
Analysis of

Cryptographic Hash Functions

by

Florian Mendel

A PhD Thesis
Presented to the Faculty of Computer Science in Partial Fulfillment of the

Requirements for the PhD Degree

Assessors

Prof. Dr. Ir. Vincent Rijmen (TU Graz, Austria)
Prof. Dr. Ir. Bart Preneel (KU Leuven, Belgium)

June 2010

Institute for Applied Information Processing and Communications (IAIK)
Faculty of Computer Science

Graz University of Technology, Austria

Abstract

This thesis is devoted to the analysis of cryptographic hash functions. In the last
years significant progress has been made in the cryptanalysis of hash functions.
As a consequence most of the hash functions used today have been broken or
show weaknesses. The collision attacks on the widely used hash functions MD5
and SHA-1 have attracted a lot of attention in the cryptographic community. In
view of these developments, this thesis focuses on the analysis of alternative hash
functions such as GOST, RIPEMD-160, Tiger, and Whirlpool. Results include
the first collision and preimage attacks on the hash function GOST, specified
in the Russian national standard GOST 34.11-94. Even though the attacks are
rather of academic interest, they point out weaknesses in the design principles
of the hash function GOST.

Furthermore, we present a detailed security analysis of the hash functions
RIPEMD-128 and RIPEMD-160, both standardized by ISO/IEC, against attack
techniques used in the cryptanalysis of the MD5 and SHA-1. This analysis shows
that RIPEMD-128 and RIPEMD-160 seem to be more secure against this kind
of attacks than previously expected, despite relying on a similar design as MD5
and SHA-1.

For the hash function Tiger, we present collision and preimage attacks. These
include preimage attacks on 16 and 17 (out of 24) rounds and the first collision
attack on 19 rounds of Tiger. Furthermore, we present a free-start near-collision
attack on the full hash function. This might be more than just certificational
weakness and a small improvement of the attack might lead to a collision for the
full Tiger hash function.

Whirlpool is the only hash function standardized by ISO/IEC (since 2000)
that does not follow the MD4 design strategy. For this hash function we present
a distinguishing attack on the full Whirlpool compression function. This is
achieved by two new methods in the analysis of hash functions: the rebound
attack and the subspace distinguisher. The rebound attack lead to successful
attacks on round-reduced variants of the hash function for up to 7.5 (out of 10)
rounds and on round-reduced variants of the compression function for up to 9.5
rounds. By using the subspace distinguisher we turn the near-collision attack on
9.5 rounds into a distinguishing attack on 10 rounds of the compression function.
This is the first attack on the full Whirlpool compression function.

iii

Acknowledgements

I would like to thank all the people who supported me during the years of my
PhD studies. In the first place, I would like to sincerely thank my supervisor,
Vincent Rijmen, for his support in every aspect of my research. In particular,
for introducing me to the field of cryptography, always patiently listening to
and commenting on my ideas and research topics, and for his excellent scientific
guidance in general. Without him I would have never been able to reach this
goal in my life.

I would also like to thank Bart Preneel for being my external reviewer and
examiner. I am grateful for his valuable comments and suggestions that helped
to improve the quality of this thesis.

Since I joined the IAIK Krypto group in 2005, I had the pleasure to work
with and in a very successful team. I would like to thank my colleagues for their
fruitful comments and discussions. I really enjoyed doing research with all of
you! Therefore, special thanks go to Mario Lamberger, Tomislav Nad, Norbert
Pramstaller, Christian Rechberger, and Martin Schläffer. Furthermore, I would
like to thank Kazumaro Aoki, Christophe De Cannière, Marko Hölbl, Sebastiaan
Indesteege, Jorge Munilla, and Søren S. Thomsen, who stayed with or joined our
group for several weeks or months during the years of my PhD studies.

I would like to thank the coauthors of my articles: Jean-Philippe Aumas-
son, Christophe De Cannière, Orr Dunkelman, Praveen Gauravaram, Sebas-
tiaan Indesteege, Lars R. Knudsen, Marcin Kontak, Mario Lamberger, Joseph
Lano, Gaëtan Leurent, Krystian Matusiewicz, Willi Meier, Tomislav Nad, Maŕıa
Naya-Plasencia, Thomas Peyrin, Norbert Pramstaller, Bart Preneel, Christian
Rechberger, Vincent Rijmen, Martin Schläffer, Janusz Szmidt, Søren S. Thom-
sen, Dai Watanabe, and Hirotaka Yoshida.

Finally, I would like to thank my girlfriend, my family, and my friends for
their support and help throughout the time of my PhD studies.

Florian Mendel
Graz, June 2010

v

Table of Contents

Abstract iii

Acknowledgements v

List of Tables xi

List of Figures xiii

List of Notations xv

1 Introduction 1
1.1 Cryptographic Hash Functions 1
1.2 Cryptanalysis of Hash Functions 2
1.3 The NIST SHA-3 Competition 3
1.4 Main Contribution and Outline of the Thesis 3

2 Preliminaries 7
2.1 Notation . 7
2.2 Cryptographic Hash Functions 8
2.3 Security Requirements . 8
2.4 Iterated Hash Functions . 9
2.5 Dedicated Hash Functions . 10
2.6 Block Cipher based Hash Functions 10

2.6.1 Single-Length Constructions 10
2.6.2 Double-Length Constructions 11

2.7 Different Types of Collisions . 11
2.8 Meaningful Collisions . 13

3 Analysis Methods for Hash Functions 15
3.1 Generic Attacks . 15

3.1.1 Birthday Attack . 15
3.1.2 Generalized Birthday Attack 17
3.1.3 Meet-in-the-Middle Attack 18

3.2 Generic Attacks on Iterated Hash Functions 18
3.2.1 The Length Extension Property 19
3.2.2 Multicollision Attack . 19
3.2.3 Second Preimage Attack for Long Messages 20

vii

viii Table of Contents

3.3 Generic Attacks on Iterated Cascaded Hash Functions 22
3.3.1 Collision Attack . 23
3.3.2 (Second) Preimage Attack 23

3.4 Differential Cryptanalysis of Hash Functions 23
3.5 Summary . 24

4 Cryptanalysis of the GOST Hash Function 27
4.1 Preliminaries . 28
4.2 The Hash Function GOST . 28

4.2.1 State Update Transformation 29
4.2.2 Key Generation . 30
4.2.3 Output Transformation 30

4.3 The Block Cipher GOST . 31
4.3.1 Description of the Block Cipher 31
4.3.2 Constructing Fixed-Points 32

4.4 Collision Attack . 32
4.4.1 Collisions for the Compression Function 33
4.4.2 Collisions for the Hash Function 37

4.5 Preimage Attack . 40
4.5.1 Attack independent of the GOST Block Cipher 40
4.5.2 Attack Exploiting Weaknesses in the Block Cipher 43
4.5.3 A Remark on Second Preimages 45

4.6 Summary . 45

5 Cryptanalysis of RIPEMD-128 and RIPEMD-160 47
5.1 Description of the Hash Functions 48

5.1.1 RIPEMD-160 . 48
5.1.2 RIPEMD-128 . 50
5.1.3 The Extensions RIPEMD-256 and RIPEMD-320 51

5.2 Attacks on the Predecessor RIPEMD 51
5.2.1 Attack of Dobbertin . 51
5.2.2 Attack of Wang et al. 52

5.3 The Attack Strategy . 52
5.3.1 Method of Chabaud and Joux 53
5.3.2 Method of Wang et al. 53

5.4 Finding good Characteristics . 54
5.4.1 Finding Linear Characteristics with low Hamming Weight 55
5.4.2 Improving the Search Algorithms 59

5.5 A Variant of RIPEMD-160 . 60
5.5.1 Fixed-Points in the RIPEMD-160 Variant 61
5.5.2 Extending the Attack to more Steps 63
5.5.3 Attacks on the RIPEMD-160 Variant Using Fixed-Points 64

5.6 Summary . 65

Table of Contents ix

6 Cryptanalysis of Tiger 67
6.1 Preliminaries . 68
6.2 The Hash Function Tiger . 68

6.2.1 State Update Transformation 69
6.2.2 Key Schedule . 70

6.3 Collision Attack . 70
6.3.1 The Attack Strategy . 71
6.3.2 A Collision for 16 Rounds 73
6.3.3 A Collision for 19 Rounds 76
6.3.4 A Free-Start Near-Collision for 24 Rounds 78
6.3.5 A Free-Start Collision for 23 Rounds 81

6.4 Preimage Attack . 83
6.4.1 Preimages for the Compression Function 83
6.4.2 Extending the Attacks to the Hash Function 87

6.5 Summary . 90

7 Cryptanalysis of Whirlpool 91
7.1 The Hash Function Whirlpool . 92
7.2 The Rebound Attack . 95

7.2.1 Basic Attack Strategy . 96
7.2.2 Related Work . 97

7.3 Attacks on the Hash Function . 98
7.3.1 Collision Attack on 4.5 Rounds 98
7.3.2 Improving the Complexity of the Attack 100
7.3.3 Extending the Attack to 5.5 Rounds 101
7.3.4 Near-Collisions for Whirlpool 103

7.4 Attacks on the Compression Function 105
7.4.1 Inbound Phase . 105
7.4.2 Outbound Phase . 109

7.5 Subspace Distinguisher for 10 Rounds 111
7.5.1 The Case of the Whirlpool Compression Function 111
7.5.2 The Case of a Random Function 112
7.5.3 Complexity of the Distinguishing Attack 116

7.6 Summary . 116

8 Conclusions 119

A Results for RIPEMD-256 and RIPEMD-320 121

Bibliography 123

Author Index 137

List of Publications 141

List of Tables

4.1 Time/memory tradeoffs for the generalized birthday step in the
attack on GOST. 38

5.1 Hamming weights using a linear characteristic in V1 and V2. . . . 56
5.2 Hamming weights using a general (non-linear) characteristic in V1

and a linear characteristic in V2. 58
5.3 Message block leading to a free-start collision in the first 2 rounds

of the RIPEMD-320 variant. 63
5.4 Chaining value leading to a free-start collision in the first 2 rounds

of the RIPEMD-320 variant. 63

6.1 Characteristic for 16 rounds of Tiger. 73
6.2 Characteristic for all 24 rounds of Tiger. 79

7.1 The number of differentials in the Whirlpool S-box. 94
7.2 Probabilities for the propagation of truncated differences through

MixRows in Whirlpool. 95
7.3 Complexity of the distinguishing attack on the Whirlpool com-

pression function. 116

A.1 Hamming weights using a linear characteristic in V1 and V2. . . . 121
A.2 Hamming weights using a general (non-linear) characteristic in V1

and a linear characteristic in V2. 122

xi

List of Figures

2.1 Outline of the Merkle-Damg̊ard design principle. 9
2.2 The three most popular modes to construct a hash function. . . 11

3.1 Illustration of Joux’s multicollision attack. 19
3.2 Constructing a (k, 2k + k − 1)-expandable message. 21

4.1 Structure of the GOST hash function. 29
4.2 The compression function of GOST 30
4.3 One round of the GOST block cipher. 31
4.4 Constructing a fixed-point in the GOST block cipher. 36
4.5 Constructing a multicollision for GOST. 37
4.6 Outline of the preimage attack on GOST. 41
4.7 Outline of the improved preimage attack on GOST. 44

5.1 Structure of the RIPEMD-128 and RIPEMD-160. 48
5.2 The step function of RIPEMD-160. 49
5.3 The step function of RIPEMD-128. 50
5.4 Attack method of Wang et al.. 53
5.5 A fixed-point for one step of the RIPEMD-160 variant. 60
5.6 Two fixed-points for two steps of the RIPEMD-160 variant. . . 61

6.1 The round function of Tiger. 69
6.2 Message modification by meet-in-the-middle. 72

7.1 Overview of the Whirlpool compression function. 92
7.2 One round of the Whirlpool compression function. 93
7.3 A schematic view of the rebound attack. 96
7.4 Differential trail used in the collision attack on 4.5 rounds. . . . 98
7.5 Inbound phase of the attack on 4.5 rounds. 99
7.6 Differential trail used in the collision attack on 5.5 rounds. . . . 102
7.7 The inbound phase of the attack on 5.5 rounds. 102
7.8 Differential trail used in the near-collision attack on 7.5 rounds. 104
7.9 Differential trail used in the near-collision attack on 6.5 rounds. 104
7.10 The inbound phase of the attack on the compression function. . 105
7.11 Equivalent description of the block cipher W 107
7.12 The second part of the extended inbound phase. 108

xiii

xiv List of Figures

7.13 Differential trail used in the semi-free-start near-collision attack
on 7.5 rounds. 110

7.14 Differential trail used in the semi-free-start near-collision attack
on 9.5 rounds. 110

List of Notation

List of Abbreviations

NIST National Institute of Standards and Technology
NESSIE New European Schemes for Signatures, Integrity, and Encryption
ISO International Organization for Standardization
IEC International Electrotechnical Commission
AES Advanced Encryption Standard
DES Data Encryption Standard
MD Merkle-Damg̊ard
DM Davies-Meyer mode of operation
MP Miyaguchi-Preneel mode of operation
MMO Matyas-Meyer-Oseas mode of operation

List of Mathematical Symbols

a[i] the i-th bit of the word a
a⊕ b exclusive-or (XOR) of a and b
a� b modular addition of a and b
a� b modular subtraction of a and b
a� b modular multiplication of a and b
a+ b integer addition
a · b integer multiplication
a‖b concatenation of two strings (vectors)
|a| bit length of variable a
F x(·) applying the function F (·) x-times
F−x(·) applying the inverse function of F (·) x-times

xv

1
Introduction

Cryptographic hash functions play a fundamental role in modern information
security. Already in 1976 Diffie and Hellman identified the need for a one-way
hash function as a building block for a digital signature scheme [34]. Today
cryptographic hash functions are deployed in a large number of applications,
protocols and cryptographic schemes. They are used for instance for digital
signatures, password protection, random number generation, key derivation, in-
tegrity protection, malicious code detection, message authentication, and many
more.

In the last years, much progress has been made in the cryptanalysis of hash
functions. Weaknesses have been shown for most of the commonly used hash
functions such as MD5 and SHA-1. Motivated by these developments, we fo-
cus in this thesis on the analysis of alternative hash functions such as GOST,
RIPEMD-160, Tiger, and Whirlpool.

1.1 Cryptographic Hash Functions

A cryptographic hash function H maps an input message M of arbitrary length
to a short fixed length output string h, called hash value. Depending on the
application, protocol, or cryptographic scheme in which the hash function is
used, different properties are expected. However, there are properties which are
expected from every hash function. In [110], Merkle introduced the three basic
security requirements for cryptographic hash functions, i.e. preimage resistance,
second preimage resistance, and collision resistance.

The resistance of a hash function to collision and (second) preimage attacks
depends in the first place on the length of the hash value h. For an ideal hash

1

2 Chapter 1. Introduction

function with a hash value of n bits, one will find preimages or second preimages
after trying about 2n different messages. As observed by Yuval [156], finding
collisions requires a much smaller number of trials: about 2n/2 due to the birth-
day paradox. A hash function is said to achieve ideal security if these bounds
are guaranteed. If the internal structure of the hash function allows to construct
collisions or (second) preimage significantly faster than expected based on its
hash size, then the hash function is considered to be broken.

1.2 Cryptanalysis of Hash Functions

The security of hash functions and symmetric primitives in general can not be
proven and the trust basically relies on a thorough security analysis over the
years. In the past 20 years, a lot of effort has been invested in the cryptanalysis
of hash functions. For instance, in 1993 at least two thirds of known hash
function proposals were broken. We refer to [124] to get a good view on the
status of cryptographic hash functions at that time. Note that only very few
of those designs survived for long. After several years of cryptanalysis many of
them got broken.

Let us consider for instance MD4 and MD5, two of the most popular hash
functions. Shortly after MD4 was proposed by Rivest in 1990, weaknesses have
been found by den Boer and Bosselaers in [32]. Therefore, Rivest proposed MD5
a strengthened variant of MD4 in 1991. Unfortunately, also for MD5 weaknesses
were shown by den Boer and Bosselaers in [33] and Dobbertin in [36]. Further-
more, Dobbertin described attacks on MD4 in [35, 38]. In 2005, Wang et al.
presented practical collision attacks on both MD4 [148] and MD5 [151]. Opti-
mized versions of their attacks can find collisions for MD4 by hand and collisions
for MD5 within milliseconds [140]. Preimage attacks have been presented by
Leurent in [80] for MD4 with a complexity of about 2102 and by Sasaki and Aoki
for MD5 in [135] with a complexity of about 2123.

Due to early cryptanalysis and the short hash size, the National Institute
of Standards and Technology (NIST) was apparently not confident with the
security of MD5 and proposed SHA (later called SHA-0) in 1993. It was replaced
by SHA-1, a strengthened variant of SHA-0, in 1995. Both SHA-0 and SHA-1
have a hash size of 160 bits. Furthermore, NIST proposed the SHA-2 family of
hash functions in 2002 consisting of 4 hash functions with a hash size of 224, 256,
384, and 512 bits (referred to as SHA-224, SHA-256, SHA-384, and SHA-512).
The cryptanalysis of SHA-0 and SHA-1 started in 1998, when Chabaud and Joux
described a collision attack on SHA-0 with a complexity of 261 instead of the
expected 280. Their results were later improved by Wang et al. in [152], leading
to the first practical collision attack on SHA-0. Using similar techniques they
also showed a collision attack on SHA-1 with a complexity of about 269 [150].
Improvements of this attack have been announced in [59, 84, 97, 149], but no
collision has been found for SHA-1 to date. However, a colliding message pair
for 70 out of 80 steps of SHA-1 was presented in [27]. In contrast to SHA-1
current analysis suggests that the SHA-2 family of hash functions seems to be

1.3. The NIST SHA-3 Competition 3

secure against this kind of attacks. The best collision attack on SHA-256 works
for 24 out of 64 steps [51, 134]. Furthermore, preimage attacks on SHA-1 and
the SHA-2 family of hash functions seem to be out of reach. The best preimage
attack on SHA-1 works for 48 out of 80 steps [5] and preimages can be found for
43 out of 64 steps for SHA-256 [4].

However, the breakthrough results of Wang et al. on MD5 and SHA-1 have
resulted in serious concerns about the security of current hash functions in both
industry and academia. Hence, NIST decided to run an open competition, simi-
lar as they did in the past for the AES, to deploy a new hash function standard
(SHA-3) that will stay secure for the next decades.

1.3 The NIST SHA-3 Competition

After hosting two workshops on cryptographic hash functions in 2005 and 2006
in order to assess the current status of cryptographic hash functions, NIST has
initiated an open competition for a new hash function family SHA-3. In Novem-
ber 2007, the call for contribution including the minimum requirements for a
submission has been published in [117]. The deadline of the call for contribution
was October 2008. In total NIST has received 64 submissions and 51 out of
these 64 submissions have been selected for the first round in December 2008.
Since then a lot of effort has been invested by the cryptographic community in
the analysis of the SHA-3 candidates. At the end of Round 1 about half of the
51 Round 1 Candidates have been broken or weaknesses have been shown. In
July 2009, NIST announced that 14 candidates have been selected for Round 2.
These hash functions are Blake, Blue Midnight Wish, CubeHash, ECHO, Fugue,
Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein. Follow-
ing the tentative time line announced for the competition, NIST will after a final
round select a winner in 2012. NIST intends to announce the finalists (about
5) at the end of 2010. It seems that there are many interesting candidates in
Round 2 and the review and selection process will be very challenging. We refer
to the SHA-3 Zoo1 maintained by the ECRYPT II project for the current sta-
tus of the analysis of the SHA-3 candidates. However, one can expect that the
SHA-3 competition will result in a robust hash function with good performance.
Furthermore, it will lead to new insights and new directions in both the design
and analysis of cryptographic hash functions.

1.4 Main Contribution and Outline of the Thesis

This thesis describes parts of the work done by the author during his PhD
studies from 2005 to 2010. This work includes design and cryptanalysis of cryp-
tographic hash functions. During these five years, the author was involved in
the analysis of several cryptographic hash functions. In this thesis, we focus on
the analysis of the hash functions GOST [120], RIPEMD-160 [40], Tiger [2], and

1http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

4 Chapter 1. Introduction

Whirlpool [9]. In the following, we give an outline of each chapter including the
main contributions.

In Chapter 2, we provide the preliminaries that are required for the topic
discussed in this thesis. We start with introducing cryptographic hash functions
and discussing their basic security requirements. We review the Merkle-Damg̊ard
design principle for cryptographic hash functions and describe dedicated hash
functions and block cipher based hash functions. A discussion about different
types of collisions and meaningful collisions concludes this chapter.

In Chapter 3, we give a general overview of analysis methods for crypto-
graphic hash functions. Thereby, we focus on collision, second preimage and
preimage attacks on iterated hash functions. We describe birthday attacks and
meet-in-the-middle attacks and review generic attacks on iterated hash func-
tions following the Merkle-Damg̊ard design principle. Furthermore, we describe
generic attacks on iterated cascaded hash functions. A discussion on differential
cryptanalysis of hash functions concludes this chapter.

In Chapter 4, we present a security analysis of the GOST hash function with
respect to both collision and preimage resistance. The GOST hash function is
an iterated hash function producing a 256-bit hash value. It is specified in the
Russian national standard GOST 34.11-94 and is widely used in Russia. As a
result of our security analysis of the GOST hash function, we present a collision
attack with a complexity of about 2105 and a preimage attach with a complexity
of about 2192. Both attacks exploit weaknesses in the GOST block cipher and
the internal structure of the GOST compression function. The results of this
chapter have been published in [91, 92].

In Chapter 5, we present a security analysis of the hash functions
RIPEMD-128 and RIPEMD-160. Both hash functions are standardized by
ISO/IEC and hence are used in several applications. Furthermore, RIPEMD-160
is often recommended as an alternative to SHA-1. However, based on the similar
design of the hash functions with MD5, SHA-1, and their predecessor RIPEMD,
one might doubt the security of these hash functions. Therefore, we investigate
in this chapter the impact of existing attack methods on the MD4-family of hash
functions on RIPEMD-128 and RIPEMD-160. To analyze the hash functions,
we extend existing approaches and use recent techniques in the cryptanalysis of
hash functions. The results of this chapter have been published in [94].

In Chapter 6, we present a security analysis of the hash function Tiger with
respect to both collision and preimage resistance. Tiger is an iterated hash
function producing a hash value of 192 bits. In this chapter, we describe a
collision attack on Tiger reduced to 19 (out of 24) rounds with a complexity of
about 262. Based on the attack on 19 rounds, we show how the attack can be
extended to the full Tiger hash function by using a weaker attack setting. The
attack has a complexity of about 247. A small improvement of the attack might
lead to a collision for the full Tiger hash function. Furthermore, we present
a preimage attack on Tiger reduced to 16 and 17 rounds. Even though these
attacks are only slightly faster than brute force search, they show weaknesses

1.4. Main Contribution and Outline of the Thesis 5

in round-reduced Tiger. The results of this chapter have been published in
[85, 96, 103].

In Chapter 7, we present a security analysis of the hash function Whirlpool
with respect to collision resistance. Whirlpool is the only hash function stan-
dardized by ISO/IEC (since 2000) that does not follow the MD4 design strategy.
Since its proposal in 2000, only a few results have been published. The main
contribution of this chapter is a distinguishing attack on the full Whirlpool com-
pression function. This is achieved by two new methods in the analysis of hash
functions: the rebound attack and the subspace distinguisher. The rebound at-
tack led to successful attacks on round-reduced variants of the hash function for
up to 7.5 (out of 10) rounds and on round-reduced variants of the compression
function for up to 9.5 rounds. Furthermore, we show how to distinguish the full
(all 10 rounds) compression function of Whirlpool from random by turning the
attack for 9.5 rounds into a distinguishing attack for 10 rounds using the subspace
distinguisher. The results of this chapter have been published in [76, 77, 100].

In Chapter 8, we present a summary and conclude this thesis by discussing
open problems and further research directions.

As indicated above, the main results of this thesis have been published
in [76, 77, 85, 91, 92, 94, 96, 100, 103]. Other work done by the author during
his PhD studies related to the cryptanalysis and design of hash functions in-
cludes the first practical collision attacks on 70 (out of 80) steps of SHA-1 [27]
and 24 (out of 64) steps of SHA-256 [51]. Furthermore, results for SHA-1 and
SHA-256 have been described in [93, 95]. Analysis regarding other members of
the MD4-family of hash functions, e.g. HAVAL, MD5, and RIPEMD-160 have
been presented in [8, 94, 99]. Other hash function designs which are not part
of the MD4-family of hash functions have also been studied, this includes the
hash function MDC-2 [69] standardized by ISO/IEC, HAS-160 standardized by
the Korean government [102], HAS-V [104], FORK-256 [86], PKC-hash [90], and
LAKE [106].

The author was also involved in the design and analysis of the hash function
Grøstl [45]. It was submitted to the NIST SHA-3 competition in October 2008
and was selected by NIST for Round 2 in July 2009. Analysis of the Grøstl hash
function has been published by us in [89, 100, 101]. This includes the best attack
on the hash function, which works for 4 (out of 10) rounds for Grøstl-256 and 5
(out of 12) rounds for Grøstl-512. Furthermore, the author contributed to the
analysis of several other SHA-3 candidates: Blender [75], Boole [88], CHI [6],
DCH [75], ECHO [89], JH [6], Sarmal [105], SHAMATA [52], SHAvite-3 [46],
SIMD [87], TIB3 [107], Twister [98], and Vortex [7]. Most of these results have
been published at international conferences.

2
Preliminaries

In this chapter, we treat the preliminaries needed in the subsequent chapters.
We start with giving the notation that we will follow in this thesis. Then,
we introduce cryptographic hash functions and discuss the three basic security
requirements for cryptographic hash functions. Furthermore, we describe the
Merkle-Damg̊ard design principle for iterated hash functions and present several
ways to construct cryptographic hash functions from block ciphers. Finally, we
describe different types of collisions for cryptographic hash functions.

2.1 Notation

For the concatenation of two strings we write a‖b. Logical AND is denoted by
a ∧ b and logical OR is denoted by a ∨ b. Bitwise addition modulo 2 (XOR) is
denoted by a ⊕ b and addition modulo 2w is denoted by a � b, where w is the
bitsize of the variables a and b. The operator ‘+’ denotes addition of arbitrary
integers. The bit length of a variable a is denoted by |a|. Rotation of a variable
a is denoted by ≪ (left rotation) or ≫ (right rotation). Similar, shift of a
variable a is denoted by � (left shift) or � (right shift). To get a bit at position
i of a variable a we use a[i], where index 0 refers to the least significant bit of
the variable a.

We use two different kinds of indexing. Superscripts denote different (inde-
pendent) objects. For instance, different messages are denoted by M i and M j

with i 6= j. To denote parts of these objects we use subscripts. For instance a
message M consisting of t blocks is denoted by M = M1‖ . . . ‖Mt. Note that for
messages, we always assume that each message block Mj is of the same length.

7

8 Chapter 2. Preliminaries

2.2 Cryptographic Hash Functions

Cryptographic hash functions are an important primitive in cryptography and
they are used in a large number of applications, protocols and schemes. In
the following, we list some of them: digital signatures, password protection,
random number generation, key derivation, integrity protection, malicious code
detection, message authentication, and many more.

A cryptographic hash function H is an algorithm that maps a message string
M of arbitrary length to a string h = H(M) of fixed length n, called hash value.
One of the main tasks of a cryptographic hash function is to compute n-bit
‘fingerprints’ of messages of arbitrary length in such a way that it is difficult to
find two messages that lead to the same fingerprint. An important application
where this property is needed are digital signature schemes: if h = H(M) can
be considered to be a unique representation of M , then, instead of the complete
message M , it suffices to sign only the hash value h.

However, it is easy to see that if more than 2n different messages are hashed,
then at least two messages will result in the same hash value. Hence, the purpose
of a hash function is not to prevent the existence of such colliding messages (they
are unavoidable), but to ensure that it is hard to find them. We will make this
more precise in the following sections.

2.3 Security Requirements

Since cryptographic hash functions are used in many applications with different
requirements, it is difficult to state all the properties that are expected from a
hash function. However, we list here the most common requirements. Informally,
a cryptographic hash function H has to fulfill the following three basic security
requirements.

� Collision resistance: it should be hard to find two messages M and M∗,
with M∗ 6= M , such that H(M) = H(M∗).

� Second preimage resistance: for a given message M , it should be hard to
find a second message M∗ 6= M such that H(M) = H(M∗).

� Preimage resistance: for a given hash value h, it should be hard to find a
message M such that H(M) = h.

The resistance of a hash function to collision and (second) preimage attacks
depends in the first place on the bitlength n of the hash value h. Regardless
of how a hash function is designed, an adversary will always be able to find
preimages or second preimages after trying out about 2n different messages.
Finding collisions requires a much smaller number of trials: about 2n/2 due to the
birthday paradox, see Section 3.1.1. A function is said to achieve ideal security
if these bounds are guaranteed. If the internal structure of the hash function
allows to construct collisions or (second) preimage faster than expected based
on its hash size, then the hash function is considered to be broken. For a formal

2.4. Iterated Hash Functions 9

treatment of these three security properties of cryptographic hash functions we
refer to [132, 141]. Note that in practice there are several other requirements a
cryptographic hash function should fulfill.

2.4 Iterated Hash Functions

Most of the hash functions used today, such as MD5 and SHA-1, are iterated
hash functions following the Merkle-Damg̊ard design principle [24, 111]. In order
to compute the hash value h the message M is first split into t message blocks
of m bits each. To ensure that the message length is a multiple of m bits an
unambiguous padding method is applied. Then each message block is processed
by iterating the compression function f t times resulting in the final hash value
h. To be more precise, let H : (0, 1)∗ → (0, 1)n be an iterated hash function
based on a compression function f : (0, 1)n × (0, 1)m → (0, 1)n and M =
M1‖M2‖ · · · ‖Mt be a t-block message (after padding). Then the hash value h is
computed as follows (see Figure 2.1):

H0 = IV,

Hj = f(Hj−1,Mj) for 0 < j ≤ t,

Ht+1 = g(Ht).

The n-bit variableHj is called the (intermediate) chaining value and is initialized
with a predefined n-bit initial value IV . The variable h = Ht is called the hash
value. The function g is called the output transformation. However, in most
hash function designs, e.g. MD5 and SHA-1, the output transformation is the
identity mapping and we get h = Ht+1 = Ht.

IV
f

M1

f

M2

f

Mt

g
h = Ht+1

Figure 2.1: Outline of the Merkle-Damg̊ard design principle for hash functions.

The advantage of this construction is that the collision resistance of the com-
pression function f is extended to the hash function H. In order to achieve this,
messages are preprocessed using a technique called Merkle-Damg̊ard strengthen-
ing (often referred to as MD strengthening). It specifies an unambiguous padding
method which includes the binary representation of the message length. Fur-
thermore, the value of H0 is fixed to a predefined initial value IV . The reason
for that is to prevent simple attacks such as long-message attacks [73, 153] and
fixed-point attacks [124]. However, as will be seen in Section 3.2 this construc-
tion still has some properties which can be considered to be not ideal. Therefore,
extensions of this construction have been proposed in [3, 10, 42, 82] to overcome
these shortcomings.

10 Chapter 2. Preliminaries

2.5 Dedicated Hash Functions

Dedicated hash functions are hash functions that have been designed for the
explicit purpose of hashing. In general, they are designed from scratch, optimized
for performance, and without the constraint of reusing an existing cryptographic
primitive such as a block cipher. Some of the most popular hash functions,
such as MD4, MD5, SHA-1, the SHA-2 family of hash functions, RIPEMD-160
and Tiger, are dedicated hash functions following the Merkle-Damg̊ard design
principle (see Section 2.4). Hence, a common property of these hash functions is
that they all use a compression function f that takes as input the m-bit message
block Mj and an n-bit chaining value Hj−1 to produce the n-bit chaining value
Hj . In most cases the compression function f can be considered as a weak block
cipher used in a certain mode of operation, albeit with an unusual block size
and key size (for a block cipher).

2.6 Block Cipher based Hash Functions

Most hash functions in use today are based on a block cipher, but they are often
not considered as block cipher based designs, since the block cipher was built
for the hash function, and was never intended to be used for encryption. These
hash functions are often referred to as dedicated hash functions (see Section 2.5).
In this section, we will discuss hash function designs, where the compression
function f is based on an existing block cipher, e.g. AES [116]. There are
several good reasons for constructing a hash function respectively compression
function from an existing block cipher both from an implementation and security
point of view. First, if an efficient implementation of the block cipher (either in
hardware or software) is already available within the system the hash function
can be implemented with little additional cost. Second, a block cipher that has
been analyzed thoroughly over years might also result in a secure hash function.
However, if the block cipher is used in a hash function then we are facing a
different attack scenario, since no secret key is involved and all inputs are known
by the attacker. Furthermore, depending on the hash function construction the
attacker may have full control over the key. Results considering this fact for the
security analysis have been presented in [71, 130].

In the literature, one distinguishes between single-length and double-length
constructions. While single-length constructions maintain a state of n bits and
produce an n-bit hash value, double length constructions maintain a state of 2n
bits and produce a 2n-bit hash value, where n is the block size of the underlying
block cipher.

2.6.1 Single-Length Constructions

In [125], Preneel et al. systematically studied constructions for compression func-
tions based on a block ciphers. Within 64 possible schemes only 12 turned out to

2.7. Different Types of Collisions 11

be secure with respect to existing attacks. Later, Black et al. provided security
proofs for these 12 schemes in the ideal cipher model [16].

In this model, dating back to Shannon [137], one can think of a block cipher
E : (0, 1)k × (0, 1)n → (0, 1)n with a k-bit key and n-bit block size as being
chosen uniformly from the set of all possible block ciphers of this form. This
model was first used by Winternitz [153] and later by Merkle [111] to reason
about the security of hash functions based on block ciphers. The three most
popular modes are (see also Figure 2.2):

Hj = E(Mj ,Hj−1)⊕Hj−1 Davies-Meyer (DM)
Hj = E(Hj−1,Mj)⊕Hj−1 ⊕Mj Miyaguchi-Preneel (MP)
Hj = E(Hj−1,Mj)⊕Mj Matyas-Meyer-Oseas (MMO)

EMj

Hj−1

Hj

EHj−1

Mj

Hj

EHj−1

Mj

Hj

Figure 2.2: The three most popular modes to construct a hash function from a block
cipher.

2.6.2 Double-Length Constructions

In the past many double-length constructions have been proposed, and many
of these have also been shown to be not secure. Only recently, double-length
constructions with provable security have been proposed, e.g. [50]. The most
popular double-length constructions are MDC-2 and MDC-4 [112], patented by
IBM [18] and standardized by ISO/IEC 10118-2 [54]. Furthermore, MDC-2 has
been proven collision resistant in the ideal cipher model up to 23n/5 block cipher
calls [138]. A preimage attack on MDC-2 with a complexity about 23n/2 was
presented in [73]. Improved preimage attacks as well as a collision attack, which
is slightly better than the birthday attack, were described in [69].

2.7 Different Types of Collisions

Along with the well known security notions of collision resistance and (sec-
ond) preimage resistance, it is often required that a cryptographic hash function

12 Chapter 2. Preliminaries

should fulfill several other properties. For instance in [117], NIST requires for
SHA-3 that any r-bit hash function specified by taking a fixed subset of the
n output bits should possess the same security assertions as the original func-
tion. Of course, an attacker can choose the r-bit subset specifically to allow a
limited number of precomputed message digests to collide, but once the subset
has been chosen, finding additional violations of the above notions should again
have the expected generic complexity. From a practical application point of
view, this requirement makes a lot of sense when we want to guarantee security
in cases where the output space of the hash function is reduced by means of a
simple truncation. Therefore, the Handbook of Applied Cryptography defines
near-collision resistance as follows [109].

� Near-collision resistance: It should be hard to find any two messages M ,
M∗ such that H(M) and H(M∗) differ in only a small number of bits.

Correspondingly, we define an ε-near-collision as follows.

Definition 2.1 (ε-near-collision). A message pair M,M∗ with M∗ 6= M is called
an ε-near-collision for the hash function H if

H(M)⊕H(M∗) = δ,

where δ is an n-bit vector with Hamming weight less or equal to ε.

Obviously, if we have a large ε and hence a δ with high Hamming weight,
then any two different messages will with overwhelming probability lead to an
ε-near-collision. Hence, we require that ε is small.

In addition to considering the complexities of finding collisions and near-
collisions, it is common to examine the feasibility of attacks on slightly modified
versions of the hash function. One approach is to investigate the difficulty to
find collisions when the initial value H0 can be freely chosen or changed, since
this gives a good view on the security of the hash function. In [73], Lai and
Massey introduce the notion of free-start collisions and semi-free-start collisions.

Definition 2.2 (semi-free-start collision). A message pair M,M∗ with M∗ 6= M
is called a semi-free-start collision for H if

H(H0,M) = H(H0,M
∗)

for an arbitrary value of the initial value H0.

Definition 2.3 (free-start collision). A message pair M,M∗ with M∗ 6= M is
called a free-start collision for H if

H(H0,M) = H(H∗
0 ,M

∗)

for arbitrary values of the initial values H0 and H∗
0 .

Note that the notion of free-start collisions can be adopted to second preimage
and preimage as well [73]. Since the initial value is an integral part of the
hash function, free-start attacks are of limited practical interest. However, they
are still considered as certificational weaknesses and cast suspicion about the
security of the hash function. Furthermore, in some cases free-start attacks can
be extended to full attacks on the hash function (see for instance [73]).

2.8. Meaningful Collisions 13

2.8 Meaningful Collisions

In a collision attack on a hash function an attacker has to find two arbitrary
messages M and M∗ 6= M such that H(M) = H(M∗). However, in practice it
might be required that the two messages contain meaningful information, such
that it can be used to practically compromise a cryptographic system. Therefore,
it makes sense to distinguish between different types of collisions depending on
the amount of control an attacker has over the content of a colliding message pair.
Basically, one distinguish between the following 3 types of collisions [30, 128].

� Random collisions. Most collision attacks on hash functions are of this
type. In this setting, an attacker has to find messages M and M∗ 6= M
such that for a given hash function H

H(M) = H(M∗). (2.1)

This is certainly the simplest and easiest setting for an attacker. Note that
there are no constraints on the messages. Examples of colliding binary
executables were given in [60, 113] using this type of collision.

� Random collisions with common chosen prefix. In this setting, an attacker
has to find messages M and M∗ 6= M such that for a given hash function
H

H(P‖M) = H(P‖M∗) (2.2)

for a given (predefined) prefix P . From an attacker’s point of view this
setting is usually not much more difficult than the previous one. Examples
of colliding postscript and other file formats were given in [26, 79, 47]. All
these examples exploit indexing or scripting features of the file formats.
Thus, both versions of the content have to be included in the files that
collide. To overcome this limitation a more powerful collision attack is
needed.

� Random collisions with two arbitrary different chosen prefixes. In this
setting, an attacker has to find messages M and M∗ 6= M such that for a
given hash function H

H(P‖M) = H(P ∗‖M∗) (2.3)

for any given prefixes P and P ∗. From an attacker’s point of view this
setting is usually much more difficult than the previous ones, since an
unpredictable difference in the internal state of the hash function after
processing the two prefixes P and P ∗ has to be canceled out. In [139, 140],
Stevens et al. show that such a powerful attack exists for MD5. They
describe an application of this attack in order to construct colliding X.509
certificates and even worse, a rogue CA certificate which would be accepted
by most modern web browsers. The attacks (in the arbitrary different
chosen prefix setting) have a complexity of about 250 and 249, while the
best collision attack for MD5 has a complexity of about 216 compression
function evaluations [140].

3
Analysis Methods for Hash Functions

In this chapter, we give an overview of analysis methods for cryptographic hash
functions. We focus on collision and (second) preimage attacks. First, we
describe generic attacks on cryptographic hash functions. Second, we review
generic attacks on iterated hash functions following the Merkle-Damg̊ard design
principle and present attacks on iterated cascaded hash functions. Finally, we
discuss differential cryptanalysis which is the most common tool in the analy-
sis of hash functions. Most collision attacks on hash functions are differential
attacks. Further details will be presented in the following chapters.

3.1 Generic Attacks

In this section, we describe generic attacks on cryptographic hash functions. In
these attacks the hash function or the building blocks of the hash function are
considered as a black box. In the following, we describe the birthday attack, the
meet-in-the-middle attack, and the generalized birthday attack.

3.1.1 Birthday Attack

In the birthday attack the hash function is considered as black box and hence
it can be applied to every hash function. In the following, we will describe
the attack in detail and show how it can be used to construct collisions, near-
collisions, and multicollisions for cryptographic hash functions.

15

16 Chapter 3. Analysis Methods for Hash Functions

Finding Collisions

For a hash function with an n-bit hash value the number of possible distinct
outputs (hash values) is 2n. Hence, when hashing 2n + 1 different messages,
there have to be at least two distinct messages leading to the same hash value.
In other words, there has to be a collision. However, we do not need to compute
the hash value for 2n+1 messages to find a collision, due to the birthday paradox.
From the birthday paradox it follows that if we compute the hash value for

√
1.386 · 2n/2 (3.1)

randomly chosen messages, then the probability of finding 2 messages which lead
to a collision is greater than 1/2. This is called a birthday attack and is often also
referred to as square-root attack. As observed in [1, 11] if the hash function is
not regular, i.e. the outputs (hash values) of the hash function are not uniformly
distributed, then finding a collision needs fewer computations. In the following,
we will omit the factor of

√
1.386, whenever we talk about the complexity of a

birthday attack. We simply say the birthday attack has a complexity of about
2n/2 hash function evaluations. As shown by Yuval in [156] the birthday attack
can be implemented as follows.

1. Randomly choose a message M and compute h = H(M).

2. Update the list L and check if h is in the list L.

� If h is already in the list L then a collision has been found.

� Otherwise, save the pair (h,M) in the list L and go back to step 1.

From the birthday paradox we know that after computing about 2n/2 hash val-
ues, we will find a matching entry in the list L and hence a collision for the hash
function with a probability greater than 1/2. Since this attack does not impose
any conditions on the messages, it can also be used to construct meaningful col-
lisions. One drawback of Yuval’s method is that it needs about 2n/2 memory to
save the entries in the list L. However, a memoryless variant of this attack has
been presented by Quisquater and Delescaille in [126]. Furthermore, efficient
parallel variants of the attack have been described by van Oorschot and Wiener
in [143, 144].

Finding Multicollisions

In some cases an attacker needs to find several messages (not only 2) which
lead to the same hash value. We call this a multicollision for the hash function.
Finding a r-collision (r messages leading to the same hash value) can be done
in a straightforward way using Yuval’s method. As shown in [124, 142] if we
compute the hash value for

r
√
r! · 2(r−1)·n (3.2)

3.1. Generic Attacks 17

randomly chosen messages, then the probability of finding an r-collision is greater
than 1/2. Note that if r = 2 this coincides with the birthday paradox. Memo-
ryless variants of this attack have been devised by Joux and Lucks in [58]. We
want to note that for iterated hash functions following the Merkle-Damg̊ard de-
sign principle finding multicollisions has roughly the same complexity as finding
collisions, see Section 3.2.2.

Finding Near-Collisions

In Section 2.7, we have introduced other types of collisions, namely free-start
collisions, semi-free-start collisions and near-collisions. While free-start collisions
and semi-free-start collisions can be found for a hash function along the same
lines as collisions, the situation is different for near-collisions. Again, due to the
birthday paradox, it follows that if we compute the hash value for√

1.386 · 2n∑ε
i=1

(
n
i

) (3.3)

randomly chosen messages, then finding an ε-near-collision has a probability
greater than 1/2. As a consequence, finding near-collisions is less complex
than finding collisions. However, so far no algorithm is known which can find
an ε-near-collision with this complexity. Since Yuval’s method would require∑ε

i=1

(
n
i

)
lookups in the list L in each step, this method is inefficient for finding

an ε-near-collision for cryptographic hash functions. In [78], Lamberger et al.
describe a method based on coding theory which can be used to find ε-near-
collision both in an efficient and memoryless way with only small additional
cost.

3.1.2 Generalized Birthday Attack

In [146], Wagner describes a k-dimensional generalization of the birthday prob-
lem; the k-sum problem. It is defined as follows.

Definition 3.1 (k-sum problem). Given k lists L1, . . . , Lk of elements drawn
uniformly and independently at random from {0, 1}n, find x1 ∈ L1, . . . xk ∈ Lk

such that x1 ⊕ x2 ⊕ · · · ⊕ xk = 0.

It is easy to see that a solution for the k-sum problem exists with good
probability as long as |L1| × |L2| × · · · × |Lk| ≥ 2n. In other words, if each
list has 2n/k entries, then there is a good chance that a solution exists. Hence,
one would expect that the k-sum problem can be solved with a complexity of
about k · 2n/k. However, there is no generic algorithm known that can solve
the k-sum problem efficiently (for arbitrary k). In [146], Wagner introduced the
generalized birthday attack that can be used to solve the k-sum problem (if k is
a power of 2) with a complexity of about 2n/(1+lg k) and memory requirements
of k · 2n/(1+lg k). For further details and applications of the generalized birthday
attack we refer to [146].

18 Chapter 3. Analysis Methods for Hash Functions

3.1.3 Meet-in-the-Middle Attack

The meet-in-the-middle attack is a variant of the birthday attack (see Sec-
tion 3.1.1). While the birthday attack attempts to find two messages which
result in the same hash value, the meet-in-the-middle attack (when applicable)
seeks for collisions on the (intermediate) chaining values in iterated hash func-
tions, resulting in a preimage or second preimage for the hash function. We will
explain the attack by means of the following example. Assume, we are given
an iterated hash function following the Merkle-Damg̊ard design principle with a
compression function f that can be easily inverted. Suppose, we seek a (second)
preimage for h = H(M). Then the (second) preimage consisting of 2 message
blocks M = M1‖M2 can be constructed as follows.

1. Generate 2n/2 candidates for H1 by going backward.

� Choose and arbitrary message block M2.

� Compute H1 = f−1(h,M2) and save H1 in the list L.

2. Generate 2n/2 candidates for H1 by going forward.

� Choose and arbitrary message block M1.

� Compute H1 = f(IV,M1) and check for a match in the list L.

After testing all 2n/2 candidates, we expect to find a match in the list L
due to the birthday paradox.

Hence, we can find a preimage for the hash function with a complexity of about
2n/2+1 compression function evaluations and memory requirements of 2n/2. A
memoryless variants of this attack has been described by Quisquater and De-
lescaille in [127].

As shown by Lai and Massey in [73] the attack can be generalized as fol-
lows. Assume the cost of inverting the compression function f is 2c (instead
of 1) then the above attack has a complexity of about 2(n+c)/2+1 and memory
requirements of 2(n−c)/2. However, we want to stress that in general inverting
the compression function cannot be done efficiently and hence the complexity of
a (second) preimage attack is 2n.

3.2 Generic Attacks on Iterated Hash Functions

In this section, we describe several generic attacks on iterated hash functions
following the Merkle-Damg̊ard design principle. A detailed description of the
Merkle-Damg̊ard design principle is given in Section 2.4. Note that in the re-
mainder of this section whenever we write iterated hash function we refer to
iterated hash functions based on the Merkle-Damg̊ard design principle. We
start with describing the length extension property. Then, we describe Joux’s
multicollision attack for iterated hash functions and discuss the second preimage
attack of Kelsey and Schneier for long messages.

3.2. Generic Attacks on Iterated Hash Functions 19

3.2.1 The Length Extension Property

This is a well known weakness of iterated hash functions following the Merkle-
Damg̊ard design principle, already mentioned by Damg̊ard and Merkle in [24,
111]. Assume, we have given two messages M and M∗ of the same length that
result in a collision. Then it is possible to construct many suffices S such that
M‖S andM∗‖S also collide. Hence, an almost arbitrary number of collisions can
be constructed, once a single collision has been found. Another related weakness
is the fact that given H(M) and the length of the message, but not M itself, one
can compute H(M‖S) for any suffix S using the same property as above. Note
that in both cases the suffix S can be chosen almost freely, only the padding of
the message M‖S (respectively M∗‖S) has to be correct.

3.2.2 Multicollision Attack

In this section, we describe the multicollision attack on iterated hash functions
introduced by Joux in [57]. It is a generic attack, which exploits the iterative
structure of the hash function. The main contribution of [57] is that constructing
a multicollision for an iterated hash function has roughly the same complexity
as constructing a collision. We will explain this in more detail in the following.
Let C be an algorithm that (using the birthday attack or some other method)
finds collisions in the compression function f given some chaining input. For
the following discussion we assume that C implements the birthday attack, i.e.
collisions can be found for f with a complexity of 2n/2. Using the algorithm C
we now show how to construct a 2k-collision for an iterated hash function with a
complexity of about k ·2n/2. First, we use C to obtain a collision (M1,M

∗
1) with

H0 = IV as chaining input, i.e. H1 = f(H0,M1) = f(H0,M
∗
1). Next, we use

again C to obtain a second collision (M2,M
∗
2) with H1 as chaining input. We

repeat this k times to get k pairs, (M1,M
∗
1), (M2,M

∗
2), . . . , (Mk,M

∗
k). It is easy

to see that we can construct 2k messages (each consisting of k message blocks)
from these k pairs leading to the same chaining valueHk, see Figure 3.1. In other
words, we can construct a 2k-collision for the iterated hash function. Since C is
used k times to obtain a collision for f in each iteration, this has a complexity
of about k · 2n/2. Note that this is much less than the ideal complexity, which
approaches quickly to 2n as k increases, see Section 3.1.1. Note that since all
2k colliding messages consist of k message blocks, appending the final block
including the length encoding (padding) does not have any impact.

H0 H1
M∗

1

M1

H2
M∗

2

M2

H3
M∗

3

M3

Hk−1
M∗

k

Mk

Hk

Figure 3.1: Illustration of Joux’s multicollision attack.

20 Chapter 3. Analysis Methods for Hash Functions

3.2.3 Second Preimage Attack for Long Messages

In [64], Kelsey and Schneier introduce a generic second preimage attack for iter-
ated hash functions following the Merkle-Damg̊ard design principle. Their main
result is that second preimages can be found for long messages (consisting of
t message blocks) with a complexity of about 2n/t instead of the expected 2n.
Note that the complexity of the attack decreases with the size of the given mes-
sage. In the following, we describe the attack in detail. It combines expandable
messages with the long message attack.

Long Message Attack

The long message attack was introduced by Winternitz in [153], and later im-
proved by Lai and Massey in [73]. It is applicable to iterated hash functions not
implementing Merkle-Damg̊ard strengthening. LetM be the target message con-
sisting of t message blocks with t� 2n/2 then a second preimage for h = H(M)
can be found with a complexity of about 2n/t. The idea is to use a meet-in-the-
middle attack on the (intermediate) chaining values resulting from computing
h = H(M) by iterating the compression function. It can be summarized as
follows. Compute h = H(M) and save the intermediate chaining values Hj with
0 < j ≤ t in a list L. Then generate 2n/t candidates for H1 = f(H0,M

∗
1) by

choosing arbitrary values for M∗
1 and check for a match in the list L. Note that a

match is likely to exist due to the birthday paradox. Hence, we can find a second
preimage for the target message M with a complexity of about 2n/t compression
function evaluations and memory requirements of t. It is easy to see that for
larger t the complexity of the attack decreases. Note the if Merkle-Damg̊ard
strengthening is applied, then this attack does not work anymore. This is due to
the fact that the second preimage will in general have fewer message blocks than
the target message M , and hence the padding including the length encoding of
the entire message is incorrect. However, Kelsey and Schneier show in [64] how
MD-strengthening can be bypassed by using expandable messages.

Expandable Messages

Expandable Messages were introduced by Kelsey and Schneier in [64]. An ex-
pandable message is a kind of multicollision, with the difference that all colliding
messages have different lengths. If the expandable message consist of between
a and b message blocks all leading to the same (intermediate) hash value, then
we say that we have an (a, b)-expandable message. Kelsey and Schneier de-
scribe in [64] two methods to constructing expandable messages that both have
complexity around 2n/2. In the following we describe both methods in detail.

Expandable Message using Fixed-Points. The first method is based on
fixed-points for the compression function. This method was first described by
Dean in [31]. Before we describe it in detail, we first give a definition of a
fixed-point for a compression function.

3.2. Generic Attacks on Iterated Hash Functions 21

Definition 3.2. A fixed-point for a compression function f , is a pair (Hi−1,Mi)
such that f(Hi−1,Mi) = Hi−1.

Most commonly used hash functions, e.g. SHA-1 and MD5, are built upon a
compression function based on the Davies-Meyer construction (see Section 2.6).
As observed in [114, 125] for this construction fixed-points can be constructed
efficiently. To construct an expandable message based on fixed-points, we use
a meet-in-the-middle attack. It can be summarized as follows. Generate about
2n/2 fixed-points (H1,M2) and save them in a list L. Note that the value H1 is
in general not under the control of the attacker. Now, starting from the initial
value H0 we compute 2n/2 candidates for H1 = f(H0,M1) and check for a match
in the list L. Due to the birthday paradox a match is likely to exist and we have
constructed an expandable message with complexity of about 2n/2+1. In detail,
we have constructed a (1,∞)-expandable message. If fixed-points cannot be
efficiently found, then expandable messages can be constructed using a variant
of Joux’s multicollision attack as described in the next section.

Expandable Message using Multicollisions. In [64], Kelsey and Schneier
presented an alternative method to construct expandable messages based on
the multicollision attack of Joux [57]. While in [57], a set of colliding messages
of equal length is constructed, Kelsey and Schneier construct a set of colliding
messages of different length in order to get an expandable message. We will
explain this in more detail in the following. Let C be an algorithm (implementing
the birthday attack or some other method) that takes as input an integer r and
a chaining value, and finds two messages M (consisting of 1 message block) and
M∗ (consisting of r message blocks) that result in the same hash value. We call
this a (1, r)-collision. For the following discussion we assume that C implements
the birthday attack, i.e. (1, r)-collisions can be found with a complexity of 2n/2

compression function evaluations. Using the algorithm C we now show how to
construct a (k, 2k + k − 1)-expandable message. Starting from H0 we use C to
obtain a (1, 2k−1 + 1)-collision. Next, we use C with H1 as chaining input to
obtain a (1, 2k−2 +1)-collision, then a (1, 2k−3 +1)-collision with H2 as chaining
input, and so on, until we reach the (1, 2)-collision, see also Figure 3.2.

H0 H1

M1

H2

M2

M∗
1

(2k−1 + 1)-block
M∗

2

(2k−2 + 1)-block

Hk−1

Mk

M∗
k

2-block

Hk

Figure 3.2: Illustration of a (k, 2k + k − 1)-expandable message using Joux’s multi-
collision attack.

The result is a list of pairs of message components of different lengths, which
all lead to the same intermediate chaining value Hk. The first such pair can be

22 Chapter 3. Analysis Methods for Hash Functions

used to add 2k−1 blocks to the expanded message, the second can be used to
add 2k−2 blocks, and so on. Hence, we get a (k, 2k +k−1)-expandable message.
Constructing the expandable message has a complexity of about 2k + k · 2n/2

compression function evaluations.

The Second Preimage Attack

As shown in [64], by using expandable messages MD-strengthening in iterated
hash functions can be bypassed and the long message attack can be applied.
We will explain this in more detail in the following. Remember we want to
construct a preimage for the target message M consisting of t message blocks.
We proceed as follows. First, we construct an (a, b)-expandable message (with
b being approximately equal to t) using one of the methods described before.
This will provide messages over a wide range of lengths. Then we carry out the
long message attack from the end of that expandable message. To compensate
all the message blocks that were skipped by the long message attack, we expand
the expandable message in order to get a new message of the same length as the
target message M , resulting in the same hash value. Hence, we get a second
preimage for M . The complexity of the attack depends on the length of the
target message and is given by the complexity of the long message attack and
the complexity of finding the expandable message. Since in most commonly
used hash functions the message length is restricted, the attack complexity is
dominated by the cost of the long message attack, i.e. 2n/t compression function
evaluations.

As an example, in SHA-256 the maximum message length is about 255 blocks.
Hence, if we have a target message with 255 message blocks, then a second
preimage can be found with a complexity of about 2201. Note that a brute force
second preimage attack has a complexity of about 2256.

3.3 Generic Attacks on Iterated Cascaded Hash
Functions

A natural construction to build a hash function producing a large hash value
is to concatenate several hash functions with smaller hash size. For example,
given two hash functions HL and HR with a hash value of nL and nR bits,
respectively. Then it seems reasonable given a message M to compute the hash
value h = HL(M)‖HR(M). In this construction, HL and HR can either be two
completely different hash functions or two slightly different instances of the same
hash function. At first sight, one would expect that this construction provides a
security level of nL +nR bits, i.e. collision resistance of 2(nL+nR)/2 and (second)
preimage resistance of 2nL+nR . However, as shown by Joux in [57] if HL or HR

is an iterated hash function, then H(M) := HL(M)‖HR(M) is not more secure
than what one would expect from HL or HR. This will be described in detail in
the next section.

3.4. Differential Cryptanalysis of Hash Functions 23

3.3.1 Collision Attack

For the following discussion we assume that nL ≤ nR (for the case nL > nR

we refer to [57]) and HL is an iterated hash function. As shown by Joux, a
collision for H(M) := HL(M)‖HR(M) can be found with a complexity of about
nR · 2nL/2 using multicollisions. It can be summarized as follows. Construct
a 2nR/2-collision for HL, as described in Section 3.2.2. Hence, we get 2nR/2

messages leading to the same hash value in HL. Note that this has a complexity
of about nR/2 · 2nL/2 ≈ nR · 2nL/2. Now, we have to find two messages out of
these set of 2nR/2 messages which also lead to a collision in HR. This can be
done by applying a birthday attack, as described in Section 3.1.1. Hence, we
will find a collision for H(M) := HL(M)‖HR(M) with a complexity of about
nR · 2nL/2 + 2nR/2 ≈ nR · 2nL/2, which is significantly less than 2(nl+nR)/2. Note
that for the attack to work, HR does not need to be an iterated hash function.
In general, this attack works as long as one hash function is an iterated hash
function in order to construct multicollisions.

3.3.2 (Second) Preimage Attack

Constructing a (second) preimage for H(M) := HL(M)‖HR(M), works along
the same lines as the collision attack. Again, assume that nL ≤ nR (for the case
nL > nR we refer again to [57]) and HL is an iterated hash function. Then a
(second) preimage forH(M) := HL(M)‖HR(M) can be found with a complexity
of about nR · 2nL/2 + 2nL + 2nR which is significantly less than 2nL+nR . It can
be summarized as follows. Construct a 2nR -collision for HL to get 2nR messages
leading to the same (intermediate) chaining value in HL. Next, we select a
last message block that maps the last chaining value of the 2nR -collision in HL

to the expected hash value of HL(M). This has a complexity of about 2nL

compression function evaluations. Now, we have 2nR messages leading to the
expected hash value for HL(M). It is easy to see that with a good probability
one of these messages will also lead to the expected hash value of HR(M) and
hence, we have found a (second) preimage for H(M) := HL(M)‖HR(M) with
a complexity of about nR · 2nL/2 + 2nL + 2nR . Again, for this attack to work
HR does not need to be an iterated hash function and the attack works as long
as one hash function is an iterated hash function such that one can construct
multicollisions. In [57], Joux also describes attacks on cascaded hash functions
constructed of more than two hash functions.

3.4 Differential Cryptanalysis of Hash Functions

So far we have discussed generic attacks on hash functions. However, most
attacks on hash functions are dedicated attacks exploiting the internal structure
of the hash functions to construct (near-)collisions or (second) preimages for
the hash function. Most of these attacks are differential attacks. Particularly,
the collision attacks on MD4 by Dobbertin [38], on SHA by Chabaud and Joux

24 Chapter 3. Analysis Methods for Hash Functions

[22], and on MD5, RIPEMD and SHA-1 by Wang et al. [148, 150, 151] are all
differential attacks.

Differential cryptanalysis is a general tool in the cryptanalysis of symmetric
primitives. Originally devised by Biham and Shamir to cryptanalyze DES [13], it
has later been applied to other block ciphers, stream ciphers and hash functions.
A differential attack exploits predictable propagation of the difference between
a pair of inputs of a cryptographic primitive, to the corresponding outputs. The
description of the difference patterns at the input, the intermediate values and
the output of the cryptographic primitive, is called a characteristic, or sometimes
differential path or trail. A pair that exhibits the differences of the characteristic,
is called a right pair. The fraction of right pairs over all input pairs, possibly
averaged over all keys (when the primitive is keyed), is called the probability of
the trail.

If we apply differential cryptanalysis to a hash function, a collision for the
hash function corresponds to a right pair for a trail through that hash function,
with output difference zero. Similarly, a near-collision corresponds to a right
pair for a trail with an output difference of low Hamming weight. It follows
that differential cryptanalysis of hash functions is intuitively very similar to
differential cryptanalysis of block ciphers. However, there are also important
differences between these two cases. In the case of a block cipher, an attacker
who wants to find a right pair can usually do little better than simply trying
out pairs. The needed effort is proportional to the inverse of the probability
of the trail. Since hash functions do not have a secret key, an attacker can do
better than that. In principle, an attacker could simply write out the equations
that determine whether a pair is a right pair and solve them. In practice, these
equations are highly nonlinear and difficult to solve. However, it is often possible
to determine some of the message bits, thereby increasing the probability that a
random guess for the remaining part of the solution will be correct. Typically,
the equations arising from the first steps of the hash function are easier to solve,
because they do not yet depend on all message words. These techniques are
known in the literature under the name message modification techniques [151].

Hence, a (near-)collision attack on a hash function, that is based on differ-
ential cryptanalysis, can be described as follows.

1. Find a trail with a high probability.

2. Determine some message bits by applying message modification techniques.

3. Find the remaining message bits by guess-and-verify.

Further details will be presented in the following chapters.

3.5 Summary

In this chapter, we have discussed general methods to analyze the security of
cryptographic hash functions. Thereby, we have focused on collision and (sec-
ond) preimage attacks. The most common tool in the cryptanalysis of hash

3.5. Summary 25

functions is differential cryptanalysis. This technique, originally invented in the
analysis of block ciphers, can be used for attacks on hash functions. Most colli-
sion attacks on hash functions are differential attacks.

Furthermore, we have discussed general attack methods for iterated hash
functions following Merkle-Damg̊ard design principle such as multicollision at-
tacks and second preimage attacks for long messages. The second preimage
attacks for long messages can be considered as a generalization of multicollision
attacks. The result is that for very long messages, second preimages can be
constructed with much less than 2n evaluations of the hash function, which is
the complexity we expect from an n-bit hash value. Even if these second preim-
age attacks are not practical, they clearly show some structural limitations of
iterated hash functions following the Merkle-Damg̊ard design principle. Fur-
thermore, multicollision attacks were used to show that the cascading of hash
functions does not increase the security margin as one would expect from the
resulting size of the hash value.

4
Cryptanalysis of the GOST Hash

Function

In this chapter, we will present a security analysis of the GOST hash function
with respect to both collision and preimage resistance. The GOST hash function
is an iterated hash function producing a 256-bit hash value. It is specified in the
Russian national standard GOST 34.11-94 [120] and is widely used in Russia.
It is the only hash function that can be used in the Russian digital signature
algorithm GOST 34.10-94 [119]. Therefore, it is described in RFC 5831 [41] and
implemented in various cryptographic applications (as for instance openSSL).

As opposed to most commonly used hash functions such as MD5 and SHA-1,
the GOST hash function defines, in addition to the common iterative structure,
a checksum computed over all input message blocks. This checksum is then
part of the final hash value computation. The GOST standard also specifies the
GOST block cipher [118], which is the main building block of the hash function.
Therefore, it can be considered as a block-cipher-based hash function. While
several cryptanalytic results have been published regarding the block cipher,
only a few results regarding the hash function exist. In [44], Gauravaram and
Kelsey show that the generic attacks on hash functions based on the Merkle-
Damg̊ard design principle can be extended to hash functions with linear/modular
checksums independent of the underlying compression function. Hence, second
preimages can be found for long messages (consisting of 2t message blocks) for
the GOST hash function with a complexity of about 2n−t compression function
evaluations.

We exploit the internal structure of the GOST hash function to construct
free-start collisions and preimages for the compression function of GOST with a
complexity of about 296 and 2192 compression function evaluations, respectively.

27

28 Chapter 4. Cryptanalysis of the GOST Hash Function

Both attacks are structural attacks in the sense that they are independent of the
underlying block cipher. The preimage attack on the compression function can
be extended to an attack on the hash function with a complexity of about 2225

compression function evaluations.
By additionally exploiting weaknesses in the GOST block cipher, we show

how the preimage attack can be improved. The improved preimage attack has
a complexity of 2192 evaluations of the compression function of GOST. Further-
more, we show how to construct semi-free-start collisions for the compression
function of GOST with a complexity of about 296 compression function evalua-
tions. This semi-free-start collision attack on the compression function is then
extended to a collision attack on the GOST hash function. The attack has a
complexity of about 2105 evaluations of the compression function of GOST. Fur-
thermore, we show that due to the generic nature of our attack we can construct
meaningful collisions, i.e. collisions in the chosen-prefix setting with the same
complexity. The results of this chapter have been published in [91, 92].

4.1 Preliminaries

In the collision and preimage attack on the GOST hash function, we will make
use of multicollisions and the generalized birthday attack. A multicollision is a
set of messages of equal length that all lead to the same hash value. As shown by
Joux in [57], constructing a 2k collision, i.e. 2k messages consisting of k message
blocks which all lead to the same hash value, can be done with a complexity
of about t · 2n/2 for any iterated hash function. This is described in detail in
Section 3.2.2. Furthermore, Wagner shows in [146] that the generalized birthday
problem (with ` lists) can be solved with a complexity of about 2n/(1+lg `) and
memory requirements of ` · 2n/(1+lg `) if ` is a power of 2. A detailed description
of the generalized birthday attack is given in Section 3.1.2. Both Joux’s multi-
collisions and the generalized birthday attack of Wagner will be very useful in
the attacks on the GOST hash function.

4.2 The Hash Function GOST

The GOST hash function is defined in the Russian standard GOST 34.11-94.
This standard has been developed by GUBS of Federal Agency Government
Communication and Information and All-Russian Scientific and Research Insti-
tute of Standardization. Note that for the remainder of this chapter we refer to
the GOST hash function simply as GOST.

GOST is an iterated hash function that processes message blocks of 256 bits
and produces a 256-bit hash value. If the message length is not a multiple of 256,
an unambiguous padding method is applied. For the description of the padding
method we refer to [120]. Let M = M1‖M2‖ · · · ‖Mt be a t-block message (after

4.2. The Hash Function GOST 29

padding). The hash value h = H(M) is computed as follows (see Figure 4.1):

H0 = IV, (4.1)
Hj = f(Hj−1,Mj) for 0 < j ≤ t, (4.2)

Ht+1 = f(Ht, |M |), (4.3)
Ht+2 = f(ht+1,Σ) = h, (4.4)

where Σ = M1�M2�· · ·�Mt, IV is a predefined initial value and |M | represents
the bit-length of the entire message prior to padding.

As can be seen in (4.4), GOST specifies a checksum (Σ) consisting of the
modular addition of all message blocks, which is then input to the final applica-
tion of the compression function. Computing this checksum is not part of most
commonly used hash functions such as MD5 and SHA-1.

tm

258257256

f f f f

1

256
f

256 257

256

256

1

STEP 1 STEP 2STEP 3

f f f f

1

256
f

2 t

256

256

STEP 4

Figure 4.1: Structure of the GOST hash function.

The compression function f of GOST consist of three parts (see also Fig-
ure 4.2): the state update transformation, the key generation, and the output
transformation. In the following, we will describe these parts in more detail.

4.2.1 State Update Transformation

The state update transformation of GOST consists of 4 parallel instances of the
GOST block cipher, denoted by E. The intermediate hash value Hj−1 is split
into four 64-bit words h3‖h2‖h1‖h0. Each 64-bit word is used in one stream of
the state update transformation to construct the 256-bit value S = s3‖s2‖s1‖s0
in the following way:

s0 = E(k0, h0), (4.5)
s1 = E(k1, h1), (4.6)
s2 = E(k2, h2), (4.7)
s3 = E(k3, h3), (4.8)

where E(K,P) denotes the encryption of the 64-bit plaintext P under the 256-
bit key K. We refer to Section 4.3, for a detailed description of the GOST block
cipher.

30 Chapter 4. Cryptanalysis of the GOST Hash Function

Hj-1
256

h3 h2 h1 h0

646464 64

E

E

E

E

s3 s2 s1 s0

k0

k1

k2

k3

256

1024 256
Mj

256

256

256

256

256

Hj

Figure 4.2: The compression function of GOST

4.2.2 Key Generation

The key generation of GOST takes as input the intermediate hash value Hj−1

and the message block Mj to compute a 1024-bit key K. This key is split into
four 256-bit keys ki, i.e. K = k3‖ · · · ‖k0, where each key ki is used in one stream
as the key for the GOST block cipher E in the state update transformation. The
four keys k0, k1, k2, and k3 are computed in the following way:

k0 = P (Hj−1 ⊕Mj), (4.9)
k1 = P (A(Hj−1)⊕A2(Mj)), (4.10)
k2 = P (A2(Hj−1)⊕ Const⊕A4(Mj)), (4.11)
k3 = P (A(A2(Hj−1)⊕ Const)⊕A6(Mj)), (4.12)

where A and P are linear transformations and Const is a constant. For the
definition of the linear transformation A and P as well as the value of Const,
we refer to [120], since we do not need it for our analysis.

4.2.3 Output Transformation

The output transformation of GOST combines the intermediate hash valueHj−1,
the message block Mj , and the output of the state update transformation S to

4.3. The Block Cipher GOST 31

compute the output valueHj of the compression function. It is defined as follows:

Hj = ψ61(Hj−1 ⊕ ψ(Mj ⊕ ψ12(S))). (4.13)
The linear transformation ψ : {0, 1}256 → {0, 1}256 is given by:

ψ(Γ) = (γ0 ⊕ γ1 ⊕ γ2 ⊕ γ3 ⊕ γ12 ⊕ γ15)‖γ15‖γ14‖ · · · ‖γ1, (4.14)

where Γ is split into sixteen 16-bit words, i.e. Γ = γ15‖γ14‖ · · · ‖γ0.

4.3 The Block Cipher GOST

The GOST block cipher as used in the GOST hash function is specified by
the Russian government standard GOST 28147-89 [118]. Several cryptanalytic
results have been published for the block cipher (see for instance [15, 65, 72,
133, 136]). However, if the block cipher is used in a hash function then we are
facing a different attack scenario: depending on the hash function construction
the attacker may has full control over the key. Results considering this fact for
the security analysis of hash functions have been presented for instance in [71].
We will exploit having full control over the key for constructing fixed-points for
the GOST block cipher.

4.3.1 Description of the Block Cipher

The GOST block cipher is a 32-round Feistel network with a block size of 64
bits and a key length of 256 bits. The round function of the GOST block cipher
consists of a key addition, eight different 4-bit S-boxes Si with (0 ≤ i < 8) and
a cyclic rotation (see also Figure 4.3). For the definition of the S-boxes we refer
to [120], since we do not need them for our analysis.

<<< 11

ski

Li Ri

Li+1 Ri+1

S6

S7

S0

3232

Figure 4.3: One round of the GOST block cipher.

The key schedule of the GOST block cipher defines the subkeys ski derived from
the 256-bit K = k7‖k6‖ · · · ‖k0 as follows:

ski =

{
ki mod 8, i = 0, . . . , 23,
k7−(i mod 8), i = 24, . . . , 31.

(4.15)

32 Chapter 4. Cryptanalysis of the GOST Hash Function

4.3.2 Constructing Fixed-Points

In the following, we will show how to efficiently construct fixed-points [23, 115]
in the GOST block cipher. It is based on the following observation. Note that
a similar observation was used by Kara in [61, 62] for a chosen plaintext attack
on the GOST block cipher.

Observation 4.1. For any given plaintext P = L0‖R0 with L0 = R0 we can
construct a fixed-point for the block cipher by constructing a fixed-point in the
first 8 rounds.

In the following, we refer to a plaintext P = L0‖R0 with L0 = R0 as a
symmetric plaintext (or for short as symmetric). Note that each word of the key
is only used once in the first 8 rounds of the block cipher. Hence, constructing a
fixed-point in the first 8 rounds can be done efficiently. First, we choose random
values for the first 6 words of the key (subkeys sk0, . . . , sk5) and compute L6

and R6. Next, we choose the last 2 words of the key

sk6 = S−1((L0 ⊕ L6) ≫ 11) �R6,

sk7 = S−1((R0 ⊕R6) ≫ 11) � L0

such that L8 = L0 and R8 = R0. With this method we can construct a fixed-
point in the first 8 rounds of the block cipher with a computational cost of 8
round computations.

It is easy to see that if we have a fixed-point in the first 8 rounds, then this
is also a fixed-point for rounds 9-16 and 17-24 since the same subkeys are used
in these rounds. In the last 8 rounds the subkey is put in the opposite order, see
(4.15). However, since the GOST block cipher is a Feistel network, we have here
(rounds 25-32) a decryption if L24 = R24. This implies that we have a fixed-
point for the GOST block cipher (for all 32 rounds) if the plaintext is symmetric.
Hence, for symmetric plaintexts we can efficiently construct fixed-points for the
GOST block cipher. This will be very useful in the attacks on the GOST hash
function.

4.4 Collision Attack

In this section, we present a collision attack on the GOST hash function. First,
we show how to construct a free-start collision for the compression function of
GOST by exploiting structural weaknesses in the design of the compression func-
tion. Note that the attack is independent of the underlying block cipher GOST.
By additionally exploiting structural weaknesses in the design of the GOST block
cipher we then show a semi-free-start collision for the compression function of
GOST. Both attacks have a complexity of about 296 compression function eval-
uations. The semi-free-start collision attack on the compression function is then
extended to a collision attack on the GOST hash function. The extension is
possible by combining a multicollision attack and a generalized birthday attack
on the checksum. The attack has a complexity of about 2105 evaluations of the

4.4. Collision Attack 33

compression function of GOST. Furthermore, we show that due to the generic
nature of our attack we can construct meaningful collisions, i.e. collisions in the
chosen-prefix setting with the same complexity. Note that in most cases con-
structing meaningful collisions is more complicated than constructing (random)
collisions (see for instance MD5 [139]).

4.4.1 Collisions for the Compression Function

In this section, we present a free-start and semi-free-start collision for the com-
pression function of GOST. Both attacks are based on structural weaknesses of
the compression function. Since the transformation ψ is linear, (4.13) can be
written as:

Hj = ψ61(Hj−1)⊕ ψ62(Mj)⊕ ψ74(S). (4.16)

Furthermore, ψ is invertible and hence (4.16) can be written as:

ψ−74(Hj)︸ ︷︷ ︸
X

= ψ−13(Hj−1)︸ ︷︷ ︸
Y

⊕ψ−12(Mj)︸ ︷︷ ︸
Z

⊕S. (4.17)

Note that Y depends linearly on Hj−1 and Z depends linearly on Mj . As
opposed to Y and Z, S depends on both Hj−1 and Mj processed by the block
cipher E. For the following discussion, we split the 256-bit words X,Y, Z defined
in (4.17) into 64-bit words:

X = x3‖x2‖x1‖x0 Y = y3‖y2‖y1‖y0 Z = z3‖z2‖z1‖z0.

Now, (4.17) can be written as:

x0 = y0 ⊕ z0 ⊕ s0, (4.18)
x1 = y1 ⊕ z1 ⊕ s1, (4.19)
x2 = y2 ⊕ z2 ⊕ s2, (4.20)
x3 = y3 ⊕ z3 ⊕ s3. (4.21)

Now assume, that we can find 296 inputs for the compression function of
GOST such that all produce the same value x0. Then we know that due to the
birthday paradox two of these inputs also lead to the same values x1, x2, and x3.
In other words, we have constructed a free-start respectively a semi-free-start
collision for the compression function of GOST. The attack has a complexity of
about 296 evaluations of the compression function of GOST.

Free-start Collision

To construct a free-start collision for the compression function of GOST we
have to find 296 inputs, i.e. pairs (Hr

j−1,M
r
j), such that all inputs produce the

same value x0. This boils down to solving an underdetermined linear system
of equations. Assume, we want to keep the value s0 in (4.18) constant. Since
s0 = E(k0, h0), we have to find pairs (Hr

j−1,M
r
j) such that the values k0 and

34 Chapter 4. Cryptanalysis of the GOST Hash Function

h0 are the same for each pair. We know that h0 directly depends on Hj−1. The
key k0 depends on Hj−1 ⊕Mj . Therefore, we get the following equations:

h0 = a, (4.22)
m0 ⊕ h0 = b0, (4.23)
m1 ⊕ h1 = b1, (4.24)
m2 ⊕ h2 = b2, (4.25)
m3 ⊕ h3 = b3, (4.26)

where a and the bi’s are arbitrary 64-bit values. Note that k0 = P (Hj−1⊕Mj) =
B̄, where B̄ = P (B) and B = b3‖ · · · ‖b0, see (4.9). This is an underdetermined
linear system of equations with 5 · 64 equations in 8 · 64 variables mi, hi over F2.
Solving this system leads to 2192 solutions for which s0 has the same value. To
find pairs (Hr

j−1,M
r
j) for which x0 has the same value, we still have to ensure

that also the term y0⊕z0 in (4.18) has the same value for all pairs. This adds one
additional equation (64 equations over F2) to our system of equations, namely

y0 ⊕ z0 = c, (4.27)

where c is an arbitrary 64-bit value. This equation does not add any new vari-
ables, since we know that y0 depends linearly on h3‖h2‖h1‖h0 and z0 depends
linearly on m3‖m2‖m1‖m0, see (4.17). To summarize, fixing the value of x0

boils down to solving an underdetermined linear system of equations with 6 · 64
equations and 8 ·64 unknowns over F2. This leads to 2128 solutions hi and mi for
0 ≤ i < 4 and hence 2128 pairs (Hr

j−1,M
r
j) for which the value x0 is the same.

Now we can describe how the free-start collision attack on the compression
function of GOST works. In the attack, we have to find two pairs (H1

j−1,M
1
j)

and (H2
j−1,M

2
j), where H1

j−1 6= H2
j−1 or M1

j 6= M2
j , such that f(H1

j−1,M
1
j) =

f(H2
j−1,M

2
j). The attack can be summarized as follows.

1. Choose random values for a, b0, b1, b2, b3 and c. This determines x0.

2. Solve the set of 6 · 64 linear equations over F2 to obtain 2128 pairs
(Hr

j−1,M
r
j) for which x0 in (4.18) is equal.

3. For each pair computeX = x3‖x2‖x1‖x0 and save the triple (X,Hr
j−1,M

r
j)

in the list L. Note that x0 is equal for all entries in the list L.
After computing about 296 candidates for X one expect to find a matching
entry (a collision) in L. Note that a collision is likely to exist due to the
birthday paradox. Once, we have found a matching entry for X in the list
L, we have also found a free-start collision for the compression function of
GOST, since Hj = ψ74(X), see (4.17).

Note that memoryless variants of this attack can be devised [127]. Hence, we
have a free-start collision for the compression function of GOST with a com-
plexity of about 296 instead of 2128 as expected for a compression function with
an output size of 256 bits. In the next section, we will show how this attack can
be extended to a semi-free-start collision attack on the compression function by
additionally exploiting structural weaknesses in the block cipher GOST.

4.4. Collision Attack 35

Semi-free-start Collision

Now, we show how to construct a semi-free-start collision for the compression
function of GOST. Again as in the free-start collision attack we have to find 296

inputs that all produce the same value x0. As opposed to the free-start collision
attack, where we searched for inputs (Hr

j−1,M
r
j) which all produce the same

value x0, we are now only interested in message blocks Mr
j which all produce

the same value x0.
In the following, we will show how to construct these 296 message blocks

Mr
j , which all produce the same value x0. Once again, we want to keep the

value s0 in (4.18) constant. Since s0 = E(k0, h0) and k0 depends linearly on the
message block Mj , we have to find keys kr

0 and hence, message blocks Mr
j , which

all produce the same value s0. This can be done by exploiting the fact that in
the GOST block cipher fixed-points can be constructed efficiently for symmetric
plaintexts (see Section 4.3.2). In other words, if h0 is symmetric then we can
construct 296 message blocks Mr

j where s0 = h0, and (4.18) becomes

x0 = y0 ⊕ z0 ⊕ h0. (4.28)

However, to find message blocks Mr
j for which x0 has the same value, we still

have to ensure that also the term y0 ⊕ z0 in (4.28) has the same value for all
message blocks. Therefore, we get the following equation (64 equations over F2)

y0 ⊕ z0 = c, (4.29)

where c is an arbitrary 64-bit value. We know that y0 depends linearly on
Hj−1 and z0 depends linearly on Mj , see (4.17). Therefore, the choice of the
message block Mj and correspondingly, the choice of the key k0, is restricted by
64 equations over F2. Hence, for constructing a fixed-point in the GOST block
cipher we have to consider these restrictions. For the following discussion let

A · k0 = d (4.30)

denote the set of 64 equations over F2 which restricts the choice of the key k0,
where A is a 64 × 256 matrix over F2 and d is a 64-bit vector. It follows from
Observation 4.1 that for constructing a fixed-point in the GOST block cipher
(for symmetric plaintexts), it is sufficient to construct a fixed-point in the first
8 rounds. Hence, one method to construct an appropriate fixed-point would be
to construct many arbitrary fixed-points and then check if (4.30) holds. With
this method we find an appropriate fixed-point with a complexity of about 264.
Since we need 296 such fixed-points for the collision attack, this would lead to a
complexity of 2160 evaluations of the compression function of GOST. However,
we can improve this complexity by using a meet-in-the-middle approach (see
also Figure 4.4).

We split the first 8 rounds of the GOST block cipher into 2 parts P1 (rounds
1-4) and P2 (rounds 5-8). Since the subkey used in the first 8 rounds is restricted
by A · k0, we also split this system of 64 equations over F2 into two parts:

36 Chapter 4. Cryptanalysis of the GOST Hash Function

sk0

sk3

sk1

sk2

sk4

sk7

sk5

sk6

L0 = R0

L8 = R8 = L0

sk0

sk3

sk1
sk2

A1 d1

sk4

sk7

sk5
sk6

A2 d2

d1 d2A1 A2

sk0

sk3

sk1
sk2

sk4

sk7

sk5
sk6

d

Figure 4.4: Constructing a fixed-point in the GOST block cipher.

A1 ·

sk0

sk1

sk2

sk3

 = d1 (4.31) A2 ·

sk4

sk5

sk6

sk7

 = d2 (4.32)

where A = [A1 A2] and d = d1 ⊕ d2. Now we can apply a meet-in-the-middle
attack to construct 264 appropriate fixed-points for the GOST block cipher with
a complexity of 264. It can be summarized as follows.

1. Choose a random value for d1. This determines also d2 = d⊕ d1.

2. For all 264 subkeys sk0, . . . , sk3 which fulfill (4.31) compute L4, R4 and
save the result in the list L.

3. For all 264 subkeys sk4, . . . , sk7 which fulfill (4.32) compute rounds 4-8
backward to get L4, R4 and check for a matching entry in the list L. Note
that since there are 264 entries in the list L we expect to always find a
matching entry in the list L. Hence, we get 264 appropriate fixed-points
for the GOST block cipher with a complexity of about 264 and memory
requirements of 264 · 40 ≈ 270 bytes.

By repeating this attack about 232 times for different choices of d1, we get 296

appropriate fixed-points. In other words, we found 296 keys kr
0 which all produce

the same value s0 = E(kr
0, h0) and additionally fulfill (4.30). Consequently,

we have 296 message blocks Mr
j which all result in the same value x0 with

X = ψ−74(Hj). By applying a birthday attack we will find two message blocks
Mk

j and M t
j with k 6= t where also x1, x2, and x3 are equal. In other words, we

4.4. Collision Attack 37

can find a semi-free-start collision for the compression function of GOST with a
complexity of about 296 instead of 2128 evaluations of the compression function
of GOST.

4.4.2 Collisions for the Hash Function

In this section, we show how the semi-free-start collision attack on the compres-
sion function can be extended to the hash function. The attack has a complexity
of about 2105 evaluations of the compression function of GOST. Note that the
hash function defines, in addition to the common iterative structure, a check-
sum computed over all input message blocks which is then part of the final hash
computation. Therefore, to construct a collision in the hash function we have
to construct a collision in the iterative structure (i.e. chaining variables) as well
as in the checksum. To do this we use Joux’s multicollisions for iterated hash
functions [57].

As described in Section 3.2.2, constructing a 2k collision, i.e. 2k messages
consisting of k message blocks which all lead to the same hash value, can be
done with a complexity of about t ·2x for any iterated hash function, where 2x is
the cost of constructing a collision in the compression function. As shown in Sec-
tion 4.4.1, semi-free-start collisions for the compression function of GOST can be
constructed with a complexity of 296 if h0 is symmetric in Hj−1 = h3‖h2‖h1‖h0.
Note that by using an additional message block Mj−1 we find a chaining vari-
able Hj−1 = f(Hj−2,Mj−1), where h0 is symmetric with a complexity of 232

compression function evaluations. Hence, we can construct a 2128 collision with
a complexity of about 128 · (296 + 232) ≈ 2103 evaluations of the compression
function of GOST. With this method we get 2128 messages M∗ that all lead to
the same value H256 as depicted in Figure 4.5.

H1

M2
2

f f

f f

M2
1

fH0

M1

H255f
H254

M255

H256

M256
2

M256
1

H2

232 + 296 232 + 296

H3

M4
2

f

f

M4
1

f

M3

H4

232 + 296

Figure 4.5: Constructing a multicollision for GOST.

To construct a collision in the checksum of GOST we have to find 2 distinct
messages which produce the same value

Σ = M1 �Mr2
2 � · · ·�M255 �Mr256

256 ,

with r2, r4, . . . , r256 ∈ {1, 2}. By applying a birthday attack we can find these 2
messages with a complexity of about 2127 additions over F256 and memory re-
quirements of 2134 bytes. Due to the high complexity and memory requirements

38 Chapter 4. Cryptanalysis of the GOST Hash Function

of the birthday attack, one could see this part as the bottleneck of the attack.
However, the runtime and memory requirements can be reduced significantly
by applying a generalized birthday attack. As described in Section 3.1.2, the
generalized birthday problem for ` lists (with ` a power of two) can be solved
with a complexity of about ` ·2n/(1+lg `) and memory requirements of 2n/(1+lg `).
In the standard birthday attack we have ` = 21.

Let us now consider the case ` = 23. Then the birthday attack in the second
part of the attack has a complexity of 23 · 2256/4 = 267 and uses lists of size
2256/4 = 264. In detail, we need to construct 8 lists of size 264 in the first step
of the attack. Hence, we need to construct a 28·64 collision in the first part of
the attack to get 8 lists of the needed size. Constructing this multicollision has
a complexity of about 8 · 64 · (232 +296) = 2105 compression function evaluations
and memory requirements of 8 ·64 · (2 ·64) = 216 bytes. Hence, we can construct
a collision for the GOST hash function with a complexity of about 2105 and
memory requirements of 264 · 26 = 270 bytes by using a generalized birthday
attack with ` = 8 lists. Furthermore, the colliding message pair consists of
8 · (2 · 64) = 1024 message blocks. Note that ` = 8 is the best choice for the
attack. On one hand if we choose ` > 8 then the memory requirements of the
attack would decrease but the attack complexity would increase. Since we need
about 270 bytes of memory for constructing fixed-points in the GOST block
cipher, this does not improve the attack. On the other hand if we choose ` < 8
then the memory requirements of the attack would be significantly higher, cf.
Table 4.1.

Table 4.1: Memory requirements and complexities (for constructing the multicollision
and the checksum operations) of the generalized birthday step for different
values of `.

` multicollision checksum memory requirements
2 2104 2129 2134

4 2104.4 287.3 291.3

8 2105 267 270

16 2105.6 255.2 257.2

32 2106.4 247.6 248.6

A Remark on the Length Extension Property

Once, we have found a collision, i.e. collision in the iterative part (chaining vari-
ables) and the checksum, we can construct many more collisions by appending
an arbitrary message block. Note that this is not necessarily the case for a
straightforward birthday attack. By applying a birthday attack we construct a
collision in the final hash value (after the last iteration) and appending a message
block is not possible. Hence, we need a collision in the iterative part as well as
in the checksum for the extension property. Note that by combining the generic
birthday attack and multicollisions, one can construct collisions in both parts

4.4. Collision Attack 39

with a complexity of about 128 · 2128 = 2135, while our attack has a complexity
of 2105 compression function evaluations.

A Remark on Chosen-Prefix Collisions

In this section, we show how to construct meaningful collisions for the GOST
hash function. To be more precise, we present a collision attack for the GOST
hash function in the chosen-prefix setting (see Section 2.8). In this setting an
attacker searches for two messages M and M∗ such that H(P‖M) = H(P ∗‖M∗)
for given prefixes P and P ∗. In most cases finding a collision in this setting is
much more difficult than finding a random collision. However, for the GOST
hash function it has the same complexity as the collision attack. Due to the
generic nature of the collision attack, differences in the chaining variables can
be canceled out efficiently. Assume that the chosen prefixes P and P ∗ consist of
r message blocks each resulting in the chaining variables Hr and H∗

r . Then the
attack can be summarized as follows.

1. We have to find two message blocks Mr+1 and M∗
r+1 such that h0 =

h∗0 = 0, where Hr+1 = h3‖h2‖h1‖h0 and H∗
r+1 = h∗3‖h∗2‖h∗1‖h∗0. This has

a complexity of about 2 · 264 evaluations of the compression function of
GOST.

2. Now we have to find two message blocks Mr+2 and M∗
r+2 such that Hr+2 =

H∗
r+2. This can be done similar as constructing a semi-free-start collision

in the compression function of GOST (see Section 4.4.1). First, we choose
a random value for c in (4.28) and construct 296 message blocks Mt+2,
where x0 is equal. Second, we construct 296 message blocks M∗

t+2, where
x∗0 = x0. To guarantee that x0 = x∗0 we have to adjust c∗ in (4.28) such
that the following equation holds:

x0 = x∗0 = y∗0 ⊕ z∗0 ⊕ h∗0 = c∗ ⊕ h∗0.

By applying a meet-in-the-middle attack we will find two message blocks
Mr+2 and M∗

r+2 which produce the same chaining variables (Hr+2 =
H∗

r+2). This step of the attack has a complexity of 2 · 296 evaluations
of the compression function of GOST.

3. Once we have constructed a collision in the iterative part (chaining vari-
ables), we have to construct a collision in the checksum as well. Therefore,
we proceed as described in Section 4.4.2. By generating a 2512 collision
and applying a generalized birthday attack with ` = 8 we can construct a
collision in the checksum of GOST with a complexity of 2105 compression
function evaluations and memory requirements of 270 bytes.

Hence, we can construct meaningful collisions, i.e. collisions in the chosen-prefix
setting, for the GOST hash function with a complexity of about 2105 compression
function evaluations.

40 Chapter 4. Cryptanalysis of the GOST Hash Function

4.5 Preimage Attack

In this section, we present two preimage attacks on the GOST hash function.
First, we show how to construct preimage for the GOST hash function by ex-
ploiting the internal structure of the compression function. The attack has a
complexity of about 2225 compression function evaluations. Second, we show
how the preimage attack can be improved by additionally exploiting weaknesses
in the GOST block cipher. The improved preimage attack has a complexity of
2192 compression function evaluations. Both attacks are based on the fact that
one can find preimages for the compression function of GOST faster than brute
force search. In the following, we describe both preimage attacks in detail.

4.5.1 Attack independent of the GOST Block Cipher

In this section, we describe a preimage attack on the GOST hash function. By
exploiting the structure of the compression function, we first construct a preim-
age for the compression function of GOST. Then this attack on the compression
function of GOST is extended to a preimage attack on the hash function. The
attack has a complexity of about 2225 compression function evaluations. The
attack is a structural attack in the sense that it is independent of the block
cipher GOST.

Preimage for the Compression Function

The attack is very similar to the free-start collision attack on the compres-
sion function of GOST described in Section 4.4.1. In the preimage attack
on the compression function, we have to find inputs (Hj−1,Mj), such that
f(Hj−1,Mj) = Hj for the a given value Hj . It is important to note that the
value of Hj determines x3, . . . , x0, since X = ψ−74(Hj). The attack can be
summarized as follows.

1. Choose random values for b0, b1, b2, b3 and a. This determines k0 and h0,
see Section 4.4.1.

2. Compute s0 = E(k0, h0) and adjust c correspondingly such that

x0 = y0 ⊕ z0 ⊕ s0 = c⊕ s0

holds with X = ψ−74(Hj).

3. Solve the set of 6 · 64 linear equations over F2 to obtain 2128 pairs
(Hr

j−1,M
r
j) for which x0 is correct.

4. For each pair compute X and check if x3, x2 and x1 are correct. This
holds with a probability of 2−192. Thus, after testing all 2128 pairs, we will
find a correct pair with a probability of 2−192 · 2128 = 2−64. Therefore, we
have to repeat the attack about 264 times for different choices of b0, b1, b2,
b3 and a to find a preimage for the compression function of GOST.

4.5. Preimage Attack 41

Hence, we can construct a preimage for the compression function of GOST with
a complexity of about 2192 compression function evaluations.

Extending the Attack to the Hash Function

As we will show in the following, we can extend the preimage attack on the
compression function to a preimage attack for the GOST hash function with
a complexity of about 2225 compression function evaluations. The preimage
consists of 257 message blocks, i.e. M = M1‖ · · · ‖M257. The attack consists of
four steps as also shown in Figure 4.6.

tm

258257256

f f f f

1

256
f

256 257

256

256

1

STEP 1 STEP 2STEP 3

f f f f

1

256
f

2 t

256

256

STEP 4

Figure 4.6: Outline of the preimage attack on GOST.

STEP 1: Multicollisions for GOST. For the preimage attack on GOST,
we first construct a 2256 collision. This means, we have 2256 messages

M∗ = Mr1
1 ‖M

r2
2 ‖ · · · ‖M

r256
256

for r1, r2, . . . , r256 ∈ {1, 2} consisting of 256 blocks that all lead to the same hash
value H256. This results in a complexity of about 256 · 2128 = 2136 evaluations
of the compression function of GOST. Furthermore, the memory requirement
is about 2 · 256 message blocks, i.e. we need to store 214 bytes. With these
multicollisions, we are able to construct the needed value of Σm in STEP 4 of
the attack (where the superscript m stands for ‘multicollision’).

STEP 2: Preimages for the Last Iteration. We construct 232 preimages
for the last iteration of GOST. For the given h, we proceed as described in the
previous section to construct a list L that consists of 232 pairs (H258,Σt) (where
the superscript t stands for ‘target’). Constructing the list L has a complexity
of about 232 · 2192 = 2224 evaluations of the compression function of GOST. The
memory requirements in this step come from the storage of 232 pairs (Hj−1,Mj),
i.e. we need to store 232 512-bit values or 238 bytes.

42 Chapter 4. Cryptanalysis of the GOST Hash Function

STEP 3: Preimages Including the Length Encoding. In this step, we
have to find a message block M257 such that for the given H256 determined in
STEP 1, and for |M | determined by our assumption that we want to construct
preimages consisting of 257 message blocks, we find a H258 that is also contained
in the list L constructed in STEP 2. Note that since we want to construct a
message that is a multiple of 256 bits, we choose M257 to be a full message block
such that no padding is needed. We proceed as follows. Choose an arbitrary
message block M257 and compute H258 as follows:

H257 = f(H256,M257),
H258 = f(H257, |M |),

where |M | = (256 + 1) · 256. Then we check if the resulting value H258 is also
in the list L. Since there are 232 entries in L, we will find the right M257 with a
probability of 2−256 · 232 = 2−224. Hence, after repeating this step of the attack
about 2224 times, we will find an M257 and a corresponding H258 that is also
contained in the list L. Hence, this step of the attack requires 2225 evaluations
of the compression function. Once we have found an appropriate M257, also the
value Σm is determined: Σm = Σt �M257.

STEP 4: Constructing Σm. In STEP 1, we constructed a 2256 collision in
the first 256 iterations of the hash function. From this set of messages that all
lead to the same H256, we now have to find a message

M∗ = Mr1
1 ‖M

r2
2 ‖ · · · ‖M

r256
256

for r1, r2, . . . , r256 ∈ {1, 2} that leads to the value of Σm = Σt �M257. This can
easily done by applying a meet-in-the-middle attack.

1. Save all values for

Σ1 = Mr1
1 �Mr2

2 � · · ·�Mr128
128

in the list L. Note that we have in total 2128 values in L.

2. Compute
Σ2 = Mr129

129 �Mr130
130 � · · ·�Mr256

256

and check if Σm � Σ2 is in the list L.

After testing all 2128 values, we expect to find a matching entry in the list
L and hence a message

M∗ = Mr1
1 ‖M

r2
2 ‖ · · · ‖M

r256
256

that leads to Σm = Σt �M257. This step of the attack has a complexity
of 2128 and a memory requirement of 2128 · 25 = 2133 bytes.

Once we have found M∗, we found a preimage for GOST consisting of 256+1
message blocks, namely M∗‖M257.

4.5. Preimage Attack 43

The Attack Complexity

The complexity of the preimage attack is determined by the computational effort
of STEP 2 and STEP 3, i.e. a preimage of h can be found in about 2225 +2224 ≈
2225 evaluations of the compression function. The memory requirements for the
preimage attack are determined by finding M∗ in STEP 4, since we need to store
2133 bytes for the standard meet-in-the-middle attack. Due to the high memory
requirements of STEP 4, one could see this part as the bottleneck of the attack.
However, the memory requirements of STEP 4 can be significantly reduced by
applying a memory-less variant of the meet-in-the-middle attack introduced by
Quisquater and Delescaille in [127].

4.5.2 Attack Exploiting Weaknesses in the Block Cipher

In this section, we show how the preimage attack on the GOST hash function
can be improved by additionally exploiting the internal structure of the GOST
block cipher. The improved preimage attack on the GOST hash function has
a complexity of about 2192 compression function evaluations. Before describing
the attack, we will first show how to construct preimages for the compression
function of GOST. Based on this attack we then present the preimage attack for
the GOST hash function.

Preimage for the Compression Function

The attack is very similar to the semi-free-start collision attack on the compres-
sion function of GOST in Section 4.4.1. In the attack, we have to find a message
block Mj , such that f(Hj−1,Mj) = Hj for the given values Hj−1 and Hj . Note
that the value of Hj determines x3, . . . , x0, since X = ψ−74(Hj). Furthermore,
assume that h0 (in Hj−1 = h3‖ · · · ‖h0) is symmetric. Then the attack can be
summarized as follows.

1. Since we will construct fixed-points for the GOST block cipher such that
s0 = E(k0, h0) = h0, we have to adjust c in (4.28) such that

x0 = y0 ⊕ z0 ⊕ h0 = c⊕ h0

holds with X = ψ−74(Hj). Once c is fixed, this also determines d in (4.30).

2. Choose a random value for d1 (this also determines d2 = d⊕d1) and apply
a meet-in-the-middle attack to obtain 264 message blocks Mr

j for which x0

is correct. Note that this step of the attack has memory requirements of
270 bytes.

3. For each message block compute X and check if x3, x2, and x1 are correct.
This holds with a probability of 2−192. Thus, after testing all 264 message
blocks, we will find a correct message block with a probability of 2−192 ·
264 = 2−128. Note that we can repeat the attack about 264 times for
different choices of d1.

44 Chapter 4. Cryptanalysis of the GOST Hash Function

Hence, we will find a preimage for the compression function of GOST with a
probability of about 2−64 and a complexity of about 2128 evaluations of the
compression function of GOST and memory requirements of 270 bytes.

Extending the Attack to the Hash Function

Similar as in Section 4.5.1 we can turn the preimage attack on the compression
function into a preimage attack on the hash function by combining a multicolli-
sion attack and a generic meet-in-the-middle attack. The attack has a complex-
ity of about 2192 evaluations of the compression function of GOST. Again, the
preimage consists of 257 message blocks, i.e. M = M1‖ · · · ‖M257. The preimage
attack consists of four steps as also shown in Figure 4.7.

tm

258257256

f f f f

1

256
f

256 257

256

256

1

STEP 1 STEP 3STEP 2

f f f f

1

256
f

2 t

256

256

STEP 4

Figure 4.7: Outline of the improved preimage attack on GOST.

STEP 1: Multicollisions for GOST. This step of the attack is the same
as described in Section 4.5.1. By using multicollisions, we can construct 2256

messages which lead all to the same value of H256 but different values of Σm.
This will be needed in STEP 4 of the attack.

STEP 2: Constructing H258 Including the Length Encoding. In this
step, we have to find a message block M257 such that for the given H256 deter-
mined in STEP 1, and for |M | determined by our assumption that we want
to construct preimages consisting of 257 message blocks, we find a H258 =
h3‖ · · · ‖h0 where h0 is symmetric. Again, we choose M257 to be a full mes-
sage block that no padding is needed. We choose an arbitrary message block
M257 and compute H258 as follows:

H257 = f(H256,M257),
H258 = f(H257, |M |),

where |M | = (256 + 1) · 256. Then we check if h0 in the resulting value H258

is symmetric. This has a probability of 2−32. Hence, this step of the attack
requires 2 · 232 evaluations of the compression function of GOST.

4.6. Summary 45

STEP 3: Preimages for the Last Iteration. To construct a preimage for
the last iteration of GOST we proceed as described in the previous section.
Since h0 in H258 is symmetric, we will find a preimage for the last iteration of
GOST with a probability of 2−64 (and a complexity of about 2128). Therefore,
we have to repeat this step of the attack about 264 times for different values of
H258 (where h0 is symmetric) to find a preimage for the last iteration. Hence,
this step of the attack has a complexity of about 264 · (2 · 232 + 2128) ≈ 2192

compression function evaluations. Once we have found a preimage for the last
iteration, also the value Σm is determined, since Σm = Σt �M257.

STEP 4: Constructing Σm. To find the message M∗ (out of 2256 candidates
from STEP 1) leading to the correct value of Σm = Σt �M257 we use a generic
meet-in-the-middle attack. This step of the attack is the same as described in
Section 4.5.1.

The Attack Complexity

The complexity of the preimage attack is determined by the computational effort
of STEP 2 and STEP 3, i.e. a preimage of h can be found in about 2192 evalu-
ations of the compression function. The memory requirements for the preimage
attack are dominated by STEP 3. Hence, a preimage can be constructed for the
GOST hash function with a complexity of 2192 evaluations of the compression
function and memory requirements of about 270 bytes.

4.5.3 A Remark on Second Preimages

Note that the presented preimage attack on GOST also implies a second preim-
age attack. In this case, we are not given only the hash value h but also a
message M that results in this hash value. We can construct for any given
message a second preimage in the same way as we construct preimages. The
difference is, that the second preimage will always consist of at least 257 mes-
sage blocks. Thus, we can construct a second preimage for any message M (of
arbitrary length) with a complexity of about 2225 and 2192 evaluations of the
compression function, respectively.

4.6 Summary

In this chapter, we have presented a collision attack and a preimage attack on
the GOST hash function with a complexity of about 2105 and 2192 compression
function evaluations. Both the collision and the preimage attack are based on
weaknesses in the GOST block cipher, namely fixed-points can be constructed
efficiently for plaintexts of a specific structure. The internal structure of the com-
pression function allows to construct free-start and semi-free-start collisions with
a complexity of about 296 evaluations of the compression function. This alone
would not render the hash function insecure. The fact that we can construct

46 Chapter 4. Cryptanalysis of the GOST Hash Function

multicollisions for any iterated hash function including the GOST hash func-
tion and the possibility of applying a (generalized) birthday attack to construct
also a collision in the checksum make the collision attack on the hash function
possible. Furthermore, the generic nature of the attack allows us to construct
meaningful collisions, i.e. collisions in the chosen-prefix setting, with the same
complexity. In a similar way as we construct collisions for the hash function, we
can construct preimages for the hash function. We have shown how the struc-
ture of the compression function of GOST can be exploited to find preimages for
the GOST hash function with a complexity of about 2225 compression function
evaluations. The attack is a structural attack in the sense that it is independent
of the underlying block cipher GOST. By exploiting structural weaknesses in
the GOST block cipher this complexity can be improved significantly, resulting
in an attack complexity of about 2192 compression function evaluations. Even
though the complexities of the attacks presented in this chapter are far from
being practical, they point out weaknesses in the design principles of the hash
function GOST.

5
Cryptanalysis of the Hash Functions

RIPEMD-128 and RIPEMD-160

In this chapter, we will present a detailed security analysis of the hash functions
RIPEMD-128 and RIPEMD-160 with respect to collision resistance. Both are
iterated hash functions that process message blocks of 512 bits and produce a
128-bit and 160-bit hash value, respectively. The hash functions were proposed
by Dobbertin et al. in 1996 and were standardized by ISO/IEC in 1997. As a
part of the ISO/IEC 10118-3 standard on dedicated hash function [55] they are
used in several applications and are part of many other standards, e.g. OpenSSL,
OpenPGP. Furthermore, RIPEMD-160 is often recommended as an alternative
to SHA-1.

However, based on the similar design of RIPEMD-128 and RIPEMD-160 with
MD5, SHA-1, and their predecessor RIPEMD, one might doubt the security of
these hash functions. Therefore, we investigate in this chapter the impact of ex-
isting attack methods on the MD4-family of hash functions on RIPEMD-128 and
RIPEMD-160. To analyze the hash functions, we extend existing approaches and
use recent techniques in the cryptanalysis of hash functions. While RIPEMD-128
and RIPEMD-160 reduced to 3 (out of 4 and 5) rounds are vulnerable to the
attack, it is not feasible for full hash functions. Furthermore, we present an
analytical attack on a step-reduced variant of the RIPEMD-160 hash function.
However, no attack has been found for the original RIPEMD-160 hash function.
In summary, we can state that RIPEMD-128 and RIPEMD-160 seem to be se-
cure against this kind of attacks. The results of this chapter have been published
in [94].

47

48 Chapter 5. Cryptanalysis of RIPEMD-128 and RIPEMD-160

5.1 Description of the Hash Functions

The RIPEMD-128 and RIPEMD-160 hash function were designed by Dobbertin,
Bosselaers and Preneel in [40] as a replacement for RIPEMD. They are iterative
hash functions based on the Merkle-Damg̊ard design principle [24, 111]. Both
hash functions process 512-bit input message blocks and produce a 160-bit and
128-bit hash value, respectively. To guarantee that the message length is a
multiple of 512 bits, an unambiguous padding method is applied.

Like their predecessor RIPEMD, the compression function of RIPEMD-128
and RIPEMD-160 consist of two parallel streams. In each stream the state vari-
ables are updated corresponding to the message block Mj and combined with the
previous chaining value Hj−1 after the last step, depicted in Figure 5.1. While
RIPEMD consists of two parallel streams of MD4, the two streams are designed
differently in the case of RIPEMD-128 and RIPEMD-160. In the following, we
describe both hash functions in detail.

Hj-1

Mj Mj

Hj

Figure 5.1: Structure of the RIPEMD-128 and RIPEMD-160 compression function.

5.1.1 RIPEMD-160

In this section, we briefly describe the RIPEMD-160 hash function. It consists
of two parts: the state update transformation and the message expansion. For
a detailed description we refer to [40].

State Update Transformation

The state update transformation starts from a (fixed) initial value IV of five
32-bit words and updates them in 5 rounds of 16 steps each. In each step
one message word is used to update the five state variables A, B, C, D, and E.
Figure 5.2 shows one step of the state update transformation of the RIPEMD-160
hash function.

5.1. Description of the Hash Functions 49

Ai Bi Ci Di Ei

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

f

Ki

Wi

<<< 10<<< S

Figure 5.2: The step function of RIPEMD-160.

The function f is different in each round. fr is used for the r-th round in the
left stream, f6−r is used for the r-th round in the right stream (r = 1, . . . , 5):

f1(B,C,D) = B ⊕ C ⊕D,

f2(B,C,D) = (B ∧ C) ∨ (¬B ∧D),
f3(B,C,D) = (B ∨ ¬C)⊕D,

f4(B,C,D) = (B ∧D) ∨ (C ∧ ¬D),
f5(B,C,D) = B ⊕ (C ∨ ¬D).

A step constantKr is added in every step; the constant is different for each round
and for each stream. For the actual values of the constants we refer to [40], since
we do not need them in the analysis. For both streams the following rotation
values s are used:

message word mi

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Round 1 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8
Round 2 12 13 11 15 6 9 9 7 12 15 11 13 7 8 7 7
Round 3 13 15 14 11 7 7 6 8 13 14 13 12 5 5 6 9
Round 4 14 11 12 14 8 6 5 5 15 12 15 14 9 9 8 6
Round 5 15 12 13 13 9 5 8 6 14 11 12 11 8 6 5 5

After the last step of the state update transformation, the initial values
A0, . . . , E0 and the output values of the last step of the left stream A80, . . . , E80

and the last step of the right stream A′
80, . . . , E

′
80 are combined, resulting in the

final value of one iteration (feed-forward). The result is the final hash value or
the initial value for the next message block:

A81 = B0 � C80 �D′
80,

B81 = C0 �D80 � E′
80,

C81 = D0 � E80 �A′
80,

D81 = E0 �A80 �B′
80,

E81 = A0 �B80 � C ′
80.

50 Chapter 5. Cryptanalysis of RIPEMD-128 and RIPEMD-160

Message Expansion

The message expansion of RIPEMD-160 is a permutation of the 16 message
words in each round. Different permutations are used for the left and the right
stream.

Stream Round 1 Round 2 Round 3 Round 4 Round 5
left id p p2 p3 p4

right π pπ p2π p3π p4π

The permutation π is defined by π(i) = 9i+ 5 (mod 16) and p is defined as
shown below:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p(i) 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8

5.1.2 RIPEMD-128

RIPEMD-128 was intended as a drop-in replacement for RIPEMD, which also
has a hash size of 128 bits. The design of RIPEMD-128 is very similar to
RIPEMD-160. In the following, we describe the message expansion and state
update transformation of RIPEMD-128. For a detailed description, we again
refer to [40].

State Update Transformation

The state update transformation starts from a (fixed) initial value IV of four 32-
bit words and updates them in 4 rounds of 16 steps. In each round one message
word is used to update the four state variables A,B,C,D. Figure 5.3 shows one
step of the state update transformation of RIPEMD-128.

Ai Bi Ci Di

Ai+1 Bi+1 Ci+1 Di+1

f

Ki

Wi

<<< S

Figure 5.3: The step function of RIPEMD-128.

Note that in RIPEMD-128 the same rotation values and Boolean functions
are used as in RIPEMD-160. Only the order of the Boolean functions fr has
changed. fr is used for the r-th round in the left stream, f5−r is used for the
r-th round in the right stream (r = 1, . . . , 4).

5.2. Attacks on the Predecessor RIPEMD 51

After the last step of the state update transformation, the initial values
A0, . . . , D0 and the output values of the left stream A64, . . . , D64 and the right
stream A′

64, . . . , D
′
64 are combined, resulting in the final value of one iteration.

The result is the final hash value or the initial value for the next message block:

A65 = B0 � C64 �D′
64,

B65 = C0 �D64 �A′
64,

C65 = D0 �A64 �B′
64,

D65 = A0 �B64 � C ′
64.

Message Expansion

The message expansion of RIPEMD-128 is a permutation of the message words
in each round. The same permutations are used as in the first 4 rounds of
RIPEMD-160.

5.1.3 The Extensions RIPEMD-256 and RIPEMD-320

The two extensions RIPEMD-256 and RIPEMD-320 are designed for applica-
tions that require a longer hash value without needing a larger security level than
RIPEMD-128 and RIPEMD-160, respectively. The hash functions RIPEMD-256
and RIPEMD-320 are constructed from RIPEMD-128 and RIPEMD-160 by ini-
tializing the two parallel streams with different initial values and omitting the
combination of the two streams after the last step of the state update trans-
formation. Furthermore, some internal state variables are exchanged between
the two parallel streams after each round to make the two streams depended
from each other. Otherwise, the hash functions would be vulnerable to Joux’s
multicollision attack described in Section 3.2.2. For a detailed description of
RIPEMD-256 and RIPEMD-320 we refer to [17].

5.2 Attacks on the Predecessor RIPEMD

In this section, we will discuss the results in the cryptanalysis of RIPEMD, the
predecessor of RIPEMD-128 and RIPEMD-160. We will describe the attack of
Dobbertin and Wang et al. and discuss why these attacks are not applicable to
the hash functions RIPEMD-128 and RIPEMD-160. A detailed description of
both attacks is given in [25].

5.2.1 Attack of Dobbertin

In 1997, Dobbertin presented an attack on RIPEMD reduced to 2 (out of 3)
rounds with complexity about 231 hash computations [37]. The idea of the
attack is to find an inner collision for the compression function using a very
simple input differential pattern (having only a difference in one message word
mi). Hence, there are differences in the state variables after step i. Since mi

52 Chapter 5. Cryptanalysis of RIPEMD-128 and RIPEMD-160

has to be applied in the second round as well, it is chosen in such a way that the
differences in the state variables cancel out and the remaining steps are equal.
Once an inner collision has been found, the remaining free variables have to
be determined to meet the predefined chaining value (input of the compression
function) by computing backward from step i in both streams.

In the attack, Dobbertin used modular differences to describe the whole
hash function by a system of equations. In general, such a system is too large
to be solved, but Dobbertin used several constraints to significantly simplify the
system such that it becomes solvable in practice. In the attack, the fact that the
left and the right stream of RIPEMD are quite similar is exploited. A detailed
description of the attack is given in [37].

However, applying the attack to RIPEMD-128 and RIPEMD-160 is imprac-
tical. Due to the different permutation and rotation values used in the left and
the right stream in both RIPEMD-128 and RIPEMD-160 as well as the increased
number of rounds, the system of equations would be too large to be solvable in
practice.

5.2.2 Attack of Wang et al.

In 2004, Wang et al. presented collision attacks on MD4, MD5, and RIPEMD.
The attack on RIPEMD has a complexity of about 218 hash computations [148].
The idea of all attacks is to use differences in more than one message word to find
an inner collision within a few steps in the last round and then find a suitable
characteristic for the remaining steps. Hash functions with only 3 rounds seem
to be vulnerable to this method in general. Hash functions with more than 3
rounds can only be broken if it is possible to exploit weaknesses of the design [25].
For instance, in the case of RIPEMD, Wang et al. take advantage of the similar
design of the two streams of the hash function. Since the permutation and
rotation values are equal for both streams, it is sufficient to find a collision-
producing characteristic for one stream (3 rounds) and apply it simultaneously
to both streams. Nevertheless, the number of necessary conditions increases for
two streams. Hence, it is more likely to have contradicting conditions. In fact,
Wang et al. reported that among 30 selected collision-producing characteristics
only one can produce the real collision.

However, due to different permutation and rotation values in the left and the
right stream of RIPEMD-128 and RIPEMD-160 as well as the increased number
of rounds, this attack is not applicable.

5.3 The Attack Strategy

In the following, we will present the attack strategy against RIPEMD-128 and
RIPEMD-160 based on the results in cryptanalysis of SHA-0 and SHA-1. All
attacks on these hash functions use the same attack strategy.

1. Find a collision-producing characteristic that holds with high probability.

5.3. The Attack Strategy 53

2. Find values for the message bits such that the message follows the charac-
teristic.

There are several methods for finding a characteristic, i.e. the propagation of
input differences through the compression function of the hash function. In the
following, we will describe the method of Chabaud and Joux [22] and the method
of Wang et al. [152] which was used in their attacks on SHA-0 and SHA-1.

5.3.1 Method of Chabaud and Joux

In 1998, Chabaud and Joux presented an attack on the SHA-0 hash function [22].
In this attack a linearization of the hash function was used to obtain a character-
istic. Finding a collision in the linearized variant of hash function is not difficult
since it depends only on the differences in the message words. Hence, a collision-
producing characteristic can be found by solving a set of linear equations. The
probability that the characteristic holds in the original hash function is related
to the Hamming weight of the characteristic. In general, a characteristic with
low Hamming weight has a higher probability than one with a high Hamming
weight.

Remark 5.1. For the first steps, the probability of the characteristic is not im-
portant, since the conditions that have to be fulfilled such that the characteristic
holds in the original hash function can be easily fulfilled for these steps (cf. [22]).

5.3.2 Method of Wang et al.

Considering the results of Wang et al., it seems to be a good approach to use a
general (possibly non-linear) characteristic for the first 16 steps of hash function
and a characteristic that follows the linear approximation for the remaining
steps [152]. This is shown in Figure 5.4. For the remainder of this section the
first 16 steps are referred to as V1 and the remaining steps are referred to as V2.
The idea of this method is to maximize the probability of the linear characteristic
in V2 and to ignore the probability of the characteristic in V1. This is based on
the fact that the probability of V1 can be neglected (see Remark 5.1).

V2V1

16 801

Δ = 0 Δ = 0

Δ = 0Δ ≠ 0

collision

free-start collision

IV output

Figure 5.4: Attack method of Wang et al..

54 Chapter 5. Cryptanalysis of RIPEMD-128 and RIPEMD-160

Wang’s method to find a characteristic for the hash function can be summa-
rized as follows.

1. Find a linear characteristic with good probability resulting in a free-start
collision for V2.

2. Find a general characteristic for V1 to turn a free-start collision into a
collision.

Furthermore, Biham and Chen observed in [12] that a multi-block messages can
be used to turn near-collisions into collisions. Since near-collisions are easier to
find than collisions, we will use this observation in Section 5.4.1 to improve our
results.

5.4 Finding good Characteristics

In this section, we will show how to find characteristics for the RIPEMD-128
and RIPEMD-160 hash function that result in a low attack complexity. As
discussed in the previous section, finding a (linear) characteristic for V2 with
good probability is the most important part of the attack. Since in the first 16
steps (V1) all conditions imposed by the characteristic can be fulfilled by using
message modification techniques [150, 151] and/or neutral bits [12], the attack
complexity only depends on the probability of the characteristic in V2.

It is difficult to bound the number of conditions that have to be fulfilled in or-
der to guarantee that the message follows the characteristic in the not linearized
hash function. A commonly used approach is to take the Hamming weight of the
expanded message to approximate the number of conditions (attack complexity).
This approximation is useful for SHA-0 and SHA-1, but does not hold in the
case of RIPEMD-128 and RIPEMD-160. A property of the linearized variant of
these hash functions is that characteristics with very low Hamming weight in the
message can easily result in very high Hamming weights in the internal states
of the two parallel streams. Hence, to get a more accurate approximation of the
attack complexity the Hamming weight of the internal state variables has to be
considered as well. Converting the Hamming weights to numbers of conditions
is complicated by the following issues.

1. One equation may cover several conditions imposed on bits in identical
positions of several state variables.

2. One equation may cover conditions imposed on bits in neighboring posi-
tions of several state variables.

3. Conditions imposed on bits in the MSB position of a 32-bit word may be
fulfilled automatically, due to carry overflow effects.

4. Some conditions might be reworked to linear conditions involving only
message bits. Such conditions are easy to fulfill and do not contribute to
the probability of the characteristic.

5.4. Finding good Characteristics 55

A rough estimation of the number of conditions can be made by taking the Ham-
ming weight of the internal state variables. However, since only state variable B
is updated in each step, the Hamming weight of B can be used to estimate the
number of conditions of the linear characteristic. In the following, we will show
how to find linear characteristics with low Hamming weight in B.

5.4.1 Finding Linear Characteristics with low Hamming
Weight

In order to obtain linear characteristics with low Hamming weight for
RIPEMD-128 and RIPEMD-160 we use algorithms from coding theory as
it was done for SHA-1 in [123, 129]. Even if these algorithms are probabilistic
and do not guarantee to find the best linear characteristic, they are expected
to produce good results as they did in the case of SHA-1. In the following,
we only look at the Hamming weight of the internal state variable B in the
linear characteristic, since this is a good heuristic for its probability. Since the
step functions of RIPEMD-160 and RIPEMD-128 are quite similar to the step
function of SHA-1, we use the same heuristic as Wang et al. did for SHA-1.
To be more precise, we use 2−2.5·hw(B) to estimate the probability of the linear
characteristic. However, note that this is a quite optimistic method (for the
attacker) to estimate the probability of the linear characteristic and it might be
lower in practice.

Linear Characteristic in V1 and V2

In this section, we will give the Hamming weight of the codewords found when
using a linear characteristic in V1 and V2 as it was done by Chabaud and Joux in
the attack on SHA-0, see Section 5.3. In Table 5.1, the Hamming weight of the
codewords found for RIPEMD-160, RIPEMD-128, and round-reduced variants
are shown. Note that we only give the Hamming weight after step 16, since
the first 16 steps (V1) can be fulfilled by message modification techniques, and
only the probability of the linear characteristic in V2 is significant for the attack
complexity. As can bee seen in the table the Hamming weight of the codewords
found is too high for an attack on RIPEMD-160, RIPEMD-128 or round-reduced
variants. Note that the results are similar for RIPEMD-256 and RIPEMD-320
as can be seen in Table A.1 in Appendix A.

Since we assume that it might be possible to turn near-collisions into colli-
sions by using multi-block messages (see Section 5.3), we can improve the Ham-
ming weight of the codewords found and hence the probability of the linear
characteristic. For a near-collision, the condition of having zero differences after
the feed-forward can be ignored. The Hamming weight of the codewords found
are also shown in Table 5.1. Even though these Hamming weights are much
lower, they are still too high for an attack on RIPEMD-128, RIPEMD-160 or
round-reduced variants following the attack strategy of Chabaud and Joux.

56 Chapter 5. Cryptanalysis of RIPEMD-128 and RIPEMD-160

T
a
b
le

5
.1

:
H

a
m

m
in

g
w

eig
h
t

o
f
B

u
sin

g
a

lin
ea

r
ch

a
ra

cteristic
in

V
1

a
n
d

V
2 .

type
H

am
m

ing
w

eight
truncated

differences*
steps

stream

R
IP

E
M

D
-160

collision
1857

1344
16–80

both
near-collision

1839
832

16–80
both

collision
729

448
16–80

left
collision

734
608

16–80
right

collision
1348

1056
16–64

both
near-collision

1350
640

16–64
both

collision
494

320
16–64

left
collision

492
352

16–64
right

collision
853

384
16–48

both
near-collision

865
384

16–48
both

collision
247

128
16–48

left
collision

237
160

16–48
right

R
IP

E
M

D
-128

collision
1264

960
16–64

both
near-collision

1267
704

16–64
both

collision
402

256
16–64

left
collision

461
352

16–64
right

collision
776

640
16–48

both
near-collision

775
512

16–48
both

collision
182

96
16–48

left
collision

161
-

16–48
right

(*)R
esu

lts
a
ch

iev
ed

b
y

u
sin

g
a

tru
n
ca

ted
d
iff

eren
ces

a
s

d
escrib

ed
in

S
ectio

n
5
.4

.2
.

5.4. Finding good Characteristics 57

A General Characteristic in V1 and a Linear Characteristic in V2

Since we assume that we are able to turn a free-start collision into a collision
within V1 using a general (non-linear) characteristic (see Section 5.3), we can
extend the low-weight search to free-start collisions in V2. This increases the
search space significantly and leads to codewords with much lower Hamming
weight and hence to a lower attack complexity.

We want to note that constructing the general (non-linear) characteristic in
V1 is a non-trivial task. However, in [28] the authors describe a heuristic method
to find complex nonlinear characteristics for SHA-1 in an efficient way. Due to
the design similarities of RIPEMD-128, RIPEMD-160 and SHA-1, we assume
that this method can be adapted to RIPEMD-128 and RIPEMD-160. Therefore,
in this section we focus only on the search for a linear characteristic in V2 with a
high probability (low Hamming weights), since this determines the final attack
complexity.

Table 5.2 lists the Hamming weight of the codewords found for RIPEMD-128,
RIPEMD-160 and round-reduced variants. Note that this weight includes the
weight of variable B in the left and the right stream without considering the
weight of the first 16 steps. As can be seen in Table 5.2, we found a codeword
for RIPEMD-128 reduced to 3 rounds with weight 21, which might be low enough
for an attack following the attack strategy described in Section 5.3. Based on
the assumed heuristic, we estimate the final attack complexity to be 252.5. Since
the heuristic for the estimation of the probability of the linear characteristic is
quite optimistic (for the attacker), the final attack complexity might be higher in
practice. Note that the variant of the left and the right stream of RIPEMD-128
reduced to 3 rounds is very close to an MD4 computation. This explains the low
Hamming weight of the codewords found. The results of the left and the right
stream differ, because different permutations are used in the message expansion
for both streams. However, the Hamming weight of the found codewords is too
high for an attack on full RIPEMD-128 or round-reduced RIPEMD-160. Note
that the results are similar for RIPEMD-256 and RIPEMD-320 as can be seen
in Table A.2 in Appendix A.

These results can be further improved by extending the search to near-
collisions. In [150], Wang et al. show how this can be done for SHA-1 by using
2 message blocks. They use different characteristics in V1, but the same lin-
ear characteristic in V2 in both blocks. Note that due to the permutation of
the state variables of the left and the right stream and the initial value in the
feed-forward, we would need more message blocks to turn a near-collision into
a collision in the case of RIPEMD-128 and RIPEMD-160. While we need (at
most) 8 message blocks for RIPEMD-128, we need (at most) 10 message blocks
for RIPEMD-160. The results of the low-weight search are also shown in Ta-
ble 5.2. We found a codeword with weight of 11 for RIPEMD-128 reduced to 3
rounds and a codeword with weight 16 for RIPEMD-160 reduced to 3 rounds.
This implies that 3 rounds of RIPEMD-128 and RIPEMD-160 are vulnerable to
this kind of attack. Based on our heuristic, we estimate the attack complexity
for one message block to be 227.5 and 240, respectively. Again, note that this

58 Chapter 5. Cryptanalysis of RIPEMD-128 and RIPEMD-160

T
a
b
le

5
.2

:
H

a
m

m
in

g
w

eig
h
t

o
f
B

u
sin

g
a

g
en

era
l
(n

o
n
-lin

ea
r)

ch
a
ra

cteristic
in

V
1

a
n
d

a
lin

ea
r

ch
a
ra

cteristic
in

V
2 .

type
H

am
m

ing
w

eight
truncated

differences*
steps

stream

R
IP

E
M

D
-160

collision
1537

704
16–80

both
near-collision

776
544

16–80
both

collision
620

352
16–80

left
collision

635
352

16–80
right

collision
1007

384
16–64

both
near-collision

524
384

16–64
both

collision
377

192
16–64

left
collision

381
192

16–64
right

collision
466

256
16–48

both
near-collision

16
-

16–48
both

collision
23

-
16–48

left
collision

24
-

16–48
right

R
IP

E
M

D
-128

collision
564

448
16–64

both
near-collision

76
-

16–64
both

collision
26

-
16–64

left
collision

296
192

16–64
right

collision
21

-
16–48

both
near-collision

11
-

16–48
both

collision
7

-
16–48

left
collision

5
-

16–48
right

(*)R
esu

lts
a
ch

iev
ed

b
y

u
sin

g
a

tru
n
ca

ted
d
iff

eren
ces

a
s

d
escrib

ed
in

S
ectio

n
5
.4

.2
.

5.4. Finding good Characteristics 59

heuristic to estimate of the probability of the linear characteristic is quite opti-
mistic (for the attacker) and hence the final attack complexity might be much
higher in practice. However, considering the results (Hamming weight of the
codewords found) we conclude that RIPEMD-128 and RIPEMD-160 are secure
against this kind of attacks.

5.4.2 Improving the Search Algorithms

Considering the results in the previous section, the Hamming weight of the found
codewords for RIPEMD-128 and RIPEMD-160 is still too high for a reasonable
attack complexity. This has several reasons:

� The search space is very large and the problem of finding low-weight code-
words in a linear code is NP-hard.

� We do not know any lower bound for the Hamming weight in the linear
code defined by the linearized versions of the hash functions RIPEMD-128
and RIPEMD-160.

� The search algorithms are probabilistic and certain parameters need to
be tuned to optimize the performance. While there exist guidelines, which
values to chose for a random code [21], we do not know which values would
be optimal in the case of RIPEMD-128 and RIPEMD-160.

Therefore, we have to think about improvements of the probabilistic algo-
rithms. There are several possibilities to increase the speed (success probability
for finding a codeword with low Hamming weight) of the algorithms.

Optimization of the Algorithms/Implementation

Since these algorithms are well known and have been studied by many re-
searchers, we can assume that they are almost optimal in the general case (for a
random code). There is still space for some optimizations in the implementation
of the algorithms, but the speedup we can obtain is not significant enough.

Reducing the Search Space

Reducing the search space might be the best way to increase the speed of the
probabilistic algorithms we used in the analysis. Since the code describing the
linearized hash function is not a random code, its structure can be exploited to
reduce the search space, i.e. size of the generator matrix describing the linear
code. This method was successfully used for SHA-1. It was observed that dif-
ferences in the expanded message words and state variables occur in bands of
successive ones [129]. For RIPEMD-160, no structure in the low-weight code-
words could be found so far. Nevertheless, several methods can be applied to
reduce the size of the generator matrix and/or the search space of the algorithms.
Some of these methods are:

60 Chapter 5. Cryptanalysis of RIPEMD-128 and RIPEMD-160

1. Restricting the analysis to the left (right) stream of the hash function.

2. Looking at round-reduced variants of RIPEMD-160.

3. Using other linearizations for non-linear functions f2, f3, f4 and f5.

4. Forcing zero bits (like it is done in [123] for SHA-1). In detail the search
space is reduced by setting certain bits (differences) to zero before doing
the low-weight search.

5. Reducing the search space by using truncated differences. The main idea
is to reduce the search space by looking at words instead of bits. In detail,
we only care if there are differences in the word or not. This reduces the
number of columns and rows of the matrix by a factor of 32.

Some of the methods described in this section substantially increase the qual-
ity of the results. While the improvements are marginal for reducing the search
space by forcing (random) zero bits in the linear code describing the hash func-
tion or using other linearizations for f2, f3, f4 and f5, the other methods worked
quite well as shown in Table 5.2. On the one hand, codewords with lower Ham-
ming weight can be found by reducing the search space but on the other hand
the Hamming weight of the codewords found is still too high for an attack on full
RIPEMD-128 and RIPEMD-160 or variants with more than 3 rounds. There-
fore, we need other (analytical) methods to improve the results.

5.5 A Variant of RIPEMD-160

In this section, we will describe an approach using analytical methods to find a
characteristic with low Hamming weight through the RIPEMD-160 hash func-
tion. Since this is very difficult for the original hash function, we concentrate
the analysis on a variant of RIPEMD-160, where the rotation of state variable
C is removed, as shown in Figure 5.5. For this variant we can find a collision for
more than 3 rounds (55 steps and 60 steps) using fixed-points.

Ki

Wi

<<< S

Ai Bi Ci Di Ei

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

f

Figure 5.5: A fixed-point for one step of the RIPEMD-160 variant.

5.5. A Variant of RIPEMD-160 61

5.5.1 Fixed-Points in the RIPEMD-160 Variant

By removing the rotation of register C, it is possible to construct fixed-points
in one and two steps of the hash function, where a fixed-point is defined as
a fixed differential pattern in a single step or two steps of the RIPEMD-160
variant. In Figure 5.5, a fixed-point for one step of the RIPEMD-160 variant
is shown, while Figure 5.6 shows fixed-points for two steps of the RIPEMD-160
variant. The gray lines and shadowed rectangles indicate a difference in the MSB.
These fixed-points can be used to produce a collision in the RIPEMD-160 variant
reduced to 55 steps with a complexity of 278 and 60 steps with a complexity
of 275, respectively. In a similar way, a free-start collision can be found in
the corresponding RIPEMD-320 variant reduced to 55 steps (4 rounds) with
complexity of 278.

Note that in [33] a similar attack has been applied to MD5 and the designers
of RIPEMD-160 included the rotation of state variable C to prevent this kind
of attack.

Ai Bi Ci Di Ei

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

f

Ki

Wi

<<< S

Ai+2 Bi+2 Ci+2 Di+2 Ei+2

f

Ki+1

Wi+1

<<< S

Ai Bi Ci Di Ei

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

f

Ki

Wi

<<< S

Ai+2 Bi+2 Ci+2 Di+2 Ei+2

f

Ki+1

Wi+1

<<< S

Figure 5.6: Two fixed-points for two steps of the RIPEMD-160 variant.

From a Fixed-Point to an Attack

In the analysis, we again assume that the conditions for the first 16 steps (V1) of
the hash function can be fulfilled by message modification techniques and we can
construct differences in the MSB in arbitrary state variables of the left and the
right stream after V1 using a general (non-linear) characteristic. More precisely,
if we have differences in the MSB in all state variables of both streams at the first
step of V2 then we can use the fixed-point shown in Figure 5.5 for the remaining
64 steps in V2. The output difference of f with input differences δ = (1, 1, 1) is

62 Chapter 5. Cryptanalysis of RIPEMD-128 and RIPEMD-160

1 or 0, depending on the values of the state variables. Since the difference in the
MSB of Ai can be canceled out by f , the difference in Ei propagates to Bi+1.
This results in a collision after the feed-forward of the RIPEMD-160 variant.
By choosing the differences in the MSB, we reduce the complexity of the attack
significantly, since the modular addition behaves linearly for differences in the
MSB. So only the conditions for the nonlinear functions f2, f3, f4, f5 have to be
considered for the attack complexity. In detail, one condition has to be fulfilled
for the nonlinear functions fj in each step of the left and the right stream in V2.

To cancel out a difference in the message word mi, we exploit the properties
of the functions fj . The output of the functions f2, f3, f4 and f5 is either
1 or 0 with probability 1/2 for an input difference δ = (1, 1, 1), which allows
us to cancel out differences in the message words in round 2, 3, and 4 of the
RIPEMD-160 variant. In the first round of the left stream and in the last
round of the right stream, the linear function f1 is used, making it impossible to
cancel out a difference there, because f1 flips with probability 1 for δ = (1, 1, 1).
Since there are differences in all message words in the MSB, f2, f3, f4 have to
be blocked in each round of V2. Hence, we have an attack on the RIPEMD-160
variant reduced to 55 steps. We derive the following set of conditions for the
right and the left stream. Note that the conditions are equal for the right and
the left stream:

Bi[31] = ¬Ci[31] = Di[31] i ∈ {16}
Bi[31] = ¬Bi−1[31] i ∈ {17, . . . , 54}

This results in a set of 78 conditions (39 for each stream). Satisfying all these
conditions with the most naive method (random trials), we get a complexity
close to 278 hash computations. Note that no conditions are needed for the
modular addition in the feed-forward, since we have only differences in the MSB
of all state variables of the left and the right stream.

In a similar way, we can construct a free-start collision in the corresponding
RIPEMD-320 variant reduced to 55 steps with a complexity of at most 278 hash
computations. Note that there are no differences in the message words and there
are differences in the MSB of all words in the chaining value. Since we assume
that we can fulfill the first 16 steps of the right stream with message modification
(no conditions have to be fulfilled for the first 16 steps in the left stream), the
attack complexity is 278 for the RIPEMD-320 variant reduced to 55 steps. The
set of sufficient conditions for all 5 rounds is given below.

� Left Stream:

Bi[31] = Ci[31] = Di[31] = 1 i ∈ {16}
Bi[31] = Bi−1[31] i ∈ {17, . . . , 79}

� Right Stream:

Bi[31] = Ci[31] = Di[31] = 1 i ∈ {1}
Bi[31] = Bi−1[31] i ∈ {2, . . . , 63}

5.5. A Variant of RIPEMD-160 63

Below, a message and the chaining value is given for a free-start collision in
the first 2 rounds of the RIPEMD-320 variant, which has a complexity of 232

hash computations.

Table 5.3: Message block leading to a free-start collision in the first 2 rounds of the
RIPEMD-320 variant.

i message block M
0-3 1330C95E D6E82F5D 1902E1F8 040C42B4
4-7 F51D77D2 B8EF7ED0 D075FEE3 1CB083FD
8-11 37246C9D 72205B19 703A3DCD E7E5AFFD
12-15 FD9D1E57 4C64C76F 4B424959 56B11DB4

Table 5.4: Chaining value leading to a free-start collision in the first 2 rounds of the
RIPEMD-320 variant.

i chaining value
0-4 A99DA4B3 257D7E0C 56D85144 8F93F035 79096694
5-9 58EEE5C0 AA910BAB BD91DCA9 8D5BE12A 14C72EF0

5.5.2 Extending the Attack to more Steps

The attack can be further improved by using one of the fixed-points shown in
Figure 5.6 and by choosing differences in the MSB of the message words mi, for
i = 1, 4, 6, 7, 10, 11, 12, 15. Using one of these fixed-points, we can construct an
attack on the RIPEMD-160 variant reduced to 60 steps with complexity close
to 275 hash computations. By choosing differences in the MSB of the message
words mi, for i = 1, 4, 6, 7, 10, 11, 12, 15, only 8 conditions are needed instead of
16 in round 3 of the left and the right stream. This is because the differences
in the message words are chosen in such a way that only the even or odd words
of the left and the right stream have differences in the MSB. Hence, the total
number of conditions is reduced from 88 to 72. In more detail, if f3 flips for
an input δ = (0, 1, 0), then it also flips in the next step with input δ = (1, 0, 1).
Hence, the characteristic in round has a probability of 2−8 and not 2−16 as one
might expect. Due to the permutation of the chaining variables of the left and
right stream before the feed-forward of the RIPEMD-160 variant we only get a
near-collision after the feed-forward. However, by using 5 message blocks we can
turn the near-collision into a collision with a complexity of about 5 · 272 ≈ 275

hash computations. Since all the differences in the state variables are in the
MSB, no additional conditions have to be fulfilled for the feed-forward. Note
that the same linear characteristic is used for each message block and only the
general (non-linear) characteristic in V1 is different for each message block. We
derive the following set of equations for the linear characteristic in V2 of the
right and the left stream of the RIPEMD-160 variant.

64 Chapter 5. Cryptanalysis of RIPEMD-128 and RIPEMD-160

� Left Stream:

Bi[31] = 0 i ∈ {18, 26, 28, 48, 52, 56, 58}
Bi[31] = 1 i ∈ {16, 20, 22, 24, 30, 32, 34, 36,

38, 40, 42, 44, 46, 50, 54}
Bi[31] = Bi−2[31] i ∈ {19, 23, 25, 31, 49, 53, 55, 57}
Bi[31] = ¬Bi−2[31] i ∈ {17, 21, 27, 29, 51, 59}

� Right Stream:

Bi[31] = 0 i ∈ {14, 26, 28, 32, 34, 36, 38,
40, 42, 44, 46, 48, 52, 56}

Bi[31] = 1 i ∈ {16, 18, 20, 22, 24, 50, 54}
Bi[31] = Bi−2[31] i ∈ {17, 19, 23, 25, 29, 49, 53, 55, 57}
Bi[31] = ¬Bi−2[31] i ∈ {21, 27, 51, 59}
Bi[31] = Bi−1[31]⊕Bi−2[31] i ∈ {31}

5.5.3 Attacks on the RIPEMD-160 Variant Using Fixed-
Points

Using the fixed-points for the RIPEMD-160 variant, we can construct collisions
for 55 and 60 steps with a complexity of about 278 and 275 hash computations,
respectively. In both attacks we assume that a general (non-linear) characteristic
can be found for V1 (first round) to obtain the desired target differences in the
MSB of the state variables at the input of the first step of V2 in both streams.
The attack can be summarized as follows.

1. Choose differences in the MSB in message words mi as described in the
previous sections.

2. Use a general characteristic to construct differences in the MSB in the
state variables at the input of the first step in V2 (to match the desired
target difference) and fulfill the conditions for the first 16 steps (V1) using
message modification techniques and neutral bits. Note that if more than
one message block is needed to produce a collision then this step has to be
repeated for each block.

3. Construct the set of conditions for the linear characteristic in V2 corre-
sponding to the chosen differences in the message words mi.

4. Fulfill the conditions for V2 by random trials. The final attack complexity
is related to the number of conditions in V2.

5.6. Summary 65

By using one message block and the fixed point shown in Figure 5.5, we can
construct a collision for the RIPEMD-160 variant reduced to 55 steps with com-
plexity 278. Using 5 message blocks the attack can be extended to 60 steps with
a complexity of about 275 using one of the fixed-points shown in Figure 5.6. Even
though we cannot extend this attack to the full RIPEMD-160 variant, we con-
jecture that the rotation of state variable C in the state update transformation
enhances the security of RIPEMD-160.

5.6 Summary

In this chapter, we have analyzed the security of RIPEMD-128 and RIPEMD-160
with respect to their collision resistance based on results in the cryptanalysis
of SHA-0 and SHA-1. We combined methods from coding theory with attack
techniques which were successfully used in the attack on SHA-1. While RIPEMD
and RIPEMD-128 and RIPEMD-160 reduced to 3 rounds are vulnerable to this
kind of attack, the attack is not suitable for full RIPEMD-128 and RIPEMD-160.

Furthermore, we analyzed a variant of RIPEMD-160, where the rotation of
state variable C was removed. We show that for this variant an attack on 55 and
60 steps is possible using fixed-points with a complexity of about 278 and 275,
respectively. Hence, we conclude that the rotation of state variable C enhances
the security level of RIPEMD-160.

We found no attack on the original RIPEMD-160 hash function including
all 5 rounds. In summary, we state that RIPEMD-160 is secure against known
attacks. Neither the attack of Dobbertin or Wang et al. on RIPEMD can be
extended to full RIPEMD-160, nor methods used in the cryptanalysis of SHA-0
and SHA-1 were applicable to full RIPEMD-128 and RIPEMD-160. Even though
this analysis gives new insights on the security of these hash functions, further
work effort is required to get a good view on its security margin.

6
Cryptanalysis of Tiger

Tiger is a cryptographic hash function that was designed by Anderson and Biham
in 1996. It is an iterated hash function that processes message blocks of 512-
bits and produces a 192-bit hash value. It was designed to be efficient on 64-
bit platforms. Hence, it is very fast on modern CPUs – having a speed of
about 8 cycles/byte. Tiger is implemented in several applications and was even
considered for inclusion in the OpenPGP standard [19, 20], but was dropped in
favor of RIPEMD-160. It is often used in a tree mode, where it is referred to
as Tiger Tree Hash (TTH). The Tiger tree hash is used in several file sharing
protocols and applications such as Gnutella or Direct Connect.

In this chapter, we present a detailed security analysis of the Tiger hash
function with respect to both collision and preimage resistance. The results of
this chapter were presented in [85, 96, 103].

First, we present a collision attack on Tiger reduced to 19 (out of 24) rounds
with a complexity of about 262 compression function evaluations. The attack is
an extension of the attack of Kelsey and Lucks on Tiger reduced to 16 rounds.
Based on the attack on 19 rounds, we show how the attack can be extended to
23 rounds and the full Tiger hash function by using a weaker attack setting, i.e.
free-start collisions and free-start near-collisions. Both attacks have a complexity
of about 247 compression function evaluations.

Second, we present a preimage attack on Tiger reduced to 16 and 17 rounds.
The attacks are similar to the preimage attack of Aumasson et al. on round-
reduced MD5 and 3-pass HAVAL [8]. The attack on 16 rounds has a complexity
of about 2174 compression function evaluations and memory requirements of 239.
The attack can be extended to 17 rounds at the cost of a higher runtime and
memory requirements. It has a complexity of about 2185 compression function
evaluations and memory requirements of 2160.

67

68 Chapter 6. Cryptanalysis of Tiger

6.1 Preliminaries

In the collision attack on Tiger we will use XOR-differences (∆⊕) as well as
modular differences (∆�).

� ∆⊕(A) = A⊕A∗ (XOR-difference)

� ∆�(A) = A�A∗ (modular difference)

Throughout the attack we will switch between XOR-differences and modular
differences. Transforming one type of difference into another is usually proba-
bilistic. If A � A∗ = 2i then A ⊕ A∗ = 2i with a probability of 1/2. The only
exception is i = 63, where this will hold with probability 1. Let I := 263. Then
switching between the XOR-difference I and the modular difference I has prob-
ability 1. In other words, we do not need to care about the type of difference
when having a difference I. Furthermore, a difference I stays the same when
multiplied by some odd constant, as it is the case in the compression function
of Tiger. This will be very useful in the attack.

Definition 6.1. A modular difference L� is consistent with the XOR-difference
L⊕ if there exist A and A∗ such that A⊕A∗ = L⊕ and A�A∗ = L�.

Now, we can define the set of consistent modular differences.

Definition 6.2. Let L⊕ be an arbitrary XOR-difference. Then the set of con-
sistent modular differences is given by L′ = {L�|∃A : A⊕ (A� L�) = L⊕}.

Note that the size of set L′ is strongly related to the Hamming weight of L⊕.
If L⊕ = 2i then there exist typically 2 consistent modular differences, namely
±2i. The only exception is i = 63, because there exists only 1 consistent modular
difference, i.e. +263. In general, the size of the set L′ is given by:

|L′| =

{
2hw(L⊕) if L⊕[63] = 0
2hw(L⊕)−1 else,

where hw(·) denotes the Hamming weight of L⊕. It is easy to see that this is
the same as |L′| = 2hw(L⊕)−L⊕[63].

6.2 The Hash Function Tiger

Tiger was introduced by Anderson and Biham in 1996 [2]. It is an iterated hash
function following the Merkle-Damg̊ard design principle. It computes a 192-bit
hash value from messages of length less than 264 bits. As most iterated hash
functions, Tiger applies MD-strengthening as described in Section 2.4. The
compression function of Tiger processes 512-bit input message blocks. In the
following, we briefly describe the compression function. It consists of two parts:
the key schedule and the state update transformation. A detailed description of
the hash function is given in [2].

6.2. The Hash Function Tiger 69

6.2.1 State Update Transformation

The state update transformation of Tiger starts from a (fixed) initial value IV
of three 64-bit words and updates them in three passes of eight rounds each. In
each round one 64-bit word X is used to update the three state variables A, B
and C as follows:

C = C ⊕X,

A = A� even(C),
B = B � odd(C),
B = B � mult.

The results are then shifted such that A,B,C become B,C,A. Figure 6.1 shows
one round of the state update transformation of Tiger.

Ci+1

Ai

Ai+1

Bi

Bi+1

Ci

Xi+1

odd

even

Figure 6.1: The round function of Tiger.

The non-linear functions even and odd used in each round are defined as follows:

even(C) = S1(c0)⊕ S2(c2)⊕ S3(c4)⊕ S4(c6),
odd(C) = S4(c1)⊕ S3(c3)⊕ S2(c5)⊕ S1(c7),

where state variable C is split into eight bytes c7, . . . , c0 with c7 is the most
significant byte (and not c0). Four S-boxes S1, . . . , S4 : {0, 1}8 → {0, 1}64 are
used to compute the output of the non-linear functions even and odd. For the
definition of the S-boxes we refer to [2]. Note that state variable B is multiplied
with the constant mult ∈ {5, 7, 9} at the end of each round. The value of the
constant is different in each pass of the Tiger hash function.

After the last round of the state update transformation, the initial values
A−1, B−1, C−1 and the output values of the last round A23, B23, C23 are com-
bined, resulting in the final value of one iteration (feed-forward). The result is
the final hash value or the initial value for the next iteration:

A24 = A−1 ⊕A23,

B24 = B−1 �B23,

C24 = C−1 � C23.

70 Chapter 6. Cryptanalysis of Tiger

6.2.2 Key Schedule

The key schedule is an invertible function which ensures that changing a small
number of bits in the message will affect a lot of bits in the next pass. While the
message words X0, . . . , X7 are used in the first pass to update the state variables,
the remaining 16 message words, 8 for the second pass and 8 for the third pass,
are generated by applying the key schedule as follows:

(X8, . . . , X15) = KeySchedule(X0, . . . , X7),
(X16, . . . , X23) = KeySchedule(X8, . . . , X15).

The key schedule modifies the inputs (I0, . . . , I7) in two steps:

first step second step

T0 = I0 � (I7 ⊕ A5A5A5A5A5A5A5A5) O0 = T0 � T7

T1 = I1 ⊕ T0 O1 = T1 � (O0 ⊕ ((¬T7) � 19))
T2 = I2 � T1 O2 = T2 ⊕O1

T3 = I3 � (T2 ⊕ ((¬T1) � 19)) O3 = T3 �O2

T4 = I4 ⊕ T3 O4 = T4 � (O3 ⊕ ((¬O2) � 23))
T5 = I5 � T4 O5 = T5 ⊕O4

T6 = I6 � (T5 ⊕ ((¬T4) � 23)) O6 = T6 �O5

T7 = I7 ⊕ T6 O7 = T7 � (O6 ⊕ 0123456789ABCDEF)

The final values (O0, . . . , O7) are the output of the key schedule and the message
words for the next pass.

6.3 Collision Attack

In this section, we present several attacks on the Tiger hash function. All attacks
are extensions of the collision attack of Kelsey and Lucks on Tiger reduced to 16
rounds presented in [63]. The attack has a complexity of about 244 compression
function evaluations. Unfortunately, in the original attack of [63] the S-boxes
were addressed in the wrong order (big endian instead of little endian). However,
this can be easily fixed, because there is a large amount of freedom in the attack
on round-reduced Tiger. In this section, we first show how the attack of Kelsey
and Lucks on Tiger reduced to 16 rounds can be modified to work with the correct
order of the S-boxes. The attack has a slightly higher complexity of about 247

compression function evaluations. Based on the attack on 16 rounds, we then
present a collision attack on Tiger reduced to 19 rounds with a complexity of
about 262 compression function evaluations. Furthermore, we present a free-start
collision for Tiger reduced to 23 rounds and a free-start near-collision (with a
1-bit difference) for the full Tiger hash function. Both attacks have a complexity
of about 247 compression function evaluations.

6.3. Collision Attack 71

6.3.1 The Attack Strategy

In this section, we briefly describe the attack strategy of Kelsey and Lucks to
attack round-reduced variants of the Tiger hash function. A detailed description
of the attack is given in [63]. The attack can be summarized as follows.

1. Find a characteristic for the key schedule of Tiger which holds with high
probability. In the ideal case this probability is 1.

2. Use a message modification technique developed for Tiger to construct
certain differences in the state variables, which can then be canceled out
by the differences of the message words in the following rounds.

These two steps of the attack are described in detail in the subsequent sections.

Finding a Good Characteristic for the Key Schedule of Tiger

To find a good characteristic for the key schedule of Tiger, we use a linearized
model of the key schedule. Therefore, we replace all modular additions and
subtractions by an XOR operation resulting in a linear code over GF (2). Finding
a characteristic in the linear code is not difficult, since it depends only on the
differences in the message words. The probability that the characteristic holds
in the original key schedule of Tiger is related to the Hamming weight of the
characteristic. In general, a characteristic with low Hamming weight has a higher
probability than one with a high Hamming weight.

For finding a characteristic with high probability (low Hamming weight), one
commonly uses probabilistic algorithms from coding theory. It has been shown
in the past (cryptanalysis of SHA-1 [129, 123]) that these algorithms work quite
well. Furthermore, we can impose additional restrictions on the characteristic
by forcing certain bits/words to zero. Note that this is needed to find suitable
characteristics for the key schedule of Tiger. For an attack on the Tiger hash
function we need many zeros in the first and last rounds of the hash function.

However, in the attack on Tiger we are interested in characteristics with
differences in the most significant bit, since in this case switching between XOR-
differences and modular differences has probability 1. Furthermore, a difference
I remains the same when multiplied by an odd constant as it is the case in
Tiger. Hence, the number of interesting linear characteristics is so small (about
28) that a brute force search is feasible.

Message Modification by Meet-in-the-Middle

In order to construct a collision for round-reduced Tiger, Kelsey and Lucks
adapted the idea of message modification from the MD4-family to Tiger. The
idea of message modification in general is to use the freedom one has in the choice
of the message words to fulfill conditions on the state variables. In the attack
on Tiger this method is used to construct a certain differential pattern in the
state variables, which can then be canceled out by the differences of the message
words in the following rounds. This leads to a collision in a round-reduced Tiger.

72 Chapter 6. Cryptanalysis of Tiger

In the following, we will briefly describe this message modification technique for
Tiger corresponding to Figure 6.2.

Ai−1 Bi−1 Ci−1

Xi

odd

even

δ

Xi+1

odd

even

Figure 6.2: Message modification by meet-in-the-middle.

Assume, we are given Ai−1, Bi−1, Ci−1 (and A∗
i−1, B

∗
i−1, C

∗
i−1) and ∆⊕(Xi)

and ∆⊕(Xi+1). Then the modular difference ∆�(Ci+1) can be forced to be any
difference δ with a probability of 2−1 by using a birthday attack.

We try out all 232 possibilities for Xi[odd] to generate 232 candidates for
∆�(odd(Bi)). Similarly, we try out all Xi+1[even] to generate 232 candidates
for ∆�(even(Bi+1)). Subsequently, we use a meet-in-the-middle approach to
solve the following equation:

∆�(Ci+1) = mult� [∆�(Bi−1) � ∆�(odd(Bi))] � ∆�(even(Bi+1)) = δ. (6.1)

The method can be summarized as follows:

1. Store the 232 candidates for ∆�(odd(Bi)) in a list L.

2. For all 232 candidates for ∆�(even(Bi+1)), test if some ∆�(odd(Bi))
exists in the list L with

∆�(odd(Bi)) = (∆�(even(Bi+1)) � δ) � mult−1 � ∆�(Bi−1).

This technique needs about 236 bytes of memory and takes 233 evaluations of
each of the functions odd and even. This is equivalent to about 229 evaluations
of the compression function of Tiger.

6.3. Collision Attack 73

6.3.2 A Collision for 16 Rounds

In this section, we describe the modified collision attack for Tiger reduced to
16 rounds. It has a complexity of about 247 compression function evaluations.
This is slightly worse than the original attack of Kelsey and Lucks in [63]. In the
attack the same characteristic is used for the key schedule of Tiger. It is shown
below:

(I, I, I, I, 0, 0, 0, 0) → (I, I, 0, 0, 0, 0, 0, 0). (6.2)

It has a probability of 1, which facilitates the attack. To have a collision after
16 rounds, there has to be a collision after round 9 as well. Hence, the following
differences are needed in the chaining variables at the input of round 7:

∆⊕(A6) = I, ∆⊕(B6) = I, ∆⊕(C6) = 0. (6.3)

Constructing these differences in the chaining variables after round 6 is the most
difficult part of the attack. Therefore, Kelsey and Lucks used a new message
modification technique developed for Tiger. The idea is to use the degrees of
freedom one has in the choice of the message words to control the differences in
the chaining variables. In the case of the attack on Tiger reduced to 16 rounds,
the differential pattern given in (6.3) has to be met in order to have a collision
after the feed-forward (see Table 6.1).

Table 6.1: Characteristic for 16 rounds of the Tiger hash function.

i ∆Ai ∆Bi ∆Ci ∆Xi

initial value -1 0 0 0

Pass 1

0 * I 0 I
1 * I * I
2 * * * I
3 * * K⊕ I
4 * K� I ⊕ L⊕ 0
5 0 I � L� I 0
6 I I 0 0
7 I 0 I 0

Pass 2

8 0 0 I I
9 0 0 0 I
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0

feed-forward 16 0 0 0

74 Chapter 6. Cryptanalysis of Tiger

In the following, we describe all steps of the attack in detail.

0. Precomputation: The precomputation step consists of 2 parts. First, we
have to find a set of modular differences that can be canceled out by
the modular difference at the output of the odd-function in round 6 (see
Table 6.1) and that are consistent with an XOR-difference L⊕. Let L′

be the set of modular differences L� which are consistent with the XOR-
difference L⊕ then we define the set L of possible modular differences as
follows:

L = {L� ∈ L′ : L� = odd(B6 ⊕ I) � odd(B6)}.

In order to optimize the complexity of the meet-in-the-middle step used in
the attack, we need an L⊕ with low Hamming weight. In [63], the authors
assume that an L⊕ with Hamming weight of 8 exists. However, the best
L⊕ has Hamming weight 10:

L⊕ = 02201080A4020104.

In total we found 502 = |L| possible modular differences (out of 1024 =
|L′|) that can be canceled out by a suitable choice of B6 in round 6 and that
are consistent with the XOR-difference L⊕ given above. This facilitates
the attack in the following steps.

Second, we need a set K of possible modular differences K� that can be
canceled out by the modular difference at the output of the odd-function
in round 7 and that are consistent with an XOR-difference K⊕ with low
Hamming weight:

K = {K� ∈ K′ : K� = odd(B5 ⊕ (I ⊕ L⊕)) � odd(B5)}.

where K′ is the set of modular differences K� which are consistent with
the XOR-difference K⊕. Of course, the choice of L⊕ and the number of
possible modular differences L� ∈ L restricts our choices for B5. Neverthe-
less, we found 2 = |K| possible modular differences K� (out of 256 = |K′|)
which are consistent with the XOR-difference K⊕ given below:

K⊕ = 1010008000880128.

Note that the precomputation step of the attack has to be done only once.
It has a complexity of about 2 · 232 round computations of Tiger. This is
about 228.5 evaluations of the compression function of Tiger.

1. Choose random values for X0, X1 and X2[even] to compute B1, C1, C2

and the corresponding differences. This step of the attack has a complexity
of about 6 round computations of Tiger.

2. To construct the XOR-difference K⊕ in round 3, we use the message mod-
ification technique described in Section 6.3.1. For all modular differences
K� ∈ K′, we do a message modification step and check if ∆⊕(C3) = K⊕.

6.3. Collision Attack 75

Since the Hamming weight of K⊕ is 8, this holds with a probability
of 2−8. Furthermore, the message modification step has a probability
of 2−1. Hence, this step of the attack succeeds with a probability of
2−8 · 2−1 · |K′| = 2−1 and determines the message words X2[odd] and
X3[even]. Finishing this step of the attack has a complexity of about
(6 + 232 + 28 · 232) · 2 ≈ 241 round computations of Tiger. This is about
236.5 evaluations of the compression function of Tiger.

3. Once we have fixed X2[odd] and X3[even], we can calculate the state
variables B2, C2, C3 (and the corresponding differences). To construct the
XOR-difference I ⊕ L⊕ in round 4, we use the same method as described
before. Let S⊕ := I ⊕ L⊕ and S′ the set of modular differences consistent
with S⊕. Then we do a message modification step for all modular differ-
ences S+ ∈ S′, and check if ∆⊕(C4) = S⊕ = I ⊕ L⊕. Since the Hamming
weight of L⊕ is 10, this equation holds with a probability of 2−10. Note that
the need not to care about the difference I, because switching between the
modular difference I and the XOR-difference I has probability 1. Hence,
this step of the attack has a probability of 2−10 · 2−1 · |S′| = 2−1 and de-
termines the message words X4[odd] and X5[even]. Finishing this step of
the attack has a complexity of about (241+(232+232 ·210))·2 ≈ 243.6 round
computations of Tiger. This is about 239 evaluations of the compression
function of Tiger.

4. Once we have fixed X4[odd] and X5[even], we can compute B3, C3 and
C4 as well as the corresponding modular differences. In order to construct
the needed difference ∆⊕(C5) = I in round 5, we apply again a message
modification step. Since the XOR-difference and the modular difference
is the same for differences in the MSB, we do not need to compute the
list of modular differences that are consistent with the XOR-difference
I for the message modification step. This step of the attack succeeds
with a probability of 2−1 and determines the message words X4[odd] and
X5[even]. Hence, finishing this step of the attack has a complexity of
about (243.6 +(232 +232)) · 28 ≈ 251.6 round computations respectively 240

compression function evaluations.

5. Once we have fixed the message words, we can compute B4, C4 and C5 as
well as the corresponding modular differences. To cancel out the difference
in B4 we need that ∆�(B4) ∈ K. Since the number of modular differences
K� consistent with K⊕ is |K′| = 28 and |K| = 2, this probability is 2−7.
Hence, we have to repeat the attack about 27 times to finish this step of the
attack. This has a complexity of about 247 evaluations of the compression
function of Tiger and determines the message word X5[odd].

6. Once we have fixed X5[odd], we can compute A5, B5 and C5 as well as the
corresponding modular differences. In order to guarantee that ∆�(B5) can
be canceled out in round 6 by ∆�(odd(B6)), we need that ∆�(B5) ∈ L.

76 Chapter 6. Cryptanalysis of Tiger

Due to the choice of L⊕ and K⊕ in the precomputation step this will
always hold and adds negligible cost to the attack complexity.

Hence, a collision can be constructed in Tiger reduced to 16 rounds with
a complexity close to 247 evaluations of the compression function. In the next
section, we show how this collision attack can be extended to 19 rounds.

6.3.3 A Collision for 19 Rounds

In this section, we present a collision attack on Tiger reduced to 19 rounds. First,
we show how the attack on 16 rounds can be extended to construct a free-start
collision for 19 rounds with complexity of about 247. Second, we show how this
free-start collision can be turned into a collision for Tiger reduced to 19 rounds
by using a kind of neutral bit technique [12]. The attack has a complexity of 262

hash computations.

A Free-Start Collision

To construct a free-start collision in 19 rounds of Tiger we use a different char-
acteristic for the key schedule of Tiger. It has probability 1, which facilitates
the attack.

(0, 0, 0, I, I, I, I, 0) → (0, 0, 0, I, I, 0, 0, 0) → (0, 0, 0, I, I, I, I, I) (6.4)

Note that the key schedule difference from round 3 to 18 is the 16-round dif-
ference used in the attack on 16 rounds of Tiger. Hence, we can use the same
attack strategy for the attack on 19 rounds as in the attack on 16 rounds. It can
be summarized as follows.

1. Choose arbitrary values for the chaining variables B2, B3, B4 and compute
A4 and C4.

2. Employ the attack on 16 rounds, to find message words X5, . . . , X7 and
X8, X9[odd] such that the output after round 18 collides.

3. To compute the real message words X0, . . . , X7, we have to choose suitable
values for X9[even] and X10, . . . , X15 such that X5, X6 and X7 are correct
after computing the key schedule backward. Note that X0, . . . , X4 can be
chosen freely.

In detail, we choose arbitrary values for X9[even], X10, X11, X12 and
calculate X13, . . . , X15 as follows:

X13 = (X5 � (X12 � (X11 ⊕ (¬X10 � 23))))⊕X12,

X14 = (X6 � (X13 ⊕X12 ⊕ (¬((X13 ⊕X12) �X5) � 23))) �X13,

X15 = (X7 ⊕ (X14 �X13)) � (X14 ⊕ 0123456789ABCDEF).

This adds negligible cost to the attack complexity and guarantees that X5,
X6 and X7 are always correct after computing the key schedule backward.

6.3. Collision Attack 77

4. To compute the initial chaining values A−1, B−1 and C−1 run the rounds
4, 3, 2, 1 and 0 backwards.

Hence, we can construct a free-start collision for Tiger reduced to 19 rounds
with a complexity of about 247 evaluations of the compression function.

We can turn this free-start collision into a collision at the cost of a higher
attack complexity. This is described in detail in the next section.

From a Free-Start Collision to a Collision

Constructing a collision in Tiger reduced to 19 rounds works quite similar as
constructing the free-start collision. Again we use the key schedule difference
given in (6.4) and employ the attack on 16 rounds of Tiger. The attack can be
summarized as follows.

1. Choose arbitrary values for X0, . . . , X4 and compute the chaining variables
A4, B4, C4 for round 5.

2. Employ the attack on 16 rounds of Tiger, to find the message words
X5, . . . , X7 and X8, X9[odd] such that the output after round 18 collides.

3. To guarantee that X8, X9[odd] are correct after applying the key schedule,
we use the degrees of freedom we have in the choice of X0, . . . , X4. Note
that for any difference injected in X0 and X1 one can adjust X2, X3, X4

correspondingly such that B2 = C1 ⊕X2, B3 = C2 ⊕X3, B4 = C3 ⊕X4

and hence A4, B4, C4 stay constant. Furthermore, we get the following
equations for X8 and X9 from the key schedule of Tiger (cf. Section 6.2.2):

X8 = T0 � T7,

X9 = T1 � (X8 ⊕ (¬T7 � 19)) ,

where

T0 = X0 � (X7 ⊕ A5A5A5A5A5A5A5A5),
T1 = X1 ⊕ T0,

T2 = X2 � T1,

T3 = X3 � (T2 ⊕ (¬T1 � 19)),
T4 = X4 ⊕ T3,

T5 = X5 � T4,

T6 = X6 � (T5 ⊕ (¬T4 � 23)),
T7 = X7 ⊕ T6.

To solve these equations the following method is used:

(a) Choose a random value for T0. This determines T7 and X0.

78 Chapter 6. Cryptanalysis of Tiger

(b) Choose a random value for X9[even]. This determines T1 and hence
X1. Note that the value X9[odd] is already fixed by the attack.

(c) Adjust X2, X3, X4 correspondingly such that B2 = C1 ⊕ X2, B3 =
C2 ⊕X3 and B4 = C3 ⊕X4 stay constant.

(d) Once we have fixed X2, X3, and X4, we have to check if T7 is correct
(this holds with a probability of 2−64). Hence, after repeating the
method about 264 times for different values of T0, we expect to find
a match.

This step of the attack has a complexity of about 264 key schedule com-
putations and 4 · 264 round computations of Tiger. This is equivalent to
about 262 evaluations of the compression function of Tiger.

Thus, we can construct a collision in Tiger reduced to 19 rounds with a complex-
ity of about 262 + 247 ≈ 262 evaluations of the compression function of Tiger.

6.3.4 A Free-Start Near-Collision for 24 Rounds

In this section, we will present a 1-bit circular free-start near-collision for the
Tiger hash function. Note that the difference in the final hash value is the
same as in the initial value. In other words, we have a free-start collision in
the compression function of Tiger after 24 rounds, but due to the feed-forward
the collision after 24 rounds is destroyed, resulting in a 1-bit free-start near-
collision for the Tiger hash function. The attack has a complexity of about 247

evaluations of the compression function. Note that for an ideal hash function
with a hash value of 192-bit one would expect a complexity of about 290 to
construct a free-start near-collision with a 1-bit difference. In the attack, we
extend techniques invented in the collision attack on Tiger reduced to 16 and 19
rounds.

We use the characteristic given below for the key schedule of Tiger to con-
struct the free-start near-collision in the hash function. This characteristic holds
with a probability of 2−1.

(0, I, 0, 0, 0, I, I ′, 0) → (0, I, 0, I, 0, 0, 0, 0) → (0, I, 0, 0, 0, 0, 0, 0) (6.5)

were I denotes a difference in the MSB of the message word and I ′ := I � 23.
In order to have a free-start collision in the compression function of Tiger

after 24 rounds, it is required that there is a free-start collision after round 17.
Hence, the following differences are needed in the state variables after round 14
of Tiger (see Table 6.2)

∆⊕(A14) = 0, ∆⊕(B14) = I, ∆⊕(C14) = 0. (6.6)

Constructing these differences in the state variables after round 14 is the most
difficult part of the attack. We use the message modification technique described
in Section 6.3.1 to do this.

6.3. Collision Attack 79

Table 6.2: Characteristic for a 1-bit free-start near-collision in the full (all 24 rounds)
Tiger hash function.

i ∆Ai ∆Bi ∆Ci ∆Xi

initial value -1 I 0 0

Pass 1

0 0 0 I 0
1 0 0 0 I
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 * I 0 I
6 * I ′ * I ′

7 * * * 0

Pass 2

8 * * * 0
9 * * * I
10 * * * 0
11 * * K⊕ I
12 * K� L⊕ 0
13 0 L� I 0
14 0 I 0 0
15 I 0 0 0

Pass 3

16 0 0 I 0
17 0 0 0 I
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0
21 0 0 0 0
22 0 0 0 0
23 0 0 0 0

feed-forward 24 I 0 0

In the following, we will describe all steps of the attack in detail.

0. Precomputation: Like in the collision attack on Tiger described before, we
first have to find a set of possible modular differences L� with a low Ham-
ming weight XOR-difference L⊕ which can be canceled out by a suitable
choice of B14:

L = {L� ∈ L′ : L� = odd(B14 ⊕ I) � odd(B14)}.

Note that we can use in the attack the same value for

L⊕ = 02201080A4020104

as in the collision attack on 16 rounds of Tiger. Remember that we found
502 = |L| possible modular differences (out of 1024 = |L′|) which are

80 Chapter 6. Cryptanalysis of Tiger

consistent with the XOR-difference L⊕ given above. This facilitates the
attack in the following steps.

Second, we have to find a set of possible modular differences K� with a
low Hamming weight XOR-difference K⊕ which can be canceled out by a
suitable choice of B13:

K = {K� ∈ K′ : K� = odd(B13 ⊕ L⊕) � odd(B13)}.

Note that we can not use the same value for K⊕ as in the collision attack
on Tiger reduced to 16 and 19 rounds, due to the different characteristic
used in the attack. However, we found 2 = |K| possible modular differences
K� (out of 256 = |K′|) which are consistent with the XOR-difference K⊕

given below:
K⊕ = 0880020019000900. (6.7)

The precomputation step of the attack has a complexity of about 228.5

evaluations of the compression function of Tiger.

1. Choose random values for B4, B5, B6 with a difference I in B5 and a
difference I ′ in B6 (see Table 6.2). Next choose arbitrary values for the
message words X7, . . . , X9 and X10[even] to compute B9, C9 and C10

as well as the corresponding differences. This step of the attack has a
complexity of about 12 round computations of Tiger.

2. Apply a message modification step to construct the XOR-difference K⊕

in round 11. This step has a complexity of about 236.5 hash computations
and determines the message words X10[odd] and X11[even].

3. Apply a second message modification step to construct the XOR-difference
L⊕ in round 12. Finishing this step of the attack has a complexity of about
239 and determines the message words X11[odd] and X12[even].

4. To construct the XOR-difference I in round 13, we apply again a message
modification step. Finishing this step has a complexity of about 240 and
determines the message words X12[odd] and X13[even].

5. Once we have fixed the message words, we can compute B12, C12 and
C13 as well as the corresponding modular differences. To cancel out the
difference in B12 we need that ∆�(B12) ∈ K. Since the number of modular
differences ∆�(B12) = K� consistent with K⊕ is |K′| = 28 and |K| = 2,
the probability that ∆�(B12) ∈ K is 2−7. Hence, finishing this step of
the attack has a complexity of about 27 · 240 = 247 compression function
evaluations and determines the message word X13[odd].

6. Once, we have fixed X13[odd] and hence X13 we can compute A13, B13

and C13. In order to guarantee that the difference in B13 is canceled out,
we again need that ∆�(B13) ∈ L. Due to the choice of L⊕ and K⊕

in the precomputation step this will always hold. Hence, this step adds
negligible cost the total attack complexity and determines the message
word X14[odd].

6.3. Collision Attack 81

7. The attack fixes the message words X7, . . . , X13 and X14[odd]. To com-
pute the message words X0, . . . , X6 we use the inverse key schedule of
Tiger. Therefore, we choose a random value for X14[even] and compute
X15 as follows:

X15 = (X7 ⊕ (X14 �X13)) � (X14 ⊕ 0123456789ABCDEF).

This guarantees that X7 is correct after computing the key schedule back-
ward.

Since the characteristic we use for the key schedule of Tiger has probability
2−1 to hold, we expect that we have to repeat this step of the attack (for a
different value of X14[even]) about two times such that the characteristic
holds in the key schedule of Tiger. This adds negligible cost to the attack
complexity.

8. Once we have computed the message words X0, . . . , X6, we can run the
rounds 6, 5, . . . , 0 backwards to get the initial value IV . Since there is a
difference I induced in round 1 by X1, we have to inject the same difference
in the initial value to cancel it out, namely

∆⊕(A−1) = I.

Since the difference is in the MSB, this happens with probability 1. Of
course, the feed-forward destroys the free-start collision. After the feed-
forward we get the same output differences as in the initial values:

∆⊕(A24) = ∆⊕(A−1 ⊕A23) = I.

Since the difference is in the MSB this has probability 1 and we get a 1-bit
circular free-start near-collision for Tiger.

Hence, we get a 1-bit circular free-start near-collision for the Tiger hash function
with a complexity of about 247 instead of the expected 290 compression function
evaluations.

6.3.5 A Free-Start Collision for 23 Rounds

In a similar way as we construct the free-start near-collision for the full Tiger
hash function, we can also construct a free-start collision for Tiger reduced to
23 rounds by using a different characteristic for the key schedule. For the attack
we use the key schedule differences given below. It holds with probability 1.

(0, 0, 0, I, 0, 0, 0, I) → (0, I, 0, 0, 0, 0, 0, I) → (0, 0, 0, 0, 0, 0, 0, I) (6.8)

This characteristic for the key schedule of Tiger can be used in a similar way
(as in the free-start near-collision for the full Tiger hash function) to construct a
free-start collision in Tiger reduced to 23 rounds. The attack has a complexity of
about 247 evaluations of the compression function of Tiger. It can be summarized
as follows:

82 Chapter 6. Cryptanalysis of Tiger

0. Precomputation: First, find a set of possible modular differences L� with
a low Hamming weight XOR-difference L⊕ which can be canceled out by
a suitable choice of B12. Second, we have to find a set of possible modular
differences K� with a low Hamming weight XOR-difference K⊕ which can
be canceled out by a suitable choice of B11. Note that we use in the attack
the same value for L⊕ and K⊕ as in the free-start near-collision attack on
the full Tiger hash function. This step of the attack has a complexity of
about 228.5 evaluations of the compression function of Tiger.

1. Choose random values for B3, B4, B5 and X5, . . . , X7 and X8[even] to
compute B7, C7 and C8. This step of the attack has a complexity of about
12 round computations of Tiger.

2. Apply a message modification step to construct the XOR-difference K⊕ in
round 9. This has a complexity of about 236.5 and determines the message
words X8[odd] and X9[even].

3. Apply another message modification step to construct the XOR-difference
L⊕ in round 10. Finishing this step of the attack has a complexity of about
239 and determines the message words X9[odd] and X10[even].

4. To construct the XOR-difference I in round 11, we apply again a message
modification step. This step has a complexity of about 240 and determines
the message words X10[odd] and X11[even].

5. Once we have fixed the message words, we can compute B10, C10 and C11

as well as the corresponding modular differences. Since the difference in
B10 can be canceled out with a probability close to 2−7 (cf. Section 6.3.4),
we have to repeat the attack about 27 times. Hence, finishing this step of
the attack has a complexity of about 247 hash computations.

6. Determine X11[odd] and X12[odd] corresponding to the result of the pre-
computation step. This adds no additional cost to the attack complexity.

7. To compute the message words X0, . . . , X4, we have to choose suitable
values forX12[even] andX13, . . . , X15 such thatX5, X6 andX7 are correct
after computing the key schedule backward. Note that X3 and X4 can be
chosen freely, because we can modify C2 and C3 such that C2 ⊕ X3 and
C3⊕X4 stay constant. In detail, we choose arbitrary values for X13 ,X14,
X15 and calculate X13, . . . , X15 as follows:

X13 = (X5 � (X12 � (X11 ⊕ (¬X10 � 23))))⊕X12,

X14 = (X6 � (X13 ⊕X12 ⊕ (¬((X13 ⊕X12) �X5) � 23))) �X13,

X15 = (X7 ⊕ (X14 �X13)) � (X14 ⊕ 0123456789ABCDEF).

This adds negligible cost to the attack complexity and guarantees that X5,
X6 and X7 are always correct after computing the key schedule backward.

6.4. Preimage Attack 83

8. To compute the initial chaining values A−1, B−1 and C−1 run the rounds
4, 3, 2, 1, and 0 backwards.

Hence, we can construct a free-start collision for Tiger reduced to 23 rounds
with a complexity of about 247 applications of the compression function.

6.4 Preimage Attack

Several preimage attacks have been published for round-reduced variants of the
Tiger hash function. Indesteege and Preneel presented in [53] the first preimage
attack on round-reduced Tiger. They described an algorithm that can find
preimages for Tiger reduced to 12 and 13 rounds. The attack bears resemblance
to the preimage attack on round-reduced MD4 by Dobbertin in [39]. The attack
has a complexity of about 264.5 and 2128.5 compression function evaluations for
Tiger reduced to 12 and 13 rounds, respectively.

In parallel and independent to our results, Isobe and Shibutani recently pro-
posed in [56] a meet-in-the-middle technique to construct one-block preimages
for Tiger reduced to 16 rounds. The idea of the attack is to find independent
message words in the key schedule which can then be used in a meet-in-the-
middle attack to construct preimages for 16 rounds of the Tiger hash function.
The attack has a complexity of about 2161 compression function evaluations and
memory requirement of 232.

In this section, we present preimage attacks on the Tiger hash function re-
duced to 16 and 17 rounds. The attacks are similar to the preimage attack on
round-reduced MD5 and 3-pass HAVAL presented in [8]. First, we show how
weaknesses in the key schedule of Tiger in combination with a generic meet-
in-the-middle approach can be used to construct preimages for the compression
function of Tiger reduced to 16 and 17 rounds faster than brute force search.
Second, we show how the preimage attacks on the compression function can be
turned into preimage attacks on the hash by using a meet-in-the-middle attack
respectively a tree based approach. This results in preimage attacks on Tiger
reduced to 16 and 17 rounds with a complexity of about 2174 and 2185 compres-
sion function evaluations, respectively. In the following sections, we describe the
attacks in more detail.

6.4.1 Preimages for the Compression Function

In this section, we will present two preimage attacks on the compression function
of Tiger – one for Tiger with 16 rounds and one for 17 rounds. Both attacks
are based on structural weaknesses in the key schedule of Tiger. By combining
these weaknesses with a generic meet-in-the-middle approach we can construct
preimages for the compression function of Tiger reduced to 16 and 17 rounds.
In the following, we will describe both attacks in more detail.

84 Chapter 6. Cryptanalysis of Tiger

Preimages for 16 Rounds (2 Passes)

Before describing the preimage attack on the compression function reduced to 16
rounds, we first have a closer look at the key schedule of Tiger. In the following,
we present a differential characteristic for the key schedule of Tiger which we
can use to construct preimages for the compression function faster than brute
force search. Consider the differential

(δ1, 0, δ2, 0, 0, 0, 0, 0) → (δ1, 0, 0, 0, 0, 0, 0, 0), (6.9)

with δ1 � δ2 = 0, where δ1 and δ2 are modular differences in the 19 most signif-
icant bits of the message words X0, X2 and X8. In order to guarantee that this
characteristic holds in the key schedule of Tiger, several conditions have to be
fulfilled.

Due to the design of the key schedule of Tiger (see Section 6.2.2), the modular
difference δ1 in X0 will lead to the same modular difference δ1 in T0 = X0 �
(X7 ⊕ A5A5A5A5A5A5A5A5). Furthermore, by choosing X1 = 0, we get T1 = T0

and hence ∆�(T1) = ∆�(T0) = δ1. Since ∆�(T1) = δ1, ∆�(X2) = δ2 and
δ1 �δ2 = 0, there will be no differences in T2 = X2 �T1. Note that by restricting
the choice of δ1 and hence δ2 to modular differences in the 19 most significant
bits we can ensure that there will be no differences in T3 = X3 � (T2⊕ ((¬T1) �
19)). It is easy to see, that due to the left shift of T1 by 19 bits these modular
differences will be canceled out. Since there are no differences in T2 and T3,
there will be no differences in T4, . . . , T7. To ensure that there will be only a
modular difference in X8 = T0 � T7, namely δ1 after the second step of the key
schedule of Tiger, we need that T7 = 0. This can be achieved by adjusting X6

correspondingly, such that T6 ⊕ X7 = 0. It is easy to see that if T7 = 0 then
X8 = T0 and hence ∆�(X8) = ∆�(T0) = δ1. Furthermore, X9 = T1 �X8 and
hence ∆�(X9) = δ1 � δ1 = 0. Since ∆�(X9) = 0 and there are no differences
in T2, . . . , T7 there will be no differences in X10, . . . , X15. By fulfilling all these
conditions on the message words and restricting the modular differences of δ1 and
hence δ2 to the 19 most significant bits, this characteristic for the key schedule
of Tiger will always hold.

We will use this characteristic for the key schedule of Tiger to show a preimage
attack on Tiger reduced to 16 rounds (2 passes). We combine the characteristic
for the key schedule of Tiger with a generic meet-in-the-middle approach, to
construct a preimage for the compression function of Tiger with 2 passes. The
attack has a complexity of about 2173 compression function evaluations and
memory requirements of 238. It can be summarized as follows.

1. Suppose we seek a preimage of h = A16‖B16‖C16, then we chose A−1 =
A16, B−1 = B16, and C−1 = C16. To guarantee that the output after the
feed-forward is correct, we need that A15 = 0, B15 = 0, and C15 = 0.

2. In order to guarantee that the characteristic for the key schedule of Tiger
holds, we choose random values for the message words X0, X2, . . . , X7 and
set X1 = 0. Furthermore, we adjust X6 correspondingly, such that T7 = 0.

6.4. Preimage Attack 85

3. Next we compute A7, B7, and C7 for all 238 choices of B−1[63 − 45] and
C−1[63 − 45] and save the result in a list L. In other words, we get 238

entries in the list L by modifying the 19 most significant bits of B−1 and
the 19 most significant bits of C−1.

4. For all 238 choices of the 19 most significant bits of B15 and the 19 most
significant bits of C15 we compute A′

7, B
′
7, C

′
7 (by going backward) and

check if there is an entry in the list L such that the following conditions
are fulfilled:

A7[i] = A′
7[i] for 0 ≤ i ≤ 63,

B7[i] = B′
7[i] for 0 ≤ i ≤ 63,

C7[i] = C ′
7[i] for 0 ≤ i ≤ 44.

These conditions will hold with probability of 2−173. Note that we can
always adjust the 19 most significant bits of X8 such that the 19 most
significant bits of C7 and C ′

7 match.

Since there are 238 entries in the list L and we test 238 candidates, we
expect to find a matching entry with probability of 2−173 · 276 = 2−97.
Hence, finishing this step of the attack has a complexity of about 238 ·
297 = 2135 evaluations of the compression function of Tiger and memory
requirements of 238.

5. Once we have found a solution, we have to modify the 19 most significant
bits of X0 and X2 such that the characteristic in the key schedule of Tiger
holds. To cancel out the modular differences in X0 and X2, we have to
adjust the 19 most significant bits of B−1 and C−1 correspondingly. Thus,
after applying the feed-forward we get a partial preimage for 154 (out of
192) bits of the compression function of Tiger reduced to 16 rounds.

Hence, we will find a partial preimage with a complexity of 2135 and memory
requirements of 238. By repeating the attack 238 times we will find a preimage for
the compression function with a complexity of about 2173 instead of the expected
2192 compression function evaluations. Note that the partial preimage (154 out
of 192 bits) is also a fixed-point in 154 bits for the compression function f . We
will need this in Section 6.4.2 to turn the attack on the compression function
into an attack on the hash function.

Going Beyond 2 Passes

In a similar way as we can construct a preimage for the compression function of
Tiger reduced to 16 rounds, we can also construct a preimage for the compression
function of Tiger reduced to 17 rounds. The attack has a complexity of about
2184 compression function evaluations and has memory requirements of 2159.

For the attack on 17 rounds we use a slightly different characteristic for the
key schedule of Tiger. We take:

(0, δ1, 0, 0, 0, 0, 0, δ2) → (0, 0, 0, 0, 0, 0, 0, δ3) → (δ4, ?, ?, ?, ?, ?, ?, ?), (6.10)

86 Chapter 6. Cryptanalysis of Tiger

where δ4 is a modular difference in the 31 most significant bits of the message
word X16 and δ1, δ2, δ3 are modular differences in the 8 most significant bits
of the message words X1, X7, X15. Note that while in the attack on 2 passes
we have only modular differences in the 19 most significant bits, we have now
modular differences in the 8 (respectively 31) most significant bits of the message
words.

In order to guarantee that this characteristic holds in the key schedule of
Tiger, several conditions have to be fulfilled. In detail, a modular difference δ2 in
X7 will lead to a modular difference in T0 = X0�(X7⊕A5A5A5A5A5A5A5A5) after
the first step of the key schedule. By adjusting X1 correspondingly (choosing
the modular difference δ1 carefully), we can prevent that the modular difference
in T0 propagates to T1 = X1 ⊕ T0 and hence, there will be no differences in
T1, . . . , T6. However, due to the design of the key schedule of Tiger there will
be a modular difference in T7 = X7 ⊕ T6. In order to prevent the propagation
of the modular differences in T7 to X8 we need that T6 = A5A5A5A5A5A5A5A5.
Thus, we have that

X8 = T0 � T7

= X0 � (X7 ⊕ A5A5A5A5A5A5A5A5) � (X7 ⊕ A5A5A5A5A5A5A5A5)
= X0.

We can guarantee that T6 = A5A5A5A5A5A5A5A5 by adjusting X6 correspond-
ingly. Note that by restricting the modular differences of δ2 and hence also δ1 to
the 8 most significant bits there will only be modular differences in the 8 most
significant bits of T7 = X7⊕T6 and therefore no differences in X9 = T1 � (X8⊕
((¬T7) � 19)) and X10, . . . , X14, only in X15 = T7 � (X14⊕0123456789ABCDEF)
there will be a modular difference δ3 in the 8 most significant bits.

However, in the third pass there will be a modular difference in the 31 most
significant bits of X16 (denoted by δ4) due to the design of the key schedule
of Tiger. It is easy to see that a modular difference in the 8 most significant
bits in X15 will result in modular differences in the 8 most significant bits of
T0, . . . , T5. Furthermore, since T6 = X14 � (T5⊕¬T4 � 23) we will get modular
differences in the 31 most significant bits of T6 and hence also in T7 as well as
in X16 = T0 � T7.

Again, by combining this characteristic for the key schedule of Tiger with a
generic meet-in-the-middle approach, we can construct preimages for the com-
pression function of Tiger for more than 2 passes (17 rounds) with a complexity
of about 2184 compression function evaluations. The attack can be summarized
as follows.

1. Suppose we seek a preimage of h = A17‖B17‖C17, then we chose A−1 =
A17, B−1 = B17, and C−1 = C17. To guarantee that the output after the
feed-forward is correct, we need that A16 = 0, B16 = 0, and C16 = 0.

2. Choose random values for the message words X0, X1, . . . , X7 such that
T6 = A5A5A5A5A5A5A5A5 after the first step of the key schedule of Tiger.
Note that this can be easily done by adjusting X6 correspondingly, i.e.

6.4. Preimage Attack 87

X6 = T6 � (T5 ⊕ (¬T4 � 23)). This is needed to ensure that modular
difference in T7 will be canceled out in the key schedule – leading to the
correct value of X8 after the second step of the key schedule.

3. Next we compute A6, B6, C6 for all 2159 choices of A−1, C−1 and B−1[63-
− 33] and save the result in a list L. In other words, we get 2159 entries in
the list L by modifying A−1, C−1 and the 31 most significant bits of B−1.

4. For all 2159 choices of A16, C16 and the 31 most significant bits of B16 we
compute A′

6, B
′
6, C

′
6 (by going backward) and check if there is an entry in

the list L such that the following conditions are fulfilled:

A6[i] = A′
6[i] for 0 ≤ i ≤ 63,

B6[i] = B′
6[i] for 0 ≤ i ≤ 63,

C6[i] = C ′
6[i] for 0 ≤ i ≤ 55.

These conditions will hold with probability of 2−184. Note that we can
always adjust the 8 most significant bits of X7 such that C6 = C ′

6 will
match. Since there are 2159 entries in the list L and we test 2159 candidates,
we will find 2−184 · 2318 = 2134 solutions. In other words, we get 2134

solutions with a complexity of about 2159 evaluations of the compression
function of Tiger and memory requirements of 2159.

5. For each solution, we have to modify the 8 most significant bits of X1 such
that T1 = X1 ⊕ T0 is correct in the first step of the key schedule for the
new value of X7. Note that by ensuring that T1 is correct, we will get the
same values for X8, . . . , X14 after applying the key schedule of Tiger, since
T6 = A5A5A5A5A5A5A5A5 due to step 2 of the attack. In order to cancel
out the modular difference in the 8 most significant bits of X1, we have
to adjust the 8 most significant bits of A−1 correspondingly. Furthermore,
the 8 most significant bits of X15 and the 31 most significant bits of X16

will change as well. This results in new values for A16, C16 and the 31
most significant bits of B16.

Since we modify A−1, C−1 and the 31 most significant bits of B−1 in the
attack we get 2134 partial preimages (partial meaning 33 out of 192 bits)
after the feed-forward for the compression function of Tiger reduced to 17
rounds.

Hence, we will find 2134 partial preimages (33 out of 192 bits) with a complexity
of 2159. By repeating the attack 225 times we will find a preimage for the
compression function of Tiger reduced to 17 rounds with a complexity of about
2159 · 225 = 2184 instead of the expected 2192 compression function evaluations.

6.4.2 Extending the Attacks to the Hash Function

If we want to extend the preimage attacks on the compression function of Tiger
to the hash function, we encounter two obstacles. In contrast to an attack on the

88 Chapter 6. Cryptanalysis of Tiger

compression function, where the chaining value (or initial value) can be chosen
freely, the initial value IV is fixed for the hash function. In other words, for a
preimage attack on the hash function we have to find a message m such that
H(IV,m) = h. Furthermore, we have to ensure that the padding of the message
leading to the preimage of h is correct. We proceed as follows.

First, we choose the message length such that only a single bit of padding
will be set in X6 of the last message block. The last bit of X6 has to be 1 as
specified by the padding rule. Since in both attacks characteristics for the key
schedule of Tiger are used, where no differences appear in X6, we can easily
guarantee that the last bit of X6 is 1. However, X7 of the last message block
will contain the message length as a 64-bit integer. While we can choose X7

free in the attack on 2 passes (16 rounds), this is not the case for the attack on
17 rounds. The 8 most significant bits of X7 are determined during the attack
(cf. Section 6.4.1). However, the remaining bits of X7 can be chosen freely.
Therefore, we can always guarantee that we will have a message length such
that the padding of the last block is correct. For the sake of simplicity let us
assume for the following discussion that the message (after padding) consists of
`+ 1 message blocks.

We show how to construct a preimage for Tiger reduced to 16 rounds consist-
ing of ` + 1 message blocks, i.e. m = M1‖M2‖ · · · ‖M`+1. Note that the attack
for Tiger reduced to 17 rounds works similar. It can be summarized as follows.

1. Invert the last iteration of the compression function f(H`,M`+1) = h to
get H` and M`+1. Note that this determines the length of our preimage.
This step of the attack has a complexity of about 2173 compression function
evaluations.

2. Once we have fixed the last message block M`+1 and hence the length of
the message m, we have to find a message m′ = M1‖M2‖ · · · ‖M` consisting
of ` message blocks such that H(IV,m′‖M`+1) = h. This can be done once
again by using a meet-in-the-middle approach.

(a) Use the preimage attack on the compression function to generate 210

pairs (Hj
`−1,M

j
`) leading to the chaining value H` and save them in

a list L. This has a complexity of about 210 · 2173 = 2183 compression
function evaluations.

(b) Compute H`−1 by choosing random values for the message blocks
Mi for 1 ≤ i < ` and check for a match in L. After testing about
2182 candidates, we expect to find a match in the list L. Once, we
have found a matching entry, we have found a preimage for the hash
function Tiger reduced to 16 rounds consisting of `+1 message blocks.

Hence, we can construct a preimage for the Tiger hash function reduced to 16
rounds with a complexity of about 2183 compression function evaluations. In
a similar way we can find a preimage for Tiger reduced to 17 rounds with a
complexity of about 2188.

6.4. Preimage Attack 89

However, due to the special structure of the partial preimages for the com-
pression function of Tiger reduced to 16 and 17 rounds, this complexity can be
reduced by using a tree-based approach. This technique was first used by us in
the cryptanalysis of HAS-V [104]. Later variants and extensions of this method
were presented in [29, 69, 80]. With this method, we can construct a preim-
age for the Tiger hash function reduced to 16 and 17 rounds with a complexity
of about 2174 and 2185 compression function evaluations, respectively. In the
following, we will describe this in more detail for Tiger reduced to 16 rounds.
Again, the attack for Tiger reduced to 17 rounds works in a similar way.

1. Assume we want to construct a preimage for Tiger reduced to 16 rounds
consisting of `+ 1 message blocks.

2. First, compute H` and M`+1 by inverting the last iteration of the com-
pression function. Note that this determines the length of our preimage
m. This step of the attack has a complexity of about 2173 compression
function evaluations.

3. Next, we construct a list L containing 239 partial preimages for the com-
pression function of Tiger. Note that all partial preimages will have the
following form: Hi = f(Hi−1,Mi), where Hi ∧ mask = Hi−1 ∧ mask and
hw(mask) = 154. In other words, each preimage for the compression func-
tion is also a fixed-point for 192−38 = 154 bits. Note that this is important
for the attack to work. Constructing the list L has a complexity of about
239 · 2135 = 2174 compression function evaluations.

4. Next, by using the entries in the list L we build a backward tree starting
from H`. For each node in the tree we expect to get two new nodes on
the next level. It is easy to see that since we have 239 entries in the list L,
where 154 bits are equal for each entry, we will always have two entries,
where Hi is equal. Therefore, we will have about 220 nodes at level 20. In
other words, we have about 220 candidates for H`−20.

5. To find a message consisting of `− 20 message blocks leading to one of the
220 candidates for H`−20 we use a meet-in-the-middle approach. First,
we choose an arbitrary message (of ` − 21 message blocks) leading to
some H`−21. Second, we have to find a message block M`−20 such that
f(H`−21,M`−20) = H`−20 for one of the 220 candidates for H`−20 in the
list L. After testing about 2172 message blocks M`−20 we expect to find
a matching entry in the tree and hence, a preimage for Tiger reduced to
16 rounds. Thus, this step of the attack has a complexity of about 2172

compression function evaluations of Tiger.

Hence, with this method we can find a preimage for the Tiger hash function
reduced to 16 rounds with a complexity of about 2174 compression function
evaluations and memory requirements of 239. Note that the same method can
be used to construct preimages for the Tiger hash function reduced to 17 rounds
with a complexity of about 2185 compression function evaluations and memory
requirements of 2160.

90 Chapter 6. Cryptanalysis of Tiger

6.5 Summary

In this chapter, we have presented a detailed security analysis of the Tiger hash
function with respect to both collision and preimage resistance. We have shown
several collision attacks on round-reduced Tiger. First, we have shown how
the collision attack of Kelsey and Lucks on Tiger reduced to 16 rounds can
be adapted to work with the correct order of the S-boxes. The attack has a
complexity of about 247 compression function evaluations. Based on the collision
attack on 16 rounds, we show how the attack can be extended to 19 rounds at the
cost of a higher attack complexity of about 262 compression function evaluations.
Furthermore, we have presented a free-start collision for Tiger reduced to 23
rounds and a 1-bit circular free-start near-collision on the full Tiger hash function
(all 24 rounds) with a complexity of about 247 compression function evaluations.
Note that free-start and near-collisions might be more than just certificational
weaknesses. Several attacks on commonly used hash function, e.g. MD5, SHA-1
employ free-start collisions and near-collisions to find collisions for messages
spanning over more than 1 message block. However, at the moment we do not
see how the results presented in this chapter can be used in such an approach to
construct collisions for more than 19 rounds of the Tiger hash function. However,
a small improvement of the attack might lead to a collision for the full Tiger
hash function.

Furthermore, we have shown a preimage attack on Tiger reduced to 16 and 17
rounds. In the attacks, we combine weaknesses in the key schedule of Tiger with
a generic meet-in-the-middle approach to find preimages for the compression
function of Tiger faster than brute force search. By using a tree-based approach
we turn the attack on the compression function into a preimage attack on the
hash function. This results in preimage attack on Tiger reduced to 16 and 17
rounds with a complexity of about 2174 and 2185 compression function evalua-
tions, respectively. We want to note that recently results for 23 rounds [147] and
24 rounds [49] were presented, improving upon our attack. Similar to our attack,
these attacks are also based on a meet-in-the-middle approach. Even though the
complexities of the preimage attacks on Tiger are only slightly better than brute
force search they show weaknesses in the hash function. Nevertheless, they do
not to pose any threat to the security of Tiger for practical applications.

7
Cryptanalysis of Whirlpool

In this chapter, we will present a security analysis of the hash function Whirlpool
with respect to collision resistance. Whirlpool is the only hash function stan-
dardized by ISO/IEC [55] (since 2000) that does not follow the MD4 design
strategy. Furthermore, it has been evaluated and approved by NESSIE [121].
Whirlpool is commonly considered to be a conservative block cipher based de-
sign with a very conservative key schedule. Since its proposal in 2000, only a
few results have been published.

For the block cipher W that is used in the Whirlpool compression function,
Knudsen described a distinguisher for 6 (out of 10) rounds [68]. It needs 2120 in-
puts and has a complexity of 2120. In [71] similar techniques were used to obtain
known-key distinguishers for 7 rounds of the AES. Furthermore, the designers of
Whirlpool describe in [9] a key recovery attack against W reduced to 7 rounds
with a complexity of about 2245. It is an extension of the attack by Gilbert and
Minier on AES [48].

The main contribution of this chapter is a distinguishing attack on the full
Whirlpool compression function. This is achieved by two new methods in the
analysis of hash functions: the rebound attack [100] and the subspace distin-
guisher [76].

The rebound attack and its extensions [89] are applicable to a wide range of
hash function designs. However, AES based hash functions (such as Whirlpool)
are a natural target for this attack, since their construction principle allows a
simple application of the attack. The idea of the rebound attack is to divide
an attack into two phases, an inbound and an outbound phase. In the inbound
phase, the freedom in terms of the actual values of the state is used, such that
in the outbound phase several rounds can be bypassed in both forward and
backwards direction. In the rebound attack on the Whirlpool hash function,

91

92 Chapter 7. Cryptanalysis of Whirlpool

we combine a standard differential attack in the inbound phase with a trun-
cated differential attack in the outbound phase. This led to successful attacks
on round-reduced variants of the hash function for up to 7.5 (out of 10) rounds.
By using the freedom we have in the choice of the key-input respectively round-
keys we can add two rounds in the inbound phase of the attack and thus get
attacks on the Whirlpool compression function for up to 9.5 rounds. Further-
more, we describe a new generic attack and show how to distinguish the full (all
10 rounds) compression function of Whirlpool from random by turning the at-
tack for 9.5 rounds into a distinguishing attack for 10 rounds using the subspace
distinguisher. The results of this chapter have been published in [76, 77, 100].

7.1 The Hash Function Whirlpool

Whirlpool is a cryptographic hash function designed by Barreto and Rijmen
in 2000 [9]. It is an iterative hash function based on the Merkle-Damg̊ard de-
sign principle. It processes 512-bit message blocks and produces a 512-bit hash
value. As most iterated hash function, Whirlpool applies MD-strengthening as
described in Section 2.4. For the description of the padding method we refer
to [9]. Let M = M1‖M2‖ · · · ‖Mt be a t-block message (after padding). The
hash value h = H(M) is computed as follows (see Figure 7.1):

H0 = IV,

Hj = W (Hj−1,Mj)⊕Hj−1 ⊕Mj for 0 < j ≤ t,

h = Ht.

where IV is a predefined initial value and W is a 512-bit block cipher used in
the Miyaguchi-Preneel mode (cf. Section 2.2).

Mj

Hj−1

Hj
state update

SB SC MR AK

key schedule
SB SC MR AC

Figure 7.1: An overview of the Whirlpool compression function. The 10-round block
cipher W with key schedule and state update is used in Miyaguchi-Preneel
mode.

The block cipher W used by Whirlpool is very similar to the Advanced
Encryption Standard (AES) [116]. The state update transformation and the key
schedule update an 8 × 8 state S, respectively K, of 64 bytes in 10 rounds. In
one round, the round transformation updates the state by means of the sequence

7.1. The Hash Function Whirlpool 93

of transformations
AK ◦MR ◦ SC ◦ SB,

while the key schedule applies

AC ◦MR ◦ SC ◦ SB

to the round key. In the remainder of this chapter, we will use the outline of Fig-
ure 7.2 for one round. We denote the resulting state of round transformation ri
by Si and the intermediate states after SubBytes (SB) by SSB

i , after ShiftColumns
(SC) by SSC

i and after MixRows (MR) by SMR
i . The initial state prior to the first

round is denoted by S0 = Mj ⊕ Hj−1. The same notation is used for the key
schedule with round keys Ki with K0 = Hj−1. Note that we changed the names
of some steps of the round transformation of the original description [9] to be
consistent with the description of the AES.

Si−1 SSB
i SSC

i SMR
i Si

SB SC MR AK

Ki−1 KSB
i KSC

i KMR
i Ki

SB SC MR AC

Ci

Figure 7.2: One round ri of the Whirlpool compression function with 8 × 8 states
and state update and key schedule.

In the following, we briefly describe the round transformations of the block cipher
W used in the Whirlpool hash function.

SubBytes (SB). The SubBytes step is the only non-linear transformation of the
cipher. It is a permutation consisting of an S-box applied to each byte of the
state. The 8-bit S-box is composed of 3 smaller 4-bit mini-boxes (the exponential
E-box, its inverse, and the pseudo-randomly generated R-box). For a detailed
description of the S-box we refer to [9].

Differential Properties. Let a, b ∈ {0, 1}8. For the Whirlpool S-box, we are
interested in the number of solutions to the equation

S(x)⊕ S(x⊕ a) = b. (7.1)

Exhaustively counting over all 216 differentials shows that the number of so-
lutions to (7.1) can only be 0, 2, 4, 6, 8 and 256, which occur with frequency
39655, 20018, 5043, 740, 79 and 1, see Table 7.1. The task to return all solutions

94 Chapter 7. Cryptanalysis of Whirlpool

x to (7.1) for a given differential (a, b) is best solved by setting up a precomputed
table of size 256×256 which stores the solutions (if there are any) for each (a, b).

However, it is easy to see that for any permutation S (to be more precise, for
any injective map) the expected number of solutions to (7.1) is always 1:

2−16
∑

a

∑
b

#{x | S(x⊕ a)⊕ S(x) = b} = 2−16
∑

a

28 = 1,

because for a fixed a, every solution x belongs to a unique b. Since all the S-boxes
are independent, the same reasoning is valid for the full SubBytes transformation.

Table 7.1: The number of differentials and possible pairs (a, b) for the Whirlpool S-
box. The first row shows the number of impossible differentials and the
last row corresponds to the zero differential.

solutions frequency
0 39655
2 20018
4 5043
6 740
8 79

256 1

ShiftColumns (SC). The ShiftColumns step is a byte transposition that cycli-
cally shifts the columns of the state over different offsets. Column j is shifted
downwards by j positions.

Differential Properties. The ShiftColumns transformation moves bytes and thus,
differences to different positions of a column but does not change their value.
Due to the good diffusion property of ShiftColumns, 8 active bytes of a full active
row are moved to 8 different rows of the state. Hence, ShiftColumns ensures that
the 8 bytes of one row of a state are processed independently in the subsequent
MixRows transformation.

MixRows (MR). The MixRows step is a permutation operating on the state row
by row. To be more precise, it is a right-multiplication by a 8 × 8 circulant
MDS matrix over F28 . The coefficients of the matrix are determined in such
a way that the branch number (smallest sum of active input and output bytes
of each row) is nine, i.e. the maximum possible for a transformation with these
dimensions.

Differential Properties. Since the MixRows operation is a linear transformation,
standard differences propagate through MixRows in a deterministic way. The
propagation only depends on the values of the differences and is independent of
the actual value of the state. In case of truncated differences only the position,

7.2. The Rebound Attack 95

but not the value of the difference is determined. Therefore, the propagation of
truncated differences through MixRows is probabilistic.

Since the branch number of MixRows is 9, a truncated difference with exactly
one active byte will propagate to a truncated difference with 8 active bytes with
a probability of 1. On the other hand, a truncated difference with 8 active bytes
can result in a truncated difference with 1 to 8 active bytes after MixRows. The
probability of an 8 to 1 transition is only 2−7·8 = 2−56, since we need 7 out
of 8 truncated differences to be zero. In general, the probability of any a to b
transition with 1 ≤ a, b ≤ 8 satisfying a+ b ≥ 9 is approximately 2(b−8)·8. Note
that the probability depends on the direction of the propagation of truncated
differences, see Table 7.2.

Table 7.2: Approximate probabilities for the propagation of truncated differences
through MixRows with predefined positions. a denotes the number of ac-
tive bytes at the input and b the number of active bytes at the output of
MixRows. Probabilities are base 2 logarithms.

a \ b 0 1 2 3 4 5 6 7 8
0 0 × × × × × × × ×
1 × × × × × × × × 0
2 × × × × × × × −8 −0.0017
3 × × × × × × −16 −8 −0.0017
4 × × × × × −24 −16 −8 −0.0017
5 × × × × −32 −24 −16 −8 −0.0017
6 × × × −40 −32 −24 −16 −8 −0.0017
7 × × −48 −40 −32 −24 −16 −8 −0.0017
8 × −56 −48 −40 −32 −24 −16 −8 −0.0017

AddRoundKey (AK) and AddConstant (AC). The key addition in the state
update transformation is denoted by AddRoundKey and in the key schedule by
AddConstant, respectively. In this transformation the state is modified by com-
bining it with a round key with a bitwise xor operation. While the round key
in the state update transformation is generated by the key schedule, it is a
predefined constant in the key schedule.

Differential Properties. Since the AddRoundKey and AddRoundConstant oper-
ation is a simple xor with a round key or constant, standard differences and
truncated differences propagate through AddRoundKey and AddRoundConstant
in a deterministic way.

7.2 The Rebound Attack

The rebound attack is a new tool for the cryptanalysis of hash functions and
was invented by us in cryptanalysis of AES-based hash functions in [100]. It
is a differential attack, using several new techniques to improve upon existing
results. In the following, we describe the attack in detail.

96 Chapter 7. Cryptanalysis of Whirlpool

7.2.1 Basic Attack Strategy

The rebound attack consists of two phases, called inbound and outbound phase,
as shown in Figure 7.3. According to these phases, the compression function,
internal block cipher or permutation of a hash function is split into three sub-
parts. Let W be a block cipher, then we get W = Wfw ◦Win ◦Wbw. Hence, the
part of the inbound phase is placed in the middle of the cipher and the two parts
of the outbound phase are placed next to the inbound part. In the outbound
phase, two high-probability (truncated) differential trails are constructed, which
are then connected in the inbound phase. Similar to message modification, the
freedom in terms of the actual values of the message, key-inputs or (internal)
state variables is used to efficiently fulfill the conditions of a differential trail in
the inbound phase of the attack.

Wbw Win Wfw

inbound
outbound outbound

Figure 7.3: A schematic view of the rebound attack. The attack consists of an in-
bound and two outbound phases.

Constructing a Trail

As in all differential attacks we first have to construct a “good” (truncated)
differential trail. A good trail used for the rebound attack should have a high
probability in the outbound phases and can have a rather low probability in the
inbound phase. Two properties are important here: First, the system of equa-
tions that determine whether a pair follows the differential trail in the inbound
phase should be underdefined. Then, several solutions (starting points for the
outbound phase) can be found efficiently by using guess-and-determine strate-
gies. Second, the outbound phases should have a high probability in outward
direction.

Inbound Phase

In the attack, we first search for solutions (inputs that follow the differential trail)
in the inbound phase and then check if these solutions also fulfill the conditions
(follow the differential trail) in the outbound phase. The inbound phase of a
differential trail is defined such that the corresponding system of equations is
underdefined. We first guess some variables such that the remaining system is
easier to solve. Hence, the inbound phase of the attack is similar to message
modification in an attack on a hash function. To be more precise, the available
freedom in terms of the actual values of the internal variables is used to find

7.2. The Rebound Attack 97

a solution in the inbound phase deterministically or with a high probability.
Hence, also differential trails with low probability can be used in the inbound
phase of the attack.

Outbound Phase

In the outbound phase, we verify whether the solutions of the inbound phase also
follow the differential trail in the outbound phase. Note that in this phase of the
attack there are usually no free variables left to choose and hence the outbound
phase have to be fulfilled probabilistically. Therefore, one aims for a narrow
(truncated) differential trail in the outbound phase of the attack which has a
high probability in outward direction. The advantage of placing the inbound
phase in the middle and two outbound phases at the beginning and end is that
one can construct (truncated) differential trails with a higher probability in the
outbound phase. Hence, more of the hash function rounds can be attacked.

7.2.2 Related Work

The rebound attack has ancestors from various lines of research, often related
to the cryptanalysis of block ciphers.

� Differential Cryptanalysis of Block Cipher Based Hash Functions:
Rijmen and Preneel [130] describe collision attacks on 15 out of 16 rounds
on hash functions using DES. In [66], Khovratovich et al. analyzed security
of AES-based hash functions with respect to collision resistance. In a
follow-up work they describe a collision attack on AES-256 in Davies-
Mayer mode [14]. For the case of Whirlpool, there is an observation on the
internal block cipher W reduced to 6 (out of 10) rounds by Knudsen [68]
and a key recovery attack on W reduced to 7 rounds by Barreto and
Rijmen [9].

� Truncated Differentials: In the applications of the rebound technique,
we used truncated differentials in the outbound phase of the attack. Trun-
cated differentials were proposed by Knudsen as a tool in block cipher
cryptanalysis [67]. While in a standard differential attack, the full dif-
ference between two inputs/outputs is considered, for truncated differen-
tials, the differences are only partially determined, e.g. for every byte, one
only checks if there is a difference or not. Truncated differentials have
been applied by Peyrin [122] in the cryptanalysis of the hash function
Grindahl [70].

� Inside-Out Techniques: Inside-out techniques as used in the rebound
attack, were invented by Wagner as an application of second order differ-
entials in the cryptanalysis of block ciphers in the Boomerang attack [145].

� Start in the Middle: The idea of placing the most expensive part of the
differential trail in the middle was previously used in the cryptanalysis of
MD5 [36] and Tiger, see Chapter 6.

98 Chapter 7. Cryptanalysis of Whirlpool

7.3 Attacks on the Hash Function

In this section, we describe the application of the rebound attack to reduced
variants of the Whirlpool hash function. First, we describe the idea of the attack
for the Whirlpool hash function reduced to 4.5 rounds. It has a complexity
of about 2120 and negligible memory requirements. Then, we show how the
complexity of the attack can be reduced significantly by covering 1 additional
round in the inbound phase. This results in an improved attack complexity
of about 264. Furthermore, we show how the attack can be extended to 5.5
rounds by adding 1 round in the inbound phase of the attack. The attack has a
complexity of about 2120 and memory requirements of 264.

Second, we present near-collisions for the Whirlpool hash function reduced
to 6.5 and 7.5 rounds. The attacks are straightforward extensions of the collision
attacks on 4.5 and 5.5 rounds, respectively. By adding 2 rounds in the outbound
phase of the attacks, we get a near-collision for the Whirlpool hash function
reduced to 6.5 and 7.5 rounds. In the following, we describe all attacks in detail.

7.3.1 Collision Attack on 4.5 Rounds

The rebound attack on Whirlpool reduced to 4.5 rounds is a differential attack
which uses a differential trail with the minimum number of active S-boxes ac-
cording to the wide trail design strategy. The core of the rebound attack on 4.5
rounds is a differential trail, where the full active state is placed in the middle
(see also Figure 7.4):

1 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 1 r4.5−−→ 1.

S0 S1 S2 S3 S4 SSC
4

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC

Figure 7.4: Differential trail for the collision attack on 4.5 rounds of Whirlpool. Black
state bytes are active.

In the rebound attack, we first split the block cipher W into three sub-ciphers
W = Wfw ◦Win ◦Wbw, such that the most expensive part of the differential trail
is covered by the inbound phase Win:

Wbw = SC ◦ SB ◦ AK ◦MR ◦ SC ◦ SB,

Win = MR ◦ SC ◦ SB ◦ AK ◦MR,

Wfw = SC ◦ SB ◦ AK ◦MR ◦ SC ◦ SB ◦ AK.

In the inbound phase, the available freedom in the choice of the actual values
of the state is used to guarantee that the differential trail in Win holds. The

7.3. Attacks on the Hash Function 99

differential trail in the outbound phase (Wfw, Wbw) is supposed to have a rela-
tively high probability. While standard XOR differences are used in the inbound
phase, truncated differentials are used in the outbound phase of the attack. In
the following, we describe the inbound and outbound phase of the attack in
detail.

Inbound Phase

In the inbound phase of the attack we have to find inputs such that the differen-
tial trail in Win holds. This can be done efficiently by using a meet-in-the-middle
approach. It can be summarized as follows.

1. First, we start with an arbitrary difference with 8 active bytes at the
output of MixRows of round r3 (SMR

3) and propagate backward. Note that
we need one active byte in each row of the state (see Figure 7.5) to get
a full active state before the MixRows transformation. Since ShiftColumns
does not change the difference, we get a full active state at the output of
SubBytes of round r3 (SSB

3).

2. Second, we choose a difference with one active byte in each row at the
input of MixRows of round r2 (SSC

2) and compute forward to the input of
SubBytes of round r3 (S2). Note that this can be done for all 28 values of
the active byte (differences) for each row independently, which facilitates
the attack.

3. In the next step of the inbound phase, the match-in-the-middle step, we
look for a matching input/output difference of the SubBytes layer of round
r3 for each row of S2 and SSB

3 independently. This is done as described in
Section 7.1 with a precomputed 256 × 256 lookup table. As indicated in
Section 7.1, we expect on average one solution per trial. Since we have 28

candidates for each row of S2 (and 1 for each row of SSB
3) we expect to find

28 solutions for each row (i.e. 2 solutions for each S-box). Hence, we get
264 solutions for the whole SubBytes layer. In other words, we can find 264

actual values that follow the differential trail in the inbound phase with a
complexity of about 28 round transformations.

Since we can repeat the inbound phase 264 times, we can find 2128 actual values
that follow the differential trail in the inbound phase.

SSC
2 S2 SSB

3 SMR
3

MR
AK

SB
SC
MR

Figure 7.5: Inbound phase of the attack on 4.5 rounds of Whirlpool. Black state
bytes are active.

100 Chapter 7. Cryptanalysis of Whirlpool

Outbound Phase

In contrast to the inbound phase, we use truncated differentials in the outbound
phase of the attack. By propagating the matching differences and state values
through the next SubBytes layer outwards, we get a truncated differential in 8
active bytes in both backward and forward direction. In order to get a collision
after 4.5 rounds we need that the truncated differentials in the outbound phase
propagate from 8 to 1 active byte through the MixRows transformation, both
in the backward and forward direction (see Figure 7.4). The propagation of
truncated differentials through the MixRows transformation can be modeled in a
probabilistic way, see Section 7.1. Since we need to fulfill one 8 to 1 transition in
the backward and forward direction, the probability of this part of the outbound
phase is 2−2·56 = 2−112. Furthermore, to construct a collision at the output (after
the feed-forward), we need that the differences at the input and output cancel
out. Since only one byte is active at input and output, this has a probability of
2−8. Hence the probability of the outbound phase of the attack is 2−112 · 2−8 =
2−120. In other words, we have to repeat the inbound phase about 2120 times to
generate 2120 starting points for the outbound phase of the attack.

Since we can find one starting point for the outbound phase with an average
complexity of 1, we can find a collision for the Whirlpool hash function reduced
to 4.5 rounds with a complexity of about 2120.

7.3.2 Improving the Complexity of the Attack

In this section, we show how the complexity of the collision attack presented in
the previous section can be significantly improved. The main idea is to extend
the inbound phase of the attack by 1 round such that one 8 to 1 transition of
the outbound phase is covered in the inbound phase of the attack. It is easy to
see that this improves the probability of the outbound phase significantly: 2−64

instead of 2−120. In other words, we need to construct only 264 instead of 2120

starting points in the inbound phase for the outbound phase of the attack. In
the following, we show how to find inputs that follow the differential trail in the
inbound phase of the attack with the following sequence of active bytes:

1 r1−→ 8 r2−→ 64 r3−→ 8.

Note that this is very similar to the attack on the hash function Grøstl in [89].
It can be summarized as follows.

1. Like in the original attack we first choose a difference with 8 active bytes
in each row at the output of MixRows of round r3 (SMR

3) and propagate
backward to we get a full active state at the output of SubBytes of round
r3 (SSB

3).

2. In the second step we choose a difference with one active byte in each row
at the input of MixRows of round r2 (SSC

2) and compute forward to the
input of SubBytes of round r3 (S2). Again, this can be done for all 28

differences (value of the active byte) for each row independently.

7.3. Attacks on the Hash Function 101

3. Next, we look for a matching input/output difference of the SubBytes layer
of round r3 for each row of S2 and SSB

3 independently. This is done with
a precomputed 256× 256 lookup table as described in Section 7.1. Since,
we expect on average one solution per trial and we have 28 candidates for
each row of S2 we expect to find 28 solutions for each row, i.e. 2 solutions
for each S-box.

4. For all 28 solutions for each row of S2 compute backward to S1. Since
MixRows works independently on each row and SubBytes, ShiftColumns,
and AddRoundKey are byte-wise operations, this determines only 8 bytes
of S1 and the corresponding differences (active bytes). In detail, we get 28

candidates for each active byte in S1 after testing all 28 solutions for each
row of S2 independently. Hence, we get 264 candidates for the 8 active
bytes in row 1 of S1 after this step of the attack with a complexity of
about 28 round transformations.

5. In order to follow the differential trail in the inbound phase of the attack,
we have to guarantee that the differences in S1 propagate from 8 to 1
active byte through the MixRows transformation in the backward direction.
Therefore, we compute for all 28 values of the one active byte at the input
of MixRows in round r1 (SSC

1) forward to the input of SubBytes in round
r2 (S1) and check for a match. Since have 264 candidates for the active
bytes in S2, i.e. 28 for each active byte, we expect to find 28 solutions after
testing all 28 candidates for the one active byte in SSC

1 . In other words we
expect to find 28 solutions (actual values) that follow the differential trail
in the inbound phase of the attack with a complexity of about 28 round
transformations.

Since the probability of the outbound phase of the attack is 2−64, we have to
repeat the inbound phase about 256 times to generate 264 starting points for
the outbound phase of the attack. Since we can find 28 starting points for the
outbound phase with a complexity of 28, we can construct a collision for the
Whirlpool hash function reduced to 4.5 rounds with a complexity of about 264.

7.3.3 Extending the Attack to 5.5 Rounds

In this section, we present a collision attack for the Whirlpool hash function
reduced to 5.5 with a complexity of about 2184−s and memory requirements of
2s with 0 ≤ s ≤ 64. The attack is a straightforward extension of the collision
attack on 4.5 rounds of Whirlpool described in Section 7.3.1. By adding one
round in the inbound phase of the attack we can extend the attack to 5.5 rounds
(see Figure 7.6). We use the following sequence of active bytes:

1 r1−→ 8 r2−→ 64 r3−→ 64 r4−→ 8 r5−→ 1 r5.5−−→ 1.

Again, we split the block cipher W into three sub-ciphers W = Wfw ◦Win ◦
Wbw, such that the most expensive part of the trail is covered by the inbound

102 Chapter 7. Cryptanalysis of Whirlpool

S0 S1 S2 S3 S4 S5 SSC
5

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC

Figure 7.6: Differential trail for the collision attack on 5.5 rounds of Whirlpool.

phase Win, while the trail in the outbound phase (Wfw,Wbw) has a relatively
high probability to hold:

Wbw = SC ◦ SB ◦ AK ◦MR ◦ SC ◦ SB,

Win = MR ◦ SC ◦ SB ◦ AK ◦MR ◦ SC ◦ SB ◦ AK ◦MR,

Wfw = SC ◦ SB ◦ AK ◦MR ◦ SC ◦ SB ◦ AK.

Since the outbound phase is identical to the attack on 4.5 rounds, we only discuss
the inbound phase of the attack here (see Figure 7.7).

SSC
2 S2 SSB

3 S3 SSB
4 SMR

4

MR
AK

SB
SC
MR
AK

SB
SC
MR

Figure 7.7: The inbound phase of the attack on 5.5 rounds of Whirlpool.

Note that since the outbound phase of the attack has a probability of 2−120,
we have to generate 2120 starting points in the inbound phase of the attack. It
can be summarized as follows.

1. Start with an arbitrary difference in the 8 active bytes at the input of
MixRows in round r2 (SSC

2) and propagate forward to the input of SubBytes
in round r3 (S2). Since we have one active byte in each row of the state
(see Figure 7.7) this results in a full active state S2.

2. Start with an arbitrary difference in the 8 active bytes at the output of
MixRows in round r4 (SMR

4) and propagate backward to the output of
SubBytes in round r4 (SSB

4). Again, since we start with one active byte in
each row, we get a full active state in SSB

4 .

3. Next we have to connect the states S2 and SSB
4 such that the differential

trail holds. Note that this can be done for each row of SSB
4 independently,

which facilitates the attack. It can be summarized as follows.

(a) For all 264 actual values of the first row of SSB
4 compute backward

to S2 and check if the differential trail holds. Since MixRows works
on each row independently and ShiftColumns and SubBytes are byte-
wise operations, this determines 8 bytes of S2 and the corresponding

7.3. Attacks on the Hash Function 103

differences. Hence, after testing all 264 candidates we expect to find
an input such that the differential trail holds.

(b) Do the same for row 2-8 of SSB
4 .

After testing each row independently, we expect to find actual values for
the state SSB

4 and hence S2 such that the differential trail is connected.
This step of the attack has a complexity of about 264 round computations.

Hence, we can compute one starting point for the outbound phase of the attack
with a complexity of about 264. Since we need 2120 starting points in the inbound
phase, the collision attack has a complexity of about 2184.

However, the complexity of the inbound phase can be significantly reduced
at the cost of higher memory requirements. By saving 2s candidates for the
differences (active bytes) in S2, we can do a standard time/memory tradeoff with
a complexity of about 2184−s and memory requirements of 2s with 0 ≤ s ≤ 64.
Hence, by setting s = 64 we can find a collision for the Whirlpool hash function
reduced to 5.5 rounds with a complexity of about 2120 and memory requirements
of 264.

7.3.4 Near-Collisions for Whirlpool

The collision attacks on 4.5 and 5.5 rounds can be further extended by adding
one round at the beginning and one round at the end of the trail. The result
is a near-collision attack on 6.5 and 7.5 rounds of the hash function Whirlpool.
We use the following sequence of active bytes

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 8 r5−→ 1 r6−→ 8 r6.5−−→ 8

for the near-collision attack on 6.5 rounds and

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 64 r5−→ 8 r6−→ 1 r7−→ 8 r7.5−−→ 8

for the near-collision attack on 7.5 rounds. In the following, we describe the
attack for 7.5 rounds in detail. Note that the attack on 6.5 rounds works similar.
Since the inbound phase is identical to the collision attack on 5.5 rounds, we only
discuss the outbound phase here. Since the 1-byte difference at the beginning
and end of the 5.5 round trail will always result in 8 active bytes after one
MixRows transformation, we can go backward 1 round and forward 1 round with
no additional costs. After the feed-forward, the position of two active bytes
match and cancel out each other with a probability of 2−16. In other words,
the outbound phase of attack has a probability of about 2−112 to construct a
near-collision in 50 bytes and 2−128 to construct a near-collision in 52 bytes.
Hence, we have to construct 2112 and 2128 starting points in the inbound phase
of the attack to find a near-collision in 50 and 52 bytes, respectively. Since in the
collision attack on 5.5 rounds one can construct 2s starting points in the inbound
phase of the attack with a complexity of about 264 and memory requirements
of 2s with 0 ≤ s ≤ 64 (see Section 7.3.3), the attack has a complexity of about
2176−s and 2192−s, respectively. Both attacks have memory requirements of 2s.

104 Chapter 7. Cryptanalysis of Whirlpool

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
S
C

8

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

F
ig

u
re

7
.8

:
D

iff
eren

tia
l
tra

il
fo

r
th

e
n
ea

r-co
llisio

n
a
tta

ck
o
n

7
.5

ro
u
n
d
s

o
f
W

h
irlp

o
o
l,

co
n
stru

cted
b
y

ex
ten

d
in

g
th

e
5
.5

-ro
u
n
d

tra
il

w
ith

o
n
e

ro
u
n
d

a
t

th
e

b
eg

in
n
in

g
a
n
d

o
n
e

ro
u
n
d

a
t

th
e

en
d

o
f
th

e
o
u
tb

o
u
n
d

p
h
a
se.

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
S
C

7

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

F
ig

u
re

7
.9

:
D

iff
eren

tia
l
tra

il
fo

r
th

e
n
ea

r-co
llisio

n
a
tta

ck
o
n

6
.5

ro
u
n
d
s

o
f
W

h
irlp

o
o
l,

co
n
stru

cted
b
y

ex
ten

d
in

g
th

e
4
.5

-ro
u
n
d

tra
il

w
ith

o
n
e

ro
u
n
d

a
t

th
e

b
eg

in
n
in

g
a
n
d

o
n
e

ro
u
n
d

a
t

th
e

en
d

o
f
th

e
o
u
tb

o
u
n
d

p
h
a
se.

7.4. Attacks on the Compression Function 105

Note that the attack on 6.5 rounds works similarly, only the inbound phase of
the attack is different. Since one can find a solution for the inbound phase with
an average complexity of 1 (see Section 7.3.1), we can construct a near-collision
in 50 and 52 bytes with a complexity of about 2112 and 2128, respectively. Similar
to the collision attack on 4.5 rounds one can improve the complexity of the attack
by a factor of 256 by extending the inbound phase of the attack by one round
such that one 8 to 1 transition of the outbound phase is covered by the inbound
phase of the attack (see Section 7.3.2). Hence, we can construct a near-collision
in 50 and 52 bytes for the Whirlpool hash function reduced to 6.5 rounds with
a complexity of about 256 and 272, respectively.

7.4 Attacks on the Compression Function

In this section, we will present a semi-free-start collision for the Whirlpool com-
pression function reduced to 7.5 rounds and a semi-free-start near-collision for
9.5 rounds. By using a new differential trail and extensively using the available
degrees of freedom of the key schedule, we can add 2 additional rounds to the
inbound phase of the attacks. The idea is to have two instead of one match-
in-the-middle step in the inbound phase of the attack and connect them using
the available degrees of freedom from the key schedule (in terms of the actual
values of the subkeys). The outbound phase of the attacks is identical as in
the previous attacks on the Whirlpool hash function on 5.5 and 7.5 rounds (see
Section 7.3). In the following, we describe both the inbound and the outbound
phase of the attack in detail.

7.4.1 Inbound Phase

In this section, we describe the improved inbound phase of the attack in detail.
The main idea is to use the available degrees of freedom from the chaining value
of the key schedule to add additional rounds in the middle of the inbound phase.
Hence, we get the following sequence of active bytes:

8 r1−→ 64 r2−→ 8 r3−→ 8 r4−→ 64 r5−→ 8.

S0 S1 S2 S3 S4 S5

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

Figure 7.10: The inbound phase of the attack on the Whirlpool compression function.

In order to find inputs following the differential trail of the inbound phase,
we split it into two parts. In the first part, we apply the match-in-the-middle

106 Chapter 7. Cryptanalysis of Whirlpool

step with active bytes 8 → 64 → 8 twice in rounds 1-2 and 4-5. In the second
part, we need to connect the resulting 8 active bytes and 64 (byte) values of the
state between round 2 and 4 using the degrees of freedom we have in the choice
of the round key values.

Inbound Part 1

In this part of the inbound phase, we apply the match-in-the-middle step twice
for rounds 1-2 and 4-5, which can be summarized as follows:

1. Match-in-the-middle (rounds 1-2):

(a) Start with 8 active bytes at the output of AddRoundKey in round r2
(S2) and propagate backward to the output of SubBytes in round r2
(SSB

2).

(b) Start with 8 active bytes (1 in each row) at the input of MixRows in
round r1 (SSC

1) and propagate forward to the input of SubBytes in
round r2 (S1). Again, this can be done for all 28 differences (value of
the active byte) for each row independently.

(c) Next, we look for a matching input/output difference of the SubBytes
layer of round r2 for each row of S1 and SSB

2 independently. This
is done with a precomputed 256 × 256 lookup table as described in
Section 7.1. Since, we expect on average one solution per trial and we
have 28 candidates for each row of S1 we expect to find 28 solutions
for each row, i.e. 2 solutions for each S-box. After finishing this step
we have 264 inputs (2 for each S-box of S1 and hence SSB

2) that follow
the differential trail in round 1-2.

2. Match-in-the-middle (rounds 4-5): Do the same as in step 1.

Hence, we get 264 candidates for SSB
2 and S4 after the first part of the inbound

phase of the attack with a complexity of about 29 round transformations.

Inbound Part 2

In the second part of the inbound phase, we have to connect the results of the
two match in the middle steps. In detail, we have to ensure that the differences
in the 8 active bytes (a 64-bit condition) as well as the actual values of SSB

2

and S4 (a 512-bit condition) match by choosing the subkeys K2, K3 and K4

correspondingly. In other words, we have to solve the following equation:

MR(SC(SB(MR(SC(SB(MR(SC(SSB
2))⊕K2)))⊕K3)))⊕K4 = S4, (7.2)

with
K3 = MR(SC(SB(K2)))⊕ C3,

K4 = MR(SC(SB(K3)))⊕ C4.
(7.3)

7.4. Attacks on the Compression Function 107

Since we have 264 candidates for SSB
2 , 264 candidates for S4 and can choose

from 2512 values for the subkeys (K2, K3 or K4 because of (7.3)), the expected
number of solutions is 264.

Since SMR
2 = MR(SC(SSB

2)), we can rewrite (7.2) as follows:

MR(SC(SB(MR(SC(SB(SMR
2 ⊕K2)))⊕K3)))⊕K4 = S4. (7.4)

Note that in the Whirlpool block cipher the order of ShiftColumns and SubBytes
can always be changed without affecting the output of one round. In order to
make the subsequent description of the attack easier, we do this here and get
the following equation:

MR(SC(SB(MR(SB(SC(SMR
2 ⊕K2)))⊕K3)))⊕K4 = S4. (7.5)

Furthermore, MixRows and ShiftColumns are linear transformations and hence
we can rewrite the above equation as follows:

SB(MR(SB(S̃2 ⊕ K̃2))⊕K3)⊕KSB
4 = X, (7.6)

with S̃2 = SC(SMR
2), K̃2 = SC(K2), KSB

4 = SB(K3), X = SC−1(MR−1(S4⊕C4)).

MR

MR

SB

SB

SC

SC

MR

MR

SB

SB

SC

SC

MR

MR

SB

SB

C2

K2

C3

K3

C4

K4

original description:

MR

MR

SC

SC

S̃2

SB

SB

MR

MR

SB

SB

SC

SC

X
MR

MR

SB

SB

C2

K̃2

C3

K3

C4

C4KSB
4

alternative description:

Figure 7.11: The sequence of operations is changed to get an equivalent description
of the block cipher W .

Figure 7.11 shows how the sequence of operations between state SMR
2 and S4

of the Whirlpool state update and key schedule are changed. In the following,
this equivalent description is used to connect the values and differences of the
two states S̃2 and X.

Remember that the differences of SSB
2 and S4 have already been fixed in

part 1 of the attack. Since ShiftColumns, MixRows and AddRoundKey are linear

108 Chapter 7. Cryptanalysis of Whirlpool

S̃2 S2 SMR
3 S3 SSB

4 X

AK
SB
MR

AK SB AK

K̃2 K3 KSB
4

Figure 7.12: The second part of the extended inbound phase of the attack on the
compression function of Whirlpool by using the alternative description.

transformations, also the differences of S̃2 and X are fixed. However, we can
still choose from 264 candidates for each of the states S̃2 and X, since we found
264 candidates for SSB

2 and 264 candidates for S4 in part 1 of the attack. Note
that we can compute and store the candidates of S̃2 (from SSB

2) and X (from
S4) row-by-row and independently. Hence, both the complexity and memory
requirements for this step are 28 instead of 264.

Now, we use (7.6) to determine the subkey K̃2 such that we get a solution
for the extended inbound phase and hence, a starting point for the outbound
phase of the attack. Note that we can solve (7.6) for each row of the states
independently. It can be summarized as follows (see Figure 7.12).

1. Since AddRoundKey is a linear transformation, we can compute the 8-byte
difference in S2 (from S̃2) and SSB

4 (from X). We want to stress that these
differences are the same for all 264 candidates of the state S̃2 and all 264

candidates of the state X, respectively.

2. Choose arbitrary values for the first row of S2 and compute forward to
obtain the differences and values of the first row of SMR

3 . Again, since
AddRoundKey is a linear transformation, this also determines the difference
of S3.

3. Next, we choose the first row of the key K3 such that the differential of
the S-box between S3 and SSB

4 holds. This can be done similar as in the
inbound phase with a precomputed 256× 256 lookup table as described in
Section 7.1.

4. Once the first row of K3 is fixed we can also compute the first row of K̃2

and KSB
4 . This also determines the first row (64 bits) of S̃2 and the first

row (64 bits) of X. Remember that we have 264 candidates for state S̃2

and 264 candidates for state X due to step 1. Hence, the expected number
of compatible candidates for both S̃2 and X equals 1. In other words, we
can connect the values and differences of the first row of S̃2 and X with
an average complexity of one.

5. Next, we have to connect the values of S̃2 and X for rows 2-8. Note that
this can be done independently for each row by a simple brute-force search
over all 264 values of the corresponding row of K̃2. Since we have to connect
64 bits and we test 264 values for each row of K̃2 the expected number of
solutions is one.

7.4. Attacks on the Compression Function 109

Since we can repeat the above procedure 264 times with different values for the
first row of S2, we get in total 264 solutions (matches) connecting state S̃2 to
state X with a complexity of 2128 and memory requirements of 28. In other
words, we get 264 starting points for the outbound phase of the attack. Hence,
the average complexity to find one starting point for the outbound phase is 264.

Note that Step 5 can be implemented using a precomputed lookup table of
size 2128. In this lookup table each row of the key K2 (64 bits) is saved for the
corresponding two rows of S̃2 and X (64 bits each). Using this lookup table, we
can find one starting point for the outbound phase with an average complexity of
1. However, the complexity to generate this lookup table is 2128. It is important
to note that one can construct a total of 2192 starting points in the extended
inbound phase to be used in the outbound phase of the attack.

7.4.2 Outbound Phase

In the outbound phase of the attack, we further extend the differential path
backward and forward. By propagating the matching differences and state values
through the next SubBytes layer, we get a truncated differential in 8 active bytes
for each direction. These truncated differentials need to follow a specific active
byte pattern to result in a semi-free-start collision for 7.5 rounds and a semi-
free-start near-collision for 9.5 rounds, respectively. In the following, we will
describe the outbound phase for the two attacks in detail.

Semi-Free-Start Collision for 7.5 Rounds

By adding 1 round in the beginning and 1.5 rounds at the end of the trail,
we get a semi-free-start collision for 7.5 rounds for the compression function of
Whirlpool with the following sequence of active bytes:

1 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 8 r5−→ 64 r6−→ 8 r7−→ 1 r7.5−−→ 1.

For the differential trail to hold, we need that the truncated differentials in
the outbound phase propagate from 8 to 1 active byte through the MixRows
transformation, both in the backward and forward direction (see Figure 7.13).
Since the transition from 8 active bytes to 1 active byte through the MixRows
transformation has a probability of about 2−56 and the exact value of the input
and output difference in one byte has to match after the feed-forward to get
a semi-free-start collision, the outbound phase has a probability of 2−2·56−8 =
2−120. In other words, we have to generate 2120 starting points (for the outbound
phase) in the inbound phase of the attack.

Since, we can find one starting point with an average complexity of about
264 and memory requirements of 28, we can find a semi-free-start collision with
a complexity of about 2120+64 = 2184. The complexity of the attack can be
reduced to 2120 by using a precomputed lookup table in the inbound phase of
the attack.

110 Chapter 7. Cryptanalysis of Whirlpool

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
S
C

8

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

F
ig

u
re

7
.1

3
:

D
iff

eren
tia

l
tra

il
fo

r
th

e
sem

i-free-sta
rt

n
ea

r-co
llisio

n
a
tta

ck
o
n

7
.5

ro
u
n
d
s

o
f

th
e

co
m

p
ressio

n
fu

n
ctio

n
o
f

W
h
irlp

o
o
l,

co
n
stru

cted
b
y

ex
ten

d
in

g
th

e
5
-ro

u
n
d

tra
il

w
ith

o
n
e

ro
u
n
d

a
t

th
e

b
eg

in
n
in

g
a
n
d

1
.5

ro
u
n
d
s

a
t

th
e

en
d
.

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
S
C

1
0

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

M
R

A
K

S
B

S
C

F
ig

u
re

7
.1

4
:

D
iff

eren
tia

l
tra

il
fo

r
th

e
sem

i-free-sta
rt

n
ea

r-co
llisio

n
a
tta

ck
o
n

9
.5

ro
u
n
d
s

o
f

th
e

co
m

p
ressio

n
fu

n
ctio

n
o
f

W
h
irlp

o
o
l,

co
n
stru

cted
b
y

ex
ten

d
in

g
th

e
7
.5

-ro
u
n
d

tra
il

w
ith

o
n
e

ro
u
n
d

a
t

th
e

b
eg

in
n
in

g
a
n
d

o
n
e

ro
u
n
d

a
t

th
e

en
d

o
f
th

e
o
u
tb

o
u
n
d

p
h
a
se.

7.5. Subspace Distinguisher for 10 Rounds 111

Semi-Free-Start Near-Collision for 9.5 Rounds

As in the attack on the Whirlpool hash function the semi-free-start collision
attack on 7.5 rounds can be further extended by adding one round at the begin-
ning and one round at the end of the trail in the outbound phase. The result is
a semi-free-start near-collision for 9.5 rounds of the compression function with
the following sequence of active bytes (see Figure 7.14):

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 8 r5−→ 8 r6−→ 64 r7−→ 8 r8−→ 1 r9−→ 8 r9.5−−→ 8.

Since the 1-byte difference at the beginning and end of the 7.5 round trail
will always result in 8 active bytes after one MixRows transformation, we can go
backward 1 round and forward 1 round with no additional cost. Using the feed-
forward, the position of two active S-boxes match and cancel out each other with
a probability of 2−16. Hence, we get a semi-free-start near-collision in 50 and 52
bytes for the compression function of Whirlpool with a complexity of about 2176

and 2176+16 = 2192, respectively. Again, by using a precomputed lookup table
in the inbound phase the complexity of the attack can be reduced significantly.
The result is a semi-free-start near-collision for 9.5 rounds of Whirlpool with a
complexity of about 2112 and 2128, respectively.

7.5 Subspace Distinguisher for 10 Rounds

In this section, we present a subspace distinguisher for the full Whirlpool com-
pression function. The previous result on 9.5 rounds is extended to full 10 rounds
of the compression function by defining a different attack scenario. Instead of
aiming for a near-collision, we are here interested in detecting non-random be-
havior. In order to do this, we first describe the setting in which we will describe
the distinguishing attack later on. In the following, F2 = GF (2) always denotes
the finite field of order 2. We consider the following problem:

Problem 7.1. Given a function f mapping to FN
2 , try to find t input pairs

(ai, a
∗
i) such that the corresponding output differences f(ai)⊕ f(a∗i) belong to a

subspace Vout ⊂ FN
2 with dim(Vout) ≤ n for some n ≤ N .

7.5.1 Solving Problem 7.1 for the Whirlpool Compression
Function

In this section, we show how the compression function attack described in Sec-
tion 7.4 can be used to distinguish the full Whirlpool compression function from
a random function.

Obviously, the difference between two Whirlpool states can be seen as a
vector in the vector space of dimension N = 512 over F2. The crucial observation
is that the attack of Section 7.4 can be interpreted as an algorithm that can find
t difference vectors in F512

2 (output differences of the compression function) that
form a subspace Vout ⊆ F512

2 with dim(Vout) ≤ 128. To see this, observe that by

112 Chapter 7. Cryptanalysis of Whirlpool

extending the differential trail from 9.5 to 10 rounds, the 8 active bytes in SSC
10

will always result in a full active state S10 due to the properties of the MixRows
transformation. Thus the near-collision is destroyed. However, if we look again
at Figure 7.14, both the differences in S0 (respectively the message blockMj) and
the differences in SSC

10 can be seen as (difference) vectors belonging to subspaces
of F512

2 of dimension at most 64. Even though after the application of MixRows
and AddRoundKey the state S10 is fully active in terms of truncated differences,
the XOR differences in S10 still belong to a subspace of F512

2 of dimension at
most 64 due to the properties of MixRows. Therefore, after the feed-forward, we
can conclude that the differences at the output of the compression function form
a subspace Vout ⊆ F512

2 with dim(Vout) ≤ 128
Hence, we can use the attack of Section 7.4 to find t input differences such

that the corresponding output differences form a vector space Vout of dimension
n ≤ 128. This has a complexity of t · 2176 or t · 2112 using a precomputation
step with complexity 2128. Note that t ≤ 2192−112 = 280, due to the extended
inbound phase of the attack (see Section 7.4).

Now the main question is for which values of t our attack is more efficient
than a generic attack. In other words, how do we have to choose t such that we
can distinguish the compression function of Whirlpool from a random function.
Therefore, we first have to bound the complexity of the generic attack. This is
described in the next section.

7.5.2 Solving Problem 7.1 for a Random Function

In this section, we investigate how difficult it is to solve Problem 7.1 for a random
function. The results of this section are based on [74].

Remarks on the security model

In order to discuss generic attack scenario, we will have to choose a security
model. We will adopt the black box model introduced by Shannon [137]. In this
model, a block cipher can be seen as a family of functions parameterized by the
secret key k ∈ K, that is, W : {0, 1}|k| × {0, 1}N 7→ {0, 1}N , where for each
k ∈ K, W (k, ·) is seen as a uniformly chosen random permutation on {0, 1}N .

In [16] it was shown, that an ideal block cipher based hash function in the
Miyaguchi-Preneel mode is collision resistant and non-invertible. Based on this,
we model our compression function f as a black box oracle to which only forward
queries are admissible and we measure the difficulty by counting the number of
queries that need to be made to the oracle. We bound the query complexity and
ignore all other computations, memory accesses etc.

The generic approach

In this generic approach the only thing used about f is the fact that the outputs
of f are contained in the vector space FN

2 .

7.5. Subspace Distinguisher for 10 Rounds 113

Let us now assume that an adversary is making Q � 2N/2 queries to the
function f . We thus get K ≤

(
Q
2

)
differences (∈ FN

2) coming from these Q
queries. For given n and t > n, we now want to calculate the probability that
among the K corresponding output differences f(ai)⊕ f(a∗i), we have t vectors
(output differences) that belong to a subspace Vout ⊆ FN

2 with dim(Vout) ≤ n.
We will need the following fact about matrices over finite fields. Let E(t,N, d)

denote the number of t×N matrices over F2 that have rank equal to d. Then,
it is well known (cf. [43] or [81]) that

E(t,N, d) =
d−1∏
i=0

(2N − 2i) ·
(
t

d

)
2

≡
d−1∏
i=0

(2N − 2i) · (2t − 2i)
2d − 2i

, (7.7)

where
(

t
d

)
2

denotes the q-binomial coefficient with q = 2.

Proposition 7.1. Let n, t,N ∈ N be given such that t ≥ N > n. We assume a
set of K vectors (output differences) chosen uniformly at random from FN

2 . Let
Pr(K, t,N, n) denote the probability that t of these K vectors span a subspace
Vout ⊆ FN

2 with dim(Vout) ≤ n. Then, we have

Pr(K, t,N, n) ≤
(
K

t

)
2−t·N

n∑
d=1

E(t,N, d). (7.8)

This probability is upper bounded by

Pr(K, t,N, n) ≤ 1√
2πt

(
Ke

t

)t

2−(N−n)(t−n)+(n+1). (7.9)

For the proof of Proposition 7.1, we will first need two lemmas.

Lemma 7.1. Let t,N, n ∈ N be such that t ≥ N > n. Then,

E(t,N, n) ≤
n∑

d=1

E(t,N, d) ≤ 2 · E(t,N, n).

Proof. The first inequality is trivial. The second one is equivalent to

n−1∑
d=1

E(t,N, d) ≤ E(t,N, n)

and can be proven by induction over n. For n = 2, E(t,N, 1) ≤ E(t,N, 2) boils
down to the statement

(2t − 1) · (2N − 1)
2− 1

≤ (2t − 1) · (2N − 1)
22 − 1

· (2t − 2) · (2N − 2)
22 − 2

,

which is easily seen to be true since t ≥ N ≥ 2.

114 Chapter 7. Cryptanalysis of Whirlpool

So let us assume that
n−2∑
d=1

E(t,N, d) ≤ E(t,N, n− 1)

holds. To proof the statement, we add E(t,N, n − 1) to both sides. If we can
show that 2E(t,N, n− 1) ≤ E(t,N, n), we are done. From (7.7) we derive

2E(t,N, n− 1) = 2
n−2∏
i=0

(2N − 2i) ·
(

t

n− 1

)
2

,

E(t,N, n) =
n−1∏
i=0

(2N − 2i) ·
(
t

n

)
2

.

Since

2
(

t

n− 1

)
2

≤ (2N − 2n−1)
(
t

n

)
2

holds because t ≥ N > n the proof follows from the fact that(
t

n

)
2

=
2t−n+1 − 1

2n − 1

(
t

n− 1

)
2

.

�

Lemma 7.2. Let t,N, n ∈ N be such that t ≥ N > n. Then,

(2t − 2i) · (2N − 2i)
2n − 2i

≤ (2t − 2j) · (2N − 2j)
2n − 2j

holds for all 0 ≤ i < j ≤ n− 1.

Proof. We show this by proving that for given A > B > C > 0 the function

f(x) =
(A− x)(B − x)

C − x

has always a positive derivative f ′(x) on the interval x ∈ [0, C/2]. Elementary
calculus shows that the derivative of f(x) is

f ′(x) =
(A− C)(B − C)

(C − x)2
− 1,

from which we easily see that the condition f ′(x) > 0 is satisfied if

(A− C)(B − C) > (C − x)2

holds. The right side is smaller than C2 which means that the statement is equal
to

AB > C(A+B).

If we substitute A = 2t, B = 2N , C = 2n we see that the last inequality holds in
our setting and we are done. �

7.5. Subspace Distinguisher for 10 Rounds 115

Now, we are in the position to prove Proposition 7.1.

Proof of Proposition 7.1. Remember that E(t,N, d) was defined as the number
of t×N matrices over F2 that have rank equal to d. Computing Pr(K, t,N, n)
exactly would require the application of the inclusion-exclusion principle since
the ranks of the

(
K
t

)
considered subspaces are not independent. Therefore, we

take (7.8) as an upper bound for the probability Pr(K, t,N, n).
Simplifying the upper bound consists of two steps. Bounding the binomial

coefficient and bounding the rest. Based on Lemma 7.1 and 7.2 we can estimate
the second part of the probability Pr(K, t,N, n) by

2−t·N
n∑

d=1

E(t,N, d) ≤ 2−t·N · 2 · E(t,N, n)

≤ 2−t·N+1

(
(2t − 2n−1) · (2N − 2n−1)

2n − 2n−1

)n

≤ 2−t·N+1
(
2n−1 · 2t−(n−1) · 2N−(n−1)

)n

= 2−(t−n)(N−n)+(n+1).

(7.10)

For the binomial coefficient
(
K
t

)
we combine the simple estimate

(
K
t

)
≤ Kt/t!

with the following inequality based on Stirling’s formula [131]:
√

2πtt+
1
2 e

−t+
1

12t+1 < t! <
√

2πtt+
1
2 e−t+

1
12t . (7.11)

From this we get (
K

t

)
≤ 1√

2πt

(
K · e
t

)t

. (7.12)

Putting together (7.10) and (7.12) proves the proposition. �

As a corollary, we can give a lower bound for the number of random vectors
needed to fulfill the conditions of the proposition with a certain probability.

Corollary 7.1. For a given probability p and given N,n, t as in Proposition 7.1,
the number K of random vectors needed to contain t vectors that span a subspace
Vout ⊆ FN

2 with dim(Vout) ≤ n with probability p is lower bounded by

K ≥ t

e

(
p
√

2πt
) 1

t 2
(N−n)(t−n)−(n+1)

t . (7.13)

Proof. Equation (7.13) follows immediately from (7.9). �

Corollary 7.2. For a given probability p and given N,n, t as in Proposition 7.1,
the number of queries Q to f needed to produce t vectors that span a subspace
Vout ⊆ FN

2 with dim(Vout) ≤ n with probability p is lower bounded by

Q ≥
√

2t
e

(
p
√

2πt
) 1

2t 2
(N−n)(t−n)−(n+1)

2t . (7.14)

Proof. (7.14) follows from setting K ≤
(
Q
2

)
= Q(Q− 1)/2 in (7.13). �

116 Chapter 7. Cryptanalysis of Whirlpool

7.5.3 Complexity of the Distinguishing Attack

Table 7.3 compares for several values of t the complexity of our dedicated ap-
proach to the query complexity in the generic case.

Table 7.3: Values for t, Q (query complexity), C (complexity of our attack), and
Cp (complexity of our attack with precomputation) for p = 1, N =
512, n = 128.

log2(t) log2(Q) log2(C) log2(Cp)
9 148.16 185 121
10 172.72 186 122
11 185.25 187 123
12 191.76 188 124
13 195.27 189 125
14 197.28 190 126
15 198.53 191 127
16 199.40 192 128

As can be seen in the table, Problem 7.1 for the full Whirlpool compression
function is easier to solve than for a random function when we take t = 212.
The complexity of the attack is then about 2188. The probability to solve the
Problem 7.1 when making Q = 2188 queries to a random function with the
parameters t = 212, N = 512 and n = 128 is � 1. This follows from Propo-
sition 7.1. Therefore, we have a distinguishing attack on the full Whirlpool
compression function. Note, that by using a precomputation table as described
in Section 7.4, the complexity reduces to 2121 with t = 29.

7.6 Summary

In this chapter, we have presented a detailed security analysis of the Whirlpool
hash function with respect to collision resistance. We have shown several collision
attacks on round-reduced Whirlpool. First, we have shown a collision attack on
Whirlpool reduced to 4.5 rounds using the rebound attack with a complexity
of about 2120. By covering 1 more round in the inbound phase the complexity
of the attack can be significantly reduced, resulting in an attack complexity of
264. Based on the collision attack on 4.5 rounds, we then showed how the attack
can be extended to 5.5 rounds at the cost of a higher complexity and memory
requirements. It has a complexity of about 2184−s and memory requirements
of 2s with 0 ≤ s ≤ 64. Both the collision attack on 4.5 and 5.5 rounds can
be extended by 2 rounds, resulting in a near-collision for the Whirlpool hash
function reduced to 6.5 and 7.5 rounds, respectively.

Furthermore, we have presented a distinguishing attack on the full Whirlpool
compression function. We have obtained this result by improving the rebound
attack on round-reduced Whirlpool. First, the inbound phase of the rebound

7.6. Summary 117

attack was extended by up to two rounds using the available freedom an at-
tacker has in the choice of the key-input (i.e. chaining value) in an attack on the
compression function. This resulted in a near-collision attack on 9.5 rounds of
the compression function of Whirlpool. Second, we have shown how to turn this
rebound near-collision attack into a distinguishing attack for the full 10 round
compression function of Whirlpool using the subspace distinguisher.

The rebound attack and the subspace distinguisher seem applicable to a
wider range of hash function constructions. In particular, the attacks described
in chapter can be applied to several AES-based hash functions in a straightfor-
ward manner. To this end, we can refer to results on Cheetah [155], ECHO [89],
Grøstl [89, 100, 101], LANE [83, 154], and Twister [98]. Thus far, the rebound
attack has been applied mostly to hash functions that are based on or inspired
by the AES design. This can be interpreted as a weakness of the AES design.
However, one can also argue that the simple structure of AES simply acceler-
ates understanding, and thereby the development of attacks. In that case, more
results can be expected later on other types of hash functions. Furthermore, sub-
space distinguishers as described in this chapter are applicable to block ciphers
as well [77].

8
Conclusions

In this thesis, we have focused on the analysis of cryptographic hash functions.
We have reviewed general cryptanalytic techniques in the analysis of iterated
hash functions. We have presented a detailed security analysis of the hash func-
tions GOST, RIPEMD-160, Tiger, and Whirlpool. All these hash functions are
widely used and implemented in several applications.

For the GOST hash function we have shown a collision attack and a preimage
attack with a complexity of about 2105 and 2192, respectively. Both the collision
and the preimage attack are based on weaknesses in the GOST block cipher.
Furthermore, the generic nature of the collision attack allows us to construct
meaningful collisions, i.e. collisions in the chosen-prefix setting, with the same
complexity. Even though the complexities of the attacks are far from being
practical, they point out weaknesses in the design principles of the hash function
GOST.

Furthermore, we have analyzed the security of RIPEMD-128 and
RIPEMD-160 based on results in the cryptanalysis of the MD4-family of
hash functions. Our analysis showed that neither the attack of Dobbertin or
Wang et al. on RIPEMD (the predecessor of RIPEMD-128 and RIPEMD-160)
can be extended to full RIPEMD-128 and RIPEMD-160, nor methods used in
the cryptanalysis of SHA-1 were applicable to the full hash functions. This
does not prove RIPEMD-128 and RIPEMD-160 secure, but it shows that these
hash functions are more secure against these kinds of attacks than previously
expected due the their similar design to RIPEMD, MD5 and SHA-1.

For Tiger we have shown a collision attack on 19 (out of 24) rounds of the
hash function with a complexity of about 262. Furthermore, we have presented
a free-start collision for Tiger reduced to 23 rounds and a 1-bit circular free-
start near-collision on the full Tiger hash function (all 24 rounds). We want to

119

120 Chapter 8. Conclusions

note that free-start and near-collisions might be more than just certificational
weaknesses. Several attacks on commonly used hash function, e.g. MD5, SHA-1
employ free-start collisions and near-collisions to find collisions for messages
spanning over more than one message block. However, at the moment we do
not see how the results can be used in such an approach to construct collisions
for more than 19 rounds. However, a small improvement of the attack might
lead to a collision for the full Tiger hash function. Furthermore, we have shown
preimage attacks on Tiger reduced to 16 and 17 rounds.

For Whirlpool, we have shown several collision attacks on round-reduced vari-
ants of the hash function. First, we have shown a collision attack on Whirlpool
reduced to 4.5 (out of 10) rounds using the rebound attack. Based on the col-
lision attack on 4.5 rounds, we then showed how the attack can be extended to
5.5 rounds. Both the collision attack on 4.5 and 5.5 rounds can be extended by
two more rounds, resulting in a near-collision for the Whirlpool hash function
reduced to 6.5 and 7.5 rounds, respectively. Furthermore, we have presented a
distinguishing attack on the full Whirlpool compression function. We have ob-
tained this result by improving the rebound attack on round-reduced Whirlpool.
The result is a near-collision attack on 9.5 rounds of the compression function.
To turn this rebound near-collision attack into a distinguishing attack for the
full 10 round compression function of Whirlpool we have used the subspace dis-
tinguisher. The rebound attack and the subspace distinguisher seem applicable
to a wider range of hash function constructions. In particular, it can be applied
to several AES-based hash functions in a straightforward manner. Furthermore,
subspace distinguishers are applicable to block ciphers as well.

A
Results for RIPEMD-256 and

RIPEMD-320

Table A.1: Hamming weight of B using a linear characteristic in V1 and V2.

type Hamming truncated stepsweight differences*

RIPEMD-320

collision 1800 1696 16–80
near-collision 1887 832 16–80
collision 1288 1088 16–64
near-collision 1394 640 16–64
collision 811 384 16–48
near-collision 890 384 16–48

RIPEMD-256

collision 1245 1056 16–64
near-collision 1287 704 16–64
collision 743 576 16–48
near-collision 788 512 16–48

(*)Results achieved by using a truncated differences as described in Section 5.4.2.

121

122 Appendix A. Results for RIPEMD-256 and RIPEMD-320

Table A.2: Hamming weight of B using a general (non-linear) characteristic in V1

and a linear characteristic in V2.

type Hamming truncated stepsweight differences*

RIPEMD-320

collision 1581 704 16–80
near-collision 1321 544 16–80
collision 1116 384 16–64
near-collision 664 640 16–64
collision 608 384 16–48
near-collision 16 - 16–48

RIPEMD-256

collision 1007 640 16–64
near-collision 60 - 16–64
collision 15 - 16–48
near-collision 10 - 16–48

(*)Results achieved by using a truncated differences as described in Section 5.4.2.

Bibliography

[1] William Aiello, Stuart Haber, and Ramarathnam Venkatesan. New Con-
structions for Secure Hash Functions. In Serge Vaudenay, editor, FSE,
volume 1372 of LNCS, pages 150–167. Springer, 1998.

[2] Ross J. Anderson and Eli Biham. TIGER: A Fast New Hash Function.
In Dieter Gollmann, editor, FSE, volume 1039 of LNCS, pages 89–97.
Springer, 1996.

[3] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton.
Seven-Property-Preserving Iterated Hashing: ROX. In Kaoru Kurosawa,
editor, ASIACRYPT, volume 4833 of LNCS, pages 130–146. Springer,
2007.

[4] Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei
Wang. Preimages for Step-Reduced SHA-2. In Mitsuru Matsui, editor,
ASIACRYPT, volume 5912 of LNCS, pages 578–597. Springer, 2009.

[5] Kazumaro Aoki and Yu Sasaki. Meet-in-the-Middle Preimage Attacks
Against Reduced SHA-0 and SHA-1. In Shai Halevi, editor, CRYPTO,
volume 5677 of LNCS, pages 70–89. Springer, 2009.

[6] Jean-Philippe Aumasson, Tor E. Bjørstad, Willi Meier, and Florian
Mendel. Observation on the PRE-MIXING step of CHI-256 and CHI-224.
NIST hash function mailing list: hash-forum@nist.gov, 2009. Available
online http://ehash.iaik.tugraz.at/uploads/0/0d/Bjorstad chi.txt.

[7] Jean-Philippe Aumasson, Orr Dunkelman, Florian Mendel, Christian
Rechberger, and Søren S. Thomsen. Cryptanalysis of Vortex. In Bart
Preneel, editor, AFRICACRYPT, volume 5580 of LNCS, pages 14–28.
Springer, 2009.

[8] Jean-Philippe Aumasson, Willi Meier, and Florian Mendel. Preimage At-
tacks on 3-Pass HAVAL and Step-Reduced MD5. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography,
volume 5381 of LNCS, pages 120–135. Springer, 2008.

[9] Paulo S. L. M. Barreto and Vincent Rijmen. The Whirlpool Hashing
Function. Submitted to NESSIE, September 2000, revised May 2003, 2000.
Available online: http://www.larc.usp.br/∼pbarreto/WhirlpoolPage.html.

123

hash-forum@nist.gov
http://ehash.iaik.tugraz.at/uploads/0/0d/Bjorstad_chi.txt
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

124 Bibliography

[10] Mihir Bellare. New Proofs for NMAC and HMAC: Security Without
Collision-Resistance. In Cynthia Dwork, editor, CRYPTO, volume 4117
of LNCS, pages 602–619. Springer, 2006.

[11] Mihir Bellare and Tadayoshi Kohno. Hash Function Balance and Its Im-
pact on Birthday Attacks. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT, volume 3027 of LNCS, pages 401–418. Springer, 2004.

[12] Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K.
Franklin, editor, CRYPTO, volume 3152 of LNCS, pages 290–305.
Springer, 2004.

[13] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryp-
tosystems. J. Cryptology, 4(1):3–72, 1991.

[14] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher
and Related-Key Attack on the Full AES-256. In Shai Halevi, editor,
CRYPTO, volume 5677 of LNCS, pages 231–249. Springer, 2009.

[15] Alex Biryukov and David Wagner. Advanced Slide Attacks. In Bart
Preneel, editor, EUROCRYPT, volume 1807 of LNCS, pages 589–606.
Springer, 2000.

[16] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analy-
sis of the Block-Cipher-Based Hash-Function Constructions from PGV.
In Moti Yung, editor, CRYPTO, volume 2442 of LNCS, pages 320–335.
Springer, 2002.

[17] Antoon Bosselaers. The hash function RIPEMD-160, 1996. http://homes.
esat.kuleuven.be/∼bosselae/ripemd160.html.

[18] Bruno O Brachtl, Don Coppersmith, Myrna M. Hyden, Stephen M.
Matyas, Jr., Carl H. W. Meyer, Jonathan Oseas, Shaiy Pilpel, and Michael
Schilling. Data authentication using modification detection codes based
on a public one way encryption function, March 13, 1990. US Patent
no. 4,908,861. Assigned to IBM. Filed August 28, 1987.

[19] Jon Callas, Lutz Donnerhacke, Hal Finney, David Shaw, and Rodney
Thayer. OpenPGP Message Format. RFC 4880 (Proposed Standard),
November 2007.

[20] Jon Callas, Lutz Donnerhacke, Hal Finney, and Rodney Thayer. OpenPGP
Message Format. RFC 2440 (Proposed Standard), November 1998.

[21] Florent Chabaud. On the Security of Some Cryptosystems Based on Error-
correcting Codes. In Alfredo De Santis, editor, EUROCRYPT, volume 950
of LNCS, pages 131–139. Springer, 1994.

[22] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In
Hugo Krawczyk, editor, CRYPTO, volume 1462 of LNCS, pages 56–71.
Springer, 1998.

http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
http://homes.esat.kuleuven.be/~bosselae/ripemd160.html

Bibliography 125

[23] Don Coppersmith. The Real Reason for Rivest’s Phenomenon. In Hugh C.
Williams, editor, CRYPTO, volume 218 of LNCS, pages 535–536. Springer,
1985.

[24] Ivan Damg̊ard. A Design Principle for Hash Functions. In Gilles Brassard,
editor, CRYPTO, volume 435 of LNCS, pages 416–427. Springer, 1989.

[25] Magnus Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD
thesis, Ruhr-Universität Bochum, May 2005. Available online: http://

www.cits.rub.de/imperia/md/content/magnus/dissmd4.pdf.

[26] Magnus Daum and Stefan Lucks. The Story of Alice and her Boss: Hash
Functions and the Blind Passenger Attack. Rump session of EURO-
CRYPT, 2005.

[27] Christophe De Cannière, Florian Mendel, and Christian Rechberger. Col-
lisions for 70-Step SHA-1: On the Full Cost of Collision Search. In
Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors, Selected Areas
in Cryptography, volume 4876 of LNCS, pages 56–73. Springer, 2007.

[28] Christophe De Cannière and Christian Rechberger. Finding SHA-1 Char-
acteristics: General Results and Applications. In Xuejia Lai and Kefei
Chen, editors, ASIACRYPT, volume 4284 of LNCS, pages 1–20. Springer,
2006.

[29] Christophe De Cannière and Christian Rechberger. Preimages for Reduced
SHA-0 and SHA-1. In David Wagner, editor, CRYPTO, volume 5157 of
LNCS, pages 179–202. Springer, 2008.

[30] Christophe De Cannière, Christian Rechberger, and Vincent Rijmen.
Meaningful Collisions (for SHA-1), 2006. http://www.iaik.tugraz.at/

content/research/krypto/sha1/MeaningfulCollisions.php.

[31] Richard D. Dean. Formal Aspects of Mobile Code Security. PhD thesis,
Princeton University, January 1999.

[32] Bert den Boer and Antoon Bosselaers. An Attack on the Last Two Rounds
of MD4. In Joan Feigenbaum, editor, CRYPTO, volume 576 of LNCS,
pages 194–203. Springer, 1991.

[33] Bert den Boer and Antoon Bosselaers. Collisions for the Compressin Func-
tion of MD5. In Tor Helleseth, editor, EUROCRYPT, volume 765 of LNCS,
pages 293–304. Springer, 1993.

[34] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, 22(6):644 – 654, 1976.

[35] Hans Dobbertin. Cryptanalysis of MD4. In Dieter Gollmann, editor, FSE,
volume 1039 of LNCS, pages 53–69. Springer, 1996.

http://www.cits.rub.de/imperia/md/content/magnus/dissmd4.pdf
http://www.cits.rub.de/imperia/md/content/magnus/dissmd4.pdf
http://www.iaik.tugraz.at/content/research/krypto/sha1/MeaningfulCollisions.php
http://www.iaik.tugraz.at/content/research/krypto/sha1/MeaningfulCollisions.php

126 Bibliography

[36] Hans Dobbertin. The status of MD5 after a recent attack. CryptoBytes,
2(2):3–6, 1996.

[37] Hans Dobbertin. RIPEMD with Two-Round Compress Function is Not
Collision-Free. J. Cryptology, 10(1):51–70, 1997.

[38] Hans Dobbertin. Cryptanalysis of MD4. J. Cryptology, 11(4):253–271,
1998.

[39] Hans Dobbertin. The First Two Rounds of MD4 are Not One-Way.
In Serge Vaudenay, editor, FSE, volume 1372 of LNCS, pages 284–292.
Springer, 1998.

[40] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160:
A Strengthened Version of RIPEMD. In Dieter Gollmann, editor, FSE,
volume 1039 of LNCS, pages 71–82. Springer, 1996.

[41] Vasily Dolmatov. GOST R 34.11-94: Hash Function Algorithm. RFC 5831
(Proposed Standard), March 2010.

[42] Orr Dunkelman and Eli Biham. A Framework for Iterative Hash Functions
— HAIFA. NIST - Second Cryptographic Hash Workshop, August 24-25,
2006.

[43] Stephen D. Fisher. Classroom Notes: Matrices over a Finite Field. Amer.
Math. Monthly, 73(6):639–641, 1966.

[44] Praveen Gauravaram and John Kelsey. Linear-XOR and Additive Check-
sums Don’t Protect Damg̊ard-Merkle Hashes from Generic Attacks. In Tal
Malkin, editor, CT-RSA, volume 4964 of LNCS, pages 36–51. Springer,
2008.

[45] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian
Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
Grøstl – a SHA-3 candidate. Submission to NIST, 2008. Available online:
http://groestl.info.

[46] Praveen Gauravaram, Gaëtan Leurent, Florian Mendel, Maŕıa Naya-
Plasencia, Thomas Peyrin, Christian Rechberger, and Martin Schläffer.
Cryptanalysis of the 10-Round Hash and Full Compression Function
of SHAvite-3-512. In Daniel J. Bernstein and Tanja Lange, editors,
AFRICACRYPT, volume 6055 of LNCS, pages 419–436. Springer, 2010.

[47] Max Gebhardt, Georg Illies, and Werner Schindler. A Note on the Practical
Value of Single Hash Collisions for Special File Formats. In Jana Dittmann,
editor, Sicherheit, volume 77 of LNI, pages 333–344. GI, 2006.

[48] Henri Gilbert and Marine Minier. A Collision Attack on 7 Rounds of
Rijndael. In AES Candidate Conference, pages 230–241, 2000.

http://groestl.info

Bibliography 127

[49] Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced
Meet-in-the-Middle Preimage Attacks: First Results on Full Tiger, and
Improved Results on MD4 and SHA-2. Cryptology ePrint Archive, Report
2010/016, 2010. http://eprint.iacr.org/.

[50] Shoichi Hirose. Some Plausible Constructions of Double-Block-Length
Hash Functions. In Matthew J. B. Robshaw, editor, FSE, volume 4047
of LNCS, pages 210–225. Springer, 2006.

[51] Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Christian Rech-
berger. Collisions and Other Non-random Properties for Step-Reduced
SHA-256. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica,
editors, Selected Areas in Cryptography, volume 5381 of LNCS, pages 276–
293. Springer, 2008.

[52] Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Martin Schläffer.
Practical Collisions for SHAMATA-256. In Michael J. Jacobson Jr., Vin-
cent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryp-
tography, volume 5867 of LNCS, pages 1–15. Springer, 2009.

[53] Sebastiaan Indesteege and Bart Preneel. Preimages for Reduced-Round
Tiger. In Stefan Lucks, Ahmad-Reza Sadeghi, and Christopher Wolf, edi-
tors, WEWoRC, volume 4945 of LNCS, pages 90–99. Springer, 2007.

[54] International Organization for Standardization. ISO/IEC 10118-2:2000.
Information technology – Security techniques – Hash-functions – Part 2:
Hash-functions using an n-bit block cipher algorithm, 2000. http://www.

iso.org/.

[55] International Organization for Standardization. ISO/IEC 10118-3:2004.
Information technology – Security techniques – Hash-functions – Part 3:
Dedicated hash-functions, 2004. http://www.iso.org/.

[56] Takanori Isobe and Kyoji Shibutani. Preimage Attacks on Reduced Tiger
and SHA-2. In Orr Dunkelman, editor, FSE, volume 5665 of LNCS, pages
139–155. Springer, 2009.

[57] Antoine Joux. Multicollisions in Iterated Hash Functions. Application
to Cascaded Constructions. In Matthew K. Franklin, editor, CRYPTO,
volume 3152 of LNCS, pages 306–316. Springer, 2004.

[58] Antoine Joux and Stefan Lucks. Improved Generic Algorithms for 3-
Collisions. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of LNCS,
pages 347–363. Springer, 2009.

[59] Antoine Joux and Thomas Peyrin. Hash Functions and the (Amplified)
Boomerang Attack. In Alfred Menezes, editor, CRYPTO, volume 4622 of
LNCS, pages 244–263. Springer, 2007.

http://eprint.iacr.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/

128 Bibliography

[60] Dan Kaminsky. MD5 To Be Considered Harmful Someday. Cryptology
ePrint Archive, Report 2004/357, 2004. http://eprint.iacr.org/.

[61] Orhun Kara. Reflection Attacks on Product Ciphers. Cryptology ePrint
Archive, Report 2007/043, 2007. http://eprint.iacr.org/.

[62] Orhun Kara. Reflection Cryptanalysis of Some Ciphers. In Dipanwita Roy
Chowdhury, Vincent Rijmen, and Abhijit Das, editors, INDOCRYPT, vol-
ume 5365 of LNCS, pages 294–307. Springer, 2008.

[63] John Kelsey and Stefan Lucks. Collisions and Near-Collisions for Reduced-
Round Tiger. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of
LNCS, pages 111–125. Springer, 2006.

[64] John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash Func-
tions for Much Less than 2n Work. In Ronald Cramer, editor, EURO-
CRYPT, volume 3494 of LNCS, pages 474–490. Springer, 2005.

[65] John Kelsey, Bruce Schneier, and David Wagner. Key-Schedule Cryp-
toanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In Neal
Koblitz, editor, CRYPTO, volume 1109 of LNCS, pages 237–251. Springer,
1996.

[66] Dmitry Khovratovich, Alex Biryukov, and Ivica Nikolic. Speeding up Col-
lision Search for Byte-Oriented Hash Functions. In Marc Fischlin, editor,
CT-RSA, volume 5473 of LNCS, pages 164–181. Springer, 2009.

[67] Lars R. Knudsen. Truncated and Higher Order Differentials. In Bart
Preneel, editor, FSE, volume 1008 of LNCS, pages 196–211. Springer, 1994.

[68] Lars R. Knudsen. Non-random properties of reduced-round Whirlpool.
NESSIE public report, NES/DOC/UIB/WP5/017/1, 2002.

[69] Lars R. Knudsen, Florian Mendel, Christian Rechberger, and Søren S.
Thomsen. Cryptanalysis of MDC-2. In Antoine Joux, editor, EURO-
CRYPT, volume 5479 of LNCS, pages 106–120. Springer, 2009.

[70] Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The
Grindahl Hash Functions. In Alex Biryukov, editor, FSE, volume 4593
of LNCS, pages 39–57. Springer, 2007.

[71] Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some
Block Ciphers. In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of
LNCS, pages 315–324. Springer, 2007.

[72] Youngdai Ko, Seokhie Hong, Wonil Lee, Sangjin Lee, and Ju-Sung Kang.
Related Key Differential Attacks on 27 Rounds of XTEA and Full-Round
GOST. In Bimal K. Roy and Willi Meier, editors, FSE, volume 3017 of
LNCS, pages 299–316. Springer, 2004.

http://eprint.iacr.org/
http://eprint.iacr.org/

Bibliography 129

[73] Xuejia Lai and James L. Massey. Hash Function Based on Block Ciphers.
In Rainer A. Rueppel, editor, EUROCRYPT, volume 658 of LNCS, pages
55–70. Springer, 1992.

[74] Mario Lamberger. Subspace distinguishers. Technical report, IAIK, Graz
University of Technology, Austria, 2009.

[75] Mario Lamberger and Florian Mendel. Structural Attacks on Two SHA-3
Candidates: Blender-n and DCH-n. In Pierangela Samarati, Moti Yung,
Fabio Martinelli, and Claudio Agostino Ardagna, editors, ISC, volume
5735 of LNCS, pages 68–78. Springer, 2009.

[76] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rij-
men, and Martin Schläffer. Rebound Distinguishers: Results on the
Full Whirlpool Compression Function. In Mitsuru Matsui, editor, ASI-
ACRYPT, volume 5912 of LNCS, pages 126–143. Springer, 2009.

[77] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen,
and Martin Schläffer. The Rebound Attack and Subspace Distinguishers:
Application to Whirlpool. Cryptology ePrint Archive, Report 2010/198,
2010. http://eprint.iacr.org/.

[78] Mario Lamberger, Florian Mendel, Vincent Rijmen, and Koen Simoens.
Memoryless Near-Collisions via Coding Theory. Des. Codes Cryptography,
2010. (submitted).

[79] Arjen K. Lenstra and Benne de Weger. On the Possibility of Constructing
Meaningful Hash Collisions for Public Keys. In Colin Boyd and Juan
Manuel González Nieto, editors, ACISP, volume 3574 of LNCS, pages
267–279. Springer, 2005.

[80] Gaëtan Leurent. MD4 is Not One-Way. In Kaisa Nyberg, editor, FSE,
volume 5086 of LNCS, pages 412–428. Springer, 2008.

[81] Rudolf Lidl and Harald Niederreiter. Finite fields, volume 20 of Encyclo-
pedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, second edition, 1997. With a foreword by P. M. Cohn.

[82] Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In
Bimal K. Roy, editor, ASIACRYPT, volume 3788 of LNCS, pages 474–494.
Springer, 2005.

[83] Krystian Matusiewicz, Maŕıa Naya-Plasencia, Ivica Nikolic, Yu Sasaki, and
Martin Schläffer. Rebound Attack on the Full Lane Compression Function.
In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of LNCS, pages
106–125. Springer, 2009.

[84] Cameron McDonald, Philip Hawkes, and Josef Pieprzyk. Differential Path
for SHA-1 with complexity O(252). Cryptology ePrint Archive, Report
2009/259, 2009.

http://eprint.iacr.org/

130 Bibliography

[85] Florian Mendel. Two Passes of Tiger Are Not One-Way. In Bart Preneel,
editor, AFRICACRYPT, volume 5580 of LNCS, pages 29–40. Springer,
2009.

[86] Florian Mendel, Joseph Lano, and Bart Preneel. Cryptanalysis of Reduced
Variants of the FORK-256 Hash Function. In Masayuki Abe, editor, CT-
RSA, volume 4377 of LNCS, pages 85–100. Springer, 2007.

[87] Florian Mendel and Tomislav Nad. A Distinguisher for the Compression
Function of SIMD-512. In Bimal K. Roy and Nicolas Sendrier, editors,
INDOCRYPT, volume 5922 of LNCS, pages 219–232. Springer, 2009.

[88] Florian Mendel, Tomislav Nad, and Martin Schläffer. Collision Attack on
Boole. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and
Damien Vergnaud, editors, ACNS, volume 5536 of LNCS, pages 369–381,
2009.

[89] Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin
Schläffer. Improved Cryptanalysis of the Reduced Grøstl Compression
Function, ECHO Permutation and AES Block Cipher. In Michael J. Ja-
cobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected
Areas in Cryptography, volume 5867 of LNCS, pages 16–35. Springer, 2009.

[90] Florian Mendel, Norbert Pramstaller, and Christian Rechberger. Improved
Collision Attack on the Hash Function Proposed at PKC’98. In Min Surp
Rhee and Byoungcheon Lee, editors, ICISC, volume 4296 of LNCS, pages
8–21. Springer, 2006.

[91] Florian Mendel, Norbert Pramstaller, and Christian Rechberger. A (Sec-
ond) Preimage Attack on the GOST Hash Function. In Kaisa Nyberg,
editor, FSE, volume 5086 of LNCS, pages 224–234. Springer, 2008.

[92] Florian Mendel, Norbert Pramstaller, Christian Rechberger, Marcin Kon-
tak, and Janusz Szmidt. Cryptanalysis of the GOST Hash Function. In
David Wagner, editor, CRYPTO, volume 5157 of LNCS, pages 162–178.
Springer, 2008.

[93] Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent
Rijmen. Analysis of Step-Reduced SHA-256. In Matthew J. B. Robshaw,
editor, FSE, volume 4047 of LNCS, pages 126–143. Springer, 2006.

[94] Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent
Rijmen. On the Collision Resistance of RIPEMD-160. In Sokratis K. Kat-
sikas, Javier Lopez, Michael Backes, Stefanos Gritzalis, and Bart Preneel,
editors, ISC, volume 4176 of LNCS, pages 101–116. Springer, 2006.

[95] Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent
Rijmen. The Impact of Carries on the Complexity of Collision Attacks on
SHA-1. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of LNCS,
pages 278–292. Springer, 2006.

Bibliography 131

[96] Florian Mendel, Bart Preneel, Vincent Rijmen, Hirotaka Yoshida, and Dai
Watanabe. Update on Tiger. In Rana Barua and Tanja Lange, editors,
INDOCRYPT, volume 4329 of LNCS, pages 63–79. Springer, 2006.

[97] Florian Mendel, Christian Rechberger, and Vincent Rijmen. Update on
SHA-1. Presented at the rump session of CRYPTO, 2007.

[98] Florian Mendel, Christian Rechberger, and Martin Schläffer. Cryptanalysis
of Twister. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque,
and Damien Vergnaud, editors, ACNS, volume 5536 of LNCS, pages 342–
353, 2009.

[99] Florian Mendel, Christian Rechberger, and Martin Schläffer. MD5 Is
Weaker Than Weak: Attacks on Concatenated Combiners. In Mitsuru
Matsui, editor, ASIACRYPT, volume 5912 of LNCS, pages 144–161.
Springer, 2009.

[100] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S.
Thomsen. The Rebound Attack: Cryptanalysis of Reduced Whirlpool
and Grøstl. In Orr Dunkelman, editor, FSE, volume 5665 of LNCS, pages
260–276. Springer, 2009.

[101] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S.
Thomsen. Rebound Attacks on the Reduced Grøstl Hash Function. In
Josef Pieprzyk, editor, CT-RSA, volume 5985 of LNCS, pages 350–365.
Springer, 2010.

[102] Florian Mendel and Vincent Rijmen. Colliding Message Pair for 53-Step
HAS-160. In Kil-Hyun Nam and Gwangsoo Rhee, editors, ICISC, volume
4817 of LNCS, pages 324–334. Springer, 2007.

[103] Florian Mendel and Vincent Rijmen. Cryptanalysis of the Tiger Hash
Function. In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of
LNCS, pages 536–550. Springer, 2007.

[104] Florian Mendel and Vincent Rijmen. Weaknesses in the HAS-V Compres-
sion Function. In Kil-Hyun Nam and Gwangsoo Rhee, editors, ICISC,
volume 4817 of LNCS, pages 335–345. Springer, 2007.

[105] Florian Mendel and Martin Schläffer. Collisions and Preimages for Sarmal.
SHA-3 Zoo: http://ehash.iaik.tugraz.at, 2008. Available online http:

//ehash.iaik.tugraz.at/uploads/d/d1/Salt-collision.pdf.

[106] Florian Mendel and Martin Schläffer. Collisions for Round-Reduced
LAKE. In Yi Mu, Willy Susilo, and Jennifer Seberry, editors, ACISP,
volume 5107 of LNCS, pages 267–281. Springer, 2008.

[107] Florian Mendel and Martin Schläffer. On Free-Start Collisions and Col-
lisions for TIB3. In Pierangela Samarati, Moti Yung, Fabio Martinelli,
and Claudio Agostino Ardagna, editors, ISC, volume 5735 of LNCS, pages
95–106. Springer, 2009.

http://ehash.iaik.tugraz.at
http://ehash.iaik.tugraz.at/uploads/d/d1/Salt-collision.pdf
http://ehash.iaik.tugraz.at/uploads/d/d1/Salt-collision.pdf

132 Bibliography

[108] Florian Mendel and Søren S. Thomsen. An Observation on JH-512. SHA-3
Zoo: http://ehash.iaik.tugraz.at, 2008. Available online http://ehash.

iaik.tugraz.at/uploads/d/da/Jh preimage.pdf.

[109] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1996.

[110] Ralph C. Merkle. Secrecy, authentication, and public key systems. PhD
thesis, 1979.

[111] Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard,
editor, CRYPTO, volume 435 of LNCS, pages 428–446. Springer, 1989.

[112] Carl H. Meyer and Michael Schilling. Secure program load with manipu-
lation detection code. In SECURICOM 88, pages 111–130, 1988.

[113] Ondrej Mikle. Practical Attacks on Digital Signatures Using MD5 Mes-
sage Digest. Cryptology ePrint Archive, Report 2004/356, 2004. http:

//eprint.iacr.org/.

[114] Shoji Miyaguchi, Kazuo Ohta, and Masahiko Iwata. Confirmation that
Some Hash Functions Are Not Collision Free. In Ivan Damg̊ard, editor,
EUROCRYPT, volume 473 of LNCS, pages 326–343. Springer, 1990.

[115] Judy H. Moore and Gustavus J. Simmons. Cycle Structures of the
DES with Weak and Semi-Weak Keys. In Andrew M. Odlyzko, editor,
CRYPTO, volume 263 of LNCS, pages 9–32. Springer, 1986.

[116] National Institute of Standards and Technology. FIPS PUB 197: Advanced
Encryption Standard. Federal Information Processing Standards Publica-
tion 197, U.S. Department of Commerce, November 2001. Available online:
http://www.itl.nist.gov/fipspubs.

[117] National Institute of Standards and Technology. Announcing Request for
Candidate Algorithm Nominations for a New Cryptographic Hash Algo-
rithm (SHA-3) Family. Federal Register, 27(212):62212–62220, Novem-
ber 2007. Available: http://csrc.nist.gov/groups/ST/hash/documents/

FR Notice Nov07.pdf.

[118] National Soviet Bureau of Standards. GOST 28147-89, Systems of the
Information Treatment. Cryptographic Security. Algorithms of the Cryp-
tographic Transformation, 1989. (In Russian).

[119] National Soviet Bureau of Standards. GOST 34.10-94, Information Tech-
nology Cryptographic Data Security Produce and Check Procedures of
Electronic Digital Signature Based on Asymmetric Cryptographic Algo-
rithm, 1994. (In Russian).

[120] National Soviet Bureau of Standards. GOST 34.11-94, Information Tech-
nology Cryptographic Data Security Hashing Function, 1994. (In Russian).

http://ehash.iaik.tugraz.at
http://ehash.iaik.tugraz.at/uploads/d/da/Jh_preimage.pdf
http://ehash.iaik.tugraz.at/uploads/d/da/Jh_preimage.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.itl.nist.gov/fipspubs
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

Bibliography 133

[121] NESSIE. New European Schemes for Signatures, Integrity, and Encryp-
tion. IST-1999-12324. Available online: http://cryptonessie.org/.

[122] Thomas Peyrin. Cryptanalysis of Grindahl. In Kaoru Kurosawa, editor,
ASIACRYPT, volume 4833 of LNCS, pages 551–567. Springer, 2007.

[123] Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploit-
ing Coding Theory for Collision Attacks on SHA-1. In Nigel P. Smart,
editor, IMA Int. Conf., volume 3796 of LNCS, pages 78–95. Springer,
2005.

[124] Bart Preneel. Analysis and Design of Cryptographic Hash Functions. PhD
thesis, K.U. Leuven, Belgium, 1993.

[125] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based
on Block Ciphers: A Synthetic Approach. In Douglas R. Stinson, editor,
CRYPTO, volume 773 of LNCS, pages 368–378. Springer, 1993.

[126] Jean-Jacques Quisquater and Jean-Paul Delescaille. How Easy is Colli-
sion Search? Application to DES (Extended Summary). In Jean-Jacques
Quisquater and Joos Vandewalle, editors, EUROCRYPT, volume 434 of
LNCS, pages 429–434. Springer, 1989.

[127] Jean-Jacques Quisquater and Jean-Paul Delescaille. How Easy is Collision
Search. New Results and Applications to DES. In Gilles Brassard, editor,
CRYPTO, volume 435 of LNCS, pages 408–413. Springer, 1989.

[128] Christian Rechberger. Cryptanalysis of Hash Functions. PhD thesis, Graz
University of Technology, Austria, 2009.

[129] Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred
Menezes, editor, CT-RSA, volume 3376 of LNCS, pages 58–71. Springer,
2005.

[130] Vincent Rijmen and Bart Preneel. Improved Characteristics for Differ-
ential Cryptanalysis of Hash Functions Based on Block Ciphers. In Bart
Preneel, editor, FSE, volume 1008 of LNCS, pages 242–248. Springer, 1994.

[131] Herbert Robbins. A remark on Stirling’s formula. Amer. Math. Monthly,
62:26–29, 1955.

[132] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function
Basics: Definitions, Implications, and Separations for Preimage Resis-
tance, Second-Preimage Resistance, and Collision Resistance. In Bimal K.
Roy and Willi Meier, editors, FSE, volume 3017 of LNCS, pages 371–388.
Springer, 2004.

[133] Markku-Juhani O. Saarinen. A chosen key attack against the secret S-
boxes of GOST, 1998. unpublished manuscript.

http://cryptonessie.org/

134 Bibliography

[134] Somitra Kumar Sanadhya and Palash Sarkar. New Collision Attacks
against Up to 24-Step SHA-2. In Dipanwita Roy Chowdhury, Vincent
Rijmen, and Abhijit Das, editors, INDOCRYPT, volume 5365 of LNCS,
pages 91–103. Springer, 2008.

[135] Yu Sasaki and Kazumaro Aoki. Finding Preimages in Full MD5 Faster
Than Exhaustive Search. In Antoine Joux, editor, EUROCRYPT, volume
5479 of LNCS, pages 134–152. Springer, 2009.

[136] Haruki Seki and Toshinobu Kaneko. Differential Cryptanalysis of Reduced
Rounds of GOST. In Douglas R. Stinson and Stafford E. Tavares, editors,
Selected Areas in Cryptography, volume 2012 of LNCS, pages 315–323.
Springer, 2000.

[137] Claude E. Shannon. Communication Theory of Secrecy Systems. Bell
Systems Technical Journal, 28:656–715, 1949.

[138] John P. Steinberger. The Collision Intractability of MDC-2 in the Ideal-
Cipher Model. In Moni Naor, editor, EUROCRYPT, volume 4515 of
LNCS, pages 34–51. Springer, 2007.

[139] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-Prefix
Collisions for MD5 and Colliding X.509 Certificates for Different Identities.
In Moni Naor, editor, EUROCRYPT, volume 4515 of LNCS, pages 1–22.
Springer, 2007.

[140] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra,
David Molnar, Dag Arne Osvik, and Benne de Weger. Short Chosen-Prefix
Collisions for MD5 and the Creation of a Rogue CA Certificate. In Shai
Halevi, editor, CRYPTO, volume 5677 of LNCS, pages 55–69. Springer,
2009.

[141] Douglas R. Stinson. Some Observations on the Theory of Cryptographic
Hash Functions. Des. Codes Cryptography, 38(2):259–277, 2006.

[142] Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota.
Birthday Paradox for Multi-Collisions. IEICE Transactions, 91-A(1):39–
45, 2008.

[143] Paul C. van Oorschot and Michael J. Wiener. Parallel Collision Search
with Application to Hash Functions and Discrete Logarithms. In ACM
Conference on Computer and Communications Security, pages 210–218,
1994.

[144] Paul C. van Oorschot and Michael J. Wiener. Parallel Collision Search
with Cryptanalytic Applications. J. Cryptology, 12(1):1–28, 1999.

[145] David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, FSE,
volume 1636 of LNCS, pages 156–170. Springer, 1999.

Bibliography 135

[146] David Wagner. A Generalized Birthday Problem. In Moti Yung, ed-
itor, CRYPTO, volume 2442 of LNCS, pages 288–303. Springer, 2002.
Extended version available online at http://www.eecs.berkeley.edu/∼daw/

papers/genbday.html.

[147] Lei Wang and Yu Sasaki. Finding Preimages of Tiger Up to 23 Steps. In
Seokhie Hong and Tetsu Iwata, editors, FSE, LNCS. Springer, 2010. (to
appear).

[148] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan
Yu. Cryptanalysis of the Hash Functions MD4 and RIPEMD. In
Ronald Cramer, editor, EUROCRYPT, volume 3494 of LNCS, pages 1–18.
Springer, 2005.

[149] Xiaoyun Wang, Andrew Yao, and Frances Yao. Cryptanalysis of SHA-1.
Presented at the First Cryptographic Hash Workshop hosted by NIST,
October 2005.

[150] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the
Full SHA-1. In Victor Shoup, editor, CRYPTO, volume 3621 of LNCS,
pages 17–36. Springer, 2005.

[151] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Func-
tions. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of LNCS,
pages 19–35. Springer, 2005.

[152] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search
Attacks on SHA-0. In Victor Shoup, editor, CRYPTO, volume 3621 of
LNCS, pages 1–16. Springer, 2005.

[153] Robert S. Winternitz. A Secure One-Way Hash Function Built from DES.
In IEEE Symposium on Security and Privacy, pages 88–90, 1984.

[154] Shuang Wu, Dengguo Feng, and Wenling Wu. Cryptanalysis of the LANE
Hash Function. In Michael J. Jacobson Jr., Vincent Rijmen, and Rei-
haneh Safavi-Naini, editors, Selected Areas in Cryptography, volume 5867
of LNCS, pages 126–140. Springer, 2009.

[155] Shuang Wu, Dengguo Feng, and Wenling Wu. Practical Rebound Attack
on 12-round Cheetah-256. In Kyunghyune Rhee and Daehun Nyang, edi-
tors, ICISC, LNCS. Springer, 2009. (to appear).

[156] Gideon Yuval. How to swindle Rabin? Cryptologia, 3(3):187–191, 1979.

http://www.eecs.berkeley.edu/~daw/papers/genbday.html
http://www.eecs.berkeley.edu/~daw/papers/genbday.html

Author Index

Aiello, William 16
Anderson, Ross J. 3, 68, 69
Andreeva, Elena 9
Aoki, Kazumaro 2, 3
Appelbaum, Jacob 2, 13
Aumasson, Jean-Philippe 5, 67, 83

Barreto, Paulo S. L. M. 4, 91–93, 97
Bellare, Mihir 9, 16
Biham, Eli 3, 9, 24, 54, 68, 69, 76
Biryukov, Alex 31, 97
Bjørstad, Tor E. 5
Black, John 11, 112
Bosselaers, Antoon 2, 3, 48–51, 61
Brachtl, Bruno O 11

Callas, Jon 67
Chabaud, Florent 24, 53, 59
Chen, Hui 2, 24, 52
Chen, Rafi 54, 76
Coppersmith, Don 11, 32

Damg̊ard, Ivan 9, 19, 48
Daum, Magnus 13, 51, 52
De Cannière, Christophe 2, 5, 13, 57,

89
de Weger, Benne 2, 13, 33
Dean, Richard D. 20
Delescaille, Jean-Paul 16, 18, 34, 43
den Boer, Bert 2, 61
Diffie, Whitfield 1
Dobbertin, Hans 2, 3, 23, 48–52, 83,

97
Dolmatov, Vasily 27
Donnerhacke, Lutz 67
Dunkelman, Orr 5, 9

Feng, Dengguo 2, 24, 52, 117
Finney, Hal 67
Fisher, Stephen D. 113

Gauravaram, Praveen 5, 27
Gebhardt, Max 13
Gilbert, Henri 91
Govaerts, René 10, 21
Guo, Jian 3, 90

Haber, Stuart 16
Hawkes, Philip 2
Hellman, Martin E. 1
Hirose, Shoichi 11
Hong, Seokhie 31
Hyden, Myrna M. 11

Illies, Georg 13
Indesteege, Sebastiaan 3, 5, 83
International Organization for

Standardization 11, 47, 91
Isobe, Takanori 83
Iwata, Masahiko 21

Joux, Antoine 2, 17, 19, 21–24, 28, 37,
53

Kaminsky, Dan 13
Kaneko, Toshinobu 31
Kang, Ju-Sung 31
Kara, Orhun 32
Kelsey, John 20–22, 27, 31, 70, 71, 73,

74
Khovratovich, Dmitry 97
Knudsen, Lars R. 5, 10, 11, 31, 89, 91,

97
Ko, Youngdai 31
Kohno, Tadayoshi 16

137

138 Author Index

Kontak, Marcin 4, 5, 28
Kurosawa, Kaoru 16

Lai, Xuejia 2, 9, 11, 12, 18, 20, 24, 52
Lamberger, Mario 5, 17, 91, 92, 112,

117
Lano, Joseph 5
Lee, Sangjin 31
Lee, Wonil 31
Lenstra, Arjen K. 2, 13, 33
Leurent, Gaëtan 2, 5, 89
Lidl, Rudolf 113
Ling, San 90
Lucks, Stefan 9, 13, 17, 70, 71, 73, 74

Massey, James L. 9, 11, 12, 18, 20
Matusiewicz, Krystian 3, 5, 117
Matyas, Jr., Stephen M. 11
McDonald, Cameron 2
Meier, Willi 5, 67, 83
Mendel, Florian 2–5, 11, 17, 28, 47,

67, 83, 89, 91, 92, 95, 100, 117
Menezes, Alfred 12
Merkle, Ralph C. 1, 9, 11, 19, 48
Meyer, Carl H. 11
Meyer, Carl H. W. 11
Mikle, Ondrej 13
Minier, Marine 91
Miyaguchi, Shoji 21
Molnar, David 2, 13
Moore, Judy H. 32

Nad, Tomislav 5
National Institute of Standards and

Technology 3, 10, 12, 92
National Soviet Bureau of Standards

3, 27, 28, 30, 31
Naya-Plasencia, Maŕıa 5, 117
NESSIE 91
Neven, Gregory 9
Niederreiter, Harald 113
Nikolic, Ivica 97, 117

Ohta, Kazuo 21
Oseas, Jonathan 11
Osvik, Dag Arne 2, 13

Oswald, Elisabeth 55, 59, 71

Peyrin, Thomas 2, 5, 91, 97, 100, 117
Pieprzyk, Josef 2
Pilpel, Shaiy 11
Pramstaller, Norbert 4, 5, 28, 47, 55,

60, 71
Preneel, Bart 2, 3, 5, 9, 10, 16, 21,

48–50, 67, 83, 97

Quisquater, Jean-Jacques 16, 18, 34,
43

Rechberger, Christian 2–5, 11, 13, 28,
47, 55, 57, 60, 71, 89–92, 95, 97,
100, 117

Rijmen, Vincent 2, 4, 5, 10, 13, 17, 31,
47, 55, 59, 60, 67, 71, 89, 91–93, 97,
117

Robbins, Herbert 115
Rogaway, Phillip 9, 11, 112

Saarinen, Markku-Juhani O. 31
Sanadhya, Somitra Kumar 3
Sarkar, Palash 3
Sasaki, Yu 2, 3, 90, 117
Schilling, Michael 11
Schindler, Werner 13
Schläffer, Martin 5, 91, 92, 95, 100,

117
Schneier, Bruce 20–22, 31
Seki, Haruki 31
Shamir, Adi 24
Shannon, Claude E. 11, 112
Shaw, David 67
Shibutani, Kyoji 83
Shrimpton, Thomas 9, 11, 112
Simmons, Gustavus J. 32
Simoens, Koen 17
Sotirov, Alexander 2, 13
Steinberger, John P. 11
Stevens, Marc 2, 13, 33
Stinson, Douglas R. 9
Suzuki, Kazuhiro 16
Szmidt, Janusz 4, 5, 28

Thayer, Rodney 67

Author Index 139

Thomsen, Søren S. 5, 11, 89, 91, 92,
95, 97, 117

Tonien, Dongvu 16
Toyota, Koji 16

van Oorschot, Paul C. 12, 16
Vandewalle, Joos 10, 21
Vanstone, Scott A. 12
Venkatesan, Ramarathnam 16

Wagner, David 17, 28, 31, 97
Wang, Huaxiong 90
Wang, Lei 3, 90
Wang, Xiaoyun 2, 24, 52–54, 57

Watanabe, Dai 5, 67
Wiener, Michael J. 16
Winternitz, Robert S. 9, 11, 20
Wu, Shuang 117
Wu, Wenling 117

Yao, Andrew 2
Yao, Frances 2
Yin, Yiqun Lisa 2, 24, 53, 54, 57
Yoshida, Hirotaka 5, 67
Yu, Hongbo 2, 24, 53, 54, 57
Yu, Xiuyuan 2, 24, 52
Yuval, Gideon 2, 16

List of Publications

In Refereed Conference Proceedings

1. Jean-Philippe Aumasson, Orr Dunkelman, Florian Mendel, Christian
Rechberger, and Søren S. Thomsen. Cryptanalysis of Vortex. In Bart
Preneel, editor, AFRICACRYPT, volume 5580 of LNCS, pages 14–28.
Springer, 2009.

2. Jean-Philippe Aumasson, Willi Meier, and Florian Mendel. Preimage
Attacks on 3-Pass HAVAL and Step-Reduced MD5. In Roberto Maria
Avanzi, Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryp-
tography, volume 5381 of LNCS, pages 120–135. Springer, 2008.

3. Christophe De Cannière, Florian Mendel, and Christian Rechberger. Col-
lisions for 70-Step SHA-1: On the Full Cost of Collision Search. In
Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors, Selected Areas
in Cryptography, volume 4876 of LNCS, pages 56–73. Springer, 2007.

4. Praveen Gauravaram, Gaëtan Leurent, Florian Mendel, Maŕıa Naya-
Plasencia, Thomas Peyrin, Christian Rechberger, and Martin Schläffer.
Cryptanalysis of the 10-Round Hash and Full Compression Function
of SHAvite-3-512. In Daniel J. Bernstein and Tanja Lange, editors,
AFRICACRYPT, volume 6055 of LNCS, pages 419–436. Springer, 2010.

5. Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Christian
Rechberger. Collisions and Other Non-random Properties for Step-
Reduced SHA-256. In Roberto Maria Avanzi, Liam Keliher, and Francesco
Sica, editors, Selected Areas in Cryptography, volume 5381 of LNCS, pages
276–293. Springer, 2008.

6. Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Martin Schläffer.
Practical Collisions for SHAMATA-256. In Michael J. Jacobson Jr.,
Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in
Cryptography, volume 5867 of LNCS, pages 1–15. Springer, 2009.

7. Lars R. Knudsen, Florian Mendel, Christian Rechberger, and Søren S.
Thomsen. Cryptanalysis of MDC-2. In Antoine Joux, editor, EURO-
CRYPT, volume 5479 of LNCS, pages 106–120. Springer, 2009.

141

142 Author Index

8. Mario Lamberger and Florian Mendel. Structural Attacks on Two SHA-3
Candidates: Blender-n and DCH-n. In Pierangela Samarati, Moti Yung,
Fabio Martinelli, and Claudio Agostino Ardagna, editors, ISC, volume
5735 of LNCS, pages 68–78. Springer, 2009.

9. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen,
and Martin Schläffer. Rebound Distinguishers: Results on the Full
Whirlpool Compression Function. In Mitsuru Matsui, editor, ASI-
ACRYPT, volume 5912 of LNCS, pages 126–143. Springer, 2009.

10. Florian Mendel. Two Passes of Tiger Are Not One-Way. In Bart Preneel,
editor, AFRICACRYPT, volume 5580 of LNCS, pages 29–40. Springer,
2009.

11. Florian Mendel, Joseph Lano, and Bart Preneel. Cryptanalysis of Reduced
Variants of the FORK-256 Hash Function. In Masayuki Abe, editor, CT-
RSA, volume 4377 of LNCS, pages 85–100. Springer, 2007.

12. Florian Mendel and Tomislav Nad. A Distinguisher for the Compression
Function of SIMD-512. In Bimal K. Roy and Nicolas Sendrier, editors,
INDOCRYPT, volume 5922 of LNCS, pages 219–232. Springer, 2009.

13. Florian Mendel, Tomislav Nad, and Martin Schläffer. Collision Attack on
Boole. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and
Damien Vergnaud, editors, ACNS, volume 5536 of LNCS, pages 369–381,
2009.

14. Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin
Schläffer. Improved Cryptanalysis of the Reduced Grøstl Compres-
sion Function, ECHO Permutation and AES Block Cipher. In Michael
J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Se-
lected Areas in Cryptography, volume 5867 of LNCS, pages 16–35. Springer,
2009.

15. Florian Mendel, Norbert Pramstaller, and Christian Rechberger. Improved
Collision Attack on the Hash Function Proposed at PKC’98. In Min Surp
Rhee and Byoungcheon Lee, editors, ICISC, volume 4296 of LNCS, pages
8–21. Springer, 2006.

16. Florian Mendel, Norbert Pramstaller, and Christian Rechberger. A (Sec-
ond) Preimage Attack on the GOST Hash Function. In Kaisa Nyberg,
editor, FSE, volume 5086 of LNCS, pages 224–234. Springer, 2008.

17. Florian Mendel, Norbert Pramstaller, Christian Rechberger, Marcin
Kontak, and Janusz Szmidt. Cryptanalysis of the GOST Hash Function.
In David Wagner, editor, CRYPTO, volume 5157 of LNCS, pages 162–178.
Springer, 2008.

Author Index 143

18. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent
Rijmen. Analysis of Step-Reduced SHA-256. In Matthew J. B. Robshaw,
editor, FSE, volume 4047 of LNCS, pages 126–143. Springer, 2006.

19. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent
Rijmen. On the Collision Resistance of RIPEMD-160. In Sokratis K.
Katsikas, Javier Lopez, Michael Backes, Stefanos Gritzalis, and Bart
Preneel, editors, ISC, volume 4176 of LNCS, pages 101–116. Springer,
2006.

20. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent
Rijmen. The Impact of Carries on the Complexity of Collision Attacks on
SHA-1. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of LNCS,
pages 278–292. Springer, 2006.

21. Florian Mendel, Bart Preneel, Vincent Rijmen, Hirotaka Yoshida, and Dai
Watanabe. Update on Tiger. In Rana Barua and Tanja Lange, editors,
INDOCRYPT, volume 4329 of LNCS, pages 63–79. Springer, 2006.

22. Florian Mendel, Christian Rechberger, and Martin Schläffer. Cryptanaly-
sis of Twister. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque,
and Damien Vergnaud, editors, ACNS, volume 5536 of LNCS, pages 342–
353, 2009.

23. Florian Mendel, Christian Rechberger, and Martin Schläffer. MD5 Is
Weaker Than Weak: Attacks on Concatenated Combiners. In Mitsuru
Matsui, editor, ASIACRYPT, volume 5912 of LNCS, pages 144–161.
Springer, 2009.

24. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S.
Thomsen. The Rebound Attack: Cryptanalysis of Reduced Whirlpool
and Grøstl. In Orr Dunkelman, editor, FSE, volume 5665 of LNCS, pages
260–276. Springer, 2009.

25. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S.
Thomsen. Rebound Attacks on the Reduced Grøstl Hash Function. In
Josef Pieprzyk, editor, CT-RSA, volume 5985 of LNCS, pages 350–365.
Springer, 2010.

26. Florian Mendel and Vincent Rijmen. Colliding Message Pair for 53-Step
HAS-160. In Kil-Hyun Nam and Gwangsoo Rhee, editors, ICISC, volume
4817 of LNCS, pages 324–334. Springer, 2007.

27. Florian Mendel and Vincent Rijmen. Cryptanalysis of the Tiger Hash
Function. In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of
LNCS, pages 536–550. Springer, 2007.

28. Florian Mendel and Vincent Rijmen. Weaknesses in the HAS-V Compres-
sion Function. In Kil-Hyun Nam and Gwangsoo Rhee, editors, ICISC,
volume 4817 of LNCS, pages 335–345. Springer, 2007.

144 Author Index

29. Florian Mendel and Martin Schläffer. Collisions for Round-Reduced
LAKE. In Yi Mu, Willy Susilo, and Jennifer Seberry, editors, ACISP,
volume 5107 of LNCS, pages 267–281. Springer, 2008.

30. Florian Mendel and Martin Schläffer. On Free-Start Collisions and Col-
lisions for TIB3. In Pierangela Samarati, Moti Yung, Fabio Martinelli,
and Claudio Agostino Ardagna, editors, ISC, volume 5735 of LNCS, pages
95–106. Springer, 2009.

Preprints

1. Jean-Philippe Aumasson, Tor E. Bjørstad, Willi Meier, and Florian
Mendel. Observation on the PRE-MIXING step of CHI-256 and CHI-224.
NIST hash function mailing list: hash-forum@nist.gov, 2009.

2. Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian
Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
Grøstl – a SHA-3 candidate. Submission to NIST, 2008. Available online:
http://groestl.info.

3. IAIK Krypto Group. Preliminary Analysis of DHA-256. Cryptology
ePrint Archive, Report 2005/398, 2005. http://eprint.iacr.org/.

4. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen,
and Martin Schläffer. The Rebound Attack and Subspace Distinguishers:
Application to Whirlpool. Cryptology ePrint Archive, Report 2010/198,
2010. http://eprint.iacr.org/.

5. Florian Mendel and Martin Schläffer. Collisions and Preimages for Sarmal.
SHA-3 Zoo: http://ehash.iaik.tugraz.at, 2008.

6. Florian Mendel and Søren S. Thomsen. An Observation on JH-512. SHA-3
Zoo: http://ehash.iaik.tugraz.at, 2008.

hash-forum@nist.gov
http://groestl.info
http://eprint.iacr.org/
http://eprint.iacr.org/
http://ehash.iaik.tugraz.at
http://ehash.iaik.tugraz.at

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Notations
	Introduction
	Cryptographic Hash Functions
	Cryptanalysis of Hash Functions
	The NIST SHA-3 Competition
	Main Contribution and Outline of the Thesis

	Preliminaries
	Notation
	Cryptographic Hash Functions
	Security Requirements
	Iterated Hash Functions
	Dedicated Hash Functions
	Block Cipher based Hash Functions
	Single-Length Constructions
	Double-Length Constructions

	Different Types of Collisions
	Meaningful Collisions

	Analysis Methods for Hash Functions
	Generic Attacks
	Birthday Attack
	Generalized Birthday Attack
	Meet-in-the-Middle Attack

	Generic Attacks on Iterated Hash Functions
	The Length Extension Property
	Multicollision Attack
	Second Preimage Attack for Long Messages

	Generic Attacks on Iterated Cascaded Hash Functions
	Collision Attack
	(Second) Preimage Attack

	Differential Cryptanalysis of Hash Functions
	Summary

	Cryptanalysis of the GOST Hash Function
	Preliminaries
	The Hash Function GOST
	State Update Transformation
	Key Generation
	Output Transformation

	The Block Cipher GOST
	Description of the Block Cipher
	Constructing Fixed-Points

	Collision Attack
	Collisions for the Compression Function
	Collisions for the Hash Function

	Preimage Attack
	Attack independent of the GOST Block Cipher
	Attack Exploiting Weaknesses in the Block Cipher
	A Remark on Second Preimages

	Summary

	Cryptanalysis of RIPEMD-128 and RIPEMD-160
	Description of the Hash Functions
	RIPEMD-160
	RIPEMD-128
	The Extensions RIPEMD-256 and RIPEMD-320

	Attacks on the Predecessor RIPEMD
	Attack of Dobbertin
	Attack of Wang et al.

	The Attack Strategy
	Method of Chabaud and Joux
	Method of Wang et al.

	Finding good Characteristics
	Finding Linear Characteristics with low Hamming Weight
	Improving the Search Algorithms

	A Variant of RIPEMD-160
	Fixed-Points in the RIPEMD-160 Variant
	Extending the Attack to more Steps
	Attacks on the RIPEMD-160 Variant Using Fixed-Points

	Summary

	Cryptanalysis of Tiger
	Preliminaries
	The Hash Function Tiger
	State Update Transformation
	Key Schedule

	Collision Attack
	The Attack Strategy
	A Collision for 16 Rounds
	A Collision for 19 Rounds
	A Free-Start Near-Collision for 24 Rounds
	A Free-Start Collision for 23 Rounds

	Preimage Attack
	Preimages for the Compression Function
	Extending the Attacks to the Hash Function

	Summary

	Cryptanalysis of Whirlpool
	The Hash Function Whirlpool
	The Rebound Attack
	Basic Attack Strategy
	Related Work

	Attacks on the Hash Function
	Collision Attack on 4.5 Rounds
	Improving the Complexity of the Attack
	Extending the Attack to 5.5 Rounds
	Near-Collisions for Whirlpool

	Attacks on the Compression Function
	Inbound Phase
	Outbound Phase

	Subspace Distinguisher for 10 Rounds
	The Case of the Whirlpool Compression Function
	The Case of a Random Function
	Complexity of the Distinguishing Attack

	Summary

	Conclusions
	Results for RIPEMD-256 and RIPEMD-320
	Bibliography
	Author Index
	List of Publications

