ability of a network to

perform a combination of two mechanisms: In order to exhibit a high value for d(2) the

network has to separate the inputs at the time step t − 2 and to sustain the resulting

state distance via its recurrent dynamics in the next time step t − 1. We therefore

consider d(2) to be a measure for input separation on short time-scales relevant for the

target function. p∞ is calculated using a mean-field model similar to the one presented in

(Bertschinger & Natschlaeger, 2004) which itself is rooted in the annealed approximation

(AA) introduced in (Derrida & Pomeau, 1986). In the AA one assumes that the circuit

connectivity and the corresponding weights are drawn iid. at every time step. Although

being a drastic simplification, the AA has been shown to yield good results in the large

system size limit N → ∞. The main advantage of p∞ over the the predictor defined

in (Bertschinger & Natschlaeger, 2004) (the NM-separation) is that the calculation of

p∞ only involves taking the average over one input stream (as the u2(·) is a function

of u1(·)) compared to taking the average over two independent inputs needed for the

NM-separation, resulting in a significantly reduced computation time.

In Fig. 5.4 the predictor p∞ is plotted as a function of the STD σ of the weight

distribution and the in-degree K for three different values of the quantization level

m ∈ {1, 3, 6}. When comparing these results with the actual network performance

pexp(PAR) on the PAR-task plotted in Fig. 5.1 one can see that p∞ serves as a reliable

predictor for pexp of a network for sufficiently small m. For larger values of m the

predictor p∞ starts to deviate from the true performance. The dominant effect of the

quantization level m on the performance discussed in Sec. 5.2 is well reproduced by

p∞: For m = 1 the in-degree K has a considerable impact, i.e. for large K maximum

performance drops significantly. For m > 2 however, for larger values of K there also

exists a region in the parameter space exhibiting maximum performance.

7For vectors x = (x1, x2, . . .) ∈ R
N we use the Manhattan norm ‖x‖

1
:=

PN

i=1
|xi|

76 Chapter 5. Computational Power in Reservoir Computing

A m = 1 m = 1 B m = 6 m = 6

Figure 5.5: Contributions d(2) (dotted) and d(∞) (solid gray) to the mean-field predictor
p∞ (dashed line) for different quantization levels m ∈ {1, 6} and different in-degrees
K ∈ {3, 24} as a function of STD σ of the weights. The plots show slices of the 2d
plots Fig. 5.4A and C for constant K. A: For m = 1 it can be seen that the region
in log(σ)-space with high d(2) and low d(∞) is significantly larger for K = 3 than for
K = 24. B: For m = 6 this region is roughly independent of K except a shift.

The interplay between the two contributions d(2) and d(∞) of p∞ delivers insight

into the dependence of pexp on the network parameters. A high value of d(2) corresponds

to a good separation of inputs on short time scales relevant for the target task, a property

that is found predominantly in networks that are not strongly input driven. A small

value of d(∞) guarantees that inputs on which the target function assumes the same

value are mapped to nearby network states and thus a linear readout is able to assign

them to the same class irrespectively of their irrelevant remote history. For m = 1,

as can be seen in Fig. 5.5 the region in log(σ) space where both conditions for good

performance are present decreases for growing K. In contrast, for m > 2 a reverse

effect is observed: for increasing K the parameter range for σ fulfilling the two opposing

conditions for good performance grows moderately resulting in a large region of high p∞
for high in-degree K. This observation is in close analogy to the behavior of the rank

measure discussed in Sec. 5.3. Also note that p∞ predicts the novel bifurcation effect

also observed in Fig. 5.1.

5.5 Discussion

By interpolating between the ESN and LSM approaches to RC, this work provides new

insights into the question of what properties of a dynamical system lead to improved

computational performance: Performance is optimal at the order-chaos phase transition,

and the broader this transition regime, the better will the performance of the system be.

We have confirmed this hypothesis by several analyses, including a new theoretical mean-

field predictor that can be computed very efficiently.The importance of a gradual order-

chaos phase transition could explain why ESNs are more often used for applications than

LSMs. Although they can have very similar performance on a given task (Verstraeten

et al., 2007), it is significantly harder to create a LSM which operates at the edge-of-

chaos: the excitation and inhibition in the network need to be finely balanced because

there tends to be a very abrupt transition from an ordered to a epileptic state. For ESNs

5.5. Discussion 77

however, there is a broad parameter range in which they perform well. It should be noted

that the effect of quantization cannot just be emulated by additive or multiplicative

iid. or correlated Gaussian noise on the output of analog neurons. The noise degrades

performance homogeneously and the differences in the influence of the in-degree observed

for varying quantization levels cannot be reproduced. The finding that binary reservoirs

have superior performance for low in-degree stands in stark contrast to the fact that

cortical neurons have very high in-degrees of over 104. This raises the interesting question

which properties and mechanisms of cortical circuits not accounted for in this article

contribute to their computational power. In view of the results presented in this article,

such mechanisms should tend to soften the phase transition between order and chaos.

5.5.0.1 Acknowledgments

This chapter is based on the paper On computational power and the order-chaos phase

transition in reservoir computing, which was written by Benjamin Schrauwen (BS), Lars

Büsing (LB) and Robert Legenstein (RL). BS investigated the differences between binary

and analog reservoirs and designed the simulations. LB developed the newtork model,

performed the simulations and developed the mean-field predictor. RL contributed the

rank measure analysis. LB, BS and RL wrote the manuscript.

Chapter 6

Connectivity, Dynamics and

Memory in Reservoir Computing

with Binary and Analog Neurons

Contents

6.1 Introduction . 80

6.2 Quantized ESNs and Their Dynamics 82

6.3 Online Computations with Quantized ESNs 87

6.4 Phase Transitions in Quantized ESNs 89

6.5 Mean-Field Predictor for Computational Performance 93

6.6 An Annealed Approximation of the Memory Function 97

6.7 Sparse Network Activity and Computational Power 99

6.8 Discussion . 102

6.9 Acknowledgments . 105

Reservoir Computing (RC) systems are powerful models for online computations on

input sequences. They consist of a memoryless readout neuron which is trained on top of

a randomly connected recurrent neural network. RC systems are commonly used in two

flavors: with analog or binary (spiking) neurons in the recurrent circuits. Previous work

indicated a fundamental difference in the behavior of these two implementations of the

RC idea. The performance of a RC system built from binary neurons seems to depend

strongly on the network connectivity structure. In networks of analog neurons such clear

dependency has not been observed. In this article we address this apparent dichotomy

by investigating the influence of the network connectivity (parametrized by the neuron

in-degree) on a family of network models that interpolates between analog and binary

networks. Our analyses are based on a novel estimation of the Lyapunov exponent of

the network dynamics with the help of branching process theory, rank measures which

estimate the kernel-quality and generalization capabilities of recurrent networks, and a

novel mean-field predictor for computational performance. These analyses reveal that

the phase transition between ordered and chaotic network behavior of binary circuits

qualitatively differs from the one in analog circuits, leading to differences in the inte-

gration of information over short and long time scales. This explains the decreased

computational performance observed in binary circuits that are densely connected. The

80 Chapter 6. Connectivity and Dynamics in Reservoir Computing

mean-field predictor is also used to bound the memory function of recurrent circuits of

binary neurons.

6.1 Introduction

The idea of using a randomly connected recurrent neural network for online computa-

tions on an input sequence was independently introduced in (Jaeger, 2001) and (Maass

et al., 2002). In these papers the network activity is regarded as an “echo” of the recent

inputs and a memoryless readout device is then trained in order to approximate from

this “echo” a given time-invariant target operator with fading memory (see (Maass et

al., 2002)) whereas the network itself remains untrained. Jaeger used analog sigmoidal

neurons as network units and named the model Echo State Network (ESN). Maass

termed the idea Liquid State Machine (LSM) and most of the related literature focuses

on networks of spiking neurons or threshold units. Both ESNs and LSMs are special

implementations of a concept now generally called Reservoir Computing (RC) which

subsumes the idea of using general dynamical systems (e. g. a network of interacting

optical amplifiers (Vandoorne et al., 2008), or an analog VLSI Cellular Neural Network

chip (Verstraeten et al., 2008)) – the so-called reservoirs – in conjunction with trained

memoryless readout functions as computational devices. These RC systems have been

used in a broad range of applications (often outperforming other state-of-the-art meth-

ods) such as chaotic time-series prediction and non-linear wireless channel equalization

(Jaeger & Haas, 2004), speech recognition (Verstraeten et al., 2005; Jaeger, Lukoseci-

cius, Popovici, & Siewert, 2007), movement analysis (Legenstein, Markram, & Maass,

2003), and robot control (Joshi & Maass, 2005).

Although ESNs and LSMs are based on very similar ideas (and in applications

it seems possible to switch between both approaches without loss of performance

(Verstraeten et al., 2007)) an apparent dichotomy exists regarding the influence of the

reservoir’s connectivity on its computational performance. The performance of an ESN

using analog, rate-based neurons is e. g. largely independent of the sparsity of the net-

work (Jaeger, 2007) or the exact network topology such as small-world or scale-free

connectivity graphs1. For LSMs, which consist of spiking or binary units, a profoundly

different effect has been observed, e. g. introducing small-world or biologically measured

lamina-specific cortical interconnection statistics (Haeusler & Maass, 2007) clearly leads

to an increase in performance. Further, in the results of (Bertschinger & Natschlaeger,

2004) it can be observed (although not specifically stated there) that for networks of

threshold gates with a simple connectivity topology of fixed in-degree per neuron, an

increase in performance can be found for decreasing in-degree. None of these effects can

be reproduced using ESNs.

In order to systematically study this fundamental difference between binary (spik-

1Shown by results of unpublished experiments which have also been reported by the lab of Jaeger
through personal communication. Of course, drastic topological changes such as disconnecting all net-
work units influences performance. Further, a specific class of (nonnormal) connectivity matrices with
advantageous memory properties for linear systems was characterized in (Ganguli, Huh, & Sompolinsky,
2008).

6.1. Introduction 81

ing) LSMs and analog ESNs in a unified framework, we close the gap between these

models by introducing in Section 6.2 a class of models termed quantized ESNs (qESNs).

The reservoir of a quantized ESN is defined as a network of discrete-valued units, where

the number of admissible states of a single unit is controlled by a parameter called state

resolution which is measured in bits. A binary network (where the units have binary

outputs) has a state resolution of 1, whereas high resolution networks (where the units

provide high resolution outputs) have high state resolutions. LSMs and ESNs can thus

be interpreted as the two limiting cases of quantized ESNs for low and high state reso-

lution respectively. We briefly described the dynamics of qESNs, which exhibit ordered

and chaotic behavior separated by a phase transition. Further the concept of Lyapunov

exponents is discussed in the context of qESNs and an approach to approximately com-

pute them for qESNs is introduced based on branching process theory.

In Section 6.3 we numerically study the influence of the network connectivity

parametrized by the in-degree of the network units on the computational performance of

quantized ESNs for different state resolutions. This generalizes and systemizes previous

results obtained for binary LSMs and analog ESNs.

In Section 6.4 the empirical results are analyzed by studying the Lyapunov exponent

of qESNs, which exhibits a clear relation to the computational performance (Legenstein

& Maass, 2007a). We show that for binary qESNs, the chaos-order phase transition is

significantly more gradual when the networks are sparsely connected. It is exactly in

this transition regime that the computational power of a Reservoir Computing system

is found to be optimal (Legenstein & Maass, 2007a). This effect disappears for high-

resolution ESNs.

A clear explanation of the influence of the network connectivity on the computational

performance can be found by investigating the rank measure presented in (Legenstein &

Maass, 2007a). This measure characterizes the computational capabilities of a network

as a trade-off between the so-called kernel-quality and the generalization ability. We

show that for highly connected binary reservoirs the region of an efficient trade-off

implying high performance is narrow. For sparser networks this region is shown to

broaden. Consistently for high resolution networks the region is found to be independent

of the interconnection degree.

In Section 6.5 we present a novel mean-field predictor for computational power which

is able to reproduce the influence of the connectivity on the qESN model. This predictor

is based on an estimation of the input separation property of a network and it is a

generalization of the predictor introduced in (Bertschinger & Natschlaeger, 2004) as it

can be calculated for general (not just binary) qESNs and it can be determined with a

significantly reduced computation time. This enables us to study computational power

based on state separation for recurrent networks of nearly analog nonlinear neurons. The

novel theoretical measure matches the experimental and rank measure findings closely.

It describes high performance as an interplay between input separation on different time-

scales revealing important properties of RC systems necessary for good computational

capabilities.

We investigate the relation of the mean-field predictor to the memory function of

qESNs in Section 6.6 and show that the latter is bounded by a function of the input

82 Chapter 6. Connectivity and Dynamics in Reservoir Computing

separation property. To our best knowledge this represents the first computationally

feasible bound on the memory function of nonlinear networks, since such bounds were

previously only derived for linear networks (White, Lee, & Sompolinsky, 2004; Jaeger,

2002; Ganguli et al., 2008). Further, we investigate the scaling of the memory capacity

and the temporal capacity of binary qESNs with the network size yielding a logarithmic

dependence.

The numerical and theoretical finding that for binary qESNs the optimal performance

is observed for sparse connectivity is compared to experimental results regarding the

connectivity of neocortical microcircuits in Section 6.7 revealing an apparent discrepancy

between the optimal parameter values of the binary qESN model and experimental

observations. Sparse network activity which is ubiquitous in biological spiking networks

but absent in the qESN model is proposed as a possible mechanism that can resolve this

discrepancy.

6.2 Quantized ESNs and Their Dynamics

In this section the network model is defined that will later serve as the dynamic reservoir

for qESNs. The networks are reminiscent of random Boolean networks (see (Shmulevich,

Dougherty, Kim, & Zhang, 2002)) and Kauffman networks (see (Kauffman, 1969; Der-

rida & Stauffer, 1986)) and exhibit just like the latter two distinct dynamical regimes,

the chaotic and the ordered regime, depending on the choice of parameters. These two

“phases” are separated by a order-chaos (also termed order-disorder) phase transition

(for general information on phase transitions see (Zinn-Justin, 2003)).

Definition of the Network Model

We consider networks of N units with the state variable x(t) = (x1(t), . . . , xN (t)) ∈
[− 1,+1]N in discrete time t ∈ Z. All units have an in-degree of K, i.e. every unit

i receives input from K other randomly chosen units with independently identically

distributed (iid.) weights wij drawn from a normal distribution N (0, σ2) with zero

mean and standard deviation (STD) σ. All remaining weights are defined as zero.

Sample weight matrices (wij)i,j∈{1,...,N} (constituting concrete networks/circuits) from

this distribution will be denoted by C in the remainder. The network state is updated

according to:

xi(t+ 1) = (ψm ◦ g)





N∑

j=1

wijxj(t) + u(t)



 , (6.1)

where g = tanh is the usual hyperbolic tangent nonlinearity and u denotes the input

sequence common to all units. At every time step t, the input u(t) is drawn uniformly

from {−1, 1}. The function ψm is called quantization function for m bits as it maps from

(−1, 1) to its discrete range Sm of cardinality 2m:

ψm : (−1, 1) → Sm, ψm(x) :=
2⌊2m−1(x+ 1)⌋ + 1

2m
− 1.

6.2. Quantized ESNs and Their Dynamics 83

Figure 6.1: The quantized activation function ψm ◦ g for state resolutions m = 1 (panel
A), m = 3 (panel B) and m = 6 (panel C). Networks with the m = 1 activation function,
which just assumes two different values, are termed binary reservoirs whereas networks
with large m (here m = 6) are termed high-resolution reservoirs as their units posses
a large state space of 2m states. The discretization schema was was chosen such that
states are equidistant and

∑2m

i=1 sip(si) = 0 as well as
∑2m

i=1 |si|p(si) = 1/2 independent
of the state resolution m assuming a uniform distribution over the single unit state space
p(si) = 2−m.

Here ⌊x⌋ denotes the integer part of x. Due to ψm the variables xi(t) are discrete

(“quantized”) and assume values in the state space Sm = {s1, . . . , s2m} ⊂ (−1, 1) with

sk := (2k − 1)/2m − 1. Three examples of the quantized activation function ψm ◦ g for

state resolutions m = 1, 3, 6 are shown in Fig. 6.1.

Depending on the parameters m, K, and σ the system defined by (6.1) shows two

qualitatively different behaviors namely ordered and chaotic dynamics which are sepa-

rated in the parameter space by a sharp boundary, often called the critical line, where a

phase transition takes place. The ordered (also called “frozen”) and chaotic regimes are

defined via the average damage spreading properties (i. e. sensitivity to perturbations

of initial conditions) of the networks (Derrida & Pomeau, 1986; Derrida & Stauffer,

1986; Bertschinger & Natschlaeger, 2004). One considers the temporal evolution of the

average distance H(t) =
〈
‖x1(t) − x2(t)‖

〉

C,u
between two states x1(t) and x2(t) at time

t evolving from initial conditions that differ in a single unit at time 0. Here ‖ · ‖ denotes

some norm in R
N e. g. the p-1 norm ‖·‖1 and 〈·〉C,u denotes the average over networks C

(with the same parameters m,σ,K), initial perturbations and input sequences u. A set

of parameters m, K, σ is in the ordered phase if limt→∞H(t) =: H∗ = 0, i. e. if pertur-

bations in the initial conditions H(0) eventually die out. Parameter sets with H∗ > 0

are in the chaotic regime where the initial “damage” H(0) persists and influences the

network state for all later times. Hence H∗ can be considered an order parameter of the

phase transition as it is zero in one phase and larger than zero in the other. Examples

for the behavior of H∗ for state resolutions m = 1, 3, 6 and varying parameters σ and

K are shown in Fig. 6.2 exhibiting the characteristic behavior of a phase transition.

The state distance H(t) also allows the introduction of a heuristic measure for the

speed of divergence of trajectories in discrete-time and discrete state-space systems.

84 Chapter 6. Connectivity and Dynamics in Reservoir Computing

A m = 1 B m = 3 C m = 6

D ordered E critical F chaotic

Figure 6.2: Phase transitions in randomly connected networks with dynamics defined
by (6.1). A, B, C: Shown is the fixed point H∗/N of the normalized distance H(t)/N
between two states evolving from different initial conditions in networks with N =
500 units for three state resolutions m = 1, 3, 6 and varying in-degree K and weight
standard deviation σ. The abrupt change in the values of H∗ for different parameters is
characteristic for a phase transition. Shown results are averages over 500 circuits (with
a single random input sequence each). The initial perturbation H(0) was chosen as
the smallest admissible perturbation (for the specific m) in a single unit and H∗ was
measured after 100 update steps. D, E, F: Evolution of the state xi(t) of 75 out of
N = 500 units from a network with m = 3 and K = 3 for log(σ) = −0.5 (panel D),
log(σ) = 0 (panel E) and log(σ) = 0.5 (panel F) showing ordered, critical and chaotic
dynamics respectively.

6.2. Quantized ESNs and Their Dynamics 85

We will term this measure Lyapunov exponent λ as it is reminiscent of the maximal

Lyapunov exponent in systems with continuous (see (Katok & Hasselblatt, 1995)) and

binary state space (see (Luque & Solé, 2000)). It is defined via:

λ = lim
T→∞

1

T
ln

(
H(T)

H(0)

)

. (6.2)

In the ordered regime we have λ < 0 while λ > 0 holds for chaotic dynamics. The above

definition of λ only makes sense for infinitely large systems.

In finite size systems we characterize the speed of divergence of nearby trajectories

by a numerical estimation λexp of the the Lyapunov exponent that was determined in

the following way. After 20 initial simulation steps the smallest admissible (for m) state

difference δ0(m) = 21−m was introduced in a single network unit and the resulting state

difference δ after one time step was measured averaged over 105 trials with randomly

generated networks and initial states. The initial states of all neurons were iid. uniformly

over Sm. The estimation λexp was then determined by λexp = ln(δ/δ0(m)). This one

step approximation of λ is expected to produce accurate results for large networks with

sparse connectivity where all “damages” spread independently through the network. It

is shown below that already at a networks size of N = 150, λ and λexp agree well for a

large regime of network parameters.

Lyapunov Exponents via Branching Processes

Besides estimating the Lyapunov exponent defined in (6.2) using the scheme for finite

size systems described above, it can be calculated for infinitely large systems N → ∞
under the annealed approximation (AA) using results from the theory of multitype

branching processes (see (Athreya & Ney, 1972)). In the AA that was introduced in

(Derrida & Pomeau, 1986) one assumes that the circuit connectivity and the correspond-

ing weights are drawn iid. at every time step. Although being a drastic simplification,

the AA has been shown in various studies (see (Derrida & Pomeau, 1986; Bertschinger &

Natschlaeger, 2004; White et al., 2004)) to be a powerful tool for investigating network

dynamics yielding accurate results for large system sizes N , hence its application is well

justified in the limit N → ∞ considered here. Branching process theory has already

been applied in theoretical neuroscience to describe the temporal/spacial dynamics of

neural activity (see (Beggs & Plenz, 2003; Vogels, Rajan, & Abbott, 2005)). Here we

propose the novel approach to apply branching process theory for studying the evolution

of perturbations of networks states allowing the approximate evaluation of the Lyapunov

spectrum of the network model defined above.

Let Sm = {s1, . . . , s2m} denote the single unit state space with a state resolution

m. Consider two states x1(t) and x2(t) of the same infinitely large network (that e. g.

evolved from different initial conditions). We say that there is a perturbation of type

si → sj at time t (of x1(t) relative to x2(t)) if there is a network unit, with some index

l ∈ N, which is in the state si in x1(t) and which is in the state sj in x2(t), i. e. x1
l (t) = si

and x2
l (t) = sj. Assuming the AA the neuron indices can be permuted arbitrarily (as the

weight matrix is regenerated at every time step) and hence the difference between the

86 Chapter 6. Connectivity and Dynamics in Reservoir Computing

A m = 1 B m = 3 C m = 6

Figure 6.3: The numerically determined Lyapunov exponent λexp (for N = 150), the
largest and second largest Lyapunov exponents λ and λ2 (for m 6= 1) obtained by
branching process theory are plotted as a function of the weight scale σ for K = 24 and
three different state resolutions m = 1, 3, 6. If λ2 < 0, λ and λexp agree well, whereas
λexp is larger than λ for weight scales σ with λ2 > 0. This can be explained by the
fact that λexp measures the total rate of perturbation growth which is governed by all
positive Lyapunov exponents hence in particular by λ and λ2.

two states x1(t) and x2(t) is fully described by counting the perturbations of all types.

Now let x1(t) and x2(t) differ in n coordinates, which can without loss of generality

be assumed to be the first n coordinates, i.e. x1
i (t) = sai

6= x2
i (t) = sbi

with ai, bi ∈
{1, . . . , 2m} for i = 1, . . . , n and x1

i (t) = x2
i (t) for i > n. These n perturbations of

types sa1
→ sb1 , . . . , san → sbn

at time t cause perturbations in the next time step

t + 1. Because of the finite in-degree K and the infinite system size N = ∞, these n

perturbations give rise to “descendant” perturbations at t+ 1 independently. Therefore

this system is equivalent to a multitype branching process with 2m · (2m − 1) types

(diagonal perturbations sa → sa do not contribute), a mathematical model which has

been extensively studied (see (Athreya & Ney, 1972)). The multitype branching process

describing the perturbation spreading in the considered network is fully specified by pα,β
i,j

for α, β, i, j = 1, . . . , 2m denoting the probability of a sα → sβ perturbation to cause a

si → sj perturbation per outgoing link in the next time step which can be explicitly

calculated using the AA (see appendix F.1). Applying the results from branching theory

(see (Athreya & Ney, 1972)) the maximal Lyapunov exponent λ defined in (6.2) is given

by the logarithm of the largest eigenvalue (being the Perron root) of the matrixM , whose

entries Mα+2mβ,i+2mj = K ·pα,β
i,j denote the mean number of descendants of type si → sj

caused by a sα → sβ perturbation. Branching processes with λ < 0 are called subcritical,

corresponding to ordered dynamics, implying that all perturbations eventually die out

with probability one, whereas the case λ > 0 is termed supercritical, corresponding

to chaotic dynamics, implying exponential growth of the number of perturbations on

average. For m > 1 there is more than one eigenvalue of M giving rise to a Lyapunov

spectrum λi for i = 1, . . . , 2m−1(2m − 1) with λi ≥ λi+1 and λ1 = λ.

In Fig. 6.3 the numerically determined Lyapunov exponent λexp (for N = 150), the

largest Lyapunov exponent λ as well as the second largest one λ2 (for m 6= 1) obtained

6.3. Online Computations with Quantized ESNs 87

by branching process theory are plotted as a function of the weight STD σ for K = 24

and three different state resolutions m = 1, 3, 6. It can be observed that as long as

λ2 < 0, the branching process exponent λ predicts well the numerically determined

exponent λexp. For λ2 > 0, λexp is larger than λ as in this case λ2 also contributes to

the total growth rate of the number of perturbations which is numerically estimated by

λexp. Hence it can be concluded that the Lyapunov spectrum determined by branching

process theory using the AA characterize the perturbation dynamics in the case of finite

size systems quite accurately.

6.3 Online Computations with Quantized ESNs

In this section we numerically investigate the capabilities of the networks defined in

Section 6.2 for online computations on the binary input sequence u using the RC ap-

proach, i. e. the networks are augmented by a trainable readout device, which is in our

context a simple linear classifier. In this article we consider tasks where the binary

target output at time t depends solely on n input bits in the recent past, i. e. on the n

input bits u(t − τ − 1), . . . , u(t − τ − n) for given n ≥ 1 and delay parameter τ ≥ 0.

More precisely the target output is given by fT (u(t − τ − 1), . . . , u(t − τ − n)) for a

function fT ∈ {f |f : {−1, 1}n → {−1, 1}}. In order to approximate the target output

at time t a linear classifier with the output sign(
∑N

i=1 αixi(t) + b) at time t is applied

to the instantaneous network state x(t). The coefficients αi and the bias b were trained

via a pseudo-inverse regression method (see (Jaeger, 2001)). The RC system consisting

of a network defined by (6.1) with parameters m, K, σ and a linear classifier is called a

quantized ESN (qESN) of state resolution m in the remainder of this chapter.

We assessed the computational capabilities of a given network C based on the

numerically determined performance on an example task, which was chosen to be

the τ -delayed parity function of n bits PARn,τ , i. e. the desired output at time t is

PARn,τ (u, t) =
∏n

i=1 u(t − τ − i) for a delay τ ≥ 0 and n ≥ 1. A separate readout

classifier is trained for each combination of n and τ , all using the same network C as

reservoir. We define pexp which quantifies the experimentally determined computational

performance of a given circuit C on the PARn task as:

pexp(C,PARn) :=

∞∑

τ=0

κ(C,PARn,τ). (6.3)

Here κ(C,PARn,τ) ∈ [0, 1] denotes the performance of circuit C on the PARn,τ task

measured in terms of Cohen’s kappa coefficient 2 (where 0 corresponds to chance and 1 to

optimal performance). To facilitate intuition, in Fig. F.1 of appendix F.2 the dependence

of Cohen’s kappa coefficient on the delay τ and the network size N is illustrated for

two different parameter settings. According to it’s definition the performance measure

pexp sums up the kappa coefficients for all delays τ . For example, a network C which

2κ is defined as (c− cl)/(1− cl) where c is the fraction of correct trials and cl is the chance level. The
sum in eq. (6.3) was truncated at τ = 15, as the performance was negligible for higher delays τ > 15 for
the network size N = 150.

88 Chapter 6. Connectivity and Dynamics in Reservoir Computing

A m = 1 B m = 3 C m = 6

P
A

R
3

P
A

R
5

R
A

N
D

5

Figure 6.4: The performance pexp(C,PAR3) (top row), pexp(C,PAR5) (middle row), and
pexp(C,RAND5) (bottom row) for three different state resolutions m = 1 (left column
A), m = 3 (center column B) and m = 6 (right column C) is plotted as a function of
the network in-degree K and the weight STD σ. Further the zero crossing of the largest
Lyapunov exponent λ (the critical line, black dashed line) as well as of the second
largest one λ2 (for m 6= 1, white dashed line) are shown. The networks size is N = 150,
the results pexp(C,PAR5) have been averaged over 20 circuits C, initial conditions and
randomly drawn input time series of length 104 time steps. For pexp(C,RAND5) results
have been averaged over 50 random task of 5 bit, circuits C, initial conditions and
randomly drawn input time series of length 104 time steps.

6.4. Phase Transitions in Quantized ESNs 89

operates optimally for delays τ = 0, . . . , 2 on a given TASKn and at chance level for

other delays will have pexp(C,TASKn) = 3. Extensive numerical experiments indicate

that the performance results for PARn can be considered quite representative for the

general computational capabilities of a circuit C of the considered type as qualitatively

very similar results were obtained for numerous classification tasks with two classes as

well as for pexp(C,RANDn) denoting the performance averaged over 50 randomly chosen

functions fT of n bits.

In Fig. 6.4 the performances pexp(C,PAR3), pexp(C,PAR5) averaged over 20 circuits

C and pexp(C,RAND5) averaged over 50 circuits C and random tasks for three different

state resolutions m = 1, 3, 6 are shown. The results are plotted as functions of the

network in-degree K and the logarithm3 of the weight STD σ. Qualitatively very similar

results were obtained for network graphs with binomial or scale-free distributed in-degree

with average K (results not shown). The critical line, i. e. the location of the order-chaos

phase transition, is also shown (dashed black line), which was determined by the root

of the largest Lyapunov exponent λ given by the branching process approach outlined

the previous section. Further the root of the second largest Lyapunov exponent λ2 is

plotted (dashed white line). The critical line predicts the zone of optimal performance

well for m = 1, but is less accurate for ESNs with m = 3, 6. The root of λ2 gives

a quite reliable “upper bound” for the weight STD σ, i. e. all networks with a σ for

which λ2 > 0 are too chaotic to exhibit good performance measures pexp. One can see

that for ESNs with low state resolutions (m = 1, 3), networks with a small in-degree

K reach a significantly better peak performance than those with high in-degree. The

effect disappears for a high state resolution (m = 6). This phenomenon is consistent

with the observation that network connectivity structure is in general an important issue

if the reservoir is composed of binary or spiking neurons but less important if analog

neurons are employed. The performance landscapes for analog networks (m = ∞)

exhibit qualitatively the same key feature as the ones of high resolution networks (high

performance can be found for all in-degrees by scaling σ) but differ quantitatively from

the latter (the region of high performance is generally broader, results not shown). Note

that for m = 3, 6 we see a bifurcation in the zones of optimal performance which is not

observed for the limiting cases of ESNs and LSMs.

6.4 Phase Transitions in Quantized ESNs

In this section we examine the phase transition between ordered and chaotic dynamics

in quantized ESNs in order to explain the difference between binary and high resolu-

tion reservoirs shown in Fig. 6.4. It was often hypothesized that systems with high

computational power in recurrent networks are located in a parameter regime near the

critical line, i. e. near the phase transition between ordered and chaotic behavior (see,

e. g. (Legenstein & Maass, 2007b) for a review; compare also the performance with the

critical line in Fig. 6.4). Starting from this hypothesis, we investigated whether the

network dynamics of binary networks near this transition differs qualitatively from the

3All logarithms are taken to the basis 10, i. e. log = log10 if not stated otherwise.

90 Chapter 6. Connectivity and Dynamics in Reservoir Computing

A m = 1 B m = 6

Figure 6.5: Phase transitions in binary networks (m = 1) differ from phase transition
in high resolution networks (m = 6). The branching process approximation λ of the
largest Lyapunov exponent is plotted as a function of the STD of weights σ for in-degrees
K = 3 (light gray), K = 12 (Gray), and K = 24 (dark Gray). Further the corresponding
finite-size estimations λexp (evaluated for N = 150) are shown (dotted black). In order
to facilitate comparison, the plot for each K is centered around log(σ0) where σ0 is the
STD of weights for which λ is zero (i. e. σ0 is the estimated critical σ value for that K).
The transition sharpens with increasing K for binary reservoirs (panel A), whereas it is
virtually independent of K for high resolution reservoirs (panel B).

one of high resolution networks. We analyzed the network properties by considering

the Lyapunov exponent λ approximated by the branching process approach introduced

above. However, we did not only determine the critical line (i. e. the parameter values

where the estimated Lyapunov exponent crosses zero), but also considered its values

nearby. For a given in-degree K, λ can then be plotted as a function of the STD of

weights σ (centered at the critical value σ0 of the STD for that K). This was done

for binary (m = 1, Fig. 6.5A) and high resolution networks (m = 6, Fig. 6.5B) with

in-degrees K = 3, 12, and 24. Interestingly, the dependence of λ on the STD σ near the

critical line is qualitatively quite different between the two types of networks. For binary

networks the transition becomes much sharper with increasing in-degree K which is not

the case for high resolution networks. These observations are confirmed by investigation

of the numerically determined Lyapunov exponent λexp (plotted as dashed lines in Fig.

6.5) which agrees accurately with λ in the considered parameter regime.

How can this sharp transition between ordered and chaotic dynamics of binary ESNs

with high in-degreeK explain their reduced computational performance? The tasks con-

sidered in this article require some limited amount of memory which has to be provided

by the reservoir. Hence, the network dynamics has to be located in a regime where

memory about recent inputs is available and past input bits do not interfere with that

memory. Intuitively, an effect of the sharper phase transition could be stated in the

following way. For low σ (i. e. in the ordered regime), the memory needed for the task

is not provided by the reservoir. With increasing σ, the memory capacity increases,

6.4. Phase Transitions in Quantized ESNs 91

but older memories interfere with recent ones, making it more difficult for the readout

to extract the relevant information. This intuition is confirmed by an analysis which

was introduced in (Legenstein & Maass, 2007a) and which we applied to our setup. We

estimated two measures of the reservoir, the so called “kernel-quality” and the “gener-

alization rank”, both being the rank of a matrix consisting of certain state vectors of

the reservoir. These two measures quantify two complementary properties of a reservoir

with respect to the target function to be learned by the readout. For both measures, one

defines N different input streams u1(·), . . . , uN (·) and computes the rank of the N ×N

matrix, the state matrix, whose columns are the circuit states resulting from these input

streams. The difference between the kernel-quality and the generalization rank arises

from the choice of the input streams. For the kernel-quality, one chooses input streams

which differ strongly with respect to the target function (e. g. streams that belong to dif-

ferent target classes). Since different input streams can only be separated by a readout

if they are represented by the reservoir in a diverse manner, it is desirable that the rank

of the state matrix is high in this case. For the generalization rank, one chooses similar

input streams (again with respect to the target function). The rank of this state matrix

should be small. The generalization rank can be related via the VC-dimension (Vapnik,

1998) to the ability of the reservoir-readout system to generalize from the training data

to test data of the system (see (Legenstein & Maass, 2007a) for details). In general,

a high kernel-quality and a low generalization rank (corresponding to a high ability of

the network to generalize) are desirable. A network in the ordered regime will however

have low values on both measures while a chaotic network will have high values on both

measures. By the use of these two separate measures, one can gain some insight into

the different factors that determine computational power of a reservoir system, as we

will see below.

To evaluate the kernel-quality of the reservoir, we randomly drew N = 150 input

streams u1(·), . . . , uN (·) and computed the rank of theN×N matrix whose columns were

the circuit states resulting from these input streams.4 Intuitively, this rank measures

how well the reservoir represents different input streams. The generalization rank was

evaluated as follows. We randomly drew N input streams ũ1(·), . . . , ũN (·) such that

the last three input bits in all these input streams were identical.5 The generalization

rank is then given by the rank of the N × N matrix whose columns are the circuit

states resulting from these input streams. Intuitively, the generalization rank with this

input distribution measures how strongly the reservoir state at time t is sensitive to

inputs older than three time steps. The rank measures calculated in this way thus have

predictive power for computations which require memory of the last three time steps.

Fig. 6.6A and D show the difference between the two measures as a function of log(σ)

and K for binary networks and high resolution networks respectively. The plots show

that the peak value of this difference is decreasing with K in binary networks, whereas

it is independent of K in high resolution reservoirs, reproducing the observations in the

4The initial states of all neurons were iid. uniformly over Sm. The rank of the matrix was estimated
by singular value decomposition on the network states after 15 time steps of simulation.

5First, we drew each of the last three bits ũ(13), . . . , ũ(15) independently from a uniform distribution
over {−1, 1}. For each input stream ũi(1), . . . , ũi(15) we drew ũi(1), . . . , ũi(12) independently from a
uniform distribution over {−1, 1} and set ũi(t) = ũ(t) for t = 13, . . . , 15.

92 Chapter 6. Connectivity and Dynamics in Reservoir Computing

−2 −1 0 1

5

10

15

20

K

m
=1

b
it

A

0

20

40

−2 −1 0 1
0

50

100

150

R
an

k

K=3
B

−2 −1 0 1
0

50

100

150 K=24
C

−2 −1 0 1

5

10

15

20

log(σ)

K

m
=6

b
it

D

10
20
30
40
50

−2 −1 0 1
0

50

100

150

log(σ)

R
an

k
K=3

E

−2 −1 0 1
0

50

100

150

log(σ)

 K=24
F

generaliz.

kernel

diff.

Figure 6.6: Kernel-quality and generalization rank of quantized ESNs of size N = 150.
Upper plots are for binary reservoirs (m = 1), lower plots for high resolution reservoirs
(m = 6). A: The difference between the kernel-quality and the generalization rank as
a function of the log STD of weights and the in-degree K. B: The kernel-quality (red),
the generalization rank (blue) and the difference between both (black) for K = 3 as a
function of log(σ). C: Same as panel B, but for an in-degree of K = 24. In comparison to
panel B, the transition of both measures is much steeper. D,E,F: Same as panels A, B,
and C respectively, but for a high resolution reservoir. All plotted values are means over
100 independent runs with randomly drawn networks, initial states, and input streams.

plots for the computational performance Fig. 6.4. A closer look for the binary circuit

at K = 3 and K = 24 is given in Fig. 6.6B and 6.6C. When comparing these plots,

one sees that the transition of both measures is much steeper for K = 24 than for

K = 3, in agreement with the observed sharper phase transition illustrated in Fig. 6.5,

which leads to a smaller difference between the measures. We interpret this finding in

the following way. For K = 24, the reservoir increases its separation power very fast

as log(σ) increases. However the separation of past input differences increases likewise

and thus early input differences cannot be distinguished from late ones. This reduces

the computational power of binary ESNs with large K on the considered tasks. In

comparison, the corresponding plots for high resolution reservoirs (Figs. 6.6E and 6.6F)

show that the transition shifts to lower weight STDs σ for larger K, but apart from

this fact the transitions are virtually identical for low and high K values. Comparing

Fig. 6.6D with Fig. 6.4C, one sees that the rank measure does not accurately predict

the whole region of good performance for high resolution reservoirs. It also does not

predict the observed bifurcation in the zones of optimal performance, a phenomenon

that is reproduced by the mean-field predictor introduced in the following section.

6.5. Mean-Field Predictor for Computational Performance 93

6.5 Mean-Field Predictor for Computational Performance

The question why and to what degree certain non-autonomous dynamical systems are

useful devices for online computations has been addressed theoretically amongst oth-

ers in (Bertschinger & Natschlaeger, 2004). There, the computational performance of

networks of randomly connected threshold gates was linked to their separation prop-

erty (for a formal definition see (Maass et al., 2002)): It was shown that only networks

which exhibit sufficiently different network states for different instances of the input

stream, i. e. networks that separate the input, can compute complex functions of the

input stream. Furthermore, the authors introduced an accurate predictor of the compu-

tational capabilities for the considered type of binary networks based on the separation

capability. The latter was numerically evaluated via a simple mean-field6 approximation

of the Hamming distance between different network states evolving from different input

sequences.

Here we aim at constructing a mean-field predictor of computational performance

for qESNs extending the approach of (Bertschinger & Natschlaeger, 2004) which was

only viable for binary networks. We use the term “predictor” of computational power to

indicate a quantity that strongly correlates with experimental measures of computational

power (e. g. pexp) for varying parameters K and σ at fixed m. A predictor in the above

sense can be used to efficiently identify the dependence of the computational power on

the network parameters and to gain theoretical insight into this dependence.

Instead of a straight forward generalization of the predictor presented in

(Bertschinger & Natschlaeger, 2004) we make a somewhat different ansatz for two rea-

sons. First we wish to simplify the form of the mean field predictor. Second, a straight

forward generalization turned out to be computationally too expensive for quantized

ESNs with a state resolution m > 1. Therefore we introduce a modified mean-field pre-

dictor which can be computed more efficiently and which still has all desirable properties

of the one introduced in (Bertschinger & Natschlaeger, 2004).

Suppose the target output of the network at time t is a function fT ∈ F =

{f |f : {−1, 1}n → {−1, 1}} of the n bits u(t − τ − 1), . . . , u(t − τ − n) of the input

sequence u with delay τ as described in Section 6.3. In order to exhibit good perfor-

mance on an arbitrary fT ∈ F , pairs of inputs that differ in at least one of the n bits

have to be mapped by the network to different states at time t. Only then will the

linear classifier be able to assign the inputs to different classes (function values). In

order to quantify this so-called separation property of a given network, we introduce

the normalized distance d(k): It measures the average distance between two networks

states x1(t) = (x1
1(t), . . . , x

1
N (t)) and x2(t) = (x2

1(t), . . . , x
2
N (t)) arising from applying to

the same network two input sequences u1 and u2 which only differ in the single bit at

time t− k, i. e. u1(t− k) = −u2(t− k) and u1(τ) = u2(τ) for all τ 6= t− k. Formally we

6The theoretical approach presented in (Bertschinger & Natschlaeger, 2004) is not a mean-field
theory in the strict sense of Physics literature. However, due to the AA used in (Bertschinger &
Natschlaeger, 2004), all network units receive recurrent inputs that are drawn (independently) from the
same distribution. This is why we adopt the term “mean-field” and also apply it to our theoretical
considerations.

94 Chapter 6. Connectivity and Dynamics in Reservoir Computing

define7 the k-step input separation d(k):

d(k) =
1

N

〈∥
∥x1(t) − x2(t)

∥
∥

1

〉

C,u1 . (6.4)

The average 〈.〉C,u1 is taken over all inputs u1 (the input u2 is simply a function of u1),

all initial conditions of the network and all circuits C with given networks parameters

N, m, σ, K. However, a good separation of the n relevant bits, i. e. d(k) ≫ 0 for

τ < k ≤ n+ τ , is a necessary but not a sufficient condition for the ability of the network

to calculate the target function. Beyond this, it is desired that the network “forgets”

all (for the target function) irrelevant bits u(t − k), k > n + τ of the input sufficiently

fast, i. e. d(k) ≈ 0 for k > n + τ . We use the limit d(∞) = limk→∞ d(k) to quantify

this irrelevant separation which can be considered as noise wrt. the target function fT .

Hence, we propose the quantity p∞ as a heuristic predictor for computational power:

p∞ = max {d(2) − d(∞), 0} . (6.5)

As the first contribution to p∞ we chose d(2) as it reflects the ability of the network to

perform a combination of two mechanisms: In order to exhibit a high value for d(2) the

network has to separate the inputs at the time step t − 2 and to sustain the resulting

state distance via its recurrent dynamics in the next time step t − 1. We therefore

consider d(2) to be a measure for input separation on short time-scales relevant for the

target function.

The quantity p∞ is calculated using a mean-field model similar to the one presented

in (Bertschinger & Natschlaeger, 2004) which itself is rooted in the AA, the latter was

already described briefly in Section 6.2. In the AA and with N → ∞ all components of

the difference x1(t)−x2(t) appearing in (6.4) are iid.. Hence it is sufficient to determine

the joint probability of a single network unit to be in state si ∈ Sm in the network

receiving input u1 and being in state sj ∈ Sm in the network receiving input u2. This

probability is denoted as qij(t, u
1, u2). The diagonal elements i = j of qij(t, u

1, u2)

quantify the probability that the state of a unit is not affected by the difference in the

inputs u1 and u2 whereas the off-diagonal elements i 6= j quantify the probability that

the state si of a unit is “flipped” to state sj due to the different inputs u1 and u2. The

separation d(k) can be computed as:

d(k) =

2m−1∑

i,j=0

qij(k, u
1, u2)|sj − sj |. (6.6)

The probabilities qij(k, u
1, u2) can be calculated iteratively using qij(k − 1, u1, u2) as

distribution of the recurrent inputs at time step k (analogous to the method presented

in (Bertschinger & Natschlaeger, 2004)). For high resolution networks however, there

are 22m different elements qij(t, u
1, u2). In order to avoid this “combinatorial explosion”

we introduce an approximation which we term separation approximation (SA). Consider

a network unit which is in the state si. The state si can be uniquely represented by the

7For vectors x = (x1, x2, . . .) ∈ R
N we use the Manhattan norm ‖x‖

1
:=

PN

i=1
|xi|

6.5. Mean-Field Predictor for Computational Performance 95

binary tuple (B0(si), . . . , Bm−1(si)) ∈ {0, 1}m where B0(si) is the most and Bm−1(si))

the least significant bit of this binary representation. We can then define the probability

ql
α,β(k, u1, u2) for α, β ∈ {0, 1} as the probability of the lth bit Bl to be in state α in

the network receiving input u1 and Bl = β in the network receiving input u2. The SA

consists in assuming the probability of Bl(si) to be independent from the ones of Bn(si)

for n 6= l:

qij(k, u
1, u2) ≈

m−1∏

l=0

ql
Bl(si),Bl(sj)

(k, u1, u2).

This approximation neglects the statistical dependencies between the bits Bl(si) and

Bn(si) for n 6= l for the sake of computational efficiency. Trivially, the SA is exact

for binary reservoirs. Numerical results suggest that for small and intermediate state

resolutions m ≤ 5, the SA is still quite accurate whereas for large m ≥ 5 deviations from

full simulations of the network are clearly visible. All further details of the calculation

of p∞ can be found in Appendix F.3.

It is worth noticing that in the AA as the weights wij are symmetric8 the following

relation holds:

qij(t, u
1, u2) = qij(t, û

1, û2)

where û1 and û2 are sequences with û1(τ)û2(τ) = u1(τ)u2(τ) for all τ ∈ Z. Hence,

flipping input bits in both input sequences u1 and u2 at the same time steps leaves the

input separation d(k) unaltered in the AA. Therefore in the AA, d(k) can be determined

with a single sample sequence u1 without the need for averaging over different inputs as

indicated in (6.6) where the average 〈·〉u1 does not appear. This constitutes the main

advantages of p∞ over the the predictor defined in (Bertschinger & Natschlaeger, 2004),

the so-called NM-separation. The NM-separation requires averaging the mean-field sep-

aration measure over input sequences resulting in a significantly larger computation

time. Furthermore, the NM-separation is determined by three contributions whereas

p∞ only contains two terms d(2) and d(∞) making the latter more simple and intuitive.

In Fig. 6.7 two examples of the evolution of d(k) for state resolutions m = 1, 3, 6

with the parameters log(σ) = −0.45 and K = 3, 24 are shown. With this choice of

σ the network with in-degree K = 3 is in the ordered regime for all state resolutions

m ∈ {1, 3, 6} and the network with in-degree K = 24 is in the chaotic regime. The

mean-field approximations of d(k) are in quite good agreement for m = 1, 3 with the

values for d(k) determined by explicitly simulating the networks. For high resolution

networks (here m = 6) visible errors occur due to the AA and the SA.

In Fig. 6.8 the predictor p∞ is plotted as a function of the weight STD σ and the in-

degree K for three different values of the state resolution m ∈ {1, 3, 6}. When comparing

these results with the actual network performance pexp plotted in Fig. 6.4 one can see

that p∞ serves as a reliable predictor for pexp of a network for sufficiently small m.

For larger values of m the predictor p∞ starts to deviate from the true performance

8We call a random variable z symmetric if and only if p(z) = p(−z).

96 Chapter 6. Connectivity and Dynamics in Reservoir Computing

A m = 1 B m = 3 C m = 6

Figure 6.7: The k-step input separation measure d(k) defined in (6.7) for networks with
N = 150 units and log σ = −0.45 with in-degree K = 3 (dark gray) corresponding to or-
dered dynamics and K = 24 (light gray) corresponding to chaotic dynamics determined
by explicit simulations of the networks. The mean-field approximation of d(k) is plotted
as a dotted line showing good agreement for low state resolutions m = 1, 3 (panels A
and B) and larger deviations for high state resolutions (m = 6 panel C).

A m = 1 B m = 3 C m = 6

Figure 6.8: Mean-field predictor p∞ for computational power for different state resolu-
tions m = 1 (A), m = 3 (B), and m = 6 (C) as a function of the STD σ of the weights
and in-degree K. Compare this result to the numerically determined performance pexp

plotted in Fig. 6.4.

while still capturing the interesting features of the performance landscape qualitatively.

The dominant effect of the state resolution m on the performance discussed in Section

6.3 is well reproduced by p∞: For m = 1 the in-degree K has a considerable impact,

i. e. for large K maximum performance drops significantly. For high state resolutions

however, for all values of K there exists a region in the parameter space exhibiting high

performance.

The interplay between the two contributions d(2) and d(∞) of p∞ delivers insight

into the dependence of the computational performance on the network parameters. A

high value of d(2) corresponds to a good separation of inputs on short time scales

relevant for the target task, a property that is found predominantly in networks that

are not strongly input driven, i. e. networks with relatively strong recurrent connection

(large weight STD σ). A small value of d(∞) is a necessary condition for different

inputs on which the target function assumes the same value to be mapped to nearby

6.6. An Annealed Approximation of the Memory Function 97

A m = 1, K = 3 m = 1, K = 24 B m = 6, K = 3 m = 6, K = 24

Figure 6.9: The contributions d(2) (dotted line), d(∞) (light gray) of the mean-field
predictor p∞ and their difference (dashed black line) for different state resolutions m =
1, 6 as a function σ. The plots show slices of the 2D plots Fig. 6.8A and C for constant
K = 3, 24. A: For m = 1 it can be seen that the region in log(σ)-space with high d(2)
and low d(∞) is significantly larger for K = 3 than for K = 24. B: For m = 6 this
region is roughly independent of K except a shift towards lower σ-values.

network states. Only then, a linear readout is able to assign them to the same class

irrespectively of their irrelevant remote history. This condition is met for small weight

STD σ. For m = 1, as can be seen in Fig. 6.9 the region in log(σ) space where both

conditions for good performance are present, the region of intermediate σ, decreases for

growing K. In contrast, for m > 2 a reverse effect is observed: for increasing K the

parameter range for σ fulfilling the two opposing conditions for good performance grows

moderately resulting in a large region of high p∞ for high in-degree K. This observation

is in close analogy to the behavior of the rank measure discussed in Section 6.4. Also

note that p∞ predicts the novel bifurcation effect also observed in Fig. 6.4.

6.6 An Annealed Approximation of the Memory Function

A quantity that has extensively been studied (White et al., 2004; Mayor & Gerstner,

2005) in order to characterize the ability of a given network to store information is the

memory function defined in (Jaeger, 2002) (see also (Ganguli et al., 2008) for a novel

alternative definition). In this section we show that the memory function for qESNs is

tightly linked to the k-step separation d(k) defined in equation (6.4). More precisely, the

separation d(k) can be used to formulate an upper bound on the memory function. For

binary (m = 1) qESNs in the ordered regime, this upper bound turns out be very close

to the true memory function while being computationally cheap to evaluate especially

for networks with large system size N .

The memory function m(k) defined in (Jaeger, 2002) which assumes values in [0, 1]

measures the ability of a network in conjunction with a linear readout to reconstruct the

input signal u(t− k) that was presented k time steps ago, where m(k) = 1 corresponds

to a perfect reconstruction and m(k) = 0 to a readout output that is uncorrelated with

the input u(t− k). More precisely, the memory function is defined as:

m(k) :=
cov(y(t), yT (t))2

var(y(t)) var(yT (t))
. (6.7)

98 Chapter 6. Connectivity and Dynamics in Reservoir Computing

Here var(·) denotes the variance and cov(·, ·) denotes the covariance of the arguments.

The quantity y(t) = (
∑N

i=1 αixi(t) + b) is the output of the linear readout at time t

with weights α = (α1, . . . , αN) and bias b and yT (t) = u(t − k) is the target output.

The weights and the bias are learned by linear regression. According to the definition

(6.7) the memory function measures the overlap between the readout output y(t) and

the target output yT (t). The memory function m(k) is often numerically evaluated from

the identity (see (Jaeger, 2002; White et al., 2004)):

m(k) = pT
kA

−1pk. (6.8)

The matrix A with elements Aij = cov(xi(t), xj(t)) denotes the covariance matrix of the

network state and pk = cov(x(t), yT (t)) is the covariance vector between the network

state and the target output. For networks with linear (thus analog) units many proper-

ties of the memory function can be characterized explicitly in terms of the connectivity

matrix (see (Jaeger, 2002; White et al., 2004)). However, for networks of non-linear

units little is known about the memory function, in general it has to be determined

numerically by evaluating (6.8) which requires simulating the full network in order to

estimate A and pk.

For the special case of a binary input sequence u with p(u(t) = +1) = p(u(t) = −1)

as assumed in this chapter, the memory function can be bounded by using the k-step

separation d(k). The following relation is derived in Appendix F.4:

m(k) ≤ min

{
N2

4
‖A−1‖2 d(k)

2, 1

}

, (6.9)

where ‖ · ‖2 is the operator norm induced by the standard Euclidean norm. The upper

bound presented in (6.9) is striking as it links the memory function m(k) with the

dynamical property of k-step input separation d(k) allowing us to draw conclusions

about m(k) from the behavior of d(k). As observed in numerical simulations d(k)

approximately decays exponentially9 in the ordered regime implying that also m(k)

decays (at least) exponentially with a time constant that is half as large as the one for

d(k). This consideration also results in an upper bound for the scaling of the temporal

capacity kC(N) with the network size N . In (White et al., 2004) kC(N) is defined

as the smallest k0 ∈ N such that for all k > k0 the memory function of a network

of size N is smaller than 1/2, i. e. m(k) < 1/2. As can be easily seen from (6.9),

kC(N) = O(log(N)) given that d(k) decays exponentially. Hence, the temporal capacity

of all qESN networks in the ordered regime only grows logarithmically in contrast to e. g.

linear networks with orthogonal connectivity matrices which exhibit an extensive growth

kC(N) ∝ N as show in (White et al., 2004). Another quantity of interest characterizing

the capabilities of a circuit to store information is the memory capacity MC(N) which is

defined as MC(N) :=
∑∞

k=1m(k) (see (Jaeger, 2002)). In Fig. 6.10A kC(N) and MC(N)

for m = 1 networks at the critical line are shown to exhibit a clearly logarithmic growth

9It is intuitive to conjecture that d(k) should decay like exp(λk) where λ is the Lyapunov exponent.
However this is not trivial to show. Further investigation is required that addresses this interesting
point.

6.7. Sparse Network Activity and Computational Power 99

with N over 1.5 decades. In Fig. 6.10B the performance measure pexp is plotted for

the three different task PAR5, RAND5 and SHIFT 10 as a function of N which also

show logarithmic scaling with the system size N . In the chaotic parameter regime d(k)

decays towards a non-zero baseline and therefore the inequality (6.9) will not yield a

useful upper bound on m(k) as the latter always decays towards zero as numerically

observed.

The inequality (6.9) can also be used to numerically estimate an upper bound for

the memory function using the AA. This upper bound is computationally very efficient

as its complexity is independent of the system size N and it turns out to be close to

the true memory function. In the AA one can easily derive an expression for the term

‖A−1‖2 as a function of the network connectivity parameters K and σ (see Appendix

F.4.2):

‖A−1‖2 = 4

(

1 −
(

Φ

(
2

K1/2σ

)

− Φ

(

− 2

K1/2σ

))2
)−1

. (6.10)

Here Φ(x) denotes the cumulative probability distribution of a random variable dis-

tributed normally with unit variance. Combining (6.9) and (6.10) one can evaluate an

upper bound for the memory function assuming that the AA is valid. However the ac-

curacy of the mean-field approximation for d(k) is of sufficient accuracy only for m = 1,

hence the memory bound (6.9) is only of practical use for binary qESNs in the ordered

regime. Three examples for m(k) and for the upper bound (6.9) of binary qESNs with

N = 1000 units with different parameter settings in the ordered regime are shown in Fig.

6.11. As can be seen, the distance between the memory function m(k) and the upper

bound (6.9) is varying with the weight STD σ and the in-degree K. It was numerically

observed that the upper bound (6.9) was in general closer to m(k) for networks whose

parameters σ, K are “deeper” in the ordered dynamic regime. As mentioned above, in

the chaotic regime the inequality (6.9) does not provide any sensible information on the

memory function.

6.7 Sparse Network Activity and Computational Power

In the neocortex, the spiking (hence binary) neurons usually exhibit a high in-degree

around 103 up to 104 (see (DeFelipe & Fariñas, 1992; Destexhe, Rudolph, & Pare,

2003)). Assuming the hypothesis that cortical circuits can be regarded (at least partially)

as RC devices, the high in-degrees observed experimentally are in stark contrast to

the findings described in the previous sections. As discussed above we would expect

reservoirs consisting of binary units to be of low average in-degree as computational

performance in the RC sense is best in this parameter regime. In the following section

we show that this apparent inconsistence can be resolved by introducing sparse network

10The target output for the SHIFTτ task is defined as SHIFTτ (u, t) = u(t−τ−1) and the performance
is defined as pexp(C, SHIFT) =

P∞
τ=0

κ(C, SHIFTτ). In contrast to the memory function a linear
classifier is used to reconstruct the target signal.

100 Chapter 6. Connectivity and Dynamics in Reservoir Computing

A linear readout B linear classifier

Figure 6.10: The computational capabilities of binary qESNs scale logarithmically with
the network size N . The networks have the parameters K = 3 and log(σ) = 0.2 and are
thus close to the critical line. A: Scaling of the temporal capacity kC(N) (light gray)
and the memory capacity MC(N) (dashed). According to the definition of the memory
function a linear readout was used to reconstruct the target signal. B: Scaling of the
experimental performance measures pexp(C,PAR5) (dashed) and pexp(C,RAND5) (dot-
ted). Further the performance pexp(C,SHIFT) for the SHIFT task (solid line) is shown
that consists in reconstructing the past input with a linear classifier. The experimental
performance measures where determined as described in the caption of Fig. 6.4.

A log(σ) = 0.0, K = 3 B log(σ) = −0.5, K = 10 C log(σ) = −0.6, K = 20

Figure 6.11: The memory function for three binary qESNs with N = 1000 units evalu-
ated according to (6.8) is shown (light gray). Further, the upper bound given by equation
(6.9) with the AA expression (6.10) for ‖A−1‖2 is plotted (dashed). The qESNs were
generated with the parameters log(σ) = 0.0, K = 3 (panel A), log(σ) = −0.5, K = 10
(panel B) and log(σ) = −0.6, K = 20 (panel C). As can be seen, the distance between
m(k) and the upper bound varies depending on the network parameters. In general, the
more “ordered” the network dynamics are, the “tighter” the upper bound (6.9) gets.

6.7. Sparse Network Activity and Computational Power 101

activity into the binary qESN model.

A characteristic property of the neural activity in the neocortex is that spikes are

scarce events in time. Assuming that the refractory period of cortical neurons is in

the millisecond range they could in principle emit spikes with a frequency of 100Hz

and more. However, the observed average firing rate of a cortical neuron is well below

10Hz. It has often been suggested that this sparse activity is due to metabolic cost and

energy constrains (see (W. B. Levy & Baxter, 1996; Laughlin, de Ruyter van Steveninck,

& Anderson, 1998; Lennie, 2003)). The binary qESNs introduced above however are

symmetric in the states +1/2 and −1/2 yielding equal probabilities to be in these two

states. In order to mimic sparse network activity we augment the input u(t) the state

update equation (6.1) with a bias b < 0, i. e. we replace u(t) by u(t)+b, which leads to a

preferred “resting” state −1/2 and a less frequent “spiking” state +1/2. The probability

for a unit to assume the value 1/2 (to emit a “spike”) can be evaluated in the AA to:

p+ = p(xi(t) = 1/2) = 1 − 1

2

(

Φ

(
2(−b− 1)

K1/2σ

)

+ Φ

(
2(−b+ 1)

K1/2σ

))

. (6.11)

In order to illustrate the impact of sparse activity on the computational performance

we compare the measure pexp of networks with different parameters σ and K at a

given constant sparse activity p+. To do so, the equation (6.11) is numerically solved

for b yielding the required bias to achieve the given activity p+ for a network with

parameters σ and K. In Fig. 6.12 the resulting computational performance measure

pexp(C,PAR5) of binary qESNs for the five bit parity task PAR5 is shown as a function

of K and σ for three sparsity levels p+ = 0.3 (panel A), p+ = 0.1 (panel B) and

p+ = 0.03 (panel C). By comparison with Fig. 6.4 (where the activity is p+ = 0.5) it

can be observed that introducing a sufficiently sparse activity has a drastic effect on

the computational performance landscape. In general the computational performance

decreases with increasing sparsity of the network activity. The most striking effect

however is that the parameter region of maximum performance is shifting towards higher

connectivity values with increasing sparsity of the network activity. Hence, networks

with sparser activity require a higher in-degree in order to exhibit good computational

capabilities.

Given the above result (sparsely connected networks need higher activity to “work

well”) one might arrive at the intuitive hypothesis that for varying levels of connectivity

and activity the average input to a single network unit is constant for reservoirs with

high performance, i. e. that higher network activity can compensate for fewer input

connections and vice versa. More precisely one might argue that for different mean

activities p+, the quantity p+ ·Kmax(p+) is constant, where Kmax(p+) = argmaxK pexp

is the in-degree yielding the largest performance pexp for the given activity p+. However,

results of numerical experiments we performed (data not shown) clearly indicate that

this is not the case: The product p+ · Kmax(p+) varies strongly (by a factor of 1.6)

for activities in the range p+ ∈ [0.1, 0.3]. Networks with sparse activity need a higher

in-degree than one would expect from the above hypothesis. Hence the optimal working

point (in the RC sense) of a network cannot be determined by solely considering the

average input to a single network unit. This insight is of relevance for the simulation of

102 Chapter 6. Connectivity and Dynamics in Reservoir Computing

A p+ = 0.3 B p+ = 0.1 C p+ = 0.03

Figure 6.12: The peak computational performance of networks with sparser network
activity is observed at increasing connectivity. Shown is the computational performance
pexp(C,PAR5) averaged over 20 random circuits C as a function of weight standard
deviation σ and in-degree K for binary qESNs with sparse network activity p+ = 0.3
(panel A), p+ = 0.1 (panel B) and p+ = 0.03 (panel C) caused by a bias.

cortical microcircuit models, where (due to limited computer resources) usually only low

levels of connectivity are taken into account compensated by a higher network activity.

Our analysis for the qESN model suggests that this approach might considerably change

the computational properties of the simulated circuits, indicating that the working point

of these circuits needs to be carefully tuned, possibly by adapting further parameters.

Unfortunately, the numerical results for qESNs with sparse network activity outline

above cannot easily be reproduced by the mean-field predictor p∞. Its numerical evalu-

ation for networks with a non-vanishing bias is quite complex, as the bias destroys the

symmetry of the update equation (6.1) which is explicitly taken advantage of for the

calculation of p∞. Without this symmetry the evaluation of p∞ requires averaging over

input sequences u(·) which renders the computation very time consuming.

Recapitulating, a possible explanation in the the RC framework for the high in-

degrees experimentally found in cortical microcircuits is the sparse network activity

which is a ubiquitous feature observed in cortex.

6.8 Discussion

In this chapter we introduced the qESN model that interpolates between the binary

LSM and the continuous ESN. This non-autonomous network model exhibits ordered or

chaotic dynamics, separated by a phase transition, depending on the weight and connec-

tivity parameters. These dynamical regimes are reminiscent of the ones observed in bi-

nary (see e. g. (Derrida & Stauffer, 1986)) and in multi-state (see (Solé, Luque, & Kauff-

man, 2000)) Kauffman networks. In agreement with previous results ((Wolfram, 1984;

Langton, 1990; Packard, 1988; Legenstein & Maass, 2007a; Bertschinger & Natschlaeger,

2004), but see (Mitchell, Hraber, & Crutchfield, 1993)) qENSs show optimal computa-

tional performance near the critical line, i. e. the order-chaos phase transition.

The qESN model for RC computations allowed the systematic investigation of a

fundamental difference between LSMs and ESNs arising from the different nature of

6.8. Discussion 103

its reservoir units: The difference in the influence of the network connectivity onto the

computational capabilities. Our results clearly show that for binary and low resolution

reservoirs the network connectivity, parametrized here by the in-degree K, has a pro-

found impact on the phase transition and hence also on the maximal computational

performance. For sparse connectivity (small K) a “gradual” phase transition is found

characterized by a small gradient of the Lyapunov exponent around its root resulting in a

high peek performance for a large region of the parameter space. For densely connected

binary and low resolution networks the phase transition becomes “steep” indication a

reduced parameter region which exhibits desirable critical dynamics. This effect results

in a significantly reduced computational performance of densely connected binary and

low resolution networks. The performance of high resolution networks however does

not exhibit this drastic dependence on the in-degree K. These numerical observations

can be understood by analyzing rank measures, assessing the kernel and generalization

properties, as well as by analyzing an annealed approximation of the input separation of

a given network. In the light of these two theoretical approaches the observed influence

of connectivity on computational performance can be successfully explained in terms of

separation of the input on short, task-relevant time scales versus separation on long,

task-irrelevant time scales.

We emphasize that the experimental and numerical results indicating little influence

of connectivity on computational performance for high resolutions qESNs are based on

the assumption that there is no inherent spatial structure of the networks and of the

input, a situation often occurring in typical machine learning applications of RC systems.

In particular we assumed in this study that all units receive the one-dimensional input

u(t) and the readout also gets input from all network units. If however the network

exhibits a spacial structure, e. g. the set of network units receiving input and the set of

units projecting to the readout are disjoint and “distant”, different connectivity schemes

may well influence the performance of high resolution qESNs and analog ESNs.

It should be noted that the effect of quantization cannot be emulated by additive or

multiplicative iid. or correlated Gaussian noise on the output of analog neurons. The

noise just degrades performance homogeneously and the differences in the influence of

the in-degree observed for varying state resolutions cannot be reproduced. Thus, this

type of noise is qualitatively different from the so-called “quantization noise” introduced

by discretizing the state space of the network units.

The results presented in this chapter which emphasize the importance of a gradual

order-chaos phase transition offer a possible explanation why ESNs are more often used

in engineering applications than LSMs. Although these two RC systems can have a very

similar performance on a given task (Verstraeten et al., 2007), it is significantly harder

to create a LSM consisting of spiking neurons operating in a desirable dynamic regime

i. e. at the edge-of-chaos. In order to archive this, the excitation and inhibition in the

network need to be finely balanced to avoid quiescent or epileptic activity. For ESNs

this is not the case, there is usually a broad parameter range in which the ESN performs

well. This difference reveals the need especially regarding LSMs for homeostatic control

mechanisms and/or unsupervised learning rules that bring and keep dynamic reservoir

in a close-to-optimal working regime replacing (possibly sub-optimal) ad-hoc param-

104 Chapter 6. Connectivity and Dynamics in Reservoir Computing

eter settings. This kind of unsupervised dynamic reservoir optimization has become

quite standard for ESNs ((Triesch, 2007; Schrauwen, Wardermann, Verstraeten, Steil,

& Stroobandt, 2008), and see (Lukosecicius & Jaeger, 2007) for a review), for LSMs in-

teresting steps in this direction have been undertaken amongst others in (Natschlaeger,

Bertschinger, & Legenstein, 2005; Lazar, Pippa, & Triesch, 2007; Joshi & Triesch, 2008).

We have shown that the k-step separation d(k) can also be used to efficiently compute

an upper bound for the memory function of binary networks with ordered dynamics.

Previously only the memory function of linear networks was studied in detail (White et

al., 2004; Jaeger, 2002; Ganguli et al., 2008) whereas theoretical results for nonlinear

networks were missing. Given the numerical observation that d(k) decays exponentially

in the ordered regime, one can infer from the presented upper bound on the memory

function that the information storage capabilities of qESNs scale like O(log(N)) with the

system size N . It was also shown numerically that this scaling holds for the performance

on the representative classification tasks (pexp(C,PAR5) and pexp(C,RAND5)) as well.

These findings might indicate a trade-off for RC systems between memory capacity and

kernel-quality. Two extreme examples can illustrate this consideration. On the one

hand, delay-line networks as well as another special class of linear networks (the so-

called orthogonal networks) exhibit a very good memory performance (their memory

capacities scale like O(N)) (White et al., 2004) while failing on classification tasks like

PARn, ANDn (as they are not linearly separable) and with high probability (for large

n) also failing on RANDn. Hence their kernel-quality can be considered poor. On the

other hand, the non-linear qESNs exhibit a comparably “homogeneous” performance

over all tasks that were studied in this article indicating a good kernel-quality but only

show logarithmic memory scaling. Formalizing and investigating this apparent trade-off

might reveal deep insights into the art of RC system design.

We informally equated in this article reservoir computing systems with binary units

with LSMs. Most work about LSMs is concerned with the modeling of cortical circuits

and the reservoir consequently often consist of biologically inspired spiking neuron mod-

els such as integrate-and-fire type units. We did not explicitly simulate such biologically

more realistic reservoirs, however our results for reservoirs with binary units show char-

acteristic properties also observed in biological modeling. For example, the performance

of spiking reservoirs (commonly termed liquids) also strongly depends on the in-degree

distribution of the network (Haeusler & Maass, 2007). This indicates that the binary

nature of spikes is an important factor in the network dynamics of cortical circuits, a

feature included in binary qESNs but not present in mean-field or rate-coded models of

biological circuits.

The finding that binary reservoirs have high performance exclusively for low in-

degrees stands in stark contrast to the fact that cortical neurons feature high in-degrees

of over 104. This raises the interesting question which properties and mechanisms of

cortical circuits not accounted for in the qESN model may cause this discrepancy. We

have shown that sparse network activity as observed in cortical networks is a suitable

candidate mechanism as it indeed shifts the region of optimal performance to higher

in-degree values in binary networks. Interestingly, the sparse activity regime has also

been proposed as a good computational regime for ESNs (Schrauwen et al., 2008) and

6.9. Acknowledgments 105

can be easily attained using the unsupervised dynamic reservoir optimization techniques

mentioned above.

Although sparse activity is a prominent property of neocortical circuits, it is not

the only possible explanation for the topological discrepancy between cortical circuits

and the optimal circuits identified by our analysis. For example, the transmission of

information between neurons via synapses is know to be error-prone as e. g. vesicle

release into the synaptic cleft is a stochastic process with little reliability (Tsodyks &

Markram, 1997). This stochastic aspect of biological connectivity might well result in a

considerably smaller “true” or effective in-degree that is closer to the parameter regime

found to be optimal for binary qESNs.

6.9 Acknowledgments

This chapter is based on the paper Connectivity, dynamics, and memory in reservoir

computing with binary and analog neurons, which was written by Lars Büsing (LB), Ben-

jamin Schrauwen (BS) and Robert Legenstein (RL). LB developed the newtork model,

performed the simulations and developed the mean-field predictors. BS investigated the

differences between binary and analog reservoirs and designed the simulations together

with LB and RL. RL contributed the rank measure analysis. LB, BS and RL wrote the

manuscript.

Appendix A

List of Publications

Journal and Conference Papers

[7] Buesing, L., & Maass, W. (2010). A Spiking Neuron as Information Bottleneck.

Neural Computation, 22 (9), 1961–1992.

[6] Clopath, C., Buesing, L., Vasilaki, E., & Gerstner, W. (2010). Connectivity reflects

coding: a model of voltage-based STDP with homeostasis. Nature Neuroscience,

13 (3), 344–352.

[5] Buesing, L., Schrauwen, B., & Legenstein, R. (2010). Connectivity, dynamics, and

memory in reservoir computing with binary and analog neurons. Neural Compu-

tation, 22 (5), 1272-1311.

[4] Schrauwen, B., Buesing, L., & Legenstein, R. (2009). On computational power and

the order-chaos phase transition in reservoir computing. In Proc. of NIPS 2008,

Advances in Neural Information Processing Systems (Vol. 21, pp. 1425–1432). MIT

Press. Student Paper Award (Honorable Mentions)

[3] Clopath, C., Ziegler, L., Vasilaki, E., Buesing, L., & Gerstner, W. (2008). Tag-trigger-

consolidation: A model of early and late long-term-potentiation and depression.

PLoS Computational Biology , 4 (12).

[2] Buesing, L., & Maass, W. (2008). Simplified rules and theoretical analysis for

information bottleneck optimization and PCA with spiking neurons. In Proc. of

NIPS 2007, Advances in Neural Information Processing Systems (Vol. 20, pp.

193–200). MIT Press.

[1] Muller, E., Buesing, L., Schemmel, J., & Meier, K. (2007). Spike-frequency adapting

neural ensembles: Beyond mean adaptation and renewal theories. Neural Compu-

tation, 19 (11), 2958–3010.

Conference and Workshop Abstracts

[7] Buesing, L., Bill, J., Habenschuss, S., Nessler, B., & Maass, W. (n.d.). Emergence of

Bayesian computation in generic motifs of cortical microcircuits In 40th Annual

Conference of the Society for Neuroscience. (submitted)

[6] Clopath, C., Buesing, L., Vasilaki, E., & Gerstner, W. (n.d.). Why is connectivity in

barrel cortex different from that in visual cortex? - A plasticity model. In Proc.

of Computational and Systems Neuroscience 2010.

[5] Schrauwen, B., & Buesing, L. (2009). A Hierarchy of Recurrent Networks for Speech

Recognition. In Deep Learning for Speech Recognition and Related Applications

(NIPS Workshop).

108 Appendix A. Publications

[4] Clopath, C., Ziegler, L., Buesing, L., Vasilaki, E., & Gerstner, W. (n.d.). Tag-trigger-

consolidation: A model of early and late long-term potentation and depression. In

Proc. of Computational and Systems Neuroscience 2009.

[3] Clopath, C., Ziegler, L., Buesing, L., Vasilaki, E., & Gerstner, W. (2009). Modeling

plasticity across different time scales: The TagTriC model. In BMC Neuroscience

(Vol. 10, p. P192).

[2] Buesing, L., & Maass, W. (2008). Information Bottleneck Optimization with Spiking

Neurons with Application to Predictive Coding. In Principled Theoretical Frame-

works for the Perception-Action Cycle (NIPS Workshop).

[1] Clopath, C., Buesing, L., Vasilaki, E., & Gerstner, W. (2008). A unified voltage-

based model for STDP, LTP and LTD. In Proc. of Computational and Systems

Neuroscience 2008.

Comments and Contributions to Journal and Conference

Papers

The paper Spike-frequency adapting neural ensembles: Beyond mean adaptation and

renewal theories is a joint paper together with Eilif Muller, Johannes Schemmel and

Karlheinz Meier. It was written during my Master’s thesis at Heidelberg University and

published in Neural Computation. It is not included in this thesis.

The paper Tag-Trigger-Consolidation: A Model of Early and Late Long-Term-

Potentiation and Depression is a joint paper together with Claudia Clopath, Lorric

Ziegler, Eleni Vasilaki and Wulfram Gerstner. It includes results obtained during my

stay at the Ecole Polytechnique Fédérale de Lausanne in 2007 and it was published in

PLoS Computational Biology. The paper is not included in this thesis.

The paper Connectivity reflects coding: A model of voltage-based STDP with home-

ostasis was written by Claudia Clopath (CC), myself (LB), Eleni Valsilaki (EV) and

Wulfram Gerstner (WG). The plasticity model was developed by CC and LB. CC fitted

the model to experimental data, designed and carried out the simulations. LB devel-

oped the link to the BCM rule and did the calculations for the expected weight change

presented in Appendix B. EV participated in discussions. WG supervised the project

and wrote most of the manuscript. This paper was published in Nature Neuroscience

and is the basis for Chapter 2 of this thesis.

The paper Simplified rules and theoretical analysis for information bottleneck opti-

mization and PCA with spiking neurons was written by LB and Wolfgang Maass (WM).

The Information Bottleneck learning rule and its analysis was developed by LB. The

simulations were designed by LB and WM and conducted by LB. LB and WM wrote

the manuscript. This paper was published in the proceedings of Advances in Neural In-

formation Processing Systems (NIPS) 2007 and is the basis for Chapter 3 of this thesis.

The approach proposed in this paper was extended in the paper A Spiking Neuron as

Information Bottleneck, which was written by LB and WM. The model was developed

by LB. The simulations were designed by LB and WM and conducted by LB. LB wrote

the manuscript. This paper was published in Neural Computation and is the basis for

Chapter 4 of this thesis.

109

The paper On computational power and the order-chaos phase transition in reservoir

computing, was written by Benjamin Schrauwen (BS), LB and Robert Legenstein (RL).

BS investigated the differences between binary and analog reservoirs and designed the

simulations. LB developed the network model, performed the simulations and developed

the mean-field predictor. RL contributed the rank measure analysis. LB, BS and RL

wrote the manuscript. This paper was published in the proceedings of Advances in

Neural Information Processing Systems (NIPS) 2007, where LB was awarded the Student

Paper Award (Honorable Mentions) for it. It is the basis for Chapter 5 of this thesis.

The ideas of the latter publication were extended in the paper Connectivity, dynamics,

and memory in reservoir computing with binary and analog neurons, which was written

by LB, BS and RL. LB developed the network model, performed the simulations and

developed the mean-field predictors. BS investigated the differences between binary and

analog reservoirs and designed the simulations together with RL and LB. RL contributed

the rank measure analysis. LB, BS and RL wrote the manuscript. This paper was

published in Neural Computation and is the basis for Chapter 6 of this thesis.

Appendix B

Connectivity reflects Coding:

A Model of Voltage-Based Spike

Timing-Dependent Plasticity

B.1 Neuron Model

In contrast to standard models of STDP, the plasticity model presented in this chapter

involves the postsynaptic membrane potential u(t). Hence, predicting the weight change

in a given experimental paradigm requires a neuron model that describes the temporal

evolution of u(t). For this purpose we chose the adaptive Exponential Integrate-and-

Fire (AdEx) model (Brette & Gerstner, 2005) with an additional current describing the

depolarizing spike after potential (Badel et al., 2008). The neuron model is described

by a voltage equation:

C
d

dt
u = −gL(u−EL) + gL∆T exp

(
u− VT

∆T

)

− wad + z + I,

where C is the membrane capacitance, gL the leak conductance, EL the resting potential

and I the stimulating current. The exponential term describes the activation of a rapid

sodium current. The parameter ∆T is called the slope factor and VT the threshold

potential (Brette & Gerstner, 2005). A hyperpolarizing adaptation current is described

by the variable wad with dynamics:

τwad

d

dt
wad = a(u− EL) − wad,

where τwad
is the time constant of the adaption of the neuron and a the subthreshold

adaptation. Upon firing the variable u is reset to a fixed value Vreset whereas wad is

increased by an amount b. The main difference to the Izhikevich model (Izhikevich

& Edelman, 2008) is that the voltage is exponential rather than quadratic allowing a

better fit to data (Badel et al., 2008). The spike afterpotentials of the cells used in typical

STDP experiments (Sjöström et al., 2001) have a long depolarizing spike after potential.

We therefore add an additional current z which is set to a value Isp immediately after

a spike occurs and decays otherwise with a time constant τz:

τz
d

dt
z = −z.

112 Appendix B. Voltage-Based STDP

Finally, we model the refractoriness shown in pyramidal cells (Badel et al., 2008) with

the adaptive threshold VT . VT is set to VTmax after a spike and decays to VTrest with a

time constant τVT
(see (Badel et al., 2008)), i.e.:

τVT

d

dt
VT = −(VT − VTrest).

Parameters for the neuron model are taken from (Brette & Gerstner, 2005) for the

AdEx, τz is set to 40 ms in agreement with (Sjöström et al., 2001; Badel et al., 2008)

and kept fixed throughout all simulations (see table B.1 A).

B.2 Plasticity Model

Since synaptic depression and potentiation take place through different pathways

(O’Connor et al., 2005) our model features two separate additive contributions to the

plasticity rule, one for LTD and another one for LTP.

For the LTD pathway, we assume that presynaptic spike arrival at synapse i induces

depression of the synaptic weight wi by an amount −ALTD [u−(t)−θ−]+ that is a function

of the average postsynaptic depolarization u−. The brackets []+ indicate rectification,

i.e. [x]+ = x for x ≥ 0 and [x]+ = 0 for x < 0. This implements experimental findings

showing that postsynaptic depolarization must exceed a certain value θ− to establish

depression of a synapse (Artola et al., 1990) (see Fig. 2.1 H). The quantity u−(t) is an

exponential low-pass filtered version of the postsynaptic membrane potential u(t) with

a time constant τ−:

τ−
d

dt
u−(t) = −u−(t) + u(t).

The variable ū− is an abstract variable which could, for instance, reflect the level of cal-

cium concentration (Shouval et al., 2002) or the release of endocannabinoids (Sjöström

et al., 2003), though such an interpretation is not necessary for our rule. The presynap-

tic spike train is described as a series of short pulses Xi(t) =
∑

n δ(t − tni) at times tni
where i is the index of the synapse and n an index that counts the spike. Depression is

modeled as the following update rule, see also Fig. 2.1:

d

dt
w−

i = −ALTD(¯̄u)Xi(t) [u−(t) − θ−]+ if wi > wmin, (B.1)

where ALTD(¯̄u) is an amplitude parameter that is under the control of homeostatic

processes (Turrigiano & Nelson, 2004). For slice experiments the parameter has a fixed

value extracted from experiment. For the network simulations in presented in Fig. 2.5 to

Fig. 2.8, we make it depend on the mean depolarization ¯̄u of the postsynaptic neuron,

averaged over a time scale of 1 s. Equation (B.1) is a simple method to implement

homeostasis. Other methods such as weight rescaling would also be possible (Turrigiano

& Nelson, 2004). The time scale of 1 s is not critical (100 s or more would be more

realistic for homeostasis), but convenient for the numerical implementation.

For the LTP part, we assume that each presynaptic spike at the synapse wi increases

B.3. Analysis of Plasticity Model 113

the trace x̄i(t) of some biophysical quantity, which decays exponentially with a time

constant τx in the absence of presynaptic spikes, similar to previous work (Gerstner et

al., 1996; Pfister & Gerstner, 2006). The temporal evolution of x̄i(t) is described by:

τx
d

dt
x̄i(t) = −x̄i(t) +Xi(t),

whereXi is the spike train defined above. The quantity x̄i(t) could for example represent

the amount of glutamate bound to postsynaptic receptors (Pfister & Gerstner, 2006) or

the number of NMDA receptors in an activated state. The potentiation of wi is modeled

by the following expression, which is proportional to the trace x̄i(t) (see also Fig. 2.1):

d

dt
w+

i = +ALTP x̄i(t) [u(t) − θ+]+ [u+(t) − θ−]+ if wi < wmax. (B.2)

Here, ALTP is a free amplitude parameter fitted to the data and u+(t) is another low-

pass filtered version of u(t) similar to u−(t) but with a shorter time constant τ+ around

10 ms. Thus positive weight changes can occur if the momentary voltage u(t) surpasses

a threshold θ+ and, at the same time the average value u+(t) is above θ−.

The final rule used in the simulation is described by the equation

d

dt
wi = −ALTD(¯̄u)Xi(t) [u−(t) − θ−]+ +ALTP x̄i(t) [u(t) − θ+]+ [u+(t) − θ−]+, (B.3)

combined with hard bounds wmin ≤ wi ≤ wmax. For network simulation, ALTD(¯̄u) =

ALTD
¯̄u2

u2
ref

where u2
ref is a reference value.

B.3 Analysis of Plasticity Model

We establish a quantitative link between the novel plasticity model (B.3) and the BCM

plasticity model (Cooper et al., 2004) under the assumption of a spiking linear Poisson

(LP) neuron model. In a LP model, input spike trains Xj(t) =
∑

j δ(t− t
f
j) are low-pass

filtered and weighted to give a subthreshold potential us(t) =
∑

j

∫∞
0 ǫ(s)Xj(t − s)ds

where ǫ(s) is the time course of an EPSP and us is measured with respect to the resting

potential θ−. The LP neuron generates spikes stochastically with firing intensity νpost

that is proportional (with parameter 1/α) to the subthreshold membrane potential us,

hence the probability of firing in a short time between t and t + ∆ is PF (t; t + ∆) =

νpost(t)∆ = us(t)∆/α. If the LP neuron spikes at time tpost
f , we add a short voltage

pulse βδ(t−tpost
f) to the membrane potential. The total membrane potential is therefore

u(t) = us(t) + βY (t) + θ−, (B.4)

where Y (t) =
∑

f δ(t− t
post
f) denotes the spike train of the postsynaptic neuron and β is

the integral weight of spikes. To illustrate the significance of β suppose that in a hypo-

thetical experiment of 100 ms duration we find a single triangular action potential with

amplitude 120[mv] and 1[ms] duration at half-maximum, and otherwise the voltage is

constant at a value of 2[mv] above rest, then the mean voltage averaged over this 100[ms]

114 Appendix B. Voltage-Based STDP

period is
∫ 100[ms]
0 u(t)dt/100[ms] = 2mv + 1.2mv + θ− so that the weight parameter β

in (B.4) should have a value of 1.2mV. By construction the expected number of spikes

of the LP neuron is equal to its instantaneous rate < Y > (t) = νpost(t) = us(t)/α. In

the following derivation the time dependence of the variables is not explicitly denoted

for the sake of simplicity (except for cases where this dependence is emphasized), e.g.

u(t) is abbreviated as u.

We assume that the neuron has N excitatory synapses which are stimulated by N

presynaptic Poisson spike trains of rates νpre = (νpre
1 , . . . , νpre

N). Further, we assume that

the presynaptic rates νpre are slowly varying quantities compared to the intrinsic time

scales τ+, τ− of our plasticity model or those our neuron model (e.g. EPSP duration),

which are all below 50 ms. This assumption explicitly results in the following simplifi-

cations: νpre ≈ νpre, νpost
+ ≈ νpost and νpost

− ≈ νpost. Here the following notation was

used. For a variable q, q denotes a version of q low-pass filtered with the time constant

τq, q+ and q− correspond to the time constants τ+ and τ− respectively.

Using the LP model defined above in the plasticity rule (B.3) yields (if we suppress

for the moment the dependence upon the homeostatic variable ¯̄u)

d

dt
wi = −ALTDXi(u

s
− + βY −) +ALTPx̄iβY (us

+ + βY +), (B.5)

where it was used that all voltages are above resting potential θ− since only excitatory

inputs are considered and that only Y is above the firing threshold θ+ since us is the

subthreshold voltage. Now we take the average 〈·〉post over the postsynaptic spikes given

the postsynaptic rate νpost:

〈
d

dt
wi

〉

post

= −(α+ β)ALTDXiν
post
− + (α+ β)ALTPx̄iβν

postνpost
+ , (B.6)

Here we have used
〈
Y (t)Y +(t)

〉

post
= νpost(t)νpost

+ (t), which holds because Y +(t) is not

influenced by a possible spike at time t (just by spikes at times s with s < t) and it

is thus uncorrelated with Y (t) given νpost. Applying the assumption of slowly varying

input rates yields:

〈
d

dt
wi

〉

post

= −(α+ β)ALTDXiν
post + (α+ β)ALTPx̄iβν

postνpost. (B.7)

Taking the average 〈·〉pre over the presynaptic spikes given the presynaptic firing rates

νpre neglecting spike-spike correlations (i.e. correlations between Xi and νpost beyond

rate correlations between νpre and νpost) and applying the assumption of slowly varying

input rates results in:

〈
d

dt
wi

〉

= −(α+ β)ALTDν
pre
i νpost + (α+ β)ALTPν

pre
i βνpostνpost

= (α+ β)βALTPν
pre
i νpost

(

νpost − ALTD

βALTP

)

. (B.8)

B.4. Calculations for the Functional Implications 115

Here 〈〈·〉post〉pre was abbreviated as 〈·〉. The factor (α + β)β can be interpreted as the

learning rate in a rate-based plasticity model and ALTD/βALTP = ϑ as the threshold

for the transition of LTD to LTP in the ‘quadratic’ BCM model (Cooper et al., 2004).

Since ALTD depends on the slow time scale of homeostatic processes upon the long-term

averaged potential ¯̄u, the threshold ϑ is a sliding one. Just as in the BCM model (Cooper

et al., 2004), our plasticity model responds to persistent periods of high activity with

an increase in the threshold ϑ.

B.4 Calculations for the Functional Implications

We now apply the above results to the toy model of Fig. 2.4 and compare results of

our rule to those of standard pair-based STDP. We assume that lateral connections are

weak, so that neuronal firing is triggered by the injected current pulses. Since we focus

on recurrent networks, the weights carry two indices (e. g. wij for a weight from neuron

j to i) and the output spike train of neuron i is denoted as Xi.

B.4.1 Rate Coding

Since in Fig. 2.4 A, current pulses are injected with Poisson distributed timing at fixed

rate, neurons i and j exhibit Poisson firing with rates νi and νj > 0, respectively. From

(B.8) it follows that all postsynaptic neurons with rate νi > ϑ have increasing synaptic

weights, while all those with νi < ϑ have decreasing connections. After some time,

connections reach their upper or lower bound so that all neurons with νi > ϑ have input

connections with all weights wij = wmax, independent of j and all other neurons have

no incoming connections, in agreement with the results of Fig. 2.4 A. Note that in this

simulation the threshold ϑ was fixed since the homeostatic control of ALTD was turned

off.

Standard STDP. The weight change induced by STDP in the rate coding scenario

(where pre- and postsynaptic activities are independent) is antisymmetric, i.e. if weight

wij is potentiated wji is depressed. If the the STDP function is antisymmetric with

respect to time reversal, i.e. if the amplitude of potentiation at pre-post timing with

time difference |∆| is the same as the that of depression with reversed timing, then

∆wij =

∫

experiment

(
d

dt
wij

)

dt = −∆wji.

Hence, STDP cannot produce strong bidirectional weights if weights are initialized with

medium strength. Note however that bidirectional connections would be possible if the

amount of potentiation outweighs the amount of depression, that is, if the integral over

the STDP window is positive.

B.4.2 Temporal Coding

We assume that N neurons are arranged on a circle and fire one after the other in a

fixed order n, n + 1, ... with an interval of τ . We calculate the weight change ∆wij per

116 Appendix B. Voltage-Based STDP

firing cycle given that the system has undergone infinitely many firing cycles before. It

is also assumed that the voltage trace consists only of the spike events, however, similar

results can be obtained if the subthreshold current injection (that makes the neurons

spike in the scenario of Fig. 4B) is taken into account.

Because of the cyclic activation pattern, we can evaluate the term ui− at a presy-

naptic spike time of Xj :

∫

cycle
ui−Xj dt = β

∞∑

n=0

exp

(

−(j − i)modN · τ + nNτ

τ−

)

. (B.9)

Hence the amount of depression per cycle is, after summation:

Depression = βALTD · exp

(

−(j − i)modN · τ
τ−

)
1

1 − exp
(

−Nτ
τ−

) . (B.10)

For potentiation we have to evaluate ui+xj at the time of a postsynaptic spike Xi. Under

the above assumptions, the factors ui+ and xj can be summed up separately, so that

the amount of potentiation per cycle is:

Potentiation = ALTPβ
2 1

exp
(

Nτ
τ+

)

− 1
· exp

(

−(i− j)modN · τ
τx

)
1

1 − exp
(

−Nτ
τx

) .

We note that the depression term scales like exp(−(j − i)modN), which is largest if

the postsynaptic neuron i spikes directly before presynaptic neuron j in the cycle. For

the the potentiation term which scales like exp(−(i − j)modN) it is just the other

way round: It takes the largest value if the postsynaptic neuron i is directly after the

presynaptic neuron j. Hence weights from n to n+k (for small k > 0), i.e. those weights

that are “in cycle direction” are potentiated, and weights “against cycle direction” are

depressed. This results in a highly asymmetric connection pattern.

Standard STDP. The calculations are exactly as in the temporal coding case of the

novel plasticity rule, except for the factor ui+ (which does not dependent on i or j

and hence is just a global scaling). In this setup the novel rule and STDP behave

equivalently.

B.5 Parameters and Data Fitting

For the plasticity experiments in slices, we take ¯̄u = uref as fixed and fit the parameters

ALTD. The total number of parameters of the plasticity model is then seven. For all

data sets, except the one taken from (Ngezahayo et al., 2000), the threshold θ− is set

to the resting potential and θ+ to the firing threshold of the AdEx model, i.e. θ− =

−70.6mV and θ+ = −45.3mV. The remaining five parameters τx, τ−, τ+, ALTD and

ALTP are fitted to each data set individually by the following procedure. We calculate the

theoretically predicted weight change ∆wth,j
i by integrating (analytically or numerically)

(B.3) for a given experimental protocol j, as a function of the free parameters. We

B.6. Protocols and Mathematical Methods 117

then estimate the free parameters by minimizing the mean-square error E between the

theoretical calculations and the experimental data ∆wexp,j
i :

E =
∑

j

(

∆wth,j
i − ∆wexp,j

i

)2
.

For the data set in hippocampus (Ngezahayo et al., 2000), we also fit the two pa-

rameters θ− and θ+ since completely different preparations and cell type were used.

Moreover for this data set, the time constant τx is taken from physiological measure-

ments given in (Bi & Poo, 2001) and fixed to the values of 16ms. The parameters for

the various experiments are summarized in Table B.1 B.

B.6 Protocols and Mathematical Methods

Voltage clamp experiment. (Fig. 2.1 H) The postsynaptic membrane potential was

set in the simulations to a constant value uclamp chosen from −80[mv] to 0mV while

presynaptic fibers were stimulated with either 25 (blue line) or 100 pulses (red line) at

50Hz. Due to voltage clamping, the actual value of the voltage u itself and the low-pass

filtered versions ū are constant and equal to uclamp. Hence, the synaptic plasticity rule

becomes d
dtwi = −ALTDXi(t) [uclamp − θ−]+ +ALTP x̄i(t) [(uclamp − θ−)(uclamp − θ+)]+.

Frequency dependence experiment. (Fig. 2.2 B) Presynaptic spikes in the

simulation were paired with postsynaptic spikes that were either advanced by 10 ms

or delayed by -10 ms with respect to the presynaptic spike. This pairing was repeated

5 times with different frequencies ranging from 0.1 to 50Hz. These 5 pairings were

repeated 15 times at 0.1Hz. However, the 5 pairings at 0.1Hz were repeated only 10

times to mimic the experimental protocol from (Sjöström et al., 2001).

Burst timing-dependent plasticity. (Fig. 2.3 A) The presynaptic spike is paired

∆t = 10ms before (or ∆t = −10ms after) one, two or three postsynaptic spikes. The

frequency of the burst is 50Hz. The neuron receives 60 pairings at a frequency of

0.1Hz. (Fig. 2.3 B) The presynaptic spike is paired with a burst of 3 action potentials

(∆t = 10ms and -10 ms), while the burst frequency varies from 20 to 100Hz. (Fig.

2.3C) A presynaptic spike is paired with a burst of three postsynaptic action potentials

with burst frequency of 50Hz. The time ∆t between the presynaptic spike and the first

postsynaptic action potential varies from −80 to 40ms. For a detailed description of

the experiments see (Nevian & Sakmann, 2006).

Poisson input for functional scenarios.(Fig. 2.4-2.7) Poisson inputs are used in all

the following experiments. They are generated by a stochastic process where the spike

is elicited with a stochastic intensity ν.

Relation between connectivity and coding: Toy model.(Fig. 2.4) Weights

of ten all-to-all connected neurons are initialized at 1, bounded between 0 and 3.

118 Appendix B. Voltage-Based STDP

Weights evolve with the voltage-based rule (B.3) for 100 s. The model is compared

to a canonical pair-based STDP model given by d
dtwi = −Apair

LTDXi ȳ + Apair
LTP x̄i Y ,

where Y is the postsynaptic spike train defined the same way as the presynaptic

spike train Xi with a filter of the postsynaptic spikes ȳ similar to x̄i. The parameters

are chosen Apair
LTD = Apair

LTP = 1e−5 for the amplitudes and τx for the time constant

of x̄i as well as for the time constant of the postsynaptic low-pass filter ȳ. Rate

code: Neuron 1 fires at 2Hz, neuron 2 at 4Hz... neuron 10 at 20Hz following

Poisson statistics, i.e. short current pulses are injected to make the neuron fire

with Poisson statistics at this frequency. Temporal code: Neurons fire successively

every 20 ms, first neuron 1 fires then 20 ms later neuron 2 then... 10 then 1 etc, in a loop.

Rate coding in network simulation. (Fig. 2.5) Five hundred presynaptic

Poisson neurons with firing rates νpre
i (1 ≤ i ≤ 500) are connected to ten post-

synaptic excitatory neurons. The input rates νpre
i follow a Gaussian profile, i. e.

νpre
i = A · exp(−(i − µ)2/(2σ2)), with variance σ = 10 and amplitude A = 30Hz.

The center µ of the Gaussian shifts randomly every 100 ms between ten different

positions equally distributed. Circular boundary conditions are assumed, i.e. neuron

i = 500 is considered as neighbor of i = 1. Synaptic weights of the feedforward

connections to the excitatory neurons are initialized randomly (uniformly in [0.5,2])

and hard bound are set to 0 and 3. The ten excitatory neurons are all to all recurrently

connected with a starting synaptic weight of 0.25 (hard bounds set to 0 and 0.75). In

addition, 3 inhibitory neurons are randomly driven by eight excitatory neurons and

the feedforward inputs, they project on six excitatory neurons, also chosen randomly.

Those random recurrent connections are fixed and have a weight equal to 1. The

feedforward connections onto the inhibitory neurons are also fixed and chosen randomly

between 0 and 0.5. The reference value is set to u2
ref = 60mv2 and the simulation time

to 1000 s. Parameters are normally chosen as in Table B.1 B, visual cortex data, except

for Fig. 2.5, where ALTP and ALTD where reduced by a factor 100.

Temporal coding in network simulation. (Fig. 2.7) Same setting as in the

rate coding simulation except that the patterns are presented for 20 ms successively

(from center position 50, to 100, to 150 etc in a circular manner). The reference

value has been set to u2
ref = 80mv2. We use an asymmetry index calculated by

the following procedure: first we relabel neurons according to the current position of

their receptive field so that with the cyclic stimulation they get activated one after

the other: n → n + 1... → n + k → n − 1 → n. We then compare the connections

from n to n+k to that from n to n−k and compute AS =
∑

k(wn,n+k−wn,n−k), k = 1-3.

ICA-like computation - Orientation selectivity with natural images. (Fig.

2.8) Ten natural images have been taken from the benchmark given in (Olshausen &

Field, 1996). A small patch of 16 by 16 pixels from any of the images is randomly

chosen every 200 ms. Half of the time the image matrix is transposed, flipped around

the vertical axis or the horizontal axis in order to remove any statistical orientation

bias. After prewhitening, the inputs for the ”ON” (”OFF”) image are Poisson

B.6. Protocols and Mathematical Methods 119

spike trains generated by the positive (negative) part of the patch (with respect to

a reference grey value reflecting the ensemble mean) with maximum frequency of

50Hz. The 2x16x16 inputs are connected to one postsynaptic neuron. The initial

weights are set randomly between 0 and 2 and hard bounds are set between 0 and

3. The connections follow the learning rule (B.3), where the reference value is set to

u2
ref = 50mV2. Parameters are chosen as in Table B.1 B (visual cortex data) but ALTP

and ALTD where reduced by a factor 10. Every 20 s an extra normalization is applied

to equalize the norm of the ”ON” weights to the one of the ”OFF” weights (Miller, 1994).

Parameters Value

C - membrane capacitance 281 pF
gL - leak conductance 30 nS
EL - resting potential −70.6mV

∆T - slope factor 2mV
VTrest - threshold potential at rest −50.4mV
τwad

- adaptation time constant 144 ms
a - subthreshold adaptation 4 nS
b - spike triggered adaptation 0.805 pA

Isp - spike current after a spike 400 pA
τz - spike current time constant 40 ms

τVT
- threshold potential time constant 50 ms

VTmax - threshold potential after a spike -30.4 mV

Table B.1: Parameters for the neuron model.

Exper. θ− (mV) θ+ (mV) ALTD (mV)−1 ALTP (mV)−2 τx (ms)

VC∗ -70.6 -45.3 14e−5 8e−5 15
SC -70.6 -45.3 21e−5 30e−5 30 . . .
HP −41 −38 38e−5 2e−5 16

τ− (ms) τ+ (ms)

10 7
. . . 6 5

Table B.2: Plasticity rule parameters for the various experiments. VC stands for Visual
Cortex cells (for experimental details see (Sjöström et al., 2001), ∗ standard set of
parameters), SC for Somatosensory Cortex cells (see (Nevian & Sakmann, 2006)) and
HP for Hippocampal cells (see (Ngezahayo et al., 2000)). Bold numbers indicate the free
parameters fitted to experimental data. Other parameters are set in advance to values
based on the literature.

Appendix C

Simplified Information Bottleneck

Optimization with Spiking

Neurons

In this appendix the learning rules for Information Bottleneck optimization presented

in chapter 3 are tested extensively by computer simulations of benchmark Information

Bottleneck tasks defined in (Klampfl et al., 2009). Furthermore, we give details of

the derivation of theses learning rules. A detailed thorough with the derivation of the

learning rule presented in (Klampfl et al., 2009) is also given.

C.1 Further Simulation Results

In this section, the four IB tasks considered in in sections 5.1 to 5.4 of (Klampfl et

al., 2009), here referred to as IB task 1 to 4, are solved using the spike-based and the

rate-based learning rules presented in equations (8) and (9) in chapter 3. The tasks

are described only shortly here, as a detailed description can be found in (Klampfl et

al., 2009). The IB tasks introduced in section 5.5 in (Klampfl et al., 2009), where the

target signal and the input were uncorrelated, could not be solve with the learning rules

presented in chapter 3 as expected, since these learning rules only takes second order

joint statistics of input X and target signal YT into account.

In the following simulations, the nonlinear neuron with refractory mechanism con-

sidered in (Klampfl et al., 2009) is used instead of the linear Poisson neuron, in order to

demonstrate the applicability of the learning rules given in chapter 3 for more complex

models. The firing probability density g(t) is given by 1:

g(t) = r0 log

(

1 + exp

(
u

u0

))

R(t) (C.1)

R(t) =

(
t− t̂− τabs

)2

τ2
ref +

(
t− t̂− τabs

)2 Θ
(
t− t̂− τabs

)
, (C.2)

where Θ is the Heaviside step-function, t̂ denotes the time of the last spike, τabs, τref , u0

and r0 are constants > 0. The term R(t) implements a relative and absolute refractory

mechanism.

The numerical results are shown in Fig. C.1 (spike-based rule) and Fig. C.2 (rate-

based rule). In general all results given in (Klampfl et al., 2009) in sections 5.1 to 5.4

1Mind the slightly different notation used in equations (2) to (4) in (Klampfl et al., 2009).

122 Appendix C. Simplified Spiking Information Bottleneck

could be qualitatively reproduced, except for a minor difference in task 2 (described

below). The general setup for the four IB tasks is a special case of the setup discussed

in chapter 3.4: The 100 synapses are split into four equal-sized subgroups G1, . . . , G4,

all receiving Poisson spike trains. Spike trains for different subgroups are independent

(except for task 3); spike trains in one subgroup all share the same statistics. The target

signal is chosen to have mutual information with some of the subgroups.

Task 1 Extracting a single rate-modulation (task given in section 5.1 in (Klampfl et al.,

2009)). The different subgroups receive Poisson spike trains with different rate

modulations which are sinusoidal (G1), piecewise constant (G2), bursting (G3)

and constant (G4). It was possible to extract the group Gi for i = 1, 2, 3 from the

input and at the same time to depress the other groups, if the target signal was

chosen to have the same rate modulation as Gi. Thus, the results given in 5.1 in

(Klampfl et al., 2009) could be reproduced. In the example shown in Fig. C.1A

and C.2A, YT had the same rate modulation as G1.

Task 2 Extracting a time varying combination of rate modulations (task given in section

5.2 in (Klampfl et al., 2009)). All groups were driven by Poisson spike trains with

independent, identically distributed rate modulations rl(t), which are piecewise

constant. The target signal was generated with a rate modulation (r1(t)+r2(t))/2,

archiving to extract the subgroups G1 and G2. After a time interval of 1500 s, this

linear combination was changed to (r1(t) + r3(t))/2, resulting in the depression

of G2 and the potentiation of G3, while G1 remained potentiated. After another

1500 s the target signal was completely turned off. However, the synaptic distri-

bution did not persist long after switching of the target signal, in contrast to the

results reported in (Klampfl et al., 2009). This is due to the different terms DKL

and L3 in the objective functions optimize in (Klampfl et al., 2009) and chapter

3 respectively. The term DKL aims at archiving an optimal value for the total

weight different from zero; thus if all weights are low, it has a global increasing ef-

fect. In contrast, L3 establishes a pure decaying term; in the absence of the target

signal all weights decay to zero. However, a learning rule of the form (3.8) or (3.9)

in chapter 3, where the term corresponding to L3 was replaced by DKL, would not

perform significantly better. A long time after turning off the target signal, only

those principal components of the input X with the lowest eigenvalues λi would

not be depressed, thus the weights would specialize one the uncorrelated part of

the input (this can be seen from the deterministic equation (3.10) in chapter 3.

This is an inherent problem of the general IB task. If I(Y, YT) = 0 because

YT = 0, the solution minimizing I(X,Y) is w = 0. A possible way to circumvent

this problem could be to introduce a learning rate α that is dependent on the

average firing rate of the target signal YT .

Task 3 Extracting spike-spike correlations (task given in section 5.3 in (Klampfl et al.,

2009)). The subgroups receive spike-spike correlated Poisson trains of correlation

coefficient 0.5 (G1), 0.2 (G2) and 0.5 (G3); the spike trains for G4 are uncorrelated.

Spike trains for G1 and G2 were mutually correlated but uncorrelated to spike

C.2. Derivation of the Information Bottleneck Learning Rules 123

trains of G3. The target spike train has correlations with G1 and G2, resulting

in a potentiation of these two subgroups and in the depression of the remaining

subgroups G3 and G4. The results given in section 5.3 in (Klampfl et al., 2009)

could thus be reproduced.

Task 4 Extracting information with two target signals (task given in section 5.4 in

(Klampfl et al., 2009)). Information in the first two groups was encoded in rate

modulations of the form of low-pass filtered white noise (G1) and bursting (G2).

Groups G3 and G4 have spike-spike correlations of coefficient 0.5, but are indepen-

dent of each other. The target signal is given by two Poisson spike trains, the first

sharing the same rate modulation as G1 (additionally corrupted by additive white

noise), the second having spike-spike correlation with G3. The subgroups G1 and

G3 were potentiated, the remaining subgroups were depressed, reproducing the

results given in section 5.4 in (Klampfl et al., 2009).

C.2 Derivation of the Information Bottleneck Learning

Rules

In this section the derivation of the spike-based and the rate-based Information Bot-

tleneck learning rule equations (3.8) and (3.9) presented in chapter 3 is outlined; this

derivation is in close analogy to the ones presented in (Toyoizumi et al., 2005) and

(Klampfl et al., 2007). Important differences between the approach taken here and the

approach presented in (Klampfl et al., 2007) are outlined in section C.5. We will only

focus on the derivation of the learning rule for the Information Bottleneck optimization,

as the rule (3.15) in chapter 3 for Principal Component Analysis (PCA) can be obtained

by simple sign changes.

C.2.1 The Spike-Based Learning Rule

For the sake of simplicity the learning rule is derived in discrete time with time steps

of equal distance ∆t. The final rule in continuous time can be obtained by taking the

limit ∆t→ 0 in the end. The dependence on the time for all time varying quantities is

denoted as a superscript, for example the membrane potential u(.) at time step k ∈ N,

corresponding to time tk = k∆t, is denoted as u(tk) = uk. For convenience, a maximal

time step K ∈ N is assumed, the resulting rule however will be independent of K.

Spike trains up to time step k ≤ K are written as k-tuples of random variables, for

example Y k = (y1, . . . , yk), yl ∈ {0, 1}, with yl = 1 if the postsynaptic neuron spike

at tl and yl = 0 otherwise. Using the same notation, the j’th input spike train Xk
j for

all j ∈ {1, . . . , N} and the target spike train Y k
T are written as Xk

j = (x1
j , . . . , x

k
j) and

Y k
T = (y1

T , . . . , y
k
T) respectively. The membrane potential at time step k is given by the

weighted sum of the presynaptic activities νk
j :

uk =
N∑

j=1

wjν
k
j =

N∑

j=1

wj

k∑

n=1

ǫ(tk − tn)xn
j .

124 Appendix C. Simplified Spiking Information Bottleneck

A IB task 1 B IB task 2

� � � � � � � � � � � �
]s[t

� � �� � �� � �� � �
l
w̃ � � � � � � � � � � � � � 	 � � �

]s[t

�
 ��
 ��
 ��
 �

l
w̃

C IB task 3 D IB task 4

�
 � � � � � � �
 � �
]s[t

� �
� � �� �
� � �

l
w̃ � � � � � � � � � � � �

]s[t

� � �� � �� � �� � �
l
w̃

Figure C.1: The numerical result for the four IB tasks 1 to 4 described in the appendix
C.1 corresponding to the figures A to D with the spike-based rule (3.8) in chapter 3.
Shown is the temporal evolution of the average subgroup weight w̃l = 1/25

∑

j∈Gl
wj

for the first three subgroups G1 (solid black line), G2 (solid gray line) and G3 (dotted
dark gray line). For the sake of readability the trace for G4 was not shown, as it always
decays and is never potentiated. The results given in section 5.1 to 5.4 in (Klampfl et
al., 2009) could be reproduced with the spike-based learning rule (3.8) in chapter 3.

A IB task 1 B IB task 2

� � � � � � � � � � � �
]s[t

� � �� � �� � �� � �

l
w̃ � � � � � � � � � � � � � � � � �

]s[t

� !� �� !� �

l
w̃

C IB task 3 D IB task 4

" # " " $ " " " $ # " "
]s[t

" % #$ % "$ % #& % "

l
w̃ ' (' ') ' ' ') (' '

]s[t

' * () * ') * (+ * '

l
w̃

Figure C.2: Results for the IB tasks for the the rate-based rule (3.9). The figure is
analogous to Fig. C.1

C.2. Derivation of the Information Bottleneck Learning Rules 125

The quantity ρk is defined as the probability P (yk = 1|Xk) for the postsynaptic neu-

ron to spike at time step k given the presynaptic input Xk up to time step k. It is

proportional to the gain function gk:

ρk = P (yk = 1|Xk) = ∆tgk. (C.3)

This definition only makes sense for a ∆t which is chosen small enough, as ρk ≤ 1

should be fulfilled. As the considered neuron model has no refractory mechanism, the

output spikes are independent of each other, given the input XK . Furthermore, the

spike probability is independent of Y K
T given XK , thus:

P (yk|Xk, Y K
T , Y k−1) = P (yk|Xk, Y k−1) = P (yk|Xk). (C.4)

The objective function, which is maximized for the IB optimization in chapter 3 is given

by:

L = LIB + β3L3 = β1I(Y
K ,XK) + β2I(Y

K , Y K
T) + β3

N∑

i=1

w2
i =

3∑

h=1

βhLh. (C.5)

The weight decay term β3L3 in (C.5) is trivial to treat and as all operations necessary

to obtain the final learning rule are linear, we concentrate only on the first two terms of

(C.5); the contribution due to L3 can simply be added to the result in the end. Thus,

the objective function L is temporarily defined as:

L = LIB = β1I(Y
K ,XK) + β2I(Y

K , Y K
T) =

2∑

h=1

βhLh. (C.6)

Using the definition of the mutual information I(Y K ,XK) between the random variables

Y K and XK , the first term L1 can be written in the following way:

L1 = I(Y K ,XK) =
∑

XK ,Y K

p(XK , Y K) log

(
p(Y K |XK)

p(Y K)

)

=

〈

log

(
P (Y K |XK)

P (Y K)

)〉

Y K
T

,Y K ,XK

. (C.7)

We use the following relation, known as the chain rule of probability theory (see (Cover

& Thomas, 1991)):

P (Y K |XK) =
K∏

l=1

P (yl|Y l−1,X l). (C.8)

126 Appendix C. Simplified Spiking Information Bottleneck

In analogy, one may write:

P (Y K) =
K∏

l=1

P (yl|Y l−1)

=

K∏

l=1

∑

Xl

P (yl|Y l−1,X l)P (X l|Y l−1)

=

K∏

l=1

〈

P (yl|Y l−1,X l)
〉

Xl|Y l−1
. (C.9)

Plugging (C.8) and (C.9) into (C.7) yields:

L1 = I(Y K ,XK) =

K∑

l=1

〈

log

(

P (yl|Y l−1,X l)

〈P (yl|Y l−1,X l)〉Xl|Y l−1

)〉

Y K
T

,Y l,Xl

=

K∑

l=1

〈

Ll
1

〉

Y K
T

,Y l,Xl

Ll
1 := log

(

P (yl|Y l−1,X l)

〈P (yl|Y l−1,X l)〉Xl|Y l−1

)

.

The term L2 can be written in a similar way:

L2 = I(Y K , Y K
T) =

〈

log

(
P (Y K |Y K

T)

P (Y K)

)〉

Y K
T

,Y l,Xl

. (C.10)

Using the chain rule of probability theory again:

P (Y K |Y K
T) =

K∏

l=1

P (yl|Y l−1, Y K
T).

The equation (C.10) is then equal to:

L2 = I(Y K , Y K
T) =

K∑

l=1

〈

Ll
2

〉

Y K
T

,Y l,Xl

Ll
2 := log

(

P (yl|Y l−1, Y K
T)

〈P (yl|Y l−1,X l)〉Xl|Y l−1

)

.

C.2. Derivation of the Information Bottleneck Learning Rules 127

Thus the objective function L given in (C.6) is of the form:

L =
K∑

l=1

2∑

h=1

βh

〈

Ll
h

〉

Xl,Y l,Y K
T

=
K∑

l=1

Ll. (C.11)

Ll :=
2∑

h=1

βh

〈

Ll
h

〉

Xl,Y l,Y K
T

(C.12)

As it can be seen in (C.11), the total objective function L can be written as a sum of

per time step contributions Ll given by (C.12).

The online learning rule for the change of the synaptic efficacies wj is obtained by a

gradient ascent of the objective function L. In order to obtained a learning rule that is

non-anticipating the weight change ∆wl
j of weight wl

j at time-step l is chosen to be the

gradient ascent of the per time step contribution Ll to the objective function:

∆wl
j = α

(
∂Ll

∂wj

)

= α

2∑

h=1

βh∂wj

〈

Ll
h

〉

Y K
T

,Y l,Xl
. (C.13)

The parameter α, called the learning rate, determines the step size of the gradient ascent.

The gradient in wj-direction can be calculated as:

∂wj

〈

Ll
h

〉

Y K
T

,Y l,Xl
= ∂wj

∑

Y K
T

,Y l,Xl

P (Y K
T , Y l,X l)Ll

h

= ∂wj

∑

Y K
T

,Y l,Xl

P (Y K
T ,X l)P (Y l|Y K

T ,X l)Ll
h (C.14)

=
∑

Y K
T

,Y l,Xl

P (Y K
T ,X l)∂wj

(

P (Y l|Y K
T ,X l)Ll

h

)

(C.15)

=
〈

∂wj
Ll

h

〉

Y K
T

,Y l,Xl
+
〈

Ll
h∂wj

logP (Y l|X l)
〉

Y K
T

,Y l,Xl
.(C.16)

The fact that the joint input distribution P (Y K
T ,X l) is independent form the weights

of the postsynaptic neuron was used for going from (C.14) to (C.15).

It can be shown, that the terms
〈
∂wj

Ll
h

〉

Y K
T

,Y l,Xl in (C.16) vanish, the proof for
〈
∂wj

Ll
1

〉

Y K
T

,Y l,Xl = 0 is given in equation (7) in the supporting text to (Toyoizumi et

al., 2005). It remains to be shown that the contribution for h = 2 vanishes:

〈

∂wj
Ll

2

〉

Y K
T

,Y l,Xl
=

〈

∂wj
logP (yl|Y l−1, Y K

T)
〉

Y K
T

,Y l
−
〈

∂wj
logP (yl|Y l−1)

〉

Y l
.(C.17)

We only outline the procedure for the first term of (C.17), as the second term can be

128 Appendix C. Simplified Spiking Information Bottleneck

shown to be zero in a similar way:

〈

∂wj
logP (yl|Y l−1, Y K

T)
〉

Y K
T

,Y l
=

〈〈

∂wj
logP (yl|Y l−1, Y K

T)
〉

yl|Y l−1,Y K
T

〉

Y l−1,Y K
T

=

〈
∑

yl

P (yl|Y l−1, Y K
T)∂wj

logP (yl|Y l−1, Y K
T)

〉

Y l−1,Y K
T

=

〈

∂wj

∑

yl

P (yl|Y l−1, Y K
T)

〉

Y l−1,Y K
T

= 0.

The last step follows from the normalization of probabilities.

Using these results, the gradient ascent (C.13) simplifies to:

∆wl
j = α

2∑

h=1

βh

〈

Ll
h∂wj

logP (Y l|X l)
〉

Y K
T

,Y l,Xl

= α
2∑

h=1

βh

〈

Ll
hC

l
j

〉

Y K
T

,Y l,Xl
. (C.18)

The term C l
j is defined as:

C l
j =: ∂wj

logP (Y l|X l).

In order to further simplify the terms appearing in the preliminary learning equation

(C.18), the probability of firing is written in the following way:

P (yl|Y l−1,X l) = P (yl|X l) =
(

ρl
)yl (

1 − ρl
)1−yl

, (C.19)

where ρl was defined in (C.3). Using (C.19), the term C l
j may be cast into the form:

C l
j = ∂wj

log

(
l∏

m=1

P (ym|Xm)

)

=
l∑

m=1

∂wj
[ym log ρm − (1 − ym) log(1 − ρm)]

=
l∑

m=1

(ym − ρm)(ρm)′

ρm(1 − ρm)
νm

j , (C.20)

where (ρm)′ is the derivative of ρm with respect to um.

Now it is necessary to take a closer look at the Ll
h. Using the relations, which follows

C.2. Derivation of the Information Bottleneck Learning Rules 129

directly from (C.19):

〈

P (yl|Y l−1,X l)
〉

Xl|Y l−1
=

〈

ρl
〉yl

Xl|Y l−1

〈

1 − ρl
〉1−yl

Xl|Y l−1

P (yl|Y l−1, Y K
T) =

〈

P (yl|X l)
〉

Xl|Y l−1,Y K
T

=
〈

ρl
〉yl

Xl|Y l−1,Y K
T

〈

1 − ρl
〉1−yl

Xl|Y l−1,Y K
T

one may write the terms Ll
h as:

Ll
1 = yl log

(

ρl

〈ρl〉Xl|Y l−1

)

+ (1 − yl) log

(

1 − ρl

1 − 〈ρl〉Xl|Y l−1

)

(C.21)

Ll
2 = yl log

(〈
ρl
〉

Xl|Y l−1,Y K
T

〈ρl〉Xl|Y l−1

)

+ (1 − yl) log

(
1 −

〈
ρl
〉

Xl|Y l−1,Y K
T

1 − 〈ρl〉Xl|Y l−1

)

.

In general, the terms are of the form:

Ll
h = ylAl

h + (1 − yl)Bl
h,

with the obvious defintions of Al
h and Bl

h. In analogy to the approach taken in (Klampfl

et al., 2007) and (Toyoizumi et al., 2005), the dependence of the terms Al
h and Bl

h on

Y l−1 via the expectation values
〈
ρl
〉

Xl|Y l−1 and
〈
ρl
〉

Xl|Y l−1,Y K
T

will be neglected2, i. e.

the following simplifications are used:

〈

ρl
〉

Xl|Y l−1
=

〈

ρl
〉

Xl

〈

ρl
〉

Xl|Y l−1,Y K
T

=
〈

ρl
〉

Xl|Y K
T

.

This approximation is valid if only little information about the present firing probability

ρl can be extracted from the recent firing history Y l−1. This is the case for example if

the temporal autocorrelation function of the input XK decays faster than the average

inter-spike interval of the output; this condition is fulfilled in most simulation examples

discussed in chapter 3. Under this assumption L1, L2 are given by:

Ll
1 = yl log

(
ρl

〈ρl〉Xl

)

+ (1 − yl) log

(
1 − ρl

〈1 − ρl〉Xl

)

Ll
2 = yl log

(〈
ρl
〉

Xl|Y K
T

〈ρl〉Xl

)

+ (1 − yl) log

(
1 −

〈
ρl
〉

Xl|Y K
T

〈1 − ρl〉Xl

)

.

Using this approximation, the following products, that appear in the learning rule (C.18),

2This simplification was done rather implicit in (Klampfl et al., 2007) and (Toyoizumi et al., 2005)
by replacing the average 〈.〉Xl|Y l−1 by the low-pass filter (.), the latter being independent of the whole

output spike train Y K .

130 Appendix C. Simplified Spiking Information Bottleneck

can be simplified:

〈

C l
jLl

h

〉

Y K
T

,Y l,Xl
=

〈
l∑

m=1

(ρm)′

ρm(1 − ρm)
νm

j (ym − ρm)Ll
h

〉

Y l,Y K
T

,Xl

=

〈
l∑

m=1

(ρm)′

ρm(1 − ρm)
νm

j

〈

(ym − ρm)Ll
h

〉

Y l|Y K
T

,Xl

〉

Y K
T

,Xl

=

〈
l∑

m=1

(ρm)′

ρm(1 − ρm)
νm

j

〈

(ym − ρm)(ylAl
h + (1 − yl)Bl

h)
〉

Y l|Y K
T

,Xl

〉

Y K
T

,Xl

=

〈
l∑

m=1

(ρm)′

ρm(1 − ρm)
νm

j

〈

(ym − ρm)yl
〉

Y l|Y K
T

,Xl
(Al

h −Bl
h)

〉

Y K
T

,Xl

.(C.22)

We now exploit the fact, the output Y K is a pure Poisson process, for which the spikes

are completely independent given the input X l, i. e.
〈
ylym

〉

Y l|Xl =
〈
yl
〉

Y l|Xl 〈ym〉Y l|Xl

and 〈ym〉Y l|Xl = ρm for m ≤ l. This results in the following relation (where δlm is the

Kronecker Delta3):

〈yl(ym − ρm)〉Y l|Xl,Y K
T

=
〈

δlm

(

yl − (ρl)2
)〉

Y l|Xl,Y K
T

. (C.23)

By using (C.23), the equation (C.22), can be cast into the form:

〈

C l
jLl

h

〉

Y K
T

,Y l,Xl
=

〈
(ρl)′

ρl(1 − ρl)
νl

j

(

yl − (ρl)2
)

(Al
h −Bl

h)

〉

Y l,Y K
T

,Xl

. (C.24)

Plugging (C.24) into (C.18) yields the weight change:

∆wl
j =

〈

α
(

yl − (ρl)2
) (gl)′

gl(1 − ρl)
νl

j

{
2∑

h=1

βh(Al
h −Bl

h)

}〉

Y K
T

,Y l,Xl

. (C.25)

Here, (gl)′ is the derivative of gl wrt. the membrane potential. Using the linearity of gl,

this term is simply a constant 1/u0. The remaining expectation value over Y l, Y K
T ,X l

i

in the learning rule (C.25) is assumed to be achieved by integrating over a long trial

with small learning rate α, i. e. the rule is assumed to be self-averaging. Taking into

account the contribution from the term L3 in the objective function (C.5) one arrives

at:

∆wl
j = α

(
yl − (ρl)2

)

ul(1 − ρl)
νl

j

{
2∑

h=1

βh(Al
h −Bl

h)

}

− αβ3w
l
j . (C.26)

The continuous time limit ∆t→ 0 can now be performed. As the terms Bl
h are of higher

order in ∆t compared to the Al
h, they vanish; the same holds for the terms ρl and (ρl)2,

3The Kronecker Delta δlm is zero for m 6= l and one for m = l.

C.2. Derivation of the Information Bottleneck Learning Rules 131

when compared to 1 and yl respectively. Thus, the continuous time learning equation

is given by:

d

dt
wj = ανj(t)

Y (t)

u(t)

{
2∑

h=1

βhAh(t)

}

− αβ3wj(t). (C.27)

Now the Lagrange multiplier β1 is set to −1 (without loss of generality, as its absolute

value can be absorbed into α), and β2 and β3 are identified with β and −λ respectively,

the latter appearing in the notation in equation (3.3) in chapter 3. Furthermore, the

logarithm in the terms Ah(t) can be expanded to linear order around unity in the case of

small relative fluctuations of the membrane potential u(t); this procedure is well justified

for a large number of synapses, as fluctuations then tend to cancel out. The following

approximations are thus applied:

A1(t) = log

(
u(t)

〈u(t)〉Xt

)

≈ u(t) − 〈u(t)〉Xt

〈u(t)〉Xt

(C.28)

A2(t) = log

(

〈u(t)〉X|YT

〈u(t)〉Xt

)

≈
〈u(t)〉X|YT

− 〈u(t)〉Xt

〈u(t)〉Xt

, (C.29)

where Xt := (X(τ)|τ ≤ t). The terms 〈u(t)〉Xt and 〈u(t)〉X|YT
are the continuous time

limit of
〈
ul
〉

Xl and
〈
ul
〉

Xl|Y K
T

respectively.

Further following (Klampfl et al., 2007) and (Toyoizumi et al., 2005), the operator

〈.〉Xt appearing in (C.28) and (C.29) is replaced by the low-pass filter (.) with a large

time constant τC (in simulations τC = 3 s), i. e. the average of the membrane potential

is estimated by:

〈u(t)〉Xt −→ u(t) =
1

τC

∫ t

−∞
exp

(

− t− s

τC

)

u(s)ds. (C.30)

The final learning rule in continuous time, which will be referred to as the spike-based

rule (as the output spike train Y (t) explicitly appears), is given by:

d

dt
wj(t) = α

Y (t)

u(t)
νj(t)

(

−u(t) − u(t)

u(t)
+ β

〈u(t)〉X|YT
− 〈u(t)〉Xt

u(t)

)

− αλwj(t). (C.31)

It is realistic to assume that the information about the membrane potential u(t), the

low-pass filtered membrane potential u(t) and the presynaptic activity νj(t) is available

at the site of the synapse j. Further, the time of a postsynaptic spike could be obtained

the back-propagating action potential. In contrast, it is not straight-forward to see how

the term 〈u(t)〉X|YT
could possibly be sampled at the site of the synapse in an online

process. Therefore this term is investigated in a more detailed way in section C.3.

132 Appendix C. Simplified Spiking Information Bottleneck

C.2.2 The Rate-Based Learning Rule

In this section, the so-called rate-based learning rule accompanying the spike-based

version (C.31) is derived. We start from equation (C.25):

∆wl
j =

〈

α
(

yl − (ρl)2
) (gl)′

gl(1 − ρl)
νl

j

{
2∑

h=1

βh(Al
h −Bl

h)

}〉

Y K
T

,Y l,Xl

. (C.32)

Instead of assuming the averaging operation 〈.〉Y l,Xl,Y K
T

is carried out by the self-

averaging process, it is split into two averages:

〈.〉Y l,Xl,Y K
T

=
〈

〈.〉Y l|Xl,Y K
T

〉

Xl,Y K
T

,

of which the inner one is performed immediately. Equation (C.32) then becomes:

∆wl
j =

〈

α
〈

yl − (ρl)2
〉

Y l|Xl,Y K
T

(gl)′

gl(1 − ρl)
νl

j

{
2∑

h=1

βh(Al
h −Bl

h)

}〉

Y K
T

,Xl

=

〈

α
(

ρl − (ρl)2
) (gl)′

gl(1 − ρl)
νl

j

{
2∑

h=1

βh(Al
h −Bl

h)

}〉

Y K
T

,Xl

.

Now, the remaining expectation value over X l, Y K
T is assumed to be achieved by the

self-averaging with small learning rate α. Carrying out the same steps, that lead to the

spike-based rule (C.31) yields the rate-based Information Bottleneck learning rule:

d

dt
wj(t) = ανj(t)

(

−u(t) − u(t)

u(t)
+ β

〈u(t)〉X|YT
− 〈u(t)〉X

u(t)

)

− αλwj(t). (C.33)

C.3 The Conditional Expectated Value of the Membrane

Potential

As stated in section C.2.1, it is not obvious how the term 〈u(t)〉X|YT
, appearing in

the spike-based learning rule (C.31) as well as in the rate-based version (C.33), could

be estimated online at the site of the synapses. The term in question is obviously

depending on the joint distribution of the stochastic processes X(.) and YT (.), which

can be in general arbitrarily complex. To create some intuition for this problem, we

shortly analyze the term 〈u(t)〉X|YT
for a concrete example first before looking for a

more general solution.

Consider the situation, where Xj for j ∈ {1, . . . , N} and YT are Poisson spike trains

of constant rate µ0 with spike-spike correlations of cj , meaning that the two-point cor-

relation function is given by:

〈Xj(t)YT (s)〉 = cjµ0δ(t− s) + µ2
0. (C.34)

C.3. The Conditional Expectated Value of the Membrane Potential 133

Spike-spike correlated spike trains with the property (C.34) can be generated using the

method outlined in (Gütig et al., 2003). Equation (C.34) implies that the probability

density for Xj to spike at time t just depends on whether there was a spike in YT at

time t or not. Thus:

〈u(t)〉X|YT
=

N∑

j=1

wj(t)

∫

R

ǫ(t− s) 〈Xj(s)〉X|YT (s) ds. (C.35)

As the distribution valued process YT only may assume two values 0 or δ(.) (i. e. a spike

occurs or not), 〈Xj(s)〉X|YT (s) takes only two different values and (C.35) can be written

in the following way:

〈u(t)〉X|YT
=

N∑

j=1

wj(t)

∫

R

ǫ(t− s) (aj + bjYT (s)) ds, (C.36)

with coefficients aj and bj , which are functions of cj . Thus, 〈u(t)〉X|YT
for this example

is a linear operator that acts on the target spike train YT . Higher order product terms

of the form YT (s1)YT (s2) . . . YT (sm) only appear if the probability of a spike of Xj at

time t depends on the joint occurrence of spikes of YT at times s1, . . . , sn.

In general, the quantity 〈u(t)〉X|YT
/u(t) is an operator on YT (.), which will be de-

noted here as F [.]:

〈u(t)〉X|YT

u(t)
= F [YT](t). (C.37)

In the following considerations it is assumed that F is independent of the weights as

both the nominator and denominator of the fraction appearing in (C.37) are linear in the

single weights wj . Assuming the joint probability density of X and YT is time-invariant,

the operator F [.] also has this property. Furthermore it is a reasonable assumption

that F [.] has the fading memory property, as the the physical processes establishing

the statistical dependence between X and YT surely take place on a finite time scale.

Therefore, as shown in section C.4, it is possible to expand F [YT] in a Volterra series of

the form:

F [YT](t) =
∞∑

n=0

∫

R

· · ·
∫

R

κn(t− t1, . . . , t− tn)
n∏

i=1

YT (ti)dti.

In chapter 3, we concentrate on the situation where the operator F [.] can be well ap-

proximated by its linearization F1[.] plus a homogeneous term F0:

F [YT](t) ≈ F0(t) + F1[YT](t) = F0(t) +

∫

R

κ1(t− t1)YT (t1)dt1. (C.38)

Using the linearized ansatz given by (C.38), the last term on the rhs of the learning rule

134 Appendix C. Simplified Spiking Information Bottleneck

(C.31) can be written as:

〈u(t)〉X|YT
− 〈u(t)〉Xt

u(t)
=

〈u(t)〉X|YT
−
〈

〈u(t)〉X|YT

〉

YT

u(t)

= F [YT](t) − 〈F [YT](t)〉YT
(C.39)

≈ F1[YT](t) − 〈F1[YT](t)〉YT
.

Thus one arrives at:

〈u(t)〉X|YT
− 〈u(t)〉Xt

u(t)
= (κ1 ∗ YT)(t) − 〈(κ1 ∗ YT)(t)〉YT

,

where the asterisk ∗ denotes the convolution. In the chapter 3 it is assumed that the

estimator defined by κ1 ∗ YT is implemented by the concentration uT (t) of a neuromod-

ulator, for positively correlated X and YT :

uT (t) = (κ1 ∗ YT)(t) (C.40)

κ1(t) = Θ(t) exp

(

− t

τ0

)

. (C.41)

The biological mechanism behind equation (C.40) might be the following: Whenever a

target signal spike arrives at time tiT , the concentration uT (t) at time t is increased by an

amount κ1(t−tiT); the contributions of the spikes is assumed to add up linearly. In order

to be biologically realistic, κ1 has to fulfill the constrain, that it is not anticipating, i. e.

κ1(τ) = 0,∀τ < 0, which is ensured by the Heaviside step function Θ(t). It is assumed

that the value uT (t) is available at the site of the synapses at all times. The expectation

value 〈uT (t)〉YT
, in analogy the 〈u(t)〉Xt , is replaced in the online rule by the low-pass

filtered quantity uT (t).

The term 〈u(t)〉X|Y has a nice connection to estimation and filtering theory: u(t)

is a stochastic process, of which one wants to estimate the expectation value given the

observations (YT (τ)|τ ∈ R) of the process YT (t). The optimal (in the mean square error

sense) estimator can be shown to be the conditional expectation value E[u(t)|YT] =

〈u(t)〉X|YT
= F [YT](t). F1[.] given in equation (C.38) can then be regarded as a linear

estimator with the kernel κ1. If F1[.] is the optimal linear estimator, its kernel κ1 fulfills

the Wiener-Hopf equation (see (Papoulis, 1991)), which is unfortunately difficult to solve

in general. It is however solvable for the following simple example: Let z1(t) and z2(t)

be two stationary stochastic processes with the correlation functions:

〈z1(t+ τ)z2(t)〉 = α exp

(

− τ

τ0

)

(C.42)

〈z1(t+ τ)z1(t)〉 = β exp

(

− τ

τ0

)

. (C.43)

Then the optimal causal linear estimator (given by the Wiener filter) for the mean of

C.4. A Volterra Series for the Relevance Signal Operator 135

z2(t) given the history of z1(.) up to time t is given by:

〈z2(t)〉zt
2|z

t
1

= E[z2(t)|z1(s), s ≤ t] ∝
∫

R

κ1(t− s)z1(s)ds. (C.44)

Thus, in this simple example the concrete choice (C.41) of κ1 turns out to be optimal

in the mean-square error sense.

Using these results, the spike-based learning rule (C.31) becomes:

d

dt
wj(t) = α

Y (t)

u(t)
νj(t)

(

−u(t) − u(t)

u(t)
+ β (uT (t) − uT (t))

)

− αλwj(t).

The modifications for the rate-based learning equation are of similar form.

C.4 A Volterra Series for the Relevance Signal Operator

In this section, a Volterra series for the operator F [YT] is derived. The general problem

is, that YT is rather a distribution than a uniformly bounded function, thus making

the straight forward application of standard theorems (see for example (Boyd & Chua,

1985) and (Maass & Sontag, 2000)) impossible. In the following derivation, it has to be

assumed that the spike train YT is generated by a neuron with an absolute refractory

period τref.

First, the spike trains YT (t) =
∑

i δ(t − tiT) are identified via a bijective mapping

with the sequences of firing times T ∈ U , where T = (t1T , t
2
T , . . .). Here, U ⊆ R

N is

defined as the subset of all R
+
0 -valued sequences in R

N, which fulfill ti+1 − ti > τref
and ti ≥ 0 for all i ∈ N; thus all elements of U are ordered, positive and the sequence

elements have a minimal distance τref. The absolut refractory period τref is a arbitrary

positive number.

The operator F can be regarded as a mapping from U to the functions from R to

R denoted as R
R. Let CM (R,R) be the set of uniformly bounded (by a M1 > 0) and

uniformly Lipschitz continuous functions (with Lipschitz constant M2 > 0) from R to

R, i. e. :

CM(R,R) = {f ∈ R
R|‖f‖ < M1, |f(s) − f(t)| < M2|s− t|}.

Now consider a function σ ∈ CM (R,R) with the additional properties of its support Sσ:

Sσ 6= ∅, Sσ ⊆
[

−τref
2
,
τref
2

]

.

The function σ defines an injective mapping ϕσ from T = (t1T , . . .) ∈ U to CM (R,R) via:

ϕσ(T) =

∫

R

σ(t− s)YT (s) = (σ ∗ YT)(t) =
∞∑

i=0

σ(t− tiT).

The image of U under ϕσ is denoted as U∗ = ϕσ(U). A new operator Gσ from U∗ to

136 Appendix C. Simplified Spiking Information Bottleneck

R
R is non-ambiguously defined for all f ∈ U∗ by:

Gσ [f] = F [ϕ−1
σ (f)].

Thus one obtains the following commuting diagram:

U
F

- R
R

CM (R+,R) ⊃ U∗

ϕσ

?

Gσ

-

We assume that the operator F is time-invariant and has the fading memory property,

for a definition see (Boyd, Chua, & Desoer, 1984); these properties are then inherited

by Gσ. Furthermore, U∗ is an equicontinuous subset of all bounded and continuous

functions from R to R. Thus, the theorem 1 from (Boyd & Chua, 1985) can be applied,

and Gσ and subsequently F can be approximated by a Volterra series:

F [YT](t) = Gσ[σ ∗ YT](t) =

∞∑

n=0

∫

· · ·
∫

gn,σ(t− t1, . . . , t− tn)

n∏

i=1

(σ ∗ YT)(ti)dti.

Since convolution is associative, the operator F has the Volterra series:

F [YT](t) =
∞∑

n=0

∫

· · ·
∫

κn(t− t1, . . . , t− tn)
n∏

i=1

YT (ti)dti,

where the kernels κn are given by the n-fold convolution of gn,σ with σ:

κn(t1, . . . , tn) =

∫

· · ·
∫

gn,σ(t1 − s1, . . . , tn − sn)

n∏

i=1

σ(si)dti.

This Volterra series can easily be shown to be independent of the choice of the function

σ, since the Volterra series for the operators Gσ1
= Gσ2

for σ1 6= σ2 is unique (theorem

2.5.2 in (Boyd et al., 1984)).

C.5 Comparison with the Derivation Presented in Previ-

ous Work

In this section we want to point out the differences between the derivations given in

section C.2 and the one given in the appendix A in (Klampfl et al., 2009), which lead to

the different learning rules. In the first paragraph we focus on the differences between

the derivations, that cause the different behavior for the continuous time limit ∆t → 0

of the learning rules. In the second paragraph other differences are mentioned shortly.

C.5. Comparison with the Derivation Presented in Previous Work 137

C.5.1 Differences Concerning the Continuous Time Limit

In (Klampfl et al., 2009) Klampfl et. al. start from maximizing the following objective

function L0:

L0 = −I(X,Y) + βI(Y, YT) − γDKL(P (Y)‖P (Ỹ)). (C.45)

As the important differences that are discussed in this paragraph arise from the first

two terms, we may reduce the investigation on the objective function L:

L = β1I(X,Y) + β2I(Y, YT), (C.46)

with trade-off parameters β1 and β2. This is exactly the same objective function as

the one defined in (C.6), which served as the starting point for the derivation given in

section C.2. The learning rule given in (Klampfl et al., 2009) is of the form:

∆wl
j = α

2∑

h=1

βh

〈

C l
jM

l
h

〉

Y K
T

,Y K ,XK
, (C.47)

which is exactly of the same form as (C.18), which is stated here again for convenience:

∆wl
j = α

2∑

h=1

βh

〈

C l
jLl

h

〉

Y K
T

,Y K ,XK
. (C.48)

C l
j is defined by (C.20) and corresponds to C l

1j in the notation of (Klampfl et al., 2009).

The term M l
1 is equal to Ll

1 defined in (C.21). The term M l
2 (corresponding to F l

12 in

the notation of (Klampfl et al., 2009)) is given in equation (57) in (Klampfl et al., 2009),

and it can be written as4:

M l
2 = ylyl

T log
ρ

l
1T

ρl
1ρ

l
T

+ yl(1 − yl
T) log

ρ
l
1 − ρ

l
1T

ρl
1 − ρl

1ρ
l
T

(C.49)

+yl
T (1 − yl) log

ρ
l
T − ρ

l
1T

ρl
T − ρl

1ρ
l
T

+ (1 − yl)(1 − yl
T) log

1 − ρ
l
1 − ρ

l
T + ρ

l
1T

1 − ρl
1 − ρl

T + ρl
1ρ

l
T

,(C.50)

using the following definitions, with ρl
1 := ρl and Y1 := Y :

ρl
a =

〈

ρl
a

〉

Xl|Y l−1
a

, a ∈ {1, T} (C.51)

ρ
l
a =

〈

ρl
a

〉

Xl|Y l−1,Y l−1
T

(C.52)

ρ
l
1T =

〈

ρl
1ρ

l
T

〉

Xl|Y l−1,Y l−1
T

. (C.53)

4The notation used here differs from the original notation given in (Klampfl et al., 2009); here, in
general, the index 1 appearing in (Klampfl et al., 2009) is left out and the index 2 is replaced by T .

138 Appendix C. Simplified Spiking Information Bottleneck

The term M l
2 may be interpreted as a polynomial in the time step size ∆t, where the

lowest order O(∆t) is explicitly given by

M l
2 = yl log

ρ
l
1

ρl
1

+ yl
T log

ρ
l
T

ρl
T

− (ρ
l
1 + ρ

l
T) + (ρl

1 + ρl
T) + O(∆t2) (C.54)

However, by applying the approximation given in A.3 in (Klampfl et al., 2009):

ρ
l
a = ρl

a, (C.55)

the lowest order of the term M l
2 vanishes, and M l

2 becomes of order O(∆t2). Thus the

contribution C l
jM

l
2 is strictly of higher order than the contribution C l

jM
l
1 appearing in

(C.47); therefore a reasonable continuous time limit of the rule presented in (Klampfl

et al., 2009) does not exist, as the term stemming from the maximization of I(Y K , Y K
T)

goes to zero. The remedy, proposed in section 3.1 in (Klampfl et al., 2009), of replacing

the mutual information I(Y, YT) in L0 by an information rate I(Y, YT)/∆t does not solve

this problem, as the term I(Y, YT)/∆t diverges in the continuous time limit. Therefore

the new objective function would ill-defined in this limit.

In the approach presented here, the term Ll
2 is given by the following term (that is

still strictly equal to the expression given in (C.49)):

Ll
2 = yl log

(〈
ρl
〉

Xl|Y l−1,Y K
T

〈ρl〉Xl|Y l−1

)

+ (1 − yl) log

(
1 −

〈
ρl
〉

Xl|Y l−1,Y K
T

〈1 − ρl〉Xl|Y l−1

)

. (C.56)

The term
〈
ρl
〉

Xl|Y l−1,Y K
T

appearing in (C.56) is related to the problematic term ρ
l
via:

ρ
l
=

〈〈

ρl
〉

Xl|Y l−1,Y l
T

〉

Y l,K
T

|Y l−1,Y l−1
T

. (C.57)

Here Y l,K
T is defined as (yl

T , . . . , y
K
T). The term

〈
ρl
〉

Xl|Y l−1,Y K
T

is approximated by a lin-

ear estimator as explained in section C.3, circumventing the problems faced in (Klampfl

et al., 2009). This linear estimator could be plugged into (C.57), and the resulting term

M l
2 could be approximated by its lowest order expression (C.54) in order to prevent

problems in the continuous time limit of the approach taken in (Klampfl et al., 2009).

C.5.2 Other Differences

Another difference between the derivations considered here arises from the different

terms DKL appearing in (C.45) and the term L3 in (C.5) in the objective functions.

Both terms are introduce in order to prevent the weights from growing unboundedly.

For the PCA learning rule presented in chapter 3 it is however more appropriate to use

the term L3, as the resulting learning rule exactly performs PCA, which would not have

been the case if DKL was chosen to enter the objective function.

Further differences between the learning rules presented in chapter 3 and the simpli-

fied learning rule given in equation (21) in (Klampfl et al., 2009) are due to the linear

C.6. The Fokker-Planck Equation 139

neuron model and the expansion of the logarithms performed in (C.28) and (C.29) to

linear order.

C.6 The Fokker-Planck Equation

The derived learning rules (C.31) and (C.33) are stochastic differential equations for

the weight vector w(t). In this section, the evolution of the weights is described by

the means of the Fokker-Planck approach (see (Risken, 1996)): A partial differential

equation (PDE) for the probability distribution of the weights is given and its peaks are

quantitatively described by an ordinary differential equation. We only concentrate on

the description of the dynamics of the spike-based rule (C.31); the description for the

rate based rule (C.33) can be derived in a similar way and turns out to be exactly the

same as for the spike-based rule.

First, the new variable z(t) = u(t)/ν0 is introduced, which fulfills the differential

equation:

τC
d

dt
z = −z +

1

ν0
w(t)ν(t), (C.58)

where w(t)ν(t) =
∑

iwi(t)νi(t) is the standard scalar product. The state vector x is

defined as:

x = (x1, . . . , x2N+3) = (w1, . . . , wN , ν1, . . . , νN , uT , uT , z). (C.59)

Now, the learning rule (C.31) is rephrased in a convenient way:

d

dt
w(t) =

Y (t)

wν
A(x) (C.60)

A(x) := αν

(

−wν − ν0z

ν0z
+ β(uT − uT)

)

. (C.61)

For the sake of simplicity, in this section we temporarily ignore the decay term −αλw(t)

in the rephrased learning rule (C.60); the following considerations can easily be general-

ized to include this drift. The temporal evolution of the joint probability density p(x, t)

obeys a continuity equation called the Master equation, reflection the fact that the total

probability is normalized to unity at every time t:

∂tp(x, t) =

∫

Q(x, x′, t)p(x′, t)dx′. (C.62)

The quantity Q(x, x′, t) is the transition rate; it is the sum of multiple contributions,

which can be determined from the differential equations the variables xi fulfill. For the

spike-based learning rule (C.31), the PDE (C.62) unfortunately turns out to be nonlocal

in the variable w. But for small learning rates α, it can be approximated by a local,

second order PDE called the Fokker-Planck equation via a the method of Kramers-Moyal

140 Appendix C. Simplified Spiking Information Bottleneck

expansion5. This Fokker-Planck equation reads:

∂tp(x, t) = −
2N+3∑

i=1

∂xi
(Di(x)p(x, t)) +

1

2

2N+3∑

i,j=1

∂xi
∂xj

(Dij(x)p(x, t)) . (C.63)

The terms Di(x) are called the drift functions and the the terms Dij(x) are the diffusion

functions. The drift and diffusion functions for the weights wi = xi, i ≤ N are given

by:

Di(x) =
1

u0
Ai(x), i ≤ N (C.64)

Dij =
1

u0
Ai(x)Aj(x), i, j ≤ N. (C.65)

Furthermore, for small learning rates α ≪ 1 the variables ν(t), uT (t), uT (t) and z(t),

called the fast variables, change much faster in time than the weights w(t), the so-called

slow variables; thus w(t) may be regarded quasi-static. The marginal distribution of the

fast variables settles in a equilibrium wrt. to the quasi-static value of the slow variables.

Using this fact, a Fokker-Planck equation for the probability distribution p(w, t) of

the slow variables may be formulated by the technique of adiabatic elimination of fast

variables (see (Risken, 1996) chapter 8). This PDE is given by:

∂tp(w, t) = −
N∑

i=1

∂wi

(
D0

i (w)p(w, t)
)

+
1

2

N∑

i,j=1

∂wi
∂wj

(
D0

ij(w)p(w, t)
)
. (C.66)

In the lowest order approximation, the functions D0
i (w) =: Ai(w) and D0

ij(w) are given

by:

D0
i (w) =: Ai(w) = 〈Di(x)〉s (C.67)

D0
ij(w) =: 〈Dij(x)〉s (C.68)

The average 〈.〉s is taken over the fast variables given static slow variables.

The drift function A(w) is then given by (taking the decay term −αλw again into

account):

Ai(w) = α
1

u0

(

−
∑N

j=1(〈νiνj〉 − 〈νi〉 〈νj〉)wj
∑N

j=1 〈νj〉wj

+ β 〈νi(uT − uT)〉
)

− αλwi(C.69)

= α
ν0

u0

(

−
∑N

j=1Cijwj

ν0
∑N

j=1wj

+ βCT

)

− αλwi (C.70)

Cij =
〈νiνj〉
v2
0

− 1 (C.71)

CT
i =

〈νi(uT − uT)〉
ν0

≈ 〈νiuT 〉 − 〈νi〉 〈uT 〉
ν0

. (C.72)

5In fact, here the Kramers-Moyal expansion is an expansion in terms of the learning rate α.

C.6. The Fokker-Planck Equation 141

In the last equation, it was assumed that the mean 〈uT 〉 is well approximated by the

low-pass filter uT (t).

One can see, that the term A(w) is of first order O(α) in the learning rate, whereas

the drift D0
ij is of second order O(α2). Thus, we expect the dynamics of the system

for a small learning rate to be well described by the following deterministic differential

equation:

d

dt
ŵ = A(ŵ). (C.73)

The trajectories w(t) will fluctuate around the solutions ŵ(t) of (C.73). This results in

a sharp peak of the stationary distribution p(w) around ŵ(t).

It is straight-forward to show, that the eigenvalues of the matrix DA(ŵ), defined as:

DAij :=
∂Ai(ŵ)

∂ŵj
, (C.74)

are all real and negative at the critical points w∗. Thus the critical points w∗ are stable

and describe the peaks of the stationary distribution p(w) for small learning rate α.

Appendix D

Extended Spiking

Information Bottleneck

D.1 Derivation of the Learning Rules

D.1.1 The IB Learning Rule

Here we calculate the gradient of the objective function L wrt. w and q. The following

relations are useful:

〈
logF (y0, R)

〉
=

〈
y0 log(F 0) + (1 − y0) log(1 − F 0)

〉

=
〈
g0 log(F 0) + (1 − g0) log(1 − F 0)

〉

〈
log p(y0)

〉
=

〈
g0
〉
log
〈
g0
〉

+ (1 −
〈
g0
〉
) log(1 −

〈
g0
〉
).

Using these identities the objective function L can be written as:

L = 〈g logF + (1 − g) log(1 − F) − g log 〈g〉 − (1 − g) log(1 − 〈g〉)〉 − γ

2
w2.

For the sake of simplicity the time step index was left out as no confusion can occur,

e.g. F = F 0. From this form of L the gradient wrt. w is straight forward to calculate:

∂L

∂w
=

〈(

log

(
F

1 − F

)

− log

(〈g〉
1 − 〈g〉

))
∂g

∂w

〉

− γw

=

〈(

σ−1(F t) − σ−1(〈g〉)
) ∂g

∂w

〉

− γw.

Here we used the fact that the expected value 〈·〉 in the above equation is only taken

over the joint distribution p(X−∞, R) which is independent of w (and q) and hence

the gradient ∂
∂w

(and ∂
∂q

) commutes with the average operator 〈·〉. We notice that

log(x/(1 − x)) is the inverse function of the logistic function σ(x) = 1/(1 + exp(−x)).
Further the gradient of g yields ∂g/∂w = g′ν, where g′ is the derivative of g. This

results in the w-part of the learning rule (4.6).

The gradient of L wrt. q is even simpler as only F depends on q. Hence only the

following term has to be calculated:

∂

∂q
〈g logF + (1 − g) log(1 − F)〉 =

〈
F ′

F (1 − F)
h(g − F)

〉

.

Using the relation σ′ = σ(1− σ), which holds for the logistic function σ, yields the final

144 Appendix D. Extended Spiking Information Bottleneck

learning rule for the parameters q.

D.1.2 An InfoMax Learning Rule

In close analogy to the derivation of the IB learning rule presented above one can derive

an InfoMax learning rule starting from the objective function LInfoMax:

LInfoMax = I(y0,X−∞) − γ

2
w2

= 〈g log g + (1 − g) log(1 − g) − g log 〈g〉 − (1 − g) log(1 − 〈g〉)〉 − γ

2
w2.

The yields the following InfoMax learning rule:

∆w = ηwg
′ν

(

σ−1(g) − σ−1(〈g〉)
)

− ηwγw.

D.2 Details of the Numerical Examples

D.2.1 Example of Section 4.2.2

Weights w were initialized with 0.15, the parameters q with 0 and ĝ with 0.02. The

learning rates were set to ηw = 0.075, ηq1
= 4.25·10−4, ηq2

= 4.25·10−3 and ηg = 2·10−3.

Correlated spike trains are generated using techniques described in (Gütig et al., 2003).

The values of L and LIB shown in Fig. 4.3C were estimated with the pyentropy software

package described in (Ince, Petersen, Swan, & Panzeri, 2009) using sophisticated bias

correcting methods. Every point is an average of 50 independent trials each estimated

from sequences Y and R of length 5 · 105 with frozen w and q.

D.2.2 Example of Section 4.2.3

Weights w were initialized with 0.05, ĝ with 0.02 and the initial values of the components

of q were set to 0. The learning rates were set to ηw = 2 ·10−3, ηq = 10−3, ηg = 2.5 ·10−3

and the parameters a, b were set to a = 1/2, b = 1/8. The trade-off parameter was set

to γ = 6 · 10−5. For this example a recurrent network of r = 200 sigmoidal rate neurons

was used (as a LSM). The state vector st = (st
1, . . . , s

t
r) ∈ R

r obeys the equation:

st+1 = st · (1 − α) + βf
(
Wss

t +Win(Rt − 0.5) ∗ 2
)
,

with the parameters α = 0.4 and β = 0.44. The activation function f : R
r → R

r is

given by applying the hyperbolic tangent component-wise. The elements of the recurrent

weight matrix Ws ∈ R
r2

are generated in the following way: The probability of two

neurons to be connected was set to 1/2, the weight for a connected pair was drawn from

a normal distribution N (0, 1). Finally Ws was rescaled by a scalar such that its spectral

radius was equal to 0.8. The elements of Win = ((Win)i, . . . , (Win)r) ∈ R
r were drawn

iid. form {0, 1} with p((Win)i = 1) = 0.3. The filterbank h was then chosen to equal the

state vector, i.e. ht = st.

D.2. Details of the Numerical Examples 145

D.2.3 Details to the Predictive Coding Application

Weights w were initialized with 0.1 and ĝ as well as all elements of the history of g and

g′ with 0.01. The learning rates were set to ηw = 2 ·10−4 and ηg = 2.5 ·10−4. The trade-

off parameter was set to γ = 10−3. Furthermore the values of L and Lpredictive were

evaluated using the python module pyentropy based on spike trains X, Y of length

5 · 105 with frozen weights w. For Lpredictive the term I(y0,X0,δ) was approximated

by I(y0,X0,δ) ≈∑100
j=1 I(y

0,X0,δ
j) to avoid the undersampling problem occurring in the

evaluation of the mutual information for high-dimensional variables. This approximation

introduced a large error, however the results still give intuition of the evolution of the

“true” IB objective function Lpredictive.

Appendix E

Computational Power and the

Order-Chaos Phase Transition

in Reservoir Computing

E.1 Computational Performance for Further Example

Tasks

In this section the performance measure pexp defined in eq. (5.1) in chapter 5 for two

further example tasks is shown. In Fig. E.1 pexp(C,RAND5) is plotted, averaged over

20 randomly chosen 5-bit functions RAND5, circuits C, initial conditions and input

streams. A uniform distribution over all 225

functions RAND5 : {−1,+1}5 → {−1, 1}
was applied. In Fig. E.2 the quantity pexp(C,AND5) for the 5-bit AND-function is

plotted, i.e. the target output at time t is AND5,τ (u, t) = maxi∈{1,...,5}{u(t − τ − i)}
for delay τ . Shown results are averages over 10 circuits C, initial conditions and input

streams. The results shown in Fig. E.1 and E.2 are qualitatively similar to the results

on the PAR-task reported in chapter 5.

E.2 Definition and Calculation of p∞

In this section we give a detailed definition of the heuristic performance measure p∞
and outline an approach to calculate it efficiently.

E.2.1 Notation

Without loss of generality we may set the readout time t to 0 as the input random

process u(.) is assumed to be stationary. Hence the target task of the n last input bits

(delay τ = 0) is a function fT of u(−1), . . . , u(−n). We introduce the following useful

notation for the input:

ui := (ui(−1), ui(−2), . . .) ∈ {−1, 1}N

ui,t := (ui(t− 1), ui(t− 2), . . .) ∈ {−1, 1}N

148 Appendix E. Computational Power in Reservoir Computing

For a vector x = (x1, . . . , xN) ∈ R
N we use the the p-norm ‖.‖p with p = 1 (the

Manhattan norm) for measuring distances:

‖x‖1 =

N∑

i=1

|xi|.

E.2.2 Definition of p∞

In the following we consider two instances N1 and N2 of the same network which solely

differ in the input streams u1(.) and u2(.) they receive. Let d(k) be the normalized

expected distance between the two network states x1(0) and x2(0) of N1 and N2 at time

0 for the case where the inputs u1(.) and u2(.) only differ at the single time step t = −k.
Hence for given u1, the sequence u2 is determined by:

u2(−i) = u1(−i) ∀i ∈ N ∧ i 6= k

u2(−k) = −u1(−k).

∀k ∈ N the inputs u1(−k) ∈ {−1,+1} are iid. with probability p(u1(−k) = 1) =: 0.5.

d(k) is then formally defined as:

d(k) :=
1

N

〈〈
‖x1(0) − x2(0)‖1

〉

W

〉

u
. (E.1)

The average 〈.〉u is taken over all inputs u1(.), u2(.) from the ensemble defined above and

all initial conditions of the network; 〈.〉W denotes the average over all weight matrices

W . If the network is not in the fading memory regime (or equivalently: if it does not

have the echo state property, for a formal definition see (Jaeger, 2001) or (Maass et al.,

2002)) d(k) defined in (E.1) might well depend on the distribution of initial conditions

from which the evolution of x1 and x2 starts; we address this subtle point below. We

define p∞ in the following way:

p∞ = max{ lim
k→∞

(d(2) − d(k)) , 0} = max{d(2) − d(∞), 0}.

E.2.3 The Annealed Approximation

We want to calculate the distance d(k) defined in (E.1) for large networks N → ∞ using

the annealed approximation (AA) introduced in (Derrida & Pomeau, 1986). The AA

consists of approximating the original dynamics of the network by assuming that the

weight matrix W is drawn iid. at every time step. First we notice that in the AA and

the limit N → ∞ the following holds:

d(k) =

〈〈

1

N

N∑

b=1

|x1
b(0) − x2

b(0)|
〉

W

〉

u

=
〈〈
|x1

a(0) − x2
a(0)|

〉

W

〉

u
∀a ∈ N

d(k)
N→∞−−−−→

〈
∣
∣
∣
∣
∣
∣

2m−1∑

i,j=0

p(x1
a(t) = si, x

2
a(t) = sj|u1,t, u2,t)(si − sj)

∣
∣
∣
∣
∣
∣

〉

u

∀a ∈ N. (E.2)

E.2. Definition and Calculation of p∞ 149

Here p(x1
a(t) = si, x

2
a(t) = sj|u1,t, u2,t) denotes the joint probability of finding x1

a(t)

in the state si and x2
a(t) in the state sj given the input u1,t, u2,t. Due to the AA

this probability is independent of the node index a. Moreover p(x1
a(t) = si, x

2
a(t) =

sj|u1,t, u2,t) determines the distribution of the recurrent feedback for the next time step.

Hence, in the AA and for N → ∞ the state of the network is completely described by

the joint distribution of a pair of coordinates x1
a(t) and x2

a(t) in the state space S × S.

We therefore define the probability q in the following way:

qij(t, u
1,t, u2,t) := p(x1

a(t) = si, x
2
a(t) = sj |u1,t, u2,t)

q(t, u1,t, u2,t) :=
(
qij(t, u

1,t, u2,t)
)

i,j∈{0,...,2m−1}
.

Thus q(t, u1,t, u2,t) is the 2m×2m matrix whose entry qi,j is the joint probability of finding

x1
a(t) in the state si and x2

a(t) in sj after applying the input u1,t and u2,t respectively.

Using q we can rewrite (E.2) as:

d(k) =

〈
∣
∣
∣
∣
∣
∣

2m−1∑

i,j=0

qij(0, u
1, u2)(si − sj)

∣
∣
∣
∣
∣
∣

〉

u

=

〈
∣
∣
∣
∣
∣
∣

21−m
2m−1∑

i,j=0

qij(0, u
1, u2)(i− j)

∣
∣
∣
∣
∣
∣

〉

u

.

We need to calculate qij(t, u
1,t, u2,t) at time t = 0 in order to determine d(k). This can

be achieved iteratively via the mapping S representing the transition from time step t

to t+ 1 by applying the input pair u1(t) and u2(t):

q(t+ 1, u1,t+1, u2,t+1) = S
(
q(t, u1,t, u2,t), u1(t), u2(t)

)
.

The k-fold composition of S with the inputs u1 and u2 is denoted by S
(k)
u1,u2:

q(t, u1,t, u2,t) = S
(k)
u1,u2

(

q(t− k, u1,t−k, u2,t−k)
)

q(t, u1,t, u2,t) = lim
k→∞

(

S
(k)
u1,u2

(

q(t− k, u1,t−k, u2,t−k)
))

.

For the sake of fast numerical evaluation, we calculate q(0, u1, u2) by starting at t = −n
with the initial condition q∗:

q(0, u1, u2) = S
(n)
u1,u2 (q∗) .

The initial condition q∗ := 2−mid2m×2m (where idn×m is the n×m identity matrix) was

chosen because of the following relation:

q∗ =
〈
q(t, u1, u1)

〉

u1 .

150 Appendix E. Computational Power in Reservoir Computing

E.2.4 Separation approximation

Unfortunately the complexity to calculate q scales like O(22m) (capital O notation) with

the number of bits m. This basically renders the approach described above useless for

m > 5. However, this can be circumvented by generalizing the AA in the following

way. Since the state xi
a(t) of neuron a is quantized with m bits, we can write it in the

following way:

xi
a(t) =

m−1∑

l=0

2−l(bil(t) − 1/2), bil(t) ∈ {0, 1} (E.3)

Bl(x
i
a(t)) := bil(t).

According to (E.3) there is a unique binary representation of xi
a(t) given by

(bi0(t), . . . , b
i
m−1(t)); the mapping Bl(.) maps a state to its lth bit. Equation (E.3) can be

interpreted as effectively replacing unit a with m binary units of states bil(t) whose out-

puts are reduced by 1/2 and multiplied by 2−l and finally summed up; this is still exact.

Now we assume that each of these m units receives input drawn independently from

the input distribution and has different weights drawn independently from N(0, σ2) ev-

ery time step; hence this approach generalizes the AA. Therefore, for given presynaptic

input the bil(t) are independent for different i and l under this approximation. Thus:

qij(t, u
1,t, u2,t) ≈

m−1∏

l=0

ql
Bl(si),Bl(sj)

(t, u1,t, u2,t)

ql(t, u1,t, u2,t) = (ql
b1
l
,b2

l
(t, u1,t, u2,t))b1

l
,b2

l
∈{0,1}.

ql(t, u1,t, u2,t) is the 2 × 2 matrix, whose entry ql
b1
l
,b2

l

(t, u1,t, u2,t) is the joint probability

of finding the bit number l of unit x1
a(t) in state b1l ∈ {0, 1} and of unit x2

a(t) in state

b2l ∈ {0, 1}. Under this approximation we only have to calculate 4m matrix entries

instead of the 22m entries, which is a considerable reduction of complexity.

We denote the update mapping for ql by Sl:

ql(t+ 1, u1,t+1, u2,t+1) = Sl(q(t, u1,t, u2,t), u1(t), u2(t)).

An explicit form for Sl can be derived in the following way. First we condition the

probability ql(t+1, u1,t+1, u2,t+1) on the presynaptic input h1 = (h1
1, . . . , h

1
K) for network

N1 and h2 = (h2
1, . . . , h

2
K) for network N2 and on the weight matrix W for this time step

(which is the same for N1 and N2). The pairs (h1
i , h

2
i), i ∈ 1, . . . ,K are iid. according

to q(t, u1,t, u2,t). This yields:

ql(t+ 1, u1,t+1, u2,t+1) =
〈〈

ql(t+ 1, u1,t+1, u2,t+1|h1, h2, w)
〉

W

〉

h1,h2

=
∑

h1,h2

p(h1, h2)

∫

dW p(W)ql(t+ 1, u1,t+1, u2,t+1|h1, h2,W).(E.4)

E.2. Definition and Calculation of p∞ 151

We used the following abbreviations :

〈
X(h1, h2)

〉

h1,h2 :=
∑

h1,h2

p(h1, h2)X(h1, h2)

=
∑

h1
1,h2

1

· · ·
∑

h1
K

,h2
K

(
K∏

i=1

qh1
i ,h2

i
(t, u1,t, u2,t)

)

X(h1, h2) (E.5)

〈X(W)〉W :=

∫

dW p(W)X(W) =

∫

R

· · ·
∫

R

X(W)p(w1, . . . , wK) dw1 · · · dwK .

Here w1, . . . , wK denote the K presynaptic weights. Conditioned on the input and the

weights, the network realizations N1 and N2 are independent:

ql
ij(t+ 1, u1,t+1, u2,t+1|h1, h2, w) = p(b1l (t+ 1) = i|h1, w)p(b2l (t+ 1) = j|h2, w)

= δ(Bl(fm(wTh1 + u1(t))), i)δ(Bl(fm(wTh2 + u2(t))), j)

wThi :=

K∑

α=1

wαh
i
α.

δ(., .) denotes the Kronecker-Delta of its two arguments. The K-fold integral over the

weights appearing in (E.4) can be reduced to a single integral:

∫

dW p(W)ql
ij(t+ 1, u1,t+1, u2,t+1|h1, h2,W) = F l

ij(h
1, h2, u1(t), u2(t))

F l
ij(h

1, h2, u1(t), u2(t)) =
1

(8π det(C)Σ22)1/2

2l−1∑

α=0

∫

Iα,i−u1(t)

dv exp

(

−v
2

2

(

Σ11 −
Σ2

12

Σ22

))

×

2l−1∑

β=0

[

erf

(

(I+
β,j − u2(t))Σ22 + Σ21v

(2Σ22)1/2

)

− erf

(

(I−β,j − u2(t))Σ22 + Σ21v

(2Σ22)1/2

)]

Here we use the following definitions:

C = σ2

(
(h1)Th1 (h1)Th2

(h2)Th1 (h2)Th2

)

Σij =
(
C−1

)

ij

2l−1⋃

α=0

Iα,i = supp(δ(Bl(fm(.)), i))

Iα,i = [I−α,i, I
+
α,i]

I−α,i := tanh−1
(

2−l+1α− 1
)

I+
α,i := tanh−1

(

2−l+1(α+ 1) − 1
)

.

152 Appendix E. Computational Power in Reservoir Computing

A m = 1 B m = 3 C m = 6

Figure E.1: The performance pexp(C,RAND5) for three different quantization levels
m = 1, 3, 6, averaged over 20 randomly drawn functions of 5 bits, circuits C, initial
conditions and input streams. pexp(C,RAND5) is plotted as a function of the network
in-degree K and the weight STD σ. The networks size is N = 150. The input time
series have length 10000. The solid line represents the numerically found critical line.

A m = 1 B m = 3 C m = 6

Figure E.2: Same figure as Fig. E.1 showing the performance pexp(C,AND5) for the
5-bit AND-task averaged over 10 circuits C, initial conditions and input streams.

The support of the function δ(Bl(fm(.)), i) is the union of 2l disjoint intervals Iα,i with

lower bound I−α,i and upper bound I+
α,i.

Using the expression F l
ij the update can finally be written as:

ql
ij(t+ 1, u1,t+1, u2,t+1) =

〈

F l
ij(h

1, h2, u1(t), u2(t))
〉

h1,h2
.

For the sake of computational tractability for larger m and K, we do not evaluate the 2K

sums explicitly involved in the average over the presynaptic input 〈.〉h1,h2. Instead we

determine this expectation value by a finite number a samples from the joint distribution

p(h1, h2); this sampling is easily realizable since p(h1, h2) is of the product form given

in (E.5); sample size for all experiments was chosen to be 150.

Appendix F

Connectivity, Dynamics, and

Memory in Reservoir Computing

with Binary and Analog Neurons

F.1 Lyapunov Exponents via Branching Processes

In this section the probabilities pαβ
ij defining the multitype branching process described

in section 6.2 are calculated. The network is assumed to be of infinite size (N = ∞) and

the weight matrix W is assumed to be regenerated independently at every time step

(AA approximation). In the AA the recurrent input
∑∞

j=1wijxj(t) to unit i at time

t is distributed symmetrically wrt. 0 as the weights wij are distributed symmetrically

wrt. 0. It is straight forward to see that all dynamics are invariant whether the input

u(t) = 1 or u(t) = −1. Hence without loss of generality (wlog) we can assume u(t) = 1

in the rest of the analysis, a fact that makes the use of branching theory possible.

In order to calculate the probabilities pαβ
ij it is necessary to calculate the steady-state

probabilities pSm(s) of a network unit to assume the state s ∈ Sm. Let zij(t) denote the

product wijxj(t) of the weight wij (with wij ∼ pw = N (0, σ2)) and the activation xj(t)

of unit j at time t. All zij(t) for i, j ∈ N are iid. according to pz. The recurrent input

Zi(t) =
∑

j=1 zij(t) to unit i is the sum of K independent contributions (corresponding

to the K recurrent connections for each unit). The following equations hold for the

distributions:

pz(z) =

∫

ds
1

|s|pSm(s)pw(z/s)

pZ = ∗Kpz = pz ∗ . . . ∗ pz
︸ ︷︷ ︸

K-times

pSm(s) =

∫

dZpZ(Z)χIs(Z + 1), (F.1)

where ∗K denotes the K-fold convolution and χI(·) is the indicator function of the

interval I. The interval Is = (ψm ◦ g)−1(s) is the inverse image of s under the quantized

activation function ψm ◦ g. The equations (F.1) are solved numerically in an iterated

fashion for the steady-state distributions pSm and pz.

pαβ
ij denoting the probability per output link that a perturbation sα → sβ causes a

perturbation si → sj (where Sm = {s1, . . . , s2m} is the single unit state space) can easily

154 Appendix F. Connectivity in Reservoir Computing

be calculated using the steady-state distributions pSm and pz from (F.1). It is given by:

pαβ
ij =

∫

dw

∫

dZ ′ pw(w)pZ′(Z ′)χIsi
(Z ′ + sαw + 1)χIsj

(Z ′ + sβw + 1)

pZ′ = ∗K−1pz

where w denotes the weight of the input that is perturbed by the sα → sβ perturbation

and Z ′ denotes the recurrent input to the unit from the remaining K − 1 presynaptic

units which are unaffected by the sα → sβ perturbation.

In an infinite size network with neuron in-degree K generated as described in section

6.2 the neuron out-degree is Poisson distributed with mean K. Therefore the mean

descendant matrix M whose element Mα+2m(β−1),i+2m(j−1) denotes the average number

of descendants of type si → sj caused by a sα → sβ perturbation for α, β, i, j = 1, . . . ,m

is given by:

Mα+2m(β−1),i+2m(j−1) = K · pαβ
ij .

According to (6.2) the largest Lyapunov exponent is defined as:

λ = lim
n→∞

1

n
ln

(
H(n)

H(0)

)

H(n) = d(x1(n),x2(n)) = ‖x1(n) − x2(n)‖1.

Here we restricted ourselves wlog to the use of the p−1 norm (as all norm are equivalent

on R
N). Following (Athreya & Ney, 1972) the expected number of perturbations after

n time steps is given by ZTMn. Here ZT denotes the transposed of Z ∈ N
22m

whose

i-th element Zi denotes the initial number of perturbations of type sα → sβ with i =

α+ 2m(β − 1) at time step 0. Hence H(n) can be cast into the following form:

H(n) = ZTMnD

where the elements of D ∈ R
22m

are given by Dα+2m(β−1) = |sα − sβ|. It is then

straightforward to see that:

λ = lim
n→∞

1

n
ln

(
ZTMnD

ZTD

)

= ln(ρ)

where ρ is the largest eigenvalue of M which is guaranteed to be non-negative by the

Perron–Frobenius theorem.

Although the dimension of M is 22m × 22m we cannot expect to obtain 22m mean-

ingful eigenvalues of M as the matrix also contains 2m rows describing the “diagonal”

perturbations sα → sα which are only trivial perturbations. Furthermore as the network

dynamics of a qESN defined in (6.2) are symmetric wrt. 0, the perturbations sα → sβ are

equivalent to the perturbation s2m+1−α → s2m+1−β . Hence, M only has 2m−1(2m − 1)

meaningful eigenvalues of which the logarithm represents the Lyapunov spectrum.

F.2. Dependence of Computational Performance on Task Delay and
Network Size 155

A m = 1 B m=6

Figure F.1: Cohen’s kappa coefficient κ(C,RAND5,τ) plotted as a function of the delay
parameter τ for binary networks with m = 1 (log σ = 0.2, K = 3, panel A) and for
high-resolution networks with m = 6 (log σ = 0, K = 3, panel B). The plots show results
for different networks with size N = 25 (dotted), N = 50 (dashed) and N = 150 (solid).
Results for each parameter pair (τ ,N) were averaged over 50 different circuits C. The
performance measure pexp(C,TASKn) can be interpreted as the area under the plotted
curves (corresponding to a summation over τ).

F.2 Dependence of Computational Performance on Task

Delay and Network Size

The performance measure pexp(C,TASKn) introduced in (6.3) for a task TASKn of n bits

(e. g. PAR5) and a circuit C is given by summation of the performances κ(C,TASKn,τ)

for the τ -delayed task TASKn,τ over all delays τ ≥ 0. The quantity pexp(C,TASKn) is

hence not easy to interpret as it is not bounded for all system sizes N ∈ N. To give

some intuition about the performance of the qESN, the kappa coefficient κ(C,RANDn,τ)

(which is in [0, 1]) is explicitly plotted as a function of τ in Fig. F.1 A for binary (m = 1)

and in Fig. F.1 B for high-resolution networks (m = 6) with different network sizes

N = 25, 50, 150 for the task RAND5. It can be observed that for fixed N the kappa

coefficient κ decreases monotonically with τ and for fixed τ it increases monotonically

with N (in agreement with the results presented in Fig. 6.10). The performance measure

pexp(C,TASKn) is the area under the curves shown in Fig. F.1.

F.3 Input Separation d(k) in the Annealed Approximation

Here we calculate the distance d(k) defined in (6.4) for large networks N → ∞ using

the annealed approximation (AA) introduced in (Derrida & Pomeau, 1986). We denote

networks receiving the the input u1(·) and u2(·) with N1 and N2 respectively. First we

156 Appendix F. Connectivity in Reservoir Computing

notice that in the AA and the limit N → ∞ the following holds:

d(k) = lim
N→∞

〈

1

N

N∑

b=1

|x1
b(0) − x2

b(0)|
〉

C

=
〈
|x1

a(0) − x2
a(0)|

〉

C
∀a ∈ N

=

2m−1∑

i,j=0

qij(k, u
1, u2) |si − sj| . (F.2)

Here qij(k, u
1, u2) denotes the joint probability of finding x1

a(k) in the state si and

x2
a(k) in the state sj given the input u1(·), u2(·). Due to the AA this probability is

independent of the node index a. Hence, in the AA and for N → ∞ the state of the

network is completely described by the joint distribution of a pair of states x1
a(k) and

x2
a(k) in the state space Sm ×Sm. Moreover qij(k, u

1, u2) determines the distribution of

the recurrent feedback for the next time step k+1. We define the matrix q(k, u1, u2) with

the entries qij(k, u
1, u2). We denote the mapping from qij(k, u

1, u2) to qij(k + 1, u1, u2)

as S representing the transition from time step k to k + 1 by applying the input pair

u1(k) and u2(k):

q(k + 1, u1, u2) = S
(
q(k, u1, u2)

)
.

Separation Approximation

Since the state xi
a(k) of neuron a is quantized withm bits, we can write it in the following

way:

xi
a(k) =

m−1∑

l=0

2−l(bil − 1/2), bil ∈ {0, 1} (F.3)

Bl(x
i
a(k)) := bil.

According to (F.3) there is a unique binary representation of xi
a(k) given by

(bi0, . . . , b
i
m−1); the mapping Bl(.) maps a state to its lth bit. Equation (F.3) can be

interpreted as effectively replacing unit a with m binary units of states bil whose outputs

are reduced by 1/2 and multiplied by 2−l and finally summed up; this is still exact. Now

we assume that each of these m units receives input drawn independently from the in-

put distribution and has different weights drawn independently from N(0, σ2) every time

step. For given presynaptic input the b1l and b2l are independent for all l = 0, . . . ,m− 1

under this approximation:

qij(k, u
1, u2) =

m−1∏

l=0

ql
Bl(si),Bl(sj)

(k, u1, u2),

ql(k, u1, u2) denotes the 2×2 matrix, whose entry ql
b1
l
,b2

l

(k, u1, u2) is the joint probability

of finding the bit number l of unit x1
a(k) in state b1l ∈ {0, 1} and of unit x2

a(k) in state

b2l ∈ {0, 1}. Under this approximation we only have to calculate 4m matrix entries

F.3. Input Separation d(k) in the Annealed Approximation 157

instead of the 22m entries, which is a considerable reduction of complexity.

We denote the update mapping for ql by Sl:

ql(k + 1, u1, u2) = Sl(q(k, u1, u2)).

An explicit form for Sl can be derived in the following way: First we condition the

probability ql(k+1, u1, u2) on the presynaptic input h1 = (h1
1, . . . , h

1
K) ∈ SK

m for network

N1 and h2 = (h2
1, . . . , h

2
K) ∈ SK

m for network N2 and on the weight matrix W defining

the circuit C for this time step k + 1 (which is the same for N1 and N2). The pairs

(h1
i , h

2
i), i ∈ 1, . . . ,K are iid. according to q(k, u1, u2). This yields:

ql(k + 1, u1, u2) =
〈〈

ql(k + 1, u1, u2|h1, h2,W)
〉

C

〉

h1,h2

=
∑

h1,h2

p(h1, h2)

∫

dW p(W)ql(k + 1, u1, u2|h1, h2,W). (F.4)

Here p(W) denotes the probability of the weight matrix W , which is multi-normal for

all the non-vanishing K weights per row. Conditioned on the input and the weights,

the network realizations N1 and N2 are independent and the K-fold integral over the

weights appearing in (F.4) can be explicitly integrated to a single integral:

∫

dW p(W)ql
ij(k + 1, u1, u2|h1, h2,W) = F l

ij(h
1, h2, u1(k), u2(k)).

F l is defined as:

F l
ij(h

1, h2, u1(k), u2(k)) =
1

(8π det(C)Σ22)1/2

2l−1∑

α=0

∫

Iα,i−u1(k)

dv exp

(
v2

2

(
Σ2

12

Σ22
− Σ11

))

×

2l−1∑

β=0

[

erf

(

(I+
β,j − u2(k))Σ22 + Σ21v

(2Σ22)1/2

)

− erf

(

(I−β,j − u2(k))Σ22 + Σ21v

(2Σ22)1/2

)]

.

Here we use the following definitions:

R = σ2

(
(h1)Th1 (h1)Th2

(h2)Th1 (h2)Th2

)

Σij =
(
R−1

)

ij

Iα,i = [I−α,i, I
+
α,i] :=

[

tanh−1
(

2−l+1α− 1
)

, tanh−1
(

2−l+1(α+ 1) − 1
)]

,

where (ha)Thb =
∑N

i=1 h
a
i h

b
i denotes the standard dot product. Using the above expres-

sion for F l
ij the update can finally be written as:

ql
ij(k + 1, u1, u2) =

〈

F l
ij(h

1, h2, u1(k), u2(k))
〉

h1,h2
.

158 Appendix F. Connectivity in Reservoir Computing

For the sake of computational tractability for larger m and K, we do not evaluate the 2K

sums explicitly involved in the average over the presynaptic input 〈.〉h1,h2. Instead we

determine this expectation value by a finite number a samples from the joint distribution

p(h1, h2); this sampling is easily realizable since p(h1, h2) is of the product form given

in (F.4); sample size for all experiments was chosen to be 150.

F.4 Bound for the Memory Function

F.4.1 Upper Bound for the Memory Function

Here we derive the upper bound (6.9) for the memory function m(k). The target output

at time t for the memory task of k time steps is given by yT (t) = u(t − k). The

linear readout with weights αi has the output y(t) = αTx(t) =
∑N

i=1 αixi(t). α is

the learned by linear regression yielding α = A−1p(k), where A =
〈
x(t)x(t)T

〉
is the

covariance matrix of the network state x(t) and pk = (pk1, . . . , pkN) = 〈x(t)yT (t)〉. Here

〈·〉 denotes the average over the input u(·) for a given circuit A. Using the expression

for the memory function given in (White et al., 2004) results in:

m(k) = pT
kA

−1pk ≤ ‖A−1‖2‖pk‖2,

where ‖ · ‖ is the standard Euclidean norm and ‖ · ‖2 is the corresponding induced

operator norm. Without loss of generality we can set the readout time t = 0 as the

input sequence u(·) is stationary. Now look at a single component of pk:

pki = 〈xi[u](0)uk〉 .

Here x[u](0) = (x1[u](0), . . . , xN [u](0)) is the state vector that results from applying the

left-infinite input sequence u = (u1, u2, . . .) where uk := u(−k). Further we define:

ui := (ui+1, ui+2, . . .)

ui,j := (ui+1, . . . , uj).

The ◦ is used for concatenating sequences such that u = u1,k ◦ uk = u1,k−1 ◦ uk ◦ uk

∀k ∈ N. Using this notation the component pki can be written as:

pki = 〈xi[u](0)uk〉 =
∑

u

p(u)xi[u](0)uk

=
∑

u0,k−1

p(u0,k−1)
∑

uk

p(uk)
∑

uk

p(uk)
(

xi[u
0,k−1 ◦ uk ◦ uk](0)uk

)

.

F.4. Bound for the Memory Function 159

Since all inputs are independent, we can carry out explicitly the sum over uk with

p(uk) = 1/2:

pki =
1

2

∑

u0,k−1

p(u0,k−1)
∑

uk

p(uk)
(

xi[u
0,k−1 ◦ (+1) ◦ uk](0) − xi[u

0,k−1 ◦ (−1) ◦ uk](0)
)

=
1

2

〈

xi[u
0,k−1 ◦ (+1) ◦ uk](0) − xi[u

0,k−1 ◦ (−1) ◦ uk](0)
〉

u0,k−1,uk
.

Now the vector h = (h1, . . . , hN) is defined in the following way:

hi := xi[u
0,k−1 ◦ (+1) ◦ uk](0) − xi[u

0,k−1 ◦ (−1) ◦ uk](0).

It can be seen that from the definition (6.4) of d(k) that the following identity holds:

d(k) =
1

N
〈‖h‖1〉 .

The squared Euclidean norm of pk can be expressed as:

‖pk‖2 =
1

4

N∑

i

〈hi〉2
1

4
≤ 1

4

N∑

i

〈|hi|〉2

≤ 1

4

(
N∑

i

〈|hi|〉
)2

=
1

4

(〈
N∑

i

|hi|
〉)2

=
1

4
〈‖h‖1〉2 =

N2

4
d(k)2.

Together with the fact that m(k) ≤ 1 (which is simply the Cauchy-Schwarz inequality)

this finally results in:

m(k) ≤ min

{
N2

4
‖A−1‖2 d(k)

2, 1

}

.

F.4.2 An Annealed Approximation for ‖A−1‖2

Here we calculate ‖A−1‖2 for m = 1 (binary) qESNs using the annealed approxima-

tion (AA). We start by explicitly calculating the components Aij = 〈xi(t)xj(t)〉. The

diagonal elements simply evaluate to:

Aii = 〈xi(t)xi(t)〉 =
〈
xi(t)

2
〉

= 0.25 =: a.

The network state update equations are rewritten in the following form:

xi(t) = Θ

(
1

2
zi(t− 1) + u(t− 1)

)

zi(t− 1) := 2
K∑

j=1

wijxj(t− 1),

160 Appendix F. Connectivity in Reservoir Computing

where Θ(x) = 1/2 for x > 0 and Θ(x) = −1/2 otherwise. Independent from the

input, the quantity zi(t− 1) is normally distributed according to zi(t) ∼ N (0,Kσ2) and

zi(t− 1) and zj(t− 1) are iid for i 6= j. Further, as 〈zi(t− 1)〉 = 0 we may assume wlog

u(t− 1) = 1. The probability p+ for xi(t) = +0.5 and p− evaluate to:

p(xi(t) = +0.5) = p+ = Φ

(
2

K1/2σ

)

p(xi(t) = −0.5) = p− = Φ

(

− 2

K1/2σ

)

Φ(x) =
1

2

(

1 + erf

(
x√
2

))

.

Now the off-diagonal elements of A can easily be computed (i 6= j):

Aij = 〈xi(t)xj(t)〉 = 0.25(p+ − p−)2 := b.

Due to the simple form of A (all diagonal elements are equal to a and the off-diagonal

elements are equal to b) its eigenvalues can easily be determined. There are two different

eigenvalues λmin < λmax:

λmax = a+ (N − 1)b

λmin = a− b = 0.25
(
1 − (p+ − p−)2

)

= 0.25

(

1 −
(

Φ

(
2

K1/2σ

)

− Φ

(

− 2

K1/2σ

))2
)

.

Now the following relation holds for the matrix norm ‖ · ‖2:

‖A−1‖2 = λ−1
min = 4

(

1 −
(

Φ

(
2

K1/2σ

)

− Φ

(

− 2

K1/2σ

))2
)−1

.

References

Artola, A., Bröcher, S., & Singer, W. (1990, September). Different voltage-dependent

thresholds for inducing long-term depression and long-term potentiation in slices

of rat visual cortex. Nature, 347 , 69-72.

Athreya, K. B., & Ney, P. E. (1972). Branching Processes. Springer.

Badel, L., Lefort, S., Brette, R., Petersen, C., Gerstner, W., & Richardson, M. (2008).

Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage

traces. J Neurophysiol , 99 , 656 - 666.

Barrett, A., Billings, G., Morris, R., & Rossum, M. van. (2009). State based model of

long-term potentiation and synaptic tagging and capture. Plos Comp Biol , 5(1),

e1000259. doi:10.1371/journal.pcbi.1000259.

Becker, S. (1996, January). Mutual information maximization: models of cortical self-

organization. Network: Computation in Neural Systems, 7 (1), 7-31.

Becker, S., & Hinton, G. E. (1992). Self-organizing neural network that discovers surfaces

in random-dot stereograms. Nature, 355 , 161-163.

Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. The

Journal of Neuroscience, 23 (35), 11167–11177.

Bell, A. J., & Sejnowski, T. J. (1995). An Information-Maximization Approach to Blind

Separation and Blind Deconvolution. Neural Computation, 7 (6), 1129-1159.

Bertschinger, N., & Natschlaeger, T. (2004). Real-time computation at the edge of

chaos in recurrent neural networks. Neural Computation, 16 (7), 1413–1436.

Bi, G., & Poo, M. (1998). Synaptic modifications in cultured hippocampal neurons:

dependence on spike timing, synaptic strength, and postsynaptic cell type. J

Neuroscience, 18 (24), 10464–10472.

Bi, G., & Poo, M. (2001). Synaptic modification of correlated activity: Hebb’s postulate

revisited. Ann. Rev. Neurosci., 24 , 139-166.

Bialek, W., Steveninck, R. R. de Ruyter van, & Tishby, N. (2006). Efficient rep-

resentation as a design principle for neural coding and computation. In IEEE

International Symposium on Information Theory. .

Blais, B., Shouval, H., & Cooper, L. (1998). Receptive field formation in natural scene

environments: comparison of single-cell learning rules. Neural Computation, 10 ,

1797-1813.

Boyd, S., & Chua, L. O. (1985). Fading memory and the problem of approximating

nonlinear oparators with Volterra series. IEEE Trans. on Circuits and Systems,

32 , 1150–1161.

Boyd, S., Chua, L. O., & Desoer, C. A. (1984). Analytical Foundations of Volterra

Series. IMA Journal of Mathematical Control & Information, 1 , 243-282.

Brader, J., Senn, W., & Fusi, S. (2007). Learning real-world stimuli in a neural network

with spike-driven synaptic dynamics. Neural Computation, 19 , 2881-2912.

Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an

effective description of neuronal activity. Neurophysiol , 94 , 3637–3642.

162 References

Buonomano, D., & Maass, W. (2009). State-dependent computations: Spatiotemporal

processing in cortical networks. Nature Reviews in Neuroscience, 10 (2), 113–125.

Buonomano, D., & Merzenich, M. (1998). Cortical plasticity: From synapses to maps.

Annual Review of Neuroscience, 21 , 149-186.

Caporale, N., & Dan, Y. (2008). Spike Timing-Dependent Plasticity: A Hebbian Rule.

Annu. Rev. Neurosci..

Chechik, G. (2003). Spike-timing-dependent plasticity and relevant mutual information

maximization. Neural Compuatation, 15 (7), 1481-1510.

Clopath, C., Ziegler, L., Vasilaki, E., Buesing, L., & Gerstner, W. (2008). Tag-trigger-

consolidation: A model of early and late long-term-potentiation and depression.

PLoS Comput Biol , 4 (12).

Cooper, L., Intrator, N., Blais, B., & Shouval, H. Z. (2004). Theory of cortical plasticity.

Singapore: World Scientific.

Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York:

Wiley.

Creutzig, F., & Sprekeler, H. (2008). Predictive coding and the slowness princi-

ple: An information-theoretic approach. Neural Computation, 20 (4), 1026-1041.

(doi:10.1162/neco.2008.01-07-455)

DeFelipe, J., & Fariñas, I. (1992). The pyramidal neuron of the cerebral cortex: mor-

phological and chemical characteristics of the synaptic inputs. Prog Neurobiol.,

39 (6), 563-607.

Denk, W., & Horstmann, H. (2004). Serial block-face scanning electron microscopy

to reconstruct three-dimensional tissue nanostructure. PLoS Biol , 2(11), e329.

doi:10.1371/journal.pbio.0020329.

Derrida, B., & Pomeau, Y. (1986). Random networks of automata: A simple annealed

approximation. Europhysics Letters, 1 (2), 45-49.

Derrida, B., & Stauffer, D. (1986). Phase Transitions in Two-Dimensional Kauffman

Cellular Automata. Europhys Lett , 2 , 739-745.

Destexhe, A., Rudolph, M., & Pare, D. (2003). The high-conductance state of neocortical

neurons in vivo. Nat. Rev. Neurosci., 4 (9), 739–751.

Dudek, S. M., & Bear, M. F. (1993). Bidirectional long-term modification of synaptic

effectiveness in the adult and immature hippocampus. J. Neuroscience, 13 , 2910-

2918.

Fregnac, Y., & Shulz, D. (1999). Activity-dependent regulation of receptive field prop-

erties of cat area 17 by supervised hebbian learning. J. Neurobiol , 41 , 69-82.

Frey, U., & Morris, R. (1997). Synaptic tagging and long-term potentiation. Nature,

385 , 533 - 536.

Friedman, N., Mosenzon, O., Slonim, N., & Tishby, N. (2001). Multivariate information

bottleneck. In Proceedings of the 17th Conference in Uncertainty in Artificial

Intelligence (pp. 152–161). Menlo Park, USA: AAAI Press.

Froemke, R. C., Merzenich, M. M., & Schreiner, C. E. (2007). A synaptic memory trace

for cortical receptive field plasticity. Nature, 450 , 425-429.

Ganguli, S., Huh, D., & Sompolinsky, H. (2008). Memory traces in dynamical systems.

PNAS , 15 (48), 18970-18975.

References 163

Gerstner, W., Kempter, R., van Hemmen, L., & Wagner, H. (1996). A neuronal learning

rule for sub-millisecond temporal coding. Nature, 383 , 76-78.

Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models. Cambridge: Cambridge

University Press.

Gütig, R., Aharonov, R., Rotter, S., & Sompolinsky, H. (2003). Learning input corre-

lations through non-linear temporally asymmetric Hebbian plasticity. Journal of

Neurosci., 23 , 3697–3714.

Guyonneau, R., VanRullen, R., & Thorpe, S. (2005). Neurons tune to the earliest spikes

through stdp. Neural Computation, 17 (4), 859–879.

Haeusler, S., & Maass, W. (2007). A statistical analysis of information processing

properties of lamina-specific cortical microcircuit models. Cerebral Cortex , 17 (1),

149-162.

Hardie, J., & Spruston, N. (2009). Synaptic depolarization is more effective than

back-propagating action potentials during induction of associative long-term po-

tentiation in hippocampal pyramidal neurons. J. Neurosci , 2009 , 29: 3233 - 3241.

Harremoes, P., & Tishby, N. (2007, June). The information bottleneck revisited or how

to choose a good distortion measure. In Proceedings of the IEEE International

Symposium on Information Theory, 2007 (ISIT 2007) (p. 566-570). : IEEE.

Hebb, D. O. (1949). The Organization of Behavior. New York: Wiley.

Hee, S. G., Ziburkus, J., Huang, S., Song, L., Kim, I. T., Takamiya, K., et al. (2007).

Neuromodulators Control the Polarity of Spike-Timing-Dependent Synaptic Plas-

ticity. Neuron, 55 , 919-929.

Hinton, G. (2007). To recognize shapes, first learn to generate images. Progress in brain

research, 165 , 535.

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current

and its application to conduction and excitation in nerve. Journal of Physiology,

117 , 500–544.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective

computational abilities. Proc. Natl. Acad. Sci. USA, 79 , 2554–2558.

Hyvaerinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis.

Wiley-Interscience.

Ince, R. A. A., Petersen, R. S., Swan, D. C., & Panzeri, S. (2009). Python for information

theoretic analysis of neural data. Frontiers in Neuroinformatics(4).

Intrator, N., & Cooper, L. N. (1992). Objective function formula-

tion of the BCM theory of visual cortical plasticity: statistical connec-

tions, stability conditions. Neural Networks, 5 , 3-17. Available from

citeseer.ist.psu.edu/intrator92objective.html

Izhikevich, E. M. (2007). Solving the Distal Reward Problem through Linkage

of STDP and Dopamine Signaling. Cerebral Cortex , bhl152. Available from

http://cercor.oxfordjournals.org/cgi/content/abstract/bhl152v1

Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamo-

cortical systems. Proceedings of the National Academy of Sciences, 105 , 3593-3598.

Available from http://www.pnas.org/cgi/content/abstract/0712231105v1

Jadhav, S. P., Wolfe, J., & Feldman, D. E. (2009). Sparse temporal coding of ele-

164 References

mentary tactile features during active whisker sensation. Nature Neuroscience,

doi:10.1038/nn.2328.

Jaeger, H. (2001). The ”echo state” approach to analyzing and training recurrent neu-

ral networks (GMD Report No. 148). : German National Research Center for

Information Technology.

Jaeger, H. (2002). Short term memory in echo state networks (GMD Report No. 152).

German National Research Center for Information Technology.

Jaeger, H. (2007). Echo state networks. Scholarpedia, 2 (9), 2330.

Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: predicting chaotic systems and

saving energy in wireless communication. Science, 304 , 78–80.

Jaeger, H., Lukosecicius, M., Popovici, D., & Siewert, U. (2007). Optimization and ap-

plications of echo state networks with leaky-integrator neurons. Neural Networks,

20 (3), 335-352.

Joshi, P., & Maass, W. (2005). Movement generation with circuits of spiking neurons.

Neural Computation, 17 (8), 1715–1738.

Joshi, P., & Triesch, J. (2008). A globally asymptotically stable plasticity rule for

firing rate homeostasis. In Proceeding of the International Conference on Neural

Networks (ICANN).

Katok, A., & Hasselblatt, B. (1995). Introduction to the Modern Theory of Dynamical

Systems. Cambridge Univ. Press.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly connected nets.

J. Theoret. Biol., 22 , 437.

Klampfl, S., Legenstein, R., & Maass, W. (2007). Information bottleneck optimization

and independent component extraction with spiking neurons. In Proc. of NIPS

2006, Advances in Neural Information Processing Systems (Vol. 19, pp. 713–720).

: MIT Press.

Klampfl, S., Legenstein, R., & Maass, W. (2009). Spiking neurons can learn to solve

information bottleneck problems and to extract independent components. Neural

Computation, 21 (4), 911–959.

Kozloski, J., & Cecchi, G. A. (2008). Topological effects of spike timing-dependent

plasticity. arxiv.org , abs, 0810.0029.

Langton, C. G. (1990). Computation at the edge of chaos. Physica D , 42 , 12–37.

Laughlin, S., de Ruyter van Steveninck, R., & Anderson, J. (1998). The metabolic cost

of neural information. Nature Neuroscience, 1 , 36-41.

Lazar, A., Pippa, G., & Triesch, J. (2007). Fading memory and time series prediction

in recurrent networks with different forms of plasticity. Neural Networks, 20 ,

312-322.

Lefort, S., Tomm, C., Sarria, J., & Petersen, C. (2009). The excitatory neuronal

network of the c2 barrel column in mouse primary somatosensory cortex. Neuron,

61 , 301-316.

Legenstein, R., & Maass, W. (2007a). Edge of chaos and prediction of computational

performance for neural microcircuit models. Neural Networks, 20 (3), 323–334.

Legenstein, R., & Maass, W. (2007b). What makes a dynamical system computationally

powerful? In S. Haykin, J. C. Principe, T. Sejnowski, & J. McWhirter (Eds.), New

References 165

Directions in Statistical Signal Processing: From Systems to Brains (pp. 127–154).

MIT Press.

Legenstein, R., Markram, H., & Maass, W. (2003). Input prediction and autonomous

movement analysis in recurrent circuits of spiking neurons. Reviews in the Neuro-

sciences (Special Issue on Neuroinformatics of Neural and Artificial Computation),

14 (1–2), 5–19.

Legenstein, R., Naeger, C., & Maass, W. (2005). What can a neuron learn with spike-

timing dependent plasticity. Neural Computation, 17 , 2337-2382.

Lennie, P. (2003). The cost of cortical computation. Current Biology, 13 , 493–497.

Levy, N., Horn, D., Meilijson, I., & Ruppin, E. (2001). Distributed synchrony in a cell

assembly of spiking neurons. Neural Networks, 14 (6-7), 815 - 824.

Levy, W. B., & Baxter, R. A. (1996). Energy efficient neural codes. Neural Computation,

8 (3), 531-543.

Linsker, R. (1989). How to generate ordered maps by maximizing the mutual information

between input and output signals. Neural Computation, 1 (3), 402-411.

Lisman, J., & Spruston, N. (2005). Postsynaptic depolarization requirements for LTP

and LTD: a critique of spike timing-dependent plasticity. Nature Neuroscience,

8 (7), 839–841.

Lisman, J., & Zhabotinsky, A. (2001). A model of synaptic memory: A CaMKII/PP1

switch that potentiates transmission by organizing an AMPA receptor anchoring

assembly. Neuron, 31 , 191-201.

Lubenov, E. V., & Siapas, A. G. (2008). Decoupling through synchrony in neuronal

circuits with propagation delays. Neuron, 58 , 118-131.

Lukosecicius, M., & Jaeger, H. (2007). Overview of reservoir recipes (Tech. Rep. No. 11).

Jacobs University Bremen.

Luque, B., & Solé, R. V. (2000). Lyapunov exponents in random Boolean networks.

Physica A, 284 , 33-45.

Maass, W., Natschlaeger, T., & Markram, H. (2002). Real-time computing without

stable states: A new framework for neural computation based on perturbations.

Neural Computation, 14 (11), 2531-2560.

Maass, W., & Sontag, E. D. (2000). Neural systems as nonlinear filters. Neural Com-

putation, 12 (8), 1743–1772.

Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarassment of riches.

Neuron, 44 , 5–21.

Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic

efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275 , 213–215.

Mayor, J., & Gerstner, W. (2005). Signal buffering in random networks of spik-

ing neurons: Microscopic versus macroscopic phenomena. Physical Review E ,

72 (051906).

Meffin, H., Besson, J., Burkitt, A. N., & Grayden, D. B. (2006). Learning the struc-

ture of correlated synaptic subgroups using stable and competitive spike-timing-

dependent plasticity. Physical Review E , 73 .

Miller, K. D. (1994). A model for the development of simple cell receptive fields and

the ordered arrangement of orientation columns through activity dependent com-

166 References

petition between ON- and OFF-center inputs. J. Neurosci., 14 , 409-441.

Mitchell, M., Hraber, P. T., & Crutchfield, J. P. (1993). Revisiting the edge of chaos:

Evolving cellular automata to perform computations. Complex Systems, 7 , 89–

130.

Morrison, A., Aertsen, A., & Diesmann, M. (2007). Spike-timing dependent plasticity

in balanced random networks. Neural Computation, 19 , 1437-1467.

Natschlaeger, T., Bertschinger, N., & Legenstein, R. (2005). At the edge of chaos:

Real-time computations and self-organized criticality in recurrent neural networks.

In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in Neural Information

Processing Systems (NIPS) 17 (p. 145-152). Cambridge, MA: MIT Press.

Nevian, T., & Sakmann, B. (2006). Spine ca2+ signaling in spike-timing-

dependent plasticity. J. Neurosci., 26 (43), 11001-11013. Available from

http://www.jneurosci.org/cgi/content/abstract/26/43/11001

Ngezahayo, A., Schachner, M., & Artola, A. (2000). Synaptic activity modulates the

induction of bidirectional synaptic changes in adult mouse hippocampus. The

Journal of Neuroscience, 20(7), 2451-2458.

O’Connor, D., Wittenberg, G., & Wang, S. (2005). Dissection of Bidirectional Synaptic

Plasticity Into Saturable Unidirectional Processes. Journal of Neurophysiology,

94 , 1565–1573.

Oja, E. (1982). A simplified neuron model as a principal component analyzer. J.

Mathematical Biology , 15 , 267-273.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field prop-

erties by learning a sparse code for natural images. Nature, 381 , 607–609.

Packard, N. (1988). Adaption towards the edge of chaos. In J. A. S. Kelso, A. J. Mandell,

& M. F. Shlesinger (Eds.), Dynamic patterns in complex systems (pp. 293–301).

World Scientific.

Papoulis, A. (1991). Probability, Random Variables and Stochastic Processes (3rd ed.).

: McGraw-Hill.

Parra, L., Beck, J., & Bell, A. (2009). On the maximization of information flow between

spiking neurons. Neural Computation, 1-19.

Pfister, J.-P., & Gerstner, W. (2006). Triplets of spikes in a model of spike timing-

dependent plasticity. J. Neuroscience, 26 , 9673-9682.

Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the fre-

quency representation of primary auditory cortex following discrimination training

in adult owl monkeys. The Journal of Neuroscience, 13 , 87-103.

Risken, H. (1996). The Fokker-Planck Equation (3rd ed.). : Springer.

Roberts, P., & Bell, C. (2000). Computational consequences of temporally asymmetric

learning rules: II. Sensory image cancellation. Computational Neuroscience, 9 ,

67-83.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by back-

propagating errors. Nature, 323 , 533–536.

Saudargiene, A., Porr, B., & Wörgötter, F. (2003). How the shape of pre- and postsy-

naptic signals can influence stdp: A biophysical model. Neural Computation, 16 ,

595-626.

References 167

Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J. J., & Stroobandt, D. (2008,

1). Improving reservoirs using intrinsic plasticity. Neurocomputing , 1159-1171.

Sejnowski, T. J., & Tesauro, G. (1989). The hebb rule for synaptic plasticity: algorithms

and implementations. In J. H. Byrne & W. O. Berry (Eds.), Neural Models of

Plasticity (p. 94-103). : Academic Press.

Senn, W., Tsodyks, M., & Markram, H. (2001). An algorithm for modifying neuro-

transmitter release probability based on pre- and postsynaptic spike timing. Neural

Computation, 13 , 35-67.

Shamir, O., Sabato, S., & Tishby, N. (2008). Learning and generalization with the infor-

mation bottleneck. In International Symposium on AI and Mathematics (ISAIM)-

2008. : .

Shmulevich, I., Dougherty, E., Kim, S., & Zhang, W. (2002). Probabilistic Boolean

networks: a rule-based uncertainty model for gene regulatory networks. Bioinfor-

matics, 18 (2), 261-274.

Shouval, H. Z., Bear, M. F., & Cooper, L. N. (2002). A unified model of nmda receptor

dependent bidirectional synaptic plasticity. Proc. Natl. Acad. Sci. USA, 99 , 10831-

10836.

Singh, C. K., Prasad, S. H., & Balsara, P. T. (2007). VLSI Architecture for Matrix

Inversion using Modified Gram-Schmidt based QR Decomposition. In VLSID

’07: Proceedings of the 20th International Conference on VLSI Design held jointly

with 6th International Conference (pp. 836–841). Washington, DC, USA: IEEE

Computer Society.

Sjöström, P., Turrigiano, G., & Nelson, S. (2003). Neocortical ltd via coincident activa-

tion of presynaptic nmda and cannabinoid receptors. Neuron, 39 , 641-654.

Sjöström, P. J., & Häusser, M. (2006). A Cooperative Switch Determines the Sign of

Synaptic Plasticity in Distal Dendrites of Neocortical Pyramidal Neurons. Neuron,

227-238.

Sjöström, P. J., Rancz, E. A., Roth, A., & Häusser, M. (2008). Dendritic Excitability

and Synpatic Plasticity. Physiol. Rev..

Sjöström, P. J., Turrigiano, G. G., & Nelson, S. B. (2001). Rate, timing and coopera-

tivity jointly deterimine cortical synaptic plasticity. Neuron, 32 , 1149-1164.

Slonim, N., & Tishby, N. (1999). Agglomerative information bottleneck. In Advances in

Neural Information Processing Systems (NIPS). Cambridge (MA): MIT Press.

Slonim, N., & Tishby, N. (2001). The power of word clustering for text classification.

In Proceedings of the European Colloquium on IR Research, ECIR 2001. : .

Slonim, N., & Weiss, Y. (2003). Maximum likelihood and the information bottleneck.

Advances In Neural Information Processing Systems (NIPS), 351–358.

Solé, R., Luque, B., & Kauffman, S. (2000). Phase transitions in random networks with

multiple states (Tech. Rep. No. 00-02-011). Santa Fe Institute.

Song, S., & Abbott, L. F. (2001). Cortical development and remapping through spike

timing-dependent plasticity. Neuron, 32 , 339-350.

Song, S., Sjöström, P., Reigl, M., Nelson, S., & Chklovskii, D. (2005). Highly nonrandom

features of synaptic connectivity in local cortical circuits. PLoS Biology , 3 , 507-

519.

168 References

Stuart, G. J., & Häusser, M. (2001). Dendritic coincidence detection pf EPSPs and

action potentials. Nature, 4 (1).

Tishby, N., Pereira, F. C., & Bialek, W. (1999). The information bottleneck method. In

Proceedings of the 37-th Annual Allerton Conference on Communication, Control

and Computing (pp. 368–377).

Toyoizumi, T., Pfister, J.-P., Aihara, K., & Gerstner, W. (2005). Generalized

Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information

transmission. Proc. Natl. Acad. Sci. USA, 102 , 5239–5244.

Toyoizumi, T., Pfister, J.-P., Aihara, K., & Gerstner, W. (2007). Optimality Model of

Unsupervised Spike-Timing Dependent Plasticity: Synaptic Memory and Weight

Distribution. Neural Computation, 19 (3), 639–671.

Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes, J. R., Welker, E., et

al. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity

in adult cortex. Nature, 420 , 788-794.

Triesch, J. (2007). Synergies between intrinsic and synaptic plasticity mechanisms.

Neural Compuatation, 19 (4), 885-909.

Tsodyks, M., & Markram, H. (1997). The neural code between neocortical pyramidal

neurons depends on neurotransmitter release probability. Proc. Nat. Acad. Sci.

USA, 94 , 719-23.

Turrigiano, G., & Nelson, S. (2004). Homeostatic plasticity in the developing nervous

system. Nature Reviews Neuroscience, 5 , 97-107.

Vandoorne, K., Dierckx, W., Schrauwen, B., Verstraeten, D., Baets, R., Bienstman, P.,

et al. (2008). Toward optical signal processing using photonic reservoir computing.

Optics Express, 16 (15), 11182–11192.

Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley (New York).

Verstraeten, D., Schrauwen, B., D’Haene, M., & Stroobandt, D. (2007). A unifying

comparison of Reservoir Computing methods. Neural Networks, 20 , 391-403.

Verstraeten, D., Schrauwen, B., Stroobandt, D., & Campenhout, J. V. (2005). Iso-

lated word recognition with the liquid state machine: a case study. Information

Processing Letters, 95 (6), 521–528.

Verstraeten, D., Souza, S. Xavier-de, Schrauwen, B., Suykens, J., Stroobandt, D., &

Vandewalle, J. (2008, 9). Pattern classification with CNNs as reservoirs. In Pro-

ceedings of the International Symposium on Nonlinear Theory and its Applications

(NOLTA).

Vogels, T. P., Rajan, K., & Abbott, L. (2005). Neural Networks Dynamics. Annual

Review of Neuroscience, 28 , 357-376.

Wang, H., Gerkin, R., Nauen, D., & Bi, G. (2005). Coactivation and timing-dependent

integration of synaptic potentiation and depression. Nat. Neurosci., 8 (2), 187-93.

Weiss, R. (2007). Predictive Information as a Criterion to Linear Dynamical Systems

Reduction. Unpublished master’s thesis, The Racah Institute of Physics, The

Hebrew University, Jerusalem, Israel.

White, O. L., Lee, D. D., & Sompolinsky, H. (2004). Short-term memory in orthogonal

neural networks. Phys. Rev. Letters, 92 (14), 148102.

Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of

References 169

invariances. Neural Computation, 14 (4), 715–770.

Wolfram, S. (1984). Universality and complexity in cellular automata. Physica D , 10 ,

1–35.

Yuste, R., & Bonhoeffer, T. (2004). Genesis of dendritic spines: insights from ultra-

structural and imaging studies. Nat Rev Neurosci , 5 (1), 24–34.

Zinn-Justin, J. (2003). Phase Transitions and Renormalization Group: from Theory to

Numbers. Oxford: Oxford Univ. Press.

