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Abstract

In a natural acoustic environment, multiple sources are usually active at the same time. The
task of source separation is the estimation of individual source signals from this complex
mixture. The challenge of single channel source separation (SCSS) is to recover more than
one source from a single observation. Basically, SCSS can be divided in methods that try
to mimic the human auditory system and model-based methods, which find a probabilistic
representation of the individual sources and employ this prior knowledge for inference.

This thesis presents several strategies for the separation of two speech utterances mixed
into a single channel and is structured in four parts: The first part reviews factorial models
in model-based SCSS and introduces the soft-binary mask for signal reconstruction. This
mask shows improved performance compared to the soft and the binary masks in automatic
speech recognition (ASR) experiments.

The second part addresses the problem of computational complexity in factorial models,
which limits its application for online processing. We introduce the fast beam search and the
iterated conditional modes (ICM) approximation techniques. They reduce the computational
complexity in factorial models by up to two orders of magnitude while maintaining the
separation performance. Moreover, there is strong evidence that the ICM algorithm breaks
the factorial structure entirely. Consequently, this leads to a linear complexity relationship
in the number of hidden states instead of a factorial one.

The third part deals with arbitrary mixing levels in factorial models by explicitly modeling
the gain for each speech segment, which results in a shape-gain model. Several strategies for
parallel estimation of gain and shape are successfully evaluated.

Finally, the last part integrates the speech model in model-based systems. This results in
a source-filter representation, where the source signal can be linked to the excitation signal
of the vocal folds and the filter accounts for the vocal-tract shaping. Our final separation
algorithm combines the shape-gain with the source-filter model, reflecting the complete stan-
dard speech production model. All presented algorithms are compared to state-of-the-art
algorithms and evaluated in both, the target-to-masker ratio and the word error rate of an
ASR system and show improvements beyond the state-of-the-art.



Kurzfassung

In einer natürlichen akustischen Umgebung sind meist mehrere Quellen zur gleichen Zeit
aktiv. Das Ziel der Quellentrennung ist die Schätzung der Einzelsignale aus dieser komplexen
Mixtur. Die Herausforderung der einkanaligen Quellentrennung ist die Trennung mehrerer
Quellen an Hand einer einzigen Beobachtung. Grundsätzlich wird die einkanalige Quellen-
trennung in Methoden, die das menschliche Gehör imitieren, und in modellbasierte Methoden
unterteilt. Modellbasierte Methoden können die Wahrscheinlichkeitsverteilung der einzelnen
Quellen während des Trainings erlernen und vereinen diese zu einem faktoriellen Modell, um
die Quellen zu trennen.

Das Ziel dieser Arbeit ist die Entwicklung von Strategien zur Trennung zweier Sprach-
signale und sie ist in vier Teile unterteilt: Der erste Teil beschreibt faktorielle Modelle und
führt die soft-binary mask zur Signaltrennung ein. Diese Maske zeigt sehr gute Resultate in
Spracherkennungstests.

Der zweite Teil behandelt die Rechenkomplexität von faktoriellen Modellen, die den Echt-
zeiteinsatz dieser Algorithmen limitiert. Wir stellen mit dem fast beam search und dem ite-
rated conditional modes (ICM) Algorithmus zwei Näherungsverfahren vor. Beide Ansätze
reduzieren den Rechenaufwand um zwei Größenordnungen bei nahezu gleichen Resultaten.
Es gibt Hinweise darauf, dass der ICM Algorithmus den Faktorgraphen aufbrechen kann
und dadurch die Komplexität soweit reduziert, dass sie nur noch linear in der Anzahl der
verborgenen Zustände ist.

Im dritten Teil wird das Problem der Schätzung des Signalmischverhältnisses behandelt.
Zur Lösung schlagen wir die separate Modellierung des Spektralverlaufs und der Verstärkung
vor. Dies führt zu einem Shape-Gain Faktorgraphen. Für diesen werden unterschiedliche
Strukturen und Methoden zur Schätzung der Verstärkung hinsichtlich ihrer Leistungsfähigkeit
erfolgreich evaluiert.

Im letzten Teil dieser Arbeit werden sprachspezifische Merkmale in das Modell integriert,
indem das Sprachsignal als Quelle-Filter-Modell dargestellt wird. Das Anregungssignal ent-
spricht der Schwingung der Stimmbänder und das Filter der Signalformung durch den Mund-
und Rachenraum. Zur Quellentrennung werden Quelle und Filter im Faktorgraphen durch
separate Zufallsvariablen dargestellt. Die Kombination des Shape-Gain Ansatzes mit dem
Quelle-Filter Modell führt schließlich zum vollständigen Standardmodell der Spracherzeu-
gung. Die Qualität der Trennung wird mittels des Target-to-Masker Verhältnisses und der
Wortfehlerrate eines Spracherkenners bestimmt, wobei sich Verbesserungen gegenüber dem
Stand der Technik zeigen.
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Chapter 1
Introduction

In a typical real-world auditory scene, more than one source is active at the same time. The
computational analysis of such an auditory scene is a challenging problem, with a great prac-
tical interest. Source separation aims at dividing this source mixture of an auditory scene into
its individual sources. For this purpose, a vast amount of source separation algorithms can be
found in literature [3, 4]. However, the performance is only rarely and for specific tasks com-
parable to the human auditory system, e.g. [5]. Human listeners have the ability to identify
and follow a particular source with ease in the presence of other sources [6]. This is known
as the cocktail party problem (CPP), first described by Cherry [7]. Bregman [8], provided an
analysis how the human auditory system performs this task of auditory scene analysis (ASA).
For the computational separation of sources, multiple acoustic sensors (microphones) placed

Figure 1.1: Target-source separation problem with open-set interferers.

at different spatial locations are usually considered. The usage of multiple sensors enables
to additionally employ the spatial dimension for separation, which usually leads to a dra-
matic facilitation of separation. Algorithms like Independent Component Analysis [9], Non
Negative Matrix Factorization with sparseness constraints, higher-order statistics (HOS), or
second-order statistics (SOS) [10] are employed for separation. Some of them additionally
employ spatio-temporal cues for separation. However, in many cases, only single channel
recordings are available. The objective of separation is to recover more than one source from

3
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a single observed signal. Therefore, let us assume a linear instantaneous mixture of two
sources throughout the thesis:

y(t) = s1(t) + s2(t), (1.1)

where y(t) is the source mixture, s1(t) and s2(t) are the component signals, and t = [1, . . . , T ]
is the time index. Thus, the problem of single channel source separation (SCSS) is underde-
termined, and constraints have to be defined to be able to separate the signals. Typically,
source specific prior knowledge, statistical independence or constant statistical source char-
acteristics over time are employed for separation.

In general, a source can be any auditory event, such as human speech, music, a PC fan,
noise from a car passing by, or street noise. In most cases, one source is singled out as the
object of interest in SCSS. This source is known as target source, while all other sources are
interferences, obscuring the target source. Figure 1.1 illustrates this target-source separation
problem, where only the target speech should be recovered, independent of the type and
the number of interferences. As there are no restrictions regarding the interferences, this
condition is called open-set scenario. Such a real-world scenario with various interferences is
highly dynamic and complex. Thus, the number of component sources can change abruptly
as well as their respective statistics are nonconstant over time.

In co-channel speech, utterances of two speakers are transmitted over a single communi-
cation channel [11]. Thus, one has to deal with a linear instantaneous mixture of the sources.
In contrast to conversational speech, in co-channel speech the speakers are usually not aware
of each other. This leads to a multitude of speech overlaps, which presents a challenging task
for source separation. Figure 1.2 depicts this competing talker scenario, where two speaker
are talking at the same time. In this case, source separation aims at recovering both in-
dividual sources from the mixture. The co-channel speech scenario can be considered as a
special case of the general open-set speech-interference problem, where the interference is a
competing speaker.

Figure 1.2: Co-channel source separation problem.

1.1 Scope of the Thesis

In the beginning of source separation research, the systems tried to mimic the human auditory
system in order to solve the CPP problem. These systems took advantage of psychoacoustic
cues for separation and are summarized as computational auditory scene analysis (CASA)
methods. For CASA systems, the source mixture is a scene to be analyzed and organized.
Therefore, low-level cues, such as continuity over time and frequency, common onset and
offset, fundamental frequency, amplitude and frequency modulation, and spatial proximity
are exploited to form segments, which most likely arise from a single source [3]. Problems
associated with CASA systems are listed in the following:
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• During simultaneous grouping in the high frequency region, the segment formation due
to unresolved harmonics is non-trivial. Unresolved harmonics mainly emerge due to the
frequency representation with an auditory filterbank with quasi-logarithmically center
frequencies. The method of Wang et al. [12] mainly relies on resolved harmonics, which
results in a low-pass filtered separated signal. Hu et al. [13] bypasses this problem
partially as they converted signal components above a frequency of ∼ 2 kHz to an
amplitude modulated signal.

• Sequential grouping: Once for every time segment source unique segments have been
found, the grouping into streams is non-trivial. Recently, Shao et al. [14] proposed a
clustering approach to tackle this problem.

• The separation of unvoiced speech is a challenge, since most CASA systems heavily rely
on harmonicity. In [15] the separation of unvoiced speech from non-speech interferences
is discussed. Moreover, in the thesis of Hu [16] voiced and unvoiced speech are separately
processed.

Roweis [17] proposed a probabilistic approach for source separation. This system, know
as factorial-max vector quantizer (FM-VQ), represents the log-magnitude spectrum of each
source by a VQ. During separation the speaker dependent VQ models are combined into a
factorial model to infer the most probable codewords observing the log-magnitude spectrum
of the speech mixture. These codewords are employed to find a masking signal which is
used for signal reconstruction. All systems using statistical models are known as model-
based approaches. Since, source dependent models are employed for separation, model-based
systems are mainly applied to co-channel speech. Existing model based approaches have the
following shortcomings:

1) Due to the factorial nature, the computational complexity is a bottleneck and restricts
its application in systems with real-time demands.

2) The best performance is achieved for equal signal mixing levels, due to the matched
condition between training and testing.

3) The speaker identities must be known a priori, i.e. the systems are speaker dependent.

This thesis addresses the first two of the three mentioned shortcomings. Therefore, we
first carry out an analysis of model-based approaches based on the FM-VQ model and ad-
dress the problem of signal reconstruction. In this respect, we propose the soft binary mask
for signal separation instead of the binary mask, which is suggested as computation goal
for CASA by Hu et al. [18, 19]. We evaluate the binary, soft binary, and soft masks for
reconstruction in terms of the target-to-masker ratio on artificial mixtures [20]. Addition-
ally, we apply the masks to the SAIL real life SCSS corpus [21], which is a compilation of
different television newscasts. We evaluate the separation quality by measuring the word
error rate (WER) of the automatic speech recognition (ASR) system [22]. Compared to the
WER of the real-world mixture and to the other masks, the soft binary mask shows supe-
rior performance. Furthermore, the model complexity of FM-VQ to represent each speakers
characteristics is studied and experimentally evaluated. We place a main emphasis on the
computational complexity in factorial models. This complexity arises from the observation
likelihood computation during decoding. In order to reduce this computational complexity
in factorial models we present two approximation techniques. They are either based on a
modification of beam search or the iterated conditional modes algorithm to efficiently ap-
proximate the observation likelihood. Experimental results show only a marginal reduction
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in separation quality compared to the naive approach while the computational complexity is
reduced by up to two orders of magnitude.

We propose the shape-gain model for source separation to tackle the problem of different
mixing levels as well as the issue that same shapes at different gains are modeled separately.
In this model the mixed signal is assumed to be a density function modelled by a random
process with two latent variables. In order to separate the spectrum of each speaker, the
gains are estimated for all component distribution. The spectrum for each speaker is finally
obtained by the expected value of the constructed multinomial distribution observing the
mixture distribution. For gain estimation various approaches are discussed and evaluated.

Finally, the incorporation of low-level cues of CASA in model-based methods is a key
objective of this thesis. Therefore, the signal is decomposed into a source- and a filter-related
part. The source or excitation signal represents the vibrations of the vocal folds, whereas the
filter models the shaping of the vocal tract. To perform separation, sequential and parallel
graphical model structures are employed. Additionally, the source-filter and the shape-gain
representations are combined, which reflects the speech production model [23].

1.2 Related PhD Theses

This section discusses the scope of this work with respect to other selected theses in the field
of single channel source separation. The selection is based on either closely related theses or
theses with significant contributions for SCSS. The aim of this section is to give an overview
to related work, to discuss similarities and to emphasize extensions and novel contributions
to SCSS.

1.2.1 M.H. Radfar: Single Channel Speech Separation

The thesis of Radfar purely discusses the single channel source separation problem. This
thesis is not written in English, therefore the author assured that the main matter of the
thesis is summarized in two papers [24, 25]. The work can be mainly divided into two parts:
The first part deals with source-filter based source separation. The source driven part is
modeled by a multi-pitch tracking unit [26]. For this purpose, no probabilistic representation
is employed. Specifically, a sinusoidal representation is extracted from the speech mixture.
For every time frame, only a specific number of sinusoids are allowed. These sinusoidal
candidates have been merged to form trajectories over time. The formation of trajectories
is based on a heuristically specified frequency range. Specifically, a sinusoidal candidate
at time τ + 1 has to be within a specified frequency range of a candidate at time τ . In
the second unit, a harmonic modeling strategy is followed in order to find pitch estimates.
Therefore, a minimum mean square error approach for the joint estimation of two pitch values
is applied. According to the author, the harmonic estimation suffers from the following: (i)
pitch doubling/halving, (ii) masking of one speaker, and (iii) identical pitch or harmonically
related pitch. For this reason, the output of the first and second unit is compared and only
those sinusoidal trajectories remain, which share a minimum number of pitch candidates
extracted by the second unit. Since this sequence of heuristics may lead to more than two
pitch tracks, the author proposed to use a single pitch tracking algorithm, to restrict the
number of pitch tracks to the two most promising ones. The following list of issues may raise
concerns for the multi-pitch tracking unit:

• Evaluation: This method is evaluated only on a small dataset, which might be restric-
tive.
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• Error measure: The method is compared to the method of Wu et al. [27]. Wu suggested
an error measure for multi-pitch tracking, which comprises several submeasures. Radfar
employed two of them to assess performance, namely, the gross error rate (Egross) and
fine error rate (EF ine). Instead, the whole error measure of [27] should have been
investigated for performance assessment.

• Speaker assignment: The proposed method can extract two simultaneous pitch tracks.
However, an assignment of pitch tracks with unvoiced sections in between to specific
speakers, seems to be impossible. Thus, we expect the method to be prone to permu-
tation errors.

• Voicing decision: It seems that the voiced-unvoiced decision is made inherently by the
sinusoidal representation unit. However, no results on this issue are discussed.

• There is no strategy given for cases where the pitch of both speakers is within the
specified frequency range for pitch trajectory formation.

Once the two pitch tracks are estimated, they are employed for SCSS. To this end, exci-
tation signals are synthesized. SCSS is carried out by including the excitation signals in the
statistical model, which characterizes the vocal tract [28]. Recently, Radfar extended this
model by a gain estimation unit [24]. In particular, a maximum-likelihood approach for gain
estimation is followed. Therefore, the separation is basically carried out for a predefined set
of mixing conditions and the mixing level maximizing the MAP estimate averaged over the
complete utterance is selected. This seems quite restrictive because of the increased compu-
tational complexity and fixed mixing levels. Moreover, this method is not suitable for online
speech separation.

In chapter 6, we basically follow this sequential source-separation approach, with signifi-
cant extensions and modifications sketched in the following. First, for the source-driven part,
double pitch tracking is carried out using a probabilistic model [29, 30]. This approach is com-
pared to the method of Wu et al. [27] using the error measures proposed in their work [27].
Additionally, we propose a modification of this error measure which accounts for speaker
assignment errors [31], called permutation error. Evaluation was performed for speaker de-
pendent (SD), gender dependent (GD), and speaker independent (SI) trained models. For
modeling the vocal tract related part, we also investigated a vector quantization (VQ) or a
Gaussian mixture model (GMM) and, additionally, we study nonnegative matrix factoriza-
tion (NMF). While for NMF the contribution of each basis also determines the gain factor
for every time frame, for VQ the gain has to be additionally estimated. For this purpose,
we propose an auditory motivated gain estimation strategy and a nonlinear based method in
chapter 5, section 5.2.6 and 5.2.2. Both methods perform gain estimation on a segment level
and not on the whole utterance.

The source separation methods in this thesis are compared in terms of the target-to-
masker ratio (TMR) on the Grid Corpus [20]. Separation experiments have been conducted
separately for the SD, GD and SI extracted pitch trajectories. Performance is also compared
to the separation performance using the reference pitch values, extracted from the single
speaker component utterances. This case is more or less the upper bound for pitch based
source separation. Moreover, a tight relation between pitch estimation performance and
separation performance is shown.

Presumeably the most striking difference is the used sampling frequency. While the system
of Radfar is working at 8 kHz sampling frequency, the system discussed in this thesis is based
on 16 kHz. Note, that the harmonics of a voiced speech signal are not resolved, i.e. not
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visible, above about 4 to 5 kHz. In a further extension of the source model, the excitation
signals are directly represented by statistical models. This avoids multi-pitch estimation.
For this system, we show that the sum of the excitation signals is a valid approximation of
the spectrally whitened speech mixture. Note, the direct modeling of the source-driven part
enables source separation also for unvoiced speech.

The second part of Radfars thesis was concerned with an optimal MMSE estimator, which
is not relevant for this thesis.

1.2.2 M. Reyes-Gomez: Statistical Graphical Models for Scene Analysis,
Source Separation and other Audio Applications

The thesis of Reyes-Gomez [32] is structured in three parts: (i) Multi-channel signal sepa-
ration, (ii) single channel source separation based on the decomposition of the signal into
subbands, and (iii) separation using local spectral deformations. Only the last two listed
parts are relevant for this thesis and are shortly discussed.

Reyes-Gomez proposed an extension of the widely used factorial-max HMM model of
Roweis [17]. In this extended model, the observation, i.e. the spectrum, is decomposed
into bands. These bands are either treated independently or are synchronized, by modeling
their dependency. The band representation not only increases the accuracy in modeling
spectral details but also reduces the state space. For each subband, a separate HMM is
trained during inference. In order to prevent unnatural subband combinations, Reyes-Gomez
introduced a coupling between and within subbands to enforce consistency. This model
is called coupled factorial HMM. Exact inference is intractable in the multiband model.
Therefore, an approximation based on variational methods is developed [33], which results
in a expectation-maximization like update scheme. Experiments with different numbers of
subbands, show a superior performance only for the coupled model compared to the factorial-
max HMM [17] approach.

In the last part of his work, an accurate description of source signals is given, avoiding the
enormous size of dictionary prototypes (see also [34]) by exploiting the slow time variation
of speech, i.e. the similarity of adjacent time frames. The slowly changing energy of speech
across time and frequency is modeled by spectral deformations. To this end, a patch of
neighboring previous time-frequency bins centered around the dth frequency bin is employed
to predict a patch of current time-frequency bins also centered around the dth frequency bin.
For the transformation, the current patch is assumed to be smaller than the previous. Thus,
this model selects a transformation template from a discrete set, which best describes the
evolution of the observed part of the spectrum. The whole system can be naturally repre-
sented as a graphical model. For every time-frequency bin a continuous variable is defined
and discrete hidden transformation variables model the smooth deformations using Markov
random fields. This model has been successfully applied for noise reduction. Moreover, the
model has been generalized for missing data, where some continuous variables are allowed to
be hidden.

Finally, a two-layer source-filter transformation model is introduced, where a separate
two-layer deformation model is used for the source- and the vocal-tract related signal. For
inference and tracking, loopy belief propagation is used. In an automatic speech recogni-
tion (ASR) experiment with noisy data, only a marginal reduction of the word error rate
(WER) for different signal-to-noise-ratio (SNR) conditions, for both, the single-layer and
two-layer model is achieved. Moreover, semi-supervised single channel source separation can
be performed by manually selecting speaker dependent frequency bins [35].
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1.2.3 S.J. Rennie: Graphical Models for Robust Speech Recognition in
Adverse Environments

This PhD thesis is concerned with robust speech recognition in adverse environments [36]
and mainly discusses this issue from the multi-channel perspective. However, the author
and his colleagues presented the best performing system [5, 37] for the single channel speech
separation challenge in 2006. This system exceeds human performance on this specified task.
The main building blocks consist of an FM-GMM, which models the acoustic states and a
grammar model on top of the acoustic model. The grammar dynamics are left-to-right phone
models, which are trained using the word sequence defined by the Speaker Separation Chal-
lenge grammar [20]. For the mapping from words to three-state phone models, a finite state
machine was employed. The usage of dynamics was investigated for either, the grammar or
the acoustic model, or both. Moreover, for the acoustic model, an observation likelihood
approximation was proposed, which is discussed and compared to the approximations of this
thesis in chapter 4. To make the system applicable for the Speaker Separation Challenge, a
gain estimation and speaker identification unit was integrated. The mixing level measured
as SNR is estimated for the whole speech utterance a priori. Therefore, speech frames origi-
nating from a single source are identified. In this system, speaker identity and mixing level
are estimated simultaneously on just these frames. This is accomplished in an expectation-
maximization like fashion. In the expectation step the likelihood for a hypothesized speaker
pair is calculated, whereas in the maximization step the appropriate mixing level is selected
from a discrete set. Before separation the identified speaker dependent models are globally
adjusted by the estimated SNR. Therefore, the whole utterance must be available in advance.
Hence, this method can not be applied for online separation. In this work, the segmental esti-
mation of the gain is proposed. The segmental estimation addresses both issues, the selection
of the global mixing level from a discrete set and the application for online processing.

1.3 Organization

This thesis has six chapters and is structured according to the modules used to build up the
final source-filter based separation system. After this introductory chapter, an overview of
relevant work in single channel source separation is presented in chapter 2. Hereafter, model-
based single channel source separation is reviewed and associated problems are discussed in
chapter 3. Particularly, all three state-of-the-art interaction models are discussed, for signal
reconstruction a masking signal is proposed and the problem of complexity in factorial models
is introduced. Accordingly, chapter 4 deals with this issue, and adequate heuristics to approx-
imate the observation likelihood will be introduced. The problem of different mixing levels
emerges from these chapters. Therefore, chapter 5 discusses various approaches to estimate
the gain for each speech segment from the speech mixture. Chapter 6 proposes the source-
filter representation of speech signals, in order to separate the speech mixture. Therefore,
sequential and parallel source as well as filter estimation strategies are used. Consequently,
the observation likelihood approximations, as well as the gain estimation is integrated into the
source-filter model. At the end of each chapter, the performance of the introduced methods
is evaluated using the experimental setup described in section 1.5. Additional results for the
source-filter algorithm applied to real-world recordings with various “speaker”-microphone
distances are presented in Appendix A. Finally, Appendix B evaluates the developed SCSS
algorithm in terms of the word error rate on the SAIL real life SCSS corpus [21] and on
artificial speech mixtures defined on the WSJ0 corpus [38].
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Parts of the thesis have been published previously:

• M. Stark, F. Pernkopf, T. V. Pham, G. Kubin. Vocal-Tract Modeling For Speaker
Independent Single Channel Source Separation. In IAPR Workshop on Cognitive
Information Processing (CIP), pages 217-220, Santorini, Greece, June 2008.

• M. Stark and F. Pernkopf. Towards Source-Filter Based Single Sensor Speech Sepa-
ration. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 97-100, Taipei, Taiwan, April 2009

• M. Stark and F. Pernkopf. On Optimizing the Computational Complexity For VQ-
based Single Channel Source Separation. In IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 237-240, Dallas, Texas, April 2010

• M. Wohlmayr, M. Stark, F. Pernkopf. A Mixture Maximization Approach To Multip-
itch Tracking With Factorial Hidden Markov Models. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5070-5073, Dallas, Texas,
April 2010

• M. Stark, M. Wohlmayr and F. Pernkopf. Source-Filter Based Single Channel Speech
Separation Using Pitch Information. In IEEE Transactions on Audio, Speech and
Language Processing (TASLP), accepted for publication

• M. Wohlmayr, M. Stark and F. Pernkopf. A Probabilistic Interaction Model for Multi-
Pitch Tracking with Factorial Hidden Markov Models. In IEEE Transactions on Audio,
Speech and Language Processing (TASLP), submitted

1.4 Applications

In general, source separation is applied, whenever a certain source in a source mixture is of
interest for further processing. The single channel separation of speech signals in particular
has potentials in the field of speech coding, automatic speech recognition, and human hearing
aids.

• Speech Coding: Speech coders are part of the family of source coders. In source
coding, attributes of the source signals are used to remove redundancies and to represent
the data efficiently. For example, the adaptive multi-rate wideband speech transcoding
(AMR-WB) [39] speech coder utilizes a long-term and a short-term predictor for coding.
This is related to the source-filter representation of speech signals. However, the coding
fails, if the input of the coder is a mixture of two speech signals mixed at approximately
equal level. To give an example, we consider a short time segment where both speakers
utter voiced speech. In this case, the long-term predictor will code the fundamental
frequency of the speaker with higher energy and the short-term predictor will encode
the envelope of the combined speech signals. A proper source separation could offer a
solution for this problem and provide only the speech of the target speaker as input.

• Automatic Speech Recognition (ASR): The automatic recognition of spoken words
by machines has been a goal for a long time. The performance of modern ASR systems
is acceptable for constrained tasks such as command and control applications. In such
systems, only a limited size of vocabulary is used. For unconstrained tasks, the output
of ASR systems is not that reliable [40, 41]. In acoustic environments with background
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interferences, the speech recognition performance decreases dramatically. Even more,
when the interference consists of single or multiple speech sources. To alleviate the
impact of such interferences in ASR systems, a preprocessing unit in the front-end
attempts to remove the interferences and to provide a clean signal as input to an ASR.

• Human Hearing Aids: Hearing impaired listeners wearing a hearing prosthesis suffer
from sensitivity losses or experience extreme difficulties in auditory scenes with multi-
ple active sources. Under these conditions, hearing impaired listeners need 4.2-10 dB
better SNR for the same intelligibility than normal hearing individuals [42]. The lost
sensitivity can be restored by amplification and dynamic range compression, while for
the separation problem a beamforming approach is utilized which enhances voices from
a particular direction [43]. The additional use of single channel source separation could
alleviate the cocktail party problem [44] elegantly and pass an estimate of the target
speech to the ear. Summarizing, SCSS could further improve speech quality in hearing
aids, if applied additionally to the used beamforming technique.

While for hearing aids, source separation could be employed to improve speech intelligibility,
for ASR, the recognition performance should be maximized. For noise reduction algorithms
the difference between human and machine applications has been studied for example in [45,
46]. This difference is less studied for single channel source separation.

1.5 Experimental Setup

In all source separation experiments throughout this thesis, the Grid Corpus provided by
Cooke et al. [20] for the SCSS task has been selected. This database contains separate sets
for training, testing, and development. The Grid corpus consists of 34 talkers, each uttering
1000 sentences. Thus, the total corpus size is 34 000.

Most evaluation criteria compare the separated signal estimates to the reference or source
signals. Additionally, we assess performance of the multi-pitch tracking unit using the true
reference pitch tracks (see chapter 6, section 6.2.1). Since for the test data only the speech
mixtures only are available, we use data from the training corpus for training and testing.

As preprocessing step, we resample the database from 25 kHz to 16 kHz. For this task,
the MATLAB routine resample is used. For spectrogram calculation, the signal is cut into
segments of 32 ms with time shifts of 10 ms. Afterwards, the speech segments are multiplied
with a Hamming window and transformed to the frequency domain using the discrete Fourier
transform [47]. We denote the complex spectrogram with upper case symbols, i.e. Y and S,
the magnitude spectrogram with lower case bold symbols, i.e. y and s, and the log-magnitude
with upper case bold symbols, i.e. Y and S.

Whenever speaker independent models are trained, we use 10 male (MA) and 10 female
(FE) speakers, each producing at least 2 minutes of speech. The labels of the speakers, as
specified in the data set [20], are shown in Table 1.1. Two randomly selected male and female

Table 1.1: Label of female and male speakers used for training speaker independent models.
speaker

FE 4 7 8 11 15 16 21 22 23 24

MA 3 5 6 9 10 12 13 14 17 19
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Table 1.2: Labels of speakers and file names used for testing.
FE1 speaker 18 “lwixzs” “sbil4a” “prah4s”

FE2 speaker 20 “lwwy2a” “sbil2a” “prbu5p”

MA1 speaker 1 “pbbv6n” “sbwozn” “prwkzp”

MA2 speaker 2 “lwwm2a” “sgai7p” “priv3n”

speakers, each uttering 3 sentences as shown in Table 1.2 are used for testing. For simplicity,
we will call these speakers FE1, FE2, MA1 and MA2 in the sequel.

The sentence structure is given as: “<command> <color> <preposition> <letter>
<digit> <adverb>” [20]. For instance, the label “lwixzs” identifies the sentence “lay white
in x zero soon”. The spectrogram, orthographic transcription and time-domain signal of this
sentence is shown in Figure 1.3. This is an extension to the corpus for coordinate response
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Figure 1.3: Spectrogram, orthographic transcription and time-domain signal of the sentence
“lay white in x zero soon” of speaker FE1.

measure [48]. Statistical models capturing speaker dependent characteristics are trained using
6 min of speech material each. To determine a statistical representation of the data, either
the EM-algorithm [49] or the k-means [50] algorithm can be used. This results either in a
Gaussian Mixture Model (GMM) or a Vector Quantizer (VQ). Since the GMM models show
lower separation performance, we employ VQ models in the experiments. For models with
memory, i.e., first order Markov chains, the transition probabilities are obtained by counting
and normalizing. Prior probabilities are determined in the same way. Moreover, we apply
Laplace smoothing [51, 52], a method of discounting, i.e., probability mass is moved from
observed to unobserved events. This method addresses the sparse data problem by adding
the count of 1 to each observation.

To evaluate the speech separation performance, the target-to-masker ratio (TMR) has
been used. To avoid synthesis distortions affecting the quality assessment, the TMR has been
measured by comparing the magnitude spectrograms of the true source and the separated
signal as:

TMRi =

∑

τ,d(s
(τ,d)
i )2

∑

τ,d(s
(τ,d)
i − ŝ

(τ,d)
i )2

, (1.2)
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where si and ŝi are the source and separated signal spectra of the considered speaker i, and τ
and d are the respective indices running over time and frequency. All possible combinations
between target speakers and their interfering speakers are evaluated, resulting in altogether
54 speech mixtures for 4 speakers and 3 utterances each. Hence, 108 separated component
signals are used for evaluation. For testing, all files are mixed at equal level of 0 dB TMR if
not specified otherwise.

In all figures, the achieved mean value is depicted with a red horizontal line. The methods
are identified by the label on the horizontal-axis. Moreover, the standard deviation of the
TMR is indicated by the blue box surrounding the red line. All experiments are split into
three classes:

• Same gender female (SGF)

• Same gender male (SGM)

• Different gender (DG)

An example result plot is shown in Figure 1.4.
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Figure 1.4: Example result plot. Same gender female (SGF), male (SGM), and different
gender (DG) results are plotted separately. The labels identify different methods.



Chapter 2
An Overview of Work in Single-Channel

Speech Separation

This chapter presents an overview of existing single-channel or monaural source separation
methods. This overview is not restricted to methods for speech separation only but also
covers music signal separation methods. The sequel is structured in four parts: The first
part discusses methods which try to mimic the human auditory system. Therefore, sophis-
ticated models are developed to integrate source specific signal characteristics. The second
part discusses unsupervised learning methods for separation. Algorithms based on basis de-
composition as well as probabilistic approaches are discussed. Afterwards, the modulation
spectrum as a unitary signal transform will be discussed for single-channel source separa-
tion (SCSS). In the literature, different objective quality measures to assess performance for
single- and multi-channel source separation have been introduced. Therefore, the last section
discusses relevant objective and subjective quality measures.

2.1 Computational Auditory Scene Analysis (CASA)

The cocktail party problem (CPP) as a psychoacoustic phenomenon is related to the human
ability of selective hearing. Humans are not only able to select a source of interest in an
auditory scene but can also track and identify this source [7, 44]. In computational auditory
scene analysis (CASA) [3] the attempt is made to computationally model the human auditory
system and its processing in the brain. The goal in CASA is to incorporate as much infor-
mation as the human auditory system is using. This starts with the selection of appropriate
features like onset, offset, fundamental frequency, amplitude and frequency modulation, po-
sition, continuity and harmonicity. However, for the SCSS task no spatial information can be
used. Bregman [8] first systematically explains the perception of complex acoustic mixtures.

As stated in [44], CASA systems can be mainly split into data-driven and prediction-driven
systems. Both are exploiting low-level acoustic cues for grouping. Grouping refers to the task
of finding speaker unique cliques. Grouping can be divided into, (i) simultaneous grouping,
which aims at finding speaker unique frequency cells for each time step and (ii) sequential
grouping, which denotes the process of forming speaker unique streams. The main difference
between data- and prediction-driven systems is that data-driven systems are extracting time-
frequency patterns of the auditory scene and are then performing the grouping whereas in
prediction-driven approaches, prediction is based on a world model representing the stimulus.

14
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CASA approaches suffer from two problems in speech separation: Firstly, the separability is
rather limited for unvoiced speech and secondly the formant structure is not explicitly used
as a feature [44]. In the next sections two applications of CASA methods are introduced.

2.1.1 Temporal Binding and Oscillatory Correlation

Van der Malsburg introduced the theory of temporal binding in 1981 [53]. In this theory
he suggested that the binding mechanism between presynaptic and postsynaptic activities
can be explained by correlations [44]. The strength of synapses is time dependent, i.e. it is
increasing with time, and thus follows the Hebbian postulate of learning 1. Further, a tem-
poral synchrony between presynaptic and postsynaptic neurons is assumed, called Malsburg
Synapse. This is taken as a basis to form a topological network where the synchronization
mechanism allows the neurons to be linked in multiple active groups simultaneously. The
temporal binding problem is suggested to be solved by a linking architecture letting neurons
fluctuate temporarily and binding together synchronized neurons into higher-level symbols.

The idea of oscillatory correlation was first proposed by Van der Malsburg. In the CASA
application, different sensory domains are used for binding of sensory components. A two-
layered oscillator network was introduced by Wang and Brown [12] in 1999 for this task.
Their method performs segment formation and stream segregation based on oscillatory cor-
relation. In the oscillatory correlation-based model a stream is represented by a population of
synchronized relaxation oscillators, which are corresponding to auditory features. Different
streams are represented by desynchronized oscillatory populations.

The method is also compared to BSS techniques and exhibits comparable performance [54].
Two drawbacks of this method are the performance drop in multiple competitive environ-
ments and a separation performance depending on the source signal itself. In summary, under
most noise conditions the tested BSS techniques outperformed the oscillatory model as long
as the ICA assumptions, of the BSS techniques are not violated.

2.1.2 Cortronic Network

The cortronic network [44, 55] consists of an artificial neural network, which is motivated by
the sparse coding scheme the human brain employs [56] when extracting features of sensory
inputs and accessing them through associative memory. Such a biologically motivated model
has been recently developed by Sagi [55] to solve the CPP by machine. It is represented
by an associative memory neural network model consisting mainly of three distinct layers:
(i) sound-input representation region, (ii) sound processing region and, (iii) word processing
region. This method rests on two assumptions: Firstly, the network needs knowledge about
the speech signals (i.e. the language the recognizer should understand/listen to) and secondly,
the methodology used to design the network is based on the framework of associative memory
and pattern identification. To solve the CPP three different kinds of features are used: (i)
sound and subsequent sound, (ii) sequence of sounds and, (iii) certain word and the following
word in the language. These features are calculated using a wavelet-like transform to convert
the sound input into activations used in the cortronic network. Finally, the task of the
system is to focus on a particular speaker and isolate the word series which is uttered. For a
particular instant of time, the expectation of each speaker’s sound character 2 to be a part of

1This postulate discusses the relation between some kind of associative learning and simultaneous activation
of cells, which leads to an increased synaptic strength.

2A sound character refers to a single or multiple phonemes.
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the sound stream of the target speaker has to be computed. It is reported that this method is
quite robust in terms of speaker, speech, and noise variations, even for signal-to-noise ratios
(SNRs) under −8 dB. The SNR is introduced in section 2.4.1.

Bio-Inspired Sound Source Separation: The collaborative work [57] between Univer-
sity of Sherbrooke and Graz University of Technology is quite similar to the Cortronic Network
from the motivation point of view. Therefore, it is included in this section. In contrast to
other CASA methods, a finite impulse response (FIR) instead of an infinite impulse response
(IIR) Gammatone Filterbank is used as feature extraction. This representation is said to
result in less distortions for the reconstructed or synthesized signal, due to phase corrections.
Furthermore, in this approach more filterbank channels than usually are used. As features,
no specific CASA cues like onset, offset, or pitch are used, instead two maps namely either
the Cochleotopic/AMtopic or the Cochleotopic/Spectrotopic map depending on the input
sound object are used as input of the spiking neural network. The output of the neural
network is a mask applied in the reconstruction phase to divide the signals. For this method
no performance measure is available.

2.2 SCSS based on Basis Decomposition

A general problem in statistics and signal processing is to find a suitable and appropriate
transformation of the data. For an observed random vector S = (s1, s2, . . . , sN )T ofN -sources
and its linear transform Y = (y1, y2, . . . , yM )T the goal is to find the weight matrix W in
order to decompose the mixture, where M specifies the number of observations or sensors.
The task of source separation is to recover the N -sources form M observed sensor signals.
We assume the following linear relation between the observations and the source signals:

Y = WS. (2.1)

Several methods have been developed to find such a representation for different objectives.
Principle component analysis (PCA) [58], as the correlation based transform, aims to decor-
relate the input signals in Y , which can be further used for dimension reduction. However,
the application of such methods is in general restricted to applications, where the number of
observations in Y is equal or greater than the number of unknown source signals. PCA, Non-
negative matrix factorization (NMF), and independent component analysis (ICA) have been
successfully applied for signal separation. However, these methods can be partially adapted
to underdetermined systems such as SCSS. In the next section, ICA is introduced, which
intends to make the transformed signal components statistically as independent as possible.
Thus, ICA recovers statistically independent source signals. However, to enable separation,
most of the SCSS methods additionally include source dependent prior knowledge learned
during an enrollment phase.

2.2.1 Independent Component Analysis

The Independent Component Analysis (ICA) algorithms are data driven methods and per-
form best when the number of observed signals is equal or greater than the number of
sources [4, 59]. ICA relies on the assumption of mutual statistical independence of the signals
to separate. Based on this assumption, the goal is to find a transformation separating the
mixed signals in a way that they are as much statistically independent as possible. Thus,
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ICA is a special case of redundancy reduction and provides a tool to estimate the unmixing
matrix A ≈W−1, assuming W is invertible. An introduction of ICA can be found in [60].
ICA cannot be directly applied for SCSS, where the number of observations is M = 1 and
the number of sources is usually N ≥ 2.

To overcome the limitations of under-determined systems, in general source prior knowl-
edge is incorporated. In [17] a “refiltering” technique has been introduced to estimate a
time-varying mask, which is used to separate the sources. In the following, methods either
based on time domain or on frequency domain basis functions are considered.

Independent Subspace Analysis

Independent Subspace Analysis (ISA) was originally proposed by [61] for the application on
images. ISA combines ICA and an invariant feature extraction. Casey [62] introduced ISA
to single-channel source separation and extended it. The first extension, is the extraction
of statistically independent subspaces from the projection of a one-dimensional signal onto a
manifold. The second extension is the use of dynamic independent components to represent
non-stationary signals. The dynamics are gathered by tracking the similarities of dynamic
components over small time steps.

In this method, the instantaneous mixture signal is transformed to the frequency domain
using the short-time Fourier transform (STFT). Afterwards, independent basis vectors are
determined using ICA. The basis vectors zi are assumed to be static but are weighted by a

time-varying factor β
(δτ)
i as:

y(τ) =

ρ
∑

i=1

β
(τ)
i zi, (2.2)

where i = [1, . . . ρ] denotes the index of basis vectors, ρ is the number of basis vectors, y is
the STFT transformed observed signal vector, and τ is the frame index. This method for cal-
culating basis vectors can be extended to dynamic or non-stationary information. Therefore,
it is assumed that each transformed signal frame is stationary and a block of l such frames
is used for subspace decomposition by rewriting Eq. (2.2):

y(δτ,l) =

ρ
∑

i=1

β
(δτ,l)
i z

(l)
i , (2.3)

where δτ denotes the block hop size, usually set to the half of the block length.

The appropriate number of basis vectors ρ is found by singular value decomposition
and applying a threshold on the decreasing sorted eigenvalues. Finally, independent feature
vectors are assigned to sources based on a similarity measure. The similarity is represented
in an ixigram, which measures the mutual similarity of components in an audio segment as
independent cross-entropy matrix. The pair-wise similarity measure is approximated by the
symmetric Kullback-Leibler distance, resulting in a symmetric distance matrix D. Grouping
is performed by a clustering procedure using the dissimilarities in the D matrix. The source
signals can be reconstructed using the weights and the source dependent basis vectors.

Time Domain Maximum Likelihood ICA Approach

In [59, 63], the time domain ICA basis filters of the source signals are learned a priori from a
training dataset. The data set consists of source dependent material only. The learned source
basis filters are finally used to separate the mixed test utterances. Here, the assumption of two
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generative models is made: First, it is assumed that the mixed signal consists of a weighted
sum of the source signals for every time instant. Secondly, it is assumed that this process
can be reversed by:

y(t) =

Tf
∑

tf =t

wtf stf (t) = W s(t), (2.4)

where s(t) is the independent assumed unknown source vector and wi are called the basis
functions generating the segment of the observed signal.tf is the time index within a frame
of Tf samples.

A = W−1 refers to the ICA filters, where W is defined in Eq. (2.1). The ICA filters
transform the segments into source coefficients s(t) = A y(t).

The goal of ICA learning is the maximization of the source specific densities p(si(t)) for
given training data. Moreover, the source specific models are transformed such that they
are statistically as independent as possible. Independency splits the joint probability in the
product of marginals, i.e. p(s1(t), s2(t)) =

∏

i p(si(t)). Both, the information maximization
principle [64] or the maximum likelihood estimation can be used for learning. In [63], the
infomax rule with natural gradient extension for learning is used. To learn basis functions the
time domain signal is cut into uniform length segments. Finally, the learned basis functions
Ai can be employed for source separation. Using Bayes theorem the maximum a posteriori
estimate can be found as:

{s∗1(t), s∗1(t)}t=1,...,T = argmax
s1(t),s2(t)

p(s1(1), . . . , s1(T )|A1) p(s2(1), . . . , s2(T )|A2), (2.5)

where the most likely bases are estimated given the basis models Ai. For separation the
mixture is assumed to be a weighted sum of the component sources y(t) = λ1s1(t) + λ2s2(t),
where λi is the weight associated to each source. The following artificial mixtures have
been used for performance evaluation: Rock-Jazz, Rock-Male, Rock-Female, Jazz-Male, Jazz-
Female, Male-Female. The signal-to-noise ratio (SNR), as introduced in section 2.4.1 is
employed for performance evaluation. For the Male-Female mixture a SNR improvement of
5.9 dB is reported. However, for the other mixtures, the SNR could be increased by up to
13 dB.

2.2.2 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF) is another method capable of identifying compo-
nents with temporal structure. Among other methods, positive matrix factorization was first
introduced in [65, 66] whose author also proposed an efficient algorithm for decomposition.
The NMF algorithm decomposes a non-negative matrix X ∈ R

≥0,D×T into two non-negative
matrices W ∈ R

≥0,D×R and H ∈ R
≥0,R×T , where R ≤ T , such that a cost function

D(X||WH) =
∥

∥

∥X ⊗ ln(
X

WH
)−X + WH

∥

∥

∥

F
(2.6)

is minimized [67]. Here, X is the magnitude spectrogram of the signal, with D frequency bins
and T time frames, ⊗ and ···

··· are the element-wise product and division, respectively, ‖ · ‖F
denotes the Frobenius norm, and R is a parameter describing the rank of basis decomposition.
Perfect reconstruction is obtained if and only if X = WH. This cost function equals the
Kullback-Leibler divergence if and only if

∑

d,τ X(d,τ) = 1 and
∑

d,τ WH = 1. Another
appropriate cost function is the Euclidean distance.



2.2. SCSS BASED ON BASIS DECOMPOSITION 19

Using this decomposition, one can observe that W is describing the vertical structure and
H the horizontal structure of X, i.e. the spectral and the temporal evolution of the parts of
objects are modeled separately in the magnitude spectrum. H is a time-varying weighting
of the extracted objects in W . The update algorithm to optimize W and H is given by

H = H ⊗ W T X

WH

W T 1
, W = W ⊗

X

WH
HT

1 HT
, (2.7)

where 1 is the D × T matrix containing only unity entries.

Smaragdis [67] showed that this method is suitable for sound object extraction and can be
further used for music transcription. In [68] performance evaluations of NMF for speech recog-
nition have been carried out and compared to the factorial max vector quantizer (FM-VQ)
method [69]. The authors report a superior performance of the FM-VQ approach compared
to NMF measured in terms of the word error rate.

Convolutional NMF

To be able to describe also the temporal evolution of information, an extension to NMF
was first introduced in [70] for sound object extraction and proposed for speaker separation
in [71]. The reconstruction of X by the matrix product X ≈ W ·H is extended to the
convolutive NMF as

X ≈
K−1
∑

k=0

W (k)·
k→
H , (2.8)

where
k→· is the right shift operator, which shifts the columns of a matrix to the right by k

positions, introducing k columns of zeros at the left, and dropping k columns at the right.

For minimizing the reconstruction error the existing framework of NMF can be used and
defined as:

D(X||X̂) =
∥

∥

∥
X ⊗ ln(

X

X̂
)−X + X̂

∥

∥

∥

F
, (2.9)

where X̂ is the approximation of X, defined as X̂ =
∑K−1

k=0 W (k)·
k→
H . The columns of

W (k) are called bases.

Using the framework of NMF, speaker dependent bases can be derived from the magnitude
spectrogram in the training phase. All bases trained by the speakers are finally merged to one
matrix W (k). For a given mixture containing speech from known speakers but for unknown
utterances, the goal is to find the weights H. Thus, during separation the bases are fixed.
Finally, the determined weights and the speaker dependent bases are used to reconstruct the
magnitude spectrogram of each individual speaker as

Zi =
K−1
∑

k=0

Wi(k)·
k→
Hi (2.10)

The phase of the mixture is used to compute the complex spectrogram of each reconstructed
speaker. Finally, the inverse STFT is used to compute the time domain signals.

Several experiments have been performed using different numbers of bases R, different
lengths of basesK, and different number of FFT binsD, to evaluate the performance of NMF.
Unfortunately, no other research group uses the performance evaluation criteria introduced
in [71], also described in section. 2.4.1, and no comparisons to other methods have been
carried out.
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2.2.3 Latent Variable Decomposition

Latent Variable Decomposition attempts to reconstruct entire spectrograms of each speaker
from the observed speech mixture using source dependent prior knowledge. As prior knowl-
edge, characteristic spectro-temporal structures are learned for each individual speaker [72]
during a training phase. In the operating stage mixed signals are decomposed into a linear
combination of the basis.

The speakers’ spectral structure is identified through latent variable decomposition. This
method is based on a statistical model where the spectral speech vectors are assumed to
be the outcome of a discrete random process generating frequency bin indices. Therefore,
the magnitude spectrum represents a scaled histogram of the number of draws of random
variables associated to each speaker. The distribution of the random process is modeled
as a mixture multinomial distribution, with time-varying mixture weights from frame to
frame. To incorporate a priori knowledge in the training stage, the mixture multinomials are
learned via the EM algorithm for each speaker separately. Hence, this method is referred to
be a supervised method. To separate a mixed signal, maximum likelihood estimates of the
mixture weights of multinomials and the a priori probabilities for each speaker and frame are
obtained. The final spectrum for the speaker within a frame is obtained as the expected value
of the number of draws of each frequency index from the speaker multinomial distribution.

For evaluation, 20 female and 20 male speaker models have been trained, each using 30
seconds of speech. This method achieved an improvement in SNRf gain of 5.3 dB on average.
The SNRf used for this method is a frequency based signal-to-noise ratio and is defined later
in section 2.4.1. Compared to the FM-VQ method in [69] which uses 30 times more training
data and takes much longer to perform separation, the proposed method is said to outperform
the FM-VQ approach perceptually. In [73] this method has also been used for singing voice
and music separation. The goal of this work was not to measure separability but to further
process the extracted singing voice (i.e. transpose the voice or change the gender of the
voice).

2.3 Separation based on Modulation Frequency Analysis

The use of the modulation frequency analysis as representation of speech signals is motivated
by psychoacoustic research [74], which claims that the human auditory system not only analy-
ses but also separates signals in this domain. Schimmel et al. [75] present a source separation
method to separate speech signals in the modulation frequency domain. The modulation
spectrum is calculated by a filterbank, which is followed by a subband envelope detection
unit and a frequency analysis of the subband envelopes. In the modulation frequency do-
main, a signal frame is represented in an acoustic frequency and modulation frequency plane.
In this representation, two voiced speech frames separate well and a mask can be applied for
each speaker to perform separation. Schimmel et al. [75] report good separability for voiced
but restricted capability to separate unvoiced speech. To enable automatic separation, the
frequency range of the fundamental frequency of the target and interfering speaker is assumed
to be a priori known. Moreover, it is assumed that the frequency ranges should be sufficiently
non-overlapping, which is rarely the case in a usual conversation scenario. According to the
author, the subjective separation performance of speech signals mixed at equal level is high
for voiced speech but is low during unvoiced parts such as transients.
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2.4 Evaluation Methods

This section introduces quality assessment methods for single-channel speech separation.
Quality measures are important to judge the separation quality of developed algorithms. In
order to make algorithms of different research groups comparable it is of major importance to
specify evaluation criteria and to make test databases publicly available. In general, one can
distinguish between objective and subjective speech quality assessment methods. Subjective
measures are found by listening tests. Therefore, a large number of listeners are required
for reliable results. Listening tests are time consuming and expensive and, therefore, they
are seldomly used. Objective quality measures can be divided into low-level measures and
automatic recognition measures. Low-level measures can be further divided into intrusive and
non-intrusive quality measures. In this section, we only deal with intrusive quality measures,
where the underlying reference signals are available for comparison. Thus, it is not the goal
to estimate quality measures from the mixture signals exclusively, i.e. from signals recorded
under real environmental conditions with unknown source signals and mixture. Rather,
we aim to introduce quality measures used and established in literature for artificial linear
instantaneous mixtures.

First, low-level measures are reviewed in section 2.4.1. Afterwards, automatic recognition
measures are presented followed by subjective quality assessment methods.

2.4.1 Objective Quality Measures

The signal-to-noise ratio (SNR) in the time domain

The first introduced performance evaluation method is the signal-to-noise ratio [76] between
the separated and original signals in the time domain. The SNR is defined as:

SNRi = 10 log10

(

∑T
t=1(si(t))

2

∑T
t=1(si(t)− ŝi(t))2

)

, (2.11)

where i is the source index, T is the length of the speech signal, s and ŝ denote the original
and separated signal, respectively.

The signal-to-noise ratio in the frequency domain

The signal-to-noise ratio between the separated and original signals can be also defined in
the frequency domain SNRf [68], which is defined as:

SNRf
i = 10 log10

(
∑

(τ,d) s
(τ,d)(i)

2

∑

τ,d

∣

∣s(τ,d)(i) ejψ(τ,d) − ŝ(τ,d)(i) ejψ(τ,d)
∣

∣

2

)

, (2.12)

where i denotes the source index, ejψ
(τ,d)

is the phase of the mixed signal spectrum at time
τ , and s and ŝ are the magnitude spectrum of the original and separated signal, respectively.

Segmental signal-to-noise ratio (SNRseq)

The global SNR measures discussed in the previous sections do not match well with human
perception [77, 78]. The definition of the SNR on short-time segments is known as segmental
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SNR (SNRseq). This simple objective measure has proven to match better with human
perception [77]. In the time domain, the SNRseq is defined as

SNRseq =
1

T

T
∑

τ=1

10 log10

∑N
n=1 s

(τ)(n)2
∑N

n=1(s
(τ)(n)− ŝ(τ)(n))2

, (2.13)

where τ is the segment index and n denotes the sample index within a time segment.

Percentage of crosstalk suppression

The percentage of crosstalk suppression Pi is proposed in [76] to measure the separation
quality. This measure quantifies the degree of crosstalk (interference) suppression between
the two separated signals. Here, the binary masks for both the reference signals and the
separated signals are computed. For the reference signals the mask is known as ideal binary
mask. The binary mask is in detail discussed in section 3.4. Both binary masks are applied
on the mixed signal. The signal, reconstructed using the ideal binary mask is denoted as
siBM
i and the signal reconstructed with the estimated binary mask with sBM

i . Then the
crosstalk-to-signal ratio (CTS) is computed in the time domain as:

CTSi =

∑T
t=1(s

BM
i (t))2

∑T
t=1(s

iBM
i (t))2

, (2.14)

where i ∈ {1, 2} is the speaker index. The percentage of crosstalk suppression can be com-
puted as: Pi = 100 (1 − CTSi).

Evaluation methodology by Smaragdis

Smaragdis [71] proposed three measures to judge the overall separation performance of SCSS
algorithms. These are the speaker energy ratio, the similarity index and the residual energy.
While the first measure tells us how much energy of the interfering speaker has been sup-
pressed, the similarity index measures the similarity between reference and estimated signal.
The residual energy measures how much energy has not been assigned to any speaker. Those
measures are summarized in the following:

Speaker energy ratio: The speaker energy ratio is computed by the correlation between
extracted signal ŝi and the original signal sj:

ci,j = cor(ŝi(t), sj(t)), (2.15)

where i, j ∈ {1, 2} are the source indices and cor denotes correlation. This correlation
measure is used to define the speaker energy ratio SR as the logarithmic ratio of the correlation
between extracted signal ŝi and corresponding original signal si, and the sum of correlations
to all other original signals sj, j 6= i from the target speaker:

SRi = 10 log10

ci,i
∑

∀j 6=i ci,j
. (2.16)

A larger SR value indicates better extraction of the target source/speaker.
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Similarity index: The second measure defined in [71] is the similarity index (SI), which
describes how much the estimated output resembles the desired output. It is defined as:

SIi = 10 log10 cor(ŝi(t), si(t)), (2.17)

where SI always is equal or less than 0, with 1 being the most desired value.

Residual energy: To measure the variance of the difference between the input signal
(speech mixture) and the sum of the extracted signals the residual energy (RE) has been
introduced as:

RE = var(
∑

i

si(t)−
∑

i

ŝi(t)). (2.18)

The RE measures how much of the extracted signals is accountable by the mixture signals.
Values closer to zero indicate good accountability.

Estimated source decomposition for performance evaluation

In 2003 Vincent et. al [79] first proposed performance measurement methods for blind audio
source separation (BASS), for both, single and multi-channel algorithms. In 2006 the same
group [80] refined the definition of their methods as well as they introduced procedures to
numerically calculate the quantities. In order to get a good representation of errors which
may occur in BASS, several measures are proposed, each investigating a certain property of
the error, e.g. distortion or interference energy.

Intersymbol interference (ISI) [81] a method established in BASS is said to be limiting
because it is not applicable for underdetermined BASS. Moreover ISI is restricted to time-
invariant linear mixtures. An L2-norm based measure [82, 83] directly compares the time-
domain source signal and its separated estimate, with focus on the indeterminacy of the
task. This measure produces almost the same value for a broad range of separation qualities.
Hence, poor results are evaluated rather coarsely. In order to have a measure independent on
the number of channels and sources, new methods have been proposed by Vincent et. al [80].
The estimated source ŝ is divided as follows:

ŝ(t) = starget(t) + einterf(t) + enoise(t) + eartif(t), (2.19)

where starget(t) is the target source, and einterf(t), enoise(t), eartif(t) are the interference, noise
and artifact errors, respectively. The decomposition of the estimated source signal is based
on orthogonal projections. However, all these measures are source dependent and therefore
have to be computed for each source separately. A procedure to calculate the pure source
specific energy contained in the separated source signal is described in [80]. In the following,
performance criteria in decibels are introduced.

Source-to-distortion ratio (SDR): The SDR measures the ratio of the target energy to
all unwanted distortions comprised in the signal

SDR = 10 log10

∑T
t=1‖starget(t)‖2

∑T
t=1‖einterf(t) + enoise(t) + eartif(t)‖2

. (2.20)
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Source-to-interference ratio (SIR): The SIR measures the ratio between the target
source component to all other source components in the mixture. In other words, the residual
energy of one source given all others is computed as

SIR = 10 log10

∑T
t=1‖starget(t)‖2

∑T
t=1‖einterf(t)‖2

. (2.21)

Sources-to-noise ratio (SNR):

SNR = 10 log10

∑T
t=1‖starget(t) + einterf(t)‖2
∑T

t=1‖enoise(t)‖2
(2.22)

Source-to-artifact ratio (SAR): Finally, the SAR is a measure to estimate the amount
of distortions defined as

SAR = 10 log10

∑T
t=1‖starget(t) + einterf(t) + enoise(t)‖2

∑T
t=1‖eartif(t)‖2

. (2.23)

Basically these measures are inspired by the SNR, but attempt to focus an specific aspects.
One benefit of these measures is their independency. Similar definitions of these measures
are given in [84].

To track performance changes within the unmixed audio signal, the measures can be used
to numerically compute local performance measures on a frame bases. This may be beneficial
in analyzing low performance regions.

Automatic recognition measures

If a particular application is already specified for the source separation algorithm, the per-
formance is naturally judged by this application. In automatic speech recognition (ASR),
the goal is the correct recognition of spoken words. The performance of ASR systems is
usually measured by the word error rate (WER) defined as the percentage of the number of
incorrectly recognized words over the total number of spoken words. The goal in ASR experi-
ments is the minimization of the WER, in contrast to the target-to-masker ratio as defined in
chapter 1, section 1.5, where the distortion energy should be minimized [85]. However, as the
distortion energy approaches zero also the WER is minimal and the solutions are identical.
The monaural speech separation and recognition challenge [37] was operated to perform a
comparison of SCSS algorithms for the competing talker problem. For this challenge the Grid
Corpus provided by Cooke et al. [20] was selected as database and an ASR system trained
on isolated words was provided to assess performance. In general, the input feature vector
of an ASR system reflects the movements of the vocal tract during articulation. Therefore,
the mel-frequency cepstral coefficients or the linear prediction cepstral coefficients are used
as features. Virtanen [86] and Deoras et al. [87] directly estimated the feature input vector
of the ASR system from the speech mixture.

2.4.2 Quality Evaluation by Subjective Tests

To assess the quality of an SCSS method or the performance of a CASA method, subjective
listening tests by humans are used. The goal is to compare the intelligibility between the
separated signal and the mixed signal. However humans can not “turn off” the ASA process
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and hence subjective listening tests have to be carried out carefully. One possibility could
be to use listening impaired and normal hearing humans [3] to measure speech intelligibility.
Another could be the test of normal hearing individuals in very noisy environments such
that they hardly can understand the spoken words. Ellis [88] asked listeners to score the
resemblance between the segregated sound and the corresponding original sound part of
a mixture. Two other methods to subjectively measure the speech intelligibility are the
speech perception in noise test (SPIN) [89], which evaluates the word recognition in context.
Therefore, 25 sentences with high and low context each are presented to the listeners with the
task to repeat the last words of the sentence which is mixed with multi-speaker babble. The
second example is the hearing in noise test (HINT) corpus [90], consisting of 25 phonetically
balanced lists, each comprising 10 sentences mixed with speech-shaped noise.

Subjective listening tests are also carried out to get an understanding of the overall
subjective quality of separated signals. Therefore, the mean opinion score (MOS) is in general
used [91]. These tests have been mainly developed for speech coding purposes but can also by
applied for noise suppression [92, 46] and source separation methods. Listening opinion tests,
like the absolute category rating, comparison category rating, or the degradation comparison
rating are recommended to get an overall impression of the speech quality.

2.5 Conclusion

This chapter aimed at providing an overview of the state-of-the-art in single-channel source
separation. After we pointed out the main difference to multi-channel approaches which can
additionally incorporate spatial information as cue, CASA based and model-based methods
have been introduced. In addition to the performance of each method, benefits and draw-
back have been emphasized, such as the prior knowledge the methods rely on, e.g. speaker
dependency or fundamental frequency dependency. In section 2.4 an overview of existing
performance evaluation methods are given including subjective tests. Since the mentioned
separation methods are often evaluated with different performance measures, a direct com-
parison is difficult or even impossible. For this reason, the target-to-masker ratio (TMR),
which is a simple SNR measure in the frequency domain, is used for evaluation throughout
this work.



Chapter 3
Model-Based Single Channel Source

Separation

3.1 Introduction

Single channel source separation belongs to the class of underdetermined optimization prob-
lems. Mathematically, one variable is observed and the determination of N unknown hidden
variables is impossible without further imposed constraints [3, Ch.4]. Throughout this work
we assume N = 2. Figure 3.1 depicts the factorial model for the single channel source sepa-
ration (SCSS) problem. The speech segments S1 and S2 are combined at each time instance
τ to produce the speech mixture Y . Source separation is concerned with the reverse process.
For the given speech mixture, the extraction of the source signals is of interest. Within this
task, prior knowledge about the source signals is utilized for separation. As a constraint, the
form of the individual source characteristics is pre-specified, regardless of the interference.
These individual source characteristics can then be used as prior models for the sources. In
this thesis, only speech signals are treated. Thus, a source refers to a human speaker. As-
suming that there exists a defined rule, how to combine the set of source signals to yield the
observation, the source separation becomes the problem of finding these signals.

Figure 3.1: Source separation problem: The mixture Y is obtained by the combination of the
two source signals Si in every time step τ .

The inference in factorial models [93, 94] is a common problem in probabilistic models.
Therefore, a hidden random variable zi is defined for every source signal Si. In this work a

26
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mixture of two sources is assumed, therefore, i ∈ {1, 2}. Then the goal of inference is the
maximization of the joint likelihood p(Y, z1, z2):

p(Y, z1, z2) = p(Y |z1, z2) p(z1, z2), (3.1)

where p(Y |z1, z2) is the conditional likelihood of Y given zi and p(z1, z2) is the joint prior
probability. Separation aims at finding the most likely states z1 and z2 representing Y , which
from its nature is a classification problem. As both, observation Y and source signals Si
are continuous, the learning process of all possible combinations of the associated continuous
hidden random variables is hard. For that reason, observation or interaction models have
been introduced [95, 96, 97, 17]. The interaction model provides rules how to combine the
hidden variables in order to explain the speech mixture. Hence, observation models enable
unsupervised methods to independently represent the sources during training. Therefore,
statistical methods are employed. During this modeling process the continuous sources are
discretized in |Zi| states, where each state zi represents a specific class of source components.
Here, zi ∈ Zi, where Zi has cardinality |Zi|. Thus, statistical models are trained in a gen-
erative manner to represent source characteristics. For separation, tracking, or decoding,
the observation models are used to combine the independently assumed source models in
a defined way into a factorial model [93] and thus explain the observed mixture. For each
source model, a discrete hidden variable is defined, which evolves independently over time.
Afterwards, the emission densities related to the state sequences of each hidden variable are
employed for signal separation. Generally, the mean values µzi of the emission densities for
states zi are utilized for this purpose. This entire process is illustrated in Figure 3.2(a),
where emission densities φs(zi) are explicitly depicted for better understanding. A factor
graph representation of the intuitive/factorial source separation model of Figure 3.2(a) is
shown in Figure 3.2(b). In this representation, the conditional dependencies of the signals
and the hidden states are explicitly described. A comparison to Figure 3.1 shows that each
continuous speech segment of the source signals is replaced by the emission densities of the
speaker dependent model. For a particular time segment, the hidden variables draw specific
emission densities in order to explain the observed speech mixture. To reconstruct the un-
derlying source signals, the means of the emission densities are either directly used for signal
syntheses or are utilized to derive masking signals. The speech mixture is weighted by these
masking signals to finally synthesize estimates of the source signals.

In summary, model-based source separation can be divided into four building blocks:

• Source model training

• Separation or decoding

• Observation or interaction model

• Signal reconstruction

– Direct synthesis

– Masking signal estimation

In the sequel, these four modules will be discussed in more detail. At the beginning,
a probabilistic formulation is developed for the source separation task. Afterwards, the
observation models are discussed. Subsequently, we review three different masks for signal
reconstruction. This chapter comprises detailed analysis of the source separation problem,
the experiments addressing model complexity and model training, and the soft binary mask
for signal reconstruction.
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(a) Statistical source separation problem (b) Equivalent factor graph representation

Figure 3.2: Source separation problem using generative models. (a) The mixture Y is ob-
tained by the combination of the means of the two emission densities φs(zi) specified by their
hidden variables zi in every time step τ . (b) Factor graph representation: The conditional
dependency of the source signal on the random variable is explicitly shown by the factor
nodes (filled nodes). Circles denote variable nodes.

3.2 Inference in Factorial Models

Now, given the speaker dependent (SD) models and assuming that we have access to the state
sequence chosen by the hidden variables z1 and z2 associated with each speaker, the joint
distribution of the observation and the underlying source signals Si for a particular instant
of time is given as:

p(Y, S1, S2|z1, z2) = p(Y |S1, S2) p(S1|z1) p(S2|z2), (3.2)

where zi selects the proper speaker dependent speech segment Si best representing the current
observed variable. We assume all random variables zi ∈ Z, where Z has the cardinality |Z|.
The posterior distribution for Y given the unobserved hidden variables zi can be found by
marginalization over the underlying signal components as:

p(Y |z1, z2) =

∫

S1

∫

S2

p(Y |S1, S2) p(S1|z1) p(S2|z2) dS1dS2. (3.3)

A factor graph [1] representation of the factorial HMM is shown in Figure 3.3. In the model,
each hidden random variable is described by a variable node which is related to a Markov
chain. As this model combines two HMMs, the model is called factorial HMM (F-HMM).
Factor nodes are depicted as shaded nodes describing a local function. Edges are connecting
factor nodes and variable nodes, if and only if the variable node is a function of the factor
node. The connecting edges indicate direct conditional dependency. The prior distribution of

each random variable is denoted by p(zi). Moreover, the transition probabilities p(z
(τ)
i |z

(τ−1)
i )

model the relationship of a random variable between two consecutive time instances. Note,
the explicit dependency between zi and Si, modeled as p(Si|zi), is absorbed into factor nodes
in the F-HMM.

The next section focuses on the computation of the observation likelihood. Therefore, only
memoryless statistical models are considered. Hence, we assume non-informative transition
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Figure 3.3: Factor graph representation of the factorial model. The mixture y is represented
by two hidden variables zi in every time step τ .

probabilities p(z
(τ)
i |z

(τ−1)
i ), i.e. the probability mass is uniformly distributed in the transition

matrix, in Figure 3.3. However, the observation likelihood computation also applies for first
order Markov chains.

3.2.1 Observation Likelihood Computation

The aim of source separation is to compute the observation likelihood p(Y |z1, z2) conditioned
on the state sequences. To form an estimate of the component signals, either the minimum
mean square error (MMSE) estimator E(Si|Y ) defined as

E(zi|Y, zj) =

∫

zi p(zi|Y, zj)dzi, i 6= j; i, j ∈ {1, 2} (3.4)

or the maximum a posteriori (MAP) estimate has to be computed. The MAP can be found
by the Bayes theorem using Eq. (3.3) as:

p(z1, z2|Y ) =
p(Y |z1, z2) p(z1) p(z2)

p(Y )
,

where p(z1) and p(z2) are assumed to be independent prior distributions. Thus, the most
likely states can be found by:

{z⋆1 , z⋆2} = argmax
z1,z2

[

p(z1, z2|Y )
]

. (3.5)

Assuming uniform priors p(z1) and p(z2) and neglecting the normalizing factor p(Y ) and
p(z1, z2|Y ) ∝ p(Y |z1, z2), we can further write {z⋆1 , z⋆2} = argmaxz1,z2

[

p(Y |z1, z2)
]

. Note,
this simplification results in the maximum-likelihood solution.

Additionally, we assume that the density function conditioned on the states is determin-
istic and has the following property:

p(Si| zj) =

{

1, if i = j,

0, otherwise.
(3.6)

This condition emphasizes the sparseness constraint of the MAP solution. At time step τ
just one state can be active for each model. Additionally, introducing this assumption in
Eq. (3.3) results in the following relation: p(Y |z1, z2) = p(Y |S1, S2), where we represent Si
by the Gaussian mean or cluster center φs(zi) = µs(zi) which has been drawn by the latent
variable zi. The computational complexity for the observation likelihood computation is
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O(T |Z|2). If the model of Eq.(3.1) is extended to a F-HMM, the joint probability changes
to:

p(y, {z}) =

2
∏

i=1

p(z
(1)
i ) p(y(1)|{z(1)})

T
∏

τ=2

p(y(τ)|{z(τ)}) p(z(τ)
i |z

(τ−1)
i ), (3.7)

where {z} denotes the wholes set of variables. In contrast to the model without dynamics,
the F-HMM additionally includes time dependency by the transition probabilities.

For separation, the most likely state sequence is determined using the 2-D Viterbi al-
gorithm [96]. The Viterbi search is an efficient way to compute maximum the joint state

log-likelihood w({z(τ)}) over the state z
(τ)
i and observation sequence Y (τ) for τ = [1, . . . , T ].

The recursion is given as:

w({z(τ)}) =

log p(Y (τ)|{z(τ)}) max
{z(τ−1)}

(

log p(z
(τ)
1 |z

(τ−1)
1 ) + log p(z

(τ)
2 |z

(τ−1)
2 ) + w({z(τ−1)})

)

.
(3.8)

For the F-HMM the Viterbi algorithm recursively tracks the most likely state sequence in a
three dimensional state space, i.e. z1, z2, and τ . The best paths to all states at time τ are
computed using the best paths to all states at time τ−1. At the final step of the sequence, the
state with greatest likelihood is utilized for back tracking, which extracts the most likely state
sequence. An analysis of computational complexity reduction for this method is thoroughly
discussed in chapter 4.

3.3 Observation Models for Factorial Models

In this section, commonly used observation models are discussed. Therefore, we assume
co-channel speech, which is the linear instantaneous mixture of two speakers:

y(t) = s1(t) + s2(t) + ι(t), t = [1, . . . , T ], (3.9)

where si(t), with i ∈ {1, 2} is the respective speaker, ι(t) is an optional noise component, e.g.
sensor and/or background noise, and T denotes the length of the utterance. Moreover, we
consider the component sources to be combined at equal energy level. In the sequel we are
neglecting ι(t). In the complex frequency domain the relationship between the component
signals and the observed speech mixture is given as

Y = S1 + S2. (3.10)

Note, we denote the complex spectrogram with upper case symbols, i.e. Y and S, the
magnitude spectrogram with lower case bold symbols, i.e. y and s, and the log-magnitude
with upper case bold symbols, i.e. Y and S. An equivalent representation in terms of
magnitude and phase is given as:

y2 = s2
1 + s2

2 + 2 · s1 s2 cos(ψ), (3.11)

where ψ is the phase difference ψ = ψ2 − ψ1 between the source signals. A simplification
models the relationship between the sources and the speech mixture by representing the phase
term as an error ν = 2 · s1 s2 cos(ψ):

y2 = s2
1 + s2

2 + ν. (3.12)

In the literature, various observation or interaction models have been defined within
this framework for the posterior likelihood p(y|{z}) computation. In the next sections the
additive, mixture-maximization, and the Algonquin observation model will reviewed.
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3.3.1 Additive Model

In the additive model, the mixture is approximated in the squared-magnitude frequency
domain by ỹ2 ≈ s2

1 + s2
2. For this model, the approximation error is given as ν = y − ỹ =

2s1 s2 cos(ψ). In general, it is assumed that source signals follow a Gaussian distribution.
The density of the sum of two independent random variables results in the convolution of
their probability densities. The convolution of two Gaussians is also Gaussian, hence, the
posterior likelihood model is given as:

p(y2|s2
1, s

2
2) = N (y2; (s2

1 + s2
2), σ

2), (3.13)

where N is the normal distribution and σ2 is the variance of the approximation error ν. It
can be shown that this approximation under the Gaussian observation model is indeed a
minimum mean square error (MMSE) estimator. The optimality of the MMSE is given for
an uniformly distributed phase [98, 28]:

E{ν} =

∫ π

−π
(ỹ − y) dψ =

∫ π

−π
(2s1 s2 cos(ψ)) dψ = 0. (3.14)

Moreover, the variance of the error can be computed by taking the expectation of the squared
error σ2 = E{ν2}. Solving this integral results in a variance of: σ2 = 2 s2

1 s2
2.

3.3.2 Mixture-Maximization Model

In the logarithmic frequency domain, the speech mixture can be approximated by the mixture-
maximization (mixmax) [95] operator as:

Y ≈ max(S1,S2), (3.15)

where the maximum operation is carried out elementwise over each dimension. The mo-
tivation for this operator stems from the visual inspection of speech signals in individual
frequency bands [19], where frequency cells rarely contain significant energy across long time
intervals. Thus, the mixmax approach results from the fact that speech is sparsly distributed
in time-frequency representations [3]. Recently, Radfar et al. [99] showed that Eq. (3.15) is
a nonlinear minimum mean square error estimator under the assumption of uniformly dis-
tributed phases of the source signals. For the observation likelihood computation we assume
a Gaussian distributed model as:

p(Y|S1,S2) = N (Y;max(S1,S2), σ
2). (3.16)

σ2 is the variance of the approximation error or of an optional observation noise ι.

In a probabilistic model, the speech segments are replaced by the means of the emission
densities φs(zi). Thus, they are no longer constant vectors but probability density functions
ps(zi). Nadas et al. [95] have shown that the approximation of Eq. (3.16) in the probabilistic
representation is given as the multiplication of the two independent random variables. This
results in a multiplicative relation of their cumulative distribution function Φ:

Φy(z) = Φs(z1)Φs(z2), (3.17)

where Φ is the cumulative distribution function. By differentiation of Φy(z) the probability
density distribution of the speech mixture can be found as:

py({z}) = φs(z1)Φs(z2) + Φs(z1)φs(z2), (3.18)

where p(Y |z1, z2) = py(z). Using Eq.(3.18), an efficient way the compute the posterior likeli-
hood has been found. The mixmax model has been further extended from single Gaussians
to multiple Gaussians per state, i.e. GMMs, by [87, 100].
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3.3.3 Algonquin Model

The Algonquin model was initially introduced for robust speech recognition [97] in noisy
environments. This model defines how speech and noise interact. For speech separation, this
model was extended by Kristjansson et al. [101]. The Algonquin model describes the relation
between the source signals and the speech mixture by taking the logarithm of Eq.(3.12):

Y = S1 + ln(1 + exp(S2 − S1)) + ε, (3.19)

where ε is assumed to be normal distributed random noise. The posterior likelihood is finally
assumed to be Gaussian:

p(Y|S1,S2) = N (Y;S1 + ln(1 + exp(S2 − S1)),Σ
2), (3.20)

where Σ2 is the variance of the normal distribution. Since, the true posterior is non-Gaussian
due to the non-linear relation in Eq.(3.19), a linearization using a first order Taylor series
expansion at a point q0 is carried out. Therefore, g(q) = S1 + ln(1 + exp(S2 − S1)) and
q = [ST1 ,S

T
2 ]T are introduced, as well as g′(q), as the first derivative of g(q) evaluated at q.

Then, the linearization of the posterior likelihood follows as:

pl(Y|S1,S2) = N (Y; g(q0) + g′(q0)(q − q0), ψ) (3.21)

For the maximization of the function in Eq. (3.21) the iterative Newton algorithm is
utilized.

3.4 Signal Reconstruction

Once the state sequence for each speaker is estimated, the state emission probabilities for
each state are used to synthesize the underlying speech signals. Usually, these prototype
signals of each speaker are used to derive a masking signal [102]. The extracted masks are
finally used to weight the speech mixture in order to recover the component signals as:

Ŝ
(τ,d)
i = Y (τ,d) ·m(τ,d)

i , i ∈ {1, 2}. (3.22)

Where m
(τ,d)
i is the mask for source i. The mask is basically a weighting of each time-

frequency cell (τ, d) of the speech mixture. By this operation, the source signal is recovered.
Alternatively, the estimated means of the emission densities can be directly synthesized using
the phase of the speech mixture:

Ŝ
(τ)
i = φ(z

(τ)
i ) · ∠Y (τ) (3.23)

However, these reconstructed signals are not well suited to make them direct audible. Due
to the missing fine structure over frequncey and smoothness across time, the intelligibility
is very low. In the literature different masks have been proposed for signal reconstruction.
Reddy et al. [103, 104] proposed a minimum mean square estimator for separation. They
used the final estimate as masking signal for reconstruction. Alternatively, a mask similar to
the Wiener filter solution [92] can be used for separation and reconstruction. We denote this
method as soft mask in the sequel.

In this section we investigate three different masks: (i) the binary mask, (ii) the soft
mask, and (iii) the soft binary mask.
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Binary Mask: Recently, Wang [18, 19] suggested the ideal binary mask as computational
goal of auditory scene analysis. Indeed, Roweis [69] had shown that two speakers are rarely
simultaneously active in a time-frequency cell of a high resolution time-frequency representa-
tion. This directly results in the independence assumption of the component signals, due to
the sparse distribution of speech in such a representation. The target ideal time-frequency
binary mask assigns a “1” to a time-frequency cell if the target energy is greater than the
interference energy and “0” otherwise. For the interference, the ideal binary mask can be
computed in a similar way. Thus, the binary masks are complementary, i.e. BM1 = BM2. To
compute the ideal binary mask, the component signals must be available in advance, which
is in general an unreasonable assumption. The goal of any SCSS algorithm is the estimation
of the binary mask, which is in the best case identical with the ideal binary mask. Therefore,
the mixture maximization (mixmax) approach [95], i.e. the element-wise maximum operator
applied on a time-frequency representation, is employed. This justifies the use of the mixmax

approach as interaction model for binary mask signal reconstruction.

Soft Mask: The binary mask makes a hard decision in exclusively assigning time-frequency
cells. Accordingly, if a frequency cell is allocated to the false speaker, the decision is totally
wrong. To overcome this issue, a soft mask can be defined. The soft mask assigns a continuous
value between zero and one to each time-frequency cell and is defined as follows:

m
(τ,d)
1 =

s
(τ,d)
1

s
(τ,d)
1 + s

(τ,d)
2

, ∀ τ, d. (3.24)

Here, s1 and s2 are the magnitude spectra of the respective target and interference signals.
For source separation, these signals are replaced by their estimates, i.e. the emission density
means. The soft mask of the target is m1 and m1 +m2 = 1.

Soft Binary Mask: The soft binary mask is somehow a compromise between the binary
and soft masks. The introduction of this mask was motivated by the observation likelihood
approximation of Reddy and Rennie [103, 105]. They assumed that only one speaker con-
tributes significant energy to a time frequency cell. Thus, the observation likelihood can be
approximated by p(y|{z}) ≈ pzi

(y|zi). The posterior expected value can be finally repre-
sented as either E(si = y|zi) ≈ y or E(si < y|zi) ≈ min(y, si). This idea can be equivalently
used for mask estimation. The soft binary mask assigns a “1” to the time-frequency cell if
the target energy is greater than the interference. Otherwise, the minimum of either mixture
or target energy is assigned to the cell:

m
(τ,d)
i =







1, if s
(τ,d)
i > s

(τ,d)
j

min(y(τ,d),s
(τ,d)
i

)

s
(τ,d)
i +s

(τ,d)
j

, otherwise,
(3.25)

where i, j ∈ {1, 2} and i 6= j. With the soft binary mask we try to recover the masked residual
energy.

3.5 Experimental Results

In all source separation experiments the mixmax -approach is used as interaction model.
Moreover, temporal dependencies are neglected. Hence, for separation the factorial-max VQ
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(FM-VQ) which operates in the log-frequency domain is employed. A VQ model is trained
for every speaker independently, using the k-means algorithm. Since all interaction models
show on average a similar performance, differences among them are out of the scope of this
thesis. From the description of the source separation modules, the following questions will
be discussed in the experiments:

1. What is the optimal number of used codewords/states to model speaker characteristics?
Is it worth to train models until convergence in case of the k-means?

2. Is there a dependency between the used number of iterations for model training and
the separation performance?

3. Is there an advantage using statistical models instead of a large dictionary built on
using template speech segments?

4. What is the best reconstruction method for a given codeword/state sequence?

Model complexity and performance in VQ models: In the first experiments, the im-
pact of the number of codewords used to model speaker specific characteristics are studied.
Therefore, the speaker space was clustered in Q = [20, 50, 100, 200, 300, 500, 1000, 1500, 2000]
non-intersecting cells. Separation results depending on the used number of codewords are
shown in Figure 3.4. The labels indicate the number of states or codewords Q ≡ |Z|.
Certainly, separation performance increases almost monotonically with the number of com-
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Figure 3.4: Factorial-max VQ single channel separation performance. The dependency bet-
ween separation performance and the used number of codewords (Q) to model speaker char-
acteristics are investigated.

ponents and starts to saturate above Q = 1000. Intuitively we expect that an increasing
number of codewords also increases separation performance until performance converges to
the result of the ideal binary mask. It seems plausible, the more components we use the
better we can explain specific speaker characteristics. But it is also obvious that the more
space is occupied by a speaker the higher the risk of an overlap with a competing speaker,
which results in ambiguities.
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Investigation of used iterations for VQ model training: Furthermore, we found a
relationship between the number of used iterations to train a VQ model and the separation
performance. In the experiment, the number of components is fixed to Q = 500 and the train-
ing of the k-means algorithm always had been initialized with the same parameter setting.
Training was stopped after iT = [1, 5, 10, 20, 30, 50, 100, 150, 200] iterations, respectively. The
separation performance for the 3 different cases is depicted in Figure 3.5. The label at the
bottom of each subplot indicates the number of iterations used for training.
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Figure 3.5: Factorial-max VQ separation results. In this experiment the number of compo-
nents is fixed, varying just the number of iterations (iT ) for model training.

Indeed, we observed that there is an impact on the separation performance, whereas the
differences are not significant for the SGF and the DG case. However for the SGM case with
10 iterations, the achieved TMR is approximately 5.8 dB, whereas for 200 iteration the TMR
reduces slightly below 5.2 dB. For the other two cases, the variations between minimum and
maximum achieved TMR is also around 0.5 dB. However, in these cases, there is no linear
relation between the used number of iteration and TMR performance. Moreover, we see that
the training saturates and stops at a stationary point.

Template versus statistical models: The next experiment tries to answer the third
question, whether a statistical model can be replaced by a dictionary containing just speaker
specific templates. If this hypothesis is true, the question remains, if we can find the best
dictionary template observing just the speech mixture. The results shown in Figure 3.6
answer the first question. Results for template dictionaries using |D| = [500, 6000, 12000] en-
tries are illustrated. Speech templates are log-spectral segments which have been randomly
drawn from the training data. A comparison to Figure 3.4 shows no significant improve-
ment using templates. Moreover, the computational complexity for inference of the template
based method using 6000 or 12000 templates is significantly higher, i.e. O(|D|2 T ). For
the FM-VQ using template models, the iterated conditional modes algorithm, introduced in
chapter 4, section 4.5 to approximate the observation likelihood was employed. This reduces
the computational complexity significantly.

Signal reconstruction experiments: To evaluate the performance of the introduced sig-
nal reconstruction methods on the specified test database we use the reference component
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Figure 3.6: Factorial-max VQ separation results employing a speaker specific template dic-
tionary. The label indicates the cardinality of the template dictionary D employed for sepa-
ration.

signals to extract the respective ideal masks. This leads to the (i) ideal binary mask (iBM)
for the binary masks, (ii) the ideal soft mask (iSM) for the soft masks, and (iii) the ideal soft
binary mask (iSBM) in case of the last introduced mask. Figure 1.3 shows the spectrogram,
orthographic transcription and time-domain signal of the sentence “lay white in x zero soon”
spoken by speaker FE1. The speaker FE1 is mixed at equal level with speaker FE2 uttering
the sentence “lay white with y two again”. The extracted ideal masks for speaker FE1 are
shown in Figure 3.7. A “1” is represented by a white pixel whereas a “0” is represented
by a black pixel. Values between “1” and “0” are depicted with the appropriate gray color.
Comparing the masks to each other, they all recover mainly the same time-frequency regions.
In addition, there is a strong correlation of the white mask regions and high energy regions
of the clean FE1 utterance, shown in Figure 1.3.

The results for the three different ideal masks in terms of TMR for the whole test database
are shown in Figure 3.8. The TMR is plotted separately for the SGF, SGM and DG case.

To verify, if the estimated masks show the same overall behavior as their ideal masks,
the estimated state sequence of the FM-VQ model is used for mask estimation. The results
in TMR for the reconstructed signals are shown in Figure 3.9. Since we can not access the
underlying signals for mask estimation but just their statistical representation, we can expect
that the differences between the different reconstruction methods should decrease. Indeed,
for the SGF case we observe this behavior, but for the SGM and the DG cases the difference
in the means between the masks remains (see figure 3.9). Only for the SGF case, the SBM
achieves slightly higher performance compared to the other masks. A comparison of the ideal
mask results (Figure 3.8) and their approximations (Figure 3.9) shows that the TMR for all
cases drops. We conclude that the main decrease of the TMR between ideal and estimated
masks is due to the missing details in the statistical representation of the true source signals
at every instance of time.

In appendix B a performance analysis of the three discussed masks is provided for the
application of automatic speech recognition.
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Figure 3.7: Ideal masks of target speaker FE1. Top: ideal binary mask. Middle: ideal soft
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Figure 3.8: Single channel separation results of two speakers using the ideal binary mask
(iBM), ideal soft mask (iSM), and the ideal soft binary mask (iSBM).The TMR results in
[dB] are illustrated for the SGF, SGM, and DG case.
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3.6 Conclusion

This chapter introduced speaker dependent statistical models for SCSS. Moreover, the whole
statistical framework for factorial memoryless models and factorial HMMs was discussed.
Specifically, all building blocks for source separation have been introduced. All three state-
of-the-art interaction models, namely, the linear, the mixmax, and the Algonquin models have
been described. In the experiments, we addressed the issues of model complexity and model
training. For increasing number of states, also the performance increases until it saturates.
Furthermore, we observed that there is no need to train a VQ model until convergence.
Quite the contrary is true as for the same gender male case, the TMR is decreasing with
increasing number of iterations used for training. Finally, different signal reconstruction
methods to synthesize the source signals are discussed. Particularly, the soft binary mask
was proposed as compromise between the exclusive energy assignment of the binary mask and
the continuous valued soft mask. The ideal masks have been compared to each other as well
as to the estimated ones. Hence, we believe that the choice of mask for signal reconstruction
is application dependent.



Chapter 4
Computational Complexity in Factorial

Models

4.1 Introduction

The computational complexity due to the factorial nature of model-based source separation
methods significantly restricts their suitability for close to real-time applications. In particu-
lar, for separation purposes, the spanned space of two sources is O

(

Q2
)

, where Q denotes the
cardinality |Z| of a speaker dependent statistical model. This corresponds to the complexity
to compute the observation likelihood for one time step. A typical factorial-VQ structure is
shown in Figure 3.3 and has been discussed in chapter 3.

However, once the state sequence associated to each speaker is at hand, a binary, continu-
ous, or soft binary mask can be found for each speaker. Finally, the mixture is filtered by the
masks and the underlying signals are estimated and reconstructed (see chapter 3, section 3.4).

This chapter deals with the efficient state likelihood estimation at every time step. Hence,
the goals is to approximate the MAP solution at every single time step without computing
the full observation likelihood. Therefore, we start with a discussion on the full observation
likelihood computation for factorial models. Afterwards, in order to reduce the computational
burden, heuristics to approximate the observation likelihood will be introduced and discussed.
To this end, we either adapt beam search or propose the use of the iterated conditional
modes (ICM) algorithm, which is a special case of the Gibbs sampling method [106]. The
methods are compared to the hierarchically structured VQ model proposed in [36]. No
comparison will be made to the brunch and bound method [17], as this method did not
achieve a significant reduction of complexity in our experiments. All three algorithms reduce
the computational costs by two orders of magnitude compared to full search, whereas the
implications on the separation performance is minimal. Note, throughout this chapter we
use the mixmax observation model [95] of chapter 3, section 3.3.2 as interaction model.

Additionally, we integrate these approximations in factorial-max HMMs (FM-HMMs).
All methods are evaluated in terms of computational complexity and performance, which is
evaluated by both, the achieved score in the likelihood-state plane and the obtained target-to-
masker-ratio (TMR) during separation. Some conclusions will finalize this chapter. A short
version of this chapter with different statistical models has recently been published in [107].

40
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4.2 Full Observation Likelihood Computation (FS)

In order to perform source separation we are interested to find the most probable state
sequence of each hidden variable for a given observation sequence. For the moment let us
assume a factorial model without dynamics and uniformly distributed prior probabilities. In
this case, for a given observation sequence the sequence of individually most likely states is
identical to the most likely state sequence. Note, this is not true in general. To form an
estimate of the component signals, the most likely state sequences have to be determined by
computing the maximum a posteriori (MAP) estimate (see chapter 3):

{z⋆1 , z⋆2} = argmax
z1,z2

[

p(z1, z2|Y)
]

.

As in general, large models are trained (e.g. Q = 500 Gaussian components for a Gaus-
sian mixture model (GMM) or codewords for an VQ) to capture acoustic properties of each
speaker, the computation of the joint posterior is O(Q2) which is a bottleneck of this approach
for real world applications. This is caused by the factorial nature of the model, which neces-
sitates the computation of all state combinations of the two speaker models. For example,
the computation of p(Y|z1, z2), given two speaker models each of cardinality 500, requires
500 × 500 = 250000 operations to evaluate all state combinations. This quantity has to
be computed for every single time step. Hence, the computational complexity is O(T Q2)
for T time steps and Q states of the speaker models. Therefore, approximation techniques
for efficient observation likelihood estimation are necessary to make this method applicable
for close to real-time applications. In the following, we propose two methods, namely the
fast beam search and Gibbs sampling, and compare them to the fast likelihood estimation
method. As a focal point, we discuss the iterated conditional modes algorithm which is a
greedy approximation of Gibbs sampling.

4.3 Fast Likelihood Estimation (FLE)

In order to alleviate the intensive task of state likelihood computation, Bocchieri [108] sug-
gested vector quantization (VQ) of the input feature vector to identify a subset of Gaussians
belonging to a particular VQ entry. Based on this work, Rennie [36] proposed a band quan-
tization of the Gaussians for modeling the acoustics. For this purpose, he uses diagonal
covariance matrices in the GMMs. Thus, all feature dimensions are independent and there-
fore all Q Gaussians can be efficiently approximated by k ≪ Q Gaussians. Each of the Q
Gaussians is associated with one of the k Gaussians using the mapping function M(zi) as
follows: p̂(Si|zi) =

∏

dN (Si;µM(zi), σ
2
M(zi)

), where p̂(Si|zi) acts as surrogate of p(Si|zi) and
the product ranges over all frequencies d. Hence, K Gaussians are represented by the smaller
number of k Gaussians, where Q = k ·K. The k Gaussians are selected such as to minimize
the KL-distance:

D
(

∑

zi

p(zi) p(Si|zi) ||
∑

zi

p(zi) p̂(Si|zi)
)

(4.1)

This approach uses a tree like structure for each speaker dependent (SD) model. The top
level consists of k Gaussians. To each Gaussian of the top level, K Gaussians are associated.
During inference, the top level states of the SD models are combined and the most likely state
combination is estimated. Subsequently, the K states associated to the most likely states of
the top level are combined to a factorial model and are finally used to find the most likely
states. Thus, the most likely states are found in a sequential manner. Our implementation
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correlates better with the one, introduced by Bocchieri [108]. Thus, we use the k-means
algorithm to cluster the Q codewords into k clusters. For decoding, the most likely state
for each speaker out of the k coarse-grained categories is first determined, requiring O

(

k2
)

evaluations. Once, we have those categories, we evaluate z⋆i out of on average K bases for
each speaker in the next level. Using this technique, the computational complexity can be
reduced to O

(

T (k2 +K2)
)

operations.

4.4 Beam Search Technique (BS)

An efficient way to speed up the MAP estimation of Eq. (3.7) is to apply beam search (BS),
which is used during the Viterbi decoding [109, 106] in HMMs. The Viterbi decoder aims to
find the most probable sequence of hidden states in an HMM for given observations, which is
an efficient way to maximize the joint distribution w(z(τ)) over the state sequence z1, . . . , zT

for a given observation sequence S1, . . . ,ST :

w({z(τ)}) = max
z(1),...,z(τ−1)

log p(S(1), . . . ,S(τ), z(1), . . . , z(τ)). (4.2)

For first order Markov processes (HMMs), this expression can be factored and the computa-
tion can be carried out recursively for every instant of time as:

w(z(τ)) = log p(S(τ)|z(τ)) + max
z(τ−1)

[

log p(z(τ)|z(τ−1)) + w(z(τ−1))
]

(4.3)

Finally, the most probable hidden state sequence can be found using backtracking. The
Viterbi algorithm reduces the computational complexity in HMMs compared to a naive im-
plementation significantly from O(T ·QT ) to O(T ·Q2), as it scales linearly with the sequence
length, in contrast to the exponential scaling of the naive implementation.

For many real world applications, the number of states of an HMM is too large for an effi-
cient execution of the Viterbi algorithm. Therefore, a further reduction of complexity can be
achieved by the introduction of a beam search [51], as we have already proposed in [110]. Thus,
the maximum over the states at step τ−1 is determined P (τ−1) = maxq w(z(τ−1)). This value
defines a dynamical threshold θ = P (τ−1)/G, where G is an appropriately chosen constant.
Finally, all states below the threshold θ are eliminated, e.g. w(z(τ−1)) = −∞ if w(z(τ−1)) < θ
and only the reduced set of states is further used to determine the log-likelihood w(z(τ)),
using also the transition information p(z(τ)|z(τ−1)). As alternative, the N most likely states
can be accepted as survivors, instead of determining and comparing to a threshold. The
advantage of this method is a constant reduction of complexity.

For source separation however, two independent HMM chains are employed to explain
the mixture observation. The factor graph representation of the FM-HMM is illustrated in
chapter 3, Figure 3.3. In contrast to the FM-VQ, the FM-HMM additionally incorporates
time dependencies. This is illustrated by the connecting edges of the hidden variables in
Fig. 3.3. In contrast to an HMM, the transition search space of an FM-HMM is increased to
the power of four, e.g. Q4. This is exemplified in Eq. (3.8). An illustration of the Viterbi
search navigating through the 3-dimensional space is shown in [95]. For both beam search
options, the state likelihood computation is not reduced. However, beam search has a great
impact on the number of state transition computations.
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Fast beam search: As GMMs and VQs do not belong to the family of first-order Markov
processes, the beam search (BS) is not applicable and the full observation likelihood has to
be computed.

We adapt the BS and apply it for memoryless statistical models (GMM and VQ). There-
fore, we utilize the continuity property of speech, i.e. the energy in each frequency band of
a magnitude spectrogram changes slowly over time. Additionally, we extract the spectrum
Y(τ−1) with a time overlap of 50 percent – hence, at least half of the information contained
in the previous mixture segment Y(τ−1) is also contained in the current Y(τ). The frequency
representation of a short segment of speech mainly comprises contributions of the vocal folds
(fine spectral structure) and the vocal tract (coarse spectral structure). Because of the me-
chanical properties, the vibration of the vocal folds and the vocal tract change continuously
over time. Thus, speech can be represented as a slowly time varying process. Motivated by
this property, we model speech as a martingale process [111]. For the observation likelihood
computation, we apply this martingale theory in order to make a prediction of the most
promising states from time step τ − 1 to the next time step τ . Therefore, we model speech
as a stochastic process z(τ−1) and assume that the two martingale properties are met

E(|z(τ−1)|) <∞,

where the expectation of the absolute value of z(τ−1) is bounded. The expected conditional
probability of a random variable at time τ , given all previous observations is:

E(z(τ)|z(1), . . . , z(τ−1)) = z(τ−1).

According to the martingale theory, the best guess we can make for a future time step, given
the present and the past, is the present time step.

Bearing in mind the martingale theory, we can formulate the beam search for memoryless
statistical models. Therefore, we specify N , the number of surviving states or VQ bases, i.e.
the beam width. Furthermore, at step τ = 1, using Eq. (3.5), we compute as initialization
the full posterior likelihood and get {z⋆1 , z⋆2} the most likely state for each speaker model.
Given the most probable states, the most similar states at the next time step are selected for
z1 and z2, computing the posterior as:

p(z
(τ)
1 |Y(τ), z

⋆,(τ−1)
2 ) = N (Y(τ);max(µ(z1), µ(z

⋆,(τ−1)
2 )),Σ), (4.4)

where µ(zi) are the state means of the random variable z representing speaker i. Here, we
compute the likelihood of the first model being in state z1 conditioned on the observation and
the most likely state z⋆2 of the second model and vice versa for the second model. Subsequently,

we sort the likelihoods p(z
(τ)
1 |Y(τ), z

⋆,(τ−1)
2 ) and p(z

(τ)
2 |Y(τ), z

⋆,(τ−1)
1 ) in ascending order and

specify a reduced set of Q≺
i states, containing the N best matching states for each speaker

used at τ as

p̂(τ)(Si|zi) = p(Si|z≺i ), i ∈ {1, 2}, (4.5)

where Q≺
i ⊆ Qi and z≺i ∈ Q≺

i . This equation shows that Eq. (3.6) becomes dependent on time
and that we only have ones where z≺i ∈ Q≺

i . Hence, for time step τ , only the N most likely
states, determined at time step τ − 1, are considered. Using this fast beam search procedure,
the computational complexity can be reduced from O(T Q2) to O(Q2 + (T − 1) N2). In the
experiments, we will refer to this method as fast beam search (FBS) method.

This algorithm can be generalized in a way that, at time step τ −1, the M -best states are
considered, instead of the most likely one. Therefore, Eq. (4.4) is generalized and the most



4.5. GIBBS SAMPLING (GS) 44

likely states for time step τ are determined, conditioned on the M -best states of random
variable zi at time step τ − 1. This step is carried out for each speaker independently. The
generalized fast beam search method is summarized in algorithm 1.

1: Input: Y, VQ bases for speaker 1 and 2
2: Output: {z⋆}
3: i ∈ {1, 2}
4: for τ ← 0 to T − 1 do
5: if τ = 0 then
6: Determine: {z⋆1 , z⋆2} = argmaxz1,z2

[

p(z1, z2|Y)
]

7: else
8: Sort descend p(z

(τ)
i |Y(τ), z

⋆,(τ)
j ) j ∈

(

{1, 2} \ i
)

9: for m← 1 to M do
10: Find: p

(

z
(τ),m
1 |Y(τ), z

(τ−1),m
2

)

11: Find: p
(

z
(τ),m
2 |Y(τ), z

(τ−1),m
1

)

12: end for
13: end if
14: Select N best states of line 10 and 11: z≺i ∈ Q≺

i and Q≺
i ⊆ Qi(1 : N)

15: New Model: p̂(τ)(Si|zi) = p(Si|z≺i )
16: Determine: {z⋆1 , z⋆2} = argmaxz≺1 ,z

≺

2

[

p(z≺1 , z
≺
2 |Y(τ))

]

17: end for
Algorithm 1: Generalized Fast Beam Search Algorithm.

4.5 Gibbs Sampling (GS)

In this section, we investigate approximative inference methods, based on numerical sam-
pling to speed up the likelihood computation. These so called Markov chain Monte Carlo
(MCMC) [106, 93] methods use the posterior distribution to evaluate likelihoods, supposing
that the direct likelihood computation is too complex. MCMC methods are in general used
to make inference in probabilistic models. Thus, expectations, or in practice, likelihoods are
computed in order to update model parameters in the maximization step. In particular, we
employ the Gibbs sampling technique for approximative likelihood computation in factorial
models for decoding.

The basic idea for the Gibbs sampling method is as follows [106]: We assume a certain
distribution p({z}) = p(z1, z2, z3) and some initial state of the variables. At each step, the
Gibbs sampling procedure replaces one variable, while it keeps the others constant. The
replacement is carried out by drawing a value for the selected variable from the distribution
conditioned on the values of all other variables. This step is carried out for all variables, either
by cycling through them in a specified order or randomly. For the above sample distribution
with three variables and for step m of the algorithm, the procedure at the beginning computes
p(z1|zm2 , zm3 ). Thereafter, the variable zm1 is replaced by zm+1

1 and we conditionally sample
for p(z2|zm+1

1 , zm3 ). After replacing zm2 by zm+1
2 , the same process is carried out for zm3 ,

conditioned on the new values of zm+1
1 , zm+1

2 . Hence, each variable is updated conditioned on
all other variables. In the update of the next variable, the current is replaced by its updated
value.

Now, we can put this procedure in the context of SCSS for approximate likelihood cal-
culation. Therefore, we are interested in the MAP estimate for each source. We can use
Eq. (3.5) to formulate the GS method as described in algorithm 2:
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1: Input: Y, VQ bases for speaker 1 and 2
2: Output: z⋆1 , z

⋆
2

3: Initialize: m = 1
4: Randomly initialize: {zmi }, i ∈ {1, 2}, j ∈

(

{1, 2} \ i
)

5: for m← 1 to M do
6: z⋆,m+1

i = ∼ p(zmi |Y, z⋆,mj )

7: z⋆,m+1
j = ∼ p(zmj |Y, z⋆,m+1

i )
8: end for

Algorithm 2: Gibbs Sampling (GS).

Here, we only deal with the inference problem by computing the posterior and not with the
entire parameter estimation process carried out during model training. Thus, the maximiza-
tion step, usually performed in the EM agorithm for the parameter update, is not executed.
This results in poor-convergence for the Gibbs Sampler. To overcome this problem, we intro-
duce the iterated conditional modes algorithm, which is a greedy approximation of the Gibbs
sampler. For the sake of completeness we nevertheless report results for the GS method in
the experimental section 4.7.

Iterated conditional modes method: The iterated conditional modes algorithm (ICM)
has been originally proposed for Markov random fields [112]. It is a time-consuming process
to optimize the joint probability of the MAP estimate p(z1, z2|Y) in Eq. (3.5). Therefore,
in the ICM algorithm a greedy strategy is used to sequentially optimize the joint probability
for one selected variable, while the remaining variables are kept constant, i.e. we iteratively
optimize z⋆i = argmaxzi

[

p(zi|Y, z⋆j )
]

for i 6= j and i, j ∈ {1, 2}. The algorithm to optimize
the MAP estimate for each time step via ICM is provided in Algorithm 3.

1: Input: Y, VQ bases for speaker 1 and 2
2: Output: z⋆1 , z

⋆
2

3: Initialize: m = 1
4: Randomly initialize: {zmi }, i ∈ {1, 2}, j ∈

(

{1, 2} \ i
)

5: for m← 1 to M do
6: z⋆,m+1

i = argmaxzi

[

p(zmi |Y, z⋆,mj )
]

7: z⋆,m+1
j = argmaxzj

[

p(zmj |Y, z⋆,m+1
i )

]

8: end for
Algorithm 3: Iterated conditional modes algorithm (ICM).

Alternatively, we initialize the ICM algorithm four times randomly. The random variable
associated to the first speaker is initialized twice as well as the second random variable,
which corresponds to the second speaker. Finally, the best {z1, z2} is selected among all four
executed runs. We abbreviate this method by ICM4. Figure 4.1 illustrates how the ICM4
algorithm approaches the MAP solution for a single observation of the speech mixture. Each
random initialization of the algorithm is labeled with a different color. The numbers denote
the search path taken to reach the maximum in the observation likelihood plane. For this
particular observation, the maximum is found by each of the random initializations.

Again, a naive implementation would have a complexity of O(TQ2). Using the Gibbs
Sampler or the ICM method as approximations of the likelihood calculation and assuming
M = 3 iterations are sufficient to let the algorithm converge, i.e. at least to a local maximum,
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Figure 4.1: Observation likelihood plane for a single frame of a female-female speech mixture.
The colored lines correspond to the four initializations of the ICM4 algorithm and the numbers
denote the search path sequence taken to approach the maximum.

the computational complexity can be reduced to O(T ·M · 2 ·Q). Note, the GS based algo-
rithms are the first introduced approximations, which entirely split the posterior likelihood
computation of a factorial model.

Finally, the Gibbs sampler and the ICM methods can also be applied to F-HMMs. In a
factorial HMM, the Viterbi algorithm has to track the best path in the high dimensional space,
i.e. one additional dimension for every hidden chain. Thus, the space would be quadratic,
for a factorial model with two hidden chains, as assumed in the SCSS problem. Gibbs based
techniques split this relation and either the transition probabilities can be directly integrated
in the ICM algorithm as:

z
⋆,(τ)
i = argmax

zi

p(z
(τ)
i |z

⋆,(τ−1)
i ) p(z

(τ)
i |Y, z

⋆,(τ)
j ), (4.6)

where z
⋆,(τ−1)
i denotes the best state for speaker i at time τ − 1. For this extended model

the computational complexity remains the same.

Furthermore, two independent instances of Viterbi decoders for each chain operating on
the same observations can be applied:

w(z
(τ)
i ) = log p

(

Y(τ)|z(τ)
i , z

⋆,(τ)
j

)

+ max
z
(τ−1)
i

(

log p(z
(τ)
i |z

(τ−1)
i ) +w(z

(τ−1)
i )

)

. (4.7)
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The extension to the framework of F-HMMs results in a reduced complexity of O(TM ·8Q)+
O(T · 2Q2), where the first part accounts for the observation likelihood computation of the
ICM4 and the second for tracking through the factorial model.

4.6 Computational Complexity

This section summarizes the computational complexity of the previously introduced subopti-
mal search heuristics. For the experiments, we use a vector quantizer (VQ) as statistical model
to capture speaker dependent characteristics. Each SD VQ has cardinality Q = |Z| = 500.
Hence, the training data was quantized into 500 cells. Table 4.1 summarizes the computa-
tional complexity of the introduced suboptimal search heuristics. The average length of the
speech mixtures is 1.69 sec. Moreover, table 4.1 shows the average run time (AT) for the
computation of the speech mixture separation of each algorithm. Additionally, we provide
a real-time (RT) factor, which is simply given as AT dived by the average speech mixture
length. Hence, the best performing algorithms with respect to the TMR, i.e. FBS and ICM4,
require ∼ 2.5 and ∼ 4 times of the speech mixture length for separation. We are confident
to improve the RT factor for both algorithms below one by efficient implementation. All
experiments have been performed using MATLAB on an Intel CPU CORE-i7 QUAD 920
running at 2.66GHz.

Table 4.1: Complexity comparison for FM-VQ using full search (FS), fast likelihood estima-
tion (FLE), fast beam search (FBS), Gibbs sampling (GS), and ICM4.

Method Comp. Complexity ♯ of Evaluations AT RT Factor

FS O(T Q2) 2.62e7 306.5 181.35

FLE O(T (k2 +K2)) 1.058e5 0.55 0.33

FBS O(Q2 + (T − 1) N2) 5.096e5 4.4 2.6

GS O(T M 2 ·Q) 3.072e5 1.59 0.94

ICM4 O(4 T M 2 ·Q) 1.29e6 6.50 3.85

For the determination of the number of observation likelihood evaluations in Table 4.1,
we assume to have T = 100 speech frames, which corresponds to 1 second of speech for a
frame rate of 10 ms. We assume k = K = 23 for the fast likelihood estimation (FLE), as
discussed in subsection 4.3. Moreover, for the FBS introduced in section 4.4 we set N equal
50. Finally, we assume that the number of iterations is M = 3 for the Gibbs sampling and
ICM technique (see section 4.5). The complexity for all suboptimal heuristics can be reduced
by approximately two orders of magnitude.

4.6.1 Performance and Cost Function

The observation likelihood in a factorial model determines the model quality of a specific
state combination given the speech mixture as observation. Thus, the observation model
includes a cost function, which measures the similarity between observed and hidden ran-
dom variables. To evaluate the observation likelihood approximations, we measure how close
these methods converge to the optimum, determined by the full search. To this end, the
maximum of the observation log-likelihood for every speech segment of an utterance is de-
termined. Afterwards, the time average for all test utterances is computed and the mean
maximum likelihood is found by averaging over the whole test database. The mean optimum
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likelihood of each heuristics is marked on the average observation log-likelihood curve deter-
mined using FS. Figure 4.2 and 4.3 show the performance of the methods on a linear and
logarithmic scale, respectively. The y-axis depicts the achieved log-likelihood of a specific
state combination, whereas on the x-axis the state combinations are displayed in descending
sorted log-likelihoods. Since each model has cardinality Q = 500, the total number of state
combinations is 250000. Inspecting Figure 4.2, it seems that all approximations come quite
close to the average optimum of the log-likelihood function achieved by the FS. In any case,
all approximations find relevant state combinations, i.e. a state combination after the sharp
bend of the curve leading to the maximum.

0 0.5 1 1.5 2

x 10
5

−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

State Combinations

lo
g−

lik
el

ih
oo

d 
p(

Y
 | 

z 1, z
2 )

 

 

FS
FBS
ICM
ICM4
GS

Figure 4.2: Mean log-likelihood function for all state combinations averaged over all test
utterances. Log-likelihoods are sorted in descending order (linear scale). The markers identify
the average score of the search heuristics.

The same plot on a log-log scale is shown in Figure 4.3. The maximum, achieved by the
full search (FS) is marked by a red cross. Furthermore, the maximum has been found by
the iterated condition modes algorithm with four initializations (ICM4), depicted as black
square. Reasonable results are found in descending order by the ICM and the fast beam
search (FBS). As already noted in section 4.5, the Gibbs sampler (diamond black marker)
has poor convergence and thus, achieves the worst result.

4.7 Experiments and Results

In the previous section, the performance of the search heuristics has been measured and
compared to the optimal log-likelihood cost function achieved by the FS. This section presents
performance results in target-to-masker ratio (TMR) for source separation and studies the
decrease in TMR for the approximation algorithms and compares them to the results of
Figure 4.2.
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Figure 4.3: Mean log-likelihood function for all state combinations averaged over all test
utterances. Log-likelihoods are sorted in descending order (logarithmic-scale). The markers
identify the average score of the search heuristics.

For testing, all files are mixed at a level of 0 dB TMR and all possible combinations
of target speakers and their interfering speakers are evaluated, resulting in altogether 54
mixed signals. Hence, 108 separated component signals are used for evaluation. To assess
performance, all mixtures are split into the three following cases: (i) the same gender female
(SGF), (ii) the same gender male (SGM), and (iii) the different gender (DG) cases. A detailed
description of the experimental setup can be found in chapter 1, section 1.5. A comparison
of the basic observation likelihood approximation methods in terms of TMR with mean and
standard deviation can be found in Table 4.2.

Table 4.2: Separation results in TMR [dB] for the full search (FS), fast likelihood estimation
(FLE), fast beam search (FBS), and iterated conditional modes (ICM) methods. Average
TMR results with standard deviation (Std) are listed separately for the three different mixing
cases.

Method SGF SGM DG

Mean 11.27 5.64 10.29
FS

Std 2.40 0.64 2.03

Mean 9.26 4.23 8.05
FLE

Std 2.66 1.25 2.16

Mean 9.59 4.71 9.02
FBS

Std 2.90 0.81 1.94

Mean 8.45 4.55 8.36
ICM

Std 2.26 0.88 1.70

For the given model size Q, the results of the full search (FS) are the upper bound
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for all three cases, i.e. SGF, SGM, and DG. We note that none of the basic approximation
techniques obtain the TMR of the FS. However, each of these methods can increase the TMR
substantially. Moreover, the proposed FBS for all three cases has a superior performance
compared to FLE and ICM for the specified setting. Separate experiments for the GS based
methods and the FBS algorithm have been performed. For the GS based methods, first
the GS algorithm is implemented. Second, we replace the sampling step of the GS by the
maximum operator known as ICM algorithm. We employ performance for the ICM for two
different settings: (i) We randomly initialize the ICM at every time step abbreviated by
ICM. (ii) The ICM4 is four times randomly initialized (see Section 4.5). A comparison of
all Gibbs based methods can be found in Table 4.3. Apparently, the GS method does not
converge. Moreover, the ICM4 leads to a good approximation compared to the FS. This is
also in accordance with the obtained likelihood in the cost function of Figure 4.3.

In Figure 4.4, generalized FBS results for various setups are compared to each other, as
well as to the full search. The numbers in the label represent M and N (FBS-M-N ), where M
is the number of best states at time step τ−1, used to determine the N best states, which are
actually used for decoding at time step τ . The results show that for a fixed value of M = 1, a
larger value ofN increases the TMR, but decreases the performance in terms of computational
complexity. Increasing N to Q results in the FS method. However, fixing N = 50 and varying
M from 1 to 3 leads to an increase of the TMR but keeps the computational complexity almost
constant. A lager value of M just increases the computational burden during the selection of
the best states and not the computational complexity for the factorial observation likelihood
computation.

Figure 4.5 summarizes the results of the observation likelihood approximations. Specif-
ically, the initial approximations (FBS, ICM) and their improved versions FBS-3-50 and
ICM4 are compared. For convenience, the results of the full search (FS) and the FLE
method are plotted as well. The proposed search heuristic ICM4 approximates the MAP
solution determined by full search best.

Table 4.3: Separation results in TMR [dB] for likelihood estimation, using different Markov
chain Monte Carlo methods. Average TMR results with standard deviation (Std) are listed
separately for the three different mixing cases.

Method SGF SGM DG

Mean 4.92 4.16 5.76
Gibbs

Std 1.10 1.29 1.50

Mean 8.45 4.55 8.36
ICM

Std 2.26 0.88 1.70

Mean 11.25 5.46 10.11
ICM4

Std 2.41 0.73 2.11

Finally, we apply the introduced likelihood approximations to factorial models with dy-
namics, the FM-HMM. The results are consistent with the FM-VQ results. A summary is
illustrated in Figure 4.6. In this experiment, the beam width of the beam search was set
to 500 (BS-500). We did not change the setting for all other suboptimal search heuristics.
In order to perform tracking, the Viterbi algorithm is employed for all but the max-ICM4
method. This method is the natural extension of the ICM4 to models with dynamics as in-
troduced in Eq. (4.6). We emphasize that only the ICM based methods split the observation
likelihood computation entirely. Moreover, the ICM4 approximation shows superior perfor-
mance compared to all other discussed approximation heuristics. Note, the additional use of
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dynamics increases computational complexity but does not increase the TMR significantly.
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Figure 4.6: FM-HMM results using the approximation methods: beam search (BS), fast beam
search (FBS), fast likelihood estimation (FLE), iterated conditional modes using Viterbi
(ICM), ICM4 with Viterbi tracking (Vit-ICM4), and ICM4 with tracking (max-ICM4). The
TMR is depicted separately for the SGF, SGM, and DG cases. See section 1.5 for more
details.

4.8 Conclusion

This chapter introduced two new techniques to approximate the observation likelihood for
models of factorial nature in order to reduce the computational complexity. These methods
have been compared to the full posterior likelihood calculation and to the fast likelihood
computation method, proposed in [108, 36]. We have shown that the complexity reduction
for both methods is significant and results only in a slight decrease of performance in terms
of TMR, compared to the full search. Additionally, we extended the heuristics for first
order Markov processes, i.e. for F-HMMs. For the iterative conditional modes algorithm
with re-initialization (ICM4), we can report no significant decrease in performance at all.
Interestingly, there is strong evidence that the ICM4 method can be applied for factorial
models with independent hidden variables. As a result, the corresponding Markov chains
evolve independently over time. Additionally, we provided a real time factor, defined as the
ratio of mean execution time to mean speech mixture length, for all algorithms. This factor
shows that the ICM4 and the FBS methods are competitive candidates for real-time SCSS.



Chapter 5
Gain And Shape Modeling For Source

Separation

5.1 Introduction

In model based single channel source separation (SCSS) generative models are trained for each
speaker, using single speaker utterances. These utterances are usually normalized to their
maximum amplitude in the time domain. Afterwards, the signals are transformed to a time-
frequency representation. Finally, the trained models are employed for source separation. In
this process, the codewords of a VQ or the mean values of a GMM/HMM are employed as
emission density means. These mean values are utilized as prototypes to represent the given
speech mixture observation. Throughout this chapter we employ the mixmax interaction
model of chapter 3, Eq. (3.16) as model combination operator. Following this procedure,
each speaker dependent (SD) model is trained on the same energy level. Hence, the models
are trained to perform best for component signals mixed at equal level. For other mixing
levels however, there is a mismatch for these trained models.

Recently, Kristjansson et al. [5] proposed to estimate the mixing level measured in the
signal-to-noise ratio (SNR), which is similarly defined as the TMR in Eq. (1.2), for the whole
speech utterance a priori. For this purpose, speech frames originating from a single source
are identified. In their work, speaker identity and mixing level are estimated simultaneously
on just these frames. This is done in an expectation-maximization like fashion. In the
expectation step, the likelihood for a hypothesized speaker pair is calculated, whereas in
the maximization step the appropriate mixing level is estimated. Before separation, the
identified speaker dependent models are globally adjusted by the estimated TMR. Therefore,
the whole utterance must be available in advance. Hence, this method cannot be applied for
online separation. Additionally, in [5] the TMR is selected out of a discrete finite set, which
also seems to be restrictive.

In Radfar et al. [24] the mixing level has been estimated in a maximum likelihood based
way. Here, the state combinations have been maximized for each mixing level taken from a
discrete set. The state combinations and mixing levels with the highest likelihood, averaged
over the whole utterance are finally employed for separation. Thus, this procedure results in
an M -times higher complexity, where M is the number of different discrete mixing levels.

Non-negative matrix factorization (NMF) [65] decomposes the observation into a weight
and bases matrix. The contribution of each basis stored in a dictionary is thus estimated

53
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Figure 5.1: Shape-Gain production model

inherently in the algorithm. NMF estimates the weights on a frame basis and assigns to each
basis a weight equal or greater than zero. Thus, the mixture is approximated by a weighted
combination of all SD bases, which is in spirit akin to the posterior mean. In this chapter
however, the explicit gain estimation for a particular state is of interest. Therefore, NMF
will be adapted in section 5.2.5.

In contrast to previous work, we propose to estimate the gain associated to each speaker
for every speech segment separately. This gain estimation replaces the estimation of the
mixing level. It provides the benefit to be applicable for online processing without restriction
to a fixed discrete set. This is motivated by the shape-gain Vector Quantizer (VQ), proposed
by Sabin [50] to encode single speech utterances. The shape-gain VQ decomposes the coding
problem into that of coding a scalar, the gain, and a vector, the shape. The separate shape
and gain coding is motivated by the fact that in speech the same shapes can be produced
at different levels. Vector quantizers, however, model shapes of different gains with separate
codewords.

In contrast to the shape-gain VQ, the gain is not selected from a discrete set, a codebook,
but instead is estimated during decoding. Hence, the gain is an online determined continuous
valued estimate. The underlying shape-gain production model for source separation is shown
in Figure 5.1. In the model, each speakers’ normalized shape of a time frame is weighted
by the gain factor ai. The mixture y(t) is the summation of the frames of speaker s1(t) and
s2(t). Note that shapes correspond to normalized codewords or state means. In the sequel,
we will use this denomination interchangeably.

Problem formulation: The gain estimation for source separation can be seen as an op-
timization problem. In particular, it is a linear least squares problem with linear inequality
constraints:

minimize: min
x

f(x)

subject to: g(x) ≥ h
(5.1)

Here, the objective function f(x) is the quantity to be minimized and g(x) are the inequality
constraints. To solve linear least squares problem with linear equality constraints, the method
of Lagrange multipliers [106] and [113, Ch. 5] can be used. Problems with linear inequality
constraints however have to be solved using the Karush-Kuhn-Tucker Condition [114].

In particular, for a given observation y and given normalized prototype shapes s1 and s2

of the hidden variables z1 and z2 the optimization problem can be formulated as follows:

minimize: min
a1,a2

|| Sa− y ||2
subject to: a1, a2 ≥ 0,

(5.2)
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where S =
[

s1, s2

]

and a = [a1, a2]
T are the normalized speech shapes and the unknown gain

variables, respectively. Assuming independent shapes, each gain variable can be optimized
separately. This case is called singular variable optimization. The parallel optimization of
the gain variables is know as multi-variable optimization.

In the sequel, different methods are introduced to solve the shape-gain problem as for-
mulated in Eq. (5.2). Therefore, we split the problem and separately address the problem of
gain estimation in section 5.2 and shape estimation in section 5.3. In the experiments, gain
estimation performance will be assessed for known shapes. Finally, we combine the gain and
shape estimation and perform SCSS.

5.2 Gain Estimation

5.2.1 Maximum-Likelihood Gain Estimation

In this section, the gain is modeled as the weighting ak of the Gaussian mean µk of a Gaussian
mixture model (GMM) with k ∈ {1, . . . ,K} components. Here, we assume that the observed
single speaker data s follow a Gaussian distribution:

p(s|µ, a) = N (s; a · µ, σ2),

where N is the normal distribution, a · µ is the gain adjusted density mean, and σ2 is the
variance. This gain model is similar in spirit to that proposed by Bimbot et al. [84]. In
contrast to their work, we do not assume Gaussians with zero mean and do not derive the
gains for the variance of the Gaussians in a GMM. The definition of the gain-shape GMM
for single speaker speech is as follows:

p(s|a1, . . . , aK) =

K
∑

k=1

ωk
1√

2π σ
· exp−

(

s− ak µk
)2

2σ2
, (5.3)

where s is the spectrum of the observed speech frame, µk is the Gaussian mean value of com-
ponent k, and ak are the gains associated to each Gaussian component. Note, in this model
the Gaussian means represent the shapes. Further, ωk is the weighting of each Gaussian,
where ωk fullfills the constraint to be positive ωk ≥ 0 and

∑

k ωk = 1. σ2 is assumed to
be the diagonal covariance. The model of Eq. (5.3) can be extended to that of observing a
mixture of two speakers:

p(y| k1, k2, a
k1
1 , a

k2
2 ) =

1√
2π σ

· exp−
(

y − (ak11 µ
k1
1 + ak22 µ

k2
2 )
)2

2σ2
. (5.4)

Note, For a given observation and given shapes µk11 and µk22 , the goal is the maximization of
the objective function subject to a1 and a2 under the positivity constraint:

{âk11 , â
k2
2 } = argmax

a
k1
1 ≥0, a

k2
2 ≥0

p(y| k1, k2, a
k1
1 , a

k2
2 ).

The quality of the estimation of the parameters depends on the variance of the assumed
density function. Thus, the “sharpness” of the Gaussian likelihood function determines the
estimation accuracy of the unknown parameters [115]. The variance of parameters in the
likelihood function is measured by taking the negative of the logarithm of the objective
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function γ(y) and differentiate twice, i.e., −∂2 log γ(y)
∂a2 . For the ML-based gain estimation

however, we take the logarithm of the likelihood function p(y| k1, k2, a
k1
1 , a

k2
2 ) as:

log γ(y) = − log(
√

2π σ)− 1

2σ2

(

y − (a1µ1 + a2µ2)
)2
, i ∈ {1, 2}. (5.5)

Subsequently, the dependency on the Gaussian component k of the GMM will be omitted,
for simplicity. To optimize Eq. (5.5) with respect to ai under the constraint that ai ≥ 0 we
can define the Kuhn-Tucker equations:

− log(
√

2π σ)− 1

2σ2

(

y− (aiµi + ajµj)
)2

+ λi(ai − c) = 0 (5.6)

λi(ai − c) = 0 (5.7)

λi ≥ 0,

where we set c = 0.

Differentiating Eq. (5.6) with respect to ai, i.e. ∂ log γ(y)
∂ai

and combining it with Eq. (5.7)
finally results in:

aiµi ·
y−

(

aiµi + ajµj
)

σ2
= 0, (5.8)

where i 6= j and i, j ∈ {1, 2}. Now, we can find an iterative additive update procedure, by
using a gradient descent method as described in [116]:

a
(l+1)
i = a

(l)
i + ζ

[µiy

σ2
− µi
σ2

2
∑

j=1

a
(l)
j µj

]

, i ∈ {1, 2}, j ∈ ({1, 2} \ i) (5.9)

where ζ is in general a small constant greater than zero and l denotes the iteration. Thus,
ζ controls the impact of changes on a from iteration l to iteration l + 1. To move from the
additive update scheme to a multiplicative update [66], we set ζ = ai

µi

σ2
i

∑2
j=1 ajµj , which

results in:

a
(l+1)
i = a

(l)
i

D
∑

d=1

(µi(d) y(d)

σ2(d)

)

/
D
∑

d=1

(µi(d)
∑2

j=1 a
(l)
j µj(d)

σ2(d)

)

, (5.10)

where d = [1, . . . ,D] is the frequency bin index. A simplification of the update rule can be
achieved by replacing the variance σ2 = (

∑2
j=1 ajµj)

2 in Eq. (5.10). The new update formula
of Eq. (5.11) is akin to that proposed in [84] for variance gain estimation:

a
(l+1)
i = a

(l)
i

D
∑

d=1

( µi(d) y(d)

σ(d)2

)

/

D
∑

d=1

(µi(d)

σ(d)

)

, (5.11)

The whole gain estimation method is summarized in algorithm 4, where in line 8 Eq. (5.10)
can be replaced by its simplified version of Eq. (5.11). Note, the value of the variance
is noncritical. Either a small constant or the true variances, which have to be adjusted
accordingly at each iteration as σ = (

∑2
j=1 ajσj), can be used. Furthermore, note that, for

the multiplicative update scheme, no parameters have to be tuned.

The multi-variable ML-based estimation can be similarly applied for singular variable
estimation.
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1: input: y(d), VQ bases µ1, µ2 for speaker 1 and 2
2: output: a1, a2

3: randomly initialize: a
(1)
1 , a

(1)
2

4: initialize: l = 1, g(0) ≫, and ǫ≪
5: repeat

6: g(l)(d) = a
(l)
1 µ1(d) + a

(l)
2 µ2(d)

7: for i = 1 to 2 do

8: a
(l+1)
i = a

(l)
i

∑

d

(

µi(d)y(d)
σ2(d)

)

/
∑

d

(

µi(d)g(l)(d)
σ2(d)

)

9: end for
10: l = l + 1

11: until (a
(l+1)
1 − a(l)

1 < ǫ) ∩ (a
(l+1)
2 − a(l)

2 < ǫ)

Algorithm 4: Iterative multi-variable ML-based gain estimation.

5.2.2 Nonlinear Gain Estimation

Alternatively, the gain factor can be estimated as an additive component in the logarithmic
domain. We employ a nonlinear method based on percentile filtering for estimation. In
general, the gain normalized speech segment S and the speech segment with gain S have the
following relation in the log-domain:

Si = ai + Si → ai = Si − Si, (5.12)

where a(d) is the gain vector containing the same value for each vector entry, i.e. a(d) =
const. ≡ a · 1, where 1 is a vector with all components equal to one. If the true normalized
speech frames are however replaced by the density means µi, the representation does not
match exactly anymore. This results in a gain vector containing different values in a. In
order to tackle this problem we have to estimate the gain for each speech segment. The
Gaussian probability density model of Eq. (5.3) basically measures the similarity between
the speech segment Yi and µki

i .

The probability density function for the speech mixture of Eq. (3.16) in the log-frequency
domain is given as:

p(Y| k1, k2) =
1√

2π σ
exp

(

−
(

Y −max(µk11 , µ
k2
2 )
)2

2σ2

)

, (5.13)

where we represent Si by µki

i . The gain factors ai should be determined such that the
likelihood of observing Y is maximized. We discovered that we can find each gain factor
independently. In order to estimate the gain of a speakers’ density mean given the observed
speech mixture Y, we adapt Eq. (5.12) to ai(d) = Y−µki

i and perform percentile filtering [92]
on the gain vector ai(d). In contrast to the percentile filtering as defined in [92] where the
filtering is performed over time, we define the percentile filtering over frequency. Therefore,
the gain vector is first sorted in ascending order:

ai(ρ0) ≤ ai(ρ1) ≤ . . . ≤ ai(ρD). (5.14)

The estimate for the gain is obtained by taking the rth-percentile as â = ai(⌊rD⌋), where
0 ≤ r ≤ 1 and ⌊·⌋ indicates the element-wise rounding operator. Taking the value r = 0
corresponds to the minimum in a and r = 0.5 to the median. For noise estimation, the
median is considered to be a robust estimator.
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5.2.3 Projection based Gain Estimation

In this section, we follow the notion of orthogonal matching pursuit (OMP) [117] [118] to
estimate the gain factor of each speech basis. In OMP, dictionary atoms are estimated
by projecting the observed signal in the space spanned by the dictionary. In general, we
suppose that the dictionary is complete and may have an infinite number of atoms. An usual
application of OMP is signal coding, where the C best matching atoms with their respective
gain estimates are selected in order to approximate the signal. For example, a signal frame
s(t) is represented by the weighted sum of dictionary atoms hc(t) plus a residual component
r(t) as:

s(t) =
C
∑

c=1

a(c)hc(t) + r(t) (5.15)

Afterwards, the indices associated to the dictionary atoms and their gains are optionally
transmitted and used to represent the signal. The orthogonality property of the dictionary
atoms enables the iterative estimation of the dictionary elements. Here, elements are selected
using the inner product, defined as 〈s(t), h(t)〉 =

∑T
t=1 s(t) h(t). The gain associated to each

atom is estimated by the same equation, given that each dictionary atom is normalized to
unity gain.

For SCSS, the dictionaries are represented by speaker dependent (SD) trained statistical
models, i.e., VQ codebooks. Moreover, the gain determination is carried out in the magnitude
frequency domain. In contrast to OMP, the state means of an SD model are in general not
orthogonal to each other. However, we assume independency or at least quasi-orthogonality
between the models of two speakers. Roweis [69] has shown that this assumption is valid.
Therefore, the gain factor of each SD speech shape can be determined independently of the
respective other speaker. We employ OMP for gain estimation only and not to determine
specific dictionary elements. The gain associated to a dictionary atom of a particular speaker
is simply determined as: a(zi) = 〈y, µ(zi)〉. Thus, this idea is akin to shape-gain vector
quantization as described in [119].

5.2.4 Nonnegative Least Squares based Gain Estimation

The nonnegative least squares algorithm [114] uses the Kuhn-Tucker condition to solve the
problem, as defined in Eq. 5.1 in an iterative manner. At the beginning, the algorithm sets
all entries of a to zero. Afterwards, the signal is projected into the space spanned by the SD
models as already shown in the projection based algorithm (see section 5.2.3). The codeword
for the VQ with the highest positive correlation is selected. For this given codeword the gain
factor ai is estimated using the least squares solution of µi · ai ≃ y. Thus, ai is determined
by

ai = (µTi µi)
−1 · µTi y.

Only if this determined gain factor ai is positive, the codeword is kept. The resulting weighted
basis is subtracted from y and the residual is utilized for the projection, described at the
beginning. These steps are carried out until a minimum error criterion is met or no codewords,
which fullfill the above constraint, are found. In our case, only the gain estimation procedure
is of interest. Thus, we constrain the algorithm to estimate either a single gain value for one
input shape or alternatively two gain values for two input shapes.
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5.2.5 Nonnegative Matrix Factorization based Gain Estimation

Nonnegative matrix factorization (NMF) has been already introduced in chapter 2, sec-
tion 2.2.2. Originally, NMF was introduced to code parts of objects [65] by dividing ob-
servation in a weight and a bases matrix. In the context of shape-gain coding of speech
mixtures for speech separation, we employ NMF just for gain estimation. Therefore, in the
NMF update rules, only the update of the weights is used and the update for the bases, which
correspond to the shapes, is disabled.

5.2.6 Auditory Motivated Gain Estimation

In this section, we utilize a property of the human auditory system to estimate the gain
independently for each speaker. Specifically, the human auditory masking property in the
frequency domain is employed [8]. Let us assume two different sound events played at the
same time in the same frequency range at different sound levels. Masking refers to the
property that the sound played at the lower level is inaudible because of the louder sound.
Thus, the sound at lower level is masked by the sound at higher sound pressure level. This
directly results in the motivation of the binary mask, discussed in chapter 3, section 3.4. In
this section, the gain is also estimated as an additive component in the logarithmic frequency
domain as done in section 5.2.2. Therefore, we employ the described masking property and
assume that each time-frequency cell with high energy is occupied by just one speaker. This
is in accordance with the sparseness assumption of speech in a high resolution time-frequency
representation. The auditory gain estimation is illustrated in algorithm 5. (i) Select high
energy frequency cells in each emission density mean µi of both speaker dependent models.
This is done by calculating all critical points dC , by setting the first derivative to zero, as
shown in line four. Note, the prime operator µ′i(d) indicates the first derivative. In line five,
Fermat’s Theorem 1 is employed to select all dM local maxima from the critical points. (ii)
From this set of frequency bins dM , the subset dm ⊂ dM with highest energy remains. Here,
dm comprises |dm| = M elements. Experimentally, a value of M = 10 was determined, due
to it’s good performance. (iii) Subsequently, the difference ǫ of the observation Y and µi at
the selected indices of maxima is calculated. The gain ai is finally determined by taking the
median of ǫ. This algorithm has been adapted from that introduced in [120].

1: input: Y, VQ basis µ1, µ2 for speaker 1 and 2
2: output: â1, â2

3: for i = 1 to 2 do

4: Find critical points dC : dc = {d|µ′i(d) = 0}
5: Find maxima of dC : dM = {dc|µ′′i (dC) < 0} c ∈ {1, . . . , C}
6: Sort levels of maxima in descending order: sort(µi(dM ))
7: Select first N indices of dM with highest level: dm ⊂ dM , where |dm| = N
8: Compute: χ = Y(dm)− µ(dm)
9: Estimate gain âi: âi = median(χ)

10: end for

Algorithm 5: Auditory motivated gain estimation.

1This theorem gives instructions how to find local maxima and minima of differentiable functions.
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5.3 Combined Shape and Gain Estimation

So far, only the estimation of the unknown gains for given shapes has been discussed. This
section introduces three structures to estimate both, gain and shape. The first structure,
denoted as shape-gain decoder, determines the shape first and the gain afterwards. Secondly,
the gain-shape decoder estimates the gains of both speakers simultaneously. Subsequently,
for the predetermined gains, the most likely shapes are estimated. Thirdly, for each SD shape,
the gain is estimated independently. Following, the gains and shapes are used to construct
prototype densities which are employed for separation.

5.3.1 Shape-Gain Decoder

The shape-gain decoder, as introduced in [50] determines in a first step the shape vector for a
given observation. This is accomplished by projecting the observation in the unitary space of
the shape vector codebook. The best matching shape of the shape vector codebook is further
employed for gain estimation. Afterwards, for the given shape the best gain is selected from
the gain codebook. In [50], the separate coding of shape and gain was applied to linear
predictive coding (LPC) coefficients and speech waveforms. This method was designed for
single-speaker speech only. An extension of this method in order to decode two speakers
talking simultaneously, is shown in Figure 5.2. This decoder structure can be embedded
naturally in the already introduced ICM decoding algorithm (see chapter 4, section 4.5).
Here, speaker separation is carried out by sequential speaker decoding. At the beginning, the
shape of the first speaker with best match is selected. Afterwards, the gains are estimated
for the determined shape of the first speaker and a randomly selected shape for the second
speaker. The estimation of the gain factors is indicated by the distance function, shown in the
Figure 5.2. The function d(a, b) determines the distance between a and b and the minimization
of this function is carried out by the methods, discussed in the previous sections. From here,
the estimated gain of the first speaker is used to calculate a residual signal r. This residual
is employed to determine the best matching shape of the second speaker. Finally, the gains
are estimate for the given shapes. This procedure is iterated as described for the ICM4
algorithm in chapter 4, section 4.5. Note, this decoder structure can be used for both, multi-
and singular-variable estimation.

5.3.2 Gain-Shape Decoder

The gain-shape decoder structure as shown in Figure 5.3 naturally fits in the maximum-
likelihood framework of factorial models employed for SCSS. However, the computational
complexity is also of factorial nature. In this structure, the gain is firstly estimated for
all shape codeword combinations of two speakers. This is achieved by minimizing a certain
distance function d(a, b). Afterwards, in the shape estimation module the adjusted codewords
are employed for MAP estimation. Note that this decoder structures always perform multi-
variable gain optimization.

5.3.3 Independent Speaker Decoder

The simultaneous speech of two speakers in general can be assumed to be independent.
Consequently, we can expect that also the gains of each speakers’ shape are independent and
hence can be estimated independently. Figure 5.4 depicts a structure, where the gain of each
shape codeword of a speaker dependent VQ is estimated independently of the competing
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Figure 5.2: Shape-gain decoder structure for the ICM4 based observation likelihood compu-
tation. The gain factor computational complexity is significantly reduced.

Figure 5.3: Gain-shape decoder structure for multi-variable gain optimization methods.

speaker. Thus, for this structure only singular variable estimation methods can be employed.
At every instant of time, the gain associated to a shape codeword of a speaker is determined.
Once all gains are computed the most likely codeword combination can be identified. For
this structure, all heuristics approximating the observation likelihood can be employed.
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Figure 5.4: Gain-shape decoder structure with independent gain estimation for each mean
value associated to a hidden variable.

5.4 Experiments and Results

Performance of the six introduced gain estimation methods is assessed in two different ex-
periments. Firstly, the gain estimation performance is evaluated exclusively. Therefore, the
shapes are assumed to be a priori known and only the gains, observing the speech mixture,
are estimated. The normalized speech frames of each speaker are employed as shapes. The
second experiment investigates both, the gain and shape estimation. The decoding structures
introduced in section 5.3 are used for this task.

5.4.1 Supervised Gain Estimation

In this section we assess performance of all gain estimation methods. Therefore, two speech
signals are mixed at TMR levels of 0, 3, 6, and 9 dB. Afterwards, all signals are transformed
to the frequency domain and each component speech signal, i.e. S1 and S2, is normalized.
For the methods operating in the log-frequency domain, the signal segments are normalized
such that the maximum frequency component has 0 dB. Signals in the magnitude frequency
domain are normalized to unit norm. These normalized component speech segments are
abbreviated as si and Si in the magnitude or log-magnitude domain, respectively. In this
experiment, the gain estimation capability of each method is investigated. Therefore, the im-
pact of shape estimation errors is excluded, using the normalized component speech segments
as reference shapes. This results in the gain estimation for every single speech segment for
an observed speech mixture and given reference shapes. Finally, the normalized component
signal segments are weighted by the gain estimates and compared to the true signals.

Figures 5.5,5.6, 5.7, 5.8, 5.9, and 5.10 (a) and (b), respectively, compare the gain estimates
(black solid line) to the true gains (blue dashed lines) for two female component speakers
over time. For these experiments, the underlying signals are mixed at equal level. The
amplitudes are normalized to the range between zero and one in the plots. For evaluation,
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the gain estimates are found for given normalized speech segments Si and the observed speech
mixture Y . From visual inspection, we observe that the gain estimates of all methods can
follow the true gains quite well.

For all gain estimation methods, the TMR results for both, the target (t) and the masker
(m) speech signal are depicted in table (c) of Figure 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10, respec-
tively. Results are shown for different mixing levels, split into three cases, namely, same
gender female (SGF), same gender male (SGM), and different gender (DG). In general, the
SNR between reference and estimated signal increases for the target and decreases for the
masker as the mixing level in TMR increases. Further, the methods can be divided in those
estimating the gain for both component signals simultaneously, and those estimating the
gain independently for each component signal. The maximum likelihood based method, as
multi-variable estimation method, is insensitive to TMR changes (see Figure 5.5 (c)). The
nonlinear, the matching pursuit and the auditory gain estimation as representatives of the
singular variable estimation procedure, show in general lower TMR improvements. For these
methods, the gain estimation performance decreases for the masker with increasing TMR.
This is expected, since the estimation problem gets more difficult the more speaker specific
energy is obscured. As a comparison, without gain estimation, we measure a TMR of, e.g.
1.58 dB for the target and 2.55 dB for the masker speaker for the SGF case and an equal
mixing level.

Maximum-likelihood based gain estimation results:
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(c) Gain estimation performance for four different mixing levels measured in TMR.

TMR SGF SGM DG
[dB] t m t m t m

0 29.02 24.79 27.18 25.17 23.44 25.17

3 29.38 27.79 26.12 24.81 24.96 23.83

6 29.70 26.34 26.66 23.53 26.13 23.18

9 30.39 25.48 27.14 23.62 27.20 21.99

Figure 5.5: Maximum-likelihood gain adjustment. (a) and (b) show the true (blue dashed
line) and estimated (black solid line) normalized gain for the component signals FE1 and
FE2 observing just their mixture signal. (c) illustrates results for the three mixing cases with
different mixing levels for target (t) and masker (m) speaker.
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Nonlinear gain estimation results:
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(c) Gain estimation performance for four different mixing levels measured in TMR.

TMR SGF SGM DG
[dB] t m t m t m

0 17.1 19.1 15.7 16.1 19.3 18.2

3 17.5 19.1 15.9 12.9 19.6 16.1

6 18.6 16.5 16 11 19.4 13.7

9 20.8 13.6 16.3 8.6 19.3 10.5

Figure 5.6: Nonlinear gain adjustment method. (a) and (b) show the true (blue dashed
line) and estimated (black solid line) normalized gain for the component signals FE1 and
FE2 observing just their mixture signal. (c) illustrates results for the three mixing cases at
different mixing levels for target (t) and masker (m) speaker.

Projection-based gain estimation:
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(c) Gain estimation performance for four different mixing levels measured in TMR.

TMR SGF SGM DG
[dB] t m t m t m

0 22.05 15.90 10.60 12.90 18.70 14.44

3 25.91 12.95 14.33 9.84 22.34 9.76

6 29.43 10.43 17.51 7.14 25.80 6.18

9 31.94 8.13 28.88 4.20 20.99 4.89

Figure 5.7: Matching pursuit gain adjustment method. (a) and (b) show the true (blue
dashed line) and estimated (black solid line) normalized gain for the component signals FE1
and FE2 observing just their mixture signal. (c) illustrates results for the three mixing cases
at different mixing levels for target (t) and masker (m) speaker.
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Least Squares based gain estimation:
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(c) Gain estimation performance for four different mixing levels measured in TMR.

TMR SGF SGM DG
[dB] t m t m t m

0 24.07 20.82 13.46 19.09 21.76 24.42

3 25.58 18.69 16.05 16.74 23.99 22.35

6 27.07 17.01 18.86 14.35 26.36 20.20

9 28.70 15.60 21.49 11.97 28.68 18.14

Figure 5.8: Nonnegative least squares gain adjustment method. (a) and (b) show the true
(blue dashed line) and estimated (black solid line) normalized gain for the component signals
FE1 and FE2 observing just their mixture signal. (c) illustrates results for the three mixing
cases at different mixing levels for target (t) and masker (m) speaker.

Nonnegative Matrix Factorization based gain estimation:
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(c) Gain estimation performance for four different mixing levels measured in TMR.

TMR SGF SGM DG
[dB] t m t m t m

0 25.00 23.44 17.86 18.32 21.42 22.78

3 26.54 21.53 19.08 18.97 22.97 21.61

6 27.52 20.34 20.77 16.59 20.77 16.59

9 28.66 19.02 22.13 15.29 26.60 19.01

Figure 5.9: Nonnegative matrix factorization based gain adjustment method. (a) and (b)
show the true (blue dashed line) and estimated (black solid line) normalized gain for the
component signals FE1 and FE2 observing just their mixture signal. (c) illustrates results
for the three mixing cases at different mixing levels for target (t) and masker (m) speaker.
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(c) Gain estimation performance for four different mixing levels measured in TMR.
TMR SGF SGM DG
[dB] t m t m t m

0 24.73 20.22 15.88 20.68 21.85 13.85

3 28.37 16.97 20.26 16.75 25.01 9.92

6 31.75 13.77 23.78 13.05 27.74 7.58

9 33.71 10.73 26.39 9.72 29.98 5.40

Figure 5.10: Auditory motivated gain adjustment method. (a) and (b) show the true (blue
dashed line) and estimated (black solid line) normalized gain for the component signals FE1
and FE2 observing just their mixture signal. (c) illustrates results for the three mixing cases
at different mixing levels for target (t) and masker (m) speaker.

5.4.2 Shape-Gain Single Channel Source Separation

This section evaluates the performance of the introduced gain estimation methods for the
SCSS task. In this experiment, all signals are mixed at equal level, using the experimental
setup introduced in chapter 1, section 1.5. Moreover, the training speech material in the
magnitude frequency domain has been normalized to unit norm prior to model training. The
factorial-max VQ model with gain estimation is employed for source separation.

We investigate all three structures for the maximum-likelihood based gain estimation
method: (i) The gain-shape decoder of Figure 5.3 denoted as GS-VQ method. This decoder
performs gain estimation of each shape combination firstly. Afterwards, the shape models
are adjusted by the gain estimates. Secondly, these gain adjusted models are used to find
the most likely shape combination. (ii) The iterative shape-gain structure of Figure 5.2 is
labeled as SG-VQ. As a first step, this decoder determines the shapes by the projection
measure. Afterwards, the gains are just estimated for selected shapes. (iii) The ML-based
gain estimation method is adapted for singular value optimization. Hence, the independent
gain estimation decoder, introduced in section 5.3.3, is used for separation. This method
is denoted as Ind-ML-GE in the experiment. Note, the gain estimation is carried out for
every time step. Figure 5.11 compares the performance in TMR of the three structures.
For all cases, the Ind-ML-GE decoder shows superior performance. For the remaining two
simultaneous gain estimation methods, the shape gain VQ (SG-VQ) increases the TMR
better than the gain-shape structure (GS-VQ). It is worth to note that for the ML-based
gain estimation the independence of the hidden variables, associated to each speaker can also
be employed for gain estimation. A comparison of the structures in terms of computational
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complexity shows a much lower complexity for the SG-VQ. While for the SG-VQ the gains
are just estimated for selected states, the GS-VQ structure estimates the gains for all state
combinations of the two speakers. This structure results in a Q-times higher complexity
compared to the SG-VQ structure, i.e., O(“GS-VQ”) = O(Q “SG-VQ”), for the used ICM4
heuristic. Finally, the Ind-ML-GE gain estimation based separation method, using ICM4,
increases the computational complexity compared to the ICM4 just marginally. Thus, this
method combines both, good performance and low additional complexity.
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Figure 5.11: Separation performance in TMR for the ML-based gain estimation. Results
are shown for gain-shape based (GS-VQ), independent gain estimation (Ind-ML-GE), and
shape-gain (SG-VQ) based separation of two speech signals.

The next experiment investigates the nonlinear percentile filtering technique for gain
estimation. We assess source separation performance of the percentile filtering method by
taking different values for the rth-percentile. Specifically, r ranges from the 0.1st- to the
0.5th-percentile in steps of 0.1. The gains of each speaker are estimated independently using
the structure shown in Figure 5.4. Figure 5.12 depicts the results. The percentile technique
using the 30 percent percentile improves the TMR the most for all 3 cases. Therefore, it is
used for comparison to the other gain estimation methods.

In section 5.2.5, NMF was introduced for pure gain estimation. This experiment compares
the independent gain decoder (Ind-GE-NMF ), as singular value estimation and the gain-
shape decoder (GS-NMF-VQ), as multi-value estimation method. Figure 5.13 depicts the
performance, measured in TMR. Methods are identified by the labels. For the SGF case, the
independent estimation outperforms GS-NMF-VQ, by more than 1 dB. In the DG case, the
two methods show similar results. For the SGM case only, GS-NMF-VQ performs slightly
better.

Figure 5.14 compares the separation performance in TMR of all discussed gain estimation
methods. For all methods, the same speaker dependent shape VQ models are employed. The
label Ind-ML-GE refers to the maximum likelihood based gain estimation using independent
gain estimation (see Figure 5.4). Perc-30 is the label for the percentile based gain estimation
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Figure 5.12: Separation results in TMR using nonlinear gain estimation. Performance is
plotted for different percentiles, i.e. the 10, 20, 30, 40 and 50 percent percentile.

using the 30 percent percentile, Projection refers to the matching pursuit method, discussed
in section 5.2.3 and NNLS to the least squares solution using nonnegative constraints, as
introduced in section 5.2.4. Moreover, Ind-GE-NMF is used as NMF based method for gain
estimation and Mask-GE identifies the auditory motivated gain estimation method. First
of all, we notice that only singular value estimation techniques are amongst the methods.
Moreover, for the whole separation process all except the NMF method can increase the TMR
by approximately the same amount. The ML-based method Ind-ML-GE showed superior
performance for the supervised gain estimation, discussed in section 5.4.1. In the separation
experiment, however, separation performace does not exceed that of the other methods but
is about the same.

Finally, we compare performance of the gain-shape separation methods to the separation
performance of FM-VQ without gain estimation. We refer to the gain-shape source separation
methods as gain-shape factorial-max VQ (GS-FM-VQ). Due to the additional gain estimation
for the GS-FM-VQ methods we expect a better performance for the FM-VQ method for equal
level speech mixtures. Performance comparison is made to the binary mask (BM ) results of
Figure 3.9 shown in chapter 3. Indeed, for the SGF case FM-VQ outperforms GS-FM-VQ by
almost 2 dB TMR. However, for the DG case, the results are similar and for the SGM case,
GS-FM-VQ shows superior performance. For this comparison we selected the Ind-ML-GE
method as GS-FM-VQ.
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Figure 5.13: Separation results in TMR using nonnegative matrix factorization based gain
estimation. Two structures are investigated for the shape estimation: (i) “Ind-GE-NMF”:
The gains are estimated independently. (ii) “GS-NMF-VQ”: The gain-shape structure is
employed for SCSS.
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Figure 5.14: Separation performance comparison in TMR of introduced gain estimation meth-
ods. Performance is plotted for SGF, SGM and DG case separately.
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5.5 Conclusion

This chapter addressed the problem of different mixing levels in single-channel source sep-
aration. For separation, speaker dependent statistical models are typically trained. These
models perform best at equal level. Current approaches select a global TMR for an utterance
from a discrete set, which is restrictive for online applications. Therefore, we proposed to
estimate the gain of each component signal on a frame based level, as nonnegative matrix
factorization does. This results in a gain-shape representation of the signal, as done in cod-
ing [50]. In order to find the best gain estimation method, we followed different strategies:
We derived a maximum likelihood based solution for multi- and singular-variable estimation
and developed nonlinear techniques, one based on percentile filtering and the other was moti-
vated by the human auditory system. Moreover, matching pursuit, non-negative least squares
and NMF strategies have been pursued for gain estimation. We evaluated the methods in
two experiments. In the first, only gain estimation was carried out, while in the second,
single channel source separation (SCSS) was performed using a gain-shape representation of
the speaker dependent (SD) models. Three different decoder structures have been proposed
for shape estimation in the SCSS experiments. For multi-variable estimation an iterative
gain-shape decoder and a simultaneous gain-shape estimation decoder have been introduced.
We employed an independent gain estimation decoder for singular-variable estimation. In
the gain estimation experiment, the ML-based method outperformed all other methods and
showed an almost constant performance for different mixing levels. In the gain-shape separa-
tion experiment, the singular-variable estimation methods using independent gain estimation
showed superior performance compared to multi-variable estimation methods and decoder
structures. Only the NMF based method shows inferior performance in terms of TMR. Fi-
nally, the introduced gain-shape estimation for source separation method showed only lower
performance for the SGF case compared to the factorial-max VQ method without gain es-
timation. Since the mixing level is usually not known in advance, the application of gain
estimation is preferable in any case.



Chapter 6
Source Specific Characteristic for SCSS

6.1 Introduction

In the previous sections, we mainly focused on explicit models, where individual source char-
acteristics are stored, during the training phase. In this section, we combine explicit and
implicit models. Implicit models try to mimic the ability of the human auditory system.
Here, the mixture is a scene to be organized and particular extracted components are merged
to form output streams of individual sources. Therefore, features like common on- and off-
sets, harmonicity and amplitude- and frequency modulations are extracted and considered
for the signal separation [3].

Motivated by the decomposition of the speech mixture into distinct parts, as implicit
models does [3], we propose to perform separation based on the factorization of the under-
lying speech signal, in a fine- and a coarse-spectral structure. This also matches the speech
production model [121]. For speech, the excitation signal, produced by the vocal folds, mainly
represents the fine spectral structure, whereas, the coarse spectral structure can be linked to
the shaping of the vocal tract. This decomposition has been already employed by Gomez et
al. [35] and Radfar et al. [76].

In [76], the fundamental frequency (f0) or its perceived counter part, the pitch informa-
tion 1 of each speaker, using a multi-pitch tracking method [26], represented the source-driven
part. Afterwards, the estimated pitch of each speaker is used to synthesize an artificial ex-
citation signal, representing the fine spectral structure. Source separation is enabled by the
combination of the artificial excitation signal with the statistical representation of the vocal-
tract filters (VTFs). The reader is referred to chapter 1, section 1.2.1 for a detailed discussion
on this method. We extend this system and replace modules in section 6.2.1.

Gomez et al. [35] used a two-layer source-filter transformation model. This is employed
for their spectral deformation model, where prediction is made from an elapsed to a present
local time-frequency cell. Therefore, neighboring and past observations are employed to infer
missing, i.e. masked, data. Missing data prediction in the context of single channel source
separation (SCSS) has been also discussed in [101]. The thesis of Gomez has been already
discussed in section 1.2.2 of chapter 1.

This chapter compares sequential and parallel source-filter based SCSS approaches. Basic
principles are discussed in section 6.1.1. In section 6.2, two sequential methods are presented.

1We use the terms pitch and fundamental frequency interchangeably in this work. Thus, in this con-
text pitch always refers to the fundamental frequency. This nomenclature better correlates with previous
literature [27].

71
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The first extracts pitch information in the source-driven part and the second utilizes statistical
models to represent the source-driven part. Pitch estimation for source separation has already
been used in [122, 123, 75]. For voiced speech, these methods can separate the signals
quite well. This is achieved by assigning the energy of the pitch frequency component and
its multiples, the harmonics, to the respective speaker. During unvoiced speech, however,
pitch information is not available and separation is impossible. Moreover, these methods
often suffer from speaker permutations, where single pitch values or whole pitch tracks are
assigned erroneously to the wrong speaker. Permutations mainly occur during unvoiced
speech sections, and due to close or crossing pitch tracks. In [29] the permutation problem
was addressed by introducing speaker dependent models. To this end, they represented all
combinations of pitch pairs of two speakers by statistical models. During decoding, two
independent pitch tracks have been determined by tracking through this factorial model.
An alternative approach proposed by Shao et al. [14] performs clustering as post processing
to form speaker unique segments. The application of this approach maintains a speaker
independent model. Thus, the speaker identity must not be known a priori.

In the subsequent section 6.2.2 we replace the multi-pitch tracking unit by an unit, which
directly models the excitation signal. Note, in this model the cascade of two factorial models
remains. This method goes beyond the source-filter decomposition of speech signals and
separates the coarse- from the fine-spectral structure of the speech mixture. In the spectral
whitened speech mixture only the fine structure of the individual speakers remains. Based
on this decomposition, the fine spectral structure of the underlying signals can be estimated
for given excitation models and the observed speech mixture. Unfortunately, there is no
direct relation between the speech mixture and the single excitation signals. Therefore, an
approximation is introduced and evaluated. As a last step, we investigate the integration of
the gain-shape modeling of chapter 5 for source-filter models.

Finally, section 6.3 introduces the parallel separation of the fine- and coarse-spectral
structure. Therefore, for each excitation and VTF model a hidden variable is defined. Thus,
a factorial model with four hidden variables describes the mixture observation for every time
instance. Note, the exponential time complexity of this model makes exact learning and
inference intractable. Therefore, we propose a complete factorization, which is based on the
sampling method discussed in chapter 4, section 4.5. Note, this parallel structure avoids the
approximation needed in the sequential structure using excitation models.

6.1.1 Source- and Model-Driven Approach

In the source-filter model, the speech signal is described as an excitation signal that is shaped
by the vocal tract, acting as a filter process. Hence, a speech segment si(t) is the convolution
of the excitation ei(t), with the VTF response hi(t), which is further multiplied by a gain
factor ai(t) in the time domain as:

si(t) = ai(t)
(

ei(t) ⋆ hi(t)
)

, (6.1)

where the speaker index is given as i ∈ {1, 2}. The convolution results in a multiplicative
relation in the frequency domain and an additive relation in the logarithmic frequency domain
as:

Si = log ai + (Ei + Hi). (6.2)

This speech production model is depicted in Figure 6.1. The switch sw changes the excitation
between voiced and unvoiced. For voiced excitation, an impulse train with period T0 is
generated. The period T0 and the fundamental frequency f0 are related as T0 = 1

f0
. The
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Figure 6.1: Speech production Model [adapted from: [121]].

gain a controls the power of the excitation signal. For source-filter based SCSS the gain is
usually absorbed either in the excitation or the filter response h, thus, is modeled implicitly.
We follow this strategy in a first step, but consequently model the gain independently, in a
second separate step. For this task, the methods introduced in chapter 5 will be utilized.

For the proposed models which directly model the excitation signals, the source-filter
representation of Eq. (6.2) can be used to adapt the mixmax interaction model of chapter 3,
Eq. (3.16). Therefore, a hidden random variable vi is introduced for the VTF related model
and a random variable ui for the excitation related model. We assume that both variables
are a set of U , vi, ui ∈ U , where U has cardinality Q = |U |. In this model, the emission
densities φs(z) of the model are replaced by the emission densities of the fine- and coarse-
spectrum related random variables. Following the above discussion, the observation model
can be adapted to:

p(Y|z1, z2) = N (Y;max(µs(z1), µs(z2)),Σ), (6.3)

where
µs(zi) = log ai + µe(ui) + µh(vi) (6.4)

is the superposition of the means of the excitation φe and filter φh emission densities. The
variance can be found in a similar way.

6.2 Sequential Source-Filter based SCSS

In the sequential source-filter based SCSS model, two factorial models are cascaded. In
the first model, the excitation related signals are estimated whereas in the second, the esti-
mated excitations are employed for VTF estimation. For excitation estimation, two strategies
are pursued: In section 6.2.1, a pitch track associated to each speaker is extracted using a
probabilistic double-pitch tracking method [29]. Following, an artificial excitation signal is
synthesized based on the pitch estimate.

In section 6.2.2, both the excitation signal and vocal tract filter are represented by a statis-
tical model. For signal separation, two factorial models are concatenated. The first factorial
model is employed to represent the spectral whitened speech mixture as observation. After-
wards, the means of the emission densities associated with the determined state sequences
are used to estimate the corresponding VTF state sequences. Finally, the state emission
densities of the most likely state sequence of each speaker are combined using Eq. (6.4). This
final sequence of state emission means is employed for mask estimation.
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6.2.1 Synthetic Excitation Modeling1

The overall multi-pitch source-filter SCSS system is shown in Figure 6.2 and consists of the
following building blocks: A multi-pitch tracking unit followed by the excitation generation
unit is representing the source-driven part. We compare speaker dependent (SD), gender
dependent (GD) and speaker independent (SI) multi-pitch tracking performance and employ
them for speech separation. Once the pitch trajectories of each speaker are estimated, i.e. f1

0

and f2
0 , they are further utilized to create the excitation signals E1 and E2. VTFs, known

as spectral envelopes, are extracted in a speaker independent way from training data strain

and are used to train both, VQ and NMF models, i.e. λVQ
SI and λNMF

SI . Note, in this section
we skip the superscript H to identify a VTF model λH , instead we clearly mask the two
considered VTF models, i.e. λNMF and λVQ. The combination of the excitation signal Ei

and the VTF model, which is carried out in the model construction block of Figure 6.2, results
in an utterance dependent (UD) model λVQ

UD or λNMF
UD , i.e. the VTFs in combination with the

excitation are modeling a particular utterance. Thus, the harmonic excitation signal acts as
discriminative feature and introduces utterance dependency, which enables speech separation.
The UD model is further used for speech separation, performed in the separation step.

Figure 6.2: Blockdiagram of the separation system.

For performance analysis the component signals are recovered in two ways:

• The most likely state sequences of the UD model of each component speech signal are
used to find the respective binary masks (BMs). Afterwards the BM is used to filter
the speech mixture in order to get an estimate of the component signal Ŝi.

• The emission means of the most likely state sequence of the UD model are directly used
for synthesis of the component speech signals Ŝi.

In the reconstruction block of Figure 6.2, the separated speech signals are synthesized by
first applying the inverse Fourier transform on each speech segment using the phase of the
mixed speech signal ∠Y . For speech signal reconstruction the overlap-add method is used.

1M. Stark, M. Wohlmayr and F. Pernkopf. Source-Filter Based Single Channel Speech Separation Using
Pitch Information. In IEEE Transactions on Audio, Speech and Language Processing (TASLP), accepted for
publication.
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Figure 6.3: A factorial HMM shown as a factor graph [1]. Factor nodes are shown as shaded
rectangles together with their functional description. Hidden variable nodes are shown as
circles. Observed variables Y(τ) are absorbed into factor nodes.

In this work, we use different models to represent certain speaker spaces. The SI space is
characterized by one universal model, valid for all speakers and phonemes they can articulate.
The GD model is trained to represent the distribution unique for each gender, male or female.
Further, the SD model describes the space of each individual speaker. A subset of the SD
space is the utterance dependent space, i.e. an individual model per utterance. Hence, the
SI space can be decomposed according to: UD ⊆ SD ⊆ GD ⊆ SI.

Multi-pitch Tracking using F-HMM1

We use a F-HMM for tracking the pitch trajectories of both speakers. The F-HMM repre-
sented as factor graph [1] is shown in Fig. 6.3. The hidden state random variables are denoted

by z
(τ)
i , where i ∈ {1, 2} indicates the Markov chain related to the speaker index and τ , the

time index from 1 to T . Similarly, the observed random variables, i.e. the log magnitude spec-

trum, are denoted by Y(τ) at time τ . Each z
(τ)
i represents a discrete random variable related

to the pitch of speaker i at τ , while Y(τ) is continuous. For simplicity, all hidden variables
are assumed to have cardinality |Z|. The edges between nodes indicate a conditional depen-
dency between random variables. Specifically, the dependency of hidden variables between
two consecutive time instances is defined for each Markov chain by the transition probability

p(z
(τ)
i |z

(τ−1)
i ). The dependency of the observed variables Y(τ) on the hidden variables of

the same time frame is defined by the observation probability p(Y(τ)|z(τ)
1 , z

(τ)
2 ). Finally, the

prior distribution of the hidden variables in every chain is denoted by p(z1
i ). Denoting the

whole sequence of variables, i.e. {z(τ)} =
⋃T
t=1{z

(τ)
1 , z

(τ)
2 } and {Y(τ)} =

⋃T
t=1{Y(τ)}, the

joint distribution of all variables is given by

p({z(τ)}, {Y(τ)}) = p({Y(τ)}|{z(τ)})p({z(τ)}) =

2
∏

i=1

[

p(z1
i )

T
∏

τ=2

p(z
(τ)
i |z

(τ−1)
i )

]

T
∏

τ=1

p(Y(τ)|z(τ)
1 , z

(τ)
2 ).

The number of possible hidden states per time frame is |Z|2. As pointed out in [93], this could
also be accomplished by an ordinary HMM. The main difference, however, is the constraint
placed upon the transition structure. While an HMM with |Z|2 states would allow any
|Z|2 × |Z|2 transition matrix between two hidden states, the F-HMM is restricted to two
|Z| × |Z| transition matrices.

1This section is included with kind permission of Michael Wohlmayr and Franz Pernkopf.
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F-HMM Parameters: The state-conditional observation likelihoods p(Y(τ)|z(τ)
1 , z

(τ)
2 ) are

modeled with a GMM, using M ≥ 1 components according to

p
(

Y(τ)|Θz1,z2

)

=
M
∑

m=1

αmz1,z2 N
(

Y(τ);Θm
z1,z2

)

.

To obtain Y(τ) ∈ R
64, we first apply the zero padded 1024 point FFT on a Hamming win-

dowed signal segment y(t) of length 32ms. Next, we take the log magnitude of spectral bins
2-65, which corresponds to a frequency range up to 1 kHz. This covers the most relevant
frequency range of resolved harmonics while keeping the model complexity low. αmz1,z2 corre-
sponds to the weight of each component m = 1, . . . ,M . These weights are constrained to be

positive αmz1,z2 ≥ 0 and
∑M

m=1 α
m = 1. The parameters Θz1,z2 =

{

αmz1,z2,Θ
m
z1,z2

}M

m=1
can be

learned by the EM algorithm [124], where Θm
z1,z2

=
{

µmz1,z2,Σ
m
z1,z2

}

.

Each hidden variable has |Z| = 200 states, where state value ’1’ refers to ’no pitch’,
and state values ’2’-’200’ correspond to different pitch periods ranging from less than 1ms
to 12.5ms, i.e. from ∼ 1 kHz down to 80 Hz. Note that segments of silence and unvoiced
speech are modelled by z = 1. For learning the GMM, we need supervised data, i.e. the
pitch-pairs for the corresponding speech mixture spectrograms. These data are composed
from single speaker recordings, using the RAPT pitch extraction [2]. Hence, with both pitch
trajectories for the mixed utterances at hand, we can easily learn a GMM p

(

Y(τ)|Θz1,z2

)

for each pitch-pair (z1, z2). Accordingly, we have to determine 200 × 200 GMMs. Unfortu-
nately, data might be rarely available for some pitch-pairs, whereas, there is plenty of data
for, e.g. (z1 = 1, z2 = 1). For this reason, we use the minimum description length (MDL)
criterion [125] to determine the number of components of the GMM automatically. The MDL
criterion [126] is

MDL = − log p (Yz1,z2|Θz1,z2) +
M (L+ 1)

2
logNz1,z2,

where L is the number of parameters per component (for GMMs with diagonal covariance
matrix L = 2d where d = 64 in our case), in Yz1,z2 all spectrogram samples belonging to
(z1, z2) are collected, and Nz1,z2 denotes the size of Yz1,z2. This equation has the intuitive
interpretation that the log-likelihood − log p (Yz1,z2|Θz1,z2) is the code length of the encoded

data. The term M(L+1)
2 logNz1,z2 models the optimal code length for all parameters Θz1,z2. In

case of Nz1,z2 = 1, for a particular (z1, z2) we use a single Gaussian with µmz1,z2 = Yz1,z2 and
Σm
z1,z2

is set to a small σminI, where I is the identity matrix. For Nz1,z2 > 1, we train GMMs
with M ranging from 1 to 15, and take the GMM whose corresponding MDL criterion is
minimal. If there is no training sample available for the pitch-pair (z1, z2), i.e. Nz1,z2 = 0, we
set µmz1,z2 = 0 and Σm

z1,z2
= I. Prior to pitch tracking all spectrogram samples are normalized

to zero mean and unit variance. Finally, we multiply the pitch likelihood p(Y(τ)|z(τ)
1 , z

(τ)
2 )

with the pitch-pair prior p(z
(τ)
1 , z

(τ)
2 ), since this slightly improved the performance in our

experiments.

Both transition matrices of the F-HMM p(z
(τ)
i |z

(τ−1)
i ) are obtained by counting and nor-

malizing the transitions of the pitch values from single speaker recordings. Additionally, we

apply Laplace smoothing2 on both transitions p(z
(τ)
i |z

(τ−1)
i ). The prior distributions p(z1

i )
are obtained in a similar manner.

2Laplace smoothing amounts to the initialization of each element of the transition matrix with count one,
i.e. adding the prior information that each transition was observed at least once. This smoothes the transition
probabilities.
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Tracking: The task of tracking involves searching the sequence of hidden states {z(τ)}∗
that maximizes the conditional distribution p({z(τ)}|{Y(τ)}):

{z(τ)}∗ = argmax
{z(τ)}

p({z(τ)}|{Y(τ)}) (6.5)

For HMMs, the exact solution to this problem is found by the Viterbi algorithm. For F-
HMMs, an exact solution can be found using the junction tree algorithm [94]. However,
this approach gets intractable with increasing number of hidden Markov chains and |Z|.
Algorithms for approximate and exact solutions on F-HMMs are derived in [93]. Approximate
inference algorithms are often derived from the framework of variational inference. The sum-
product algorithm [1] can be derived under a similar setting of variational principles [127],
although more intuitive derivations exist for graphs without loops. When applied on a graph
with loops, as is the case for a F-HMM, the solutions are in general not guaranteed to converge
and can only approximate the optimal solution.

For multi-pitch tracking, we explored the max-sum algorithm (a variant of sum-product
algorithm) as well as the junction tree algorithm. We apply both variants on the loopy F-
HMM graph to obtain a solution for Eq. (6.5). In contrast to the junction tree algorithm, the
max-sum algorithm can only approximate Eq. (6.5). In [29], experimental results suggested
that the obtained solutions sufficiently approximate the exact solution, while computational
complexity is much lower. Indeed, the time complexity of the max-sum algorithm applied to
a F-HMM is O(TK|z|K), where K is the number of Markov chains. In contrast, the time
complexity of the junction tree algorithm is O(TK|z|K+1).

In the sequel, we give a short overview of the used max-sum message passing algorithm.
For a detailed discussion, we refer the interested reader to [1, 94, 127]. Further, details on
the junction tree algorithm are given in [93]. The max-sum algorithm is based on passing
messages between nodes of a graph. Among various types of graphs, factor graphs [1] have
become popular to depict the mechanisms of message passing. Figure 6.3 shows a F-HMM
as factor graph, where the functional dependency of each variable node, for brevity called z,
is made explicit by “factor nodes”, shown as shaded rectangles, i.e. each rectangle denotes a
function f({ẑ}) of its adjacent (i.e. neighboring) variable nodes {ẑ}.

For the max-sum algorithm, each node sends to every neighbor a vector valued message
µ, which is itself a function of the messages it received, (as well as f({ẑ}), for the case of a
factor node). A message from variable node z to factor node f is

µz→f (z) =
∑

g∈n(z)\f

µg→z(z), (6.6)

while a message from factor f to variable z is

µf→z(z) = max
{ẑ}\z



ln f({ẑ}) +
∑

y∈{ẑ}\z

µy→f (y)



 . (6.7)

Here, n(z) denotes the set of neighbor nodes of z. We normalize each message and restrict
each node to send a maximum of 15 messages per link. Further, each node only re-sends a
message to a neighbor if it is significantly different from the previously sent message in terms
of the Kullback-Leibler-divergence [106]. After the last iteration, we obtain the maximum a
posteriori configuration p∗(z) of each variable node z ∈ {z(τ)} as a function of its incoming
messages according to

p∗(z) = max
{z(τ)}\z

p({z(τ)}|{Y(τ)}) =
∑

g∈n(z)

µg→z(z). (6.8)
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Although the set of maxima z∗ = argmaxz p
∗(z) ∀z ∈ {z(τ)} does not necessarily yield the

global maximum {z(τ)}∗, as multiple local maxima might be present, a backtracking stage
may lead to inconsistencies due to the loops in the factor graph. For this reason, we simply
set the global maximum {z(τ)}∗ to the set of individual maxima z∗.

Excitation Synthesis: Once the pitch tracks are estimated for each speaker, the harmonic
part of the excitation signal is modeled as:

ei(tf , ω
i
0,∠ Y (u) ) =

U(ωi
0,fmax)
∑

u=1

sin( u ωi0tf + ∠ Y (u) ), (6.9)

where U denotes the number of harmonics up to a specified highest frequency fmax set to
4kHz, ω0 is f0 in radians, ∠ Y is the phase of the mixed signal and tf = [1, . . . , Tf ] is the

time index of a frame. ωi0 at t is the sampling frequency divided by z
(τ)
i , i.e. ωi0 = 2 · π fs

z
(τ)
i

for all 2 ≤ z(τ)
i ≤ 200 states. For unvoiced signals, i.e. z

(τ)
i = 1, a Gaussian random signal is

used as excitation. To the voiced signals, a Gaussian random signal filtered by a high-pass
with cut-off frequency at fmax is added to Eq. (6.9). This equation is similar to the harmonic
plus noise model [128] or sinusoidal modeling [129] but without amplitude weighting of the
harmonics. In the source-filter system, this weighting is provided by the VTF estimation
algorithm.

Vocal Tract Filter Models

For the VTF estimation the excitation signals E1 and E2 are assumed to be a priori known
from multi-pitch tracking. The synthesized excitation signals are employed to construct ut-
terance dependent models as defined in Eq.(6.3). In this section, we investigate two different
statistical VTF models for speech separation. The first method is based on the maximum
likelihood (ML) estimation of the VQ codewords. During decoding the mixture maximiza-
tion (mixmax) approach [95] is used as interaction model to represent the speech mixture
Y. Moreover, we incorporate the nonlinear gain estimation method discussed in chapter 5,
section 5.2.2 to make the separation approach suitable for different mixing levels. Finally, we
restrict the search space of the VQ to the most promising codewords by applying the tech-
niques of restricted observation likelihood calculation of chapter 4, section 4.4. Second, we
examine non-negative matrix factorization to model the VTFs. In contrast to the VQ VTF
model, NMF provides the advantage that the gain of each basis is inherently determined by
the update rules.

To extract the vocal tract filters, we use the spectral envelope vocoder (SEEVOC) method
described in [130, 131]. The SEEVOC method operates in the magnitude or log-magnitude
frequency domain to extract the spectral envelope. Basically, the method determines and
marks local maxima. For maxima determination, SEEVOC operates in two modes. In the
voiced mode, the predetermined pitch value is utilized to detect local maxima in the vicinity
of the fundamental frequency and its multiples, the harmonics. In the unvoiced mode, local
maxima are determined using a minimum frequency range criterion. Peaks in this range
are excluded as peak candidates. Once all local maxima are determined, the envelope of
the VTF is calculated using a cubic spline interpolation. The excitation signal is calculated
by division or subtraction of the VTF from the speech signal, either in the magnitude or
log-magnitude domain, respectively. Our SEEVOC implementation is operating in the log-
magnitude domain and uses the RAPT pitch extraction [2] algorithm.



6.2. SEQUENTIAL SOURCE-FILTER BASED SCSS 79

The careful reader may have recognized that the gain information is implicitly included in
the VTFs H. Consequently, the excitation signal is normalized such that the maximum over
frequency has a value of 0 dB in the log-magnitude domain. For voiced signals, the excitation
has a comb-like structure with flat spectrum. Unvoiced excitation has a noise like spectrum.
Exactly this normalization property of the excitation signal in the SEEVOC method enables
the replacement of the true excitation signal with the artificial one, introduced in section 6.2.1.

In this method, for an equal mixing level of two speech signals the gain factor can be
excluded from the model in Eq. (6.2) or set to azi

= 1. For different mixing levels, however,
the model does not match anymore and has to be adjusted. Since VQ is prone to model
the same VTF shapes at different gain levels with separate bases µhvi

, training data are mean
normalized for the system with gain estimation. This normalization reduces model complexity
and increases robustness in model learning.

Separation Using Non-Negative Matrix Factorization: Alternatively, we have inves-
tigated NMF [65, 71] for VTF modeling. NMF approximates a non-negative matrix V D×T

by the product of two non-negative matrices WD×R and AR×T , where D is the number of
frequency bins and R is the approximation level, i.e. the number of bases. In our case, the
VTF training data in the magnitude frequency domain corresponds to V = htrain. The SI
bases W are estimated and collected in λNMF

SI . The decomposition of V , in W and A is
based on minimizing the Kullback-Leibler distance [65]. The bases W are estimated dur-
ing the training, whereas the weights are estimated in the separation phase. These weights
specify the contribution of each basis for the approximation of the speech mixture y. Typ-
ically, in the separation step, a union of all UD bases is carried out by combining them as
WUD = WUD1 ∪WUD2 . The UD bases WUDi

can be constructed from W using the excitation
ei as:

WUDi
= W · ei.

During separation, we fix the bases WUD and estimate the weights A to achieve the best
approximation of the mixed signal y. Further, the reconstruction is done by first splitting
the bases matrix WUD as well as the estimated weight matrix A into the parts belonging to
the corresponding sources. Finally, the reconstruction of the signals is given as:

ŝi = W ei Ai,

where ŝi is the respective estimated spectrum of speaker i.

6.2.2 Direct Statistical Excitation Modeling1

In the previous section a multi-pitch estimation method was employed to estimate the pitch,
which was used to synthesize an excitation related signal. This section replaces the multi-pitch
method and directly represents the excitation signals by a factorial model. In the previous
section 6.2.1 single speaker utterances have been divided into their fine- and coarse-spectral
structure for model training only. For decoding, the speech mixture has been investigated
for both, multi-pitch tracking and VTF estimation. In this section, the sequential separation
structure remains, but the excitation signals are estimated directly. As a consequence, the

1This section is an updated and extended version of the paper:
M. Stark and F. Pernkopf. Towards source-filter based single sensor speech separation. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 97-100, Taipei, Taiwan, April 2009
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speech mixture can not be directly used as observation. Instead, a spectrally whitened speech
mixture is expected as observation for the new model. Therefore, also the speech mixture has
to be split into its fine- and coarse-spectral structure. In contrast to single speech utterances,
the spectrally whitened speech mixture has no physical meaning. Moreover, there is no
direct relation between the spectrally whitened speech mixture and the component excitation
signals:

y = ey(t) ⋆ hy(t) = (e1(t) ⋆ h1(t)) + (e2(t) ⋆ h2(t)), (6.10)

where ey(t) is the spectrally whitened speech mixture and hy(t) its spectral envelope. How-
ever, we will show that the spectrally whitened speech mixture approximates the sum of the
individual excitation signals sufficiently well.

To include prior knowledge about the respective excitation signals, both, a VQ and an
HMM are employed. An HMM also captures time dependencies and, hence, should reduce
permutations among both speakers. The speaker dependent trained models are combined in
an FM-HMM or FM-VQ in order to estimate the excitation signals from the speech mixture.
Having an estimate related to the excitation signal at hand, the coarse spectral structure can
be estimated similarly to an analysis-by-synthesis procedure in speech coding [121], where a
trained VQ codebook, models the vocal-tract prior knowledge. For vocal-tract modeling we
investigate models, with and without dynamics.

The structure for model training is shown in Figure 6.4. Before training, the speech
signal is divided into source and filter related parts using the linear prediction technique
(LPC) [132, 121]. For every speech segment τ = [1, . . . , T ] source and filter are related as

si(t) = −
N
∑

n=1

cn · si(t− n) + ei(t),

where N specifies the filter order, cn the filter coefficients, and ei(t) denotes the residual or
excitation signal in the time domain. The excitation signal and the vocal tract filter of each
speaker are transformed to the log-frequency domain Ei and Hi. Afterwards, the training
data is used to find a statistical representation, either an HMM λHMM

i or an VQ λVQ
i . In

order to enhance filter stability and increase robustness against quantization errors, the LPC
coefficients can be represented by their line spectral frequencies (LSF) [121] optionally. This
results in a reduced dimensionality for the feature vector from 256 dimensions for the STFT
to 16 dimensions for the LSF representation. Since this step can be regarded as optimization
step and has already been applied in our previous work [110], it will not be considered further
in the experiments.

Figure 6.4: Block diagram of the training stage of the source-filter model.

The SCSS decoder structure is shown in Figure 6.5. On the top branch on the left side
the spectral whitening of the speech mixture y(t) using LPC is performed. Afterwards, the
separation is carried out in two steps. First, the remaining spectral fine-structure Ey in
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conjunction with the trained excitation models λE
i are utilized as input for the Excitation

Separation unit. This unit decodes the excitation mixture Ey and extracts the individual

excitation signals Êi. After the most probable state sequence associated to each speakers
excitation has been determined, the means of the emission densities are employed as prototype
excitation signals Êi. Given the mixture Y and estimated excitation signals, the VTF models
λH
i of each speaker are employed to adapt the model to the utterance at hand, using Eq.(6.3).

Thus, in the VTF Separation unit the best fitting vocal tract information is selected from
λH
i for a particular instance of time in the l2-norm or by the MAP estimate. The provided

output Ŝi is an estimate of the underlying signals.

Excitation
Separation

VTE
Separation

Reconstruction

FT {ey(t)}

FT {y(t)}

LPCy(t)

ey(t)

Y

Ey

Ŝ1 Ŝ2

ŝ1(t) ŝ2(t)

Ê1 Ê2

λE
1

λE
2

λH
1

λH
2

Y

Figure 6.5: Block diagram of the separation algorithm.

Note, in a previous publication [110] we proposed a similar system. In this work, the
reported results were inferior due to the limited capabilities of the GMTK toolbox [133]. In
the current version of the system, we replaced the toolbox by our own code and, therefore,
we present new results.

Source signal representation - Excitation separation

To train excitation models, vocal-fold related signals are extracted for each speaker. Markov
chains have been employed to model time dependency between two consecutive states and
hence avoid permutations between speakers. For excitation tracking, either learned transi-
tion probabilities using training data or a uniformly distributed transition probability are
employed. In the latter case, the FM-HMM reduces to a FM-VQ.

In the specific case of the excitation model, the posterior probability given the speech
mixture and the FM-HMM is given as p(u1, u2|Ey) ∝ p(Ey|u1, u2) · p(u1) · p(u2), where p(ui)
are the independent priors of λE

i and p(Ey|{u}) is the likelihood function defined as:

p(Ey|u1, u2) = N (Ey|max (µe(u1), µe(u2)),Σ), (6.11)

where N denotes the normal density, max is the element-wise maximum operator, ui are
the state variables associated to a particular mean µe(ui), and Σ is the diagonally assumed
covariance matrix shared by all speakers. Introducing time-dependency, the best fitting state
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for each source is extracted according to:

{u⋆1, u⋆2} = argmax
u1,u2

[

p
(

Ey|u(τ)
1 , u

(τ)
2

)

p
(

u
(τ)
1 |u

(τ−1)
1

)

p
(

u
(τ)
2 |u

(τ−1)
2

)

]

, (6.12)

where τ denotes time segments, u
(τ)
i the state index for a particular instant of time and

{u⋆i } the most probable state of source i given the current observation Ey and the respective
transition probability. Finally, the best sequence can be found using the Viterbi algorithm
(see chapter 3, section 3.2.1) and the means of the emission density φe(u

⋆
i ) of the active state

is considered to be an estimate for the fine spectral structure of each speaker. Since every
state is modeled by a single Gaussian, the excitation signal is approximated by the means of
the emission densities Ê = µe(u

⋆
i ).

Envelope modeling - VTF separation

The estimated excitation signals Êi of each speaker as well as the VTF models λH
i are used

to construct UD models for a given observation. Afterwards, the UD model is used for source
separation. Thus, this unit delivers the unmixed speech signals. We obtain the most likely
state sequence either by the MAP estimate similar to Eq. (6.12), or by the minimization of
the l2-norm as:

[v⋆1 , v
⋆
2 ] = argmin

{vi}

∣

∣

∣

∣ y −
∑

i

êi · λH
i (vi)

∣

∣

∣

∣

2
, (6.13)

where v⋆i denotes the most likely state. In contrast to the FM-HMM, we do not model any time
dependencies. Alternatively, a FM-HMM can be used for VTF separation and the most likely
state sequence can be found using Eq. (3.3). For the observation likelihood computation, the
state emission density φs(zi), associated to the random variable zi is replaced by φs(zi) = Êi+
φh(vi). The VTF information related to each state v⋆i at every time step can be combined with
the estimated excitation signal and the mixed phase to form an estimate of the component
speech signals:

ŝi = FT −1{êi · ĥi · exp j∠y}, (6.14)

where ĥi = φh(vi) = λH
i (v⋆i ) is the estimated VTF. This signal is either used directly as

signal estimate or employed for mask estimation. More details on signal reconstruction can
by found in chapter 3, section 3.4. Once the underlying signals are estimated, the speech
output sequence is built by the application of the inverse Fourier transform followed by the
overlap-add method.

Validation

In the previous sections all system modules as well as their dependencies have been intro-
duced. However, the relationship between the spectrally whitened mixed signal Ey and the
individual LPC residual signals Ei needs further elaboration. Although there is no closed
form relationship between these quantities, we will explore a reasonable approximation. As
defined in Eq. (3.9) the two component speech signals are additively related in the time do-
main. This additivity still holds in the Fourier domain, assuming that the phase information
is included. Depicting the signals with their magnitude and phase values, this relation is
given as:

y2 = s2
1 + s2

2 + 2 · s1 s2 cos(ψ), (6.15)

where ψ is the phase difference between S1 and S2. Recently, Radfar et al. [28] have shown
that the expected value over the logarithm of Eq. (6.15) results in the max-approximation,
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i.e. Y = max(S1,S2), assuming a uniformly distributed phase between [0, . . . , π]. It should
be emphasized that the bin is exclusively assigned to the first source, if source one exhibits
more energy in a specific time-frequency bin compared to source two and vice-versa, i.e. the
mixmax-approach [28]. The derivation in [28] is independent of any signal characteristics.
Hence, it is valid also for the excitation signals:

Es1,s2 = max (E1,E2 ), (6.16)

where Es1,s2 is the logarithmic frequency representation of the sum of the respective vocal
fold excitations in the time domain, i.e., es1,s2(t) = e1(t) + e2(t). Thus, the only relation
to show is the validation of es1,s2(t) ≈ ey(t), where ey(t) is the spectrally whitened speech
mixture. As there is no direct analytic relation between these excitation signals, we provide
an experimental validation. In the experiment, we combine two utterances of the same
speaker at equal level (TMR = 0 dB), which is known to be the most challenging case in
SCSS. We perform spectral whitening of this speech mixture to obtain ey. Moreover, we
use the excitation signals of the individual speech signals to obtain the mixture of these
excitation signals es1,s2(t). Note, the excitation signals are combined at equal level. We
assess performance by computing the mean segmental signal-to-noise-ratio (SNRseq) over
the whole speech utterance. We achieve an SNRseq of over 16 dB, where the SNRseq is
measured in the log-frequency domain. This is a fairly good value and the approximation
supports the assumption. The SNRseq is defined as follows:

SNRseq =
1

T

T
∑

τ=1

10 log10

∑

d Si(τ, d)
2

∑

d(Si(τ, d) − Ŝi(τ, d))2
,

where d denotes the frequency bin index. Figure 6.6 shows the mixture of excitation signals
es1,s2(t), the mixture found by spectral whitening ey(t) and the error signal defined as the
difference between the two signals. The SNRseq error of 16 dB, results in an TMR of 8 dB
in the time domain, shown at the bottom of Figure 6.6. For better visual inspection, an
enlarged section is shown on the right hand side of Figure 6.6.
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Figure 6.6: (a) Mixture of excitation signals es1,s2(t), (b) Spectral whitened excitation mixture
ey(t), (c) Corresponding error defined as difference signal: es1,s2(t)− ey(t).
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Sequential gain-shape source-filter model

The sequential system with statistical excitation estimation can be extended to the sequential
gain-shape source-filter model. Therefore, additional gain estimation can be introduced in
the above model. This new source separation model is equivalent to the source-filter represen-
tation of a speech signal, as shown in Figure 6.1. Prior to model training, the segmental gain
information is removed from the speech segments. Thus, all excitation and envelope speech
segments are normalized to unit gain and statistical models represent the remaining source
and filter shapes. Principally, the same structure as for the system without gain estimation
is employed for decoding. Additionally, the gain is estimated, using the ML-based method
proposed in chapter 5, section 5.2.1. The independent gain estimation structure of chapter 5,
section 5.3.3, as shown in Figure 5.4 is employed for separation. In this structure, for every
state of the speaker specific model, the gain is estimated. Afterwards, new state dependent
emission densities are defined incorporating the gain information. This step is carried out
for every instant of time for both the excitation related model and the VTF model. For
the given state sequence of the excitation related model, the estimated excitation signals are
synthesized by the addition of the logarithmic gain and the means of the emission densities
as:

Ê
(τ)
i = µe(u

(τ)
i ) + log ae(u

(τ)
i ).

Once the excitation signals are estimated, the corresponding VTF models are combined to
form utterance dependent models, using Eq. (6.3). Thus, the state emission density means are

updated at every time step as for the excitation model to µs(zi) = Ê
(τ)
i + ah(v

(τ)
i )+µh(v

(τ)
i ).

Note, in this model, the gain information, as introduced in Eq. 6.2 is split into an excitation
ae and a filter ah related gain. The most likely state sequence of the new model is employed
to find the masks which are finally used for signal separation.

The computational complexity for the statistical source-filter based algorithm can be
easily determined, similarly to chapter 4. For the memoryless source-filter based system, two
FM-VQ models using the ICM4 algorithm are cascaded. This system possesses the lowest
computational complexity ofO(2·(T M 8Q)) with respect to all possible model combinations,
i.e. with memory or memoryless models for excitation or envelope separation. In contrast, if
for both factorial models a FM-HMM is employed, the computational complexity increases
to O(4 TQ (4 M + Q)). The first part of this complexity originates from the observation
likelihood computation, which corresponds to O(2 · (T M 8 Q)) for the ICM4. The second
part of O(4 T Q2) of the computational complexity arises from the Viterbi algorithm used
for tracking. M corresponds to the number of iterations the ICM4 takes until convergence.
A value of M = 3 is selected, analog to chapter 4, section 4.5. This goes a line well with
experiments.

6.3 Parallel Source-Filter based SCSS

In the previous section, the source and filter related parts of the speech signals have been
estimated in a sequential way. Therefore, the posterior of the model related to the excitation
signal has been maximized given the speech mixture. Afterwards, the estimated excitation
signals have been used to find the vocal-tract filters of the speech signal. Finally, the com-
bination of the state means have been employed for signal separation. We assumed that
this sequential posterior likelihood maximization is similar to the joint posterior likelihood
maximization of the source and filter related parts. In this section, we go a step further and
perform the joint posterior maximization of the fine- and coarse-spectral structure. Thus, we



6.3. PARALLEL SOURCE-FILTER BASED SCSS 85

introduce a model, which estimates the source and filter part in parallel in order to separate
a speech mixture. A factor graph representation of this model is depicted in Figure 6.7. In
this model each source and filter related part is separately modeled by a Markov chain. The

associated hidden random variables are denoted by u
(τ)
i and v

(τ)
i , respectively. Thus, two

hidden variables each are associated to a speaker with i ∈ {1, 2}, where ui is linked the fine
spectral structure and vi to the coarse spectral structure of the speech signal.
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Figure 6.7: Source-Filter F-HMM where Y (τ) is represented by four state variables u
(τ)
1 , v

(τ)
1 ,

u
(τ)
2 , and v

(τ)
2 .

In every hidden chain we define a prior distribution denoted as p(ui) or p(vi). In general,
the direct conditional dependency between hidden variables are indicated by edges between
nodes. The time dependency of hidden variables in each Markov chain is specified by the

transition probability p(u
(τ)
i |u

(τ−1)
i ) and p(v

(τ)
i |v

(τ−1)
i ). For each hidden chain, we investigate

both, the use of dynamics and no dynamics. Therefore, additional transition probabilities
are learned from the training data. Note, in our model a direct conditional dependency of ui
and vi as p(ui|vi) is neglected. Moreover, for the transition probabilities, a joint transition,

such as p(u
(τ)
i |u

(τ−1)
i , v

(τ)
i ) is not taken into consideration.

6.3.1 Observation Model

The dependency of the observed variable Y (τ) on the hidden variables {u(τ), v(τ)} for every

time instance is defined as p(Y (τ)|u(τ)
1 , v

(τ)
1 , u

(τ)
2 , v

(τ)
2 ) = p(Y (τ)|{u(τ), v(τ)}). In our model, the

emission density means φe(ui) or φh(vi) of each discrete state is regarded as signal prototype.
Specifically, each emission density either represents an excitation signal φe(ui) or the vocal-
tract signal φh(vi). We can use this definition to adapt the observation model of Eq. (6.3)
to

p(Y|{u}, {v}) = N (Y;max(µe(u1) + µh(v1), µe(u2) + µh(v2)),Σ), (6.17)

where φe(ui) and φh(vi) form the joint emission density φs(vi). For simplicity, we omitted the
time index in the above equation. The joint observation likelihood computation is a bottleneck
in factorial models, as already discussed in chapter 4. In contrast to the previously presented
models, in this model, four hidden variables explain the observation. Thus, the computation
of the observation likelihood is computationally intractable, i.e. exponentially growing with z,
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and approximations have to be applied. Specifically, the complexity for four hidden variables
is O(Q4 T ), where we assume that all random variables have the same cardinality.

Observation likelihood computation: The computational complexity for a single time
step of the above model is O(Q4). Note, all hidden variable are assumed to have cardinality
Q = |Ui| = |Vi|, where ui ∈ Ui and vi ∈ Vi. To overcome this problem, the ICM4 method
introduced in chapter 4, section 4.5 has been extended to four hidden variables. In order
to determine the observation likelihood at the beginning of each time step τ , all random
variables are initialized randomly. Afterwards, the likelihood for the selected random variables
is calculated and used as upper bound for the algorithm. The random variables connected
to one speaker are updated sequentially, for every time step. This means that the update of
all random variables of the first speaker is carried out before this procedure is performed for
the random variables of the second speaker. The update starts with the variable associated
to the fine spectral structure, which is further used for the update of the variable connected
to the coarse spectral structure. One iteration step of the ICM4 algorithm is finished by
calculating the likelihood, produced by the updated random variables. Finally, this likelihood
is compared to that of the previous iteration. If the current likelihood is greater than the
previous, another iteration is started, otherwise, the algorithm is stopped. Afterwards, the
algorithm is either restarted with a new initialization or a next time step is separated until
the end of the speech mixture is reached. The whole observation likelihood computation
process for a single time step is summarized in algorithm 6.

1: Input: Y, {u}, {v}, i ∈ {1, 2}
2: Output: {um}, {vm}
3: Initialize: LL = −∞, ll = 0, m = 1
4: Randomly initialize: {um}, {vm},
5: Calculate: ll = log p({um}, {vm}|Y)
6: Set: j = 1 & k = 2 or j = 2 & k = 1

while ll > LL do
7: Set: LL = ll
8: Calculate: um+1

j = argmaxuj

[

p(umj |Y, umk , {vm})
]

9: Calculate: vm+1
j = argmaxvj

[

p(vmj |Y, um+1
j , vmk , u

m
k )
]

10: Calculate: um+1
k = argmaxuk

[

p(umk |Y, um+1
j , vm+1

j , vmk )
]

11: Calculate: vm+1
k = argmaxvk

[

p(vmk |Y, um+1
j , vm+1

j , um+1
k )

]

12: Calculate: ll = log p({um+1}, {vm+1}|Y)
13: Set: m = m+ 1

end

Algorithm 6: Iterated conditional modes algorithm for 4 hidden random variables for one
time step.

Additionally, this parallel source-filter SCSS model can be extended to estimate the seg-
mental gain associated to each speaker. This results in the parallel gain-shape source-filter
SCSS model. Therefore, a gain is introduced for each random variable, separately. Note,
this corresponds to a separate gain factor for the excitation related and the vocal-tract filter
related parts. A factor graph representation of a single time step is shown in Figure 6.8. Addi-
tionally, a random variable linked to each gain is introduced. Therefore, the joint distribution
of the observation and source signal, given the source states changes to

p(Y,Si|{u}, {v}, {au}, {av}) = p(Y |Si) p(Ei|{u}) p(Hi|{v}) p(ai|{au}, {av}), (6.18)
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where the relation of Si,Ei,Hi and ai is specified in Eq. (6.2). For inference and speech
signal reconstruction, the likelihood of the observed mixture is computed as

p(Y|{u}, {v}, {au}, {av}) =

∫

Si

p(Y,Si|{u}, {v}, {au}, {av}) dSi. (6.19)

As a consequence, the observation model has to be adapted to

p(Y|{zi}) = N (Y;max(µs(z1), µs(z2)),Σ), (6.20)

where µs(zi) = log(aui
) + µe(ui) + log(avi

) + µh(vi) is the weighted superposition of the
excitation φe and filter φh emission density means.

u
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(τ)
u1 v

(τ)
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Y (τ)|{u(τ), v(τ), a
(τ)
u , a

(τ)
v }

)

Figure 6.8: Factor graph of the parallel gain-shape source-filter SCSS model, for one time
step. Random variable aui

and avi
are associated to the introduced gain factor.

The computational complexity of the source-filter model using the ICM4 method for the
observation likelihood computation corresponds to O(16 T Q M). Optionally, we represent
the parts of the signal with Markov chains. The independence assumption of all random
variables, enables the use of a separate Viterbi decoder for each Markov chain for tracking.
This results in a complexity of O(4 T Q2). Thus, the total computational complexity for the
parallel source-filter structure without gain estimation is O(4 TQ (4 M +Q)). Note, this is
the same time complexity as for the sequential source-filter model of section 6.2.2, with two
cascaded factorial models.

6.4 Experiments and Results

For the evaluation of the introduced source separation methods, the experimental setup of
chapter 1, section 1.5 is used. First, source separation results of the sequential methods are
discussed. For the synthetic excitation based method, we use the spectral envelope estimation
vocoder (SEEVOC) method described in [131] to split the speech signal into its excitation
and VTF related parts. For the remaining methods, we employ linear predictive coding
(LPC) [132] to separate a signal into excitation and envelope signals. Therefore, an LPC
order of 16 was chosen.

For the sequential method using multi-pitch tracking, differences to the method of Rad-
far [76] will be elaborated (see also chapter 1, section 1.2.1) and consequences of the additional
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usage of gain estimation will be discussed. Results for the direct statistical excitation model
and the parallel state estimation of all four hidden variables will be reported afterwards. To
achieve independency of the separation algorithm concerning the mixing level, gain estima-
tion is included in the algorithms. Finally, performance of the methods are compared to each
other with and without gain estimation.

6.4.1 Synthetic Excitation Results

Multi-pitch tracking results

In a previous work [30], we compared the performance of the proposed multi-pitch tracker to
the well known approach of Wu et al. [27], and experimentally showed its superior performance
on the Mocha-TIMIT database [134]. In the following, we omit any comparisons to other
algorithms and report the performance of our approach on the Grid corpus only.
For every test mixture, the method estimates two pitch trajectories, f1

0 [τ ] and f2
0 [τ ]. For

performance evaluation, each of the two estimated pitch trajectories needs to be assigned
to its ground truth trajectory, f̃1

0 [τ ] or f̃2
0 [τ ]. From the two possible assignments, (f1

0 →
f̃1
0 , f

2
0 → f̃2

0 ) or (f1
0 → f̃2

0 , f
2
0 → f̃1

0 ), the one with the smaller overall quadratic error is
chosen. Note that this assignment is not done for each individual time frame, but for the
global pitch trajectory.
To evaluate the resulting estimates, we use an error measure similar to [27], slightly modified
however, to additionally measure the performance in terms of successful speaker assignment.
Eij denotes the percentage of time frames, where i pitch points are misclassified as j pitch
points, e.g. E12 means the percentage of frames with 2 pitch values estimated, whereas only
one pitch is present. The pitch frequency deviation is defined as

∆f i0[τ ] =
|f i0[τ ]− f̃ i0[τ ]|

f̃ i0[τ ]
, (6.21)

where f̃ i0[τ ] denotes the reference chosen for f i0[τ ]. For each reference trajectory, we define
the corresponding permutation error EiPerm[τ ] to be one at time frames, where the voicing
decision for both estimates is correct, but the pitch frequency deviation exceeds 20%, and
f i0[τ ] is within the 20% error bound of the other reference pitch. This indicates a permutation
of pitch estimates due to incorrect speaker assignment. The overall permutation error rate
EPerm is the percentage of time frames, where either E1

Perm[τ ] or E2
Perm[τ ] is one. Next,

we define the corresponding gross error EiGross[τ ] for each reference trajectory to be one at
time frames, where the voicing decision is correct, but the pitch frequency deviation exceeds
20% and no permutation error is detected. This indicates inaccurate pitch measurements,
independent of permutation errors. The overall gross error rate EGross is the percentage of
time frames where either E1

Gross[τ ] or E2
Gross[τ ] is one. Finally, the fine detection error EiFine

is the average frequency deviation in percent at time frames where ∆f i0[τ ] is smaller than
20%. The overall error ETotal is defined as the sum of all error terms:

ETotal = E01 + E02 + E10 + E12 + E20 + E21

+ EGross + EFine + EPerm (6.22)

where EFine = E1
Fine +E2

Fine. For our SD models, we train each transition matrix used in the
F-HMM on reference pitch data from the corresponding speaker. Moreover, the GMM-based
observation model is trained on mixtures of the two corresponding speakers. Similar to [29],
experimental results for our SD models suggested that both studied tracking algorithms –
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Figure 6.9: Trajectories found by the proposed multi-pitch tracker, applied on speaker MA1
(”prwkzp”) and speaker FE1 (”lwixzs”) speaking simultaneously. The overall accuracy is
high, yet some parts of the trajectory of speaker 1 can not be tracked successfully. This leads
to a high contribution of E21 and E10 to the overall error. The corresponding error measures
on this test instance are shown in the Table at the bottom.

the junction tree algorithm and the max-sum algorithm – obtain solutions with equivalent
ETotal. For this reason, we use the max-sum algorithm for tracking with SD models, as it
is more efficient in terms of computational complexity. Table 6.1 shows the resulting error
measure on the test set. To illustrate the performance and its corresponding error measure,
we show an exemplary tracking result for the SD model in Figure 6.9.

The GD observation models are trained on 3.3 hours of speech mixtures comprising 10
male-male, male-female, or female-female speakers, respectively. The GD transition matrices
are trained on reference pitch data of either male or female speakers. In contrast to the SD
model case, we observed that the max-sum algorithm performs worse than the junction tree
algorithm for GD models applied to same gender mixtures. In that case, the parameters
of the F-HMM are the same in each Markov chain. Moreover, the observation likelihood is
symmetric in z1 and z2, i.e. p(Y(t)|z1, z2) = p(Y(t)|z2, z1). For this reason, we apply the
junction tree algorithm for tracking with GD models. Table 6.2 gives the performance results
for this model.
Finally, SI models are trained on 6.5 hours of speech mixtures composed of any combination
of the 10 male and 10 female speakers. The transition matrix is trained on reference pitch
data from both, male and female speakers. For the same reason as for GD models, we use
the junction tree algorithm for tracking with SI models. Table 6.3 shows the performance
results.
The careful reader will notice that for the SI model, as well as for the male-male and female-
female GD model, both Markov chains of the F-HMM have the same transition matrix.
In this case the F-HMM only allows symmetric solutions, i.e. identical pitch trajectories.
To prevent this, we add a small amount of noise to create two slightly different transition
matrices, for each Markov chain. This heuristic breaks the symmetry in the F-HMM and
allows individual trajectories for both speakers.
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Table 6.1: Performance of F-HMM-based multi-pitch tracking for speaker dependent (SD)
training. Mean and standard deviation (std) of the nine test instances of each speaker pair
are shown.

E01 E02 E10 E12 E20 E21 EGross EFine EPerm ETotal

Mean 1.97 0.00 6.26 0.84 3.48 25.99 0.73 5.18 2.80 47.24
MA1-MA2

Std 1.83 0.00 2.63 1.23 4.05 4.63 0.79 0.91 3.75 5.11
Mean 1.65 0.00 4.17 1.10 0.49 15.11 0.35 3.61 0.00 26.48

MA1-FE1
Std 1.23 0.00 2.19 0.85 0.52 5.16 0.33 0.17 0.00 5.70

Mean 0.67 0.00 6.43 0.61 0.88 19.82 1.64 3.09 0.13 33.27
MA1-FE2

Std 0.54 0.00 2.09 0.75 0.69 5.41 1.67 0.22 0.38 5.87
Mean 2.23 0.13 4.52 1.11 0.46 12.91 0.07 3.54 0.00 24.97

MA2-FE1
Std 1.55 0.38 3.10 0.90 0.56 3.97 0.20 0.51 0.00 4.04

Mean 1.56 0.00 4.66 1.04 1.41 19.89 0.88 3.37 0.00 32.82
MA2-FE2

Std 1.71 0.00 2.05 1.15 1.27 7.68 1.27 0.36 0.00 6.23
Mean 1.29 0.00 5.46 0.96 1.06 15.02 0.46 5.19 0.44 29.88

FE1-FE2
Std 1.07 0.00 2.29 1.10 0.76 5.25 0.49 0.36 0.88 4.87

Table 6.2: Performance of F-HMM-based multi-pitch tracking for gender dependent (GD)
training. Mean and standard deviation (std) over the 9 test instances of each speaker pair
are shown.

E01 E02 E10 E12 E20 E21 EGross EFine EPerm ETotal

Mean 3.89 0.00 6.84 3.84 1.95 21.59 1.89 8.78 5.80 54.57
MA1-MA2

Std 2.05 0.00 3.26 3.13 2.30 5.70 1.20 2.57 6.37 12.03
Mean 3.96 0.00 4.87 3.29 0.77 18.98 1.26 3.87 1.95 38.95

MA1-FE1
Std 1.86 0.00 2.82 3.49 0.83 3.68 1.11 0.71 1.53 6.38

Mean 2.53 0.00 4.93 3.61 1.25 17.64 1.42 3.76 1.45 36.58
MA1-FE2

Std 1.86 0.00 2.16 1.96 1.51 4.54 1.10 0.64 2.30 8.79
Mean 4.05 0.07 2.75 2.42 0.33 14.39 6.08 4.31 2.46 36.86

MA2-FE1
Std 2.04 0.20 1.76 1.63 0.42 6.05 5.93 0.89 2.72 8.74

Mean 2.38 0.00 4.06 3.01 0.52 14.43 2.09 3.90 0.65 31.04
MA2-FE2

Std 1.63 0.00 2.19 1.85 0.46 4.48 2.65 0.65 0.93 4.56
Mean 3.10 0.00 3.56 4.47 0.40 9.90 1.51 6.40 10.18 39.51

FE1-FE2
Std 2.12 0.00 1.47 2.07 0.58 3.50 1.28 3.16 4.68 6.40

Speech separation results

All modules discussed for the SCSS system using multi-pitch estimation are used to build the
source separation algorithm.

For both, λV QSI and λNMF
SI , we have trained models with 500 bases, respectively. The

dimension of the bases corresponds to the number of frequency bins used in the spectrogram,
i.e. 512. For training, we have used 200 iterations for NMF and 150 iterations for VQ, where
we perform experiments with and without gain normalized VTF models.

We conducted different experiments with focus on various parts of the system, presented
below:
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Table 6.3: Performance of F-HMM-based multi-pitch tracking for speaker independent (SI)
training. Mean and standard deviation (std) over the 9 test instances of each speaker pair
are shown.

E01 E02 E10 E12 E20 E21 EGross EFine EPerm ETotal

Mean 4.33 0.13 5.39 5.35 0.97 22.09 2.56 7.53 7.93 56.28
MA1-MA2

Std 1.45 0.38 2.82 3.83 1.03 3.49 1.25 0.87 6.99 11.07
Mean 4.10 0.07 4.78 4.95 0.90 17.92 2.72 4.62 17.64 57.69

MA1-FE1
Std 0.90 0.21 3.20 3.87 0.71 5.58 1.32 1.17 8.63 13.96

Mean 2.92 0.00 4.86 4.97 0.78 17.11 2.39 4.13 24.69 61.83
MA1-FE2

Std 1.78 0.00 2.78 3.96 1.43 4.38 1.51 0.96 16.33 17.92
Mean 3.85 0.00 2.42 4.04 0.46 15.10 6.06 3.76 20.95 56.65

MA2-FE1
Std 2.17 0.00 1.47 2.62 0.76 5.11 4.01 1.34 9.62 11.15

Mean 2.89 0.00 3.75 3.68 0.70 12.82 5.20 4.17 19.03 52.25
MA2-FE2

Std 2.25 0.00 1.71 2.09 0.68 4.60 2.62 1.13 9.29 11.64
Mean 4.08 0.00 2.34 2.00 0.29 12.06 1.76 7.14 8.64 38.31

FE1-FE2
Std 2.20 0.00 0.84 1.95 0.66 3.57 2.23 4.35 4.91 8.10

1. Source separation experiments are carried out using reference f̃ i0 trajectories for each
speaker. The extraction is done on the single speaker utterances using RAPT [2], before
mixing and is called the supervised mode. This is the upper bound of the performance,
currently achieved by using our method.

2. SD trained models for multi-pitch f i0 estimation are utilized to separate the speakers.
This method is already unsupervised but presumes to know the speaker identities in
advance to select the adequate SD models.

3. A GD multi-pitch tracker has been explored to separate the speech mixture.

4. No prior knowledge is assumed anymore and speaker independent models for both, the
f0 estimation and the VTF estimation are employed for separation.

Note, the same SI VTF model is used, in all four experiments. For each of the four dif-
ferent pitch extraction methods enumerated above, we compared four separation approaches,
namely, Exci, NMF, GE-ML, and ML, explained hereafter:

• Exci : The excitation signals, created from the f0 trajectories by Eq. (6.9), are used for
separation. Therefore, binary mask signals are derived based on the excitation signals
and the speech signals are finally recovered by filtering the speech mixture with the
respective BM.

• NMF : NMF is applied for VTF modeling. Utterance dependent bases are found by the
combination of the SI learned VTF bases with the excitation signal.

• GE-ML: The VQ approach is used to separate the speech mixture. The speaker depen-
dent model is formed by λV QUD, using gain estimation. The training data has been gain
normalized prior to SI VTF model training.

• ML: The VQ approach without gain estimation is employed to separate the speech
mixtures. Therefore, the gain information has not been removed from the data during
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training of the SI VTF model λV QSI . For separation, the gain factor has been set to
g = 1 in Eq. (6.2).

We report results for both, the estimated component signals ŝi extracted by applying the
respective BM on the speech mixture and the synthesis from the estimated speech bases.
Naturally, the synthesized signals have a lower quality, compared to the signals extracted
directly using the BMs. Nevertheless, the results are rather instructive. A preliminary
listening test indicated a subjectively better intelligibility of the synthesized signals, compared
to the BM signals for some utterances. This is mainly due to the musical noise introduced
by the on/off switching of the binary mask.

In all Figures the achieved mean value is depicted with a red horizontal line. The methods
are identified by the label on the x-axis. Moreover, the standard deviation of the TMR is
indicated by the blue box, surrounding the red line. All experiments are split into three
classes: SGF, SGM, and DG class.

First, performance of the supervised method, using the f0 extracted by RAPT [2] on the
single speech utterances are presented. The results for synthesized signals are depicted in
Figure 6.10. Those signals are used to estimate the BM for each speaker. Further, the BMs
are applied to the speech mixture in order to recover the signals. The BM results are shown
in Figure 6.11.
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Figure 6.10: Mean and standard deviation of the TMR for the synthesized signals using pitch
trajectories extracted by RAPT [2].

The performance of Exci emphasizes the importance of the fine structure, i.e., harmonics,
of speech, which is a major cue for speech separation. This is well known from CASA [3].

Additionally incorporating the VTF models for separation, improves the results in most
cases. For the ML based method without gain estimation (GE), the results are getting slightly
worse. Surprisingly, for the SGM case the usage of the VTF information does not improve
performance at all. We conjecture that the harmonics are rather close to each other and thus,
are acting as spikes, which already recover the main speaker specific energy.

Next, the same separation methods are used with SD multi-pitch trajectories to create
the excitation signal. In Figure 6.12 the results for the synthesized signals are depicted and
Figure 6.13 shows results for the BM signals. As already noted in the above discussion,
the separation performance depends strongly on the used fundamental frequency. In our
model, the f0 information introduces at last utterance dependency. Thus, separation per-
formance strongly correlates with the f0 performance. Nonetheless, the separation results
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Figure 6.11: Mean and standard deviation of the TMR for the BM signals using pitch tra-
jectories extracted by RAPT [2].
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Figure 6.12: Mean and standard deviation of the TMR for the synthesized signals using SD
multi-pitch trajectories.

are consistent. The GE-ML method only shows a slightly better performance compared to
the excitation Exci signal for all cases. Moreover, for the SGM case approximately the same
performance for all methods except the ML one can be reported using the BM. Similarities
can be drawn to CASA where the separation is carried out in two steps: simultaneous and
sequential grouping. In our system, simultaneous grouping is executed during separation and
sequential grouping is treated during multi-pitch tracking. In this respect, the sequential
grouping is measured by EPerm. For the SD case, Table 6.1 shows that a permutation error
occurs rarely. Averagely, 0.03% for different gender and 1.62% for same gender mixtures of
the speech frames are permuted.

As an intermediate step towards SI SCSS, gender dependent multi-pitch tracking models
to estimate f0 trajectories are applied. Figure 6.14 shows the results for the synthesized and
Figure 6.15 for the BM signals. Here, the same transitions are employed to estimate the pitch
trajectories for the SG cases. Different transitions are only taken for the DG case, which leads
to a more accurate pitch estimation and consequently, to a better separation performance.
Moreover, the permutation error for same and different gender mixtures occur on average
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Figure 6.13: Mean and standard deviation of the TMR for the BM signals using SD multi-
pitch trajectories.

in 7.99 % and 1.63 % of the speech frames, respectively. Both errors are coherent with the
separation results.
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Figure 6.14: Mean and standard deviation of the TMR for the synthesized signals using GD
multi-pitch trajectories.

Finally, SI extracted f0 trajectories are employed for speech separation. This case is a
fully SI SCSS method. Again Figure 6.16 and 6.17 show the results for the synthesized and
the BM extracted signals, respectively.

For the SI results, the GE-ML method provides slightly better performance, using the
synthesized signals. Nonetheless, big differences among the methods could not be found
within the investigated BM signals. The synthesized signals of the ML method show a rather
poor performance. For different gender mixtures, EPerm increases to 20.58% on average.
In contrast, for same gender mixtures EPerm is on average 8.28%. This is about the same
EPerm as for the GD models. Thus, for different gender mixtures, sequential grouping is
a problem, which is reflected by the significant contribution of EPerm to ETotal. This also
limits the source separation performance. This issue can be mitigated by post-processing,
e.g. Shao et al. [14] recently proposed a clustering approach to perform sequential grouping.
In summary, we have shown an almost linear relation between the separation results and the
multi-pitch estimation performance when moving from the supervised to the SD and finally
to SI based pitch estimation. This is shown in Figure 6.18 (a) and (b), which present the
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Figure 6.15: Mean and standard deviation of the TMR for the BM signals using GD multi-
pitch trajectories.
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Figure 6.16: Mean and standard deviation of the TMR for the synthesized signals using SI
multi-pitch trajectories.

coherence between the TMR for all introduced speech separation methods and the ETotal of
the pitch tracker. Results are separately depicted for the reference, SD, GD, and SI multi-
pitch trajectories. If the ETotal is increasing, the TMR is decreasing, no matter, which method
is selected for separation. It was already shown in the Figures 6.10, 6.12, 6.14, and 6.16 that
the synthesized ML signals are inappropriate to make them directly audible independent on
the pitch estimation method. Moreover, it can be seen from Figure 6.18 (b) that the NMF
and GE-ML methods show almost the same performance averaged over all pitch extraction
models. The ML method leads to a decrease of the TMR performance compared to the
BM signals extracted from the excitation (Exci) signals alone. It should be noted that the
phonetic content of the utterances was approximately the same except one different word
in the sentence (see Table 1.2). In a nutshell, the comparison of all proposed VTF models
slightly favors NMF.

The computational complexity of each module has been addressed in the previous sections.
The overall complexity of the system is the cumulation of these complexities. The average
length of the speech mixtures is 1.69 [sec]. This time is compared to the average time, which
is needed to separate an utterance. Therefore, we measure the average time of each system
module: The multi-pitch observation likelihood computation and tracking takes on average
862 and 18 [sec], respectively. However, note that the likelihood computation amounts to the
evaluation of a set of GMMs, which can be computed in parallel to a high degree. In our
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Figure 6.17: Mean and standard deviation of the TMR for the BM signals using SI multi-pitch
trajectories.

evaluation, only sequential computations were performed. The VTF observation likelihood
calculation using the BS method takes 4.4 [sec] on average. To separate one speech file of
average length 1.69 [sec], the system takes approximately 884.4 seconds. Hence, 97.5% of
the processing time is currently used for the observation likelihood computation during pitch
tracking. All experiments have been performed using MATLAB on an Intel CPU CORE-i7
QUAD 920 running at 2.66GHz. However, computational costs can be further reduced by
approximations [108, 107].
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Figure 6.18: Coherence between the average ETotal versus average TMR for all VTF and pitch
estimation methods for the reference, SD, GD, and SI pitch tracks. Results are separately
plotted for (a) synthesized speech signals; (b) BM signals.
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6.4.2 Separation Results for the Direct Statistical Excitation Model

In this section, the performance for the direct statistical modeling of the excitation signal
is discussed. For these experiments, the structure shown in Figure 6.5 of section 6.2 is
employed. In the first experiment, the gain is inherently modeled by the excitation and VTF
models. In the second experiment, however, gain information is additionally estimated. For
the observation likelihood estimation in case of the HMM for both, the excitation and VTF
model, the ICM4 algorithm of chapter 4, section 4.5 has been used. For the memoryless
models (VQ), we also utilized the ICM4 in case of the excitation related model and the MSE
measure to extract the VTF state sequence. In Figure 6.19, separation results are shown for
the sequential model without gain estimation. The labels on the x-axis indicate the different
structures, employed for separation. For example, the structure with label HMMVQ utilizes
the FM-HMM for the separation of the excitation related signals. The estimated excitation
signals synthesized by the state sequence of the emission density means φe(ui) are further
used to estimate the vocal tract filters using the FM-VQ model. Thus, for the sequential
source-filter model, four different structures, with or without dynamics, can be investigated,
namely:(i) VQVQ, (ii) VQHMM, (iii) HMMVQ and (iv) HMMHMM.

The labels of Figure 6.19 indicate that all combinations of the introduced structures are
studied. A comparison of the various employed structure combinations show no significant
differences in performance, measured in TMR. In the SGM case, however, the HMMVQ
system is favorable. For this source-filter model, the results propose the use of the FM-VQ
model for excitation and VTF modeling, due to the decrease in computational complexity.
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Figure 6.19: Mean and standard deviation of the TMR for the sequential source-filter based
SCSS methods. Here different graphical models structures are investigated to estimate the
fine- and coarse spectral signal parts.

In the second experiment, the segmental gain information is estimated additionally. This
model is equivalent to the source-filter representation of a speech signal, as shown in Fig-
ure 6.1. Thus, this model can be applied for arbitrary mixing levels. Since two additional
unknown parameters are estimated in this model, we expect a decrease in separation per-
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formance for an equal mixing level. The source separation results using gain estimation are
shown in Figure 6.20. Again, all four structures have been evaluated in the experiments.
For the SGF and DG cases, no significant differences amongst the different structures can
be reported. For the SGM case however, noteable differences can be reported, similarly to
the first experiment without gain estimation. We notice that there is a steady decrease from
memoryless models to models with memory. Specifically, the HMMHMM structure results in
a significantly lower achieved average TMR. A comparison to the sequential model without
gain estimation shows a slightly lower TMR for the SGF but a higher TMR for the DG case.
Note, although we additionally estimate two parameters, the performance measured in TMR
remains almost constant.

7

7.5

8

8.5

9

9.5

SGF

T
M

R
 [d

B
]

VQVQ

VQHM
M

HM
M

VQ

HM
M

HM
M

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4
SGM

T
M

R
 [d

B
]

VQVQ

VQHM
M

HM
M

VQ

HM
M

HM
M

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

DG

T
M

R
 [d

B
]

VQVQ

VQHM
M

HM
M

VQ

HM
M

HM
M

Figure 6.20: Mean and standard deviation of the TMR for the BM signals using sequential
gain-shape source-filter based SCSS method. Here different graphical model structures are
investigated for gain-shape source-filter based source separation.

Furthermore, we note that the spectrally whitened speech mixture well approximates the
underlying excitation signals of each speaker. Thus, the separation results are in accordance
with the experimental validation of this approximation (see section 6.2.2).

6.4.3 Parallel Source-Filter Model Separation Results

The introduction of the ICM4 algorithm offers a way to make a factorial model with four
parallel evolving Markov chains computationally tractable. This section, discusses the results
for both factorial models, without and with gain estimation. For gain estimation, the ML-
based method, introduced in chapter 5, section 5.2.1 has been applied. For both experiments,
we evaluate all variations of dynamic modeling. In case of the models with dynamics, the
system uses the Viterbi decoder to find the most likely joint state sequence u1..T

i or v1..T
i

associated to every hidden variable. Moreover, performance is assessed using the specified
test set. A cardinality of Q = |Ui| = |Vi| = 500 was specified as model size to train all models.
The training speech data was separated into its fine- and coarse-spectral structure using an
LPC order of 16. We normalize the speech material prior to training in case of the factorial
model with gain estimation. Therefore, each time frame in the magnitude frequency domain
is normalized to unit norm.
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Figure 6.21 depicts the results for the factorial model with four hidden random variables.
The labels on the horizontal-axis, specify the different combinations of models with and
without dynamics. For all structures, an average TMR increase of ∼ 10.5 dB, 6.5 dB and
10.8 dB is achieved for the SGF, SGM and DG case, respectively. We observe, that the
additional use of dynamics does not result in an increase of performance. However, the
complexity is increased significantly. Moreover, for the SGM case, the use of dynamics for
the excitation estimation reduces the performance slightly.

Additionally, we investigated different update schemes for the hidden variables during
observation likelihood computation in the ICM4 algorithm. For the conducted experiments,
always the fine-spectral structure related to each speaker was updated at the beginning. TMR
results for the reversed random variable update scheme, showed no significant differences.
Just for the SGM case a decrease of 0.5 dB in TMR was observed.
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Figure 6.21: Mean and standard deviation of the TMR for the BM signals using the parallel
source-filter based SCSS method.

Next, we carry out the same experiments, but this time we additionally employ gain
estimation for signal separation. In this case, there are two more degrees of freedom for
each speaker. The four random variables {au} and {av} account for the gain determination
at every time step. The results for the parallel gain-shape source-filter model are shown in
Figure 6.22. For all model combinations, a mean TMR increase to 10.3 dB for the SGF,
5.3 dB for the SGM, and 10.5 dB for the DG case can be reported. A comparison to
the system without gain estimation results in no significant decrease in performance for
the SGF and DG case. However, for the SGM case, a slight drop in performance from
approximately 6.5 dB to 5.4 dB has to be reported. Note, the additional use of dynamics for
speaker dependent acoustic models does not increase the separability. Further, the additional
estimation of the gain associated to each time frame, enables the application of this separation
algorithm for arbitrary mixing levels at the cost of a marginally reduced TMR. Additionally,
we performed two more experiments with the parallel gain-shape source-filter method. In the
first experiment, the method was applied to real world mixtures. The experimental setup as
well as results are reported in appendix A. In the second experiment, this method is studied
as pre-processing for an automatic speech recognition system. In appendix B we discuss the
experimental setup as well as results. Moreover, results are compared to results achieved by
clean speech, mixture data, and separated data using the FM-VQ state-of-the-art algorithm.
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Figure 6.22: Mean and standard deviation of the TMR for the BM signals using parallel
gain-shape source-filter based SCSS methods. Here different graphical model structures are
investigated for gain-shape source-filter based source separation.

6.4.4 Sequential versus Parallel Source-Filter SCSS

Figure 6.23 summarizes the best results of all proposed systems within this chapter. These
are the sequential source-filter system using multi-pitch tracking in the source-driven part
(seq-AE), the sequential method with the statistical representation of the source-driven part
(seq-VQVQ), and the parallel structure, once using LPC (par-VQVQ-lpc) and once using
SEEVOC (par-VQVQ) to find a source and filter representation. The last three listed methods
perform decoding without the use of dynamics, as indicated in the labels. Only the multi-
pitch unit employs dynamics for tracking. The results emphasize the superior performance
of the parallel source-filter structure for all three different mixture cases. Alternatively, we
compare the LPC and the SEEVOC [130] method to split the signals into its fine- and coarse-
spectral structure for the parallel model. The LPC based method increases the TMR more,
as shown in Figure 6.23.

6.5 Conclusion

This chapter discussed the application of the well known source-filter representation of speech
signals for single channel source separation (SCSS). The source-filter representation for SCSS
has been already discussed by Gomez et al. [35] and Radfar et al. [76]. While Gomez pro-
posed signal separation by the prediction of future frequency cell energy based on current
estimated neighboring frequency cells, Radfar united source- and model-driven aspects in
order to perform separation. This resulted in a sequential system, which first extracted pitch
and afterwards vocal tract related information. The methods discussed in this chapter, rely
on this sequential system with multi-pitch estimation. But in contrast to Radfar, a prob-
abilistic factorial HMM was employed for multi-pitch extraction. Moreover, to account for
different mixing levels, gain estimation has been discussed and different statistical models
for vocal tract modeling have been evaluated. Afterwards, the system was extended, re-
placing the multi-pitch tracking unit by directly modeling the fine spectral structure. This
system is advantageous as also unvoiced speech is explicitly modeled. For the pitch-based
system, the discriminative feature is lost during unvoiced segments of both speakers. Finally,
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Figure 6.23: Mean and standard deviation of the TMR. Comparison of sequential and parallel
source-filter based SCSS algorithms. seq-AE and seq-VQVQ denote the sequential methods
using multi-pitch tracking and the direct excitation signal model. par-VQVQ-lpc and par-
VQVQ refer to the parallel methods using LPC and SEEVOC to find the coarse and fine
spectral structure, respectively.

a hidden variable for the fine- and coarse-spectral structure of each speaker was introduced
and tracking was performed in parallel. The state sequence of four hidden variables was
extracted simultaneously. Since exact inference is computationally intractable, the ICM4
observation likelihood approximation introduced in chapter 4, section 4.5 was incorporated.
For all proposed models, gain estimation was included and evaluated. All conducted experi-
ments suggest the use of the parallel source-filter estimation system. From a computational
complexity point of view, the sequential model with statistical excitation modeling and the
parallel model have the same complexity. Only the model using multi-pitch extraction has a
significantly higher computational complexity.



Chapter 7
Conclusion and Future Directions

This chapter starts with a summary on single channel source separation (SCSS) and lists
the contributions of this thesis. However, there still remain open questions to be addressed
in the future. Consequently, we raise possible research directions towards achieving human
performance.

7.1 Summary and Contributions

In SCSS, multiple source signals are extracted from a single observation. This is an under-
determined problem and hence requires further constraints in order to be solved. Statistical
independence, constant statistics over time or source prior knowledge can be employed as
constraints. Chronologically, the first systems tried to mimic the human auditory system in
order to separate signals. This started with the search for the same low level cues which
humans use as well as the effort to model the neural activities in the human brain. Recently,
machine learning algorithms emerged in the field of SCSS and showed its potential for this
task. These methods explicitly model source specific characteristics. Due to the increased
availability of computational power and memory storage, these methods are achieving great
importance also for online processing systems. However, these systems suffer from three
problems: (i) huge computational complexity in factorial models. (ii) the models match only
for equal mixing level and (iii) the speaker identities must be known a priori.

Chapter 1 introduced SCSS and partial shortcomings of current systems. Moreover,
efforts were made to compare this thesis to related theses and to emphasize its specific
contribution. Chapter 2 introduced an overview of methods in SCSS and reviewed methods
to assess separation quality. However, the measure of separation quality strongly depends on
the target application. The performance for the developed algorithms was assessed using a
simple signal-to-noise measure, which compares the energy of the reference to the separated
signal. We referred to this measure as target-to-masker-ratio to emphasize the masking
aspects of the interference. Additional low-level objective measures which also account for
artificial energy and interference energy were introduced by Vincent et al. [80]. Nevertheless,
for simple comparisons a singular valued measure seems to be preferable.

The beginning of chapter 3 presented a summary of model-based methods and analyzed
each building block in detail. Based on this knowledge, we addressed the issue of model
complexity and model quality after training, and we compared performance to a simple
template-based system. For signal reconstruction, the construction of the soft binary mask

103
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was proposed. An automatic speech recognition (ASR) experiment on the SAIL real-life
corpus [21], compared the three different reconstruction masks. In this experiment, the
application of a soft binary mask resulted in a lower word error rate compared to the two
other masks (see appendix B).

Due to the factorial nature of model-based systems, chapter 4 discussed efficient ways to
decrease computational complexity. The main complexity originated from the computation
of the observation likelihood during inference. Therefore, we described efficient methods for
decreasing the complexity by up to two orders of magnitude while only marginally reducing
the separation performance.

Model-based systems perform best at equal mixing level, which is limiting its application.
Chapter 5 presented various strategies to estimate the gain for each speech segment individ-
ually. This approach led to the shape-gain factorial model for speech separation. We argued
to determine the gain on a segment basis instead of estimating the mixing level for a whole
utterance as suggested in [5, 24]. The shape-gain representation resulted in three different
structures, namely, the shape-gain, the gain-shape, and the independent gain-shape decoder
structures, to determine the best fitting shape and gain for each speaker. Interestingly, the
independent shape-gain estimation structure showed superior performance. A comparison
of the six proposed gain estimation methods favored the maximum-likelihood based gain
estimation.

In chapter 6, attributes of implicit models had been integrated in the explicit model. This
led to the representation of the speech signal by its fine- and coarse- spectral structure, in
analogy to the source-filter representation of speech. As a first step, the comb-like structure
of the excitation signal in the frequency domain was modeled by the fundamental frequency,
whereas a memoryless model (Vector Quantizer) captured the characteristics of the shap-
ing of the vocal tract. Multi-pitch tracking was performed, using a probabilistic approach.
Afterwards, the pitch information was combined with the vocal tract model, which yielded
in utterance dependent models. Separation was achieved combining these utterance depen-
dent models into a factorial model. The utterances of the Grid corpus [20] contained mainly
voiced utterances, therefore, the separation performance was reasonably high. However, the
discriminative feature is lost for this method during unvoiced sections of both speakers. As a
consequence, the direct representation of the excitation related signal was introduced. In this
step, we kept the sequential structure of the system for separation. Since the excitation sig-
nal was modeled directly, the speech mixture could not be employed directly for separation.
Therefore, we proposed the spectrally whitened speech mixture as approximation of the sum
of the individual excitation signals. Finally, the parallel estimation of the source and filter
signals is discussed. This led to a factorial model with four hidden discrete random variables.
The application of the iterated conditional modes observation likelihood approximation of
chapter 4 enabled computational feasibility. The analysis of the systems in terms of com-
putational complexity showed an equal complexity for the sequential and parallel structure
with direct excitation modeling and a significantly higher complexity for the separation model
with multi-pitch estimation. Note that the use of the parallel structures makes the spectrally
whitened speech mixture a redundant observation. Additionally, gain estimation was inte-
grated into all three proposed systems. This resulted in the so-called gain-shape source-filter
SCSS system, which corresponds to the production model of speech [23]. We can report an
increased separation performance for all but the same gender male mixtures compared to
the source-filter model without gain estimation, although the source-filter shape-gain model
estimated two additional parameters.

A last experiment focused on the application of the parallel source-filter shape-gain model
in a real cocktail party environment (see appendix A). Therefore, the single speaker utter-
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ances of two speakers had been played back by two loudspeakers and recorded with an
omni-directional microphone. For different distance settings between loudspeakers and mi-
crophone, the separation performance is reported. At the current stage, the model can not
deal with convolutive mixtures, thus reverberation is not removed. We can report an average
TMR increase of 7.23 dB and 6.43 dB for distances of 50 cm and 1 m between microphone
and loudspeakers, respectively. Finally, we evaluated the proposed method in terms of the
word error rate on artificial speech mixtures of the WSJ0 database [38]. For the automatic
speech recognition application the WER was reduce from 106.9 % for the speech mixture to
73 %.

To put it in a nutshell, this thesis successfully applied the full standard speech production
model to single-channel source separation. Each module was evaluated and compared to other
work. Moreover, solutions were provided to overcome the computational complexity problem
in factorial models. The final system was evaluated with linear instantaneous as well as real
speech mixtures via the TMR and the WER.

7.2 Future Directions

This thesis addressed some problems in single channel or monaural source separation. How-
ever, it is still far from achieving human performance on a wide range of possible interferences
and different environmental conditions. As an example, human performance was exceeded
the first time by Kristjansson et al. [5], on a restricted recognition task.

This thesis was restricted to separate co-channel speech, where the interference is known
to be speech. In the open-set case of unknown interferences, as already discussed in the
introduction, the separation is much more challenging. To develop one algorithm that can
deal with all interferences seems to be sheer impossible. It is more likely to use a whole bunch
of algorithms, each for a specific task or class of interference and apply them appropriately.
For this approach, however, reliable classification algorithms are needed.

Another open issue is the application of single channel source separation algorithms in real
environments. Currently, a linear instantaneous mixture model is assumed, which will not
hold for convolutive mixtures. Thus, there is no way around to develop convolutive mixture
models for single channel methods as proposed for multi-channel algorithms [4, 135].

A major shortcoming of the system of this thesis as well as of most state-of-the-art
separation algorithms is the assumption of a priori known speaker identities. Despite the
fact that in the model of Kristjansson et al. [5] speakers are selected from a set automatically,
the application to an open-set of speakers is questionable. Instead, a future direction might
employ information theoretic approaches to determine source dependent clusters online or to
find a strategy, which introduces source dependency in an iterative manner. Current systems
mainly rely on the speaker identity as discriminative feature for separation. This feature
breaks the symmetry in factorial models and enables speech separation. The integration
of high level features for separation could make the speaker identity a redundant feature.
Specifically, a speaker independent trained phone model could trigger the vocal tract model
of the proposed source-filter model, and thus break the symmetry of factorial models. Such
models might supersede speaker dependent models.



Appendix A
Experiments in a Real-World Environment

The parallel source-filter shape-gain separation algorithm proposed in chapter 6, section 6.3
has been developed for co-channel speech. In this chapter we apply this algorithm to convolu-
tive speech mixtures recorded in a real environment. To the best knowledge of the author, this
case has not yet been studied in the literature for single channel source separation (SCSS). At
the beginning, the recording setup is introduced. Besides, the geometry of the room as well as
the relative position of loudspeakers and microphone are described. The recording equipment
is defined and finally results are presented. We draw comparisons to the multi-channel work
on convolutive mixtures in the discussion.

A.1 Recording Setup

In all previous experiments, the speech mixture was assumed to be co-channel speech. In this
experiment, the proposed parallel gain-shape source-filter single channel source separation
approach is applied to data of a real environment. Therefore, the respective source signals of
the specified test data, taken from the Grid corpus [20] are played back by two loudspeakers.
The propagating signals are interacting with each other and the room. The resulting mixture
is captured at the microphone location. Additionally, each source signal was played back and
recorded separately for reference. Thus, alltogether 54 speech mixtures are recorded under
the influence of the room acoustics. The recordings have been carried out in the Cocktail
Party Room (CPR) of the Signal Processing and Speech Communication Laboratory at Graz
University of Technology. The ground plan is shown in Figure A.1. The CPR room has the
dimensions (length × width × height) of 5.72m × 5.32m × 4.14m. The loudspeakers as well
as the microphone were placed at the same height of 1.25m from the floor. Moreover, the
loudspeakers and microphone are placed in the room asymmetrically, i.e. the distances to
each wall are different. The distance d1 between each loudspeaker and the microphone is
the same. d2 denotes the distance between the two loudspeakers. Alltogether 3 experiments
with different setups for d1 and d2, specified in table A.1, were performed. An equivalent
network of the recording setup is shown in Figure A.2. The different transfer functions
between loudspeakers and microphone are modeled by h1 and h2, respectively. Thus, the
speech mixture changes from a linear instantaneous model y(t) = s1(t) + s2(t) to

y(t) = s1(t) ⋆ h1 + s2(t) ⋆ h2,

where ⋆ denotes the convolution operator. Note, in this model we assume time-invariant
impulse responses, which is in general not true. For our experiment this assumption goes
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Figure A.1: Layout and dimensions of the Cocktail Party room. The ground plan is shown
in the top plot and the vertical section in the bottom plot. The gap of 3.38 m indicates a
window, the circle in the upper left corner represents a column (concrete), and between the
column and the door their is a long bookshelf located. The whole floor is carpeted, otherwise
the walls are empty.
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well a line, since nobody was in the CPR room during the recording and the temperature
also remained constant.

Table A.1: Recording setups for experiments in the cocktail party room. The distance d1
refers to the distance between loudspeakers and microphone, whereas the distance between
loudspeakers is d2.

Recording setup d1 [m] d2 [m]

IR-25cm 0.25 0.45

IR-50cm 0.50 0.60

IR-100cm 1.00 0.80

Figure A.2: Equivalent network of the speech mixture in a real environment. Symbol h1 and
h2 model the respective transfer function from loudspeaker to microphone.

A.2 Recording Equipment

Two YAMAHA type MSP5 loudspeakers have been used for sound output. The speech
material was collected from a single omni-directional Behringer ECM8000 measurement mi-
crophone. The captured signal was pre-amplified and digitized by the RME Fireface 800 at a
sampling rate of 48 kHz. The resample1 function of MATLAB has been used to upsample all
database signals from 25 kHz to 48 kHz. Additionally, the signals were scaled to equal level.
Furthermore, the output volume of the loudspeakers were adjusted to have the same level.
The recording was carried out automatically, using the software Pure Data2 (PD). Between
each played back/recorded signal, a break of 1.5 sec. was specified manually. Thereby, it
is ensured that the signal energy of the previous recording has decayed sufficiently. After
recording, the signals were downsampled to a sampling frequency of 16 kHz by the resample
function.

A.3 Results

For separation, the parallel gain-shape source-filter SCSS method proposed in chapter 6,
section 6.3 has been utilized. Specifically, the parallel structure, where a Markov chain is
associated to each hidden random variable is employed for separation. Moreover, the statisti-
cal parameters were optimized for clean speech and were not re-optimized for the recordings
made in the CPR. This results in a significant mismatch between training and test data.

1http://www.mathworks.com/access/helpdesk/help/techdoc/ref/resampletimeseries.html
2http://puredata.info/
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Figure A.3 shows the source separation results for the SGF, SGM, and DG case, separately.
The labels on the horizontal-axis indicate different distances between loudspeakers and the
microphone (see Table A.1). To assess performance, the separated signals are compared to
the individually captured source signals, i.e. to the source signals convolved with the transfer
function from loudspeaker to microphone. In our opinion, a comparison to the clean signals
is not meaningful as the separation algorithm is not designed to compensate for introduced
delay and spectral shaping by the room. Moreover, Rodrigues et al. [136] discussed the lim-
itations of the binary mask for convolutive mixtures. According to their results, the binary
mask improves the TMR and the intelligibility for rooms with reverberation time less than
300 ms. Note, the CPR has a reverberation time T60

3 of ∼ 300 ms. Thus, according to these
findings the binary mask is a less well suited operator for the separation of convolutive signal
mixtures. Our results suggest that the application of the binary mask depends on the ratio
of line-of-sight versus non-line-of-sight components for distances smaller than the critical dis-
tance 4. For distances greater than the critical distance, we believe the T60 is an appropriate
quantity to justify if the binary mask can improve the TMR and the intelligibility.
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Figure A.3: Mean and standard deviation of the TMR for the BM signals using the parallel
gain-shape source-filter based SCSS method. Specifically, the HMM-HMM structure of sec-
tion 6.3 was used for separation. The labels indicate different distances between loudspeakers
and microphone.

Comparing the results of “clean” co-channel speech (see Figure 6.22) to the data at
distance of 25 cm, the TMR decreases by 2 dB and 1 dB for the SGF and SGM case,
respectively. For the DG mixture no decrease in terms of TMR can be reported. Similarly,
for the 50 cm distance experiment, the TMR for the DG case was slightly reduced and a little
elevated for the SGM case. Only for the SGF case, TMR decreases noticeably to 7.3 dB.
Finally, at a distance of 1 m, the TMR decreases for all cases. For this experiment, the
impact of the room is already clearly audible.

3The reverberation time T60 is specified as the time duration by which the sound presure level of the
impulse response drops by 60 dB.

4The distance at which the direct sound pressure level is equal to the reverberant sound pressure level is
called the critical distance in acoustics.
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A.4 Conclusion

In this section, the proposed parallel gain-shape source-filter single channel source separation
method was applied to convolutive mixtures, recorded in a real environment. Therefore,
the source signals have been played back by loudspeakers and afterwards captured by a
microphone. Three experiments with different distances have been carried out to study the
impact of the room on the separation performance. Currently, performance is measured
comparing the separated signals to the source signals, also recorded in the room. For this
setup we reported good results in terms of TMR. Especially, for the different gender case at
distances of 25 and 50 cm no and only a minor decrease in TMR was achieved. Although
this model does not include any convolutive approach even at a distance of 1 m, the TMR
can still be improved by 7.1 dB, 3.8 dB, and 8.4 dB, for the SGF, SGM, and the DG case,
respectively.



Appendix B
Automatic Speech Recognition

This chapter applies Single Channel Source Separation (SCSS) for automatic speech recogni-
tion applications. Specifically, a selection of discussed and developed algorithms are applied
to speech mixtures of two databases. The first data set is the SAIL real life SCSS cor-
pus [21] used in the next section. In section B.2, artificial mixtures are created from the Wall
Street Journal corpora [38]. In both experiments we compare the three masks used for signal
reconstruction of chapter 3, section 3.4.

B.1 ASR Results on the SAIL Real Life Corpus

In this experiment, we apply source separation to a real-world auditory scene instead of the
artificial linear instantaneous mixture of speech signals. Therefore, we perform the separa-
tion experiments on the SAIL real life SCSS corpus [21], which is a compilation of different
television newscasts. This corpus is split into a training and a test data set. The training
set consists of clean speech material whereas the test set are mixture recordings containing
spontaneous speech of two individuals and occasionally also laughter. Note, there is a con-
siderable mismatch between the training data of predominantly read text and the test data.
The test set consists of 13 utterances from four different individuals identified by the index:
A-D. The utterances are identified by the speaker ID followed by an index number.

We compare the three masks used for signal reconstruction in chapter 3, section 3.4 in
their application for speech recognition. During training, we learned a vector quantizer (VQ)
with 265 codewords using approximately 2 min of speech material for each speaker. To
separate the speech signals into its underlying source signals the factorial-max VQ model
(FM-VQ) is used in combination with the ICM4 observation likelihood approximation of
chapter 4, section 4.5. For the most probable state sequence, we reconstruct the separated
signal using the binary mask (BM-VQ), the soft binary mask (SBM-VQ) and the soft mask
(SM-VQ), respectively. Additionally, we present results for the non-negative matrix factoriza-
tion method with sparseness constraints (NMF-l0) [137]. We measure performance in terms
of the achieved word error rate (WER) and compare the results of the three masks to each
other and to the WER of the mixed signal. For performance assessment, we use the Sail
LABS Media Mining Indexer version 5.1 [22] ASR system. Table B.1 compares the resulting
WER in [%] for the mixed signals, the NMF-l0 method and the three different masks. The
row at the bottom summarizes the average (Avg) WER over all utterances.

We see that only the BM-VQ is not able to decrease the average WER and that the
SBM-VQ achieves the highest WER reduction. Moreover, non of the methods can decrease
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Table B.1: Word error rate (WER) for the mixture and the separated signals using the
NMF-l0 and the factorial-max VQ method. For the factorial-max VQ three different mask
for separation are employed: (i) binary mask (BM), (ii) soft binary mask (SBM), and (iii)
soft mask (SM).

WER [ % ]
utterance

mixed NMF-l0 BM-VQ SBM-VQ SM-VQ

A1 87.5 87.5 87.5 87.5 87.5

A2 44.4 44.4 88.9 55.6 44.4

B1 33.3 44.4 55.6 0.0 0.0

B2 90.0 90.0 100.0 90.0 100.0

B3 93.3 80.0 100.0 93.3 100.0

B4 30.8 30.8 69.2 30.8 30.8

C1 80.0 80.0 100.0 80.0 80.0

C2 50.0 33.3 83.3 27.8 38.9

C3 55.0 70.0 100 55.0 60.0

C4 93.3 86.7 73.3 33.3 33.3

C5 85.7 92.9 85.7 78.6 78.6

D1 50.0 0.0 50.0 33.3 16.7

D2 60.0 20.0 40.0 0.0 0.0

Avg WER 65.6 58.5 79.5 51.2 51.6

the WER for the first speaker. These utterances contain purely spontaneous conversational
speech with laughter, which is not included in the training material. If we compare the WER
of the three different masks, the binary mask increases the WER in 8 utterances, the soft
binary mask in one and the soft mask in three utterances. The WER remains unchanged for
three, six and four utterances, respectively. We can report a decrease of WER for the binary
mask, the soft binary mask and the soft mask for two, six and six utterances, respectively.
These results suggest that the binary mask is not the best choice for speech separation in
speech recognition applications. Moreover, the soft binary and the soft mask can improve
the WER by almost the same amount. The SM-VQ however increases the WER for three
utterances where the WER remains unchanged for the SBM-VQ. Both, the SBM-VQ and the
SM-VQ can decrease the WER by a larger amount compared to the reference method NMF-
l0. Generally, these are just results of an small ASR experiment with only 13 utterances.
Thus, these performance results have to be treated with great care.

B.2 ASR Results on the WSJ0 Nov92 Test Set

Due to the limited number of test data in the SAIL Real Life SCSS Corpus [21], we addi-
tionally perform ASR experiments on the November 1992 ARPA WSJ (Nov’92) test set of
the Wall Street Journal corpora (WSJ0) [38]. We follow the HTK recipe of Vertanen [138]
for training. Training and testing is performed using the HTK version 3.4. Before process-
ing, the waveforms are parameterized into a feature vector of 39 dimensions consisting of 12
cepstral and the 0th cepstral coefficients. Additionally, the delta and delta deltacoefficients
are computed. The resulting Mel Frequency Cepstral Coefficients (MFCC) are normalized
using cepstral mean subtraction. We use the TIMIT-bootstrapping method to initialize the
40 HMMs (39 HMMs for each phone and one HMM for silence) and follow the steps in the
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recipe to train the triphone models. For this training procedure only data of the training set
in the WSJ0 corpora have been used.

The Nov’92 test set consists of 330 utterance from four female and four male speakers.
The individuals are identified by their speaker ID: 440-447. This test set is evaluated using
the WSJ 5K non-verbalized bigram language model.

Speech mixtures are created by artificially mixing each utterance of an individual with
a randomly selected utterance of one of the other seven individuals. The length of the
utterances is between two and ten seconds. This results in various overlap and non-overlap
cases for the mixtures. For that reason, we adapt the calculation of the mixing level, i.e. the
target-to-masker ratio (TMR), by normalizing the signal energies by their length:

TMRT =
(
∑

t=1 s1(t)
2)/Ts1

(
∑

t=1 s2(t)
2)/Ts2

,

where s1(t) and s2(t) are the target and the interference, respectively. Ts1 and Ts2 are the
corresponding utterance lengths in samples. In the experiment the most challenging case of
equal mixing level has been selected, i.e. TMRT = 0 dB. We present results in terms of the
WER for every speaker separately, and a WER averaged (Avg WER) over all speakers. In
the HTK book [139] the WER is defined as one minus the accuracy (ACC)

WER = 1−ACC =
D + S + I

N
× 100%,

where N corresponds to the total number of labels in the reference transcription, D are the
deletion errors, S are the substitution errors, and I are the insertion errors.

The first two columns of Table B.3 show the WER for the clean and the mixed database.
The WER increases from 8.43 % for the clean to 106.93 % for the mixed database. Note,
values greater than 100 % are possible due to the included insertion errors.

In the first experiment, we use the factorial-max VQ model (FM-VQ) in combination
with the ICM4 observation likelihood approximation of chapter 4, section 4.5 to assess per-
formance of the binary, soft binary, and soft mask. Therefore, we trained a speaker dependent
model using each 5 min of data. Speaker dependent characteristics are represent using 500
codewords. The k-means training was stopped after 50 iterations. Column three to five of
Table B.3 show the WER of the three masks. We notice that all three masks can decrease
the WER compared to the WER of the mixture. As in the experiment of section B.2, the
soft binary mask shows best performance with an average WER of 72.52 %. The soft mask
performs slightly worse and the binary mask achieves only an average WER of 81.32 %. Note,
the WER of the BM is approximately 10 % higher compared to the SBM mask although both
masks use the same estimated state sequences. Note, the problem of optimal mask estima-
tion for ASR has already been addressed in [68]. Additionally, we analyzed the considerable
differences in WER between speakers. Especially the WER of the female speaker 445 is par-
ticularly low. The analysis of the speech mixture database showed no coherence between the
ratio of same to different gender mixtures between target speakers and the WER. Table B.2
shows the percentage of same and different gender mixtures for each target speaker.

However, we found appreciable differences between target and interference utterance
lengths. Only for the speaker 445 the average ratio of target to interference utterance length
is as low as 0.72. This means that the target utterance lengths are on average only 72 % of
the interference utterances. Moreover, the male speaker 440 has the highest utterance length
ratio of 1.32, which explains for the lowest WER after source separation. For the remaining
speakers the utterance length ratio is close to one.
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Table B.2: Percentage of same gender (SGM) and different gender mixtures (DGM) for each
target speaker in the database.

Speaker ID 440 441 442 443 444 445 446 447

SGM [%] 60.00 28.57 42.86 60.00 36.59 40.48 50.00 58.14
DGM [%] 40.00 71.43 57.14 40.00 63.41 59.52 50.00 41.86

Table B.3: Word error rate (WER) for the clean, mixed and the separated signals. For the
factorial-max VQ three different masks for separation are employed: (i) binary mask (BM),
(ii) soft binary mask (SBM), and (iii) soft mask (SM). For the source-filter (SF) and the
gain-shape SF (GS-SF) method the SBM is used for separation.

WER [ % ]
Speaker ID

clean mixed BM-VQ SBM-VQ SM-VQ SF GS-SF

440 8.45 97.54 68.20 44.39 44.24 53.46 52.53

441 12.72 116.95 91.52 88.70 89.48 86.19 104.71

442 9.14 105.26 84.07 76.59 79.78 70.91 79.64

443 6.23 100.00 71.43 60.64 63.07 64.74 58.97

444 8.11 98.92 83.65 74.32 75.27 75.14 80.68

445 7.49 128.95 97.84 93.01 97.50 96.01 100.67

446 5.24 103.20 77.58 62.59 62.59 61.72 67.69

447 10.20 108.07 77.47 81.74 84.47 80.67 88.89

Avg WER 8.43 106.93 81.32 72.52 74.29 73.27 78.89

In the second experiment, we employ the parallel source-filter (SF) and the parallel gain-
shape source-filter (GS-SF) separation methods of chapter 6, section 6.3 for ASR. We train
one excitation and one filter related HMM for each speaker using 5 min of data. We use 500
states for each model. The HMMs of the GS-SF method are trained using data normalized
to unit norm.

Since the three masks show the same behavior as for the FM-VQ method, we only present
performance results using the SBM mask for reconstruction. ASR performance in terms of
WER is shown in the last two columns of Table B.3. Although the SF method estimates
two more parameters, it shows a negligible lower WER compared to the SBM-VQ method.
Moreover, the GS-SF method, which additionally estimates the gain for each speaker at every
time step, performs well with an WER of 78.89 %. Note, the WER for the GS-SF method
is higher than for the other methods, but in contrast to these methods it can be applied to
speech mixtures with arbitrary mixing level.

B.3 Conclusion

In this chapter we evaluated source separation methods for automatic speech recognition
applications. We compared results in terms of the word error rate (WER) on two databases.
The first is the SAIL Real Life SCSS Corpus, which is a compilation of television newscasts.
This database consists of real world recordings of spontaneous speech. Moreover, we arti-
ficially mixed data of the November 1992 ARPA WSJ test set which is a part of the Wall
Street Journal corpora. On both databases we conducted experiments using the factorial-
max VQ. Specifically, we studied the impact of signal reconstruction on the WER using the
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binary, soft binary, and soft mask. On both databases, the soft binary mask showed superior
performance while the binary mask seems less well suited for ASR applications. This is in
contrast to Wang et al. [18, 19], who suggested the binary mask as computational goal in com-
putational auditory scene analysis. Finally, we employed the proposed parallel source-filter
(SF) and the parallel gain-shape source-filter (GS-SF) methods for separation. Although, the
GS-SF method additionally estimates one more parameter, the performance is reasonable.
In contrast to the factorial-max VQ and the SF method, the GS-SF method can be applied
for arbitrary mixing levels. We conclude that all investigated separation methods can reduce
the WER significantly compared to the WER without separation. However, all methods are
far from the WER achieved on the clean database.



Bibliography

[1] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product
algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498–519,
2001.

[2] D. Talkin, “Ch: A Robust Algorithm For Pitch Tracking,” In WB Kleijn and KK
Paliwal editors, Speech Coding and Synthesis, pp. 495–518, 1995.

[3] D. Wang and G. J. Brown, Eds., Computational Auditory Scene Analysis: Principles,
Algorithms, and Applications. New Jersey: John Wiley and Sons Ltd, oct 2006.

[4] A. Hyvärinen, J. Karhunen, and W. Oja, Independent Component Analysis. John
Wiley & Sons, 2001.

[5] T. Kristjansson, J. Hershey, P. Olsen, S. Rennie, and R. Gopinath, “Super-human
multi-talker speech recognition: The IBM 2006 speech separation challenge system,”
in International Conference on Spoken Language Processing (Interspeech), 2006, pp.
97–100.

[6] D. S. Brungart, B. D. Simpson, M. A. Ericson, and K. R. Scott, “Informational and
energetic masking effects in the perception of multiple simultaneous talkers,” Journal
of the Acoustical Society of America, vol. 110, no. 5, pp. 2527–2538, Nov. 2001

[7] E. C. Cherry, “Some experiments on the recognition of speech, with one and with two
ears,” Journal of the Acoustical Society of America, vol. 25, pp. 975–979, 1953.

[8] A. S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound,
2nd ed. Cambridge: MIT Press, 1990.

[9] A. Hyvärinen and E. Oja, “Independent component analysis: Algorithms and applica-
tions,” IEEE Int. Conf. Neural Networks, vol. 13, no. 4-5, pp. 411–430, 2000.

[10] S. Choi, A. Cichocki, H.-M. Park, and S.-Y. Lee, “Blind source separation and inde-
pendent component analysis: A review,” Neural Information Processing - Letters and
Reviews, vol. 6, no. 1, pp. 1–57, January 2005.

[11] T. Quatieri and R. Danisewicz, “An approach to co-channel talker interference sup-
pression using a sinusoidal model for speech,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 1, 11-14 April
1988, pp. 565–568.

116



BIBLIOGRAPHY 117

[12] D. L. Wang and G. J. Brown, “Separation of speech from interfering sounds based
on oscillatory correlation,” IEEE Transactions on Neural Networks, vol. 10, no. 3, pp.
684–697, 1999.

[13] G. Hu and D. Wang, “Monaural speech segregation based on pitch tracking and am-
plitude modulation,” IEEE Transactions on Neural Networks, vol. 15, no. 5, pp. 1135–
1150, 2004.

[14] Y. Shao and D. Wang, “Sequential organization of speech in computational auditory
scene analysis,” Speech Communication, vol. 51, no. 8, pp. 657–667, Aug. 2009

[15] G. Hu and D. Wang, “Segregation of unvoiced speech from nonspeech interference,”
Journal of the Acoustical Society of America, vol. 124, no. 2, pp. 1306–1319, 2008

[16] G. Hu, “Monaural speech organization and segregation,” Ph.D. dissertation, Ohio State
University, 2006.

[17] S. T. Roweis, “One microphone source separation,” in Neural Information Processing
Systems, NIPS, 2000, pp. 793–799

[18] G. Hu and D. Wang, “Speech segregation based on pitch tracking and amplitude mod-
ulation,” in IEEE Workshop on the Applications of Signal Processing to Audio and
Acoustics, New York, Oct. 2001, pp. 79–82.

[19] D. Wang, “Ch 12: On ideal binary mask as the computational goal of auditory scene
analysis,” In P Divenyi editors, Speech Separation by Humans and Machines, pp. 181–
197, 2004.

[20] M. P. Cooke, J. Barker, S. P. Cunningham, and X. Shao, “An audio-visual corpus
for speech perception and automatic speech recognition,” in Journal of the Acoustical
Society of America, ser. 5, vol. 120, 2006, pp. 2421–2424.

[21] J. Riedler and M. Stark, “A real life corpus for single channel source separation,” Graz
University of Technology, SPSC Lab.; SAIL LABS Technology AG, Vienna, Tech. Rep.
COAST-ROBUST-01, 2008.

[22] SAIL LABS Technology AG, “Media mining indexer (mmi),” Vienna, 2008.

[23] T. F. Quatieri, Discrete-Time Speech Signal Processing, ser. Prentice Hall series in
signal processing. Upper Saddle River, NJ: Prentice Hall PTR, 2002.

[24] M. Radfar, R. Dansereau, and A. Sayadiyan, “Speaker-independent model-based single
channel speech separation,” Neurocomputing, vol. 72, no. 1-3, pp. 71–78, Dec. 2008

[25] M. Radfar and R. Dansereau, “Single-channel speech separation using soft mask filter-
ing,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 8,
pp. 2299–2310, 2007.

[26] M. Radfar, A. Sayadiyan, and R. Dansereau, “A new algorithm for two-speaker pitch
tracking in single channel paradigm,” in Proceedings of the 8th International Conference
on Signal Processing, vol. 1, China, Nov. 16-20 2006, pp. 1–4.

[27] M. Wu, D. Wang, and G. Brown, “A multipitch tracking algorithm for noisy speech,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 11, no. 3, pp.
229–241, 2003.



BIBLIOGRAPHY 118

[28] M. H. Radfar, R. M. Dansereau, and A. Sayadiyan, “Monaural speech segregation based
on fusion of source-driven with model-driven techniques,” Speech Communication,
vol. 49, no. 6, pp. 464–476, Jun. 2007

[29] M. Wohlmayr and F. Pernkopf, “Multipitch tracking using a factorial hidden Markov
models,” in International Conference on Spoken Language Processing (Interspeech),
2008, pp. 147–150.

[30] ——, “Finite mixture spectrogram modeling for multipich tracking using a factorial
hidden Markov model,” in International Conference on Spoken Language Processing
(Interspeech), 2009, pp. 1079–1082.

[31] M. Stark, M. Wohlmayer, and F. Pernkopf., “Source-filter based single channel speech
separation using pitch information,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 18, no. 6, Apr. 2010, to appear.

[32] M. Reyes-Gomez, “Statistical graphical models for scene analysis, source separation
and other audio applications,” Ph.D. dissertation, Columbia University, New York,
Dec. 2007, Department: Electrical Engineering

[33] M. Reyes-Gomez, D. Ellis, and N. Jojic, “Multiband audio modeling for single-channel
acoustic source separation,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), vol. 5, Montreal, Canada, 2004,
pp. 641–644.

[34] M. J. Reyes-Gomez, N. Jojic, and D. Ellis, “Deformable spectrograms,” Artificial In-
telligence and Statistics, AISTATS, no. 79, pp. 1–26, Jan. 2005.

[35] M. Reyes-Gomez, N. Jojic, and D. P. W. Ellis, “Towards single-channel unsupervised
source separation of speech mixtures: the layered harmonics/formants separation-
tracking model,” in Workshop on Statistical and Perceptual Audio Processing (SAPA),
no. 137, Korea, 2004.

[36] S. J. Rennie, “Graphical models for robust speech recognition in adverse environments,”
Ph.D. dissertation, Electrical and Computer Engineering, University of Toronto, 2008.

[37] M. Cooke, J. R. Hershey, and S. J. Rennie, “Monaural speech separation and
recognition challenge,” Computer Speech and Language, vol. 24, no. 1, pp. 1–15,
January 2010

[38] J. Garofalo, D. Graff, D. Paul, and D. Pallett, “Continous speech recognition
(csr-i) wall street journal (wsj0) news, complete,” 1993, Linguistic Data Consortium,
Philadelphia

[39] 3GPP, Adaptive Multi-Rate Wideband Speech Transcoding, 3GPP TS 26.190, 7th ed.,
ETSI, 650 Route des Lucioles F-06921 Sophia Antipolis Cedex, Jun. 2007.

[40] D. O’Shaughnessy, “Invited paper: Automatic speech recognition: History, methods
and challenges,” Pattern Recognition, vol. 41, no. 10, pp. 2965–2979, Oct. 2008

[41] R. Lippmann, “Speech recognition by machines and humans,” Speech Communication,
vol. 22, no. 1, pp. 1–16, 1997



BIBLIOGRAPHY 119

[42] A. W. Bronkhorst and R. Plomp, “Effect of multiple speechlike maskers on binaural
speech recognition in normal and impaired hearing,” Journal of the Acoustical Society
of America, vol. 92, no. 6, pp. 3132–3139, Dec. 1992

[43] V. Hamacher, J. Chalupper, J. Eggers, E. Fischer, U. Kornagel, H. Puder, and U. Rass,
“Signal processing in high-end hearing aids: State of the art, challenges, and future
trends,” EURASIP Journal on Advances in Signal Processing, vol. 2005, no. 18, pp.
2915–2929, 2005.

[44] S. Haykin and Z. Chen, “The cocktail party problem,” Neural Computation, vol. 17,
no. 9, pp. 1875–1902, 2005

[45] F. J. Fraga, C. A. Ynoguti, and A. G. Chiovato, “Further investigations on the re-
lationship between objective measures of speech quality and speech recognition rates
in noisy environments,” in International Conference on Spoken Language Processing
(Interspeech), Pittsburgh, USA, September 2006, pp. 1877–1880.

[46] Y. Hu and P. Loizou, “Evaluation of objective quality measures for speech enhance-
ment,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 1,
pp. 229–238, 2008.

[47] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing,
2nd ed. Prentice Hall, 1999.

[48] R. S. Bolia, W. T. Nelson, M. A. Ericson, and B. D. Simpson, “A speech corpus for
multitalker communications research,” Journal of the Acoustical Society of America,
vol. 107, no. 2, pp. 1065–1066, Feb. 2000

[49] M. Figueiredo and A. Jain, “Unsupervised learning of finite mixture models,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 381–396,
2002.

[50] M. Sabin and R. Gray, “Product code vector quantizers for waveform and voice coding,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 32, no. 3, pp. 474–
488, 1984.

[51] F. Jelinek, Statistical Methods for Speech Recognition. MIT Press, January 1998.

[52] E. Ristad, “A natural law of succession,” Dept. of Computer Science, Princeton Uni-
versity, Princeton, NJ, Research Report CS-TR-495-95, 1995.

[53] C. Von der Malsburg, “The correlation theory of brain function,” in Reprinted in:
Models of Neural Networks II, E. Domany, J. V. Hemmen, and K. Schulten, Eds.
Berlin: Springer, 1981, ch. 2, pp. 95–119

[54] A. J. W. van der Kouwe, D. Wang, and G. J. Brown, “A comparison of auditory and
blind separation techniques for speech segregation,” IEEE Transactions on Speech and
Audio Processing, vol. 9, no. 3, pp. 189–195, Mar. 2001.

[55] B. Sagi, S. C. Nemat-Nasser, R. Kerr, R. Hayek, C. Downing, and R. Hecht-Nielsen, “A
biologically motivated solution to the cocktail party problem,” Neural Computation,
vol. 13, no. 7, pp. 1575–1602, 2001

[56] H. Asari, B. A. Pearlmutter, and A. M. Zador, “Sparse representations for the cocktail
party problem,” Journal of Neuroscience, vol. 26, no. 28, pp. 7477–7490, 2006



BIBLIOGRAPHY 120

[57] R. Pichevar, J. Rouat, C. Feldbauer, and G. Kubin, “A bio-inspired sound source sepa-
ration technique in combination with an enhanced FIR gammatone analysis/synthesis
filterbank,” in Proceedings of the European Signal Processing Conference (EUSIPCO),
Vienna, Sep. 2004, pp. 2063–2066.

[58] I. Jolliffe, Principal Component Analysis. New York: Springer, 1986.

[59] G.-J. Jang, T.-W. Lee, and Y.-H. Oh, “Blind separation of single channel mixture using
ICA basis functions,” in 3rd International Conference on ICA and BSS (ICA2001), San
Diego, CA, USA, Dec. 2001, pp. 9–12.

[60] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent component
analysis,” IEEE Transactions on Neural Networks, vol. 10, no. 3, pp. 626–634, 1999.

[61] A. Hyvärinen and P. Hoyer, “Emergence of phase- and shift-invariant features
by decomposition of natural images into independent feature subspaces,” Neural
Computation, vol. 12, no. 7, pp. 1705–1720, Jul. 2000

[62] M. A. Casey, “Separation of mixed audio sources by independent subspace analysis,”
Merl - A Mitsubishi Electric Research Laboratory, Massachusetts, USA, Tech. Rep.
TR-2001-31, Sep. 2001.

[63] G.-J. Jang and T.-W. Lee, “A maximum likelihood approach to single-channel source
separation,” Journal of Machine Learning Research, vol. 4, no. 7-8, pp. 1365–1392,
2003

[64] A. J. Bell and T. J. Sejnowski, “An information-maximisation approach to blind sep-
aration and blind deconvolution,” Neural Computation, vol. 7, no. 6, pp. 1129–1159,
1995.

[65] D. Lee and H. Seung, “Learning the parts of objects by nonnegative matrix factoriza-
tion,” Nature, vol. 401, pp. 788–791, August 1999.

[66] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in
Advances in Neural Information Processing Systems (NIPS). MIT Press, 2000, pp.
556–562.

[67] P. Smaragdis and J. Brown, “Non-negative matrix factorization for polyphonic music
transcription,” in IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics, New Paltz, NY, Oct. 2003, pp. 177–180.

[68] B. Raj, R. Singh, and P. Smaragdis, “Recognizing speech from simultaneous speak-
ers,” in International Conference on Spoken Language Processing (Interspeech), Lisbon,
September 2005, pp. 3317–3320.

[69] S. T. Roweis, “Factorial models and refiltering for speech separation and denoising,”
in Proceedings of the European Conference on Speech Communication and Technology,
Geneva, Switzerland, Sep. 2003, pp. 1009–1012.

[70] P. Smaragdis, Non-negative Matrix Factor Deconvolution; Extraction of Multiple Sound
Sources from Monophonic Inputs. Springer Berlin/Heidelberg, 2004

[71] ——, “Convolutive speech bases and their application to supervised speech separation,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 1, pp. 1–12,
Jan. 2007.



BIBLIOGRAPHY 121

[72] B. Raj and P. Smaragdis, “Latent variable decomposition of spectrograms for single
channel speaker separation,” in IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, 2005, pp. 17–20.

[73] B. Raj, P. Smaragdis, M. Shashanka, and R. Singh, “Separating a foreground singer
from background music,” in Proceedings, International Symposium on Frontiers of Re-
search on Speech and Music (FRSM), Mysore, India, Jan. 2007.

[74] T. Dau, D. Puschel, and A. Kohlrausch, “A quantitative model of the “effective” signal
processing in the auditory system.: I. Model structure,” Journal of the Acoustical
Society of America, vol. 99, no. 6, pp. 3615–3622, Jun. 1996

[75] S. Schimmel, L. Atlas, and K. Nie, “Feasibility of single channel speaker separation
based on modulation frequency analysis,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, 2007, pp.
605–608.

[76] M. H. Radfar, R. M. Dansereau, and A. Sayadiyan, “A maximum likelihood estima-
tion of vocal-tract-related filter characteristics for single channel speech separation,”
EURASIP Journal on Audio, Speech, and Music Processing, vol. 1, pp. 1–15, 2007.

[77] J. H. L. Hansen and B. L. Pellom, “An effective quality evaluation protocol for speech
enhancement algorithms,” in Proceedings of the International Conference on Spoken
Language Processing, no. 0917, 1998, pp. 2819–2822.

[78] P. Mermelstein, “Evaluation of a segmental SNR measure as an indicator of the
quality of ADPCM coded speech,” Journal of the Acoustical Society of America,
vol. 66, no. 6, pp. 1664–1667, Dec. 1979

[79] R. Gribonval, L. Benaroya, E. Vincent, and C. Fvotte, “Proposals for performance mea-
surement in source separation,” in 4th Int. Symp. on Independent Component Analysis
and Blind Source Separation (ICA), Nara, Japan, Apr. 2003, pp. 715–720.

[80] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement in blind audio
source separation,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 14, no. 4, pp. 1462–1469, 2006.

[81] R. Lambert and A. Bell, “Blind separation of multiple speakers in a multipath envi-
ronment,” in Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), vol. 1, Munich, Germany, 1997, pp. 423–426.

[82] D. Schobben, K. Torkkola, and P. Smaragdis, “Evaluation of blind signal separation
methods,” in Int. Workshop on ICA and Blind Signal Separation, Aussois, France,
January 11-15, 1999, pp. 261–266.

[83] T. Takatani, T. Nishikawa, H. Saruwatari, and K. Shikano, “Simo-model-based inde-
pendent component analysis for high-fidelity blind separation of acoustic signals,” in
4th Int. Symp. on Independent Component Analysis and Blind Signal Separation, Nara,
Japan, April 2003, pp. 993–998.

[84] L. Benaroya, F. Bimbot, and R. Gribonval, “Audio source separation with a single
sensor,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 14, no. 1,
pp. 191–199, 2006.



BIBLIOGRAPHY 122

[85] D. P. Ellis, “Ch 20: Evaluating Speech Separation Systems,” In P Divenyi editors,
Speech Separation by Humans and Machines, pp. 295–304, 2004.

[86] T. O. Virtanen, “Speech recognition using factorial Hidden Markov Models for separa-
tion in the feature space,” in International Conference on Spoken Language Processing
(Interspeech). Pittsburgh: ISCA, September 2006, pp. 89–92.

[87] A. Deoras and A. Hasegawa-Johnson, “A factorial HMM approach to simultaneous
recognition of isolated digits spoken by multiple talkers on one audio channels,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), vol. 1, May 2004, pp. 861–864.

[88] D. P. Ellis, “Prediction-driven computational auditory scene analysis,” Ph.D. disserta-
tion, Massachusetts Institute of Technology, June 1996.

[89] R. C. Bilger, J. M. Nuetzel, W. M. Rabinowitz, and C. Rzeczkowski, “Standardization
of a test of speech perception in noise,” Journal of Speech and Hearing Research,
vol. 27, no. 1, pp. 32–48, Mar. 1984

[90] M. Nilsson, S. Soli, and J. Sullivan, “Developement of the hearing in noise test for the
measurement of speech reception threshold in quiet and in noise,” in Journal of the
Acoustical Society of America, vol. 95, 1994, pp. 1085–1099.

[91] ITU-T Recomendation P.800: Methods for Subjective Determination of Transmission
Quality, International Telecommunication Union-Telecom, Geneva, March 1996.

[92] P. C. Loizou, Speech Enhancement, Theory and Praxis. Boca Raton: CRC Press,
Taylor & Francis Group, 2007.

[93] Z. Ghahramani and M. Jordan, “Factorial hidden Markov models,” Machine Learning,
vol. 29, no. 2-3, pp. 245–273, 1997.

[94] M. Jordan, Learning in Graphical Models. MIT Press, 1999.

[95] A. Nadas, D. Nahamoo, and M. A. Picheny, “Speech recognition using noise-adaptive
prototypes,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 37,
no. 10, pp. 1495–1503, Oct. 1989.

[96] A. Varga and R. Moore, “Hidden Markov Model decomposition of speech and noise,”
in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), vol. 2, 1990, pp. 845–848.

[97] B. J. Frey, L. Deng, A. Acero, and T. Kristjansson, “Algonquin: Iterating Laplace’s
method to remove multiple types of acoustic distortion for robust speech recognition,”
in Proceedings of the European Conference on Speech Communication and Technology,
2001, pp. 901–904.

[98] H. Pobloth and W. B. Kleijn, “Squared error as a measure of perceived phase
distortion,” Journal of the Acoustical Society of America, vol. 114, no. 2, pp.
1081–1094, Aug. 2003

[99] M. Radfar, A. Banihashemi, R. Dansereau, and A. Sayadiyan, “Nonlinear minimum
mean square error estimator for mixture-maximisation approximation,” Electronics Let-
ters, vol. 42, no. 12, pp. 724–725, 2006.



BIBLIOGRAPHY 123

[100] M. Wohlmayr, M. Stark, and F. Pernkopf, “A probabilistic interaction model for mul-
tipitch tracking with factorial Hidden Markov Models,” IEEE Transactions on Audio,
Speech, and Language Processing, 2010, sumitted.

[101] T. Kristjansson, H. Attias, and J. Hershey, “Single microphone source separation using
high resolution signal reconstruction,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, 2004, pp. 817–20.

[102] D. Klatt, “A digital filter bank for spectral matching,” in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 1,
1976, pp. 573–576.

[103] A. M. Reddy and B. Raj, “A minimum mean squared error estimator for single chan-
nel speaker separation,” in International Conference on Spoken Language Processing
(Interspeech - ICSLP), 2004, pp. 2445–2448.

[104] ——, “Soft mask methods for single-channel speaker separation,” in IEEE Transactions
on Audio, Speech, and Language Processing, vol. 15, no. 6, Aug. 2007, pp. 1766–1776.

[105] S. J. Rennie, J. R. Hershey, and P. A. Olsen, “Single-channel speech separation and
recognition using loopy belief propagation,” Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 3845–3848, 2009.

[106] C. M. Bishop, Pattern Recognition and Machine Learning. 233 Spring Street, New
York, NY 10013, USA: Springer, 2006.

[107] M. Stark and F. Pernkopf, “On optimizing the computational complexity for VQ-based
single channel source separation,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Dallas, Texas, 2010, pp. 237–
240.

[108] E. Bocchieri, “Vector quantization for the efficient computation of continuous density
likelihoods,” in Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), vol. 2, Minneapolis, USA, Apr. 1993, pp. 692–695.

[109] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Transactions on Information Theory, vol. 13, no. 2, pp.
260–269, 1967.

[110] M. Stark and F. Pernkopf, “Towards source-filter based single sensor speech separa-
tion,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Taipei, Taiwan, April 2009, pp. 97 – 100.

[111] A. Papoulis and U. Pillai, S., Probability, Random Variables and Stochastic Processes,
4th ed. McGraw-Hill, 2002, ch. 15: Markov Chains, pp. 695–772.

[112] J. Besag, “On the statistical analysis of dirty pixtures,” Journal of the Royal Statistical
Society, vol. 48, no. 3, pp. 259–302, 1986.

[113] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004.

[114] C. Lawson and R. Hanson, Solving Least-Squares Problems. Prentice-Hall, 1974, ch.
Linear Least Squares with linear inequality constraints, pp. 158–166.



BIBLIOGRAPHY 124

[115] S. M. Kay, Fundamentals of Statistical Signal Processing, Estimation Theory, ser. Pren-
tice Hall signal processing series. PTR Prentice-Hall, 1993, vol. 1.

[116] J. Kivinen and M. K. Warmuth, “Additive versus exponentiated gradient updates for
linear prediction,” in Proceedings of the 27th Annual ACM Symposium on Theory of
Computing. Las Vegas, Nevada, United States: ACM, 1995, pp. 209–218.

[117] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE
Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993.

[118] J. B. Buckheit and D. L. Donoho, “WaveLab and reproducible research,” Stanford
University, Stanford, CA, USA, Tech. Rep., 1995.

[119] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, ser. The
Springer International Series in Engineering and Computer Science. Springer, 1992,
vol. 159, ch. Constraint Vector Quantization, pp. 407–482.

[120] M. Stark, F. Pernkopf, T. V. Pham, and G. Kubin, “Vocal-tract modeling for speaker
independent single channel source separation,” in 1st IAPR Workshop on Cognitive
Information Processing, Santorini, Greece, June 2008, pp. 217 – 220.

[121] P. Vary and R. Martin, Digital Speech Transmission: Enhancement, Coding and Error
Concealment. John Wiley, march 2006.

[122] D. Morgan, E. George, L. Lee, and S. Kay, “Cochannel speaker separation by harmonic
enhancement and suppression,” IEEE Transactions on Speech and Audio Processing,
vol. 5, no. 5, pp. 407–424, 1997.

[123] J. Rosier and Y. Grenier, “Two-pitch estimation for co-channel speakers separation,”
in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), vol. 4, 13-17 May 2002, pp. 4–4160.

[124] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood estimation from incom-
plete data via the EM algorithm,” Journal of the Royal Statistic Society, vol. 30, no. B,
pp. 1–38, 1977.

[125] M. H. Hansen and B. Yu, “Model selection and the principle of minimum description
length,” Journal of the Acoustical Society of America, vol. 96, no. 454, pp. 746–774,
Jun., 2001

[126] F. Pernkopf and D. Bouchaffra, “Genetic-based EM algorithm for learning Gaussian
mixture models,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 27, no. 8, pp. 1344–1348, 2005.

[127] T. Minka, “Divergence measures and message passing,” Microsoft Research Cambridge,
Tech. Rep. MSR-TR-2005-173, 2005.

[128] J. Laroche, Y. Stylianou, and E. Moulines, “HNS: Speech modification based on a har-
monic+noise models,” in Proceedings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), vol. 2, 27-30 April 1993, pp. 550–553.

[129] R. McAulay and T. Quatieri, “Speech analysis/synthesis based on a sinusoidal repre-
sentation,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 34,
no. 4, pp. 744–754, 1986.



BIBLIOGRAPHY 125

[130] D. Paul, “The spectral envelope estimation vocoder,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 29, no. 4, pp. 786–794, 1981.

[131] R. McAulay and T. Quatieri, “Ch: Sinusoidal Coding,” In WB Kleijn and KK Paliwal
editors, Speech Coding and Synthesis, New York, USA, pp. 121–173, nov, 1995.

[132] J. Makhoul, “Linear prediction: A tutorial review,” Proceedings of the IEEE, vol. 63,
no. 4, pp. 561–580, April 1975.

[133] J. Bilmes and G. Zweig, “The graphical models toolkit: An open source software sys-
tem for speech and time-series processing,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, 2002, pp.
3916–3919.

[134] A. Wrench, “A multichannel/multispeaker articulatory database for continuous speech
recognition research,” in Workshop on Phonetics and Phonology in ASR, vol. 5, 2000,
pp. 3–17

[135] L. Parra and C. Spence, “Convolutive blind separation of non-stationary sources,” IEEE
Transactions on Speech and Audio Processing, vol. 8, no. 3, pp. 320–327, 2000.

[136] G. Rodrigues and H. Yehia, “Limitations of the spectrum masking technique for
blind source separation,” Independent Component Analysis and Signal Separation, pp.
621–628, 2009

[137] R. Peharz, “Single channel source separation using dictionary design methods for sparse
coders,” Master’s thesis, Graz Technical Unicersity of Technology, march 2010.

[138] K. Vertanen, “Baseline WSJ acoustic models for HTK and Sphinx: Training recipes
and recognition experiments,” Cavendish Laboratory, University of Cambridge, Tech.
Rep., 2006.

[139] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, G. Moore, J. Odell, D. Ollason,
D. Povey, V. Valtchev, and P. Woodland, The HTK Book (for HTK Version 3.4).
Microsoft Corporation/Cambridge University Engineering Department, 2006.


	Titlepage
	1 Introduction
	1.1 Scope of the Thesis
	1.2 Related PhD Theses
	1.2.1 M.H. Radfar: Single Channel Speech Separation
	1.2.2 M. Reyes-Gomez: Statistical Graphical Models for Scene Analysis, Source Separation and other Audio Applications
	1.2.3 S.J.  Rennie: Graphical Models for Robust Speech Recognition in Adverse Environments

	1.3 Organization
	1.4 Applications
	1.5 Experimental Setup

	2 An Overview of Work in Single-Channel Speech Separation
	2.1 Computational Auditory Scene Analysis (CASA)
	2.1.1 Temporal Binding and Oscillatory Correlation
	2.1.2 Cortronic Network

	2.2 SCSS based on Basis Decomposition
	2.2.1 Independent Component Analysis
	2.2.2 Non-Negative Matrix Factorization
	2.2.3 Latent Variable Decomposition

	2.3 Separation based on Modulation Frequency Analysis
	2.4 Evaluation Methods
	2.4.1 Objective Quality Measures
	2.4.2 Quality Evaluation by Subjective Tests

	2.5 Conclusion

	3 Model-Based Single Channel Source Separation
	3.1 Introduction
	3.2 Inference in Factorial Models
	3.2.1 Observation Likelihood Computation

	3.3 Observation Models for Factorial Models
	3.3.1 Additive Model
	3.3.2 Mixture-Maximization Model
	3.3.3 Algonquin Model

	3.4 Signal Reconstruction
	3.5 Experimental Results
	3.6 Conclusion

	4 Computational Complexity in Factorial Models
	4.1 Introduction
	4.2 Full Observation Likelihood Computation (FS)
	4.3 Fast Likelihood Estimation (FLE)
	4.4 Beam Search Technique (BS)
	4.5 Gibbs Sampling (GS) 
	4.6 Computational Complexity
	4.6.1 Performance and Cost Function

	4.7 Experiments and Results
	4.8 Conclusion

	5 Gain And Shape Modeling For Source Separation
	5.1 Introduction
	5.2 Gain Estimation
	5.2.1 Maximum-Likelihood Gain Estimation
	5.2.2 Nonlinear Gain Estimation
	5.2.3 Projection based Gain Estimation
	5.2.4 Nonnegative Least Squares based Gain Estimation
	5.2.5 Nonnegative Matrix Factorization based Gain Estimation
	5.2.6 Auditory Motivated Gain Estimation

	5.3 Combined Shape and Gain Estimation
	5.3.1 Shape-Gain Decoder
	5.3.2 Gain-Shape Decoder
	5.3.3 Independent Speaker Decoder

	5.4 Experiments and Results
	5.4.1 Supervised Gain Estimation
	5.4.2 Shape-Gain Single Channel Source Separation

	5.5 Conclusion

	6 Source Specific Characteristic for SCSS
	6.1 Introduction
	6.1.1 Source- and Model-Driven Approach

	6.2 Sequential Source-Filter based SCSS
	6.2.1 Synthetic Excitation Modeling
	6.2.2 Direct Statistical Excitation Modeling

	6.3 Parallel Source-Filter based SCSS
	6.3.1 Observation Model

	6.4 Experiments and Results
	6.4.1 Synthetic Excitation Results
	6.4.2 Separation Results for the Direct Statistical Excitation Model
	6.4.3 Parallel Source-Filter Model Separation Results
	6.4.4 Sequential versus Parallel Source-Filter SCSS

	6.5 Conclusion

	7 Conclusion and Future Directions
	7.1 Summary and Contributions
	7.2 Future Directions

	A Experiments in a Real-World Environment
	A.1 Recording Setup
	A.2 Recording Equipment
	A.3 Results
	A.4 Conclusion

	B Automatic Speech Recognition
	B.1 ASR Results on the SAIL Real Life Corpus
	B.2 ASR Results on the WSJ0 Nov92 Test Set
	B.3 Conclusion
	Bibliography


