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Abstract

Modeling the functional relation between high dimensional signals is a common task in
computer vision. Just like natural perception systems are able to relate and combine im-
pressions from different senses (speech, facial expression, gestures, haptics, etc.), simul-
taneous processing of signals of different sources and establishing a functional relation
between these sources is an important issue in this research area.

In this thesis, we employ statistical regression models for prediction of high dimen-
sional signals, such as images, where standard regression algorithms will cause overfitting
to the training sample due to the large number of regression parameters to be estimated.
We employ canonical correlation analysis (CCA) and its nonlinear generalization kernel-
CCA for making explicit the regression relevant subspaces and to reduce the effective
number of parameters of the regression model.

The proposed algorithms are successfully applied to 3D pose estimation, prediction
of face depth maps from a single color image of the face, and fast matching of active
appearance models and active feature models. Qualitative and quantitative results show
that CCA-based methods outperform standard regression models because of their ability
to exploit correlations in the input and output space.





Kurzfassung

Die Modellierung des funktionalen Zusammenhangs zwischen hochdimensionalen Sig-
nalen ist eine Problemstellung, die im Bereich der Bildverarbeitung und automatischen
Objekterkennung häufig auftritt. Auch die natürliche Wahrnehmung beruht auf der Fähig-
keit, Eindrücke verschiedener Quellen in Beziehung zu setzen (Gesichtsausdruck, Sprache,
Gesten, Berührungen, u.s.w.). Die simultane Verarbeitung von Signalen aus verschiede-
nen Quellen und das Analysieren des funktionalen Zusammenhangs der Signale ist daher
ein wichtiges Thema in diesem Forschungsbereich.

In dieser Doktorarbeit setzen wir statistische Verfahren der Regressionsanalyse ein,
um ein hochdimensionales Ausgabesignal anhand eines hochdimensionalen Eingabesig-
nals vorherzusagen. Eine besondere Herausforderung in der Bildverabreitung ist dabei
das ungünstige Verhältnis der Kardinalität der Trainingsmenge zur Anzahl der zu schätzen-
den Parameter des Vorhersagemodels, da die Anzahl der Parameter in Zusammenhang zur
Dimensionalität der Daten steht und meist nur relativ wenige Beobachtungen zur Verfü-
gung stehen, anhand derer die Parameterwerte gelernt werden können. Hier kommt die
kanonische Korrelationsanalyse (canonical correlation analysis, CCA) bzw. auch deren
nicht-lineare Erweiterung durch Kernel-Methoden zum Einsatz, mit deren Hilfe sich re-
gressionsrelevante Unterräume der Signalräume bestimmen lassen und dadurch die effek-
tive Anzahl der Parameter reduziert werden kann.

Die vorgestellten Algorithmen werden erfolgreich für folgende Anwendungen einge-
setzt: Lageschätzung von 3D Objekten, Vorhersage von 3D Struktur eines Gesichts an-
hand eines einzelnen RGB Farbbildes des Gesichts und schnelles matching von active
appearance models und active feature models. Qualitative und quantitative Ergebnisse
zeigen, dass CCA-basierte Verfahren durch die Eigenschaft, sowohl im Eingabesignal-
raum als auch im Ausgabesignalraum Korrelationen ausnutzen zu können, bessere Ergeb-
nisse erzielen als Standardverfahren.
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Chapter 1

Introduction

This thesis deals with enhanced regression methods based on canonical correlation analy-

sis (CCA) applied to machine vision problems. The term ”regression” refers to the task of

approximating a continuous, real-valued function from noisy observations. Here, we deal

with vector-valued (i.e., multiple output variables) functions of vector arguments (i.e.,

multiple input variables). The proposed methods are used to model the functional relation

between two high dimensional signal spaces (random vectors) x and y, by learning from

a set of observations, i.e., corresponding realizations of both vectors. The learned model

will then be used for prediction of y from a new observation of x.

The learning method will be applied to four vision tasks which are outlined in figure

1.1 (details will be given in chapter 4). The first application is an image-based face shape

modeling approach using a linear regression model based on CCA. It does not employ an

explicit illumination model (in contrast to several shape-from-shading approaches) and

allows to recover the structure of the face surface from a single RGB image. The second

example uses the same technique for the prediction of near infrared images from normal

greyscale images.

In another task, CCA will be applied to non-linear feature extraction for pose estima-

tion. Here, the input signal x is a greyscale image showing the object, whereas the output

signal is low dimensional representation of the pose (for example pan and tilt angle of the

camera w.r.t. the object’s position in degrees). In the resulting feature space, which cap-

tures all regression relevant information, a low dimensional parametric manifold model is

build up (see section 4.1). The quality of the predictions of an unseen pose depends on

1



2 Chapter 1. Introduction

pan

tilt

Iinput-Imodel = δI  

δc

RGB images depth

RGB images NIR images

grey level images pose

difference images
parameter displacements

f

f

f

f

Figure 1.1: Four high dimensional regression problems. The goal is to estimate the from
a sample of observations the predictive model f which allows to predict the signal y from
the signal x. Typically the number of observations in the training set is much smaller than
the dimensionality of x and y which makes the learning problem ill-posed.

the choice of representation of pose. For example, when using a linear angular scale such

as the degree or radian measure, the features extracted by CCA on periodic data perform

relatively poor due to the discontinuity at 2π. We will show that regularized kernel-CCA

- a non-linear generalization of CCA by the use of kernel-methods - can be employed to

automatically find an optimal non-linear transformation of pose parameters. In this case

the transformation results in a trigonometric representation of pose parameters with four

instead of two parameters in the output space (corresponding approximately to sine and

cosine of each of the two parameters).
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A forth application is matching of an active appearance model (AAM) to an image,

where regression of the texture residuals on the parameter displacements of the AAM is

performed. The texture residuals results from the difference of a synthetic image gen-

erated by the AAM (with corresponding parameters) and the input image to which the

AAM is matched. Instead of ordinary linear least squares regression, or numeric differ-

entiation approaches to modeling the relation between texture residuals and parameter

displacements, CCA is used to select a set of directions which are highly correlated be-

tween texture-residual and parameter spaces. Performing a reduced-rank regression on

the signal subspaces thus obtained will reduce the variance of the estimator of the update

matrix.

All these regression problems share the following characteristics:

• Processing of high dimensional signals: For example, a monochrome image with

an image size of 128×128 pixels the dimensionality p of the signal becomes 16384.

• Learning of a functional relation between two high dimensional signals (e.g., two

different images modes) from a sample of observations.

• A small number N << p of available training images. N is typically in the range

of a few hundred to a few thousand images. In this situation the sample covariance

matrix, on which regression analysis is based, is likely to be singular. This makes

the learning problem ill-posed, i.e., there are a possibly infinite number of solutions

with zero training error, that however fail to capture the functional relation of input

and output signal.

Due to the low ”observation-to-variable ratio”, a standard regression algorithm will

cause overfitting to the training sample. This means that the resulting function will typ-

ically show a low training error rate (in fact zero training error if the system of linear

equations is under-determined with p < N ), but a large error on unseen data, i.e., new

images which are not in the training set. In the case of high dimensional data, where many

regression parameters have to be estimated from a relatively small sample, training error

rate and prediction error rate on unseen samples will typically diverge.

Overfitting is avoided by standard shrinking methods, such as ridge regression (these

methods will be reviewed in section 2.1) or techniques like principle component regres-

sion (see for example [33]). These methods exploit correlations in the input space, but
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neglect correlations in the output space (in the case of multiple output variables). This is

disadvantageous if the output space is high dimensional.

In order to improve the prediction error, we will employ CCA for making explicit

the regression relevant low-dimensional subspaces and to reduce the effective degrees of

freedom. In doing so, we perform model complexity control and avoid overfitting. CCA

is a tool for finding directions in two signal spaces that yield maximum correlation be-

tween the projections of the original signals onto these directions (see figure 1.2). Thus,

like principal component analysis (PCA), CCA can be used as a dimensionality reduction

method yielding a small number (compared to the superficial dimensionality of the orig-

inal signal space) of linear features. Unlike PCA, however, CCA takes into account the

relation between the two signal spaces, which makes it better suited for regression tasks

than PCA.

Regression can be performed on the reduced number of features extracted by CCA,

thereby the number of independent parameters that are to be learned from the training

data (effective number of parameters) is reduced in a sensible way. CCA does this by

exploiting correlations in input and output variables. For example, the leading canonical

output variates are those linear combinations of output variables that are best predicted

by the input variables, because they show the highest correlation with canonical input

variates. The trailing canonical output variates have low correlation with input variables

and thus can not be predicted accurately. By dropping these variables, we reduce the

variance of the predicted values, and hence may improve the overall prediction accuracy

of the model.

There are several strongly related regression methods such as principal component

regression, partial least squares, and especially reduced-rank regression (we will discuss

the relation between CCA and the latter in section 2.4). An overview of these methods is

given in [33] and [8] (where a unifying framework for these methods is presented). While

the goal of these methods is inference of a predictive model (predictive function), CCA

is a tool for inspection of linear relations between to random vectors. Unlike regression

methods, where x act as input (independent) variables and y as noisy output (dependent)

variables, CCA is symmetric and looks for common latent variables of two (possibly

noisy) signals, i.e., x and y take on the same role. Thus, CCA can not only be used
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Figure 1.2: CCA finds directions in two signal spaces x and y, such that the projections
onto these directions have maximum correlation. In this illustration the (empirical) CCA
is performed on a sample of 20 two-dimensional observations of x and y. Corresponding
observations share the same grey value. The canonical directions found are shown as
arrows (vectors) in the original signal space. Projections of the sample onto the one-
dimensional subspaces are shown below the 2d plots. The illustration can be interpreted
as a schematic plot, where the original signal space is high dimensional (� 2d) and
wx and wy are the basis of a low-dimensional subspace spanned by a basis of canonical
factors successively found by CCA (see section 2.2 for details).

for regression purposes, but whenever we need to establish a relation between two high

dimensional signals or sets of measurements. This is particularly beneficial if we assume

(in contrast to the standard regression model) that the input signal is also noisy.

1.1 Contributions

The most important individual contributions are:

• Non-linear extension of canonical correlation analysis by the use of kernel meth-

ods (kernel-CCA) and enhancement of manifold models for appearance based pose

estimation (Sections 3.1 and 4.1).

• Application of CCA for fast matching of active appearance models (see Section 4.2).

The proposed method is an alternative training strategy for the update matrix used

in the active appearance model.

• Application to predicting depth maps of facial surfaces from RGB color images

using regression on feature measurements determined by CCA (Section 4.3). An
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experimental comparison of (kernel-)CCA-based regression and standard enhanced

regression methods, such as the curds & whey procedure [10] or regression on

sparse CCA features [68] is conducted.

1.2 Overview of the document

In chapter 2.2, we review canonical correlation analysis and its relation to reduced-rank

regression and ridge regression. In chapter 3.1 we introduce the kernel-based non-linear

generalization of CCA (kernel-CCA) and discuss the effect of ridge-penalty regulariza-

tion. In section 4.2 we suggest an enhanced regression method based on CCA which

exploits correlations within and between the input and output signal to matching of active

appearance models as an alternative training strategy for calculating the update matrix

(see [17]). It will be shown, that compared to the standard regression based matching ap-

proach, we obtain a speed-up factor of approximately 4. As will be shown in section 4.1,

appearance models based on kernel-CCA (manifold models) can be employed for the

task of estimating the pose of a 3D object relative to the camera. In section 4.3, we use

CCA-based regression for prediction of depth maps of facial surfaces from color images.

Conclusions are drawn in section 5.

1.3 Notation

The following uniform notation will be used throughout this thesis. Scalars are indicated

by italic letters such as x. Vectors are indicated by lowercase bold letters, such as w or

x. Matrices are indicated by uppercase bold letters, such as W. Elements of vectors or

matrices are given using the corresponding italic lowercase letters and the indices of the

element. For example, the (i, j) element of matrix W is accessed by wij . The same no-

tation will also be used for random quantities (provided the meaning is clear from the the

context). Sometimes indices like in x0 are used to distinguish observations (realizations)

from the random vectors x.



Chapter 2

Linear Regression and CCA

2.1 Learning Models of High Dimensional Data

Consider two random vectors x ∈ IRp and y ∈ IRq with a joint probability

p(x,y) = p(x)p(y|x). (2.1)

The regression model assumes that y depends on x by

y = g(x) + εεε, (2.2)

where g : IRp → IRq is a (deterministic) vector-valued function and εεε ∈ IRq is a random

noise vector with E(εεε) = 0 and Cov(εεε) = Σ. It relates the dependent variables y to a

function of the independent variables (regressors) x, i.e., a parameterized model for the

conditional probability of the form (see [5])

g(x) = Ey(y|x) =

∫
yp(y|x)dy = f(x,w) (2.3)

is deployed, where f is a parameterized vector-valued function which is completely de-

termined by the choice of the parameter vector w. Given a training set T = {xi,yi}, i =

1, . . . , N of N pairs of corresponding observations of the random variables x and y, the

parameters w are adjusted by minimizing some error criterion on the training set. This

error criterion reflects by a single positive number, the training error, how well the model

fits the training sample (see below). Once the optimal w has been determined, predictions

of y given a new value of x can be made by evaluating f(x,w).

7
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2.1.1 Loss function

In order to assess the quality of the model fit to the data, a loss function

L(yi, f(xi,w)) (2.4)

is used, which is defined pointwise and assigns a positive value to the deviation of the

prediction f(xi,w) from the observed corresponding output yi. A common loss function

is the squared error loss

L(y, f(x,w)) = ‖y − f(x,w)‖2, (2.5)

which is the special case of a loss based on the likelihood of the response density of y at

a given x, i.e.

L(y, θ(x)) = −2 log pθ(x)(y), (2.6)

where θ is a parameter of a probability density depending (conditioned) on x. For the

case of the Gaussian additive error model of Eq. 2.2 we have

pθ(x)(y) = N(f(x), Σ). (2.7)

2.1.2 Risk

The expected loss of the trained model with a specific w on unseen data, i.e. new obser-

vations of pairs x,y which are not in the training set, is sometimes referred to as risk

R(w) = ExEy|xL(y, f(x,w)), (2.8)

where the expectation is taken over x,y and w is the (fixed) argument. The risk condi-

tioned on a specific input position x0, i.e.,

R(x0,w) = Ey|x0L(y, f(x0,w)) (2.9)

is called conditional risk. The optimal approximating function is the one minimizing the

risk and is given by parameters

w∗ = arg min
w∈F

R(w). (2.10)

In the case of squared error loss and if we use a completely flexible model, minimization

of the risk results in f(x,w∗) = Ey(y|x), i.e., the model implements the true regression

function (see for example [5]).
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2.1.3 Training error

Note that in a regression task Eq. 2.10 cannot be solved directly because the probability

densities of x and y are unknown and thus the expectation of Eq. 2.8 can not be evaluated.

However, given a sample, we can calculate the training error, which is the average loss

on the sample T :

Remp(w, T ) =
1

N

N∑
i=1

L(yi, f(xi,w)). (2.11)

Because the training error can be seen as an estimate of the risk of w, it is sometimes

referred to as empirical risk. We can obtain estimates of w∗ by minimization of the

empirical risk, i.e.,

ŵ∗ = arg min
w

Remp(w, T ). (2.12)

The estimator f(x0, ŵ
∗) of the output at an arbitrary position x0 is - as a function of the

random sample T - a random variable. From now on, whenever we refer to predictions us-

ing a trained model f(x0, ŵ
∗), where its parameters have been optimized by minimization

of Eq. 2.12 using a sample T , we will denote it by f(x0; T ).

The most common loss function is the squared error loss (cf. Eq. 2.5) which leads to

the residual sum-of-squares error function (RSS)

RSS(w, T ) =
1

N

N∑
i=1

(yi − f(xi,w))2.

This criterion is motivated by the principle of maximum likelihood on the assumption that

the training vectors xi,yi have been drawn independently and that p(y|x) is Gaussian (cf.

Eq. 2.6). This leads to the least squares estimator

ŵ∗ = arg min
w

RSS(w, T ).

2.1.4 Linear regression and the Wiener filter

The linear regression model assumes that

E(y|x) = Wx + w0, (2.13)

where W ∈ IRp×q is the matrix of regression coefficients and w0 ∈ IRq is a vector of

parameters compensating the difference of the mean of the predictor variables and the
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response variables. The model either assumes a linear (affine) regression function or that

it can be approximated by a linear function. To simplify the following discussion, we

assume E(x) = 0 and E(y) = 0 and consequently the vector w0 = 0.

If we assume a stationary ergodic environment in which x and y are jointly Gaussian,

such that the environment can be described by the second-order statistics

• Cxx = E(xxT ), which is the covariance of x and

• Cxy = E(xyT ), the cross-covariance of x and y and Cyx = CT
xy,

the coefficients W are given by the Wiener filter solution

W = CyxC
−1
xx . (2.14)

to the linear optimum filtering problem [36]. The Wiener solution corresponds to the least

mean square solution in the sense that, if we are using squared loss, the risk reaches its

minimum:

R(w) = ExEy|xL(y, f(x,w)) (2.15)

= ExEy|x‖y − f(x,w)‖2 (2.16)

= trace(Cyy − E(f(x,w)f(x,w)T )) (2.17)

= trace(Cyy −CyxC
−1
xx Cxy) (2.18)

= trace(E(εεεεεεT )) = qσ2, (2.19)

where fw denotes the linear model of Eq. 2.13 with W given by Eq. 2.14. Note that if

x,y are jointly Gaussian and εεε is uncorrelated then fw(x) = f(x). Otherwise f(x) is

approximated by a linear (affine) function.

2.1.4.1 Canonical coordinates

The Wiener filter can be written in terms of canonical coordinates as follows:

W = CyxC
−1
xx

= C
1
2
yyC

TC
− 1

2
xx

= C
1
2
yyVDUTC

− 1
2

xx , (2.20)
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where C is the coherence matrix defined in Eq. A.21. Eq. 2.20 shows that the Wiener filter

can be decomposed (left to right) into a whitening transform, a coherence filter [58] and

a coloring transform which reconstructs the response signal. In the case of pre-whitened

variables x and y the Wiener filter corresponds to the coherence filter C = VDUT .

2.1.5 Linear estimator

Designing the Wiener filter requires knowledge of the second-order statistics (see section

2.1.4), which is normally not available in practice. An estimate of W can be obtained

using the RSS criterion on a sample T of N observations (realizations) as follows: Let

X = (x1, . . . ,xN) ∈ IRp×N and Y = (y1, . . . ,yN) ∈ IRq×N be the data matrices contain-

ing the corresponding N observations of the sample T in their N columns. We seek an

estimate of the true parameters W minimizing the residual sum-of-squares error criterion,

i.e.,

Ŵ = arg min RSS(W)

where

RSS(W) =
N∑

i=1

(yi − fw(xi))
2

=
N∑

i=1

(yi −Wxi)
T (yi −Wxi)

= trace
(
(Y −WX)T (Y −WX)

)
. (2.21)

The estimator Ŵ is obtained by setting the derivative of Eq. 2.21 to zero and is given

by

Ŵ = YXT (XXT )−1. (2.22)

In the Gaussian setting Ŵ corresponds to the maximum-likelihood estimate [5] of W1.

Eq. 2.22 is called the ordinary least squares (OLS) solution to the multivariate linear

regression problem and states that in the case of multiple outputs (i.e. q > 1), the solu-

tion is obtained by separate univariate linear regression on each component of y (see for

1 This is even true for non-diagonal noise covariance Σ = E(εεεεεεT ), as long as Σ does not change among the
observations.
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example [33]). The predicted values for the training data are

Ŷ = ŴX = YXT (XXT )−1X, (2.23)

where the i-th column of Ŷ is ŷi = Ŵxi. The matrix H = XT (XXT )−1X in the

above equation is called the ”hat” matrix because it puts a hat on Y. The matrix H

corresponds to a projection onto the row space of X (for the geometrical interpretation

see for example [5] or [33]).

2.1.6 Linear basis function models

The linear model shown in section 2.1.4 is a special case of models which are linear in

their parameters w. These models are also linear in their input variables x which imposes

a limitation on the model. We can extend the class of models to linear basis function mod-

els (see for example [6]) by considering linear combinations of fixed nonlinear functions

of x, of the form

f(x,w) = Wφφφ(x), (2.24)

where W is a q × k matrix of parameters and

φφφ(x) = (φ0(x), φ1(x), ..., φm−1(x))T (2.25)

is the m-vector of basis function activations. Here we use the same set of basis functions to

model all output components (which is the most common approach). By using a constant

basis function φ0(x) = 1 we can allow for any fixed offset in the data. For example in the

case of polynomial regression we have

φφφ(x) =
(
1,x,x2, ...,xm−1

)T
. (2.26)

Although these models are linear in their parameters, they are able to implement nonlinear

functions of x of arbitrary complexity by choosing a large number k of suitable basis

functions. Such models are referred to as universal approximators. The m×N matrix

Φ =


φ0(x1) φ0(x2) ... φ0(xN)

φ1(x1) φ1(x2) ... φ1(xN)
...

... . . . ...
φm−1(x1) φm−1(x2) ... φm−1(xN)

 . (2.27)
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is called design matrix and takes on the role of the ”transformed” data matrix holding the

m-dimensional feature vectors in its columns. The least squares (maximum likelihood)

estimator of W becomes

Ŵ = YΦT (ΦΦT )−1. (2.28)

Predictions of training data are given by (cf. 2.23)

Ŷ = YH, (2.29)

with H = ΦT (ΦΦT )−1Φ being the hat matrix.

2.1.7 Model selection

In most situations, the dependency of input x and output y is unknown and the parametric

form of the model f(x,w) has to be specified as part of the learning process prior to

adapting its parameters. Once the parametric form is chosen the optimal w∗ has to be

determined from the sample. The trained model should offer good generalization, i.e., it

should minimize the risk rather than the training error. Very flexible models (e.g., large m)

can achieve a low (or zero) training error by fitting the noise in y, but consequently will

fail to capture the deterministic, functional dependency g(x) = E(y|x) between inputs x

and outputs y. This phenomenon is called overfitting and occurs when we try to fit too a

complex model (a set of functions with too large capacity) to a finite sample.

In theory, the problem of overfitting could be addressed by choosing an extremely

flexible model (universal approximator) and providing an infinite amount of (iid) training

data, which is equivalent to the case where the joint density function p(x,y) is known.

Clearly, if p(x,y) is known, model selection could be performed by minimizing Eq. 2.37,

because then all expectation operators can be evaluated. In fact, if p(x,y) was known

the regression function can be determined immediately from Eq. 2.8. For example for

squared loss and when using a completely flexible model, it can be shown (see [6]) that

by minimizing the risk we obtain f(x,w∗) = E(y|x).

In practice, p(x,y) and thus the regression function are unknown and one is only

given a finite sample. Without additional assumptions, the learning problem is inherently

ill-posed, i.e., there is a possibly infinite number of functions of varying complexity with

minimal (or zero) training error. To obtain a useful, unique solution, the model complexity

has to be adapted to the size of the training set.
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2.1.8 Regularization

This a priori knowledge may determine the choice of type and number m of basis func-

tions (e.g., polynomials of degree m − 1) or it can be given in form of smoothness as-

sumptions. For example, in the regularization framework there are parameters that govern

the strength or influence of such a priori assumptions (e.g., ”how smooth” ) which are re-

ferred to as regularization parameters. Other methods try to estimate the expected risk

from the sample itself in order to achieve effective model selection.

Regularization methods add a penalty functional term to the error function to be min-

imized during training:

Rpen(w, λ, T ) = Remp(w, T ) + λP(w) (2.30)

This penalty associates large positive values to complex functions and small values to

simple functions, such that solutions are restricted to functions of limited complexity.

Penalty functionals can be constructed for a wide range of models in any dimension,

imposing the desired structure on the set of functions that can be implemented by the

model.

In a linear model framework, more complex functions typically have larger weight

magnitudes, so the penalty term corresponds to a function of the norm of the parameter

vector, as will be seen later.

2.1.9 Regularized least squares: ridge regression

Ridge regression [34] is a linear regression method for a single response which uses the

penalized RSS criterion

RSS(λ) = (y −wTΦ)(y −wTΦ)T + λwTw, (2.31)

where y is here the row vector of N sample responses and w is the p-vector of regression

parameters. λ ≥ 0 is the complexity parameter (ridge parameter) that controls the influ-

ence of the penalty term. The estimator ŵridge = arg minw RSS(λ) biases the coefficient

estimates towards smaller absolute values and discourages dispersion among their values

(see section 2.4.4). In this case the penalty term corresponds to the sum-of-squares of the

components of w. This form of regularizer has the advantage that the sum of the RSS
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function and the penalty term is a quadratic function of w, so that the solution is given in

closed form

ŵridge = (ΦΦT + λI)−1Φy. (2.32)

In the case of multiple responses we can perform separate ridge regression on each indi-

vidual response (i.e., using the q rows of the sample responses Y separately) obtaining

the q rows of W with separate ridge parameters λk, k = 1, . . . , q. Sometimes, a single

common ridge parameter is used in which case the criterion can be written as

RSS(λ) = trace
(
(Y −WΦ)(Y −WΦ)T

)
+ λtrace(WWT ). (2.33)

Regularized least squares can be interpreted in the bayesian framework, where the penal-

ized RSS criterion corresponds to the log of the posterior distribution given by the sum of

the log likelihood (RSS function) and the log of the prior (penalty term) [5].

2.1.10 Effective number of parameters

In the case of linear basis function models, the parameters W are a linear combination of

the training output data yi (see Eq. 2.32). The predictions of the training predictors xi are

Ŷ = YΦT (ΦΦT + λI)−1Φ (2.34)

= YHλ, (2.35)

where the hat matrix of Eq. 2.29, now becomes a N × N smoother matrix Hλ (see for

example [33]).

The complexity of the linear basis function model is related to the number of its in-

dependent parameters, which are in turn related to the number of basis functions used.

In the case of ordinary least squares linear regression on x the number of parameters

depends on the superficial dimensionality of the data. For example, consider a multiple

output regression model of Eq. 2.13. In this case the overall number of parameters clearly

depends on the dimensionality of x and y. When dealing with high dimensional data,

where the sample size is typically small in relation to the number of parameters, we can

search for and exploit correlations between the variables in order to reduce the number of

parameters and thus adjust the model complexity.
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For linear basis function models, the effective number of parameters (sometimes re-

ferred to as effective degrees of freedom, EDOF) corresponds to the trace of the smoother

matrix

trace(Hλ) = trace(ΦT (ΦΦT + λI)−1Φ). (2.36)

It can be shown by eigen-decomposition of ΦΦT (see for example [33]), that increasing

the regularization parameter λ has the effect of shrinking coefficients in directions of

small variance in the input feature space spanned by the columns of Φ, which results

in a smoother fit. These directions are those for which the RSS function is relatively

insensitive to variations of W and so - following the principle of Ockham’s razor1 - these

parameters are set to a small value. It is easy to show that the quantity trace(Hλ) will lie

in the range between 0 and k (the number of basis functions).

Note that the smoother matrix only takes into account the covariance of the input

feature space. As will be shown in later sections, that canonical correlation analysis can

be employed to find directions of maximum correlation between input and output space

and that these correlations can be exploited to reduce the EDOF in a sensible way and

thus improve the prediction accuracy.

2.1.11 Expected risk

In order to choose the right model complexity for a given sample size N , we have to

consider the average performance of a model when it is repeatedly trained with different

samples T of size N . More formally, given a estimation method for w, the quantity to

be minimized by the chosen class of functions is the expectation of the risk taken over all

possible training samples of size N , i.e.,

ET R(ŵ) = ExEyET L(y, f(x; T )), (2.37)

where now the expectation is taken over any variable that is random, including ŵ as it

depends on T via Eq. 2.12. The model complexity (appropriate class of functions) should
1 Pluralitas non est ponenda sine neccesitate (”plurality should not be posited without necessity”): According

to the principle of Ockham’s razor we should eliminate all assumptions in an explanatory hypothesis which
make no difference in its observable predictions. In the context of machine learning this translates as
”models should be no more complex than is sufficient to explain the data”, i.e., if we have more than one
predictive function explaining the training data (making the same prediction in the mean, when trained with
different samples), we should select the least complex function.
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be chosen such that Eq. 2.37 is minimal. We can assess the expected prediction risk at a

specific position x0 by conditioning on the input, i.e.,

ET Ey|x0
L(y, f(x0; T )). (2.38)

2.1.12 Squared loss

If we use squared error loss (c.f. Eq. 2.5) we can decompose the expected conditional risk

as

ET Ey|x0
(‖y − f(x0; T )‖2) = ET (‖E(y|x0)− f(x0; T )‖2) + trace(Σ).

The first term of the right hand side corresponds to the mean squared error (MSE) of

the estimator f̂(x0, T ). The second term is the variance of the target values y around its

true mean E(y|x0) and can not be avoided. It is therefore called irreducible error. The

MSE is a pointwise measure, because we condition on x0. An optimal estimator is one for

which the MSE becomes minimal at every given input position x. This is accounted for

by the overall expected prediction risk given by Eq. 2.37, which is a global error measure

taking into account the density of input x. Our goal is to find a model (estimator) of

optimal complexity which minimizes this error measure.

2.1.13 Bias and variance

The MSE is of particular importance because it can be recast as

MSE = ‖ET f(x, T )− g(x)‖2︸ ︷︷ ︸
Bias2

(f(x,T ))

+ ET ‖f(x, T )− ET f(x, T )‖2︸ ︷︷ ︸
Var(f(x,T ))

. (2.39)

The first term on the right side is the squared bias which is the amount by which the ex-

pected estimate differs from the true mean. The second term is the variance, the expected

squared deviation of the estimate around its mean. When selecting the model of optimal

complexity, there is a tradeoff between squared bias and variance. In figure 2.1 a biased

model is used, since the regression function g is not included in the model space, meaning

that the model is too simple to implement g. The more flexible the model (estimator) is,

the lower is its bias. At the same time, due to its flexibility it will fit the sample well,

which generates higher variance (according to the variability between different samples).
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On the other hand, if we use a highly biased model, the variance will be lower. Figure 2.2

shows the squared bias and variance using models of varying complexity (linear, quadratic

and a polynomial of degree 4).

estimation fw*(x)

g(x)

y

model space

restricted 
model space

w = 0

population fw*(x)

bias

variance

variance of y

Figure 2.1: In this schematic figure (adopted from [33]), we assume the sample is fitted
by the model with parameters w∗ optimized by the training algorithm. We repeatedly
take (iid) samples of size N . The output values y in the sample will vary within the gray
circular area. The model is capable of implementing functions which allow predictions
within the model space. Some of the samples may be fitted with zero training error, others
may have positive training error. If the regression function, which equals the pointwise
conditional mean g(x) = E(y|x), can be fitted by the model, its estimates are unbiased,
i.e., the Ewf(x,w) = g(x) (population f(x,w) denotes Ewf(x,w)). This figure shows
a biased model, since f(x) lies outside the model space. It also shows the effect of reg-
ularization and shrinking methods: The model space shrinks towards smaller parameter
values, whereby the bias is increased. On the other hand the expected loss of predictions
f(x,w∗) of a trained model is reduced, due to smaller prediction variance.
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2.1.14 Approximations of the expected risk of linear estimators

The prediction capability of the trained model is related to the risk given by Eq. 2.8,

which quantifies for a specific vector of parameter values its performance on new test

data not encountered in the training set. The expected risk given by Eq. 2.37 on the other

hand quantifies the expected prediction performance on test data if the model is repeatedly

trained with i.i.d. samples of size N . The latter is important to select the model of suitable

complexity.

Since the expected risk can not be evaluated, practical methods for model selection

rely on approximations of the expected risk based on the sample itself. For ordinary linear

least squares regression, we can obtain an approximation as follows: Let

G = Ex(g(x)g(x)T ) (2.40)

= CT
xyC

−1
xx Cxy (2.41)

= Cyy −Σ (2.42)

and let h(x) = XT (XXT )−1x so that ĝ(x) = f(x,w) = Yh(x). Then, if we condition

on the design X and assume that only εεε is random, we can write

EY|X

[
1

N

N∑
i=1

ĝ(xi)ĝ(xi)
T

]
=

1

N
EY|X(YHYT )

=
p

N
Σ. (2.43)

Assuming that the sample mean and covariance of the input observations xi are equal to

the true mean and covariance, i.e.

ET
1

N

N∑
i=1

xi = E(x), (2.44)

ET
1

N
XXT = E(xxT ) (2.45)

as a consequence of Eq. 2.43 we can write

E(ĝ(x)ĝ(x)T ) =
p

N
Σ + G (2.46)

= Cyy +
( p

N
− 1
)

Σ (2.47)
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Finally, the overall expected risk (ER) of the OLS estimator can be written as (cf. Eq. 2.38)

ERĝ = trace
[
Σ + E(ĝ(x)ĝ(x)T )− 2E(g(x)ĝ(x)T ) + E(g(x)g(x)T )

]
= trace

[
Σ
(
1 +

p

N

)]
, (2.48)

where we have used E(g(x)ĝ(x)T ) = E(ĝ(x)g(x)T ) = E(g(x)g(x)T ) = G. Because

the above assumption holds if we condition on the design (as in Eq. 2.43), but not in

general, Eq. 2.48 is referred to as in-sample prediction error. If the assumption does not

hold, then Eq. 2.48 can be regarded as a simplifying approximation of the true expected

risk.

2.1.14.1 Optimism of the training error rate

The training error itself is not a good measure of generalization capability because it

typically underestimates the ER due to the fact that the same data (sample) is used to fit

the model and assess the prediction error. The discrepancy between the expected training

error of the estimator and its ER can be approximated by

Op = ER(ĝ)− ET Remp(ĝ), (2.49)

where we can use Eq. 2.48 as an approximation of the ER. This quantity is called the

optimism of the training error rate [33]. For the case of linear models and squared loss we

have

ET Remp(̂f) =
1

N
ET trace((Y − ŴX)(Y − ŴX)T ) (2.50)

=
1

N
ET trace(YYT −YXT (XX)−1XYT ) (2.51)

= Bias2 + (1− p

N
)trace(Σ) (2.52)

and thus the optimism is

Op =
2p

N
trace(Σ). (2.53)

Several methods for model selection rely on the in-sample approximation to assess an-

alytically the prediction capability on independent (unseen) test data, among which are

the Cp statistic, the Akaike information criterion(AIC) and the Bayesian information cri-

terion(BIC). These methods can be employed for the class of linear fitting methods for

which the predictions can be written in the form of Eq. 2.34.
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Thereby, Σ in Eq. 2.53 is estimated using a low-bias model, e.g. by 1
N
YYT . The

number of parameters p in Eq. 2.53 is replaced by d = trace(H), which is referred

to as effective number of parameters (see section 2.1.10). For OLS predictions, H =

XT (XXT )−1X. If a ridge-penalty with common ridge parameter is used (see section

2.1.9), i.e., Hλ = XT (XXT + λI)−1X, λ > 0 then d = trace(Hλ) < p.

We have derived the optimism as Eq. 2.53 for a linear fit under squared error loss. For

a general (nonlinear) fitting method (and different loss functions), it can be shown easily

that the optimism becomes

Op =
N∑

i=1

CovT (yi, ĝ(xi)), (2.54)

which shows that the optimism becomes larger the stronger the training sample affects its

own prediction [33].

2.1.15 Bayesian regression

In the last years, regression methods based on Bayesian inference have become increas-

ingly popular. In the Bayesian inference paradigm the parameters w are treated as random

variables. The distribution of w is inferred using Bayes’ rule. The hyperparameters which

control the model complexity (e.g., the ridge parameter λ) emerge naturally as parame-

ters of the prior distribution which expresses the ”degree of belief” over the values that

w might take. The Bayesian approach allows marginalization, i.e., integrating out all ir-

relevant parameters, and thus determine models which generalize well, without having to

cross-validate the hyperparameters. This is done by using proper priors for these param-

eters. Even in the case where uninformative priors are used (flat priors), the Bayesian

approach automatically avoids models which are too complex [67].

One disadvantage is that the calculation of the integrations over the irrelevant variables

is in most cases analytically intractable. Thus, practical Bayesian approaches rely on

approximation strategies, e.g., by using a maximum likelihood approximation for those

integrations, which are not analytically tractable [67].

Further, it is possible to obtain sparsity within the Bayesian framework, by using mul-

tiple independent hyperparameters for each component of w. This results in a "sparse"

prior which is equivalent to regularization with the term
∑

k log |wk|. A special sparse
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Bayesian regression model is the Relevance Vector Machine [66], which uses the param-

eterization (in dual space) together with kernel functions like the support vector machine.

2.2 Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a very powerful and versatile tool that is espe-

cially well suited for relating two sets of measurements (signals). Like principal com-

ponents analysis (PCA), CCA also reduces the dimensionality of the original signals,

since only a few factor-pairs are normally needed to represent the relevant information;

unlike PCA, however, CCA takes into account the relationship between the two signals

(in the correlation sense), which makes them better suited for regression tasks than PCA.

Furthermore, CCA takes advantage of the correlations between the response variables to

improve predictive accuracy [10].

CCA, in particular, has some very attractive properties (for example, it is invariant

w.r.t. affine transformations - and thus scaling - of the input variables) and can not only

be used for regression purposes, but whenever one needs to establish a relation between

two sets of measurements (e.g., finding corresponding points in stereo images [8]). In

signal processing, CCA is used for optimal reduced-rank filtering [36], where the goal is

data reduction, robustness against noise and high computational efficiency. Geometrically

interpreted, CCA measures the angles between two linear subspaces and canonical corre-

lations play the same role as cosines of principal angles [63] between the subspaces (see

for example [57]). In [2] it is shown that CCA reveals how well two input variables (i.e.

two sets of vectors) are represented by a common source variable (latent variable). CCA

has been successfully applied to pattern classification [51], appearance based 3D pose

estimation [47] and stereo vision [8]. In [39] CCA is used for image-set classification

with a discriminative transformation for images-set based object recognition. Extensions

of CCA to that of high-order tensors with applications to video sequence analysis have

been proposed in [40]. This latter approach allows a pair-wise analysis of holistic action

volumes in which both spatial and temporal information are important.

There are a couple of extensions of CCA used in the computer vision community,

among which are kernel-based nonlinear generalizations which will be which will dis-

cussed thoroughly in section 3.1, tensor versions and sparse-CCA. The latter two exten-
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sions will be reviewed in section 2.3.

2.2.1 Definition

Given two zero-mean random variables x ∈ IRp and y ∈ IRq, CCA finds pairs of directions

wx and wy that maximize the correlation between the projections x = wT
x x and y = wT

y y

(in the context of CCA, the projections x and y are also referred to as canonical variates).

More formally, the directions can be found as maxima of the function

ρ =
E[xy]√

E[x2]E[y2]
=

E[wT
x xyT wy]√

E[wT
x xxT wx]E[wT

y yyT wy]
,

ρ =
wT

x Cxywy√
wT

x CxxwxwT
y Cyywy

. (2.55)

whereby Cxx ∈ IRp×p and Cyy ∈ IRq×q are the within-set covariance matrices of x

and y, respectively, while Cxy ∈ IRp×q denotes their between-set covariance matrix. A

number of at most k = min(p, q) factor pairs 〈wi
x, wi

y〉, i = 1, . . . , k can be obtained by

successively solving

wi = (wiT
x , wiT

y )T = arg max
(wi

x,wi
y)
{ρ} (2.56)

subject to

ρ(wj
x, wi

y) = ρ(wi
x, wj

y) = 0 j = 1, . . . , i− 1

2.2.2 Rayleigh quotient formulation of CCA

The solution to this optimization problem can be found using a formulation of Eq. 2.56

by a Rayleigh quotient [8]. Let

A =

(
0 Cxy

Cyx 0

)
, B =

(
Cxx 0

0 Cyy

)
. (2.57)

It can be shown [8] that the stationary points w∗ = (w∗T
x , w∗T

y )T of ρ (i.e., the points

satisfying ∇ρ(w∗) = 0) coincide with the stationary points of the Rayleigh quotient:

r =
wT Aw
wT Bw

, (2.58)
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and thus, by virtue of the generalized spectral theorem [22], can be obtained as solutions

(i.e., eigenvectors) of the corresponding generalized eigen-problem:

Aw = µBw. (2.59)

The extremum values ρ(w∗), which are referred to as canonical correlations, are

equally obtained as the corresponding extremum values of Eq. 2.58 or the eigenvalues

of Eq. 2.59, respectively, i.e., ρ(w∗) = r(w∗) = µ(w∗).

Given n pairs of mean-normalized observations (xT
i , yT

i )T ∈ IRp+q, and data matrices

X = (x1..xn) ∈ IRp×n, Y = (y1..yn) ∈ IRq×n, we obtain the estimates for the covariance

matrices A, B in Eq. 2.57 as

Â =
1

n

(
0 XYT

YXT 0

)
, B̂ =

1

n

(
XXT 0

0 YYT

)
(2.60)

If the mean was estimated from the data, we have to replace n by n− 1 in both equations.

2.2.3 CCA and linear regression

It is instructive to compare CCA to the full-rank solution (the OLS solution, cf. 2.22 ) of

standard multivariate linear regression (MLR), ordinary (linear) least squares regression

(OLS), where the regression parameters W are given by the Wiener filter (cf. Eq. 2.14):

W = E[xxT ]−1E[xyT ] = C−1
xx Cxy.

When comparing the Wiener filter with the derivation of CCA by singular value de-

composition (see appendix A.4), we see that in contrast to MLR, the CCA solution is

computed using only the leading singular vectors of the cross-correlation matrix of pre-

whitened variables x,y which are made explicit by SVD. Thus, CCA can be used to

compute a (reduced) rank-n regression parameter matrix by using only n < k factor

pairs. Thereby, in contrast to standard multivariate regression CCA takes advantage of

the correlations between the response variables to improve predictive accuracy [10]. Note

also that in contrast to the Wiener filter the additional pre-whitening of y makes CCA

invariant w.r.t. scaling of x,y.

The relation to MLR and how CCA can be used to enhance standard MLR procedures

will be discussed in detail in section 2.4.
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2.3 Extensions of CCA

2.3.1 CCA in tensor space

While conventional CCA makes explicit the correlation between two sets of vectors (ob-

servations), i.e. matrices with common set of columns, Harshman [32] considers the

generalization of CCA to that of general N-way arrays that share one or more subscripts

in common. This idea was later used by Kim et al. [39] [40] for the task of video vol-

ume tensor analysis for action categorization. In contrast to the method proposed in [32],

which obtains canonical weight vectors (referred to as single-shared-mode by Kim et al.),

in [39] [40] a general concept of multiple-shared-modes (joint-shared-modes) is proposed,

which allows to obtain canonical tensors as well.

The basic idea of the CCA generalization to tensors (tensor CCA, TCCA) is as fol-

lows: If we interpret for example image sequences as 3D video cubes (3-way tensors),

where two axis represent image coordinates (spatial domain) and the third axis represents

the time domain, then we can calculate measures for the similarity of two sequences by

calculating canonical vectors along all three axis. The corresponding canonical factors are

measures of similarity (cosines of the canonical angles between the respective subspaces).

In the analysis of actions captured in image sequences, the ordering of the images in the

video volume is of particular importance. This temporal information is lost, if we per-

form standard CCA of the set of images, because it is invariant w.r.t. the ordering of the

observations.

In [42], CCA of tensor spaces is used for the recovery of facial depth maps (similar

to the application presented in section 4.3). Experimental results, which are superior to

that of standard CCA, are reported. A possible explanation is, that the number overall

parameters estimated by tensor CCA is smaller than the number of parameters obtained

by CCA (lower dimensionality), which might lead to improved predictive accuracy in the

case of a relatively small training set. For details, the reader is referred to the publications

mentioned above.
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2.3.2 Sparse CCA

As we have discussed in Section A.3, when estimating the canonical factors from data ma-

trices X = (x1..xn) ∈ IRp×n, Y = (y1..yn) ∈ IRq×n with N observations, with N < p + q,

there are p+q−N linearly independent solution vectors, making CCA ill-posed. A possi-

ble remedy is ridge regularization, which will be discussed in more detail in section 2.4.4.

Ridge regularization shrinks the solution vectors wx and wy by imposing a penalty on

their size. This involves the use of the l2 norm in the penalty term. Here, we will consider

cardinality constraints in the formulation of CCA leading to sparse solution vectors wx

and wy in the sense that only some of the coefficients of the solution are non-zero. Spar-

sity is an attractive concept, allowing to control model complexity and perform implicit

feature selection, i.e. finding a small number of the most meaningful input variables.

In figure 2.3(a) a straight line describes all wx satisfying Eq. A.15 (for the case of

N < p + q) for a fixed wy. Ridge penalization leads to a unique solution with mini-

mal ‖wx‖2 (black dot), where all coefficients are shrunk and the energy of wy is spread

over all coefficients. A cardinality constraint penalizing nonzero components is imple-

mented using the l0-norm ‖wx‖0(the number of nonzero coefficients of wx). However,

the variational formulation of this CCA problem [59] given by

max(wTAw : wTBw = 1, ‖w‖0 ≤ k), (2.61)

with A,B given by Eq. 2.60, is non-convex, NP-hard and thus intractable. To make this

problem feasible, usually the l1-norm approximation is used, where ‖w‖0 is replaced by

‖w‖1 (see figure 2.3(c)). In the context of regression this kind of penalization is called

the lasso (see, e.g., [33], page 64).

There are several formulations of sparse generalized eigen-problem solvers based on

the l1-norm approximation, e.g., an algorithm using elastic net [75], or d.c. (difference

of convex functions) programming [59], which can be employed for sparse CCA. In [38],

the non-convex optimization problem is broken into a large number separate convex prob-

lems. The algorithm is used for the localization of visual events associated with sound in

a video, where the assumption is, that these visual events are spatially sparse, i.e. a rela-

tively small group of pixels. In [68], sparse CCA is employed for building a vocabulary

of predictive semantic concepts.
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2.4 Enhanced Regression Methods and Canonical Coor-
dinates

The ordinary least squares (OLS) estimator has several (related) drawbacks, which were

discussed in the previous sections:

• Correlations in the response variables are ignored. The EDOF grows with the num-

ber of predictor variables and the optimism grows with the EDOF and the number

of response variables. This leads to overfitting in the case of limited and noisy train-

ing data. As the example in section 2.4.1 shows, this might lead to poor prediction

accuracy, when training data is limited.

• When the number of predictors is large, the outcome is difficult to interpret. We are

often interested in finding a smaller number of parameters with the strongest effect.

• Often the functional relation between two high dimensional signals is inherently

lower dimensional. Section 2.4.1 gives an example, where the intrinsic dimension-

ality of the response signal is one. The knowledge of the intrinsic dimensionality

k allows to discard meaningless dimensions (caused by noise) by using a rank-k

regression model, leading to higher predictive accuracy.

• Channel noise reduces the true dimensionality of the regression function: Assuming

that the noise is zero-mean and uncorrelated with the input signal, it is shown in

[21] that the rank of the optimal regression matrix decreases as the noise variance

increases, so that in the presence of channel noise k < min(p, q), even if the rank

of the original f is higher than k.

• In image processing applications the case k << N is very common, also because

there are pixel correlations in images of objects of a certain class (within one sig-

nal space). For example, in the case of face images these correlations are due to

homogeneous skin regions, symmetry, etc.

Ridge regression (see section 2.1.9) exploits correlations in the input space, however,

it ignores correlations in the output space, because the regression parameters are calcu-

lated separately for each output variable. The methods reviewed in the following sections
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also take into account multiple output variables. Thereby, canonical coordinates allow to

combine response variables.

2.4.1 Exploiting correlations of response variables

If there are correlations in the output data better estimates of the regression function are

found by combining the variables by exploiting correlations among the responses. As an

example, suppose that all components of f(x) share the same structural part, e.g.,

y = f(x) + εεε = g(x)c + εεε =

 c1w
Tx + ε1

...
cqw

Tx + εq

 , (2.62)

where each component is a multiple of the same scalar-valued function g : IRp →
IR1, g(x) = wTx and c = (c1, . . . , cq)

T is a vector with multipliers.

According to Eq. 2.14 the theoretical optimum is

W = CyxC
−1
xx = E[(cwTx + εεε)xT ]C−1

xx = cwTCxxC
−1
xx = cwT , (2.63)

i.e., the true regression matrix W is of rank one. As N → ∞ the OLS solution given

by Eq. 2.22 approximates the Wiener filter solution (cf. Eq. 2.14). However in the case

of limited data the full-rank OLS (using Eq. 2.22) is prone to modeling the noise in all

remaining q− 1 dimensions, i.e. it is sensitive to variations in the training set and may be

rendered full rank by noise in the data.

For example, if c = (1, 1, ..., 1)T , it is obvious that the prediction ỹ = (ỹ1, ỹ2, . . . , ỹq)
T

at a given input is improved by using for each response component the ”average” of the

separate OLS estimates, i.e.,

ỹi =
1

q
(ŷ1 + ŷ2 + . . . + ŷq) . (2.64)

which corresponds to the rank-one estimate

Ŵ =
1

q
Iq×qYXT (XXT )−1 (2.65)

For a general known c we can use the estimate

Ŵ = PcYXT (XXT )−1, (2.66)
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where Pc is a projection onto the one-dimensional space spanned by c. Clearly, Ŵ is of

rank one. How can correlations be used when c is not known? It turns out that canonical

coordinates obtained by CCA are the right coordinate system to perform reduced rank

regression or proportional shrinkage of coordinates in order to reduce the MSE [10].

Fig. 2.4 shows an example of two inherently one dimensional sets of data points cor-

rupted with additive Gaussian noise with high isotropic variance in two dimensions. Since

the reduced-rank solution given by Eq. 2.65 models the signal subspace and neglects (or-

thogonal) noise components it is also less sensitive to noise in the input data.

Compared to full-rank OLS the low-rank solution introduces bias. However, it will

in many cases perform better (with respect to the true risk) in the case of limited training

data, because it has less degrees of freedom to fit the noise in the training data. Moreover,

if we have a-priori knowledge about the rank of the regression function, we might get a

better estimate of the signal subspace.

In fact it has been shown in [20] (although for the case of channel noise) that as the

noise variance increases in relation to the signal variance the rank of the optimal linear

channel W decreases. A similar result for parallel additive Gaussian noise channels is

described in [20] from the information theoretical viewpoint.

In the remainder of this section we will survey various methods which allow suffi-

cient improvements over ordinary multivariate regression introduced above in the case of

correlated input resp. response variables. We will also discuss the special case p, q > N

which is the typical situation in image processing applications.

We will review enhanced methods for regression and show how canonical coordinates

can be used for combining response variables to obtain improved regression estimates,

which yield better performance in the case of correlated response variables and limited

training data. The methods are based on the concept of effective degrees of freedom and

its relation to the theoretical in-sample prediction error (see Section 2.1.14). Estimates of

this error measure can be used to select the optimal number of (effective) parameters of

the regression model. Additionally we will discuss the effect of ridge regularization of

both, the input and output space, to obtain improved estimates of canonical factors in the

case of poor sample support.
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The improved predictions have the general form

ŷ = Tĝ(x) = TYh(x), (2.67)

where h(x) is a N -vector of linear weights producing the OLS fit ĝ(x) = Yh(x). For

example (cf. Eq. 2.23), in the case of OLS regression h(x) = XT (XXT )−1x . For ridge-

regression, h(x) = XT (XXT + λI)−1x with λ > 0 being the common ridge parameter.

T is a shrinking matrix used to pool the observations on the response variables and

thereby exploiting correlations between the responses. In the case of OLS estimates T is

simply the identity matrix. In the case of reduced-rank regression, which will be discussed

in section 2.4.2, T is an orthogonal projector truncating dimensions in which estimates

are less reliable. Shrinkage resp. truncation is performed in the CCA response space as

discussed next.

T is a linear least-squares regression of y on the sample-based OLS predictions over

the population distribution, i.e.,

T = E(yĝ(x)T )E(ĝ(x)ĝ(x)T )−1, (2.68)

where E ≡ Ex,yET . Using Eq. 2.46 and Eq. 2.68

T = G(G +
p

N
Σ)−1 (2.69)

= G(G +
p

N
(Cyy −G))−1 (2.70)

= (Iq +
p

N
(G−1Cyy − Iq))

−1 (2.71)

= (Iq +
p

N
((CTC)−1 − Iq))

−1 (2.72)

= (Iq +
p

N
((VD−2VT )− Iq))

−1 (2.73)

= VD∗VT (2.74)

where D∗ is a diagonal matrix with diagonal elements

d∗i =
d2

i

d2
i + q

N
(1− d2

i )
. (2.75)

This result shows that the matrix T is diagonal in the (population) y canonical coordinate

system (see Breiman and Friedman [10]).
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2.4.2 Truncating the response canonical space: reduced-rank regres-
sion

Reduced rank regression [34] uses the criterion

RSS(W) =
N∑

i=1

(yi −Wxi)
TΣ−1(yi −Wxi) (2.76)

which is minimized subject to rank(W) = k with Σ = E(εεεεεεT ) (population noise covari-

ance). The solution is the rank-k matrix

Ŵ = V−1IkVYXT (XXT )−1, (2.77)

where V is the matrix containing the (population) left canonical vectors in its columns

and Ik = diag{1(i ≤ k)}k
1.

Reduced rank regression performs a linear regression on the pooled response variables

YTVT Ik by discarding the directions of trailing canonical correlation. These are those

linear combinations of response variables which have least prediction accuracy. Finally,

multiplying from the left by V−1 then maps the fits back to the original response space. Σ

can be replaced by the estimate Σ̂ = YYT , in which case V is replaced by the empirical

canonical response coordinates.

2.4.3 Shrinking in the response canonical space: Curds & Whey pro-
cedure

Canonical coordinates are also the right coordinates for performing multivariate shrinking

in the case of prediction of multiple outputs with limited training data. Methods for

shrinking in canonical response coordinates are proposed in [69] (filtered canonical y-

variate regression) and in [10] (curds and whey method). These methods represent smooth

versions of reduced rank regression, just like ridge-regression can be regarded as a smooth

version of principal component regression.

In [10], Breiman and Friedman propose simultaneous shrinking in input and output

space. In their formulation the regression parameters are

Wk = V−1D∗VYXT (XXT )−1, (2.78)

where D∗ is a diagonal matrix with diagonal elements given by Eq. 2.75.
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In practice the population canonical vectors V have to be estimated from the sample

by empirical canonical vectors. In this case, D∗ has to be estimated by generalized cross

validation. As shown in [10], this leads to the estimate D̂∗ with diagonal elements

d̂∗i =
(1− r)(ρ̂2

i − r)

(1− r)2ρ̂2
i + r2(1− ρ̂2

i )
. (2.79)

where ρ̂i are the empirical canonical correlations and r = p
N

. In the case of simultaneous

shrinking in input and output space the regression parameters are

W = V̂−1D∗V̂YXT (XXT + λxIp)
−1, (2.80)

where V̂ are the canonical vectors obtained by canonical correlation analysis of the sam-

ple responses Y and the ridge regression estimates Ŷ. D∗ is obtained by Eq. 2.79 using

the corresponding empirical canonical correlations ρ̂i and the effective degrees of freedom

r = trace(XT (XXT + λxIp)
−1X).

2.4.4 Ridge regularization for CCA

In previous sections we have discussed ways to improve the performance of a linear least-

squares estimator in the case of limited and noisy training data. The methods involve the

usage of the y canonical coordinate system (i.e., the basis V). However, we have not

discussed how we can improve the estimates of U and V.

In the case of limited sample support or even singular Ĉxx = XXT resp. Ĉyy =

YYT we can use the respective generalized inverse and the canonical correlation analysis

is confined to the non-zero variance subspace of inputs resp. responses. However, the

estimates of U and V will still be poor. In fact, when the number of samples N < p + q

and there are possible additional row degeneracies (rank(XT ) < p or rank(YT ) < q)

there at least p + q −N canonical correlations of 1 and as many factor pairs having high

arbitrariness.

In the case of p > N we can use a positive ridge-penalty parameter λx to avoid a

singular or badly conditioned XXT . This approach protects against potentially high vari-

ance of regression parameters corresponding to directions of small variance in the input

space at the expense of increasing the bias of the estimator. In doing so, we implicitly

assume that the gradient of response is highest in directions of high variance in the input
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space and that the noise rate is higher in directions of small variance (for instance in the

case of additive isotropic noise).

If q > N , the situation is similar. Canonical correlation analysis of responses Y and

regression estimates Ŷ fitted by ridge regression with λx > 0, will obtain min(q, N)

canonical correlations ρ̂i = 1. Consequently, D∗ = Iq such that the resulting regression

is equivalent to ridge regression without shrinkage in the response canonical space (cf.

Eq. 2.80).

Ridge regularization for CCA has originally been proposed in [70]. To gain a better

understanding of the effect of the regularization term, we consider the standard (primal)

definition of CCA

ρCCA =
wT

x Ĉxywy√
wT

x ĈxxwxwT
y Ĉyywy

, (2.81)

where Ĉxy is the estimated between-set covariance matrix and Ĉxx, Ĉyy are estimated

within-set covariance matrices. We compare Eq. 2.81 with the defining equations for

partial least squares (PLS) and multivariate linear regression (MLR) [8]. PLS, which

maximizes the covariance between x and y, replaces both Ĉxx and Ĉyy in the denominator

by the unit matrix,

ρPLS =
wT

x Ĉxywy√
wT

x wxwT
y wy

, (2.82)

while MLR, which performs a least squares regression onto y, retains the normalization

by the variance of the predictor variable x, but discards the variance-normalization w.r.t.

y (where the square error is defined), i.e.,

ρMLR =
wT

x Ĉxywy√
wT

x ĈxxwxwT
y wy

. (2.83)

Thus, as also pointed out in [8], all three approaches effectively solve the same prob-

lem, namely maximization of the covariance, but are subject to different scalings of the

variables.

As mentioned above, the regularization term λI can be used to render singular covari-

ance matrices positive definite. If λ is increased even further, the matrices will eventually

become isotropic. Hence, for sufficiently large λ, regularized CCA becomes equivalent to

PLS in the sense that both approaches will yield the same extremum points (the extremum
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values, however, will differ approximately by a factor 1
λ

). By the same argument, we can

transform CCA into MLR; if we use different regularization parameters λx and λy for Cxx

and Cyy, respectively, their relative magnitude determines whether (or, more precisely: to

which extent) we perform a regression onto x or onto y. As mentioned above solutions

orthogonal to the signal variance are not always desirable; in such cases the regulariza-

tion parameter λ can be used to adjust the influence of signal variance on the solutions

wx,wy [33].

2.4.5 Input noise

The standard regression model of Eq. 2.2 assumes a noiseless input signal and that only

the output is contaminated with additive Gaussian noise. Now, let us assume that the

input as well as the output are noise-contaminated signals, i.e., both signals are related to

noiseless variables s by

x = Wxss + εεεxs, (2.84)

y = Wyss + εεεys, (2.85)

where we assume s ∈ IRm, Wxs ∈ IRm×p, Wys ∈ IRq×m and that εεεxs and εεεys are normally

distributed with zero mean. Assuming that x and y are jointly Gaussian, because of

Cov(εεεxs, εεεys) = 0 and because all components of y that are uncorrelated with x can not

be predicted, we can set m = min(p, q).

In the case of Cov(εεεxs) = 0 (noiseless input) the optimal regression parameters are

given by the Wiener solution

W = E(yxT )E(xxT )−1 (2.86)

= E(ysTWT
xs)E(Wxsss

TWT
xs)

−1 (2.87)

= WysE(ssT )Wxs(WxsE(ssT )Wxs)
−1 (2.88)

= WysW
†
xs (2.89)

Obviously, in the case of noisy input, i.e. Cov(εεεxs) > 0, the OLS regression underesti-
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mates W, because it approximates the following Wiener solution

W = E(yxT )E(xxT )−1 (2.90)

= WysE(ssT )Wxs(WxsE(ssT )Wxs + E(εεεxsεεε
T
xs))

−1 (2.91)

< WysW
†
xs, (2.92)

and thus the OLS estimator (cf. Eq. 2.22) produces biased predictions.

Given a sample of N observation pairs with noisy input and output, we are interested

in an estimate of the true regression matrix that predicts the response from noiseless in-

puts. In [65] this problem is tackled by variational Bayesian algorithm based on Factor

Analysis and assuming that Wxs is diagonal. Here we alternatively employ canonical

correlation analysis to obtain an unbiased estimate of W in the presence of input noise.

Thereby, in a first step the regression relevant subspaces are identified by CCA. In the sec-

ond step we regress Y on the projections of X onto its canonical subspace. It is easy to

show, that the column space of Wsx is equal to the columns space of the m left population

canonical vectors Um, i.e.,

Psx = WsxW
†
sx = UmUT

m. (2.93)

The same holds analogously for the column space of Wsy and the m right population

canonical vectors Vm. Thus, the improved estimate of W is given by

Ŵ = YXT (XXT )−1ÛmÛT
m, (2.94)

where Ûm are the first m empirical right canonical vectors. Note that this estimate re-

quires knowledge of m. If m is unknown, it can be made a model selection parameter to

be estimated through cross-validation. Experiments in which this procedure is applied to

matching of Active Appearance Models are described in Section 4.2. Results indicate an

improved performance compared to standard regression.

2.5 Summary

In this chapter we discussed linear models for regression, particularly for regression be-

tween two high dimensional signal spaces. We have reviewed relevant concepts of ma-

chine learning, the notion of effective number of parameters in the context of linear mod-

els and methods to approximate the expected risk, which are needed for model selection.
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We have seen, that when using linear models, the model complexity is related to the

effective number of parameters. While standard shrinking methods (e.g., ridge regulariza-

tion) exploit correlations only in the predictors to reduce the effective number of parame-

ters, enhanced regression methods based on CCA allow to pool the response variables and

thus further improve the predictive accuracy. We have introduced regularized CCA, where

ridge penalty terms are added to the CCA criterion. This allows to determine the (biased)

empirical canonical factor pairs from a limited sample of high dimensional observations.
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Figure 2.2: The trade-off between bias2 and variance demonstrated on a regression example
with a single input resp. output variable. The upper two rows show models of different complexity
fitted to a sample of 10 data points (red points). The blue curve depicts the true deterministic
function from which the data was generated. The red line depicts the fitted model. The left
column shows a linear regression model, the middle column a quadratic regression model and the
right column shows regression with a polynomial of degree 4. The third row shows the mean (red
dotted curve) and standard deviation (red area) of the predictions f(x; T ). The plots in the lowest
row show the MSE of the predictions in dependence of x as a sum of bias2 and variance. In this
example, the MSE and its decomposition into bias2 and variance was estimated by drawing 2000
samples.



38 Chapter 2. Linear Regression and CCA

(a) (b)

(c)

Figure 2.3: CCA with N < p + q and fixed wy is an underdetermined linear system.
Ridge regularization yields a unique solution w with minimal energy (a). This energy is
spread over all coefficients. A sparse solution, where the energy is concentrated in a few
non-zero coefficients, is obtained using the l0-norm penalty (b). However, the resulting
optimization problem is non-convex and NP-hard. Therefore, the l1-norm approximation
is used, also yielding a sparse solution, with a convex criterion (c).
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Figure 2.4: Example showing how CCA can be used to perform reduced-rank regression:
(a) Two sets of noisy training data points (15 points in each set). Filled circles depict data
points of input data and squares depict points of the response data set. Corresponding
points have the same gray value. The lines indicate the directions of first and second em-
pirical canonical factor of the response variables; (b) OLS regression response estimates
(squares) on an independent test set: Target values (noise-free data points) are indicated as
triangles; (c) Rank-1 predictions with test input data in the principal correlation subspace
obtained by CCA, (d) Average prediction error for OLS regression (circles) and rank-1
regression (squares) for 50 test runs.



40 Chapter 2. Linear Regression and CCA

Figure 2.5: A schematic illustration of the space of coefficients w = (wT
x ,wT

y )T and the
effect of ridge penalty regularization. The concentric grey ellipses indicate the contours
of the quadratic form wTAw (the numerator of the rayleigh quotient), while the black
ellipse indicates all points satisfying wTBw = 1. Maximization of ρ is achieved at
the upper right black dot. If ridge regularization is performed, then with growing λ the
ellipse wT (B + λI)w = 1 becomes more and more circular with smaller radius (the
coefficients w are shrunk), leading to solutions maximizing solely wT

x Cxywy, regardless
of Cxx and Cyy in the denominator. The gray ellipse with main axis perpendicular to
wTAw indicates the contour of the joint density of x and y (i.e., where wTA−1w is
constant).



Chapter 3

Kernel-CCA and Regularization

3.1 Kernel-CCA

The goal of this section is to introduce a nonlinear generalization of CCA based on a ker-

nel formulation. Kernel formulations allow to introduce nonlinearity to linear algorithms

while avoiding a nonlinear optimization problem. The key idea behind kernel methods

is that a linear algorithm can be employed on nonlinearly transformed input data. The

transformation of input data is performed by a mapping from the original input space to a

high-dimensional feature space.

If the linear algorithm can be formulated only in terms of inner products of the input

data, the explicit computation of the high dimensional mapping is avoided by evaluating a

kernel function instead of computing the mapping itself. In the field of pattern recognition,

kernel-methods were originally proposed as a nonlinear extension of the support vector

machine (SVM) classifier [9].

3.1.1 Formulation of nonlinear CCA

We rewrite the CCA criterion by introducing general (nonlinear) transformations u :

IRp 7→ IR, u ∈ H1 and v : IRq 7→ IR, v ∈ H2. We start our formulation of nonlinear CCA

by considering hypothesis spaces of square integrable functions, i.e. H1 andH2 are closed

subspaces of L2(µ) and L2(ν) respectively, where µ and ν are corresponding probability

measures (i.e., for A ⊆ IRp, µ(A) = P (X ∈ A) and for B ⊆ IRp, ν(B) = P (X ∈ B)).

The goal of generalized CCA is to find the maximum w.r.t. u ∈ H1 and v ∈ H2 of the

41
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functional

R(u, v) = Corr2(u(X), v(Y )) (3.1)

=
E (u(X)v(Y ))− E (u(X)) E (v(Y ))√(

E (u(X)2)− E2 (u(X))
) (

E (v(Y )2)− E2 (v(Y ))
) (3.2)

where E is the expectation.

Equivalently, we can formulate nonlinear CCA as a contrained optimization problem:

Maximize

E (u(X)v(Y )) , (3.3)

subject to

E(u(X)) =

∫
IRp

u(x)dµ(x) = 0, (3.4)

E(v(Y )) =

∫
IRp

v(y)dν(y) = 0, (3.5)

E(u(X)2) =

∫
IRp

u2(x)dµ(x) = ‖u(x)2‖µ = 1, (3.6)

E(v(Y )2) =

∫
IRq

v2(y)dν(y) = ‖v(y)2‖ν = 1 (3.7)

Finally, we write generalized CCA in terms of the conditional expectation operator as

follow: Let P : L2(IRp) 7→ L2(IRq),Pu = E(u(X)|Y = y) be the conditional expectation

operator and P̃ : L2(IRq) 7→ L2(IRp) be the adjoint operator of P. In the following we

assume P to be compact. Note that due to the finite range of data in practical applications

this assumption is no restriction.

The maximum of R(u, v) can be written as

arg max
‖u2‖µ=‖v2‖ν=1

‖u‖µ=‖v‖ν=0

〈Pu, v〉ν (3.8)

which is equal to

arg max
‖u2‖µ=‖v2‖ν=1

‖u‖µ=‖v‖ν=0

〈u, P̃v〉µ (3.9)

Then the maximal value of L(u, v) is given by the largest eigenvalue λ0 of P̃P (or

PP̃, which has

the same eigenvalues), i.e.

λ0 = L(eo, e
′
o), (3.10)
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where e0 is any eigenfunction belonging to the largest eigenvalue λ0 and e′0 = Pe0. Note

that the eigenspace of λ0 is at most finite dimensional.

3.1.1.1 Example: P is compact (Hilbert-Schmidt)

Let the joint probability

P (X ∈ A ∧ Y ∈ B) =

∫
A

∫
B

p(x,y)dydx (3.11)

with the square integrable density p(x,y). The probability measures are given by

µ(A) = PX(X ∈ A) (3.12)

=

∫
A

px(x)dx (3.13)

and

ν(B) = Py(Y ∈ B) (3.14)

=

∫
B

py(y)dy (3.15)

for any A ⊆ X and B ⊆ Y , i.e., dµ(x) = p(x)dx and dν(y) = p(y)dy. In this situation

our operator P, which has the explicit form

(Pu)(y) =

∫
IRp

K(x,y)u(x)dµ(x) (3.16)

with kernel

K(x,y) =
p(x,y)

px(x)py(y)
, (3.17)

is known to be compact (Hilbert-Schmidt).

3.1.1.2 Example: Finite-dimensional case

Consider X ∈ X = {1, . . . , N} and Y ∈ Y = {1, . . . ,M} and the probabilities P =

(pij)i,j = E(X = i ∧ Y = j). Then

Pu = Pu =
∑
i∈X

pij∑
i∈X pij

ui (3.18)

If e0 is the eigenvector of PTP.



44 Chapter 3. Kernel-CCA and Regularization

Given a training set of N observations {xi,yi}, i = 1, . . . , N the corresponding em-

pirical risk functional is

R(u, v)emp =
1

2

N∑
i=1

(u(xi)− v(yi))
2 (3.19)

In contrast to the standard nonlinear regression problem, where the solution approx-

imates the true regression function for N → ∞, the problem of minimizing Eq. 3.19 is

ill-posed even if the joint probability densitiy p(x, y) is known, since there are generally

infinitly many pairs u, v with the same value of the true risk R(u, v).

The Problem can again be remedied by using a regularized risk functional

Rλ(u, v) = R(u, v) + λΩ(u, v), (3.20)

where Ω(u, v) is a regularization functional. Ridge penalty regularization for kernel-CCA

discussed in section 3.1.8.

3.1.2 Reproducing kernel Hilbert space

The function u (resp. v) of section 3.1.1 can be regarded as single output nonlinear trans-

formation, which can be written in the form

u(x) =
∞∑
i=1

ciφi(x), (3.21)

i.e., as a linear combination of a (a possibly infinite number of) nonlinear basis func-

tions φi The functions are elements of a nonlinear feature transformation φφφ(x), where

x = (x1, . . . , xd) 7→ φφφ(x) = (φ1(x), . . . , φi(x), . . .), (3.22)

which maps the original data into a infinite dimensional feature space F. A possibe way

to define a space of functions, which can be represented by Eq. 3.21 is a reproducing

kernel Hilbert space (RKHS), i.e. a function space generated by a kernel function k(., .).

In the following will give a short overview of the properties of RKHS. More details can

be found in [71] and [30]. A good survey of these models is given in [28].

A RKHS is a Hilbert space H of functions defined over a bounded domain D ⊆ IRd

with the property that, for each x ∈ D, the evaluation functionals Fx which associate
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f ∈ H with f(x), are linear bounded functionals, i.e.

Fx[λ1f + λ2g] = λ1f(x) + λ2g(x) ∀f, g ∈ H, λ1, λ2 ∈ IR (3.23)

and there exists a U = Ux ∈ IR+ such that

|Fx| = |f(x)| ≤ U‖f‖, (3.24)

where ‖.‖ is the norm in H.

A RKHS is induced by a (Mercer) kernel, which is a symmetric real valued continuous

function k(., .) : D × D → IR of two variables, which is positive definite, i.e. for all

{x1, . . . ,xN} ⊂ D and {c1, . . . , cN} ⊂ IR, k(., .) satisfies

m∑
i,j=1

cicjk(xi,xj) ≥ 0. (3.25)

Under general conditions, if k(., .) is a Mercer kernel and satisfies∫
D

∫
D

k2(x,x′)dxdx′ < ∞ (3.26)

there exists an eigen-expansion in a in D ×D uniformly convergent series of continuous

eigenfunctions φi and positive associated eigenvalues γi ≥ 0, i.e.,

k(x,x′) =
∞∑
i=1

γiφi(x)φi(x
′),

∫
D

∫
D

k2(x,x′)dxdx′ =
∞∑
i=1

γi < ∞. (3.27)

The set of eigenfunctions {φi} of k(., .) is a basis for the RKHS HK , i.e., all elements

f ∈ Hk have an expansion

f(x) =
∞∑
i=1

ciφi(x) (3.28)

with the contraint that

‖f‖2 =
∞∑
i=1

c2
i

γi

< ∞, (3.29)

where ‖.‖ is the norm induced by k. In particular, the coefficients ci for f = k(x, .) ∈ HK

are

ci = γiφi(x). (3.30)
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The scalar product in HK is defined by

〈
∞∑
i=1

ciφi(.),
∞∑
i=1

diφi(.)〉H =
∞∑
i=1

cidi

γi

(3.31)

It is easy to see that under the constraint of Eq. 3.29 the following properties hold:

〈f, k(.,x)〉H =
∞∑
i=1

ciγiφi(x)

γi

=
∞∑
i=1

ciφi(x) = f(x) (3.32)

k(.,x) is therefore known as the representer of evaluation at x. Further, for all x,x′ ∈ D

〈k(x, .), k(x′, .)〉HK
= k(x,x′) (3.33)

which is called the reproducing property.

The eigen-decomposition can be understood as a generalization of the matrix-eigenvalue

problem to kernel functions, i.e., for a discrete set points {x1, . . . ,xm} ⊂ IRd, we can de-

fine the kernel matrix K = k(xi,xj), i, j = 1, . . . ,m.

The matrix-eigenvalue problem can be recovered by choosing f to be the weighted

sum of delta functions at each xi. In this case f is a limit of functions in L2(D), i.e.,

K = k(xi,xj) = EΛET =
m∑

i=1

γieie
T
i , (3.34)

where E is the matrix with eigenvectors of K in its columns and Λ is the diagonal matrix

of eigenvalues.

Condition Eq. 3.25 implies, that for any finite subset the corresponding kernel ma-

trix is positive semi-definite, i.e., if f = (f(x′1), . . . , f(x′m))T , then fTKf ≥ 0 for all

{x′1, . . . ,x′m} ∈ D. Conversely, approximating the integral with a finite sum and if the

sample is chosen sufficiently finely, a negative value will be obtained if Eq. 3.25 does not

hold for function f .

Thus, the conditions for Mercer’s theorem are equivalent to requiring that for any

finite subset of D, the corresponding kernel matrix is positive semi-definite [12].

3.1.3 Feature space induced by Mercer kernel

Consider the feature mapping

x = (x1, . . . , xd) 7→ φφφ(x) = (φ1(x), . . . , φi(x), . . .), (3.35)
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where φi are the basis functions obtained by the eigen-decomposition of the kernel k(., .)

given by Eq. 3.27. The feature vector φφφ(x) lives in a hilbert space F with the inner product

given by

〈φφφ(x), φφφ(x′)〉 =
∞∑
i=1

γiφi(x)φi(x
′) = k(x,x′), (3.36)

where the eigenvalues γi serve as a weighting for each dimension.

3.1.4 Hypothesis space for learning from a finite sample

For a general nonlinear regression problem, the regularized empirical risk functional has

the form

R(f) =
1

N

N∑
i=1

L(yi, f(xi)) + λ‖g‖2
Hk

(3.37)

=
1

N

N∑
i=1

L(yi,
∞∑

j=1

cjφj(xi)) + λ
∞∑

j=1

c2
j

γj

. (3.38)

It can be shown (Wahba, 1990) that minimization of Eq. 3.38 yields a solution of the

form

f ∗ = arg min
f

R(f) =
N∑

i=1

αik(xi, .), (3.39)

so that the solution f ∗ lies in the linear span of functions k(xi, .), i = 1, . . . , N , i.e., the

representers of evaluation at xi (cf. Eq. 3.32), and due to the reproducing property of k

we have

‖f ∗‖ =
N∑

i=1

N∑
j=1

αiαjk(xj,xi) (3.40)

= αααTKααα, (3.41)

where ααα is the N-vector with components αi and K is the N × N kernel matrix (see

Eq. 3.34). Thus, the criterion of Eq. 3.37 becomes a finite-dimensional criterion

R(f) = L(y,Kααα) + λαααTKααα (3.42)
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3.1.5 Duality

The solution f ∗ (cf. 3.39) is a linear function in F and can be represented by

f(x) =
∞∑
i=1

γiϕiφi(x) =
N∑

j=1

αjk(xj,x), (3.43)

where the first term is the primal representation of f and the second is the dual, the relation

between the two being

ϕi =
N∑

j=1

αjφφφ(xj). (3.44)

In the primal representation the number of terms is equal to the dimensionality of

the feature space (infinite dimensional), while in the dual representation the number of

terms is equal to the sample size. Due to this duality the infinite-dimensional problem of

Eq. 3.38 reduces to a finite optimization problem as shown in section 3.1.4. This property

is also referred to as the kernel property in the support-vector machine literatur. Any linear

algorithm, that can be formulated only in terms of inner products of the input vectors, can

be generalized to run on nonlinear transformed input data, without having to evaluate the

nonlinear feature mapping explicitly, by using a kernel function.

3.1.6 Bayesian interpretation

If f is interpreted as a realization of a stationary Gaussian process with zero mean, we can

interpret k as the prior covariance function. Then the eigen-decomposition of k yields the

eigenfunctions and associated eigenvalues, which correspond to the variances. Looking at

Eq. 3.38, we see that functions with small variance are penalized more. These functions

have more high-frequency components, and thus "smooth" functions are less penalized.

The penalty is the contribution of the prior to the likelihood.

3.1.7 Kernel CCA

In this section we will briefly summarize the formulation of kernel-CCA, which can be

used to find nonlinear dependencies between two sets of observations.

It can be shown [46], that for all solutions w∗ = (w∗T
x , w∗T

y )T of Eq. 2.59, the com-

ponent vectors w∗
x, w∗

y lie in the span of the training data (i.e., w∗
x ∈ span(X) and
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w∗
y ∈ span(Y)). Under this assumption for each eigenvector w∗ = (w∗T

x , w∗T
y )T solv-

ing Eq. 2.59, there exist vectors f , g ∈ IRn, so that w∗
x = Xf and w∗

y = Yg. Thus, CCA

can completely be expressed in terms of dot products. This allows us to reformulate the

Rayleigh Quotient of Eq. 2.58 using only inner products:

(
fT gT

)( 0 KL

LK 0

)(
f
g

)
(

fT gT
)( K2 0

0 L2

)(
f
g

) , (3.45)

where K,L are Gram matrices defined by Kij = xT
i xj and Lij = yT

i yj , K,L ∈ IRn×n.

The new formulation makes it possible to compute CCA on nonlinearly mapped data

without actually having to compute the mapping itself. This can be done by substitut-

ing the gram matrices K,L by kernel matrices Kφ
ij = 〈φφφ(xi), φφφ(xj)〉 = kφ(xi,xj) and

Lθ
ij = 〈θ(yi), θ(yj)〉 = kθ(yi,yj). kφ(., .), kθ(., .) are the kernel functions corresponding

to the nonlinear mappings φ : IRp → IR∞ resp. θ : IRq → IR∞.

The function u of section 3.1.1 corresponds to a linear projection onto w∗
φ in feature

space and can be computed using only the kernel function, without having to evaluate φ

resp. θ itself (cf. Eq. 3.43):

u(x) =
∞∑
i=1

w∗
φiφi(x) =

n∑
i=1

fφi〈φφφ(x), φφφ(xi)〉 =
n∑

i=1

fφi
k(x,xi). (3.46)

The projections of y onto w∗
θ (i.e., v(y)) are obtained analogously.

Kernel-CCA can be perfomed using singular value decomposition akin to Eq. A.21 as

follows: Let

C = K†KLL†, (3.47)

where K† resp. L† is the generalized inverse of K resp. L. Let

C = UDVT (3.48)

be the SVD of C, where U = (u1, . . . ,up) and V = (v1, . . . ,vq) are orthogonal matrices

and D is a diagonal matrix with singular values. The jth canonical factor pair in the dual

space can be obtained as fj = K†uj and gj = L†vj . Eq. 3.46 can be used to obtain the

projections of the original data xi resp. yi onto the primal wφ and wθ.
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Note that using kernel-CCA, we can compute more than min(p, q) (p, q being the di-

mensionality of the variable x and y, respectively) factor pairs, which is the limit imposed

by classical CCA.

Note also that in the case of nonsingular K and L we have all N canonical correlations

being equal to one. This is true even in the case of a two-channel process with mutually

independent elements of x and y. In this case the empirical canonical factors wφ and

wθ are arbitrary and will not explain the functional relation between the signals x and

y. Under smoothness assumptions meaningful results can be obtained by regularized

kernel-CCA as explained in the next section.

3.1.8 Regularization

Ridge-penalty regularization can be incorporated into the kernel-CCA criterion in the

same way as in the standard CCA approach by adding a multiple of the identity matrix to

the kernel matrices before calculating their inverse, i.e., instead of Eq. 3.47 we can use

C = (K + λφI)
−1KL(L + λθI)

−1, (3.49)

where λφ and λθ are two separate regularization parameters. For example, if λφ > 0,

the dual coefficients f are shrunk, whereby in the primal space a greater amount of shrink-

age is applied to coefficients wφi of basis functions φi with smaller associated eigenvalues

γi, i.e., smaller variance. In the case of a Gaussian kernel, these are those basis functions

with high frequencies. Besides the regularization effect, a positive regularization param-

eter value also helps in the case of singular K resp. L. λφ and λθ can be made model

selection parameters to be estimated by cross-validation.

3.2 Summary

We discussed how to nonlinearly extend CCA by using kernelfunctions. Extensions are

based on dual CCA formulations. We have shown extensions based on the rayleigh quo-

tient and on SVD. In section 4.1 we will see that Kernel- CCA is a efficient nonlinear

feature extractor, which also overcomes some of the limitations of classical CCA. We

will apply kernel-CCA to build appearance object models for pose estimation. There, it
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will also be shown that kernel-CCA will automatically find an optimal, periodic represen-

tation for a training set containing object views ranging from 0 to 360 degrees (i.e., for

periodic data).
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Chapter 4

Applications

In the previous sections we have introduced enhanced linear and nonlinear regression

methods based on CCA and kernel-CCA. In contrast to standard shrinking methods for

regression (e.g., ridge regression), which reduce the model complexity (in terms of effec-

tive degrees of parameters) by exploiting correlations in the input space, CCA allows to

account for correlations in the output space. This is particularly useful when dealing with

high dimensional input and output data, because correlations in the output space are not

exploited by standard regression methods. This is the case in the following applications,

with exception of the first application, where the dimensionality of the original output

space is 2 and we use kernel-CCA to expand the dimensionality of the output space by a

nonlinear transformation.

Because CCA allows to identify the regression relevant low-dimensional subspaces

and thus to reduce the effective number of parameters of the regression model, overfitting

is avoided despite the small "sample-to-observation" ratio. The meta-parameters (number

of factor pairs used, ridge parameter) will be determined by cross validation and general-

ized cross validation (see Appendix B).

4.1 Manifold Models for Pose Estimation

In this section, we employ nonlinear features obtained by kernel-CCA to build up man-

ifold models for appearance-based pose estimation, i.e., for the task of estimating an

object’s pose from raw brightness images. The results of this section have been published

in [46], [47]. Here, we give a brief summary of the experiments (for details see [46], [47]).

53
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Fig. 4.1 shows some example views of an object, which was acquired with two varying

pose parameters (pan and tilt angle of the objects pose relative to the camera).

Figure 4.1: A subset of the images that were used in the pose estimation experiment taken
with varying pan and tilt angle.

Experiments for appearance based pose estimation were conducted on 7 test objects

where the image sets were acquired with two controlled DOFs (pan and tilt).

Figure 4.2 shows the canonical factors obtained in a 1-DOF experiment (the experi-

ment was carried out with varying pan, but a fixed tilt angle). In this case, we had only

one pose parameter yi, i = 0, . . . , 179 (pan angle in the range 0 to 358 degrees, where im-

ages were taken in two degrees steps). Figure 4.3 show the projections of the images onto

the factor obtained by CCA using the scalar pose representation yi in degrees resp. the

2d trigonometric pose representation [sin(yi), cos(yi)]
T , as well as the projections onto 2

factors obtained by kernel-CCA. It can be seen from Figure 4.3(d), that kernel-CCA will

automatically find an optimal, periodic representation for a training set containing object

views ranging from 0 to 360 degrees (i.e., for periodic data) with corresponding pose pa-

rameters. In this experiment a radial basis function (RBF) kernel was used. The optimal

kernel parameter as well as the ridge parameter value was determined by five-fold cross

validation.

In a second 2-DOF experiment, for each object, the pose parameters were in range
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: (a) Image x1 of our test object for the 1-DOF case (rotation through 360
degrees) (b) Canonical factor w∗

x computed a training set which was obtained by taking
every 8th image from the original data set. (c),(d) Canonical factors obtained on the same
set using a nonlinear (trigonometric) representation of the output parameter space. (e),(f)
2 factors with largest canonical correlation obtained by kernel-CCA.

0 to 90 degrees (pan) and 15 to 43 degrees (tilt), resulting in 690 images per object; the

images were of size 64× 64.

The visualization of the manifold given in Fig. 4.4 is obtained by plotting the pro-

jections of the training set onto the first three empirical canonical factors obtained by

kernel-CCA, whereby neighboring (w.r.t. the pose parameters) projections are connected.

Fig. 4.4 shows the manifold superimposed by projections of independent test data.

The parametric manifold serves as a starting point for computing pose estimates for

new input images. The standard-approach for retrieving these estimates is to resample the

manifold using, e.g., bicubic spline interpolation and then to perform a nearest neighbor

search on the coefficients obtained for each new image [49].

A comparison of pose estimation performance of regularized kernel-CCA and PCA
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Figure 4.3: Output parameter estimates obtained from feature projections by the linear
regression function of the training set. Horizontal axes correspond to the image indices,
vertical axes to estimated output parameter values. The dotted line indicates the true pose
parameter values. Parameter values of the training set are marked by filled circles. (a)
shows estimates using scalar representation of orientation (b) using trigonometric rep-
resentation. (c) Estimated pose obtained from trigonometric representation using the
four-quadrant arc tangent. Note that the accuracy of estimated pose parameters can be
improved considerably. (d) Projections onto factors obtained using kernel-CCA: optimal
factors can be obtained automatically.

is given in table 4.1 for increasingly smaller training sets. The size of the training set

(s) is given as approximate proportion of the whole data set. The optimal parameters for

RBF-kernel-width and regularization were determined by five-fold cross-validation.

object algorithm s = 25% s = 11% s = 4% s = 2% s = 1%

avg std avg std avg std avg std avg std

(a) kCCA 0.32 0.61 0.96 1.17 2.64 2.75 3.49 3.51 8.61 7.61
PCA 3.54 4.76 5.48 6.60 6.79 8.41 4.59 4.89 10.66 9.72

(b) kCCA 0.22 0.60 0.65 1.02 1.91 2 2.40 1.77 3.09 2.63
PCA 1.48 1.59 2.28 2.42 2.58 2.84 2.55 1.90 3.48 3.67

(c) kCCA 0.32 0.57 0.83 1.02 2.68 3.36 2.08 1.74 4.48 4.31
PCA 2.49 4.27 2.91 3.98 3.74 4.68 4.96 7 7.35 8.46

(d) kCCA 0.26 0.45 1.36 2.28 3.82 4.01 3.99 4.09 5.62 6.64
PCA 4.11 5.04 4.59 4.74 7.28 7.65 7 6.02 8.09 9.15

(e) kCCA 0.14 0.28 0.70 0.66 1.58 1.25 2.05 1.32 2.79 2.16
PCA 2.43 1.66 2.92 2.43 2.67 2.16 3.12 3.35 5.37 4.36

(f) kCCA 0.22 0.61 0.65 1.02 1.91 2 2.40 1.77 3.09 2.63
PCA 2.15 2.15 2.28 2.42 2.58 2.84 2.55 1.90 3.48 3.67

(g) kCCA 0.02 0.13 0.22 0.44 1.41 1.47 1 1.20 2.56 2.10
PCA 1.23 1.09 1.63 1.68 2.08 2.01 1.62 1.39 2.68 2.19

Table 4.1: Mean (avg) and standard deviation (std) of the pose estimation error distribu-
tion for 7 test objects using training sets of different size.
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Figure 4.4: The effect of the ridge penalty on the parametric manifold representation
obtained by regularized kernel-CCA. The graphs show projections of training and test
images onto the first 3 canonical factors, whereby neighboring images w.r.t. to the 2 pose
parameters are connected by an edge. The green surface depicts projections of the training
images, while the grid depicts projections of the independent test sample. The upper left
model was obtained using no ridge penalty at all, the upper right manifold was obtained
using a too small ridge value, the lower manifold was obtained using the optimal ridge
penalty determined by cross-validation.

4.2 Fast Active Appearance Model matching

In this section, we propose a fast matching method for active appearance models, which

is based on CCA. The method was published in [24] and [23].

Active appearance models (AAMs) [17] learn characteristics of objects during a train-

ing phase by building a compact statistical model representing shape and texture variation

of the object. The use of this a priori knowledge enables the AAM search to yield good

results even on difficult and noisy data. AAMs have been employed in various domains

like face modeling [27], studying human behavior [37], and medical imaging tasks, like

segmentation of cardiac MRIs [48] or the diaphragm in CT data [4], and registration in

functional heart imaging [61]. In [60] an extensive overview of existing applications is
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given.

4.2.1 AAM search

The goal of the AAM search is to find the model parameters that generate a synthetic

image as close as possible to a given input image and to use the resulting AAM parameters

for interpretation [17]. Matching the model and target image is treated as an optimization

problem, i.e., the problem of minimizing the texture residual w.r.t. model parameters.

Provided that the model is roughly aligned with the target image, the relation of texture

residuals and parameter updates can be modeled a priori (by offline training) within a

certain class of objects [17].

In the original AAM search approach proposed by Cootes et al. [14] the mapping

from error images to AAM parameters is modeled by a linear regression approach (linear

least squares estimates). In the later proposed optimization approach [17] the regression

estimates were replaced by a simplified Gauss-Newton procedure, where the Jacobian

matrix is evaluated only once (offline) by numerical differentiation from training data.

Throughout this paper we will refer to this as standard approach. Both approaches are

similar in the sense that they assume that the error surface can be approximated reasonably

well by a quadratic function. The main advantage of the latter approach [17] is that during

training not all difference images have to be stored in memory.

Various approaches to increase convergence speed and AAM search result accuracy

have been proposed. A review of various search techniques is given in [13]. Sha-

peAAMs [16] update only pose and shape parameters during search, while gray-level

parameters are computed directly from the sample. They converge faster but the failure

rate increases. Direct appearance models (DAMs) [35] predict shape parameters directly

from texture. The convergence speed of AAMs for tracking applications is investigated

in [25].

These modifications of the original approach improve the convergence speed and the

quality of the results by either reducing the number of parameters that are to be opti-

mized in a sensible way (DAMs, ShapeAAMs), by saving computation time by reducing

the synthesizing steps necessary for the error function calculation (AAM tracking) or by

reducing noise in the regression training images (DAMs). However, the basic parameter

updating scheme during search is based on the standard approach [17] for all of these
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methods. They represent heuristic approaches to AAM fitting, which trade accuracy for

efficiency by assuming a constant Jacobian during search.

An alternative is to perform analytic gradient descent. To avoid the resulting inef-

ficiency during search in [44] an inverse compositional approach (ICIA) was proposed.

It treats shape and appearance variation independently and is based on a variant of the

Lucas-Kanade image alignment algorithm [43], which performs a Gauss-Newton opti-

mization. The texture warp is composed of incremental warps, and thus the assumption

that the Jacobian used for parameter prediction stays constant becomes valid. In [31] an

extension to this approach (simultaneous ICA) was proposed for combined AAMs. The

analytical calculation of the Jacobian is based on the mean and partial derivatives of the

AAM parameters.

The approach presented in this paper utilizes training images allowing CCA to extract

additional regression relevant information which may be discarded by the purely genera-

tive PCA based model.

4.2.2 A fast CCA based search

Our approach follows the original AAM training procedures proposed by Cootes et al. [14]

[17]. Essentially, we use a linear regression model of the texture residual vector r ∈ IRp

and corresponding AAM parameter displacements δp ∈ IRq (p is the size of the synthetic

image and q is the number of parameters used in the model). In our approach, however,

we use reduced-rank estimates obtained by CCA, instead of ordinary linear least squares

regression estimates.

The motivation of CCA is twofold. First, in the standard approach the regression

matrix consisting of a large number (p × q) of parameters has to be estimated from a

limited number of (noisy) training images. The rank constraint therefore leads to more

reliable regression parameter estimates [10, 20].

Second, we assume that the true regression matrix is of lower rank than min(p, q),

because the texture residuals contain regression-irrelevant components, including noise

and uncorrelated (higher order) components, which can not be captured by the linear

model.

We will show experimentally on different types of data that indeed CCA provides

more accurate parameter updates that lead to faster convergence of the AAM search.
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4.2.3 Active appearance models

The concept of active appearance models as described in [17] is based on the idea of

combining both shape and texture information of the objects to be modeled. First the

shape vectors xi = (xi
1, . . . , x

i
n, y

i
1, . . . , y

i
n)T , i = 1 . . . j of the j training images are

aligned using Procrustes analysis. The images are warped to the mean shape x and nor-

malized, yielding the texture vectors gi. By applying principal component analysis to the

normalized data linear models are obtained for both shape, x = x + Psbs, and texture,

g = g + Pgbg, where x,g are the mean vectors, Ps,Pg are sets of orthogonal modes of

variation (the eigenvectors resulting from PCA) and bs,bg are sets of model parameters.

A given object can thus be described by bs and bg. As Ps,Pg may still be correlated

PCA is applied once more using the following concatenated vector

b =

(
Wsbs

bg

)
=

(
WsP

T
s (x− x)

PT
g (g − g)

)
where Ws is a diagonal scaling matrix derived from the value ranges of the eigenvalues of

the shape and texture eigenspaces. This yields the final combined linear model b = Pcc,

where Pc = (PT
cs,P

T
cg)

T .

Shape free images and the corresponding shapes defining the deformation of the tex-

ture can be expressed directly using c by x = x + PsW
−1
s Pcsc and g = g + PgPcgc.

To enable the model to deal with rotation, scaling and translation the additional model

parameters t, capturing scaling and rotation and u, modeling image contrast and bright-

ness, are introduced. The resulting AAM model represents shape and texture variation of

image content utilizing a single parameter vector p = (cT |tT |uT ) ∈ IRq.

4.2.4 Standard AAM search approach

Provided we have a trained AAM where model parameters p generate synthetic images

Imodel(p). The standard search for an optimal match minimizes the difference between

a given image Iimage and the reconstructed image Imodel(p). The search for the model

parameters p can be guided by using knowledge about how the difference images correlate

with the parameter displacements. This knowledge is obtained during training.

During each search step the current image residual between the model texture gm(p)
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and the sampled image patch gs(p) (warped to the mean shape) is computed using

r(p) = gs(p)− gm(p). (4.1)

The search procedure aims at minimizing the sum of square (pixel) error

1

2
r(p)T r(p). (4.2)

Following the standard Gauss-Newton optimization method one approximates (lin-

earizes) Eq. 4.1 using the first-order Taylor expansion

r(p + δp) ≈ r(p) +
∂r

∂p
δp,

with the ijth element of matrix ∂r
∂p

being ∂ri

∂pj
.

Building the derivative of Eq. 4.2 w.r.t. p and setting it to zero gives

δp = −Rr(p), (4.3)

where

R =

(
∂r

∂p

T ∂r

∂p

)−1
∂r

∂p

T

=

(
∂r

∂p

)†
,

with † denoting the pseudo-inverse and R has size q × k. Instead of recalculating ∂r
∂p

at every step it is computed once during training using numeric differentiation.

During training each parameter is displaced from its optimal value in h steps from -1

to +1 standard deviations, and a weighted average of the resulting difference images over

the training set is built:

dri

dpj

=
∑

h

ω(δpjh)
(ri(p + δpjh)− ri(p))

δpjh

During the actual search, each iteration updates the model parameters using pnext(s) =

pcurrent +s δppredicted, with δppredicted = −Rrcurrent and s being a scaling factor sequen-

tially chosen from ssteps = 〈1, 0.5, 1.5, 0.25, 0.1, 2, 0.025, 0.01〉, as proposed in [17]. At

each of these scaling steps, the image patch is compared to the synthesized image Imodel,

which is computationally expensive.

Let E(pcurrent) = |r(pcurrent)|2 = |gs − gm|2 be the error of the current model.

An iteration is declared successful for the first step s to produce an error E(pnext(s)) <
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(a) (b)

(c)

Figure 4.5: Datasets used for evaluation: (a) face data, (b) hand data (c) detail of hand
data used

E(pcurrent). pcurrent is then set to pnext(s) and the search continues with the next itera-

tion. If no pnext(s) better then pcurrent can be found, convergence is declared and pcurrent

is the best estimate for the model parameters. As will be shown in Sec. 4.2.6 our approach

eliminates the need for using different step sizes, as the parameter predictions are more

accurate.

4.2.5 A fast AAM search based on CCA

In the standard AAM search algorithm a linear function (cf. Eq. 4.3) is used to map texture

residuals (difference images) r(p) ∈ IRp to corresponding parameter displacements δp ∈
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Figure 4.6: First two modes of shape variation for hand bone data.

IRq (approximating r(p) by a first-order Taylor series expansion). In our algorithm we

extract linear features of r(p) by CCA of r(p) and p.

CCA-AAM training During training, instead of computing R by numeric differenti-

ation, we create training data for CCA. More precisely, the training data is generated as

follows: Given the original training images that were used to build the AAM, for each

training image we generate a set of synthetic images by perturbing the optimal AAM

match, i.e., r (popt + δp), where the optimum parameter vector popt is obtained by map-

ping the training image texture and shape into the model eigenspace and the components

of δp are randomly drawn from uniform distributions from -1 to +1 standard deviation.

An overall number of m residual vectors with m corresponding parameter displacement

vectors is obtained. We denote the set of random displacement vectors by P ∈ IRq×m and

the set of corresponding texture residuals by G ∈ IRp×m.

Applying CCA to these two data sets yields empirical canonical factors pairs Wg =

(w1
g, . . . ,w

k∗
g ) and Wp = (w1

p, . . . ,w
k∗
p ), respectively, where i = 1 . . . k∗ ≤ k.

These are the (derived) linear combinations which are best predicted by r. By dis-

carding directions with low canonical correlation, i.e., those variates which are poorly

predicted by r we expect to improve overall predictive accuracy and robustness against

noise [10] (see also chapter 2). The optimal number of factors k∗ is estimated from

a separate validation set. After employing CCA, we perform regression on the leading

canonical projections Gproj = WT
g G and P. These projections are then used to compute

the p× k∗ transformation matrix l = PG†
proj , where G†

proj = (GT
projGproj)

−1GT
proj .
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(b) Metacarpal bones

Figure 4.7: Comparison of landmark errors. The 8 bars correspond to y, i.e. the length
of ssteps, ranging from 1 to 8, from left to right. Note how the CCA yields better (bones)
or equal (faces) results faster (at ≈3 steps) than the standard approach (at ≈12 steps).

CCA-AAM search During search, a new displacement prediction has to be obtained

at each iteration. Instead of using Eq. 4.3, the prediction δppredicted can be obtained as

δppredicted = lrproj where rproj = WT
g rcurrent.
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(b) Metacarpal bones

Figure 4.8: Comparison of texture errors. The 8 bars correspond to y (length of ssteps),
ranging from 1 to 8, from left to right. Again, the CCA approach yields its best results
already at y = 1 at ≈3 steps while the standard approach needs ≈12 steps for equal error
levels.

As Rcca = lWT
g can be pre-computed during training the final formulation of the
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prediction function is

δppredicted(rcurrent) = Rccarcurrent, (4.4)

allowing for an AAM search utilizing the correlations between parameter displacement

and image difference as captured by CCA. The computation of these predictions is as

fast as for the standard approach, therefore one step of an iteration of CCA search is as

fast as one step using Eq. 4.3. For practical application incremental PCA can be used

to lower memory requirements. An appealing side-effect is that over-fitting is avoided,

which would otherwise be accomplished using regularization techniques for CCA [47].

The outlined approach can also be applied to other kinds of image features (e.g., gradient

images or edges).

4.2.6 Experiments

Setup Experiments were conducted on 36 face images [50] and 36 metacarpal bone im-

ages manually annotated by a medical expert (Fig. 4.5).The first two modes of shape vari-

ation for the bone images are shown in Fig. 4.6. The algorithm was evaluated using 4-fold

cross validation. Following the standard AAM training scheme, a set of difference im-

ages and corresponding parameter displacements were obtained by randomly perturbing

the AAM modes in the interval -1 to +1 standard deviation. While the calculation of R

(cf. Eq. 4.3) by numerical differentiation requires separate variation of each AAM mode,

CCA-AAM training allows simultaneous variation of all modes.

To compare search performance in both cases AAM search was performed on the test

data using varying lengths of ssteps. Scaling factors available during search are chosen by

using the first y elements of ssteps. As a performance measure we use the total number of

steps accumulated over all iterations (cf. Sec. 4.2.4).

Searches were initialized using equal initialization (randomly generated by transla-

tions of up to 10 pixels and mean shape and texture) for both approaches. 180 search

results provide the data for each of the result bars plotted.

Faster training CCA-AAM training needs fewer synthetic difference images. Us-

ing 24 modes for face data and 18 for bone data, 6480 synthetic face images and 4860

synthetic bone images were generated for standard training. For CCA training no im-

provement could be observed when using more than 200 synthetic difference images.
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Thus, although the computation of the CCA is expensive, training is still considerably

faster than standard training. For a Matlab implementation on a PowerMac G5 1.8GHz a

speed-up factor of 4.9 and 3.5 was achieved.

Faster convergence with equal accuracy In Fig. 4.7 the mean landmark error (point

to point distance) over the corresponding number of overall search steps until convergence

is depicted. Error bars are 1 standard deviation. The 8 results plotted correspond to y

ranging from 1 to 8 as stated above.

In contrast to full rank of 24 (faces) and 18 (bones) CCA employed ranks of 10 and

9 respectively. It can be observed that the CCA convergence speed with almost equal

final accuracy is considerably better than the one of the standard approach. The time for

an iteration is dominated by the warping in each of the texture comparison steps. The

calculation of the parameter prediction (Eq. 4.4 or Eq. 4.3, resp.) amounts for only 9% of

the calculation time for a single step. We thus utilize the necessary number of steps as the

distinctive measure of convergence speed.

Already with ssteps = 〈1〉, i.e. no scaling of δp, the CCA approach yields its best

result, in 3.07 steps for the faces data and 3.16 steps for the metacarpals, respectively.

The standard approach needs at least ssteps = 〈1, 0.5〉 to perform equally well, requiring

12.23 and 12.11 steps. The CCA approach is thus 3.98 and 3.83 times faster. The mean

texture errors in Fig. 4.8 show a similar picture. Again, the CCA approach yields its best

results already at y = 1. The standard approach is dependent on the availability of further

scaling factors (ssteps = 〈1, 0.5〉) to equal this performance. The results are summarized

in Tab. 4.2.

Influence of rank reduction In a separate experiment the influence of rank reduction

by CCA was investigated. In Fig. 4.9 the dependency of the mean landmark errors after

search convergence is depicted for rank k set to 1, 4, . . . , 24 for the face data set. It can

be seen that for k = 7 the search yields the lowest landmark errors, and for k = 13 the

lowest texture errors. The number of necessary steps is lower than for full rank in both

cases.



68 Chapter 4. Applications

0 5 10 15
0

2

4

6

8

10

12
Landmarks

Steps

La
nd

m
ar

k 
Er

ro
r

k=1

k=4

k=7

k=24

0 5 10 15
0

0.5

1

1.5

2 x 107 Texture

Steps

Te
xt

ur
e 

Er
ro

r

k=1

k=4

k=13

k=24

Figure 4.9: Influence of CCA regression rank. Mean landmark error against the number
of steps for different choices of k (number of factors for CCA regression) for the face data
set.

Faces Standard CCA
Training samples 6480 200
Mean landmark error 5.7 5.7
Mean texture error (·106) 5.7 9.1
Necessary search steps 12.23 3.07
Search speed-up 1.00 3.98

Bones Standard CCA
Training samples 4860 200
Mean landmark error 7.8 6.4
Mean texture error (·106) 7.9 8.9
Necessary search steps 12.11 3.16
Search speed-up 1.00 3.83

Table 4.2: Result summary. Mean landmark and texture errors and corresponding number
of search steps for both data sets.

4.2.7 Active feature models

Like Active Appearance models (AAM, see section 4.2.3), Active feature models (AFM),

which were presented in [41], build a statistical model of shape and texture based on a set
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of training images. The model is related to the standard AAM, but instead of representing

the entire texture in the images, only local patches are used for landmark localization.

Corresponding positions of a set of landmarks are known on all of these images, and a

statistical shape model is built based on the training shapes. In contrast to AAM, where

the texture is modelled globally, AFM capture texture only locally instead of encoding

the entire appearance of the objects in the training set. The texture is not used directly but

represented by means of features extracted by descriptors. These values are integrated in

a fast search scheme based on CCA, which works in the same way as in the case of AAM.

In addition to restricting the computation to the vicinity of the landmarks - assum-

ing there is a high chance of relevant image content in these regions - it thereby takes

advantage from descriptor properties like higher specifity that might be better suited to

represent a certain class of images. Instead of performing pairwise matching of points

in the images, the behavior of the descriptors stemming from landmark displacements is

trained utilizing CCA in order to allow for a fast and efficient search during application.

The shape variation of landmark configurations in the training set is captured by a statis-

tical shape model. During search i.e. the identification of the landmarks in a new image,

pose and shape parameters of the model are updated according to the trained relationship

between displacement and descriptor responses. This results in robust localization of the

structure represented by the model. Experimental results for two different data sets are

reported to illustrate the effect. Hand/wrist radiographs and face images were used for

evaluation (see figure 4.5).

4.2.8 Local features
The image texture is captured by means of local descriptors. Any descriptor can be used,

allowing for straightforward adaptation of the algorithm to different data, if descriptors

with favorable specificity and robustness with respect to the application are known.

For local image texture description in the experiments reported in [41], steerable filters

[29] were employed due to their reliability and low dimensionality. For a given position

in the image they extract a feature vector f̂ describing local frequency and directional

behavior of the texture. For the steerable filters, among others jets comprising filters

with frequencies θ ∈ {0.3, 0.6, 0.9} and directions α ∈ {0, π/4, pi/2, 3π/4} (Fig. 4.10)

proved to give reliable descriptions. By utilizing complex modulus and argument the
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Figure 4.10: Filters for local description of texture.

algorithm works with feature vectors f̂i ∈ R24 for each of n landmark positions that are

concatenated to f ∈ R24n used for the model search. Note that the argument gives a

good approximation of the shift of edges in the image, a property that will be inherently

exploited by the regression described below, resulting in a behavior similar to active shape

models [15] if strong edges are present in the data.

4.2.9 AFM training
Given a statistical shape model build from training data, AFM search has to fit an instance

of the model to a new input image. The search uses knowledge about how the local

descriptor responses correlate with the displacement of the model parameters p. During

training model parameters are perturbed randomly generating a large number of displaced

model instances. A functional relation can then be learned from the resulting feature

vectors f and the corresponding parameter displacement δp. The basic idea of AFM

training and search is similar to the AAM approach. The functional relation is modelled

by CCA. In [24] a CCA based AAM search approach was proposed that outperforms the

original Gauss-Newton procedure.

Connecting landmark displacements and feature variation with CCA Given a set

of training images that were used to build the shape model, for each training image we

generate a set of synthetic shape instances by displacing the known correct parameter

vector. Let f (popt + δp) denote the feature vector consisting of descriptor responses at

the landmark positions in the image after diplacing the parameter vector popt by δp, where

δp is randomly drawn from uniform distributions from -1 to +1 standard deviations in the

model parameter space. An overall number of m feature vectors with m corresponding
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parameter displacement vectors is obtained. We denote the set of random displacement

vectors by P ∈ IRq×m and the set of corresponding feature vectors by F ∈ IRp×m. In our

case q = np + 4 and p = 24n.

To learn the functional relation of these two signals P and F CCA is employed as

described in section 4.2.5 for AAM training.

4.2.10 AFM search

AFM search determines an optimal fit of the model to new image data. Instead of a

straight-forward matching of descriptor responses AFMs use the shape model to cope

with ambiguous and repetitive image content, like medical data, resulting in a reliable

identification of landmarks.

Initialization The AFM search is initialized with a rough estimate of the object position

in the image. Shape parameters are initialized with 0, corresponding to the mean shape.

Search During search, a new prediction for parameter correction is calculated at each

iteration. The prediction δppredicted can be obtained as δppredicted = lfproj where fproj =

WT
g fcurrent.

As Rcca = lWT
g can be pre-computed during training the final formulation of the

prediction function is

δppredicted(fcurrent) = Rccafcurrent. (4.5)

The prediction of landmark positions in the input image is refined by iterating the

search procedure, until a convergence criterion is met (e.g., the change of landmark posi-

tions falls below a certain treshold).

4.2.11 Experiments

Setup Experimental results are reported for two data sets: 1. For 36 hand/wrist radio-

graphs metacarpal bones and proximal phalanges were annotated by an expert. Corre-

spondences of 128 landmarks on the bone contours were then established by an MDL
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Figure 4.11: Mean landmark error for each iteration; dashed line: AAM, solid line:
AFM; (a) face data, (b) hand data.
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Figure 4.12: Comparison of mean landmark errors for each iteration, AAM performance
equals to 1, solid line: AFM search; (left) face data, (right) hand data.

based method [19, 64]. 2. In a set of 36 face images 58 landmarks were annotated manu-

ally [?, 62]. Search results for AFMs and CCA based AAMs were compared. In order to

evaluate the performance of the AFMs to AAMs 4-fold cross validation was performed

on the sets. For each image 5 different random initializations were generated, resulting in

a total number of 180 searches. Fig. 4.5 shows examples of the two data sets.

Results For evaluation the mean landmark error during search for AFMs and AAMs

was compared. Fig. 4.11 shows the mean error over all 180 searches. Since searches

differ in length, the error value was set to a fixed value after the minimum was reached, in

order to allow for comparison of the performance. For the hand data the mean error after

AAM convergence at approx. 8 iterations is 4.56 pixels while for AFMs it is 3.56 px with
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convergence at 3.26 px. After 4 iterations AFMs already fall below the final error level

of AAMs. For the face data AAMs reach a mean error of 5.87 px after 9 iterations, while

AFMs slightly improve this result to 5.28 px. However AFMs fall below 5.86 px with the

4th iteration.

Fig. 4.12 shows a direct comparison between the two error developings. 1 corresponds

to the error during AAM search and the AFM error is given as fraction of this value. After

10 iterations the error resulting from AFM search is 83% for the hand data and 90% for

the face data.

An interesting observation is the higher performance advantage of AFMs in compar-

ison to AAMs for the hand data as opposed to face images. The appearance of the hand

radiographs with landmarks situated on high contrast bone contours benefits the compact

steerable filter based texture representation and brings the approach close to ASMs. In the

case of face images, the improvement is less pronounced, however, accuracy and search

speed are better than with the use of the entire texture. This indicates that a successful

application of AFMs is plausible on a variety of image data.

4.3 Recovery of Face Depth Maps from Single Color Im-
ages

The results presented in this section were published in [54], [52] and [53].

The recovery of depth and shape information from 2D-face images allows to deal with

effects of changing illumination conditions and viewing angle [73]. It can be used, for

example, to remove or reduce the effects of illumination and thereby increase the recogni-

tion accuracy in complex lighting situations. As another example, consider a face image

acquired by a surveillance camera showing the face in a arbitrary viewing angle. Match-

ing with a frontal view image stored in a database could be performed by transforming

the stored image, i.e. rendering a synthetic face image with corresponding viewing angle

and lighting conditions using a 3D-depth map of the face.

Different approaches exist for recovering shape from 2D face images. Yuille et al. [73]

use Singular Value Decomposition (SVD) to reconstruct shape and albedo from multiple

images under varying illumination conditions.

By isolating each of the factors that govern the face appearance, their model allows
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to predict the shape of faces and generate face images under new illumination conditions

with the use of less training data than standard appearance models. Shape from shading

[26, 74] algorithms have been applied to face images, where different constraints such as

symmetry or (piece-wise) constant albedo are used to render the problem well-posed.

In statistical approaches [1,3,7,11,55] the relationship of shape and intensity is learned

by training from a set of examples, i.e. intensity images with corresponding shapes. In [7]

a 3D-morphable model (3DMM) is learned from 3D scans, which can be matched with

new input images by an iterative optimization procedure. The parameters of the matched

model can be used to determine the shape of the input face. A modification of 3DMM is

used in [72] in which the face normal vectors are recovered instead of the depth map.

Here, we propose a statistical method for predicting 3D depth maps of faces from

frontal view color face images based on CCA. The basic idea of our approach is, that the

relationship of depth and face appearance , as a combined effect of illumination direction,

albedo and shape can be modeled effectively with a small number of factors pairs, i.e.,

correlated linear features in the space of depth images and color images. The method is

not limited to face images but can generally applied to other classes of objects (surfaces)

having similar structure, variability and shadows. A similar approach is taken [42], where

the 3D surface of a face is recovered from a single near infrared image using an extension

of CCA for that of tensors.

To demonstrate the broad applicability of the method we present a second application,

where we use CCA to predict near-infrared (NIR) face texture from color face images,

acquired by a standard color CCD camera. Here, we assume a high degree of correlation

of the reflectance properties w.r.t the two spectra. In NIR face recognition, predicting NIR

images is desirable when the identity of a person in the NIR database has to be determined

from a standard color image or a person is to be added to the IR face database when there

is no NIR face image available.

The CCA approach allows to take into account the vector spaces of color images and

corresponding shapes simultaneously.

We regard the image vector of the RGB color image and the depth maps as two corre-

lated random vectors x ∈ IRp and y ∈ IRq, where q and p corresponds to the dimensionality

of the vector space of the RGB images and depth maps.

In [7] two separate eigenspaces are generated by PCA and a linear regression on the
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eigenspace coefficients is used to model the relation of x and y.

Predicting depth maps respectively NIR images from RGB face data In order to

predict depth maps from RGB face images CCA is applied to a set of pairs of RGB image

vectors and corresponding depth maps. This results in canonical factor pairs reflecting

the inherent correlations between these two signals. A sub set of factor pairs wi with

i = 1, . . . , n < k is then used for the prediction of depth maps from new RGB images.

The sub set corresponds to the canonical factors with the highest canonical correlations

in the training set. Applying CCA to the two data sets yields empirical canonical factor

pairs Wx = (w1
x, . . . ,w

n
x) and Wy = (w1

y, . . . ,w
n
y ), respectively.

To predict a depth map in its vector representation y from a new RGB input image we

represent the image as vector x. The prediction ypredicted can be obtained as ypredicted =

lxproj where xproj = WT
x x. As Rcca = lWT

x can be pre-computed during training the

final formulation of the prediction function is

ypredicted(x) = Rccax. (4.6)

For the application to NIR data we proceed analogously on shape-free NIR and RGB

patches obtained by employing active appearance models [18]. Example patches are de-

picted in Fig. 4.19.

4.3.1 Experimental results
Setup Experiments were performed on two data sets: 1. For the evaluation of 3D Face

reconstruction the USF Human-ID 3D Face Database [56] was used. The 3D form of

the faces is acquired with a CyberWare Laser scanner. The faces were remapped from

a cylindrical depth map with horizontal resolution 1◦ into a cartesian coordinate system

with the z-direction parallel to the radiant going trough the center between the eyes and

resolution corresponding the the vertical resolution of the scans. Regions not belonging to

the face were discarded. The evaluation was performed on a set of 218 face images. Dur-

ing training, we use 5-fold cross-validation on the training set of 150 images to determine

the optimal values for the number of factor pairs and the CCA regularization parameter

(for details of how to perform regularization see [47]). The prediction is assessed qual-

itatively and quantitatively on the test set of the remaining 68 images. 2. For NIR face

texture reconstruction we conducted experiments with 150 pairs of RGB face texture and
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corresponding NIR data of overall 30 individuals. To obtain texture data the faces were

registered based on 51 landmarks. 100 images were used for training and the remaining 50

images for testing the algorithm. To determine the optimal number of factor pairs and the

optimal value for the regularization parameter needed for CCA 10-fold cross-validation is

performed on the training set. The performance is evaluated on the test set by computing

the average pixel error where we using gray-values between 0 and 255.

Results for 3D data The maximum possible number of factor pairs k is determined

by the number of training data pairs: 150. The quantitative results given in Fig. 4.13

show, that the optimal number of factor pairs is much smaller than 150, namely only 5.

The depth reconstruction error improves to 85% of the error of standard regression with

5 factor pairs. Only a fraction of the available factor pairs is sufficient for predicting

the texture with higher accuracy than full-rank MLR can achieve. The resulting mean

depth error is 6.93 voxels. Note that most of the error stems from the distortions at the

boundary of the faces. Fig. 4.16 shows the first two factor pairs corresponding to the 2

largest canonical correlations. Qualitative reconstruction results for test data are shown in

Fig. 4.18. In the first 2 columns 3D ground truth and reconstruction results are depicted.

In the 3rd and 4th the RGB texture is mapped onto the 3D shapes and in the 5th column

the the depth value difference is visualized in the same scale.

Results for NIR data The maximum possible number of factor pairs k is 100. Fig. 4.14 b

shows the predicted NIR pixel value error relative to standard regression. The error shows

a minor improvement compared to full-rank MLR. However, only 20 factor pairs are suf-

ficient for the predicting the texture with less error. A possible explanation is that due

to the good registration of the training images much of the noise in the data has been

removed and thus CCA rank-reduction yields only a minor improvement of the error.

The optimum mean NIR pixel value error for CCA prediction, with 8 factor pairs, is 3.2

gray-values (95.61% of the MLR result). Qualitative results for test data are shown in

Fig. 4.19.
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Figure 4.13: Prediction of 3D depth maps using CCA based regression: (a) Box plot
statistics of the average 3D prediction error for a changing number of factor pairs. Each
box plot involves the average error of of each of the 150 depth maps of the independent
test set measured in voxels. The box blots show the average of the 150 errors (red bar)
and quartiles (blue box). The straight solid lines show the quartile of the average error
obtained by OLS regression. (b) The average 3D prediction error relative to the error
produced by MLR.
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Figure 4.14: Prediction of NIR face images: (a) Box plot statistics of the average pixel
error for a changing number of factor pairs. The Each box plot involves the average
error of of each of the 150 depth maps of the independent test set measured in voxels.
The straight solid lines show the quartile of the average error obtained by MLR. (b) The
average pixel error relative to the error produced by OLS regression.

4.3.2 Experimental comparison with competitors

In this section, we describe quantitative results of an experimental comparison of com-

peting regression methods. The experiments were conducted on the facial scan data. The
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Figure 4.15: Prediction of NIR face images: (a) Box plot statistics of the average pixel
error for a changing number of factor pairs. The Each box plot involves the average
error of of each of the 150 depth maps of the independent test set measured in voxels.
The straight solid lines show the quartile of the average error obtained by MLR. (b) The
average pixel error relative to the error produced by OLS regression.
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Figure 4.16: First 2 canonical factor pairs for (a,b) RGB and (c,d) depth data.

regression methods which were tested are the following:

• Rank-k regression with k determined by generalized cross validation (RR-GCV).

Training is relatively fast because in contrast to ordinary (v-fold) cross validation,

the model has to be fixed only once with the whole sample.

• The Curds & Whey (C&W-GCV) procedure described in section 2.4.3: In a first

step, the ridge estimates Ŷ are computed, whereby the ridge parameter value is

obtained by generalized cross validation. Then, the optimal shrinkage matrix is
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Original surface Reconstructed surface

Figure 4.17: 3D reconstruction: ground truth and CCA based prediction.

Original face patch Reconstructed face patch Difference surface

Figure 4.18: 3D reconstruction: ground truth and CCA based prediction.

calculated based on the canonical analysis of target outcomes Y and the ridge esti-

mates Ŷ. Because of p, q > N we use the singular value decomposition of

(YYT + λyI)
− 1

2YŶT (ŶŶT + λŷI)
− 1

2 = UDVT , (4.7)

i.e., instead of using the generalized inverse of YYT resp. ŶŶT . In order to

obtain more stable solutions, we introduce additional bias by the two parameters

λy, λŷ > 0, which are additional model parameters determined by five-fold cross
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RGB texture NIR texture Predicted NIR texture Original NIR Pred. NIR

RGB texture NIR texture Predicted NIR texture Original NIR Pred. NIR

Figure 4.19: NIR texture prediction: ground truth, CCA based texture prediction and
texture mapped onto true shape.

validation. For details of the Curds & Whey method, see section 2.4.3.

• Regression based on kernel-CCA (kCCA) as described in section 3.1. A radial

basis function kernel was used to transform the inputs (implicit feature mapping φ),

while the outputs were not transformed. Ridge-penalty regularization was used for

shrinking in input (λφ) and output (λy) space. These model parameters as well as

the optimal number of factor pairs k and the parameter σφ of the kernel function

were determined by five-fold cross-validation.

• Regression based on standard (linear) CCA: Two independent ridge parameters

were used to perform shrinking in the input resp. output space (see section 2.4.4).

Their values were determined by five-fold cross validation.

• Regression based on sparse CCA (sCCA), where we have used the algorithm de-

scribed in [59, 68]. The parameters λx and λy are the usual ridge parameters, while

λs determines the regularization of the sparse eigenproblem (see [59]). k corre-

sponds to the optimal number of factor pairs.

In all 5 cases, the criterion function (resp. eigen-problems) can be written in the dual

formulation, such that their size depend on the size of the training sample N and not

the dimensionality p resp. q. Figure 4.21 summarizes the quantitative results and shows
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Figure 4.20: Boxplots show the distribution of the depth prediction errors measured in
number voxels of deviation from the true facial surface. The errors have been computed
on 150 test images. The average error and standard deviation of the errors is shown in
figure 4.21.

the optimal model parameters determined by cross-validation as described above. The

reduced-rank/shrinking methods (CCA, kCCA, sCCA, C&W) outperform separate OLS

regression, but do not show any significant difference w.r.t. performance among each

other.

4.4 Summary

In this chapter we have demonstrated the broad applicability of CCA on four different

vision tasks. In all four applications a high dimensional response signal was regressed on

a high dimensional input. CCA was employed to identify regression relevant subspaces,

to reduce the effective number of parameters in a sensible way and thus to avoid over-

fitting. Kernel-CCA allowed to automatically find an optimal nonlinear transformation

of periodic pose parameters (sine and cosine of the original pose representation). The

hyperparameters (number of factor pairs needed, regularization parameters) have to be

estimated by cross-validation, which makes training a time-consuming task. Prospects of

avoiding cross-validation are described in section 5.1.
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kCCA CCA Curds&Whey
average 3.3359 3.3621 3.3210
std. dev. 1.4026 1.3263 1.5967

parameters
k = 30,
λφ = 10−6,
λy = 10−9

k = 50,
λx = 10−3,
λy = 10−9,
σφ = 1.0

λx = 10−4,

λy = 10−16

RRGCV sCCA
average 3.3210 3.3704
std. dev. 1.2189

parameters λx = 10−4

λx = 10−4,

λy = 10−4,
λs = 10−16,
k = 30

Figure 4.21: The average and standard deviation of the voxel errors averaged over each
of the 150 test images.



Chapter 5

Conclusions

In this thesis enhanced regression methods based on canonical correlation analysis and its

non-linear generalization kernel-CCA were applied to object recognition, more specifi-

cally pose estimation, prediction of facial surfaces and fast matching of active appearance

models to new input images. All of these tasks are regression problems with high dimen-

sional input and output data, where the size of the training set is by far smaller than the

number of regression parameters to be estimated. The effective number of parameters can

be reduced by Canonical Correlation Analysis. CCA is a versatile tool, that is especially

well suited to identify regression-relevant subspaces and can be used for dimensionality

reduction and feature extraction.

The canonical coordinate system obtained by CCA is optimal for truncating or shrink-

ing of the original coordinates of the signal spaces. The method works by regression of

output variables on input features obtained by CCA. A kernel-version of CCA using a

dual formulation of the rayleigh quotient was employed. The performance in various re-

gression tasks was compared to other enhanced regression procedures, such as separate

ridge regression, reduced-rank regression and the Curd&Whey method proposed in [10]

which performs shrinking in canonical space (and can thus be regarded as smooth version

of ridge regression).

The latter two methods are closely related to our proposed regression approach as

it can be shown easily that regression parameters are obtained by performing truncation

resp. shrinking in the canonical output space.

CCA-AAMs introduce a search algorithm based on CCA, which allows to model

efficiently the dependencies between image residuals and parameter correction. Taking

83
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advantage of the correlations between these two signal spaces CCA makes sensible rank

reduction possible. It accounts for noise in the training data and thereby yields significant

improvements of the AAM search performance in comparison to the standard search ap-

proach based on OLS. After computing CCA, linear regression is performed on a small

number of linear features which leads to a more accurate parameter prediction during

search, eliminating the need for the expensive variable step size search scheme employed

in the standard approach.

Empirical evaluation on two data sets shows that the CCA-AAM search approach is

up to 4 times faster than the standard approach. As fewer training samples are needed,

training is up to 5 times faster. Our approach can be adopted in most of the existing

extensions of the original AAM search approach based on linear regression.

In section 4.1, we applied kernel-CCA to an object pose estimation problem. Man-
ifold models based on kernel-CCA show superior performance when compared to stan-

dard regression and CCA-based regression as well as traditional manifold models based

on principal component analysis (parametric eigenspace models). It was also shown that

kernel-CCA will automatically find an optimal, periodic representation for a training set

containing object views ranging from 0 to 360 degrees (i.e., for periodic data).

5.1 Outlook

In the course of the experiments described in chapter 4 most of the ridge parameters

where determined by cross validation, which is a time consuming task. A probabilistic

interpretation of CCA akin to probabilistic PCA [6] allows to formulate CCA as a maxi-

mum log likelihood problem, and regularized CCA as the problem of maximization of a

log posterior. In [2] a probabilistic interpretation of CCA as a latent variable model for

two Gaussian random vectors is given. In [72] a similar formulation of CCA is employed

for a variational bayesian approach to CCA. It is reported, that this bayesian version of

CCA outperformes standard regularized CCA, due to the fact that model parameters and

number of canonical correlations are determined automatically from the training data and

that overfitting is avoided. Future research will focus on the use of probabilistic CCA,

its combination with the shrinking methods presented in section 2.4 and the development

of a kernel version of probabilistic CCA and its application to the vision tasks shown in



5.1. Outlook 85

chapter 4.
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Appendix A

Derivation of CCA

In section 2.2 we have given a formulation of CCA based on the Rayleigh quotient. In

this section we will give four alternative derivations of CCA.

A.1 CCA by direct minimization of Eq. 2.55

The derivatives of ρ w.r.t. wx are

∂ρ

∂wx

=
(wT

x Cxxwxw
T
y Cyywy)

− 1
2Cxywy

wT
x CxxwxwT

y Cyywy

−
wT

x Cxywy(w
T
x Cxxwxw

T
y Cyywy)

− 1
2Cxxwxw

T
y Cyywy

wT
x CxxwxwT

y Cyywy

= (wT
x Cxxwxw

T
y Cyywy)

− 1
2

(
Cxywy −

wT
x Cxywy

wT
x Cxxwx

)
= ‖wx‖−1(ŵT

x Cxxŵxŵ
T
y Cyyŵy)

− 1
2

(
Cxyŵy −

ŵT
x Cxyŵy

ŵT
x Cxxŵx

)
=

a

‖wx‖

(
Cxyŵy −

ŵT
x Cxyŵy

ŵT
x Cxxŵx

)
, a ≥ 0. (A.1)

By exchanging x and y we get

∂ρ

∂wy

=
a

‖wy‖

(
Cyxŵx −

ŵT
y Cyxŵx

ŵT
y Cyyŵy

)
. (A.2)

Setting the derivatives to zero gives a system of equations

Cxyŵy = ρλxCxxŵx, (A.3)

Cyxŵx = ρλyCyyŵy (A.4)
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where

λx = λ−1
y =

√
ŵT

y Cyyŵy

ŵT
x Cxxŵx

. (A.5)

By substituting Eq. A.3 into Eq. A.4 (and vice versa) we can rewrite the equation system

as

C−1
yy CyxC

−1
xx Cxyŵy = ρ2ŵy (A.6)

C−1
xx CxyC

−1
yy Cyxŵx = ρ2ŵx. (A.7)

Thus, the factor pairs wi can be obtained as solutions (i.e., eigenvectors) of the generalized

eigen-problem given by Eqs. A.6 and A.7. The extremum values ρ(wi), which are referred

to as canonical correlations, are obtained as the corresponding eigenvalues.

A.2 CCA by constrained optimization

The same result can be obtained by solving a constrained optimization problem: Note

that ρ is not affected by the length of wx and wy and thus we can constrain x and y to

have unit within set variance. Therefore, instead of maximizing Eq. 2.55 directly, we can

maximize

ρ = wT
x Cxywy. (A.8)

subject to the constraints

wT
x Cxxwx = 1,

wT
y Cyywy = 1. (A.9)

The Lagrangian function becomes

L(wx,wy, α1, α2) = wT
x Cxywy +

1

2
α1(1−wT

x Cxxwx) +

1

2
α2(1−wT

y Cyywy) (A.10)
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where we have multiplied the constraints by 1
2

in order to simplify the subsequent calcu-

lations. The derivatives w.r.t. to wx and wy are

∂L

∂wx

= Cxywy − α1Cxxwx (A.11)

∂L

∂wy

= Cyxwx − α1Cyywy. (A.12)

Setting the derivatives to zero gives

α1Cxxwx −Cxywy = 0 (A.13)

α2Cyywy −Cyxwx = 0 (A.14)

which is equivalent to Eqs. A.3 and A.4. Multiplying the Eqs. A.13 and A.14 from left

with wx and wy respectively gives α1 = α2 = ρ = wT
x Cxywy.

A.3 CCA as a linear least squares problem

Looking at Eqs. A.8 and A.9 we see that the empirical canonical correlation is one if the

homogeneous linear system

wT
x X = αwT

y Y (A.15)

has a nontrivial solution. Eq. A.15 follows from the sample versions of Eqs. A.8 and A.9.

To see this we formulate CCA as the following optimization problem: Minimize

‖wT
x X−wT

y Y‖2 (A.16)

subject to

wT
x XXTwx = 1,wT

y YYTwy = 1. (A.17)

Using

‖wT
x X−wT

y Y‖2 = wT
x XXTwx (A.18)

−2wT
x XYTwy + wT

y YYTwy

we can replace Eq. A.16 (under the above constraints) by the criterion

1−wT
x XYTwy. (A.19)
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Thus, Eq. A.15 is a necessary and sufficient condition for

min(1−wT
x XYTwy) = 0, (A.20)

which is equivalent to the empirical canonical correlation being one (ρ(w∗) = 1). Eq. A.15

might be satisfied only under certain conditions if N ≥ p + q (i.e., in the case of linear

dependencies). However, if N < p + q, we have an underdetermined system and we will

obtain p + q − N linearly independent solution vectors. In other words, if p + q is large

relative to the sample size, a perfect correlation can always be found. If p + q ∼ N ,

the solutions will exhibit high arbitrariness, meaning that minor deviations in the training

data will have a huge impact on the empirical canonical factors. A demonstrative example

of the influence of noise on the is given in [45].

A.4 CCA by singular value decomposition

Alternatively, wi can be obtained by Singular Value Decomposition (SVD) of the cross-

correlation matrix of pre-whitened input data, which is given by

C = C
− 1

2
xx CxyC

− 1
2

yy . (A.21)

C is referred to as coherence matrix by some authors in the signal processing community

[36, 57, 58]. Let

C = UDVT (A.22)

be the SVD of C, where U = (u1, . . . ,up) and V = (v1, . . . ,vq) are orthogonal matrices

and D is a diagonal matrix with singular values. The canonical factors can be obtained

as wi
x = C

− 1
2

xx ui and wi
y = C

− 1
2

yy vi. The corresponding canonical correlations are the

singular values.



Appendix B

Cross-Validation and
Generalized Cross-Validation

K-fold cross validation is a widely used method for estimating the prediction error in

the case if where available data is limited. It uses part of the available training data for

training and the remaining part to test the fitted model, i.e.„ estimate its prediction error

on unseen data. To this end, the available data is partitioned into K roughly equal-sized

parts. Let κ : {1, . . . , N} → {1, . . . , K} be an indexing function mapping each index

i = 1, . . . , N to one of K partitions. f−k
λ (x) denotes the function fitted to the training data

with the kth part removed, where λ are the tuning parameters of the model. For example,

in the case of ridge regression, λ is the ridge parameter (see Section 2.1.9) in the case of

regression based on CCA we have λ = (λx, λy). Then the cross-validated estimate of the

prediction error is

CV(λ) =
1

N

N∑
i=1

L(yi, f̂
−κ(i)
λ (xi)). (B.1)

The case where K = N is referred to as leave-one-out cross-validation. In this case,

CV(λ) is approximately unbiased for the true prediction error, but the variance of the

estimator CV(λ) can be high. On the other hand, with K = 5, which is a typical choice

(which has been used throughout the experiments in this thesis), the variance is lower, but

the bias can be high.

In any case, λ is chosen according to

λ∗ = arg min
λ

CV(λ). (B.2)
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Generalized Cross-Validation

To compute the leave-one-out CV score, the learning method has to be applied N

times, which is a computational burden. Generalized cross-validation is an approximation

to leave-one-out CV and is based on the following observation: We replace the ith element

of the training set by its prediction ŷi = f̂
−κ(i)
w (xi) and use the training set Ti = {X,Yi}

with

X = (x1,x2, . . . ,xN) (B.3)

Yi = (y1,y2, . . . ,yi−1, ŷi,yi+1 . . . ,yN). (B.4)

Let f̂T
i

w be the estimate of f obtained by fitting the model to T i. Then by virtue of the

"leave-out-one lemma" [71], we have

f̂Ti
w (xi) = f̂−i

w (xi), i = 1, . . . , N. (B.5)

For linear models we have

Ŷ = f̂λ = YH(λ), (B.6)

where λ is the parameter determining the complexity (effective degrees of freedom) of

the model. Denote the elements of H by hij , then

f̂λ(xi) =
N∑

j=1

hijyj, (B.7)

and

f̂−i
λ (xi) = f̂Ti

λ (xi) (B.8)

=
[
YiH(λ)

]
.i

(B.9)

=
N∑

j=1

hijŷj (B.10)

=
∑

j=1,...,N
j 6=i

hijŷj + hiif̂
−i
λ (xi), (B.11)

(B.12)

such that

f̂λ(xi)− f̂−i
λ (xi) = hii(yi − f̂−i

λ (xi)). (B.13)
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After some rearrangement we have

yi − f̂−i
λ (xi) = (yi − f̂λ(xi))(1− hii). (B.14)

and thus using squared error loss we have

CV(λ) =
1

N

N∑
i=1

(
yi − f̂λ(xi)

1− hii

)2

. (B.15)

Replacing hii in Eq. B.15 results in the generalized cross-validation criterion

CV(λ) =
1
N

∑N
i=1(yi − f̂λ(xi))

2

(1− trace(H(λ))/N)2
. (B.16)

Using the approximation 1/(1− x)2 ≈ 1 + 2x for small trace(H(λ))/N we obtain

CV(λ) =
1

N

N∑
i=1

(yi − f̂λ(xi))
2

+
2

N
trace(H(λ))

(
1

N

N∑
i=1

(yi − f̂λ(xi))
2

)
. (B.17)

Eq. B.17 reveals the similarity between GCV and the Akaike information criterion (AIC)

(see e.g., [33])

AIC(λ) = err(λ) + 2
d(λ)

N
σ̂2

ε , (B.18)

where err(λ) is the training error and d(λ) is the (effective) number of parameters for each

model: Here, 1
N

∑N
i=1(yi − f̂λ(xi))

2 can be regarded as an estimate of σ2
ε .
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