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Abstract

Wave propagation phenomena in unbounded domains occur in many engineering appli-
cations, e.g., soil structure interactions. The considered problem is often modeled by the
theory of elasticity which is in some applications a sufficient accurate approximation. Nev-
ertheless, the interaction of the solid- and the fluid phase attribute a time dependent charac-
ter to the mechanical response of the saturated soil, which can be modeled by Biot’s theory
of poroelasticity. When simulating unbounded domains, infinite elements are a possible
choice to describe the far field behavior, whereas the near field is described through con-
ventional finite elements. Hence, an infinite element is presented to treat wave propagation
problems in unbounded elastic and saturated porous media. Infinite elements are based on
special shape functions to approximate the semi-infinite geometry as well as the Sommer-
feld radiation condition, i.e., the waves decay with distance and are not reflected at infinity.
To provide the wave information the infinite elements are formulated in Laplace domain.
The time domain solution is obtained by using the convolution quadrature method as in-
verse Laplace transformation. The temporal behavior of the near field is calculated using
a standard time integration scheme, i.e., the Newmark-method. Finally, the near- and far
field are combined using a substructure technique in any time step. The accuracy as well as
the necessity of the proposed infinite elements, when unbounded domains are considered,
is demonstrated with different examples.

Zusammenfassung

In vielen Bereichen des Ingenieurwesens sind Wellenausbreitungsvorgänge zu beobachten
und zu berechnen. Ein Beispiel hierfür ist die Boden-Bauwerksinteraktion bei Erdbeben-
anregung. Der Boden wird dabei oft linear elastisch modelliert. Dies kann jedoch nur eine
erste Näherung sein, da die Interaktion mit dem Porenwasser vernachlässigt wird. Mit der
poroelastischen Theorie von Biot wird dies jedoch berücksichtigt. Unendlich ausgedehn-
te Gebiete können durch Verwendung der Finiten Elemente Methode in Kombination mit
so genannten infiniten Elementen modelliert werden. Dabei werden finite Elemente dazu
verwendet um das Verhalten des Nahfeldes und infinite Elemente um das Verhalten des
Fernfeldes zu modellieren. Entsprechend befaßt sich diese Arbeit mit der Formulierung
eines infiniten Elements, um die Wellenausbreitung in elastischen- bzw. poroelastischen
Gebieten unendlicher Ausdehnung zu untersuchen. Die infiniten Elemente besitzen spezi-
elle Ansatzfunktionen um die Sommerfeldsche Abstrahlbedingung zu approximieren. Im
wesentlichen muss modelliert werden, dass Wellen ins Unendliche auslaufen und nicht re-
flektiert werden. Dies kann im Laplacebereich durch Exponentialfunktionen geschehen.
Deswegen wird im Fernfeld die Faltungsquadraturmethode zur Zeitdiskretisierung heran-
gezogen und im Nahfeld das Newmark Zeitintegrationsverfahren. Das Nah- und Fernfeld
werden unter Verwendung einer Substrukturtechnik gekoppelt, um das zeitliche Verhalten
des gesamten Gebietes zu erhalten. Die Arbeitsweise der infiniten Elemente wird an Bei-
spielen aufgezeigt. Dabei wird deutlich, dass eine Berechnung ohne infinite Elemente zu
falschen Ergebnissen führt. Die vorgestellten infiniten Elemente erweisen sich als effektiv.





CONTENTS

Notation iii

1 Introduction 1
1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Wave equations for elastodynamics and poroelastodynamics 7
2.1 Linear elastodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Plane body waves in elastic material . . . . . . . . . . . . . . . . 9

2.2 Linear poroelastodynamics - Biot’s theory . . . . . . . . . . . . . . . . . 11
2.2.1 Constitutive equations . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Balances of momentum . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Elimination of the pore pressure . . . . . . . . . . . . . . . . . . 15
2.2.4 Elimination of the relative displacement in time domain . . . . . 15
2.2.5 Laplace domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.6 Elimination of the relative displacement in Laplace domain . . . . 17
2.2.7 Plane body waves in poroelastic media . . . . . . . . . . . . . . 17

2.3 Notes on unbounded domains . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Methods for unbounded domains . . . . . . . . . . . . . . . . . . . . . . 20

3 Finite Element Method 25
3.1 Elastodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Strong and weak formulation . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Element point of view . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.4 Laplace domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Poroelastodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 The full form ui, p,wi . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 The symmetric full form ui, p,wi . . . . . . . . . . . . . . . . . . 44
3.2.3 The irreducible form ui,wi . . . . . . . . . . . . . . . . . . . . . 45
3.2.4 The ui, p form in time domain . . . . . . . . . . . . . . . . . . . 47
3.2.5 The ui, p form in Laplace domain . . . . . . . . . . . . . . . . . 48
3.2.6 Approximation order of mixed poroelastic formulation . . . . . . 51
3.2.7 Transformation of variables . . . . . . . . . . . . . . . . . . . . 52

i



3.3 Temporal discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Newmark method . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Convolution quadrature method . . . . . . . . . . . . . . . . . . 56

3.4 Numerical evaluation of finite integrals . . . . . . . . . . . . . . . . . . . 58

4 Infinite Elements 59
4.1 Infinite elements for elastodynamics . . . . . . . . . . . . . . . . . . . . 61

4.1.1 1d elastodynamic infinite element . . . . . . . . . . . . . . . . . 61
4.1.2 3d elastodynamic infinite element . . . . . . . . . . . . . . . . . 68

4.2 Infinite elements for elastostatics . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Infinite elements for poroelastodynamics . . . . . . . . . . . . . . . . . . 72

4.3.1 Analytical 1d poroelastodynamic infinite element . . . . . . . . . 72
4.3.2 1d approximated infinite element . . . . . . . . . . . . . . . . . . 74
4.3.3 3d poroelastodynamic infinite element . . . . . . . . . . . . . . . 77
4.3.4 Quasi-static poroelastic infinite element . . . . . . . . . . . . . . 78

4.4 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Time domain solution of coupled finite and infinite elements . . . . . . . 81

5 Numerical Examples 85
5.1 Elastodynamic problems . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 One-dimensional elastic column . . . . . . . . . . . . . . . . . . 86
5.1.2 One-dimensional infinite elastic column . . . . . . . . . . . . . . 91
5.1.3 Elastic halfspace . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Poroelastodynamic problems . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2.1 One-dimensional poroelastic column . . . . . . . . . . . . . . . 110
5.2.2 Poroelastic halfspace . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.3 Soil on a bedrock . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Conclusion 133

A Analytic solutions 137
A.1 Time domain solution of a finite elastic column . . . . . . . . . . . . . . 137
A.2 Time domain solution of an infinite elastic column . . . . . . . . . . . . 138
A.3 Analytic solution of a finite poroelastic column . . . . . . . . . . . . . . 138
A.4 Analytic solution of an infinite poroelastic column . . . . . . . . . . . . . 142

References 145

ii



Notation

Throughout this thesis the indical notation is used. The summation convention is ap-
plied over repeated indices and Latin indices receive the values 1, 2 and 1, 2, 3 in two-
dimensions (2d) and three-dimensions (3d), respectively. Sometimes the summation over
repeated indices is explicitly stated for a better understanding. Commas (),i denote spatial
derivatives and dots (̇) denote the time derivative.

As long as no other meaning is explicitly given to a certain quantity within the text, its
meaning corresponds to the following notation list.

General symbols

[a,b] Closed interval a,b
(a,b) Open interval a,b
(a,b], [a,b) Half open intervals a,b
a,b, . . . ,α,β , . . . Scalar values
a,b, . . . Vectors
δi j Kronecker symbol
εi jk Permutation symbol
s Complex Laplace parameter, s ∈ C : Re(s)> 0
L { f (t)}, f̂ (s) Laplace transform of f (t)
g Real or complex valued function
f,i Gradient of f
fi,i Divergence of fi
fi, j Gradient of fi
(),i partial derivative with respect to xi

(̇) time derivative
A Second order tensor [Ai j]1≤i, j≤3
a ·b,〈a,b〉 Scalar product a ·b = 〈a,b〉 := ∑

3
i=1 aibi

a⊗b Outer product [aib j]1≤i, j≤3
a×b Vector product a×b := ∑

3
i=1 εi jka jbk

A : B Double contraction, double dot product
Ei(z) Exponential integral of z
H(t) Heaviside step function, H(t) = 0, t < 0 ;H(t) = 1, t > 0
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Special symbols

xi Location
c,cP,cS,cR Wave velocity, compressional wave velocity, shear wave velocity,

velocity of Rayleigh wave
c1,c2 Poroelastic fast compressional wave velocity, poroelastic slow

compressional wave velocity
k wave number
t Time
εii Volume dilatation
K Bulk modulus
εi j Linear strain tensor
ωi j Linear rotation tensor
σi j Cauchy stress tensor
Ci jk` Fourth order elasticity tensor
E Young’s modulus
ν Poisson’s ratio
ni Normal vector
φ Porosity of the solid skeleton of porous media
V s,V f ,V Volume of the solid phase, fluid phase, and bulk material
εs

i j,ε
f

i j Strain tensor of the solid skeleton and the fluid
ui,u

f
i Solid and fluid displacement

wi relative displacement of the fluid phase to the solid skeleton
p Pore pressure of the interstitial fluid of porous material
σ s

i j,σ
f

i j Stress tensor of the solid and fluid phase
σ tot

i j ,σ
eff
i j Total and effective stress tensor of porous media

K f ,Ks,K Compression modulus of the fluid, solid grains, and bulk material
G Shear modulus
α Biot’s effective stress coefficient
ζ Variation of fluid volume per unit reference volume
qi Specific flux
%a Biot’s apparent mass density
κ Permeability
Tr Boundary trace operator
Ω d-dimensional domain Ω (d = 1,2,3)
Γ Boundary of domain Ω

Ω Closed domain Ω (Ω = Γ∪Ω)
ΓD Boundary with prescribed Dirichlet data
ΓN Boundary with prescribed Neumann data
V Space of possible solutions of the boundary value problem
Vg Functions of V fulfilling Neumann boundary conditions
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V0 Functions of V which are zero on the Dirichlet boundary
Vh Set of all finite element shape functions and their linear combination
Vh

g Functions of Vh fulfilling Neumann boundary conditions
Vh

0 Functions of Vh which are zero on the Dirichlet boundary
τe Finite element
τ̂ Reference element
Ωh Triangulation of Ω

EN Total number of finite elements in Ωh
eN Set containing all finite elements
ϕ̃ Global defined shape function
ϕ,ϑ ,ψ,S Local shape function defined on τ̂

m Mapping function defined on τ̂

n̄h Set containing all nodes of Ωh
nh Set containing all nodes of Ω∪ΓN

nD Set containing all nodes of ΓD

N̄h Number of nodes in Ωh
Nh Number of nodes in Ωh∪Γh

N
n̂e Set containing all nodes of τ̂

N̂e Nodes of τ̂

Je Jacobi matrix of τe
Γh
D Discrete boundary of ΓD

Γh
N Discrete boundary of ΓN

ϒb Finite element on the boundary Γh
N (e.g. edge in two dimensions)

BN
Γh Set of finite elements ϒb living on the boundary Γh

N

ϒ̂ Reference element in relation to ϒb

n̂b Set containing all nodes of ϒ̂

N̂b Nodes of ϒ̂

ϕΓ Shape function defined on ϒ̂

mΓ Mapping function defined on ϒ̂

NG Number of quadrature points
a Characteristic length of infinite element
r Radial distance measure of infinite element
µ(ξ3) Phase term
D(ξ3) Radial weight
nB Set containing all nodes on the base face of the infinite element
nP

B Number of nodes on the base face of the infinite element
nS Set containing all source points of the infinite element
nM Set containing all mapping points of the infinite element
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1 INTRODUCTION

The numerical treatment of unbounded domains is of considerable interest in many engi-
neering applications, e.g., soil structure analysis, earthquake-, or geotechnical engineering.
Numerical approximation methods have to be used since the partial differential equations
describing the physical problem are only solvable for special cases. Especially, the fast
growing computer technology of the past have encouraged the use and development of
such numerical approximation schemes.

The most versatile and developed numerical approximation scheme is the Finite Element
Method (FEM). The FEM is applicable to various kinds of engineering problems, which
can be highly non-linear or exhibit inhomogeneous material behavior, e.g., the FEM has
been utilized to linear- and non-linear problems as well as to isotropic and anisotropic
problems in elastostatics and elastodynamics. The standard FEM yields sparse populated
matrices which are often symmetric and, therefore, many efficient solutions procedures
have been developed. Nevertheless, the finite element method is restricted to bounded
problems.

The use of so-called infinite elements in combination with the finite element method is a
possible choice for the investigation of unbounded domains. An infinite element is sim-
ply an element which attempts to represent the behavior of the solution in the unbounded
domain. Thus, the unbounded domain is decomposed into a near field, where the spatial
discretization is performed using conventional finite elements and into a far field, which is
spatially discretized with infinite elements. Infinite elements can be easily coupled (nodes
of the finite and infinite elements match each other at their interface) to finite elements
and retain the banded structure of the matrices. Due to the fact that the near field is dis-
cretized with standard finite elements the application to, e.g., non-linear problems can be
still accomplished. However, various other numerical methods for unbounded domains
exist.

One common choice for the numerical treatment of unbounded domains is the Boundary
Element Method (BEM). The BEM makes use of so-called fundamental solutions, which
are analytical solutions of the governing differential equations due to a point source within
an unbounded domain. The fact that the fundamental solution is exact brings in the ad-
vantage of improved accuracy. Moreover, the fundamental solutions automatically fulfills
the Sommerfeld radiation condition, whereas other approximation methods only can try to
approximate it. Especially for wave propagation problems the boundary element method
is more accurate as the finite element method, as it represents the solution of the wave
equation within the domain exactly. Another advantage of the boundary element method
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2 1 Introduction

is that only a spatial discretization of the surface of the considered domain has to be per-
formed. Especially when a spatial discretization of a complex three-dimensional geometry
is needed the finite element approach may lead to a tedious task, whereas the spatial dis-
cretization of the surface can be conducted more easily. On the other hand, singularities
are present when using the boundary element method, which need special attention dur-
ing the numerical integration. Nevertheless, the BEM is restricted to liner differential
equations since the fundamental solutions for non-linear problems are generally not at-
tainable. A common approach to overcome this restriction is the coupling of BEM with
FEM, although special care has to be taken regarding the stability of the resulting equations
system. The latest development of a coupled finite element scheme with the boundary ele-
ment method can be found in the work of Rüberg [118] for the case of an elastic material.
Compared to the classical finite element method the boundary element method in it’s orig-
inal formulation requires more computational effort. Here, it must be mentioned that the
so-called fast boundary element methods have made great advance in the recent past and,
thus, got competitive to the finite element method. The book of Rjasanow and Steinbach
[117] gives an insight into these fast boundary element methods. A good overview of the
classical boundary element method for the application to elastic problems is given in the
book of Gaul et al. [73], which also reveals a historical development of the method. The
BEM for the poroelastic case is elaborated by Schanz [123].

Another approach to approximate unbounded domains is the use of so called artificial
or absorbing boundary conditions (ABC). This method introduces an artificial boundary,
which deceives the solution that it actually extends to infinity. These artificial boundary
conditions are then applied to the boundary of the standard finite element method. It is not
trivial to find proper choices of such boundary conditions for various wave problems, since
the artificial boundary condition has to represent the unbounded domain in an appropriate
manner. In the context of wave propagation problems, an artificial boundary condition is
also called a Non-Reflecting Boundary Condition (NRBC). Artificial Boundary Conditions
for the dynamic analysis of poroelastic media can be found, for instance, in [2, 3]. Time-
domain analysis of dam-reservoir-foundation-systems using Absorbing Boundaries were
investigated by Feltrin [71].

The unbounded domain can also be represented by using an absorbing boundary layer.
This special layer is attached to the conventional finite element mesh. When a traveling
wave enters the absorbing layer it is attenuated and, therefore, its amplitude decreases.
Nevertheless, the thickness of the boundary layer as well as the absorbing properties re-
main to be chosen in such a way that the waves are sufficiently absorbed. This character-
istic yields the denotation Perfectly Matched Layer, or PML, for the absorbing layer. The
application of perfectly matched layers to transient and time-harmonic elastodynamics is
discussed, e.g., by Basu [19] and Basu and Chopra [20, 21]. The use of perfectly matched
layers in poroelastodynamics is treated by Zeng et al. [151].

In this work, the approach of using infinite elements in combination with conventional
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finite elements will be used. Hence, an infinite element will be developed to represent an
elastic as well as a poroelastic unbounded domain in an appropriate manner. Although,
the approach of the infinite element is rather simple, as will be seen in the ongoing, the
numerical results are sufficiently accurate.

1.1 State of the art

First publications on infinite elements were the thesis of Ungless [140] and the paper of
Zienkiewicz and Bettess [157]. There exist mainly two different types of infinite elements.
First, the use of a decay function together with a shape function which causes the field
quantity to approach the sought value at infinity, while the finite size of the infinite ele-
ment is retained. Second, conventional shape function are used to describe the variation of
the field quantity, while the geometry is mapped from a finite to an infinite domain. Using
the latter, brings in the advantage that the application of standard integration formulas is
possible, e.g., standard Gauß integration [161]. Mapped infinite elements perform well for
the static case in elastic media [161]. Such mapped infinite elements were also applied
successfully to quasi-static materially nonlinear problems [99]. The application of infinite
elements to wave propagation problems makes it necessary to include outwardly propagat-
ing wave-like factors in their formulation. This concept was originally proposed by Bettess
and Zienkiewicz [33]. For acoustic media a wide variety of formulations exists and are
well developed. A comprehensive overview for the acoustic case is given by Astley [10].
Whereas in the acoustic case only one traveling wave is present, in a homogeneous elastic
half space there are actually three distinct waves, in particular compressional-, shear-, and
Rayleigh waves [79]. These waves travel with three different wave speeds. The simplest
approach is to include the characteristic of only one wave within the infinite element for-
mulation. Depending on the spatial location of the infinite element, the dominant wave is
incorporated into the infinite element formulation, e.g., see [148]. Moreover, an exponen-
tial decay of the field quantity is often assumed, instead of the correct asymptotic decay
in three dimensions of 1/r (r is the distance measure to the applied load) [148, 154]. In-
finite elements, capable of simulating all three wave types in the time harmonic case are
developed by Zhao and Valliappan [152] and Yun et al. [150], but they also assume an ex-
ponential decay of the solution. Medina and Penzien [100] proposed an interesting infinite
element for time harmonic applications, considering all three wave types. They perform
very well but the evaluation of the shape functions turned out to be extremely tedious and
they also assume an exponential decay of the field quantity.

Whereas the development of infinite elements for elastodynamic problems is well estab-
lished the application of appropriate infinite elements to poroelastic issues is rather small.
An infinite element formulation for wave propagation problems in one-dimensional poroe-
lastic material has been accomplished by Khalili et al. [86]. Later they extended their work
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to the two-dimensional case [87]. Their work covers time harmonic problems and the infi-
nite element formulation considers the occurrence of the two compressional waves only.

Of course, the application of infinite elements is widespread and applied to many different
fields of engineering. Here are some examples in compressed form such as consolidation
[129], mass transport [153], electromagnetics [68], heat transfer [137], ground freezing
[9], fluid-structure interaction [33, 162], and soil-structure interaction [52, 53, 100, 101,
111, 148, 150].

1.2 Overview

In chapter 2, the governing equations of linear elastodynamics and poroelastodynamics
are shortly recalled. The porous material is modeled by Biot’s theory. Additionally, the
dynamic versions of the governing equations are condensed to their static and quasi-static
counterparts of the elastic and poroelastic material, respectively. Concerning the poroelas-
tic material, different formulations by means of different numbers of degrees of freedom
will be discussed. Moreover, the wave speeds of plane body waves in infinite elastic and
poroelastic materials will be derived. This section will be closed with a short overview of
numerical approximation schemes for unbounded domains.

Chapter 3 is devoted to finite element formulations of the governing equations presented
in chapter 2. Especially, for the poroelastic material different approaches of the numerical
approximation will be discussed. The spatial discretization is performed using the standard
finite element method. Then, the temporal discretization with respect to the Newmark
method and the convolution quadrature method is presented.

The main scope of this work, the application of infinite elements to unbounded problems
in elasto- and poroelastodynamics, is treated in chapter 4. The shape functions of the
infinite elements are defined in Laplace domain to provide the wave-like behavior, which
is approximated by exponential functions. To evaluate the occurring integrals, containing
these exponential functions, in the variational formulation a special quadrature rule will
be presented. The time domain solution of the far field is calculated with the convolution
quadrature method. As mentioned before, the temporal behavior of the near field is treated
by the Newmark-method. In order to obtain the time domain solution of the whole domain,
a substructure technique will be presented which yields the time domain solution of the
near- and far field. Beside these developments for dynamic problems the static solution is
obtained as side effect.

The validation of the proposed infinite elements will be conducted in chapter 5. Here, the
solution of the proposed approximation scheme will be compared to either analytical or
semi-analytical solutions or to solutions obtained by the boundary element method.
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The thesis will be concluded with a short summary in chapter 6, which is followed by an
brief outlook on possible future work in this topic.





2 WAVE EQUATIONS FOR ELASTODYNAMICS AND
POROELASTODYNAMICS

2.1 Linear elastodynamics

In the following, the basic equations of dynamic elasticity are summarized. A more de-
tailed illustration can be found, e.g., in the textbooks of Becker and Gross [24], Sommer-
feld [132], and Altenbach and Altenbach [5]. If the main focus is on the topic of wave
propagation the books of Graff [79] and Achenbach [1] give a detailed description. The
presentation of the governing equation here follows the textbooks of Gaul et al. [73] and
Becker and Gross [24].

2.1.1 Governing equations

To obtain the governing equation of elastodynamics the kinematic relations, the balance
or conservation laws and the constitutive equations have to be formulated.

To describe the deformation of a continuum, the displacement field ui = ui(x, t) at any
point x and time t is introduced. The linear strain tensor εi j within the elastic continuum is
given by

εi j =
1
2
(
ui, j +u j,i

)
. (2.1)

From the above equation (2.1), it is obvious that the linear strain tensor εi j is symmetric
εi j = ε ji. The strain tensor εi j is the symmetric part of the deformation gradient ui, j, which
is defined by

ui, j =
1
2
(
ui, j +u j,i

)
+

1
2
(
ui, j−u j,i

)
= εi j + ωi j ,

where ωi j represents the rotation tensor. Since ωi j represent just a rigid body rotation of
the elastic solid, no stresses are generated. The rotation tensor ωi j therefore represents a
rigid body translation. For this reason only the strain tensor is of interest in the law of
elasticity.
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8 2 Wave equations for elastodynamics and poroelastodynamics

The stress-strain relation is given by the constitutive equation. In the case of a homoge-
neous elastic material this relation is given for any point in the elastic material by

σi j =Ci jk`εk` , (2.2)

where Ci jk` is the fourth order elasticity tensor and σi j is the second order stress tensor.
Since elastic behavior is assumed, the elasticity tensor Ci jk` is independent of the time
t. For an isotropic material, the mechanical response is independent of the direction of
stress loading and, furthermore, the elasticity tensor consists only on two independent
components and offers several symmetries [24], i.e.

Ci jk` =C jik` =Cik`k . (2.3)

Thus, using the symmetric properties of the material tensor (2.3) with the linear geometry
relation (2.1) yields the stress tensor

σi j =Ci jk`εk` =Ci jk`
1
2
(uk,`+u`,k) =

1
2
(Ci jk`uk,`+Ci j`kuk,`) =Ci jk`uk,` . (2.4)

The elasticity tensor for isotropic material may also be expressed as

Ci jk` =

(
K− 2

3
G
)

δi jδk`+G
(
δikδ j`+δi`δ jk

)
, (2.5)

where K and G are the compression- and shear modulus. These two quantities can also be
expressed in terms of the well known Young’s modulus E and the Poisson’s ratio ν [24]

K =
E

3(1−2ν)
G =

E
2(1+ν)

E =
9KG

3K +G
ν =

3K−2G
6K +2G

.

Inserting (2.5) into (2.2) leads to

σi j =

(
K− 2

3
G
)

uk,kδi j +G(ui, j +u j,i) (2.6)

the stress tensor in dependence of the material parameters K and G. To complete the
set of governing equations, the equation of motion has to be formulated. The balance of
momentum yields Cauchy’s equation of motion

σi j, j + fi = %üi , (2.7)

with the body forces fi and the uniformly distributed mass density %. The notation (̇)
denotes the first time derivative and, consequently, (̈) the second time derivative. Taking
the divergence of (2.6) and inserting it in (2.7) yields the equation of motion in the form

(K +
1
3

G)u j, ji +Gui, j j + fi = %üi . (2.8)
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The Laplace transform f̂ (s) =L { f (t)} of equation (2.8), when vanishing initial boundary
conditions are assumed, i.e., ui(0) = 0 and u̇i(0) = 0, is given by

(K +
1
3

G)û j, ji +Gûi, j j + fi = s2%ûi , (2.9)

with the complex Laplace parameter s.

2.1.2 Plane body waves in elastic material

In this section, the occurrence of plane body waves in unbounded elastic materials will be
investigated. The main steps follow the procedures as shown in the books of Graff [79]
and Achenbach [1]. Consider a plane wave expressed by

ui = Ai f(nkxk− ct) , (2.10)

where Ai gives the particle displacement of the wave, nk is the wave normal unit vector,
and xk denotes the position vector. Thus, equation (2.10) represents a plane wave whose
planes of constant phase are traveling with wave velocity c normal to nk. Since the material
is of isotropic nature the wave velocity c is independent of the direction. A plane wave in
Laplace domain may be expressed by

ûi = Ai e−
s
c nkxk .

Inserting equation (2.10) into the elastic equation of motion (2.8) yields, when body forces
are neglected

(K +
1
3

G)A jn jni f′′+GAin jn j f′′−Ai%c2 f′′ = 0 , (2.11)

where the prime, i.e., ()′, denotes the spatial derivative. Since n jn j = 1, equation (2.11)
reduces to

(K +
1
3

G)A jn jni +(G−%c2)Ai = 0 , (2.12)

which can only be satisfied if the particle displacement is orthogonal to the wave front
Aini = 0 or the particle displacement is in direction of the wave front ni = A/Ai [1]. The
latter simplifies (2.12) to (

(K +
4
3

G
)
−%c2)Ai = 0 ,

which yields the compressional (longitudinal) wave speed

cP =

√
K + 4

3G
%

. (2.13)
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For this case, the rotation vanishes, i.e., ∇×ui = 0 (εi jk∂u j/∂xiek = 0), and, therefore, this
type of wave is also called irrotational wave. Former solution, i.e., Aini = 0, shortens
(2.12) to

(G−%c2)Ai = 0 ,

yielding the shear (transverse) wave speed

cS =

√
G
ρ

. (2.14)

Since, here, the divergence of the displacement vector vanishes, i.e., ∇ · ui = 0 (ui,i = 0),
this type of wave is also called rotational wave. From equations (2.13) and (2.14) follows
that

cP

cS
=

√
(K + 4

3G)

G
=

√
2(1−ν)

1−2ν
> 1 ∀ν ∈ [−1, 1

2) , (2.15)

i.e., the compressional wave is always faster than the shear wave. Note that in (2.15) also
negative Poisson ratios are considered. Materials and structures with negative Poisson’s
ratio can be manufactured and such materials are also an actual field of research, e.g.
[94].

Rayleigh surface wave

Lord Rayleigh [113] first investigated surface waves and found the properties that their
effects decreases rapidly with depth and that their velocity of propagation is smaller than
that of the body waves. The speed of the so called Rayleigh wave can be approximated
by

cR

cS
=

0.87+1.12ν

1+ν
. (2.16)

The wave propagation velocities in elastic material are independent on the frequency [79].
This is obvious when taking a closer look at the definitions of the wave speeds of the
compressional- and shear wave in equations (2.13) and (2.14), respectively, which are fre-
quency independent. Consequently, the approximation of the Rayleigh wave speed (2.16)
indicates that also this wave speed is frequency independent.
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2.2 Linear poroelastodynamics - Biot’s theory

The behavior of fluid infiltrated materials, such as water saturated soils, oil impregnated
rocks or air filled foams is of interest in many branches of science. In order to describe the
behavior of fluid saturated materials, their two-phasic character has to be considered. A
common way is to describe it on the macroscopic level. This means that all quantities of
the microscopic level are smeared out on the basis of an averaging process as it is shown
for example in the book of de Boer [58]. The homogenization process for saturated porous
media is given by Bonnet and Auriault [39] and Auriault et al. [14].

One possibility to model such materials is given by the Theory of Porous Media (TPM),
which is based on the theory of mixtures and derived from the well known methods of
continuum mechanics. The TPM in its current understanding is based on the publications
by Bowen [41, 42] and was improved and developed continuously in the last years by
de Boer and Ehlers [59] and Ehlers [66, 67]. A comprehensive survey of the historical
development of the TPM is given in the book of de Boer [58].

Another theory for porous media was developed by Biot [34] for linear, isotropic poroe-
lastic media containing a viscous fluid. In Biot’s theory (BT), which is based on the work
of von Terzaghi [142], a fully saturated material is assumed. This work was extended later
by Biot to the anisotropic case [35]. Wave propagation phenomena were investigated by
Biot in two papers, one for the low frequency range [37] and one for the high frequency
range [36]. In a porous medium different kinds of body waves occur, two compressional
waves and one shear wave. The first compressional wave is called the fast, whereas the
second one is called the slow wave. The most important characteristic of the slow wave is
that it is higly attenuated. The validity of Biot’s model and the experimental observation
of the slow wave have been confirmed by Plona [110], Brown et al. [47], and Berryman
[30]. A comparative study of Biot’s theory and the TPM was published by Schanz and
Diebels [125]. They observed that for incompressible constituents, and some other restric-
tions, Biot’s theory and the TPM lead to the same governing equations. This is not the
case when compressible constituents are considered. For a more detailed illustration of the
differences of these two models the interested reader is referred to [125].

The Simple Mixture Model of Wilmanski [144], deduced by taking into account thermo-
dynamical fundamental laws, is also capable to model porous material. Compared to the
model of Biot, the Simple Mixture Model neglects some effects. A detailed comparison of
these two methods is given by Wilmanski [145].

Although Biot’s theory is more based on physical intuition, it has the widest acceptance
in geophysics and geomechanics. Within this chapter, the governing equations of Biot’s
theory for poroelastic materials are given briefly, which are used for numerical studies in
this thesis.
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Considering a fully saturated porous media in terms of Biot’s theory [37], the porosity of
the solid skeleton is defined by

φ =
V f

V
,

where V f is the volume of interconnected pores and V is the Volume of the porous material
given by V = V f +V s, with V s denoting the volume of the solid skeleton. The porous
medium is assumed to be statistically isotropic and homogenous in such a way that for all
cross sections the same porosity φ is obtained. Superscript ()s and () f denote solid and
fluid constituents, respectively. The strain tensor of the elastic isotropic solid skeleton is
given through, by assuming small strains,

ε
s
i j =

1
2
(
ui, j +u j,i

)
,

where ui denotes the solid displacement.

2.2.1 Constitutive equations

The partial stress of the solid and the fluid phase using a Lagrangian description is given
by Biot [35]

σ
s
i j = 2Gε

s
i j +

(
K− 2

3
G+

Q2

R

)
ε

s
kkδi j +Qε

f
kkδi j (2.17a)

σ
f

i j =−φ pδi j =
(

Qε
s
kk +Rε

f
kk

)
δi j ,

where G is the shear modulus and K the compression modulus of the solid skeleton. The
parameters Q and R describe the coupling between the solid and the fluid phase and can be
expressed, following the work of Detournay and Cheng [60], as

R =
φ 2K f (Ks)2

K f (Ks−K)+φKs (Ks−K f )
Q =

φ(α−φ)K f (Ks)2

K f (Ks−K)+φKs (Ks−K f )
.

The sign convention of stresses and strains follow that of elasticity, namely tensile stress
and strains are denoted positive. The pore pressure p, therefore, causes a negative stress
in the fluid. Biot used in his earlier work [34] an alternative representation of equations
(2.17), namely the total stress σ tot

i j = σ s
i j +σ

f
i j,

σ
tot
i j = 2Gε

s
i j +

(
K− 2

3
G
)

ε
s
kkδi j−αδi j p , (2.18)

where α denotes Biot’s effective stress coefficient. Equation (2.18) indicates that the pore
pressure in an isotropic porous material only influences the normal stresses, not the shear
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stresses. Without the pore pressure p, equation (2.18) degenerates to the classical relation
for an elastic homogenous material and may be, therefore, rewritten by introducing the
effective stress acting on the solid skeleton

σ
tot
i j = σ

eff
i j −αδi j p . (2.19)

The effective stress tensor σ eff
i j may be also written in a more general form as

σ
eff
i j =Ci jk`ε

s
k` (2.20)

with the symmetric isotropic linear elasticity tensor Ci jk`. Biot’s effective stress coefficient
is defined by [107]

α = 1− K
Ks .

Furthermore, the mass conservation law applied to the fluid flow is used to describe the
porous material. The variation of fluid volume per unit reference volume ζ is introduced

ζ = αui,i +
φ 2

R
p

or represented as time derivative

ζ̇ = α u̇i,i +
φ 2

R
ṗ . (2.21)

The first term of the right-hand side of equation (2.21) describes the additional storage
caused by the expansion of the solid skeleton and the second term denotes a storage due to
the compressibility of the solid grains and fluid [158]. The variation of the fluid volume is
defined by the mass balance, here, given through the continuity equation

ζ̇ +qi,i = 0 , (2.22)

with the specific flux qi = φ(u̇ f
i − u̇i)= ẇi. Here, the variable wi = φ(u f

i −ui) is introduced,
denoting the relative displacement [158] of the fluid phase relative to the solid skeleton.
Hence, the time derivative ẇi is the average relative velocity of seepage measured over the
total area. The term ζ could be interpreted as a motion of the fluid caused by the strain of
the solid skeleton. The divergence of the flux may be written as

ẇi,i +α u̇i,i +
φ 2

R
ṗ = 0 , (2.23)

obtained by inserting equation (2.21) into (2.22).
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2.2.2 Balances of momentum

In the preceding section, the constitutive and kinematic relations of the porous material
are given. To complete the set of needed equations the balances of momentum have to be
formulated. Following Biot’s approach the balances of momentum of the solid skeleton
and the fluid are given by

σ
s
i j, j +(1−φ) f s

i = (1−φ)%süi−
%a

φ
ẅi−

φ

κ
ẇi , (2.24a)

σ
f

i j, j +φ f f
i = φ% f üi +

(
% f +

%a

φ

)
ẅi +

φ

κ
ẇi , (2.24b)

respectively. In the above equations (2.24), the body forces for the solid skeleton f s
i and the

fluid f f
i per unit mass (generally gravity) are introduced. The density of the bulk material,

the solid skeleton and the fluid are defined by %, %s, and % f , respectively. The relation
between the bulk density and the densities of the different constituents is defined by

%= (1−φ)%s +φ% f .

The additional mass term, the apparent mass density %a, in equations (2.24) is introduced
by Biot [37] to describe to dynamic interaction between the solid skeleton and the fluid.
The apparent mass density can be written as %a =Cφ% f , where the factor C is a parameter
depending on the geometry of the pores (tortuosity) and the frequency of excitation. Bon-
net and Auriault [39] presented some measurements for the factor C for low frequencies.
For a sphere of glass beds C = 0.66 is evaluated and will be assumed in this thesis. The
permeability κ is assumed to be isotropic and frequency independent. For the high fre-
quency range, for example, Johnson et al. [83], Biot [36], and Auriault et al. [14] suggest
to use a frequency dependent permeability. However, a time domain representation of the
governing equations just allows for a frequency independent model of the permeability.
Since in this thesis a direct time domain solution is aimed at, a constant permeability will
be used throughout this thesis. The balance of momentum can be also stated for the total
solid-fluid mixture

σ
tot
i j, j +Fi = %üi +% f ẅi , (2.25)

with Fi = (1−φ) f s
i +φ f f

i . For the pore fluid, the equation of motion is already given in
equation (2.24b) and can be rewritten as

qi =−κ

(
p,i +

1
φ 2

(
φ% f +%a

)
ẅi +% f üi− f f

i

)
, (2.26)

which can also be expressed, after rearranging equation (2.26) and solving for the fluid
pressure p, as

p,i +
1

φ 2

(
φ% f +%a

)
ẅi +ρ f üi +

1
κ

ẇi = f f
i . (2.27)
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The above equations (2.26) and (2.27) are also well known as the dynamic version of
Darcy’s law.

Thus, the poroelastic material is described through the solid displacement ui, the pore pres-
sure, and the relative displacement wi as primary unknowns. The full form (ui, p,wi) can be
applied to saturated porous media filled with compressible or incompressible fluid [158].
Instead of using the relative displacement wi as unknown, also the fluid displacement u f

i
can be chosen as primary variable [158].

2.2.3 Elimination of the pore pressure

Is the fluid of the porous medium assumed compressible, i.e., R 6= ∞, the pore pressure can
be eliminated [158]. Thus, from equation (2.23) the pore pressure can be expressed, after
integrating over time, as

p =− R
φ 2 (wi,i +αui,i) (2.28)

and can be substituted into the balances of momentum. When a weak variational form of
this irreducible form is sought, this is done best by directly inserting the pore pressure into
the variational forms of (2.25) and (2.27), i.e., the pore pressure is inserted into (3.30) and
(3.32).

If the fluid is assumed incompressible then the full form has to be used (ui, p,wi) or a
penalty formulation has to be accomplished as proposed by Zienkiewicz and Shiomi [158].
Thus, the system become irreducible and the remaining variables are the solid displace-
ment ui and the relative displacement wi.

2.2.4 Elimination of the relative displacement in time domain

The elimination of the relative displacement wi in time domain is possible if inertia terms
in the equation of motion (2.25) are neglected. This can be done with confidence for quasi-
static, slow motion phenomena, which are typical for the consolidation behavior of soil.
This approach can be found, e.g., in the book of Lewis and Schrefler [95].

For medium speed phenomena Zienkiewicz et al. [160] and Zienkiewicz [156] proposed
only to neglect inertia terms related to the fluid. This approximation is valid for most
problems of earthquake analysis and frequencies slower than this [158]. In the following,
this simplification will be referred as the method where fluid inertia terms are neglected.
Thus, in order to derive the mentioned formulation, equation (2.25) is taken and all relative
acceleration terms are omitted, yielding

σ
tot
i j, j +Fi = %üi . (2.29)
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Elimination of the relative displacement of equation (2.26) results in

qi =−κ

(
p,i +% f üi− f f

i

)
. (2.30)

Substituting equation (2.22) into equation (2.21) yields

qi,i +α u̇i,i +
φ 2

R
ṗ = 0 , (2.31)

with the approximated specific flux defined in equation (2.30). Equations (2.29) and (2.31)
define a coupled set of differential equation in which the solid displacement ui and the pore
pressure p remain as unknowns.

As shown by Bonnet [38], it is possible to eliminate the relative displacement wi without
omitting any inertia terms. But to do so, it is necessary to formulate the equations describ-
ing the porous medium in Laplace domain (or Frequency domain), as shown by Schanz
and Cheng [124], Simon et al. [128], or Kim et al. [89, 90].

2.2.5 Laplace domain

The application of the Laplace transformation, by assuming vanishing initial conditions,
i.e.,

ui(0) = 0 p(0) = 0 wi(0) = 0
u̇i(0) = 0 ṗ(0) = 0 ẇi(0) = 0 , (2.32)

to the total balance of mass (2.25) yields

σ̂
tot
i j, j + F̂i = s2%ûi + s2% f ŵi . (2.33)

The Laplace transform of the balance of momentum of the solid (2.24a) and fluid (2.24b)
reads as

σ̂
s
i j, j +(1−φ) f̂ s

i = s2 (1−φ)%sûi− s2%a

φ
ŵi− s

φ

κ
ŵi

σ̂
f

i j, j +φ f̂ f
i = s2

φ% f ûi + s2
(
% f +

%a

φ

)
ŵi + s

φ

κ
ŵi , (2.34a)

respectively and the continuity equation (2.23) in it’s transformed version is given by

sŵi,i + sα ûi,i + s
φ 2

R
p̂ = 0 . (2.35)
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2.2.6 Elimination of the relative displacement in Laplace domain

The elimination of the relative fluid displacement wi can be accomplished in Laplace do-
main and, thus, otherwise as in time domain without omitting any inertia terms [38]. The
reason for this is that the relative displacement also occurs a second time derivative. In
order to eliminate the relative displacement, wi from equation (2.34a) is expressed as

ŵi =−
κφ 2% f s2

sφ 2 +κs2(%a +φ% f )︸ ︷︷ ︸
β

1
s2ρ f

(
p̂,i +% f s2ûi− f̂ f

i

)
, (2.36)

with the abbreviation β , which will be used further. The final set of equations to describe
the porous media is obtained by inserting the relative displacement (2.36) into equations
(2.33) and (2.35) and some algebraic manipulations

σ̂
eff
i j, j− (α−β )p̂,i− s2(%−β% f )ûi = β f̂ f

i − F̂i (2.37a)

β

s% f
p̂,ii−

sφ 2

R
p̂− s(α−β )ûi,i =

β

s% f
f̂ f
i,i . (2.37b)

The effective stress may also be expressed in terms of the solid displacement using equa-
tion (2.20).

2.2.7 Plane body waves in poroelastic media

Plane waves in an infinite porous media are investigated in this section. Basically the same
steps as in section 2.1.2 are performed. Without loss of generality equations (2.37) are
used, since this formulation suffices to determine plane waves in a poroelastic material.
Hence, consider the following ansatz for a plane wave in Laplace domain

ûi = Ai e−
s
c nkxk p̂ = Be−

s
c nkxk (2.38)

for the solid displacement and the pore pressure, respectively. Ai and B give the particle
displacement of the wave. Since the fluid can only transmit compressional waves the
particle displacement is in the direction of the wave normal and may be defined through
a scalar value B = Bknk. The wave normal unit vector is given by nk and xk denotes the
position vector. The solution (2.38) describes the propagation of plane body waves with
the wave velocity c in a porous infinite medium, whose wave fronts are perpendicular to
the normal vector nk.

Inserting the ansatz (2.38) into equations (2.37) and taking into account that the effective
stress for a homogenous isotropic solid skeleton is given by

σ̂
eff
i j = 2Gε̂

s
i j +

(
K− 2

3
G
)

ε̂
s
kkδi j ,
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yields, when body forces are neglected,

GAin jn j
s2

c2 +(K +
1
3

G)A jn jni
s2

c2 − (α−β )Bni
s
c
− s2(%−β% f )Ai = 0 (2.39a)

β

s% f

s2

c2 niniB−
sφ 2

R
B− s2

c
(α−β )Aini = 0 . (2.39b)

Consider now the case that the particle motion is parallel to the propagation of the wave,
i.e., A = Aini. From equation (2.39b) the Amplitude B can be expressed as

B =
Rsc% f (α−β )

φ 2c2% f −Rβ
Aini . (2.40)

Inserting (2.40) into (2.39a) and considering that nini = 1 and Ai = Ani leads to an equation
for the wave velocity c of the form[

K +
4
3

G+(α−β )2 Rc% f

φ 2c% f −Rβ
− c2(%−β% f )

]
s2

c2 Ai = 0 . (2.41)

Equation (2.41) can only be satisfied if the term in the square brackets vanishes. Hence,
from equation (2.41) two compressional waves are obtained with wave speeds

c2
1,2 =

Rβ (β% f −%)− (K + 4
3G)φ 2% f − (α−β )2R% f

2φ 2% f (% f β −%)

±

√[
Rβ (β% f −%)− (K + 4

3G)φ 2% f − (α−β )2R% f
]2
+4Rβφ 2% f (% f β −ρ)(K + 4

3G)

2φ 2% f (% f β −ρ)
,

(2.42)

namely the fast and slow compressional wave. The fast wave propagates in a medium
when the fluid and solid movement are in phase. This locking may arise through viscous
or inertial coupling forces. The slow wave needs relative movement of the fluid and the
solid skeleton. This relative motion is highly dependent on the permeability κ and the
viscosity of the interstitial fluid [81].

Considering the case that the particle motion is perpendicular to the direction of wave
propagation, i.e., Aini = 0, equation (2.39a) simplifies to

s2

c2

[
G− c2(%−β% f )

]
Ai = 0 (2.43)

and implies that also the amplitude B in equation (2.40) vanishes. From equation (2.43)
follows the shear wave speed

c2
S =

G
%−β% f

.

Since the compressional waves speeds c1,c2 and the shear wave speed cS are frequency
dependent they are also called dispersive waves.
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Plane body waves when fluid inertia is neglected Following the same procedure as
above, the wave velocities can also be computed for the governing equations (2.29)-(2.31).
This yields the compressional waves speeds

c2
1,2 =

R
(
α2 + sκ%− sακ% f

)
+(K + 4

3G)φ 2

2φ 2%

±

√[
R
(
α2 + sκ%− sακ% f

)
+(K + 4

3G)φ 2
]2−4(K + 4

3G)Rsκ%φ 2

2φ 2%
(2.44)

and the shear wave speed

c2
S =

G
%
.

Note that the shear wave speed is in this case independent of the frequency and, thus, is
called a non-dispersive wave.

Rayleigh surface wave

As in the elastic halfspace, also in a poroelastic halfspace the Rayleigh wave occurs [4].
For the case of an elastic material the Rayleigh wave speed cR can be approximated by
equation (2.16). This approximation can also be applied to porous materials as long as
low frequency problems are considered, as investigated by Yang [147]. This is the case
for many soil- and geomechanical applications and, thus, this approximation will be used
throughout the whole thesis.

2.3 Notes on unbounded domains

Infinite domains or unbounded domains appear in various mathematical models in applied
mechanics or applied physics, i.e., wave propagation in an elastic or a poroelastic halfs-
pace. Unbounded domains are characterized by a spatial domain of infinite length, area, or
volume. The most essential thing in unbounded wave problems is that all waves are trav-
eling outward and do not return. This phenomena is ensured by the statement of so called
radiation conditions. These radiation conditions vary whether a static, a time-harmonic,
or a transient problem is under consideration.

In static problems a sufficiently accurate solution is attainable when the clamped bound-
ary is far enough away. Consequently, in this case the radiation condition is only fulfilled
approximately. Moreover, this kind of calculation has to be performed based on heuristics
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methods. This is not the case for dynamic unbounded problems, unless so much damp-
ing is present that the waves are dissipated until they return from the boundary. For time
harmonic problems, the most established radiation condition is formulated by Sommerfeld
[130, 131]. This radiation condition is denoted as Sommerfeld radiation condition and
ensures that the far field condition is fulfilled, i.e., no incoming waves are present and the
correct decay of the field quantity is obtained. While for the time harmonic case the far
field condition must be explicitly stated, this is not the case for transient problems [76].
This is the case since initial conditions for the underlying problem have to be defined. If
vanishing initial conditions are assumed at infinity, no incoming waves occur, and, there-
fore, the Sommerfeld radiation condition is fulfilled [76]. Here, in this work, vanishing
initial conditions are assumed for elastic (3.3) and also for poroelastic (3.28) initial bound-
ary value problems. Thus, the radiation conditions are automatically fulfilled.

When using the finite element method for unbounded wave propagation problems, the
spatial discretization can only be realized for a finite domain. In order to fulfill the radiation
condition the reflection of outgoing waves at the artificial boundary of the discretized finite
domain must be prevented. Several methods are developed to model this behavior and
summarized in section 2.4. More information covering this topic can be found, e.g., for
the scalar wave equation and the elastic equation of motion in the work of Bonnet [40].

2.4 Methods for unbounded domains

Various different numerical approaches up to now are explored and even improved for
different problems. In the following, a short overview for different numerical methods
will be given, capable of dealing with unbounded domains for various types of differential
equations. In the ongoing the method of using so called infinite elements will be illustrated
in more detail in section 4.

In general, all these methods are based on the strategy that the unbounded region is trun-
cated at some point. Hence, the unbounded domain is divided into a finite inner region Ωi
of interest and a remaining unbounded exterior region Ωe, as depicted in figure 2.1. The
body B represents any scattering or radiating source which is located within the inner re-
gion Ωi and owns the boundary ∂B. The domain Ωi is enclosed by it’s boundary Γ = ∂Ωi
with the outward normal vector n. Thus, the remaining exterior domain is defined by
Ωe = Rd \Ωi, where d denotes the spatial dimension (Ωi = Ωi ∪Γ). The main purpose
of the exterior region is to act like an energy absorber, capable of avoiding any spurious
reflections and to represent the far field behavior appropriately. Different approaches exist
to model the far field behavior and are summarized shortly in the following.
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B
Ωi

Ωe

∂B

Γ

n

Figure 2.1: Decomposition of the unbounded domain into an inner region Ωi and exterior
region Ωe.

Boundary Element Method (BEM) The Boundary Element Method is a computational
method which uses fundamental solutions and suitable boundary integral equations to for-
mulate the differential equations, describing the underlying physical problem, on the sur-
face. Thus, the spatial dimension of the discretized geometry is reduced by one. The dis-
cretization process yields a set of linear algebraic equations which yields the solution on
the boundary. Once, the solution on the surface is obtained, unknown field variables in the
whole space can be computed using the surface integral equations. A major advantage of
the boundary element method is that the radiation condition of unbounded problems is al-
ready incorporated in the formulation itself and, therefore, the far field behavior is modeled
exactly. Additionally, the fact that the fundamental solution is exact brings in the advan-
tage of improved accuracy. On the other hand the need of a fundamental solution is also a
drawback of this method. Thus, for some operators, for instance, for inhomogeneous, non-
linear and some anisotropic operators, no or no suitable fundamental solution is obtainable
[73]. Nevertheless, non-linear analysis are performed within the BEM, although it turns
out to be a lavish task [115]. A more common approach to deal with non-linear problems
is the coupling of BEM with FEM, e.g., [141]. Moreover, singularities are present using
the boundary element method, which need special attention for the numerical integration.
Various different formulations of the BEM exist [76]. To get more insight into this method
the reader is referred, for instance, for the elastic case, to the book of Gaul et al. [73],
which also reveals a historical development of the method. The application of the BEM to
poroelastodynamics is elaborated by Schanz [123] and Messner and Schanz [102].

Artificial Boundary Conditions (ABC) Another common approach to treat unbounded
domains is the use of so called Artificial or Absorbing Boundary Conditions (ABC). The
first step is to introduce an artificial boundary Γ, as in figure 2.1, to make the unbounded
domain Ω finite. Then, boundary conditions have to be imposed on the boundary Γ, which
try to approximate the behavior of the far field. For example, a simple Dirichlet boundary
condition will set the solution to zero on the boundary. Of course this will reflect waves on
the fixed boundary. To find proper choices of boundary conditions for various wave prob-
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lems is a subject of ongoing research. This task is not trivial, since this artificial boundary
condition has to represent accurately the behavior of the infinite domain outside Ωi. Thus,
an ABC tries to fool the solution in “thinking” that it extends forever with no boundary. In
the context of wave propagation problems, an artificial boundary condition is also called a
Non-Reflecting Boundary Condition (NRBC). Various non-reflecting boundary conditions
have been proposed in the literature [75]. A classical approximate absorbing boundary
is developed by Lysmer and Kuhlemeyer [98] and consists of a viscous dashpot model.
Although this model is local and cheaply computed, it requires large bounded domains
for satisfactory accuracy. Even more, this model is only capable to absorb outward trav-
eling waves on a small range of angles of incidence. One popular method is the so called
Dirichlet to Neumann (DtN) map proposed by Keller and Givoli [85], Givoli [75], and
Givoli and Keller [77], which is non-local in time and space. This approach yields fully
populated system matrices and destroys the sparse matrix of the FEM and subsequently
increases computational costs. Basically, a DtN just relates the field variable to it’s normal
derivative on the whole boundary. This relation can either be performed numerically or
analytically. When it can be obtained analytically then often in form of a series expansion.
Thus, in order to obtain an accurate solution the number of used terms must be sufficient.
Another family of methods are local and approximate. These methods are proposed by
Engquist and Majda [69, 70] and Bayliss and Turkel [23]. The local DtN map is appealing
due to their increased numerical efficiency but still lack in accuracy in some situations,
especially for waves impinge obliquely to the boundary and not normally [75]. A com-
parison for the Helmholtz equation of the local and non-local NRBC is given by Givoli
et al. [78]. The use of artificial boundary conditions in poroelastodynamics can be found,
for instance, in [2, 3]. Time-domain analysis of dam-reservoir-foundation-systems using
absorbing boundaries were investigated by Feltrin [71].

PML Instead of finding an absorbing boundary condition, an absorbing boundary layer is
constructed to fulfill the radiation condition in unbounded domains. Here, the unbounded
domain is truncated at an artificial boundary Γ. In place of finding the proper boundary
condition on the introduced boundary Γ, the finite domain Ωi is now surrounded by an
artificial absorbing material. Note that this boundary layer is independent on the boundary
conditions. When a waves enters the absorbing layer it is attenuated by the absorbing layer
and, therefore, it’s amplitude decreases. Even if, there is a reflection at the outer boundary
of the absorbing layer the amplitude of the reflected wave is very small. Nevertheless, the
thickness of the boundary layer as well the absorbing properties remain to be chosen in
such a way that waves are absorbed sufficiently. Moreover, the absorbing layer has to be
constructed in such a manner that there is no reflection when the waves enter the absorbing
layer. This characteristic, which can be accomplished as shown by Berenger [29], yields
the denotation Perfectly Matched Layer, or PML, for the absorbing layer. The PML was
first initiated by Berenger [29] for the application to electromagnetism (Maxwell’s equa-
tions). These ideas are also applicable to other wave equations. Various interpretations of



2.4 Methods for unbounded domains 23

the PML are offered by different authors, e.g. [50, 120, 155]. The most popular interpre-
tation of the PML is the co-ordinate stretching explanation, provided by Chew et al. [50].
Here, the real coordinate in the infinite domain (layer) is replaced by a complex extension,
which causes the waves to decay within the perfectly matched layer. Thus, depending on
the proper complex coordinate stretching the performance of the PML varies [21]. Var-
ious application of the PML exist in the literature and only a small extract is given here
of this fast developing method. The transient and time-harmonic case for elastodynamics
is discussed for example by Basu [19] and Basu and Chopra [20, 21]. The application of
perfectly matched layers to poroelastodynamics is discussed by Zeng et al. [151].
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The finite element method (FEM), also called finite element analysis (FEA), is a numerical
method for approximately solving many field problems. This is needed since an exact
solution is not possible in most cases. Today the finite element method is the most common
numerical method used in any field of engineering, surely also by virtue of increasing
computational possibilities.

One of the first numerical methods developed was the Rayleigh-Ritz approximation [116].
It is based on the following idea: Choose a finite number of trial functions ϕ1, . . . ,ϕN and
find among their linear combinations u = ∑aiϕi the coefficients ai (a1, . . . ,aN) which min-
imizes the potential energy of the problem, with the field quantity u. Therefore, a set of N
algebraic equations has to be solved instead of the differential equation. The minimization
process seeks automatically for the solution which is closest to u. Nevertheless, every trial
function (also called Ritz or shape function) must be admissible: that is, each must satisfy
compatibility conditions and essential boundary conditions. Even more, the shape func-
tions should be chosen in such a manner that they are convenient enough for the potential
energy to be computed and minimized. At the same time they should be general enough to
approximate the general solution u with sufficient accuracy. This makes the Rayleigh-Ritz
method not applicable to general problems. It is also not clear how to choose proper ad-
ditional shape functions to increase accuracy and the integrals which has to be computed
may get complicated soon.

This is what the finite element method is able to handle better. The idea of the finite element
method is simple. First the structure is subdivided into a finite number of segments, called
finite elements. Their size is arbitrary; they may all be of the same size or all different.
The elements are connected at nodes. The particular arrangement of the finite elements
is called mesh. Within the finite element the field quantity is approximated by so called
shape functions. This lead to a set of algebraic equations in the field quantity (unknowns
at nodes). The boundary conditions are also more easily applied on a local element as in
the Rayleigh-Ritz method where they have to be applied globally. The accuracy may be
increased by choosing a higher polynomial order of the shape functions or the polynomial
order is retained and the mesh is refined (increasing the number of finite elements). This is
simpler as choosing an appropriate global shape function as in the Rayleigh-Ritz method.
Also sparse system matrices are gained in the finite element method which reduces com-
putational costs.

A wide range of text books on the finite element method exists. The books of Bathe [22],
Braess [43], Cook et al. [55], Hughes [82], Jung and Langer [84], Strang and Fix [135],

25
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Szabó and Babuška [138], Zienkiewicz and Taylor [159], and Zienkiewicz et al. [164, 165]
are only some examples of available textbooks on this topic.

In the following, the finite element formulation for the elastodynamic case will be accom-
plished. Also the finite element formulation for poroelastodynamics, in all it’s different
approaches of unknowns, will be presented.

3.1 Elastodynamics

3.1.1 Strong and weak formulation

The partial differential equation (2.7) comprise a temporal evolution and, therefore, the
unknown function doesn’t only depend on the spatial dimension d but also on time t.
Thus, the unknown function ui may be written as

ui = ui(x, t) , (x, t) ∈Ω× [0,T ] , (3.1)

which means that ui is a function of x ∈Ω and t ∈ [0,T ], the closed time interval of length
T > 0. In the ongoing, the condensed pair (x, t) will be used, which belongs in this case
to the (d+1)-dimensional region Ω× [0,T ]. The Symbol Ω denotes the spatial domain Ω

including the boundary Γ (Ω = Ω∪Γ). Solving a time dependent boundary value problem
involves to impose time dependent boundary data. Therefore, the boundary trace uΓ

i is
introduced

uΓ
i (y) = Tr ui(x) = lim

Ω3x→y∈Γ
ui(x) . (3.2)

In equation (3.2) the operator Tr was introduced for taking the trace. The boundary data
are also time dependent and may be written as

gDi (y, t) , (y, t) ∈ ΓD× (0,T )

σi j(y, t)n j(y, t) = gNi (y, t) , (y, t) ∈ ΓN× (0,T ) ,

assuming that the disjoint boundary sections ΓD and ΓN do not vary with time. The bound-
ary sections ΓD and ΓN are subsets of the boundary Γ, where Dirichlet gDi and Neumann
gNi boundary conditions are applied, respectively. The Dirichlet data gDi (y, t) corresponds
to prescribed displacements, the Neumann data gNi (y, t) to prescribed stresses. The bound-
ary Γ admits the decomposition Γ = ΓD∪ΓN where the overline () denotes the closure of
a set. Moreover, it is assumed that ΓD∩ΓN =∅, i.e., that point x on the boundary is either
in ΓD or ΓN. This means that no Point x is contained in both ΓD and ΓN. The outward
normal vector is denoted by n j.
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For a well posed boundary value problem also initial conditions have to be specified

u0
i (x) = ui(x,0+) , x ∈Ω (3.3)

u̇0
i (x) = u̇i(x,0+) , x ∈Ω ,

where 0+ denotes the approach to zero from the positive direction (t > 0). Since the second
time derivative üi(x, t) occurs (i.e., acceleration) two initial conditions are to be specified.
The given initial conditions have to coincide with the given boundary data

(Tr u0
i )(y) = gDi (y,0

+) and (Tr u̇0
i )(y) = gDi (y,0

+) , y ∈ ΓD .

The other parameters involving the initial boundary value problem, as the material tensor
Ci jk` and the density % are assumed to be constant in space and time, i.e., Ci jk`(x, t) =Ci jk`
and %(x, t) = %. The strong form of the initial boundary problem may now be stated:

Given fi(x, t),gDi (y, t),gNi (y, t),u0
i (x) and u̇0

i (x) given as in (3.1) through (3.3), find ui(x, t)
such that

σi j, j(x, t)+ fi(x, t) = %üi(x, t) (x, t) ∈Ω× (0,T ) (3.4)

uΓ
i (y, t) = gDi (y, t) (y, t) ∈ ΓD× (0,T )

σi j(y, t)n j(y, t) = gNi (y, t) (y, t) ∈ ΓN× (0,T )

ui(x,0+) = u0
i (x) x ∈Ω

u̇i(x,0+) = u̇0
i (x) x ∈Ω .

The strong form (3.4) is valid for any point x in the domain Ω.

In order to formulate the weak formulation two special types of function have to be in-
troduced. The first one is the space of (trial) solutions. Possible solutions of this space
require to fulfill the Dirichlet boundary conditions uΓ

i = gDi on ΓD. Here and in the follow-
ing, the condensed pair (y, t) or accordingly (x, t) will be suppressed. Furthermore, these
solution functions have to require that their derivatives are square integrable, i.e., they are
H1-functions (ui ∈ H1)[81, 114]. Thus, the collection of solutions, denoted by Vg, may be
written as

Vg = {ui : ui ∈ H1 , ui = gDi on ΓD} .

The second set of functions is called weighting or test functions. This set of functions is
similar to the set of solutions Vg but they have to fulfill homogenous Dirichlet boundary
conditions gD

i . This collection is denoted by

V0 = {ūi : ūi ∈ H1 , ūi = 0 on ΓD} .

More on function spaces and their proper choice may be found for example in the books
of Steinbach [134], Reddy [114], and Brezzi and Fortin [45].
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Next, in order to obtain the variational formulation, the strong form given in equation (3.4)
is pre-multiplied by the test function ūi ∈ V0 and integrated over the domain Ω, yielding∫

Ω

ūiσi j, j dΩ−
∫
Ω

ūi%üi dΩ+
∫
Ω

ūi fi dΩ = 0 . (3.5)

Integrating equation (3.5) by parts and applying the divergence theorem
∫

Ω
(ūiσi j), j dΩ =∫

Γ
ūiσi jn j dΓ leads to∫

Ω

ūi, jσi j dΩ+%
∫
Ω

ūiüi dΩ−
∫
Ω

ūi fi dΩ =
∫

ΓN

(Tr ūi)gNi dΓN , (3.6)

where only the surface integral over ΓN remains, since the test functions ūi vanishes on
ΓD. The final weak formulation is obtained by inserting the material properties (2.2) with
the relation (2.4) in (3.6)∫

Ω

ūi, jCi jk`uk,` dΩ+%
∫
Ω

ūiüi dΩ−
∫
Ω

ūi fi dΩ =
∫

ΓN

(Tr ūi)gNi dΓN . (3.7)

The initial conditions of the strong form (3.4) may also be expressed for the weak form

%
∫
Ω

ūiui dΩ = %
∫
Ω

ūiu0
i dΩ and %

∫
Ω

ūiu̇i dΩ = %
∫
Ω

ūiu̇0
i dΩ at t = 0 .

The variational formulation is a weaker one than the strong form since it demands less
smoothness on the solution ui. Under consideration of special regularity conditions (smooth-
ness) the solution of the weak form is also a solution of the strong form [114]. Of course,
a solution of the strong form is also a solution of the weak form.

The main focus of the finite element method is now to approximate the function spaces Vg
and V0 by function spaces which are denoted by Vh

g and Vh
0 . The variational functions are

then solved in this finite-dimensional context.

3.1.2 Spatial discretization

The spatial discretization of the domain Ω, in which a solution of the boundary value
problem is sought for, requires a partition into non-overlapping subdomains, so called
finite elements

Ω≈Ωh =
EN⋃
e=1

τe ,
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where EN is the total number of geometric finite elements τe. Here and in the following, the
index h denotes that the corresponding quantity is understood in a spatial discretized sense.
A common choice of finite elements in two dimensions are triangles and quadrilateral,
whereas in three dimensions tetrahedrons and hexahedrons dominate. Moreover, the finite
element mesh consists of nodal points pi. Nodes are locates at least at vertices of finite
elements, but in order to improve accuracy more nodes may be introduced. So, in any case
a finite element mesh contains of a total number of nodes N̄h, which have position vectors
p1,p2, . . . ,pN̄h

. Since the finite elements are non-overlapping they fulfill the following
characteristic for every e,e′ ∈ eN = {1,2, . . . ,EN} with e 6= e′

τe∩ τe′ =


∅ or
a common node or
a common edge or
a common face (for d = 3 only) .

The set containing the element numbering is appointed to eN = {1,2, . . . ,EN}. Once, the
triangulation of the domain is established, the shape functions of the finite elements can be
specified. In a finite element mesh there is a total number of N̄h shape functions that is one
shape function for every node. Each shape function ϕ̃ i(x j) has the property that it is only
nonzero on the elements that are connected to the node i and ϕ̃i(x j) is equal to 1 at node i.
At every other node it is zero, i.e.,

ϕ̃
i(x j) = δi j =

{
1 if i = j
0 if i 6= j ,

(3.8)

where ϕ̃ revers to a global defined shape function. Using these shape functions, the un-
knowns of any variational formulation may be approximated as

ui(x, t)≈ uh
i (x, t) =

N̄h

∑
j=1

ϕ̃
j(x)ū j

i (t) . (3.9)

In equation (3.9) only an approximation in space is done, the time is still continuous. This
will lead in the ongoing to a so called semi-discrete finite element formulation. Since the
shape functions are now introduced, the space of finite element functions is defined by

Vh =
{

∑
j∈n̄h

ϕ̃
j}= span {ϕ̃ j : j ∈ n̄h}

Next, the function spaces Vh
g and Vh

0 will be defined. Vh
0 is a subspace of V0, whose

members vanish on the Dirichlet boundary and is defined by

Vh
0 =

{
ūh

i : ūh
i = ∑

j∈n̄h

ϕ̃
jū j

i
}

(3.10)
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Furthermore, the subspace Vh
g , which is a subspace of Vg, is defined by

Vh
g =

{
uh

i : uh
i = ∑

j∈nh

ϕ̃
ju j

i + ∑
j∈nD

ϕ̃
jg j,D

i
}
, (3.11)

whose members assume the prescribed Dirichlet boundary data g j,D
i . The sets nh,nD and

n̄h are given by

n̄h = {1,2, . . . , N̄h} , nh = {1,2, . . . ,Nh} , nD = {Nh +1,Nh +2, . . . , N̄h} ,

where Nh are nodes which belong to Ω∪ΓN. The index h gives some indication how close
the approximated subspaces Vh

g ,Vh
0 are to Vg,V0. As the number of elements EN grows,

the parameter h gets smaller, i.e., the mesh is refined. This means that in the limit EN→∞,
h→ 0, Vh

g approaches Vg. A more precise illustration can be found in [114]. In the above
equations (3.10) and (3.11) the same shape functions are used for the test and weighting
functions. This is called a Bubnov-Galerkin-Method. Another class of approximation,
where the weighting function ūh

i is not in Vh
0 , is called Petrov-Galerkin-Method, e.g.,

Vh
0 =

{
ūh

i : ūh
i = ∑

j∈nh

ψ̃
jū j

i
}
.

Using the above approximation yields now the semi-discrete variational form of (3.7)∫
Ωh

ūh
i, jCi jk`ūh

k,` dΩ
h +%

∫
Ωh

ūh
i üh

i dΩ
h−

∫
Ωh

ūh
i f h

i dΩ
h =

∫
Γh
N

(Tr ūh
i )g

N,h
i dΓ

h
N . (3.12)

Inserting the approximations ūh
i ∈ Vh

0 with arbitrary coefficients ū j
i and uh

i ∈ Vh
g in (3.12)

yields the semi-discrete finite element formulation∫
Ωh

ϕ̃
N
, jCi jk`ϕ̃

M
,` uM

k dΩ
h +%δik

∫
Ωh

ϕ̃
N

ϕ̃
MüM

k dΩ
h =

∫
Ωh

ϕ̃
N f h

i dΩ
h (3.13)

+
∫

Γh
N

(Tr ϕ̃
N)gN,hi dΓ

h
N−

∫
Ωh

ϕ̃
N
, jCi jk`ϕ̃

M
,` gM,D

k dΩ
h−%δik

∫
Ωh

ϕ̃
N

ϕ̃
Mg̈M,D

k dΩ
h .

where the superscripts N,M belong to the set nh, i.e., N,M ∈ nh and the superscript M
belongs to the set nD (M ∈ nD). Thus, equation (3.13) yields Nh× d linear independent
equations

KNM
ik uM

k +MNM
ik üM

k = f N
i , (3.14)

in which the complete right-hand side is put into the force vector f N
i = ( f N

i ) f +( f N
i )N+

( f N
i )K +( f N

i )M. Using a proper time integration scheme the resulting equation system can
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be solved for the nodal unknowns uM
k . Equation (3.14) written in matrix notation reads

as

Mü+Ku = f ,

with the so called stiffness- and mass matrix K and M, respectively. The right-hand side is
denoted by f, also well known as load vector, which is a collection of the body forces f f ,
Neumann boundary data fN and terms due to prescribed Dirichlet data fK and fM, i.e.,

f = f f + fN+ fK + fM .

The unknown node data is identified by u and ü, which are called displacement and accel-
eration vector in case of elastodynamics.

3.1.3 Element point of view

Until now, only global shape functions were considered. When programming the finite
element method, matters can be considerably simplified by setting up a reference element
τ̂ . This reference element is isolated from the actual finite element mesh and is referred to
its own local coordinate system ξξξ . The relation between a point ξξξ in the reference element
τ̂ and a coordinate x in the domain τe is given by mappings of the form (see Fig. 3.1)

p̂1 p̂2

p̂3p̂4

ξ1

ξ2

p1 p2

p3
p4

x1

x2

x(ξξξ )
−−→
←−−
ξξξ (x)

Figure 3.1: Reference element for bi-linear quadrilateral element.

x(ξξξ ) = ∑
n∈n̂e

mn(ξξξ )pn ξξξ ∈ τ̂ , pn ∈ τe , (3.15)

where n̂e = {1,2, . . . , N̂e} is the set of a local node numbering, N̂e is the number of total
nodes of the reference element (N̂e must be equal to the number of nodes of the global ele-
ment), and mn(ξ ) are the so called mapping functions, which are defined on the reference
element τ̂ . In equation (3.15), pn ∈ Rd are the global points defining the geometry of the
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global element τe. Since n ∈ n̂e is a local number, a relation to the global node numbering
N ∈ n̄h has to be established for every element

τe : n↔ N = N(e,n), e ∈ eN , n ∈ n̂e (3.16)

such that every point pN with global numbering can be assigned to the local numbering,
i.e.,

pn
N(e,n)←→ pN .

Here and in the following, if not otherwise stated, subscripts m,n, . . . pertain to the local
numbering system. Capital letters M,N, . . . will pertain to the global numbering system.
Using equation (3.15) yields a distinct relation between a point pn and a local point p̂n,
such that the relation

pn = x(p̂n) = ∑
n∈n̂e

mn(p̂n)pn

is given (see Fig. 3.1), which holds only if

mn(pm) = δnm .

The global shape functions ϕ̃N(x) can now also be expressed using local shape functions
ϕn, n ∈ n̂e, defined on the reference element τ̂ using the relation (3.16)

ϕ̃
N(x) =


⋃

e∈Be

ϕn(ξξξ (x)) x ∈ τe

0 otherwise, i.e., x ∈Ωh \
⋃

e∈Be

τe .

The introduced set Be contains all elements which belong to the global numbered node
N, i.e., pN ∈ τe. The local shape functions ϕn(ξξξ ) are defined on the reference element τ̂

and consists of polynomials to retain at least C0 continuity [165]. For example the shape
functions of the bi-linear quadrilateral element

τ� = {(ξ1,ξ2) ∈ R2 : 0≤ (ξ1,ξ2)≤ 1}

are constructed. The shape function for a specific node n ∈ n̂e can be written as bi-linear
approximation of the form

ϕ
n(ξξξ ) =Cn

1 +Cn
2ξ1 +Cn

3ξ2 +Cn
4ξ1ξ2 ,

where the coefficients Cn
i remain to be determined. Collecting all shape functions ϕn(ξξξ )

into a vector ϕϕϕ N̂e
(ξξξ ) = [ϕ1, . . . ,ϕ N̂e ], the shape functions can be expressed as a multiplica-

tion of a vector containing the monomials ψψψ(ξξξ ) = [1,ξ1,ξ2, . . . ] with the coefficient matrix
C= [C1, . . . ,CN̂e ], C ∈ R, containing the coefficient vectors Cn

ϕϕϕ N̂e
(ξξξ ) = ψψψ(ξξξ ) ·C .
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The property (3.8), which also holds for local defined shape functions, i.e.,

ϕ
n(ξξξ m) = δnm, n,m ∈ n̂e ,

yields the condition ϕϕϕ N̂e
(p̂n) = eTn , with the n-th unit vector en. Introducing the matrix

X = [ψψψ(p̂1), . . . ,ψψψ(p̂N̂e
)]T, which contains the monomials evaluated at the distinct nodes

p̂n of the local element, yields the coefficient matrix

X ·C= I =⇒ C= X−1

and, accordingly, the set of shape functions ϕn(ξξξ )

ϕϕϕ N̂e
(ξξξ ) = ψψψ(ξξξ ) ·X−1 .

For the case of a bi-linear quadrilateral the set of monomials is given through ψψψ(ξξξ ) =
[1,ξ1,ξ2,ξ1ξ2]. The corresponding matrix X and its inverse is given by

X=


ψψψ(
[−1
−1

]
)

ψψψ(
[

1
−1
]
)

ψψψ(
[

1
1

]
)

ψψψ(
[−1

1

]
)

=


1 −1 −1 1
1 1 −1 −1
1 1 1 1
1 −1 1 −1

 =⇒ X−1 =


1/4 1/4 1/4 1/4

−1/4 1/4 1/4 −1/4

−1/4 −1/4 1/4 1/4
1/4 −1/4 1/4 −1/4

 .

Finally, the set of shape functions is defined by

ϕϕϕ�(ξξξ ) =
[
1 ξ1 ξ2 ξ1ξ2

]
·


1/4 1/4 1/4 1/4

−1/4 1/4 1/4 −1/4

−1/4 −1/4 1/4 1/4
1/4 −1/4 1/4 −1/4

=


1/4(1−ξ1)(1−ξ2)
1/4(1+ξ1)(1−ξ2)
1/4(1+ξ1)(1+ξ2)
1/4(1−ξ1)(1+ξ2)


T

.

This process gaining shape functions has some considerable disadvantages. Occasionally,
no inverse of X exists as Zienkiewicz et al. [165] and references therein states. Neverthe-
less, other methods to derive shape functions exists. For example, shape functions can be
deduced by tensor products of one-dimensional Lagrange polynomials, e.g., [82, 84]. In
general, shape functions persists of complete polynomials such as for the 4-noded and 9-
noded quadrilateral. But there also exists a group of elements which consists of less nodes
than are needed for complete polynomials, such as the 8-noded quadrilateral. This group
of elements are so-called serendipity elements. Of course, there exist a lot of different
types of elements, but to cover all of them as well their behavior would blast this section.
The interested reader is therefore referred to common textbooks, e.g., [22, 82, 84, 165]. Is
the set of shape functions ϕn(ξξξ ) also used to define the mapping relation (3.15), then the
element is said to be isoparametric.
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Using the set of local shape functions ϕn = ϕn(ξξξ (x)) the stiffness- and mass matrix is
obtained by

K = KNM
ik =

EN⋃
e=1

(Knm
ik )e =

EN⋃
e=1

∫
τ̂e

ϕ
n
, jCi jk`ϕ

m
,` Je dξξξ (3.17a)

M = MNM
ik =

EN⋃
e=1

(Mnm
ik )e =

EN⋃
e=1

δik

∫
τ̂e

ϕ
n
ϕ

mJe dξξξ , (3.17b)

using the relation between the global and local node numbering

τe : n↔ N = N(e,n), e ∈ eN , n ∈ n̂e (3.18)
m↔M = M(e,m), e ∈ eN , m ∈ n̂e .

The integrals in (3.17) contain the determinant of the Jacobian matrix Je(ξξξ ) of the corre-
sponding element e ∈ EN , e.g., Je(ξξξ ) = det Je(ξξξ ) due to the transformation from global
to local coordinates. The Jacobian matrix is defined by [165]

Je =
(
Ji j
)

e =
dxi

dξ j
,

with x given by (3.15). In equation (3.17a) the spatial derivative with respect to global
coordinates x by local coordinates ξξξ occur. Local derivatives are defined by

∂

∂x
= Je

∂

∂ξξξ

and, accordingly, the global derivatives are given by the relation [22]

∂

∂ξξξ
= J−1

e
∂

∂x
.

Thus, the coefficients of the stiffness matrix are given by

K = KNM
ik =

EN⋃
e=1

(Knm
ik )e =

EN⋃
e=1

∫
τ̂e

(
ϕ

n
,ηJ−1

jη

)
Ci jk`

(
ϕ

m
,ζ J−1

`ζ

)
Je dξξξ ,

where the subscripts η ,ζ denote a spatial derivative of the local shape functions with
respect to local coordinates ξξξ . Up to now the stiffness- and mass matrix are built but it
remains to define the right-hand side f.

Building the right-hand side needs to define a new set BN
Γh , containing all edges in two-

or faces ϒb in three dimensional problems. The discrete boundary Γh
N can therefore be

expressed as

Γ
h
N =

⋃
b∈BN

Γh

ϒb .
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Analogue to the relation (3.18) also a relation between the global and the local node num-
bering of every edge or face ϒb is established

ϒb : n↔ N = N(b,n), b ∈ BN
Γh , n ∈ n̂b , N ∈ n̄h , (3.19)

with n̂b = {1,2, . . . , N̂b} defining the set of local node numbering of the edge or face with
the total number N̂b of nodes. Furthermore, a reference element, denoted by ϒ̂ , is intro-
duced, as well as shape functions ϕΓ and mapping functions mΓ, which are defined on the
boundary. Using the introduced notations, the right-hand side, caused by the Neumann
boundary conditions gN,hi (y, t), y ∈ Γh

N, is defined by

fN =
(

f N
i
)N

=

Bn
Γh⋃

b=1

(
f N
i
)N

e =

BN
Γh⋃

b=1

∫
ϒ̂b

ϕ
n
ΓgN,hi Jb dξξξ . (3.20)

Note that in equation (3.20) the relation between the global and local node numbering
(3.19) is used. The determinant of the Jacobian of the corresponding element b ∈ Bn

Γh is
denoted by Jb. The mapping between a point ξξξ of the reference edge or face ϒ̂ and a
coordinate y in the domain ϒb is given by

y(ξξξ ) = ∑
n∈n̂b

mn
Γ(ξξξ )pn , ξξξ ∈ ϒ̂ , pn,y ∈ϒb ,

keeping in mind that relation (3.19) is also valid for points pn↔ pN . The right-hand side
contribution of equation (3.13), resulting from body forces f f and the prescribed Dirichlet
data fK and fM, are built in the same manner as the stiffness- and mass matrix (3.17a) and
are defined as

f f =
(

f N
i
) f

=
EN⋃
e=1

( f n
i )

f
e =

EN⋃
e=1

∫
τ̂e

ϕ
n f h

i Je dξξξ

fK =
(

f N
i
)K

=
EN⋃
e=1

( f n
i )

K
e =

EN⋃
e=1

∫
τ̂e

(
ϕ

n
,ηJ−1

jη

)
Ci jk`

(
ϕ

m
,ζ J−1

`ζ

)
gm,N

k Je dξξξ

fM =
(

f N
i
)M

=
EN⋃
e=1

( f n
i )

M
e =

EN⋃
e=1

δik

∫
τ̂e

ϕ
n
ϕ

mg̈m,N
k Je dξξξ ,

with the relation

τe : M↔ m = m(e,M), e ∈ eN , M ∈ nD , m ∈ n̂e . (3.21)
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3.1.4 Laplace domain

Contrary to the time dependent case initial conditions are considered during the Laplace
transformation [61]. Assuming vanishing initial conditions

ui(x,0+) = 0 , x ∈Ω

u̇i(x,0+) = 0 , x ∈Ω ,

the elastodynamic boundary value problem is stated in the strong form in Laplace domain
as follows.

Given f̂i(x), ĝDi (y), ĝNi (y), find ûi(x) such that

σ̂i j, j(x)+ f̂i(x) = s2%ûi(x) x ∈Ω (3.22)

ûΓ
i (y) = ĝDi (y) y ∈ ΓD

σ̂i j(y)n j(y) = ĝNi (y) y ∈ ΓN ,

with the stress tensor σ̂i j =Ci jk`ûk,`. In the following, the functions will be written without
the dependent variables x and y. The variational or weak form of the strong form (3.22)
is obtained by performing the same steps as in the time domain. Therefore, after partial
integration and applying the divergence theorem

∫
Ω
( ˆ̄uiσ̂i j), j dΩ =

∫
Γ

ˆ̄uiσ̂i jn j dΓ, the weak
form with ûi ∈ Vg and ˆ̄ui ∈ V0 reads as∫

Ω

ˆ̄ui, jCi jk`ûk,` dΩ+ s2%
∫
Ω

ˆ̄uiûi dΩ−
∫
Ω

ˆ̄ui f̂i dΩ =
∫

ΓN

(Tr ˆ̄ui)ĝNi dΓN .

Following the procedure in section 3.1.2, the approximation

ûi ≈ ûh
i = ∑

M∈nh

ϕ̃
MûM

i + ∑
M∈nD

ϕ̃
MĝM,D

i

ˆ̄ui ≈ ˆ̄uh
i = ∑

N∈nh

ϕ̃
N ˆ̄uN

i ,

yields the discrete weak formulation∫
Ωh

ϕ̃
N
, jCi jk`ϕ̃

M
,` uM

k dΩ
h + s2%δik

∫
Ωh

ϕ̃
N

ϕ̃
MûM

k dΩ
h =

∫
Ωh

ϕ̃
N f h

i dΩ
h

+
∫

Γh
N

(Tr ϕ̃
N)ĝN,hi dΓ

h
N−

∫
Ωh

ϕ̃
N
, jCi jk`ϕ̃

M
,` ĝM,D

k dΩ
h− s2%δik

∫
Ωh

ϕ̃
N

ϕ̃
MĝM,D

k dΩ
h ,

or written in a more compressed form(
KNM

ik + s2MNM
ik
)︸ ︷︷ ︸

(K̂
NM
ik )

ûM
k = f̂ N

i . (3.23)
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In equation (3.23), the so called dynamic stiffness matrix (K̂
NM
ik ) or K̂ is introduced. The

coefficients of the stiffness- KNM
ik and mass matrix MNM

ik are the same as in (3.17a) and
(3.17b), respectively. Note that they are also independent of the Laplace parameter s and,
therefore, have to be calculated just once for different s. Only the components of the force
vector f̂ N

i = ( f N
i ) f +( f̂ N

i )N+( f̂ N
i )K +( f̂ N

i )M, containing boundary data, differ from (3.14)
and are given as

(
f̂ N
i
)N

=

Bn
Γh⋃

b=1

(
f̂ N
i
)N

e =

BN
Γh⋃

b=1

∫
ϒ̂b

ϕ
n
ΓĝN,hi Jb dξξξ

(
f̂ N
i
)K

=
EN⋃
e=1

(
f̂ n
i
)K

e =
EN⋃
e=1

∫
τ̂e

(
ϕ

n
,ηJ−1

jη

)
Ci jk`

(
ϕ

m
,ζ J−1

`ζ

)
ĝm,N

k Je dξξξ

(
f̂ N
i
)M

=
EN⋃
e=1

(
f̂ n
i
)M

e =
EN⋃
e=1

sδik

∫
τ̂e

ϕ
n
ϕ

mĝm,N
k Je dξξξ ,

by considering the relations given in (3.18), (3.19), and (3.21).

Remark on elastostatics The strong and weak form for elastostatic problems can be
deduced in the same manner as for the dynamic case. Basically, both the strong and weak
form are obtained by neglecting all inertia terms of the dynamic formulation presented
above. This is also valid for the discrete variational form. Since the deduction of the finite
element formulation for elastostatics is rather straightforward it will be skipped in this
thesis.
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3.2 Poroelastodynamics

In this section, the finite element formulations for different approaches of the governing
equations, which describe the behavior of a porous material, are given. An overview of
finite element formulations for a porous medium is given by Zienkiewicz and Shiomi [158]
and Simon et al. [127]. The former paper illustrates the full form (ui, p,u f

i ) as well for-
mulations where simplifications are used. Such simplifications are useful and permitted
for slow motion phenomena as already discussed in section 2.2. The latter one also uses
the full form, but uses instead of the fluid displacement u f

i the relative displacement wi as
unknown, i.e., the set of unknowns is (ui, p,wi). A finite element formulation for partial
saturated porous media is given by Ravichandran [112]. There, the full form is consid-
ered where the solid displacement, the liquid displacement, the gas displacement, the pore
water pressure, and the pore gas pressure are assumed to be the unknowns. Consolida-
tion phenomena of saturated as well of partially saturated media are discussed in detail by
Lewis and Schrefler [95]. Also mixed finite element formulations for porous media exist
and are discussed for example by Simon et al. [127] or Korsawe et al. [93].

In this thesis, the finite element formulation of the full form (ui, p,wi) will be reviewed.
Moreover, the finite element approximation of the irreducible ui,wi formulation and the
simplified ui, p form is presented. The different finite element formulations of the porous
material follows the one of section 3.1, where the finite element formulation for an initial
boundary value is given in detail for elastodynamics. Thus, only the main steps will be
presented.

3.2.1 The full form ui, p,wi

The primary unknowns in the finite element formulation of the full form are the solid
displacement ui, the pore pressure p, and the relative displacement wi. If the fluid has to be
considered as an incompressible material the full form is the only possible one to describe
the porous material appropriately [158]. For the finite element formulation of the full form
the total balance of momentum (2.25), the continuity equation (2.23), and the balance of
momentum of the pore fluid (2.27) are used and are given in the strong form as

σ
tot
i j, j +Fi−%üi−% f ẅi = 0 (3.24a)

ẇi,i +α u̇i,i +
φ 2

R
ṗ = 0 (3.24b)

p,i +
1

φ 2

(
φ% f +%a

)
ẅi +ρ f üi +

1
κ

ẇi− f f
i = 0 . (3.24c)
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The unknown variables are therefore

ui = ui(x, t)
p = p(x, t) , (x, t) ∈Ω× [0,T ]

wi = wi(x, t) .

The boundary conditions for the porous material may be defined as:

• For the total balance of momentum (3.24a) the boundary Γ is decomposed into the
part where the Dirichlet data gu

i is prescribed Γu
D and the Neumann part Γu

N where
the total stress vector t tot

i = σ tot
i j n j is applied with the unit normal vector n j, i.e.,

Γ = Γ
u
D∪Γ

u
N (3.25)

ui(y, t) = gu
i , (y, t) ∈ Γ

u
D× (0,T )

σ
tot
i j n j(y, t) = t tot

i , (y, t) ∈ Γ
u
N× (0,T ) .

• The boundary for the continuity equation (3.24b) is again divided into the part Γ
p
D

on which the values gp are prescribed and Γ
p
N where the normal flux gq is prescribed,

i.e.,

Γ = Γ
p
D∪Γ

p
N (3.26)

p(y, t) = gp , (y, t) ∈ Γ
p
D× (0,T )

qini(y, t) = gq , (y, t) ∈ Γ
p
N× (0,T ) .

• Finally, the boundary for the fluid phase (3.24c) is decomposed into the part Γw
D

on which the values gw
i are prescribed and Γw

N where the fluid pressure t p
i = ni p is

prescribed, i.e.,

Γ = Γ
w
D∪Γ

w
N (3.27)

wi(y, t) = gw
i , (y, t) ∈ Γ

w
D× (0,T )

ni p(y, t) = t p
i , (y, t) ∈ Γ

w
N× (0,T ) .

In the above relations (3.25)-(3.26) the superscripts u,p, and w are used to denote that
the considered quantity corresponds to the solid displacement, the pore pressure, or the
relative displacement, respectively. Note that both boundary conditions (3.26) and (3.27)
correspond to the fluid phase. Consequently, depending on the chosen FEM formulation
(different FEM formulations will be presented in the following) the corresponding set of
boundary conditions have to be applied. The finite element formulation, therefore, has to
be adopted to the underlying problem, which has to be solved or the prescribed boundary
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conditions have to be reformulated for the preferred FEM formulation. Furthermore, the
initial conditions of the problem have to be specified, thus, they are defined by

(ui)
0 = ui(x,0+) (u̇i)

0 = u̇i(x,0+) (3.28)

(p)0 = p(x,0+) (ṗ)0 = ṗ(x,0+) , x ∈Ω .

(wi)
0 = wi(x,0+) (ẇi)

0 = ẇi(x,0+)

Any other variables occurring in the initial boundary value problem (3.24) will be assumed
to be constant in space and time.

Weak form of the full form ui, p,wi

In order to formulate the weak form the solution and trial spaces are defined through

Vu
g = {ui : ui ∈ H1 , ui = gu

i on Γ
u
D}

Vu
0 = {ūi : ūi ∈ H1 , ūi = 0 on Γ

u
D} ,

V p
g = {p : p ∈ H1 , p = gp on Γ

p
D}

V p
0 = {p̄ : p̄ ∈ H1 , p̄ = 0 on Γ

p
D} ,

Vw
g = {wi : wi ∈ H1 , wi = gw

i on Γ
w
D}

Vw
0 = {w̄i : w̄i ∈ H1 , w̄i = 0 on Γ

w
D} ,

for the solid displacement, the pore pressure, and the relative displacement, respectively.
For simplicity, the explicit statement of the initial conditions in the weak form will be
omitted. Also, the Dirichlet boundary conditions will not be incorporated in the weak
formulations to ensure a more readable form.

In order to obtain the weak form of the total balance of momentum equation (3.24a) is
pre-multiplied with ūi ∈ Vu

0 and integrated over Ω, yielding∫
Ω

ūiσ
tot
i j, j dΩ−

∫
Ω

ūi%üi dΩ−
∫
Ω

ūi% f ẅi dΩ =−
∫
Ω

ūiFi dΩ . (3.29)

Integrating equation (3.29) by parts and applying the divergence theorem
∫

Ω
(ūiσ

tot
i j ), j dΩ=∫

Γ
ūiσ

tot
i j n j dΓ, yields with inserted Neumann boundary conditions (3.25),∫

Ω

ūi, jσ
tot
i j dΩ+%

∫
Ω

ūiüi dΩ+% f

∫
Ω

ūiẅi dΩ =
∫
Ω

ūiFi dΩ+
∫

Γu
N

(Tr ūi)t tot
i dΓ

u
N .
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Inserting relation (2.19) with (2.4) results in∫
Ω

ūi, jCi jk`uk,` dΩ−α

∫
Ω

ūi,i p dΩ+%
∫
Ω

ūiüi dΩ+% f

∫
Ω

ūiẅi dΩ = (3.30)

∫
Ω

ūiFi dΩ+
∫

Γu
N

(Tr ūi)t tot
i dΓ

u
N .

The weak form of the continuity equation is derived by pre-multiplying equation (3.24b)
with the test function p̄ ∈ V p

0 and integrated over the domain Ω yielding∫
Ω

p̄ẇi,i dΩ+α

∫
Ω

p̄u̇i,i dΩ+
φ 2

R

∫
Ω

p̄ ṗ dΩ = 0 .

Integration by parts and applying the divergence theorem
∫

Ω
(p̄ẇi),i dΩ =

∫
Γ

p̄ẇini dΓ re-
sults in, after applying the Neumann boundary condition (3.26),

−
∫
Ω

p̄,iẇi dΩ+α

∫
Ω

p̄u̇i,i dΩ+
φ 2

R

∫
Ω

p̄ ṗ dΩ =−
∫

Γ
p
N

(Tr p̄)gq . (3.31)

Note that in equation (3.31) the relation ẇi = qi was taken into account.

To derive the weak form of the balance of momentum of the fluid phase equation (3.24c)
is pre-multiplied with the test function w̄i ∈ Vw

0 and integrated over the domain Ω. Per-
forming some algebraic manipulations results in∫

Ω

w̄i p,i dΩ+
1
φ

[
φ% f +%a

]∫
Ω

w̄iẅi dΩ+% f

∫
Ω

w̄iüi dΩ+
1
κ

∫
Ω

w̄iẇi dΩ =
∫
Ω

w̄i f f
i dΩ .

(3.32)
Since the Neumann boundary conditions for the fluid phase are already applied in the
weak form of the continuity relation (3.31), no Neumann boundary conditions have to be
introduced in the weak form of the relative displacement (3.32).

Discretized weak form of the full form ui, p,wi

The discretized variational form will only be stated on element level to retain a more read-
able form. This means that the Dirichlet boundary conditions will be left aside. Thus,
the boundary conditions have to be considered in a later step. There exist several meth-
ods and a good overview of such methods is given in the book of Jung and Langer [84].
The discrete approximation of the solid displacement, the pore pressure, and the relative
displacement is done by

ui ≈ ∑
n∈n̂u

e

ϕ
nun

i , p≈ ∑
n∈n̂p

e

ϑ
n pn , wi ≈ ∑

n∈n̂w
e

ψ
nw̄n

i , (3.33)
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respectively. Since the approximation order of the different constituents can be different,
the corresponding reference element consist of three possible number of nodes, namely
n̂u

e , n̂
p
e , and n̂w

e for the fluid displacement, the pore pressure, and the relative displacement,
respectively. The test functions are accordingly approximated by

ūi ≈ ∑
n∈n̂u

e

ϕ
nūn

i , p̄≈ ∑
n∈n̂p

e

ϑ
n p̄n , w̄i ≈ ∑

n∈n̂w
e

ψ
nw̄n

i . (3.34)

The discrete form of the total balance of momentum is obtained by inserting the above
approximations into the weak form (3.30), which yields a set of linear equations of the
form

ūn
i [K

nm
ik um

k −G1nm
i pm +M1nm

ik üm
k +M2nm

ik ẅm
k − ( f n

i )
u] = 0 .

Since ūn
i is arbitrary, the term in the square brackets must vanish and the above equation

reduces to

Knm
ik um

k −G1nm
i pm +M1nm

ik üm
k +M2nm

ik ẅm
k = ( f n

i )
u . (3.35)

The single components of the left-hand side of equation (3.35) are given as follows

Knm
ik =

∫
τ̂e

ϕ
n
, jCi jk`ϕ

m
,` Je dξξξ (3.36)

G1nm
i = α

∫
τ̂e

ϕ
n
,iϑ

mJe dξξξ

M1nm
ik = %δik

∫
τ̂e

ϕ
n
ϕ

mJe dξξξ

M2nm
ik = % f δik

∫
τ̂e

ϕ
n
ψ

mJe dξξξ

and the right-hand side reads as

( f n
i )

u =
∫
τ̂e

ϕ
nFiJe dξξξ +

∫
ϒ̂b

ϕ
n
Γt tot

i Jb dξξξ .

To obtain the discrete form of the continuity relation the approximations (3.33) and (3.34)
are inserted into the weak form (3.31), which yields a set of linear equations of the form

p̄n [−C3nm
k ẇm

k +Pnm ṗm +C2nm
k u̇m

k +( f 1n)p] = 0 .

Again, since p̄n
i is arbitrary, the term in the square brackets must vanish and the above

equation reduces to

−C3nm
k ẇm

k +Pnm ṗm +C2nm
k u̇m

k =−( f 1n)p . (3.37)
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The single components of the left-hand side of equation (3.37) reads as

C2nm
k = α

∫
τ̂e

ϑ
n
ϕ

m
,k Je dξξξ

Pnm =
φ 2

R

∫
τ̂e

ϑ
n
ϑ

mJe dξξξ

C3nm
k =

∫
τ̂e

ϑ
n
,kψ

mJe dξξξ

and the right-hand side reads as

( f 1n)p =
∫
ϒ̂b

ϑ
n
ΓgqJb dξξξ .

Inserting the approximations (3.33) and (3.34) into the weak form (3.32) yields the discrete
weak form of the fluid phase

G2nm
i pm +M3nm

ik ẅm
k +(M2nm

ik )T üm
k +C1nm

ik ˙̄wm
k = ( f 1n

i )
w ,

for arbitrary w̄n
i . The above components of the left-hand side are given in detail by

G2nm
i =

∫
τ̂e

ψ
n
ϑ

m
,i Je dξξξ

M3nm
ik = δik

1
φ

[
φ% f +%a

]∫
τ̂e

ψ
n
ψ

mJe dξξξ

(M2nm
ik )T = δik% f

∫
τ̂e

ψ
n
ϕ

mJe dξξξ

C1nm
ik = δik

1
κ

∫
τ̂e

ψ
n
ψ

mJe dξξξ

and the right-hand side is given by

( f 1n
i )

w =
∫
τ̂e

ψ
n f f

i Je dξξξ .

The whole system ui, p,wi To give an overview of the whole equation system of the
porous medium in its full form, it is presented in matrix notation M1 0 M2

0 0 0
M2T 0 M3

ü
p̈
ẅ

+
 0 0 0

C2 P −C3
0 0 C1

u̇
ṗ
ẇ

+
K G1 0

0 0 0
0 G2 0

u
p
w

=

 fu

−f1p

f1w

 .
(3.38)
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The above equation system is not symmetric. If a symmetric equation system is desired
this can be obtained by using the time integrated form of the continuity equation (3.24b),
which shifts the equation from the so called damping matrix to the stiffness matrix. For
completeness also this case will be presented.

3.2.2 The symmetric full form ui, p,wi

In order to derive the weak and discrete form of the time integrated continuity relation
equation (3.24b) is integrated in time, multiplied with the test function p̄ ∈ V p

0 and inte-
grated over the domain Ω, yielding

−
∫
Ω

p̄wi,i dΩ−α

∫
Ω

p̄ui,i dΩ− φ 2

R

∫
Ω

p̄p dΩ = 0 .

Note that in this case the boundary conditions of the fluid will be incorporated in the bal-
ance of momentum of the fluid and, thus, different handled as for the non-symmetric for-
mulation. Inserting the approximations (3.33) and (3.34) results in the discrete variational
formulation

−(G1nm
k )T um

k − (Pnm
k )pm− (G3nm

k )T wm
k = 0 ,

with the yet unknown components defined by

(G1nm
k )T = α

∫
τ̂e

ϑ
n
ϕ

m
,k Je dξξξ

(G3nm
k )T =

∫
τ̂e

ϑ
n
ψ

m
,k Je dξξξ .

Next, the weak and discrete form of the momentum of balance of the fluid phase is derived.
For a symmetric formulation equation (3.24c) is pre-multiplied with the test function w̄i ∈
Vw

0 and integrated over the domain Ω. Additional algebraic manipulations result in∫
Ω

w̄i p,i dΩ+
1
φ

[
φ% f +%a

]∫
Ω

w̄iẅi dΩ+% f

∫
Ω

w̄iüi dΩ+
1
κ

∫
Ω

w̄iẇi dΩ =
∫
Ω

w̄i f f
i dΩ .

(3.39)
To introduce natural boundary conditions the first integral of equation (3.39) is integrated
by parts. Taking into account the divergence theorem

∫
Ω
(w̄iσ

f
i j), j dΩ =

∫
Γ

w̄iσ
f

i jn j dΓ and
applying the Neumann boundary conditions (3.27) yields

−
∫
Ω

w̄i,i p dΩ+
1
φ

[
φ% f +%a

]∫
Ω

w̄iẅi dΩ+% f

∫
Ω

w̄iüi dΩ+
1
κ

∫
Ω

w̄iẇi dΩ =

∫
Ω

w̄i f f
i dΩ−

∫
Γw
N

(Tr w̄i)t
p
i dΓ

w
N .

(3.40)
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The approximations (3.33) and (3.34) inserted in equation (3.40) yield the discrete varia-
tional formulation

−G3nm
i pm +M3nm

ik ẅm
k +(M2nm

ik )T üm
k +C1nm

ik ˙̄wm
k = ( f 2n

i )
w .

The still unknown component of the left-hand side is

G3nm
i =

∫
τ̂e

ψ
n
,iϑ

mJe dξξξ

and the right-hand side is

( f 2n
i )

w =
∫
τ̂e

ψ
n f f

i Je dξξξ −
∫
ϒ̂b

ψ
n
Γt p

i Jb dξξξ .

Finally, the whole symmetric system written in matrix notation reads as M1 0 M2
0 0 0

M2T 0 M3

ü
p̈
ẅ

+
0 0 0

0 0 0
0 0 C1

u̇
ṗ
ẇ

+
 K −G1 0
−G1T −P −G3T

0 −G3 0

u
p
w

=

 fu

0
f2w

 .
(3.41)

If the boundary conditions for the flux and the pore pressure (3.27) are given, the sym-
metric system can be used. In the other case, when the boundary conditions for the pore
pressure and the relative displacement (3.26) are given, the system (3.38) has to be used.
Alternatively, the boundary conditions have to be reformulated appropriately for the de-
sired FEM formulation.

3.2.3 The irreducible form ui,wi

If the fluid of the porous media is assumed compressible the pore pressure can be elimi-
nated (2.28) [158]. The remaining primary variables are consequently the solid- and rela-
tive displacement.

Weak form

For simplicity, the pore pressure (2.28) is directly inserted into the weak form of the bal-
ance of momentum of the total mixture (3.30), yielding∫

Ω

ūi, jCi jk`uk,` dΩ−α

∫
Ω

ūi,i

[
− R

φ 2

(
wk,k +αuk,k

)]
dΩ+%

∫
Ω

ūiüi dΩ

+% f

∫
Ω

ūiẅi dΩ =
∫
Ω

ūiFi dΩ+
∫

Γu
N

(Tr ūi)t tot
i dΓ

u
N .
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and reads after rearranging as∫
Ω

ūi, jCi jk`uk,` dΩ+
R
φ 2 α

∫
Ω

ūi,iwk,k dΩ+
R
φ 2 α

2
∫
Ω

ūi,iuk,k dΩ+%
∫
Ω

ūiüi dΩ

+% f

∫
Ω

ūiẅi dΩ =
∫
Ω

ūiFi dΩ+
∫

Γu
N

(Tr ūi)t tot
i dΓ

u
N .

Inserting the approximations (3.33) and (3.34) yields the discrete form

Knm
ik um

k +G5nm
ik wm

k +G4nm
ik um

k +M1nm
ik üm

k +M2nm
ik üm

k = ( f n
i )

u ,

where the new components are

G4nm
ik =

R
φ 2 α

2
∫
τ̂e

ϕ
n
,iϕ

m
,k Je dξξξ

G5nm
ik =

R
φ 2 α

∫
τ̂e

ϕ
n
,iψ

m
,k Je dξξξ .

The weak form for the fluid phase is obtained in the same manner. Thus, the pore pressure
(2.28) is directly inserted into the weak form of the balance of momentum of the fluid
(3.40) and is written as

−
∫
Ω

w̄i,i

[
− R

φ 2

(
wk,k +αuk,k

)]
dΩ+

1
φ

[
φ% f +%a

]∫
Ω

w̄iẅi dΩ+% f

∫
Ω

w̄iüi dΩ

+
1
κ

∫
Ω

w̄iẇi dΩ =
∫
Ω

w̄i f f
i dΩ−

∫
Γw
N

(Tr w̄i)t
p
i dΓ

w
N ,

which can be rearranged to
R
φ 2

∫
Ω

w̄i,iwk,k dΩ+
R
φ 2 α

∫
Ω

w̄i,iuk,k dΩ+
1
φ

[
φ% f +%a

]∫
Ω

w̄iẅi dΩ+% f

∫
Ω

w̄iüi dΩ

+
1
κ

∫
Ω

w̄iẇi dΩ =
∫
Ω

w̄i f f
i dΩ−

∫
Γw
N

(Tr w̄i)t
p
i dΓ

w
N .

Inserting the approximations (3.33) and (3.34) yields the discrete form

G6nm
ik wm

k +(G5nm
ik )T um

k +M3nm
ik ẅm

k +(M2nm
ik )T üm

k +C1nm
ik ẇm

k = ( f 2n
i )

w

with the new components given as

(G5nm
ik )T =

R
φ 2 α

∫
τ̂e

ψ
n
,iϕ

m
,k Je dξξξ

G6nm
ik wm

k = w̄n
i

R
φ 2

∫
τ̂e

ψ
n
,iψ

m
,k Je dξξξ .
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The whole ui,wi-system written in matrix notation is[
M1 M2

M2T M3

][
ü
ẅ

]
+

[
0 0
0 C1

][
u̇
ẇ

]
+

[
K+G4 G5

G5T G6

][
u
w

]
=

[
fu

f2w

]
. (3.42)

It is observable that also the irreducible system (3.42) is symmetric. For the case of an
incompressible fluid the reduced ui,wi-form is only applicable if a penalty formulation is
used [158]. Penalty methods for incompressible constituents may be found nearly in every
book about the finite element method, e.g., [22, 82, 165].

3.2.4 The ui, p form in time domain

As already mentioned in section 2.2.3 the elimination of the relative displacement wi can
only be accomplished when inertia terms in the equation of motion (2.25) are neglected.
This simplification is reasonable for medium speed phenomena [158]. Thus, the remaining
variables are the solid displacement ui and the pore pressure p. The application of this
simplified model will be validated with some numerical examples (cf. section 5.2). In the
following, the discrete variational formulation will be derived.

Weak form

The relevant weak form is derived in the same manner as above. Therefore, the simplified
total balance of momentum (2.29) is pre-multiplied with the test function ūi ∈ Vu

0 and
integrated over the domain Ω∫

Ω

ūiσ
tot
i j, j dΩ−

∫
Ω

ūi%üi dΩ+
∫
Ω

ūiFi dΩ = 0 . (3.43)

Next, the first integral of (3.43) is integrated and the divergence theorem
∫

Ω
(ūiσ

tot
i j ), j dΩ=∫

Γ
ūiσ

tot
i j n j dΓ is applied, which yields with inserted boundary conditions (3.25)∫

Ω

ūi, jσ
tot
i j dΩ+%

∫
Ω

ūiüi dΩ =
∫
Ω

ūiFi dΩ+
∫

Γu
N

(Tr ūi)t tot
i dΓ

u
N .

Inserting relation (2.19) with (2.4) results in∫
Ω

ūi, jCi jk`uk,` dΩ−α

∫
Ω

ūi,i p dΩ+%
∫
Ω

ūiüi dΩ =
∫
Ω

ūiFi dΩ+
∫

Γu
N

(Tr ūi)t tot
i dΓ

u
N .

Applying the approximations (3.33) and (3.34) yields the discrete form of the approxi-
mated total balance of momentum for any nonzero ūn

i

Knm
ik um

k −G1nm
i p+M1nm

ik üm
k = ( f n

i )
u ,
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with the single components defined in (3.36). To obtain the weak form related to the pore
pressure the simplified flux (2.30) is inserted into equation (2.31). Taking into account the
relation ẇi = qi results in

κ

∫
Ω

p̄,i p,i dΩ+κ% f

∫
Ω

p̄,iüi dΩ+α

∫
Ω

p̄u̇i,i dΩ+
φ 2

R

∫
Ω

p̄ṗ dΩ = κ

∫
Ω

p̄,i f f
i dΩ−

∫
Γ

p
N

(Tr p̄)gq.

The discrete form for nonzero p̄n is obtained by inserting the approximations (3.33) and
(3.34)

G7nm pm +M4nm
k üm

k +C2nm
k u̇m

k +Pnm ṗm = ( f 2n)p ,

with the coefficients

G7nm = κ

∫
τ̂e

ϑ
n
,i ϑ

m
,i Je dξξξ

M4nm = κ% f δi j

∫
τ̂e

ϑ
n
,i ϕ

mJe dξξξ

( f 2n)p = κ

∫
τ̂e

ϑ
n
,i f f

i Je dξξξ −
∫
ϒ̂b

ϑ
n
ΓqqJb dξξξ .

The whole system written in matrix notation reads as[
M1 0
M4 0

][
ü
p̈

]
+

[
0 0

C2 P

][
u̇
ṗ

]
+

[
K −G1
0 G7

][
u
p

]
=

[
fu

f2p

]
, (3.44)

which is not symmetric.

3.2.5 The ui, p form in Laplace domain

For completeness, also the finite element formulation of the ui, p form in Laplace domain
will be presented. This formulation is of most interest, since an analytic one-dimensional
infinite element can be deduced for this poroelastic form, as will be shown in section 4.3.1.
Moreover, no relative inertia terms have to be neglected to derive the ui, p formulation in
Laplace domain. This is the case when a ui, p formulation in time domain is desired (cf.
section 2.2.6). Assuming vanishing initial conditions (2.32) during the Laplace transfor-
mation, the strong form of the problem reads as

σ̂
tot
i j, j− s2(%−β% f )ûi +β p̂,i + F̂i = 0 (3.45a)

q̂i,i + sα ûi,i + s
φ 2

R
p̂ = 0 , (3.45b)
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by using equations (2.33) and (2.35), with inserted relative displacement ŵi of (2.36),
respectively. Moreover, the relation q̂i = sŵi is used. The unknown functions are

ûi = ûi(x) , x ∈Ω

p̂ = p̂(x) , x ∈Ω .

The Laplace transformed boundary conditions (3.25) and (3.26) for the solid phase and
fluid phase, respectively, are given as

Γ = Γ
u
D∪Γ

u
N

ûi(y) = ĝu
i , y ∈ Γ

u
D (3.46)

σ̂
tot
i j n j(y) = t̂ tot

i , y ∈ Γ
u
N ,

Γ = Γ
p
D∪Γ

p
N

p̂(y) = ĝp , y ∈ Γ
p
D (3.47)

q̂ini(y) = ĝq , y ∈ Γ
p
N .

The variational weak form is obtained by performing the same steps as in time domain.

Discrete weak form of the total balance of momentum To obtain the weak form, equa-
tion (3.45a) is pre-multiplied with the test function ˆ̄u ∈ Vu

0 and integrated over the domain
Ω, yielding∫

Ω

ˆ̄uiσ̂
tot
i j, j dΩ− s2(%−β% f )

∫
Ω

ˆ̄uiûi dΩ+β

∫
Ω

ˆ̄ui p̂,i dΩ+
∫
Ω

ˆ̄uiF̂i dΩ = 0 . (3.48)

Integrating equation (3.48) by parts and applying the divergence theorem
∫

Ω
( ˆ̄uiσ̂

tot
i j ), jΩ =∫

Γ
ˆ̄uiσ̂

tot
i j n jΓ, yields with inserted boundary condition (3.46)∫
Ω

ˆ̄ui, jCi jk`ûk,` dΩ−α

∫
Ω

ˆ̄ui,i p̂ dΩ+ s2(%−β% f )
∫
Ω

ˆ̄uiûi dΩ−β

∫
Ω

ˆ̄ui p̂,i dΩ =

∫
Ω

ˆ̄uiF̂i dΩ+
∫

Γu
N

(Tr ˆ̄ui)t̂ tot
i dΓ

u
N .

(3.49)

Note that equation (3.49) is derived using the relation (2.19) with (2.4). Inserting the
Laplace transformed approximations (3.33) and (3.34) into the weak form (3.49) yields a
set of linear equations

Knm
ik ŵm

k −G1nm
i p̂m +H1nm

ik ûm
k −H2nm

i p̂m = ( f̂ n
i )

u . (3.50)
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The yet unassigned components of equation (3.50) are

H1nm
ik = s2(%−β% f )δik

∫
τ̂e

ϕ
n
ϕ

mJe dξξξ

H2nm
i = βδik

∫
τ̂e

ϕ
n
ψ

m
,i Je dξξξ

and the right-hand side reads as

( f̂ n
i )

u =
∫
τ̂e

ϕ
nF̂iJe dξξξ +

∫
ϒ̂b

ϕ
n
Γt̂ tot

i Jb dξξξ .

Discrete weak form of the fluid phase Here, equation (3.45b) is multiplied with the test
function ˆ̄p ∈ V p

0 and integrated over the domain Ω, resulting in

∫
Ω

ˆ̄pq̂i,i dΩ+ sα

∫
Ω

ˆ̄pûk,k dΩ+ s
φ 2

R

∫
Ω

ˆ̄p p̂ dΩ = 0 . (3.51)

Partial integration and the application of the divergence theorem to equation (3.51) yields,
after inserting the boundary conditions (3.47),∫

Ω

ˆ̄p,iq̂i dΩ− sα

∫
Ω

ˆ̄pûk,k dΩ− s
φ 2

R

∫
Ω

ˆ̄p p̂ dΩ =−
∫

Γ
p
N

(Tr ˆ̄p)ĝq .

Using the relation q̂i = sŵi with the definition of the relative displacement (2.36) results in
the final weak form of the fluid phase

− β

s% f

∫
Ω

ˆ̄p,k p̂,k dΩ−β s
∫
Ω

ˆ̄p,kûk dΩ− sα

∫
Ω

ˆ̄pûk,k dΩ− s
φ 2

R

∫
Ω

ˆ̄p p̂ dΩ =−
∫

Γ
p
N

(Tr ˆ̄p)ĝq .

(3.52)

Inserting the Laplace transformed approximations (3.33) and (3.34) into the above weak
form (3.52) yields

−H3nm p̂m
k −H4nm

k ûm− sC2nm
k ûm

k − sPnm p̂m = ( f̂ 3n
)p . (3.53)

The new components of (3.53) are as follows

H3nm =
β

s% f

∫
τ̂e

ϑ
n
,kϑ

m
,k Je dξξξ
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H4nm
k = sβ

∫
τ̂e

ϑ
n
,kϕ

mJe dξξξ

and the right-hand side reads as

( f̂ 3n
)p =

∫
ϒ̂b

ϑ
n
Γ ĝqJb dξξξ .

The whole system written in matrix notation is[
K−H2 −G1+H1
−H4− sC2 −H3− sP

][
û
p̂

]
=

[
f̂u

f̂3p

]
.

The finite element formulation in Laplace domain for any other poroelastic formulation,
i.e., the ui, p-form in time domain, the ui,wi-, and the ui, p,wi-form is obtained by per-
forming the same steps as above.

Remark on the quasi-static solution The main interest in quasi-static poroelasticity is
to calculate the consolidation of the porous material. To obtain more insight about the
behavior of saturated porous media under quasi-static circumstances the reader is referred
to, e.g., the work of Zienkiewicz et al. [160]. The quasi-static solution of the above for-
mulations is simply deduced by neglecting all inertia terms. Since this procedure is rather
straight forward, the derivation of the quasi-static solution will be skipped in this thesis.

3.2.6 Approximation order of mixed poroelastic formulation

In the previous section, various finite element formulations for a poroelastic material were
presented. It remains to choose a proper approximation order of the single constituents.
However, it must be emphasized that arbitrary combinations of approximation orders can
lead to unphysical behavior of the solutions or to poor numerical performance. Their
proper choice is limited by the Babuška-Brezzi condition [15, 16, 44], which has to be
satisfied. For the general case, a wide choice of shape functions for the different con-
stituents is possible. For example, all primary unknowns of any finite element formulation
of poroelastic material can be approximated by the same order [127, 158]. However, since
first order spatial derivatives are present in the weak formulations, C0 shape functions have
to be used at least [165].

For the case of the ui, p finite element formulation, i.e., the solid displacement and pore
pressure are the primary variables, Lewis and Schrefler [95] and Zienkiewicz et al. [163]
reveal to use different approximation orders for the undrained limit. In this limit, the
permeability matrix G7 and compressibility matrix P are set to zero. Thus, in the equation
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(3.44) zero diagonal terms appear. The resulting matrices of this limiting case are then
identical to such matrices occurring when solving problems of incompressible elasticity or
fluid dynamics [163, 165]. To ensure solvability of the system, the approximation order of
the pore pressure should be chosen one order less than the solid displacement.

Concerning the approximation order of the different variables of full form (ui, p,wi) the in-
formation given by literature is quite rare. Ravichandran [112] and Gajo et al. [72] propose
also for the general case to approximate the pressure field one order less than the displace-
ment variables ui,wi. Besides, computational costs can be limited if the approximation
order of any primary variable can be reduced.

However, as long as no numerical instabilities are detectable the shape functions of the
single constituents will be chosen to be of the same kind, if not otherwise stated. This
ensures that every component is approximated with the same quality within the equation
system.

3.2.7 Transformation of variables

When programming the finite element formulation of porous media it is of numerical ben-
efit to transform the present variables, as it is worked out in detail by Chen and Dargush
[48] and Kielhorn [88]. In the following, the main steps of the transformation procedure
are presented. In order not to alter the governing equations of the poroelastic material, the
linear transformations

x̃i =
xi

A
, t̃i =

ti
B
, C̃i jk` =

Ci jk`

C
(3.54)

of spatial coordinates, time coordinates, and material data, respectively, is performed using
three constant values A,B,C ∈R+. The obtained dimensionless variables due to the trans-
formation will be shown on some examples. Thus, taking into account the transformations
(3.54), the new spatial derivative is

∂ui

∂x j
=

A∂ ũi

A∂ x̃ j
= ũi, j̃ ,

whereas the first and second time derivative yields

∂ui

∂ t
=

A∂ ũi

B∂ t̃
=

A
B

˙̃ui

∂ 2ui

∂ t2 =

(
∂

∂ t

)(
∂ui

∂ t

)
=

(
∂

B∂ t̃

)(
A∂ ũi

B∂ t̃

)
=

A
B2

∂ 2ũi

∂ t̃2 =
A
B2

¨̃ui .

The divergence of the stress tensor is related to his transformation by

σi j, j =
∂σi j

∂x j
=

C∂ σ̃i j

A∂ x̃ j
=

C
A

σ̃i j, j̃ ⇐⇒ σi j, j =
C
A

σ̃i j, j̃ .
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Inserting the linear transformation into the governing equations of section 2.2 yields the
remaining dimensionless variables for the permeability and any density

κ̃ =
BC
A2 κ %̃=

A2

B2C
% .

Bad conditioned equation systems occurring in numerical solution schemes due to the
poroelastic material is obvious, since the material data varies in a high range (see table
5.6). The goal is, therefore, to transform the variables in the form

C̃i jk` = κ̃ = ρ̃ = λ , λ ∈ R+ ,

which will lead to the following equations

1
C

E = λ
BC
A2 κ = λ

A2

B2C
ρ = λ . (3.56)

Solving equations (3.56) for the unknown parameters yields

A =
κ

λ 2

√
E% B =

%κ

λ 2 C =
E
λ

.

Kielhorn [88] investigated different approaches on a final choice of the three parameters
A,B and C. In this thesis, the choice λ = 1 will be used. The benefits gained by using
dimensionless variables is evident when considering the condition number of resulting
system matrices. It can be reduced by an order of roughly 1011 [88].
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3.3 Temporal discretization

3.3.1 Newmark method

As shown in sections 3.1 and 3.2, the semi-discrete approximation (3.9) of transient field
problems leads to a set of ordinary differential equations of the form

Mü+Cu̇+Ku = f . (3.57)

Analytic solutions of the given problem are in general not available and for this reason
a numerical approximation scheme is required. A vast body of literature considering this
topic is accessible where different methods are illustrated with their accuracy, convergence,
and stability properties, e.g, Chopra [51]. Numerical approximation schemes are also well
discussed in common Finite Element books which cover the dynamic case, e.g. [22, 55, 82,
165]. Although many such methods exist, only the well-known Newmark method [106]
will be used in this thesis.

In order to simplify the notation, first only a single degree of freedom system

mü(t)+ cu̇(t)+ ku(t) = f t ∈ (0,∞) (3.58)

is considered, where m,c, and k are positive real valued constants and u and f are scalar val-
ued functions of time only. As before, (̇) and (̈) represents the first and second time deriva-
tive, respectively. The initial-value problem (3.58) is subjected to initial conditions

u(0+) = u0 and u̇(0+) = u1 . (3.59)

If the numerical approximation scheme of (3.59) is accomplished it is an easy task to
extend it to a system of ordinary differential equations.

At first, the time interval of interest, denoted by (0,T ), is split into N-equal time steps ∆t.
Thus, the time grid

tn = n∆t n = 0,1,2, . . . ,N (3.60)

is taken constant for simplicity, whereas the method wouldn’t actually require this. Fol-
lowing the procedure presented by Newmark [106], the approximation of the discrete ac-
celeration ün+1 and velocity u̇n+1 at time step n+1 is given by

ün+1 = b1(un+1−un)−b2u̇n−b3ün (3.61a)
u̇n+1 = b4(un+1−un)−b5u̇n−b6ün , (3.61b)

respectively, with the introduced constants b1, . . . ,b6 defined by

b1 =
1

β∆t2 b2 =
1

β∆t b3 =
1

2β
−1

b4 =
γ

β∆t b4 =
γ

β
−1 b6 = ∆t

(
γ

2β
−1
)
.
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The time discrete form of (3.58) at time step n+1 reads as

mün+1 + cu̇n+1 + kun+1 = fn+1 . (3.62)

Note that in (3.61a) and (3.62) the approximations

un ≈ u(tn), u̇n ≈ u̇(tn), ün ≈ ü(tn)

for any time step n are used. Furthermore, the abbreviation fn+1 = f (tn+1) is used. Insert-
ing the equations (3.61) into (3.62) yields the expression for the only remaining unknown
un+1

(b1m+b4c+ k)un+1 = fn+1 +(b1un +b2u̇n +b3ün)m+(b4un +b5u̇n +b6ün)c . (3.63)

For n = 0 it remains to calculate the acceleration ü0, which can easily done by using the
original differential equation (3.58) or the approximated form (3.62)

mü0 = f0− cu̇0− ku0 ,

with the initial conditions from (3.59). The parameters β and γ define the variation of
acceleration over a time step and determine the stability and accuracy characteristics of the
method. Typical selection for γ = 1/2 and 1/6 ≤ β ≤ 1/4 is satisfactory from all points of
view, including that of accuracy [51]. The choice of γ = 1/2 and β = 1/4 corresponds to
constant acceleration whereas γ = 1/2 and β = 1/6 describes a linear variation of accelera-
tion. The Newmark method is unconditionally stable for the inequality

2β ≥ γ ≥ 1
2 .

However, numerical dissipation is desired, the choice γ > 1/2 would be an adequate choice,
despite the second order accuracy of the numerical integration scheme is lost [82]. For now,
the choice

β = 1
4 and γ = 1

2

is fixed throughout this thesis unless stated otherwise.

Applying the Newmark scheme to a system of differential equations, the scalar values m,c
and k basically has to be understood as matrices M,C and K, which are commonly called
mass-, damping- and stiffness matrix, respectively. The unknowns un+1, u̇n+1 and ün+1
has to be understood as vectors with size of degrees of freedom of the system. Thus, the
Newmark scheme applied to the system (3.57) yields for equation (3.63) the following set
of algebraic equations

(b1M+b4C+K)︸ ︷︷ ︸
K

un+1 = fn+1 +(b1un +b2u̇n +b3ün)M+(b4un +b5u̇n +b6ün)C︸ ︷︷ ︸
rn+1

.

(3.64)
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for the unknowns un+1. Analogously, the acceleration vector ün+1 and velocity vector
u̇n+1 can be calculated from equations (3.61a) and (3.61b), respectively. The matrix M
has to be positive-definite, the matrices C and K are positive-semi-definite [82]. The re-
sulting matrix on the left-hand side is commonly termed dynamic stiffness matrix, while
the right-hand side is referred as dynamic force vector. Note that if the time step ∆t is
chosen constant, the dynamic stiffness matrix has to calculated only once. Thus, it is often
preferred to assemble K and to pre-compute a factorization of it, which can be efficiently
reused at every time step. It only remains, therefore, to compute the right-hand side at
every time step.

3.3.2 Convolution quadrature method

Convolution integrals like

y(t) := ( f ∗g)(t) =
t∫

0

f (t− τ)g(τ) dτ , t ≥ 0 (3.65)

describe the response of a linear system to an input signal g(t) when f (t) is the impulse re-
sponse of the system. The problem to be solved is to evaluate the convolution f (t)∗g(t) at
discrete times approximately, when only the Laplace transform f̂ (s) of f (t) is known. The
Convolution Quadrature Method (CQM) developed by Lubich [96, 97] serves this purpose.
The CQM may also be used to calculate numerically the inverse Laplace transformation of
a function.

The CQM is well illustrated in the book of Schanz [123]. For this reason only the main
steps of the method will be presented here. The interested reader is also referred to the
original works of Lubich [96, 97] to gain more insight into the method.

Taking into account a discrete time grid with equally spaced time steps ∆t, as given in
equation (3.60), the convolution (3.65) can be approximated at discrete time steps n by the
quadrature rule [123]

yn(n∆t) =
n

∑
k=0

ωn−k(∆t)g(k∆t) . (3.66)

The so called quadrature weights ωn are given by

ωn(∆t) =
1

2πi

∫
SR

f̂
(

γ(z)
∆t

)
z−n−1 dz , (3.67)

with SR := {z ∈ C : |z|=R} being the circumference of the circle with radius R in the
domain of analyticity of f̂ (γ(z)/∆t). The above integral is treated numerically by using a
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trapezoidal rule [123].

ωn(∆t) =
R−n

L

L−1

∑
`=0

f̂

γ

(
Rei` 2π

L

)
∆t

e−in` 2π

L . (3.68)

The derivation of the quadrature rule (3.66) incorporates the use of a linear multistep
method, which has to fulfill certain stability requirements [123]. An example of such a
multistep method, which fulfills the stability requirements, is the Backward Differential
Formula of order two (BDF2), which will be used within this thesis. The characteristic
polynomial of this method is given by

γ(z) =
3
2
−2z+

1
2

z2 .

Thus, the CQM only uses two approximations to calculate the convolution integral (3.65),
namely the linear multistep method and the trapezoidal rule (3.68) to calculate the quadra-
ture weights ωn. It remains to specify the parameter L, which is the number of intervals,
the integration path SR is split into, when approximating the integral in (3.67). The com-
putation of f̂ (s) in (3.68) is performed with an error bounded by ε , the choice of L = N,
and RN =

√
ε [123]. The choice L = N yields the advantage that the computation of the

weights in (3.68) can be performed very efficiently using the technique of the Fast Fourier
Transform (FFT) [46]. Numerical studies concerning the proper choice of parameters can
be found in the book of Schanz [123].

Moreover, the convolution quadrature method (3.66) can be used as inverse Laplace trans-
form method. It turns out that the CQM is superior compared to other inverse Laplace
transform methods [124].

The convolution quadrature method can also be applied to a set of differential equations,
e.g., to equation (3.23). The scalar values yn(n∆t) and g(n∆t) have to be understood then
as vectors and the weights ωn(∆t) as matrix. Consequently, the convolution quadrature
method can be used as inverse Laplace transformation of equation (3.23). The multiplica-
tion in Laplace domain (3.23) corresponds to a convolution in time domain, which can be
approximated by the convolution quadrature method

K̂(s)û(s)• ◦
t∫

0

K(t− τ)u(τ) dτ ≈
n

∑
k=0

ωωωn−k
(
K̂(s),∆t

)
u(k∆t) = f(n∆t) .

At each time step tn = n∆t the current displacement vector u(n∆t) is the only unknown.
Thus, the right-hand side is constructed from the current loading as well from foregoing
solutions. The resulting equation system for the unknown solution vector u(k∆t) reads
as

ωωω0
(
K̂(s),∆t

)
u(n∆t) = f(n∆t)−

n−1

∑
k=0

ωωωn−k
(
K̂(s),∆t

)
u(k∆t)︸ ︷︷ ︸

rn

. (3.69)
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The coefficient matrix ωωω0 has to be inverted only once when using a direct solver, whereas
the right-hand side vector rn has to be calculated for every time step.

3.4 Numerical evaluation of finite integrals

The volume integrals occurring in finite element formulations are in general approximated
by using numerical integration schemes on the reference element. Numerical integration
methods use NG sampling points ξξξ i and assigns weights Wi to approximate the integral

∫
τ̂

f (ξξξ ) dξξξ ≈
NG

∑
i=1

f (ξξξ i)Wi .

The Gauß quadrature is the most popular method in order to generate element matrices,
since it minimizes the number of sampling points for a given accuracy. Since the integra-
tion is performed on a reference element τ̂ , tabulated sampling points ξξξ i and weights Wi
can be used. For this reason the implementation of the numerical integration is straight-
forward. For the one-dimensional case, the Gauß integration rule integrates polynomial of
degree 2m−1 exactly when using m sampling points. Gauß integration points and weights
for the two- and three dimensional case are obtained by tensor products. Such integration
formulas are exact in the two dimensional case for polynomial of the form

f (x) = ∑
0≤i≤`,0≤ j≤m

ai jξ
`
1ξ

m
2

and in the three dimensional case for

f (x) = ∑
0≤i≤`,0≤ j≤m,0≤k≤n

ai jkξ
`
1ξ

m
2 ξ

n
3 .

Here, `, m, and n denote the degree of polynomial for which the Gauß quadrature rule is
exact in the one dimensional case and ai j,ai jk ∈ R are constants [84].

Tables containing Gauß quadrature points and weights can be found, in general, in any
textbook covering the finite element technique, e.g., Zienkiewicz et al. [165] or Cook et al.
[55]. Proofs and additional details can be found in, e.g., [136] or [57].



4 INFINITE ELEMENTS

In chapter 3, the finite element method was introduced treating bounded domains. In the
following, the application of infinite elements within the finite element method is intro-
duced, which is a possible choice for the investigation of unbounded domains. An infinite
element is simply an element which attempts to represent the behavior of the solution in
the unbounded domain. Infinite elements are easily coupled to finite elements and retain
the banded structure of finite element matrices.

A good overview of the development of infinite elements as well as possible applications
is given in the book of Bettess [31]. In the following, a short historical review of different
approaches of infinite elements will be given. First published publications about infinite
elements were the thesis of Ungless [140] and the paper of Zienkiewicz and Bettess [157].
There exist mainly two different types of developed infinite elements:

1. The use of a decay function together with a shape function which causes the field
quantity to approach the sought value at infinity, while the finite size of the infinite
element is retained.

2. Using conventional shape functions to describe the variation of the field quantity,
while the geometry is mapped from a finite to an infinite domain.

Different mappings are possible, for example the mapping proposed by Beer and Meek
[26], but maybe the most promising is presented by Zienkiewicz et al. [161], due to its
simplicity of the mapping. This mapping retains the applicability of standard integration
formulas, e.g., standard Gauß integration. For another point of view, the reader is referred
to [31, 32] or Beer’s discussion [25].

Mapped infinite elements perform well for the static case in elastic media [161]. Such
mapped infinite elements were also applied successfully to quasi-static materially nonlin-
ear problems [99].

The application of infinite elements to wave propagation problems, makes it necessary to
include outwardly propagating wave-like factors in their formulation. This concept was
originally proposed by Bettess and Zienkiewicz [33]. For acoustic media a wide variety
of formulations exists. Basically, two different approaches exist, namely the unconjugated
and the conjugated infinite elements. The former are better known as Bettess infinite ele-
ments and are based on a Bubnov-Galerkin variational approach. This means that the test
and trial functions are identical [162]. Thus, a symmetric system matrix can be retained.
The applicability of these elements to transient problems is computationally expensive

59
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since they are non-local in time. Furthermore, special integration techniques has to be
applied to handle the oscillating integrals.

The notation conjugated infinite element stems from the fact that the test function is cho-
sen to be the complex conjugate of the trial function. This highly interesting element
was originated by Astley et al. [12, 13]. Astley called this type wave envelope elements.
Due to the conjugated test function, oscillatory terms are canceled out within the weighted
Petrov-Galerkin variational formulation. This leads to a considerable simplification, since
the occurring integrals can be evaluated numerically using standard integration formulas.
Even more, the application to transient problems is straightforward [12]. A comparison
of the conjugated and unconjugated infinite element method for the Helmholtz equation
is discussed by Gerdes [74]. The performance of the wave envelope element is even en-
hanced by Dreyer [62], Dreyer and von Estorff [63], and Dreyer et al. [64] for the time har-
monic case. Improved stability for time domain calculations is accomplished by Cipolla
[54]. A more detailed development of existing infinite element formulations concerning
the acoustic media can be found in the review article of Astley [10].

In the elastodynamic case, it turns out to be a little bit more complicated since there is
no longer just one unique wave occurring. In a homogeneous elastic half space there are
actually three distinct waves present, in particular, a compressional-, shear-, and Rayleigh
wave (cf. section 2.1.2). These waves travel with three different wave speeds. However,
the simplest approach is to include only the characteristic of one wave within the infinite
element formulation. Depending on the spatial location of the infinite element, the dom-
inant wave is consequently incorporated into the infinite element formulation. Moreover,
an exponential decay of the field quantity is often assumed, instead of the correct asymp-
totic decay in 3-dimensions of 1/r, where r is the distance measure from the applied point
source (singular point) [148, 154]. Infinite elements, capable of simulating all three wave
types in the time harmonic case are developed by Zhao and Valliappan [152] and Yun et al.
[150], though they also assume an exponential decay of the solution. Medina and Penzien
[100] proposed also an interesting infinite element considering all three wave types. They
performed very well but the evaluation of the shape functions turned out to be extremely
tedious and they also assume an exponential decay of the field quantity. Due to the fact that
different wave types must be considered in the shape function of the infinite element, the
unconjugated element doesn’t yield the advantages as it does for only one wave type. This
is because still oscillating terms will remain in the variational formulation. Thus, special
integration schemes must be applied to solve such integrals numerically. Also, the appli-
cation for transient problems is therefore limited. However, as far as the author knows, no
such attempt has been accomplished. For the time harmonic case also the application of the
conjugated infinite element was performed [109]. Transient wave propagation problems in
elastic media have been performed by Yerli et al. [149] for the two-dimensional case. The
formulation of this infinite elements was performed in Laplace domain. The time domain
formulation was obtained by a numerical inverse Laplace transformation [65]. Even more
an exponential decay of the field quantity is assumed.
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An infinite element formulation for wave propagation problems in one-dimensional poroe-
lastic material was accomplished by Khalili et al. [86]. Later they extended their work to
the two-dimensional case [87]. Their work covers time harmonic problems and the infinite
element formulation just considers the occurrence of the two compressional waves.

Of course, the application of infinite elements is widespread and applied to many differ-
ent fields of engineering. Here are some more examples in compressed form such as
consolidation [129], mass transport [153], electromagnetism [68], heat transfer [137],
ground freezing [9], fluid-structure interaction [33, 162], and soil-structure interaction
[52, 53, 100, 101, 111, 148, 150].

In the following, an infinite element will be presented capable of handling all waves that are
present in the underlying media. The developed infinite element is of the mapped type to
ensure the correct asymptotic decay for the three-dimensional case. Although the approach
of the infinite element is rather simple, as will be seen in the ongoing, the numerical results
are sufficiently accurate.

4.1 Infinite elements for elastodynamics

As a starting point of this section, a one-dimensional infinite element for an elastic column
will be developed. The proper performance of this infinite element will than be confirmed
by the comparison with an analytical infinite element (cf. section 5.1.2). Furthermore, this
one-dimensional infinite element will be extended to three-dimensional problems.

4.1.1 1d elastodynamic infinite element

First, the derivation of an analytical infinite element for the one-dimensional elastody-
namic case will be presented. This is done for mainly two reasons, first, to compare the
performance of the later derived approximated infinite element to the analytical one and,
second, to gain an idea how the approximated infinite element must be constructed to per-
form well.

Analytic infinite element

The analytical infinite element can be deduced from the analytical finite element. In order
to derive the analytical finite element, the general solution of an elastic column is needed.
Thus, the solution of a one-dimensional elastic column of length `, cross sectional area
A, constant young’s modulus E = K + 4

3G, and density %, as depicted in figure 4.1, will
be presented. The solution will be derived in Laplace domain as this solution is needed
to derive the analytical infinite element in the following. The time domain solution is
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presented in appendix A.1. The analytic solution of a column is extensively discussed by
Graff [79] for the elastic case and by Schanz for the viscoelastic case [121]. Therefore,
only the main steps are presented here.

`

x

σ0δ (t)

Figure 4.1: One-dimensional elastic column under time dependent loading.

Governing equation The governing equation of a one-dimensional column in Laplace
domain is obtained by restricting (2.9) to the x-direction. Assuming vanishing body forces
yields

û(x,s),xx−
s2

c2
P

û(x,s) = 0 . (4.1)

In equation 4.1, cP denotes the compressional wave speed, which is defined by

cP =

√
K + 4

3G
%

.

Note that vanishing initial conditions u(0+) = 0 and u̇(0+) = 0 are assumed during the
Laplace transformation. The general solution of the homogenous differential equation
(4.1) is

û(x,s) =C1 e
s

cP
x
+C2 e−

s
cP

x
, (4.2)

where the constants Ci, with i = 1,2, have to be determined through prescribed boundary
conditions. Assuming boundary conditions of the form (The symbol • ◦ denotes the
Laplace transformation)

û(0,s) = 0 • ◦ 0 = u(0, t),
σ̂(0,s) =−σ̂0 • ◦−σ0δ (t) = σ(0, t) ,

yields, with the definition of the stress

σ̂(x,s) =
(
K + 4

3G
)

u,x ,

the solution of the elastic column

û(x,s) =
σ̂cP

(K + 4
3G)s

[
e−

s
cP

x−e−
s

cP
(2`−x)

1+ e−2 s
cP

`

]
. (4.3)

Next, the analytical finite element (length h, A, E = K + 4
3G, %), as depicted in figure 4.2,

will be derived. The analytical finite element in Laplace domain is nothing else as the
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i j
ûi û j

N̂i N̂ j

h

EA

(a) finite

i
ûi

N̂i
EA ∞

(b) infinite

Figure 4.2: Analytic finite and infinite element of an elastic column.

dynamic stiffness relation, obtained by performing a Dirichlet to Neumann map using the
analytical solution of the homogeneous elastic column (4.2), which results in[

ûi
,x

û j
,x

]
=

s

cP

(
1− e−2 s

cP
h
) [1+ e−2 s

cP
h −2e−

s
cP

h

−2e−
s

cP
h 1+ e−2 s

cP
h

][
ûi

û j

]
. (4.4)

The nodal displacements are defined by ûi and û j, whereas the strains acting on the nodal
points are represented by ûi

,x and û j
,x. A nodal force is defined by the relation N̂i =EAûi

,x.

The analytical infinite element is obtained by shifting the nodal point j to infinity and
setting the displacement û j to zero. Thus, the limit h→ ∞ is taken. Applying the afore-
mentioned steps to equation (4.4), yields

ûi
,x =

s
cP

ûi (4.5)

the analytical infinite element. The above relations are now ready to be coupled to the dis-
crete variational finite element formulation of a one-dimensional elastic column. A more
pleasant method to obtain the analytical infinite element is to use directly the analytical
solution of an infinite column and will be shown in the following.

Analytical infinite column

The analytical infinite element can also be deduced from the analytical solution of an
infinite column and will be shown here. By looking at the homogeneous solution of the
elastic column (4.2), it is observable that the solution consist of two propagating waves
of the same speed cP. One wave propagates along the positive x-direction, whereas the
other one propagates in negative x-direction. The term containing the negative exponential
terms represents the wave traveling in positive x-direction (decreasing amplitude). This
is the only wave we want to preserve, since no wave can originate from infinity. This
statement is confirmed by the Sommerfeld radiation condition, which is defined for the
one-dimensional elastic column as [76]

û(x,s),x +
s

cP
û(x,s) = 0 . (4.6)
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Thus, taking into account the radiation condition (4.6) the general solution of the infinite
elastic column (4.2) reduces to

û(x,s) =C e−
s

cP
x
, (4.7)

where C denotes a constant, which remains to be adapted to given boundary conditions.
Applying an impulse load as boundary condition

σ̂(0,s) =−σ̂0 • ◦−σ0δ (t) = σ(0, t) (4.8)

at the top of the column, results in the solution

û(x,s) =
σ̂0

E
cP

s
e−

s
cP

x
. (4.9)

Note that the stress-strain relation σ̂(x,s)=Eû,x(x,s) was used to incorporate the boundary
condition (4.8). The above solution can also be computed by taking the limit of an infinite
length of the displacement of the finite column (4.3).

In order to derive the analytical infinite element from the analytical solution of the infinite
elastic column, the displacement û(x,s) in (4.7) is expressed in dependence of the nodal
displacement ûi (cf. figure 4.2(b))

û(x,s) = e−
s

cP
x ûi .

The stress within the column is defined by

σ̂(x,s) =−E
s

cP
e−

s
cP

x ûi .

With the relation σ̂ i =−σ̂(0,s) at node i and the strain stress relation σ̂(x,s) = Eû(x,s),x,
the dynamic stiffness relation is obtained for the infinite column

ûi
,x =

s
cP

ûi . (4.10)

Again, the matrix entry of the analytical infinite element is obtained (cf. equations (4.5)
and (4.10)), which can be inserted in any variational formulation of a one-dimensional
elastic column.

Approximated infinite element

The need of an approximated infinite element is necessary, since in general, no analyti-
cal solution for three-dimensional problems are obtainable. Thus, an approximated infi-
nite element will be presented. First, only the one-dimensional case will be considered.
The approximated infinite element developed here follows mainly the construction of the
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Figure 4.3: One-dimensional infinite element.

Astley-Leis mapped element [13]. The geometry of the proposed infinite element, see fig-
ure 4.3, is defined as follows. Let 1′ denote a source point, the location where for example
a load is applied. The radial direction of the infinite element is defined through the line
1′−1, where the point 1 denotes the base point of the finite element. The base point 1 is
also the location where the infinite element is coupled to the conventional finite element
mesh. The radial distance a is defined through the distance of the base point 1 and the
source point 1′. The second point 2 of the infinite element, defined for mapping issues, is
located in outward radial direction with distance a from the base point 1. The distance be-
tween the two mapping points 1 and 2 must not be chosen to be equal to the distance 1′ and
1. However, in many physical problems, the source point is often a singular point about
which the field quantity decays. This behavior can only be represented by the proposed
infinite element, if the distance 1−2 is chosen to be equal to a. Point 3 of the element is
located at infinity and will not be further considered, since throughout this work vanishing
field quantities are assumed at infinity. The mapping from the physical space to local coor-
dinates is performed using the 1/r-mapping introduced by Marques and Owen [99]. Thus,
the mapping is defined by

x(ξ3) =m1(ξ3)x1 +m2(ξ3)x2 (4.11)

with the mapping functions

m1(ξ3) =
−2ξ3

1−ξ3
, m2(ξ3) =

1+ξ3

1−ξ3
. (4.12)

The above mapping functions ensure compatibility of the finite element mesh with the
connected infinite element at the coupling node 1 and also represent the infinite extension
in radial direction of the element. Thus, the relation between the radial distance measure r
and the local coordinate is given by

ξ3 = 1− 2a
r

, r−a = a
1+ξ3

1−ξ3
. (4.13)



66 4 Infinite Elements

Note that through the particular mapping points located at infinity (r→ ∞) are mapped to
the local coordinate ξ3 = 1.

The next step is to define the shape functions. To give an idea how the shape functions are
constructed, the coordinate x is introduced. Taking into account the analytical solution of
the infinite column (4.7), the displacement within the infinite element can be written as

u(x) = e−
s

cP
x u(a) .

Consequently, the associated shape function for any node k within the infinite element in
local coordinates will be defined as

ϕ
k(ξ3) = Pk

p(ξ3)e−
s

cP
µ(a,ξ3) , (4.14)

with the phase term µ(a,ξ ). The phase term consists of the distance a and a radial
weight

µ(ξ3) = a
1+ξ3

1−ξ3
. (4.15)

Note that the geometric factor is equal to the mapping function m2(ξ3) in (4.12). Thus,
the phase-like term vanishes at ξ3 = −1 and approaches the distance a for ξ3 = 0. The
exponential factor in (4.14) represents, therefore, a radial wave-like factor of the form
exp( s

cP
(r− a)) within each element [13]. Pk

p(ξ3) denotes a polynomial of order p cor-
responding to the radial node k, which represents the approximation in radial direction.
Depending on the number of nodes located within the mapping points 1 and 2, the approx-
imation order can be customized. In the ongoing equally spaced points within the interval
ξ3 ∈ [−1,0] are assumed. A polynomial expression of the form

Pp = c0 + c1ξ3 + c2ξ
2
3 + · · ·+ cpξ

p
3 ,

as it is used in conventional finite element formulations to approximate the field variable,
can be expressed by using the mapping relation (4.13) as

Pp = γ0 +
γ1

r
+

γ2

r2 + · · ·++
γp

rp . (4.16)

The term γ0 represents the solution at infinity and, therefore, implies to be zero, if the solu-
tion vanishes at infinity, as it is the common case in many unbounded problems. Since the
solution of many field problems behaves of the form (4.16), the solution can be approxi-
mated accurately by a proper choice of the polynomial Pp [161].

The test function of the infinite element is defined by

ϕ̄
k(ξ3) = D(ξ3)ϕ

k(ξ3) = D(ξ3)Pk
p(ξ3)e−

s
cP

µ(a,ξ3)



4.1 Infinite elements for elastodynamics 67

and is distinguished from the trial function only by the additional weight

D(ξ3) =
(1−ξ3)

2

4
. (4.17)

Taking into account the relation (4.13), the radial weight D(ξ3) corresponds to an addi-
tional weight of the form 1/r2, which ensures the finiteness of integrals occurring in the
discrete variational formulation. Thus, the need of square integrability is fulfilled. Note
that also the test function fulfills a compatible matching of the base node with any adjacent
node of the discrete finite element mesh.

Radial interpolation polynomials

In general, the most intuitive way to construct interpolation functions is the use of the well
known Lagrange polynomials. The proper choice of interpolation functions is essential in
order to obtain a well conditioned equation system [63]. Consequently, iterative solvers,
such as for example GMRES [119], can be successfully applied to solve the resulting equa-
tion system. The selection of suitable polynomials is even more an essential point, since
the matrices of the exterior domain are non-symmetric. The optimal choice of interpo-
lation functions was investigated by Dreyer and von Estorff [63]. They recommend for
problems of exterior acoustics the use of Jacobi polynomials. His studies reveals that the
resulting system matrices are better suited for iterative solvers. This is due to the fact that
the system matrices possess a better condition number, which is a first aid for the applica-
tion of iterative solvers [62]. Consequently, the interpolation functions are constructed by
using Jacobi Polynomials, as suggested by Dreyer [62], if not otherwise stated. Moreover,
it must be mentioned that even Legendre polynomials lead to a better conditioned system
matrices as when Lagrange polynomials were used, at least for the case of exterior acous-
tics [11]. In the following, the common Lagrange polynomials are presented as well the
Legendre and Jacobi polynomials.

Lagrange polynomials In the case of the Astley-Leis element [13], Lagrange polyno-
mials are used for the interpolation function. Thus, the interpolation function of order p is
given for a radial node k by

Pk
p(ξ3) =

p

∏
i=1
i 6=k

ξ3− (ξ3)i

(ξ3)k− (ξ3)i
.

Lagrange polynomials fulfill the property to be one at the node they belong to and zero
at any other node Pk

p((ξ3)`) = δk`. Hence, the continuity at the base node 1 is given, the
location where the infinite element is connected to conventional finite elements. The more
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data points are used for the interpolation, the higher the degree of the resulting polyno-
mial. Hence, they will exhibit greater oscillation between the data points and, thus, a poor
numerical performance must be taken into account when equally spaced integration points
are used. To reduce these oscillation appropriate unequally distributed interpolation points
have to be chosen [122].

Legendre polynomials Legendre polynomials can be generated by Rodrigues formula

Pk(ξ3) =
1

2kk!
dk

dξ k
3

(
ξ

2
3 −1

)k
.

Legendre polynomial satisfy the following orthogonality property

+1∫
−1

Pi(ξ3)Pj(ξ3) dξ3 =
2

2i+1
δi j .

Jacobi polynomials Jacobi polynomials are generalized Legendre polynomials and are
defined by

Pk
(α,β )(ξ3) =

(−1)k

2kk!
(1−ξ3)

−α(1+ξ3)
−β dk

dξ k
3

[
(1−ξ3)

α+k(1+ξ3)
β+k
]
.

These polynomials are orthogonal polynomials and satisfy therefore the relation

+1∫
−1

Pi
(α,β )P

j
(α,β )

(1−ξ3)
α(1+ξ3)

β dξ3 = φ(α,β , j)δi j ,

where φ(α,β , j) is a function depending on the parameters α,β and j. To ensure compat-
ibility between the finite and infinite elements at their interface, the interpolation condition
(3.8) has to be fulfilled. However, Legendre and Jacobi polynomials don’t automatically
satisfy this interpolation condition. Thus, the first polynomial within the portion of radial
shape functions p+ 1 has to fulfill P1

p(−1) = 1, whereas all other polynomials have to
satisfy Pi

p(−1) = 0, with 1 < i≤ p+1. This can be easily achieved by applying adequate
constant shifts to the polynomials.

4.1.2 3d elastodynamic infinite element

In the three-dimensional case the existence of multiple waves has to be considered. In a
semi-infinite halfspace three different wave types are observable, as revealed in section
2.1.2. Thus, the infinite element of the one-dimensional case must be extended in such a
way that all outwardly propagating waves are represented appropriately.
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Geometric discretization

The geometry of an infinite element, which follows mainly the proposed infinite element
of Astley et al. [13], for the three-dimensional case is depicted in figure 4.4. The set con-
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(a) Infinite element in physical space
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(b) Corresponding mapped
element in local coordi-
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Figure 4.4: Three-dimensional infinite element.

taining the points on the base face (x1x2-plane) is defined with nB = {1,2, . . . ,nP
B}, where

nP
B denotes the number of base points for the approximation of the field quantity (e.g.,

nP
B = 4, as it is depicted in figure 4.4). Thus, the infinite element is not restricted to a linear

approximation order on the base face. The radial direction of the infinite element is defined
by the so called source points which are defined by the set nS = {1′,2′, . . . ,(nP

B)
′}. Source

points denote locations, where the load is applied and may collapse to a single point. Con-
sequently, the radial direction of the infinite element is given through corresponding source
and base points (see figure 4.4(a)) as well through radial distances ai, with i ∈ nB. In any
case, it must be ensured that the source points for every infinite element are chosen in such
a way that the single infinite elements do not intersect each other. This is of course en-
sured when the source point is chosen to be the same for every infinite element. Moreover,
the radial directions also lead to the mapping points nM = {nP

B + 1, . . . ,2nP
B}, i.e., in the

special case of figure 4.4, nM = {5,6,7,8}. These mapping points are located deliberately
at related distances ai measured from the base points nB. The distance between points
nM and nB must not be chosen to be equal to the related radial distances ai. However, in
many physical problems, the source point is often a singular point, from which on the field
quantity decays. This behavior can only be represented by the proposed infinite element,
if the distances between the related points nM and nB is chosen to be equal to ai. The
mapping from the physical to the local space is independent of the approximation order
of the field quantity. The mapping in radial direction is performed in the same manner
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as for the one-dimensional infinite element (4.11), which yields a 1/r-like mapping. The
mapping on the base face is deduced using conventional finite element shape functions,
denoted by Si(ξ1,ξ2), with i ∈ nB. The geometric mapping from the physical to the local
space is defined by

x(ξξξ ) =m1(ξ3)
nP

B

∑
i=1

Si(ξ1,ξ2)pi +m2(ξ3)
nP

B

∑
i=1

Si(ξ1,ξ2)pi+nP
B , (4.18)

where pi denotes the geometrical points of the infinite element and m1(ξ3), m2(ξ3) the
mapping functions in radial direction, already defined in (4.12). The above mapping re-
lation (4.18) assures the compatibility condition at the base nodes between the infinite
and conventional finite elements. As well as in the one-dimensional case, the proposed
mapping relation maps points located at r→ ∞ to ξ3 =+1 in the local element.

Shape function

Actually, the shape functions of the three-dimensional infinite element are constructed
from shape functions of a conventional finite element defined on the base face and the
shape function of the one-dimensional infinite element of section 4.1.1 (page 64). In other
words, the one-dimensional infinite element is simply placed at every node i ∈ nB on the
base face. Since the one-dimensional infinite element is capable of representing only one
outward traveling wave, the shape function has to be extended. The wave behavior of the
far field in an elastic material can be approximately represented by exponential functions in
Laplace domain. Moreover, the occurrence of different waves can be approximated in the
far field by the superposition of plane waves [79, 111, 152]. Thus, taking into account the
occurrence of multiple waves in three-dimensional media, the shape function for a radial
node j can be expressed as

ϕ
j(ξξξ ) =

1
2
(1−ξ3)Si(ξ1,ξ2)Pk

p(ξ3)
1
nc

nc

∑
`=1

e−
s

c`
µ(a,ξ3) , (4.19)

where nc denotes the number of waves to be approximated and c` the respective wave
speed. In general, in an elastic half space three different types of waves occur, namely, a
compressional-, a shear-, and a Rayleigh wave with wave speeds cP,cS, and cR, respec-
tively. The phase term is defined in the same way as in (4.15), with the exception that the
characteristic length a is defined as

a =
1
nP

B

nP
B

∑
i=1

ai . (4.20)

The radial approximation is represented by a polynomial Pk
p(ξ3) of order p with corre-

sponding radial node k. The approximation order depends on the number of nodes located
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within the mapping points nB and nM. Furthermore, equally spaced nodes within the inter-
val ξ3 ∈ [−1,0] are assumed for the construction of the polynomials Pk

p(ξ3). The interpola-
tion polynomials can be constructed in different ways, as described on page 67. The node
numbering j is a function of the base node numbering i and the radial node numbering k

j(k, i) , i ∈ nB , 1≤ k ≤ p+1 , 1≤ j ≤ (p+1)nP
B .

The factor 1
2(1− ξ3) is introduced to preserve the interpolation condition ϕ j(ξξξ )→ 0 as

ξ3 → +1. Hence, the Sommerfeld radiation condition is fulfilled. The radial behavior
of the shape function ϕ j(ξξξ ) in radial direction is of the form, when ξ2 and ξ3 are held
constant

ϕ
j ≈
[

γ1

r
+

γ2

r2 + · · ·+
γp

rp

] nc

∑
`=1

e−
s

c`
µ(a,ξ3) .

It remains to define the test function, which is nothing else as the trial function pre-
multiplied with the additional weight (4.17)

ϕ̄
j(ξξξ ) = D(ξ3)ϕ

j(ξξξ ) .

Again, the additional weight D(ξ3) ensures finiteness of integrals occurring in the discrete
variational formulation. Thus, the need of square integrability is fulfilled. Even more, the
test function fulfills the interpolation condition, which preserves a compatible matching of
finite and infinite elements at their interface.

Remark on 2d elastodynamic infinite elements In two dimensional exterior wave prop-
agation problems, the amplitude decays differently compared to the three-dimensional
case. Whereas the amplitude in three-dimensional problems decays like 1/r, the amplitude
in two-dimensional problems decays like 1/

√
r, as explained in more detail in references

[31, 54, 162]. The geometric discretization as well the shape function are derived in the
same manner as for the three-dimensional case. The only two differences are that, first, the
ξ1 direction is eliminated and, thus, the base shape function remains to be only a function
of the coordinate ξ2, i.e., Si(ξ2). Second, the decay is now defined by a factor of

√
(1−ξ3)/2

to obtain the 1/
√

r-like decay. Thus, the shape function is defined by

ϕ
j(ξξξ ) =

√
1
2(1−ξ3)Si(ξ2)Pk

p(ξ3)
1
nc

nc

∑
`=1

e−
s

c`
µ(a,ξ3) (4.21)

and the corresponding test function is expressed as

ϕ̄
j(ξξξ ) = D(ξ3)ϕ

j(ξξξ ) ,

where the single components represents the same meaning as for the three-dimensional
case (cf. section 4.1.2).
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4.2 Infinite elements for elastostatics

The elastostatic infinite element can be simply deduced from the dynamic infinite element
by eliminating the wave-like factors. Thus, the mapping relation (4.18) is the same con-
stant and the trial and test function for three-dimensional problems are defined as

ϕ
j(ξξξ ) =

1
2
(1−ξ3)Si(ξ2,ξ3)Pk

p(ξ3)

and
ϕ̄

j(ξξξ ) = D(ξ3)ϕ
j(ξξξ ) ,

respectively.

4.3 Infinite elements for poroelastodynamics

In the beginning of this section, an analytical infinite element for poroelastodynamics for
one-dimensional problems will be presented. In accordance to the analytical element an
approximated one-dimensional infinite element will be deduced. Furthermore, the ap-
proximated one-dimensional infinite element will be extended to three-dimensional prob-
lems.

4.3.1 Analytical 1d poroelastodynamic infinite element

The analytical poroelastic infinite element can only be derived for the u, p-form or the u,w-
form. This is because only for these two formulations the governing equations (A.5) are
reduced to two differential equations of second order. This is needed to obtain an analytical
finite element or more specifically, a Dirichlet to Neumann map can only be performed for
this set of governing equations. In other words, only for the u, p- or u,w-form a relation
between the nodal displacements and the nodal stresses as well as for the nodal pressure
and the nodal flux can be performed. Alternatively, also the relation of the nodal relative
displacement and the fluid pressure can be used. Here, the former formulation will be
used, i.e., the u, p-formulation. The analytical infinite poroelastic element, as depicted
in figure 4.5, is deduced from the general analytical solution of a porous column, given
by (A.11). Note that the relative displacement w of the solution (A.11) is not needed
for the deduction of the analytical infinite poroelastic element. The analytical solution
of the finite poroelastic column consists of the superposition of four wave terms. Two
pairs of compressional waves travel with the wave velocities c1 = 1/λ1 and c2 = 1/λ2 into
the positive and negative x-direction. In other words, the analytical solution contains two
pairs of compressional waves, one with decaying and one with increasing amplitude. In
order to formulate the infinite element only the decaying amplitudes are of interest, since
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x

ûi

(σ̂ tot)i

p̂i
q̂i

∞i

Figure 4.5: Analytic infinite poroelastic element.

no incoming wave from infinity is allowed. This ensures that the Sommerfeld radiation
condition is satisfied, as explained in more detail for the elastic case in section 4.1.1. Thus,
the general ansatz of the analytical infinite element reads as[

û(x,s)
p̂(x,s)

]
=C3

[
v3

1
v3

2

]
e−sλ1x+C4

[
v4

1
v4

2

]
e−sλ2x , (4.22)

with the Eigenvectors defined in (A.12). Inserting the boundary conditions

û(0,s) = ûi , p̂(0,s) = p̂i

into (4.22) yields

C3 =
v4

2ui− v4
1 pi

v3
1v4

2− v3
2v4

1
, C4 =

v3
1 pi− v3

2ui

v3
1v4

2− v3
2v4

1

and further on the solution for the solid displacement and pore pressure[
û(x,s)
p̂(x,s)

]
=

v4
2ui− v4

1 pi

v3
1v4

2− v3
2v4

1
v1 e−sλ1x+

v3
1 pi− v3

2ui

v3
1v4

2− v3
2v4

1
v2 e−sλ2x . (4.23)

The corresponding stress is obtained by inserting the solution (4.23) into the one-dimensional
form of the constitutive relation (2.18)

σ̂
tot(x,s) = (K + 4

3G)û,x(x,s)−α p̂(x,s)

=−s(K + 4
3G)

[
λ1

v4
2ui− v4

1 pi

v3
1v4

2− v3
2v4

1
v1

1 e−sλ1x+λ2
v3

1 pi− v3
2ui

v3
1v4

2− v3
2v4

1
v2

1 e−sλ2x
]
−α p̂(x,s)

and the one-dimensional flux is defined by

q̂(x,s) = sŵ(x,s) =− β

s% f

(
p̂,x(x,s)+ s2% f û(x,s)

)
with the relative displacement defined by (2.36). Note that the body force f̂ f

i is neglected
in the solution of the flux. The next step is to incorporate the nodal total stress (σ̂ tot)i and
flux qi. This is realized by the boundary conditions stated at node i as

σ̂
tot(0,s) =−(σ̂ tot)i , q̂(0,s) =−q̂i .
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Hence, the nodal relation of the single components is defined as[
(σ̂ tot)i

q̂i

]
=

1
% f (v3

2− v4
2)

(4.24)[
% f s(K + 4

3G)
(
v3

2λ2− v4
2λ1
)

% f α
(
v3

2− v4
2
)
+% f (K + 4

3G)(λ1−λ2)

β
[
v3

2
(
v4

2(λ1−λ2)+ s% f
)
− s% f v4

2
]

β
(
v4

2λ2− v3
2λ1
) ][

ûi

p̂i

]
,

whereas the entries v3
1 = v4

1 = 1 are substituted. The above relation is now appropriate to
be attached at a one-dimensional poroelastic finite element formulation of the u, p-form
in Laplace domain. In three-dimension no analytical infinite element can be established.
Therefore, an approximated infinite element will be deduced, which can be extended to
three-dimensional problems.

4.3.2 1d approximated infinite element

In the following, an approximated infinite poroelastic infinite element will be presented.
First, the infinite element proposed by Khalili et al. [86] will be shown and, second, a more
efficient infinite element will be derived which is valid for most poroelastic material.

Khalili approach

The poroelastic infinite element proposed by Khalili et al. [86], which will be referred as
Khalili in the future for simplicity, is depicted in figure 4.6. Node 1 one of the proposed

1′ 1

x
a

x1 x

∞

source point
variable node

Figure 4.6: Infinite poroelastic element proposed by Khalili et al. [86].

element is located at distance a away from any impact point and corresponds to the global
coordinate x1. Furthermore, a local coordinate system x, with the origin placed at node 1,
is introduced for the infinite element. As already shown in the derivation of the analytical
infinite element, the solution of a one-dimensional poroelastic column (A.11) at point x1

is given, when only outward traveling waves are allowed, as û(a,s)
p̂(a,s)
ŵ(a,s)

=C3v3 e−sλ1a+C4v4 e−sλ2a . (4.25)
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The solid displacement within the infinite element can be written in the local coordinate
system as

û(x,s) =C3v3
1 e−sλ1(a+x)+C4v4

1 e−sλ2(a+x) û(a,s)
C3v3

1 e−sλ1a+C4v4
1 e−sλ2a

. (4.26)

Note that the solid displacement is extended by the fraction of the distinct nodal displace-
ment û(a,s) and the expanded form of û(a,s), given in (4.25). Equation (4.26) can be
rearranged to

û(x,s) =

{[
C3v3

1 e−sλ1a

C3v3
1 e−sλ1a+C4v4

1 e−sλ2a

]
︸ ︷︷ ︸

ÛK
1

e−sλ1x+

[
C4v4

1 e−sλ2a

C3v3
1 e−sλ1a+C4v4

1 e−sλ2a

]
︸ ︷︷ ︸

ÛK
2

e−sλ2x

}
û(a,s).

(4.27)
Consequently, the shape function for the solid displacement of a poroelastic infinite rod
should be expressed as

ϕ
j(x) = ÛK

1 e−sλ1x+ÛK
2 e−sλ2x ,

where the superscript K denotes the affinity to the Khalili infinite element. It can be ob-
served that the shape function (4.27) relates the variation of the field quantity û(x,s) within
the infinite element to the nodal value û(a,s). The shape functions for the pore pressure
and the relative displacement are derived in the same manner, yielding

ϑ
j(x) = P̂K

1 e−sλ1x+P̂K
2 e−sλ2x

ψ
j(x) = Ŵ K

1 e−sλ1x+Ŵ K
2 e−sλ2x ,

with the coefficients given by

PK
1 =

C3v3
2 e−sλ1a

C3v3
2 e−sλ1a+C4v4

2 e−sλ2a
, PK

2 =
C3v3

2 e−sλ2a

C3v3
2 e−sλ1a+C4v4

2 e−sλ2a
,

W K
1 =

C3v3
3 e−sλ1a

C3v3
3 e−sλ1a+C4v4

3 e−sλ2a
, W K

2 =
C3v3

3 e−sλ2a

C3v3
3 e−sλ1a+C4v4

3 e−sλ2a
.

The parameters UK
i , PK

i , and W K
i , with i = 1,2, are a kind of wave weighting factors.

In other words, the two compressional waves c1 and c2 are related to each other, which
is modeled by the mentioned weighting factors. The most meaningful property of these
weighting factors is that their sum is equal to one, i.e.,

UK
1 +UK

2 = 1 , PK
1 +PK

2 = 1, W K
1 +W K

2 = 1 .

The test function are chosen to be equal the trial function

ϕ̄
j(x) = ϕ

j(x) , ϑ̄
j(x) = ϑ

j(x) , ψ̄
j(x) = ψ

j(x) .
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It remains to define the yet unknown constants C3 and C4. This can be accomplished
by defining problem specific boundary conditions, e.g., for a given total stress and pore
pressure, in form of an impulse impact, at position x = 0

σ̂
tot(0,s) =−σ̂

tot
0 • ◦−σ

tot
0 δ (t) = σ

tot(0, t) , p̂(0,s) = 0• ◦0 = p(0, t) .

The resulting constants are

C3 =
v2

2σ̂ tot

s(K + 4
3G)(v1

1v2
2λ1− v1

2v2
1λ2)

, C4 =
−v1

2σ̂ tot

s(K + 4
3G)(v1

1v2
2λ1− v1

2v2
1λ2)

.

The validity of the proposed infinite element is shown in [86]. The extension to two-
dimension can be found in [87]. Though the performance of the infinite element is very
well, the shape functions have to be adapted to the kind of problem to be solved, since the
shape functions contain the constants C3 and C4. These constants have to be fitted to given
boundary conditions. Furthermore, the 1/r-like decay is not considered and only the two
compressional waves are considered, which is correct if pure one-dimensional problems
are considered.

Mapped and simplified model of poroelastic infinite element shape functions

This approach follows mainly the poroelastic infinite element proposed by Khalili et al.
[86], whereas the infinite element is now chosen to be of the mapped type. Thus, the one-
dimensional infinite element is actually a combination of the infinite element presented by
Khalili and the already introduced infinite element of the elastodynamic case, described in
detail in section 4.1.1. Hence, the shape and corresponding test function are defined as

ϕ
k(ξ3) = Pk

p(ξ3)
[
ÛK

1 e−
s

c1
µ(a,ξ3)+ÛK

2 e−
s

c2
µ(a,ξ3)

]
, ϕ̄

k(ξ3) = D(ξ3)ϕ
k(ξ3) ,

ϑ
k(ξ3) = Pk

p(ξ3)
[
P̂K

1 e−
s

c1
µ(a,ξ3)+P̂K

2 e−
s

c2
µ(a,ξ3)

]
, ϑ̄

k(ξ3) = D(ξ3)ϑ
k(ξ3) , (4.28)

ψ
k(ξ3) = Pk

p(ξ3)
[
Ŵ K

1 e−
s

c1
µ(a,ξ3)+Ŵ K

2 e−
s

c2
µ(a,ξ3)

]
, ψ̄

k(ξ3) = D(ξ3)ψ
k(ξ3) ,

for the solid displacement, the pore pressure, and the relative displacement, respectively.
The detailed meaning of the single components of (4.28) is the same as for the one-
dimensional elastodynamic infinite element presented in section 4.1.1.

The simplified model is based on the fact, that the slow (or second) wave in a poroelastic
material is highly damped and thus, for realistic, most common poroelastic material, not
observable [123]. This corresponds to the case that the wave weighting factors approach
ÛK

1 = P̂K
1 = Ŵ K

1 ≈ 1, whereas ÛK
2 = P̂K

2 = Ŵ K
2 ≈ 0. In this case it is reasonable to neglect

the influence of the slow wave and to approximate only the fast (or first) wave. Thus,
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the simplified model of the infinite element for a poroelastic material is identical to the
elastodynamic infinite element, i.e., the shape and test function are defined as

ϕ
k(ξ3) = Pk

p(ξ3)e−
s

c1
µ(a,ξ3) , ϕ̄

k(ξ3) = D(ξ3)ϕ
k(ξ3)

ϑ
k(ξ3) = Pk

p(ξ3)e−
s

c1
µ(a,ξ3) , ϑ̄

k(ξ3) = D(ξ3)ϕ
k(ξ3) (4.29)

ψ
k(ξ3) = Pk

p(ξ3)e−
s

c1
µ(a,ξ3) , ψ̄

k(ξ3) = D(ξ3)ϕ
k(ξ3) ,

for the solid displacement, the pore pressure, and the relative displacement, respectively.

4.3.3 3d poroelastodynamic infinite element

The enhancement of the one-dimensional infinite element to the tree-dimensional is ac-
complished in the same manner as for the elastodynamic case, see section 4.1.2. Hence,
an infinite element as shown in figure 4.4 is considered. Nevertheless, attention must
be paid to the question which type of constituent is able to transfer which type of wave,
since multiple waves are present in a three-dimensional problem. In an unbounded three-
dimensional poroelastic media two compressional and a shear wave may be present with
wave velocities c1,c2, and cS, respectively, as revealed in section 2.2.7. In a poroelastic
halfspace also the propagation of the Rayleigh wave can be observed [123], as it is also the
case in an elastic halfspace [1, 79]. As it can be noticed in the general analytical solution
of the poroelastic column (A.11), both compressional waves, with wave speeds c1 and c2,
are transferred by the solid displacement, the pore pressure, and the relative displacement.
Since an inviscid interstitial fluid is assumed, the shear and consequently, the Rayleigh
wave with wave speeds cS and cR, can be only carried by the solid displacement. Thus, the
shape and test function of the solid displacement ui is defined as

ϕ
j(ξξξ ) =

1
2
(1−ξ3)Si(ξ1,ξ2)Pk

p(ξ3)
1
nc

nc

∑
`=1

e−
s

c`
µ(a,ξ3) , ϕ̄

j(ξξξ ) = D(ξ3)ϕ
j(ξξξ ) , (4.30)

where nc denotes the number of waves to be approximated. The parameter c` represents
one of the wave velocities c1, cS, or cR. For the pore pressure p and the relative displace-
ment wi are the shape and test functions defined by

ϑ
j(ξξξ ) =

1
2
(1−ξ3)Si(ξ1,ξ2)Pk

p(ξ3)e−
s

c1
µ(a,ξ3) , ϑ̄

j(ξξξ ) = D(ξ3)ϑ
j(ξξξ )

ψ
j(ξξξ ) =

1
2
(1−ξ3)Si(ξ1,ξ2)Pk

p(ξ3)e−
s

c1
µ(a,ξ3) , ψ̄

j(ξξξ ) = D(ξ3)ψ
j(ξξξ ) . (4.31)

Any other parameters are the same as already defined for the elastodynamic infinite ele-
ment of section 4.1.2.
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If also the slow wave is to be considered, the approach of Khalili et al. [86, 87] is included.
Therefore, the shape function for the solid displacement is defined as

ϕ
j(ξξξ ) =

1
2
(1−ξ3)Si(ξ1,ξ2)Pk

p(ξ3)
1
3

([
ÛK

1 e−
s

c1
µ(a,ξ3)+ÛK

2 e−
s

c2
µ(a,ξ3)

]
+e−

s
cS

µ(a,ξ3)+e−
s

cR
µ(a,ξ3)

)
.

The shape function for the pore pressure and the relative displacement are given by

ϑ
j(ξξξ ) =

1
2
(1−ξ3)Si(ξ1,ξ2)Pk

p(ξ3)
[
P̂K

1 e−
s

c1
µ(a,ξ3)+P̂K

2 e−
s

c2
µ(a,ξ3)

]
ψ

j(ξξξ ) =
1
2
(1−ξ3)Si(ξ1,ξ2)Pk

p(ξ3)
[
Ŵ K

1 e−
s

c1
µ(a,ξ3)+Ŵ K

2 e−
s

c2
µ(a,ξ3)

]
,

respectively. The test function for the three constituents are

ϕ̄
j(ξξξ ) = D(ξ3)ϕ

j(ξξξ ), ϑ̄
j(ξξξ ) = D(ξ3)ϑ

j(ξξξ ), ψ̄
j(ξξξ ) = D(ξ3)ψ

j(ξξξ ) .

Note that the parameters UK
i ,PK

i , and W K
i , with i = 1,2, contain still the constants C3 and

C4, which have to be determined for the underlying problem. Of course, the application
of the wave weighting factors UK

i , PK
i , and W K

i to the three-dimensional case is just an
approximation, since a one-dimensional model is used to define them.

The derivation of the two-dimensional poroelastic infinite element is rather straightfor-
ward, as it can be seen for the elastodynamic case (cf. section 4.1.2), and will therefore be
omitted.

4.3.4 Quasi-static poroelastic infinite element

The quasi-static infinite element for poroelastic media is simple deduced by neglecting the
wave-like terms in section (4.3.3) yielding the shape and test functions

ϕ
j(ξξξ ) =

1
2
(1−ξ3)Si(ξ1,ξ2)Pk

p(ξ3) , ϕ̄
j(ξξξ ) = D(ξ3)ϕ

j(ξξξ )

ϑ
j(ξξξ ) =

1
2
(1−ξ3)Si(ξ1,ξ2)Pk

p(ξ3) , ϑ̄
j(ξξξ ) = D(ξ3)ϑ

j(ξξξ )

ψ
j(ξξξ ) =

1
2
(1−ξ3)Si(ξ1,ξ2)Pk

p(ξ3) , ψ̄
j(ξξξ ) = D(ξ3)ψ

j(ξξξ ) ,

for the solid displacement, the pore pressure, and the relative displacement, respectively.

General remarks The here proposed shape function are now ready to be inserted into
any discrete variational formulation of section 3.1 to 3.2. Note that the test function for
any infinite element is different from the trial function. Moreover, the Jacobian for infinite
elements is calculated by using the mapping relation (4.18). The evaluation of the integrals,
which contain exponential expressions, is performed by a Newton-Cotes scheme derived
in the following section 4.4.
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4.4 Numerical integration

During the evaluation of infinite element matrices, based on the shape functions of sections
4.1 and 4.3, integrals of the form

+1∫
−1

f (ξ3)e
−z 1+ξ3

1−ξ3 dξ3 (4.32)

have to be calculated. In equation (4.32), z ∈ C represent a Complex parameter, e.g.,
z = a s

c , where a denotes the characteristic length of the infinite element defined in (4.20)
and c any wave velocity. The finiteness of the integral is ensured, since the real part of
the Laplace parameter is positive by definition, i.e., Re(s) > 0 [61]. It can be verified
that also the real part of the fraction s/c is always larger than zero. In order to evaluate
this integrals numerically, a Newton Cotes type formula will be derived. Thus, integration
points are chosen and corresponding integration weights are calculated. To explain the
integration procedure a two point integration rule will be derived. The chosen points are
for example

ξ
1
3 =−1

3 , ξ
2
3 =+1

3 .

The polynomial f (ξ3) is approximated by Lagrange polynomials Pk
p , with p = 1 and k =

1,2, and is, therefore, expressed as

f (ξ3) = f 1P1
1 (ξ3)+ f 2P2

1 (ξ3) ,

where f 1 = f (ξ 1
3 ) and f 2 = f (ξ 2

3 ) are the values of f (ξ k
3 ) evaluated at the integration

points. Thus, the given integral (4.32) can be rewritten
+1∫
−1

f (ξ3)e
−z 1+ξ3

1−ξ3 dξ3 = f 1
+1∫
−1

P1
1 (ξ3)e

−z 1+ξ3
1−ξ3 dξ3 + f 2

+1∫
−1

P2
1 (ξ3)e

−z 1+ξ3
1−ξ3 dξ3

= f 1w1 + f 2w2 ,

with the integrations weights w1 and w2, defined by the integrals. During the derivation
of the integration weights, integrals of the product of the single monomials with the expo-
nential term must be performed, yielding
+1∫
−1

(ξ3)
0 e
−z 1+ξ3

1−ξ3 dξ3 = 2+2zez
(

Ei(−z)+
1
2
(
log(−1

z )− log(1
z )− log(−z)+ log(z)

))
+1∫
−1

(ξ3)
1 e
−z 1+ξ3

1−ξ3 dξ3 =

2z
[

1+(1+ z)ez
(

Ei(−z)+
1
2
(
log(−1

z )− log(1
z )− log(−z)+ log(z)

))]
,
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where Ei(−z) denotes the Exponential Integral [143]. Consequently, the integration weights
results in

w1 = 1−3z− z(2+3z)ez
(

Ei(−z)+
1
2
(
log(−1

z )− log(1
z )− log(−z)+ log(z)

))
w2 = 1+3z+ z(4+3z)ez

(
Ei(−z)+

1
2
(
log(−1

z )− log(1
z )− log(−z)+ log(z)

))
.

(4.33)

The proposed integration rule is exact for polynomials of degree m− 1, when m is the
number of integration points. Note that the integration weights are frequency dependent,
whereas the integration points remain to be real valued. Thus, the integration weights
have to be recalculated for every needed frequency. The integration on the base face of
the infinite element in figure 4.4 is still performed with the standard Gauß quadrature
(cf. section 3.4), whereas the integral of the infinite direction is evaluated using the above
derived integration rule.

Efficient evaluation of integration weights

A crucial point in the evaluation of the integration weights of the integral (4.32) is the com-
putation of the Exponential Integral Ei(−z). Different approaches are possible to evaluate
this integral. Actually, the calculation is divided into three ranges of values of z, namely

• Re(z)< 5∧Abs(Im(z))< 5: An efficient way of computing the Exponential Integral is
proposed by Amos [7]. The FORTRAN subroutine supplied by Amos [6] is used.

• 5≤ Re(z)< 100∧5≤ Abs(Im(z))< 100: The integration weights are calculated by in-
terpolation from pre-calculated look-up tables. These look-up tables were generated
using the software package Mathematica [146].

• Re(z)≥ 100∨Abs(Im(z))≥ 100: For values of z→ ∞ the asymptotic series expansion

Ei(−z)≈−e−z

z

∞

∑
k=0

k!
(−z)k −

1
2
(
log(−1

z )− log(1
z )− log(−z)+ log(z)

)
is valid [143]. Inserting the above asymptotic series expansion into the weights
(4.33) yields

w1 = 1−3z− z(2+3z)

(
−1

z

∞

∑
k=0

k!
(−z)k

)
=

4
z
− 14

z2 +
60
z3 −

312
z4 + . . .

w2 = 1+3z+ z(4+3z)

(
−1

z

∞

∑
k=0

k!
(−z)k

)
=−2

z
+

10
z2 −

48
z3 +

264
z4 − . . . .
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Note that the above weights aren’t equal, although the integration points are sym-
metric. The series expansion is truncated after a precision of at least eight digits is
obtained. This is ensured by a comparison of the weights calculated with the above
series expansion and exact calculated weights (4.33) using the computing package
Mathematica [146]. For example, for a five point integration rule, twelve terms of
the series expansion are used.

The derived quadrature rule is only exact for polynomials of a maximum order m− 1,
where m is the number of integration points. Special care must be taken when the above
quadrature rule is used to evaluate the infinite element matrices resulting from the shape
functions (4.21) (two-dimensional problems). In this case, the resulting integrals may
contain polynomials of square root type. For this kind of polynomials no information can
be given about the accuracy of the proposed integration scheme. Thus, to obtain a desired
accuracy the number of integration points must be increased appropriately. Since, two-
dimensional problems aren’t covered in this thesis, no further investigations are performed
concerning the appropriate integration of such integrals.

4.5 Time domain solution of coupled finite and infinite elements

When dealing with unbounded domains a special treatment is necessary to obtain a time
domain solution. The Newmark algorithm can not be used as time stepping scheme in
dynamic problems when infinite elements are used, since the shape functions of the infi-
nite elements are defined in Laplace domain to provide the wave behavior (cf. section 4.1
and 4.1.1). In order to obtain a time domain solution an inverse Laplace transformation is
needed. A method which serves this aim is the convolution quadrature method (CQM), as
explained in detail in section 3.3.2. The drawback of CQM is that the quadrature weights
have to be stored for every time step as well as all solution vectors of the past. Thus, the
amount of computer storage needed is dependent on the number of time steps of the simu-
lation. On the other side, once the quadrature weights are calculated, they can be reused for
different load cases. On the contrary, the computer storage consumption of the Newmark
time integration scheme is essentially smaller, since only a view matrices and solution vec-
tors have to be stored. This brings up the idea to combine these two time stepping methods.
Thus, the Newmark method will be applied to the time integration of the near field, whereas
the time domain solution of the far field will be calculated using the CQM. This purpose
can be accomplished by using the substructure method or domain decomposition method.
Here, the domain of interest is divided into so called subdomains. These subdomains are
then initially treated separately and subsequently merged together under consideration of
interface conditions. Thus, the use of an optimized solution algorithm for each subdivision
of the original domain is possible. An extensive survey of domain decomposition meth-
ods for the finite element method is given in the books of Toselli and Widlund [139] and
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Steinbach [133] . Another area of research is the topic of conforming and non-conforming
interface discretizations, e.g. [103, 118]. In the case that the discretizations of the single
subdomains at the interface is conform, the interface conditions can be formulated directly
at the nodes. This can be realized either by using the Lagrange multiplier method [118] or
by assembling directly the single subdomains into global system matrices, e.g., [80]. If the
interfaces are non-conforming, the Lagrange multipliers are approximated by conventional
shape functions. This approach results in so called connectivity matrices, which ensures
the interface conditions to be fulfilled [118].

The infinite elements are constructed in such a way that they match to the finite elements.
Also, it is ensured that the approximation order at the interfaces coincide. Thus, in this
work, the interface conditions will be fulfilled by assembling the finite and infinite ele-
ments into a global equation system, i.e., a direct coupling is performed. The solution for
every time step is then obtained by solving this global equation system. For simplicity, the
application of the proposed substructure method is explained for two subdomains, where
in one domain the Newmark time stepping scheme will be applied and in the other domain
the CQM is used to gain the time domain solution. Nevertheless, the use of more than
two subdomains is possible and straightforward. Hence, the domain Ωh, the discretization
parameter h will be omitted in the following to retain a more readable form, is decomposed
into two non-overlapping subdomains

Ω = Ω
NEW∪Ω

CQM
, Ω

NEW∩Ω
CQM =∅ , (4.34)

as shown in figure 4.7. In equation (4.34) Ω
NEW and Ω

CQM denote the subdomains, where

f (t)

∞

∞

ΓN

ΓD

Ω

(a) Single domain

f (t)

∞

∞

ΓNEW
N

ΓNEW
D

ΩNEW

ΩCQM
Γ

CQM
D

ΓC

(b) Decomposition into two subdomains

Figure 4.7: Decomposition of the domain Ω into near ΩNEW and far field ΩCQM.

the Newmark integration scheme and the convolution quadrature method, respectively, is
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applied to obtain the time domain solution. Due to the subdivision the interface ΓC

ΓC = Ω
NEW∩Ω

CQM

is generated. Consequently, the boundary of each subdomain is composed of the interface
ΓC, a Neumann and Dirichlet part

Γ
NEW = ΓC∪Γ

NEW
D ∪Γ

NEW
N , Γ

CQM = ΓC∪Γ
CQM
D ∪Γ

CQM
N .

Consequently, new unknowns are produced due to the subdivision of the domain Ω. To
maintain a well posed equation system, interface conditions have to be formulated. For an
elastic material the nodal forces have to be in equilibrium. Moreover, the displacements at
a common node N ∈ nC of the single subdomains have to match each other, i.e.,

( f N
i )NEW

n + ( f N
i )CQM

n = 0

(uN
i )

NEW
n − (uN

i )
CQM

n = 0 ,
(4.35)

where the superscript f N
i denotes the nodal force vector, uN

i the nodal displacement vector
and n the discrete time step. nC represents all nodes belonging to the interface ΓC. In a
poroelastic material the interface conditions have to be formulated for every constituent,
namely the solid and fluid phase. Thus, the interface conditions for the solid phase are

( f N
i )u NEW

n + ( f N
i )u CQM

n = 0

(uN
i )

NEW
n − (uN

i )
CQM

n = 0 .

The interface conditions for the fluid phase are formulated as

( f N
i )p NEW

n + ( f N
i )p CQM

n = 0

(pN
i )

NEW
n − (pN

i )
CQM

n = 0

or as

( f N
i )w NEW

n + ( f N
i )w CQM

n = 0

(wN
i )

NEW
n − (wN

i )
CQM

n = 0

depending on whether boundary conditions (3.26) or (3.27) are used. In order to illus-
trate the coupling process the equations system of the single subdomains are reordered
accordingly to the degrees of freedom belonging to the interior or the interface of the sub-
domains. Thus, the resulting equation system of the Newmark method (3.64) of domain
ΩNEW is decomposed asKNEW

II KNEW
IC

KNEW
CI KNEW

CC

 uNEW
n I

uNEW
n C

=

 fNEW
n I + rNEW

n I

fNEW
n C + rNEW

n C

 , (4.36)
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where the superscripts I and C refer to the interior and interface of each subdomain, re-
spectively. Moreover, the equation of the convolution quadrature for the unknown solution
vector (3.69) is decomposed asωωω

CQM
II ωωω

CQM
IC

ωωω
CQM
CI ωωω

CQM
CC

 uCQM
n I

uCQM
n C

=

 fCQM
n I + rCQM

n I

fCQM
n C + rCQM

n C

 , (4.37)

where the coefficient matrix ωωω0 is replaced by ωωω . The global equation system for time step
n is, therefore, obtained by assembling the equations systems of the subdomains (4.36) and
(4.37), yielding

KNEW
II KNEW

IC 0

KNEW
CI KNEW

CC +ωωω
CQM
CC ωωω

CQM
CI

0 ωωω
CQM
IC ωωω

CQM
II




uNEW
n I

un C

uCQM
n I

=


fNEW

n I + rNEW
n I

fNEW
n C + fCQM

n C + rNEW
n C + rCQM

n C

fCQM
n I + rCQM

n I

 .

(4.38)
Taking into account the interface conditions, e.g. (4.35) for elastic material, the right-hand
side of (4.38) simplifies to

KNEW
II KNEW

IC 0

KNEW
CI KNEW

CC +ωωω
CQM
CC ωωω

CQM
CI

0 ωωω
CQM
IC ωωω

CQM
II


︸ ︷︷ ︸

Ksys


uNEW

n I

un C

uCQM
n I

=


fNEW

n I + rNEW
n I

rNEW
n C + rCQM

n C

fCQM
n I + rCQM

n I

 . (4.39)

The resulting global system matrix Ksys has to be inverted only once, as it is also the case in
a pure Newmark equation system or CQM based time stepping scheme, if a direct solver is
used, e.g., a direct solver based on LU-decomposition. The vector on the right-hand side of
(4.39) has to be recomputed at every time step for each subdomain, depending on the used
time stepping scheme. Note that based on the direct coupling strategy the nodal interface
forces vanish and, therefore, must not be known a priori. The application of the suggested
method to more than two subdomains can be performed analogously. The time step size
of each subdomain is chosen to be equal. But this doesn’t need to be necessarily the case
[27, 28]. The proposed coupled time integration strategy will be validated in section 5.
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In this chapter, the performance of the proposed infinite element will be investigated. At
first, typical examples will be considered where the analytical solution is available. Some
reference solutions are given in Appendix A but will be explicitly mentioned when they
are used. Additionally, the results of a halfspace with different boundary conditions will
be explored. Since for arbitrary boundary conditions of a halfspace no analytical solutions
are obtainable, the results of the coupled finite elements with the infinite elements will be
compared to results obtained by a BEM calculation [102, 123]. In any of the following
calculations body forces will be neglected. Before presenting the numerical examples
some information about the implementation of the approximation methods will be given.

The numerical implementation is accomplished by using the open source library LIBMESH
[92]. The near field is discretized using conventional finite elements (cf. for example [82]
and [165]). If not otherwise stated in three-dimensional examples always 20-noded hexa-
hedron elements will be used and denoted as "HEX20". The spatial discretization of the
far field is performed using the infinite elements presented in chapter 4. The radial approx-
imation is performed using Jacobi polynomials, as suggested by Dreyer and von Estorff
[63]. The radial approximation order of the infinite elements will be fixed to be of first
order, unless stated otherwise.

The evaluation of the volume integrals according to the variational formulations of chapter
3 with the shape functions of chapter 4 is performed in infinite direction by the Newton
Cotes quadrature rule derived in section 4.4. The spatial integration of the finite portion
of the infinite elements, i.e., the base face of the infinite elements, as well as of the con-
ventional finite elements is performed using the Gauß quadrature presented in section 3.4.
The temporal integration of the near field is performed using the Newmark quadrature in-
troduced in section 3.3.1. If not otherwise stated the Newmark parameters are fixed to the
values β = 0.25 and γ = 0.5. The time domain solution of the far field is calculated using
the CQM presented in section 3.3.2. Here, the error bound is fixed to ε = 10−5 and the
underlying multistep method is chosen to be a BDF2. To calculate the temporal behavior
of the whole domain, the near- and far field are combined using the substructure technique
presented in section 4.5. Thus, for any example, which implies the application of infinite
elements, denoted as "iFEM" in the following, it is assumed that the Newmark scheme is
applied to finite elements and the CQM to infinite elements. The solution of the result-
ing equation system of the whole domain is obtained by using the direct solver package
SPOOLES [8], which is supported by the numerical calculation package PETSC [17].
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σ = 1 N/m2H(t)

x3
`= 8m

Figure 5.1: Schematic representation of the one-dimensional column with impact force.

5.1 Elastodynamic problems

In this following, different examples will be presented in order to investigate the presented
coupled time stepping scheme of section 4.5 as well as the performance of the suggested
infinite elements of section 4.1. The material data of the elastic homogeneous material,
which corresponds to a soil, is given in table 5.1.

K
[ N

m2

]
G
[ N

m2

]
%
[ kg

m3

]
soil 1d 1.272 ·108 8.48 ·107 1884

soil 3d 1.018 ·108 1.696 ·108 1884

Table 5.1: Material data of a soil. For a pure one-dimensional problem (soil 1d) the lateral
contraction is set to zero, i.e., ν = 0.

5.1.1 One-dimensional elastic column

The dynamic response of a one-dimensional column is examined as depicted in figure
5.1. The elastic column is assumed to be of 8m length. The material data is given in
table 5.1. Furthermore, it is assumed to be fixed at the bottom x3 = 8m. The column is
subjected to a time dependent stress loading in terms of a Heaviside step function, i.e.,
t = [00−1]TH(t)N/m2 at the top of the column (x3 = 0). For the one-dimensional problem
the analytical solution is given in equation (A.3).

In order to investigate the influence of different spatial- and temporal approximations, a
three-dimensional finite element analysis will be carried out and compared to the analytical
solution. Here, a column with the dimensions 2×2×8m3 is assumed. Additionally, to the
boundary conditions of the one-dimensional column, here, the side walls are assumed to
be free to move and traction free. In order to compare the three-dimensional results with
the analytical one, the lateral contraction is set to zero and, thus, the material data "soil 1d"
are taken from table 5.1 for the analysis.

First, various time steps will be investigated and it is common to use the so called CFL-
factor

χ =
c∆t
he

(5.1)
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to compare stability for different mesh and time step sizes. The CFL-factor was introduced
by Courant, Friedrichs, and Lewy to measure the stability within finite difference schemes
[56]. In equation (5.1), c denotes the wave velocity, ∆t the time step, and he the measure
for the spatial discretization. For the elastic case c is defined through the compressional
wave speed cP defined in (2.13). For the spatial discretization parameter he the smallest
distance between two nodes will be assumed. Thus, for 0 < χ ≤ 1 it is assured that the
wave doesn’t pass the distance between two nodes within one time step.

The spatial discretization is performed using the mesh sketched in figure 5.2(a), which
will be referred as mesh I in the following. Here, the mesh consists of 4 HEX20 elements.
Hence, the discretization parameter he = 1m. Moreover, the different integration schemes
presented in section 3.3.1 will be considered, as well their coupled solution. The different
gray-scales in figures 5.2, therefore, represent domains where either the Newmark method
or the CQM as time integration scheme is applied. Moreover, the application of only one
integration scheme, i.e., the Newmark method or the CQM, to the whole domain will be
analyzed. The Newmark parameters are chosen to be β = 0.25 and γ = 0.5.

In figures 5.3, the displacement of the elastic column at the top u3(0, t) is depicted for
various discretization parameters χ ∈ {0.1,0.5,0.7,1.0,2.0}, as well for the analytical so-
lution. In figure 5.3(a), the results are obtained when the whole domain of mesh I is sub-
jected to the Newmark method and in 5.3(b) to the CQM. The results obtained by using the
coupling scheme presented in section 4.5 are shown in figure 5.3(c). The worst results are
obtained in all three cases for χ = 2.0. This is in a way obvious since for χ > 1 the wave
travels faster as the physical model is able to represent. This follows in a phase shift as
well as in a reduced amplitude of the solution. These effects are stronger observable for the
CQM as for the Newmark integration scheme. Nevertheless, the CFL-condition is violated
for χ = 2.0 the solutions do not show any instabilities, which is obvious for the case of
the Newmark method. This method is unconditionally stable for β = 0.25 and γ = 0.5 (cf.
section 3.3.1 or [82]). Despite the accuracy of the results are not acceptable for χ = 2.0.
The approach to smaller values of χ lead to more accurate results and, therefore, they
come closer to the analytical solution, independent on the time stepping scheme, as can
be seen in figures 5.3. For the value χ = 0.1 a slight shaky behavior of the displacement
can be noticed in figure 5.3(a) when the Newmark time stepping scheme is used. For this
CFL-factor the best results are obtained. Furthermore, independent on the CFL-factor χ

the CQM results in larger phase shifts as well in a higher damped amplitudes compared to
the Newmark method. The coupling of these two methods, shown in figure 5.3(c), results
in an averaging of these two time stepping schemes. Moreover, it must be mentioned that
smaller values of χ correspond to a smaller time step, when the discretization parameter
he is kept constant and follows in an increasing number of time steps N to be evaluated
for the same observation time. The corresponding time step ∆t and number of time steps
N for any χ are listed in table 5.2. The number of time steps N is calculated by assuming
an maximum observation time of t = 0.34s, which corresponds to the time-plot-ranges in
figures 5.4.
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x1

x2

x3

(a) Mesh I - 4 HEX20 (b) Mesh II - 32 HEX20 (c) Mesh III - 256 HEX20

Figure 5.2: Different spatial discretizations of a three-dimensional column of length
`= 8m.

Thus, taking into account computational costs the results for χ = 0.5 and χ = 0.7 provide
quite good results, tough a coarse mesh is used. Consequently, for these two values of χ

the effects of different spatial discretization will be investigated in the following.

Three different meshes with discretization parameters he ∈ {1.0,0.5,0.25}m will be in-
vestigated, as depicted in figures 5.2, and will be referred as mesh I, mesh II, and mesh III,
respectively. The displacement u3(0, t) at the top of the elastic column is plotted for
χ = 0.5 and χ = 0.7 in figures 5.4(a) and (b), respectively, for the three meshes. In fig-
ure 5.5, the results of figures 5.4(a) and (b) are added and shown for a smaller time range
t ∈ [0.285,0.325]. Accordingly to the two different gray-scales in figures 5.2 the Newmark
method and the CQM are used in a coupled system to gain the time domain solution.

mesh I he = 1.0m mesh II he = 0.5m mesh III he = 0.25m

χ [−] ∆t [s] N ∆t [s] N ∆t [s] N

0.1 0.000272 1250 - - - -

0.5 0.00136 250 0.000680 500 0.000341 1000

0.7 0.00190 180 0.000952 358 0.000476 716

1.0 0.00272 126 - - - -

2.0 0.00544 64 - - - -

Compressional wave speed cP = 367.5 m/s

Observation duration t = 0.34s

Table 5.2: Time and spatial discretization parameters for the one-dimensional column.
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(a) Mesh I - Newmark method
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(b) Mesh I - CQM

0 0.05 0.1 0.15 0.2
0

2e-08

4e-08

6e-08

analytical

χ = 0.1

χ = 0.5

χ = 0.7

χ = 1.0

χ = 2.0

time t [s]

di
sp

la
ce

m
en

tu
3(

0,
t)

[m
]

(c) Mesh I - coupled Newmark method (4 HEX20) with CQM (4 HEX20)

Figure 5.3: Displacement u3(0, t) of the three-dimensional column for different CFL-
numbers χ .
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(a) CFL-factor χ = 0.5 for different spatial discretizations
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(b) CFL-factor χ = 0.7 for different spatial discretizations

Figure 5.4: Displacement of the three-dimensional column for different CFL-numbers χ .
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Figure 5.5: Displacement of the three-dimensional column for different spatial discretiza-
tions and the CFL-numbers χ = 0.5 and χ = 0.7.
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In figures 5.4(a) and (b), it can be clearly identified that a finer spatial discretization yields
better results even though χ is kept constant. Taking a closer look at figure 5.5 it can be
observed that for mesh III the solutions for the different CFL-factors (χ = 0.5, χ = 0.7)
only differ slightly from each other. Contrary to mesh II, the solutions of mesh I diverge
from each other in a serious amount for the two different CFL-factors. Taking into account
computational costs, i.e., number of time steps to be evaluated, mesh II yields the most
promising results, as can be verified in figures 5.4 and 5.5.

5.1.2 One-dimensional infinite elastic column

Here, a one dimensional infinite elastic column as depicted in figure 5.6 will be investi-
gated. A soil is assumed with the material data given in table 5.1. It is subjected to a

σ(t) = 1 N/m2H(t)

x3

`= 8m a = `= 8m

Figure 5.6: Infinite elastic column.

time dependent stress loading t = [00 −1]TH(t)N/m2 in terms of a Heaviside step function
in time. Three different types of calculation will be performed in order to validate the
proposed one-dimensional infinite element (section 4.1.1). First, a one-dimensional finite
element calculation will be performed, where the far field is described by the analytical
infinite element of section 4.1.1. The near field, assumed to be of 8m length, is discretized
with eight quadratic one-dimensional finite elements. For simplicity, here, the near and far
field is discretized in time by the CQM. Second, the results of a three-dimensional column,
as depicted in figure 5.7 will be examined. The near field is discretized with thirty-two

Figure 5.7: Spatial discretization of three-dimensional elastic infinite column.
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HEX20. The spatial discretization of the far field is done by using four infinite elements
with the modified shape function of (4.19) for each element. Modified for the reason that
the factor 1

2(1−ξ3) is dropped to obtain the one-dimensional behavior (review also the def-
inition the pure one-dimensional shape function (4.14)). The radial approximation polyno-
mial is chosen to be of constant order, i.e., Pk

0 = 1 and, of course, only the compressional
wave speed cP will be approximated. The time domain solution is obtained by using the
coupling strategy presented in section 4.5. The CFL-factor χ = 0.5 is assumed for both
calculations. Thus, the discretization parameter he (for the one- and three-dimensional
mesh) yields the time step size ∆t = 0.00068s. The third calculation is performed using
the analytical solution (A.4) and will be used to validate the other two calculations. In
figure 5.8, the displacements at positions x3 = 0m and x3 = 8m are plotted. The analytical
calculation is denoted by “analytical u3(·, t)”, the solution of the discrete one-dimensional
column by “1d FEM - analytical iFEM u3(·, t)”, and the three-dimensional results by “3d
FEM - iFEM u3(·, t)”. It can be clearly observed that the different scenarios match each
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Figure 5.8: Displacement u3(0, t) and u3(8, t) of an infinite elastic column.

other. Neither the pure one-dimensional, nor the three-dimensional FEM-iFEM calculation
diverge from the analytical solution. Thus, the temporal as well as the spatial discretization
are chosen appropriate to obtain sufficient accurate solutions.

5.1.3 Elastic halfspace

In the next example, an elastic halfspace is considered. The underlying material is assumed
to be a soil where the material data is given in table 5.1. A schematic representation of the
halfspace is given in figure 5.9. The halfspace is subjected to a vertical loading on a area
of 2×2m2 (1×1m2 when the symmetric properties of the problem are used), wheres the
remaining surface is traction free. In the following, the static and the dynamic case will be
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Figure 5.9: Schematic representation of the elastic halfspace.

investigated. Thus, for the static case the load vector is t = [00 −1]T N/m2. In the dynamic
case, the load vector acts in terms of a Heaviside step function, i.e., t= [00 −1]TH(t)N/m2.
Since the underlying problem is unbounded the domain has to be truncated at some point
when using the standard finite element method. Whereas in the static case this drawback
can be circumvent by using a large finite discretized domain, this is nearly impossible for
the dynamic case. Here, outward traveling waves are reflected at the introduced unphysical
boundary and, thus, these reflected waves pollute the numerical results significantly as will
be shown in the following. In order to transfer these waves to infinity without causing any
reflections, infinite elements will be used. Hence, the unbounded domain is represented in
an appropriate manner. The results obtained by using infinite elements will be compared,
nevertheless, with a pure finite element calculation. Here, the bottom of the discretized do-
main is assumed to be fixed in vertical direction, whereas the sides to infinity are traction
free. Both, the static and dynamic calculation are performed using the symmetric proper-
ties of the problem. Thus, the normal displacements at the symmetric planes, the x1x3−
and x2x3-plane, are restrained.

Static case

The static calculation is performed using different spatial discretizations which are sketched
in figures 5.10. The corresponding discretization parameters are given in table 5.3. The
calculation are performed for two different mesh sizes of the finite domain, i.e., he ∈
{0.25,0.5}, whereas the far field is approximated by infinite elements (figures 5.10(a)
and 5.10(b)). Furthermore, a pure finite element mesh is considered as sketched in figure
5.10(c). Here, an additional layer of 7m thickness consisting of conventional finite ele-
ments is attached. This layer is added to simulate the far field. The results of the numerical
calculations are displayed in figures 5.11. The results are compared to the analytical so-
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x3

Observation point [660]T m

•

(a) Mesh 1: cube 7×7×7m3 (b) Mesh 2: cube 7×7×7m3 (c) Mesh 3: cube 14×14×14m3

Figure 5.10: FEM-iFEM discretization. The dashed area in the upper left corner denotes
the load area (1.0×1.0m2).

lution, which is obtained by the integration of the analytical solution of the Boussinesq
problem [24].

Mesh label mesh 1 mesh 2 mesh 3

Finite domain 7×7×7m3 7×7×7m3 14×14×14m3

he 0.25m 0.5m 0.5m

Near field 2744 HEX20 343 HEX20 343 HEX20

Far field 588 iFEM 147 iFEM 2401 HEX20

Degrees of freedom,
elastic material, Pk

p
with p = 1

44022 7020 38475

Table 5.3: Spatial discretization parameters.

In figures 5.11(a) and 5.11(b), the vertical- and horizontal displacement are plotted, re-
spectively. The displacements are plotted along the positive x1-axis where the coordinates
x2 = 0 and x3 = 0 are kept constant. First, the vertical displacement shown in figure 5.11(a)
will be discussed. The approximation polynomial Pk

p of mesh 1 is chosen to be constant
and denoted as “mesh 1, iFEM-CONST”. The results of this approximation match the
analytical solution nearly perfect. The calculation using mesh 2 is done with a variation
of the radial approximation polynomial of the infinite elements, due to the reason that the
calculation using a constant polynomial Pk

p , denoted as “mesh 2, iFEM-CONST”, deviates
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Figure 5.11: Results of the static halfspace. Vertical- and horizontal displacement along
the axis 0m≤ x1 ≤ 7m and x2 = x3 = 0.

slightly from the analytical solution as x1 approaches zero (figure 5.11(a)). Nevertheless,
using a linear polynomial Pk

p , denoted as “mesh 2, iFEM-FIRST”, doesn’t significantly im-
prove the results. The results obtained by using a constant or linear radial approximation
polynomial are nearly not distinguishable from each other, as can be observed in figures
5.11. Nevertheless, all results obtained by using the infinite elements are superior com-
pared to the pure finite element calculation for x1 > 1m. Concerning the finite element
calculation it must be mentioned that this approximation behaves to stiff for the whole
range 0 ≤ x1 ≤ 7m, which results in a nearly positive constant shift in vertical direction.
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Second, the horizontal displacement will be discussed which is plotted in figure 5.11(b).
Here, the analytical solution exhibits a singular point. This singularity can not be repro-
duced by the numerical approximations. Thus, the numerical approximations deviate from
the analytical solution as they approach the singularity. Moreover, the numerical approx-
imations yield for the horizontal displacement (figure 5.11(b)) nearly the same results for
the different spatial discretizations when infinite elements are used. When considering the
range 4m≤ x1 ≤ 7m of the results obtained by using infinite elements, it can be identified
that they approach the analytical solution. This behavior is not valid for the pure finite
element calculation, which can not correctly represent the far field behavior.

In conclusion, it can be stated that for the static case the proposed infinite elements work
properly, i.e., the far field behavior of the unbounded domains is approximated in an ade-
quate manner.

Dynamic case

In the dynamic case, the load varies in time now as a Heaviside step function, i.e., t =
[0 0 −1]TH(t)N/m2, whereas the other boundary conditions are assumed to be the same
as for the static case. They will be kept constant over the whole time range. Further-
more, vanishing initial conditions are assumed. In the following, different scenarios will
be investigated, such as the influence of different mesh sizes, the number of different wave
types approximated by the infinite elements, the effects of a varying size of the charac-
teristic length a of the infinite element, and different radial approximation orders. In all
cases, the vertical displacement u3 at the observation point [660]T m will be taken under
consideration for the comparative study. Additionally, the proposed method will be tested
against an analytical solution by Pekeris [108]. The time integration is performed using
the proposed coupled time stepping scheme presented in section 4.5.

It is of interest to check the theoretical arrival times of the different waves which are
present. The wave velocity for the compressional-, shear-, and Rayleigh wave are defined
in section 2.1.2. The resulting wave velocities for the soil, with the material parameters
given in table 5.1, are listed in table 5.4. To calculate the arrival times of the different wave
types the distance measure is performed from the outer corner point of the load area, i.e.,
[110]T m. They are given in table 5.4. The arrival times of the different wave types at the
observation point are given in column 1. In case if any reflection would take place at the
transition from the near to the far field the arrival times at the observation point are given
in column 2. Column 3 contains the arrival times from the truncated boundary of the pure
finite element mesh.

Spatial- and time discretization As a starting point to validate the proposed infinite
element the influence of different mesh sizes will be analyzed. Thus, mesh 1 and mesh 2
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(see figure 5.10(a) and (b)) will be used. Note that in this case infinite elements are used
to represent the far field behavior. The radial approximation polynomial Pk

p of the infinite
elements is chosen to be of first order. Furthermore, the compressional-, the shear- and the
Rayleigh wave are approximated by the infinite element. A comparison is also performed
to a pure finite element mesh (mesh 3). Here, an additional layer of 7m thickness of
conventional finite elements is attached as depicted in 5.10(c). The additional layer is
added to attempt to simulate the far field. The bottom is fixed, whereas the boundaries
to the infinite side are assumed to be free to move and traction free. For all three meshes
the CFL-factor will be fixed to χ = 0.5. This results in a time step of ∆t = 0.00031s
for mesh 1 and ∆t = 0.00062s for mesh 2 and mesh 3. Furthermore, a variation of the
Newmark parameters will be performed, i.e., they will be set to β = 0.3025 and γ = 0.6,
to achieve a slight numerical damping as proposed by Zienkiewicz and Shiomi [158].

Distance [m]

7.07 9.07 23.07

Wave
speed [m/s]

Arrival
time [s]

Reflection time [s]

iFEM FEM

Comp. wave cP 402.5 0.018 0.023 0.057

Shear wave cS 232.4 0.030 0.039 0.099

Rayleigh wave cR 213.8 0.033 0.042 0.11

Table 5.4: Distance measure from load corner point [110]T m to observation point
[660]T m with corresponding wave arrival times.

The vertical displacement u3 at the observation point [660]T m is plotted in figures 5.12(a)-
(c). The arrival times of the different wave types can be observed in figure 5.12(b). The
arrival of the compressional wave at time t = 0.018s is represented in an appropriate man-
ner by every discretization setting. The arrival of the shear wave can be observed at time
t = 0.030s which overlaps with the arrival of the Rayleigh wave at time t = 0.33s. It
must be mentioned that the arrival times in table 5.4 only give the earliest arrival time of
the corresponding wave and not the arrival time of the waves generated by the distributed
load. This explain that the maximum amplitude due to the waves is approximately at time
t = 0.037m. Furthermore, it can be seen that the solution of the pure finite element mesh
(mesh 3) matches the solution of mesh 2 as long as the reflected compressional wave from
the outer boundary arrives at time t = 0.057s (figure 5.12(b) and (a)). Hence, it follows
that the behavior of the near field is not altered by the infinite elements. This statement
is approved by the fact that deviations due to different spatial- and temporal discretiza-
tions can be eliminated, since mesh 2 and mesh 3 exhibit the same spatial- and temporal
discretization of the near field. After the waves have passed the observation point the so-
lutions approach the static solution (denoted by “analytical, static”) as can be identified
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(b) Zoom section of figure 5.12(a) - Displacement u3
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Figure 5.12: Vertical displacement u3 at observation point [660]T m for different time and
spatial discretizations.
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Figure 5.13: Mesh 4: 1/8-sphere R = 9.5m.
FEM-iFEM discretization. The
dashed area in the upper left cor-
ner denotes the load area (1.0×
1.0m2).

Mesh label mesh 4

Finite domain R = 9.5m

he 0.5m

Near field 3533 TET10

Far field 306 iFEM

Degrees of freedom,
elastic material, Pk

p
with p = 1

18495

Table 5.5: Spatial discretization pa-
rameters.

in figures 5.12(a). The introduced numerical damping results in a small reduction of the
Rayleigh pole, whereas the deflection due to the compressional wave is nearly unaffected,
as can be noticed in figure 5.12(b). Nevertheless, the damping also eliminates the shaky
behavior of the results, especially when looking at the results when they approach the static
solution, as plotted in figure 5.12(c). In conclusion, it can be stated that the coarser mesh 2
yields nearly the same results as mesh 1. Using mesh 2 reduces the computational effort
extremely. This is due to the fact that the degrees of freedom of mesh 2 are roughly only
one sixth of mesh 1, as summarized in table 5.3. Furthermore, only half as much time steps
are needed for mesh 2 as for mesh 1 when the total time is assumed to be the same.

Wave approximation In this paragraph, the influence of the number of approximated
waves will be investigated. As shown in section 2.1.2, three different types of waves exist
namely compressional-, shear-, and Rayleigh waves. The proposed infinite element with
the shape function given in equation 4.19 is capable to approximate various wave types.
Thus, in the following the displacement at the observation point [660]T m will be calcu-
lated for the cases that all wave types are approximated, the shear- and compressional
wave are approximated, or when only the compressional wave is approximated. These
three cases will be compared to each other. The corresponding curves are labeled in the
following plots in such a way as mentioned before. Moreover, two different meshes will be
used for the study, i.e., mesh 2 and the new introduced mesh 4, which is sketched in figure
5.13 with the detailed discretization parameters given in table 5.5. In fact, mesh 4 is used
to ensure that the angle of incidence is always perpendicular when the outward propagating
waves enter the transition from the near- to the far field. The radial approximation poly-
nomial Pk

p of the infinite elements is chosen to be of first order for both meshes. For both
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meshes the CFL-factor will be fixed to χ = 0.5. This results in a time step of ∆t = 0.00062s
for both meshes, since they exhibit the same discretization parameter he. The Newmark
parameters are chosen to be β = 0.3025 and γ = 0.6 to achieve a small numerical damp-
ing. The vertical displacement u3 for this configuration setting is plotted in figures 5.14(a)
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(b) Zoom section of 5.14(a) - Displacement u3

Figure 5.14: Vertical displacement u3 at observation point [660]T m for different spatial
discretizations and wave approximations.

and (b). The arrival times of the different wave types at the observation point [660]T m are
given in table 5.4. The correct representation of the wave arrivals of the proposed method
was already discussed in the paragraph before and will be not mentioned again. However,
it must be mentioned that the Rayleigh pole is represented by a larger amplitude when
mesh 4 is used for the numerical analysis. In figure 5.14(b), it can be noticed that results



5.1 Elastodynamic problems 101

due to any mesh match each other as long the single wave types didn’t pass the observation
point. After the wave have passed the observation point they diverge from each other. Of
course, this is due to the fact that the far field is approximated in another fashion when
a different number of waves is approximated. It can be noticed that the best results are
obtained when the compressional- and shear wave are approximated (figure 5.14(a)). The
best results mean that the deviation from the static solution is as small as possible. The
worst results are obtained when only the compressional wave is approximated. Thus, in
the following only the compressional- and shear wave will be approximated if not stated
otherwise.

Radial approximation order Next, the influence of the order of the radial approxima-
tion polynomial Pk

p(ξ3) on the calculation will be considered. Therefore, the vertical dis-
placement at the observation point [660]T m will be used for the comparative study. The
spatial discretization for all calculations is done using mesh 2 (see figure 5.12(b)). The
time step is chosen to be ∆t = 0.00062s, which results in a CFL-factor χ = 0.5. In order
to perform this analysis the CQM of Banjai and Sauter [18] had to be used. This has to be
done since the proposed coupled time stepping scheme of section 4.5 exhibited numerical
instabilities after some time steps when an approximation order p ≥ 2 is used. These nu-
merical difficulties also occurred when the whole domain (near- and far field) was applied
to the CQM scheme described of section 3.3.2. Thus, the problem can not be attributed to
the proposed Newmark-CQM coupling scheme. Also, different input parameters, as mesh
size, time step size, dimension of the problem, and the kind of approximation polynomials
(Lagrange, Legendre, Jacobi) didn’t stabilized the numerical calculations. Nevertheless,
the CQM of Banjai and Sauter [18] seems to be immune to the aforementioned instabili-
ties. The main difference of this CQM compared to that of section 3.3.2 is that the system
of algebraic equations has to solved for every frequency step and, hence, the solution (dis-
placement) is transformed to the time domain.

The results of these calculations are plotted in figures 5.15(a) and (b). The calculation
is performed using different radial approximations p ∈ {0,1,2,3,4} and are referred by
“CONST, FIRST, SECOND, THIRD, and FOURTH”. It can be observed that the solution
is nearly independent on the approximation order of the radial direction, only the results
obtained when using a constant approximation order deviates from the other solutions
when looking at times t ≤ 0.045s. Depending on the approximation order slightly different
static solutions are approached. Nevertheless, the constant and first approximation order
are closest to the analytical static solution. Thus, it is sufficient to use an approximation of
first order and, thus, the proposed coupled time stepping of section 4.5 can be used to gain
the time domain solution.

Characteristic length of infinite element a This paragraph investigates the influence
of the proper choice of characteristic length a of the infinite element (see also equation
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(b) Zoom section of 5.15(a) - Displacement u3

Figure 5.15: Vertical displacement u3 at observation point [660]T m for different radial
approximation orders.

(4.20)). The computation is performed for various different sizes of characteristic lengths
{0.5a,0.75a,1.0a,1.25a,2.0a}. In order to give an imagination on how the spatial dis-
cretization looks like the meshes for the characteristic lengths 0.5a and 2.0a are sketched
in figures 5.16(a) and (b), respectively. The radial approximation polynomial is chosen to
be of first order. The spatial discretization of the near field corresponds to that of mesh 2
(see figure 5.10(b)). Also here, the time domain solution is again obtained by using the
CQM of Banjai and Sauter [18]. As in the paragraphs before, the time step is chosen to be
∆t = 0.00062s. The vertical displacement of the observation point [660]T m is plotted in
figures 5.17(a) and (b). As can be noticed in figure 5.17(b) the displacement is unaffected
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Figure 5.16: FEM-iFEM discretization with different characteristic lengths of the infinite
element.

for any chosen characteristic length for observation times t ≤ 0.045s. This is not the case
for the long time behavior. Depending on the characteristic length of the infinite element
different static solutions are obtained, as can be noticed in figure 5.17(a). Thus, the nearly
correct static solution is obtained when the characteristic length is approximately 1.0a. In
this case the infinite element behaves in such a way as the source point is a singular point.
This is for example the case when a single point force at the origin [000]T m is applied to
the surface. Thus, due to the similarity to the here computed problem the correct behavior
of the infinite element is, of course, only satisfied for a chosen characteristic length of 1.0a.
Consequently, the characteristic length will be fixed to 1.0a in the following.

Comparison to BEM In the following, the proposed numerical scheme will be vali-
dated by a comparison with a BEM calculation [123]. In order to do so, the vertical and
horizontal displacement at the observation point [660]T m will be analyzed. Calculations
using infinite elements are performed using the spatial discretizations mesh 1, mesh 2,
and mesh 4.The time step size is chosen to be ∆t = 0.00062s except for mesh 1, where
∆t = 0.00031s. The wave arrival times at the observation point [660]T m are listed in ta-
ble 5.4. The time domain solution is computed using the presented coupled time stepping
scheme of section 4.5. The Newmark parameters will be set to β = 0.3025 and γ = 0.6.
The radial approximation polynomial is chosen to be of first order. Furthermore, the ap-
proximation of the compressional- and shear wave will be performed. Thus, the infinite
elements are adjusted to the underlying problem. The vertical displacement u3 is plot-
ted in figures 5.18(a) and (b), whereas the horizontal displacement u1 is plotted in figure
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(b) Zoom section of 5.17(a) - Displacement u3

Figure 5.17: Vertical displacement u3 at observation point [660]T m for various sizes of
characteristic length of the infinite elements a.

5.18(c). The horizontal displacement u2 is equal to u1 at the observation point, due to
the symmetry of the problem. In figure 5.18(b), the arrival of the compressional wave is
clearly visible at time t = 0.018s as well as the arrival of the shear- and Rayleigh wave at
times t = 0.030s and t = 0.033s, respectively. In can be noticed that the single solutions
coincidence properly. The small deviations, of course, occur due to different spatial- and
time discretizations. Furthermore, the solutions obtained by using infinite elements to de-
scribe the far field behavior coincidence properly with the BEM solution and, thus, it can
be concluded that the proposed method is adequate for unbounded domains. Moreover, it
can be observed that the solutions of the cube meshes (mesh 1 and 2) nearly coincidence
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Figure 5.18: Vertical- and horizontal displacement at observation point [660]T m.
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with the solution of the 1/8-sphere (mesh 4). Consequently, the corner (point [770]T m) of
the cube-mesh doesn’t affect the solution of the vertical displacement, despite the angles
of incidence of the waves aren’t normal to the boundary. This conclusion is also confirmed
by the horizontal displacement u1 (figure 5.18(c)). Reflected waves are clearly observable
when the pure finite element mesh is used, as can be seen in figures 5.18(a) and (c). On the
contrary the solutions using infinite elements approach the static solution, after the waves
have passed the observation point. The static solution of the BEM calculation deviates
from the analytical static solution. This is due to the fact that the BEM has to truncate the
mesh at some point. This truncation pollutes the solution of the numerical approximation,
as is discussed in more detail by, e.g. Rüberg [118].

Single point force This section will be closed with a comparison of the above obtained
results of the elastic halfspace problem (figure 5.9) with the analytical solution due to a
single point force given by Pekeris [108]. The point force [00 −4]TH(t)N is applied at the
origin [000]T m, whereas the remaining boundary conditions are chosen as in the exam-
ples before. Additionally to the distributed load case, also the FEM-iFEM calculation will
be performed with a point force. The calculation with the point force and the distributed
force is performed for mesh 1 and mesh 2. The time step size is chosen as in the examples
above. The Newmark parameters will be set to β = 0.3025 and γ = 0.6. The radial ap-
proximation polynomial is chosen to be of first order. Furthermore, the approximation of
the compressional- and shear wave will be performed.

The vertical- u3 and the horizontal displacement u1 are plotted in figures 5.19 and 5.20,
respectively. As can be observed the arrival of the compressional wave is well imitated
by the numerical approximations. After the compressional wave the shear wave arrives
causing an increasing amplitude. The arrival of the Rayleigh wave causes the amplitude to
approach infinity, as it is apparently noticeable in the horizontal and vertical displacement,
shown in figures 5.19 and 5.20, respectively. The approximated solutions due to the point
force are rather wavily compared to the solution obtained by the distributed force. Nev-
ertheless, the Rayleigh pole is better approximated by the point force. Especially at times
around t = 0.03s the solution obtained by the distributed load reproduces the analytical so-
lution nearly perfectly. After the waves have passed the observation point the solutions of
the single numerical approximations approach the static solution in a sufficiently accurate
manner, as can be noticed in figures 5.19 and 5.20. Comparing the different discretizations
(mesh 1 and mesh 2), it is observable that only when the point force is applied the solutions
diverge from each other considerably. This is not the case when the distributed force is ap-
plied. Here, the solutions coincidence properly. However, the proposed method is capable
to reproduce the horizontal and vertical displacements in an appropriate manner.
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(b) Zoom section of 5.19(a) - Displacement u3

Figure 5.19: Vertical displacement at observation point [660]T m due to a single point force
(Pekeris [108]) and a distributed force.
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(b) Zoom section of 5.20(a) - Displacement u1

Figure 5.20: Horizontal displacement at observation point [660]T m due to a single point
force (Pekeris [108]) and a distributed force.
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5.2 Poroelastodynamic problems

In order to investigate the performance of the proposed infinite element for the poroelas-
tic case different test examples will be presented. The material data of the considered
materials, a soil (coarse sand) and a rock (Berea sandstone), are given in table 5.6

K
[ N

m2

]
G
[ N

m2

]
%
[ kg

m3

]
φ
[
−] Ks

[ N
m2

]
% f
[ kg

m3

]
K f
[ N

m2

]
κ
[m4

Ns

]
rock 8.0 ·109 6.0 ·109 2458 0.19 3.6 ·1010 1000 3.3 ·109 1.90 ·10−10

soil 2.1 ·108 9.8 ·107 1884 0.48 1.1 ·1010 1000 3.3 ·109 3.55 ·10−9

Table 5.6: Material data of Berea sandstone (rock) and soil [91].

and are taken from Kim and Kingsbury [91]. In the following examples, it is also of interest
to check the theoretical arrival times of the different waves which are present. This can
be done, however, only for estimated wave speeds since the wave velocities are in general
dependent on the Laplace parameter s (dispersive waves). Thus, wave velocities can be
approximated for the special cases s→ 0 and s→∞, only. Taking the high frequency limit
s→ ∞ of equation (2.42) yields

(c2
1,2)

∞ = lim
s→∞

c2
1,2 = A±

√
A2−B ,

with

A =
(4G+3K)φ 2(%a +% f φ)+3R(%φ 2−2α% f φ 2 +α2(%a +% f φ))

6φ 2
(
%(%a +% f φ)−%2

f φ 2
)

B =
(4G+3K)R

3
(
%(%a +% f φ)−%2

f φ 2
) ,

whereas the low frequency limit s→ 0 gives

(c2
1)

0 =
α2R+φ 2(K + 4

3G)

%φ 2 .

for the compressional waves. Note that the low frequency limit results in only one wave
speed, which actually corresponds to the fast compressional wave, as can be noticed in
table 5.7. This is obvious when taking into account the relation lims→0 s f̂ (s) = limt→∞ f (t)
and considering that the slow compressional wave is highly damped. The high- and low
frequency limit for the shear wave velocity are given by

(c2
S)

∞ =
G

%−
%2

f φ 2

%a+% f φ
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and
(c2

S)
0 =

G
%
,

respectively. The individual wave speeds of the soil and rock are listed in table 5.7. Ad-
ditionally, the wave speeds are tabled when some fluid inertia terms are omitted as it is
discussed in section 2.2.4. Actually, in this case only the low frequency limit exists. The
Rayleigh wave speed cR is approximated by equation (2.16) and, therefore the high and
low frequency limits result from the frequency limits of the shear wave velocities. This
approximation may be applied to porous materials as long as low frequency problems are
considered, as investigated by Yang [147]. This is the case for many soil- and geomechan-
ical applications.

Approx. wave speeds [m/s]

c∞
1 c∞

2 c0
1 c0

2 c∞
S c0

S c∞
R c0

R

complete poroelastic formulation

rock 3137.2 1036.5 3136.8 - 1600.1 1562.4 1458.8 1424.4

soil 1788.1 318.0 1689.6 - 247.9 228.1 229.9 211.5

simplified poroelastic formulation (some fluid inertia neglected)

rock ∞ - 3136.8 - 1562.4 1424.4

soil ∞ - 1689.6 - 228.1 211.5

Table 5.7: Approximated wave speeds for poroelastic materials.

5.2.1 One-dimensional poroelastic column

In this section, a one dimensional infinite poroelastic column as depicted in figure 5.6 will
be investigated. The finite case is already discussed extensively by Schanz and Cheng
[124] and, therefore, will be omitted here. The column is subjected to a time dependent
total stress loading σ tot(0, t) = 1 N/m2H(t), which acts in terms of a Heaviside step function
in time. The boundary condition for the fluid phase is defined by setting the pressure
to zero at the top of the column, i.e., p(0, t) = 0 N/m2. The analysis is performed using
the complete ui, p form (2.37). Thus, the discrete variational form is derived in Laplace
domain as illustrated in section 3.2.5. This brings in the advantage that the performance
of the proposed infinite element in section 4.3.2 can be compared to the analytical infinite
element (4.24). Therefore, the near and far field are discretized in time by the CQM. The
CQM formulation of Banjai and Sauter [18] is used, which brings in the advantage that the
radial approximation is more flexible, as was worked out for the elastic case.
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Since, the governing equations of the ui, p form in time domain of section 2.2.4 are just
an simplification of the original set of differential equations describing the porous material
(cf. section 2.2.2), also a validation of this simplified model will be performed, i.e., the
results of the analytical one-dimensional solution of the simplified model will be compared
to the analytical one-dimensional solution obtained by using the complete set (2.37). The
analytical one-dimensional solution of the simplified model is given in (A.21), whereas the
analytical solution of the complete formulation is given in (A.16).

The near field is discretized with eight one-dimensional quadratic finite elements for the
solid displacement and the pore pressure, whereas the infinite domain is approximated by
a one-dimensional infinite element as presented in section 4.3.2. Both versions of infinite
elements will be used, first, the version where both compressional waves are approximated
(4.28) and, second, the version where only the fast compressional wave (4.29) is approxi-
mated. The radial approximation polynomial is chosen to be of constant order, i.e., Pk

0 = 1.
In order to validate the performance of the proposed infinite element the solution is com-
pared to the analytical solution given by equation (4.22).

Moreover, a comparison is performed to results where the far field is represented by the
analytic infinite element presented in section 4.3.1, whereas the near field is discretized
using conventional finite elements. Both materials, as defined in table 5.6, will be used for
the investigation. The time steps are chosen in such a way that the CFL-factor χ ≈ 0.5
is obtained. This can be done only approximately, since the wave speeds are frequency
dependent. In order to obtain χ ≤ 0.5, the high frequency limit of the corresponding wave
speeds of table 5.7 will be used for the calculation of the proper time steps. Thus, for the
soil a time step of ∆t = 0.00014s, and for the rock a time step of ∆t = 0.00008s is chosen.

In figures 5.21 and 5.22, the solid displacement u(0, t) at the top of the column and the
pore pressure p(8m, t) at the position x = 8m is plotted for the soil and the rock, respec-
tively. The results are denoted by “complete poro” for the calculation when the complete
set of differential equations (2.37) are used and “simple poro” when the governing equa-
tions (2.29)-(2.31) are used. The calculation using the proposed infinite element is denoted
as “FEM-only fast comp. wave (c1)” when only the fast compressional wave is approx-
imated using the shape functions (4.29) and as “FEM-both comp. wave (c1,c2)” when
both compressional waves are approximated using (4.28). The comparison to the results
when the analytical infinite element is attached to the finite element mesh is denoted by
“FEM-analytical iFEM”. It can be clearly observed that in every plot the different scenar-
ios match each other. Thus, the governing equations (2.29)-(2.31) represent the behavior
of the underlying poroelastic material in an appropriate way, since the results are equal to
those of the complete analytical solution for the underlying porous material. Moreover,
it can be noticed that the simplified approach of the infinite elements, where only the fast
compressional wave is considered (shape functions (4.29)), is sufficient. This is obvious
by taking a closer look at the wave weighting factors. For the investigated material the
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Figure 5.21: Infinite poroelastic column - soil.

wave weighting factors are roughly ÛK
1 = P̂K

1 ≈ 1 and ÛK
2 = P̂K

2 ≈ 0. In figures 5.21(b)
and 5.22(b), the arrival of the first compressional wave can be noticed which lifts the pore
pressure within the poroelastic material. Of course, the pore pressure returns back to a
equilibrium state p(x, t → ∞) = 0 for an increasing observation time. This is due to the
fact that the fluid gains enough time to trickle through the porous material, thus, the pore
pressure relaxes with increasing time.

Concerning the soil, numerical oscillations at the beginning may occur when the pore pres-
sure is considered as can be noticed in figure 5.21(b). These oscillations can be attributed
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(b) Pore pressure - rock

Figure 5.22: Infinite poroelastic column - rock.

to the FEM part alone, since also the solution using the analytical infinite element fea-
tures these numerical problems. They can be attributed to the fact that the soil behaves
nearly incompressible [126], which results apparently in numerical difficulties. These in-
stabilities are also known from the quasi-static consolidation, as worked out by Murad and
Loula [104]. They concluded that the pore pressure oscillations arise from an unstable
approximation of the incompressibility constraint on the initial condition. Furthermore,
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(b) Pore pressure - rock, κ = 1.0 m4/Ns

Figure 5.23: Infinite poroelastic column - rock.

they investigated that these oscillation decay in time as it is also the case in figure 5.21(b).
They also proved stability and convergence of a backward Euler-Galerkin formulation for
any combination of approximation order of the solid displacement and the pore pressure.
Zienkiewicz and Shiomi [158] recommend to use reduced integration of appropriate sub-
matrices to overcome these problems.

Up to now, only the fast compressional wave was detectable. In order to investigate the
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test case when the second compressional wave is observable the permeability is altered to a
large value, i.e., κ = 1.0 m4/Ns. This action reduces the damping of the system significantly
and, thus, the second wave is detectable. The outcome of this artificial created scenario is
plotted in figures 5.23. For this case, the governing equations (2.29)-(2.31), which are just
an approximation of the complete set of governing equations, are not able to represent the
behavior of the porous media in an appropriate manner, as can be noticed in figures 5.23(a)
and 5.23(b). Especially, the pore pressure (figure 5.23(b)) is distorted evidently. Here, the
pressure changes actually to negative values as soon as the step load is applied. When
the fast compressional wave arrives at the observation point x = 8m the pressure returns
to the steady state solution. The analytical solution is only approached sufficiently by the
calculations when the analytical infinite element or the infinite element with both compres-
sional waves is attached to the finite element mesh. The reduced damping of the systems
is noticeable by oscillations when the numerical approximation schemes are used. When
only the fast compressional wave is approximated using the shape functions (4.29) the
results deviate as soon as the second compressional wave arrives at the observation point
at time t ≈ 0.008s. Beside the constant radial approximation also a linear and quadratic
radial approximation order is plotted in figures 5.23(a) and 5.23(b), denoted by the at-
tached label “CONST”, “FIRST”, and “SECOND”, respectively. It can be verified that a
higher approximation order can produce less deviation from the correct analytical solution.
Nevertheless, to obtain sufficient accurate results the approximation of both compressional
waves is absolutely essential.

5.2.2 Poroelastic halfspace

In the next example, a poroelastic halfspace is considered. The underlying material is
assumed to be a rock. In a later step also a soil will be considered. The material data
are given in table 5.6. A schematic representation of the problem is given in figure 5.9.
Thus, the same problem will be considered as it was done for the elastodynamic case. As
a starting point, to validate the performance of the infinite element, the ui, p formulation
will be used. The semi-discrete variational formulation is given in equation (3.44). This
formulation suffices to represent the underlying porous material in an appropriate way,
as shown for the one-dimensional case. In the following the influence of the number of
approximated waves will be investigated. In addition to the two body waves the Rayleigh
wave will be present in an unbounded poroelastic halfspace. As already investigated for the
one-dimensional case the second compressional wave is highly damped and, therefore, not
detectable for the underlying material. For this reason only the first compressional wave
will be considered besides the shear- and Rayleigh wave and, thus, the shape functions
(4.30) and (4.31) will be used. In order to validate the performance of the proposed infinite
element the solid displacements ui at point [660]Tm are studied for the cases when only
the fast compressional wave, the compressional- and shear wave, or when all wave types
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(comp.-, shear-, and Rayleigh wave) are approximated. The corresponding curves are
labeled as mentioned before in the following plots.

The calculation will be performed for two different spatial discretizations, namely mesh 1
and mesh 2, as depicted in figures 5.10(a) and 5.10(b), respectively. The detailed dis-
cretization parameters are summarized in table 5.3. The approximation order of the solid
displacement ui and the pore pressure p is chosen to be of the same order. The radial ap-
proximation polynomial Pk

p of the infinite elements is chosen to be of first order and, again,
to be the same for the solid displacement and the pore pressure.

The applied load is assumed to be a vertical total stress t tot
i which acts in terms of a Heav-

iside step function in time, i.e., the load is applied and kept constant. The load vector
ttot = [00 − 1]T N/m2 is applied on an area of 1.0×1.0m2, whereas the remaining surface
is traction free. The pore pressure p is assumed to be zero on the whole surface, i.e.,
p(x1,x2,0) = 0, and, thus, the surface is assumed to be permeable. On the symmetry
planes, the x1x3- and x2x3-plane, the normal displacements are fixed and also the flux qi is
set to zero. Of course, at infinity the displacements ui are assumed to be zero as well the
pore pressure p.

A comparison is also performed to a pure finite element mesh (mesh 3, figure 5.10(c)),
denoted as "FEM" in the following plots. An additional layer of 7m thickness of conven-
tional finite elements is attached, as depicted in figure 5.10(c), to attempt to simulate the far
field. The bottom of the additional layer is fixed and impermeable, whereas the boundaries
to the infinite side are assumed to be free to move, traction free, and impermeable.

The time integration is performed using the proposed coupled time stepping scheme pre-
sented in section 4.5. Furthermore, vanishing initial conditions are assumed. Concern-
ing the Newmark time-stepping scheme the integration parameters are set to the values
β = 0.3025 and γ = 0.6, which yields some numerical. The time step is chosen in such a
way that a CFL-factor of χ ≈ 0.75 is achieved, i.e., ∆t = 0.00006s and ∆t = 0.00012s for
mesh 1 and mesh 2, respectively.

Here, it is also of interest to check the theoretical arrival times of the different waves which
are present. The wave velocity for both compressional-, the shear- and the Rayleigh wave
are listed in table 5.7. Since the differential equations (2.29)-(2.31) are used to describe
the behavior of the porous material only the low frequency limit of the fast compressional
wave speed exists and, therefore, this limit is used for the calculation of the arrival times
(cf. table 5.7). To calculate the arrival times of the different wave types the distance
measure is performed from the outer corner point of the load area, i.e., [110]T m. They are
given in table 5.8. The arrival times of the different wave types at the observation point are
given in column 1. In case if any reflection would take place at the transition from the near
to the far field the arrival times at the observation point are given in column 2. Column 3
contains the arrival times from the truncated boundary of the pure finite element mesh.
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Distance [m]

7.07 9.07 23.07

Wave
speed [m/s]

Arrival
time [s]

Approx. reflection time [s]

iFEM FEM

Comp. wave cP 3136.8 0.0023 0.0029 0.0076

Shear wave cS 1562.4 0.0045 0.0058 0.015

Rayleigh wave cR 1424.4 0.0050 0.0064 0.017

Table 5.8: Distance measure from load corner point [110]T m to observation point
[660]T m with corresponding wave arrival times - rock.

The vertical solid displacement u3 is shown in figure 5.24(a) and (b), whereas the horizon-
tal solid displacement is depicted in figure 5.24(c). It can be observed that all calculations
represent the arrival of the compressional wave at time t = 0.023s properly. The arrival
of the shear wave is followed by the arrival of the Rayleigh wave at times t = 0.0045s
and t = 0.0050s, respectively. The number of different approximated waves has nearly
no influence on the solutions when looking at the vertical solid displacement for times
t ≤ 0.006s (figure 5.24(b)). After the wave have passed the observation point the solutions
approach the quasi-static solution, denoted as “quasi-static”. The quasi-static solution
results from a quasi-static ui, p FEM-iFEM calculation. Here, the number of approxi-
mated waves affects the solutions and it can be observed that the approximation of the fast
compressional- and shear wave yields the best results, as can be observed in figure 5.24(a).
Furthermore, it can be seen that the solution of the pure finite element mesh deviates when
the reflected compressional wave from the outer boundary arrives at time t = 0.0076s.
This deviation increases significantly when the reflected shear- and Rayleigh waves arrive
at times t = 0.015s and t = 0.017s. The aforementioned observations of the vertical solid
displacement are also valid for the horizontal displacement u1 as can be noticed in figure
5.24(c), which is, of course, the same as u2 due to the symmetric properties of the problem.

Different poroelastic FEM formulations, comparison to BEM The proper function-
ality of the proposed infinite element of section 4.3.3 was till now validated only for the
ui, p-poroelastic formulation. Thus, in the following the introduced infinite element will
be applied to the complete poroelastic FEM formulation as well to the irreducible ui,wi
FEM formulation. Furthermore, the aforementioned calculations will be compared to a
BEM calculation [102]. Again, the poroelastic halfspace, as sketched in figure 5.9 will
be taken under consideration. The boundary conditions are chosen to be the same as in
the calculations before. Furthermore, the time discretization is done in the same way, i.e.,
∆t = 0.00012s. The spatial discretization is performed using the mesh sketched in figure
5.10(b), i.e., mesh 2 is taken. The poroelastic material is chosen to be a rock, where the
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Figure 5.24: Vertical- and horizontal displacement at observation point [660]T m.
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material data are given in table 5.6. The wave arrival times of table 5.8 can be taken again
to check them against the arrival times of the numerical simulations.

In figures 5.25(a) and (b), the vertical displacement u3 at the observation point [660]Tm is
plotted, whereas the horizontal displacement u1 is plotted in figure 5.25(c). Of course, the
horizontal displacement u2 is equal to the horizontal displacement u1 at the observation
point [660]Tm due to the symmetric property of the problem. The ui, p FEM formulation
(3.44) is denoted as “ui, p-formulation”, the irreducible formulation ui,wi (3.42) by “ui,wi-
formulation”. The non-symmetric FEM formulation of the full form, i.e., the continuity
equation is placed in the damping matrix (3.38), is denoted by “ui, p,wi-non-symmetric
formulation”, whereas the symmetric formulation (continuity equation is placed in the
stiffness matrix (3.41)) is denoted by “ui, p,wi-symmetric formulation”. The BEM calcu-
lation will be labeled as “BEM”.

The wave arrival of the fast compressional wave at time t = 0.0023s is captured in an ap-
propriate way by any numerical method. At time t = 0.0045s the shear wave arrives as
can be clearly observed in figure 5.25(b) which overlaps with the arrival of the Rayleigh
wave at time t = 0.0050s. In figure 5.25(b), it can be observed that the ui, p FEM for-
mulation nearly coincides with the symmetric ui, p,wi FEM formulation. This statement
is also valid for the ui,wi and non-symmetric ui, p,wi-poroelastic FEM formulation. Nev-
ertheless, the deviation of the two pair of curves is small. After the waves have passed
the observation point the single approximation methods approach the quasi-static solution
(denoted as “quasi-static” in figures 5.25(a) and (c)). The quasi-static solution results from
a quasi-static ui, p FEM-iFEM calculation. The different FEM formulations also coincide
well when considering the horizontal displacement in figure 5.25(c). Moreover, the differ-
ent solutions agree proper to the BEM calculation, especially when the wave arrival times
are observed. Nevertheless, the BEM approaches another quasi-static solution.

In conclusion, any Finite Element Formulation represents the physical behavior of the
porous media in an appropriate way. Moreover, the governing equations (2.29)-(2.31)
are capable of describing the porous material in a sufficient accurate manner as long the
slow compressional wave is not detectable (cf. also section 5.2.1). Concerning the infinite
element it can be stated that it represents the far field appropriate independent on the Finite
Element Formulation.

Decay of Rayleigh wave In this paragraph, the decrease of the Rayleigh surface wave
with depth will be investigated. To visualize this effect different points below the surface
will be observed. They are located roughly at the same distance of 8.5m measured from the
origin [000]T m. Thus, the arrival time of any wave type is the same for the different obser-
vation points. Actually, the observation points are located at [660]T m, [5.55.5−3.25]T m,
[55 − 4.75]T m, and [44 − 6.25]T m and will be labeled with their corresponding coor-
dinates in the following plots. The calculations are performed with respect to the same
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Figure 5.25: Vertical- and horizontal displacement at observation point [660]T m. Com-
parison of different poroelastic FEM formulations.
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assumptions as in the example above. However, the calculations are only performed using
the spatial discretization defined by mesh 1. Moreover, the infinite element is adopted to
approximate the fast compressional- and shear wave only, which suffices to obtain accu-
rate solutions, as was investigated in the above examples. In figures 5.26(a) and (b), the

0 0.0025 0.005 0.0075 0.01

-1.25e-11

-1e-11

-7.5e-12

-5e-12

-2.5e-12

0

2.5e-12

Point [6 6 0]
T
m

Point [5.5 5.5 -3.25]
T
m

Point [5 5 -4.75]
T
m

Point [4 4 -6.25]
T
m

time t [s]

di
sp

la
ce

m
en

tu
3
[m

]

(a) Displacement u3

0 0.0025 0.005 0.0075 0.01 0.0125 0.015

-4e-12

-2e-12

0

2e-12

4e-12
Point [6 6 0]

T
m

Point [5.5 5.5 -3.25]
T
m

Point [5 5 -4.75]
T
m

Point [4 4 -6.25]
T
m

time t [s]

di
sp

la
ce

m
en

tu
1
[m

]

(b) Displacement u1

Figure 5.26: Vertical- and horizontal displacement at different depths.

vertical- u3 and horizontal u1 displacement are plotted. The wave arrival times of the fast
compressional-, the shear- and the Rayleigh wave are taken from column one of table 5.8.
In figure 5.26(a), it can be clearly observed that with increasing depth the Rayleigh pole
vanishes. The amplitude shift to the left, which can be observed in figure 5.26(b), may
indicate that this amplitude is mainly caused by the shear wave, since this shift gets larger
for increasing depths.
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Halfspace - Soil So far, the underlying porous material was assumed to be a rock. In
the following the infinite element will also be applied to a poroelastic halfspace where the
material is assumed to be a soil. The material data of the soil are given in table 5.6. The
governing equations (2.29)-(2.31) will be used to describe the behavior of the porous me-
dia, since for the underlying material this approximation yields sufficient accurate results
as was shown in the one-dimensional example (cf. section 5.2.1). The corresponding FEM
formulation is given by equation (3.44).

As in the case of the rock, the functionality of the infinite elements will be investigated
by observing the solid displacements ui at the observation point [660]T m. The spatial
discretization of the solid displacement and the pore pressure is performed in the same
manner as for the case of the rock. The infinite elements will be adopted in such a way
that either all wave types, i.e., the fast compressional-, the shear-, and Rayleigh wave, are
approximated or that only the fast compressional and the shear wave are approximated. To
approximate only the fast compressional wave is not sufficient as shown for the case of
the rock. The respective curves will be labeled in the following plots as mentioned before.
The boundary conditions are assumed to be the same as in the examples before.

For the time integration a CFL-factor of χ = 0.75 is assumed. Thus, taking into account
the wave speed of the fast compressional wave of the soil, given in table 5.7, a time step
of ∆t = 0.00011s and ∆t = 0.00022s is obtained for mesh 1 and mesh 2, respectively. The
calculations will be compared to a pure FEM solution (mesh 3) as it was also done for the
case of rock. Here, the time step is chosen to be t = 0.00022s. Furthermore, a comparison
to a BEM calculation [102] is considered.

Also in this case the wave arrival of the numerical approximation method will be checked
against the theoretical arrival times, calculated with the approximated wave speeds of table
5.7. The expected wave arrival times are calculated in the same way as for the case of the
rock and are listed in table 5.9.

Distance [m]

7.07 9.07 23.07

Wave
speed [m/s]

Arrival
time [s]

Approx. reflection time [s]

iFEM FEM

Comp. wave cP 1689.6 0.0042 0.0054 0.014

Shear wave cS 228.1 0.031 0.040 0.10

Rayleigh wave cR 211.5 0.033 0.043 0.11

Table 5.9: Distance measure from load corner point [110]T m to obser-
vation point [660]T m with corresponding wave arrival times
- soil.
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Figure 5.27: Vertical- and horizontal displacement at observation point [660]T m - soil.
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The displacements ui at the observation point [660]T m are plotted in figures 5.27. The
vertical solid displacement u3 is shown in figure 5.27(a) and (b), whereas the horizontal
solid displacement u1 is depicted in figure 5.27(c). At time t = 0.0042s the arrival of the
influence of the fast compressional wave can be noticed. The expected reflection of the
fast compressional wave (t = 0.014s) at the free boundary of the pure FEM calculation,
due to the truncation of the spatial discretization, causes a slight deviation of this solution.
Furthermore, from this time on the different calculations diverge from each other. This is in
a way obvious, since now the infinite elements are activated and the infinite elements which
approximate all three wave types possess another behavior as when only two waves are
approximated. However, these deviations of the solutions to each other aren’t observable
for the case of a rock, as investigated in the example above. The Rayleigh pole can be
clearly observed at time t = 0.033s which overlaps with the arrival of the shear wave
(t = 0.031s). For the soil the solutions differ in a greater amount from the BEM calculation
as for the case of a rock (cf. figure 5.25(b)). However, this deviations are due to the fact that
the infinite elements just approximate the wave behavior of the far field, whereas the BEM
fulfills the wave equation exactly within the domain and certainly in infinity. Nevertheless,
the results obtained by using the infinite elements are quite good compared to the pure finite
element solution. As it can be realized in figure 5.27(b), the different spatial discretizations
doesn’t really affect the solution, as it was also the case for the rock. Actually, the Rayleigh
pole is more emphasized when the coarser mesh (mesh 2) is used. After the waves have
passed the observation point the solutions approach the quasi-static solution (denoted by
“mesh 2, quasi-static”) as can be identified in figures 5.27(a) and 5.27(c). Nevertheless,
small reflections of the shear-, and consequently the Rayleigh wave, can be observed at
times t ≥ 0.040s and t ≥ 0.043s. This reflections may be caused since the waves are not
perfectly transferred to the far field. This is in a way obvious since the infinite elements are
just an approximation. These spurious reflections are greater when the soil is considered
as for the rock. Nevertheless, compared to the pure finite element calculation the results
obtained by using infinite elements are superior and, therefore, approve their necessity. For
the case of the soil, the quasi-static solution of any infinite element calculation matches the
BEM solution.

Elastic modeled poroelastic material In the following paragraph, the poroelastic mate-
rial will be compared to two elastic models, namely the undrained and drained case. These
two models represent an upper and lower bound of the poroelastic model. The drained ma-
terial parameters are already defined in table 5.6. The definition of the undrained material
parameters are taken from [60]. The undrained compression modulus is given by

Ku = K +
KsK f α2

K f α +φ(Ks +K f )
.
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The undrained Poisson ratio and Young’s modulus are defined by

νu =
3Ku−2G

2(3Ku +G)
, Eu = 3Ku(1−2νu) ,

respectively. In table 5.10 the drained and undrained material parameters for a soil are
given with the corresponding wave velocities.

K,Ku
[ N

m2

]
G
[ N

m2

]
%
[ kg

m3

]
E,Eu

[ N
m2

]
ν ,νu [−] cP

[m
s

]
cS
[m

s

]
cR
[m

s

]
soil

drained 2.1 ·108 9.8 ·107 1884 2.544 ·108 0.298 425.2 228.1 211.5

undrained 5.248 ·109 9.8 ·107 1884 2.922 ·108 0.49 1689.6 228.1 217.2

Table 5.10: Material data of a soil modeled elastic.

The calculations are performed using the spatial discretization of mesh 2 (see figure 5.10(b)).
The boundary conditions for the elastic models are taken as in the examples of the elastic
halfspace (cf. section 5.1.3) and for the poroelastic model as in the examples above. Also,
the temporal discretization is performed in the same manner, i.e., the time steps are chosen
to obtain a CFL-factor of χ = 0.75 for any model. Thus, a time step of ∆t = 0.00022s
for the undrained and poroelastic model and ∆t = 0.00088s for the drained model is used.
Concerning the infinite elements, the approximation of all three wave types is assumed for
any model, i.e., the compressional-, shear-, and Rayleigh wave.

Wave speeds [m/s] Wave arrival times [s]

cP,c1 cS cR tcP,c1 tcS tcR

poroelastic 1689.6 228.1 211.5 0.0042 0.031 0.033

drained 425.2 228.1 211.5 0.017 0.031 0.033

undrained 1689.6 228.1 217.2 0.0042 0.031 0.0325

Table 5.11: Distance measure from load corner point [110]T m to observation point
[660]T m with corresponding wave arrival times.

In figures 5.28, the solid displacements ui are plotted. The wave arrival times at the ob-
servation point [660]T m for the single material models are, again, listed in compact form
in table 5.11. The arrival of the compression wave of the poroelastic material at time
t = 0.0042s can be clearly observed in figure 5.28(b), which coincidences with the arrival
of the compressional wave of the undrained elastic model. The compressional wave of
the drained model arrives at a later time t = 0.017s. The shaky behavior of the history
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Figure 5.28: Vertical- and horizontal displacement at observation point [660]T m - Com-
parison poroelastic and elastodynamic modeling of the soil.
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plot of the undrained model may be attributed to the fact that this model behaves nearly
incompressible as can be noticed when looking at the Poisson’s ratio of ν = 0.49. The
arrival of the shear wave is the same for any model, since the shear modulus is the same
for any material. The Rayleigh pole, which overlaps with the arrival of the shear wave,
can be clearly observed in the vertical displacement (figure 5.28(b)) as well as in the hor-
izontal displacement in figure 5.28(c). Whereas the Rayleigh pole is nearly the same for
the poroelastic and undrained model, it is more pronounced for the drained model. After
the waves have passed the observation point they approach the quasi static solution. When
looking at the horizontal displacement, the poroelastic model lies in between the elastic so-
lutions, i.e., they are an upper and lower bound. This statement is also valid for the vertical
displacement, although the solution of the poroelastic material is slightly outside the upper
bound of the undrained model. Actually, this deviation may be attributed to the numeri-
cal approximation scheme, which performs differently for the underlying material (cf. also
section 5.1.3, where the elastic halfspace is considered). In conclusion, it can be stated that
the one-phase elastic models of the poroelastic material are just a crude approximation.

5.2.3 Soil on a bedrock

Next, a saturated soil is considered of finite thickness resting on a bedrock, i.e., a poroe-
lastic layer fixed at the bottom. The schematic representation of the problem is sketched
in figure 5.29. The saturated porous layer, a soil, is assumed to be of 5m thickness. The

x1

x2x3

ttot =
[ 0

0
−1

]
H(t)[N/m2]

0.5m

0.5m

Observation point
[6

6
0

]
[m]

5m

Rock layer

Figure 5.29: Schematic representation of the poroelastic halfs-
pace resting on a rock layer.

material parameters of the soil are given in table 5.6. Below an impermeable bedrock is as-
sumed, thus, the flux at this boundary and the displacements in any direction are assumed
to be zero. The remaining boundary conditions are chosen to be same as for the poroelastic
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x1

x2
x3

Observation point

Load area

(a) Mesh 5: cube 7×7×5m3 (b) Mesh 6: cube 7×7×5m3 with attached pure
FEM layer of 7m thickness

Figure 5.30: Finite-infinite element discretizations.

halfspace, with the exception of the load vector. Here, the load vector ttot = [00 −1]T N/m2

is applied on an area of 0.5×0.5m2. Again, the saturated poroelastic layer is modeled
with the governing equations (2.29)-(2.31), thus, some fluid inertia terms are neglected.
The spatial discretizations of the near- and far field are depicted in figures 5.30(a) and (b).
The detailed discretization parameters are summarized in table 5.12. The spatial approx-
imation of the solid displacement and the pore pressure are assumed to be of the same
order. The calculation using infinite elements will be performed in such a way that ei-
ther all wave types, i.e., the fast compressional-, the shear-, and the Rayleigh wave or just
the fast compressional- and shear wave are approximated. These two calculations are la-
beled as “iFEM, all wave types (c1,cS,cR)” and “iFEM, comp. and shear wave (c1,cS)”,
respectively.

Mesh label mesh 5 mesh 6

Finite domain 7×7×5m3 14×14×10m3

he 0.25m 0.25m

Near field 1960 HEX20 1960 HEX20

Far field 280 iFEM 5880 HEX20

Degrees of freedom,
ui, p-formulation, Pk

p
with p = 1

41048 142100

Table 5.12: Spatial discretization parameters.
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As in the examples before, the solid displacements ui at the observation point [660]T m are
investigated and compared to a BEM calculation [102] in order to validate the proposed
infinite element. Additionally, a comparison is performed to a pure finite element mesh,
denoted as "FEM" in the following plots. Here, an additional layer of 7m thickness of
conventional finite elements is attached as depicted in figure 5.30(b). The boundaries on
the infinite side are assumed to be free to move, traction free, and impermeable.

For the underlying spatial discretization (he = 0.25m) a time step of ∆t = 0.00011s is
chosen, which results in a CFL-factor of χ = 0.75. As in the example before, the wave
arrival times are inspected as well (see table 5.13). The distance measure is performed
from the outer corner point of the load area, i.e., [0.50.50]T m. Additionally, the arrival of
reflected waves from the rock layer at the observation point are listed in column 4.

Distance [m]

7.78 9.78 23.78 12.67

Wave speed
[m/s]

Arrival
time [s]

Approx. reflection time [s]

iFEM FEM rock layer

Comp. wave 1689.6 0.0046 0.0058 0.014 0.0076

Shear wave 228.1 0.034 0.043 0.10 0.056

Rayleigh wave 211.5 0.037 0.046 0.11 0.060

Table 5.13: Distance measure from load corner point [0.50.50]T m to observation
point with corresponding wave arrival times.

In figures 5.31(a)-(c), the vertical- and horizontal solid displacements are plotted over
time. The expected arrival of the fast compressional wave is clearly observable at time
t = 0.0046s in figure 5.31(b). The arrival of the compressional wave is followed by the
arrival of the Rayleigh wave at time t = 0.037s, which overlaps with the arrival of the
shear wave at time t = 0.034s. Due to fact that the load is applied on a smaller region,
compared to the examples before, the Rayleigh pole is more pronounced. Whereas the
expected arrival of reflected compressional waves from the rock layer (t = 0.0076s) is
nearly not detectable, the influence of reflected shear waves is clearly observable at time
t = 0.056s in figure 5.31(b). Since the influence of the Rayleigh wave is decreasing with
depth the displacement change at time t = 0.060s is essentially caused by the shear wave
alone (arrival time t = 0.056s). Since up to this time the influence of the compressional
wave is of minor influence the deviation of the pure FEM calculation is relatively small.
This behavior changes as the reflected shear- and Rayleigh wave from the FEM boundary
reach the observation point at time t = 0.10s and t = 0.11s. From this time on, the pure
FEM results diverge from the calculation using infinite elements which can be clearly
noticed in figures 5.31(a) and (c). Also, the behavior of the solution with the infinite
elements differs from the BEM solution, which is due to the fact that the infinite elements



130 5 Numerical Examples

0 0.1 0.2 0.3 0.4
-1e-10

-5e-11

0

5e-11

1e-10

1.5e-10
iFEM, all wave types (c

1
, c

S
, c

R
)

iFEM, comp. and shear wave (c
1
, c

S
)

iFEM, quasi-static

FEM
FEM, quasi-static

BEM

time t [s]

di
sp

la
ce

m
en

tu
3(
[6

6
0]

T
,t
)
[m

]

(a) Displacement u3

0 0.02 0.04 0.06 0.08 0.1
-1e-10

-5e-11

0

5e-11

1e-10

1.5e-10
iFEM, all wave types (c

1
, c

S
, c

R
)

iFEM, comp. and shear wave (c
1
, c

S
)

iFEM, quasi-static

FEM
FEM, quasi-static

BEM

time t [s]

di
sp

la
ce

m
en

tu
3(
[6

6
0]

T
,t
)
[m

]

(b) Zoom section of 5.31(a) - Displacement u3

0 0.1 0.2 0.3 0.4
-4e-11

-2e-11

0

2e-11

4e-11

6e-11

iFEM, all wave types (c
1
, c

S
, c

R
)

iFEM, comp. and shear wave (c
1
, c

S
)

iFEM, quasi-static

FEM
FEM, quasi-static

BEM

time t [s]

di
sp

la
ce

m
en

tu
1(
[6

6
0]

T
,t
)
[m

]

(c) Displacement u1

Figure 5.31: Vertical- and horizontal displacement at observation point [660]T m.
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just approximate the far field behavior. Consequently, the far field is represented in another
fashion. With ongoing time the solutions approach the quasi-static equilibrium state since
the introduced waves are transferred to infinity. Furthermore, the approximation of only
the fast compressional- and shear wave yields not as good results as when all wave types
are approximated as can be observed best when looking at the horizontal displacement in
figure 5.31(c). In the pure FEM solution, still reflected waves can be noticed when the
calculations using the infinite elements already approached the quasi-static equilibrium.
Of course, when enough time has passed the damping due to the material will also cause
this solution to approach the quasi-static equilibrium. It must be mentioned that the quasi-
static solutions of the calculation with the infinite elements and the pure FEM coincidence
proper. Only the BEM solution approaches another quasi-static equilibrium.





6 CONCLUSION

In the present work, an infinite element has been developed to be used in combination with
finite elements to treat unbounded domains. The application of the proposed numerical
approximation scheme has been performed to elastostatics, elastodynamics, poroelasto-
dynamics, and quasi-static poroelasticity. The governing equations are derived under the
assumption of linear kinematics as well as linear, homogenous, and isotropic material be-
havior. The poroelastic material is modeled based on Biot’s theory. Compared to a pure
elastic modeled soil, which is a common approximation in soil-mechanics, the governing
equations describing the poroelastic material take into account the interaction between the
solid skeleton and the interstitial fluid. Consequently, the unknown field variables are the
solid displacement, the pore pressure, and the relative displacement of the fluid phase to
the solid skeleton. Under the assumption of a compressible fluid the pore pressure can
be eliminated, which yields the so-called irreducible form with the solid- and relative dis-
placement as unknowns. If a further reduction of unknowns in time domain is desired the
negligence of some fluid inertia terms is necessary. This simplified model yields the solid
displacement and the pore pressure as primary variables. An elimination of the relative dis-
placement without the negligence of any fluid inertia terms is possible in Laplace domain.
The validity of the simplified model has been discussed in section 5.2.1. One can conclude
that the simplified model is applicable to realistic, most common poroelastic material in
the low frequency regime. Moreover, the wave speeds of plane body waves in an infinite
elastic and poroelastic material are derived.

The treatment of unbounded domains with the proposed method has been performed in
such a way that the domain of consideration is decomposed into a so-called near- and
far field. Consequently, finite elements are used for the numerical approximation of the
near field behavior, whereas the solution of the far field is approximated by the proposed
infinite elements. Discrete variational formulations for the governing equations of an elas-
tic and a poroelastic material are deduced. In case of the poroelastic material different
approaches are discussed. Here, a symmetric as well as a non-symmetric finite approxi-
mation scheme has been recalled for the approximation of all three constituents, i.e., the
solid displacement, pore pressure, and relative displacement. Furthermore, the finite ele-
ment formulation for the irreducible (solid- and relative displacement are unknown) and
the simplified form (solid displacement and pore pressure are unknown) are presented. Ex-
emplarily, the finite element formulation in Laplace domain is performed for the case that
the solid displacement and the pore pressure are the unknown variables. Here, the case is
chosen where no negligence of fluid inertia terms is assumed.
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The main topic of this thesis is devoted to the derivation of the infinite elements. The infi-
nite elements have been constructed in such a way that they represent the far field behavior
in an appropriate manner, i.e., they are defined in such a manner that they approximate
the Sommerfeld radiation condition sufficiently. The Sommerfeld radiation condition en-
sures that outward traveling waves are transferred from the near- to the far field and that
no incoming waves will appear. Hence, a wave-like behavior is attributed to the infinite
elements to fulfill these requirements. To provide this wave-like behavior to the shape
functions of the infinite elements they have to be formulated in Laplace domain. Thus,
the existing waves can be approximated by the infinite elements with exponential func-
tions, one for every present wave type. In the case of an elastic material a compressional-
and a shear wave have to be considered. When investigating a poroelastic material two
compressional- and one shear wave have to be taken into account. Additionally, for an
elastic or poroelastic halfspace a surface wave, the so-called Rayleigh wave has to be con-
sidered. In the elastic case, the approximation of each wave type can be performed inde-
pendently, whereas in the poroelastic case the two compressional waves are related to each
other. This wave-relation has been taken from the analytical solution of a one-dimensional
poroelastic column. Nevertheless, the slow compressional wave in a poroelastic material is
highly damped and, thus, for realistic, most common poroelastic materials, not observable.
Hence, a simplified model for a poroelastic infinite element has been presented which ne-
glects the the slow compressional wave. This simplified model of the infinite element for
poroelastodynamics exhibits the same structure as the infinite element for elastodynamics.
Nevertheless, this simplified model is only applicable if the second wave is nearly not de-
tectable, as it has been validated by a simple infinite one-dimensional example. Moreover,
the infinite element is constructed in such a way that the radial approximation order is vari-
able and independent of the approximation order of the finite portion. The approximation
order of the finite portion of the infinite element is restricted to the approximation order
of the near field, since a direct coupling (node to node coupling) is assumed between the
finite and infinite elements. The correct long time behavior, i.e., the static and quasi-static
solution of the elastic and poroelastic material, respectively, is ensured by the correct 1/r-
like mapping behavior, which is used for the mapping relation between the physical and
local space.

Another crucial point is the numerical evaluation of the infinite element matrices, since
in radial direction (direction to infinity) the functions to be integrated contain exponential
terms due to the wave approximation. To overcome this difficulty, a Newton-Cotes type
formula has been derived. The integration of the finite portion of the shape functions has
been performed with the standard Gauß quadrature.

The temporal discretization of the near- and far field has been accomplished by two dif-
ferent integration schemes. The system of ordinary differential equations obtained by the
spatial discretization by finite elements is treated by the Newmark method. On the other
hand the far field is discretized with the proposed infinite elements. Their formulation is
frequency dependent and, thus, a set of convolution equations is obtained by the infinite
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element discretization. This set of equations is integrated by means of the convolution
quadrature method. Next, the near- and far field has been combined using a direct cou-
pling strategy. The resulting equation system is solved at every time step to obtain the
time domain solution of the whole domain. This approach has been performed mainly for
two reasons. First, the treatment of materially non-linear or large deformation problems is
still retained within the near field. Second, the convolution quadrature requires to store the
system matrices of every time step and, thus, this integration scheme demands respective
computer storage.

Summarizing, the proposed infinite elements approximate the far field behavior in an ade-
quate manner, which has been validated by different test examples. For the case of elasto-
dynamics, the results obtained by the proposed numerical approximation scheme coincide
well in either case, first, when they are compared to a boundary element calculation or, sec-
ond, when they are compared to an analytical solution. However, when poroelastodynamic
problems are considered the performance of the infinite elements is not as good as when
elastodynamic problems are investigated. Here, small reflections are observable when the
waves enter the transition from the near- to the far field. In this case, the boundary element
method yields better results. The lack of accuracy, especially for the poroelastic material,
can be attributed to the fact that the infinite elements just approximate the wave behavior
of the far field, whereas the boundary element method fulfills the wave equation exactly
within the domain and certainly in infinity. Furthermore, the numerical integration scheme
exhibits numerical instabilities when the radial approximation is chosen to be higher than
of first order. However, due to the fact that a higher radial approximation order does not
yield better results this disadvantage can be confidently disregarded. As a consequence,
future works should take care of the numerical instabilities of the numerical integration
scheme. The best solution to solve this problem could be to formulate an infinite element
directly in time domain, given the case that this can be realized at all. Another approach to
eliminate the numerical instabilities of the time stepping scheme could be to use different
time steps for the near- and far field. Thus, an optimized time step could be chosen for
each domain. On the finite element side the treatment of material non-linearity or large
deformations could be taken into account.





A ANALYTIC SOLUTIONS

A.1 Time domain solution of a finite elastic column

The time domain solution of an elastic column, as depicted in figure 4.1, will be accom-
plished using an inverse Laplace transformation of (4.3). Following the steps as shown by
Graff [79] the series expansion

1

1+ e−2 s
cP

`
=

∞

∑
n=0

(−1)n e−2 s
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is inserted into (4.3) yielding

u(x,s) =
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∑
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(−1)n
[
e−

s
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(2`n+x)−ae−
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[2`(n+1)−x]

]
. (A.1)

Using the Laplace transform relation [61]

B
s e−bs • ◦BH(t−b) , B,b ∈ R

yields together with equation (A.1) the time domain solution for an impulse load of the
displacement. Of course, the aim is to obtain the solution for arbitrary loading. This will
lead to convolution integrals of the form

u(t,x) =
t∫

0

L −1{û(x,s)} f (t− τ) dτ . (A.2)

Taking a Heaviside step function as loading, the occurring convolution integrals have the
general form

t∫
0

BH(τ−b)H(t− τ) dτ =

{
0 . . . if t < b
B(t−b) . . . if t > b ,

which can be written as

t∫
0

BH(τ−b)H(t− τ) dτ = B(t−b)H(t−b) .
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Thus, the time domain solution according to a Heaviside step function can be evaluated
term-by-term resulting in

u(x, t) =
σ0cP

(K + 4
3G)

∞
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(−1)n
[
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]
−H(t− 1

cP
(2`(n+1)− x))H(t− 1

cP
(2`(n+1)− x))] .

(A.3)

In the solution (A.3), clearly one wave with the velocity cP can be identified.

A.2 Time domain solution of an infinite elastic column

The time domain solution of equation (4.9), according to a Heaviside step function, is
obtained in the same manner as for the finite column (cf. section A.1) and is given by

u(x, t) =
σ0cP

(K + 4
3G)

(
t− x

cP

)
H
(

t− x
cP

)
. (A.4)

Also in this solution one wave with the velocity cP can be observed but with the difference
that only one outgoing wave exists.

A.3 Analytic solution of a finite poroelastic column

The analytic solution of a one-dimensional poroelastic column of length `, as sketched in
figure A.1, will be presented. The side walls and the bottom of the column are assumed
to be impermeable and frictionless. Movement of the media is only permitted parallel to
the side walls and the bottom, not perpendicular to them. Furthermore, the total stress
σ tot

0 and the solid displacement u0 are prescribed at the top and the bottom of the column,
respectively. For the fluid phase the flux q0 at the bottom and the pore pressure p0 at the top
of the column is applied. Here, the case will be presented where the solid displacement,
the pore pressure, and the relative displacement are considered as unknowns.

In order to derive the analytic solution, equations (2.33), (2.35) and (2.34a) are recalled and
restricted to a one-dimensional problem. Hence, three coupled scalar ordinary differential
equations (

K + 4
3G
)

û,xx−α p̂,x− s2%û− s2% f ŵ = 0 (A.5a)
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p0(0, t)

q0(0, t)

Figure A.1: One-dimensional poroelastic column

are obtained. Furthermore, vanishing body forces F̂ and f̂ f are assumed. Note that equa-
tion (A.5c) is divided by the porosity φ after the fluid stress σ f = −φ p was replaced by
the pore pressure p. Additionally, the total stress σ tot in equation (A.5a) was substituted
using the relations (2.19) and (2.20). The boundary conditions in Laplace domain are

û(`,s) = û0 • ◦ u0δ (t) = u(`, t), p̂(0,s) = p̂0 • ◦p0δ (t) = p(0, t),
σ̂

tot(0,s) =−σ̂
tot
0 • ◦−σ

tot
0 δ (t) = σ

tot(0, t) , q̂(`,s) = q̂0 • ◦q0δ (t) = q(`, t) .
(A.6)

The temporal behavior of the boundary conditions is assumed to be an impulse load. Also
vanishing initial conditions are assumed in the above Laplace transformation. The homo-
geneous set of ordinary differential equations can be solved using the ansatz

û(x,s)

p̂(x,s)

ŵ(x,s)

= esλxCv (A.7)

with the corresponding Eigenvector v of the system matrix (A.8). The constant C scales
the Eigenvector v to the specified boundary conditions. Inserting the ansatz function (A.7)
into the set of differential equations (A.5) yields the eigenvalue problem

s
[
λ 2(K + 4

3G)−%
]
−αλ −s% f

αsλ
φ 2

R
sλ

s2% f sλ
s2% f

β




Cv1

Cv2

Cv3

=


0

0

0

 (A.8)



140 A Analytic solutions

for λ . Note that in the above equation the abbreviation β from equation (2.36) is incorpo-
rated to achieve simpler expressions. The determinant of the above matrix (A.8) yields the
characteristic equation
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The characteristic equation (A.9) has the four complex eigenvalues
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Thus, the solution can be written as
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with the yet unknown constants Ci and Eigenvectors vi. The Eigenvectors of the system
are given by
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and, therefore, only the four unknown constants remain to be adapted to the given boundary
conditions. Hence, the solution (A.11) is inserted into the one-dimensional form of the
constitutive equation (2.18)
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and into the one-dimensional form of Darcy’s law (2.26)
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with the introduced abbreviation hi, which will be used in further expressions for a more
condensed writing. The boundary conditions (A.6) are used to determine the unknown
constants, which yields the following set of algebraic equations
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The above equation system is now ready to be solved for the four unknown constants Ci,
in general, with the aid of computer algebra. Finally, to obtain the solution, the resulting
constants are inserted into (A.11) to gain the solution for the solid displacement, the pore
pressure, and the relative displacement. Since the underlying system is of linear behavior,
the superposition principle for different load cases can be used. For simplicity, in this
thesis, the solution of the load case

û(`,s) = 0 , p̂(0,s) = 0 ,
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will be investigated and the corresponding analytical solution is given by
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with

g(s,λ ,x, `,a) =

(
e−sλx−ae−sλ (2`−x)

)
(
1+ e−2sλ`

) ,

where the real factor a = ±1 is introduced to handle the changing sign. To obtain the
corresponding stress σ̂ tot(x,s) and flux q̂(x,s), the solid displacement, the pore pressure,
and the relative displacement have to be inserted into the constitutive equations (A.13) and
(A.14). Taking a closer look on the Eigenvalues (complex roots) λi, one can observe that
they are the inverse of the compressional wave velocities of the poroelastic media (see also
section 2.2.7), i.e., ci = 1/λi with i = 1,2.

Accordingly, the solution consists of four superimposed compressional waves. Two waves
are traveling with the wave speeds c1,c2 in positive x-direction and the other two are trav-
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eling into the negative x-direction. Thus, in each direction a fast and a slow compressional
wave with wave speed c1 and c2, respectively, can be observed.

To obtain a solution in time domain an inverse Laplace transformation has to be applied. A
analytic Laplace transformation of solution (A.15) is not possible since the factor β is de-
pendent on the Laplace parameter s and, consequently, the eigenvalues λi, the Eigenvectors
vi, and hi. Several methods exist in the literature and a comparison of different methods is
given for example by Cheng et al. [49]. For the case that one function of the convolution
integral (A.2) is given in Laplace domain only and the other one is given in time domain,
than the convolution quadrature method, presented in section 3.3.2, is preferable to take.

A.4 Analytic solution of an infinite poroelastic column

Analytic solution of the full form u, p,w As shown in section 4.3.1, the general ansatz
of the solution of an infinite poroelastic column reads as
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with the Eigenvectors defined in (A.12) and the Eigenvalues λ1 and λ2 from (A.10). The
constants C3 and C4 are calculated in the same way as for the finite column with the excep-
tion that in this case only prescribed boundary conditions on the top of the infinite column
are possible. The assumed boundary conditions

p̂(0,s) = 0 , σ̂
tot(0,s) =−σ̂

tot
0 , (A.17)

yield the constants

C3 =
v4

2σ̂ tot
0

(K + 4
3G)s(v3

1v4
2λ1− v3

vv4
1λ2)

, C4 =
v3

2σ̂ tot
0

(K + 4
3G)s(v3

1v4
2λ1− v3

vv4
1λ2)

. (A.18)

Note that in the case of the infinite column the total stress is given by

σ̂
tot(x,s) = (K + 4

3G)û,x(x,s)−α p̂(x,s) = s(K + 4
3G)

4

∑
i=3

λiCi esλix vi
1−α p̂(x,s) (A.19)

and the flux by

q̂(x,s) =−κ

[
p̂,x(x,s)+

s2

φ 2

(
φ% f +%a

)
ŵ(x,s)+% f s2û(x,s)

]

=
4

∑
i=3

sκ

(
Rαλi

2−% f φ 2
)[

s% f φ 2−β (%a +% f φ)
]

% f φ 4−Rβλi
2
φ 2︸ ︷︷ ︸

=:hi

Ci esλix .
(A.20)
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Note that in the equations (A.19) and (A.20) the relation λ3 =−λ1 is used to obtain a more
compressed form.

Analytic solution of the simplified u, p model The analytical one-dimensional solution
of the simplified poroelastic model presented in section 2.2.4 can be found in the work of
Nenning and Schanz [105]. Thus, only the final result will be given here. Corresponding
to the governing equations (2.29)-(2.31) the analytical solution in Laplace domain of an
infinite column is given byû(x,s)

p̂(x,s)

=C3

v3
1

v3
2

e−sλ1x+C4

v4
1

v4
2

e−sλ2x . (A.21)

The Eigenvalues λi are the inverse of the compressional wave speeds, which are defined in
(2.44), thus, λi = 1/ci holds. The corresponding Eigenvectors are defined as

vi =

 1
(K+

4
3 G)sλ 2

i −s%
αλi

=

vi
1

vi
2

 . (A.22)

Assuming the prescribe boundary conditions of (A.17) yields the constants (A.18) with
the components of the Eigenvectors (A.22). Whereas the stress is also given by equation
(A.19), the flux is for the simplified model given by

q̂(x,s) =−κ
[
p̂,x(x,s)+% f s2û(x,s)

]
=−κ

[
4

∑
i=3

sλiCi esλix vi
2 +% f s2

4

∑
i=1

Ci esλix vi
1

]

=
4

∑
i=3

s2κ
(
%−α% f − (K + 4

3G)λ 2
i
)

α
Ci esλix .

(A.23)

Again, in equation (A.23) the relation λ3 =−λ1 is used.
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