
 
 
 
 
 
 

DATA-DRIVEN MODELLING IN RADAR HYDROLOGY 
 

by 
Reinhard Teschl 

 
 
 
 
 
 
 
 

A dissertation submitted to the 
Faculty of Electrical and Information Engineering 

of 
Graz University of Technology 

 
in partial fulfilment of the 

requirements for the degree of 
 

Doctor of Technical Sciences 
 
 
 
 
 
 
 
 
 

approved by 
 

Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Walter Randeu 
Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Martin Friedrich 

 
 
 

Graz, Austria 
2010 

 
 
 
 

 



 
 

 



 

 

 

 

STATUTORY DECLARATION 
 

I declare that I have authored this thesis independently, that I have not used other than the 

declared sources / resources and that I have explicitly marked all material which has been 

quoted either literally or by content from the used sources.  

 
 
 
 

................................... 
Date 

................................................................................ 
Signature 

 
 

iii 



ABSTRACT 
 
Although data-driven models and particularly Artificial Neural Networks (ANNs) are 
established in the field of hydrology, they are rarely trained with weather radar data. But 
especially in radar hydrology data-driven models are promising. The data volume produced 
by weather radar networks is considerably large. Reams of gigabytes of data are stored in the 
archives. Trends, patterns, and regularities are hidden in the data and data-driven approaches 
aim to extract and model them. 
This thesis presents data-driven models for the two principal purposes of radar hydrology: 
runoff prediction and radar rainfall estimation. The first approach aims to predict the runoff of 
a small Alpine catchment. ANNs and model trees are the data-driven models used for this 
purpose. Several input configurations were investigated and it became apparent that they 
influence the performance and the time lag of the predictions. The models were trained on 
various lead times and the ANNs consistently perform better than the model trees. When 
forecasting 45 minutes ahead, the ANN model reaches an efficiency coefficient of 97.4 % 
compared to 90.9 % of the model tree. Data-driven approaches were also used to improve 
weather radar estimates of rainfall. The modelled relationship between the measurements of a 
rain gauge and weather radar data above was tested at a different location. The deviations 
could be decreased and the correlation coefficient increased compared to applying the 
standard Z-R relationship. The relative improvements range from 7 to 34 % depending on 
model and performance measure.  
 
Keywords: Artificial Neural Network (ANN); Model tree; Weather radar; Rainfall-runoff 
prediction; Radar rainfall estimation 
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ZUSAMMENFASSUNG 
 
Obwohl datenbasierte Modelle und unter ihnen vor allem Künstliche Neuronale Netze (KNN) 
mittlerweile vermehrt in der Hydrologie Anwendung finden, beziehen nur die wenigsten 
Modelle Wetterradardaten mit ein. Doch gerade auf dem Gebiet der Radar-Hydrologie 
ergeben sich vielfältige Einsatzmöglichkeiten. Wetterradaranlagen produziert große Mengen 
an Daten, und dementsprechend viele Gigabytes sind in den Archiven gespeichert. Trends, 
Muster und Regelmäßigkeiten sind in den Daten verborgen, und datenbasierte Methoden 
versuchen diese zu finden und abzubilden. 
Diese Arbeit stellt datenbasierte Modelle für die zwei Hauptaufgaben der Radar-Hydrologie 
vor: Abflussvorhersage und Niederschlagsermittlung. Mit Hilfe von KNN und stückweise 
linearen Approximationen, sogenannten Model-Trees, wurde der Abfluss eines kleinen 
alpinen Einzugsgebiets vorhergesagt. Verschiedene Input-Konfigurationen wurden untersucht 
und dabei zeigte sich, dass diese einen nicht unwesentlichen Einfluss auf Effizienz und 
Zeitversatz der Prognose haben. Die datenbasierten Modelle wurden für verschiedene 
Prognosezeiträume trainiert, dabei arbeiten KNN durchwegs besser als Model-Trees. Bei 
einem Prognosezeitraum von 45 Minuten erreichen KNN einen Effizienz-Koeffizienten von 
97.4 % verglichen mit 90.9 % beim Model-Tree. Datenbasierte Modelle wurden auch 
eingesetzt um die Wetterradardaten selbst zu verbessern. Der an einer Stelle ermittelte 
Zusammenhang zwischen Regenmesser- und den darüberliegenden Wetterradardaten erwies 
sich auch an einem anderen Standort als aussagekräftig. Im Vergleich zur Standard Z-R 
Beziehung konnten die Abweichungen verringert und der Korrelationskoeffizient der 
Messreihen erhöht werden. Je nach Modell und Effizienz-Parameter konnten relative 
Verbesserungen im Bereich von 7 bis 34 % erzielt werden. 
 
Schlüsselwörter: Künstliche Neuronale Netze (KNN); Model-Tree; Wetterradar; 
Niederschlags-Abfluss Vorhersage; Niederschlagsmessung mittels Radar 
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1 INTRODUCTION 
 
 
1.1 MOTIVATION 
 
Today’s weather radar systems provide data with high temporal and spatial resolution. Every 
five minutes the Austrian weather radar system generates a new radar image, covering not 
only the area of Austria but also transborder regions. Reflectivity measurements are obtained 
with a resolution of 1 km × 1 km × 1 km for altitudes up to 16 km. Keeping in mind that 
Austria covers an area of more than 83,000 km², and that more than one decade of data are 
stored, one can get an idea of the large amount of archived data. 
 
What happens with all these data – not only weather radar data, but generally all data that are 
stored for operational purposes? Often the data are just stored. To that aspect Witten and 
Frank (2005, p. 4) highlight the role of the computer that makes it “too easy to save things 
that previously we would have trashed” and comment with respect to data: “Inexpensive 
multigigabyte disks make it too easy to postpone decisions about what to do with all this stuff 
– we simply buy another disk and keep it all“. 
 
Archives do not only contain data, but also hidden information e.g. patterns, trends, 
regularities. Usually the longer the available time series, the more can be learned about the 
system that the dataset describes. Large amounts of data, however, can not be investigated 
manually. Established methods to extract the information are data-driven models. 
 
 
1.2 EXPLANATION OF TERMS 
 
This work introduces data-driven models for applications in the field of radar hydrology. The 
thesis is aimed at readers in the fields of machine learning and modelling, as well as weather 
radar technology and hydrology. As readers from different fields of science are expected, their 
diverse previous knowledge is taken into consideration. 
 
This section will give an explanation of the most important technical terms used in the course 
of this work. This will make it easier for the reader to find access to hitherto possibly 
unfamiliar techniques utilised in the present work. 
 
The science of extracting potentially useful information from data sets is called data-mining. 
Data-mining is often associated with commercial applications and intelligence services and in 
this regard it has also raised privacy concerns, but it is also increasingly used in the scientific 
world to extract information from the huge data sets produced by today's automated 
measuring and detection systems. 
 
A field closely related to data mining is machine learning. Machine learning is a branch of 
artificial intelligence and a collective term for techniques which allow computers to “learn” 
from experience, more precisely to modify their transaction as a result of new information. 
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According to Solomatine (2002, p. 758) most of the machine learning problems “can be 
formulated as problems of function approximation”, and the author sees “machine learning as 
the main source of methods for data driven modelling”. Indeed, data-driven modelling applies 
techniques and approaches used in data mining and machine learning. One of the most 
popular examples is the Artificial Neural Network (ANN). ANNs are computational models 
based on neural networks in neuroscience. As the biological example, an ANN consists of 
simple processing elements – the neurons – operating in parallel. The global behaviour of an 
ANN is determined largely by the connections between the neurons. ANNs automatically 
adjust the values of the weighted connections to perform a particular function. Artificial 
neural networks have been considered as the mainstream technology for data-driven 
modelling and several types of them exist. In addition to ANNs there are a number of other 
data-driven modelling approaches. Solomatine (2002) comprises amongst others fuzzy logic 
methods, decision trees, Bayesian classification. Janes and Yaffe (2006) rank clustering, 
principal components analysis, and partial least squares in this category. 
 
In the previous paragraph the term data-driven modelling was introduced. In the following the 
term radar hydrology, the other expression in the title of this thesis, is derived from more 
general terms. 
 
Hydrology is defined as “the branch of geology that studies water on the earth and in the 
atmosphere: its distribution and uses and conservation” (Miller, 2009). Due to solar radiation 
all water continuously circulates within the hydrosphere. Water evaporates from land and the 
sea, condensation forms clouds, precipitation brings the water back to the earth, it 
accumulates in the soil or in reservoirs and runoff brings it back to the sea, and with the re-
evaporation the whole process starts again. 
 
This hydrologic cycle is vital for our life. Its exploration is one principal task of hydrology. 
Dyke and Peschke (1995) name in addition the calculation of the water balance for 
catchments, regions, continents, and up to the global scale as another major task. Furthermore, 
the evaluation of the water resources dealing with the accessibility and quality of the water is 
a basic challenge for drinking water and food production. These examples demonstrate that 
many fields of sciences are related to hydrology: the broad field of civil engineering for 
example, especially the part that deals with hydroelectric power plants and flood control as 
well as water supply and sewage; or the field of climatology, the quantitative description of 
the climate of a region. Another principal task of hydrology is the hydrologic prediction 
where observations of hydrologic processes are used to make forecasts. 
 
It becomes clear that hydrology is a term of wide comprehension. Precipitation is an 
important if not the most important parameter. For a long time rain gauges were the only 
means to record precipitation, and they are still among the most exact instruments for this 
purpose. During the late 1930s another technology emerged. The first military radar 
applications mainly for aircraft detection were used. One decade later scientists mainly from 
the United States and Canada began to use the radar for meteorological purposes. Later, all 
over the world researchers studied the atmosphere using the radar as a means of observation 
and measurement. Thus the technology that was used for military purposes emerged to be 
valuable for precipitation measurement. Henceforth the term radar meteorology refers to the 
branch of meteorology that uses radars for weather observations and forecasts. 
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Since the beginnings of radars in meteorology the detection and measurement of precipitation 
has been a field of intense research. The estimation of the rain rate from radar reflectivity 
measurements still is of particular importance. Over the years rainfall estimation techniques 
improved and yielded more reliable data. The more accurate the data became, the more 
rewarding they were for hydrological applications. 
 
This area of research is known as radar hydrology. Radar hydrology can be seen as a branch 
of hydrology. The Glossary of Meteorology of the American Meteorological Society (AMS, 
2000) defines the term radar hydrology as  
 

“The use of meteorological radar measurements for hydrological purposes, particularly 
for estimating the current precipitation intensity as a function of location over a region 
and the total precipitation during a prescribed time interval, and for deriving estimates 
of runoff and streamflow.” 

 
According to Uijlenhoet (2001, p. 616) “At the heart of the problem of radar hydrology lies 
the conversion of the radar reflectivity factor Z [...] to rain rate R”. The rain rate is indeed 
essential for virtually all hydrological applications. Therefore, radar rainfall estimation is of 
high significance in the radar community. 
 
 
1.3 CURRENT RESEARCH AND CONTRIBUTIONS OF THIS STUDY 
 
For the past 15 years, data-driven models have been used in many areas of sciences (cf. 
Cherkassky et al., 2007). The number of applications has been growing steadily. This 
includes approaches in climate change studies, satellite meteorology and oceanography, 
weather forecasting, and applications in hydrology. 
 
It is noteworthy that data-driven approaches and especially artificial neural networks undergo 
a high period now, especially since researchers developed neural networks already in the 
1950s and the models experienced their first heyday in the 1960s. In the 1970s the confidence 
of many scientists in neural networks was on the decline. Often the book “Perceptrons; an 
introduction to computational geometry” by Minsky and Papert (1969) that highlighted also 
drawbacks of the perceptron (an important kind of artificial neural networks, introduced by 
Rosenblatt, 1958) is seen at least jointly responsible for the decline. In German-language 
literature, Meyer (2004) describes the controversy in the study of neural networks, and 
mentions that after 1970 the study of neural networks was no longer accepted as mainstream-
science. 
 
Till the mid 1980s, neural networks did not attract much attention, but practical applications 
in pattern recognition and signal processing put them back on the scene. 
 
Focusing on hydrological applications, especially the rainfall-runoff relationship has been 
modelled with artificial neural networks since the mid 1990s. Hsu et al. (1995) showed the 
potential of ANNs for modelling the nonlinear behaviour of watersheds. The authors showed 
that the ANN approach provides “a better representation of the rainfall-runoff relationship” 
(p. 2517) of a medium-size basin than a linear time series approach or a conceptual model. 
Hsu et al. (1995) admitted though that the ANN approach “is by no means a substitute for 
conceptual watershed modelling”, because such models “do not have physically realistic 
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components and parameters” (p. 2517). Shamseldin (1997) tested neural networks with 
different external input scenarios and states that “neural networks can provide more accurate 
discharge forecasts than some of the traditional models” (p. 292). But he was also aware of 
the fact that his neural network yields variable results on different catchments. 
 
Some scientists report that their ANNs underestimate flood peaks or perform poorly at high 
levels (See et al., 1997; Dawson and Wilby, 1998; Campolo et al., 1999). ANNs do not 
extrapolate well. Imrie et al. (2000) described the problem of underestimating peaks when 
ANNs encounter events containing hitherto unobserved values and presented a method for 
improved generalisation. Sudheer et al. (2002) utilised with cross-, auto-, and partial-auto-
correlation statistical properties of data series for identifying an input vector that best 
represents the basin processes. 
 
Many papers cover feed-forward neural networks, but also other architectures have been 
investigated. Mason et al. (1996) used a Radial Basis Function Neural Network (RBFNN) in 
rainfall-runoff modelling. Senthil Kumar et al. (2005) compared the radial basis function 
network with the multi-layer architecture with sigmoid transfer functions, a judgement, 
however, on which type is superior was not possible. Pan and Wang (2004) used a dynamic 
recurrent neural network (State Space Neural Network, SSNN; introduced by Zamarreño and 
Vega, 1998) to perform short term runoff forecasting and report a satisfactory performance. 
 
Also alternatives to artificial neural networks for rainfall-runoff modelling have been 
investigated. Solomatine and Dulal (2003) compared Model Trees (MTs) and neural networks 
and found that both performed very well with short lead times, while they fail to produce 
good results with longer lead times. 
 
Notably, most of the hydrological applications using data-driven models rely on rain gauge 
data only. Often so called lumped-models are built where the rainfall is assumed to be 
uniform over the whole catchment. For a long time, precipitation measurements from other 
sources were neglected in neural network models, but recent papers also used other 
precipitation data. Pereira Filho and Dos Santos (2006) and Teschl and Randeu (2006) utilised 
weather radar data in neural network models. The difficulty both approaches faced was the 
increase of input parameters of the ANN by using numerous gridded radar data instead of one 
or a few rain gauge measurements. Too many input parameters complicate the training 
process and therefore a compromise to limit their number had to be found. Pereira Filho and 
Dos Santos (2006) divided the watershed area into eight isochrones of 30 minutes each and 
obtained the areal precipitation by averaging over all corresponding 2 x 2 km² rainfall 
accumulations. Teschl and Randeu (2006) calculated the time lag between precipitation and 
runoff measurements by cross correlation analysis, and combined these 1 x 1 km² radar 
measurements that showed the same time lag to clusters. Chiang et al. (2007) used merged 
satellite-derived precipitation and rain gauge measurements in flood forecasting. Here the 
number of measurements over the 204 km² drainage area is manageable because of a coarser 
grid resolution of the satellite images. 
 
One of the main challenges in data-driven runoff modelling at present is the question of 
lagged runoff predictions. Often previous runoff measurements are used in runoff models to 
indirectly represent the hydrological state of a catchment. These data are seen responsible for 
the timing error. Radar data in data driven runoff models might be helpful to minimise timing 
errors. Abrahart et al. (2007) conjectured that additional inputs such as radar data “might 
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provide the necessary drivers to help correct the timing problem” (p. 429). However, the issue 
of timing errors in conjunction with radar data has not been explored. This study applies radar 
data in neural network models and model trees and particularly investigates timing errors in 
these models. The main research questions are: Do different input configurations have an 
influence on the timing error of the model? Are model trees similarly affected by timing 
errors? How do ANNs and MTs perform with the same input configuration? 
 
Furthermore, another important question of radar hydrology is addressed and this is the 
accuracy of weather radar measurements. The problem of estimating ground rainfall using 
radar measurements aloft has already been investigated with data driven approaches. So far 
neural networks have been used. Xiao and Chandrasekar (1997) applied a feed-forward 
backpropagation neural network for rainfall estimation from weather radar data. Liu et al. 
(2002) developed a RBFNN to estimate ground rainfall using the vertical profile of 
reflectivity as input vector. Li et al. (2003) compared several input vector configurations and 
showed that the radar reflectivity from 1 to 4 km height above the rain gauge is the best input 
vector to a RBFNN for estimating the ground rainfall. Xu and Chandrasekar (2005) also used 
this vertical profile as input vector for their RBFNN. 
 
The studies above utilised weather radar data near ground level. Because of the orography in 
Austria such radar data are rarely available. The key question is: Does it nevertheless make 
sense to apply such models? Besides neural networks also model trees and instance-based 
learners which have not been used for radar rainfall improvement are investigated. It is 
examined what input configuration the models work best with. 
 
 
1.4 STRUCTURE OF THE WORK 
 
The more general chapters at the beginning are aimed at making the access to the work more 
easily. Readers with a background in general data-driven modelling may need to know the 
basics of precipitation measurement by rain gauge and weather radar. On the other hand, radar 
scientists and hydrologists may not be familiar with data-driven techniques like neural 
networks and model trees. The first chapters are aimed at describing the fundamentals of the 
involved disciplines. 
 
Chapter 2 deals with precipitation and its measurement with rain gauges and addresses 
precipitation generation types as well as sources of possible errors of rain gauges. 
Subsequently, the spatial and temporal variability of precipitation in the area of interest is 
investigated. Chapter 3 describes the principle of the weather radar and gives details of the 
weather radar station utilised. Furthermore, advantages and drawbacks of different radar 
scanning modes and possible sources of errors are given. Chapter 4 discusses the different 
sampling characteristics of rain gauge and weather radar that has to be taken into 
consideration when comparing both measurements. Before describing the models, a short 
overview of the used data driven approaches is given in Chapter 5 to introduce terms and 
principles to newcomers in this domain. 
 
Chapters 6 and 7 form the main part of the work. In Chapter 6 the rainfall-runoff relationship 
of a small catchment is modelled. Weather radar data, together with data of one rain gauge 
and the actual runoff, form the input of the model that is trained to predict the future runoff. In 
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detail the preprocessing steps to format the data are described. Later, modifications are 
presented that led to a better performance. 
 
Chapter 7 addresses the improvement of weather radar measurements. Rain gauges measure 
the rain rate quite accurately but the measured rate is only relevant for a certain location. An 
approach is described that accepts radar data as input and predicts the rain rate as measured by 
the rain gauge. This relationship is also applied at another site and it is investigated if the 
model yields better estimates on ground level. In the following several different data-driven 
approaches are compared. 
 
Chapter 8 discusses what configurations work satisfactory and gives an outlook in what fields 
of radar meteorology data-driven models could be applied in the future. 
 
 
 

 



2 PRECIPITATION AND ITS MEASUREMENT BY RAIN 
GAUGES 

 
 
Precipitation are water particles in solid or liquid form “that originate in the atmosphere and 
fall to the earth's surface” (AMS, 2000). This definition makes it clear that precipitation is one 
of the main components of the hydrologic cycle and the key element in hydrology. 
Precipitation can be divided into falling precipitation e.g. rain or snow, deposited precipitation 
e.g. dew or fog, and accumulated precipitation e.g. accumulated snow or hail. In this work the 
focus lies on falling precipitation. This chapter describes forms of precipitation and weather 
situations that lead to certain types of precipitation. Later, rain gauges – the typical 
instruments to measure falling precipitation – are described. Finally methods to estimate the 
areal rainfall based on several point measurements are introduced. 
 
 
2.1 FORMS OF PRECIPITATION 
 
Many forms of precipitation exist. Rain and drizzle are forms of liquid precipitation; snow, 
hail and graupel are forms of frozen precipitation. But also mixed forms occur, for example 
freezing rain. The freezing level is the altitude in the atmosphere at which the air temperature 
drops below 0° C. Precipitation that consists of solid and liquid forms of water is especially 
challenging for weather radar systems. Bright band is a catchword in this context and it will 
be explained in the next chapter. A closer disquisition on how precipitation forms and on 
processes like saturation, condensation and coalescence goes beyond the scope of this work. 
Suggested readings on these processes are Baumgartner and Liebscher (1996) (in German) 
and Davie (2003). 
 
 
2.2 PRECIPITATION GENERATION TYPES 
 
In the previous paragraph the forms of precipitation have been addressed. Forms of 
precipitation should not be mixed up with precipitation types. The latter term usually refers to 
the weather situations or mechanisms that lead to precipitation. In the literature this term is 
not unambiguously defined, sometimes it is also used in the sense of forms of precipitation. 
To make it clear and to avoid misunderstanding here the term “precipitation generation type” 
is applied. 
 
Precipitation generation types are commonly categorised as convective, orographic or 
cyclonic. In Europe convective precipitation events occur mainly in the summer months 
caused by increased solar heating of the surface during the day. The columns of air above the 
warm surface become instable and in an updraft the air masses ascend. Convective 
precipitation tends to be associated with lightning and heavy rain, also hail is likely to occur. 
Convective clouds often are relatively small, and therefore the duration of convective 
precipitation is rather short. Figure 2.1 illustrates the development of convective precipitation.  

7 
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Figure 2.1. Convective precipitation. 
 
 
Orographic precipitation occurs on the aweather or windward side of a mountain range when 
air masses with high moisture content are forced to a higher elevation. The now cooler air 
cannot hold the humidity. As the air passes over the mountains precipitation occurs mainly on 
the windward slopes. Less or even no precipitation develops on the alee or leeward slope 
because the moisture is released as rain before. Moreover, the descending air increases its 
temperature and therefore more water can be held (Figure 2.2). 
 

Warm moist air 

Mountain range 

Precipitation Dry air 

 
Figure 2.2. Orographic precipitation. 

 
 

Cyclonic precipitation is generated by the general weather situation. A cyclone is a low-
pressure area in contrast to an anticyclone which is an area with relatively high pressure. 
Sometimes the terms cyclonic and frontal precipitation are used synonymously (Deka, 2006), 
because cyclonic precipitation in many cases is bound to frontal events (Baumgartner and 
Liebscher, 1996), but in the strict sense cyclonic precipitation can either be frontal or 
nonfrontal. Here frontal cyclonic precipitation is described. A front is a boundary between air 
masses of different properties e.g. different temperature or different water vapour 
concentration. Cyclonic frontal precipitation occurs when either warm air masses are moving 
into a colder zone and are pushed upward by the cold air, or when cold air masses are moving 
into warm air masses and force them to raise (Figure 2.3). If the warm air moves towards the 
cold air it is a called a “warm front”. In contrast if cold air moves towards the warm air 
masses it is called a “cold front”. According to Chang (2006, p. 141) cold fronts “usually 
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move faster, the frontal surfaces are steeper, their upward movements are more rapid, and 
precipitation rates are much greater than those of warm fronts”. 
 

Warm air  Cold air 

Front Precipitation 

Cold air 

Front 

Warm moist air 

Precipitation 

 
Figure 2.3. Two forms of cyclonic frontal precipitation. 

 
 
2.3 MEASUREMENT OF PRECIPITATION 
 
In hydrology it is indispensable to quantitatively record precipitation. The typical instrument 
used for this purpose is the rain gauge. Strictly speaking a rain gauge is an instrument to 
measure liquid precipitation as opposed to a snow gauge to measure frozen precipitation. But 
today’s rain gauges are equipped with a de-icing system, effectively a heater, and so they also 
detect the liquid equivalent of frozen precipitation. Thus a typical rain gauge measures the 
height of water in millimetres (or litres per square metre). 
 
 
2.3.1 TYPES OF RAIN GAUGES 
 
One of the simplest types of rain gauges is the so-called ombrometer. It consists of a funnel as 
collector with a certain orifice area (typically 200 cm²) and a measuring cylinder. An observer 
determines the amount of precipitation at particular points of time, as a general rule daily, at 7 
o’clock. Thus the observer gets a rain rate (height of precipitation per 24 hours). The temporal 
resolution is therefore rather poor and provides not much insight in the event that caused the 
precipitation. A rain rate of 30 mm per 24 hours for instance can be caused by a short but 
intense convective precipitation event as well as long-lasting orographic rainfall. With this 
type of rain gauge it is not possible to determine parameters like beginning and end of 
precipitation, duration of the rainfall event or progression of the rain rate, furthermore, real-
time access to the data is not possible. A technology to overcome this drawback is the tipping-
bucket rain gauge which is described below. 
 
From the outside a tipping-bucket rain gauge is not much different from the simple 
ombrometer. It too consists of a funnel, but unlike the ombrometer the precipitation falls onto 
one of two buckets. The two buckets are arranged much like a pair of balances. If one bucket 
is filled with a predefined amount of water, the device tips and discharges the water. Because 
of the construction, now the other bucket is filled up until again the predefined amount of 
water is reached and the device tips again. It is the tips that contain the information. One tip is 
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equivalent to a certain height of precipitation, typically 0.1 mm. When the bucket tips an 
electric pulse is sent. This pulse can be recorded and transmitted to an external evaluation site. 
With this technology it is possible to monitor a network of telemetric rain gauges. Unlike the 
ombrometer, a tipping-bucket rain gauge allows determining beginning and end time of a 
precipitation event quite accurately and the course of the precipitation intensities can easily be 
monitored. But the technology of tipping-bucket rain gauges also has its disadvantages. The 
accuracy is an important point and therefore the next paragraph is dedicated to this issue. 
 
 
2.3.2 MEASURING ERRORS OF RAIN GAUGES 
 
First of all it has to be stated that rain gauges like the ones described in the previous paragraph 
are among the most exact instruments to measure precipitation. Rain gauges are a direct 
method to determine rainfall and they are used to validate and calibrate other methods such as 
weather radars. But even though rain gauges are used as calibration standard it is obvious that 
they are not free from to errors. Typically it is distinguished between random and systematic 
errors. Random errors are due to fluctuations and due to changes in the vicinity of the rain 
gauge. Rainfall is a discrete process and therefore even two rain gauges side by side may 
produce different results. The most important source of errors according to Sevruk (1986 cited 
in ASCE, 1996, p. 27) are systematic errors. An installed rain gauge deforms the wind field 
and this is the main systematic error. Subsequently the systematic errors of rain gauges are 
described. Thereafter we take a closer look at the specific errors of the tipping-bucket rain 
gauge, since rain gauges of this type provided the rainfall data for this study.  
 
 
Impact of the wind 
 
Wind has an effect on the determination of the rainfall. The main source of error is that the 
wind field is deformed by the presence of an obstacle. The rain gauge is such an obstacle that 
the wind has to give way. This leads to higher wind speeds around the instrument. At the 
funnel also small turbulences can be observed. This brings about that small precipitation 
particles may not fall into the collector and therefore the actual precipitation is 
underestimated. The underestimation depends on wind speed, particle size distribution and 
design and placement of the rain gauge. The placement is important inasmuch as the wind 
speeds change significantly with height. It has often been observed that rain gauges near the 
ground level report more precipitation than neighbouring gauges that are elevated. This is also 
the reason why all rain gauges of a network are usually placed on the same height with 
respect to the ground. According to Dyck and Peschke (1995, p. 149) the error due to the 
deformation of the wind field can be 2 to 5 % for rain. But for snow the underestimation is 
especially pronounced and can lead to errors of 15 to 35 %. 
 
To mitigate the error due to wind, gauges in windy areas are sometimes equipped with a wind 
deflector. Burton and Pitt (2001) report that these so-called shielded rain gauges perform 
slightly better when measuring rainfall but that they have “about half the magnitude of errors 
as unshielded gauges when monitoring snowfalls” (p. 386). For this study no specially 
equipped shielded gauges are used. 
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Wetting losses 
 
Not every raindrop or snowflake which falls into the funnel is detected immediately. 
Precipitation that adheres to the funnel may never reach the measuring cylinder or the bucket 
or may reach it with a delay. This is known as wetting loss. The wetting loss depends on the 
material and design of the funnel. It is evident that the surface area of the collector is an 
important factor. Rain gauges with a larger collector may have a larger wetting loss than small 
ones. But as the orifice area is standardised, there is not much room for improvement. A more 
important factor is the material that is used for the funnel. It should be noted that by nature the 
funnel is exposed to the elements and therefore deterioration is an issue. Normally the wetting 
losses are rather small but they can approach 10 % depending on the form and frequency of 
precipitation. Wetting losses are most significant when it starts to drizzle and the surface of 
the funnel is dry. 
 
 
Evaporation losses 
 
Evaporation loss refers to precipitation that falls into the collector but fully evaporates before 
it is detected. This term is also used for water that evaporates from the measuring cylinder 
(ombrometer). But the last case is negligible because of good design of the instrument itself 
that minimises ventilation. Most significant are evaporation losses when light rain falls into a 
warm collector. In the winter season heated gauges can also pose a problem. Hanson et al. 
(1983 cited in ASCE, 1996, p. 31) investigated tipping-bucket gauges and recommends to 
maintain the collector temperature as low as possible to minimise the undercatch by heated 
tipping-bucket gauges. 
 
 
Rain splash 
 
The phenomena described so far lead to an underestimation or undercatch of the actual 
rainfall amount by the rain gauge. Rain splash can lead to under- as well as overestimation. 
Therefore, two forms of rain splash are distinguished according to ASCE (1996): splash-in 
and splash-out. Splash-in may occur if the gauge orifice is placed close to a surface that 
produces splashing. Splash-out is likely when the gauge orifice is large in relation to the depth 
of the gauge. Thus rain splash can be minimised by a proper design and placement of the rain 
gauge. An elevated rain gauge will not suffer from splash-in but on the other hand wind 
effects will become more significant. So often a compromise must be found. One possibility 
is a low elevation above the bare ground together with the use of special carpets that minimise 
splashing around the rain gauge. 
 
 
Specific errors of the tipping-bucket rain gauge 
 
The previously described errors are related to all kinds of rain gauges, because rain splash, 
evaporation, wetting and wind effects concern the collector of the gauge – the funnel. But 
some sources of errors are due to the measuring mechanism of the tipping bucket rain gauge, 
and they are characterised in the next paragraphs. 
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This device tips and discharges once the bucket is filled with a defined amount of water. If the 
rainfall stops, there is normally some water in one bucket but too little to cause the 
mechanism to tip. This amount of water may evaporate if there is a longer dry period, and the 
water is not recorded. But because of the design that minimises ventilation and thus 
evaporation, there is very likely still water in one of the buckets and if the next precipitation 
event starts a smaller amount of water is sufficient to cause the mechanism to tip. The 
consequence is that certain amounts of water are assigned to the wrong precipitation events. 
 
Another systematic error of tipping bucket rain gauges can occur during heavy rainfall events. 
Davie (2003) stresses the importance of the correct size of the tipping-buckets for the 
prevailing conditions. “If the buckets are too small then a very heavy rainfall event will cause 
them to fill too quickly and water be lost through overspill while the mechanism tips” (p. 22). 
 
Sevruk (1996) who has investigated the differences in precipitation values between the 
tipping bucket system and a standard ombrometer reports of higher wind speeds above the 
centre of the tipping bucket gauge because of its bigger body. 
 
In addition to the above mentioned systematic errors also some random errors are more likely 
to occur because of the more complex mechanism of the tipping-bucket rain gauge. Sevruk 
(1996) mentions “clogging of the tipping-bucket gauge outflow” and “mechanical and 
electronical disturbances” (p. 243). 
 
Besides systematic errors which can not be eliminated but minimised by the design of the rain 
gauge, especially the random errors listed in the previous paragraph have to be taken 
seriously. Thus careful maintenance and servicing is indispensable to obtain reliable data. The 
rain gauge data used in the course of this work originate from the Office of Styrian Regional 
Government, Hydrographic Department 19A in Graz, Austria. This institution also monitors 
and verifies the data. 
 
 
2.4 VARIABILITY OF PRECIPITATION 
 
In general precipitation is characterised by a high spatial and temporal variability. The 
variability fundamentally depends on the precipitation generation type. A convective 
precipitation event with a small shower cell has the highest variability. Within minutes the 
situation can change. High rainfall intensities are measured while the centre of the shower cell 
is located aloft a certain location, and the minute the cell moves away the rainfall is 
practically over. A site close to this location may not be affected by rainfall at all. Cyclonic 
precipitation events do not show such a high variability. The precipitation distribution in this 
case is more uniform. Naturally the orography also has an influence. This becomes apparent 
during orographic precipitation events with much rainfall on the windward side of the 
mountain and less or even no precipitation on the leeward slope. 
 
What is necessary to record the variability of a precipitation event? To determine the temporal 
variability obviously the temporal resolution of the measuring system is crucial. An 
ombrometer that is only emptied once per day is certainly inadequate to study the variations 
during a single rainfall event but may be used to study variations during the year (between 
winter and summer months for instance). The tipping-bucket rain gauge tips after a defined 
amount of precipitation has fallen (0.1 mm for the gauges used here), thus the temporal 
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resolution depends on the rainfall intensity. During heavy rainfall the gauge may tip several 
times per minute which is certainly enough to capture the temporal variability of single 
precipitation events. 
 
To record the spatial variability one single rain gauge, regardless of technology, falls far 
short. A network of rain gauges is necessary to capture the spatial variability of a certain 
region. The number of gauges depends on the prevailing meteorological conditions and the 
orography. As a matter of course the intended meteorological or hydrological purpose is 
decisive. For the measurement of rainfall amounts for agricultural purposes a smaller number 
of gauges will be satisfactory than for a hydrological investigation area. The closer the rain 
gauges are to each other the more information about the fine variations of precipitation is 
captured. 
 
 
2.4.1 SPATIAL AND TEMPORAL VARIABILITY OF PRECIPITATION IN THE 

STUDY AREA 
 
In this paragraph the variability of precipitation in the study area is investigated. This area lies 
in the south eastern part of Austria. Merz et al. (2001) report that short convective storms are 
dominant flood producing processes in this part of Austria. Wölfelmaier and Zwatz-Meise 
(2005) who analysed the life cycle of convective cells with satellite and radar data state that 
the southeastern Austrian province of Styria has a high frequency of thunderstorms and that 
“Heavy thunderstorms are often organised in multi-cell storms” (sec. 2). These references 
suggest that spatial and temporal variability of precipitation are quite high in the study area. 
Here this presumption is investigated with data of a rain gauge network. 
 
The density of the rain gauge network in the study area is approximately of the order of one 
rain gauge station per 100 km². Data from eleven rain gauges are available.  
Figure 2.4 shows their location. The rain gauges are situated at altitudes between 320 and 
1245 m above the mean Adriatic Sea level. The mean annual precipitation obtained from 
these gauges in the years 2002 and 2003 varies from about 740 to 1130 mm. The relationship 
between annual precipitation and altitude of the rain gauge is shown in Figure 2.5. There is 
considerable scatter also because of the limited observation period, but the trend that the 
precipitation amount increases with the elevation can be seen. 
 
Next the correlation of the time series of the different rain gauges is discussed. Correlograms 
of gauge-to-gauge rainfall can provide an informative basis for the variability of precipitation 
in an area. Figure 2.6 shows a gauge-to-gauge correlogram over a two-year period. A least 
squares, two-coefficient exponential function of the form  
 
f(x) = a · exp(-x/b)            (2.1) 
 
was fit to the data according to Young et al. (2000). It can be seen that the agreement between 
the rain gauges decreases by trend with increasing inter-gauge distances. Even between 
neighbouring stations which are less than 10 km apart, the correlation coefficient rarely lies 
above 0.5. 
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Figure 2.4. Positions of 11 available rain gauges in the geographic coordinate system  
(Underlay: Google © 2008). 
 
 
 

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200 1400

Elevation [m]

M
ea

n 
an

nu
al

 p
re

ci
pi

ta
tio

n 
[m

m
]

 
Figure 2.5. Mean annual precipitation versus elevation of the rain gauges. The data cover the years 
2002 and 2003. 
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Figure 2.6. Gauge-to-gauge correlogram for 2002-2003. The integration interval of the rain gauge data 
is 15 minutes. Each point represents the correlation coefficient between the time series of two rain 
gauges separated by the inter-gauge distance. The solid line represents a least squares fit. 
 
 
The existence of seasonal variations is investigated next. As stated above the variability also 
depends on the precipitation generation type. Thus one can expect seasonal changes in the 
correlogram. The variability of convective precipitation that often occurs in summer will be 
higher, thus the correlation between the rain gauges is supposed to be lower. Figure 2.7 shows 
the quarterly correlograms. It can be seen that the seasonal variations are quite pronounced. 
On average the lowest correlation between the gauges was measured in the second and third 
quarter. This is ascribed to convective precipitation events that often occur in this time of the 
year. 
 
The highest correlation coefficients were measured in the last quarter. Here even at distances 
over 30 km the correlation coefficient frequently exceeds 0.5. This is all the more worth 
mentioning as the integration time is 15 minutes. It is known that “temporal differences tend 
to average out over longer time periods” (Quina, 2003, p. 31) and therefore one would expect 
such high values in hourly or daily data. The values point out a rather uniformly distributed 
rainfall over the whole study area. 
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Figure 2.7. Quarterly gauge-to-gauge correlograms. The data represent (a) the first, (b) the second, (c) 
the third, and (d) the fourth quarters of 2002 and 2003. 
 
 
The temporal variation of precipitation is investigated next. This investigation is based on 
auto-correlation plots of rain gauge data series. Figure 2.8 shows the auto-correlation of the 
eleven rain gauge stations with respect to the time lag. It can be seen that the auto-correlation 
coefficient decreases quickly with time. At the 15 minute time lag the mean correlation 
coefficient lies at about 0.55. This indicates a high temporal variation. As it was again 
expected that there are significant seasonal changes, the auto-correlation functions were 
plotted separately for the four quarters. In  
Figure 2.9 it becomes obvious that the auto-correlation coefficient declines most in the second 
and third quarter. This means that the precipitation amount at the same station changes quite 
rapidly. Even after only 15 minutes the mean correlation lies at about 0.5. In the first and the 
last quarter, the decrease is not so dramatic. The auto-correlation is much higher. It lies 
around 0.8 after 15 minutes and in the mean over 0.5 after one hour. 
 
Summing up it can be said that the spatial and temporal variability of precipitation in the 
study area is high and shows significant seasonal changes. Between April and September the 
variability is highest. This is mainly ascribed to convective precipitation with rather small 
shower cells or multi-cell storms. 
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Figure 2.8. Auto-correlation of the rain gauge stations with respect to the 15-minute time lag. The data 
represent the years 2002 and 2003. The solid line illustrates the mean auto-correlation of all rain 
gauges time series. 
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Figure 2.9. Quarterly auto-correlation plots of the rain gauge stations with respect to the 15-minute 
time lag. The data represent (a) the first, (b) the second, (c) the third, and (d) the fourth quarters of 
2002 and 2003. 
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2.5 POINT MEASUREMENTS AND AREAL ESTIMATION 
 
The precipitation measurement technique with rain gauges described so far is called point 
measurement, because the precipitation amount is determined at a selected location. 
Hydrologists are often interested in the amount of precipitation over a larger region. 
Therefore, the information that is available from the rain gauges has to be used and combined 
in a proper way to estimate the areal precipitation. This section gives an overview of standard 
methods for this purpose. 
 
The most basic approach is the simple arithmetic mean. The rainfall depth of all available rain 
gauge stations is added and divided by the number of gauges thus one uniform value is 
assigned to the whole area (Figure 2.10). This approach is only advisable if the rain gauges 
are evenly spread over the area of interest and do not show considerable fluctuations. 
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Figure 2.10. Arithmetic mean of measured rainfall depths. Adapted from Kainz (2002). 

 
Generally rain gauges are not evenly distributed over the region. A method to meet this 
concern is the Thiessen polygon method named after the American climatologist Alfred H. 
Thiessen. This method is characterised by representative areas which are assigned to the rain 
gauge stations. This method can be easily shown on a map (Figure 2.11). All rain gauge 
stations are connected by straight lines. Now the perpendicular bisectors of these lines 
between gauges are drawn. The polygons are finally formed by the boundaries that are 
equidistant from two rain gauges. Thus representative areas emerge. All points of this area are 
closest to the assigned rain gauge relative to all others. The rainfall depth measured at one 
rain gauge is assigned to the surrounding area formed by the polygon. According to Davie 
(2003, pp. 23-24) “This technique is only truly valid where the topography is uniform within 
each polygon”.  
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Figure 2.11. Thiessen polygon method. Adapted from Kainz (2002). 

 
If the rain gauge network is dense enough, lines of equal precipitation (isohyets) can be 
interpolated from the point measurements. Hence, this technique is known as the isohyetal 
method. It involves determining the area between successive isohyets for which a uniform 
rainfall value is assigned (Figure 2.12). The advantage of this method is that known geologic 
realities (e.g. orographic effects) can be accounted for and therefore the isohyetal method is 
sometimes labelled the most accurate of the methods presented so far. But the result largely 
depends on the skills of the hydrologist who draws the isohyets. 
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Figure 2.12. Isohyetal method. Adapted from Kainz (2002). 

 
Another method to determine the rainfall amount at unobserved locations and thus to 
calculate the areal rainfall from point measurements by rain gauges is Kriging. It is a 
geostatistical method for spatial interpolation named after the South African mining engineer 
D. G. Krige. Initially conceived to evaluate mineral resources, Kriging has been applied to 

 



20 Precipitation and its measurement by rain gauges
 

various scientific disciplines including hydrology and environmental sciences. Spatial 
interpolation is important in these fields, since it is impossible to get data at every desired 
point because of practical reasons. Compared to the methods described so far, Kriging is a 
computationally demanding approach. The key element is to calculate the semivariogram to 
model the spatial dependency. Kriging can also assess the quality of prediction with estimated 
prediction errors. There are different variations of Kriging. Cokriging for example is Kriging 
with more than one variable, it combines spatial data on several variables to make the 
interpolation. A detailed description of Kriging and its variations can be found in Cressie 
(1993). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



3 THE WEATHER RADAR 
 
 
During World War II military microwave radars detected – besides echoes from aircraft – also 
echoes from rainstorms. As a consequence of this finding, the first radars specifically 
designed for meteorological purposes were developed after the war. Since that time major 
milestones on the way to today’s weather radars were the development of Doppler and dual-
polarization radars. Nowadays the weather radar is an indispensable tool in meteorology and 
hydrology. 
 
This chapter describes the principles of the weather radar, gives an introduction to drop-size 
distribution models which are essential to determine the relationship between radar echo and 
rain rate, and lists common errors and limitations of weather radar measurements. Finally the 
specifications of the Austrian weather radar network that provided the data for this study are 
listed. The description is by no means comprehensive. However, the presentation shall give, 
together with Chapter 4, an indication for the complexity of the extraction of rain rates from 
radar data. 
 
The reader is referred to Atlas (1990) for further reading about the history of weather radars, 
Doviak and Zrnic (1984) for Doppler radars, and Bringi and Chandrasekar (2001) for dual-
polarization radars. 
 
 
3.1 PRINCIPLE 
 
Radar stands for radio detection and ranging. A weather radar is a special type of radar that is 
used to detect and quantify tropospheric precipitation. Weather radars send out pulsed 
directional microwaves. When the microwave encounters precipitation particles one part of 
the wave’s energy is absorbed and the other part is scattered – typically in all directions. In 
general only a small fraction of the wave’s energy is reflected back to the radar receiver. The 
larger the particles and the higher their concentration, the stronger is the reflected signal. 
 
The duration τ of the transmitted pulse is on the order of microseconds. The pulse length h 
can be calculated by  
 
h = c · τ             (3.1) 
 
where  
c speed of light [m s-1], speed of light in vacuum: c0 = 2.99792458 · 108 m s-1

τ pulse duration [s] 
 
After a pulse is transmitted, the radar acts as a receiver and detects signals reflected back to 
the radar. The duration of this cycle is on the order of one millisecond. Given an operational 
range of the radar of 300 km the cycle must be long enough for the wave to propagate from 
the radar to a possible target 300 km away and again back to the radar, hence 2 ms.  
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At a certain time after transmitting a microwave pulse, the weather radar receives 
backscattering contributions from scatterers at certain range limits.  
 
Assuming the radar starts to send out a microwave pulse at the time t = 0 with a duration τ. At 
the time t = τ, the radar receives contributions from scatterers in a range 
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The distance between upper and the lower range limit is always the half pulse length (h/2) 
which is defined as the length of the range rates. 
 
The weather radar scans a large volume of the atmosphere by pointing the antenna in all 
directions of interest. In the radar raw data the position of targets is stored in polar coordinates 
(azimuth and elevation angle, and range) as illustrated in Figure 3.1. 
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h/2

 
 

Figure 3.1. Azimuth, elevation and range of the weather radar echoes. 
 
 
For each range gate the radar measures the radar reflectivity which is proportional to the ratio 
of the reflected to incident energy. When focusing only on precipitation particles as targets, 
the radar reflectivity depends primarily on the material (water or ice), on the size, shape and 
orientation of the particle and on the total number of particles per unit volume. Thus, relating 
the measured reflectivity to an amount of precipitation hinges on several assumptions. One of 
these assumptions is a simplified drop-size distribution. Below it is explained how 2-
parametric and 3-parametric drop-size distributions are defined. 
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3.2 DROP-SIZE DISTRIBUTION 
 
Drop-size distributions give the frequency of occurrence of drops of a certain size per unit 
volume of precipitation. The drop-size distribution is different for different precipitation 
generation types (e.g. convective and orographic precipitation). Marshall and Palmer (1948) 
experimentally found following exponential form of the drop-size distribution:  
 
N(D) = N0 exp (- Λ D)           (3.2) 
 
where 
D drop diameter [mm], 0 ≤ D ≤ Dmax
N(D)  number density of drops per unit volume [mm-1 m-3] 
N0 zero intercept [mm-1 m-3] 
Λ slope of the distribution [mm-1] 
 
This distribution is called exponential or 2-parametric. Marshall and Palmer (1948) suggested 
that zero intercept N0 was constant (3.3) and they related the parameter Λ to the rain rate R 
(3.4). 

 
N0 = 8000 mm-1 m-3           (3.3) 
 
Λ = 4.1 R-0.21 mm-1           (3.4) 
 
This Marshall-Palmer drop-size distribution for various rain rates is given in Figure 3.2. 
 

 
 

Figure 3.2. Marshall-Palmer drop-size distribution for various rain rates (R = 1, 2, 5 and 10 mm/h, N0 
= 8000 mm-1 m-3, Λ = 4.1 R-0.21 mm-1). Adapted from Xie (1988). 

 

 



24 The weather radar
 

Later it has been found that sudden changes in N0 can occur within a given type of rainfall (cf. 
Ulbrich, 1983). To account for these changes a more complex 3-parametric drop-size 
distribution was proposed in the form: 
 
N(D) = N0 Dµ exp (- Λ D)          (3.5) 
 
where 
D drop diameter [mm], 0 ≤ D ≤ Dmax
N(D)  number density of drops per unit volume [mm-1-µ m-3] 
N0 [mm-1-µ m-3] 
Λ slope of the distribution [mm-1] 
µ parameter that can take positive and negative values 
 
This gamma function with its three parameters (N0, Λ and µ) can describe variations in the 
distribution more precisely than the 2-parametric Marshall-Palmer drop-size distribution. The 
parameter µ ranges approximately from -3 to 5 and N0 can reach values up to the order 1010 
(cf. Ulbrich, 1983) 
 
A meaningful parameter for a given drop-size distribution is the median volume diameter D0. 
It is “that diameter for which the total volume of all drops having greater diameters is just 
equal to the total volume of all drops having smaller diameters” (AMS, 2000). The median 
volume diameter can be related to parameters of the drop-size distribution. Ulbrich (1983) 
found the following approximate expression 
 
Λ D0 = 3.67 + µ            (3.6) 
 
As a consequence the gamma distribution can be written as 
 
N(D) = N0 Dµ exp(-(3.67 + µ) D/D0)         (3.7) 
 
Figure 3.3 shows gamma distributions with a varying parameter µ. A zero value of µ 
effectively reduces the gamma distribution (Eq. 3.5) to a Marshall-Palmer distribution (Eq. 
2.3). A value µ > 0 results in a distribution with relatively fewer small and large drops than in 
Eq. 3.2 (cf. Brandes, 2000). On the other hand a negative value of µ leads to a distribution 
with relatively more small and large drops. 
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Figure 3.3. Gamma drop-size distribution (N0 = 10000 mm-1-µ m-3, D0 = 1.8 mm, and varying µ). 
Adapted from Xie (1988). 

 
 
3.3 RADAR REFLECTIVITY FACTOR 
 
The weather radar measures the radar reflectivity factor Z. This factor equals the sum of the 
sixth-powers of the diameters of all rain drops contained in a unit volume. 
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where  
 
N number of raindrops per unit volume  
 
Given the drop-size distribution as a continuous function N(D), e.g. an exponential or gamma 
distribution, the reflectivity factor Z can be written as the integral 
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Thus, Z is proportional to the number of rain drops and proportional to the sixth power of the 
drop diameters. Therefore, Z is very sensitive to the size of the precipitation particles. 
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3.4 MEASURING RAIN RATE WITH WEATHER RADAR 
 
A weather radar determines the rain rate R from the measured reflectivity factor Z. Also the 
rain rate R can be defined based on a drop-size distribution. According to Brandes (2000) R 
can be computed from 
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34 )()(106
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t dDDNDvDR π   [mm h-1]      (3.10) 

 
where 
D drop diameter [mm] 
N(D)  drop spectrum [mm-1-µ m-3] 
vt(D) drop terminal velocity [m s-1] 
 
In radar meteorology empirical relationships between Z and R of the following form were 
established: 
 

bRaZ ⋅=              (3.11) 
 
where  
Z  reflectivity factor [mm6 m-3] 
R   rainfall rate [mm h-1] 
a and b empirical parameters 
 
A variety of Z-R relationships have been derived for various locations and weather 
conditions. Several dozens of them are listed in Battan (1973). The parameter a varies from 
16.6 to 730 and b from 1.16 to 2.87.  
 
For the different types of rainfall Battan (1973, p.89) considers following Z-R relationships to 
be “fairly typical”: 
 
stratiform rain Z = 200 R1.6          (3.12) 
orographic rain  Z = 31 R1.71          (3.13) 
convective rain  Z = 486 R1.37         (3.14) 
 
In case the radar measures the reflectivity of falling snow above the melting layer the 
relationship 
   Z = 2000 R2          (3.15) 
 
was found by Gunn and Marshall (1958). In this relationship R is the rain rate of the melted 
snow. 
 
 
3.5 WEATHER RADAR FREQUENCIES 
 
The frequencies of the radio waves used for weather radars range from 1.5 GHz to above 30 
GHz (cf. Battan, 1973). Frequencies around 22.2 GHz are not used since this is the resonance 
wavelength of water vapour where absorption can significantly reduce the range (cf. Skolnik, 
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1990). Frequencies higher than 30 GHz are mainly used to detect cloud particles. In Table 3.1 
the frequency bands of weather radars are listed. 
 

Table 3.1. Frequency bands of weather radars. 
 

Frequency range 
[GHz] 

Wavelength range 
[cm] 

Band designation* 

1 – 2 15 – 30 L 
2 – 4 7.5 – 15 S 
4 – 8 3.75 – 7.5 C 

8 – 12 2.5 – 3.75 X 
12 – 18 1.67 – 2.5 Ku
18 – 27  1.11 – 1.67  K 
27 – 40  0.75 – 1.11 Ka

*according to IEEE Standard 512-2002 
 
The proper choice of the frequency or wavelength respectively for a certain radar depends on 
the size of the precipitation particles that should be detected. For a reliable estimation of the 
rain rate R the wavelength of the weather radar has to be significantly longer than the size of 
the precipitation particles. It was stated above that the radar reflectivity factor Z is 
proportional to the sixth-power of the diameters of the particles. Strictly speaking this is only 
true if the particles are at least 10 times smaller than the wavelength λ (Rayleigh 
approximation). Table 3.2 lists the maximum diameters of Rayleigh targets for common radar 
frequencies. 
 
 

Table 3.2. Maximum particle diameter of Rayleigh targets for weather radar frequencies. 
  

Frequency 
[GHz] 

Wavelength λ
[cm] 

Dmax = λ / 10  
[cm] 

2.8 10.7 1.07 
5.625 5.3 0.53 

9.6 3.1 0.31 
14 2.1 0.21 
35 0.9 0.09 

 
 
3.6 SCANNING MODES AND RADAR DISPLAYS 
 
From above we know that weather radars measure the reflectivity with a directive antenna. By 
changing elevation and azimuth angle the weather situation up to several hundred kilometres 
around the radar site and up to a height of approximately 16 km is detected. 
 
In radar meteorology there are two main types of scanning modes. These are the Range 
Height Indicator (RHI) scan and the Plan Position Indicator (PPI) scan. Since each of these 
scans produces a certain radar display also the corresponding displays are named RHI and PPI 
respectively. 
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3.6.1 RANGE HEIGHT INDICATOR (RHI) 
 
When scanning in RHI mode, the radar only varies the elevation angle of the antenna with the 
azimuth angle fixed. The antenna normally scans from angles near the horizon to angles near 
the zenith. The RHI display shows the return echoes on a vertical plane. RHI scans provide a 
useful insight in the vertical profile of clouds and precipitation. On an RHI display e.g. the 
height of the cloud tops and the height of the melting layer can be seen. Figure 3.4 shows a 
schematic RHI plot. The raw radar data yield the reflectivity for every range gate. In today’s 
weather radar systems the raw data are converted into a cubic grid as demonstrated in Figure 
3.5. An RHI plot of an observed convective precipitation event is shown in Figure 3.6. 
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Figure 3.4. Schematic RHI plot. 
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Height 

 
Figure 3.5. Conversion of raw data into a cubic grid. 
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Figure 3.6. RHI plot of a convective precipitation event. The weather situation occurred on June 25, 
2001, and was recorded by the weather radar station on Mt. Zirbitzkogel (Source: Austro Control 
GmbH). 
 
 
3.6.2 PLAN POSITION INDICATOR (PPI) 
 
When scanning in PPI mode, the radar only varies the azimuth of the antenna with the 
elevation angle fixed. The return echoes are mapped onto a horizontal plane. In the middle of 
the plane usually the position of the radar is indicated. Concentric circles indicate the range 
from the radar. Usually, north is at the top of the image. Figure 3.7 shows a schematic PPI 
scan.  
 
 
3.6.3 CONSTANT ALTITUDE PLAN POSITION INDICATOR (CAPPI) 
 
A further development of the PPI is the CAPPI. CAPPI is a composite radar display that 
shows precipitation on a constant altitude above ground. A CAPPI display is calculated form 
PPI scans at successive elevation angles. In regions near the radar site where there are 
typically gaps between the radar beams (see Figure 3.8) interpolation algorithms are used to 
process a continuous CAPPI display. PPI and CAPPI displays give a good overview of the 
general weather situation. Figure 3.9 presents CAPPI plots of two different altitudes. Because 
the lowest radar beam has an elevation angle of about one degree, the maximum range 
increases with the altitude of the CAPPI levels. 
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Figure 3.7. Schematic PPI scan. 
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Figure 3.8. Procession of a CAPPI display from PPI scans at successive elevation angles. 
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(a)  

(b)  
 
Figure 3.9. CAPPI-plots of one precipitation event at different altitudes, detected by the weather radar 
station on Mt. Zirbitzkogel on June 25, 2007, at 16:30. The constant altitude is (a) 3.5 km and (b) 4.5 
km respectively (Source: Austro Control GmbH). 
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3.7 SOURCES OF POSSIBLE ERRORS 
 
It has been mentioned that relating the measured reflectivity to an amount of precipitation 
hinges on several simplifying assumptions. This section emphasises on severe sources of 
errors weather radar data are likely to contain. Most of them are not correctable. 
 
 
3.7.1 BEAM BLOCKAGE 
 
At lower elevations the beam of weather radars operating in mountainous terrain is often 
blocked. The blockage can be total or partial. As a result, precipitation behind the obstacle 
cannot be detected or is underestimated (Figure 3.10). 
 

Mountain 

 
Figure 3.10. Total beam blockage. No information about the precipitation in gained. 

 
 
Beam blockage is very common in Austria due to the Alpine mountain range. Figure 3.11 
shows two radar images where this phenomenon is visible. It can be seen that the partial 
blockage leads to a small sector with a decreased predicted rain rate. The location of the 
sector does not change with time. 
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(a)  

(b)  
 
Figure 3.11. Identification of beam blockage in radar images. Two images originating from different 
recording times show the same sector of decreased rain rate. The recording time is (a) 09:25 and (b) 
09:45 h on March 12, 2008 (Source: Austro Control GmbH). 
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3.7.2 BEAM ATTENUATION 
 
The radar beam is attenuated by all obstacles and therefore also by precipitation particles. The 
attenuation occurs twice. It affects the transmitted wave as well as the reflected wave. The 
attenuation is especially significant when an intense convective cell is located close to the 
radar site as illustrated in Figure 3.12. In general attenuation leads to an underestimation of 
precipitation since it weakens the signal that the radar receives. 
 

 
Figure 3.12. Beam attenuation by heavy rain close to the radar site. 

 
 

Figure 3.13 shows three radar images where the phenomenon of beam attenuation due to an 
intense convective cell can be seen. Based on one single radar image, beam attenuation can 
hardly be distinguished from beam blockage. If the sector of decreased rain rate moves with 
time, it is a strong indication for beam attenuation. 
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(a)  

(b)  

(c)  
 

Figure 3.13. Identification of beam attenuation due to an intense shower cell in radar images. The 
sector without rainfall is not constant. The images originate from (a) 16:50, (b) 17:05, and (c) 17:10 h 
on June 25, 2007 (Source: Austro Control GmbH). 
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3.7.3 OVERSHOOTING BEAM 
 
Overshooting beam likely occurs when rain clouds are close to the ground and when the radar 
is positioned on high altitude as illustrated in Figure 3.14. Weather radars have a minimum 
elevation angle of around 1°. Lowering the elevation angle below 1° would lead to capturing 
too much echoes from the ground (ground clutter, see below). Therefore, and due to the 
curvature of the earth, the beam likely overshoots clouds at long ranges. Overshooting beam 
leads to an underestimation of precipitation. 

 
Figure 3.14. Overshooting beam. The precipitation below the radar beam is not detected. 

 
 
 
3.7.4 EVAPORATION  
 
Evaporation of precipitation can lead to significant overestimation of precipitation by weather 
radars. This is because the radar measures the precipitation aloft and due to evaporation this 
can be significantly more than actually reaches the ground. An extreme scenario is virga (see 
Figure 3.15). Virga is rain or ice “falling out of a cloud but evaporating before reaching the 
earth's surface as precipitation” (AMS, 2000).  
 

Evaporation 

 
Figure 3.15. Virga - evaporation of precipitation above the ground. 
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3.7.5 GROUND CLUTTER 
 
Ground clutter are radar echoes from objects on the ground like buildings or trees and from 
the ground itself. “Such echoes may be caused by the reflection of energy back to the radar in 
the main lobe or sidelobes of the antenna pattern and, in weather radar applications, interfere 
with the meteorological echoes at the same range” (AMS, 2000). In weather radar systems 
usually clutter filters are used to eliminate these unwanted echoes but often there is some 
residual clutter. 

 
Figure 3.16. Ground clutter. 

 
 
 
3.7.6 ANOMALOUS PROPAGATION 
 
A reason for anomalous propagation of the radar beam is typically a strong temperature 
inversion near the ground. When there is a layer of cold air near the ground covered by a layer 
of warm air the radar beam can be bent to the ground as illustrated in Figure 3.17. As a 
consequence a strong signal is reflected to the radar. These echoes typically occur at large 
distances from the radar and they can move around due to changes of temperature and 
pressure in the atmosphere. 
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Figure 3.17. Anomalous propagation of the radar beam. 
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3.7.7 NON WEATHER TARGETS 
 
Not all targets detected by weather radars are precipitation particles. For example birds and 
insects are often misinterpreted as rain. Especially flocks of birds can lead to strong false 
echoes. 
 
False echoes can also occur when the weather radar antenna points directly at the sun. This 
occurs mainly at sunrise and sunset. Then the radar receives electromagnetic radiation, which 
can be seen in the radar image as a thin echo line from the radar site in the direction of the 
sun. 
 
 
3.7.8 BRIGHT BAND 
 
On an RHI-display anomalously high reflectivity is shown in the height where frozen 
precipitation particles melt. This layer is called bright band. Melting first affects the surface of 
the frozen precipitation particles and results in a water coating. Because of the 10 times higher 
index of refraction of water than of ice, the water coated particles appear to the radar as big 
raindrops. This effect can lead to an overestimation of precipitation. 
 
 
3.8 THE AUSTRIAN WEATHER RADAR NETWORK 
 
The Austrian weather radar network operated by Austro Control Gmbh (the Austrian air 
navigation service provider) today consists of five C-band radars working at a frequency of 
5.6 GHz. Four single polarization and the most recent dual-polarization radar. The radar data 
utilised in this work originate from the weather radar station on Mt. Zirbitzkogel which 
operates with single polarization. The radar has the following specifications: 
 
• Altitude of the radar-station above Mean Sea Level (MSL): 2372 m  
• Time interval between measurements: 5 minutes 
• 3-dB-Beamwidth: 1° 
• Minimum elevation angle: 0.8° 
• Spatial resolution of the volume element: 1 km × 1 km × 1 km 
• Resolution in measured reflectivity: 14 levels of rain-rate, converted from reflectivity Z by 

using the fixed relationship Z = 200 R1.6 
• Instrumented range: 220 km 
 
 
Additional radar display 
 
A particularity of the Austrian weather radar network is the maximum value projection which 
can be considered another radar display (see Section 3.6). Based on limitations of the data 
transmission link, initially the radar data were not transmitted in three dimensions. Instead, 
only the highest echo above the ground was transmitted. The information on what altitude the 
echo was detected is lost. Visually this radar display is similar to a CAPPI plot with 
measurements from different altitudes though. In Chapter 6 such data are utilised. 
 
 

 



4 RAIN GAUGE AND WEATHER RADAR COMPARISON 
 
 
When comparing rain gauge and weather radar measurements, their working principles and 
sources of possible errors should be kept in mind. Rain gauges are a direct method to 
determine rainfall. They measure the rainfall directly on the ground. Thus they are normally 
used to validate and calibrate indirect methods like weather radar measurements. When doing 
this, besides the sources of possible errors discussed before, the different sampling 
characteristics of rain gauge and weather radar must be taken into consideration. Another 
aspect is the data quantisation of operational weather radars. Quantisation is the process of 
approximating a continuous range of values by a defined number of levels. This 
approximation always introduces an error.  
 
In this chapter the different sampling characteristics of rain gauge and weather radar are 
addressed as well as the effect of quantisation of the weather radar. In a case study at the end 
of the chapter it is described how these issues are dealt with in the course of this work. 
 
 
4.1 SAMPLING CHARACTERISTICS 
 
The rain gauge provides a point measurement. The “point” is the orifice area of the funnel, 
and the sampling interval of the tipping bucket rain gauges used here depends on the rain rate 
R. Although it is not common to refer to a rain gauge as a volume measurement, in the strict 
sense, the rain gauge scans the volume of a very thin cylinder. If we assume a fall velocity of 
the raindrops of 6 m/s and a tipping rate of 1 min-1 then the cylinder the rain gauge scans is 
360 m high. With crosswind the rain gauge will not capture the raindrops directly above the 
instrument but rain drops laterally displaced as indicated in Figure 4.1. 
 
 

Wind f(R, v)   

 
Figure 4.1. Idealized sampling volume of a tipping rain gauge. The height of the cylinder depends on 

the rain rate R and the falling velocity v of the precipitation particles. 
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The radar on the other hand measures the reflectivity of a volume determined by the main 
lobe of the antenna and the range gate length and from it estimates the rain rate (Figure 4.2). 
The precipitation particles that are detected at a considerable height are supposed to arrive 
(unchanged) at the ground later, depending on the fall speed of the particles. 

 
Figure 4.2. Idealized sampling volume of the weather radar. The sampling volume increases with the 

distance from the radar. 
 
 
There is a large discrepancy in sampling volumes as Austin and Seed (2005) call it. Villarini 
and Krajewsky (2008) point out that the sampling discrepancy between rain gauge and 
weather radar can be nine orders of magnitude. As rain gauge and weather radar do not 
observe the same precipitation particles, there will be differences between rain gauge and 
radar measurements even if certain sources of possible errors can be ruled out. 
 
 
 
4.2 QUANTISATION OF THE WEATHER RADAR DATA 
 
An effect that is often not considered when comparing rain gauge and radar data is the 
influence that the quantisation intervals of the operational weather radars have. Quantisation 
is the process of approximating a continuous range of values by finite steps or levels. This 
approximation always introduces an error that is not correctable. Comparing quantised 
weather radar data with quasi continuous rain gauge data leads to deviations. This 
phenomenon is discussed below. 
 
The Austrian weather radar network archives the data with 14 levels of inferred rain rate. 
Each of these quantisation intervals represents a range of rainfall depths reaching from the 
lower to the upper level border. These quantisation intervals increase with the rainfall 
intensity. For data processing all values lying anywhere within the quantisation interval are 
assigned the same magnitude. As a general rule the mean value is taken because the 
quantisation error can thus be minimised to the half width of the quantisation interval. For 
lower rain rates the quantisation error can be neglected. However, for higher rain rates the 
error can be considerable. Level 13 of the Austrian weather radar network for example 
represents rain rates from 89.9 mm/h to 153.8 mm/h (see Table 4.1). By assigning the mean 
value (121.85 mm/h), the maximum error due to quantisation is almost 32 mm/h. 
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Table 4.1. Quantisation intervals of the Austrian weather radar system. 
 

Interval 
no. 

From 
Rain rate
[mm/h] 

To 
Rain rate
[mm/h] 

Assigned
Rain rate
[mm/h] 

1 0.0 0.2 0.00 
2 0.2 0.3 0.25 
3 0.3 0.6 0.45 
4 0.6 0.9 0.75 
5 0.9 1.7 1.30 
6 1.7 2.7 2.20 
7 2.7 5.0 3.85 
8 5.0 8.6 6.80 
9 8.6 15.0 11.80 

10 15.0 27.3 21.15 
11 27.3 50.0 38.65 
12 50.0 89.9 69.95 
13 89.9 153.8 121.85 
14 153.8 153.80 ∞ 

 
 
Generally the mean values of the intervals are used except for the intervals 1 and 14. For 
interval 1, zero is used for data processing. For interval 14, which represents rain rates greater 
than 153.8 mm/h, no mean or maximum value can be given, thus the minimum value is taken. 
 
The deviations that can occur because of the quantisation intervals can be considerable. 
Figure 4.3 shows ten consecutive rain rates measured by a rain gauge and the respective 
quantisation intervals an ideal and error-free radar would yield. Table 4.2 gives the Root 
Mean Squared Error (RMSE) and bias that can occur when different values within the radar 
quantisation interval are taken for comparison. 
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Figure 4.3. Quantisation of rain rates. Rainfall event as recorded by a rain gauge in Graz, Austria on 
July 24, 2004 (green diamonds) and the respective ideal and error-free quantisation intervals of the 
Austrian weather radar system. 
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Table 4.2. Deviations due to quantisation. Rain gauge values compared with minimum, mean and 
maximum values of the radar intervals of Figure 4.3. 

 
 RMSE 

[mm/10 min] 
BIAS 

[mm/10 min] 

Minimum values 0.59 -0.36 
Mean values 1.06 0.44 
Maximum values 2.30 1.24 

 
 
It becomes clear that by comparing rain gauge measurements with minimum, mean, and 
maximum values considerable deviations can occur. In Figure 4.3 it is noticeable that 
especially the bigger intervals associated with higher rain rates contribute to these deviations. 
The highest precipitation level that occurred in the example was Level 12 representing rain 
rates from 50.0 to 89.9 mm/h (8.3 to 15.0 mm/10 min). Here the error due to quantisation are 
significant. 
 
 
4.3 CASE STUDY 
 
In order to compare rain gauge and radar measurements the first idea was to estimate the areal 
precipitation by interpolating between the rain gauge measurements (as described in Chapter 
2.5). Thus, not the point measurements of single rain gauges should be compared with the 
weather radar measurements, but the areal rainfall determined from the measurements of 
several gauges. 
 
The most striking fact is that the density of the rain gauge network is low compared to the 
areal resolution of the weather radar (see Chapter 2.4.) The rain gauge density is 
approximately on the order of one station per 100 km², whereas the weather radar provides 
one measurement per 1 km². Thus, the weather radar captures much more spatial information 
than the rain gauge network. The problem with calculating the areal precipitation based on 
rain gauge measurements is that the density of the rain gauge network is not high enough to 
make substantial contributions. Calculating the areal precipitation definitely makes sense if 
there are several rain gauges per radar pixel as in Villarini and Krajewsky (2008) with up to 
eight gauges per radar pixel. If the next rain gauge is several kilometres away and is used 
together with the rain gauge within the radar pixel to estimate the rainfall on a basis of the 
pixel size of 1 km², the danger is that the precipitation situation at the other rain gauge is 
completely different (no precipitation or an other shower cell) and the areal estimate is even 
worse. Thus, in this work only the rain gauge station within the radar pixel is used as a 
reference for the radar. 
 
It was analysed if the different sampling characteristics of rain gauge and weather radar result 
in a time lag of the two time series. Rain gauge and weather radar data over a two-year period 
from 2002 to the end of 2003 were investigated. Precipitation data were available from the 
rain gauge station Laßnitzhöhe close to the city of Graz. The radar data used originate from 
the weather radar station on Mt. Zirbitzkogel. The distance between the radar and the rain 
gauge station is about 75 km. The lowest elevation level above the rain gauge site visible to 
the radar is 3 km (MSL). 
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First the data were transferred into the same temporal resolution. Originally the integration 
time was 10 minutes for the rain gauge, and 5 minutes for the weather radar. Thus, in order to 
compare the two time series, also the weather radar data were integrated to the same 10 
minute intervals. The radar data which originate from the lowest elevation level above the rain 
gauge (CAPPI 3 km) were shifted with respect to the rain gauge data due to the delayed 
detection of precipitation by the rain gauge. The best agreement with the rain gauge time 
series showed the 10 minutes shifted radar data. This time series shows the best figures in 
terms of correlation coefficient and RMSE, see Table 4.3. The same comparison was done 
with weather radar data form the layer above CAPPI 4 (Table 4.4). Again the 10 minutes 
shifted weather radar data showed the best agreement. It can be assumed that there is a time 
shift between the radar data of the different CAPPI levels, but the temporal resolution of the 
weather radar does not allow a more precise temporal analysis. Noticeable is the lower 
correlation of the weather radar data of CAPPI level 4 with the rain gauge data than those of 
level 3. Generally speaking – and not surprisingly – the lower the elevation of radar data the 
better is the agreement with rain gauge data. 
 

Table 4.3. Comparison of rain gauge and shifted weather radar time series CAPPI 3 km. 
 

Time Shift 
[min] 

Correlation coeff. RMSE 
[mm/10 min] 

0 0.4451 0.1591 
5 0.4753 0.1574 

10 0.5310 0.1539 
15 0.4313 0.1598 

 
 

Table 4.4. Comparison of rain gauge and shifted weather radar time series CAPPI 4 km. 
 

Time Shift 
[min] 

Correlation coeff. RMSE 
[mm/10 min] 

0 0.3631 0.1669 
5 0.3972 0.1661 

10 0.4516 0.1640 
15 0.3817 0.1660 

 
 
The different place of observation of rain gauge and weather radar results in a time lag of 10 
minutes between both time series. In this examination usually the mean values of the radar 
intervals were used for the comparison as shown in Table 4.1. Below the influence of the 
quantisation interval is investigated. 
 
The approach is that not automatically the mean value of the quantisation interval is taken, but 
that the measurements of surrounding radar measurements of the same elevation (CAPPI 
level) in a 5 km × 5 km radar grid influence the choice (Figure 4.4). 
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Figure 4.4. Consideration of surrounding radar volume elements. These measurements co-determine 

the value of the quantisation interval of the cell in the middle (cell above the rain gauge). 
 
 
The assumption behind this idea is that it is more probable that the reflectivity value of one 
volume element lies near the lower interval border if the adjacent elements show a lower 
reflectivity. On the other hand if the radar measures higher values for the surrounding volume 
elements than for the volume element in the centre, the actual reflectivity is supposed to lie 
near the upper level border.  
 
The chosen method is to interpolate between the mean values of the 5 km × 5 km radar grid 
with cubic interpolation and integrate over the pixel in the middle. The adapted value thus 
determined is assigned to the volume element. With this technique not always the mean value 
of the quantisation interval is taken but the value will vary. It will be biased towards the upper 
interval limit if the adjacent values are higher, and it will be biased towards the lower interval 
limit in the other case. It is assured that the values in every case lie within the quantisation 
interval. With this technique modified weather radar data are obtained that do not stick to the 
fixed number of quantisation values. 
 
The values in Table 4.5 show that a choice other than the mean value of the quantisation 
interval yields slightly better results concerning correlation coefficient and RMSE. The results 
for the higher elevation level are similar(Table 4.6). 
 
 
Table 4.5. Comparison of rain gauge and modified weather radar time series CAPPI 3 km (The values 

in brackets show the pristine data of Table 4.3) 
 

Time Shift 
[min] 

Correlation coeff. RMSE 
[mm/10 min] 

0 0.4641 (0.4451) 0.1583 (0.1591)
5 0.4978 (0.4753) 0.1564 (0.1574)

10 0.5506 (0.5310) 0.1533 (0.1539)
15 0.4610 (0.4313) 0.1584 (0.1598)
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Table 4.6. Comparison of rain gauge and time shifted weather radar time series CAPPI 4 km (The 
values in brackets show the pristine data of Table 4.4) 

 
Time Shift 

[min] 
Correlation coeff. RMSE 

[mm/10 min] 

0 0.3745 (0.3631) 0.1666 (0.1669)
5 0.4036 (0.3972) 0.1660 (0.1661)

10 0.4566 (0.4516) 0.1641 (0.1640)
15 0.3892 (0.3817) 0.1658 (0.1660)

 
 
In summary it can be said that the different sampling volumes of rain gauge and weather radar 
result in a significant time shift. Also the quantisation interval and the choice of the value for 
processing have an influence. For single measurements, this influence can be high, as one 
example showed, but it averages out in longer term comparisons. Given that the interpolation 
procedure is very time consuming and does not in every case bring an improvement 
concerning RMSE, it is not applied in the further course of this work. The consideration of the 
time shift between radar and rain gauge data, however, is practicable and therefore considered 
in further analyses and comparisons. 
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5 DATA-DRIVEN MODELLING 
 
 
When we look at the data weather radars and rain gauge networks produce we will notice that 
the volume is particularly large. In the archives reams of gigabytes of environmental data are 
stored. Today’s technology allows us to save all these data. But it is not just data that is stored 
in the archives – information is hidden. Data-driven approaches aim to extract this 
information and find interrelationships. 
 
Artificial neural networks and decision trees are data-driven approaches applied in this work. 
A basic knowledge of these techniques is important for the understanding of development, 
application, and outcome of these paradigms. For this reason here a general survey is given. 
Please note that the description below is only as detailed as necessary to understand the 
subsequent chapters. It is not a comprehensive disquisition on data-driven approaches. For a 
detailed explanation of artificial neural networks the reader is referred to Peretto (1992) and to 
Rojas (1993) for a textbook in German. Witten and Frank (2005) comprehensively discuss 
decision trees and various other models. 
 
 
5.1 ARTIFICIAL NEURAL NETWORKS 
 
Artificial neural networks got their name from their analogy with biological neural networks. 
Biological neurons are cells that receive, process, and transmit information using biochemical 
reactions. The human brain consists of about 10 billion neurons which are highly 
interconnected. One neuron is connected via dendrites to a thousand neighbouring neurons. 
 
Artificial neural networks (ANNs) are far from reaching such dimensions. Moreover, artificial 
neurons simplify the processes that are going on in biological ones. In machine learning 
ANNs try to simulate some properties of biological neural networks. The neurons in ANNs 
are simple processing elements operating in parallel. Because of the numerous connections 
between these elements, ANNs can exhibit complex global behaviour. 
 
ANNs can perform pattern recognition, identification and classification tasks, system control, 
and other complex functions. Often they are trained in function approximation, so that a 
particular input leads to a specific output. This form of training also allows making 
predictions. The relationship found in the training process between input and output variables 
can be used to predict the output of unseen examples by knowing only the input data. Here 
such a configuration is used with weather radar data. Below the neuron model, network 
architectures, and learning rules are described. The software tool that is used in the work is 
the MATLAB Neural Network Toolbox. The description below and the terminology are based 
on Demuth and Beale (1998). 
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5.1.1 NEURON MODEL 
 
An artificial neural network is usually presented as an interconnected group of nodes as 
shown in Figure 5.1. The first step to understand the behaviour of an ANN is to understand 
how the nodes are defined. 
 

 

Node Connection 

 
 

Figure 5.1. Illustration of an ANN with nodes and connections between them. 
 
 
Nodes in an ANN are simple processing elements that are connected to others. Some of the 
nodes in Figure 5.1 are target of only one arrow. The neuron model is illustrated on the basis 
of this special case. 
 
Figure 5.2 shows what is inside the circle that is frequently used to visualise a neuron. First, 
the input p is multiplied by the scalar w to form the product wp. Then another scalar, the bias 
b is added. The transfer function f takes the argument n which is the sum of the weighted 
input and the bias. The transfer function which often is a nonlinear function maps n to the 
output a. 
 
In general, applications using ANNs require nonlinear mappings. That’s why nonlinear 
transfer functions are needed. In this work linear and nonlinear transfer functions are used. 
The applied nonlinear function is the sigmoid transfer function shown in Figure 5.3. This 
transfer function is commonly used in ANNs. It takes the input, which can have any value 
between plus and minus infinity, and maps the output into the range 0 to 1. Often the concept 
of a sigmoid functions in the hidden layer (see next section) and linear transfer functions in 
the output layer yields the best results (e.g. Loukas, 2000). This combination is also applied 
here. 
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Figure 5.2. Mode of operation of a single neuron. 
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Figure 5.3. Schematic curve of a sigmoid transfer function. 

 
 
Above the mode of operation of a single neuron with a scalar as input was shown. Generally, 
the input is a vector rather than a scalar. In this case the operation is not much different, 
except that the transfer function input n changes to: 
 

bpwpwpwn RR ++++= K2211          (5.1) 
 
where R is the number of elements in the input vector. 
 
 
5.1.2 NETWORK ARCHITECTURES 
 
In ANNs the neurons usually are arranged in layers. An ANN can contain several of these 
layers. In Figure 5.4 each element in the input vector p is connected to each neuron. The 
weights of this layer with S neurons and R inputs can be described with a weight matrix W 
with S rows and R columns. 
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Figure 5.4. One layer of an ANN. The layer consists of S neurons and an R-dimensional vector forms 

the input. 
 
 
A network with several layers has a weight matrix and a bias vector for each layer. The ANN 
of Figure 5.1 is a multilayer network with three layers. They are referred to as input, hidden, 
and output layer. The input layer accepts the inputs, the output layer produces the outputs of 
the network, and any layers in between are called hidden layers. 
 
In networks as described above, the information always goes in one direction from the inputs 
to the outputs. There are no feedback cycles. Networks of this type are called feed-forward 
neural networks. Feed-forward neural networks are the standard type of ANNs. To better 
illustrate the information flow, they are often drawn with one layer upon the other as in Figure 
5.5. 
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Figure 5.5. Fully connected feed-forward neural network with two hidden layers. 

 
 
Feed-forward neural networks are presumably the most widely used type of ANNs. Also 
many practical neural network applications in the field of hydrology use this type of network. 
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But setting up such a network can be very time consuming. Another type of ANNs, the Radial 
Basis Function (RBF) neural network is an alternative architecture that has advantages 
concerning setup time. However, it involves a different architecture. For the task of rainfall 
estimation (Chapter 7) RFB networks are alternatively applied. Below an overview is given. 
 
Radial basis function neural networks apply a different transfer function. As the name implies 
it is the radial basis function. It is defined as: 
 

2

)( nenRBF −=             (5.2) 
 
The RBF has its maximum of 1 when the input is 0 (see Figure 5.6). 
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Figure 5.6. Schematic curve of the radial basis transfer function. 

 
 
But not only the transfer function is different compared to the functions normally used in 
feed-forward neural networks. The neuron also has another entry stage. In the former type the 
input p is multiplied by the scalar w and a bias b is added. In radial basis neurons, the 
Euclidean distance between the input vector p and the weight vector w is calculated and 
multiplied by the bias b. The outcome n is the argument of the RBF (see Figure 5.7). 
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Figure 5.7. Mode of operation of a radial basis neuron. 

 
 
The output of the neuron increases with decreasing distance between the input vector p and 
the weight vector w. The output is 1 when p and w are identical. Thus, Demuth and Beale 
(1998) equate the radial basis neuron with a detector. The sensitivity of the neuron can be 
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adjusted by the bias. A bias b<1 virtually broadens the function, a bias b>1 on the other hand 
narrows it (makes it react with a smaller output to the same input). 
Now the mode of operation of a single radial basis function is known. The architecture of a 
radial basis network consists of two layers. The output layer is a simple linear layer. It is the 
same type as introduced above for feed-forward networks, but with a linear in place of a 
sigmoid transfer function (see Figure 5.8). 
 

Inputs Radial
Basis
Layer

Linear
Layer

 
Figure 5.8. Architecture of an RBF neural network. 

 
 
As the architecture of feed-forward and radial basis function neural networks are established, 
the question is: How the weights and biases are determined? This is the task of the training 
process which is described in the next section. 
 
 
5.1.3 LEARNING RULES 
 
The learning rule as referred to in Demuth and Beale (1998) is a procedure for modifying the 
weights and biases of a network. This procedure also is known as learning paradigm and 
under the more general term training algorithm. Often it is distinguished between two 
categories of learning rules: supervised and unsupervised learning. Supervised learning is 
applied in the applications of Chapter 6 and Chapter 7 and thus described below. 
 
In supervised learning, together with the input vector p another vector is given: the target 
vector t. The target represents the desired output of the neural network when supplied with the 
input p. Note that the dimension of the vectors p and t is not necessarily the same. In 
hydrological applications one may have precipitation data from several points within a 
catchment as input vector and the target is the runoff at the watershed outlet (thus a scalar). 
Initially the weights and biases are chosen randomly. The network supplied with the input 
data will thus produce a random output a. Then the learning rule is applied to adjust weights 
and biases in a way to move the output a closer to the target t. Figure 5.9 demonstrates the 
supervised learning procedure. 
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Figure 5.9. Schematic illustration of supervised learning. 

 
 
The network is provided with Q examples of input (p) and target (t) vectors. Let us assume, 
the input pk leads to the output ak while the desired target is tk. The error is usually calculated 
as the mean squared error and should be minimised in the learning process. 
 

MSE = ∑
=

−
Q

k
kk ta

Q 1

2)(1            (5.3) 

 
The MSE will be different for different weights w and biases b, and it is up to the learning 
rule to determine w and b in a way to minimise the error. Apparently it is not a trivial task to 
optimise w and b, especially in a multilayer network with dozens of weights and biases. Many 
learning rules or training algorithms exist for this purpose. The standard algorithm used in the 
applications of this work is the Levenberg-Marquardt algorithm. It is a fast training algorithm. 
Levenberg-Marquardt for neural network training is described in Hagan and Menhaj (1994). 
 
Determination of the proper weights and biases for the training dataset is only one part of the 
whole training process. In order to make predictions, it is essential to test the network with 
unseen data (data different to the data the network was trained on). It is very likely that the 
performance deteriorates. This is understandable since the network parameters w and b are 
optimised on the basis of the training dataset. The goal is a network that is not overtrained 
(which is also known as overfitting), but able to generalise to new data. That’s why an 
extensive test process is necessary. 
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5.2 MODEL TREES 
 
Tree-like structures are frequently used in machine learning and data mining. The simple tree 
diagram with nodes, branches, and leaves forms the basis of a decision tree as a predictive 
model. Two main types of decision trees exist: classification and regression trees. Trees that 
predict a symbolic or categorical attribute are called classification trees whereas regression 
trees predict a numeric value. An example of a classification tree for forms of precipitation 
can be seen in Figure 5.10. 
 

 

liquid frozen 

diameter density 
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drizzle rain diameter snow 

graupel hail 

<= 1 mm > 1 mm high low 

<= 5 mm > 5 mm 

 
Figure 5.10. Example of a classification tree. The tree classifies forms of precipitation. 

 
 
The regression tree on the other hand gives an average numeric prediction for each leaf of the 
tree. There is a special type of regression trees: If all leaves contain linear regression models, 
rather than average values, then the tree is called model tree. Model trees can be seen as 
piece-wise linear approximations. According to Bhattacharya and Solomatine (2005a) the 
major advantages of model trees are that they are “much smaller than regression trees, the 
decision strength is clear, and the regression functions do not normally involve many 
variables” (p. 386). Furthermore, it should be mentioned that all kinds of decision trees are 
simple to understand and interpret, even by someone not familiar with data-driven 
approaches. Stravs and Brilly (2007) mention that regression and model trees “can give a 
structural insight into the hydrological process that is being modelled” (p. 467) and accentuate 
this as a difference to neural networks. 
 
With Stravs and Brilly (2007) a recent paper uses model trees in the field of hydrology, but 
this data-driven approach is not very common in hydrology. Compared to the numerous 
neural network approaches in this field of science, model trees live a shadowy existence. No 
more than a few years ago, model trees were presented as alternatives to neural network 
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approaches in rainfall-runoff modelling (Solomatine and Dulal, 2003) and flood forecasting 
(Solomatine and Xue, 2004). 
 
The tree model that is used in this work is the M5 model tree. The algorithm was invented by 
Quinlan (1992). Witten and Frank (2000) implemented it in their WEKA software package 
(Waikato Environment for Knowledge Analysis).  
 
The idea behind building a model tree is straightforward. Wang and Witten (1997) name three 
stages of developing the tree. In the first stage an induction algorithm is used to build the tree. 
Here a splitting criterion is used that minimises the intra-subset variation. The second stage is 
pruning the tree back from each leaf to help to generalise the tree. And the final stage is a 
smoothing process. 
 
 
5.2.1 BUILDING THE TREE 
 
The following consideration is the beginning of building the tree. Split the data and build a 
linear regression model for each of the subspaces. Suppose that T is a portion (or subset) of 
training data and consequently the question is: Should T be associated with a leaf, or should T 
be split again? The splitting criterion in the Weka software package is the Standard Deviation 
Reduction (SDR; Witten and Frank, 2000). SDR is used to determine which attribute value of 
T is the best to split the portion T. It is defined as: 
 

SDR = ∑ ×−
i

i
i Tsd

N
NTsd )()(          (5.4) 

 
where sd(T) is the standard deviation of T. Ti are the sets that result from splitting the node 
according to the chosen attribute. N and Ni are the numbers of instances in the trees T and Ti 
respectively. 
 
For splitting, the attribute that maximises the expected reduction is used. According to Witten 
and Frank (2005) the splitting process terminates when the class values of the instances that 
reach a node, vary only slightly or when only a few instances remain at one node. Instances 
are the examples to be classified. 
 
Now the attribute values have been chosen to make the routing decisions at each note. The 
instances are routed following the tree down to a leaf. Each leaf contains a linear regression 
model based on attribute values. The regression model has the form: 
 
w0 + w1a1 + w2a2 + ...+ wkak,          (5.5) 
 
where a1, +a2, ... , ak are attribute values and w1, +w2, ... , wk are the weights which are 
calculated using standard regression (cf. Witten and Frank, 2005). 
 
Finally the tree is built. The nodes for the routing have been chosen and at each leaf a linear 
regression model predicts a value for the instances that reach the leaf. However, the tree is 
built using training data only. The pruning procedure introduced in the next chapter accounts 
for this disadvantage. 
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5.2.2 PRUNING THE TREE 
 
The unpruned tree has been expressly built for the training dataset. It can be said that the 
accuracy of the tree concerning this dataset increases with each leaf as the tree grows. This is 
not necessarily true for the unseen cases of the test dataset. It is again the overfitting problem 
known from neural networks. In the Weka software the overfitting problem for model trees is 
addressed as follows. According to Wang and Witten (1997, sec. 2.2) “the absolute difference 
between the predicted value and the actual class value is averaged for each of the training 
examples that reach that node”. For the unseen test data the error will be higher. That’s why it 
is multiplied by a factor for compensation. Because of the compensation factor, the linear 
model can often be further simplified. Details to the pruning process are given in Witten and 
Frank (2005). The result is that the tree gets smaller because some subtrees may be replaced 
by single leaves. 
 
 
5.2.3 SMOOTHING THE TREE 
 
The pruned tree consists of linear models at each leaf. There will be unavoidable 
discontinuities between adjacent linear equations of the tree. Smoothing is the process updates 
the adjacent linear equations. The update takes place in a way that the predicted outputs for 
neighbouring input vectors corresponding to different equations are aligned (cf. Bhattacharya 
and Solomatine, 2005b). For more information see Witten and Frank (2005). 
 
 
 
 
 
 
 

 



6 MODELLING THE RAINFALL-RUNOFF RELATIONSHIP 
 
 
Rainfall-runoff relationships play an important role in hydrology. Their purpose is the 
conversion of rainfall on the catchment area into runoff at the watershed outlet. The objective 
is to predict the runoff and – in consequence – flood waters. 
 
Many processes are involved in the conversion of rainfall into runoff, such as interception, 
infiltration, and surface retention. In principle these processes are computable, but often 
sufficient information about the catchment is not at hand. The more data are available, the 
more detailed a rainfall-runoff model can be. Only in hydrological investigation areas with 
very dense measuring networks and spatial information about the orography and geology, the 
above listed processes can be accounted for, but even here considerable simplifications have 
to be made. 
 
In this chapter data-driven approaches such as neural networks and model trees are used to 
model the rainfall-runoff relationship of a small catchment in Austria. Below it is described 
how weather radar and rain gauge data are utilised in these models. Furthermore, performance 
measures to evaluate the predictions are given. Finally the rainfall-runoff models are specified 
and the results are presented and discussed. 
 
 
6.1 STUDY AREA 
 
The study area is the Sulm catchment in the south-west of Styria, Austria. The whole basin 
includes an area of 1105.7 square kilometres. Elevations range from 263 m (MSL) at the 
watershed outlet (Leibnitz) to 2125 m (MSL) on Koralpe mountain. The average watershed 
slope is 11.9 %. 
 
The scope of this analysis is the sub-catchment Wernersdorf. This small catchment (less than 
35 km² in area) is of particular interest. Since there are no more flow meters upstream, the 
possibilities for flood warnings for this area are limited. The flow-meter data show that high 
peaks at the site Wernersdorf are usually followed by high peaks downstream. Therefore the 
discharge measurements at Wernersdorf can be a helpful indicator for severe situations that 
subsequently may lead to hazards downstream. Figure 6.1 presents a map of the Wernersdorf 
catchment, showing the radar grid and the location of rain gauge and flow meter. 
 
In summer this region is often affected by rain showers. The catchment response of this part 
of Austria can be considered as flashy. The floods and the annual maximum daily 
precipitation traditionally occur in late summer. Short convective storms are the dominant 
events producing floods (cf. Merz et al., 2001). Sometimes the spatial extension of these 
showers is so small that their detection is only possible by weather radar, while none of the 
rain gauges in the area reports any precipitation. 
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Figure 6.1. Map of the Wernersdorf catchment. Numbering of the radar pixels is from 1 to 32 top 

down, line by line. 
 
 
6.2 AVAILABLE DATA  
 
6.2.1 RAIN GAUGE AND FLOW METER DATA 
 
Because of the specific geographic and climatic situation, the rain gauge and flow meter 
density in the Sulm catchment is quite high compared to other parts of Austria. The runoff 
[m³/s] is known for all tributaries in the Sulm basin at 13 different sites. The time interval 
between the outflow-measurements is 15 minutes. Precipitation data are available from a 
network of rain gauges. The rain gauges are working on the tipping bucket principle with a 
resolution of 0.1 mm. The temporal resolution is 15 minutes. Data from 10 rain gauges are 
available.  
 
One rain gauge station is located in the Wernersdorf sub-catchment. Thus for the development 
of the rainfall-runoff models, measurements from one rain gauge and a flow meter as well as 
radar data are available. The datasets extend over a 1-year period from January to December 
2000.  
 
 
6.2.2 RADAR DATA 
 
Radar data from the Doppler weather radar station on Mt. Zirbitzkogel are used to improve 
the spatial coverage. The used radar is a high-resolution C-band weather radar. Radar 
measurements in maximum value projection are utilised (see Section 3.8). The distance 
between radar station and catchment is between 42 km (Koralpe mountain) and 80 km 
(Leibnitz, watershed outlet). The temporal resolution of all datasets was assimilated to the 
temporal resolution of the runoff data which is 15 minutes. 
 

Radar grid 

FR

Flow meter 
Rain gauge 

A

1      2 

3      ...       

32 

 ...    30 31 

5 km 

 



 59
 

6.3 PERFORMANCE MEASURES 
 
Visual comparisons of predicted and observed runoff curves can give a first impression of the 
performance of a rainfall-runoff model. But in order to quantitatively compare several 
models, performance measures are indispensable. 
The correlation coefficient can be a first evidence for the quality of a prediction. It measures 
the statistical correlation between two time series. In our case the time series are the predicted 
Qp and the observed runoff Qo. The correlation coefficient is defined as: 
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where oQ  is the mean of the observed runoff measurements  
and pQ  is the mean of the predicted runoff values. 
 
The correlation coefficient, often denoted by r, ranges from –1 to +1. The value +1 stands for 
perfect correlation between predicted and observed runoff time series. The value –1 marks 
perfectly negative correlation (inverse correlation). The closer r is either to +1 or –1 
respectively, the more closely the time series are related. A value of 0 means no correlation at 
all. The correlation coefficient is a scale-independent measure in that the error does not 
change if one time series is multiplied by a constant factor or added to a bias. In other words 
if the predicted runoff is throughout twice as high as the observed, r will still be 1. 
 
In data mining the correlation coefficient is an important measure, in hydrological 
applications, however, a scale-independent measure as the correlation coefficient has its 
disadvantages as the example above shows. Therefore, in hydrological modelling another 
coefficient – namely the efficiency coefficient – is used. The efficiency coefficient (cf. Nash 
and Sutcliffe, 1970) is defined as: 
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This coefficient can range from –∞ to +1. An efficiency of 1 stands for a perfect match 
between predicted and observed data. An efficiency of 0 indicates a prediction as accurate as 
the mean of the observed runoff. An efficiency <0 is not desirable as this suggests a worse 
prediction than the mean value. 
Fundamentally, the efficiency should lie close to 1. An efficiency value “greater than 0.9 
indicates a very satisfactory model performance”, while a value “in the range 0.8 – 0.9 
indicates an acceptable (or good) model, and values less than 0.8 indicate an unsatisfactory 
model” (Coulibaly and Baldwin, 2005, p. 170). 
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The Mean Squared Error (MSE) is a widely used measure to quantify the amount the 
predicted value differs from the observed value on average. Here also the Root Mean Squared 
Error (RMSE) is used to give the measure the same dimensions as the predicted values. An 
RMSE of 0 means that predicted and observed time series are identical. The RMSE is defined 
as: 
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Because of taking the squared errors, the RMSE uprates outliers. Large errors are weighted 
much more heavily than small ones. The Mean Absolute Error (MAE) on the other hand treats 
all sizes of errors evenly (cf. Witten and Frank, 2005). The MAE is defined as: 
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The Relative Absolute Error (RAE) is expressed as a percentage. The lower the percentage 
value the better the performance of the model. An RAE of 100 % indicates the same 
performance as predicting the mean value. 
 
The RAE is defined as: 
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The Root Relative Squared Error (RRSE) is defined similar to the efficiency coefficient. The 
principal modification is that the root is applied to the relative squared error. In machine 
learning this measure is more common than the efficiency coefficient E.  
 
RRSE is defined as: 
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Many performance measures have been introduced so far. In machine learning often several 
indicators like correlation coefficient, RMSE, MAE, RAE, and RRSE are taken as 
performance measures but “there is no single performance measure that has become standard” 
(Trigg, 1998, p. 1). Witten and Frank (2005) comment on this question that “in most practical 
situations the best numeric prediction method is still the best no matter which error measure is 
used” (p. 179). Here the efficiency coefficient is taken as the reference in case of doubt. 
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6.4 PREPROCESSING 
 
Before applying the available dataset to data-driven models, it is important to examine it. This 
process is usually referred to as preprocessing. It includes checking for data samples that 
deviate conspicuously from neighbouring values (e.g. plausibility check) as well as defining 
an appropriate input vector. It is also advisable to divide the data into sets for training, 
validating, and testing the data-driven models. Below the applied preprocessing steps are 
described. 
 
 
6.4.1 PLAUSIBILITY CHECK 
 
The examination of the rain gauge data was done by an official institution as described in 
Section 2.3. The same applies for the runoff data. Furthermore, it was checked that the data 
were transformed correctly into the format necessary for the software tools applied. The 
weather radar data were automatically read out from the archive with manual inspections.  
 
 
6.4.2 DATA ANALYSIS  
 
The radar and rain gauge rainfall datasets as well as the runoff datasets have been investigated 
with statistical methods and the correlation between rainfall and runoff data was determined. 
This analysis has two main reasons: 

• to define for what time span the runoff can be predicted in advance for a certain 
catchment i.e. the forecast time and 

• to find an appropriate input vector 
 
 
6.4.2.1 Defining the forecast time 
 
A significant measure for this analysis is the cross correlation between rainfall and runoff. 
The cross correlation is a measure of similarity of two different signals. It is a function of the 
relative time between the signals. The cross correlation coefficient between rainfall and runoff 
has been used to identify the time lag (offset) where the similarity is highest.  
 
Rain gauge as well as weather radar series were investigated and the analysis showed that the 
time lags with the highest cross correlation coefficients between rainfall and runoff series lie 
between 10 to 16 time steps (150 and 240 minutes), depending on the position within the 
catchment where the rainfall was measured. Table 6.1 shows the time lags in detail.  
 
The analysis revealed that the correlation coefficients of rain gauge and radar measurements 
vary significantly. None of the radar pixels achieved the maximum correlation of the rain 
gauge (30.08 %). The poorer correlation coefficients of the radar measurements are believed 
to originate mainly from two causes. Firstly, the radar data are archived with 14 quantisation 
intervals. Because of these fixed levels of rain rate the changes do not appear as directly as in 
quasi continuous rain gauge data. This effect, however, is relativised by the 15-minute 
integration time of the radar data. Secondly, the indirect measurement and the consequential 
sources of possible errors are believed to have an impact. The effect of overshooting beam 
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(see Section 3.7.3) was detected on several occasions where the radar did not report much 
precipitation because of low altitude cloud tops. However, high reaching convective rain 
cells, the dominant source of high water and floods in this area, can be detected with good 
visibility by the weather radar station on Mt. Zirbitzkogel. 
 

Table 6.1. Time lag with maximum cross correlation coefficient between rainfall and runoff series.  
 

Measuring site Cross correlation 
coeff. [%] 

Time lags
[15 min] 

Rain gauge site 30.08 11

Weather radar    
Pixel* 1 13.19 13

2 13.14 13
3 13.93 13
4 13.22 13
5 13.52 13
6 14.18 13
7 13.73 13
8 15.20 15
9 13.65 13

10 15.38 13
11 14.25 13
12 13.72 13
13 16.50 15
14 9.82 16
15 14.91 13
16 16.76 14
17 14.43 13
18 10.55 14
19 15.46 12
20 17.72 13
21 17.85 12
22 14.69 11
23 15.78 12
24 13.80 11
25 13.54 11
26 14.41 11
27 14.92 11
28 13.74 11
29 14.57 11
30 14.54 11
31 16.14 11
32 16.16 10

*The pixel number refers to the position in Figure 6.1. 
 
The cross correlation analysis also yields important information concerning the output. The 
question is: For what time span a forecast can be given? Naturally one is interested in a long 
forecast period, but a small catchment often does not allow this. The shortest time lag 
between precipitation and runoff series that could be found in the cross correlation analysis is 
10 time steps (150 minutes). Thus the models were trained on the runoff 150 minutes ahead of 
time (Qt+150 min) which is henceforth named the target runoff. 

 



 63
 

6.4.2.2 Defining the input vector 
 
This section covers the issue how to integrate the (distributed) radar measurements into the 
data driven models. It demonstrates why it is not feasible to use all single radar pixels as 
coordinates of the input vector and introduces an approach to reduce the dimension of the 
input vector without loosing too much information. 
 
One may intuitively include all available precipitation data in the input vector. But taking the 
rain gauge data and all of the 32 weather radar measurements would lead to a huge number of 
input parameters even for such a small catchment. An effective training would not be possible 
because the more inputs the more network parameters (weights) are to be determined. A fully 
connected feed-forward network with six hidden neurons, one neuron in the output layer, and 
six inputs has 42 weights to be determined. With 36 inputs the number of weights increases to 
222. The more weights the more training data are necessary. Furthermore, it is a far more 
complex task for the training algorithm to update the weights. Moreover, the risk of getting 
stuck in a local minimum and not finding the global minimum is much higher. That’s why the 
dimension of the input vector has to be reduced.  
 
An established method to eliminate redundancy in the input vector is the principal component 
analysis (e.g. Demuth and Beale, 1998) which removes those coordinates of the input vector 
contributing the least to the variation in the data set. But this means that not all radar 
measurements would be part of the input vector and the main advantage of the radar – the 
gapless spatial coverage – would be lost.  
 
The method used to reduce the dimension of the input vector without loosing too much 
information was to group several radar pixels. All radar pixels showing correlation maxima 
with the runoff at the same time lag were grouped to one cluster. (The pixels forming one 
cluster, however, not necessarily adjoin.) As input the average rain rate of each cluster is 
taken. This leads to a smaller input vector. The initial 32 radar pixels were reduced to seven 
clusters. Table 6.2 shows correlation coefficient and time lag of the rain gauge time series and 
the clusters which form the input vector. The rain gauge time series is left unmodified. The 
advantage of this technique is that information of each pixel above the catchment is still 
represented in the dataset. Because of the bigger clusters, the information where exactly a 
small convective shower cell occurred is lost but the rainfall amount within the area 
represented by the cluster is available and the time lag when the rainfall shows the highest 
correlation with the runoff series is known. 
 

Table 6.2. Time lags and cross correlation coefficients between runoff and precipitation 
measurements. 

Measuring site Cross correlation 
coeff. [%] 

Time lag
[15 min] 

Rain gauge site  30.08   11 

Cluster 1  (1 pixel) 16.16 10 
Cluster 2  (9 pixels) 16.12 11 
Cluster 3  (3 pixels) 16.90 12 
Cluster 4  (14 pixels) 17.41 13 
Cluster 5  (2 pixels) 14.32 14 
Cluster 6  (2 pixels) 17.67 15 
Cluster 7  (1 pixel) 9.82 16 
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Thus, in this study, the radar data are represented in clustered form in the input vector. For a 
fine-tuning of the input radar data the input-output behaviour is studied in detail. 
 
 
Input-output behaviour 
 
The proposed model aims to predict the future runoff with rain gauge, radar, and actual runoff 
as inputs. Thus, the model is not a pure rainfall-runoff model because it uses the actual runoff 
(Qt) as additional input coordinate. This is important since rainfall data typically contain 
numerous zero values, but “the condition of rainfall and no-rainfall is difficult to identify by 
DDM [annotation: data-driven models] with only rainfall time series as inputs” (Solomatine 
and Dulal, 2003, p. 404). 
 
So far in the literature mainly rain gauge data have been used in ANNs to predict the future 
runoff, often on a daily or hourly basis. However, for the considered catchment a higher 
temporal and spatial resolution is needed, since it typically lasts only a few hours between 
incipient rain and peak runoff. This high temporal and spatial resolution of the precipitation 
data make the input variables jagged and result in a complex input-output behaviour. 
 
The rainfall and runoff curves of one rainfall event are exemplified in Figure 6.2. The rain 
rate from the rain gauge and from Cluster 7 are contrasted with actual and target runoff. 
Typically the weather radar reports precipitation before it can be detected by the rain gauge. 
At the peak of the radar and rain gauge measurements the runoff level may not even have 
increased as shown in this example. Here the runoff peak occurs when the precipitation is 
essentially over. The target runoff is the actual runoff 10 time steps (150 minutes) shifted 
against the time axis. This is the curve to be predicted. In the present case it can be seen that 
the target runoff starts to increase even before any precipitation has been detected which 
suggests how difficult a precise forecast is for any hydrological model. 
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Figure 6.2. Exemplary rainfall and runoff curves of one rainfall event. 

 
The example above points out the highly nonlinear relationship between precipitation 
measurements from radar and rain gauge and the target runoff. Below simple data 
manipulation methods are introduced that aim to increase the correlation between target 
runoff and precipitation measurements and thus presumably improve the quality of the 
forecast. These methods are time shifting of the precipitation curves and applying a moving 
average on them. 
 
 
Time shifting 
 
The seven clusters differ in the time lag with respect to the runoff. The time lags range from 
10 to 16 time steps. Cluster 1 exhibits its maximum correlation with the runoff when shifted 
10 time lags to the right. The other clusters and the rain gauge measurement, however, do 
show their maxima at higher lead times. Thus, the idea is to use forward-shifted clusters and 
rain gauge measurements as input vector coordinates. These clusters are shifted forward just 
as far as to show a maximum correlation with the target runoff. The implementation of a time 
shift can also be argued from a physical point of view. In fact it takes a certain time for the 
precipitation fallen at a remote part of the catchment to contribute to the runoff. Actually it 
seems reasonable to shift precipitation inputs from remote locations in time since they can by 
no means immediately contribute to the runoff. Figure 6.3 shows the same rainfall event as 
above with time shifted precipitation measurements to coincide on average with the desired 
target runoff.  
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Figure 6.3. Runoff curve and time shifted precipitation measurements. The single precipitation 
measurements are shifted forward just as far as to show a maximum correlation with the target runoff. 
 
 
Moving rainfall average 
 
The precipitation curves in Figures 6.2 and 6.3 are rather jagged, whereas the runoff time 
series is quite smooth at the given temporal resolution of 15 minutes. This is also reflected in 
the poor correlation coefficients between these signals. The correlation becomes better when 
averaging the precipitation measurements over a certain time span. Averaging the rain rate 
seems reasonable since short term variations of the rainfall are not relevant for the runoff. An 
example with a moving rainfall average over a preceding period of 10 time steps can be seen 
in Figure 6.4. The precipitation curves thus averaged much better match the target runoff. 
Table 6.3 shows that the correlation coefficients increase by about 10 percentage points. It has 
to be considered though that applying a moving rainfall average on the precipitation curve 
reduces its time lag with the runoff curve. This may not be desirable because in the figures the 
averaged precipitation curves move to the right. Most averaged precipitation curves now have 
their correlation maximum less than 10 time steps ahead which is the time lag aimed to 
forecast. 

 



 67
 

0 5 10 15 20 25 0

0.5 

1

1.5 

2

2.5 

3

3.5 

Time [h]

R
un

of
f, 

R
ai

n 
ra

te

 

  
Actual runoff [m³/s]
Target runoff [m³/s]
Integrated rain rate from raingauge [mm/15 min] 
Integrated rain rate from Cluster 7 [mm/15 min] 

 
Figure 6.4. Runoff curve and averaged precipitation measurements. Moving rainfall average over a 

preceding period of 10 time steps. 
 
 

Table 6.3. Time lags and cross correlation coefficients between runoff and integrated precipitation 
measurements (moving rainfall average over 10 preceding time steps). 

 
Measuring site Cross correlation 

coeff. [%] 
Time lag
[15 min] 

Rain gauge site  43.29 7 

Cluster 1  (1 pixel) 26.29 8 
Cluster 2  (9 pixels) 25.58 8 
Cluster 3  (3 pixels) 26.69 8 
Cluster 4  (14 pixels) 25.40 10 
Cluster 5  (2 pixels) 25.65 9 
Cluster 6  (2 pixels) 27.44 10 
Cluster 7  (1 pixel) 19.30 10 

 
The relocation of the averaged curve is a cause for concern. Theoretically the relocation to the 
right can be avoided by averaging over an equal number of preceding and following rainfall 
measurements. But from the forecast perspective the following measurements lie ahead and 
thus are not available at this particular time. To meet these timing concerns, the modification 
proposed here uses the preceding moving rainfall average with such an integration time that 
the maximum correlation occurs at a time lag of 10. Thus, the integration time varies for the 
different precipitation curves (Table 6.4). Because the integration time is often shorter than 
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10, as in the example before, the cross correlation coefficients often deteriorate. However, on 
average the timing of every single of the thus averaged precipitation curves complies with 
target runoff. Figure 6.5 shows the rainfall and runoff curves with this technique applied. 
Admittedly, the correct timing holds for the data on average and does not fit for every single 
runoff peak.  
 
 
Table 6.4. Cross correlation coefficients between runoff and precipitation measurements with flexible 

integration time. 
Measuring site Cross correlation 

coeff. [%] 
Integration 

time  

Rain gauge site  35.61 3 
Cluster 1  (1 pixel) 21.57 4 
Cluster 2  (9 pixels) 22.20 5 
Cluster 3  (3 pixels) 24.20 6 
Cluster 4  (14 pixels) 25.40 10 
Cluster 5  (2 pixels) 24.99 9 
Cluster 6  (2 pixels) 27.44 10 
Cluster 7  (1 pixel) 19.75 11 

 
 

0 5 10 15 20 25 0

0.5 

1

1.5 

2

2.5 

3

3.5 

4

4.5 

5

Time [h]

R
un

of
f, 

R
ai

n 
ra

te

 

  
Actual runoff [m³/s]
Target runoff [m³/s]
Integrated rain rate from raingauge [mm/15 min] 
Integrated rain rate from Cluster 7 [mm/15 min] 

 
Figure 6.5. Runoff curve and precipitation measurements with flexible integration time. 
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So far different kinds of simple precipitation data manipulation methods have been proposed. 
Below they are listed with the abbreviations used in the results section. 

• Original chronological sequence (O) 

• Time shifted (TS) 

• Averaged with fixed integration time of 10 time steps (I10) 

• Averaged with flexible integration time (IFlex) 
 
 
Representing the Hydrological state 
 
So far the actual hydrological state of the catchment has not been considered apart from the 
actual runoff (Qt) that is taken as additional input coordinate. The actual hydrological state is 
important to estimate the effect of the rainfall on the runoff. Because of the lack of more 
direct indicators of the hydrological state such as soil moisture, many studies use indirect 
indicators like previous runoff values or cumulative rainfall over a longer period before the 
rainfall event. Here these two methods of hydrological state representation are applied. Below 
the different hydrological state representations are described. 
 
 
Cumulative rainfall configuration 
 
In addition to the standard configuration, the cumulative rainfall of all precipitation 
measurements over a longer period is taken as additional input parameter. Three additional 
input coordinates are added which differ in the length of the integration time: one day, one 
week and two weeks. The integration time here is much longer than the 10 time steps used 
above because the purpose is different. As a data manipulation method, the input was 
averaged to better fit the target. Here, the longer integration period is aimed to account for the 
rainfall history and thus the hydrological state of the catchment. 
 
 
Previous runoff configuration 
 
This configuration differs from the standard configuration given above in the number of 
runoff measurements presented to the model. In addition to the actual runoff (Qt) also three 
preceding runoff measurements are part of the input vector (Qt-15 min, Qt-30 min, and Qt-45 min). 
The choice of the number of preceding runoff measurements was a trade-off between 
additional information and increasing complexity with each added input coordinate. 
 
 
6.4.3 TEST-, TRAINING-, AND VALIDATION-DATA 
 
The next step of the preprocessing was to divide the available dataset into sets for training, 
validating, and testing the data-driven model. These three subsets have different functions. 
The training dataset is necessary for determining the model’s parameters (weights and biases 
of the neural network; and leaves with their linear regression functions and splitting criteria of 
model trees). When building a data-driven model, the engineer can also influence the outcome 
(e.g. by simulating different numbers of nodes in the hidden layer of ANNs, or by deciding to 
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split an existing leaf of a decision tree again). Thus several slightly different models result. 
The function of the validation dataset is to simulate these models and to evaluate them 
according to significant performance measures. Often this is seen as the test run. But in the 
strict sense the validation data can not be considered as independent, because they are 
involved in the model selection process. To avoid any form of influence, here three datasets 
are used. The third set is the test dataset. It is not involved in any form in the training or 
model selection process and is applied strictly after the whole model has been built. The test 
data are the unseen examples that are used to rate the models in the end. 
 
Essential for a good performance of the model is careful selection of these datasets. 
Hydrological parameters show considerable seasonal variations (see Section 2.4.1). That’s 
why it is important that the different datasets do not originate from one season only. A data-
driven model that was trained to predict the runoff with data originating from the winter 
season only will not perform well in predicting the reaction of the same catchment to a 
convective summer storm. In the present case where data of a period of only one year are 
available, the selection of the subsets is even more critical. 
 
Here a method was used that ensures that each of the three subsets contains random data from 
the different seasons. Therefore, the whole data set was divided into rainfall events and their 
corresponding runoff hydrographs. These events were classified into the seasons they belong. 
Thereafter, training, validation, and test subsets were formed by randomly assigning events 
from different times of the year to the subsets. 
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Figure 6.6. Subsets used for testing (numbered 1 to 5). 
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6.5 FEED-FORWARD NEURAL NETWORK APPROACH 
 
In this section the architecture of the ANN for rainfall-runoff prediction is derived. For 
identifying the architecture of a multilayer neural network associated with determining the 
number of neurons in each layer, the trial-and-error approach is still the most common (e.g. 
Imrie et al., 2000; Pan and Wang, 2004; Toth et al., 2000). The architecture is dependent on 
the problem to be solved and that’s why no general solution can be given. Here the setup of 
the ANN for the different configurations is shown. 
 
An area of conflict is that a small network may have insufficient degrees of freedom (weights 
and biases) to realistically represent the relationship between rainfall and runoff. A large 
network on the other hand with many weights to be adapted may memorise particularities in 
the training data and is therefore not able to generalise. Thus, the method used to determine 
the architecture of the ANN was to start with a small network with one node in the hidden 
layer. The number of nodes in the input and output layer is given by the number of input and 
output coordinates. Because of nine nodes in the input layer, one node in the hidden layer, and 
one node in the output layer, the network architecture is called 9-1-1. During the training 
process the error on the validation set was monitored. Here the Mean Squared Error (MSE) 
was taken. When the validation error increased the training was stopped and the minimum of 
the validation error was taken as indicator for best performance. This approach is sometimes 
called early stopping. It was applied to prevent the network from overfitting. 
 
The networks were trained several times with randomly chosen network weights and biases. 
The performance of these networks showed variations because they did not lead to exactly the 
same parameters. This phenomenon is well known and related to local and global minima in 
the error surface. Sometimes the training algorithm may get stuck in a local, instead finding a 
global minimum. Moreover, because of the early stopping approach the training may come to 
a halt due to an increasing validation error before the global minimum is found. This is why 
some authors do not present one single training trial but an ensemble over several training 
trials (Gaume and Gosset, 2003; de Vos and Rientjes, 2005). An ensemble is believed to be a 
better indicator for the average performance than a single training trial. This is why here also 
an ensemble of network trials is used. The ensemble size is 20 and the median of the 
ensemble is given in the tables and time series plots below. 
 
Step by step the number of nodes in the hidden layer was increased and the ensemble of 
network trials was again trained with randomly chosen parameters. Table 6.5. gives the MSE 
concerning the validation dataset. The precipitation data in original chronological sequence 
(O) were used. As Table 6.5 shows, the MSE of the smallest network with one hidden node is 
highest. With increasing number of hidden neurons the MSE decreases. The best 
configuration concerning the MSE exhibits the 9-4-1 architecture. A further increase of the 
number of neurons does not necessarily lead to a decrease of the MSE. Networks with more 
hidden layers can theoretically also perform the same function, but it turned out that 
practically the training function did not always find such good solutions in the higher 
dimensional space. Because the number of input coordinates is constant 9 and this model 
selection procedure is very time consuming it was not repeated with the other techniques of 
precipitation data manipulation (TS, I10, and IFlex). For all these configurations the 9-4-1 
architecture (see Figure 6.7) was used.  
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Table 6.5. MSE on the validation dataset as model selection criterion. 
 

Architecture MSE 
[(m³/s)²] 

9-1-1 0.0109 
9-2-1 0.0099 
9-3-1 0.0094 
9-4-1 0.0090 
9-5-1 0.0091 
9-6-1 0.0091 
9-7-1 0.0090 
9-8-1 0.0091 
9-9-1 0.0090 
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Figure 6.7. Network architecture used for the rainfall-runoff prediction. 

 
 
The two other configurations which account for the hydrological state, Previous runoff 
configuration and Cumulative rainfall configuration comprise more input coordinates (a total 
of 12 in each case). The input parameters are different though. Therefore, the model selection 
procedure was carried out separately for these configurations. 
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Table 6.6 gives the figures of the model selection procedure for the ANN in cumulative 
rainfall configuration. The model with 5 hidden neurons works best on the validation dataset. 
Hence, this architecture is used for testing. 
 

Table 6.6. Model selection for the cumulative rainfall configuration. 
 

Architecture MSE 
[(m³/s)²] 

12-1-1 0.0105 
12-2-1 0.0103 
12-3-1 0.0099 
12-4-1 0.0098 
12-5-1 0.0096 
12-6-1 0.0099 
12-7-1 0.0096 
12-8-1 0.0100 
12-9-1 0.0098 

 
In previous runoff configuration the model with 3 hidden neurons works best on the 
validation dataset as shown in Table 6.7.  
 

Table 6.7. Model selection for the previous runoff configuration. 
 

Architecture MSE 
[(m³/s)²] 

12-1-1 0.0089 
12-2-1 0.0087 
12-3-1 0.0085 
12-4-1 0.0087 
12-5-1 0.0086 
12-6-1 0.0086 
12-7-1 0.0088 
12-8-1 0.0087 
12-9-1 0.0086 

 
 
6.6 MODEL TREE APPROACH 
 
In neural network training, identifying the proper architecture means determining the number 
of neurons in the hidden layer. When setting up model trees, which are piece-wise linear 
models, the question is: How many linear equations should be included into the tree? In the 
used Weka software, the number of linear equations can be indirectly controlled with the 
parameter minNumInstances which determines the minimum number of instances at which 
one node is considered for splitting into two. 
 
The method to set up the model tree was to vary the parameter minNumInstances and monitor 
the performance on the validation dataset. The configuration which exhibited the best MSE 
concerning the validation dataset was taken and simulated with the hitherto uninvolved test 
dataset.  
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When the precipitation data in original chronological sequence (O) were used as input 
configuration a minNumInstances of 60 leads to the best performance on the validation 
dataset. The resulting model tree consists of 12 linear equations. This model selection 
procedure was executed for every input configuration anew. Henceforth the number of linear 
equations is given in brackets as in “MT (12)” to indicate the complexity of the model tree. 
 
 
6.7 RESULTS 
 
This section gives the results of the ANNs and MTs for rainfall-runoff modelling. First, the 
performances of the machine learning approaches in standard configuration with the different 
manipulations of input data are presented. Subsequently the benefits of the two other input 
vector configurations for hydrological state representation are shown. 
 
 
6.7.1 RESULTS OF STANDARD CONFIGURATION 
 
The data-driven models that have been optimised in the training process are now tested with 
the hitherto unseen test dataset. Their capacity in terms of the performance figures can be seen 
in Table 6.8. The ANN and the MT approaches were simulated with four variations of input 
data respectively (O, TS, I10, and IFlex; see Section 6.4.2.2). The figures of the MT represent 
the performance of one single model, whereas the figures of the ANN show the median of an 
ensemble of 20 test trials. 
 
The ANN with time shifted input data (TS) performs best according to all performance 
measures. The MTs do not show such a uniform pattern with respect to the different input 
variations. The MT with the input data in original chronological sequence (O) performs best 
according to most measures including efficiency coefficient, correlation, and MSE. Solely 
concerning the absolute error measures (MAE and RAE) other configurations perform better.  
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Table 6.8. Performance of ANNs and MTs in standard configuration with different configurations of 
input data (The best performance figures of the ANN and MT approaches are underlined). 

 
Architecture  RMSE 

[m³/s] 
MSE 

[(m³/s)²]
MAE 
[m³/s] 

CORR
[%] 

RAE 
[%] 

RRSE 
[%] 

E 
[%] 

ANN 9-4-1 / O Total 0.1146 0.0131 0.0307 95.2 15.0 34.8 87.9 
 Subset 1 0.0100 0.0001 0.0049 99.1 8.5 14.4 97.9 
 2 0.0444 0.0020 0.0142 91.1 31.5 43.0 81.6 
 3 0.0546 0.0030 0.0200 90.0 32.3 51.2 73.8 
 4 0.2424 0.0587 0.0982 92.8 28.4 47.3 77.6 
 5 0.0319 0.0010 0.0160 91.6 33.5 45.5 79.3 

ANN 9-4-1 / TS  0.1113 0.0124 0.0288 95.3 14.1 33.8 88.6
 Subset 1 0.0093 0.0001 0.0045 99.1 7.8 13.3 98.2 
 2 0.0473 0.0022 0.0137 89.9 30.3 45.7 79.1 
 3 0.0541 0.0029 0.0188 90.2 30.3 50.7 74.3 
 4 0.2344 0.0549 0.0932 92.7 26.9 45.7 79.1 
 5 0.0324 0.0011 0.0141 90.8 29.4 46.2 78.6 

ANN 9-4-1 / I10  0.1231 0.0152 0.0307 93.9 15.0 37.4 86.0 
 Subset 1 0.0077 0.0001 0.0044 99.5 7.6 11.0 98.8 
 2 0.0499 0.0025 0.0137 88.1 30.4 48.2 76.8 
 3 0.0708 0.0050 0.0214 86.1 34.6 66.4 55.9 
 4 0.2573 0.0662 0.0986 90.4 28.5 50.2 74.8 
 5 0.0329 0.0011 0.0154 90.6 32.2 46.9 78.0 

ANN 9-4-1 / IFlex  0.1159 0.0134 0.0302 94.8 14.8 35.2 87.6 
 Subset 1 0.0086 0.0001 0.0046 99.4 8.0 12.3 98.5 
 2 0.0461 0.0021 0.0144 90.7 32.0 44.6 80.1 
 3 0.0606 0.0037 0.0208 88.3 33.6 56.8 67.8 
 4 0.2440 0.0595 0.0952 91.7 27.5 47.6 77.3 
 5 0.0303 0.0009 0.0161 92.3 33.7 43.3 81.3 

MT (12) / O  0.1202 0.0145 0.0418 94.8 20.4 36.5 86.7
 Subset 1 0.0125 0.0002 0.0084 99.0 14.6 18.0 96.8 
 2 0.0503 0.0025 0.0157 87.5 34.8 48.7 76.3 
 3 0.0550 0.0030 0.0192 88.5 31.0 51.6 73.4 
 4 0.2498 0.0624 0.1150 91.5 33.2 48.7 76.3 
 5 0.0569 0.0032 0.0477 85.3 99.7 81.1 34.2 

MT (14) / TS  0.1281 0.0164 0.0413 93.8 20.1 38.9 84.9 
 Subset 1 0.0121 0.0001 0.0085 99.1 14.7 17.4 97.0 
 2 0.0519 0.0027 0.0163 88.2 36.0 50.2 74.9 
 3 0.0521 0.0027 0.0192 89.8 31.0 48.8 76.2 
 4 0.2702 0.0730 0.1194 89.4 34.5 52.7 72.2 
 5 0.0495 0.0024 0.0406 87.3 84.8 70.5 50.3 

MT (10) / I10  0.1250 0.0156 0.0388 94.0 18.9 38.0 85.6 
 Subset 1 0.0139 0.0002 0.0075 98.6 12.9 20.1 96.0 
 2 0.0637 0.0041 0.0159 78.8 35.1 61.6 62.1 
 3 0.0549 0.0030 0.0175 90.6 28.3 51.5 73.5 
 4 0.2603 0.0678 0.1076 90.0 31.1 50.8 74.2 
 5 0.0516 0.0027 0.0434 86.0 90.6 73.6 45.9 

MT (9) / IFlex  0.1240 0.0154 0.0406 94.1 19.8 37.7 85.8 
 Subset 1 0.0121 0.0001 0.0074 99.5 12.8 17.4 97.0 
 2 0.0478 0.0023 0.0130 89.8 28.9 46.2 78.6 
 3 0.0760 0.0058 0.0224 81.3 36.2 71.2 49.3 
 4 0.2535 0.0643 0.1080 91.0 31.2 49.5 75.5 
 5 0.0575 0.0033 0.0484 86.5 101.2 82.0 32.8 

 
On the total test dataset, the variations between the different approaches are not very 
pronounced. Especially CORR and E vary only about a few percentage points. To show the 
differences more distinctly, the performance measures are listed for the five subsets 
separately. These figures reveal a more differentiated picture. Throughout, Subset 1 is 
predicted best by all models. On this subset the ANN models exhibit an efficiency coefficient 
E of almost 98 to 99 %. The model trees reach 96 to 97 %. The prediction of the model that 
performs best on this subset (ANN/I10) is shown in Figure 6.8(a). The runoff of this dataset 
does not show much variation. The ANN prediction features an efficiency coefficient E of 
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98.8 %. The worst forecast in terms of E exhibits the MT in IFlex configuration on Subset 5 
(Figure 6.8b). The poor 32.8 % result from a continuing underestimation of the runoff curve. 

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Time [days]

R
un

of
f [

m
³/s

]

 

 
Predicted runoff MT
Observed runoff 

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time [days]

R
un

of
f [

m
³/s

]

 

 
IQR prediction ANN
Median prediction ANN
Observed runoff

Eff iciency Coeff icient E
32.8%

Efficiency Coeff icient E
98.8%

(a)

(b)  

 

 
Figure 6.8. Examples of good and poor runoff predictions. The best efficiency coefficient on a subset 
exhibits an ANN model (a) and the poorest a model tree (b). IQR stands for interquartile range and 
gives the difference between the third and first quartile of the ANN ensemble. 
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A comparison between the total figures and the figures for the associated subsets in Table 6.8 
often reveals a high discrepancy. The efficiency coefficient E of the MT in IFlex 
configuration for instance of nearly 86 % seems out of scale considering the measures of the 
subsets with an E of only 33 % in Subset 5 and 49 % in Subset 3. On the other hand, the total 
figure of the ANN (IFlex) is not much higher than that of the MT although the performance 
on all subsets is far better. The reason for this behaviour is that the performance measures E, 
RAE, and RRSE are made relative to the mean observed value. The five subsets, originating 
from different seasons, exhibit quite different mean values. When calculating the performance 
of the whole composite dataset, the mean value over all subsets is taken. Although 
mathematically correct, the information value of the measures applied on composite datasets 
is limited. 
 
Thus, in the following the weighted average figures of the test dataset’s performance 
measures are given (Table 6.9). These values are weighted with the length of the subset. The 
weighted averages represent a more conservative measure and better reflect the overall 
performance than the measures for the total dataset. Differences between the performance of 
the different approaches emerge more explicitly. Obviously MSE and MAE do not show any 
difference between total and weighted average calculation. This is the reason why the MSE 
was chosen as stopping criterion in the training process. Its value is significant for composite 
datasets as well. The MAE was not used because large discrepancies should weigh much 
more than small ones. 
 

Table 6.9. Weighted average (w. av.) performance measurements. 
 

Architecture  RMSE
[m³/s] 

MSE 
[(m³/s)²]

MAE 
[m³/s] 

CORR
[%] 

RAE 
[%] 

RRSE 
[%] 

E 
[%] 

ANN 9-4-1/ O w. av. 0.0759 0.0131 0.0307 93.3 25.8 39.1 82.7

ANN 9-4-1/ TS - 0.0745 0.0124 0.0288 93.0 23.9 38.9 82.7

ANN 9-4-1/ I10 - 0.0826 0.0152 0.0307 91.5 25.7 42.9 77.8 

ANN 9-4-1/ IFlex - 0.0770 0.0134 0.0302 92.9 25.9 39.5 81.8 

MT (12) / O w. av. 0.0842 0.0145 0.0418 90.9 42.6 48.7 71.7 

MT (14) / TS - 0.0863 0.0164 0.0413 91.3 39.9 46.7 74.8

MT (10) / I10 - 0.0873 0.0156 0.0388 89.9 39.3 49.7 71.8 

MT (9) / IFlex - 0.0890 0.0154 0.0406 90.0 42.4 52.6 66.7 
 
As in Table 6.8, here again the best performance figures of the ANN and MT approaches are 
underlined. It becomes clear that the calculation of the weighted average performance 
measurements has an effect on the ranking of the input variations of the data-driven models. 
The ANN with time shifted input data (TS) no longer performs best according to all 
performance measures. The MT (TS) now performs best according to CORR, RRSE, and E.  
 
Possible time offsets between predicted and observed runoff curves are neither directly 
readable in the tables, nor can they be seen in Figure 6.8 because of the poor temporal 
resolution. Below this problem is addressed. 
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Figure 6.9. Two examples of time lags between predicted and observed runoff curves. The predictions 
originate in both cases from ANNs and MTs with averaged precipitation input data (IFlex 
configuration). 
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Figure 6.9 shows peaks of the test dataset in fine temporal resolution. Here time lags between 
predicted and observed runoff are identifiable. Figure 6.9(a) shows a lagged prediction of 
both data-driven approaches (ANN and MT). Although both models reproduce the peak quite 
well (quantitatively as well as temporally), to a large extent the predictions follow the actual 
runoff of the input data. The second higher peak of Figure 6.9(b) again shows a pronounced 
time lag in the prediction. The prediction of the first lower peak shows considerable 
fluctuations and thus a constant time lag is not detectable. 
 
The examples make clear that the predictions are often behind the observed runoff and they 
also reveal that it is not trivial to decide which of the methods performs better in terms of 
timing lags. Should the agreement at the peak be the determining factor or the prediction of 
the rising slope? The method used here to evaluate the time lag was described by de Vos and 
Rientjes (2005) after an idea by Conway et al. (1998). It is based on repeated calculations of 
the efficiency coefficient E. So far E was calculated between predicted and observed runoff. 
Henceforth the predicted runoff is repeatedly shifted against the time axis to the observed 
time series, and E is recalculated for each step. The time shift at which E exhibits a maximum 
is a measure of the mean time lag of the model. Figure 6.10 shows the time shifts thus 
calculated of ANN and MT for the various input vector configurations. 
 
The values in Figure 6.10 at zero time shift correspond to the values in Table 6.9. Ideally, the 
curves should have their maxima at zero time shift, saying the predictions needed not to be 
shifted against the time axis to exhibit the maximum efficiency coefficient with the target 
runoff. Effectively, the predicted curves have to be shifted in order to exhibit their maxima. 
The dashed vertical line at a time shift of –10 represents the limit for a practical prediction. 
The maximum should lie to the right because otherwise there is no advantage over the actual 
runoff which is 10 time steps lagged. The offset between –10 and the time shift where a 
model exhibits its maximum can be seen as the time span the model effectively predicts 
ahead. It is obvious that ANNs and MTs exhibit a significant time lag. The ANN models 
effectively predict 3 to 4 time steps ahead, instead of 10, on which they were trained on. The 
MT perform worse and predict only 2-3 time steps ahead. 
 
Although timing errors “appear to be a common problem in most NN rainfall-runoff 
forecasting models” (Abrahart et al., 2007, p. 415), the issue of lagged predictions in data-
driven models has rarely been addressed in the literature. Often the performance measures are 
given for the time step the network was trained on, and it is not investigated if the prediction 
is better for an other time shift. But it seems more straightforward, sincere, and practical to 
communicate the effective lead time and the corresponding performance measures. In Table 
6.10 the performance figures are given for the effective lead time where the efficiency 
coefficients in Figure 6.10 exhibit their maxima.  
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Figure 6.10. Method to visualise the timing lags of (a) ANN and (b) MT predictions. The graphs show 
how many time steps the predictions need to be shifted against the time axis to exhibit the maximum 
efficiency coefficient with the observed runoff. 
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Table 6.10. Performance of ANNs and MTs for the effective forecast. 
 

Architecture Trained 
on 

Time 
shift 

Eff. RMSE
[m³/s]

MSE 
[(m³/s)²]

MAE
[m³/s]

CORR
[%] 

RAE 
[%] 

RRSE 
[%] 

E 
[%] 

ANN 9-4-1/ O 10 -7 3 0.0669 0.0112 0.0264 95.7 20.7 32.3 87.4 

ANN 9-4-1/ TS 10 -7 3 0.0628 0.0098 0.0234 96.0 17.5 30.4 88.7

ANN 9-4-1/ I10 10 -7 3 0.0692 0.0117 0.0244 95.2 18.9 33.2 84.9 

ANN 9-4-1/ IFlex 10 -6 4 0.0664 0.0106 0.0258 95.3 21.0 32.6 86.4 

MT (12) / O 10 -8 2 0.0731 0.0117 0.0368 94.6 36.5 41.0 78.8 

MT (14) / TS 10 -8 2 0.0727 0.0125 0.0353 95.4 33.3 37.9 82.6

MT (10) / I10 10 -7 3 0.0772 0.0119 0.0335 93.2 34.6 44.7 77.3 

MT (9) / IFlex 10 -7 3 0.0788 0.0123 0.0361 92.8 37.3 46.5 72.2 
 
 
The figures in Table 6.10 show that there is a discrepancy between the lead time the models 
were trained on and the steps ahead they effectively forecast. This discrepancy appears in the 
time shift. Generally the ANNs perform better than the MTs. There are also differences 
concerning the input vector configuration. The model trees with averaged precipitation input 
configurations (I10 and IFlex) exhibit a better time shift than the ones with non integrated 
precipitation measurements. However, the performance in terms of E and most other 
measures is worse. The ANN models show a similar behaviour. The ANN/IFlex effectively 
predicts farthest ahead, but the performance measures are only average. In Table 6.10 the best 
performance values of the ANN and MT approaches are underlined. Among the ANNs, the 
configuration with time shifted input data (TS) performs best according to all performance 
measures. Speaking about MTs, the calculation of the weighted averages leads to the strange 
situation that the MSE of the MT in TS configuration is worst, whereas the RMSE is best. 
Nevertheless, concerning most performance measures including E again the TS configuration 
is superior. 
 
The calculation of the performance figures for the effective lead time has shown that the input 
configuration both data-driven models work best with, is the one with time shifted input data 
(TS). The former comparisons based on the lead time the models were trained on were not so 
clear. Below this TS configuration is taken and it is investigated what improvements the 
consideration of the hydrological state has. 
 
 
6.7.2 RESULTS OF THE CUMULATIVE RAINFALL CONFIGURATION (CR) 
 
In this configuration 3 additional input coordinates are added to the TS configuration to 
account for the hydrological state of the system. They are the cumulative rainfall of all 
precipitation measurements over one day, one week, and two weeks. Thus the models now 
have 12 input coordinates instead of 9. In Table 6.11 the performance of data-driven models 
in this configuration can bee seen. As in Table 6.10 the performance measures are given for 
the effective lead time. 
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Table 6.11. Performance of ANN and MT in cumulative rainfall configuration for the effective 
forecast. 

Architecture Trained 
on 

Time 
shift 

Eff. RMSE
[m³/s] 

MSE 
[(m³/s)²]

MAE
[m³/s]

CORR
[%] 

RAE 
[%] 

RRSE 
[%] 

E 
[%] 

ANN 12-5-1/CR 10 -7 3 0.0686 0.0122 0.0266 95.2 21.4 31.8 87.6 
MT (23)/CR 10 -9 1 0.0896 0.0235 0.0433 93.1 31.9 37.6 83.0 

 
The ANN model exhibits a time shift of -7 which is equivalent to the ANN in TS 
configuration. However, the performance measures, which are again evaluated based on an 
ensemble of 20 test trials, decreased slightly. Noticeable the time lag of the MT has increased. 
Now the MT effectively predicts merely one time step ahead. The performance measures of 
the MT are given for the effective lead time of 1 time step. Some measures (RAE, RRSE, and 
E) seem to have changed for the better compared with the MT in TS configuration in 
Table 6.10, but it has to be kept in mind that the former performance figures referred to an 
effective lead time of 2 time steps. Hence, the former MT exhibited an E of  
82.6 % when forecasting 2 time steps ahead, while this MT reaches an E of 83 % when 
forecasting only 1 step ahead. Altogether the cumulative rainfall configuration does not lead 
to a real improvement. 
 
 
6.7.3 RESULTS OF THE PREVIOUS RUNOFF CONFIGURATION (PR) 
 
In the previous runoff configuration 3 additional former runoff measurements are 
incorporated. Thus, the models have 12 input coordinates as in the cumulative rainfall 
configuration above. Table 6.12 gives the results. It can be seen that the time lag of the 
prediction has decreased for the ANN and the MT, moreover, the performance measures 
increased. The ANN exhibits a satisfactory E of more than 91 %, the model tree 85 %. Worth 
mentioning is that the models now feature better E values even when effectively forecasting 
longer ahead than before. 
 

Table 6.12. Performance of ANN and MT in previous runoff configuration for the effective 
forecast. 

Architecture Trained 
on 

Time 
shift 

Eff. RMSE
[m³/s] 

MSE 
[(m³/s)²]

MAE
[m³/s]

CORR
[%] 

RAE 
[%] 

RRSE 
[%] 

E 
[%] 

ANN 12-3-1/PR 10 -6 4 0.0564 0.0079 0.0204 97.0 14.9 27.0 91.5 
MT (18)/PR 10 -7 3 0.0718 0.0127 0.0343 95.4 31.1 35.8 85.0 

 
So far all models were trained on the runoff 10 time steps ahead and all showed significant 
time lags, some configurations more than others. Below it is investigated how the time lag 
changes when the models are trained on different lead times. ANNs and MTs were trained on 
lead times between 10 and 1 time steps, again in previous runoff configuration. The results of 
the ANN models are given in Table 6.13, the figures of the MTs in Table 6.14. It can be seen 
that the ANN trained on the runoff 9 time steps ahead ends up with the same effective 
forecast of 4 time steps than the ANN showed above trained on 10 time steps lead time, 
however, all performance measures are better. The same is true for the MTs. The MT trained 
on 10 time steps lead time which was presented above effectively predicts 3 time steps ahead. 
When training this model on 7 to 9 time step lead time, the network also effectively predicts 3 
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time steps ahead, although with better performance figures. In the tables below the best 
effective forecasts in each case appear in bold print.  
 

Table 6.13. Performance measures of ANNs when trained on different lead times. 
 

Architecture Trained 
on 

Time 
shift 

Eff.  RMSE
[m³/s]

MSE 
[(m³/s)²]

MAE
[m³/s]

CORR
[%] 

RAE 
[%] 

RRSE 
[%] 

E 
[%] 

ANN 12-3-1/PR 1 0 1 0.0080 0.0001 0.0025 99.9 2.4 4.2 99.8 
- 2 -1 1 0.0115 0.0003 0.0040 99.8 3.8 6.0 99.6 
- 3 -1 2 0.0171 0.0007 0.0052 99.6 4.8 8.8 99.2 
- 4 -2 2 0.0215 0.0010 0.0072 99.4 6.5 11.5 98.6 
- 5 -3 2 0.0258 0.0015 0.0090 99.2 7.6 13.4 98.1 
- 6 -3 3 0.0316 0.0024 0.0111 98.9 9.2 15.6 97.4 
- 7 -4 3 0.0370 0.0034 0.0129 98.7 9.9 17.8 96.5 
- 8 -5 3 0.0426 0.0045 0.0157 98.2 12.3 20.6 95.2 
- 9 -5 4 0.0491 0.0061 0.0178 97.8 13.1 23.3 93.8 
- 10 -6 4 0.0564 0.0079 0.0204 97.0 14.9 27.0 91.5 

 
 

Table 6.14. Performance measures of MTs when trained on different lead times. 
 

Architecture Trained 
on 

Time 
shift 

Eff.  RMSE
[m³/s]

MSE 
[(m³/s)²]

MAE
[m³/s]

CORR
[%] 

RAE 
[%] 

RRSE 
[%] 

E 
[%] 

MT (11)/PR 2 -1 1 0.0136 0.0004 0.0067 99.8 7.4 8.0 99.3 
MT (17)/PR 3 -2 1 0.0223 0.0011 0.0098 99.5 10.0 12.3 98.4 
MT (32)/PR 4 -3 1 0.0358 0.0028 0.0136 98.5 12.2 19.0 95.7 
MT (21)/PR 5 -3 2 0.0389 0.0030 0.0146 97.7 13.5 22.2 93.9 
MT (17)/PR 6 -4 2 0.0421 0.0040 0.0198 97.9 21.5 23.5 92.8 
MT (16)/PR 7 -4 3 0.0501 0.0060 0.0258 97.7 25.3 26.7 90.9 
MT (31)/PR 8 -5 3 0.0569 0.0078 0.0283 97.3 26.7 29.0 90.1 
MT (16)/PR 9 -6 3 0.0649 0.0104 0.0320 96.1 27.8 32.1 87.9 
MT (18)/PR 10 -7 3 0.0718 0.0127 0.0343 95.4 31.1 35.8 85.0 

 
 
The effective lead time of the forecast increases with the lead time the models were trained 
on. This phenomenon can be observed for data-driven models trained on the runoff 1 to 10 
times steps ahead and can also be expected for higher lead times. ANNs generally exhibit a 
higher ratio between effective and trained-on time lags than MTs. The ANN trained on 1 time 
step lead time is the only model where overall no time shift between predicted and observed 
runoff could be observed. The MT trained on 1 time step lead time does not appear in Table 
6.14 because the effective lead time of the prediction is zero and hence it features no outlook. 
 
Below in Figure 6.11 the forecasts of the ANN and the MT for effectively predicting 3 time 
steps ahead are shown. The comparison between predicted and observed runoff is given for 
each subset separately. To the right of each subset its highest observed runoff peak is shown 
in higher temporal resolution (except for Subset 1 where no pronounced runoff peaks can be 
observed). On the whole dataset both approaches reach an efficiency coefficient E of more 
than 90 %. The ANN exhibits an E of >90 % in all five subsets. The MT exhibits E values 
<90 % for the Subsets 4 and 5. Generally the ANN performs better than the MT, except in 
Subset 2 where the model tree exhibits the better efficiency coefficient. A visual comparison 
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of the highest peak in this subset shows that the ANN prediction has more variations and thus 
substantiates the performance measures. Subset 4 exhibits the highest runoff peak of the entire 
test dataset. This peak is underestimated by all data-driven models. It can also be seen that the 
interquartile range (IQR) of the ANN ensemble is very small, indicating that the variations of 
the single ANNs trained with randomly chosen initial parameters are marginal. The poorest 
performance exhibits the MT in Subset 5 with an E just under 75 %. The poor efficiency 
originates from a continuing underestimation of the base runoff rather than a divergence in 
predicting the runoff peaks. 
 
 
6.8 SUMMARY AND DISCUSSION 
 
Previous runoff measurements are frequently used in runoff models to indirectly represent the 
hydrological state of a catchment but normally at the cost of a timing error. However, the 
problem of lagged predictions in ANN models is often not investigated. So far only a few 
papers report approaches to eliminate or reduce timing errors (e.g. De Vos and Rientjes, 2005; 
Abrahart et al., 2007). Unfortunately the elimination of the timing error was not possible 
without an increase of the RMSE. It seems to be a trade-off between timing errors and 
statistical measures. The above mentioned papers used rain gauge data only but there are 
indications that radar data might be helpful to correct the timing problem (cf. Abrahart et al., 
2007). The results of the present work that utilised radar data show that the choice of the input 
parameters has indeed an influence on the timing error, but radar data alone are not the 
ultimate solution to this problem. 
 
The various input configurations of the models lead to different timing errors and statistical 
measures. When calculating the performance measures of composite datasets, weighted 
averages have a higher information value. Concerning the efficiency coefficient E, ANNs and 
MTs performed best with time shifted input data. This configuration was expanded with 3 
additional input coordinates leading to the cumulative rainfall and previous runoff 
configuration, respectively. The cumulative rainfall configuration does not lead to a real 
improvement. The previous runoff configuration on the other hand features better statistical 
measures and a reduced timing error. The reason of this instance is believed to lie in the way 
the runoff values are mapped by the model. De Vos and Rientjes (2005) described the 
problem that ANNs give most of the weight to the runoff input and thus undervalue the 
precipitation inputs. Therefore, it is discussed below how the input parameter actual runoff is 
treated in the various configurations. When simulating the models with constant values except 
for the actual runoff the mapping of this parameter can be visualised. Figure 6.12 shows the 
output of the ANN ensemble-models when all inputs except actual runoff are kept constant at 
their median occurring value. It can be seen that the actual runoff is mapped similarly in 
standard and cumulative rainfall configuration. The mapping is in both cases quite linear. The 
additional cumulative rainfall inputs have not much influence on the mapping of the actual 
runoff. When three preceding runoff measurements are included, however, the response curve 
changes considerably. The additional preceding runoff parameters change the weight given to 
the actual runoff significantly. This is also the configuration that exhibits the minimum time 
lag. 
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Figure 6.11. Forecasts 3 time steps ahead of ANN model and MT. The comparison between predicted 
and observed runoff is given for each subset separately. On the right hand side the highest observed 
runoff peak of each subset is given in higher temporal resolution. 
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The investigation of different lead times in model training revealed that the lead times the 
models are trained on are rarely the lead times the models effectively forecast. Improvements 
in the efficiency coefficient of up to 6 percentage points were observed when training the 
models on shorter lead times but with constant effective lead time. This phenomenon was 
observed on ANN models as well as MTs and it can help to get qualitatively better forecasts. 
The observation that the “prediction lag effect is especially significant in forecasts with small 
lead times“ in De Vos and Rientjes (2005, p.119) can not be supported by the present data. 
This can be due to the fact that here a 15-minute integration time was applied and not hourly 
data were used. Here the ANN model trained to predict the runoff 15 minutes ahead did not 
show a time lag. The results indicate that it is worthwhile to train data-driven models on 
different lead times and examine the effective lead time because the performance may 
increase. It also became apparent that the input configuration has a considerable influence on 
the outcome of the model. A certain way how the data are presented to the model can make it 
easier or contrariwise also more difficult for the data-driven approaches to extract the relevant 
information. 
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Figure 6.12. Visualisation of the mapping of the parameter actual runoff in ANN ensemble models for 
various configurations. The curves show the output of the ANN ensemble models when all inputs 
except actual runoff are kept constant at their median occurring value. 
 
 

 



 87
 

One objection to ANN models that is occasionally raised is that these models are almost 
intransparent with their many weights and complex nonlinear functions. The figure above has 
shown that there are methods to make the network behaviour more transparent but for many 
users of neural network tools the ANN is still a black box where inputs lead to outputs but it 
is not traceable how the relationship materialises. Model trees allow a little more insight how 
they treat the inputs but they also become unclear the more linear models are included. The 
presented MTs exhibit 9 to 32 linear models. The parameters do not allow an interpretation of 
the hydrological processes involved. Moreover, only a few clusters are included in the linear 
models and as a consequence the desired gapless spatial coverage is lost. 
 
Concerning the statistical measures ANNs typically perform better than MTs with the same 
configuration. Worth mentioning is that in each case the median prediction of an ensemble of 
20 ANNs is taken for the purpose of comparison. The variations among the ensemble are 
small though. 
 
The hydrographs indicate that predicting high peaks with data-driven models is demanding. 
One reason is that high peaks occur rarely and that’s why the models do not gain so much 
information about them in the training process. DDMs are known to perform poorly on data 
beyond the range they were trained on. Moreover, “during extreme events data usually 
contain a significantly higher level of observation noise” (Cherkassky et al., 2006, p. 116). 
Some approaches, therefore, propose several local models instead of one global one (e.g. 
Solomatine and Siek, 2006). This can also be a future optimisation of the present ANN 
approach. When more data of high peaks are available, separate models for high and low 
flows can be advantageous. 
 
The issue of poor performance beyond the range ANNs were trained on is not unique to 
hydrological applications. Also authors in other fields of sciences report about inadequate 
extrapolation capabilities of their ANNs and sometimes propose ways to overcome this 
problem. Landauer (2010) for instance defines a strange range besides a range amply covered 
by data. For the strange range another extrapolation mechanism is used for the ionospheric 
model. The investigation of such approaches from other fields of sciences with regard to 
technical feasibility might lead to unconventional new approaches in hydrology. 
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7 IMPROVING WEATHER RADAR ESTIMATES OF 
RAINFALL WITH DATA-DRIVEN MODELS 

 
 
7.1 INTRODUCTION 
 
Although the weather radar can more likely be considered a qualitative than a quantitative 
instrument, it has always been used to estimate rainfall amounts. The main advantage of 
weather radars when it comes to estimating rainfall is their high spatial and temporal 
resolution and the gapless spatial coverage. Today’s weather radars make a full volume scan 
within about 5 minutes and thereby cover an area of tens of thousands of square kilometres. 
Perhaps the biggest advantage of weather radars is that they reveal a three-dimensional 
structure of precipitation (RHI-plot, see Figure 7.1). By displaying in what height what 
intensity of precipitation can be assumed, weather radars give an impression of the 
precipitation generation type: whether it is a cyclonic or a convective event. 
 
Because of their advantages “radar measurements of precipitation have enjoyed wide-spread 
operational usage and will remain so in the future” (Bringi and Chandrasekar, 2001, p. 534). 
But other than rain gauges which measure precipitation directly on the ground, the radar 
determines the reflectivity aloft. Due to this principle, several sources of errors occur (see 
Section 3.7). Therefore, estimating the rain rate on the ground from radar reflectivity 
measurements is still a hot topic in radar meteorology and hydrology. 
 
Bringi and Chandrasekar (2001) divide rainfall estimation techniques by radar into physically 
and statistical/engineering based approaches. Physically based approaches attempt to estimate 
rain rates by radar measurements together with an underlying rain model. The rain model 
generally describes the shape and material parameter of the rain drops, their size distribution 
and fall speed. Such an approach is used in nearly all operational weather radars. The rain rate 
is estimated from the measured reflectivity factor by non-linear relationships. Physically 
based approaches do not include any feedback e.g. from rain gauges as opposed to 
statistical/engineering based approaches where a feedback is used (cf. Bringi and 
Chandrasekar, 2001). 
 
Rain gauges and weather radars have different advantages. Rain gauges measure the rain rate 
quite accurately but the measured rate is only relevant for a limited area. A few kilometres 
away the situation can be quite different, especially during convective rain events and in 
Alpine terrain. On the other hand, weather radars provide data with good spatial coverage and 
temporal resolution. They typically determine the rain rate for every square kilometre, one 
weakness, however, is their often poor metering precision limiting the applicability of the 
radar for quantitative purposes. An obvious goal is to adjust radar measurements to the 
measurements of a rain gauge, combining the main advantage of radar namely gapless spatial 
coverage with that of the rain gauge – more accurate measurements on ground level. 
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Figure 7.1. Three-dimensional structure of precipitation given by the weather radar. Levels of rain rate 
as distinguished by the Austrian weather radar network operated by Austro Control GmbH (a). Range-
height indication for an advective event (b). Range-height indication for a convective event (c). 
 
 
Here it is investigated if the vertical reflectivity profile as input of data-driven models can 
help to achieve better rainfall estimates for the ground level. For this purpose weather radar 
data were adjusted to rain gauge measurements using several data-driven approaches.  
 
Operational weather radars generally apply a Z-R relationship as in Eq. (3.11) to relate the 
measured variable – the reflectivity Z – to the desired rain rate R. In the Austrian weather 
radar system the “standard Z-R relationship”  
 
Z = 200 R1.6   [mm6/m³], R in [mm/h]       (7.1) 
 
is implemented. Typically the measured reflectivity at the lowermost elevation is related to 
the rain rate. In an Alpine environment like in Austria, low level radar measurements are 
rarely available. In the study area the lowest elevation where radar data aloft the rain gauge 
are available is 3 km (MSL). 
 
The objective of the present study is to find a relationship that is not only valid for the 
particular site on which the model was trained, but can also be applied to other comparable 
terrain where no rain gauge data are available. Henceforth only radar data should be necessary 
for the model to give a better estimate for the rain rate on the ground. 
 
Data driven models are efficient methods to model complex input-output relationships. In this 
chapter several approaches are described to improve weather radar estimates of rainfall by 
using data-driven models. The models accept radar data as inputs and are trained to predict 
the rain rate as measured by the rain gauge. 
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7.2 DATA AVAILABLE 
 
For this study, rain gauge and radar data from the province of Styria, Austria, were available. 
The data sets extend over a two year period (2001 and 2002). The two available rain gauges 
use the tipping bucket principle with a resolution of 0.1 mm. Their temporal resolution is 15 
minutes. Reflectivity measurements are obtained from the Doppler weather radar station on 
Mt. Zirbitzkogel (see Section 3.8). The distance between the rain gauges and the weather 
radar is about 70 km, see Figure 7.2.  
 
 

radarWeather
x

Rain gauges
xx

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

50 km 
 

Figure 7.2. Study area in the province of Styria, Austria, showing radar and rain gauge locations. 
 
 
7.3 PREPROCESSING 
 
As described in Section 6.4, in data-driven modelling the examination of the data is 
important. Below the applied preprocessing steps are described. 
 
 
7.3.1 DATA ANALYSIS 
 
Precipitation is detected by the radar earlier than by the rain gauge. The weather radar on Mt. 
Zirbitzkogel can not measure the reflectivity below 3 km (MSL) over the study area. 
However, the two rain gauges there detect the precipitation later when the raindrops reach the 
ground. The radar and rain gauge time series were compared based on 5-minute time steps. 
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The highest correlation between these two time series was observed when the rain gauge 
series was shifted one time step against the time axis. This can be explained with the mean 
falling velocity of raindrops. Therefore, this time lag was considered in the models. 
 
 
7.3.2 INPUT/OUTPUT PARAMETERS 
 
As the model should predict the rain rate on the ground, the output vector consists of one 
variable namely the rain rate measured by a rain gauge on ground level. For the input vector 
the question is: Which radar measurements of the three-dimensional space aloft should be 
chosen as input vector? Liu et al. (2001) used the reflectivity at 1 km height (nine adjacent 
measurements with the rain gauge at the centre of the quadratic grid) as input vector for their 
neural network scheme for radar rainfall estimation. For the present study this approach is not 
possible because of the Alpine terrain and the location of the radar at more than 2300 m 
(MSL), low-level radar data are not available. Other authors (Li et al., 2003; Xu and 
Chandrasekar, 2005; Teschl et al., 2007) used superposed reflectivity measurements, the so-
called vertical profile of reflectivity as input vector. The vertical profile of reflectivity also 
yields information about the nature of the precipitation event. Convective precipitation is 
characterised by high reaching clouds up to 10 km and more, whereas cyclonic rainfall events 
generally are characterised by lower level radar echoes. This information is considered 
important as the rain rate is also related to the type of rainfall.  
 
In this study, first only the lowest measured radar reflectivity Z3 (above 3 kilometres) was 
taken as input parameter and the Z-R relationship was recalibrated using regression analysis 
techniques. Feed-forward neural networks and model trees were also trained with this setting. 
Moreover, these DDMs were also trained with several superposed reflectivity measurements 
as input vector to examine what improvement the knowledge of the vertical structure of 
precipitation can bring when estimating ground rainfall. The applied weather radar measures 
the vertical profile in 1 km steps up to a height of 16 km (MSL). The lowermost visible 
measurement lies at 3 km (MSL; see Figure 7.3). To represent the vertical profile the 
reflectivities Z3, Z4, Z5, and Z6 (from 3 to 7 km) have been included in the input vector. The 
highest level where precipitation was detected h [km] is an additional parameter, because 
there is a significant correlation between measured rainfall on the ground and the highest level 
with precipitation as measured by the radar. Table 7.1 lists the input and output vectors for all 
applied DDMs. The log transformation is used to linearise the pristine non-linear Z-R 
relationship. 
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Figure 7.3. Visualisation of the inputs of the models. Radar measurements above the rain gauge form 
the input parameters of the data-driven models. 

 
 

Table 7.1. Overview of the applied DDMs and their input parameters. 
 

DDM Inputs Output 

Non-linear regression Z3 R 
Linear regression log(Z3) log(R) 
Feed-forward NN Z3 R 
. log(Z3) log(R) 
. Z3, Z4, Z5, Z6, h R 
. log(Z3), log(Z4), log(Z5), log(Z6), h log(R) 
MT Z3 R 
. log(Z3) log(R) 
. Z3, Z4, Z5, Z6, h R 
. log(Z3), log(Z4), log(Z5), log(Z6), h log(R) 
Radial basis NN a3, a4, a5, a6, h R 
IBk a3, a4, a5, a6, h R 

Zx: Reflectivity (mm6 m-3) measured from x*1000 m to (x+1)*1000 m altitude 
ax: Radar rain rate (mm/15 min) measured from x*1000 m to (x+1)*1000 m altitude 
h: altitude of highest radar echo  

 
 
7.3.3 DATA SEPARATION 
 
For the development process of the data driven models, several sources of data are necessary: 
data for training and validating the model and data for testing the completed model. The 
dataset was divided into training, validation, and test datasets. However, the test datasets 
originate from another location 10 km away. The training dataset was used to determine the 
parameters of the model. The validation dataset is used to determine the best model 
configuration based on performance measures. Note that for regression models this validation 
step is not required thus in this case training and validation data were used to determine the 
model parameters. In order to examine if the relationship found between radar reflectivity and 
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rain gauge is representative for other sites, data from the second rain gauge and the associated 
radar data were used as test dataset. This dataset was used to determine the performance of the 
model. The partitioning between training and validation dataset from the first rain gauge site 
was done randomly. Each of these datasets comprises 449 pairs of radar and corresponding 
rain gauge measurements. The test dataset taken from the other rain gauge site contains 1310 
pairs of measurements. The test data was formatted in the same way as the training and 
validation data. Again the rain gauge time series was shifted 5 minutes with respect to the 
radar measurements. The elevation of this rain gauge station is approximately the same as the 
first one. 
 
 
7.4 DATA-DRIVEN APPROACHES 
 
In this section the configuration of the various data-driven approaches for improving weather 
radar estimates of rainfall is described and the details for the setup of the models are given. 
 
 
7.4.1 REGRESSION ANALYSIS 
 
Regression analysis is an example of data-driven modelling and frequently used for data 
analysis and prediction. Here regression analysis is used to readjust the parameters of the Z-R 
relationship. For this purpose the weather radar and rain gauge data were investigated. Below 
the recalibration is described. 
 
In general the standard Z-R relationship is used to transform the radar reflectivity 
measurements into rain rate. As stated in Chapter 3.3, the Z-R relationship is linked to the 
drop size distribution of the precipitation event. As the drop size distribution is far from being 
uniform, not during one single precipitation event and even less over various seasons and 
locations, the assumption of a fixed Z-R relationship is always only an approximation. 
 
The regression analysis is applied to readjust the coefficients a and b of the power-law 
function in Eq. (3.11). For that purpose the data are plotted in two dimensions. The Z-data 
from the weather radar on the abscissa and the R-data originating from the rain gauge on the 
ordinate. The weather radar measurements are all but the predictor data and the rain gauge 
data the desired response. Therefore, the Z-R relationship is written in the form below: 

b

a
ZR

1

⎟
⎠
⎞

⎜
⎝
⎛=              (7.2) 

 
The scatter plot was approximated by this power-function. The method of least squares was used 
to fit Z and R values, i.e. to determine the coefficients a and b. For this purpose non-linear 
regression techniques are necessary. The calculation is much more complex than in linear 
regression because an iterative approach is required to determine the model parameters. First an 
adequate start value for each of the parameters is necessary. Subsequently the parameters are 
adjusted and it is determined whether or not the fit improves. In this process the fitting algorithm 
determines direction and magnitude of the adjustment. The Levenberg-Marquardt method which 
is used as training algorithm in ANN training can be used as fitting algorithm in non-linear 
regression. The fitting curve in Figure 7.4 was obtained using the non-linear least-squares fitting 
method. The applied software tool was the MATLAB Curve Fitting Toolbox. The residuals are 
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also presented. The residual of a specific data point is defined as the difference between the 
response value and the predicted response value by the fitted model.  
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Figure 7.4. Fitting the Z-R data with non-linear regression. Below the fitting curve the residuals of the 
data points are given. 

 
In the field of weather radar research the complex non-linear regression techniques are 
sometimes avoided by transforming the data prior to the regression. The logarithm lends itself 
for this transformation because the original Z-R relationship is a power function. When 
applying the log transformation on both sites, the Z-R relationship reduces to a linear equation 
in the bi-logarithmic plot. 
 
log Z = log a + b log R           (7.3) 
 
In other words, the log transformation linearises the original non-linear model. This also 
simplifies the regression analysis. Now a linear regression can easily be carried out. Simple 
matrix techniques can be used to determine the parameters a and b. The fitting was carried out 
applying the linear least-squares fitting process. This process minimises the summed square of 
the residuals. Figure 7.5 shows the linear regression on the logarithmised data.  
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Figure 7.5. Fitting the log(Z)-log(R) data with linear regression. Below the fitting curve the residuals 

of the data points are given. 
 
 
Besides the linearisation another effect of the log transformation implicates. The Z data that 
originally range over more than four orders of magnitude are thus evenly spread out. 
 
The coefficients a and b, the two regression methods ended up with, are different. The reason 
is that different data are optimised. In case of the linear regression in the bi-logarithmic plot, 
the minimised sum of squares of the residuals (SSR) refers to logarithmic data. (Table 7.2). 
 
 

Table 7.2. Determined coefficients of the Z-R relationship. 
 

Method Data Coefficients SSR 
  a b  

Nonlinear Regression Z, R 15.80 2.29 8869.1 
Linear Regression log (Z), log (R) 20.09 3.69 132.2 
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7.4.2 NEURAL NETWORK APPROACHES 
 
Feed-forward neural networks and radial basis function neural networks have been used for 
weather radar rainfall estimation. Both network types can solve the desired complex 
approximation task. The feed-forward neural network is one of the most common types of 
neural networks. Xiao and Chandrasekar (1997) developed a neural network of this type for 
radar rainfall estimation. According to Liu et al. (2001) a disadvantage of feed-forward neural 
networks is the computationally demanding training process. They have chosen a radial basis 
function neural network for their weather radar rainfall estimation task. 
 
Here both types of neural networks – feed-forward and radial basis function – are applied to 
the available data (originally and logarithmised). 
 
 
7.4.2.1 Feed-forward neural network approach 

 
The network function of a feed-forward neural network (FNN) is largely determined by the 
number of neurons in the different layers and the weighted connections between them. Here a 
fully connected network is used where all neurons of two successive layers are connected to 
each other (see Chapter 5). An area of conflict is that a small network may have insufficient 
degrees of freedom (weights and biases) to realistically represent the relationship between 
radar reflectivity and ground measured rainfall, and a large network with many weights to be 
adapted may memorise fluctuations in the training data and is consequently not able to 
generalise. The generalisation capability of the network is very important for this particular 
task, because it is assumed that weather radar measurements contain noise that should not be 
memorised by the network.  
 
Thus the method used to determine the architecture of the FNN was to start with a small 
network with one neuron in the hidden layer and to train it 20 times with randomly chosen 
initial parameters. Thus here an ensemble of 20 network training trials is used. As in Chapter 
6 this is to indicate the average performance of the network. When the mean squared error on 
the validation dataset increased the training was stopped and the minimum of the validation 
error was taken as indicator for the performance. Thereafter the number of hidden nodes is 
increased and the network architecture yielding the best performance is chosen. The 
architectures thus determined for the various input/output data are given in Table 7.3. Besides 
the original Z-R data the network is also trained with logarithmised data and with additional 
input parameters. Sigmoid transfer functions were applied for all layers except the output 
layer were an unbounded linear function was used. 
 

Table 7.3. Applied FNN architecture and input/output configurations 
 

Input Output Architecture 

Z3 R 1-6-1 
log(Z3) log(R) 1-2-1 
Z3, Z4, Z5, Z6, h R 5-6-1 
log(Z3), log(Z4), log(Z5), log(Z6), h log(R) 5-8-1 
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7.4.2.2 Radial basis neural network approach 

 
Radial basis function (RBF) neural networks have also been utilised for weather radar rainfall 
estimation. This neural network type has advantages concerning setup time. In the standard 
form the RBF network has as many radial basis neurons as training vectors (here 449). But 
not only the number of vectors is identical, also the weights of the RBF neurons are identical 
to the training vectors. The RBF which calculates the Euclidean distance between input vector 
and weight vector (see Section 5.1.2) will thus produce 1 whenever a new input vector is 
identical to a training vector. The advantage of this architecture is that it is not necessary to 
find the proper number of neurons by trial and error. 
 
The parameter that has to be adapted is the spread of the radial basis function. This parameter 
determines “the width of an area in the input space to which each neuron responds” (Demuth 
and Beale, 1998, p. 6-6). If the spread constant is too small the network will only react to the 
test vectors close to the training vectors. Test vectors which exhibit too large an Euclidean 
distance from the training vectors are not detected. On the other hand if the spread is too large 
all neurons respond to the whole input space. 
 
It is advisable to scale the input parameters such that they have similar ranges since the 
Euclidean distance is crucial. The applied data transformation method normalises the mean 
and standard deviation of the training dataset. It is a scaling of the network inputs. And this 
scaling has also to be executed for new data since the network was trained to perform on 
transformed data. 
 
The proper spread of the radial basis function was determined based on the validation data. 
The MSE on the validation dataset was calculated for different spread values. It appeared that 
the RBF network with input data used so far did not yield satisfactory results. Even the 
applied data transformation was of no avail. Instead, the Z-values were transformed to R-
values prior to the training of the network. For that purpose the standard Z-R relationship was 
applied. 
 
The proper spread value of the network with scaled inputs was determined based on the 
validation data. The MSE on the validation dataset was calculated for different spread values. 
A minimum was determined at a spread value of 3.1. Table 7.4 shows the configuration of the 
RBF network. 
 
 
Table 7.4. Applied RBF architecture. The variable ax refers to the radar measurement Zx transformed 

with the standard Z-R relationship into rain rate, h is the highest level where precipitation was 
detected. 

 
Input Output RB neurons spread 

a3, a4, a5, a6, h R 449 3.1 
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7.4.3 M5 MODEL TREE APPROACH 
 
The adaptation of model trees to certain data is equivalent to the optimisation of the linear 
equations. The number of the linear equations can be controlled in the applied Weka software 
indirectly by the minNumInstances parameter. This parameter determines the minimum 
instances one node is considered for splitting into two. The MSE on the validation dataset is 
the criterion to decide which of the model trees is chosen for testing with the independent test 
dataset. Besides the original Z-R data the model trees were also trained with logarithmised 
data and with additional input parameters (Table 7.5). 
 
 

Table 7.5. Applied MTs and their input/output configurations. 
 

Input Output # equations 

Z3 R 11 
log(Z3) log(R) 2 
Z3, Z4, Z5, Z6, h R 27 
log(Z3), log(Z4), log(Z5), log(Z6), h log(R) 2 

 
 
7.4.4 INSTANCE-BASED LEARNER 
 
The instance-based learners have a similarity to the radial basis network. In instance-based 
learners the training data are stored and again the Euclidean distance is used to determine the 
training vectors that are closest to a test vector. These kinds of data-driven models are also 
known as memory-based or “lazy learners” because they basically store training examples to 
make predictions. 
 
The IBk, which is used here, is a k-nearest-neighbour classifier (cf. Witten and Frank, 2005). 
The number of nearest neighbours k can be specified. This is the equivalent to the spread 
constant in RBF neural networks. The difference though is that the number of neighbours 
contributing to the result is fixed. The tuning of the IBk learner is done via the k value. The k 
parameter was determined based on the validation dataset. 
 
Another parameter of tuning is to adapt the influence of the neighbours according to their 
distance to the test vector. When no weighting is applied, all k neighbours contribute equally 
to the result. Options are to obtain the weight from the inverse distance (1/dist), or from the 
complement of the distance (1-dist) (cf. Gómez et al., 2007). All of these alternatives have 
been applied. The best results obtained the configuration 1/dist (Table 7.6). Again the Z-
values were transformed to R-values prior to the training. 
 
 

Table 7.6. Applied IBk learner configuration. The IBk uses 15 inverse-distance-weighted nearest 
neighbours for classification. 

 
Input Output Weighting k 

a3, a4, a5, a6, h R 1/dist 15 
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7.5 PERFORMANCE EVALUATION 
 
The performance of the models was evaluated by comparing their outputs with the rain rates 
measured by the rain gauge. In case the model was trained to predict the logarithmised value 
log(R) the inverse transformation was applied prior to the evaluation. The statistical measures 
used are defined below. 
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Note: The MSE is used in many data-driven approaches as performance measurement on the 
validation data. The RMSE is used to give the measure the same dimensions as the predicted 
values. 
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In Equations (7.4) to (7.8) n represents the number of pairs of variates, r the rain rate from the 
rain gauge, and a the estimated rainfall from the radar measurements. The values r and a are 
given in mm per 15 minutes. These measures were calculated for the rain gauge site that was 
not involved in the training and validation process.  
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7.6 RESULTS 
 
The data-driven models as defined in Section 7.4 and trained on the first rain gauge site are 
now simulated with the new input data from the second site 10 km away from the location 
they were trained on. Their performance is given in Table 7.7.  
 
The weather radar data at this location show a poor performance with respect to the reference 
rain gauge data. The study reveals what improvements are possible with the various DDMs 
and input configurations. 
 
When applying the original Z-data of the lowest elevation as input, the FNN leads to the best 
performance measures apart from the correlation coefficient which is better in the non-linear 
regression model. The model tree, however, did not yield a better performance than the 
standard relationship except for MAE and RAE.  
 
With logarithmised inputs the situation is reverse. Here the model tree is superior to the FNN 
in all aspects. The regression model also performs better than before. All approaches exhibit 
lower absolute errors than with original data. The RAE is up to 11 percentage points lower. 
 
Both feed-forward neural network and model tree were also trained with additional inputs to 
account for the vertical profile of precipitation. It appears that the performance of the FNN is 
typically better than with one input parameter only. Figure 7.6 shows the relative 
improvement of the performance of the models with 1 and 5 inputs based on the standard  
Z-R relationship. The measures are often better than the retrospectively optimised Z-R 
relationship for this very site. 
 
However, the MT still performs poorer than the standard relationship with original input data. 
With logarithmised data the additional inputs are not reflected in the model equations. The 
model tree builds the same model as before with one input only and that’s why the 
performance measures remain the same. 
 
The memory-based approaches RBF and IBk were also trained with a five-dimensional input 
vector, the original Z input data were converted into rain rate though. When applied to the 
new data both models exhibit a correlation >34 %. The RBN shows lower absolute errors, the 
IBk on the other hand, lower squared errors. 
 

 



102 Improving weather radar estimates of rainfall with data-driven models
 

Table 7.7. Performance measures of the various data-driven approaches compared to standard Z-R 
outcome and location optimized Z-R relationship. The best performance measures of each block 

appear bold. 
DD Model # inputs CORR 

[%] 
RMSE 

[mm/15 min] 
MSE 

[(mm/15 min)²] 
MAE 

[mm/15 min] 
RAE 

[%] 

Weather radar data Standard 
Z-R relationship  
(a = 200, b = 1.6)  

- 28.76 1.0909 1.1901 0.5391 100.30 

Optimised retrospectively 
based on  
  Original data 
(a = 2.43, b = 3.78) 

  
 

32.62 

 
 

0.9604 

 
 

0.9223 

 
 

0.5004 

 
 

93.11 

  Logarithmised data 
(a = 7.91, b = 4.93) 

 32.26 1.0127 1.0256 0.4588 85.37 

Original data       
  Regression  1 31.93 1.0249 1.0505 0.5121 95.29 
  FNN 1 31.66 0.9858 0.9719 0.4984 92.73 
  MT  1 26.88 1.2117 1.4681 0.5260 97.87 
Logarithmised data       
  Regression  1 32.65 1.0103 1.0208 0.4611 85.78 
  FNN  1 31.09 1.0085 1.0172 0.4729 87.98 
  MT 1 31.89 1.0004 1.0009 0.4656 86.65 
Original data       
  FNN 5 38.41 0.9516 0.9055 0.4799 89.28 
  MT  5 28.66 1.1124 1.2373 0.5175 96.29 
Logarithmised data       
  FNN  5 32.93 0.9960 0.9920 0.4655 86.62 
  MT  5 31.89 1.0004 1.0009 0.4656 86.65 
Original radar rainrate data        
  RBN 5 34.22 0.9762 0.9529 0.4788 89.08 
  IBk  5 35.12 0.9658 0.9328 0.4918 91.51 
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(b) 
 
Figure 7.6. Relative improvement of the performance of the FNN models. Models with 1 and 5 inputs 
are compared to the standard Z-R relationship for original data (a) and logarithmised data (b). For the 
purpose of comparison the measures of the retrospectively optimised Z-R relationship are given. 
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7.7 SUMMARY AND DISCUSSION 
 
By means of data-driven models the radar reflectivity above a rain gauge was mapped to the 
measurements on the ground. This is challenging because of errors and limitations of the 
radar data. The errors of the training data set can theoretically be driven to a very low value 
with sufficiently capacious models. What is important, however, is the performance on new 
data. Here the test dataset comes from another rain gauge site. This was thought to be 
important in order to test the ability of the models to generalise.  
 
First it was investigated what improvements are possible when readjusting the parameters a 
and b of the Z-R relationship. The determined parameters often do not fall into the ranges 
found in the literature (Battan, 1973). The sized a value is often less than the 16.6 while b 
frequently exceeds 2.87. This is ascribed to the special situation of the study area: the lack of 
low-level data and the related sources of radar errors. Moreover, the differences between the a 
values determined at the two rain gauge sites are noteworthy. This shows that the transfer of 
the determined relationship to the other site is challenging. 
 
The results show that the style the data are presented to the models (in original or 
logarithmised form) influences the outcome as well as the choice of the model. Striking is the 
fact that the model tree shows acceptable performance on the logarithmised data but yields 
often poorer performance values than the standard Z-R relationship when trained with original 
data. The MT which produces piecewise linear models has problems to yield stable results 
based on the non-linear Z-R relationship. That does not mean though that the MT is not able 
to fit the original data appropriately. With 11 and 27 linear equations (for the 1 and 5 input 
version, respectively) the MT is able to approximate the non-linear relationship of the training 
data properly, but the model is not able to generalise to new data. The linear relationship of 
the logarithmised data, however, is fitted with 2 equations and produces acceptable results. 
Worth mentioning is the fact that the MT weights the lowest elevation in particular. Even 
when another three logarithmised Z inputs and the height of the highest radar echo are 
presented, the model tree only applies the lowest reflectivity. Thus here more inputs do not 
lead to a better performance. 
 
Contrariwise, FNNs do recognise the additional input parameters. They exhibit better 
performance measures with the vertical reflectivity profile as input vector. This shows that 
additional measurements are helpful even if their distance to the ground is several kilometres. 
Nevertheless it can not be recommended to include all available measurements. Li et al. 
(2003) use equispaced reflectivity inputs from 1 to 4 km above the gauge and report that a 
resolution better than 1 km “did not significantly improve the estimation accuracy while it 
added to the computational load” (p. 2349). 
 
In contrast to the MTs the data are based upon an ensemble of models. Twenty FNNs are 
applied for each configuration. With an ensemble the proper size of the network could be 
optimised in the validation process on a well-founded basis. The findings are more reliable 
than using one single training trial only. The networks thus determined exhibit one hidden 
layer only. The performance of bigger networks decreased on average. In earlier publications 
on neural network based rainfall improvement two hidden layers were used (Xiao and 
Chandrasekar, 1997; Teschl et al., 2007). In these papers the network size was determined 
based on several trial and error experiments.  
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The RBF neural network turned out to be very sensitive concerning the input data. Scaling the 
data is advisable even though it was sometimes not enough. Finally the transformation of the 
Z-values into rain rate brought performance values better than the standard relationship. Here 
a network with as many neurons as training vectors was used and the model features low 
absolute errors and a high correlation compared to the other approaches. To ensure the 
comparability the RBF neural network was trained with the same datasets as the other models 
but this neural network approach is also suitable for adaptive training. Liu et al (2001) and Xu 
and Chandrasekar (2005) presented RBF networks that can be updated when new data 
become available. In this process it is not necessary to retrain the whole neural network 
merely some RFB neurons are added. It is not required that there are as much neurons as 
training samples, neurons can also be removed. Therefore, RBF networks proved to be a 
strong alternative to FNNs. Moreover, the training process of a RBF neural network is often 
shorter compared to a FNN. 
 
The instance-based learner surprised with a good performance. This type of memory-based 
model is also not very time-consuming to set up. An input scaling is also recommended when 
using this type of models. 
 
The validation process proved to be essential for the ability of the model to generalise. In this 
phase the best configuration of the data-driven model is chosen. It also prevents FNNs from 
overfitting. The results have shown that the so validated models succeeded in predicting new 
data. Thus they generalised from the training data. The consideration of the vertical profile of 
precipitation in FNN models leads to better results even in complex terrain and thus can be 
recommended. 
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8 CONCLUSION AND OUTLOOK 
 
 
Meanwhile data-driven models are quite common in hydrology but the applications in radar-
hydrology are still rare. But particularly in this field of science data-driven approaches like 
neural networks, model trees, and instance-based learners are promising. On the one hand lots 
of data are stored in the archives, which is essential to train these approaches, and on the other 
hand physically based models are often not applicable or do not produce satisfactory results 
because of a limited knowledge of the processes and parameters involved. 
 
The use of meteorological radar measurements for estimating the current precipitation and for 
deriving estimates of runoff is the principal duty of radar hydrology. Both tasks are addressed 
in this thesis. When using radar data in rainfall-runoff models in general much more data are 
involved than using rain gauges only. This is challenging in the training process because it 
increases the parameters in the input model. Too many input parameters complicate the 
training process. Here measurements that showed the same time lag were combined to 
clusters and this reduced the number of input parameters. 
 
Neural networks and model trees were used to model the relationship between rainfall 
(measured by rain gauge and weather radar) and runoff at the watershed outlet. Datasets from 
different seasons were used for training, validating, and testing. It turned out that calculating 
several common performance measures for independent subsets en bloc can lead to 
anomalous high values which do not reflect the performance on the subsets. The average 
values, weighted in respect of the size of the subset, turned out to be a more meaningful 
measure. 
 
Simple data manipulation methods like time shifting and calculating moving rainfall averages 
were applied to increase the correlation between target runoff and precipitation 
measurements. A higher correlation between input and target data does not assure better 
model forecasts though. The consideration of the actual hydrological state is important for 
estimating the rainfall response. Several previous runoff measurements appeared to work best 
both with ANNs and MTs. It was shown that additional cumulative rainfall measurements in 
the ANN models did not significantly change the performance and the weight given to the 
actual runoff. 
 
The training of the models on different lead times revealed an approach that improved the 
performance measures of both ANN and MT models. Training on shorter lead times did often 
not change the effective lead time but improved the statistical measures and thus the quality 
of the forecast. 
 
The other task of radar hydrology, the estimating of the current precipitation was also 
investigated with data-driven models. First the different sampling characteristics were 
analysed. The different place of observation of rain gauge and weather radar measurements 
results in a time shift that was considered in the data-driven approaches. Feed-forward neural 
networks, radial basis networks, model trees, and instance-based learners were used to 
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estimate the rainfall and the results were compared with the outcome of both linear and non-
linear regression analysis and the standard Z-R relationship. The model tree which 
approximates the data with linear relationships worked best on the by log-transformation 
linearised Z-R relationship. Feed-forward networks performed better on the original non-
transformed data. Worth mentioning is the relative improvement of the results when training 
the FNN with additional inputs reflecting the vertical profile of reflectivity. 
 
Feed-forward neural networks – the mainstream technology for data-driven modelling – 
performed best in both applied tasks of radar hydrology. 
 
For the future promising improvements can be expected by the use of polarimetric radar 
parameters. The radar data in this study originate from a conventional weather radar that 
transmits and receives electromagnetic waves in horizontal polarization. Dual-polarization is 
becoming the standard for new weather radar systems. In contrast to conventional weather 
radars, dual-polarization radars transmit and receive in horizontal and vertical polarization. 
Thus, they determine polarimetric parameters like differential reflectivity, linear 
depolarization ratio, and differential propagation phase. By knowing these parameters 
additional information on size and shape of precipitation can be obtained. Also the accuracy 
of the rain rate estimation should be better compared to standard Z-R relationships of 
conventional radars. 
 
Data-driven approaches can use the additional parameters to distinguish between forms of 
precipitation. Probabilistic neural networks seem suitable for this task. If polarimetric 
parameters and target data are available the network can determine which precipitation type is 
most likely. And this in turn shall lead to better rainfall predictions and better rainfall-runoff 
models. 
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