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bei mir immer wieder aufgetaucht sind

. . . unseren Musikspezialisten jr und cvdw für die Begleitung in den leidvollen Zeiten des
Forschens mit Vertonungen der Passion Christi

. . . ch für die Erweiterung des Onlinekreuze-Systems

. . . unserem Philosophen mj für Weiterbildung zum Thema Computerspiele

. . . jenen Studenten, über die man nur den Kopf schütteln kann und die für Unterhaltung im
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Introduction

In the present thesis we investigate certain statistical distributions and their limit laws and
statistical properties of sequences of real numbers. In particular we deal with certain q-analogues
of the binomial distribution, with sequences of real numbers which are uniformly distributed
modulo 1, and with the relationships between the limit distribution functions of a given sequence
of real numbers and the limit distribution functions of the block sequence associated to the given
sequence. We proceed as follows.

In Chapter 1 we establish limit theorems for certain q-binomial distributions. For the classical
binomial distribution it is very well known that this distribution converges to the Poisson dis-
tribution (if we fix the mean) and to the normal distribution. Arising from the study of basic
hypergeometric series, i.e., q-analogues of hypergeometric series that converge to the classical
hypergeometric series as q → 1, many q-analogues of the binomial distribution were introduced.
Basic hypergeometric series have been studied since the 18th century (the starting point was
Euler’s investigation of the generating function of the number of partitions of a positive inte-
ger n into positive integers in 1748), but they are still an active field of research today due
to many recent publications on orthogonal q-polynomials and q-distributions related to these
series. The q-calculus has a wide range of applications, especially in combinatorics, number
theory, approximation theory and computer science, but also in physics and biology. For in-
stance, a q-analogue of the exponential function is the generating function of the number of
partitions of a positive integer, the q-binomial coefficient counts the number of k-dimensional
subspaces of an n-dimensional vector space over a field with q elements and counts the number
of lattice paths in the plane from the origin to a given point taking the area below the path into
account. Moreover, basic hypergeometric techniques can be used to prove that the number of
different representations of an integer n as sum of two squares equals four times the difference
between the number of positive divisors of n congruent 1 modulo 4 and congruent 3 modulo 4.
In approximation theory, the study of the q-Bernstein operator has become very attractive.
But applications of the q-calculus are not restricted only to mathematics, in particular some
q-distributions appear in models of specific processes in physics, biology and mathematical
economy: for example, Kemp’s q-binomial distribution can be used to describe the dichotomy
between parasites on hosts with and without open wounds. Consider a large population of fish
and a population of parasites, say leeches. A leech slits an opening in the skin of the fish,
consumes blood, remains passive for a while before seeking a new site. Under some additional
assumptions the stationary distribution of the number of those leeches which are located on a
fish parasited for the first time is Kemp-q-binomially distributed.
The q-deformed binomial distribution arose from the study of the q-quantum harmonic oscillator
in physics, but it became very attractive to mathematicians since it appears as kernel of the
q-Bernstein polynomials, which are important in the approximation theory. The Euler distribu-
tion (a q-analogue of the Poisson distribution) was introduced as a q-Poisson energy distribution
in the theory of the quantum harmonic oscillator. Moreover, the Euler distribution and a sec-
ond analogue of the Poisson distribution, the Heine distribution, were found to be feasible prior



distributions for the number of undiscovered sources of oil.
Our goal is to extend the convergence results of the classical binomial distribution to differ-
ent q-analogues, in particular we investigate besides the two q-binomial-distributions mentioned
above the Rogers-Szegö- and the Stieltjes-Wigert distribution. In Section 1.1 we give an intro-
duction to the q-calculus and the q-distributions under consideration. Afterwards we study in
Sections 1.3–1.5 the various q-binomial distributions.

Chapter 2 is devoted to the study of the distribution of sequences of real numbers. Section 2.1
deals with a classical topic in number theory, namely with uniformly distributed sequences.
Multidimensional extensions of such sequences play an important role in Quasi-Monte Carlo
integration. Evaluating a high-dimensional integral is very extensive, so a fruitful alternative is
the following one: We choose randomly points xi and approximate the integral by the arithmetic
mean of the values of the integrand evaluated at the points xi. The accuracy of this method
depends on the behaviour of the points xi, i.e., on the discrepancy of the sequence formed by
these points. In practice, one chooses deterministically constructed Quasi-Monte Carlo points
instead of random points. Such high-dimensional integrals occur e.g. in financial modelling: An
insurance with a process of claims St (this is modelled by a sum of independently identically
distributed variables) wants to pay a dividend to its shareholders or its clients, and decides to
proceed in the following way: Dividends are paid whenever the free reserve of the insurance
company reaches a given barrier. The problems of computing the expectation of the amount of
dividends that are paid invokes a high-dimensional integral and this can be solved by the ideas
described above.
In the present thesis we consider the following problem: It is well known that the sequence
({nα})n∈N is uniformly distributed modulo 1 for all irrational α and more generally, those α
such that the sequence ({nkα})k∈N is uniformly distributed form a set of Lebesgue measure 1
if (nk) is a sequence of distinct integers. On the other hand, Goldstern et al. showed that in
the sense of Baire this set is very small provided the sequence (nk) grows fast enough. More
precisely, they showed that the set of those α such that (nkα) is uniformly distributed modulo
1 is of first category if (nk) grows exponentially. We establish generalisations of this and related
results to different types of multisequences, for example to sequences in Rd and in particular to
sequences with multidimensional indices. In the latter case we study three different concepts of
uniform distribution.
In Section 2.2 we consider the following setup: Given a sequence of real numbers (xn) in the
interval [0, 1) we can associate to this sequence in a very natural way a sequence of step dis-
tribution functions Fn. Moreover, we can divide our original sequence into blocks of increasing
length and associate to each block a step distribution function Gn. We are now interested in
the relationship between the accumulation points of the sequences (Fn) and (Gn). Indeed, it
is possible to construct the accumulation points of the sequence (Fn) from the accumulation
points of the sequence (Gn) by taking certain convex combinations.

Graz, April 2010 Martin Zeiner



Contents

Introduction ii

1 q-Binomial Distributions 1

1.1 The q-calculus 1

1.1.1 Basic definitions and relations 2

1.1.2 q-orthogonal polynomials 4

1.2 q-Distributions 5

1.2.1 q-binomial distributions 6

1.2.2 q-Poisson distributions 9

1.3 Kemp’s q-binomial distribution 10

1.3.1 Convergent Parameter 11

1.3.2 Increasing Parameter 13

1.4 The q-deformed binomial distribution 23

1.4.1 Parameter sequences with limit < 1 23

1.4.2 Parameter sequences with limit 1 25

1.5 A family of q-binomial distributions 32

1.5.1 Properties of the Family B 33

1.5.2 Convergent Parameter 38

1.5.3 Increasing Parameter 45

2 Distribution of Sequences 56

2.1 Baire results of multisequences 56

2.1.1 Preliminaries 57

2.1.2 Vectors 60

2.1.3 nα-sequences in Rd 66

2.1.4 Uniform distribution of nets 67

2.1.5 Characterisation of M(x) and distribution of subnets for a special kind of
nets on Nd 69

2.1.6 nα-nets over Nd 77

2.2 Block-sequences 83



Chapter 1

Limit Theorems for certain
q-Binomial Distributions

The aim of this chapter is to study sequences of random variables Xn which are q-binomially dis-
tributed. In fact, there are many q-binomial distributions related to basic hypergeometric series,
but we will focus on Kemp’s q-binomial distribution, the q-deformed binomial distribution, the
Rogers-Szegö distribution and the Stieltjes-Wigert distribution. In particular we are interested
in analogues of the convergence of the classical binomial distribution to the Poisson and the
normal distribution. We proceed as follows: In Section 1.1 we give an elementary introduction
to the q-calculus including the q-factorial, q-Pochhammer symbol, q-binomial coefficient, basic
hypergeometric series and q-exponential functions. Moreover, we give some analogues of classi-
cal orthogonal polynomials. Section 1.2 contains definitions and properties of the q-distributions
under consideration. In Sections 1.3–1.5 we investigate sequences Xn of q-binomially distributed
random variables. We start with Kemp’s q-binomial distribution, where we establish analogues
of the convergence of the binomial distribution with constant mean to the Poisson distribution
and of the convergence to the normal distribution. More precise, we show that these limits
are either Heine or discrete normal, depending on the choice of the parameters. Section 1.4 is
devoted to the study of the q-deformed binomial distribution. Again, an analogue of the con-
vergence of the binomial distribution to the Poisson distribution holds. The limit laws are the
Heine distribution and (truncated) exponential distributions. To study the limits of the Rogers-
Szegö and the Stieltjes-Wigert distribution we introduce in Section 1.5 a parameter family of
q-binomial distributions which contains besides the Rogers-Szegö- and the Stieltjes-Wigert the
Kemp distribution too. We will show that the limit relations obtained for the latter distribution
extend to this family.

1.1 The q-calculus

As mentioned above, the present section will give an introduction to the q-calculus. We define
analogues of the classical factorial, the binomial coefficient, the hypergeometric series, the bino-
mial theorem and deduce two analogues of the exponential function. Afterwards we define some
q-orthogonal polynomials which are closely related to the q-distributions we will investigate in
this chapter.
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1.1.1 Basic definitions and relations

Throughout this chapter we use the notation of Gasper and Rahman [21]. For q 6= 1 the
q-number [z]q of any complex number z is defined as

[z]q :=
1− qz

1− q
.

For any nonnegative integer n we introduce the q-shifted factorial (z; q)n and the q-factorial [n]q!
by

(z; q)n :=
n−1∏
i=0

(1− zqi) and [n]q! :=
n∏
i=1

[i]q.

The q-binomial coefficients (or Gaussian polynomials) are - similar to the classical binomial
coefficient - defined as [

n

k

]
q

:=
[n]q!

[k]q![n− k]q!
=

(q; q)n
(q; q)k(q; q)n−k

.

These coefficients are indeed polynomials in q, which can be easily seen using the recurrence
relation [

n+ 1
k

]
q

=
[
n

k

]
q

qk +
[

n

k − 1

]
q

. (1.1)

For the q-shifted factorial the following inversion formula holds:

(z; q)n = (z−1; q−1)n(−z)nq(
n
2). (1.2)

Moreover, the following expansion is valid:

(z; q)n =
n∑
k=0

[
n

k

]
q

(−z)kqk(k−1)/2.

Now we define the q-analogue of hypergeometric series:

rφs(a1, a2, . . . , ar; b1, . . . , bs; q, z) =
∞∑
n=0

(a1; q)n · · · (ar; q)n
(q; q)n(b1; q)n · · · (bs; q)n

[
(−1)nq(

n
2)
]1+s−r

zn.

If one of the ai is of the form q−m, m ∈ N, then this series terminates. Whenever we deal with
nonterminating basic hypergeometric series, we will assume that |q| < 1. If 0 < |q| < 1, the
rφs series converges absolutely for all z if r ≤ s and for |z| < 1 if r = s + 1. Moreover, this
series converges absolutely too if |q| > 1 and |z| < |b1 · · · bs|/|a1 · · · ar|. A nonterminating series
diverges for z 6= 0 if 0 < |q| < 1 and r > s+ 1, and if |q| > 1 and |z| < |b1 · · · bs|/|a1 · · · ar|.
Note that the basic hypergeometric series has the property that if we replace z by z/ar and let
ar →∞, then the resulting series is of the same form with r replaced by (r − 1).

For 1φ0-series we have the following representation as products

1φ0(a;−; q, z) =
∞∑
n=

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

, |z| < 1, |q| < 1. (1.3)

This identity is a q-analogue of the binomial theorem and was first derived by Cauchy (1843)
and Heine (1847). To see this, let us set

ha(z) :=
∞∑
n=

(a; q)n
(q; q)n

zn, |z| < 1, |q| < 1
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and compute the difference

ha(z)− haq(z) =
∞∑
n=1

(a; q)n − (aq; q)n
(q; q)n

zn

=
∞∑
n=1

(aq; q)n−1

(q; q)n
(1− a− (1− aqn)) zn

= −a
∞∑
n=1

(1− qn)(aq; q)n−1

(q; q)n
zn

= −a
∞∑
n=1

(aq; q)n−1

(q; q)n−1
zn = −azhaq(z),

which gives

haq(z) = ha(z)
1

1− az
. (1.4)

Moreover, we compute the difference

ha(z)− ha(qz) =
∞∑
n=1

(a; q)n
(q; q)n

(zn − qnzn)

=
∞∑
n=1

(a; q)n
(q; q)n−1

zn =
∞∑
n=0

(a; q)n+1

(q; q)n
zn+1

= (1− a)zhaq(z).

Using (1.4) this yields

ha(z) =
1− az
1− z

ha(qz).

Iterating this relation (n− 1) times and then letting n→∞ we obtain

ha(z) =
(az; q)n)
(z; q)n

ha(qz)

=
(az; q)∞
(z; q)∞

ha(0) =
(az; q)∞
(z; q)∞

,

since qn → 0 and ha(0) = 1, which completes the proof of (1.3).

Now we define two q-analogues of the exponential function. Setting a = 0 in (1.3) we get

eq(z) := 1φ0(0;−; q, z) =
∞∑
n=0

zn

(q; q)n
=

1
(z; q)∞

, |z| < 1.

Since the product gives an analytic continuation of the function defined by the basic hypergeo-
metric series to C \ {q−i : i = 0, 1, 2, . . . }, we will always have this in mind when writing eq(z).
The second q-analogue can be obtained from (1.3) by replacing z by −z/a and then letting
a→∞:

1φ0(q;−, q;−z/a) =
∞∑
n=0

(a; q)n
(q; q)n

(−1)n
zn

an
=

(−z; q)∞
(−z/a; q)∞

.
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Taking the limit we obtain (since (−z/a; q)∞ → 1 and by the remark above)

Eq(z) := 0φ0(−;−; q,−z) =
∞∑
n=0

qn(n−1)/2

(q; q)n
zn = (−z; q)∞. (1.5)

Obviously, we have eq(z)Eq(−z) = 1. As q → 1, eq((1− q)z)→ ez and Eq((1− q)z)→ ez.

For applications of the q-calculus (in particular to the enumeration of integer partitions) we refer
to Andrews [3, 4], Andrews and Eriksson [6] and Gasper and Rahman [21].

1.1.2 q-orthogonal polynomials

In the following we give the definition and basic properties of three families of q-orthogonal
polynomials which are closely related to the q-distributions we are interested in. For a general
theory to orthogonal polynomials see Szegö [57], for more information about hypergeometric
orthogonal polynomials and their q-analogues and for details of the following polynomials we
refer to the encyclopedic report by Koekoek and Swarttouw [42] and the references therein.

q-Krawtchouk polynomials

The q-Krawtchouk polynomials are given by

Kn(q−x; p,N ; q) = 3φ2(q−n, q−x,−pqn; q−N , 0; q, q)

=
(qx−N ; q)n

(q−N ; q)nqnx
2φ1(q−n, q−x; qN−x−n+1; q,−pqn+N+1), n = 0, . . . , N.

They fulfill the recurrence relation

−(1− q−x)Kn(q−x) = AnKn+1(q−x)− (An + Cn)Kn(q−x) + CnKn−1(q−x),

where
Kn(q−x) := Kn(q−x; p,N ; q)

and An = (1−qn−N )(1+pqn)
(1+pq2n)(1+pq2n+1)

Cn = −pq2n−N−1 (1+pqn+N )(1−qn)
(1+pq2n−1)(1+pq2n)

.

Moreover, the following orthogonality relation holds:

N∑
x=0

(q−N ; q)x
(q; q)x

(−p)−xKm(q−x; p,N ; q)Kn(q−x; p,N ; q)

=
(q; q)n(−pqN+1; q)n
(−p; q)n(q−N ; q)n

1 + p

1 + pq2n
(−pq; q)Np−Nq−(N+1)N/2

(
−pq−N

)n
qn

2
δmn, p > 0.

Indeed, the weight function in the above relation is Kemp’s q-binomial distribution (see Sec-
tion 1.2.1).
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q-Charlier polynomials

The q-Charlier polynomials are defined as

Cn(q−x; a; q) = 2φ1

(
q−n, q−x; 0; q,−q

n+1

a

)
= (−a−1q; q)n · 1φ1

(
q−n;−a−1q; q,−q

n+1−x

a

)
.

We have the recurrence relation (with Cn(q−x) := Cn(q−x; a; q))

q2n+1(1− q−x)Cn(q−x) = aCn+1(q−x)− (a+ q(1− qn)(a+ qn))Cn(q−x)
+ q(1− qn)(a+ qn)Cn−1(q−x).

The orthogonality relation for these polynomials is

∞∑
x=0

ax

(q; q)x
qx(x−1)/2Cm(q−x)Cn(q−x) = q−n(−a; q)∞(−a−1q; q)n(q; q)nδmn, a > 0.

The weights in this relation are the probabilities of the Heine distribution (Section 1.2.2).

Stieltjes-Wigert polynomials

The Stieltjes-Wigert polynomials are defined as

Sn(x; q) =
1

(q; q)n
1φ1(q−n; 0; q,−qn+1x)

and fulfill the recurrence relation

−q2n+1xSn(x; q) = (1− qn+1)Sn+1(x; q)− (1 + q − qn+1)Sn(x; q) + qSn−1(x; q).

They are orthogonal with respect to the discrete normal distribution (see [13]). The Stieltjes-
Wigert polynomials are the probability generating function of the Stieltjes-Wigert distribution
(Section 1.2.1).

1.2 q-Distributions

In this section we present some q-analogues of classical discrete probability distributions, in
particular analogues of the binomial distribution and the Poisson distribution. The distributions
we are interested in are the Kemp q-binomial distribution, the q-deformed binomial distribution,
the Rogers-Szegö and the Stieltjes-Wigert distribution as analogues of the binomial distribution
and the Euler and the Heine distribution as analogues of the Poisson distribution. Indeed, there
exist much more analogues of the binomial distribution and of classical discrete distributions in
general, but we won’t need them in the following, so we don’t discuss them here and refer to the
relevant literature: An overview of q-distributions can be found in Johnson, Kemp and Kotz [34]
and in Kupershmidt [44]. By replacing the exponential function by its q-analogue eq(z), Li and
Kai [45] found analogues of continuous distribution functions.
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Before we turn to the q-distributions, we want to recall a few important definitions and concepts
of the classical probability theory. For a random variable X defined on the natural numbers
with pn := P(X = n) the rth moment of X is given by

E(Xr) =
∞∑
n=0

nrpn.

The mean and the variance of X are µ = E(X) and σ2 = E(X − µ)2 = EX2 − µ2 respectively.
The factorial moment m(k) is defined as m(k) := E(X(X − 1) · · · (X − k + 1)). The binomial
distribution B(n, p) is given by P(X = k) =

(
n
k

)
pk(1 − p)n−k. Moreover, we have µ = np,

σ2 = np(1 − p) and m(k) = n(n − 1) · · · (n − k + 1)pk. For the Poisson distribution P (λ) we
have P(X = n) = λn/n!e−λ and µ = σ2 = λ and m(k) = λk. The discrete normal distribution is
defined by

P(X = x) =
q−xαqx

2/2∑∞
k=−∞ q

−kαqk2/2
α ∈ R, x ∈ Z, 0 < q < 1.

As an analogue to the classical (factorial) moments one can consider the q-(factorial)-moments

E([X]r) =
∞∑
n=0

[n]rqpn and E([X]r,q) =
∞∑
n=r

[n]q!
[n− r]q!

pn,

respectively. Studying these moments instead of the classical ones often leads to very simple
formulas (see below). For the relationship between factorial moments and q-factorial moments
we refer to Charalambides and Papadatos [12].

1.2.1 q-binomial distributions

Kemp’s q-binomial distribution

The first q-analogue of the binomial distribution we consider is Kemp’s q-binomial distribution
KB(n, θ, q) defined by

P(XKB = x) =
[
n

x

]
q

θxqx(x−1)/2

(−θ; q)n
, 0 ≤ x ≤ n, 0 < θ, 0 < q < 1. (1.6)

It was introduced by Kemp and Kemp [35]. In the following, we sum up some properties of this
distribution. Details can be found in Charalambides and Papadatos [12], Jing [32], Johnson,
Kemp, and Kotz [34], Kemp [38, 39], Kemp and Kemp [35] and Kemp and Newton [40].

In the limit q → 1, the Kemp distribution KB(n, θ, q) converges to a binomial distribution:

KB(n, θ, q)→ B

(
n,

θ

1 + θ

)
.

For n →∞ we obtain a Heine distribution H(θ) (see Section 1.2.2). Kemp’s q binomial distri-
bution is log-concave, i.e.,

P(X = x+ 1)
P(X = x)

>
P(X = x+ 1)
P(X = x+ 1)

, x = 0, . . . , n− 2,

and thus unimodal. Using basic hypergeometric series its probability generating function can
be written as

GKB(z) = 1φ0(0;−; q,−qnθz)
1φ0(0;−; q,−qnθ)

.
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Using (1.3) we can rewrite this as

GKB(z) =
n−1∏
j=0

1 + θqjz

1 + θqj
.

This formula immediately implies that the random variable X ∼ KB(n, θ, q) can be represented
as the sum of n independent Bernoulli trials Xi with probability of success equals θqi

1+θqi
, which

leads to the expressions

µ =
n−1∑
i=0

θqi

1 + θqi
and σ2 =

n−1∑
i=0

θqi

(1 + θqi)2
(1.7)

for the mean and the variance. Furthermore, the random variable n − XKB has the law
KB(n, θ−1q1−n, q).

Kemp and Newton [40] gave an application of this distribution in biology. It can be used to
describe the dichotomy between parasites on hosts with and without open wounds. Consider a
population of fish and a population of parasites (e.g. ectoparasitic leeches) of fixed size N . A
leech slits an opening in the skin of the fish, consumes a large amount of blood, and remains
passive for a while before actively seeking a new site, either on the same fish or on another fish
never previously parasited. If a fish which has never previously been parasited is available then
one of the active leeches will transfer to it instead of relocating on its existing host. For simplicity
we may assume that no fish has more than one leech attached to it. The leeches located on fish
being parasited for the first time we call type A leeches, the leeches on fish with open wounds
type B leeches. Let the probability that a leech is passive be given by q; consequently the
probability that it is active is (1− q). Moreover, assume that a active leech is able to move to a
fish never previously parasited with probability ρ/(1 + ρ). Thus, given x leeches of type A, the
birth- and death-rates for type A leeches are proportional to qx(1− qN−x)ρ/(1 + ρ) (all type A
leeches must be passive, there must be at least on active type B leech and a fish never previously
parasited must be available) and (1 − qx)/(1 + ρ) (there has to be at least one active type A
leech, but no fish without wound is free). Hence the stationary distribution of the number of
type A leeches has the law KB(N, ρ, q).

The q-polynomials which are orthogonal with respect to this distribution are the q-Krawtchouk
polynomials (see Section 1.1.2).

The q-factorial moments are [12]

E([Xn]r,q) =
[n]r,qqr(r−1)/2θr

(−θ; q)r
.

We note in passing that Kemp [39] deduced the following characterisation result for the KB
distribution from a theorem of Rao and Shanbhag [54]: The distribution given by (1.6) with
θ = λ/µ is the distribution of U |(U +V = n), where U and V are independent iff U and V have
a Heine distribution and an Euler distribution with parameters λ and µ, respectively (for the
Heine and Euler distribution see Section 1.2.2).

The q-deformed binomial distribution

Another q-analogue of the binomial distribution is the q-deformed binomial distributionQD(n, τ, q),
which was introduced by Jing [32] in connection with the q-deformed boson oscillator and by
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Chung et al. [14]. Its probabilities are given by

P(XQD = x) =
[
n

x

]
q

τx(τ ; q)n−x, 0 ≤ x ≤ n, 0 ≤ τ ≤ 1, 0 < q < 1, (1.8)

This distribution was studied by many authors and has applications in physics as well as in
approximation theory due to the q-Bernstein polynomials and the q-Bernstein operator.

In the limit q → 1 the q-deformed binomial distribution with parameter (n, τ, q) reduces to
the binomial distribution with parameters (n, τ). The limit n → ∞ of random variables
Xn ∼ QD(n, τ, q) leads to an Euler distribution with parameter λ = τ . If we denote the
probabilities (1.8) by pn(x, τ), then the following recurrence relation holds (see Videnskii [59,
Section 3]):

pn(x, τ) = τpn−1(x− 1, τ) + (1− τ)pn−1(x, qτ). (1.9)

For τ ≤ q this distribution is logconcave and hence unimodal. Similar to the characterisation of
Kemp’s q-binomial distribution, Kemp [39] characterised the q-deformed binomial distribution
as the distribution of U |(U + V = n), where U is an Euler variable with parameters (ητ, q) (see
Section 1.2.2) and V is an independent q-negative binomial variable with parameters (η, τ, q)
(for details see [39]). For this distribution the q-mean and the q-variance are given by the simple
formulas

E([X]) = [n]qτ and E
(
[X − E([X])]2

)
= [n]qτ(1− τ).

For details we refer to Jing [32], Jing and Fan [33], Kemp [38, 39], the encyclopedic book Johnson,
Kemp and Kotz [34], and to Charalambides [11]. Chung et al. [14], Kupershmidt [44] and
Il’inski [28] gave representations of the q-deformed binomial distribution as a sum of dependent
and not identically distributed random variables, for example, according to [14] we choose a
sequence of n Bernoulli Xi trials starting with P(X1 = 1) = τ and P(X1 = 0) = 1 − τ . The
following Bernoulli variables are given by P(Xi = 1|Xi−1 = 1) = P(Xi−1 = 1) and P(Xi =
1|Xi−1 = 0) = qP(Xi−1 = 1). Then the sum of these n Bernoulli trials has the law QD(n, τ, q).

As mentioned above the q-deformed binomial distribution and the Euler distribution appear
in particular both in physics ([10, 14, 32, 33]) and in approximation theory. The q-Bernstein
polynomials of order n are defined by

Bn(f(t), q;x) =
n∑
r=0

f

(
[r]q
[n]q

)[
n

r

]
q

xr(x; q)n−r,

where f is a continuous function on the interval [0, 1]. There exists a vast literature on these
polynomials, closely related to the distributions under consideration are e.g. [11, 29, 47, 50, 51,
59].

The Rogers-Szegö-distribution

Another q-analogue of the binomial distribution introduced by Kemp [38] is the Rogers-Szegö-
distribution (RS) which probabilities are given by

P(XRS = x) = CRS

[
n

x

]
q

θx, 0 ≤ x ≤ n, 0 < θ,
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where CRS is a normalising constant. For q → 1 this distribution tends to a binomial distribution
with parameter θ

1+θ . The probability generating function is

GRS(z) = 2φ0(q−n, 0;−; q, qnθz)
2φ0(q−n, 0;−; q, qnθ)

;

this is a Rogers-Szegö-polynomial (see Andrews [3], Ismail [30]). Reversing this distribution
gives a distribution of the same form. Moreover, it is logconcave and strongly unimodal. The
RS-distribution can be characterised as the distribution of U |(U + V = n), where U and V are
both Euler random variables. In the limit n→∞ the RS-distribution converges for θ < 1 to an
Euler distribution with parameter θ.

The Stieltjes-Wigert-distribution

The Stieltjes-Wigert-distribution SW (n, θ, q) (also introduced in Kemp [38]) is defined as

P(XSW = x) = CSW

[
n

x

]
q

qx(x−1)θx, 0 ≤ x ≤ n, 0 < θ,

where CSW is a normalising constant. It is a q-analogue of the binomial distribution since
SW (n, θ, q) → B(n, θ/(1 + θ) as q → 1. The name Stieltjes-Wigert is appropriate since the
probability generating function

GSW (z) = 1φ1(q−n; 0; q, qnθz)
1φ1(q−n; 0; q, qnθ)

is a Stieltjes-Wigert-polynomial (see Section 1.1.2). As above, reversing the SW-distribution does
not change the nature of the distribution. Moreover, it is logconcave and strongly unimodal,
too. Choosing both U and V as Heine random variables leads to a SW-distribution as the law
of U |(U + V = n).

1.2.2 q-Poisson distributions

In this section we present two q-analogues of the Poisson distribution, namely the Euler and the
Heine distribution. We note in passing, that a third q-analogue, the pseudo-Euler distribution,
was introduced in [36]. The Euler distribution E(λ, q) with parameter λ is defined by

P(XE = x) =
λx

(q; q)x
(λ; q)∞ =

λx

(q; q)x
Eq(−λ), 0 < q < 1, 0 < λ < 1,

and was introduced by Biedenhahn [10] as a q-Poisson energy distribution in the theory of the
quantum harmonic oscillator, and by Benkherouf and Bather [9] as a feasible prior distribution
for the number of undiscovered sources of oil. The probability generating function equals

GE(z) = 1φ0(0;−; q;λz)
1φ0(0;−; q;λ)

=
∞∏
j=0

1− λqj

1− λqjz
;

here we used (1.3). Moreover, we have

µ =
∞∑
x=0

λqx

1− λqx
and σ2 =

∞∑
x=0

λqx

(1− λqx)2
.
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The q-factorial moments are
E([X]r,q) = λr.

The Poisson family of distribution is characterised by the mean-variance equality; Charalambides
and Papadatos [12] obtained an analogous characterisation for this distribution. As limit of the
q-deformed binomial distribution, it plays an important role in approximation theory.

The probabilities of the Heine distribution H(θ) (introduced by [9] too) are given by

P(XH = x) =
qx(x−1)/2θx

(q; q)x
eq(−θ), x ≥ 0, 0 < q < 1, 0 ≤ θ.

For the Heine distribution we have

GH(z) = 0φ0(−;−; q,−θz)
0φ0(−;−; q,−θ)

=
∞∏
j=0

1 + θqjz

1 + θqj

by (1.5) and

µ =
∞∑
x=0

θqx

1 + θqx
and σ2 =

∞∑
x=0

θqx

(1 + θqx)2
.

The q-mean equals p/(1 − q) and the q-variance equals p(1 − p)/(1 − q). Additionally, the
q-factorial moments are

E([X]r,q) =
qr(r−1)/2θr

(−θ(1− q); q)r
.

The q-polynomials orthogonal with respect to this distribution are the q-Charlier polynomials
(see Section 1.1.2).

As q → 1 we have E((1 − q)λ, q) → P (λ) for q → 1, H((1 − q)θ) → P (θ), where P (θ) denotes
the Poisson distribution with parameter θ. Both the Heine and Euler distribution are unimodal.
The Euler distribution is infinitely divisible, whereas the Heine distribution is not.

For details, further properties and applications of these distributions we refer to Johnson, Kemp
and Kotz [34], Benkherouf and Bather [9], Biedenharn [10], Charalambides and Papadatos [12],
Jing [32], Jing and Fan [33], Kemp [36, 37, 39], Kupershmidt [44] and Ostrovska [50, 51].

1.3 Kemp’s q-binomial distribution

In this section we establish convergence properties of Kemp’s q-binomial distribution (see Ger-
hold and Zeiner [22]). The main object of interest are sequences (Xn)n∈N withXn ∼ KB(n, θn, q)
(θn ≥ 0). As noted above, for fixed parameter sequences θn = θ we obtain a Heine distribution
H(θ) as the limit law of Xn. So we investigate sequences with non-constant parameter. We
will start with the case of convergent parameter sequences in Section 1.3.1. Due to continuity
arguments the limit is again Heine. Considering in particular sequences Xn with constant mean
yields an q-analogue of the convergence of the classical binomial distribution with constant mean
to the Poisson distribution. In Section 1.3.2 we treat parameter sequences θn → ∞. Here the
limit law depends on the growth of θn. For fast growing parameter sequence we obtain - using
the reversing property of Kemp’s distribution - a Heine distribution. The main part of this
section is dedicated to the study of slowly growing parameter sequences, i.e. sequences θn of
the form θn = q−f(n), where f(n) and (n− f(n)) both tend to infinity, as n →∞. We will see
that this leads to a discrete normal distribution. Moreover, we deduce from the convergence
results of Kemp’s q-binomial distribution convergence properties of (q)-orthogonal polynomials.
The involved polynomials are the q-Krawtchouk, the q-Charlier, the Stieltjes-Wigert and the
Krawtchouk polynomials.
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1.3.1 Convergent Parameter

As noted above we consider in the present section sequences of random variables Xn with
Xn ∼ XKB(n, θn(q), q) and will provide convergence results for sequences θn(q) which tend to a
limit as n→∞. In particular this includes the case of sequences Xn with constant mean.

We will need the following simple continuity argument.

Lemma 1.3.1. Let (θn)n∈N be a sequence of real numbers with limit θ ≥ −1. Then

lim
n→∞

n−1∏
i=0

(
1 + θnq

i
)

= Eq(θ).

Proof: For small ε > 0 and n large enough, we have

n−1∏
i=0

(
1 + (θ − ε) qi

)
≤

n−1∏
i=0

(
1 + θnq

i
)
≤

n−1∏
i=0

(
1 + (θ + ε) qi

)
,

hence

Eq(θ − ε) = lim
n→∞

n−1∏
i=0

(
1 + (θ − ε) qi

)
≤ lim inf

n→∞

n−1∏
i=0

(
1 + θnq

i
)

≤ lim sup
n→∞

n−1∏
i=0

(
1 + θnq

i
)
≤ lim

n→∞

n−1∏
i=0

(
1 + (θ + ε) qi

)
= Eq(θ + ε).

Since Eq is continuous, the lemma follows. l

Now we can establish our first convergence result which is a mild generalisation of the conver-
gence of Kemp’s distribution with constant parameter to the Heine distribution.

Proposition 1.3.2. Let (θn)n∈N be a sequence of real numbers with limit θ ≥ 0. Then the
sequence of Kemp’s q-binomial distributions XKB(n, θn, q) converges for n → ∞ to a Heine
distribution H(θ).

Proof. The proof is an easy application of Lemma 1.3.1:

P(Xn = x) =
[
n

x

]
q

(θn)x
qx(x−1)/2∏n−1

i=0 (1 + θnqi)

→ qx(x−1)/2(θ)x

(q; q)x
eq(−θ). l

Example 1.3.3. Let λ be a real number with 0 < λ < n, and put θn(q) = λ/[n−λ]q. Then the
sequence of Kemp’s q-binomial distributions XKB(n, θn(q), q) converges for n → ∞ to a Heine
distribution H((1− q)λ). Thus the following diagram is commutative:

XKB(n, θn(q), q) n→∞−−−−→ H((1− q)λ)

q→1

y yq→1

B
(
n, λn

)
−−−−→
n→∞

P (λ)
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Theorem 1.3.2 yields limit relations for orthogonal polynomials. As noted above, the orthogonal
polynomials for Kemp’s q-binomial, the Heine, and the binomial distribution are, respectively,
the q-Krawtchouk, the q-Charlier, and the Krawtchouk polynomials.

Corollary 1.3.4.

(i) Let θn be as in the preceding Theorem. The q-Krawtchouk polynomial Kk(q−x; q−nθ−1
n , n; q)

converges for n→∞ to the q-Charlier polynomial Ck(q−x; θ; q).

(ii) For the parameter sequence θn(q) = λ/[n − λ]q, the polynomial Kk(q−x; q−nθn(q)−1, n; q)
converges to the Krawtchouk polynomial Kk(x;λ/n, n), as q → 1.

For our next result, we note the following elementary fact, which is an immediate consequence
of [26, Lemma 1.1.1].

Lemma 1.3.5. Let fn(x), n ∈ N, be a sequence of continuous functions that are increasing in x,
and suppose that for each n there is a unique solution xn of fn(x) = 0. Moreover, assume fn
converges pointwise to a limit f with a unique solution x̂ of f(x) = 0. Then (xn)n∈N converges
to x̂.

Our second convergence property is an analogue of the convergence of the classical binomial
distribution with constant mean to the Poisson distribution.

Theorem 1.3.6. Fix µ > 0 and choose the parameter θn = θn(µ, q) of Kemp’s q-binomial
distribution such that µn = µ. Then we have

(i) The sequence KB(n, θn, q) converges for n → ∞ to a Heine distribution H(θ), where
θ = limn→∞ θn.

(ii) For fixed n, KB(n, θn, q) tends to a binomial distribution B
(
n, µn

)
in the limit q → 1.

(iii) For q → 1, the Heine distribution H(θ) converges to a Poisson distribution with parameter
µ.

So we obtain the following commutative diagram:

KB(n, θn(µ, q), q) n→∞−−−−→ H(θ(µ, q))

q→1

y yq→1

B
(
n, µn

)
−−−−→
n→∞

P (µ)

Proof: First we check that for given µ, q and large n, there is a unique θn such that µn(θn, q) = µ.
The function µn(θ, q) is strictly increasing in θ and µn(0, q) = 0. Since

µn(q−n+1, q) ≥
n−1∑
i=0

qi−n+1

2qi−n+1
=
n

2

and µn(θ, q) is continuous in θ, there exists a unique solution θn of µn(θ, q) = µ for each n ≥ 2µ.
Applying Lemma 1.3.5 shows that limn→∞ θn = θ, with θ the unique solution of µ∞(θ, q) = µ.
Thus KB(n, θn, q)→ H(θ) by Proposition 1.3.2.

Again by Lemma 1.3.5 we get θn → µ
n−µ for q → 1. Hence KB(n, θn, q)→ B

(
n, µn

)
.
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It remains to check that θ/(1−q) converges to µ for q → 1, which yields H(θ)→ P (µ). The value
θ/(1 − q) is the unique solution of µ∞((1 − q)θ, q) = µ. Moreover, limq→1 µ∞((1 − q)θ, q) = θ,
because H((1− q)θ)→ P (θ). Thus we can again apply Lemma 1.3.5 l

Analogously to Corollary 1.3.4, Theorem 1.3.6 implies the following result about (q-)Krawtchouk
polynomials.

Corollary 1.3.7. Let θn(q) and θ(q) be as in Theorem 1.3.6. For q → 1, the q-Krawtchouk
polynomial Kk(q−x; q−nθn(q)−1, n; q) converges to the Krawtchouk polynomial Kk(x;µ/n, n).

1.3.2 Increasing Parameter

After the study of sequences Xn ∼ KB(n, θn, q) with convergent parameter sequence we turn
to sequences θn →∞, as n→∞. If we consider fast growing parameter sequences in the sense
that θn = q−n−g(n) with g(n)→∞ or convergent we obtain the corresponding limit distribution
easily:

Corollary 1.3.8. Let Xn ∼ KB(n, q−n−g(n), q).

(i) If g(n) converges to a limit g0, then the distribution of n −Xn tends to the Heine distri-
bution H(q1+g0) as n→∞.

(ii) If g(n)→∞ for n→∞, then the distribution of n−Xn tends to the point measure δ0 as
n→∞.

Proof: As remarked in Section 1.2.1, n − Xn ∼ KB(n, τ, q) with τ = qg(n)+1. Applying
Proposition 1.3.2 yields the result. l

It follows from the preceding corollary (i) that the q-Krawtchouk polynomials converge to the
alternative q-Charlier polynomials, which is a known result [42, (4.15.1)].

In the following we consider parameter sequences θn = q−f(n) with f(n)→∞ and n−f(n)→∞
for n → ∞. These assumptions on f(n) will be in force throughout the section. Theo-
rems 1.3.10 and 1.3.11 and Lemmas 1.3.12–1.3.14 are devoted to the asymptotic behaviour
of the sequence (µn) of means. As they tend to infinity, we will normalise our sequence of ran-
dom variables to (Xn − µn)/σn. Still, this sequence does not converge in distribution without
further assumptions on f(n). A fruitful way to proceed is to pick subsequences along which
the fractional part {f(n)} is constant. Theorem 1.3.15 shows that this induces convergence to
discrete normal distributions.

To investigate the sequence of means, we begin by providing an elementary estimate for the
variance.

Lemma 1.3.9. If θn = q−f(n) then the sequence of variances satisfies σ2
n ≤ 2/(1− q).



1.3 Kemp’s q-binomial distribution 14

Proof: By (1.7), the variance σ2
n equals

n∑
i=0

qi−f(n)

(1 + qi−f(n))2
=
bf(n)c∑
i=0

qi−f(n)

(1 + qi−f(n))2
+

n∑
i=bf(n)c+1

qi−f(n)

(1 + qi−f(n))2

=
bf(n)c∑
i=0

q−{f(n)}−i

(1 + q−{f(n)}−i)2
+
n−bf(n)c−1∑

i=0

qi+1−{f(n)}

(1 + qi+1−{f(n)})2
(1.10)

<

∞∑
i=0

1
q−{f(n)}−i +

∞∑
i=0

qi+1−{f(n)}

≤
∞∑
i=0

qi +
∞∑
i=0

qi =
2

1− q
.

l

The following theorem is our first result about the sequence of means in the case of a slowly
increasing parameter. It does not reveal the behaviour of the O(1)-term as clearly as Theo-
rem 1.3.11, but will be useful later on (Lemma 1.3.13).

Theorem 1.3.10. Let Xn ∼ KB(n, θn, q) with θn = q−f(n). Then, for n→∞,

µn = f(n) + c({f(n)}, q) + o(1), (1.11)

where

c({f(n)}, q) := 1− 1
1 + q−{f(n)} −{f(n)}−

∑
`≥0

1
1 + q−`−{f(n)}−1

+
∑
`≥0

1
1 + q−`+{f(n)}−1

= O(1).

Proof: We start from

µn =
n−1∑
i=0

qi−f(n)

1 + qi−f(n)
=

n−1∑
i=0

1
1 + qf(n)−i (1.12)

and split the sum into two parts (w.l.o.g. f(n) < n). Expanding the denominator as a geometric
series and changing the order of summation yields

bf(n)c−1∑
i=0

1
1 + qf(n)−i =

bf(n)c−1∑
i=0

∑
`≥0

(−1)`q`(f(n)−i)

=
∑
`≥0

(−1)`q`f(n)

bf(n)c−1∑
i=0

q−`i.

For ` = 0 we obtain bf(n)c, and evaluating the inner sum leads to

= bf(n)c+
∑
`≥1

(−1)`q`f(n) 1− q−`bf(n)c

1− q−`
.

The first term of the fraction gives the O-Term:

= bf(n)c −
∑
`≥1

(−1)`q`{f(n)}

1− q−`
+ O

(
qf(n)

)
,
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an by expanding the fraction with −q` we get

= bf(n)c+
∑
`≥1

q`(−1)`q`{f(n)}

1− q`
+ O

(
qf(n)

)
.

The fraction can be written as a geometric series again, and by changing the order of summation
and evaluating the inner sum we obtain

= bf(n)c+
∑
`≥1

q`(−1)`q`{f(n)}
∑
j≥0

q`j + O
(
qf(n)

)
= bf(n)c+

∑
j≥0

∑
`≥1

(
−qj+1+{f(n)}

)`
+ O

(
qf(n)

)
= bf(n)c+

∑
j≥0

−qj+1+{f(n)}

1 + qj+1+{f(n)} + O
(
qf(n)

)
.

Thus we have

bf(n)c−1∑
i=0

1
1 + qf(n)−i = bf(n)c −

∑
j≥0

1
1 + q−j−1−{f(n)} + O

(
qf(n)

)
.

For the upper portion of the sum, we find

n−1∑
i=bf(n)c+1

1
1 + qf(n)−i =

∞∑
i=bf(n)c+1

1
1 + qf(n)−i + O

(
qn−f(n)

)

=
∞∑
i=0

1
1 + q{f(n)}−i−1

+ O
(
qn−f(n)

)
,

since
∞∑
i=n

1
1 + qf(n)−i =

∞∑
i=0

1
1 + qf(n)−n−i ≤

∞∑
i=0

1
qf(n)−n−i = qn−f(n) 1

1− q
.

Adding the term for i = bf(n)c yields the lemma. l

In the limit q → 1, the term c({f(n)}, q) tends to 1
2 . To see this, apply the Euler-Maclaurin

formula (see [5]) to

f(x) =
1

1 + q−x−b

with b > 0, which yields

∑
`≥0

f(`) =

∞∫
0

f(x)dx+
f(0)

2
+

1
12
f ′(x)

∣∣∞
x=0

+R2 (1.13)

with

R2 = −1
2

∞∫
0

(
{x}2 − {x}+

1
6

)
f ′′(x)dx.

Since

f ′′(x) =
(log q)2qx+b

(
1− qx+b

)
(1 + qx+b)3
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does not change sign, we have

|R2| ≤
1
12

∞∫
0

|f ′′(x)|dx =
1
12

∞∫
0

f ′′(x)dx

= −(log q)q−b(1 + q−b)−2 = o(1), q → 1.

The first integral in (1.13) is

∞∫
0

f(x)dx = −
log
(
1 + qb

)
log q

=
log 2
1− q

− log 2 + b

2
+ O (1− q) , q → 1.

So we have ∑
`≥0

f(`) =
log 2
1− q

− log 2 + b

2
+

1
4

+ o(1), q → 1.

Application to the sums appearing in c({f(n)}, q) gives

c({f(n)}, q) =
1
2
− {f(n)}+ {f(n)}+ o(1), q → 1.

Note that for q → 1 the error term in the representation (1.11) for µn increases. This is why the
limits for q → 1 and n → ∞ can’t be exchanged. Indeed, it is clear from (1.12) that µn tends
to n/2 for q → 1.

The following theorem represents the O(1)-term from Theorem 1.3.10 as a Fourier series, which
shows that it is a 1

2 -periodic function of f(n). Indeed, the stated asymptotic (with respect to n)
follows directly from a general result given in [17], but we will also need the behaviour (w.r.t. q)
of the error term, thus we do the following detailed analysis.

Theorem 1.3.11. Let Xn ∼ KB(n, θn, q) with θn = q−f(n). Then, as n→∞,

µn = f(n) +
1
2

+
∑
k>0

2π sin(2kf(n)π)

log q sinh
(

2kπ2

log q

) + O
(
qmin(f(n)/2,n−f(n))

)
. (1.14)

Proof: We write

µn =
n−1∑
i=0

1
1 + qf(n)−i =

∞∑
i=0

1
1 + qf(n)−i + O

(
qn−f(n)

)
and apply the Mellin transformation [17, 18] to

h(t) =
∞∑
i=0

1
1 + tq−i

.

By the linearity of the Mellin transformation M and the properties M
(

1
1+t

)
= π

sinπs and

Mh(αt)(s) = α−sM(h)(s), we see that

M(h)(s) =
∞∑
i=0

(
q−i
)−s π

sinπs
=

1
1− qs

π

sinπs
.
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Exchanging M and the sum is permitted by the monotone convergence theorem. From the
inverse transformation formula we get

h
(
qf(n)

)
=

1
2πi

c+i∞∫
c−i∞

q−f(n)s 1
1− qs

π

sinπs
ds (1.15)

for c ∈ (0, 1). To evaluate this integral, we choose the integration contour γk = γk,1 ∪ γk,2 ∪
γk,3 ∪ γk,4 with

γk,1 =
{
s | s =

1
2

+ iv : −Tk ≤ v ≤ Tk
}
,

γk,2 =
{
s | s = u+ iTk : −1

2
≤ u ≤ 1

2

}
,

γk,3 =
{
s | s = −1

2
+ iv : −Tk ≤ v ≤ Tk

}
,

γk,4 =
{
s | s = u− iTk : −1

2
≤ u ≤ 1

2

}
,

where Tk = 2π
log q

(
k + 1

4

)
. Then

h
(
qf(n)

)
= lim

k→∞

1
2πi

∫
γk,1

= − lim
k→∞

(
1

2πi

∫
γk,2

+
1

2πi

∫
γk,3

+
1

2πi

∫
γk,4

+
∑

residues),

since the integral on the left side exists. Now we estimate the integrals on the right side.∣∣∣∣∣∣∣
∫
γk,3

q−f(n)s 1
1− qs

π

sinπs
ds

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
Tk∫
−Tk

q−f(n)(− 1
2

+iv) 1

1− q−
1
2

+iv

π

sin(π(−1
2 + iv))

dv

∣∣∣∣∣∣∣
≤ πq

f(n)
2

∞∫
−∞

1∣∣∣1− q− 1
2

+iv
∣∣∣ 1∣∣sin(π(−1

2 + iv))
∣∣dv

≤ πq
f(n)

2
1

1− q−
1
2

∞∫
−∞

1√
sin2 π

2 + sinh2 πv
dv

= q
f(n)

2
π

1− q−
1
2
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∣∣∣∣∣∣∣
∫
γk,2

q−f(n)s 1
1− qs

π

sinπs
ds

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1
2∫

− 1
2

q−f(n)(u+iTk) 1
1− qu+iTk

π

sin(π(u+ iTk))
du

∣∣∣∣∣∣∣
≤ π

1
2∫

− 1
2

q−f(n)u 1
|1− qu+iTk |

1√
sin2 πu+ sinh2 πTk

du

≤ πq−
1
2
f(n)

1
2∫

− 1
2

1
qu |sin(Tk log q)|

1√
sinh2 πTk

du

≤ πq−
1
2
f(n)

sinhπTk

1
2∫

− 1
2

1
qu

du k→∞−→ 0

The integral over γk,4 is treated similarly. Now let us compute the residues: 1
1−qs has simple

poles at zk := 2πik
log q , and 1

sinπs has a simple pole at 0. First we consider the residue at zk for
k 6= 0:

lim
z→zk

(z − zk)q−f(n)z 1
1− qz

π

sinπz
= q

−f(n) 2πik
log q

π

sin
(

2πik
log qπ

) lim
z→zk

z − zk
1− qz

= e−f(n)2πik π

i sinh
(

2π2k
log q

) 1
− log q

.

The sum extended over the residues at the poles zk, k 6= 0, therefore equals

∑
k 6=0

iπe−2if(n)kπ

log q sinh
(

2kπ2

log q

) .
Putting together the summands k and −k,

e−2if(n)kπ − e2if(n)kπ = cos(−2if(n)kπ) + i sin(−2f(n)kπ)− cos(2f(n)kπ)− i sin(2f(n)kπ)
= −2i sin(2f(n)kπ),

we obtain ∑
k>0

2π sin(2kf(n)π)

log q sinh
(

2kπ2

log q

) .
Finally, by the expansions

q−f(n)s = 1− f(n) log q s+ O(s2)
1

1− qs
= − 1

log q s
+

1
2

+ O(s)

π

sinπs
=

1
s

+ O(s),

the residue at z0 = 0 is f(n) + 1
2 . l
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It is worthwhile to evaluate the sum in (1.14) in the limit q → 0. First note that, if n is fixed
and q → 0, then (1.12) easily yields

µn →

{
f(n) + 1− {f(n)} if {f(n)} > 0
f(n) + 1

2 if {f(n)} = 0
.

Moreover, the O-term in (1.14) is o(1) for q → 0, as follows readily from the estimates in the
proof of Theorem 1.3.11. These two facts combined imply

lim
q→0

∑
k>0

2π sin(2kf(n)π)

log q sinh
(

2kπ2

log q

) =

{
1
2 − {f(n)} if {f(n)} > 0
0 if {f(n)} = 0

.

Note that in the special case f(n) = αn with positive α, the summands tend to the summands
of the Fourier series of 1

2 − {f(n)}, if {αn} > 0.

The following three lemmas complete our analysis of the means µn and prepare for the main
result of this section, Theorem 1.3.15.

Lemma 1.3.12. If we choose a subsequence (nk) such that {f(nk)} = β constant, then:

(a) For k →∞
µnk = f(nk) + c(β, q) + o(1),

where c(β, q) is a constant depending on β and q.

(b) (i) c(0, q) = c(1/2, q) = 1/2

(ii) c(β, q) + c(−β, q) = 1

Proof. Use (1.14) and simple properties of sin. l

Lemma 1.3.13. Set β = {f(n)}. Then

bc(β, q) + βc =
{

0 0 ≤ β < 1/2
1 1/2 ≤ β < 1

.

Proof. We define
ĉ({f(n)}, q) := c({f(n)}, q)− 1 + {f(n)}.

By Theorem 1.3.10, ĉ(β, q) is strictly increasing in β. Therefore we have for 0 ≤ β < 1/2

ĉ(0, q) = −1
2
≤ ĉ(β, q) < ĉ(1/2, q) = 0.

Thus

1
2
− β ≤ c(β, q) < 1− β and

1
2
≤ c(β, q) + β < 1. (1.16)

Similarly, we get for 1/2 ≤ β < 1

1− β ≤ c(β, q) < 1
2

and 1 ≤ c(β, q) + β <
1
2

+ β <
3
2
. (1.17)

l
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Lemma 1.3.14.

(i) If β 6= 1
2 , then f(n) + c(β, q) 6∈ Z. Thus

bµnc = bf(n) + c(β, q)c = bf(n)c+ bβ + c(β, q)c.

(ii) For β = 1
2 ,

µn > f(n) +
1
2

if 2f(n) ≤ n− 1 and µn < f(n) +
1
2

if 2f(n) ≥ n.

Thus

bµnc = f(n) +
1
2

if 2f(n) ≤ n− 1 and dµne = f(n) +
1
2

if 2f(n) ≥ n.

Proof: (i): From (1.16) we get for 0 ≤ β < 1/2 by adding f(n) and subtracting β

bf(n)c+
1
2
< f(n) + c(β, q) < bf(n)c+ 1.

The case 1/2 < β < 1 can be treated similarly.

(ii): Assume 2f(n) ≤ n− 1 first. Then

n−1∑
i=0

qi−f(n)

1 + qi−f(n)
=

f(n)− 1
2∑

i=0

qi−f(n)

1 + qi−f(n)
+

2f(n)∑
i=f(n)+ 1

2

qi−f(n)

1 + qi−f(n)
+

n−1∑
2f(n)+1

qi−f(n)

1 + qi−f(n)

=
f(n)− 1

2∑
i=0

q−i−
1
2

1 + q−i−
1
2

+
f(n)− 1

2∑
i=0

qi+
1
2

1 + qi+
1
2

+ o(1)

= f(n) +
1
2

+ o(1).

We used q
1+q + q−1

1+q−1 = 1; the o(1)-term is non-negative (and vanishes only for 2f(n) = n− 1).
If 2f(n) ≥ n, then the third sum vanishes and the second sum just runs up to n− 1 < 2f(n), so
µn < f(n) + 1

2 . l

Note that similarly to the proof of (ii) we can prove the properties of c(β, q) in Lemma 1.3.12 (b).
We can now state and prove the main result of this section. It shows that the limit distribution
of the normalised Xn is discrete normal.

Theorem 1.3.15. Let (nk)k∈N be an increasing sequence of natural numbers and Xnk ∼ KB(nk, θnk , q)
with θnk = q−f(nk) and {f(nk)} = β constant. (Recall that we assume f(n) → ∞ and
n− f(n)→∞ throughout the present section.) Then (Xnk − µnk)/σnk converges for k →∞ to
a limit X, with

P
(
X = − (β + c)

1
σ

+
1
σ
x

)
= eq(q)eq(−qβ)eq(−q1−β)q(x−1)(x−2β)/2, x ∈ Z, (1.18)

where c = c(β, q) is the constant from Lemma 1.3.12 and σ = limk→∞ σnk . The distribution
of X is symmetric iff β = 0 or β = 1/2.
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Proof: For simplicity we write in the following n instead of nk. By (1.10), we see that the σn
converge. First we consider the case β 6= 1/2:

P(Xn = bµnc+ x) =
[

n

bµnc+ x

]
q

θ
bµnc+x
n q(bµnc+x)(bµnc+x−1)/2∏n−1

i=0 (1 + θnqi)

=
[

n

bµnc+ x

]
q

q−(bµnc+x)f(n)+(bµnc+x)(bµnc+x−1)/2∏n−1
i=0

(
1 + qi

qf(n)

) . (1.19)

The product in the denominator equals

n−1∏
i=0

(
1 +

qi

qf(n)

)
=
bf(n)c∏
i=0

(
1 +

qi

qf(n)

) n−1∏
i=bf(n)c+1

(
1 +

qi

qf(n)

)

= q−f(n)(bf(n)c+1)+(bf(n)c+1)bf(n)c/2
bf(n)c∏
i=0

(
qf(n)−i + 1

)

×
n−bf(n)c−2∏

i=0

(
1 + qi+bf(n)c−f(n)+1

)

= q−f(n)(bf(n)c+1)+(bf(n)c+1)bf(n)c/2
bf(n)c∏
i=0

(
qf(n)−bf(n)cqbf(n)c−i + 1

)

×
n−bf(n)c−2∏

i=0

(
1 + qiqbf(n)c−f(n)+1

)
= q−f(n)(bf(n)c+1)+(bf(n)c+1)bf(n)c/2

(
−qβ; q

)
bf(n)c+1

(
−q−β+1; q

)
n−bf(n)c−2

.

(1.20)

The second equality uses the easy relation (1.2). The last two terms in (1.20) tend to eq
(
−qβ

)
and eq

(
−q−β+1

)
. The q-binomial coefficient in (1.19) tends to eq(q). The exponent of q resulting

from (1.19) and (1.20) leads is

−(bµnc+ x)f(n) +
1
2

(bµnc+ x)(bµnc+ x− 1) + f(n) (bf(n)c+ 1)− 1
2

(bf(n)c+ 1) bf(n)c

= (bf(n)c+ bβ + cc+ x) (bf(n)c+ bβ + cc − 1 + x) /2
− (bf(n)c+ bβ + cc+ x) f(n) + f(n) (bf(n)c+ 1)− (bf(n)c+ 1) bf(n)c/2

=
1
2

(x− 1 + δ)(δ − 2f(n) + 2bf(n)c+ x)

=
1
2

(x− 1 + δ)(δ − 2β + x),

where c = c(β, q) and

δ = bβ + cc =
{

0 β < 1/2
1 β > 1/2

by Lemma 1.3.13. Putting things together, we obtain

P(Xn = bµnc+ x)→ eq(q)eq
(
−qβ

)
eq

(
−q−β+1

)
q

(δ+x−1)(δ+x−2β)
2 .



1.3 Kemp’s q-binomial distribution 22

By normalising Xn we get (1.18). The distribution of X is symmetric iff

− (β + c− bβ + cc) = − (β + c− bβ + cc) + 1

⇐⇒ β + c− bβ + cc =
1
2
.

This is true for β = 0 by Lemma 1.3.12 (b) (i). For 0 < β < 1
2 we have bβ + cc = 0 by

Lemma 1.3.13. But then we must have β+ c = 1
2 , which would contradict (1.16) (since equality

only holds for β = 0). For β > 1
2 we must have β + c = 3

2 by Lemma 1.3.13, but this would be
a contradiction to (1.17).
For β = 1/2 define

H(µn) :=
{
bµnc if 2f(n) ≤ n− 1
dµne if 2f(n) ≥ n .

Then

P (Xn = H(µn) + x) =
[

n

H(µn) + x

]
q

q−(H(µn)+x)f(n)+(H(µn)+x)(H(µn)+x−1)/2∏n−1
i=0

(
1 + qi

qf(n)

) .

The q-binomial-coefficient tends to eq(q), and the product can be transformed as above. This
time the exponent of q equals

−(H(µn) + x)f(n) + (H(µn) + x)(H(µn) + x− 1)/2 + f(n) (bf(n)c+ 1)
− (bf(n)c+ 1) bf(n)c/2

= −(f(n) +
1
2

+ x)f(n) + (f(n) +
1
2

+ x)(f(n)− 1
2

+ x)/2

+ f(n)
(
f(n)− 1

2
+ 1
)
−
(
f(n)− 1

2
+ 1
)(

f(n)− 1
2

)
/2

=
x2

2
.

So we have
P (Xn = H(µn) + x)→ eq(q)eq

(
−q

1
2

)2
q
x2

2 .

Normalising Xn yields (1.18). l

So the limit distributions in the preceding theorem are normalised discrete normal distributions
with parameters

α = 1
2 + β if β < 1

2
α = −1

2 + β if β > 1
2

α = 0 if β = 1
2

.

For q → 1, they converge to the standard normal distribution [56]. Therefore, as in Proposi-
tion 1.3.2 and Theorem 1.3.6, the limits q → 1 and n→∞ can be exchanged. Indeed, for q → 1,
the distribution of Xn in Theorem 1.3.15 tends to the binomial distribution B(n, 1

2). The latter
converges to the standard normal distribution after normalisation.
Again, the convergence of the distributions in Theorem 1.3.15 yields a convergence property of
the corresponding orthogonal polynomials. The orthogonal polynomials for the discrete normal
distribution are the Stieltjes-Wigert polynomials Sk(x; q) [13, 42].

Corollary 1.3.16. Let x be a real number, and f(n) as usual. Then the q-Krawtchouk polyno-
mial Kk(q−x−f(n)+o(1); qf(n)−n, n; q) tends to (q; q)k × Sk(q−x; q) as n→∞.

As above, a direct proof of the corollary easily follows from the series representations of the
polynomials.
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1.4 The q-deformed binomial distribution

The next distribution we study is the q-deformed binomial distribution (see Zeiner [63]). As
mentioned in the introduction we are interested in the behaviour of sequences of random vari-
ables Xn ∼ QD(n, τn, q). For fixed parameter τn = τ we obtain an Euler distribution as the
limit law. This still remains true if we consider non-constant parameter sequences τn which
have a limit in [0, 1). In particular we can provide a q-analogue of the convergence of the clas-
sical binomial distribution with constant mean to the Poisson distribution. This is done in
Section 1.4.1. Afterwards we investigate in Section 1.4.2 sequences τn which tend to 1. Here the
limiting distribution depends on the limit of τnn and can be degenerate, truncated exponential
or exponential. Note that all these distributions are independent of the choice of q.

1.4.1 Parameter sequences with limit < 1

In the present section we study sequences of random variables Xn ∼ QD(n, τn, q), where the pa-
rameters τn converge to a limit c ∈ [0, 1). In particular we prove a q-analogue of the convergence
of the classical binomial distribution with constant mean to the Poisson distribution.

As noted above the sequence converges in the case of constant parameters τn = τ to an Euler
distribution with parameter τ . The following proposition is a mild generalisation of this fact
and shows that the Euler distribution is the limit distribution for every convergent parameter
sequence τn with limit in [0, 1).

Proposition 1.4.1. Let Xn ∼ QD(n, τn, q). Then, for n→∞,

Xn → E(τ, q)

if τn → τ and 0 ≤ τ < 1.

Proof: Note that

P(Xn = x) =
[
n

x

]
q

τxn

n−x∏
i=0

(1− τnqi).

The q-binomial coefficient tends to 1/(q; q)x. For the product apply the dominated convergence
theorem to its logarithm to see that it converges to Eq(−τ). l

We are now interested in special choices of the parameters τn such that the limit X(q) of the
sequence Xn(q) converges to a Poisson distribution for q → 1. From the previous theorem we
conclude immediately

Corollary 1.4.2. Let Xn ∼ QD(n, τn(q), q) with τn(q) → λ
n for q → 1 and τn(q) → τ(q) for

n→∞ with the additional property τ(q)
1−q → λ in the limit q → 1 (recall that we assume τ(q) < 1

in this section). Then the following diagram is commutative:

QD(n, τn, q)
n→∞−−−−→ E(τ(q), q)

q→1

y yq→1

B
(
n, λn

)
−−−−→
n→∞

P (λ)

One very natural way to choose the parameters is to set τn = λ
[n]q

.
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Our next goal is to establish a convergence result which is analogous to the convergence of the
classical binomial distribution with constant mean to a Poisson distribution and reduces in the
limit q → 1 to that theorem. For this purpose we start with an elementary fact.

Lemma 1.4.3. Let fn(x), n ∈ N, be a sequence of continuous functions which converges point-
wise to a continuous limit f(x). Assume that for each n the function fn(x) has a single root x̂n,
and f(x) has a single root x̂, and that f(y)f(z) < 0 for y < x̂ and z > x̂. Then x̂n → x̂.

Proof: W.l.o.g. we may assume that f(z) > 0 for z > x̂. For given ε > 0 choose a δ(ε) <
min(f(x̂ + ε),−f(x̂ − ε)). Then there exists an N = N(δ(ε)) such that for all n ≥ N we have
|fn(x̂+ ε)− f(x̂+ ε)| < δ(ε). Therefore fn(x̂+ ε) > 0. Moreover there exists an M = M(δ(ε))
such that for all n ≥M we have |fn(x̂− ε)− f(x̂− ε)| < δ(ε). Therefore fn(x̂− ε) < 0. Hence,
by continuity, for all n ≥ max(N,M) we have |x̂− x̂n| < 2ε. l

The essential key to apply this lemma is the following representation of the means µn(τ, q),
which allows us to extract important properties of the means easily.

Lemma 1.4.4. The means µn(τ, q) have the representation

µn(τ, q) =
n∑
j=1

(q; q)j−1

[
n

j

]
q

τ j .

Proof. We proceed by induction. For n = 1 this is obviously true. Now suppose that the
statement is true for n − 1. In order to calculate µn(τ, q) we use the recurrence relation (1.9).
Hence we have

µn(τ, q) =
n∑
x=1

xpn(x, τ) = τ
n∑
x=1

xpn−1(x− 1, τ) + (1− τ)
n−1∑
x=1

xpn−1(x, qτ).

Shifting the summation index in the first sum, splitting this sum and using the induction hy-
pothesis yields

µn(τ, q) = τ
n−1∑
j=1

(q; q)j−1

[
n− 1
j

]
q

τ j +
n−1∑
x=0

τpn−1(x, τ)

+ (1− τ)
n−1∑
j=1

(q; q)j−1

[
n− 1
j

]
q

τ jqj .

The second sum reduces to τ . Collecting powers of τ gives

µn(τ, q) = τ

(
1 +

[
n− 1

1

]
q

)

+
n∑
j=2

(
(q; q)j−1

[
n− 1
j

]
q

qj + (q; q)j−2

[
n− 1
j − 1

]
q

(1− qj−1)

)
τ j .

Consequently the desired result follows by the recurrence relation (1.1) for the q-binomial coef-
ficients. l

Remark 1.4.5. An alternative way to prove this lemma is to use Kemp’s [38, p. 300] represen-
tation of the probability generating function, to differentiate and to manipulate the sum.
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Using the monotonicity of the q-binomial coefficients in n we immediately get

Proposition 1.4.6. The means µn(τ, q) are strictly increasing in n (for τ > 0) and τ .

Now we turn to the convergence result:

Theorem 1.4.7. Fix µ > 0 and choose the parameter τn = τn(q, µ) of the q-deformed binomial
distribution such that µn = µ. Then we have

(i) The sequence QD(n, τn, q) converges for n → ∞ to an Euler distribution E(τ, q), where
τ = limn→∞ τn.

(ii) For fixed n, QD(n, τn, q) tends to a binomial distribution B(n, µn) in the limit q → 1.

(iii) For q → 1, the Euler distribution E(τ, q) converges to a Poisson distribution with param-
eter µ.

So we obtain the following commutative diagram:

QD(n, τn(q), q) n→∞−−−−→ E(τ(q), q)

q→1

y yq→1

B
(
n, µn

)
−−−−→
n→∞

P (µ)

Proof. First we check that for given µ, q and large n there exists a unique τn with µn(τn, q) = µ.
The function µn(τ, q) is continuous and strictly increasing in n and τ by the previous theo-
rem. Moreover, we have limτ→0 µn(τ, q) = 0. Choosing τn in such a way that τn → 1, then
µn(τn, q) becomes arbitrarily large. Consequently there is a unique solution of µn(τ, q) = µ. By
Lemma 1.4.3 the sequence τn converges to a limit τ where τ is the unique solution of µE(τ, q) = µ,
where µE(τ, q) is the mean of an Euler-distribution with parameters τ and q. This mean can be
written as

µE(τ, q) =
∞∑
i=0

qiτ

1− qiτ
,

see [36] or take the limit n → ∞ (using the dominated convergence theorem) in Lemma 1.4.4
and manipulate the sum (i.e., expand the denominator as a geometric series and change the
order of summation).

Again by Lemma 1.4.3 we get that τn → µ/n. It remains to check that τ/(1− q) converges to µ
in the limit q → 1. But this is again a consequence of Lemma 1.4.3 since τ/(1− q) is the unique
solution of µE((1− q)τ, q) = µ and µE((1− q)τ, q) tends to τ for q → 1. l

1.4.2 Parameter sequences with limit 1

In this section we investigate sequences Xn of random variables where Xn is QD(n, τn, q)-
distributed and the parameters τn converge to 1. The behaviour of the sequence Xn depends
on the growth rate of τn. For this purpose we will distinguish three cases: Firstly we examine
the case τnn → 1, where it will turn out that the limit distribution is degenerate. Then we study
the case τnn → c with 0 < c < 1. Here the limit distribution will depend only on c and is a
truncated exponential distribution. Finally we turn to the case τ f(n)

n → c where 0 < c < 1 and
f(n) = o(n); this will lead to an exponential distribution.

Consider sequences of random variables Xn ∼ QD(n, τn, q) with τn → 1 and additionally τnn → 1
first. Then we have the following theorem:
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Theorem 1.4.8. Let Xn ∼ QD(n, τn, q) with τn → 1 and τnn → 1. Then n −Xn converges to
the point measure at 0.

Proof. The probability that Yn = n−Xn is equal to 0 is given by

P(Yn = 0) = τnn

which converges to 1 by assumption. l

Now let us investigate sequences Xn ∼ QD(n, τn, q) where τn → 1 and τnn → c for a c ∈ (0, 1).
Before we can establish the distribution of the limit of such a sequence, we start with several
lemmas which allow us to compute the asymptotic behaviour of certain sums of probabilities of
QD(n, τn, q)-distributed random variables and their means and variances.

The first lemma is an analogue to Lemma 1.4.4 and gives an alternative representation of the
variance:

Lemma 1.4.9. The second moment of Xn(τ, q) can be written as
n∑
x=1

x2

[
n

x

]
q

τx(τ ; q)n−x =
n∑
j=1

najτ
j

with

naj =
[
n

j

]
q

(q; q)j−1

(
1 + 2

j−1∑
i=1

1
1− qi

)
.

Proof. We prove this by induction. The case n = 1 is obvious. To compute σ2
n we use the

recurrence (1.9) again and shift the summation index. This gives

Vn :=
n∑
x=1

x2pn(x, τ) = τ
n−1∑
x=0

(x2 + 2x+ 1)pn−1(x, τ) + (1− τ)
n∑
x=1

x2pn−1(x, qτ).

By splitting sums and by using Lemma 1.4.4 and the induction hypothesis we find

Vn = τ

n−1∑
j=1

n−1ajτ
j + 2τ

n−1∑
j=1

(q; q)j−1

[
n− 1
j

]
q

τ j + τ + (1− τ)
n−1∑
j=1

n−1ajq
jτ j .

Collecting powers of τ yields

Vn = τ

(
1 +

[
n− 1

1

]
q

)

+
n∑
j=2

(
n−1aj−1(1− qj−1) + 2

[
n− 1
j − 1

]
q

(q; q)j−2 + n−1ajq
j

)
τ j .

The first term gives
[
n
1

]
q
τ and the coefficient of τ j in the sum equals[

n− 1
j − 1

]
q

(q; q)j−2

(
1 + 2

j−2∑
i=1

1
1− qi

)[
1− qj−1

]
+ 2
[
n− 1
j − 1

]
q

(q; q)j−2

+
[
n− 1
j

]
q

(q; q)j−1

(
1 + 2

j−1∑
i=1

1
1− qi

)
qj ,

which implies the statement by using the recurrence relation of the q-binomial coefficients again.
l



1.4 The q-deformed binomial distribution 27

The next three lemmas are devoted to the asymptotic behaviour of sums of powers of θn, where
0 < θn < 1 and θn → 1.

Lemma 1.4.10. If f(n)→∞ for n→∞ and θn ≤ 1 such that θf(n)
n → c with 0 < c < 1, then

∞∑
i=0

θin ∼
−f(n)
log c

, n→∞.

Proof. Since only a finite number of θn = 1 is possible, we assume w.l.o.g. that θn < 1 and
obtain

∞∑
i=0

θin =
1

1− θn
∼ − 1

log θn

using the substitution θn = 1 + xn in the elementary equivalence

log(1 + x) ∼ x, x→ 0. (1.21)

Since f(n) log θn ∼ log c, the statement follows. l

Lemma 1.4.11. For θn ≤ 1 and θn → 1, θf(n)
n → c (c ∈ (0, 1)) and g(n)/f(n) ∼ β, g(n) ≤ n

we have
bg(n)c∑
i=0

θin ∼
cβ − 1
log c

f(n)

and
bg(n)c∑
i=0

[
n

i

]
q

θin ∼ eq(q)
cβ − 1
log c

f(n)

as n→∞.

Proof. We rewrite the first sum as

bg(n)c∑
i=0

θin =
1− θbg(n)c+1

n

1− θn
.

The growth of the denominator is given in Lemma 1.4.10, and the numerator tends to 1 − cβ,
since θbg(n)c

n = θ
g(n)−{g(n)}
n → cβ because of θn → 1.

To get the asymptotic of the second sum we write

bg(n)c∑
i=0

[
n

i

]
q

θin =
b
√
g(n)c∑
i=0

[
n

i

]
q

θin +
bg(n)−

√
g(n)c−1∑

b
√
g(n)c+1

[
n

i

]
q

θin +
bg(n)c∑

bg(n)−
√
g(n)c

[
n

i

]
q

θin.

The first and the third sum on the right-hand side are O(
√
g(n)) and therefore asymptotically

negligible. The second sum is bounded by

(q; q)n
(q; q)b

√
g(n)c+1

(q; q)
n−b
√
g(n)c−1

bg(n)−
√
g(n)c−1∑

b
√
g(n)c+1

θin ≤
bg(n)−

√
g(n)c−1∑

b
√
g(n)c+1

[
n

i

]
q

θin

≤ (q; q)n
(q; q)2

bn/2c

bg(n)−
√
g(n)c−1∑

b
√
g(n)c+1

θin.

By the first part of this lemma the lower and the upper bound have the asserted asymptotic. l
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Lemma 1.4.12. If θn ≤ 1 and θn → 1 with θnn → c for 0 < c < 1, then

n∑
i=0

iθin ∼
1− c+ c log c

log2 c
n2

and
n∑
i=0

[
n

i

]
q

iθin ∼ eq(q)
1− c+ c log c

log2 c
n2

as n→∞.

Proof: To estimate the first sum we use Lemma 1.4.10 again and the identity

n∑
i=0

iti =
t(1− tn − ntn(1− t))

(1− t)2
.

Hence, setting t = θn,

n∑
i=0

iθin ∼ (1− c− nθnn(1− θn))
n2

log2 c
∼ (1− c+ c log c)

n2

log2 c
.

Here we used that under the assumption θnn → c we have (1 − θn)n → − log c. This can easily
be seen from the equivalence (1.21). The asymptotic for the sum with the q-binomial coefficient
is obtained as in Lemma 1.4.11. l

Now we are ready to establish the essential key in proving the convergence result: we give the
asymptotic behaviour of sums of probabilities and the means and variances of QD(n, τn, q)-
distributed random variables.

Lemma 1.4.13. Let Xn be QD(n, τn, q)-distributed and denote by µn(τn, q) and σ2
n(τn, q) the

corresponding mean and variance. If τn → 1 and τnn → c with 0 < c < 1 and f(n) ∼ βn,
f(n) < n, then

bf(n)c∑
x=0

τxn

[
n

x

]
q

(τn; q)n−x ∼ 1− cβ,

µn(τn, q) ∼
c− 1
log c

n,

σ2
n(τn, q) ∼

1 + 2c log c− c2

(log c)2
n2,

as n→∞.

Proof: We start with the first assertion. Since f(n) < n we can write

Sn :=
bf(n)c∑
x=0

τxn

[
n

x

]
q

(τn; q)n−x = (1− τn)
bf(n)c∑
x=0

τxn

[
n

x

]
q

n−x−1∏
i=1

(1− τnqi).

The summands are bounded by eq(q)2, hence

Sn ∼ (1− τn)
bf(n)c−b

√
nc∑

x=b
√
nc

τxn

[
n

x

]
q

n−x−1∏
i=1

(1− τnqi) =: Ŝn.



1.4 The q-deformed binomial distribution 29

Estimating the product and using again the boundedness of the summands yields

Ŝn ≤ (1− τn)(τn; q)n−bf(n)c+b
√
nc−1

bf(n)c−b
√
nc∑

x=b
√
nc

τxn

[
n

x

]
q

∼ (1− τn)(τn; q)n−bf(n)c+b
√
nc−1

n∑
x=0

τxn

[
n

x

]
q

=: ˆ̂
Sn.

As in the proof of Proposition 1.4.1 and with use of Lemma 1.4.11 (with g(n) := f(n) and
f(n) := n) we obtain

ˆ̂
Sn ∼ (1− τn)

1
eq(q)

eq(q)
cβ − 1
log c

n ∼ 1− cβ.

In an analogous way we find a lower bound of Ŝn that is asymptotically equivalent to 1− cβ.

Now we prove the second proposition of the lemma: Use Lemma 1.4.4, easy estimates of the
q-Pochhammer symbol and the asymptotics given in Lemma 1.4.11 to obtain

µn(τn, q) ≤
b
√
nc∑

j=1

(q; q)n
(q; q)2

dn/2e
+ (q; q)b√nc

n∑
j=b
√
nc

[
n

j

]
q

τ jn ∼
1

eq(q)
eq(q)

c− 1
log c

n

and

µn(τn, q) ≥ (q; q)n
n∑
j=1

[
n

j

]
q

τ jn ∼
c− 1
log c

n.

Similarly we proceed for the second moments of Xn(τn, q) and estimate with use of Lemma 1.4.12

E(X2
n) ≥

n∑
j=1

(q; q)j−1 (1 + 2(j − 1))
[
n

j

]
q

τ jn

≥ 2(q; q)n
n∑
j=1

(j − 1)
[
n

j

]
q

τ jn ∼ 2
1− c+ c log c

(log c)2
n2.

To bound the second moment from above we split the sum into two parts

E(X2
n) ≤

b
√
nc∑

j=1

(q; q)n
(q; q)2

dn/2e

(
1 +

2n
1− q

)
+

n∑
j=b
√
nc

(q; q)j−1

(
1 + 2

j−1∑
i=1

1
1− qj−i

)[
n

j

]
q

τ jn.

The first sum is o(n2), and splitting the inner sum in the second term we obtain

E(X2
n) = o(n2) +

n∑
j=b
√
nc

(q; q)j−1

1 + 2
j−1∑

i=b
√
jc

1
1− qj−i

[n
j

]
q

τ jn

+
n∑

j=b
√
nc

(q; q)j−1

1 + 2
b
√
jc∑

i=1

1
1− qj−i

[n
j

]
q

τ jn.
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Here the first sum is o(n2) again and easy estimates of the second term yield

E(X2
n) ≤ o(n2) + 2(q; q)b√nc

n∑
j=b
√
nc

j
1

1− qj−b
√
jc−1

[
n

j

]
q

τ jn

≤ o(n2) + 2(q; q)b√nc
1

1− qn−
√
n−1

n∑
j=1

j

[
n

j

]
q

τ jn

∼ 2
1− c+ c log c

(log c)2
n2.

Thus
E(X2

n(τn, q)) ∼ 2
1− c+ c log c

(log c)2
n2.

Hence

σ2
n(τn, q) = E(X2

n(τn, q))− µn(τ, q)2 ∼

(
2

1− c+ c log c
(log c)2

−
(
c− 1
log c

)2
)
n2

∼ 1 + 2c log c− c2

(log c)2
n2,

which completes the proof. l

After this analysis of the means and variances it is now easy to obtain the limiting distribution
of the sequence Xn.

Theorem 1.4.14. Let Yn ∼ QD(n, q, τn) with τn → 1 and τnn → c with 0 < c < 1. Then the
sequence of the normalised random variables Xn = (Yn − µn)/σn converges to a limit X with

P(X ≤ x) = 1− ec−1e−
√

1+2c log c−c2x

for

x ∈

[
− 1− c√

1 + 2c log c− c2
,

c− log c− 1√
1 + 2c log c− c2

)
and

P(X ≤ x) = 1 for x =
c− log c− 1√
1 + 2c log c− c2

.

Proof. The support of X is given by[
lim
n→∞

−µn(τn, q)
σn(τn, q)

, lim
n→∞

n− µn(τn, q)
σn(τn, q)

]
.

Using Lemma 1.4.13 the stated support follows immediately.

Computing the distribution function of X yields with use of Lemma 1.4.13

P(Xn ≤ x) =
∑

0≤y≤σnx+µn

τyn

[
n

y

]
q

(τn; q)n−y ∼ 1− cα

with

α =

√
1 + 2c log c− c2

− log c
x+

c− 1
log c
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for
x <

c− log c− 1√
1 + 2c log c− c2

.

Simplifying cα yields the theorem. l

Now we turn to the third case which treats sequences of random variables Xn ∼ QD(n, τn, q)
where τn → 1 and τ

f(n)
n → c for a c ∈ (0, 1) and f(n) = o(n). This case is very similar to the

previous one, and so we start with an analogue of Lemma 1.4.12.

Lemma 1.4.15. Let f(n)→∞, f(n) = o(n), θf(n)
n → c with 0 < c < 1. Then

n∑
i=0

iθin ∼
f(n)2

log2 c
and

n∑
i=0

i

[
n

i

]
q

θin ∼ eq(q)
f(n)2

log2 c

as n→∞.

Proof. Follows from the proof of Lemma 1.4.12 and observe that nθnn(1− θn) tends to zero. l

Following the proof of Lemma 1.4.13 and using Lemma 1.4.15 instead of Lemma 1.4.12 we obtain

Lemma 1.4.16. If τn → 1 and τ f(n)
n → c with 0 < c < 1 and f(n) = o(n), g(n) ∼ βf(n), then

bg(n)c∑
x=0

τxn

[
n

x

]
q

(τn; q)n−x ∼ 1− cβ,

µn(τn, q) ∼
−f(n)
log c

,

σ2
n(τn, q) ∼

f(n)2

(log c)2
,

as n→∞.

As an immediate consequence we get the distribution of the limit of Xn, which is an exponential
distribution and is again independent of q.

Theorem 1.4.17. Let Yn ∼ QD(n, q, τn) with τn → 1 and τ
f(n)
n → c with 0 < c < 1 and

f(n) = o(n). Then the sequence of the normalised random variables Xn = (Yn−µn)/σn converges
to a normalised exponential distribution with parameter 1, i.e.

P(X ≤ x) = 1− e−x−1, x ≥ −1.

Proof. Lemma 1.4.16 yields immediately that the support of the limit distribution is [−1,∞).
Computing the distribution function gives

P(X ≤ x) =
∑

0≤y≤σnx+µn

τyn

[
n

y

]
q

(τn; q)n−y ∼ 1− c
x+1
− log c = 1− e−x−1. l

Comparing this result with Theorem 1.4.14 we see that this corresponds to taking the limit
c→ 0.
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1.5 A family of q-binomial distributions

So far we studied convergence properties of Kemp’s distribution and of the q-deformed bino-
mial distribution. For the other two q-binomial distributions mentioned in Section 1.2.1, the
Stieltjes-Wigert- and the Rogers-Szegö-distribution, we could ask the same questions. But be-
fore attacking these problems recall the definitions of Kemp’s q-deformed binomial distribution,
the Stieltjes-Wigert- and the Rogers-Szegö-distribution. They all are of the form

P(X = x) =

[
n
x

]
q
qαx

2
θx∑n

y=0

[
n
y

]
q
qαy2θy

, x = 0, . . . , n, 0 < θ, 0 ≤ α; (1.22)

for α = 0 this is the RS-distribution, α = 1
2 gives a KB(n, θq1/2, q)-distribution and α = 1 a

SW (n, θq, q)-distribution. This gives rise to the following definition: We say a random variable
X is B(α, θ, n, q)-distributed iff its probabilities are given by (1.22). The present section is
devoted to the study of this family B of q-binomial distributions and generalises some of the
results obtained for Kemp’s distribution in Section 1.3. The following investigations are a little
bit more involved than that for Kemp’s distribution since we used the special formulas (1.7) for
the mean and variance before.

In order to state all our results we need besides this family of q-binomial distribution a family
of q-analogues of the Poisson distribution as well. We call a random variable X P(α, θ, q)-
distributed iff it satisfies

P(X = x) =
qαx

2
θx

(q, q)x
1

E2α
q (θ)

, 0 ≤ x,

where 0 < θ < 1 if α = 0, and 0 < θ if α > 0, and Eαq is a q-analogue of the exponential function
(which was introduced by Floreanini et al. [19] and studied by Atakishiyev [7] and also appears
in Cigler [15]) defined by

Eαq (z) =
∑
x≥0

q
α
2
x2

(q, q)x
zx, (1.23)

since Eαq ((1 − q)z) → ez. For α = 0 we obtain the Euler distribution, and α = 1
2 gives a

H(θq1/2)-distribution. The sum in (1.23) has a different behaviour for α = 0 and α > 0: In the
case α = 0 it is convergent only for 0 ≤ |z| < 1, but for α > 0 it converges for all z ∈ C. This
is why we restricted the parameter θ in the definition of our q-Poisson family. Consequently
there is a big difference in the behaviour of the RS-distribution and the other members of this
q-binomial-family. So we will often distinguish between α = 0 and α > 0 in the convergence
results.

We are now ready to start our investigations: In Section 1.5.1 we study basic properties of the
family B. We show that they are indeed q-analogues of the binomial distribution, converge to
the family P as n→∞ if the parameter θ is fixed and that they are logconcave. Moreover, we
give characterisation theorems and random walk models. Finally we study the behaviour of the
means in dependence on n, θ and α.

In Sections 1.5.2 and 1.5.3 we investigate sequences of random variablesXn withXn ∼ B(α, θn, n, q).
In particular we show that there are analogues to the convergence of the classical binomial dis-
tribution to the Poisson distribution and the normal distribution, and that the limits q → 1 and
n→∞ can be exchanged. Section 1.5.2 deals with convergent parameter sequences, in particu-
lar with the case of constant parameter and constant mean, and contains a detailed analysis of
the behaviour of the RS-distribution in the limit θn → 1. Section 1.5.3 is devoted to the study
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of parameter sequences θn that tend to infinity (in the case α > 0). If the parameter grows fast
the limit is obtained by using the reversing property and reducing the problem in this way to a
convergent parameter sequence. Afterwards we examine slowly increasing parameter sequences
which will lead to a discrete normal distribution as the limit law.

1.5.1 Properties of the Family B

As noted above we study basic properties of our family B. We show that it is in fact a q-analogue
of the binomial distribution and logconcave. These properties hold for the family P too. Then
we give a characterisation of a B(α, θ, n, q)-distribution and a random walk model for B and then
we turn to the study of the behaviour of the mean of a B(α, θ, n, q)-distribution in dependence
on n, θ and α. In the present section we always allow α ≥ 0.

The following two theorems show that our families B and P tend to the classical binomial and
Poisson distribution. This generalises the results for the Kemp-, SW-, RS-, Heine, and Euler
distributions.

Theorem 1.5.1. For q → 1 we have

B(α, θ, n, q)→ B

(
n,

θ

1 + θ

)
.

Proof. By definition,

P(X = x) =

[
n
x

]
q
qαx

2
θx∑n

y=0

[
n
y

]
q
qαy2θy

→
(
n
x

)
θx∑n

y=0

(
n
y

)
θy

=

(
n
x

)
θx

(1 + θ)n

=
(
n

x

)(
θ

1 + θ

)x( 1
1 + θ

)n−x
. l

Theorem 1.5.2. In the limit q → 1

P(α, (1− q)θ, q)→ P (θ).

Proof. By definition

P(X = x) =
qαx

2
(1− q)xθx

(q, q)x
1

E2α
q ((1− q)θ)

→ θx

x!
exp(−θ).l

Kemp showed in [38] that the RS-, SW-, and Kemp-distribution are logconcave, i.e.

∆(x) :=
P(X = x+ 1)

P(X = x)
− P(X = x+ 2)

P(X = x+ 1)
> 0

for x = 0, . . . , n− 2. We now generalise this to

Theorem 1.5.3. B(α, θ, n, q) is logconcave.



1.5 A family of q-binomial distributions 34

Proof: We have

∆(x) =
qα(x+1)2

θx+1(q, q)x(q, q)n−x
(q, q)x+1(q, q)n−x−1qαx

2θx
− qα(x+2)2

θx+2(q, q)x+1(q, q)n−x−1

(q, q)x+2(q, q)n−x−2qα(x+1)2θx+1

= θ

(
q2αx+α (1− qn−x)

1− qx+1
−
(
1− qn−x−1

)
q2αx+3α

1− qx+2

)

= θq2αx+α

(
1− qx+2 − qn−x + qn+2 −

(
1− qn−x−1 − qx+1 + qn

)
q2α

(1− qx+1) (1− qx+2)

)
.

For α = 0 we have ∆(x) > 0 by [38], and the numerator is increasing in α, since

1− qn−x−1 − qx+1 + qn = qn−x−1
(
qx+1 − 1

)
−
(
qx+1 − 1

)
> 0

for x < n− 1. l

In the same way we obtain

Theorem 1.5.4. P(α, θ, q) is logconcave.

For the Heine- and Euler-distribution this property was proven by Kemp [36].

In [39] Kemp characterised some q-analogues of the binomial distribution as the conditional
distribution of U |(U +V = m) where U and V are independent. We can characterise our family
B in an analogous way and generalise some of Kemp’s results.

Theorem 1.5.5. A B(α, θ/λ,m, q)-distribution is the distribution of U |(U + V = m), where U
and V are independent, iff U has a P(α, β, θ)-distribution and V has an Euler-distribution with
parameter λ.

Proof: The proof runs along the same lines as the proofs in [39]: If U and V have the postulated
distributions, then

P(U = u|U + V = n) = C
θuqαu

2

(q, q)u
λm−u

(q, q)m−u

= C
λm

(q, q)u(q, q)m−u

(
θ

λ

)u
qαu

2
.

To prove the other implication, we need the following theorem ([53]):

Let X and Y be independent discrete random variables and c(x, x+y) = P(X = x|X+Y = x+y).
If

c(x+ y, x+ y)c(0, y)
c(x, x+ y)c(y, y)

=
h(x+ y)
h(x)h(y)

,

where h is a nonnegative function, then

f(x) = f(0)h(x)eax, g(y) = g(0)k(y)eay

where a is an arbitrary parameter and

0 < f(x) = P(X = x), 0 < g(y) = P(Y = y), k(y) =
h(y)c(0, y)
c(y, y)

.
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Here we have

c(u+ v, u+ v)c(0, v)
c(u, u+ v)c(u, v)

=

(
θ
λ

)u+v
qα(u+v)2

(q,q)u+v

(q,q)v(q,q)u

(
θ
λ

)u
qαu2

(
θ
λ

)v
qαv2

=
h(u+ v)
h(u)h(v)

,

where

h(u) =
qαu

2

(q, q)u
.

Thus k(v) = (θ/λ)v/(q, q)v and

P(U = u) = C1
qαu

2
eau

(q, q)u
,

P(V = v) = C2

(
θea

λ

)v 1
(q, q)v

yielding a P(α, ea, q)-distribution and an Euler distribution. l

We now give a random-walk-model for the family B (the models for the Kemp-, RS-, and SW-
distribution given in [38] are special cases of this model). Let ax and bx denote the probabilities
to move up and down and choose

ax = cγq2αx
(
1− qn−x

)
and bx = c(1− qx)

for x = 0, . . . , n. Then B(α, γq−α, n, q) is a stationary distribution. To see this, note that for a
stationary distribution we must have

P(X = x) = P(X = x)(1− ax − bx) + P(X = x+ 1)bx+1 + P(X = x− 1)ax−1.

So we have to show that ∆(x) := −P(X = x)(ax+bx)+P(X = x+1)bx+1+P(X = x−1)ax−1 = 0
if X ∼ B(α, γq−α, n, q). For 1 ≤ x ≤ n− 1 we have

∆(x) = C

(
−
[
n

x

]
q

qαx
2
γxq−αx

(
c(1− qx) + cγq2αx(1− qn−x)

)
+

+
[

n

x− 1

]
q

qα(x−1)2
γx−1q−α(x−1)cγq2α(x−1)(1− qn−x+1)+

+
[

n

x+ 1

]
q

qα(x+1)2
γx+1q−α(x+1)c(1− qx+1)

)
.

Using the relation [
n

x− 1

]
q

(
1− qn−x+1

)
=
[
n

x

]
q

(1− qx)

we obtain that the terms with γx and γx+1 vanish. Similarly ∆(0) and ∆(n) can be treated.

Let us denote by µn(α, θ, q) the mean of a random variable X ∼ B(α, θ, n, q). The following
lemmas are devoted to the behaviour of µn(α, θ, q) in dependence on n, α and θ. The first result
shows that the means are increasing in n.

Lemma 1.5.6. For all α ≥ 0 µn(α, θ, q) is increasing in n.
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Proof. For 0 ≤ x < y ≤ n we have

q−x < q−y

and therefore

qn+1−x < qn+1−y,

1− qn+1−x > 1− qn+1−y,

1
1− qn+1−x <

1
1− qn+1−y

This is equivalent to [
n+ 1
x

]
q

[
n

y

]
q

(y − x) <
[
n+ 1
y

]
q

[
n

x

]
q

(y − x)

and [
n+ 1
x

]
q

[
n

y

]
q

y +
[
n+ 1
y

]
q

[
n

x

]
q

x <

[
n+ 1
x

]
q

[
n

y

]
q

x+
[
n+ 1
y

]
q

[
n

x

]
q

y.

Multiplication with θx+yqα(x2+y2) yields[
n+ 1
x

]
q

[
n

y

]
q

yθx+yqα(x2+y2) +
[
n+ 1
y

]
q

[
n

x

]
q

xθx+yqα(x2+y2)

<

[
n+ 1
x

]
q

[
n

y

]
q

xθx+yqα(x2+y2) +
[
n+ 1
y

]
q

[
n

x

]
q

yθx+yqα(x2+y2).

Now we sum over all pairs (x, y) with x < y:

n∑
x,y=0
x 6=y

[
n+ 1
x

]
q

θxqαx
2

[
n

y

]
q

yθyqαy
2
<

n∑
x,y=0
x 6=y

[
n+ 1
x

]
q

θxqαx
2
x

[
n

y

]
q

θyqαy
2
.

By adding the terms for x = y and an extra-sum we get

θn+1qα(n+1)2
n∑
y=0

y

[
n

y

]
q

θyqαy
2

+
n∑
x=0

n∑
y=0

[
n+ 1
x

]
q

θxqαx
2

[
n

y

]
q

yθyqαy
2

< (n+ 1)θn+1qα(n+1)2
n∑
y=0

[
n

y

]
q

θyqαy
2

+
n∑
x=0

n∑
y=0

[
n+ 1
x

]
q

θxqαx
2
x

[
n

y

]
q

θyqαy
2
.

This can be written as

n+1∑
x=0

[
n+ 1
x

]
q

θxqαx
2

n∑
y=0

y

[
n

y

]
q

θyqαy
2
<

n+1∑
x=0

x

[
n+ 1
x

]
q

θxqαx
2

n∑
y=0

[
n

y

]
q

θyqαy
2
,

and so we have ∑n
y=0 y

[
n
y

]
q
θyqαy

2∑n
y=0

[
n
y

]
q
θyqαy2 <

∑n+1
x=0 x

[
n+1
x

]
q
θxqαx

2∑n+1
x=0

[
n+1
x

]
q
θxqαx2

. l

The means are increasing in the parameter θ too:

Lemma 1.5.7. µn(α, θ, q) is increasing in θ for all α ≥ 0.
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Proof. We show that ∂
∂θµn(α, θ, q) > 0. Differentiating gives

∂

∂θ

(∑n
x=0 x

[
n
x

]
q
θxqαx

2∑n
x=0

[
n
x

]
q
θxqαx2

)
=

=

∑n
x=0

[
n
x

]
q
θxqαx

2 ∑n
y=0 y

2
[
n
y

]
q
θy−1qαy

2 −
∑n

x=0 x
[
n
x

]
q
θxqαx

2 ∑n
y=0 y

[
n
y

]
q
θy−1qαy

2(∑n
x=0

[
n
x

]
q
θxqαx2

)2

Thus it suffices to show that(
n∑
x=1

x

[
n

x

]
q

qαx
2
θx−1

)2

<
n∑
x=0

[
n

x

]
q

θx−1qαx
2

n∑
y=0

y2

[
n

y

]
q

θy−1qαy
2
.

The left-hand side can be written as
n∑
x=1

x2

[
n

x

]2

q

q2αx2
θ2(x−1) +

n∑
x,y=0
x 6=y

xy

[
n

x

]
q

[
n

y

]
q

qα(x2+y2)θx+y−2 =: A1 +B1

and the right-hand side as
n∑
x=1

x2

[
n

x

]2

q

q2αx2
θ2(x−1) +

n∑
x,y=0
x 6=y

x2

[
n

x

]
q

[
n

y

]
q

qα(x2+y2)θx+y−2 =: A2 +B2.

Since A1 = A2, it suffices to show that B1 < B2. For this purpose we consider the pairs (x, y)
and (y, x) with x < y: In B1 we have the term

2xy
[
n

x

]
q

[
n

y

]
q

qα(x2+y2)θx+y−2 (1.24)

and in B2 [
n

x

]
q

[
n

y

]
q

qα(x2+y2)θx+y−2(x2 + y2). (1.25)

Since 2xy < x2 + y2 for x 6= y, we have (1.24) < (1.25) and so B1 < B2. l

For α the situation is a little bit different:

Lemma 1.5.8. µn(α, θ, q) is decreasing in α if α ∈ (0, 1] and increasing in α if α ≥ 1.

Proof. Assume α > 1 (in the same way we can treat the case 0 < α < 1). We show that
∂
∂αµn(α, θ, q) > 0. This is equivalent to

n∑
x=0

[
n

x

]
q

θxqαx
2

n∑
y=0

y3

[
n

y

]
q

θyqαy
2

logα >
n∑
x=0

x

[
n

x

]
q

θxqαx
2

n∑
y=0

y2

[
n

y

]
q

θyqαy
2

logα.

So it is sufficient to show that
n∑

x,y=0
x 6=y

[
n

x

]
q

[
n

y

]
q

qα(x2+y2)θx+yy3 logα >
n∑

x,y=0
x 6=y

[
n

x

]
q

[
n

y

]
q

qα(x2+y2)θx+yxy2 logα.

Considering the pairs (x, y) and (y, x), it is sufficient that x3 + y3 > xy2 + yx2. This is fulfilled
because this can be written as (y2 − x2)(y − x) = (y + x)(y − x)2 > 0. l
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Finally we show that our family B is closed under reversing, i.e. n−X has the same form as X.

Theorem 1.5.9. If X ∼ B(α, θ, n, q) then n−X ∼ B(α, θ−1q−2αn, n, q).

Proof. We compute

P(n−X = x) =

[
n

n−x
]
q
qα(n−x)2

θn−x∑n
y=0

[
n
n−y
]
q
qα(n−y)2θn−y

=

[
n
x

]
q
qα(n2−2nx+x2)θ−x∑n

y=0

[
n
y

]
q
qα(n2−2ny+y2)θ−y

=

[
n
x

]
q
qαx

2
θ−xq−2αnx∑n

y=0

[
n
y

]
q
qαy2θ−yq−2αny

. l

1.5.2 Convergent Parameter

In this section we consider sequences Xn ∼ B(α, θn, n, q) where the parameter sequence θn tends
to a limit as n→∞. This will lead to the family P as limit law. In particular we prove that the
convergence of the classical binomial distribution with constant mean has a q-analogue. But in
the case α = 0 and θn → 1 these results fail. In this case we obtain - depending on the limit of
θn - a uniform distribution or exponential-like distributions. In the following we need the two
auxiliary results below.

Lemma 1.5.10. For α > 0 we have for all z ∈ C

n∑
x=0

[
n

x

]
q

qαx
2
zx → E2α

q (z), n→∞.

For α = 0 this holds for |z| < 1.

Proof. We estimate the difference∣∣∣∣∣
∞∑
x=0

qαx
2

(q, q)x
zx −

n∑
x=0

[
n

x

]
q

qαx
2
zx

∣∣∣∣∣ ≤
∞∑

x=n+1

qαx
2

(q, q)x
|z|x +

n∑
x=1

qαx
2 |z|x

∣∣∣∣∣
[
n

x

]
q

− 1
(q, q)x

∣∣∣∣∣ .
Estimating in the first sum the q-shifted factorial by the q-exponential function yields

≤ eq(q)
∞∑

x=n+1

(qαn|z|)x +
n∑
x=1

qαx
2

(q, q)x
|z|x

(
1−

x∏
i=1

(1− qn−i+1)

)
;

the same estimate we use for the second sum, split it and compute the first sum to obtain

≤ eq(q)

(qαn|z|)n+1

1− qαn|z|
+
bn

2
c∑

x=1

qαx
2 |z|x

(
1−

x∏
i=1

(1− qn−i+1)

)

+
n∑

x=bn
2
c

qαx
2 |z|x

(
1−

x∏
i=1

(1− qn−i+1)

) .
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The first term is obviously o(1). Estimating the products gives

≤ eq(q)

o(1) +

1−
bn

2
c∏

i=1

(1− qn−i)

 ∞∑
x=1

qαx
2 |z|x +

∞∑
x=bn

2
c

qαx
2 |z|x


and further

≤ eq(q)

o(1) +
(

1−
(

1− qb
n
2
c
)bn

2
c
) ∞∑
x=1

qαx
2 |z|x +

∞∑
x=bn

2
c

(
qαb

n
2
c|z|
)x ;

the latter sum is o(1) as before, thus

= o(1) + O(n2qn)
∞∑
x=1

qαx
2 |z|x = o(1). l

Lemma 1.5.11. Assume α > 0 and let (θn) be a sequence of real numbers with limit θ ≥ 0.
Then

lim
n→∞

n∑
x=0

[
n

x

]
q

qαx
2
θxn = E2α

q (θ).

If θ < 1, this holds for α = 0 as well.

Proof. For small ε > 0 and n large enough we have
n∑
x=0

[
n

x

]
q

qαx
2
(θ − ε)x ≤

n∑
x=0

[
n

x

]
q

qαx
2
θxn ≤

n∑
x=0

[
n

x

]
q

qαx
2
(θ + ε)x,

hence, with use of Lemma 1.5.10,

E2α
q (θ − ε) = lim

n→∞

n∑
x=0

[
n

x

]
q

qαx
2
(θ − ε)x ≤ lim inf

n→∞

n∑
x=0

[
n

x

]
q

qαx
2
θxn

≤ lim sup
n→∞

n∑
x=0

[
n

x

]
q

qαx
2
θxn ≤ lim

n→∞

n∑
x=0

[
n

x

]
q

qαx
2
(θ + ε)x

= E2α
q (θ + ε).

By continuity of E2α
q , the lemma follows. l

The first result is a generalisation of the fact that the Kemp’s distribution converges to the
Heine distribution.

Proposition 1.5.12. If Xn ∼ B(α, θn, n, q), α > 0, then for n→∞

Xn → P(α, θ, q),

if θn → θ. This still remains true in the case α = 0 and θ < 1.

Proof. This follows immediately from the fact that[
n

x

]
q

→ 1
(q, q)x

for n→∞ and from Lemma 1.5.11. l
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In the case α = 0 and θ > 1 the situation is slightly different:

Proposition 1.5.13. If Xn ∼ B(0, θn, n, q), then for n→∞, if θn → θ > 1,

n−Xn → P
(
0, 1

θ , q
)
,

which is an Euler distribution.

Proof. Define Yn = n−Xn. Then

P(Yn = x) =

[
n
x

]
q
θn−xn∑n

y=0

[
n
y

]
q
θn−yn

=

[
n
x

]
q
θ−xn∑n

y=0

[
n
y

]
q
θ−yn
→ θ−x

(q, q)x
1∑n

y=0
1

(q,q)y
θ−y

by Lemma 1.5.11. l

In particular we are interested in sequences Xn such that the limits q → 1 and n → ∞ can be
exchanged. The propositions above immediately yield

Corollary 1.5.14. For each α > 0 let Xn ∼ B(α, θn(q), n, q) with θn(q) → θ. Additionally
assume that θn(q)→ λ/n and θ/(1− q)→ λ as q → 1. Then we have the following commutative
diagram:

B(α, θn(q), n, q) n→∞−−−−→ P(α, (1− q)θ, q)

q→1

y yq→1

B
(
n, λn

)
−−−−→
n→∞

P (λ)

One very natural way to choose the parameter sequence is to set θn(q) = λ
[n−λ]q

, λ > 0.

The convergence B(α, θn(q), n, q) → P(α, (1 − q)θ, q) still remains true for α = 0 if we require
(1− q)θ < 1. Moreover, the commutative diagram remains correct for given λ > 0, if we restrict
q to values ≥ max(0, 1− 1

λ).

The next result is a q-analogue of the classical convergence of the binomial distribution with
constant mean to the Poisson distribution.

Theorem 1.5.15. Fix µ > 0 and α > 0. Consider a sequence of random variables Xn ∼
B(α, θn, n, q) with parameter sequence θn = θn(q, µ) chosen such that the means µn of Xn are
equal to µ. Then we have

(i) The sequence Xn converges to the limit law P(α, θ, q), where θ is the limit of the sequence
θn.

(ii) As q → 1, Xn tends to a binomial distribution with parameters n and µ/n.

(iii) In the limit q → 1, P(α, θ(q, µ), q) converges to a Poisson distribution with parameter µ.

Thus the following diagram is commutative:

B(α, θn(q, µ), n, q) n→∞−−−−→ P(α, θ(q, µ), q)

q→1

y yq→1

B
(
n, µn

)
−−−−→
n→∞

P (µ)
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Proof. First we check, that for given µ, q and large n there is a unique θn(q), such that
µn(θn(q), q) = µ. The function µn(θ, q) is continuous and increasing in θ (see Lemma 1.5.7).
Moreover limθ→0 µn(θ, q) = 0. From Corollary 1.5.25 we see that for sufficiently large n and
suitable θn, µn(θn, q) ≥ n

2 . Consequently there exists a unique solution θn(q) of µn(θ, q) = µ. By
Lemma 1.4.3, θn(q) converges to a limit θ(q), where θ(q) is the unique solution of µ∞(θ, q) = µ.
Hence B(α, θn(q), n, q)→ P(α, θ(q), q) by Lemma 1.5.11.

Again by Lemma 1.4.3 we get that θn(q) → µ
n−µ for q → 1 and so θn(q)

1+θn(q) →
µ
n . Consequently

B(α, θn(q), n, q)→ B
(
n, µn

)
.

It remains to check that θ(q)/(1 − q) converges to µ for q → 1 (then P(α, θ(q), q) → P (µ)).
The value θ(q)/(1− q) is the unique solution of µ∞((1− q)θ, q) = µ. Moreover, µ∞((1− q)θ, q)
converges pointwise to θ for q → 1, so we can apply Lemma 1.4.3. l

In the case α = 0 an analogous result holds for Xn or n − Xn depending on the values of the
parameters, i.e., if θ(q, µ) < 1 then the theorem holds for the sequence Xn, and if θ(q, µ) > 1
then this is true for n−Xn.

Now we turn our attention to the case α = 0. To finish the analysis of the RS-distribution we
consider θn → 1. It is worthwhile to point out that the limit distributions only depend on the
growth rate of the parameter sequences and are independent of q. This is why we will distinguish
three cases in dependence on the speed of the convergence of the parameters θn to the limit 1.
First we will provide a result of fast growing θn. In order to do so we start with an auxiliary
result.

Lemma 1.5.16. If f(n) ≤ n, θn ≤ 1 and f(n)→∞ and θf(n)
n → 1 for n→∞, then for k ∈ N∑

0≤i≤f(n)

[
n

i

]
q

ikθin ∼ eq(q)
f(n)k+1

k + 1
, n→∞.

Proof. Write

∑
0≤i≤f(n)

[
n

i

]
q

ikθin =
b
√
f(n)c∑
i=0

[
n

i

]
q

ikθin +
f(n)−b

√
f(n)c−1∑

i=b
√
f(n)c+1

[
n

i

]
q

ikθin

+
∑

n−b
√
nc≤i≤f(n)

[
n

i

]
q

ikθin.

The first and the third term on the right-hand side can be estimated by

(
√
f(n) + 1)f(n)k

(q, q)n
(q, q)bn/2c(q, q)n−bn/2c

and are therefore negligible. The middle term can be bounded by

(q, q)n
(q, q)b

√
f(n)c+1

(q, q)
n−b
√
f(n)c−1

θf(n)

f(n)−b
√
f(n)c−1∑

b
√
f(n)c+1

ik ≤
f(n)−b

√
f(n)c−1∑

b
√
f(n)c+1

[
n

i

]
q

ik

≤ (q, q)n
(q, q)bn/2c(q, q)n−bn/2c

f(n)−b
√
f(n)c−1∑

b
√
f(n)c+1

ik

and has the asserted asymptotic. l
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This lemma implies that under the assumption θnn → 1 the limit law is uniform on the interval
[−
√

3,
√

3].

Theorem 1.5.17. If Xn ∼ RS(n, θn, q) with θn ≤ 1 and θnn → 1, then (Xn − µn)/σn converges
for n→∞ to the uniform distribution on the interval [−

√
3,
√

3].

Proof. We start with an asymptotic of the means and the variances. By Lemma 1.5.16 we have

µn =

∑n
i=0

[
n
i

]
q
iθin∑n

i=0

[
n
i

]
q
θin
∼
eq(q)n

2

2

eq(q)n
=
n

2

and

σ2
n =

∑n
i=0

[
n
i

]
q
i2θin∑n

i=0

[
n
i

]
q
θin
− µ2

n ∼
n2

3
− n2

4
=
n2

12
.

From these two fact one can easily see that the support of the limiting distribution is

lim
n→∞

[−µn/σn, (n− µn)/σn] = [−
√

3,
√

3].

Now we compute

P(X ≤ x) = lim
n→∞

∑
−µnσn≤

k−µn
σn
≤x

[
n
k

]
q
θkn∑n

i=0

[
n
i

]
q
θin

= lim
n→∞

1∑n
i=0

[
n
i

]
q
θin

∑
0≤k≤σnx+µn

[
n

k

]
q

θkn

= lim
n→∞

1
eq(q)n

eq(q)(σnx+ µn) = lim
n→∞

1
n

(
n

2
√

3
x+

n

2

)
=

1
2
√

3
x+

1
2
,

which is the distribution function of the uniform distribution on [−
√

3,
√

3]. l

Using the fact that a RS(n, θ, q)-distribution corresponds to a (n − RS(n, 1/θ, q))-distribution
or following the above proofs we immediately get the following corollary:

Corollary 1.5.18. If Xn ∼ RS(n, θn, q) with θn ≥ 1 and θnn → 1, then (µn − Xn)/σn and
(Xn − µn)/σn converge for n→∞ to the uniform distribution on the interval [−

√
3,
√

3].

Now we turn to the case that θnn → c with 0 < c < 1. For this purpose we start with the
following lemma, which supplements Lemmas 1.4.11 and 1.4.12 and is crucial for the analysis of
the variances.

Lemma 1.5.19. For θn ≤ 1 and θn → 1, θnn → c with 0 < c < 1 and f(n)/n ∼ β > 0 we have

n∑
i=0

i2θin ∼ −2
1− c+ c log c− 1

2c log2 c

log3 c
n3

as n→∞.
n∑
i=0

[
n

i

]
q

i2θin ∼ −2eq(q)
1− c+ c log c− 1

2c log2 c

log3 c
n3

as n→∞.
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Proof. Using
n∑
i=0

i2ti =
t(−1− t+ tn + 2ntn(1− t) + n2tn(1− t)2 + tn+1)

(t− 1)3

we obtain for the first sum
n∑
i=0

i2θin ∼ (−2 + 2c− 2c log c+ c log2 c)
n3

log3 c
,

The second sum follows immediately as in Lemma 1.4.11. l

Now we are able to establish the convergence result in this case.

Theorem 1.5.20. If Xn ∼ RS(n, θn, q) with θn ≤ 1, θn → 1 and θnn → c with 0 < c < 1, then
(Xn − µn)/σn converges to a limit distribution X with

P(X ≤ x) =
cα(c,x) − 1
c− 1

,

where

α(c, x) =

√
(c− 1)2 − c log2 c

(c− 1) log c
x+

1− c+ c log c
(c− 1) log c

and x ∈ [−γ1, γ2] with

γ1 =
1− c+ c log c√

(c− 1)2 − c log2 c
and γ2 =

c− 1− log c√
(c− 1)2 − c log2 c

.

Proof. Using Lemmas 1.4.11, 1.4.12 and 1.5.19 we get for the means µn

µn =

∑n
i=0 iθ

i
[
n
i

]
q∑n

i=0 θ
i
[
n
i

]
q

∼ (1− c+ c log c)n2

log2 c

log c
(c− 1)n

=
1− c+ c log c
(c− 1) log c

n

and for the variances σ2
n

σ2
n =

∑n
i=0 i

2θi
[
n
i

]
q∑n

i=0 θ
i
[
n
i

]
q

− µ2
n

∼
−2(1− c+ c log c− 1

2c log3 c)n3

log3 c

log c
(c− 1)n

− (1− c+ c log c)2

(c− 1)2 log2 c
n2

=
c2 + 1− 2c− c log2 c

(c− 1)2 log2 c
n2.

As an immediate consequence we get that the support of the limit distribution

[−γ1, γ2] = lim
n→∞

[−µn/σn, (n− µn)/σn]

is as stated in the theorem. Now we compute the distribution function of X:

P(X ≤ x) = lim
n→∞

∑
k−µn
σn
≤x

[
n
k

]
q
θkn∑n

i=0

[
n
i

]
q
θin

= lim
n→∞

1
eq(q) c−1

log cn

∑
k≤σnx+µn

[
n

k

]
q

θkn.
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Since σnx+ µn ∼ nα(c, x) we have further

P(X ≤ x) = lim
n→∞

1
eq(q) c−1

log cn

∑
k≤nα(c,x)

[
n

k

]
q

θqn

= lim
n→∞

cα(c,x)−1
log c neq(q)

eq(q) c−1
log cn

=
cα(c,x) − 1
c− 1

,

what completes the proof of this theorem. l

Again we get as an immediate consequence

Corollary 1.5.21. If Xn ∼ RS(n, θn, q) with θn ≥ 1, θn → 1 and θn → c̃ with 1 < c̃ < ∞,
then (µn − Xn)/σn and (Xn − µn)/σn converge to a limit X, whose distribution is given in
Theorem 1.5.20 with c = 1/c̃ resp. c̃.

Finally we study the case that θf(n)
n → c with 0 < c < 1 and f(n) = o(n). The analysis of this

case is very similar to that of the previous case. So we start again with a lemma which is useful
to find the asymptotic behaviour of the means and variances.

Lemma 1.5.22. Let f(n)→∞ for n→∞, f(n)
n → 0, θf(n)

n → c with 0 < c < 1 and. Then
n∑
i=0

i2θin ∼
f(n)3

log3 c
.

n∑
i=0

[
n

i

]
q

i2θin ∼ eq(q)
f(n)3

log3 c
.

Proof. Similar to Lemma 1.4.15 l

The following theorem shows that in this case the limiting distribution is an exponential distri-
bution.

Theorem 1.5.23. If Xn ∼ RS(n, θn, q) with θn ≤ 1, θn → 1, θf(n)
n → c with f(n) = o(n) and

0 < c < 1, then (Xn−µn)/σn converges to a normalised exponential distribution with parameter
λ = 1, i.e.

P(X ≤ x) = 1− e−x−1, x ≥ −1.

Proof. From Lemmas 1.4.11, 1.4.15 and 1.5.22 we get

µn ∼
−f(n)
log c

and σ2
n ∼

2f(n)2

log2 c
− f(n)2

log2 c
=
f(n)2

log2 c
.

Computing the distribution function of the limit distribution yields

P(X ≤ x) = lim
n→∞

∑
k≤σnx+µn

[
n
k

]
q
θkn∑n

i=0

[
n
i

]
q
θin

= lim
n→∞

1
−eq(q)
log c n

∑
k≤−f(n)

log c
x+
−f(n)
log c

[
n

k

]
q

θkn

= lim
n→∞

1− c
1+x
− log c

log c
f(n)eq(q)

log c
eq(q)f(n)

= 1− c
1+x
− log c = 1− e−x−1. l



1.5 A family of q-binomial distributions 45

Corollary 1.5.24. If Xn ∼ RS(n, θn, q) with θn ≥ 1, θn → 1, θf(n)
n → c with f(n) = o(n)

and 1 < c < ∞, then (µn − Xn)/σn converges to a normalised exponential distribution with
parameter λ = 1.

1.5.3 Increasing Parameter

Now we turn our attention to sequences of random variables Xn with Xn ∼ B(α, θn, n, q), where
the parameter sequence θn = θn(q) tends to infinity. We start with fast growing parameters θn,
i.e., θn = q−2αn−g(n) with g(n) convergent or g(n)→∞. Due to the reversing property 1.5.9 we
conclude immediately from Lemma 1.5.11:

Corollary 1.5.25. Let Xn ∼ B(α, θn, n, q) with θn = q−2αn−g(n).

(i) If g(n)→ γ then for α > 0 we have n−Xn → P(α, q−γ , q) .

(ii) If g(n)→∞ then for all α ≥ 0 we have n−Xn → δ0.

Now we consider parameter sequences θn(q) = q−f(n) with f(n)→∞ and 2αn− f(n)→∞ for
n → ∞ and α > 0. These assumptions will be on force throughout the section. We will prove
in Theorem 1.5.31 that a suitable chosen subsequence of the normalised sequence of random
variables Xn converges to a discrete normal distribution. Theorem 1.5.26 and Lemmas 1.5.27
and 1.5.28 are devoted to the asymptotic behaviour of the sequence (µn) of means. Afterwards
we study the sequence (σn) of variances in Lemmas 1.5.29 and 1.5.30 and then we establish the
convergence result.

To simplify notation, we define

Σ1(z) :=

j
f(n)
2α

k∑
x=0

z

[
n

bf(n)
2α c − x

]
q

qα(a+x)2
, Σ1 := Σ1(1),

Σ2(z) :=

n−
j
f(n)
2α

k
−1∑

x=0

z

[
n

x+ bf(n)
2α c+ 1

]
q

qα(a−(x+1))2
, Σ2 := Σ2(1),

Σ∞1 (z) :=
∞∑
x=0

zqα(a+x)2
, Σ∞1 := Σ∞1 (1),

Σ∞2 (z) :=
∞∑
x=0

zqα(a−(x+1))2
, Σ∞2 := Σ∞2 (1),

where a =
{
f(n)
2α

}
.

Now we turn to the study of the sequence of means.

Lemma 1.5.26. For n→∞

µn =
⌊
f(n)
2α

⌋
+ c(a, α, q) + o(1),

where

c(a, α, q) =

∑∞
x=1 x

(
qα(a−x)2 − qα(a+x)2

)
∑∞

x=0

(
qα(a+x)2 + qα(a−(x+1))2

) .
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Proof. We have to study the behaviour of∑n
x=0 x

[
n
x

]
q
qαx

2
q−f(n)x∑n

x=0

[
n
x

]
q
qαx2q−f(n)x

.

For this purpose we expand the fraction by q
f(n)2

4α and analyse the denominator D and the
numerator N separately.

D =
n∑
x=0

[
n

x

]
q

qαx
2−f(n)x+

f(n)2

4α =
n∑
x=0

[
n

x

]
q

q
(−2αx+f(n))2

4α ;

splitting the sum into two parts gives

=

j
f(n)
2α

k∑
x=0

[
n

x

]
q

q
(−2αx+f(n))2

4α +
n∑

x=
j
f(n)
2α

k
+1

[
n

x

]
q

q
(−2αx+f(n))2

4α .

By reversing the order of summation in the first sum and shifting the summation index in the
second sum we obtain

=

j
f(n)
2α

k∑
x=0

[
n

bf(n)
2α c − x

]
q

q

„
−2α

—
f(n)
2α

�
+f(n)+2αx

«2

4α

+

n−
j
f(n)
2α

k
−1∑

x=0

[
n

x+ bf(n)
2α c+ 1

]
q

q

„
−2α

—
f(n)
2α

�
−2α−2αx+f(n)

«2

4α ;

simplifying the exponents of q leads to

=

j
f(n)
2α

k∑
x=0

[
n

bf(n)
2α c − x

]
q

qα(a+x)2

+

n−
j
f(n)
2α

k
−1∑

x=0

[
n

x+ bf(n)
2α c+ 1

]
q

qα(a−(x+1))2
.

This tends to

eq(q)

( ∞∑
x=0

qα(a+x)2
+
∞∑
x=0

qα(a−(x+1))2

)
=: γ (1.26)

since we can bound the first sum as follows:

eq(q)
∞∑
x=0

qα(a+x)2 ≥

j
f(n)
2α

k∑
x=0

[
n

bf(n)
2α c − x

]
q

qα(a+x)2

≥

1
2

j
f(n)
2α

k∑
x=0

[
n

bf(n)
2α c − x

]
q

qα(a+x)2
,
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estimating the q-binomial coefficient yields

≥

(
1− qn−

j
f(n)
2α

k
+1
)j f(n)

2α

k
+1

(q, q) 1
2

j
f(n)
2α

k
1
2

j
f(n)
2α

k∑
x=0

qα(a+x)2

→ eq(q)
∞∑
x=0

qα(a+x)2
.

Here we used that(
1− qn−

j
f(n)
2α

k
+1
)j f(n)

2α

k
+1

= 1 +O
((⌊

f(n)
2α

⌋
+ 1
)
nq

n−
j
f(n)
2α

k
+1
)
.

Similar arguments hold for the second sum. Now we turn to the numerator N .

N =
n∑
x=0

x

[
n

x

]
q

qαx
2−f(n)x+

f(n)2

4α ,

we split the sum again, reverse the order of summation resp. shift the summation index and get

=

j
f(n)
2α

k∑
x=0

(⌊
f(n)
2α

⌋
− x
)[

n

bf(n)
2α c − x

]
q

qα(a+x)2
+

+

n−
j
f(n)
2α

k
−1∑

x=0

(
x+

⌊
f(n)
2α

⌋
+ 1
)[

n

x+ bf(n)
2α c+ 1

]
q

qα(a−(x+1))2
.

Using the same arguments as above yields

=
⌊
f(n)
2α

⌋
γ − eq(q) (Σ∞1 (x)− Σ∞2 (x)) + eq(q)Σ∞2 + o(1). (1.27)

Combining (1.26) and (1.27) we obtain

µn =
⌊
f(n)
2α

⌋
+

∑∞
x=0 q

α(a−(x+1))2 −
∑∞

x=0 x
(
qα(a+x)2 − qα(a−(x+1))2

)
∑∞

x=0

(
qα(a+x)2 + qα(a−(x+1))2

) + o(1).

Simplifying the fraction yields the theorem. l

Now we provide an estimate for the O(1)-term in the preceding theorem.

Lemma 1.5.27. Let c(a, α, q) be defined as in Theorem 1.5.26. Then

(i) 0 ≤ c(a, α, q) < 1,

(ii) c(a, α, q) = 0⇔ a = 0 ,

(iii) c(a, α, q) + c(1− a, α, q) = 1.
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Proof. Since for all x ≥ 0
qα(−a+x)2 ≥ qα(a+x)2

, (1.28)

0 ≤ c(a, α, q). Moreover, c(a, α, q) = 0 iff in (1.28) equality holds for all x ≥ 1. But this is the
case iff (x− a)2 = (x+ a)2 for all x. So c(a, α, q) = 0 iff a = 0. For (i) it remains to show that

∞∑
x=1

x
(
qα(−a+x)2 − qα(a+x)2

)
<
∞∑
x=1

(
qα(−a+x)2

+ qα(a+x)2
)

+ qαa
2
.

We can rewrite this as
∞∑
x=1

(x− 1)qα(x−a)2 −
∞∑
x=0

(x+ 1)qα(x+a)2
< 0.

The left-hand side is increasing in a, and for a = 1 we have

∞∑
x=1

(x− 1)qα(x−1)2 −
∞∑
x=0

(x+ 1)qα(x+1)2
= 0.

Since 0 ≤ a < 1, (ii) follows.

To see (iii), note that the denominators of c(a, α, q) and c(1 − a, α, q) are invariant under the
substitution a 7→ 1− a. Then add the numerators:

∞∑
x=1

x
(
qα(1−a−x)2 − qα(1−a+x)2

)
+
∞∑
x=1

x
(
qα(a−x)2 − qα(a+x)2

)
,

by splitting the first sum and shifting the summation index we obtain

=
∞∑
x=0

(x+ 1)qα(a+x)2 −
∞∑
x=2

(x− 1)qα(a−x)2
+
∞∑
x=1

x
(
qα(a−x)2 − qα(a+x)2

)
= qαa

2
+
∞∑
x=1

qα(a+x)2
+ qα(a−1)2

+
∞∑
x=2

qα(a−x)2

=
∞∑
x=0

(
qα(a+x)2

+ qα(a−(x+1))2
)
,

which is exactly the denominator of c(a, α, q). l

Lemma 1.5.28. Let c(a, α, q) be defined as in Theorem 1.5.26.

(i) If a > 0, then
⌊
f(n)
2α

⌋
+ c(a, α, q) 6∈ Z.

(ii) If a = 0, then

µn

{
≥ f(n)

2α if n ≥ f(n)
α

< f(n)
2α if n < f(n)

α

.

Proof. Lemma 1.5.27 implies (i). To see (ii) we use

µn =
f(n)
2α

+

∑n− f(n)
2α

x=1 x
[ n
x+

f(n)
2α

]
q
qαx

2 −
∑ f(n)

2α
x=1 x

[ n
f(n)
2α
−x
]
q
qαx

2

∑ f(n)
2α
x=0

[ n
f(n)
2α
−x
]
q
qαx2 +

∑n− f(n)
2α

x=1

[ n
x+

f(n)
2α

]
q
qαx2

.
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Now consider the case n ≥ f(n)
α : We have to prove that

n− f(n)
2α∑

x=1

x

[
n

x+ f(n)
2α

]
q

qαx
2 ≥

f(n)
2α∑
x=1

x

[
n

f(n)
2α − x

]
q

qαx
2
.

For all 1 ≤ x ≤ f(n)
2α , the term on the right-hand side is less than or equal to the corresponding

term on the left-hand side (there are enough terms on the left-hand side by our assumption),
i.e., [

n

x+ f(n)
2α

]
q

≥
[

n
f(n)
2α − x

]
q

,

since [
n

x+ f(n)
2α

]
q

≥
[

n
f(n)
2α − x

]
q

⇐⇒ 1
(q, q)

x+
f(n)
2α

(q, q)
n−x−f(n)

2α

≥ 1
(q, q)

f−f(n)
2α

(q, q)
n−f(n)

2α +x

⇐⇒
(

1− qn−x−
f(n)
2α +1

)
· · ·
(

1− qn−
f(n)
2α +x

)
≥
(

1− q
f(n)
2α −x+1

)
· · ·
(

1− qx+
f(n)
2α

)
⇐⇒ n− x− f(n)

2α + 1 + i ≥ f(n)
2α − x+ 1 + i 0 ≤ i ≤ 2x− 1

⇐⇒ n− f(n)
2α ≥

f(n)
2α .

The case n < f(n)
4α can be treated similarly. l

In Section 1.3.2 we studied the behaviour of the means of Kemp’s q-binomial distribution in the
limit q → 0 and c(a, α, q) in the limit q → 1. We will do the same here now. First we will show
that for q → 0

µn →
⌊
f(n)
2α

⌋
+


0 if 0 ≤ a < 1

2
1
2 if a = 1

2

1 if 1
2 < a < 1

.

For this purpose we estimate c(a, α, q):

c(a, α, q) =
qα(1−a)2

+ 2qα(2−a)2
+
∑∞

x=3 xq
α(a−x)2 −

∑∞
x=1 xq

α(a+x)2

qαa2 + qα(a−1)2 +
∑∞

x=1 q
α(a+x)2 +

∑
x=2 q

α(a−x)2

≤
qα(1−a)2

+ 2qα(2−a)2
+
∑∞

x=3 xq
α(1−x)2 −

∑∞
x=1 xq

α(1+x)2

qαa2 + qα(a−1)2 +
∑∞

x=1 q
α(1+x)2 +

∑∞
x=2 q

αx2

=
qα(1−a)2

+ 2qα(2−a)2
+ 2

∑∞
x=2 q

αx2

qαa2 + qα(a−1)2 + 2
∑∞

x=2 q
αx2

=
1 + 2qα(3−2a) + 2q−α(1−a)2 ∑∞

x=2 q
αx2

qα(−1+2a) + 1 + 2q−α(1−a)2 ∑∞
x=2 q

αx2 .

For a ∈ [0, 1
2) we have 2a − 1 < 0 and therefore the denominator tends to infinity while the

numerator goes to 1. Consequently c(a, α, q)→ 0. Lemma 1.5.27 (iii) implies that c(a, α, q)→ 1
if a ∈ (1

2 , 1) and c(1
2 , α, q) = 1

2 . Moreover, from the estimates in the proof of Theorem 1.5.26 we
get easily that the o(1)-term vanishes in the limit q → 0.
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In the limit q → 1 we have c(a, α, q)→ a. To see this, apply the Euler-Maclaurin formula to

f+(x) = qAx
2+Bx and g+(x) = xqAx

2+Bx

first, which yields ∑
`≥0

f+(`) = I+
f +

f+(0)
2

+R+
f

with

I+
f =

∞∫
0

f+(x)dx and R+
f =

∞∫
0

(
x− bxc − 1

2

)
f+′(x)dx.

Computing I+
f gives

I+
f =

√
πq−

B2

4A

(
1 + erf

(
B log q

2
√
−A log q

))
2
√
−A log q

,

where erf(z) denotes the error-function. Similarly, we get for g+(x)∑
`≥0

g+(`) = I+
g +

g+(0)
2

+R+
g

with

I+
g =

∞∫
0

g+(x)dx and R+
g =

∞∫
0

(
x− bxc − 1

2

)
g+′(x)dx.

Computing I+
g gives

I+
g =

−B
√
πq−

B2

4A

(
1 + erf

(
B log q

2
√
−A log q

))
4A
√
−A log q

− 1
2

1
A log q

.

In an analogous way we treat the functions

f−(x) = qAx
2−Bx and g−(x) = xqAx

2−Bx.

Note that f−(0) = f+(0) = 1
2 and g−(0) = g+(0) = 0. Putting things together we obtain with

A = α and B = 2αa

c(a, α, q) =
I−g +R−g − I+

g −R+
g

I+
f + I−f +R+

f +R−f + q−a2

=
B
√
πq−

B2

4A

2A
√
−A log q

+R−g −R+
g

√
πq−

B2
4A√

−A log q
+R−f +R+

f + q−a2

=
a+ q

B2

4A

√
−A log q√

π

(
R−g −R+

g

)
1 + q

B2

4A

√
−A log q√

π

(
R−f +R+

f + q−a2
) .

Thus it remains to show that
√
− log q(R−g − R+

g ) and
√
− log q(R−f + R+

f ) both tend to 0. We
have

R+
f =

∞∫
0

(
x− bxc − 1

2

)
qAx

2+Bx log q(2Ax+B)dx.
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The integral

J1 := B

∞∫
0

(
x− bxc − 1

2

)
qAx

2+Bxdx

is bounded uniformly for all q ∈ [0, 1), since qAx
2+Bx is decreasing in x:

−1
4

= −1
4

+
∞∑
i=0

0

≤

1
2∫

0

(
x− bxc − 1

2

)
qAx

2+Bxdx+
∞∑
i=0

1
2

+i+1∫
1
2

+i

(
x− bxc − 1

2

)
qAx

2+Bxdx

= J1

=

1∫
0

(
x− bxc − 1

2

)
qAx

2+Bxdx+
∞∑
i=1

i+1∫
i

(
x− bxc − 1

2

)
qAx

2+Bxdx

≤ 0 +
∞∑
i=1

0 = 0.

Thus (− log q)3/2J1 → 0. With the same idea we want to estimate

J2 := 2A

∞∫
0

(
x− bxc − 1

2

)
qAx

2+Bxxdx.

Unfortunately h(x) := qAx
2+Bxx must not be decreasing in x for x ≥ 0. Differentiating gives

h′(x) = qAx
2+Bx

(
1 + (2Ax2 +Bx) log q

)
.

Obvious h′(0) > 0 and limx→−∞ h
′(x) = limx→∞ h

′(x) = −∞ since log q < 0. Consequently
there exists a single positive root r of h′(x). For q near at 1 we have r ≤ 1/

√
−A log q since

h′
(

1√
−A log q

)
= 1 + log q

(
− 2A
A log q

+
B√
−A log q

)
= 1− 2 +

B
√
− log q√
A

< 0.

Thus h(x) is decreasing for x ≥ r. Split J2 into integrals over [0, dre] and [dre,∞). The second
integral is bounded by same arguments as above. The first integral can be estimated trivially
by

2A

∣∣∣∣∣∣∣
dre∫
0

(
x− bxc − 1

2

)
qAx

2+Bxxdx

∣∣∣∣∣∣∣ ≤ A
dre∫
0

x ≤ Adre2.

Therefore
√
− log qR+

f → 0 for q → 1. Analogously we get
√
− log qR−f → 0. In order to show

that the term with

R+
g =

∞∫
0

(
x− bxc − 1

2

)(
qAx

2+Bx + xqAx
2+Bx log q(2Ax+B)

)
dx



1.5 A family of q-binomial distributions 52

vanishes, it remains to consider the integral

J3 :=

∞∫
0

(
x− bxc − 1

2

)
qAx

2+Bxqx2dx.

Again we compute where H(x) := x2qAx
2+Bx is decreasing. We have

H ′(x) = qAx
2+Bx

(
2x+ (2Ax3 +Bx2) log q

)
and therefore limx→−∞H

′(x) = +∞, limx→∞H
′(x) = −∞ and H ′(0) = 0. Since H ′′(0) > 0,

there exists a single positive root s of H ′(x). Moreover s ≤ 1/
√
−A log q since

H ′
(

1√
−A log q

)
=

2√
−A log q

+ log q
(

2a
(−A log q)3/2

− B

A log q

)
=

2√
−A log q

− 2√
−A log q

− B

A
≤ 0.

Thus H(x) is decreasing for x ≥ s. Split the integral into integrals over [0, bsc], [bsc, dse] and
[dse,∞). The third integral is bounded as above. The second integral is trivially bounded by
1
2dse

2. And the first integral - the increasing part - we estimate with the same ideas as for the
decreasing part:

0 ≤
bsc−1∑
i=0

i+1∫
i

(
x− bxc − 1

2

)
qAx

2+Bxqx2dx

=

bsc∫
0

(
x− bxc − 1

2

)
qAx

2+Bxx2dx

=

1
2∫

0

(
x− bxc − 1

2

)
qAx

2+Bxx2dx+
bsc−2∑
i=0

1
2

+i+1∫
1
2

+i

(
x− bxc − 1

2

)
qAx

2+Bxx2dx

+

bsc∫
bsc− 1

2

(
x− bxc − 1

2

)
qAx

2+Bxx2dx

≤ 0 +
bsc−2∑
i=0

0 +
1
4
bsc2

Therefore
√
− log qR+

g → 0 for q → 1. In a similar way we find
√
− log qR−g → 0.

After this analysis of the means, we turn our attention to the sequence of variances.

Lemma 1.5.29. For n→∞ we have

σ2
n = φ(a, α, q)− c(a, α, q)2 + o(1),

where

φ(a, α, q) :=
eq(q)
γ

∞∑
x=1

x2
(
qα(a−x)2

+ qα(a+x)2
)
.
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Proof. By definition we have

E
(
X2
n

)
=

∑n
x=0 x

2
[
n
x

]
q
qαx

2
q−f(n)x∑n

x=0

[
n
x

]
q
qαx2q−f(n)x

.

Now we proceed as in the proof of Theorem 1.5.26 and study the numerator Ñ after expansion

by q
f(n)2

4α .

Ñ =
n∑
x=0

x2

[
n

x

]
q

qαx
2−f(n)x+

f(n)2

4α ;

we split the sum and reverse the order of summation resp. shift the summation index and get

=

j
f(n)
2α

k∑
x=0

(⌊
f(n)
2α

⌋
− x
)2 [ n

bf(n)
2α c − x

]
q

qα(a+x)2
+

+

n−
j
f(n)
2α

k
−1∑

x=0

(
x+

⌊
f(n)
2α

⌋
+ 1
)2 [ n

x+ bf(n)
2α c+ 1

]
q

qα(a−(x+1))2
,

which can be written as

=
⌊
f(n)
2α

⌋2

Σ1 − 2
⌊
f(n)
2α

⌋
Σ1(x) + Σ1(x2) + Σ2(x2) +

⌊
f(n)
2α

⌋2

Σ2 + Σ2

+ 2
⌊
f(n)
2α

⌋
Σ2(x) + 2Σ2(x) + 2

⌊
f(n)
2α

⌋
Σ2.

Using similar arguments as above yields

=
⌊
f(n)
2α

⌋2

γ + eq(q)
(

2
⌊
f(n)
2α

⌋
Σ∞2 − 2

⌊
f(n)
2α

⌋
Σ∞1 (x) + 2

⌊
f(n)
2α

⌋
Σ∞2 (x)

+ Σ∞1 (x2) + Σ∞2 (x2) + Σ∞2 + 2Σ∞2 (x)
)

+ o(1).

Thus

E
(
X2
n

)
=

1
γ

(⌊
f(n)
2α

⌋2

γ + eq(q)
(

2
⌊
f(n)
2α

⌋
Σ∞2 − 2

⌊
f(n)
2α

⌋
Σ∞1 (x) + 2

⌊
f(n)
2α

⌋
Σ∞2 (x)

))
+ φ(a, α, q).

Since

µ2
n =

⌊
f(n)
2α

⌋2

−
eq(q)

(
2
⌊
f(n)
2α

⌋
Σ∞1 (x)− 2

⌊
f(n)
2α

⌋
Σ∞2 (x)− 2

⌊
f(n)
2α

⌋
Σ∞2
)

γ

+ c(a, α, q)2 + o(1),

we obtain
σ2
n = φ(a, α, q)− c(a, α, q)2 + o(1).

l
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Lemma 1.5.30.
φ(a, α, q) > c(a, α, q)2.

Proof. We have to show that

∑∞
x=1 x

2
(
qα(a−x)2

+ qα(a+x)2
)

∑∞
x=0 q

α(a+x)2 +
∑∞

x=1 q
α(a−x)2 >

 ∑∞
x=1 x

(
qα(a−x)2 − qα(a+x)2

)
∑∞

x=0 q
α(a+x)2 +

∑∞
x=1 q

α(a−x)2

2

.

A sufficient condition for this is∑∞
x=1 x

2
(
qα(a−x)2

+ qα(a+x)2
)

∑∞
x=0 q

α(a+x)2 +
∑∞

x=1 q
α(a−x)2 >

 ∑∞
x=1 x

(
qα(a−x)2

+ qα(a+x)2
)

∑∞
x=0 q

α(a+x)2 +
∑∞

x=1 q
α(a−x)2

2

.

We show that( ∞∑
x=1

x2
(
qα(a−x)2

+ qα(a+x)2
))( ∞∑

x=1

qα(a+x)2
+
∞∑
x=1

qα(a−x)2

)
≥

≥

( ∞∑
x=1

x
(
qα(a−x)2

+ qα(a+x)2
))2

.

Expanding gives

∞∑
x,y=1

x2qα(x+a)2
qα(y+a)2

+
∞∑

x,y=1

x2qα(x+a)2
qα(y−a)2

+
∞∑

x,y=1

x2qα(x−a)2
qα(y+a)2

+
∞∑

x,y=1

x2qα(x−a)2
qα(y−a)2

≥
∞∑

x,y=1

xqα(x+a)2
yqα(y+a)2

+
∞∑

x,y=1

xqα(x−a)2
yqα(y−a)2

+ 2
∞∑

x,y=1

xqα(x+a)2
yqα(y−a)2

.

Now we consider the pairs (x, y) and (y, x) again and obtain

x2qα(x+a)2
qα(y+a)2

+ y2qα(x+a)2
qα(y+a)2

+ x2qα(x+a)2
qα(y−a)2

+ y2qα(x−a)2
qα(y+a)2

+ x2qα(x−a)2
qα(y+a)2

+ y2qα(x+a)2
qα(y−a)2

+ x2qα(x−a)2
qα(y−a)2

+ y2qα(x−a)2
qα(y−a)2

≥ 2xyqα(x+a)2
qα(y+a)2

+ 2xyqα(x−a)2
qα(y−a)2

+ 2xyqα(x+a)2
qα(y−a)2

+ 2xyqα(x−a)2
qα(y+a)2

.

This is true since x2 + y2 ≥ 2xy. l

Now we are able to establish the next convergence result. For this purpose recall that c(a, α, q)
and φ(a, α, q) depend on the fractional part of f(n)

2α . Since convergent variances and convergent
fractional parts of means are required for convergence to a discrete distribution, we will choose
a subsequence (nk) of (n) such that {f(n)

2α } remains constant.
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Theorem 1.5.31. Let (nk) be an increasing sequence of natural numbers and Xnk ∼ B(α, q−f(nk), nk, q)
such that {f(n)

2α } = a constant. Recall that we always assume f(n)→∞, 2αn− f(n)→∞ and
α > 0. Then (Xnk−µnk)/σnk converges for k →∞ to a normalised discrete normal distribution,
i.e., they converge to a limit X with

P
(
X =

1
σ

(x− c(a, α, q))
)

=
qα(x−a)2∑∞

x=−∞ q
α(x−a)2 ,

where σ = limk→∞ σnk and c(a, α, q) is defined as in Theorem 1.5.26..

Proof. For simplicity we write in the following n instead of nk. First we note that Lemmas 1.5.29
and 1.5.30 imply that the sequence of variances (σ2

n) converges since {f(n)
2α } is constant by

assumption. We define

H(µn) :=


bµnc if a > 0
bµnc if a = 0, n ≥ f(n)

4α

dµne if a = 0, n < f(n)
4α

.

Since H(µn) = f(n)
2α − a, we have

P (Xn = H(µn) + x) =
[

n
f(n)
2α − a+ x

]
q

q

“
f(n)
2α
−a+x

”2
−f(n)

“
f(n)
2α
−a+x

”
∑n

y=0

[
n
y

]
q
qαy2−f(n)y

=
[

n
f(n)
2α − a+ x

]
q

q−
f(n)2

4α
+α(x−a)2∑n

y=0

[
n
y

]
q
qαy2−f(n)y

→ eq(q)
qα(x−a)2

eq(q)
∑∞

x=0

(
qα(a+x)2 + qα(a−(x+1))2

)
=

qα(x−a)2∑∞
x=−∞ q

α(a+x)2

=
qα(x−a)2∑∞

x=−∞ q
α(x−a)2 .

By normalising we get the theorem. l

For α = 1
2 this theorem reduces to the convergence property of Kemp’s binomial distribution

established in Section 1.3.2

Using Jacobi’s Triple Product we can rewrite the infinite sum as

∞∑
x=−∞

qα(x−a)2
= qαa

2 (
q2α, q

)
∞
(
−qα−2αa, q

)
∞
(
−qα+2αa, q

)
∞ .

In the limit q → 1 these discrete normal distributions converge to the standard normal distri-
bution, see [56].



Chapter 2

Distribution of Sequences

So far we studied sequences of random variables and their limit laws. In this chapter we inves-
tigate again sequences, but sequences of real numbers and the induced sequences of measures
and distribution functions.

The first topic we are interested in is a very classical one. We study sequences of real numbers
(xn) which are uniformly distributed modulo 1, i.e., the finite measures induced by the sequence
(xn) converge to the Lebesgue measure (for details see below). In [25] Goldstern, Winkler
and Schmeling found out that for a given sequence (nk)k∈N of positive integers with certain
growth conditions the set of those α ∈ [0, 1) such that the sequence (nkα)k∈N is uniformly
distributed modulo 1 is of first Baire’s category. Our goal is to extend this and related results
to multisequences, in particular to sequences with multidimensional indices. This is done in
Section 2.1.

In Section 2.2 we investigate the relationship between the limit distribution functions of a given
sequence (xn)n∈N and the limit distribution functions of the corresponding block sequence, i.e.,
we divide the given sequence into blocks xn(n−1)

2
+1
, . . . , xn(n+1)

2

, associate to this block a step
distribution function and consider the limits of this sequence. It is possible - under certain
conditions - to obtain the limit distribution functions of the original sequence (xn) from the
limits of the block sequence by taking convex combinations of the limits of the block sequence.

2.1 Baire results of multisequences

This section is devoted to the generalisation of Baire results about sequences of real numbers (see
Tichy and Zeiner [58]). A sequence x = (xn)n∈N of real numbers is called uniformly distributed
(u.d.) modulo 1, if for every pair a, b of real numbers with 0 ≤ a < b ≤ 1 the following condition
holds:

lim
n→∞

A([a, b), n,x)
n

= b− a, (2.1)

where A(I, n,x) is the number of elements xi, i ≤ n with xi ∈ I for an interval I. For a
general theory of uniform distribution we refer to Kuipers and Niederreiter [43] and Drmota and
Tichy [16].

In [25] Goldstern, Schmeling and Winkler studied the size (in the sense of Baire) of the set

U := {α ∈ R/Z : nα is uniformly distributed mod 1}

for a given sequence n = (nj)j∈N of natural numbers; the size of this set depends on the growth
rate of the sequence n. In particular they showed that U is meager if n grows exponentially
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(for theory about Baire categories see Oxtoby [52]). By Ajtai, Havas, Komlós [2] this condition
cannot be weakened.

Moreover it was proven in [25] that the set

V := {α ∈ R/Z : nα is maldistributed}

is residual if n grows very fast (for the precise statement we refer to [25]).

The aim of this section (which is closely related to the very recent work of Winkler [61]) is
to generalise these results in different ways. After summing up some important facts about
uniform distribution and Baire categories in Section 2.1.1 we consider in Section 2.1.2 for a
given sequence (nj)j∈N of r-dimensional vectors of nonnegative integers and an r-dimensional
vector α of real numbers the sequence (njα)j∈N, where njα means the scalar product of two
vectors. Afterwards we investigate in Section 2.1.3 uniform distribution in Rd, i.e., for a d-
dimensional sequence (nj) and a d-dimensional vector α we consider the sequence (njα)j∈N,
where njα means the Hadamard product of two vectors.

Section 2.1.4 is devoted to the generalisation of elementary properties of uniform distribution of
sequences to uniform distribution of nets. Afterwards we extend in Section 2.1.5 the characteri-
sation of the set of limit measures of a sequence (see Winkler [62]) to a special kind of nets over
Nd. Finally, we turn in Section 2.1.6 to nα-sequences with multidimensional indices. Besides
the classical notion of uniform distribution of such sequences (see Kuipers and Niederreiter [43])
we study the (s1, . . . , sd)-uniform distribution (see Kirschenhofer and Tichy [41]) and introduce
a new concept of uniform distribution modulo 1, which is inspired by Aistleitner [1]. In most
of these cases it turns out that the known results for the classical case remain true in these
generalised settings.

2.1.1 Preliminaries

For those who are not familiar with the notion of uniform distribution modulo 1 and Baire
categories we give the essential definitions and facts below. For details and further reading we
refer for uniform distribution to Kuipers and Niederreiter [43] and Drmota and Tichy [16], for
Baire categories to Oxtoby [52].

Uniform Distribution of Sequences

Let c[a,b) denote the characteristic function of an interval [a, b) ⊆ [0, 1), then (2.1) can be
rewritten in the following form:

lim
N→∞

1
N

N∑
n=1

c[a,b)({xn}) =

1∫
0

c[a,b)(x)dx.

Applying an approximation technique leads to the following criteria.

Theorem 2.1.1.

(i) The sequence (xn) is u.d. mod 1 iff for every real-valued continuous function f defined on
[0, 1] we have

lim
N→∞

1
N

N∑
n=1

f({xn}) =

1∫
0

f(x)dx. (2.2)
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(ii) The sequence (xn) is u.d. mod 1 iff for every Riemann-integrable function f defined on
[0, 1] equation (2.2) holds.

(iii) The sequence (xn) is u.d. mod 1 iff for every complex-valued continuous function f on R
with period 1 we have

lim
N→∞

1
N

N∑
n=1

f(xn) =

1∫
0

f(x)dx.

The functions f of the form f(x) = e2πihx (h ∈ Z \ {0}) satisfy the conditions of the above
theorem (iii). Indeed, they are already sufficient to determine the u.d. mod 1 of a sequence:

Theorem 2.1.2 (Weyl-Criterion). The sequence (xn) is u.d. mod 1 iff for all h ∈ Z \ {0}

lim
N→∞

1
N

N∑
n=1

e2πihxn = 0.

Example 2.1.3. Let θ be an irrational number. The the sequence (nθ)n∈N is u.d. mod 1. This
follows from the Weyl-Criterion and the inequality∣∣∣∣∣ 1

N

N∑
n=1

e2πihnθ

∣∣∣∣∣ =

∣∣e2πihNθ − 1
∣∣

N |e2πihθ − 1|
≤ 2
N | sin(πhθ)|

for integers h 6= 0.

Example 2.1.4. Choosing θ = e in the example above gives that the sequence (ne) is u.d. mod
1. But the subsequence (n!e) has 0 as the only limit point. To see this, observe that

e = 1 +
1
1!

+
1
2!

+ · · ·+ 1
n!

+
eα

(n+ 1)!
, 0 < α < 1

implies that n!e = k + eα/(n+ 1) for an integer k. Thus {n!e} = eα/(n+ 1) < e/(n+ 1)→ 0.

Example 2.1.5. Let (an) be a given sequence of distinct integers. Then the sequence (anx) is
u.d. mod 1 for almost all real numbers x.

Uniform Distribution of Double Sequences

We can extend the concept given above in the following way: Instead of sequences (xn)n∈N we
consider double sequences (xjk), j ∈ N, k ∈ N. Then a double sequence is said to be u.d. mod
1 if for any a and b such that 0 ≤ a < b ≤ 1,

lim
M,N→∞

A([a, b);M,N)
MN

= b− a,

where A([a, b);M,N) is the number of xjk, 1 ≤ j ≤ M , 1 ≤ k ≤ N , for which a ≤ {xjk} < b.
As for classical sequences we have the following criteria.

Theorem 2.1.6.

(i) The double sequence (xjk) is u.d. mod 1 iff for every Riemann-integrable function f on
[0, 1] we have

lim
M,N→∞

1
MN

M∑
j=1

N∑
k=1

f({xjk}) =

1∫
0

f(x)dx.
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(ii) The double sequence (xjk) is u.d. mod 1 iff

lim
M,N→∞

1
MN

M∑
j=1

N∑
k=1

e2πihxjk = 0

for all integers h 6= 0.

Example 2.1.7. Let θ ∈ R \Q and α ∈ R. Then (jθ + kα) is u.d. mod 1.

Uniform Distribution in Rd

Let (xn)n∈N be a sequence of vectors in Rd. For a set E ⊆ [0, 1)d, let A(E;N) denote the number
of points {xn}, 1 ≤ n ≤ N , that lie in E. The sequence (xn) is said to be u.d. mod 1 in Rd if

lim
N→∞

A([a,b);N)
N

=
d∏
j=1

(bj − aj)

for all intervals [a,b) ⊆ [0, 1)s. Here a = (a1, . . . , ad), b = (b1, . . . , bd) and [a,b) = [a1, b1) ×
· · · × [ad, bd). As in the case d = 1 we have the following criteria.

Theorem 2.1.8.

(i) A sequence (xn) is u.d. mod 1 in Rd iff for every continuous complex-valued function f on
[0, 1]d we have

lim
N→∞

1
N

N∑
n=1

f({xn}) =
∫

[0,1]d

f(x)dx.

(ii) A sequence (xn) is u.d. mod 1 in Rd iff for every lattice point h ∈ Zd, h 6= 0,

lim
N→∞

1
N

N∑
n=1

e2πi〈h,xn〉 = 0,

where 〈·, ·〉 denotes the standard inner product.

Theorem 2.1.9. A sequence (xn) is u.d. mod 1 in Rd iff for every lattice point h ∈ Zd, h 6= 0,
the sequence of real numbers (〈h,xn〉) is u.d. mod 1.

Example 2.1.10. Let θ = (θ1, . . . , θd) be a vector of real numbers such that 1, θ1, . . . , θd are
linearly independent over the rationals, then the sequence (nθ) = ((nθ1, . . . , nθd)) is u.d. mod
1 in Rd. To see this, note that for all h ∈ Zd, h 6= 0, the real number 〈h,θ〉 is irrational, so
Theorem 2.1.9 can be applied.

Baire categories

In a topological space X a subset A is dense (in X), if the closure of A equals X, i.e., if every
non-empty open set contains at least one point of A. A set A is nowhere dense if the interior of
its closure is empty, that is, if for every non-empty open set G there is a non-empty open set H
contained in G \ A. A set is of first category or meager if it can be represented as a countable
union of nowhere dense sets, otherwise it is of second category. Clearly, a subset of a nowhere
dense set is nowhere dense, and the union of finitely many nowhere dense sets is nowhere dense.
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Moreover, the subset of a meager set is meager and the union of a countable family of sets of
first category is of first category.

A topological space X is called a Baire space if every non-empty open set in X is of second
category, or equivalently, if the complement of every meager set is dense. In a Baire space, the
complement of any set of first category is called a residual set. By the Theorem of Baire ([52,
Theorem 1.3]), Rk is a Baire space.

If E ⊆ X × Y and x ∈ X the set Ex is defined as

Ex = {y : (x, y) ∈ E}.

Theorem 2.1.11 (Kuratovski-Ulam). If E is a plane set of first category, then Ex is a linear set
of first category for all x except a set of first category. If E is a nowhere dense subset of the
plane X × Y , then Ex is a nowhere dense subset of Y for all x except a set of first category in
X.

With this theorem we can prove the following theorem:

Theorem 2.1.12. A product set A×B is meager in X × Y iff at least one of the sets A or B is
meager.

Proof. If G is a dense open subset of X, then G×Y is a dense open subset of X×Y . Hence A×B
is nowhere dense in X ×Y whenever A is nowhere dense in X. Since (

⋃
Ai)×B) =

⋃
(Ai×B),

it follows that A×B is meager whenever A is meager. The same argument applies to B.

Conversely, if A×B is meager and A is not, then by the preceding theorem there exists a point
x in A such that (A × B)x is of first category. Since (A × B)x = B for all x in A, B is of first
category. l

2.1.2 Vectors

In this section let (nj)j∈N be a sequence of r-dimensional vectors of nonnegative integers, i.e.

nj = (nj,1, . . . , nj,r) with nj,i ∈ N,

and let α = (α1, . . . , αr) denote an r-dimensional vector of real numbers 0 ≤ αi ≤ 1, i = 1, . . . , r.
We are now interested in the distribution of the sequence

nα := (njα)j∈N with njα =
r∑
i=1

nj,iαi.

Note that nα is a one-dimensional sequence of real numbers. To study the size in the sense of
Baire of the set

U = {α ∈ (R/Z)r : (njα)j∈N is uniformly distributed mod 1}

we follow Goldstern, Schmeling, Winkler [25]. For this purpose we generalise the definition of
ε-mixing sequences of functions:

Definition 2.1.13. A sequence of functions fi : [0, 1)r → [0, 1) is called ε-mixing in (δ1, . . . , δr) if
for all sequences of intervals J1, J2, . . . of length ε and for all cuboids J ′ of size δ1× · · · × δr and
for all k ≥ 0

J ′ ∩
k⋂
i=1

f−1
i (Ji)

contains an inner point.
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To proceed further we need a criterion when a sequence of functions is ε-mixing in (δ1, . . . , δr):

Lemma 2.1.14. Let fj : [0, 1)r → [0, 1) be the function mapping α to njα modulo 1, where
(nj)j∈N is a sequence of r-dimensional vectors of nonnegative integers satisfying

1. nj+1,s >
4
εnj,s for all j and

2. n0,s >
ε

2δs

for a fixed s ∈ {1, . . . , r}. Then (f1, f2, . . . ) is ε-mixing in (δ1, . . . , δr).

Proof. For simplicity we just prove the case r = 2. Let nj = (mj , nj) and assume that the
conditions (1) and (2) hold for the sequence of nj . We will show (by induction on k) that each
set

J ′ ∩
k⋂
i=1

f−1
i (Ji)

contains a cuboid of size ck × ε
2nk

with ck > 0. This is true for k = 0, since δ2 > ε
2n0

and
c0 := δ1 > 0.

Consider k > 0. Note that f−1
k (Jk) is a union of stripes of height ε

nk
and distance 1−ε

nk
(see

Figure 2.1). By induction hypothesis, the set J ′ ∩
⋂k−1
i=1 f

−1
i (Ji) contains a cuboid I of size

k1/m k2/m k3/m

k3/n

0 1

1

k

k

1/n

2/n

{k/nε

Figure 2.1:

ck−1 × ε
2nk−1

. Since ε
2nk−1

> 2
nk

, I crosses one stripe - say S - of height ε
nk

. Thus I ∩ S contains
a cuboid I ′ of size ck × ε

2nk
for some ck ≤ ck−1 (see Figure 2.2). l

To be able to state the theorem, we need the following definitions.

Definition 2.1.15. For a sequence x = (xn)n∈N of real numbers we define the measures µx,n by

µx,n =
1
n

n∑
i=1

δxi ,

where δx denotes the point measure in x. The set of accumulation points of the sequence
(µx,n)n∈N is denoted by M(x) and is called the set of limit measures of the sequence x.
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k1/m k2/m k3/m

k/nε {

0 1

1

k

k

k

1/n

2/n

3/n

I

S
I’

Figure 2.2:

Definition 2.1.16. For any sequence x = (xn)n∈N and any interval I we define µx(I) by

µx(I) := sup{µ(I) : µ ∈M(x)}.

Now we can establish the theorem, which shows that the set of r-dimensional real vectors α,
such that nα is uniformly distributed mod 1 is meager, if at least one component of the nj
grows exponentially.

Theorem 2.1.17. Let (nj)j∈N be a sequence of r-dimensional vectors of nonnegative integers
and assume q := lim infj(nj,s+1/nj,s) > 1 for an s ∈ {1, . . . , r}. Then the set

U := {α ∈ (R/Z)r : (njα)j∈N is uniformly distributed mod 1}

is meager.

Moreover: There is a number Q > 0 such that for all intervals I the set

{α : µnα(I) >
Q

− log λ(I)
}

is residual.

Before proving this theorem we state the following fact. It is completely analogous to the
one-dimensional case. For details we refer to [25].

Definition 2.1.18. For an open cuboid I and a Borel set B we write I  B for “B ∩ I is residual
in I” or equivalently “I \B is meager”.

Fact 2.1.19. Let I be an open cuboid.

1. If Bn is a Borel set for every n ∈ {0, 1, 2, . . . } and I ∩
⋃
nBn is residual in I, then there is

some open nonempty cuboid J ⊆ I and some n such that Bn is residual in J , i.e.,

I 
⋃
n∈N

Bn ⇒ ∃J ⊆ I ∃n ∈ N : J  Bn.
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2. If Bn is a Borel set for every n ∈ {0, 1, 2, . . . }, then I ∩
⋂
nBn is residual in I iff each

I ∩Bn is residual in Bn:
I 

⋂
n∈N

Bn ⇔ ∀n ∈ N : I  Bn.

3. If B is a Borel set then B ∩ I is not residual in I iff there is some open cuboid J ⊆ I such
that B is meager in J :

I 6 B ⇔ ∃J ⊆ I : J  BC ,

where BC denotes the complement of B.

Proof of the theorem. The proof is completely analogous to the proof of Theorem 2.4 in [25], we
have just to adapt the choice of Q and notation.

Choose Q > 0 so small that ( 1
4Q − 1)− log 4 > 1.

Without loss of generality we may assume nj+1,s

nj,s
> q for all k.

Let ε := λ(I). Since µnα > Q
− log λ(I) will be trivially true for large intervals if we choose Q small

enough, we may assume ε < 1
q , so (− log ε) > 1; here log always denotes the logarithm to base

q. Hence (− log ε)( 1
4Q − 1)− log 4 > 1, thus the interval

(log 4− log ε,− 1
4Q

log ε)

has length > 1. Let c be an integer in this interval. Then

• qc > 4
ε .

• 1
2c >

2Q
− log ε .

Now suppose that the theorem is false. Since the set {α : µnα(I) > Q
− log ε} is a Borel set and

not residual, its complement is residual in I ′, for some open cuboid I ′:

I ′ 

{
α : µnα(I) ≤ Q

− log ε

}
.

Since µnα(I) ≥ lim supn→∞ µnα,n the set {α : µnα(I) ≤ Q
− log ε} is contained in the set{

α : ∃m ∀N ≥ m : µnα,N (I) ≤ 2Q
− log ε

}
.

Denote the set {j < N : njα ∈ I} by ZN (α). So µnα,N (I) = #ZN (α)
N . Therefore

I ′ 
⋃
m

⋂
N≥m

{
α :

#ZN (α)
N

≤ 2Q
− log ε

}
.

So, by Fact 2.1.19, we can find an open cuboid J ⊆ I ′ and a k∗ such that

J 
⋂
N≥k∗

{
α :

#ZN (α)
N

≤ 2Q
− log ε

}
,

or equivalently, for all N ≥ k∗:

J 

{
α :

#ZN (α)
N

≤ 2Q
− log ε

}
. (2.3)
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Let δi := λi(J), where λi(J) is the length of the edge in the i-th dimension. Without loss of
generality we assume nk∗c,s > ε

2δs
(otherwise we just increase k∗). Now consider the functions

fk∗c, f(k∗+1)c, . . . , f(2k∗−1)c, defined as in Lemma 2.1.14. Since

n(k∗+i+1)c,s

n(k∗+i)c,s
≥ qc > 4

ε

and nk∗c,s >
ε
δs

, these functions are ε-mixing in (δ1, . . . , δr) by Lemma 2.1.14. So there is an
open cuboid K ⊆ J such that for all α ∈ K and all i ∈ {0, . . . , k∗}:

α ∈ f−1
(k∗+i)c(I) i.e. n(k∗+i)cα ∈ I.

Hence for all α ∈ K

#Z2k∗c(α) = #{i < 2k∗c : niα ∈ I} ≥ #{k∗c, (k∗ + 1)c, . . . , (2k∗ − 1)c} = k∗.

So for all α ∈ K
#Z2k∗c(α)

2k∗c
≥ 1

2c
. (2.4)

Since 1
2c >

2Q
− log ε and K ⊆ J , (2.3) with N := 2k∗c implies

K 

{
α :

#Z2k∗c(α)
2k∗c

≤ 1
2c

}
. (2.5)

Now consider the set {α : #Z2k∗c(α)
2k∗c < 1

2c} ∩K. By (2.4), this set is empty, but by (2.5) it is
residual in K, which is a contradiction. l

Note that the above theorem still remains true if we require instead of

q := lim inf
j

(nj,s+1/nj,s) > 1

for an s ∈ {1, . . . , r} only that there exists an s ∈ {1, . . . , r} and a constant C with∣∣{j : 2r ≤ nj,s < 2r+1
}∣∣ ≤ C ∀r.

Then you can choose each c := 2Cd2 − log2 εe-th term to obtain a growth of factor 4/ε, and
Q has to be chosen so small, that 1

2c >
2Q
− log ε . Indeed, one can use instead of the base 2 in

the above condition any number K > 1, but we will state all theorems in terms of the base 2
throughout this section.

Remark 2.1.20. With the same argument as above, Theorem 2.4 in [25] holds also for sequences
(nj)j∈N with ∣∣{j : 2r ≤ nj < 2r+1

}∣∣ ≤ C ∀r.

So far we gave sufficient conditions that nα is u.d. mod 1 only for α in a set of first category. If
we weaken the growth condition in the following way, there will be sequences n, such that nα
is u.d. mod 1 for α in a set of second category. For this purpose we start with an extension of
a result due to Ajtai, Havas, Komlós [2].

Lemma 2.1.21. Given any r sequences (εj,k)j∈N, 1 ≤ k ≤ r, εj,k ≥ 0, limj→∞ εj,k = 0 for all
k, there is a sequence of r-dimensional vectors of nonnegative integers (nj)j∈N with

nj+1,k

nj,k
> 1 + εj,k 1 ≤ k ≤ r

such that for all α with
∑r

i=1 αi 6∈ Q the sequence nα is u.d. mod 1.
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Proof. Set εj := max{εj,k : 1 ≤ k ≤ r}. Then, by [2, Lemma 1], there exists a sequence (nj)j∈N
with nj+1/nj > 1 + εj such that njα is u.d. mod 1 for all irrational α. Define nj := (nj , . . . , nj).
Then

njα =
r∑
i=1

njαi = nj

r∑
i=1

αi = njα
′

with irrational α′. l

To get a statement in Baire’s categories, we need a lemma which tells us that the set of d-
dimensional real vectors, whose entries are linearly independent over Q, is residual in Rd.

Lemma 2.1.22. The set

I := {α : 1, α1, . . . , αd are linearly independent over Q}

is residual, and hence of second category, in Rd.

Proof. Note that
I = Rd \

⋃
a0,...,ad∈Q

(a0,...,ad)6=(0,...,0)

S(a1, . . . ad)

where
S(a1, . . . ad) = {α : a0 + a1α1 + · · ·+ adαd = 0} .

Since S(a1, . . . ad) is a subspace of dimension smaller than d, all these sets S(a1, . . . ad) are
nowhere dense. Therefore ⋃

a0,...,ad∈Q
(a0,...,ad)6=(0,...,0)

S(a1, . . . ad)

is of first category. l

Consequently we have

Theorem 2.1.23. Given any r sequences (εj,k)j∈N, 1 ≤ k ≤ r, εj,k ≥ 0, limj→∞ εj,k = 0 for all
k, there is a sequence of r-dimensional vectors of nonnegative integers (nj)j∈N with

nj+1,k

nj,k
> 1 + εj,k 1 ≤ k ≤ r

such that the set
{α : nα is u.d. mod 1}

is residual.

In [25] Goldstern, Schmeling and Winkler also proved that if the sequence (nj)j∈N grows very
fast (i.e., if limj→∞ nj+1/nj = ∞), then the set of those α, for which nα is maldistributed, is
residual. A sequence x = (xn)n∈N is called maldistributed, iff the set M(x) is the whole set
of Borel probability measures on [0, 1]. It is as easy as the modification of the proof of [25,
Theorem 2.4] to the proof of Theorem 2.1.17 to obtain a generalisation of [25, Theorem 2.6]:

Theorem 2.1.24. Let (nj)j∈N be a sequence of r-dimensional vectors of nonnegative integers
and assume that there is a s ∈ {1, . . . , r} such that limk→∞ ns,k+1/ns,k =∞. Then the set

{α ∈ (R/Z)r : nα is maldistributed}

is residual.
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2.1.3 nα-sequences in Rd

In this section we investigate uniform distribution in Rd. For a sequence (nj)j∈N of d-dimensional
vectors of nonnegative integers and a d-dimensional vector α = (α1, . . . , αd) of real numbers we
are interested in the sequence

nα := (nj,1α1, . . . , nj,dαd)j∈N.

To obtain results for such sequences we use the connection between uniform distribution modulo
1 in [0, 1]d and uniform distribution in [0, 1]. As in the previous section our first theorem shows
that the set of α such that nα is u.d. is meager if at least one component of the nj grows
exponentially.

Theorem 2.1.25. Let (nj)j∈N be a sequence of d-dimensional vectors of nonnegative integers
and assume that there exists an s ∈ {1, . . . , d} and a constant C with∣∣{j : 2r ≤ nj,s < 2r+1

}∣∣ ≤ C ∀r.

Then
A :=

{
α ∈ (R/Z)d : nα is u.d. mod 1 in Rd

}
is meager.

Proof. By Theorem 2.1.9, uniform distribution of nθ implies that each component niθi :=
(nj,iθi)j∈N, 1 ≤ i ≤ d is u.d. mod 1, especially nsθs is u.d. mod 1. Therefore

A ⊆ R× · · · × R×As × R× · · · × R,

where
As := {θ : nsθ u.d. mod 1} .

By Remark 2.1.20, the set As is meager. Hence, by Theorem 2.1.12, A is meager. l

As before the growth condition in the theorem above cannot be weakened:

Lemma 2.1.26. Given any d sequences (εj,k)j∈N, 1 ≤ k ≤ d, εj,k ≥ 0, limj→∞ εj,k = 0 for all
k, there is a sequence of d-dimensional vectors of nonnegative integers (nj)j∈N with

nj+1,k

nj,k
> 1 + εj,k 1 ≤ k ≤ d

such that for all α with 1, α1, . . . , αd linearly independent over Q the sequence

(nj,1α1, . . . , nj,dαd)j∈N

is u.d. mod 1 in Rd.

Proof. Set εj := max{εj,k : 1 ≤ k ≤ d}. Then, by [2, Lemma 1], there exists a sequence (nj)j∈N
with nj+1/nj > 1 + εj such that njα is u.d. mod 1 for all irrational α. Define nj := (nj , . . . , nj).
By Theorem 2.1.9 we have to show that for all h ∈ Zd, h 6= 0 the sequence 〈h, njα〉 is u.d. mod
1 for all α with 1, α1, . . . , αd linearly independent over Q. This is true since

〈h, njα〉 =
d∑
i=1

hinjαi = nj

d∑
i=1

hiαi = njα
′

with α′ ∈ R \Q. l
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Using Lemma 2.1.22 we get as an immediate consequence

Theorem 2.1.27. Given any d sequences (εj,k)j∈N, 1 ≤ k ≤ d, εj,k ≥ 0, limj→∞ εj,k = 0 for all
k, there is a sequence of d-dimensional vectors of nonnegative integers (nj)j∈N with

nj+1,k

nj,k
> 1 + εj,k 1 ≤ k ≤ d

such that the set {
α : (nj,1α1, . . . , nj,dαd)j∈N is u.d. mod 1 in Rd

}
is residual.

Again using Theorem 2.1.12 we obtain for fast growing sequences (nj):

Theorem 2.1.28. Let (nj)j∈N be a sequence of d-dimensional vectors of nonnegative integers
and assume limk→∞ nt,k+1/nt,k =∞ for all t ∈ {1, . . . , d}, then the set

{α ∈ (R/Z)d : nα is maldistributed}

is residual.

We can combine the ideas of this and the previous section: Consider a sequence of d×r-matrices
of nonnegative integers

(Nj)j∈N with Nj = (njik), i = 1, . . . , d, k = 1, . . . , r.

We are now interested in the distribution of the sequence Nα := (Njα)j∈N, where Njα means
the classical matrix-vector-product. Same argumentation as in the proof of Theorem 2.1.25
yields

Theorem 2.1.29. Let (Nj)j∈N be a sequence of d × r-matrices of nonnegative integers and
assume that there exist s ∈ {1, . . . , d}, t ∈ {1, . . . , r} and a constant C with∣∣∣{j : 2r ≤ njst < 2r+1

}∣∣∣ ≤ C ∀r.

Then the set
A :=

{
α = (α1, . . . , αr) : Nα is u.d. mod 1 in Rd

}
is meager.

2.1.4 Uniform distribution of nets

In this section we define uniform distribution of nets of elements of a locally compact Hausdorff
space and give a list of some elementary properties which generalise the results for classical
sequences given in Bauer [8], Helmberg [27], Kuipers and Niederreiter [43] and Winkler [62].
The proofs are analogous to the ones of the case of one-dimensional sequences, so we omit them
and just state the theorems. As explained in the following such nets induce nets of certain
discrete probability measures. Uniform distribution properties of nets of general probability
measures on locally compact groups were studied in Gerl [23] and Maxones and Rindler [48, 49].
A special kind of nets are sequences indexed by d-dimensional vectors in Nd. Such sequences
of random variables also appear in probability theory, see eg. Jacod and Shiryaev [31]. For an
introduction to nets we refer to Willard [60].
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Throughout this and the following section let X 6= ∅ be a locally compact Hausdorff space with
countable topology base. Moreover, let M(X) be the compact sets of nonnegative finite Borel
measures with µ(X) = 1 if X is compact and µ(X) ≤ 1 if X is not compact, equipped with the
topology of weak convergence. On M(X) we use the metric given in [62]. Furthermore let Λ
(equipped with two relations (≤1,≤2)) be a countable directed set (w.r.t. both relations) with
the additional property that for all λ ∈ Λ the sets Vi(λ) := {ν : ν ≤i λ} (i = 1, 2) is finite.
Moreover, assume |{λ : |V1(λ)|}| = o(nα) (α ∈ R) as n→∞.

For a net x = (xλ)λ∈Λ of elements in X and a function f ∈ K(X), the space of all continuous
real-valued functions on X whose support is compact, we define the net µf = (µλ,f )λ∈Λ by

µλ,f =
1

|V1(λ)|
∑
`≤1λ

f(x`). (2.6)

If the nets µf converges (w.r.t. the relation ≤2) to the integral∫
X

fdµ

for all f ∈ K(X) then we say x is µ-uniformly distributed (µ-u.d.) in X.

Now we give some basic properties:

(i) If V is a class of functions from K(X) such that sp(V ) is dense in K(X), then V is
convergence-determining with respect to any µ in X.

(ii) If sp(V ) is a subalgebra of K(X) that separates points and vanishes nowhere, then V is a
convergence-determining class with respect to any µ in X.

(iii) The net x = (xλ)λ∈Λ is µ-u.d. in X iff the nets yM = (yMλ )λ∈Λ defined by

yMλ =
A(M ;λ)
|V1(λ)|

converge (w.r.t. ≤2) to µ(M) for all compact µ-continuity sets M ⊆ X. Here A(M ;λ) =∑
`≤1λ

1M (x`).

(iv) In a locally compact Hausdorff space X with countable space, there exists a countable
convergence-determining class of real-valued continuous functions with compact support
with respect to any µ ∈M(X).

(v) Let S be the set of all µ-u.d. sequences in X, viewed as a subset of XΛ := XQ
λ∈Λ

. Then
µ∞(S) = 1.

(vi) If X contains more than one element, then the set S from the above theorem is a set of
first category in XΛ.

(vii) The set S is everywhere dense in XΛ.

Generalising the concept of uniform distribution we introduce the set M(x), the set of limit
measures of the net x, as the set of cluster points of the net (w.r.t. ≤2) µ = (µλ)λ∈Λ of induced
measures defined by

µλ =
1

|V1(λ)|
∑
`≤1λ

δx` . (2.7)
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If M(x) = {µ} (µ ∈ M(X)), then this net is µ-u.d. in X. If M(x) = M(X) we say x is
maldistributed in X.
As in the classical case (see [62]) only very few (in a topological sense) nets are µ-u.d. Moreover,
almost all nets are maldistributed. We have:
The typical situation in the sense of Baire is M(x) =M(X), i.e., the set

Y = {x ∈ XΛ| M(x) =M(X)} ⊆ XΛ

is residual.
At the end of this section we define two notions of uniform distribution on Λ = Nd, which we
will use in the following. First let Nd be equipped with the relations (≤1,≤2) = (≤,≤) defined
by x ≤ y iff xi ≤ yi (1 ≤ i ≤ d). The second concept is to introduce the relation ≤s defined
by x ≤s y iff |x| ≤ |y|, where |x| :=

∏d
i=1 xi and to consider (Nd,≤,≤s). A µ-u.d. net w.r.t. to

this relation on Nd we will call strongly uniformly distributed (s.u.d.). The set of limit measure
we denote by Ms(x). The first concept is in accord with Kuipers and Niederreiter [43], the
second concept is motivated by Aistleitner [1], who studied the discrepancy of sequences with
multidimensional indices.

2.1.5 Characterisation of M(x) and distribution of subnets for a special kind
of nets on Nd

This section is devoted to the generalisation of the characterisation of the sets of limit measures
given in Winkler [62, Theorem 3.1] to nets defined on Λ = (Nd,≤,≤) (see Section 2.1.4).
To simplify notation we introduce some operations on multidimensional indices. For an index
i = (i1, . . . , id) we define

i + c = (i1 + c, . . . , id + c),
i mod c = (i1 mod c, . . . , id mod c).

Furthermore, we define the index-sets

I[i, j] := {k : k ≥ i and ∃` : k` ≤ j`},
I[i, j) := {k : k ≥ i and ∃` : k` < j`} = I[i, j− 1],
I(i, j] := {k : k > i and ∃` : k` ≤ j`} = I[i + 1, j].

A sequence of the form x = (xi)i∈I[1,N] we call an angle-sequence, and by the periodic continua-
tion of an angle-sequence by a finite sequence y = (yi)1≤i≤N1 we mean the sequence x′ = (x′i)i∈Nd
defined by

x′i =
{
xi if i ∈ I[1,N]
yki−N mod N1

if i > N
.

Here we assume N = (N, . . . , N) and N1 = (N1, . . . , N1). In fact, we could define the above
construction for arbitrary indices N and N1, but in the following we will just need this definition.

Example 2.1.30. In two dimensions the periodic continuation of x with period y looks like the
following:
...

...
...

... . .
.

... y y y · · ·

... y y y · · ·

... y y y · · ·
x · · · · · · · · · · · ·
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The following lemma generalises [62, Section 2] and gives some properties of the set M(x).

Lemma 2.1.31. For all sequences x ∈ Xω×···×ω the set M(x) has the following properties:
M(x) is

(i) nonempty,

(ii) contained in M(X),

(iii) closed (hence compact),

(iv) connected.

Proof. (i): M(x) 6= ∅ since every net in a compact space has a convergent subnet and all
λN ∈M(X).

(ii): The proof is completely analogous to the proof in [62], you just have to take the multidi-
mensional limit.

(iii): M(x) is the set of cluster points of the net y = (yN)N∈Nk , and the set of cluster points of
any net in any topological space is closed.

(iv): Assume that M = M(x) is not connected. Therefore there are nonempty disjoint closed
subsets M1, M2 ⊆M with M = M1 ∪M2. Since compact Hausdorff spaces are normal, we can
find open sets Oi and Vi, i = 1, 2, in M(X) satisfying

Mi ⊆ Oi ⊆ Oi ⊆ Vi, i = 1, 2, and V1 ∩ V2 = ∅.

Thus the closures of the Oi are compact and disjoint. This yields that they have positive distance

d(O1, O2) = inf
µi∈Oi

d(µ1, µ2) = ε > 0.

Now consider the compact set L = M(X) \ O1 \ O2. Since both M1 and M2 contain cluster
points of Λ, the net has to be infinitely many times in O1 as well as in O2 for all tails (λN)N≥n

with n ∈ Nd. Observe that d(λN, λN+1) ≤ c/(N+1), where N = (N, . . . , N). Thus the distance
of subsequent members in the diagonal of Λ gets arbitrarily small, say less than ε. This means
that Λ has to intersect L infinitely many times for all tails (λN)N≥n with n ∈ Nd. Since L is
compact, there must be a cluster point of Λ in L, but we also have

L ∩M = L ∩ (M1 ∪M2) ⊆ (L ∩O1) ∪ (L ∩O2) = ∅,

which is a contradiction. l

The parts (i), (ii), and (iii) of the lemma above are valid for arbitrary nets as considered in
Section 2.1.4, whereas part (iv) fails in general. We give the following example: Let x =
(xn,m)(n,m)∈N2 be the net defined by

x(n,m) =
{

0 if m = 0
1 if m > 0

and consider the pair of relations (≤,≤s). Then the set of limit measures is the set

M(x) = {λ : λ(0) = 1
n , λ(1) = 1− 1

n} ∪ {δ1}.

Now we turn to the main result of this section. The proof uses two lemmas which we will present
afterwards. With the definitions given in Section 2.1.4 we have
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Theorem 2.1.32. Let X be a locally compact Hausdorff space with countable topological base
and x = (xn)n∈Nd a net. Then:

1. Every M(x) is a nonempty, closed (hence compact) and connected subset of M(X).

2. Let M ⊆ M(X) be nonempty, compact and connected. Then there is a net x ∈ Xω×···×ω

with M(x) = M .

Proof. (1) see Lemma 2.1.31

(2) By Lemma 2.1.33 there exists a net (µk)k∈Nd in M whose set of cluster points equals M
and with the additional property that limk→∞ εk = 0 with a monotonically nonincreasing se-
quence of εk > dk where dk is the maximum of the distances of µk to its successors (see
Lemma 2.1.33). Now we construct a sequence x = (xn)n∈Nd such that the induced sequence
of the λN approximates the µk in the following sense: There are indices N1 < N2 < · · · such
that d(µ, λN(x)) < 2εk for all N ∈ I[Nk,Nk+1) where Nj = (Nj , . . . , Nj). Then the relation
M = M(x) is an immediate consequence.

To construct such a sequence we take a finite sequence x0 = (x0
i )1≤i≤N0 such that d(λN0(x0), µ1) <

ε1 (the existence of x0 is guaranteed by Section 2.1.4). Consider the sequence x1 = (x1
i )i∈Nd

with x1
i = xi mod N0 such that there is a number N1 with d(λN(x1), µ1) < ε1 for all N ≥ N1.

Now we proceed by induction:

For arbitrary k ≥ 1 assume that there is an angle-sequence xk = (xki )i∈I[1,Nk] with the following
properties:

(1) d(λNk
(xk), µk) < εk.

(2) There is a finite sequence yk = (yki )1≤i≤(K,...,K) such that for the periodic continuation xck
of xk with period yk we have d(λN(xck), µk) < εk for all N ≥ Nk.

By Lemma 2.1.35 there is an angle-sequence x′ = (x′i)i∈I(Nk,Nk+1] such that for the angle-
sequence xk+1 = (xk+1

i )i∈I[1,Nk+1] defined by

xk+1
i =

{
xki if i ∈ I[1,Nk]
x′i if i ∈ I(Nk,Nk+1]

the following conditions hold:

(i) If N ∈ I[Nk,Nk+1), then there is a point µ on the linear connection between µk and µk+1

with d(λN(xk+1), µ) < Cεk, where C is a constant depending only on the dimension d.

(ii) There is a finite sequence yk+1 = (yk+1
i )1≤i≤(K′,...,K′) such that for the periodic contin-

uation of xk+1 with yk+1, which we denote by x, we have d(λN(x), µk+1) < εk+1 for all
N ≥ Nk+1.

Then the limit sequence limk→∞ xk+1, generated by the above induction, has the desired prop-
erties. l

Lemma 2.1.33. Let M be a nonempty closed and connected subset of M(X). Then there is
a net (µk)k∈Nd in M , whose set of cluster points equals M and with the additional properties
limk→∞ dk = 0, where dk is the maximum of the distances of µk to its successors, i.e. dk =
maxk′∈Ik d(µk, µk′), where Ik = {(K1, . . . ,Kd) : Ki ∈ {ki, ki+1}, i = 1, . . . , d} if k = (k1, . . . kd),
and µk′ = µ(k,k,...,k), where k′ runs over all indices which coincide with (k, . . . , k) in at least one
coordinate.
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Example 2.1.34. In two dimensions such a net has the following form:
...

...
...

...
... . .

.

µ1 µ2 µ3 µ4 µ5 · · ·
µ1 µ2 µ3 µ4 µ4 · · ·
µ1 µ2 µ3 µ3 µ3 · · ·
µ1 µ2 µ2 µ2 µ2 · · ·
µ1 µ1 µ1 µ1 µ1 · · ·

Proof. By [62, Lemma 3.3], there exists a sequence (µk)k∈N in M whose set of accumulation
points equals M and with limk→∞ d(µk, µk+1) = 0. The net determined by µ(k,...,k) = µk has
the desired properties. l

Lemma 2.1.35. Let µk, µk+1 ∈ M(X) and εk > εk+1 > 0 be given. Assume that xk =
(xki )i∈I[1,Nk] with Nk = (Nk, . . . , Nk) is an angle-sequence with the following properties:

1. d(λNk
(xk), µk) < εk.

2. There exists a finite sequence yk = (yki )1≤i≤(K,...,K) such that for the periodic continuation
xck of xk with period yk the following property holds: d(λn(xck), µk) < εk for all n ≥ Nk.

Then there is an angle-sequence x′ = (x′i)i∈I(Nk,Nk+1] such that for the angle-sequence xk+1 =
(xk+1

i )i∈I[1,Nk+1] defined by

xk+1
i =

{
xki if i ∈ I[1,Nk]
x′i if i ∈ I(Nk,Nk+1]

the following conditions hold:

(i) If n ∈ I[Nk,Nk+1) then there is a point µ on the linear connection between µk and µk+1

with d(λn(xk+1), µ) < Cεk, where the constant C depends only on the dimension d.

(ii) There is a finite sequence yk+1 = (yk+1
i )1≤i≤(K′,...,K′) such that for the sequence x, which

denotes the periodic continuation of xk+1 with period yk+1, we have

d(λn(x), µk+1) < εk+1

for all n ≥ Nk+1.

Proof. By Section 2.1.4 there is a sequence y with limit distribution µk+1. Take the initial
part yk+1 = (yk+1

i )1≤i≤(K′,...,K′) in such a way that the induced measure λ = λ(K′,...,K′)(yk+1)
satisfies

d(λ, µk+1) < εk+1 < εk

and K|K ′. Consider the angle-sequence xk+1 = (xk+1
i )i∈I[1,Nk+1] constructed in the following

way:

xk+1
i =


xki if i ∈ I[1,Nk]
yki−Nk mod K if i ∈ I(Nk,Nk +mkK]
yi−(Nk+mkK) mod K′ if i ∈ I(Nk +mkK,Nk+1]

,

where Nk+1 = (Nk+1, . . . , Nk+1) and Nk+1 = Nk+mkK+mk+1K
′ with suitable chosen mk and

mk+1; this is done below. Let x denote the sequence obtained from xk+1 by periodic continuation
with period yk+1. We first prove the second statement of the lemma. Given mk, we can choose
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mk+1 large enough that d(λn(x), µk+1) < εk+1 for all n ≥ Nk+1 since for n = (n1, . . . , nd) with
ni = Nk +mkK +mk+1K

′ + siK
′ + ci with 0 ≤ ci < K ′ and si ≥ 0 we have

d(λN(x), µk+1) = d

(
1
|n|

(
K ′d

d∏
i=1

(mk+1 + si)λ+
∑)

, µk+1

)

≤ 1
|n|

K ′d
d∏
i=1

(mk+1 + si)d(λ, µk+1)

+
|n| −K ′d

∏d
i=1(mk+1 + si)
|n|

= 1− (1− d(λ, µk+1))
1
|n|

K ′d
d∏
i=1

(mk+1 + si),

where
∑

is a sum over |n| −K ′d
∏d
i=1(mk+1 + si) indicator functions. For mk+1 so large that

1
|n|

K ′d
d∏
i=1

(mk+1 + si) >
1− εk+1

1− d(λ, µk+1)
,

the statement is true.

Now we turn to the first assertion. Firstly we give a detailed proof of the two-dimensional
case, afterwards we prove the general case. Indeed, the general case uses the same idea as the
two-dimensional case, but it is not necessary (and in higher dimension also very awful to write
things down) to be so accurate as we are in the two-dimensional case, but this accuracy will be
very helpful to understand what’s going on.

So we have to show that for all n ∈ I[Nk,Nk+1) we have d(λn(xk+1), µ) < Cεk for some µ on
the linear connection between µk and µk+1. For n ∈ I[N,Nk+mkK] this is true by assumption.
Now consider a point N = (N1, N2) = (Nk + mkK + sK ′ + d,Nk + mkK + tK ′ + e) with
0 ≤ s, t ≤ mk+1 and 0 ≤ d, e < K ′. We can write λN as

NλN = N2
k+1

st

m2
k+1

λNk+1

− (Nk +mkK)(Nk +mkK +mk+1K
′)

st

m2
k+1

λ(Nk+mkK,Nk+1)

− (Nk +mkK)(Nk +mkK +mk+1K
′)

st

m2
k+1

λ(Nk+1,Nk+mkK)

+ (Nk +mkK)(Nk +mkK + tK ′ + e)λ(Nk+mkK,N2)

+ (Nk +mkK)(Nk +mkK + sK ′ + d)λ(N1,Nk+mkK)

+

(
st

m2
k+1

− 1

)
(Nk +mkK)2λ(Nk+mkK,Nk+mkK)

+
∑

=: a1λ1 +
6∑
i=2

aiλi +
∑

,

where
∑

is a sum over de+ esK ′ + dtK ′ indicator functions. The first term is needed to count
the indicator functions induced by the complete yk+1-blocks. In λNk+1

we have m2
k+1 such
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blocks and we need st blocks, so we multiply with st
m2
k+1

. But with this measure we count too

many indicator functions, namely those in the areas A = I((1, N2), (Nk + mkK,Nk+1)] and
B = I((N1, 1), (Nk+1, Nk + mkK)] (see Figure 2.3). This error is corrected by subtracting the
terms with the measures λ(Nk+mkK,Nk+1) and λ(Nk+1,Nk+mkK). But now we have eliminated all
contributions from the areas I((1, Nk +mkK), (Nk +mkK,N2)] and I((Nk +mkK, 1), (N1, Nk +
mkK)] too, so we add the terms with λ(Nk+mkK,N2) and λ(N1,Nk+mkK). Last we correct the
contribution of I[1, (Nk+mkK,Nk+mkK)]. The measure

∑
contains all the indicator functions

from the incomplete yk+1-blocks.

N   + m  K + sK’ + dk k

k+1
(N     , N     )

k+1

N   + m  Kk k

Nk

N   + m  Kk kNk

N   + m  K + sK’k k

N   + m  K + tK’ + ek k

N   + m  K + tK’k k

A

B

Σ

Figure 2.3:

Figure 2.4:

Figure 2.4 illustrates this procedure (except the error
∑

): We have the thick-bordered area and
want to construct the grey area, using only rectangles starting in the origin. So we subtract
the vertical and horizontal dotted areas first, then we have to add their intersection, the thick-
bordered square again. Afterwards we add the diagonally lined areas and correct the error we
made by subtracting their intersections, again thick-bordered square.

Now define µ := 1
|N|

(
a1µk+1 + µk

(∑6
i=2 ai + de+ dtK ′ + esK ′

))
. Then µ is on linear connec-
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tion between µk and µk+1 and we have

d(λN(xk+1), µ) ≤ a1d

N1N2
(λ1(xk+1), µk+1) +

1
N1N2

6∑
i=2

|ai|d(λi(xk+1), µk)

+ 2
de+ dtK ′ + esK ′

N1N2

< 6εk + 2
2K ′2(s+ t+ 1)

N1N2

Now we reduce the fraction by max(s, t), hence

d(λN(xk+1), µ) < 6εk + 4K ′2
3

K ′(Nk +mkK)
< 7εk

if mk is chosen large enough.

In a similar way we can decompose λN with N = (N1, N2) = (Nk+mkK+sK ′+d,Nk+mkK+
tK ′ + e), s < mk+1, t > mk+1 and 0 ≤ d, e < K ′ (the case t < mk+1, s > mk+1 is symmetric)
into

N1N2λN = Nk+1(Nk +mkK + (t+ 1)K ′)
st

mk+1(t+ 1)
λ(Nk+1,Nk+mkK+(t+1)K′)

− st

mk+1(t+ 1)
(Nk +mkK)(Nk +mkK + (t+ 1)K ′)λ(Nk+mkK,Nk+mkK+(t+1)K′)

− st

mk+1(t+ 1)
Nk+1(Nk +mkK)λ(Nk+1,Nk+mkK)

+ (Nk +mkK)N2λ(Nk+mkK,N2)

+N1(Nk +mkK)λ(N1,Nk+mkK)

+
(

st

mk+1(t+ 1)
− 1
)

(Nk +mkK)2λ(Nk+mkK,Nk+mkK)

+
∑

,

where
∑

is a sum over de+ esK ′+ dtK ′ indicator functions and obtain that for suitable chosen
µ on the linear connection between µk and µk+1

d(λN(xk+1), µ) < 7εk.

Now we turn to the general case. Therefore consider a point N = (N1, . . . , Nd) with Ni =
Nk +mkK + siK

′ + di and si < mk+1 and 0 ≤ di < K ′ first. Then we can write

|N|λN = |Nk+1|
∏d
i=1 si

md
k+1

λNk+1
+

T∑
i=1

aiλni +
∑

,

where ni is of the form ni = (n1, . . . nd) with all ni ∈ {Nk+1, Nk +mkK} or all ni ∈ {Ni, Nk +

mkK} but not all ni = Ni. The coefficients ai = vi|ni|ci with vi ∈ {1,−1} and ci ∈ {1,
Qd
i=1 si
mdk+1

}.
The above formula is true, since after taking λNk+1

, we have to subtract the error we made.
Therefore we subtract the λni with exactly one ni = Nk +mkK and for all the other j 6= i with
nj = Nk+1; there are p1 = d such measures. Each two of them have an intersection, so we have
the correct this, which leads to p2 =

(
d
2

)
summands (each such index has exactly two entries

Nk +mkK). Each of them have again an intersection (now there are p3 =
(
p2

2

)
of them) and so
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on (pi+1 =
(
pi
2

)
). After d steps this procedure must end. Afterwards we start adding the terms

with those ni with exactly one entry equals Nk + mkK and the other entries equal Ni. There
are p1 of them. Then we correct the intersections again and so on. Last we add the term due
to the non-complete yk blocks, this is denoted by

∑
and is a sum over

S := 1 +
d∑
j=1

∑
A⊆{1,...,d}
|A|=j

K ′d−j
∏
p∈A

dp
∏

q∈{1,...,d}\A

sq

indicator functions.

Hence T ≤ 2
∑d

i=1 pi < F (d), where F (d) is a constant only depending on the dimension d.
Taking

µ =
1
N
|Nk+1|

∏d
i=1 si

md
k+1

µk+1 +
1
N

(
T∑
i=1

ai + S

)
µk

we find that
d(λN(xk+1), µ) ≤ F (d)εk +

2S
|N|

.

By reducing the fraction on the right-hand side by the product of the (d − 1) greatest si and
estimating di ≤ K ′ we see

d(λN(xk+1), µ) ≤ F (d)εk + 2
2dK ′d

K ′d−1(Nk +mkK)
.

So we have to choose mk in such a way that the fraction becomes small. A similar construction
holds for the other points N ∈ I[Nk +mkK,Nk+1) . l

After this characterisation of M(x) we will study the distribution of certain subnets of a given net
and generalise results due to Goldstern, Winkler and Schmeling [24]. We study subnets as studied
in Losert and Tichy [46]: Choose d sequences a1, . . . ,ad ∈ {0, 1}N and define a = (an)n∈Nd by

a(n1,...,nd) =
d∏
i=1

ai,ni .

Then the subnet ax of x is the net obtained by taking those elements xn for which an = 1 and
using the given relation ≤.

The next theorem is a consequence of Theorem 2.1.32 and generalises [24, Theorem 1.2]:

Theorem 2.1.36. Let x ∈ XNd and M ⊆ M(X). Then there exists a subsequence ax with
M(ax) = M iff M is closed and connected with ∅ 6= M ⊆ M(A(x)), where A(x) is the set of
cluster points of the net x.

Proof. This proof runs along the same lines as the one in [24]: First assume M = M(ax).
Using Lemma 2.1.31 we get that M is nonempty, closed and connected. It remains to show that
M ⊆M(A(x)). For this purpose it suffices to show that every x ∈ X\A(x) has a neighbourhood
U with limN→∞ µN,ax(U) = 0. To see this, take a neighbourhood U with compact closure U
and with U ∩ A(x) = ∅. If xn ∈ U for an infinite increasing sequence of indices n1 < n2 < · · · ,
U would contain a cluster point of x, which is a contradiction. Hence xn 6∈ U for all n ≥ N0.
Thus

lim
N→∞

µN,ax(U) ≤ lim
N→∞

|N0|
|N|

= 0.

The other direction is completely analogous to [24]. l
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Similarly to [24, Theorem 1.3] we get that a typical subsequence of a given sequence is maldis-
tributed in A(x):

Theorem 2.1.37. M(ax) =M(A(x)) holds for all a ∈ R from a residual set R ⊆ [0, 1)d.

2.1.6 nα-nets over Nd

In this section we specialise on nα-nets over Nd, i.e., we consider X = [0, 1) and µ the Lebesgue-
measure. Besides the two notions of uniform distribution mod 1 according to Section 2.1.4
we consider the (s1, . . . , sd)-u.d. (see Kirschenhofer and Tichy [41]). After some elementary
properties and examples of these three concepts we turn to the generalisation of results given in
Goldstern, Schmeling and Winkler [25] and Ajtai, Havas and Komlós [2].

In Section 2.1.4 we introduced two special notions of uniform distribution. In the context of this
section we call a net x uniformly distributed mod 1 iff for any a and b with 0 ≤ a < b ≤ 1,

lim
N1,...,Nd→∞

A([a, b); N)
|N|

= b− a,

where A([a, b); N) is the number of xk, 1 ≤ k ≤ N with a ≤ {xk} < b.

This definition is a direct extension of uniform distribution in the case d = 2 given by Kuipers and
Niederreiter [43] and a special case of the concept studied in Losert and Tichy [46]. Following [43]
one gets immediately the theorems given below.

Theorem 2.1.38. The sequence (xk)k∈Nd is u.d. mod 1 iff for every Riemann-integrable function
f on [0, 1]

lim
N1,...,Nd→∞

1
|N|

N∑
k=1

f ({xk}) =

1∫
0

f(x)dx,

where
∑N

k=1 =
∑

k:1≤k≤N.

Theorem 2.1.39. The sequence (xk)k∈Nd is u.d. mod 1 iff

lim
N1,...,Nd→∞

1
|N|

N∑
k=1

e2πihxk = 0

for all integers h 6= 0.

Moreover, a net x = (xk)k∈Nd is said to be strongly uniformly distributed (s.u.d.) mod 1 iff for
any a and b with 0 ≤ a < b ≤ 1,

lim
|N|→∞

A([a, b); N)
|N|

= b− a.

Here lim|N|→∞ f(N) = f means that ∀ε > 0 ∃N ∈ N : ∀N with |N| ≥ N : |f(N)− f | < ε.

The following theorems hold:

Theorem 2.1.40. The sequence (xk)k∈Nd is s.u.d. mod 1 iff for every Riemann-integrable func-
tion f on [0, 1]

lim
|N|→∞

1
|N|

N∑
k=1

f ({xk}) =

1∫
0

f(x)dx.
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Theorem 2.1.41. The sequence (xk)k∈Nd is s.u.d. mod 1 iff

lim
|N|→∞

1
|N|

N∑
k=1

e2πihxk = 0

for all integers h 6= 0.

As in the one-dimensional case, a sequence with multidimensional sequences is strongly uniformly
distributed modulo 1 if and only if the multidimensional discrepancy introduced by Aistleitner [1]
tends to 0.

Clearly, strong uniform distribution implies uniform distribution. The converse is not true:
Consider the double sequence x defined by xj,k = jθ with θ irrational. Then this sequence
is u.d. mod 1 (this follows easily from Theorem 2.1.39), but not s.u.d., since this sequence is
constant for fixed k. Thus x is not s.u.d. mod 1 by the following theorem:

Theorem 2.1.42. Let xk be s.u.d. mod 1. Then all “one-dimensional sequences”, i.e., sequences
(x(k1,...,kj ,...,kd))kj∈N with fixed ks, s 6= j, are u.d. mod 1.

Proof. By the criterion of Weyl, we have to show that

lim
kj→∞

1
kj

kj∑
n=1

e
2πihx(k1,...,kj−1,n,kj+1,...,kd) = 0 (2.8)

for all ks ∈ N, s 6= j and h ∈ Z \ {0}. We use induction. From Theorem 2.1.41 we get readily
that (2.8) holds for ks = 1, s 6= j for all integers h 6= 0 and all j. Assume that (2.8) holds for all
k′j := (k′1, . . . , k

′
j−1, k

′
j+1, . . . , k

′
d) < (k1, . . . , kj−1, kj+1, . . . , kd) := kj . Again by Theorem 2.1.41

we have

ε >

∣∣∣∣∣∣ 1
|k|

∑
k′j≤kj

kj∑
n=1

e
2πihx(k′1,...,k

′
j−1

,n,k′
j+1

,...,k′
d

)

∣∣∣∣∣∣ (2.9)

for kj big enough. Hence

ε >
1
|k|

∣∣∣∣∣∣
∣∣∣∣∣∣
kj∑
n=1

e
2πihx(k1,...,kj−1,n,kj+1,...,kd)

∣∣∣∣∣∣−
∣∣∣∣∣∣
kj∑
n=1

∑
1≤k′j<kj

e
2πihx(k′1,...,k

′
j−1

,n,k′
j+1

,...,k′
d

)

∣∣∣∣∣∣
∣∣∣∣∣∣ .

The second term on the right-hand side tends to 0 by (2.9). Thus

1
|k|

∣∣∣∣∣∣
kj∑
n=1

e
2πihx(k1,...,kj−1,n,kj+1,...,kd)

∣∣∣∣∣∣→ 0

for kj →∞. Therefore (2.8) holds. l

We give an example of a sequence which is s.u.d. mod 1. This sequence can be seen as a
generalisation of the one-dimensional sequence (nθ)n∈N. This sequence is u.d. mod 1 for all
irrational θ. Choose now nk =

∑d
i=1 ki − (d− 1). In two dimensions this sequence is

...
...

...
...

... . .
.

4 5 6 7 8 . . .
3 4 5 6 7 . . .
2 3 4 5 6 . . .
1 2 3 4 5 . . .
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We will prove now that this sequence is s.u.d. mod 1 for all irrational α. The proof is similar to
the proof of the one-dimensional case (see [43]).We have to show that

lim
|n|→∞

1
|n|

n∑
k=1

e2πihα
Pd
s=1 ks = 0

for all integers h 6= 0 and irrational α. Here we assume n1 ≥ n2 ≥ · · · ≥ nd. Therefore n1 →∞.
With S(n) =

∑s
i=1 ni we have

1
|n|

∣∣∣∣∣
n∑

k=1

e2πihα
Pd
s=1 ks

∣∣∣∣∣ =
1
|n|

∣∣∣∣∣∣
(n2,...nd)∑

k=1

S(n)−S(k)∑
j=S(k)

e2πihαj

∣∣∣∣∣∣
=

1
|n|

∣∣∣∣∣∣
(n2,...nd)∑

k=1

e2πihα(S(n)−S(k)+1) − e2πihαS(k)

1− e2πihα

∣∣∣∣∣∣
≤ 1
|n|

2
∏d
s=2 ns

|1− e2πihα|

=
1
n1

1
|1− e2πihα|

→ 0.

We give another example: In the one-dimensional case the sequence ({k!e})k∈N has 0 as the only
limit point (see [43]). Consider now the sequence nk = (S(k)− d+ 1)! =: k!. Then

k!e = A+
eα

S(k)− d+ 1
, 0 < α < 1, A ∈ N.

Thus {k!e} = eα/(S(k)−d+1)→ 0 in the first sense. Therefore it is not u.d. mod 1 (and hence
not s.u.d. mod 1).

The third concept is the (s1, . . . , sd)-uniform distribution introduced by Kirschenhofer and
Tichy [41]. According to the definitions above we gave an equivalent definition to that one
stated in [41].

Definition 2.1.43. A sequence (xk)k∈Nd is (s1, . . . , sd)-u.d. iff for all ai1...id and bi1...id with 0 ≤
ai1...id < bi1...id ≤ 1 and 1 ≤ ij ≤ sj for 1 ≤ j ≤ d

lim
N1,...,Nd→∞

d∏
i=1

(
Ni

si

)−1

A ([a11...1, b11...1), . . . , [as1...sd , bs1...sd);N1, . . . , Nd; s1, . . . sd)

=
d∏
i=1

si∏
ji=1

bj1...jd − aj1...jd

where A ([a11...1, b11...1), . . . , [as1...sd , bs1...sd);N1, . . . , Nd; s1, . . . sd) is the number of (s1 · · · sd)-
tuples (xi11,...id1

, . . . xi1s1 ,...idsd
) with 1 ≤ ij1 < · · · < ijsd ≤ Nj for all 1 ≤ j ≤ d in [a11...1, b11...1)×

· · · × [as1...sd , bs1...sd).

As in [43] we have that the set S of (s1, . . . , sd)-u.d. sequences is everywhere dense in Xω×···×ω.
By [41], (s1, . . . , sd)-uniform distribution implies uniform distribution. Thus from Section 2.1.4
we conclude: If X contains more than one element, then the set S of (s1, . . . , sd) − µ-u.d.
sequences is a set of first category in Xω×···×ω.

After these examples and elementary properties of uniform distribution of sequences with mul-
tidimensional indices, we turn to the generalisation of [25, Theorem 2.4] for these cases. For
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the sake of completeness we mention that in [55] Šalát proved that for a sequence (nk)k∈N
with nk =

∏k
j=1 qj , where (qj)j∈N is a sequence of integers greater than 1, then the set

U := {α ∈ R : (nkα) is u.d. mod 1} is meager. By modifying the proof slightly, we get

Theorem 2.1.44. Let (qk)k∈Nd be a sequence of integers greater than 1. Put

an =
n∏

k=1

qk, n ∈ Nd.

Then the set
U := {α ∈ R : (nkα) is u.d. mod 1}

is meager. Consequently the sets

U ′ := {α ∈ R : (nkα) is s.u.d. mod 1}

and
U ′′ := {α ∈ R : (nkα) is (s1, . . . , sd)-u.d.}

are meager.

Now we turn to the stronger result. We will generalise [25, Theorem 2.4]. For this purpose
we will follow [25] again. Recall the definitions of Section 2.1.4. Moreover, let λ denote the
Lebesgue measure on R/Z.

We start with an elementary property.

Theorem 2.1.45. Given a sequence x = (xn)n∈Nd we have ∅ 6= M(x) ⊆Ms(x).

Now we can establish the main result of this section.

Theorem 2.1.46. Let n = (nk)k∈Nd be a sequence of nonnegative integers and assume that
there exists a constant Q such that

#{k : 2r ≤ nk < 2r+1} ≤ Q, ∀r = 0, 1, 2, . . . .

Then the set
U := {α ∈ R/Z : nα is uniformly distributed w.r.t. λ}

is meager. Moreover, there is a number P > 0 such that for all intervals I the set

{α : µnα(I) >
P

− log λ(I)
}

is residual (here µnα is defined analogously to Definition 2.1.16).

Consequently, the sets
U ′ := {α ∈ R/Z : nα is s.u.d. mod 1}

and
U ′′ := {α ∈ R/Z : (nkα) is (s1, . . . , sd)-u.d.}

are meager.

Before proving the theorem we note the following lemma:
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Lemma 2.1.47. Assume that (nk)k∈Nd is a sequence of positive integers with the property that
whenever you choose T + 1 elements nk1 ≤ · · · ≤ nkT+1

you know that nkT+1
/nk1 > U . Then in

a cuboid with X ≥ T + 1 elements there are D := bX−1
T c + 1 elements nk′1 , . . . , nk′D such that

nk′i+1
/nk′i > U for i = 1, . . . , D − 1.

Proof. Let nk1 ≤ nk2 ≤ · · · ≤ nkX be a sorting of the X elements in the cuboid and choose the
elements with indices k1,kT+1, . . . ,kb(X−1)/T cT+1. l

Proof of the theorem. Choose P > 0 so small, that(
1

2d+1PQ
− 1
)
− 1 > 1

and assume λ(I) =: ε < 1
2 . Then there exists an integer c in the interval(

1− log ε,− 1
2d+1PQ

log ε
)
.

Thus 1
2d+1Qc

> 2P
− log ε and 2c > 2/ε. Again we assume that the theorem is false. Since the set

{α : µnα(I) > P
− log ε} is a Borel set and not residual, its complement is residual in I, for some

open interval I:

I 

{
α : µnα(I) ≤ P

− log ε

}
.

As in Section 2.1.2 the set {α : µnα(I) ≤ P
− log ε} is contained in the set{

α : ∃m ∀N ≥m : µnα,N(I) ≤ 2P
− log ε

}
.

Denote the set {j ≤ N : njα ∈ I} by ZN(α). So µnα,N(I) = #ZN(α)
|N| . Therefore

I 
⋃
m

⋂
N≥m

{
α :

#ZN(α)
|N|

≤ 2P
− log ε

}
.

So, by Fact 2.1.19, we can find an open interval J ⊆ I and a k∗ such that

J 
⋂

N≥k∗

{
α :

#ZN(α)
|N|

≤ 2P
− log ε

}
,

or equivalently, for all N ≥ k∗:

J 

{
α :

#ZN(α)
|N|

≤ 2P
− log ε

}
. (2.10)

Let δ := λ(J). Without loss of generality we assume k∗ = (k, k, . . . , k) and nk > ε/δ for
all k ≥ (kc, . . . , kc). Now consider the cuboid starting at (kc, . . . , kc) and ending at (kc(2Q +
1), . . . , kc(2Q+1)) =: K. Then, by Lemma 2.1.47 with U = 2/ε, T = 2Qc and X = (2Qkc+1)d,
there are at least ⌊

(2Qkc+ 1)d − 1
2Qc

⌋
+ 1 ≥ 2dQdkdcd

2Qc
=: D
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elements nk1 , . . . , nkD with nki+1
/nki > 2/ε for i = 1, . . . , D − 1. Thus the corresponding

functions are ε-mixing in δ by [25, Lemma 2.13]. So there is an open interval K ⊆ J such that
for all α ∈ K

#ZK(α) = #{j ≤ K : niα ∈ I} ≥ D.

Thus for all α ∈ K

#ZK(α)
|K|

=
#ZK(α)

kdcd(2Q+ 1)d
≥ D

kdcd4dQd
=

1
2d+1Qc

. (2.11)

Since 1
2d+1Qc

> 2P
− log ε and K ⊆ J , (2.10) with N := K implies

K 

{
α :

#ZK(α)
|K|

≤ 1
2d+1Qc

}
. (2.12)

Now consider the set {α : #ZK(α)
|K| < 1

2d+1Qc
} ∩K. By (2.11), this set is empty, but by (2.12) it

is residual in K, which is a contradiction. l

To obtain the extension of [25, Theorem 2.6], the theorem about the fast growing sequences, we
call - in analogy to the classical case - a sequence with multidimensional indices maldistributed
in [0, 1], if M(x) = P.

Theorem 2.1.48. Let n = (nk)k∈Nd be a sequence of nonnegative integers and assume that
there are R,Q ∈ N, such that

Qr := {k : 2r ≤ nk < 2r+1} ≤ Q ∀ r = 0, 1, 2, . . . ,

and that Qr ≤ 1 for all r ≥ R. Moreover, let (rj)j∈N be the sequence of those indices rj with
Qrj > 0. Define a sequence (r̃j)j∈N by r̃j = rj − rj−1 (j ≥ 0) and r̃0 = 0. Suppose r̃j → ∞.
Then the set

{α ∈ R/Z : nα is maldistributed}

is residual. Consequently, the set

{α ∈ R/Z : nα is strongly maldistributed}

is residual.

Proof. We follow [25] and adapt the notation. With similar arguments it suffices to show that
for each list ~e and each η the set

{α : for all tails there is an index N such that µnα,N ∈M~e,η} (2.13)

is residual. Now assume that this fails. Therefore we can find a nonempty interval I, an index
N0, a sequence ~e = (e0, . . . , e`−1) of natural numbers and an η ∈ R with

I  {α : ∀N ≥ N0 : µnα,N 6∈M~e,η}.

W.l.o.g. we assume N0 = (n0, . . . , n0) > (dη , . . . ,
d
η ), that e :=

∑
ei divides |N0|, nN0 >

1
λ(I) and

that nk′
nk

> 2` if nk′ > nk.

Choose a sequence of intervals (Ij : 1 ≤ j ≤ N2
0) where N2

0 = (n2
0, . . . , n

2
0) such that for all

0 ≤ i ≤ `− 1 we have

|{j : 1 ≤ j ≤ N2
0, Ij = [

i

`
,
i+ 1
`

)}| = ei
e
|N0|2.
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So each interval Ij has length 1
` . Let fj(x) = njx for N0 ≤ j ≤ N2

0. Let (fj) be a sorting of these
functions such that nj+1/nj > 2`. Then, by [25, Lemma 2.13], the fj are 1

` -mixing in λ(I), i.e.,
we can find an interval

J ⊆ I ∩
⋂
j

f−1
j (Ij).

We will show that µnα,N2
0
∈ M~e,η for all α ∈ J , which is a contradiction to (2.13). Indeed, if

α ∈ J , then for all j we have fj(α) ∈ Ij . Consequently (writing O(1) for a quantity between −1
and 1) we obtain

µnα,N2
0
([
i

`
,
i+ 1
`

)) =
1
|N0|2

(ei
e
|N2

0|+O(1) · d · n2(d−1)+1
0

)
=
ei
e

+
dO(1)
n0

,

so µnα,N2
0
∈M~e,η, since d

n0
< η. l

Replacing in [2] N by N and the one-dimensional limits by the multidimensional limits, we get
immediately

Theorem 2.1.49.
Given any sequence (εi1,...,ij+1,...,id

i1,...,ij ,...,id
)i1,...,id∈N,j=1,...,d with εi1,...,ij+1,...,id

i1,...,ij ,...,id
→ 0 in the classical (strong)

sense, there is a sequence nk of positive integers with

nk1,...,kj+1,...,kd

nk1,...,kj ,...,kd

> 1 + ε
k1,...,kj+1,...,kd
k1,...,kj ,...,kd

such that for any irrational α the sequence nα is (strongly) uniformly distributed mod 1.

2.2 Block-sequences

In the present section we study the relationship between the set of distribution functions of a
sequence (xn)n∈N and the set of distribution functions of the block sequence induced by (xn).
By distribution function we mean any nondecreasing function g : [0, 1] → [0, 1] with g(0) = 0
and g(1) = 1. Any two distribution functions coinciding at all points of continuity are identified.
For a given finite sequence T = (t1, . . . , tN ) with tn ∈ [0, 1) and x ∈ [0, 1] we denote by

A([0, x);T ) = |{n ≤ N : tn < x}|

the number of elements tn of the sequence T which are less than x. The sequence T induces the
step distribution function of T defined by

FT (x) =
A([0, x);T )

N

for x ∈ [0, 1]. Let Tn be a sequence of finite sequences (blocks) in [0, 1). The set

G(Tn) =
{

lim
k→∞

FTnk : nk ∈ N
}

is called the set of distribution functions of the block sequence Tn. If (tn)n∈N is an infinite sequence
in [0, 1) then the set G(tn) := G(Tn) with TN = (tn)1≤n≤N is called the set of distribution
functions of the sequence tn. Moreover, consider the block sequence Un defined by

Un =
{
t (n−1)n

2
+1
, · · · , tn(n+1)

2

}
.
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Our main object of interest is the relationship between set sets G(tn) and G(Un). Indeed, it is
possible to obtain G(tn) from G(Un) by taking certain convex combinations of functions from
G(Un) if there exist sets A1, A2, . . . , Ak ⊆ N (k ∈ N or k = ∞) with certain conditions on the
(lower and upper) densities of the sets Ai and if we have convergence of FUn along these sets,
i.e., if the limits

lim
n→∞, n∈Ai

FUn

exist for all i. We will proceed as follows: First we examine the case where the sets Ai have
densities, afterwards we will relax these conditions.
Let us shortly recall the concept of density of a subset A of the positive integers. The lower and
the upper density are defined as

d(A) = lim inf
|A ∩ [1, n]|

n
and

d̄(A) = lim sup
|A ∩ [1, n]|

n
,

respectively. If d(A) = d̄(A) this value is called the density d(A) of the set A.
In the following we need the lemma below, which follows directly from a general result by Fuchs
and Guiliano Antonini [20], but we will give the easy proof here.

Lemma 2.2.1. Let A ⊆ N with d(A) = α. Then we have

lim
n→∞

2
n(n+ 1)

∑
1≤i≤n
i∈A

i = lim
n→∞

2
n(n+ 1)

∑
√
n≤i≤n
i∈A

i = α.

Proof. Using Abel’s partial summation formula, we can rewrite the sum as

2
n(n+ 1)

∑
1≤i≤n
i∈A

i =
2

n(n+ 1)
Ann−

2
n(n+ 1)

n−1∑
i=1

Ai,

where Ai = |A ∩ [1, i]|. Obviously, the first term tends to 2α. Now consider the second term
and split the sum:

2
n(n+ 1)

n−1∑
i=1

Ai =
2

n(n+ 1)

∑
1≤i≤

√
n

Ai +
2

n(n+ 1)

∑
√
n<i≤n−1

Ai. (2.14)

Since Ai ≤ i, we can bound the first term on the right-hand side by

2
n(n+ 1)

√
n(
√
n+ 1)
2

,

and this converges to 0. By assumption, α − ε ≤ An/n ≤ α + ε holds for all n ≥ N(ε). Hence,
for n large enough,

(α− ε)
∑

√
n<i≤n−1

i ≤
∑

√
n<i≤n−1

Ai ≤ (α+ ε)
∑

√
n<i≤n−1

i.

Thus
2

n(n+ 1)
(α− ε)n(n− 1)− b

√
nc(b
√
nc+ 1)

2

≤ 2
n(n+ 1)

∑
√
n<i≤n−1

Ai ≤
2

n(n+ 1)
(α+ ε)

n(n− 1)− b
√
nc(b
√
nc+ 1)

2
.

Consequently the second term in (2.14) tends to α. So we obtain the limit by 2α− α = α. l
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The following results show that the set G(Un) determines the set of distribution function com-
pletely:

Theorem 2.2.2. Let {Ai}i∈I be a countable family of subsets of the natural numbers with
Ai ∩ Aj = ∅ for i 6= j. Assume that their densities exist, denote them by d(Ai) = αi, and∑

i∈I αi = 1. Moreover, assume

lim
n→∞
n∈Ai

F (Un, x) = fi ∀i.

Then

G(Tn) =

{∑
i∈I

αifi

}
.

Proof. Let ε > 0. Choose s ∈ N such that

d

(
s⋃
i=1

Ai

)
> 1− ε

2
.

We define kj := j(j + 1)/2. Let j ∈ N be the number with kj ≤ n < kj+1. Then we have

F (Tn) =
1
n

n∑
i=1

δxi ;

split the sum at kj to obtain

=
1
n

kj
kj

kj∑
i=1

δxi +
1
n

n∑
i=kj+1

δxi

and use the definition of the step distribution functions F (Ui) which yields

=
kj
n

j∑
i=1

ki − ki−1

kj
F (Ui) +

1
n

n∑
i=kj+1

δxi .

Now split the range of the summation index of the first sum into three parts: The first part
contains the sets A1, . . . , As, the second part the remaining sets Ai and the third one those
indices which are in any of the sets Ai:

=
s∑
`=1

kj
n

∑
1≤i≤j
i∈A`

ki − ki−1

kj
F (Ui) +

∞∑
`=s+1

kj
n

∑
1≤i≤j
i∈A`

ki − ki−1

kj
F (Ui)

+
kj
n

∑
1≤i≤j
i∈B

ki − ki−1

kj
F (Ui) +

1
n

n∑
i=kj+1

δxi ,

where B = N \
⋃∞
i=1Ai. Thus∣∣∣∣∣F (Tn)−
s∑
`=1

α`f`

∣∣∣∣∣ ≤ kj
n

s∑
`=1

∣∣∣∣∣∣∣∣
∑

1≤i≤j
i∈A`

ki − ki−1

kj
F (Ui)− α`f`

∣∣∣∣∣∣∣∣+
kj
n

∞∑
`=s+1

∑
1≤i≤j
i∈A`

ki − ki−1

kj

+
kj
n

∑
1≤i≤j
i∈B

ki − ki−1

kj
+
n− kj
n

.
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For the fourth term observe that kj/n→ 1 since kj/n ≤ 1 and

kj
n
≥ kj
kj+1

=
j(j + 1)

(j + 1)(j + 2)
→ 1.

Hence
n− kj
n

≤ ε

for sufficiently large j (say for all j > J1(ε)).

To bound the second and third term, we note that our choice of s implies that there exists J2(ε)
such that

1
j

∣∣∣∣∣
s⋃
i=1

Ai ∩ [1, j]

∣∣∣∣∣ > 1− ε

for all j > J2(ε). Consequently

1
j

∣∣∣∣∣N \
s⋃
i=1

Ai ∩ [1, j]

∣∣∣∣∣ < ε.

Thus the second and third term can be bounded from above by

2
j(j + 1)

j∑
i=bj(1−ε)c+1

i ≤ 2
j(j + 1)

(
j(j + 1)

2
− (bj(1− ε)c+ 1)bj(1− ε)c

2

)
≤ 1
j2

(
j2 + j − j(1− ε)(j(1− ε)− 1)

)
=

1
j2

(
j2 + j − j2(1− ε)2 + j(1− ε)

)
=

1
j2

(
j2(2ε− ε2) + j(2− ε)

)
≤ 2ε+

2
j
< 3ε

for j large enough (say for all j > J3(ε)).

Split the first term into two parts:

s∑
`=1

∣∣∣∣∣∣∣∣
∑

1≤i≤
√
j

i∈A`

ki − ki−1

kj
F (Ui)

∣∣∣∣∣∣∣∣+
s∑
`=1

∣∣∣∣∣∣∣∣
∑
√
j≤i≤j
i∈A`

ki − ki−1

kj
F (Ui)− α`f`

∣∣∣∣∣∣∣∣ .
Here the first sum can be estimated by

2
j2

∑
1≤i≤

√
j

i ≤
√
j(
√
j + 1)
j2

< ε

if j > J4(ε). In the second term consider the inner sum. By assumption, we find J5(δ) such that

(f` − δ)
∑
√
j≤i≤j
i∈A`

ki − ki−1

kj
≤

∑
√
j≤i≤j
i∈A`

ki − ki−1

kj
F (Ui) ≤ (f` + δ)

∑
√
j≤i≤j
i∈A`

ki − ki−1

kj
,
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for all j > J5(δ). Hence, by Lemma 2.2.1,

(f` − δ)(α` − δ) ≤
∑
√
j≤i≤j
i∈A`

ki − ki−1

kj
F (Ui) ≤ (f` + δ)(α` + δ)

for sufficiently large j (say for all j > J6(δ)). Thus the second term can be bounded by

s∑
`=1

δ(f` + α`) + δ2 ≤ 3sδ.

Choose δ = δ(s, ε) < ε/(3s), so this term is < ε. Putting things together we obtain∣∣∣∣∣F (Tn)−
s∑
`=1

α`f`

∣∣∣∣∣ ≤ 6ε

if j > max{J1(ε), J2(ε), J3(ε), J4(ε), J5(ε, s), J6(ε, s)}. If ε tends to 0 we obtain the desired
limit. l

Our next goal is to generalise the preceding theorem partially. We start with a lemma which
generalises Lemma 2.2.1.

Lemma 2.2.3. Let A ⊆ N with d(A) = α and d̄(A) = β. Then we have

α2

β
≤ lim inf

n→∞

2
n(n+ 1)

∑
1≤i≤n
i∈A

i = lim inf
n→∞

2
n(n+ 1)

∑
√
n≤i≤n
i∈A

i ≤ α

and

β ≤ lim sup
n→∞

2
n(n+ 1)

∑
1≤i≤n
i∈A

i = lim sup
n→∞

2
n(n+ 1)

∑
√
n≤i≤n
i∈A

i ≤ 1− (1− β)2

1− α
.

Proof. Using Abel’s partial summation formula, we can rewrite the sum as

2
n(n+ 1)

∑
1≤i≤n
i∈A

i =
2

n(n+ 1)
Ann−

2
n(n+ 1)

n−1∑
i=1

Ai, (2.15)

where Ai = |A ∩ [1, i]|. Consider the second term and split the sum:

2
n(n+ 1)

n−1∑
i=1

Ai =
2

n(n+ 1)

∑
1≤i≤

√
n

Ai +
2

n(n+ 1)

∑
√
n<i≤n−1

Ai. (2.16)

Since Ai ≤ i, we can bound the first term on the right-hand side by

2
n(n+ 1)

√
n(
√
n+ 1)
2

,

and this tends to 0. Thus we can study instead of (2.15) the sum

Sn :=
2

n(n+ 1)
Ann−

2
n(n+ 1)

∑
√
n<i≤n−1

Ai. (2.17)
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Firstly, we show the lower bound of the lim sup: Choose a subsequence nk with the property
that Ank/nk converges to β. Hence, for each ε > 0,

lim sup
n→∞

Sn ≥ lim
k→∞

2nk
nk + 1

Ank
nk
− lim
n→∞

2
n(n+ 1)

∑
√
n<i≤n−1

i(β + ε).

Simplifying the sum yields

lim supSn ≥ 2β − lim
n→∞

2
n(n+ 1)

(β + ε)
n(n− 1)

2
= β − ε

Since ε was arbitrary we get lim supSn ≥ β. Similarly, we find lim inf Sn ≤ α. After these easy
estimates we want to establish the two other bounds. For this purpose we define Sn(c) as the
sum in (2.17) with An/n = c. By assumption there exists N(ε) such that

An/n ∈ [α− ε, β + ε] ∀n ≥ N(ε). (2.18)

Assume n ≥ N2(ε) in the following. To prove the lower bound of the lim inf note that the sum
on the right-hand side of (2.17) is large iff the Ai are large. So we have to choose the Ai as big
as possible. The trivial bound Ai/i ≤ β + ε for all i would not lead to the desired result, so we
have to be more careful. A fruitful way for choosing the Ai is the choice

Ai = An for J ≤ i ≤ n, (2.19)

where J is the smallest number such that the condition (2.19) does not violate condition (2.18).
For the remaining Ai we take the trivial bound Ai/i = β + ε (i < J). Roughly speaking this
means that A contains no element between J and n and each (β + ε)n-th element before. To
compute J we conclude from (2.19) and (2.18) that

AJ
J

=
An
n

n

J
=
cn

J
≤ β + ε.

Thus J is the smallest number such that the inequality above holds. Hence we have to choose

J =
⌈

cn

β + ε

⌉
.

So we can rewrite Sn(c) as

Sn(c) = 2
nc

n+ 1
− 2
n(n+ 1)

∑
√
n<i<J

Ai −
2

n(n+ 1)

∑
J≤i≤n−1

Ai.

Using (2.19) and the bound β + ε we get

≥ 2
nc

n+ 1
− 2
n(n+ 1)

∑
1≤i<J

(β + ε)i− 2
n(n+ 1)

∑
J≤i≤n−1

An

and simplifying the sums yields

= 2
nc

n+ 1
− 2
n(n+ 1)

J(J − 1)
2

(β + ε)− 2c
(n+ 1)

(n− J).
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Now plug in the definition of J

≥ 2
nc

n+ 1
− 1
n(n+ 1)

cn

β + ε

(
cn

β + ε
+ 1
)

(β + ε)− 2c
(n+ 1)

(
n− cn

β + ε

)
and simplify the resulting term to obtain

=
n

n+ 1

(
2c− c2

(β + ε)2
(β + ε)− 2c+

2c2

β + ε

)
− c

n+ 1

=
n

n+ 1
c2

β + ε
− c

n+ 1
≥ c2

β + ε
− 2 + ε

n+ 1
.

Since the bound above is increasing in c, this implies lim inf Sn ≥ α2

β .

To bound Sn from above we proceed in a very similar way, but now A has to contain all elements
K, . . . , n from some number K on, i.e.,

Ai = An − (n− i) K ≤ i ≤ n.

Having in mind that Ai/i ≥ α− ε we find

K =
⌈
n(c− 1)
α− ε− 1

⌉
.

Using 1/(n(n+ 1)) ≤ 1/n2 and splitting Sn(c) as above we obtain

Sn(c) ≤ 2c− 2
n2

∑
√
n<i<K

Ai −
2
n2

∑
K≤i≤n−1

Ai

which can be estimated by using the bounds on Ai

≤ 2c− 2
n2

∑
√
n<i<K

(α− ε)i− 2
n2

∑
K≤i≤n−1

(An − n+ i)

and leads after simplifying the sums to

≤ 2c− 2
n2

(n−K)(An − n)− 2
n2

(
(n− 1)n

2
− (K − 1)K

2

)
− 2
n2

(α− ε)
(

(K − 1)K
2

− d
√
ne(d
√
ne+ 1)

2

)
.

Using the definition of K gives

≤ 2c− 2
(

1− c− 1
α− ε− 1

)
(c− 1)− n− 1

n
+

1
n2

n(c− 1)
α− ε− 1

(
n(c− 1)
α− ε− 1

+ 1
)

− α− ε
n2

n(c− 1)
α− ε− 1

(
n(c− 1)
α− ε− 1

− 1
)

+
2
n
.

Simplifying yields

Sn(c) ≤ 1 +
(c− 1)2

α− ε− 1
+

1
n

4
1− α

,

which is increasing in c, implies the upper bound, and completes the proof. l
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The bounds in this lemma can’t be improved, since there exist examples which reach these
bounds.

Example 2.2.4. Clearly, if we choose a set A with density a (i.e., α = β = a) then the
considered sum equals a.

Example 2.2.5. But we can also give an example with α 6= β that reaches the upper bound
for the lim inf and the lower bound of the lim sup: Let in the following nk = 22k . Roughly
speaking the idea is to take every 1/α-th element between n2k and n2k+1 and every 1/β-th
element between n2k+1 and n2k+2. To formalise this take two sets A and B with densities α and
β respectively. Define the set A by

A ∩ [n2k + 1, n2k+1] = A ∩ [n2k + 1, n2k+1]
A ∩ [n2k+1 + 1, n2k+2] = B ∩ [n2k+1 + 1, n2k+2]

To check d(A) = α and d̄(A) = β note that for n2k < n ≤ n2k+1 we have

dn(A) =
|A ∩ [1, n]|

n
=
|B ∩ [1, n2k]|
n2k − n̄

n2k − n̄
n

+
|A ∩ [1, n]|
n̄+ n− n2k

n̄+ n− n2k

n
,

where n̄ =
∑k

i=1 n2i−1 − n2i−2. If n is large enough we can bound dn(A) by

(β − ε)t+ (α− ε)(1− t) ≤ dn(A) ≤ (β + ε)t+ (α+ ε)(1− t)

with t = (n2k − n̄)/n. Obviously, 0 ≤ t ≤ 1, and for n = n2k t approaches 1, whereas for
n = n2k+1 t tends to 0. A similar computation holds for n2k+1 < n ≤ n2k+2. Thus A has the
given lower and upper density. Now we want to show that for this A the sum (2.17) reaches the
stated bounds. For this purpose consider

Sn :=
2n|A ∩ [1, n]|
n(n+ 1)

− 2
n(n+ 1)

∑
√
n<i≤n−1

|A ∩ [1, i]|

for n2k < n ≤ n2k+1. The condition on n implies n2k−1 <
√
n. To compute the bounds of

the limit of Sn we use for the first term the computation above (for dn(A)), split the sum
into parts (where the summations run over n ≤ n2k and n2k < n, respectively) and apply the
decomposition of A into A′ and B′. This yields

Sn = 2βt+ 2α(1− t) + O(ε)

− 2
n2

∑
√
n≤i≤n2k

(
|A ∩ [1, n2k−1]|
n2k−1 − n̂

(n2k−1 − n̂) +
|B ∩ [1, i]|

n̂+ i− n2k−1
(n̂+ i− n2k−1)

)

− 2
n2

∑
n2k<i≤n−1

(
|B ∩ [1, n2k]|
n2k − n̄

(n2k − n̄) +
|A ∩ [1, i]|
n̄+ i− n2k

(n̄+ i− n2k)
)
,

where n̂ =
∑k

i=2 n2i−2 − n2i−3 and n̄ =
∑k

i=1 n2i−1 − n2i−2 . The quotients above are in
[α− ε, α+ ε] and [β − ε, β + ε] for n large enough. Hence

Sn = 2βt+ 2α(1− t) + O(ε)− 2
n2
α(n2k−1 − n̂)(n2k −

√
n)

− 2
n2
β

(
(n̂− n2k−1)(n2k −

√
n) +

n2
2k

2
− n

2

)
− 2
n2
β(n2k − n̄)(n− n2k)−

2
n2
α

(
(n̄− n2k)(n− n2k) +

n2

2
− n2k

2

2

)
+ o(n).
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To proceed further, observe that the last term in the first line tends to 0, since n2k−1/n2k →
0. Moreover, from the guys in the brackets in the second line only the term n2

2k/2 gives a
contribution to the limit. Using the definition of t we rewrite Sn as

Sn = 2βt+ 2α(1− t) + 2βt
n− n2k

n
+ 2αt

n− n2k

n

− α
n2 − n2

2k

n2
− βn2k

2

n2
+ o(n) + O(ε).

Simplifying yields

Sn = β
n2

2k − 2n2kn̄

n2
+ α

n2 − n2
2k + 2n2kn̄

n2
+ o(n) + O(ε).

Using the fact that n̄/n→ 0 we obtain

Sn = βs+ α(1− s) + +o(n) + O(ε)

with s = n2
2k/n

2. Since s reaches 0 for n = n2k+1 and 1 for n = n2k + 1 we get the desired
bounds if n2k < n ≤ n2k+1. Similarly the case n2k−1 < n ≤ n2k can be treated. Thus the upper
and lower limit of Sn are established.

Example 2.2.6. Now we give an example which shows that the lower bound of the lim inf
can not be improved. Let A be any set with density d(A) = β, Jk = dαnk+1/βe and Ĵk =
b(1− α)nk/(1− β)c. Define the set A by

A ∩ [Ĵk, Jk] = A ∩ [Ĵk, Jk],

A ∩ [nk + 1, Ĵk − 1] = [nk + 1, Ĵk − 1],
A ∩ [Jk + 1, nk+1] = ∅.

Now we check d(A) = α and d̄(A) = β. For this purpose we show that dJk(A)→ β:

dJk(A) =
A ∩ [1, Jk]

Jk
=
A ∩ [1, Ĵk − 1]

Ĵk − 1︸ ︷︷ ︸
≤1

Ĵk − 1
Jk︸ ︷︷ ︸
→0

+
A ∩ [Ĵk, Jk]
Jk − Ĵk + 1︸ ︷︷ ︸

→β

Jk − Ĵk + 1
Jk︸ ︷︷ ︸
→1

.

Moreover, we have dnk+1
(A)→ α, since

dnk+1
(A) =

A ∩ [1, nk+1]
nk+1

=
A ∩ [1, Ĵk − 1]

Ĵk − 1︸ ︷︷ ︸
≤1

Ĵk − 1
nk+1︸ ︷︷ ︸
→0

+
A ∩ [Ĵk, Jk]
Jk − Ĵk + 1︸ ︷︷ ︸

→β

Jk − Ĵk + 1
nk+1︸ ︷︷ ︸
→α/β

+
A ∩ [Jk + 1, nk+1]

nk+1︸ ︷︷ ︸
=0

.

Consequently, dĴk(A)→ β:

dĴk(A) =
A ∩ [1, Ĵk]

Ĵk
=
A ∩ [1, nk]
nk − 1︸ ︷︷ ︸
→α

nk − 1
Ĵk︸ ︷︷ ︸

→(1−β)/(1−α)

+
A ∩ [nk + 1, Ĵk]

Ĵk − nk︸ ︷︷ ︸
=1

Ĵk − nk
Ĵk︸ ︷︷ ︸

→1−(1−β)/(1−α)

.
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Finally we show that for given ε > 0 we can find K such that for all k ≥ K and Ĵk < n < Jk we
have dn(A) ≤ β + 3ε:

dn(A) =
A ∩ [1, n]

n
=
A ∩ [1, Ĵk]

Ĵk

Ĵk
n

+
A ∩ [Ĵk + 1, n]

n

≤ (β + ε)
Ĵk
n

+
A ∩ [1, n]

n
− A ∩ [1, Ĵk]

Ĵk

Ĵk
n

≤ (β + ε)
Ĵk
n

+ (β + ε)− (β − ε) Ĵk
n
≤ β + 3ε,

if k (and consequently n) is large enough. Now we compute very similarly to the proof of
Lemma 2.2.3

Snk =
2

nk(nk + 1)
Anknk −

2
nk(nk + 1)

∑
Ĵk≤i≤nk−1

Ai + o(1)

= 2α− 2
nk(nk + 1)

 ∑
Ĵk≤i≤Jk

Ai +
∑

Jk<i≤nk−1

Ai

+ o(1)

= 2α− 2
nk(nk + 1)

(Jk + 1)Jk
2

β − 2
nk(nk + 1)

(nk − Jk) + o(1)

= 2α− α2

β
− 2α+ 2

α2

β
+ o(1) = α+ o(1).

Thus the lim inf is established. In a similar way we can construct examples which give the upper
bound of the lim sup.

Now we are able to establish the following theorem which generalises Theorem 2.2.2 and shows
that even under the relaxed conditions on the sets Ai the set of distribution functions G(tn) can
be obtained from the set G(Un). Let s ∈ N, denote H = {(x1, . . . , xs) ∈ R :

∑s
i=1 xi = 1} and

πi : Rs → R the i-th projection.

Theorem 2.2.7. Let A1, . . . , As ⊆ N be such that d(
⋃s
i=0Ai) = 1. Denote their lower and

upper densities by d(Ai) = αi and d̄(A) = βi > 0, respectively. Moreover, assume

lim
n→∞
n∈Ai

F (Un, x) = fi ∀i.

Then there exists a connected closed subset P of H such that

(a) [αi, βi] ⊆ πi(P ) ⊆ [α
2
i
βi
, 1− (1−βi)2

1−αi ] and

(b) G(Tn) = {
∑s

i=1 cifi : (c1, . . . , cs) ∈ P}.

Proof. Let ε > 0. We proceed as in the proof of Theorem 2.2.2. Let j ∈ N be the number with
kj ≤ n < kj+1. Then we have

F (Tn) =
s∑
`=1

kj
n

∑
1≤i≤j
i∈A`

ki − ki−1

kj
F (Ui) +

kj
n

∑
1≤i≤j
i∈B

ki − ki−1

kj
F (Ui) +

1
n

n∑
i=kj+1

δxi ,

where B = N \
⋃s
i=1Ai. The second and third term tend to 0 as above.
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Now turn to the first term and split it into two parts:

s∑
`=1

∑
1≤i≤

√
j

i∈A`

ki − ki−1

kj
F (Ui) +

s∑
`=1

∑
√
j≤i≤j
i∈A`

ki − ki−1

kj
F (Ui).

Here the first sum can be estimated by

2
j2

∑
1≤i≤

√
j

i ≤
√
j(
√
j + 1)
j2

< ε

if j large enough. Hence the accumulation points of the sequence F (Tn) are the same as the
accumulation points of

S :=
s∑
`=1

kj
n

∑
√
j≤i≤j
i∈A`

ki − ki−1

kj
F (Ui).

Since kj/n→ 1 and F (Ui)→ f` we have

S =
s∑
`=1

f`
∑
√
j≤i≤j
i∈A`

ki − ki−1

kj
+ o(1).

Using the estimates of Lemma 2.2.3 we conclude that there exists a set P ⊆ Rs with πi(P ) ⊆
[α

2
i
βi
, 1− (1−βi)2

1−αi ] and the property (b) of the theorem. Since for each index ` the sum
∑√

j≤i≤j
i∈A`

ki−ki−1

kj

runs through the interval [α`, β`] by Lemma 2.2.3, property (a) is proven. Since G(Tn) is com-
pletely determined by P , P must be connected and closed. l

As in Lemma 2.2.3, the bounds can not be improved.
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