
Doctoral Thesis

Review of Agile Software Development Methods in
Practice

Ing. Dipl.-Ing. Christian Schindler

————————————–

Institute for Software Technology
Graz University of Technology

1st Assessor: Univ.-Prof. Dipl.-Ing. Dr. Wolfgang Slany
2nd Assessor: Univ.-Prof. Dipl.-Ing. Dr. Thomas Grechenig

Advisor: Univ.-Prof. Dipl.-Ing. Dr. Wolfgang Slany

Graz, February 2010

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources / resources, and that I have explicitly
marked all material which has been quoted either literally or by content
from the used sources.

Graz, February 2010 Ing. Dipl.-Ing. Christian Schindler

1

cschindler
Christian Schindler w/o Title

Kurzfassung

Agile Softwareentwicklungsmethoden, besonders Extreme Programming und Scrum, sind
seit den Neunzigerjahren sehr populär geworden. Diese Arbeit befasst sich mit dem Ein-
satz solcher Methoden in der Praxis. Drei Fälle des Einsatzes von agilen Methoden wer-
den beleuchtet. Zuerst wurde ein kleines universitäres Projekt, in dem die Extreme Pro-
gramming Methodologie eingesetzt wurde, analysiert. Zweitens wurde eine Umfrage über
den Einsatz von agilen Softwareentwicklungsmethoden in österreichischen Informati-
onstechnologie Unternehmen durchgeführt. Zuletzt wurde eine Softwareentwicklungsab-
teilung eines österreichischen Technologie Consulting Unternehmens beim Wechsel von
einem wasserfallartigen Entwicklungsprozess zum Scrum Framework beobachtet. Pro-
bleme beim Einsatz von agilen Methoden werden aufgezeigt und Lösungsmöglichkeiten
vorgeschlagen.

2

Abstract

Agile software development methodologies and especially Extreme Programming and
Scrum have become very popular in the last two decades. This thesis is concerned with
the application of agile software development methods in practice. They are reviewed in
three aspects. First, an academic project, where the Extreme Programming methodology
was applied, is analyzed. Second, the results of a survey about the practical use of ag-
ile software development methods in the Austrian IT industry are discussed. Finally the
transition of a software development department of an Austrian technology consulting
company from a mere waterfall like software development process to the Scrum soft-
ware development framework was monitored, documented and is analyzed. Emerging
problems in the application of agile methods are identified and possible solutions are sug-
gested.

3

Acknowledgment

I would like to express my deep and sincere gratitude to my advisor, Professor Dr. Wolf-
gang Slany for his encouraging comments, endless patience, and help in all aspects. I am
also indebted to Professor Dr. Thomas Grechenig who agreed to serve on my examining
committee on a very short notice.

I am grateful for my colleagues Arndt, Bibiane, Karl and Bruce for the interesting and
inspiring discussions as well as the Scrum team “/dev/null”, I was allowed to work with
over the past 15 months.

Finally, I am forever indebted to my parents, my whole family and friends. I owe my
deepest gratitude to my life partner and sunshine Viktoria for her understanding and en-
couragement when it was most required.

Graz, February 2010 Christian Schindler

4

Common sense is the most fairly distributed thing in the
world, for each one thinks he is so well-endowed with it that
even those who are hardest to satisfy in all other matters are
not in the habit of desiring more of it than they already have.

(René Descartes 1596-1650)

5

Contents

1 Introduction 16
1.1 Motivation and Outline . 16
1.2 Contributions of this Thesis . 17

2 Software Development 19
2.1 Specification . 19
2.2 Design & Implementation . 20
2.3 Validation, Verification . 22
2.4 Maintenance (Evolution) . 24
2.5 Common Development Models . 26

3 Analysis of the htmlButler Project 51
3.1 Design and Implementation . 51
3.2 Project Analysis . 59
3.3 Conclusion . 79

4 Agile Methods in Austrian IT-Industry - a Survey 80
4.1 Introduction . 80
4.2 Survey Setup and Procedure . 81
4.3 Company Characteristics . 82
4.4 Agile Methods and Practices . 85
4.5 Future Plans for Agile Method Adoption 91
4.6 Perception of Adherence to Deadlines 92
4.7 Conclusion . 93

5 A Software Department’s Transition to Scrum 94
5.1 Initial Situation . 94
5.2 Transition Schedule and Scrum Roles 97
5.3 The Department’s Scrum Characteristics 97
5.4 The Performance of a Scrum Team . 99
5.5 Scrum Evaluation . 110
5.6 Conclusion . 125

6 Conclusions 126

6

Bibliography 128

Appendices 137

A Lehman’s Laws 137

B htmlButler Post Mortem Questionnaire 139
B.1 Introduction . 139
B.2 General Information . 139
B.3 Teamwork . 142
B.4 Management . 146
B.5 XP Practices in General . 148
B.6 Experience with XP Practices . 149
B.7 Fundamental Project Questions . 159

C Survey Questionnaire (German) 163
C.1 Telephone Interview Questions . 163

D Survey Questionnaire (English) 168
D.1 Telephone Interview Questions . 168

E Scrum Transition 173
E.1 Initial Sprint . 173
E.2 Sprint 2 . 175
E.3 Sprint 3 . 177
E.4 Sprint 4 . 178
E.5 Sprint 5 . 180
E.6 Sprint 6 . 181
E.7 Sprint 7 . 183
E.8 Sprint 8 . 184
E.9 Sprint 9 . 186
E.10 Sprint 10 . 188
E.11 Sprint 11 . 190
E.12 Sprint 12 . 191
E.13 Sprint 13 . 193
E.14 Sprint 14 . 194
E.15 Sprint 15 . 196
E.16 Sprint 16 . 197
E.17 Sprint 17 . 199
E.18 Sprint 18 . 201
E.19 Sprint 19 . 202
E.20 Sprint 20 . 204
E.21 Sprint 21 . 205
E.22 Sprint 22 . 207

7

E.23 Sprint 23 . 208

F Scrum Evaluation Questionnaire (German) 210
F.1 Allgemeine Fragen . 210
F.2 Team . 214
F.3 Scrum Master . 217
F.4 Product Owner . 218
F.5 Meetings . 222
F.6 Projektabwicklung . 224
F.7 Tickets . 226
F.8 Support . 229
F.9 Delivery . 230

G Scrum Evaluation Detailed Data (English) 233
G.1 General Information . 233
G.2 Team . 237
G.3 Scrum-Master . 240
G.4 Product-Owner . 241
G.5 Meetings . 245
G.6 Project Handling . 246
G.7 Defect Handling . 250
G.8 Delivery . 254

8

List of Figures

2.1 Generic Requirements Engineering Process 20
2.2 Design Process . 21
2.3 Testing Process . 23
2.4 Specification of a Process Step . 27
2.5 Costs Fixing Errors . 28
2.6 Build and Fix Model . 28
2.7 The Waterfall Model . 29
2.8 Prototype Model . 31
2.9 Incremental Model . 31
2.10 Evolutionary Model . 32
2.11 V-Model . 33
2.12 Spiral Model . 34
2.13 UP Phases vs. Disciplines . 36
2.14 Agile Evolution . 38
2.15 XP Process . 42
2.16 ASD Lifecycle . 43
2.17 DSDM Process Model . 45
2.18 Scrum Process . 46
2.19 Crystal Methodologies . 47
2.20 FDD Process . 48
2.21 FDD Design & Build by Feature . 48

3.1 htmlButler Start Page . 53
3.2 Navigation . 53
3.3 Selection . 54
3.4 Options . 54
3.5 Adjusted Options . 55
3.6 Email Address . 55
3.7 User Interaction Cycle . 57
3.8 Member Engagement Graph . 60

5.1 Typical Story Burn-Down Graph . 100
5.2 Typical Velocity Graph . 101
5.3 Velocity Graph 2009 . 102

9

5.4 Velocity Per Person Days 2009 . 103
5.5 Evaluation Login Screen . 112
5.6 First Page of the Scrum Evaluation Survey 113

E.1 Story Burn-Down Graph Sprint 1 . 175
E.2 Story Burn-Down Graph Sprint 3 . 176
E.3 Story Burn-Down Graph Sprint 3 . 178
E.4 Story Burn-Down Graph Sprint 4 . 179
E.5 Story Burn-Down Graph Sprint 5 . 181
E.6 Story Burn-Down Graph Sprint 6 . 182
E.7 Story Burn-Down Graph Sprint 7 . 184
E.8 Story Burn-Down Graph Sprint 8 . 186
E.9 Story Burn-Down Graph Sprint 9 . 188
E.10 Story Burn-Down Graph Sprint 10 . 189
E.11 Story Burn-Down Graph Sprint 11 . 191
E.12 Story Burn-Down Graph Sprint 12 . 192
E.13 Story Burn-Down Graph Sprint 13 . 194
E.14 Story Burn-Down Graph Sprint 14 . 195
E.15 Story Burn-Down Graph Sprint 15 . 197
E.16 Story Burn-Down Graph Sprint 16 . 199
E.17 Story Burn-Down Graph Sprint 17 . 200
E.18 Story Burn-Down Graph Sprint 18 . 202
E.19 Story Burn-Down Graph Sprint 19 . 203
E.20 Story Burn-Down Graph Sprint 20 . 205
E.21 Story Burn-Down Graph Sprint 21 . 206
E.22 Story Burn-Down Graph Sprint 22 . 208
E.23 Story Burn-Down Graph Sprint 23 . 209

10

List of Tables

2.1 SWEBOK Maintenance Categories . 25
2.2 IEEE Maintenance Categories . 25
2.3 Agile vs. Plan Driven Methods . 39

3.1 General Perception . 63
3.2 Development Power . 63
3.3 Number of Co-Developers . 63
3.4 Self Perception . 63
3.5 Team and Teamwork . 64
3.6 Meeting Frequency . 64
3.7 Meeting Usefulness . 64
3.8 Management Qualities . 66
3.9 Management General Questions . 66
3.10 General Questions Part 1 . 69
3.11 General Questions Part 2 . 69
3.12 Answer Scale Applied XP Practices . 69
3.13 Application of XP Practices . 70
3.14 XP Practices Experienced - Part1 . 71
3.15 XP Practices Experienced - Part2 . 72
3.16 User Involvement . 74
3.17 Management Support . 74
3.18 Clear Requirements . 75
3.19 Proper Planning . 75
3.20 Realistic Expectations . 76
3.21 Small Project Milestones . 76
3.22 Competent Staff . 77
3.23 Ownership . 77
3.24 Clear Objectives . 78
3.25 Hard Working Staff . 78

4.1 Participation Overview . 82
4.2 EU Company Categorization . 83
4.3 Participant Company Categorization . 83
4.4 Company vs. Department Size . 83

11

4.5 Company vs. Team Size . 83
4.6 Average Team Size per Category . 84
4.7 Development Activities . 84
4.8 Known Agile Methodologies . 86
4.9 Reasons Against Agile Methods . 86
4.10 Adoption Agile Methods . 88
4.11 Adopted Agile Methods . 89
4.12 Adoption Issues . 89
4.13 Used Tools . 90
4.14 Advantages of Pair-Programming . 90
4.15 Awareness of Pair-Programming . 90
4.16 Reasons Against Pair-Programming . 91
4.17 Future Adoption Plans . 92
4.18 Adherence to Deadlines . 92
4.19 Ranking Scale . 93

5.1 Cases Pro and Against Scrum . 114
5.2 Scrum-Team Size . 115

B.1 Self Assessment . 141
B.2 Strictness of XP Practices . 149
B.3 Planning Game . 149
B.4 Small Releases . 150
B.5 Metaphor . 151
B.6 Simple Design . 151
B.7 Testing . 152
B.8 Refactoring . 153
B.9 Pair Programming . 153
B.10 Collective Code Ownership . 154
B.11 Continuous Integration . 155
B.12 Sustainable Pace . 155
B.13 Coding Standards . 156
B.14 On-Site Customer . 157
B.15 Daily Standup Meeting . 157
B.16 Whole Team . 158
B.17 Project Questions - 1 . 159
B.18 Project Questions - 2 . 160
B.19 Project Questions - 3 . 161
B.20 Project Questions - 4 . 162

C.1 Delivery Reliability . 167

D.1 Delivery Reliability . 172

12

E.1 Sprint 1 Statistics . 174
E.2 Sprint 2 Statistics . 176
E.3 Sprint 3 Statistics . 177
E.4 Sprint 4 Statistics . 179
E.5 Sprint 5 Statistics . 180
E.6 Sprint 6 Statistics . 182
E.7 Sprint 7 Statistics . 183
E.8 Sprint 8 Statistics . 185
E.9 Sprint 9 Statistics . 187
E.10 Sprint 10 Statistics . 189
E.11 Sprint 11 Statistics . 190
E.12 Sprint 12 Statistics . 192
E.13 Sprint 13 Statistics . 193
E.14 Sprint 14 Statistics . 195
E.15 Sprint 15 Statistics . 196
E.16 Sprint 16 Statistics . 198
E.17 Sprint 17 Statistics . 200
E.18 Sprint 18 Statistics . 201
E.19 Sprint 19 Statistics . 203
E.20 Sprint 20 Statistics . 204
E.21 Sprint 21 Statistics . 206
E.22 Sprint 22 Statistics . 207
E.23 Sprint 23 Statistics . 209

G.1 Scrum Awareness . 233
G.2 Prior Knowledge of Scrum . 233
G.3 Practical Experience with Scrum . 234
G.4 Prior Experience with Scrum . 234
G.5 Awareness of Other Agile Methods . 234
G.6 Practical Experience with Other Agile Methods 234
G.7 Prior Practical Experience with Agile Methods 234
G.8 Attitude Towards Scrum . 235
G.9 Change of Work Experience . 235
G.10 Scrum Advantages . 235
G.11 Scrum Disadvantages . 235
G.12 Desire to Abandon Scrum . 236
G.13 Experience of Scrum Introduction . 236
G.14 Information for the Scrum Transition . 236
G.15 Positive Points of the Scrum Transition 236
G.16 Negative Points of the Scrum Transition 236
G.17 Team Satisfaction . 237
G.18 Team Problems . 237
G.19 Team Problem Solution . 237

13

G.20 Desire to Change Team . 237
G.21 Suggested Team Change . 237
G.22 Single Point of Knowledge in Team . 238
G.23 Knowledge Distribution Effort . 238
G.24 Scope of Knowledge Distribution . 238
G.25 Satisfaction with Knowledge Distribution 238
G.26 Distribution of Work in Team . 238
G.27 Current Team Size . 239
G.28 Team Size . 239
G.29 Teamwork . 239
G.30 Team Office . 239
G.31 Rating of the Scrum-Master . 240
G.32 Scrum-Master Responsibilities . 240
G.33 Problems with Scrum-Master . 240
G.34 Scrum-Master Problem Solution . 240
G.35 Information about Impediments . 240
G.36 Impediment Solutions . 241
G.37 Scrum-Master Support for the Team . 241
G.38 Rating of the Product-Owner . 241
G.39 Product-Owner’s Responsibilities . 241
G.40 Problems with Product-Owners . 241
G.41 Solution for Problems with Product-Owners 242
G.42 Product-Owner Support for the Team . 242
G.43 Quality of User-Stories . 242
G.44 User-Stories Introduction . 242
G.45 Time of User-Story Introduction . 242
G.46 Requirement Changes . 243
G.47 Necessity of Requirements Changes . 243
G.48 Direct Access to Team-Members . 243
G.49 Frequency of Direct Access to Team-Members 243
G.50 Direct Access through Sprint-External Product-Owner 243
G.51 Frequency of Direct Access through Sprint-External Product-Owner . . . 244
G.52 Purpose of Meetings . 245
G.53 Meeting Satisfaction . 245
G.54 Necessity of Meetings . 245
G.55 Met Purpose for Meetings . 245
G.56 Number of Meetings . 246
G.57 Efficiency of Meetings . 246
G.58 Invested Time in Meetings . 246
G.59 Public Demonstration . 246
G.60 Satisfaction with Project Handling . 246
G.61 Project Evolution . 247
G.62 Match of the Project Handling with Scrum 247

14

15

G.63 Time for Planning and Realization . 247
G.64 Experienced “Forced Commitments” . 247
G.65 Rating of the Sprint Length . 247
G.66 Team Member’s Effort . 248
G.67 Team’s Sprint Effort . 248
G.68 Architectural Considerations in Projects 248
G.69 Time of Architectural Considerations . 248
G.70 Influence of Architectural Considerations 248
G.71 Influenced Estimations . 249
G.72 Frequency of Architectural Veto . 249
G.73 Rating of the Defect Handling Process 250
G.74 Match of Defect Handling Process with Scrum 250
G.75 Alternative Defect Handling Process . 250
G.76 Fairness of Defect Fixing Tasks . 250
G.77 Number of Assigned Defect Fixing Tasks 251
G.78 Risk of Sprint Goal due to Defect Fixing Tasks 251
G.79 Satisfaction with the Pre-Analysis of Defects 251
G.80 Missing Sprint Goals due to Defect Fixing Tasks 251
G.81 Defect Fixing Tasks for Teams . 251
G.82 Inter-Team Support . 252
G.83 Existence of Guidelines for Inter-Team Support 252
G.84 Meaningfulness of Guidelines for Inter-Team Support 252
G.85 Problems with Inter-Team Support . 252
G.86 Risking the Sprint Goal Through Inter-Team Support 252
G.87 Frequency of Risking Sprint Goal Through Inter-Team Support 253
G.88 Rating of the Co-operation with Delivery Team 254
G.89 Delivery Team’s Responsibilities . 254
G.90 Hand-Over Process to the Delivery Team 254
G.91 Meaningfulness of a Hand-Over Process 254
G.92 Risking the Sprint Goal Caused by Delivery Team Support 255
G.93 Frequency of Risking the Sprint Goal Caused by Support 255
G.94 Acceptance Tests at the Customer’s Site 255

Chapter 1

Introduction

In this thesis agile software development methods are reviewed in three aspects. First,
an academic project which was carried out in cooperation with an Austrian software
company for Web2.0 applications is analyzed. Second, a survey about the practical use
of agile software development methods in the Austrian IT industry was conducted and
discussed. Finally the transition of a software development department of an Austrian
technology consulting company from a mere waterfall like software development pro-
cess to the Scrum software development framework was accompanied, documented and
analyzed.

1.1 Motivation and Outline
The primary goal of this thesis was to investigate whether the positive attitude towards
agile software development methods described in literature [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18] is observable in practice. A software development process alone
does not determine whether a project goes well or becomes a failure however. It mainly
relies on the involved people, although the process can support or hinder their work de-
pending on its characteristics and how the process is implemented and lived. According
to the agile manifest [1], agile methods are strongly human oriented. This is also dis-
cussed in the analysis of the htmlButler project in Chapter 3, where an academic project
was conducted together with a commercial partner from the software industry. The most
interesting discussion concerning this project is about the problems that arose between
the developers themselves, the academic project leader and the project management of
the cooperating company. One can see that agile methods, although human centered,
are not the key factor for a successful project but that “Everything really interesting that
happens in software projects eventually comes down to people” [19]. Prior to this, the
author happened to have experienced a full-fledged heavy weight development process in
an Austrian technology company where safety critical hard- and software for public trans-
port and air traffic control communication systems were produced. How this process was
really lived was totally different than it was described on paper. In reality it was merely
an ad hoc development method with a subsequent heavy test and fix effort to meet the

16

CHAPTER 1. INTRODUCTION 17

always changing requirements and to reach the quality assurance level so that the product
was ready for shipping. That these software projects were never in time nor in budget was
no surprise, but the company did not change its process. Agile and light-weight software
development methods are described as making it possible to easily react to changes (see
[20] and Chapter 2). In the last decade the software industry put the focus on an improved
(shortened) time-to-market and this most often by skipping steps of the development pro-
cess. Changing requirements make it a complicated task to keep the time-to-market down.
It was therefore interesting how the Austrian IT-industry copes with this tendency and
what software development processes, if any, are used and if they are agile. Out of this
motivation, a survey concerning the use of agile software development methods in the
Austrian IT-industry was conducted. This survey is described, analyzed and discussed in
Chapter 4. As a third part of this thesis, the transition of a software development depart-
ment within a technology consulting company from a waterfall-like software development
process to the Scrum framework was accompanied. Not only the transition but also the
practical adoption of the Scrum framework and the problems between the different Scrum
roles were monitored over the whole year 2009 and are analyzed in Chapter 5.

1.2 Contributions of this Thesis
Chapter 2 is a foundational chapter where the basics of software development are re-
viewed. The core activities shared by all software development methodologies, namely
specification, design, implementation, validation, verification and maintenance, as well
as common software development methods are described. Agile software development
methods are described in more detail to set the context for the rest of the thesis.

In Chapter 3, the software development process within an academic project in coop-
eration with a commercial Web2.0 software company is reviewed. First, the background
motivation, the architecture, the way of implementation and a typical use case are de-
scribed. Then, the problems that emerged in this project during the use of agile practices
are reviewed. Finally feedback of the co-working developers was collected and analyzed.
The chapter concludes with a summary of the problems, the lessons learned and possible
solutions for future projects with similar parameters. In Appendix B, the questionnaire
for the developer feedback is described. The following publications about the htmlButler
project are incorporated into Chapter 3:

• Pranjal Arya, Christian Schindler and Wolfgang Slany. Human-Agent interaction
in the light of ontology sharing and large scale cooperation. In Proc. Int. Conf.
on Intelligent Agents, Web Technologies and Internet Commerce (IAWTIC 2005),
pages 158–161, Vienna, Austria, November 28-30 2005. IEEE Computer Society.

CHAPTER 1. INTRODUCTION 18

• Karl Neuhold, Christian Schindler and Wolfgang Slany. The htmlButler Ap-
proach: Through Shared Ontologies and Large Scale Cooperation to Enhanced
Wrapper Usability. In Proc. 6th International Conference on Knowledge Man-
agement (I-KNOW06), pages 35–38, Graz, Austria, September 6-8 2006.

In Chapter 4, the survey of agile software development methods in the Austrian IT-
industry is described. From a set of over 400 software companies a sample of 100 was
chosen and contacted. 42% of the contacted companies agreed to participate in a tele-
phone interview. The telephone interviews were conducted as structured interviews. The
prepared questions are given in Appendix C. The questions concerned a.) current applica-
tion of agile methods and practices, b.) future plans for the adoption of agile methods and
practices and c.) the perception to adherence to delivery dates. To the best of the author’s
knowledge, this survey is the first and only survey in Austria that targets specifically the
use of agile methods. The author has conducted this survey alone, and the outcome was
consolidated and already published in the following paper:

• Christian Schindler. Agile Software Development Methods and Practices in Aus-
trian IT-Industry: Results of an Empirical Study. In Masoud Mohammadian, editor
Proc. 2008 International Conference on Computational Intelligence for Modelling,
Control & Automation (CIMCA 2008), Intelligent Agents, Web Technologies & In-
ternet Commerce (IAWTIC 2008), Innovation in Software Engineering (ISE 2008),
pages 321–326, Vienna, Austria, December 10-12 2008. IEEE Computer Society.

In Chapter 5, the transition of a technology consulting company’s software develop-
ment department from a mere waterfall like development process to the Scrum framework
was accompanied, documented and analyzed. One team’s sprint data was collected over
the whole year 2009 and acts as a substitute for all other Scrum-teams in the department
since the performance and the problems were similar in the other teams. The transi-
tion, the performance of the team as well as the problems which arose in the department
through the switch to Scrum are discussed. This chapter concludes with a survey among
the Scrum-teams about the transition and the situation in the department and a summary
about the critical problems and possible solutions. The 23 sprints of 2009 and the related
burn-down charts, along some statistical data are collected in Appendix E. The 121 Scrum
evaluation survey questions are collected in Appendix F.

Chapter 6 concludes the work of this thesis and sets the experiences of Chapter 3, 4 and
5 into context. Furthermore the problem similarities and possible solutions for the use of
agile software methodologies in practice are discussed.

Chapter 2

Software Development

Software (SW) development methodologies systematize the process of developing soft-
ware. While SW development methodologies differ in details and in arrangement of spe-
cific activities, most of them consider the similar core activities. In this chapter, four core
activities, namely specification, design, validation/verification and maintenance/evolution
are described. Then some well-known (agile) SW development methods are briefly de-
scribed, since this thesis is concerned with agile development methods in practice.

2.1 Specification
The goal of the specification phase is to set out the functionality that the system which is
under development should have. The process of developing a specification is also called
requirements engineering. It establishes the service the system should provide and the
constraints under which it must operate [21].The outcome of the requirements engineer-
ing process is a document containing the functional and non-functional requirements. A
functional requirement describes a system service or function whereas a non-functional
requirement represents a constraint placed on the system (response time) or on the de-
velopment process (specific language). The requirements engineering process (see Fig-
ure 2.1) consists of four main stages.

Feasibility Study In the feasibility study an estimation is done whether the current tech-
nology (hard- and software) is sufficient to develop the system according the identified
user needs and whether the budget is adequate. This study is to be done early in the
overall software development process and should be done in a quick and cheap way. The
out-coming feasibility report should make clear whether further development makes sense
and support the decision to go ahead with more detailed work.

Requirements Analysis In this stage system models and prototypes can be developed to
help understanding the system requirements and the system to be specified. The require-
ments are refined through observations of existing systems, discussions with the customer

19

CHAPTER 2. SOFTWARE DEVELOPMENT 20

Figure 2.1: A generic requirements engineering process.

and the potential users and observation of the proposed installation sites and so on. The
emerging system models become part of the requirements document. The requirements
analysis does not stop with the first iteration. New requirements are discovered during the
definition and specification process and are fed back into the requirements engineering
cycle.

Requirements Definition In the definition stage the gathered information from the
analysis is transformed into a document which accurately defines the set of requirements
the customer wants. The out-coming document must be written in a way the end-user and
customer can understand. New arising analysis or definition issues or contradictions are
fed back and influence the whole process.

Requirements Specification In this stage the detailed and accurate descriptions of the
system requirements are set out and result in the specification requirements which act as a
base for a contract between customer and developer. This document is created in parallel
with high level design and therefore cannot be done in one iteration since it is very likely
that errors in the requirements definition and contradictions with the design arise which
must be corrected and influence the whole specification, definition and analysis cycle.

2.2 Design & Implementation
While design and implementation are often described as separate phases, here they are
described together since especially in agile software development processes these two
activities are tightly interwoven. The implementation phase is the manifestation of the
design in code by means of different programming languages, tools and techniques lead-
ing to an executable and testable system. Occurring problems during implementation

CHAPTER 2. SOFTWARE DEVELOPMENT 21

Figure 2.2: General model of a design process.

loop back and have direct influence on the previously made design no matter which pro-
cess model is used. In the design phase the general structure of the software system is
described on different levels of abstraction. Any design problem can be approached in
three stages:

Problem Study and Understanding The question that shall be answered in this stage
is: “What is the exact problem that has to be solved?” It is often important to “think out
of the box”, to be creative. As Albert Einstein put it “No Problem can be solved from
the same consciousness that created it.” Therefore the problem should be studied from
various viewpoints to get different insights into the design requirements.

Identification of Features It is an advantage to create multiple solutions, identify the
general features and evaluate them according the simplicity, the degree of reusability and
combinability. Multiple possible solutions lead to more features which can be combined
and increase the potential of a better design.

Design Description A high-level informal design description makes it easier to discover
potential design-flaws and omissions at an early stage. After analysis of this high-level
design description the actual design document should be prepared.

CHAPTER 2. SOFTWARE DEVELOPMENT 22

The general model of software design as depicted in Figure 2.2 is divided into design ac-
tivities for the different levels of abstraction and into the emerging abstract formal speci-
fication design products. Although the stages are depicted sequentially for ease of under-
standing, they are practically carried out in parallel with smooth transitions between them.
At the beginning of the general design process one starts with an informal design. Within
each step the design is refined and becomes more formal, consistent and complete. The
gained insights and clarifications of the requirements and the specifications of the func-
tions of the system in each level are fed back to earlier stages. Discovered inconsistencies
and errors have an influence on all design activities and henceforth out-coming design
documents. The design activities and their emerging specifications are:

Architectural design is leading to the system architecture.
The parts assembling the system and their relationships are identified and docu-
mented.

Abstract specification is leading to the software specification.
Each part, their provided services and constraints they have to observe are abstractly
specified.

Interface design is leading to the interface specification.
The part’s interface to the other involved parts of the system is designed an un-
ambiguously specified. This can be done using formal, algebraic or model-based
specification methods.

Component design is leading to the component specification.
A mapping of services to components and their interfaces are designed and docu-
mented.

Data structure design is leading to the data structure specification.
A detailed design of the system implementation’s data structures is specified.

Algorithm design is leading to the algorithm specification.
The algorithms used in this system which provide services are specified in detail.

2.3 Validation, Verification
The term validation is defined as the process where the tester checks if the (sub)-system
under test fulfills its specified task and therefore is for its intended use [22]. Verifica-
tion on the other hand is focused on distinct phases of development and shall prove the
correctness and completeness of emerging artifact of this phase according to its direct
specification [22]. Shortly summarized the difference can be expressed by two questions,
a.) validation: “Are we building the right product?”, and b.) verification: Are we building
the product right? [23]. In practice both aspects, validation and verification are part of all
tests whereas the amount of validation increases with the level of testing. The validation

CHAPTER 2. SOFTWARE DEVELOPMENT 23

Figure 2.3: A testing process.

and verification process contains static and dynamic techniques. Static techniques can be
used at all stages of the software process and are concerned with requirements documents,
design diagrams and the source code (metrics). Dynamic techniques can only be used on
prototypes and executable (sub) parts of the system. Verification is divided into a.) sta-
tistical testing, which is used to test for performance and reliability and b.) defect testing
which is intended to find areas where the program diverges from its specification. Sys-
tems are built step by step and therefore testing should be carried out in conjunction with
system implementation. In Figure 2.3 a very common testing process is depicted which
corresponds to the incremental evolution of the software system under development. The
steps are sequential but of course not necessarily only unidirectional. This means if at any
stage a defect was discovered previous testing stages may be repeated. The stages in the
testing process are:

Unit testing The functionality of individual components (methods or procedures) are
tested independently without the context of other components.

Module testing The functionality of dependent and coupled components are tested, e.g.,
classes, packages and abstract data-types (ADTs). Modules are components which
are related but not necessarily interdependent. Therefore, they can be testes without
other system modules.

Sub system testing In the next higher abstraction layer are subsystems which consists of
the former tested modules and build distinct parts of the system (logically related
groups of modules) which communicate via interfaces. These interfaces pose a
great risk for errors and misinterpretations in system integration and hence must be
carefully tested in this stage.

CHAPTER 2. SOFTWARE DEVELOPMENT 24

System testing The complete system as it is made up and integrated from the different
sub systems is tested for errors in the interactions between the sub system and sys-
tem components. Also the system is validated if the functional and non-functional
requirements are met.

Acceptance testing The final stage of the testing process where the system is confronted
with real life data instead of simulated test data. The acceptance test takes place
before the system is accepted for operational use. Through the use of “real” data
and the testing through customer and intended users, flaws and errors in the system
requirements are discovered in terms of unacceptable performance or user’s needs.

After acceptance testing (which is also called alpha testing), a beta-testing phase can be
applied where the system is shipped to the customer and/or selected user group to discover
errors and requirement irregularities through real-life application.

2.4 Maintenance (Evolution)
When software is needed it can be obtained in different ways (external source, developed
in-house, etc.). However the supplier delivers the developed software according to the
specified (user) requirements. The maintenance phase of the software begins after the
delivery. Maintenance must be thoroughly planned before shipping because afterwards it
is deployed outside the development area and at many sites, and therefore making changes
after shipping is impossible without a good maintenance/update procedure. There are
many potential reasons why the software must be modified: For instance, changes in
the environment or hidden defects which must be adapted and corrected by the supplier.
Software has an evolutionary nature and without maintenance, software would cease to
be useful over time [24] (see Appendix A). Software maintenance is concerned with the
modification of the system after completion and shipment to the customer and after it was
put into operational use. The term software maintenance is defined differently by different
organizations. Some widely agreed definitions are:

“Software maintenance is the modification of a software product after delivery to cor-
rect faults, to improve performance or other attributes, or to adapt the product to a
modified environment” [25].

“Software maintenance is the totality of activities required to provide cost-effective sup-
port to a software system” [26].

“Software maintenance is the modification to code and associated documentation due
to a problem or the need for improvement. The objective is to modify the existing
software product while preserving its integrity.” [27].

CHAPTER 2. SOFTWARE DEVELOPMENT 25

According to [28], all necessary activities of software maintenance can be roughly divided
into three categories a) corrective maintenance where reported errors are fixed, b) adap-
tive maintenance which is concerned with porting the system to other platforms or to new
environments and c) perfective maintenance which is concerned with change requests due
to new functional or non functional requirements. The distribution between these cate-
gories varies between 17%-20% for corrective, 18%-25% for adaptive and 55%-65% for
perfective maintenance.

The software maintenance standard ISO/IEC 14764 [29] enhanced the basic three cate-
gories by a fourth category namely the preventive maintenance which is concerned with
modification of a software product after delivery to detect and correct latent faults in the
software product before they become effective faults [29]. In Table 2.1 the categories
of the software maintenance as described in SWEBOK (Software Engineering Body of
Knowledge) [26] are depicted. In the IEEE Standard for Software Maintenance [25] a
different fourth category was introduced namely the emergency maintenance which is
concerned with change requests which have to be processed immediately and with high-
est priority due to the negative influence on the availability of the system or the system’s
core functionality The IEEE-1219 view of the maintenance categories are grouped by
type of schedule (see Table 2.2).

Correction Enhancement

Reactive Corrective Adaptive

Proactive Preventive Perfective

Table 2.1: SWEBOK categories of software maintenance.

Unscheduled Scheduled

Corrective,
Reactive Emergency Adaptive

Proactive Perfective

Table 2.2: IEEE categories of software maintenance.

Maintenance costs & cost estimation Maintenance costs vary significantly according
the application domain and on the kind of error. For typical business applications main-
tenance approximately the costs of the system development [30, 31] but can grow much
higher for, e.g., embedded- or high-performance & -reliability systems. They vary ac-
cording to different empirical studies [32] (undertaken from 1969 to 2000) between 50%

CHAPTER 2. SOFTWARE DEVELOPMENT 26

and 90%. Maintenance costs are related to many different factors which can be sub-
sumed in two categories, the technical and non-technical factors [33, 21]. Almost half of
the maintenance effort is dedicated to involuntary, the other half to discretionary activi-
ties [28]. According to a well-known cost model (COCOMO) [34], the estimated annual
maintenance effort (AME) is proportional to the initial development effort (DE) and the
annual change traffic (ACT).An overview about different maintenance cost estimation ap-
proaches can be found in [35]).

Maintenance activities are of corrective, adaptive, perfective and preventive nature. In
principle, these activities can be distinguished but in practice they are intertwined. Un-
realistically small programs will widely be used to demonstrate maintenance principles,
but real maintenance is done on large systems which are actively being used in real world
scenarios. Lehman’s laws1 [24] (see Appendix A) describe the principles common to all
large, live software systems. In an ideal world software would be build not limited by
time and cost boundaries and the system would always be perfect. Since this clearly does
not happen, one goes for an approximation, and builds SW systems limited by time and
cost and goes for maintenance if it is discovered later that the system is defective or some
requirements have changed and therefore the system has to be enhanced.

2.5 Common Software Development Models
Every process has a set of steps, at each step a well-defined task is performed leading
to the process goals. At the end of each step the output which must be a clearly defined
entity is to be verified according the process definitions. To keep a process feasible it must
not have too many steps and a clear objective. Each step must have an entry and an exit
criterion, the outcome is just an interim artifact not the final output of the process which
are usually documents (specification or design documents or prototypes) and additional
information for the management of the process which can take actions to keep the process
under control [36] (see Figure 2.4). Since a software process is to be used by more
than one project, it must have some general characteristics beside that one to satisfy the
project goal. A software process should be predictable, support change, testability and
maintainability, early error detection & removal and last but not least support process
feedback and improvement. Predictability is necessary to apply the process to different
projects. If a process has random outcome it is useless therefore it can be considered
a fundamental feature of a process. Predictability concerns time and quality, and hence
costs of a process. A process must be able to cope with change since projects are never
static and rigid. A process should be prepared for changing requirements, knowledge
through user/customer feedback, hardware and human resources. This is especially true
if a project lasts for a certain amount of time. Testability & maintainability are also very
important features of a process. As stated in previous sections maintenance costs can

1Lehman’s laws about intrinsic characteristics of software which were formulated over 20 years of
studying the software process concerning continuing change, increasing complexity, continuing growth,
declining quality, etc.

CHAPTER 2. SOFTWARE DEVELOPMENT 27

Figure 2.4: Specification of a process step.

generally exceed development costs and therefore reducing the maintenance costs must
be an important goal of a process. This can be done through reducing errors in design and
coding. Therefore the process must support testability and foster easy modification. Early
error detection & removal is vital for a process since errors are made during all phases of
development, although the costs for fixing an error differ according the detection in the
different phases of the process (see Figure 2.5 [34]).

A process is not a static and rigid step by step sequence. Since the quality, the outcome
and hence the costs of a project are largely determined by the process it is important to
reduce costs and improve quality. Therefore a software process should be designed as
a closed loop. The process must be improved by previous insights from earlier projects
and during the process gained knowledge and experience from the distinct phases must
be used to improve the rest of the project. This is especially true for iterative processes
where feedback from earlier iterations is used as input for the next one. It is not the
purpose of this section to list and compare all existing software development models not
only because they have been widely documented but rather prepare the general context
for the upcoming discussions about agile methodologies in practice.

2.5.1 Build and Fix Model
The build and fix model (see Figure 2.6) is considered to be the least appropriate model [37]
for software development since it is totally reactive. However, according to the authors’
experience it is today still widely used. The software is produced without a specification
and without a proper design therefore the process is based on interaction with the end user
which can lead to misunderstandings. This leads to a non predictable project including
the time to be finished as well as the real costs of the product. Although most projects
are said to be performed using other methods, in practice it often happens that these
processes degrade to the build and fix model which often leads to frustration of program-
mers, customer, and eventually project cancellation. The only advantage of this model is
the simplicity which will pay back after the first delivery of the product. The disadvan-
tages are, a.) no specification, only oral transmission of the customer’s wishes and needs.

CHAPTER 2. SOFTWARE DEVELOPMENT 28

Figure 2.5: Relative costs fixing errors according development phase.

Figure 2.6: The build and fix model.

A specification only exists in the heads of customer and programmer which most likely
do not match. b.) no design due to the lack of specification. The actual design happens
through coding which is rarely documented and therefore only exists in the programmers
head. Design errors will take immediate effect on the code and will be very expensive
to undo later. c.) high risk since no specification and no design lead to a probably not
satisfied customer. The project outcome is dependent on the goodwill of the customer, the
programmer and the amount of money. Until the client is satisfied, the money runs out
and/or the project is abandoned, the rework phase takes place which makes the project
completely unpredictable in quality, time and cost. Finally, d.) unpredictable costs since
the size of the project is not known. Costs cannot be predicted until the very late stage of
the project, where they will most likely exceed the proposed sums.

2.5.2 Waterfall Model
The waterfall model is one of the simplest models where the phases of development are
followed sequentially and transitions characteristically can only take place between two

CHAPTER 2. SOFTWARE DEVELOPMENT 29

Figure 2.7: The waterfall model.

neighboring phases. There are various versions of that model depending on the applica-
tion domain and the control flow between the steps (see Figure 2.7). Phases can be joined
or new phases can be easily inserted. The process starts with the requirements analysis
and definition. The design phase starts after completion of the first step and leads over
to the implementation phase. When the implementation phase including unit testing is
completed, the process carries on with the integration and system testing phase and if
the system is successfully tested and installed the operation and maintenance phase is
reached and active. If any defects are detected, there is only the possibility to step back to
the previous phase for correction. Each phase must have a defined output, when a phase is
completed the outcome is a product which mostly includes documents or reports like the
requirements and design document or the test report and the user manual. The output of
the implementation phase is the documented code with its unit tests. The waterfall model,
although it was not called by its name then, was first introduced in the seventies [38] where
several improvements of the original model are proposed. The waterfall model was actu-
ally developed as an improvement of the phase-model [39] which was an approach for the
software development for the Semi-Automatic Ground Environment (SAGE) system of
the United States North American Aerospace Defense (NORAD) in the nineteen-fifties.

The main advantage of the waterfall model is its simple nature. Tasks are split up into a
sequence of clearly distinct phases with their own context. The waterfall model has a cou-
ple of limitations where the most severe are, a.) that the software requirements phase is
complete when the design phase starts which is problematic for new systems because the
end-user might not have a total understanding of the overall requirements of the system
and therefore defects in the requirement propagate through until the system is finished
which can lead to an almost unusable system, poor customer satisfaction and complicated
maintenance. b.) For large software system the process lasts over years. With a completed
hardware requirement the software will be designed for an old platform therefore require-
ments which might not be changed in a meaningful and controlled manner is unrealistic
and not appropriate. c.) The software is delivered at the end of the process and the user
has no idea what will be delivered. Furthermore, if the project runs out of money before

CHAPTER 2. SOFTWARE DEVELOPMENT 30

the implementation phase is finished, nothing can be delivered at all which imposes a high
risk for the customer. Due to the document driven nature of the process the customer can
end up with nothing but documents and no end product.
The waterfall model today has little practical value since it is too strict and rigid and only
works well if projects are routine, the requirements are clear and fixed, the developers
know the problem domain and the project is not too large.

2.5.3 (Rapid) Prototype Model
The prototype model eases the problems of the waterfall model such that before the actual
requirements analysis is completed a prototype is made for the currently known require-
ments. This enables the customer to better understand the requirements of the intended
end product. Valuable feedback can be gained from the prototype like a.) what is wrong,
b.) what needs modification, c.) what is not needed d.) what is missing etc. The prototype
itself undergoes a requirements analysis phase, a design phase, a coding and a careful test-
ing phase (see Figure 2.8). Requirements which are well known must not be implemented
to keep the costs and development time down since the prototype is thrown away and is
not recycled. Although the costs of a prototype which is thrown away might be high, the
costs of the following phases are decreased as well as the costs for late changes which are
especially expensive. Advantages at a glance:

Requirements The requirements are collected and defined in a two stages process firstly
through the normal analysis and secondly refined through the development of a
throw-away prototype. This is especially useful for new systems where the end-
user and customer has no clear idea of the requirements.

Predictable process Through the development of the prototype the overall complexity,
time and hence costs of the end system can be more easily predicted.

Reduced Risk Through the refined requirements and the customer feedback from the
prototype the risks of severe requirement changes is lower and therefore the overall
risk for the project is decreased.

The disadvantage are the higher costs at the beginning and potential to make the mis-
take that well known requirements are implemented into the prototype as well as error
and exception handling and that the code of the prototype is used for the product imple-
mentation. In the worst case the throw-away prototype model degrades to the build and
fix model with all its consequences and negative effects on the costs and predictability.
Moreover using this model it must be made clear to the customer that the prototype is
indeed a prototype for finding and refining requirements and not an unfinished version of
the end-system.

CHAPTER 2. SOFTWARE DEVELOPMENT 31

Figure 2.8: The throw-away prototype model.

2.5.4 Incremental Model
The incremental model is an evolution of the waterfall model and treats the developments
steps as non discrete [37]. One can see it as a “multi-waterfall” cycle. Outgoing from
the requirements the product is developed in functional increments (see Figure 2.9) where
every outcome of an increment is an operational system. This technique begins with a
simple initial (skeletal) implementation [40] and in every iteration, where the next func-
tional increment is developed it is possible to easily react to changes which keep the costs
down. This is possible since the requirements are broken up into smaller pieces which
are less complex to understand and develop. A disadvantage of this approach is that the
requirements must be well defined up front, as otherwise problems with the system ar-
chitecture may arise during the iterations and this model degenerates to a build and fix
approach.

2.5.5 Iterative (Evolutionary) Model
The evolutionary characteristics of software were already identified in the late 60s [41].
The iterative or evolutionary model can be considered as the most realistic of the tra-

Figure 2.9: Incremental development model.

CHAPTER 2. SOFTWARE DEVELOPMENT 32

Figure 2.10: Iterative or evolutionary development model.

ditional software development models [37]. It is mostly used in combination with an
incremental approach which leads to an iterative incremental development model. In Fig-
ure 2.10 one can see that each stage feeds back information to the previous and the col-
lected gained insights after an iteration are fed back to the first step and even have impact
on the requirements. In each iteration a usable and executable release of the software sys-
tem is produced although not with all functional features and non-functional requirements
until its final iteration. This approach is widely used, e.g., in the Unified Process 2.5.8
and in all agile methodologies in combination with the incremental method (see Sec-
tion 2.5.9). Problems can arise through over iteration due to changing requirements and
features which are identified throughout the iterations.

2.5.6 V-Model
The V-model [42] is a generic product model and adds validation counterparts to the early
stages of the process (see Figure 2.11). In general the V-model is a waterfall model where
the phases are arranged to emphasize the validation and verification and the relation be-
tween design and test steps. It is possible to adopt the phases to match any life-cycle. The
model is split in two parts, where the left side represents the results of the development
(production cycle) and the right side of the V shows the construction of the final product
with the assembly of the individual components (testing cycle). Verification takes place
at each step in the production cycle (left side of the V) to assure correctness of the step’s
outcome. Validation takes place at each step in the testing cycle (right side of the V)
against the specifications of the left side and the actual implementation. The final test is
the validation of the product against the user requirements. The V-model nicely shows
the process of generating detailed specification starting with the user requirements down
to individual modules or units on the left side which can be directly implemented and
successively assembled to a system on the right side. It is possible to process parts of the
V-model concurrently. Finishing a step on the left side the correlating step on the right
side can be started, e.g., if the detailed design is finished the unit tests can be written so
the test procedure is ready when needed. Left and right part of the V-model have almost
always the same amount of steps (depending on the life-cycle) which shows that the test
cycle also needs its time and must be considered in the overall process.

CHAPTER 2. SOFTWARE DEVELOPMENT 33

Figure 2.11: The V-Model.

2.5.7 Spiral Model
The spiral model [43] is an iterative model with four main phases that are organized like
a spiral growing from the inside (close to the center) to the outside. The radial dimension
represents the cumulative cost to date and the angular dimension represents the progress
through the spiral and hence the progress. A cycle starts with the determination of the
objectives, its alternatives and constraints. Finishing this determination step the alter-
natives, risks and solutions are evaluated. Especially the risk and its possible solutions
are emphasized and with techniques of prototyping, simulation and benchmarking, strate-
gies are worked out to overcome these risks. If no solutions for risks can be found, the
project can be terminated at this stage. These activities lead to the next phase, the de-
velopment and verification of the next level product. Depending on the proximity to the
center and therefore the number of iterations, either the concept of the operation, or the
actual requirements, or the software design is created. In later iterations the implemen-
tation testing, validation and verification also takes place in this phase. The last phase
in the cycle is the planning phase for the next iteration where near the center in an early
iteration the requirements and the life-cycle plan is created as well as the development
plan, the integration and test plan in later iterations (see Figure 2.12). Through the use
of prototypes the overall risk is minimized. The spiral model in its simple form is a kind
of consecutive waterfall model preceding each phase with an alternative risk analysis and
follows each phase with an evaluation and planning of the next step. The weakness of
this model is that it was designed for big projects and large-scale software since the risk

CHAPTER 2. SOFTWARE DEVELOPMENT 34

Figure 2.12: The spiral model.

analysis would be too costly for small software projects. It is better suitable for in-house
development, otherwise all risk analysis must be made before the project is launched and
the contract is signed. Advantages at a glance:

Risk analysis Through the risk analysis which takes place in each iteration, it is no prob-
lem to determine what and how much should be tested.

Maintenance Maintenance is integrated in this process model. An additional iteration is
a full maintenance cycle.

2.5.8 Unified Process (UP)
The Unified Process is an iterative and incremental software development framework (all
activities can be customized according the project needs [44]) for dealing with the whole
life-cycle of a software project. In the Unified Process the communication with the cus-
tomer and the method to describe the system from the customer’s view by means of use-
case diagrams is highly important. The importance of software architecture is, that it
emphasizes and “helps the architect focus on the right goals, such as understandability,

CHAPTER 2. SOFTWARE DEVELOPMENT 35

reliance to future changes, and reuse” [45]. In the general implementation the UP defines
who does what, when, how and what goals are to be reached as well as which inputs and
outputs for these activities are expected. This seems pretty heavy-weight but since it is a
framework it can be customized to fit the need of agility and even XP. There are several
derivates of the Unified Process, e.g., OpenUp [46], Agile Unified Process (AUP) [12],
Enterprise Unified Process (EUP) [47] and the probably most known, the Rational Uni-
fied Process (RUP) [48]. There are four key characteristics backing the UP [49]: it is a.)
iterative and incremental, b.) use-case driven, c.) architecture-centric, and d.) risk ac-
knowledging. The UP has the following different project life cycle phases: a.) inception
phase⇒ vision, b.) elaboration phase⇒ baseline architecture [50], c.) construction phase
⇒ complete beta release and finally the d.) transition phase ⇒ final release. The five
different disciplines in the development process (requirements, analysis, design, imple-
mentation and testing) are not worked through sequentially in the UP but can be involved
in different phases or stretched over more than one phase (see Figure 2.13 [49, 13]). The
disciplines are steps which are followed but in the various phases there are different major
targets, e.g., in the inception phase mainly the requirements finding and definition takes
place, although there are already some analysis activities. The main focus is the outcome
of the requirements definition and more detailed analysis will take place in the elaboration
phase. The design, implementation and testing are even broken up into chunks in a way
that they are partly active in different phases where necessary but again clearly have their
main focus in their discipline specific phase (see earlier description of phases). A disci-
pline is a set of activities which must be done to achieve the goal of the discipline. It tells
what is to be done, what is the input, and what the expected output. The Unified Process
applied to a project means that this framework must be adapted to the project. There is
no such thing like a universal process which fits every project. A process is always highly
project and organizational dependent and relies on experiences. The UP is an elaborate
framework which is flexible and can be trimmed to the projects needs. It even can be
modified to meet agile needs and where necessary elements can be omitted or enhanced.

CHAPTER 2. SOFTWARE DEVELOPMENT 36

Figure 2.13: Unified Process phases vs. disciplines.

2.5.9 Agile Methods
Agile methods take up a weakness that all the above, more traditional, SW development
methods share: namely their slow reactivity to requirement changes. Although the start-
ing point for the “agile” development movement can be seen as the time of introduction
of Extreme Programming (XP) [51], the roots for the agile development methods can be
found way back in the times where the fiction of universal methods still existed - in the late
nineteen-eighties. In Figure 2.14 an overview of the agile evolution [7] can be seen. The
boxed methods which are identified as agile are depicted as boxed, whereas those methods
and authors which had a direct influence to the manifest are marked with dashed arrows.
According to Jim Highsmith [6] agility is the ability to balance flexibility and stability.
The word “agile” means “quickness”, “lightness”, and “ease of movement”; “nimble” or
“mentally quick” or “alert”2. This implies quick response to emerging changes which is
in fact an important issue in today’s software development practices in general and espe-
cially in the volatile Internet and mobile device application development. With process
oriented and plan driven software development models [8] one of the key features is the
determination and fixation of the requirements before the design and actual development
phase starts. However it is questionable if in practice the rules of the various development
models are followed strictly and thoroughly [52]. Furthermore, it has been shown that cer-
tain plan driven methods are not necessarily suitable for all people [53] or settings [54].
For this reason, an individual personal development process has been proposed [55, 56].
Although problems obviously exist, software is still widely developed and shipped using

2http://www.thefreedictionary.com/agile - 2007

CHAPTER 2. SOFTWARE DEVELOPMENT 37

traditional development models or no models at all [57]. A group of seventeen consultants
and industry software developers formulated the Agile Manifesto [1] which was signed in
Utah in February 2001.
The Agile Manifesto expresses the core philosophy of agile software development.

Individuals and interaction over processes and tools ⇒ people matter. The first focal
topic is about the human role of each individual and the interactions between people
in the development team.

Working software over comprehensive documentation ⇒working software is the main
point of all agile practices which is to be delivered in short cycles and frequently -
rather months than years and rather days than weeks.

Customer collaboration over contract negotiation ⇒ the client is not the enemy. Nev-
ertheless contracts are important. The cooperation and collaboration between the
developers and customers is vital since the product should satisfy the customer and
not only fulfill the contract.

Responding to change over following a plan ⇒ the customer as well as the develop-
ment team should be authorized to decide about adoptions which emerge in the
development process. Therefore this is all about communication and information.

Agile methods are not about how to avoid changes in a project but instead how to cope
with the unavoidable changes throughout the whole product life-cycle [3]. Therefore ag-
ile methods are designed to a.) deliver the first release as soon as possible to get early
feedback, b.) keep everything small and simple so changes can be done easily, c.) con-
stantly better the design to ease the next iterations implementation and decrease the costs
and finally d.) constantly test for early defect recognition, neutralization and documenta-
tion. All in all it is about minimizing the project risks. Table 2.3 compares the process-
oriented with the agile methods [8]. The underpinning and more detailed principles of
agile methods, along with explanation adding more information to the coarse direction of
the manifesto points can be found at [1].
There have not been many studies about return of investment into different process method-
ologies and less about using agile development methods. There is not really a short cut
or easy method to determine which model guarantees the largest benefits for the cur-
rent project in the given environment. Therefore it is still a matter of personal judgment
and experience to choose the right process model. There are a number of different agile
methodologies, briefly described below, which have been (re)invented and made widely
be known since the introduction of XP. First off, it should be mentioned that the Adaptive
Software Development and Feature Driven Development methods cover both project man-
agement as well as development process aspects, whereas Extreme Programming does
not cover detailed project management aspects and Scrum offers no instructions on the
design-, coding and testing phase in detail.

CHAPTER 2. SOFTWARE DEVELOPMENT 38

Figure 2.14: The evolution of agile methods.

CHAPTER 2. SOFTWARE DEVELOPMENT 39

Home-ground
area

Agile methods Plan-driven methods

Developers Agile, knowledgeable, collo-
cated, and collaborative

Plan-oriented; adequate skills;
access to external knowledge

Customers Dedicated, knowledgeable,
collocated, collaborative,
representative, and empowered

Knowledgeable, collaborative,
representative, and empowered

Requirements Largely emergent; rapid
change

Knowable early; largely stable

Architecture Designed for current require-
ments

Designed for current and fore-
seeable requirements

Refactoring Inexpensive Expensive

Size Smaller teams and products Larger teams and products

Primary objective Rapid value High assurance

Table 2.3: Home ground for agile and plan-driven methods [8].

Extreme Programming (XP)

Extreme Programming is one of the most widely known and popular form of agile method-
ology. The main focus of this method is development and not the management of the
project. Most of the practices which were made prominent through XP are acknowledged
in the agile community and widely adopted by other agile development methodologies.
The underpinning or “driving” values [20] of XP are:

Communication In every development process (not necessarily a software development
process) communication is crucial. Whatever reasons for poor communication ex-
ist, many problems or defects within software systems can be traced back to poor
communication during the development of the system [13].

Simplicity In XP it is tried to always find the simplest solution that might possibly work
and is appropriate for the current problem, therefore it is easier to understand, im-
plement, test, debug, correct and refactor.

Feedback Good feedback is essential and it is even better when it comes in time. Feed-
back is needed early and as often as possible from the different involved parties like
the customer, the end-user, etc. so refinement of the requirements can take place
early in the process as well as defects and other problems can be dealt with at an
early stage or at least when they are recognized. This value strongly correlates with
the first one.

CHAPTER 2. SOFTWARE DEVELOPMENT 40

Courage To adhere to all these values throughout a project, courage is needed. For all
the activities like refactoring, dumping useless code, keeping things simple, com-
municating in an honest straight fashion, and convincing the management and the
customer to run a project in XP mode with all its features, courage is needed.

Respect Team members must respect each other’s work. If there is no mutual respect
or members do not care about the project the project will not work out at all. For
software development to simultaneously improve in humanity and productivity, the
contributions of each person on the team need to be respected [20].

The twelve core practices, as described in [51, 58], are characteristic for the Extreme
Programming methodology and effectively define the process (see Figure 2.15).

1. Planning Game - planning of the next release is done within a so called “Planning
Game” which is an incremental process. At the project start a crude overall plan is
made which includes the determination of the overall functionality as well as what
functionality will be realized in the different releases and when they will occur. At
the start of every iteration, details about this iteration or release are determined and
the implementation is planned for the release.

2. Small Releases - it is important to determine the minimum release cycle which adds
business value to the system. The advantage of small releases is that the end-user is
frequently provided with a working system and hence can give accurate feedback
to the development team which makes short term planning easier so in the planning
game only the next weeks are considered and deviance from the plan is limited.

3. Metaphor - the system metaphor is a story or view that expresses the overall way in
which the system will operate [13]. It is intended to provide an overall abstraction
of the system’s functionality, its purpose, what it does, how the parts fit together
similar to the architecture of a system (e.g., in the Unified Process 2.5.8) but in a
much briefer and less detailed manner.

4. Simple Design means that it meets its needs and does nothing more. The program-
mers must design the system for the current iteration. Features which are not used
in this iteration are potentially not used in later iterations as well. Therefore it is
very important to keep the design as simple as possible satisfying the current needs.
XP offers a guideline how to characterize a design as “simple” - it must a.) pass
all available tests, b.) must not have duplicate logic, c.) states every intentions
important to coders and d.) has the minimum possible classes and methods [58].

5. Test First means that test are written before the actual code is implemented. As
soon as the requirements are defined acceptance tests are created therefore test code
for every implemented code is produced. Through the test-first approach it is easy
to produce implementation code that is as simple to satisfy these tests as well as
what the code should do. Furthermore refactoring is made easier since side-effects
are detected as soon as the previous tests do not succeed any more.

CHAPTER 2. SOFTWARE DEVELOPMENT 41

6. Refactoring - with the term “refactoring” the change of a system’s implementation
is meant without changing its functionality. This is mostly used to simplify coding
constructs to make it more understandable, e.g., after a new feature has been added
to the implementation or to change the code for the sake of enhancements, so that
new features can be implemented more easily.

7. Pair-Programming was proven to have the benefits of better code quality and
lesser defects [59]. Furthermore knowledge transfer between the team members
during their pair-programming session takes place and hence extra tutoring for, e.g.,
new or junior team members can be saved.

8. Collective Code Ownership means that whoever notices code which can be sim-
plified, not only is allowed, but is behold to simplify it. Of course for collective
ownership everybody in the team must know what the code does in all areas so
as a prerequisite the knowledge transfer, e.g., done trough pair-programming, is
essential.

9. Continuous Integration means that if a task is finished and all its specific tests run
through it is integrated into the current build. The integrated code must still pass
all previous as well as all newly introduced tests to be accepted for check-in and
a creation of a new build. When problems occur during integration code must not
be released to the versioning system until the problems are solved. This procedure
should take place at least once a day but of course can be repeated more often and
can easily be supported by automatic builds of the system.

10. 40-hour Week is more a guideline to have an appropriate amount of working hours
per week. Of course it can happen that there is a need for over-time but it should
not be the general case. People work better and make less mistakes if they are
relaxed and not under constant pressure working every weekend up to 80 hours and
more - even isolated overtime if happening frequently is a sign of severe project
problems [58]. The exact number of hours are not important but to keep the amount
the team works on the project to a limit keeps everyone “fresh and eager” [58].

11. On-Site Customer is meant to have the information of the customer at one’s finger-
tips. It is most likely not possible to have a real customer on the team all time but to
minimize the risk of coding without knowing exactly what the customer needs, it is
vital to have a tight relationship and constant feedback meetings with the customer
- the one who really will use the product - to be sure to be on the right track.

12. Coding Standards are needed when more than one person has to read, understand
and enhance the code - which is a fact on an XP team. Especially through collective
code ownership, pair-programming and refactoring it is a must to have a simple
coding standard which needs the least amount of work possible [58] to adhere to it
and ensures that the code is easily understood and accessible by any programmer
of the team.

CHAPTER 2. SOFTWARE DEVELOPMENT 42

Figure 2.15: The XP process.

Even non-agile development can benefit from adopting single AM practices, since they
are based on many discussions and have been tested in real-life projects. Adopting one or
more practices from XP does not necessarily imply that the development process becomes
an XP process or an agile one at all. To do so all practices must be implemented, tried out
in practice and later on can be adopted if needed, otherwise one cannot call a process XP.
Extreme programming is evolving over time therefore the practices slightly changed with
growing experience from practical applications and probably will change in the future
further if necessary.

Adaptive Software Development (ASD)

Adaptive Software Development [60] was introduced in the year 2000 and is based on
the theory about adaptive systems and previous research on iterative development meth-
ods, e.g. “Radical Software Development” [61]. The ASD mainly focuses the problems
in development of large complex systems. Therefore it fosters incremental and iterative
development with constant prototyping. ASD consists of a three-phase cycle a.) specu-
lation (planning) phase, b.) collaboration (development) phase and c.) learning (review)
phase. The ASD life-cycle can be seen in Figure 2.16 where the actual learning loop is
bordered by the project initiation and the final quality assurance and release phase which
are not part of the cycle and are only stepped trough once. The ASD is mission-driven
which means that the whole project and especially the development is carried out to com-
plete the so called project mission which is defined in the initiation phase and represents
a coarse description of the end product. Aim of the mission definition phase is to find the
information that is necessary in order to finish the project successfully. This is laid down
in three documents a.) the project vision charter, b.) the project data sheet and c.) the
product specification outline [60]. Furthermore the overall schedule and the development
cycle are defined in the initiation phase. The development cycle is component oriented
which means that results and quality count more than the process which leads to the re-
sult. Typically, it lasts between four and eight weeks. Out of repeated quality reviews,

CHAPTER 2. SOFTWARE DEVELOPMENT 43

Figure 2.16: The adaptive software development process.

information is retrieved for the learning cycle to improve the functionality and quality of
the product. This method also describes a model for project management which is called
Adaptive Leadership Collaboration Management model [60].

Dynamic System Development Method (DSDM)

The Dynamic System Development Method3 is not specifically designed for software de-
velopment, but is a dynamic and modular framework which focuses on development of a
whole system. Nine principles [10, 11] are essential to handle a project in DSDM manner
otherwise project risks are increased significantly. The principles of DSDM are a.) active
user involvement is mandatory, b.) the team must be empowered to make decisions, c.)
the focus is on frequent delivery of products, d.) fitness for business purpose is the es-
sential criterion for acceptance of deliverables, e.) iterative and incremental development
is mandatory, f.) all changes during development are reversible, g.) requirements are
base-lined at a high level, h.) testing is integrated throughout the life-cycle, and finally i.)
collaboration and cooperation between all stakeholders is essential.

In Figure 2.17 the overview of the DSDM process model is depicted with its seven dis-
tinct phases (the sub-stages of the three iteration cycles are omitted but briefly described
later in the text).

Pre-Project phase Project suggestions, funding and commitment are evaluated and a
final decision about the project realization is accomplished.

Feasibility Study Technical feasibility, their potential costs and risks building the system
using DSDM are considered and examined as well as the tasks of the system are
defined which satisfy the requirements for the business needs.

3http://www.dsdm.org

CHAPTER 2. SOFTWARE DEVELOPMENT 44

Business Study The insights of the feasibility study are enhanced and the user require-
ments and requirements in general are examined and prioritized (in accordance with
the stakeholders) as well as the processes are determined which are affected and in-
fluenced.

Functional Model Iteration A functional model is created leading to a development of
a prototype. The prototype is constantly reviewed by different user groups during
this iteration. This phase consist of four sub-phases a.) identifying the functional
prototype - work out the functionalities to implement, b.) agree on a schedule - who,
when and how these functionalities are to be developed, c.) create the functional
prototype - development of the prototype, d.) review of the prototype using the test
results of the test team and the testing user. The results are compiled into the review
document.

Design and Build Iteration The system is engineered iteratively. Testing is vital in this
iteration to get feedback for further iterations. This iteration has four sub-phases
a.) identifying the Design Prototype - functional and non-functional requirements
are determined for the integration step to a testable system, b.) agree on a schedule
- who, when and how these requirements are realized, c.) create the design proto-
type - the system is integrated ready for employment in daily use, d.) review the
design prototype - the system is verified and validated. The outcome of these tests
is compiled to an end-user documentation and serves as knowledge for refinements
for further iterations.

Implementation The working, tested and approved system (including documentation) is
put into operation. The Implementation phase has four sub-phases a.) user approval
and guidelines - the system is approved according the requirements; user guidelines
are created, b.) train the users on the system, c.) implementation - the system is
implemented in the operational environment, d.) review business - the practical
daily use is evaluated whether it meets the requirements of the business case. It is
decided whether a further iteration in any of the previous phases is needed or the
project can be finished technically.

Post-Project Phase It takes place after the project has technically finished and the system
is used in practice over a considerable period, e.g., six months. An evaluation
concerning the performance, efficiency and effectivity of the system as takes place
as well as collecting requirements for potential enhancements and maintenance are
accomplished.

Not all of the phases are mandatory but are subject to potential omission due to adoption
to special project needs. Only the nine principles must be followed and implemented - if
this is not possible for one project then the DSDM approach is probably not adequate for
this project.

CHAPTER 2. SOFTWARE DEVELOPMENT 45

Figure 2.17: DSDM process model.

Scrum

Scrum is not limited to software development but is meant to be a general framework for
leading product development. The term “scrum” comes from a game strategy in rugby
where it means “getting the ball back into the game” in teamwork [4]. Scrum was devel-
oped to manage the complex and unpredictable process of system development and does
not define techniques for software development but rather focuses on the team members
work to react properly and flexibly to the permanent changing environment. Scrum is
intended to improve existing practices and discover any problems or deficiencies in the
development process and their used practices. Scrum is similar to FDD since at the begin-
ning of the project the requirements are determined and collected in the product backlog
(see process overview in Figure 2.18) and efforts are estimated. From this pool of func-
tionalities, which all have to be implemented, a subset is chosen for the upcoming sprint
(iteration) and is moved to the sprint backlog. These features are chosen according to
the priority for the customer. The sprint backlog is processed within a fixed time, e.g.,
a month where no changes occur in the sprint backlog but if necessary in the product
backlog. This ensures that the developers can do their job without interruptions during
the sprint, since changes can only be demanded between sprints. At the end of the sprint a
sprint review meeting takes place and the next iteration is planned. In this review meeting
new backlog items might emerge as well as a complete change of the direction the system
is to be developed. Project management is done by the Scrum Master who is in constant
information exchange with the customer and the development team. Therefore, every day
a meeting called “Daily Scrum” [10] is held where the developers talk about the current
sprint, the achievements and the existing problems to keep track of the projects progress.
The Scrum Master’s role is more that of a coach than the manager of the project since the
team is self organized and decides what to do. Scrum is a method for small teams up to
10 people - if more developers are involved in the project multiple scrum teams between
5-10 members should be formed [4].

CHAPTER 2. SOFTWARE DEVELOPMENT 46

Figure 2.18: The Scrum process overview.

Crystal

Crystal is a set of methodologies taking into account that different projects need differ-
ent methodologies in terms of, e.g., the security level of a web game versus a nuclear
power plant control system or software in public transport. Therefore the aim is to se-
lect the most suitable methodology of the crystal family for each individual project. The
Crystal approach is to collect concrete sample methodologies that already have been used
on projects and tune them on the fly to fit the different project-environments and cir-
cumstances [2, 62]. In Figure 2.19 a part of the Crystal family matrix is depicted. The
horizontal dimension represents the size of the project in terms of the number of peo-
ple who must be coordinated corresponding with a darker color and indicating a heavier
methodology. The vertical dimension represents the system’s criticality, the strictness of
the methodology and the potential impact of a system failure. The levels of criticality
are “C” for comfort, “D” for discretionary money, “E” for essential money and “L” for
life [2]. The two restrictions on the Crystal methodologies are, a.) that they do not cur-
rently exist for life-critical systems (see Figure 2.19) and b.) they are based on teams
sharing the same location. Furthermore, Crystal is not intended for a criticality level of
“essential money” (see the gray shaded square in the clear column of Figure 2.19) but it
can possibly be stretched by the team to fit to this level which increases the effort of strict-
ness and discipline of the process. Crystal tries to define the least disciplined process that
could possibly succeed which increases the potential that every team member will follow
the methodology since the stricter and more disciplined the methodology the less likely
it becomes that everyone will follow the rules. That means that in this methodology the
success of the project weighs more than efficiency (costs and time savings through a more
disciplined process) [2].

CHAPTER 2. SOFTWARE DEVELOPMENT 47

Figure 2.19: The family of Crystal methodologies (named by color) [2].

Feature Driven Development (FDD)

Feature Driven Development was first written about and given a name in 1998 [14]. The
FDD approach does not cover the entire software development process but emphasizes the
design and building phase [63]. It differs insofar from all other agile methods that upfront
a detailed model of the project is created. In Figure 2.20 the general five process steps of
the FDD can be seen. In the first phase a high level description of the system is created
and the overall domain is split up in smaller domain areas. After this phase a comprehen-
sive list of features is retrieved which are planned to be implemented one at a time. The
feature lists are reviewed by the customer and end user. A feature is small in size and it
should be possible to implement a feature in a few hours or a day. In the “plan by feature
phase” it is decided which feature is implemented at what time (prioritization) whereas
each feature itself is iteratively planned in detail. The planning in each iteration is nec-
essary since changing features can have side effects and impacts on other features which
have to be taken into account and refactored. The “design by feature” and “build by fea-
ture” phases are depicted in detail in Figure 2.21. During the development of the features
constant inspections and reviews take place as well as continuous build cycles. A small
group of features is selected from the feature list. An iteration can typically last between
two days and two weeks. The features can be designed and built concurrently by different
teams according to the domains. The iteration includes design, design inspection, cod-
ing, unit tests, integration and code inspection. At the end of an iteration the successful
implemented features are moved to the main build whereas the iteration continues with
another group of features from the list. The actual project progress is measured according
to implemented features and their estimated relevance to the project to prevent the 90%
syndrome (90% of the project being 90% complete 90% of the time) [10]. In contrast to
XP for each feature a feature owner [14] exists who is responsible for the entity according
to the statement “Everyone can’t know everything about everything” [64].

CHAPTER 2. SOFTWARE DEVELOPMENT 48

Figure 2.20: The Feature Driven Development process overview.

Figure 2.21: The FDD Design & build by feature process.

CHAPTER 2. SOFTWARE DEVELOPMENT 49

Agile Modeling (AM)

Agile Modeling is not a complete methodology but rather an approach modeling aspects
of software development methods like the Unified Process or Extreme Programming. It
is an approach that “aims to model just enough and no more!” [13]. Agile models are
intended to

Provide positive value AM is not the end in itself but the support to the development
process therefore there is no need to model every detail of the software system -
modeling every aspect is like programming the software in another language which
is a waste of resources. The outcome of AM is an abstract model of the software
system so its purpose is to communicate the general functionality of the software,
how the building parts fit together and work. If these requirements are fulfilled the
model is detailed enough and provides additional value.

Fulfill their purpose Modeling must be done on purpose not because the process pre-
scribes a model to be created. The purpose includes the level of detail. Different
models can be created to explain the functionality of the same software system in
different level of detail to different people, e.g., to customers, executives or project
co-workers. If the purpose is not clear then a model might not be needed.

Be understandable The models must be understandable for those who they were created
for. Simplifications and abstractions can make the model more compact but can hide
necessary details - it depends on the audience.

Be sufficiently accurate Sufficiently accurate means that there is no need to cover ev-
ery aspect in detail but it still must be sufficiently understandable by the intended
audience, sufficiently detailed but as simple as possible.

Be sufficiently consistent Sufficiently consistent means that although a model might be-
come slightly inconsistent due to refactoring it must keep the ability to transport
its message to the intended audience. If this is not the case it must be adapted to
become understandable again.

Be sufficiently detailed AM is supposed to be lightweight which means that only a level
of detail is incorporated in the model the audience needs to see. Here the agile
axiom “YAGNI” (You Ain’t Gonna Need It) is applied since many models are built
in too much detail. An agile model is created with the minimum level of detail
which is required by the audience.

Be as simple as possible Agile models apply to the inherent agile fundamentals “KISS”
(Keep It Small and Simple) and “YAGNI” and it is tried to use only a minimum of
detail and complexity of syntax in the model.

In Agile Modeling there is another maxim which says that “content is more important
than presentation”. Therefore it does not matter if the model is drawn by hand as long

CHAPTER 2. SOFTWARE DEVELOPMENT 50

it fulfills its purpose. The purpose also defines which kind of model is used, e.g., class,
sequence, collaboration, activity diagram or simply a flowchart - whatever fits best to
convey the information to the intended audience. There are also no rules whether to
use CASE (Computer Aided software Engineering) tools or not and whether the use of
UML (Unified Modeling Language) is sufficient which can be difficult in, e.g., GUI or
data modeling. Finally, AM tries to apply the agile principles and tries to support the
development process and is not meant to be a method on its own.

Chapter 3

Analysis of the htmlButler Project

In this chapter the htmlButler project, a small sized academic project which was con-
ducted from February 2005 until February 2007, is analyzed both from a technical and
a project management viewpoint. First, an overview of the project goals are given, then
architecture and a use case is described and finally the post-project feedback of the in-
volved developers is incorporated into the project analysis. Section 3.1 until Section 3.2
is a consolidated complete revision of [65, 66].

3.1 Design and Implementation
The htmlButler project aimed at enhancing the usability of visual wrapper technology for
retrieving information on a regular basis. It should allow an untrained user to visually
specify simple wrappers. More tech-savvy user should have been able to specify more
complex wrappers through enhancing the underlying ontology. Users could create wrap-
pers by interacting with the htmlButler server through a standard web browser or by using
a browser plug-in. It was planned that a) the user could choose between having the wrap-
per being executed at regular intervals on the htmlButler server, or on their own computer
in their browser plug-in, b) wrappers could be shared between users because of the cen-
tral storage of previous generated wrappers and c) users could alter wrapper definitions or
contribute further semantic concepts while wrapper creation, thereby growing the overall
ontology and acting as a natural feedback system keeping up an acceptable quality level.
htmlButler is based on some ideas of the Lixto set of tools [67, 68] that allow application
developers to implement wrappers1 without the need for manual coding. Nevertheless
most tools like [67, 70] have a steep learning curve. Others may lack an easy user inter-
face. Although, with those tools many options are available and sophisticated wrappers
and aggregations can be created, they are not so well suited for the “normal” Web-user
who has no knowledge about the wrapping technology in detail, protocols and data struc-
tures on the Web.

1Wrappers are specialized program routines that automatically extract data from Internet web sites and
convert the information into a structured format [69].

51

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 52

3.1.1 Usage Scenario
The user enters the URL of the tourism portal and clicks the submit button (see Figure
3.1). An HTML frameset is loaded into the client browser where the upper part shows
the htmlButler options and the lower frame holds the actual tourism portals homepage.
In the lower frame all links can be clicked and it is possible to navigate as usual. This is
made possible through the transparent htmlButler proxy that redirects all links, cgi-calls
and form submissions so that the wrapper can be evaluated in the proxy and stored for
replay after user approval. Every page the user navigates is analyzed by the htmlButler
system - the text content of this HTML page is stripped from stop-words, the remaining
text is stemmed by a porter-stemmer and according to the actual calculated TFIDF (term
frequency inverse document frequency) value the page is categorized into one of the sys-
tem stored categories. The user can accept this suggestion or change it in the drop-down
list and update the status by clicking the update-button. The system updates this status
and remembers the user decision. The user navigates to the desired “Super Last Minute”
page by clicking on the appropriate link at the top of the portal page in the lower frame
(see Figure 3.2). If the user is interested in being notified about changes for a particu-
lar flight, he selects the row or a part of it in the table and clicks the Next-button in the
upper htmlButler frame (see Figure 3.3). The selection is submitted to the htmlButler
server, tokenized according the concepts stored in the ontology of the category which was
suggested by the system or chosen by the user. An HTML page containing the possible
options for each recognized token which triggers notification is delivered to the client
browser’s upper frame (see Figure 3.4). In Figure 3.5 the changes the user made are
shown, e.g., the option of the status token was set to ignore, the destination- and the start-
airport are set to ”exact match”, the date, time and duration are set to ”any change” and
finally the price is set to ”up to this amount” and the value itself is changed from 198e
to 190e. These settings mean that a notification is sent to the user if anything changes
for the time, date or the duration token or if the price drops to 190e or below, for the
chosen destination and origin. After clicking the Next-button the options are sent to the
htmlButler server and the wrapper is configured with these options. Finally, the user must
provide his email address (see Figure 3.6) It may also be that the user is recognized by the
system from previous wrapper generations via cookies and the field was pre-filled with
the known email address. The user can of course change it if it is not appropriate. After
clicking the Next-button, the system responds with an email confirmation as a reference to
the user. Had the user not been recognized via a cookie, this mail would have additionally
contained a link the user would have to click to authenticate the given email address in
order to activate the wrapper. The user can then proceed to define another wrapper.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 53

Figure 3.1: Start page to enter URL.

Figure 3.2: Navigate in lower frame.
-

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 54

Figure 3.3: Select region of interest.

Figure 3.4: Possible options.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 55

Figure 3.5: Adjusted options.

Figure 3.6: Enter the email address.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 56

3.1.2 Implementation
In the section above we described the interaction with the focus on the graphical user
interface. Here the actions taking place simultaneously at the back-end of the system are
described in detail. For wrapper creation the user runs through certain steps communicat-
ing with the htmlButler system. In Figure 3.7 five general steps and interaction loops are
depicted. At the START-block, “the locator”, the user enters the URL which he wants to
visit to the htmlButler tool. Every HTTP-request is routed over the transparent web proxy,
the answer of the server, usually a web page, is changed in a way that all links and form
submissions are again routed over the htmlButler web proxy. The content of the page is
analyzed and the page is assigned to a domain of knowledge (which already exists in the
system). A domain of knowledge is represented by, e.g., hundred terms, which we call
“profile of the domain”. Also for any new page such a profile must be generated (hundred
most relevant terms). This profile can then be compared to the profiles of all available
knowledge domains. The page is assigned to the best fitting domain of knowledge. Rel-
evant terms are determined by the use of TFIDF rating scheme. The similarity of two
profiles can be determined by counting the common terms of two profiles. At block I, the
“categorizer”, the user can accept this content categorization through no additional action
or change and update it. In any case the system stores the accepted category (domain of
knowledge). This accepted category will be used for future assignments of exactly this
page. In case of multiple users a simple majority vote takes place (category accepted by
most users is chosen). When a certain threshold of users agrees with one categorization
the htmlButler systems updates the profile of the domain of knowledge according to the
page’s profile. The system proceeds from block I to block II, the “analyzer”, when the
user selects and submits an area of interest in the current web page. The system loads
the ontology corresponding to the previously determined category. The system analyzes
the selection and tries to annotate parts of the selection using the concepts of the active
ontology. This will be explained in more detail in section 3.1.3 below. At this stage, the
user can do two things. If the user is not satisfied with the automatic annotations he can
improve the system through changing them (see section 3.1.3 for details). If the user is
satisfied with the annotations he proceeds with the wrapper configuration. The user can
also define distinct thresholds for each token (annotated part of selection) to specify the
wrapper’s behavior in more detail (e.g., the user wants to be notified if an article’s price
drops below a certain amount). For every token the user can define, e.g., a maximum
value. If the token changes and is above the given maximum value, the user wants to be
notified. Similarly, the user can give a minimum or exact value that he is interested in.
Typically, for numerical values a max/min/exact-match can be chosen whereas for string
values only exact matches can be defined. The user submits this data to the htmlButler
system and proceeds to block III, the “configurator”, where he is just asked for notifica-
tion details. If the user does not want to change further details he agrees and the system’s
state changes to the END-block, the “scheduler”, where the actual wrapper is scheduled
and an activation email is sent to the submitted email address. From each of the states,
the user can restart the system again.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 57

Figure 3.7: User interaction cycle in the htmlButler system.

3.1.3 The Role of Semantic Supported Wrapper Generation
Ontologies can enhance the process of wrapper creation. In terms of the user interaction
cycle described above we are now at the stage where the domain of knowledge has been
determined (block II, the analyzer) and the user has selected a part of the current web
page in which he is particularly interested. In order to recognize the various concepts
in the user’s selection a number of patterns must exist for each concept in the ontology.
Different patterns can be numbers, dates, time, amounts, tables, normal text etc. The
user has now two possibilities for giving feedback to the system. In the simplest case
the user just adds a string as pattern to a certain concept (by annotating this string with
a concept). A more advanced user is able to add more complex patterns (e.g. nested
regular expressions). In addition he also could add new concepts to the ontology. The
ontology (hierarchy of concepts and corresponding patterns) is stored centrally on the
htmlButler server. This means that whenever a user edits the ontology or the patterns
corresponding to a concept the central and shared ontology is affected. Consequently, all
users profit from the feedback given by any other user. On the other hand, multiple users
make a voting process necessary. New patterns are introduced immediately. Patterns that
are rated useless by a certain number of users are deactivated. Complete removal of a
pattern is not possible in the htmlButler. A deactivated pattern is not deleted but is used
as a kind of intelligent suggestion to the user when he is at the point of adding a new
pattern. E.g., London is a deactivated pattern for the concept location. Therefore London
is not automatically annotated in the user selection. Now if a user selects London and
wants annotating it, the system suggests annotation with the concept location. This adds
a positive vote for the pattern. Globally the decision is taken by a simple majority vote.
The same is true for added and deactivated concepts and again complete removal is not
possible. In the long run a maintenance process is necessary that truly removes unused
concepts and patterns. The above described process is used to ensure practical quality.
As shown in practice, Collective Intelligence already works for projects such as [71] and
[72].

3.1.4 Server vs. Client-Server Solution
It was decided to provide two versions of the htmlButler project. The first was a plain
server-side version, which had the drawback that there is an overhead in passing informa-

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 58

tion between the client and the server at each step of the interaction. In the second ver-
sion, parts of the user interaction, heuristics and tokenization functionality were moved
from the server to the client side. This version had the advantage of less communica-
tion between server and client. With the plain server side solution, for instance, only the
information about the user selection is prepared at the client-side and sent to the server
where it is processed (the relative XPATH of the selected elements are created, the selec-
tion is tokenized, assumptions about the selected content are made and a feedback HTML
page is generated and transferred back to the client browser). All these processing steps
can be moved to the client, which decreases the data bouncing between server and client
and dramatically improves the user interaction. The feedback loop, the direct access to
the HTML page’s document model and browser features like XUL [73] lead the follow-
ing advantages of the plug-in version over the server-side version: (a) Direct access to
document model - it is quite straightforward to get information about the selection and
generating the XPATH for the selected entities. (b) Improved Graphical User Interface
- through the use of XUL in the Mozilla [74] browser the user interface can be designed
in a more sophisticated and user friendly way than only with plain HTML elements and
JavaScript. (c) Local data processing - the selection the user made is tokenized, evaluated
and processed locally and the user can change the suggested options without sending data
to the server before finishing the wrapper creation. (d) Alleviated recording of user action
- through the browser plug-in mechanism a sequences of user actions can be recorded if
the user wants to create a wrapper which needs to authenticate itself to reach a certain
web resource. With the client-server solution the disadvantage arises that the user must
install a plug-in. There are multiple reasons why this may be inconvenient for a user.
For instance, the user does not trust or is not allowed or able to install it or simply does
not want to have yet another plug-in. Therefore the strategy is to provide the htmlButler
service still as a simple server solution and for a better user experience through a browser
plug-in.

3.1.5 Discussion
Using cooperatively created and shared ontologies in wrapper specification has been pre-
viously studied [75, 76, 77] and their approaches were tried to be combined. With the
htmlButler, users could create a simple wrapper for an existing web page and be informed
about certain changes. Although it was planned that users could be informed in various
ways, e.g., email, SMS (short message service) over SMPP (short message peer-to-peer
protocol), RSS-feeds [78], only the pull-style through a dedicated HTML-page and the
email way were implemented. The htmlButler service allowed a user to be notified about
changes in regions of interest on user-selected web pages observing a certain number of
constraints, e.g., when a price of some product dropped below a certain value. It was
planned for the purpose of keeping up an acceptable quality level in the shared ontolo-
gies to add “self correcting” features to the system. This feature was never implemented.
Users should have been able to rate the usefulness of concepts and patterns contributed
by other users. Furthermore it was the plan to use of group-ware tools such as WikiWiki-

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 59

Webs [79] which should facilitate free format organizational communication, allowing
volunteer participation as in, e.g., the Wikipedia [71] project. In terms of requirements
given for next generation Semantic-Web applications in [80] it was intended that the html-
Butler system should have been made capable of a.) handling multiple ontologies, b.) use
multiple user intelligence (Web 2.0 paradigm) and c.) being open with respect to non-
semantic Web resources.

3.2 Project Analysis
There are many things that could possibly go wrong in a software development project
[81]. In [82] symptoms and root causes of software development problems are listed
and discussed in context with the Rational Unified Process as a solution. In [83] organi-
zational, managerial, economic, technical and technological problems are identified and
discussed as the root for failed projects. Generally one can distinguish between different
problem sources such as a) human factors, b) technical, c) financial reasons, d) time is-
sues, whereas the boundaries between these categories are blurred and combinations of
kinds of these problems have again own names. The fact that things go wrong are empir-
ically determined and published since 1994 in the annual “Chaos Report” [84] which are
not seen without controversy in the research community [85, 86].
However, the major issues that arose during the project were not of technical nature, but
rather concerned teamwork. A project retrospective (post mortem) as suggested in [87],
was not possible since the different team members participated at disjunct times in the
project. Nevertheless for this project a questionnaire (see Appendix B) was designed to
gain insights into the developers’ view of the project progression and team experiences
during their engagement in the htmlButler project.

3.2.1 Project Setup
The htmlButler project was funded by the Austrian FFG under the FIT-IT program line
as a part of the NextWrap project and was carried out over a period of 24 month. It was
not a pure academic project but in cooperation with a commercial company. There were
one manager on the academic side, and two from the company. These shareholders were
responsible for financial, technical, and scientific issues concerning the project. The de-
velopment team had its office at the university whereas the cooperation partner was not
located in the same town, but 200 km away which made frequent meetings and coordina-
tion of dates and times difficult. The academic manager of this project was full professor,
so he was often occupied with different responsibilities and could not conduct daily meet-
ings with the team. The initial team consisted of two PhD and one Master student. One
PhD student was employed as a research assistant, one PhD student had a scholarship
and the Master student participated with a student funding which was not included in the
project budget. Every developer who worked in this project graduated with a Bachelor

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 60

Figure 3.8: Member engagement during project time.

or Master degree in computer science and therefore had a general knowledge about agile
software development methods and also software engineering. One of the developers had
worked for some years as a professional full time programmer in the Austrian IT-industry,
another had some practical work experiences through project work with a software com-
pany. All in all there where 6 people involved in the htmlButler project, where only one
participated the full 24 months, and one three months of the project period. The others had
partial engagements from 6 to 12 months (see Figure 3.8). During their engagement three
members worked full-time (40 hours per week) and three part-time (10 to 20 hours per
week) in the project. At the project start it was agreed to develop using the XP method-
ology and use this method as strict as possible. The feedback how this was realized is
described in Section 3.2.5.
Because most of the developers were not involved during the whole project period but
only partly at the beginning, at the end, or on demand during the project, the collected
data are sometimes contradictory. For instance when questions about the project begin-
ning or end were asked, it must be kept in mind that “the beginning” and “the end” of the
project was individually different.

3.2.2 Questionnaire Design
The htmlButler post mortem questionnaire (Appendix B) consisted of the following 6 sec-
tions a.) general information, b.) teamwork, c.) management, d.) XP practices in general
e.) experience with XP practices and f.) fundamental project questions. The goal was to
find out how the developers experienced the htmlButler project in general, concerning the
teamwork, the management, and especially about the XP practices which were intended
to be applied as the development method of choice. Furthermore the questionnaire was
conducted to draw conclusions about the problems in the project and how things could be
done in a different way to improve the outcome of similar projects in future. The section

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 61

“fundamental project questions” of the questionnaire was inspired by the “Chaos Report”
which suggests a method to estimate the “success potential” of a project by means of ten
question categories, each with 5 closed questions. The goal was to check whether the
developers’ intuitive project appraisal could be confirmed by this method.
For the sake of anonymity the distinct votes are not published since it would be possible
to draw conclusions from the data and correlate them with the team members.

3.2.3 Team and Teamwork
Results In Table 3.1 the general questions to the role of the developers in the project and
the project itself are summarized. These questions could be answered on a scale between
0 and 5 where 0 meant “poor” and the value 5 meant “excellent”. To the question if
the participants enjoyed their time in the project only one stated that the time was not
enjoyable. The rest voted between 2 and 4, which shows all in all that this project was not
a total catastrophe in human aspects. The average vote as well as the median “enjoyment”
was above the average. The area of work in the project as well as the project target was
also clear to the developers (above the average) although the minimum vote was quite
low which shows that there was definitely a problem in the team. The perceived clarity
of the project target of the project management and upper management was rather low
indicating a problem in the information flow from management to the developers since
the median was 2. The motivation at the start of the project was equally high amongst the
development, between 4 and 5 meaning almost excellent. Towards the end of the project
the motivation had decreased, with an average value of 2 for “Motivation at the end of
your time in the project”.
Questioned about the number of developers for the project in terms of too many or too
few on a scale from 0 to 5 where 0 meant too few and 5 meant too many, the outcome
was that the average was 2.2 and the median was 2 which indicates a slight tendency that
there were too few people on the project (Table 3.2). The number of co-developers in the
project varied between 0 and 4 which shows a dynamic team size and that at no time in
the project all participants worked together (table 3.3). The developer’s self perception
for ability to team work was clearly positive with an average of 4.3 on a scale between 0
and 5 where 0 meant poor and 5 meant excellent (table 3.4). Similarly the self perception
of the ability to independently work on a problem was between 2 and 5 and 3.3 in average
whereas the co-developers’ ability was rated between 2 and 4 but only 2.6 in average.
This discrepancy shows that the team was not able to work well together and did not act
as a team therefore could not grow to their full potential. Since 50% of the members have
worked before in team projects it cannot simply be lead back to team inexperience. To the
question if team members hat problems with another member 50% answered with “yes”
which supports previous conclusion that the team could not perfectly work together. One
member stated that the problems were based on ”misunderstandings”. A second stated
that it was due to the “arrogance, ignorance and incompetence” of the member he or she
had problems with. The team spirit at the start of the member’s engagement in the project
was rated high by all members between 3 and 4 leading to a value of 3.7 in average. The

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 62

team spirit at the end of the member’s engagement in the project was lower (Table 3.4)
between 0 and 3 with an average of 1.2. The distribution of work between the members
was perceived as fair. Only one member stated it was not fair distributed but explicitly
mentioned that he or she did not to work more than others. A majority of 83% perceived
the level of knowledge as different between team members and the knowledge transfer as
nonexistent. Only one team member perceived the level of knowledge as equal between
team members (Table 3.5). Concerning developer meetings, the frequency of internal and
meetings with shareholders were rated 2.2 and 2.7 in average 2.5 and 3 in median (table
3.6) on a scale of 0 meaning “too few” and 5 “too many” indicating a “right” amount
of meetings. The usefulness of the project meetings was rated 2.5 for the internal and
2.2 for the meetings with the shareholder indicating a neutral usefulness. Although the
participants said they had no problems to make themselves understood in the meetings
(Table 3.5) there must have been communication problems rendering the meetings not
as useful as necessary for agile development (e.g., see “seven habits of effective pair
programming” [88]). As a conclusion the participants were asked whether they would
participate in this project again. One person (16.7%) answered with “yes” but the majority
of 5 (83.3%) denied.

Discussion It can be seen as a disadvantage that there was not a stable group with similar
skills, payment and contracts from the beginning. The team never really left the storming
phase [89] through the dynamic setup, and hence never really became productive. The
fact that the motivation decreased towards the end of the project can be ascribed to the
heterogeneous team, infrequent participation in the project by some team members, dy-
namic changes of the project scope, as well as the discrepancy between project targets
the management communicated at different times. One vote for the “end motivation” was
“excellent” which was an outlier, since despite one vote with 5 points, the average still
only reached 2. If one considers that the engagements were not over the whole project and
distributed over the project (Figure 3.8) it is interesting that the team spirit was perceived
as low individually by each member.
Many problems experienced by the team could be attributed to problematic pair line-ups,
e.g., expert-novice, introvert-introvert pairing as well as “my partner is a total loser” and
other excess ego problems, as have been described in [88].

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 63

Question
(0..“poor” and 5..“excellent”)

avg. med. max. min.

enjoyed time in project 2.8 3.5 4 0
area of work in the project clear 3 3.5 4 0
project-target clear to dev. 3 3.5 4 1
project-target clear to the project- and upper managers 2.5 2 4 1
motivation at the START of your time in the project 4.5 4.5 5 4
motivation at the END of your time in the project 2 2 5 0
own contribution to the project 3.5 4 4 2
own ability to work independently 4.3 4.5 5 3
rate your payment 2.2 2 4 2

Table 3.1: General project- and self-perception of the team members.

Question
(0..“too few” to 5..“too many”)

avg. med. max. min.

Development power during the project 2.2 2 3 1

Table 3.2: Perceived development power during the project.

Question avg. med. max. min.
Number of co-developers during project time 2.8 3 4 0

Table 3.3: Number of co-developers in the team.

Question
(0..“poor” to 5..“excellent”)

avg. med. max. min.

Self perception of teamwork ability 4.3 4 5 4
Co-developers’ teamwork ability 2.8 3 4 2
Self perception to work independently 3.3 3 5 2
Co-developers’ ability to work independently 2.6 3 4 2
Team spirit (moral/mood) - START of project 3.7 4 4 3
Team spirit (moral/mood) - END of the project 1.2 2 3 0

Table 3.4: Self-, team- and fellow team member perception.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 64

Question yes no
Was the work-distribution fair among the team members 5 1
Did you have to work more than other team members 0 6
Did you work in a project team before 3 3
Did the team members have equal knowledge 1 5
... if no - did the knowledge transfer work 0 5
Did you have problems making yourself understood 0 6
With the experience made, would you participate again? 1 5

Table 3.5: General questions concerning team and teamwork.

Question
(0..“too few” to 5..“too many”)

avg. med. max. min.

Frequency of internal meetings 2.2 2.5 3 0
Frequency of the general project meetings
(shareholder)

2.7 3 4 1

Table 3.6: Perceived frequency of meetings.

Question
(0..“waste of time” and 5..“a must”)

avg. med. max. min.

Usefulness internal meetings 2.5 3 4 0
Usefulness of the general project meetings
(shareholders)

2.2 3 4 0

Table 3.7: Perceived usefulness of meetings.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 65

3.2.4 Management
Results The developers perceived a different number of leading managers, between 1
and 3 managers. They had contact with between one and three managers (more than two
managers in average). The agreement level among the managers was perceived as “mod-
erate” and was rated between 0 and 5, similar to the perceived management skills which
were between 0 and 4. The leadership style of the project manager on a scale between 0
to 5 (“weak” to “dominant”) was rated 1.5 in average meaning rather “weak”, whereas the
project organization was rated 1.2 in average on a scale between 0 to 5 (“chaotic” to “plan
driven”). The overall satisfaction with the project managers and the shareholders were 2
in average. Furthermore, 50% (3) of the development team members perceived no clear
hierarchy in the management and 66% (4) of the members stated that only a poor match
between the objectives of the project mangers existed. 83% (5) thought that no concrete
project plan existed at the start of the project. During the project this value was at 66%
(4) and at the end of the project the developers again 83% (5) stated, that there was no
common project plan. 66% of the team members stated that in hindsight they thought that
the project could have been successfully accomplished under different circumstances.

Discussion First, it can be observed that the management structure of the project was
not completely clear to the developers. This can be explained with a high turnover of
people in the team and consequently sparse contact between single developers and the
management. Some team members did not even meet all the involved managers or know
about them. This could potentially have been solved by regular meetings with the share-
holders during the whole project. The low overall satisfaction of developers with the
management indicates a strained relationship between developers and the management.
Again, this might be related to the loose contact to the management but also to the fre-
quent changes of objectives. The latter point is also indicated by the high number of
developers who perceived no common project plan (at the start, during the project and
at the end). The low ratings in the section “management” correlate with the low ratings
in the section “team and team work”. According to the answers to the questions in the
section “management”, the team members thought that most of the problems could have
been prevented through more contact to the management, a clearer hierarchy and a stricter
leadership at the beginning of the project.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 66

Question
(0..“poor” and 5..“excellent”)

avg. med. max. min.

How many managers were involved in the project 2.3 2.5 3 1
With how many managers did you have contact 2.3 2.5 3 1
Agreement among the managers 3 3.5 5 0
Perceived management skills of the managers 2.7 3 4 0
Leadership style of the project manager
(0...“weak” to 5...“dominant”)

1.5 1.5 3 0

Organization of the project (0...“chaotic” to 5...“plan-
driven”)

1.2 2 2 0

Satisfaction with the project managers’ work during
the project

2 1.5 5 0

Satisfaction with the shareholders 2 2.5 3 0

Table 3.8: Perceived management qualities.

Question yes no
Was there a clear hierarchy in the management 3 3
Did the targets of the managers match 2 4
Do you think there was a common project plan at the start of the project 1 5
Do you think there was a common project plan during the project 2 4
Do you think there was a common project plan for the end phase of the
project

1 5

With your knowledge today do you think this project could be done
successfully?

4 2

Table 3.9: General questions concerning the management.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 67

3.2.5 XP Practices
Results In Table 3.11, general questions concerning the own experience level and the
project are described. The scale was between 0 = “poor”, 1 = “below average”, 2= “aver-
age”, 3 = “good”, 4 = “very good” and 5 = “excellent”.
33% of the developers (2 people) had worked with agile methods before in practice. The
same percentage had practiced pair programming before entering the project. 83% of
the developers had a positive attitude towards agile development methods (Table 3.10).
Developers rated their own experience with agile methods as “average”, with a tendency
towards “good”. The experience level in programming was rated “good” in average and
“very good” as a median.
The developers rated the XP methodology to be appropriate for the project with a ten-
dency from “good” to “very good”. The XP methodology was rated to be “average” to
“good” suited for this team, whereas the enforcement of the practices was rated “aver-
age” with a tendency to “below average”. Questions concerning the application of XP
practices in the htmlButler project used a scale from zero to 10, with zero being the worst
rating (see Table 3.12 for the detailed verbalization of the scale). In Table 3.13 the aver-
age, median, maximum and minimum values of the ratings concerning the application of
XP practices in the htmlButler project are described. Six practices, were enforced above
the average including a.) “coding standards” with 6.5 in average and 8.5 in median, b.)
“collective code ownership” with 7 in average and 8 in median, c.) “refactoring” with 6.2
in average and 7 in median, d.) “simple design” with 5.8 in average and 6.5 in median,
e.) “growth” (team getting smarter with the time) with 5.5 in average and 6 in median and
finally f.) “automated unit tests” with 5 in average and 5.5 in median. All other practices
were not enforced and the least enforced practice was pair programming.
In Tables 3.14 and 3.15 XP practices are rated whether they are a.) helpful, b.) enjoyable
c.) widely used, d.) easy to learn, e.) easy to apply and finally f.) easy to introduce in a
team. The scale to rate these practices ranged from 0 = “strongly disagree” to 5 = “totally
true”. The top five of helpful practices were a.) “automated unit testing”, together with ,
b.) “coding standards” with a rating of 5 in average, c.) “simple design” with 4.4 in aver-
age, and d.) “pair-programming”, together with e.) “continuous integration”, both rated
with 4.3 for helpfulness. The rating, whether these practices are enjoyable were different.
The top five were a.) “simple design”, together with b.) “whole team” with an average of
4.4, c.) “automated unit testing”, together with d.) “pair programming” with an average
of 4 and finally e.) “continuous integration” with an average rate of 3.8. It is interesting
that the practices “simple design”, “automated unit testing”, “continuous integration” and
“pair programming” are considered as useful and enjoyable by the team. Asked whether
these practices are widely used, another top five have resulted a.) “coding standards”
with an average of 3.8, b.) “refactoring” with 3.6, c.) “sustainable pace” with 3.5 , d.)
“metaphor” with 3.3 and e.) “continuous integration” with 3 in average. The category
“easy to learn” is lead by the following top five practices: a.) “daily standup” with 5 in
average, b.) “coding standards”, together with c.) “collective code ownership” with 4.2 in
average, d.) “sustainable pace” with an average of 3.8 and finally e.) “small releases” with

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 68

3.6 in average. The top five practices rated as “easy to apply” are a.) “sustainable pace”
with 4.6 in average, b.) “daily standup”, together with c.) “continuous integration” with
4 in average, d.) “coding standards” with 3.8 and finally e.) “small releases” with 3.2 in
average. The top five practices rated as “easy to introduce” are a.) “sustainable pace” with
an average of 4.6, b.) “continuous integration” with 4.3 in average, c.) “metaphor” with
3.3 and finally d.) “coding standards”, together with e.) “refactoring” with 2.7 in average.
The practice of “coding standards” is the only one which appears in all categories in the
top five but the category “enjoyable”. The practice “continuous integration” appears in all
the top 5 of the categories but the category “easy to learn”. The core practice of XP, “pair
programming” is considered to be “helpful” and “enjoyable” but the hardest to introduce
in a team with an average value of 1.

Discussion It is interesting to see that all XP practices are rated above the middle of the
scale, which shows that these practices are widely recognized as useful. Whatever process
is defined, if the involved people do not know how to work together, the process will not
be followed [19]. This was experienced in the htmlButler project, where it can be seen
that the XP practices were not really enforced above average. Continuous integration is
the only practice which is considered as helpful, enjoyable and widely used. The data
show that pair programming had not been enforced although it was rated as helpful in
general. A possible explanation for this apparent contradiction might be that the difficult
team setting led developers to silently ignore this practice. Furthermore, the data give a
hint that there were possibly at least one “very motivated” and one very “disappointed”
member in the team due to the maximum and minimum votes.
The author of this thesis has personally observed during the htmlButler project, that in
the beginning it was intended to adhere to all XP rules. The team started to use different
web based tracking tools and a spreadsheet application. However it soon turned out that
this was too heavy-weight for this small team so it was switched back to analog and the
whiteboard was used to track the progress. The whiteboard was also neglected, since at
the beginning of the project the team did not have a clear vision and needed to collect
ideas and do some prototyping in different fields. It became obvious that the knowledge
about the used programming language was not homogenous (see results in Section 3.2.3
concerning levels of knowledge). Some of the pairing problems described in [88] became
reality. This rendered pair programming almost impossible for this team. This personal
assessment correlates with the fact that only two people rated pair programming to have
worked in the team.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 69

Question yes no
Do you favor agile methods over traditionally software development methods 5 1
Have you worked in a project utilizing agile methods before 2 4
Did pair programming work in your team 2 4
Did the team follow the test first paradigm 3 3
Did the team follow the collective code ownership 5 1

Table 3.10: General questions concerning agile methods in the htmlButler project - part
1.

Question (scale between 0..poor and 5..excellent) avg. med. max. min.
Own general experience level with agile methods 2.7 3 4 0
Own general experience level in programming 3.3 4 4 1
Was the XP paradigm appropriate for the intended project 3.2 4 4 1
Was the XP paradigm appropriate for the team 2.5 3 4 0
Rate the enforcement of the established agile methods 1.8 2 3 0

Table 3.11: General questions concerning agile methods in the htmlButler project - part
2.

Effectivity level value
Fanatic 10
Always 9
Regular 8
Often 7
Usually 6
Half and Half 5
Common 4
Sometimes 3
Rarely 2
Hardly ever 1
Disagree/Never 0

Table 3.12: Scale for possible answers for questions in Table 3.13.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 70

XP practice (scale see table 3.12) avg. med. max. min.
Coding Standards 6.8 8.5 9 1
Collective Ownership 7 8 9 1
Refactoring 6.2 7 9 0
Simple Design 5.8 6.5 9 1
Growth (team getting smarter over time) 5.5 6 8 1
Automated Unit Tests 5 5.5 9 1
System Metaphor 4.8 5 8 1
Continuous Integration 4.5 5 8 1
Lessons Learned 4.5 5 7 0
Morale 4.2 5 7 0
Short Releases 4.8 4.5 9 0
Sustainable Pace 4 4.5 6 0
Test First Design 4.8 4 8 2
Synergy 4 4 8 1
Stand Up Meeting 3.5 4 7 0
Artifact Reduction (do ’just enough’ documentation) 4 3.5 6 2
Release Planning 3.3 3.5 6 1
Customer Access 3.3 3 8 0
Customer Acceptance Tests 3 2 9 0
Pair Programming 2 2 5 0

Table 3.13: Application of XP practices in the htmlButler project.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 71

Experienced widely easy to easy to easy to
XP practice helpful enjoyable used learn apply introduce

avg. 3 2.6 1 2 2.8 2
Planning Game max. 5 4 2 3 4 3

min. 1 1 0 1 1 1
avg. 3.8 3.4 2.2 3.6 3.2 2.5

Small Releases max. 5 5 5 5 5 5
min. 1 1 0 1 1 1
avg. 3.5 3.3 3.3 3 2.8 3.3

Metaphor max. 4 5 4 4 4 4
min. 3 2 2 2 2 3
avg. 4.4 4.4 2.6 2 2.6 2.6

Simple Design max. 5 5 4 3 3 3
min. 3 4 2 1 2 2
avg. 5 4 2.5 3 2.7 2.3

Testing max. 5 5 3 4 4 3
min. 5 3 1 2 2 1
avg. 4.2 3.2 3.6 2.2 3 2.7

Refactoring max. 5 5 4 3 4 3
min. 3 2 3 2 2 2
avg. 4.3 4 1.7 3.3 3 1

Pair max. 5 5 3 5 5 2
Programming min. 3 3 0 1 1 0

avg. 4.2 3 2 4.2 2 2
Collective max. 5 5 3 5 2 2
Ownership min. 3 2 1 3 2 2

avg. 4.3 3.8 3 3.5 4 4.3
Continuous max. 5 5 4 5 5 5
Integration min. 3 2 2 2 3 3

avg. 2.6 3.4 3.5 3.8 4.6 4.6
Sustainable max. 3 5 4 5 5 5
Pace min. 2 2 3 3 4 4
Scale between 0..“strongly disagree” to 5..“totally true”

Table 3.14: Personal experienced XP practices - part 1.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 72

Experienced widely easy to easy to easy to
XP practice helpful enjoyable used learn apply introduce

avg. 5 3.4 3.8 4.2 3.8 2.7
Coding max. 5 5 5 5 5 3
Standards min. 5 3 2 3 2 2

avg. 4 2.7 2.7 5 4 2.5
Daily max. 5 4 3 5 5 3
Standup min. 2 1 2 5 2 2

avg. 4 4.4 2.2 3 2.4 2
Whole Team max. 5 5 3 4 3 2

min. 3 4 1 2 2 2
Scale between 0..“strongly disagree” to 5..“totally true”

Table 3.15: Personal experienced XP practices - part 2.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 73

3.2.6 Fundamental Project Questions
This part of the questionnaire was inspired by the “Chaos Report” simply to find out
whether the intuitive estimation of the project success correlates with the “success poten-
tial” computed with the algorithm the “Chaos Report” from 1994 suggests. In the “Chaos
Report” ten categories for potential project success were determined each with a differ-
ent relevance. Of course, these categorizations are neither up to date (were revised in
later reports) nor scientifically beyond doubt, but they can give a hint to the potential for
success of a project. The “Chaos Ten” were weighted as follows a.) user involvement
with 19%, b.) executive support with 16%, c.) clear requirements with 15%, d.) proper
planning 11%, e.) realistic expectations with 10%, f.) small project milestones with 9%,
g.) competent staff with 8%, h.) ownership with 6%, i.) clear vision and objectives
with 3% and finally j.) hard working focused staff with 3%. Each category consists of 5
questions which can be answered either with “yes” or “no”. According to the question’s
category the percentage of a question is computed with the formula: #yes∗Qweight

#members
. This

formula yields a percentage. #yes represents the number of positive answers for this
question, Qweight represents the weight for this question according to its category, and
#members the number of people who took part in the survey. Qweight is chosen such
that, if all answers were “yes” the sum over all categories would be 100%. The actual
sum over the percentages of all categories gives the success potential of this project. If
this factor is below 35%, it is better to keep away from this project. If it is larger than 35%
but lower than 70% the project is categorized as a “high risk” or “research” project. If the
factor is larger than 70%, the project has a good chance of success. In the questionnaire,
conducted for the htmlButler project, for this analysis, two values for each question were
given one for the project start, and one for the project end.

Results Given the answers of the developers to the questions of the section “fundamen-
tal questions” in the questionnaire, the computed confidence in the project success was a
little less than 40%, using the data for the beginning of the project. Using the data for the
end of the project, the computed confidence in the project success was a little more than
34%.

Discussion Since the questionnaire was answered after the project, the values are not
accurate since the participating people were not all involved in the project at the same
time. However all estimations clearly marked the htmlButler project a “high risk” project
at the border to a project which will likely become a failure. This outcome correlates with
the overall low ratings in other parts of the questionnaire. At the same time this outcome
also shows that it would have been possible to create an awareness of the “high risk” situ-
ation already at the beginning of the htmlButler project. It is possible that such awareness
would have helped to conduct the project differently and potentially more successfully.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 74

User Involvement - 19%
project
phase

yes no

start 3 3Do we have the right users?
end 3 3

start 1 5Users involved often and from the beginning?
end 1 5

start 2 4Quality recording of users?
end 1 4

start 2 3Is user involvement encouraged?
end 2 3

start 4 2Are the needs of the users known?
end 4 1

Table 3.16: Fundamental questions concerning user involvement.

Management Support - 16%
project
phase

yes no

start 1 5Do we have the key executives?
end 1 4

start 2 3Have the key executives financial share in the project?
end 2 3

start 3 2Is a failure of project acceptable?
end 3 2

start 1 5Is there a well defined project plan?
end 1 4

start 1 5Have the team members financial share in the project?
end 1 4

Table 3.17: Fundamental questions concerning executive management support.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 75

Clear Statement to Requirements - 15%
project
phase

yes no

start 3 3Do we have a clear vision?
end 3 3

start 3 3Do we have functional analysis?
end 3 3

start 0 6Do we have risk analysis?
end 0 6

start 4 2Do we have a business case?
end 3 3

start 4 2Is the project progress measurable?
end 5 1

Table 3.18: Fundamental questions concerning a clear statement to requirements.

Proper planning - 11%
project
phase

yes no

start 3 2Do we have a problem statement?
end 3 2

start 2 3Do we have a solution statement?
end 2 3

start 2 3Do we have the appropriate people in the team?
end 2 3

start 0 5Do we have a well-founded hard specification?
end 0 0

start 4 1Do we have achievable milestones?
end 2 3

Table 3.19: Fundamental questions concerning proper planning.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 76

Realistic Expectations- 10%
project
phase

yes no

start 2 3Do we have the expectations clearly specified?
end 1 4

start 3 3Do we have prioritized requirements?
end 2 3

start 5 1Do we have small milestones?
end 2 3

start 3 3Are we able to react well to changes?
end 2 3

start 4 2Are we able to practice prototyping?
end 3 2

Table 3.20: Fundamental questions concerning realistic expectations.

Small Project Milestones - 9%
project
phase

yes no

start 1 3Do we apply the 80/20 rule?
end 0 4

start 2 4Do we follow a top-down design?
end 1 4

start 4 2Do we have time limits?
end 4 1

start 2 3Do we use a prototyping tool?
end 2 3

start 4 2Can we measure the progress?
end 4 1

Table 3.21: Fundamental questions concerning small project milestones.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 77

Competent Staff - 8%
project
phase

yes no

start 5 1Do we know which skills are needed?
end 5 1

start 2 4Do we have the right people in the team?
end 2 4

start 0 6Do we have a training program?
end 0 6

start 0 6Do we have incentives (awards, bonuses)?
end 0 6

start 5 1Does the staff have an overview?
end 5 1

Table 3.22: Fundamental questions concerning competent staff.

Ownership - 6%
project
phase

yes no

start 2 4Do we have well-defined roles?
end 1 4

start 0 6Do we have a well-defined organization?
end 0 5

start 3 3Do we know our own roles?
end 1 4

start 0 5are there success awards/bonuses offered?
end 0 5

start 4 2Is everybody committed to the project?
end 3 3

Table 3.23: Fundamental questions concerning ownership, clear roles and tasks.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 78

Clear Visions and Objectives - 3%
project
phase

yes no

start 3 2Do we all share the same vision?
end 1 4

start 4 1Does the vision fit the company objectives?
end 2 3

start 2 3Are the objectives achievable?
end 2 3

start 4 1Are the objectives measureable?
end 3 2

start 1 4Do we check honestly for meaningfulness?
end 0 5

Table 3.24: Fundamental questions concerning clear visions and objectives.

Hard working focused staff - 3%
project
phase

yes no

start 4 1Is there appeal for success?
end 2 3

start 2 3Do we concentrate on quantifiable deliverables?
end 2 3

start 2 3Do the members all have part-ownership?
end 2 3

start 1 4Do the members work well together?
end 2 3

start 2 3Do the members trust each other?
end 3 2

Table 3.25: Fundamental questions concerning the staff.

CHAPTER 3. ANALYSIS OF THE HTMLBUTLER PROJECT 79

3.3 Conclusion
The project analysis of the htmlButler project shows, that the project did not went well and
that there were severe shortcomings in implementing the XP methodology beside massive
team problems. The group of developers was inhomogeneous concerning age, culture,
background and skills and therefore was too instable to grow to a team or into a stage of
performance. Two people left during the first 12 months, one entered the team after 12
months, and two developers, who were mainly concerned with usability research, worked
only short phases in the project. All ratings show one outlier with a very low value for all
questions. This indicates that one team member was particularly disappointed with all as-
pects of the project. The relation between development and management was suboptimal.
The managers of the commercial partner were partially not known by the developers, due
to infrequent meetings. The local manager of the project was too occupied with other
projects and duties that the contact to the development team was too loose. This too was
a reason for the perceived lack of management qualities. Additionally, the developers had
the impression that between the academic manager and the cooperation partners the ob-
jectives were not in sync. Only one of the 6 involved developers would participate in the
same project again. In the textual feedback given within the post mortem questionnaire,
the developers mentioned lack of project focus, lack of management support as well as
lack of strict roles, hierarchy and leadership, besides the suboptimal team staffing, as the
main reasons for the mediocre outcome of this project.
The goals of the htmlButler were very ambitious. In addition, it was scheduled with a
limited financial and time budget. To be able to create a meaningful web-based wrapper
tool with decent usability, following topics have to be covered: a.) information inte-
gration which is concerned with machine learning techniques for extracting information
from Web sources, b.) semantic modeling, creation of semantic models of the wrapped
sources for integration and combination with other sources, c.) record linkage to align
data across sources, and d.) data integration and plan execution to automatically integrate
data from the Web. These topics represent a large field of research and a small team of
only one or two PhD students cannot even come close to covering it. For instance, the
information integration research group (IIRG) around Professor Craig A. Knoblock2 from
the Information Sciences Institute, Department of Computer Science of the University of
Southern California, has published 80 papers with over 40 different involved scientists
between 1992 and 2005 on the above-mentioned fields. This means, that when the html-
Butler project started, this group alone had a headstart of 14 years of research.
The analysis of the htmlButler project further shows that it would have been possible
to become earlier aware of project problems, through the application of project success
probability estimations, e.g., the “Chaos Report” algorithm, as well as an assessment of
the field of research and its groups, e.g., the IIRG. This would have made it possible to
earlier react to a large part of the problems which occurred during the htmlButler project.
Consequently this could have made it possible to increase the success of the htmlButler
project.

2Information integration research group: http://www.isi.edu/integration, visited February 2007.

Chapter 4

Agile Methods in Austrian IT-Industry -
Results of an Empirical Survey

This chapter is based on the paper [57] already published in 2008 where the results of
the empirical study concerning agile software development methods and practices used in
the Austrian IT-Industry, was analyzed. The main target was to gather information about
the use of agile software development methods in general and particularly with regard
to the agile practice of pair-programming. The author’s experiences in the commercial
software industry as well as in academic projects (see Chapter 3) raised the question of
how agile practices are implemented in practice. Data was collected which of the most
simple to adopt agile practices and tools are used in practice and what are the future plans
to introduce or enforce the use of agile software development methods in general or the
pair-programming practice specifically. Another aim was to determine the perceived ad-
herence to delivery dates in the software development industry in general. The author
tried to reach two people of each company to make out the difference between manage-
ment and development on the questioned topics. The base of the questions which were
asked in the telephone interviews can be read in Appendix C.

4.1 Introduction
Austria’s software industry is a strongly expanding branch of business [90]. This is still
a fact in the year 2008 [91] where the growth of this business branch is estimated to be
between 5.4% and 6% until the year 2011 [92]. 2002 the results of an empirical study
among small and very small enterprises in Austria were published concerning the used
processes, techniques, and tools as well as problems during software development [93].
In this paper a similar empirical study is conducted but the main focus here is to find out
the use of agile software development methods in general and the agile practice of pair-
programming (PP) in particular. Furthermore, it is not limited to small and very small
enterprises and is of more recent data. The survey was designed to find out information
about:

80

CHAPTER 4. AGILE METHODS IN AUSTRIAN IT-INDUSTRY - A SURVEY 81

a) the general size of the company and the average development team size,
b) whether there is knowledge or at least awareness of agile software development meth-
ods and whether there is a desire for further information concerning this topic,
c) the current use of agile software development methods as well as the use of certain
practices which are considered to be implementable with a low amount of effort [58, 20]
(such as the test-first1 approach or continuous integration, e.g., Hudson [94] and Cruisec-
ontrol [95]) as well as the reasons for no adoption of agile methods (AM),
d) the experience with agile methodologies and pair-programming in practice, the in-
tention to apply agile methods or practices in the future in the company’s development
process, and finally,
e) the general spirit of adherence to delivery dates in the role of a client (outsourcing)
as well as contractor of software products. Agile development methods have the aim to
support the adherence to deadlines through frequent releases [1].
Furthermore, it was attempted to work out the differences within companies between the
perception of development and management of agile development (AD) methods. There-
fore, always two people of a company - one from management and one from the develop-
ment team - was tried to be contacted for an interview. It was shown that the differences
were not as high as expected.

4.2 Survey Setup and Procedure
A total set of 400 software development company addresses were collected. Unlike in [93,
96] the contacts were retrieved via the author’s private and job-related network. A sample
of 100 companies were contacted where 42 companies agreed (42% acceptance rate) in
participating in the survey. The initial plan was to reach two people of each company, a
manager and a developer. This was not possible with 23 companies (54.8%) due to lack of
time, vacation of staff members, or simply because the interview partner occupied a role
as a manager and developer. 19 companies (45.2%) agreed in the double interview which
lead to a total number of 61 interviews (see overview Table 4.1). There were slightly
more developers than managers. 25 (41%) developers, 14 (23%) managers and 22 (36%)
hybrids - developers who also occupied a manager role - were reached. This distribution
led to an overall “developer to manager ratio” of 1.3 where the hybrids counted for both.
The survey started on 29th of July and ended on 25th of August 2008 and was conducted
via telephone. The questionnaire which was used for the survey consisted of four sections:

• General Information: Information about the size of the company and the average
size of the developer teams.

• Agile methods and Practices: Existence of knowledge or at least awareness of ag-
ile methods and practices, application, experiences, and problems of agile software

1test-first approach is considered cheap to implement since no extra tools are needed and only the devel-
oper himself is involved and ‘just’ has to work on his coding habits, in contrast to pair-programming where
two developer and the approving management is involved

CHAPTER 4. AGILE METHODS IN AUSTRIAN IT-INDUSTRY - A SURVEY 82

total set 400 random sample 100
comp. reached 42 success rate 42%
total interv. 61 single interv. 23
double interv. 19 manager interv. 14
developer interv. 25 hybrid interv. 22

Table 4.1: Overview of the survey participation.

development methods in general and pair-programming in particular. Furthermore,
it was determined which of the easiest and inexpensive to implement agile develop-
ment practices [58, 20] such as the test-first approach or continuous integration are
used.

• Future plans: In this section the future plans to introduce agile methods and
practices, especially pair-programming, are determined, and the reasons why ag-
ile methods are neglected if there were no plans to adopt to them.

• Perception: Finally, the personal perception to adherence to delivery dates in the
software industry was collected in a passive and active role (as client and as a con-
tractor) as well as the perceived overall tendency in the software industry. This can
be seen as an indicator for a needed change in the software development process.

4.3 Company Characteristics
According the European Commission [97, 98], companies are categorized into micro,
small and medium enterprises (see Table 4.2). Every company which is beyond the defi-
nition of medium size is considered a large enterprise. The distribution of the participating
companies is 19% micro, 28.6% small, 11.9% medium and 40.5% large enterprises. In
Table 4.3 one can see the distribution of the survey participating companies according
their size. Interesting that in the sample more than 40% are large companies but only
5% medium ones. The company categorization, their maximum, minimum, and average
development department size as well as the percentage below and above the average can
be seen in Table 4.4. This shows that a 66% of the large categorized companies have a
development department below the average - the size of the development department does
not scale linear with the company size. In Table 4.5 the average project team size can be
seen for each company category. It is also clear that the team size does not scale with
the company size but it is remarkable that there is a strong tendency to smaller teams as
92.6% of the large companies have teams below the average size of 13. Asked for the
average team-size the participants named 11 different categories. The team-size category,
the average team-size, the absolute number of mention, and the percentage can be seen
in Table 4.6. It shows that 78.7% have an average team-size between 2 and 6 developers.
11.5% have an average team-size above 7 developers and 9.8% of the companies are one-
man companies or only have one developer. Statistically 90.2% of the companies have

CHAPTER 4. AGILE METHODS IN AUSTRIAN IT-INDUSTRY - A SURVEY 83

Category Headcount Turnover
micro < 10 ≤ e 2 million
small < 50 ≤ e 10 million
medium < 250 ≤ e 50 million

Table 4.2: Company categorization ac-
cording the EU commission [97, 98].

Category Absolute Percentage
micro 8 19.05%
small 12 28.57%
medium 5 11.9%
large 17 40.48%

Table 4.3: Company categorization
of survey participants.

Company Development Department Size
Category min. max ∅ below ∅ above ∅
micro 1 4 3.1 50% 50%
small 6 30 14 47.1% 52.9%
medium 1 25 12.1 57.1% 42.9%
large 3 200 54 66.7% 33.3%

Table 4.4: Company size vs. development department size.

the ability of applying pair-programming. Even micro companies are eligible to practice
pair-programming since 60% are above the average team size of 1.75 (see Table 4.5).
The five different fields of development activities the companies practice can be seen in
Table 4.7. The majority of the companies (88.1%) have their main focus on commercial
development. This means that their developed software is ordered and to be used by cus-
tomer. 7.1% of the companies put themselves in the ”research and prototyping” category
which means that they do research in a certain field and develop prototypes and prove of
concept software for the customer. 4.8% of the companies develop for in-house use which
means that the development department is concerned with projects only for the use in the
own company, and finally, 2.4% are concerned with developing prototypes for in-house
solutions which are outsourced for completion.

Company Average Team Size
Category min. max ∅ below ∅ above ∅
micro 1 2.5 1.75 40% 60%
small 1.5 5.5 3.5 76.5% 23.5%
medium 1 10.5 5.75 85.7% 14.3%
large 1 25.5 13.25 92.6% 7.4%

Table 4.5: Company vs. average team size.

CHAPTER 4. AGILE METHODS IN AUSTRIAN IT-INDUSTRY - A SURVEY 84

Team size ∅ absolute %
Category team size mentioned mentioned
1 1 6 9.8%
1-3 2 9 14.8%
1-5 3 20 32.8
2-6 4 7 11.5%
3-6 5 3 4.9%
1-10 6 9 14.8%
6-7 7 2 3.3%
1-15 8 2 3.3%
1-20 11 1 1.6%
1-30 16 1 1.6%
1-50 26 1 1.6%

Table 4.6: Average team-size, named size-categories and number of mention (absolute
and percentage).

Development category absolute %
commercial 30 71.4%
research and commercial 6 14.3%
research and prototyping 3 7.1%
in-house and commercial 2 4.8%
in-house and prototyping 1 2.4%

Table 4.7: Fields of development activities of the participating companies (absolute and
percentage).

CHAPTER 4. AGILE METHODS IN AUSTRIAN IT-INDUSTRY - A SURVEY 85

4.4 Agile Methods and Practices
A majority of the interview partners (77%, or 47 people) claimed to have a general knowl-
edge about agile software development methods. The rests (23%, 14 people) claimed to
know nothing about this topic. Of those aware of agile methods, 68% (32 people) said that
they would personally support agile methods or at least agile practices. There were 32%
(15 people) non supporters of agile methods. Of those who did not know agile methods,
14.3% (2 people) claimed that they are personally supportive after a short introduction
into agile software development methods during the interview. The desire for more in-
formation about agile methods was expressed only by 29.5% (18 people). 70.5% (43
people) stated that there is enough information available if one is willing to read up on
this topic. The hit-parade of known agile methodologies can be seen in Table 4.8 where
those people aware of agile methods were asked to name methods known by them. Ex-
treme Programming (XP) was mentioned by 46% and Scrum by 32.8% which reflects the
popularity of these methodologies. No other method mentioned by the survey participants
exhibits such a high percentage of publicity. Only Test Driven Development (TDD) and
Rapid Application Development (RAD) had a slight higher rate than the rest. Feature
Driven Development (FDD), Open Unified Process (OUP), Microsoft Solution Frame-
work (MSF) and Model Driven Architecture (MDA) were only mentioned by one person
on average. Furthermore, the data shows that 23% of the participants made no distinction
between agile practices, e.g., pair-programming, refactoring, and agile methodologies like
Scrum and XP. The traditional Waterfall-Model, the V-Model as well as the Spiral-Model
were claimed to be agile methodologies by only 5% of the participants. This shows that
there is a general knowledge about software development methodologies. One goal was
to find out whether there is a significant difference between managers and developers.
This difference did not prove to be as high as expected. The data show that only with
the methods XP and Scrum there was a difference, where XP was known by 53.2% of
the developers and by 38.9% of the managers. Scrum was mentioned by 29.8% of the
developers and 33.3% of the managers. For the rest of the methodologies developers
and manager do not differ significantly. This also applies to the confusion between agile
practices which were named as methodologies as well as the non-agile methods named
as agile ones. It turned out during the survey that 54% made no distinction between the
terms “iterative” and “incremental”. This indicates that those terms should be set right in
context with development methods.

4.4.1 Reasons why Agile Methods are Not Adopted in Practice
When the participants answered “No” to the question whether they believe that agile
methodologies are applied in practice, they were asked about the reasons for their belief.
The supposed reasons can be seen in Table 4.9. “Lack of knowledge” is on top with 27.9%
followed by a “negative attitude of the management towards agile methods” with 26.2%
and “lack of time” with 16.4%. On the fourth place the already “established process”
with 14.8% was mentioned followed by “lack of experience with agile methods” with

CHAPTER 4. AGILE METHODS IN AUSTRIAN IT-INDUSTRY - A SURVEY 86

Method names total Dev. Mngr.
XP 46% 53.2% 38.9%
Scrum 32.8% 29.8% 33.3%
TDD 4.9% 4.3% 5.6%
RAD 3.3% 4.3% 0%
FDD, Crystal, OUP 1.6% 2.1% 2.8%
MSF 1.6% 2.1% 0%
MDA 1.6% 0% 2.8%
practices named 23% 23.4% 27.8%
non-agile named 5% 4.3% 5.6%

Table 4.8: Named known agile methodologies.

Reason total Dev. Mngr.
lack of knowledge 27.9% 29.8% 22.2%
management refusal 26.2% 23.4% 27.8%
lack of time 16.4% 12.8% 16.7%
existing process 14.8% 8.5% 16.7%
lack of experience 8.2% 8.5% 5.6%
customer refusal 6.6% 4.3% 8.3%
risk too high 6.6% 6.4% 5.6%
too costly 4.9% 4.3% 5.6%
company/team size 4.9% 6.4% 5.6%
resistance/fear 4.9% 6.4% 0%
tradition 3.3% 4.3% 2.8%
change takes time 3.3% 4.3% 5.6%
no/bad risk management 3.3% 0% 5.6%

Table 4.9: Supposed reasons why Agile Methods are not adopted in practice.

CHAPTER 4. AGILE METHODS IN AUSTRIAN IT-INDUSTRY - A SURVEY 87

8.2%. “Lack of known benefits”, “bad reputation”, “customer availability” and “no need”
were equally mentioned by one 1.6% (1 person). Interesting is, that again the developers’
and the managers’ opinion did not differ significantly from second place on. Both think
that the upper management refuses agile methodologies. The reason could be that the
managers the interviews were conducted with were close to the developers in the hierarchy
(have been developers once) or still act as developers in their current position.

4.4.2 Adopted Agile Methods and Practices
The question whether agile methods were adopted or tried to be adopted in their company
or team was answered positively by 44.3% of the total participants, 42.6% of developers
and 52.8% of managers (see Table 4.10). Interesting is, the “unconscious adoption” of
agile methods claimed by some participants. Of those who said they had adopted an agile
methodology but unconsciously were only 1.6%. Of those who said they had not adopted
agile methods claimed that it must have been done unconsciously by 6.6%. 6.6% of the
adopters said that they only adopted certain practices but no distinct method. Nevertheless
they said they had adopted an agile method. This shows that there is little distinction be-
tween methodologies and certain practices. 4.9% of the non-adopters said that they would
have implemented certain agile practices. 55.6% (15 people) of the adopters said that the
implementation went generally well (21.3% of developers and 33.3% managers). Asked
for details what did work well, 60% of them (9 people) gave an answer which was not
very detailed but lead to 13 positive points mentioned (see Table 4.11). The participants
were also asked to name experienced issues during the adoption of agile methodologies.
Fifteen adoption issues have been identified and are shown in Table 4.12. The most severe
issues named by people were (a) the omission of unit-tests due to time pressure, (b) the
general increase of time pressure as well as (c) the low discipline to adhere to the agile
methodology by the team members. These were followed by the “resistance of developers
against the agile method”, the “unwillingness of the customer to pay for the extra effort
of unit-testing”, as well as the “daily stand-up meeting”, all with a percentage of 7.4%.
Participants were also asked which tools and practices fostering agile development are
known to them (see Table 4.13). Tools to generate documentation out of source code,
e.g., Doxygen or Javadoc, are used by 70.5% of the participants. Unit-tests are claimed
to be used by 75.4% of the interviewees. 18% of the participants in total pointed out that
they only use unit-tests when “needed”. This shows that the practice is not an obligation
but merely an option. The test-first approach is said to be used by 9.8% in total, 8.5% de-
velopers and 13.9% managers. At the same time 83.3% in total, 75% of these developers
and 80% of these managers admit that they rarely use it in reality. The low percentage
indicates that the test-first approach is not very popular. A reason for this might be that
in spite of its cheap adoption, it needs discipline and change of habits [5]. Hence this
approach is easily omitted with upcoming time pressure. The continuous integration and
nightly build approach are claimed to be used by 39.3% in total. The agile practice of
pair-programming is known by a total of 70.5% (43) of the participants, 72.3% (34) of
the developers and 63.9% (23) of the managers. Table 4.14 shows the advantages the par-

CHAPTER 4. AGILE METHODS IN AUSTRIAN IT-INDUSTRY - A SURVEY 88

Adoption of
agile methodology total Dev. Mngr.
yes 44.3% 42.6% 52.8%
yes, unconsciously 1.6% 2.1% 2.8%
no, unconsciously 6.6% 6.4% 5.6%
yes, only distinct
practices 6.6% 0% 11.1%
no, but distinct
practices 4.9% 4.3% 5.6%

Table 4.10: Percentage of participants claiming adoption of agile methods.

ticipants (aware of pair-programming) have considered and mentioned as significant. The
top three are a.) permanent review named by 65.1% , b.) knowledge transfer named by
60.5% and c.) increase of code quality named by 53.5% of the pair-programming aware
participants. 45.9% of all participants and 65.1% of those who know the practice of pair-
programming said that they actually use it with a distribution of 42.6% of the developers
and 63.9% of the managers (an overview can be seen in Table 4.15). Additionally, all
of them stated that they did not use pair-programming regularly but instead rarely or on
demand. 32.1% said they only do it with complex code and 7.1% pointed out that it is
only done with newcomers for tutoring purpose. No one claimed that it was practiced
as written in the books [58, 88, 20]. This shows that pair-programming in spite of the
accepted advantages is still not generally established in the development processes but is
used on demand and mainly in debugging and with complex code where a single devel-
oper might have run into problems. On the other side in Table 4.16 the perceived reasons
for not using pair-programming can be seen. Note that the numbers include those who
initially said that they do not know the practice of pair-programming.

CHAPTER 4. AGILE METHODS IN AUSTRIAN IT-INDUSTRY - A SURVEY 89

Positive points
of AM adoption nr. of people %
more iterations 2 13.3%
rapid prototyping 2 13.3%
less documentation 2 13.3%
unit-tests (more/at all) 1 6.7%
tool support 1 6.7%
teamwork 1 6.7%
personal responsibility 1 6.7%
deadline estimation 1 6.7%
reviews 1 6.7%
knowledge transfer 1 6.7%
user stories 1 6.7%
frequent releases 1 6.7%
customer contact 1 6.7%

Table 4.11: Named topics which went well in adoption of agile methods (percentage of
adopters).

Adoption issues %
omitted unit tests (time pressure) 11.1%
increased time pressure 11.1%
low discipline 11.1%
resistance of developers 7.4%
customer unwilling to pay for tests 7.4%
daily stand-up meeting 7.4%
communication problems 3.7%
deadlocks between teams 3.7%
planning was impossible 3.7%
team-size too small 3.7%
pair-programming not practical 3.7%
short iterations impossible 3.7%
lack of agile education 3.7%
risk estimation impossible 3.7%
many things left undone 3.7%

Table 4.12: Adoption issues. Percentage of participants claiming AM adoption in prac-
tice.

CHAPTER 4. AGILE METHODS IN AUSTRIAN IT-INDUSTRY - A SURVEY 90

Practice names total Dev. Mngr.
use of doc.-tools 70.5% 70.2% 75%
unit tests 75.4% 72.3% 80.3%
test-first 9.8% 8.5% 13.9%
cont. integration/
nightly build 39.3% 38.3% 36.1%

Table 4.13: Used tools supporting agile development.

Advantage %
permanent reviews 65.1%
knowledge transfer 60.5%
increased code quality 53.5%
speedup 16.3%
decrease of truck-factor 9.3%
increase of creative solutions 7%
better design 7%
increased motivation 4.7%
more cost effective 4.7%
less chance of interruptions 2.3%
complex tasks more easily solved 2.3%
integration is easier 2.3%
increase of output 2.3%
increased of concentration 2.3%

Table 4.14: Advantages of pair-programming (percentages of participants knowing PP).

Knowing/using %
knowing (of total) 70.5%
knowing and using (of total) 45.9%
using (of PP aware) 65.5%
rarely/on demand
usage (of PP aware) 100%
only with complex tasks
(of PP aware) 32.1%
only for tutoring
(of PP aware) 7.1%

Table 4.15: Percentage of participants knowing and using pair-programming and addi-
tional habits.

CHAPTER 4. AGILE METHODS IN AUSTRIAN IT-INDUSTRY - A SURVEY 91

Reason total Dev. Mngr.
no need 30.3% 10.6% 19.4 %
too expensive 24.2% 10.6% 19.4%
no time 21.2% 14.9% 5.6%
50% productivity 15.2% 6.4% 13.9%
only with
complex code 15.2% 8.5% 5.6%
lack of manpower 12.1% 8.5% 5.6%
this cannot work 9.1% 2.1% 5.6%
established process 6.1% 4.3% 5.6%
lack of experience 6.1% 4.3% 2.6%
no order/interest
from management 6.1% 2.1% 2.8%
customer refusal 3% 0% 2.8%
no known benefits 3% 0% 2.8%
ego problems 3% 2.1% 2.8%
too risky 3% 2.1% 0%
no opportunity yet 3% 2.1% 0%

Table 4.16: Reasons why pair-programming is not adopted.

4.5 Future Plans for Agile Method Adoption
Asked about the planned adoption of pair-programming in the near future (meaning in the
next 12 months), only 14.8% of all participants answered that they have planned to do so.
44.4% of those willing to adopt pair-programming in the near future stated that they want
to do this in combination with certain agile methods (but did not name one), whereas
22.2% would like to introduce it in combination with Scrum and 11.1% with Extreme
Programming. 22.2% said they would like to adopt or increasingly use pair-programming
solely without other practices. A similar percentage answered to the question of adoption
of agile methods in general in the near future. In Table 4.17 the overview of the percent-
ages in total, for developers, and for managers can be seen. Asked for the reasons why
not to adopt agile methods in the near future 57.4% of the participants said there was “no
need”, 37.7% referred to an “established process” and 8.2% a “lack of resources” and “no
time”. Similarly the reasons for not adopting pair-programming were named by 41% with
“no need”, 27.9% with “established process”, 13.1% with “lack of resources” and 11.5%
with “no time”. 8.2% said that they “use pair-programming to the right extent” and are
satisfied but not eager to enforce or further support adoption.

CHAPTER 4. AGILE METHODS IN AUSTRIAN IT-INDUSTRY - A SURVEY 92

Future adoption total Dev. Mngr.
PP, yes 14.8% 14.9% 13.9%
PP, no 85.2% 85.1% 86.1 %
AM, yes 13.1% 14.9% 13.9%
AM, no 86.9% 85.1% 86.1%

Table 4.17: Future plans of adopting agile methods or pair-programming.

4.6 Perception of Adherence to Deadlines
In this section of the questionnaire the participants were asked to quantify their belief
and expectations in adherence to deadlines vs. their experience. Both roles as a client
and as a contractor should be assessed. The range was from “yes, deadline will be met”
and “rather yes, deadline will be met” over “rather no, deadline might be broken” to “no,
deadline will be broken” (see Table 4.18). The average experienced perception in the role
as a client in adherence to keeping deadlines was 2.7 and as a contractor was 2.1. The
ratio of perceived anticipation vs. experience was 0.8 in the role as contractor and 0.85 in
the role as a client whereas the differences between anticipation and experience were the
same in both roles. One can see that the value in the role as a contractor is slightly lower
which shows the tendency of having more confidence in oneself or the own company than
others. Finally, the participants had to rate the provocative statement “In the software
industry deadlines are generally not met” (see Table 4.19). The range was from 1 to 5
where 1 meant “fully agree” and 5 meant “fully disagree”. It is interesting that 67.8%
of the answers are below the mid-level which shows a tendency towards agreeing to the
statement whereas only 11.9% were above. This shows that there are perceived problems
in development where agile methods could be used to increase adherence to deadlines.

Adherence to Client role Contractor role
deadlines ant. exp. ant. exp.
yes 18.2% 3.6% 42.4% 12.1%
rather yes 41.8% 30.9% 45.8% 63.8%
rather no 32.7% 54.5% 10.2% 22.4 %
no 7.3 % 10.9% 1.7% 1.7 %

Table 4.18: Anticipation vs. experience of adherence to deadlines (client/contractor role).

CHAPTER 4. AGILE METHODS IN AUSTRIAN IT-INDUSTRY - A SURVEY 93

“In SW industry deadlines are generally not met”
1...“fully agree” to 5...“fully disagree”

1 2 3 4 5
total 10.2% 57.6% 20.3% 11.9% 0%

Table 4.19: Statement ranking (scale: 1 to 5).

4.7 Conclusion
In this empirical study Austrian companies were examined concerning awareness and
adoption of agile development methods in 2008. Although there is a general awareness
about agile development there is a lack of specific knowledge about agile methodologies
which becomes apparent through the answers about distinct methodologies and their prac-
tical application. Statements like “we do reviews - that’s agile” or “agile development is
when the waterfall process gets stuck - countermeasures are taken” show the lack of actual
knowledge about methodologies although only a third of the participants spoke out the de-
sire for more information on this topic. There is a tendency of participants to believe that
an adoption of some agile practices or practices they consider as agile are enough for agile
development. Furthermore, some completely ignore or are unaware about the benefits of
agile methods and practices and state “although there are studies that show advantages
of agile methods, I strongly doubt their meaningful application” or “this is only hype,
teamwork already exists at least 50 years”. These statements support the view that they
are expressed without having tested a methodology in practice. Through the application
of agile development methods adherence to deadlines should be made easier, nevertheless
the expectations concerning adherence to deadlines show that people tend to believe that
there are general problems keeping deadlines in the software industry. This study shows
that people consider as the most severe obstacles to practical application of agile meth-
ods “lack of knowledge”, “refusal of management” and “lack of time”. However, it also
shows that there is no really systematic approach towards agile development in practice.

Chapter 5

Monitoring a Software Department’s
Transition to Scrum

This chapter discusses how the software development department of an Austrian tech-
nology consultant company changed its software development process. The department
changed its software development process from a waterfall-like process to Scrum. The
reasons for the change in general, were the growing demands to short-term project or-
derings and changes of requirements through the customer, shorter release cycles and the
need for improved quality. Scrum was chosen because of the business model, the cus-
tomer and the independence of development.

5.1 Initial Situation
At the time of writing the software department worked on a highly distributed and hetero-
geneous environment which already went through several steps of metamorphosis con-
cerning the architecture and the used programming languages. Also the evolving and
frequently changing requirements of the customer (a telecommunication company), and
the fact that the system was based on a ten year old core which grew part by part and
underwent massive refactoring made it a complex field for project managers, architects
and developers. Prior to the change, although the software process was a waterfall-like
one, the development already made use of the following modern techniques:

• Module based design

• Unit tests

• Automated tests

• Continuous Integration

• Nightly builds

• Performance monitoring

94

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 95

• Automated documentation tools

• Collective code ownership

• Revision control system

• Refactoring

• Coding style guidelines

• Automated code style checkers

• Frequent code reviews

• Design patterns

• Design meetings

• Open source frameworks, tools and IDEs (Integrated Development Environments)

5.1.1 Problems Before Scrum
Because of the complexity of the system there were only a few people who had an
overview of the overall functionality of the system, and the interactions of its modules,
and its interfaces. These few people, called architects, were not involved in the devel-
opment any more. Furthermore, a few expert developers who had detailed knowledge
about different core modules had emerged over the years. Those people were vital in the
projects and constantly overstressed, which led to the fact that they had very little time to
coach new junior developers. Since the department had to grow due to more projects, the
situation did not improve. The core problems were:

• Single points of detailed knowledge

• Too much overtime for expert developers

• Problems in coaching novice coders, mostly through too much stressed experts

• Quality loss through constant project pressure

– Increasing system complexity through lack of quality

– Increasing costs of new features due to increased complexity

– Quality decline of deliveries through time pressure and complexity

• Little time for vital refactoring

• Late changes of requirements occurred frequently

• Decreasing morale of the developers

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 96

As stated before, the overall software development process was waterfall-like. Changes
in the waterfall process are expensive if they happen late, but in practice they occurred
frequently due to change of customer requirements. This caused constant problems keep-
ing deadlines and imposed even more overtime. The company’s management decided to
go agile, although it was not clear which agile methodology in the first place.

5.1.2 The Reasons & Expectations
The most important reasons to go agile were the changing requirements, the lack of
knowledge transfer from the expert to the novice coders as well as the decreasing code
quality and emerging bugs. Therefore a transition team was arranged which had the task
to evaluate different agile methods. XP, FDD and Scrum were evaluated. The transition
team consisted of the head of the development department, architects, domain owners and
the head of the project management. The expectations were that through an agile software
development method it would be easier to react to changes. Through small teams instead
of single experts working on projects, the knowledge should have been better distributed.
Also it was expected to introduce pair programming. From this practice, better coach-
ing, an increased quality of critical solutions and constant code reviews were expected.
Summarized the expectations were:

• Get rid of single points of knowledge

• Be able to better react to (late) requirements changes

• Foster knowledge transfer

• Get novice coders faster productive

• Increase quality

– Reduce complexity through fostering system knowledge & refactoring

– Reduce costs for new features through a simpler system

– Improve delivery quality through better code quality

• Decrease expert coders’ overtime

• Raise the developers’ morale

5.1.3 Reasons for Scrum
Scrum won, not so much because of the reason against the alternatives, but a few impor-
tant reasons for Scrum. The decision in favor of Scrum was made due to the working and
modern development, which basically went well except the already described problems.
The developers used modern tools, open source frameworks and IDEs. The head of the
department as well the transition team agreed not to fundamentally change the used tools

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 97

and development practices themselves. Furthermore it was a requirement to stay fully
operational during the switch. The idea was to just impose an agile framework on the de-
velopment to make it agile. Additionally, the success stories in the literature [4, 15, 16, 18]
and the experience with Scrum in another branch of the company were points in favor of
Scrum.

5.2 Transition Schedule and Scrum Roles
The transition to Scrum was decided in the time period between July 2008 and October
2008. Although the roles in Scrum were clear (Team Member, Product-Owner and Scrum-
Master) it was not clear at the beginning, who would play which role in Scrum. An in-
house Scrum training with certification was given to the senior staff members who were
likely to become Scrum Masters or Product-Owners. It turned out that all project mangers
became Product-Owners and most of the developers became team members. Some of the
developers gave up their development role and became architects or Scrum-Masters. It
must be pointed out that the roles in Scrum have nothing to do with positions in the
company’s hierarchy. In the time during November and December, in-house trainings
for scrum teams were held, information about the team constellations were discussed and
meetings were held to discuss questions concerning the transition to the Scrum practice.
Old projects were finished in the traditional development manner. Two teams had to
start their first sprints already in December 2008 due to urgent incoming projects which
originally were scheduled to be already worked off in Scrum-manner. The rest of the
department started with their first sprint in January 2009.

5.3 The Department’s Scrum Characteristics
Since Scrum is a framework, one has the possibilities to act free within the framework
boundaries. Therefore Scrum is practiced differently from company to company, or even
departments. At the time of writing some special characteristics of this department were
the existence of the role of Architects, Domain-Owners and the Delivery-Team who were
not part of the Scrum Teams. Furthermore, the handling of software defects from the
system in maintenance had to be incorporated into the department’s Scrum practice.

5.3.1 Architects
The Architects were a team of three to 5 senior former developers who had an overview of
the whole system and acted as a kind of in-house consultants and authorities in questions
concerning the overall architecture of planned projects so that the code base would not
degrade. Furthermore, they supported the project managers in creating their offers, giving
technical advice, digging out pitfalls and judging the complexity of the future projects.

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 98

5.3.2 Domain-Owners
The Domain-Owners were those who were familiar with all the business processes and
how the system had to be used by the customer. The Domain-Owners did not have such a
deep technically insight into the system like the Architects or the developers. For the de-
velopers, the Domain-Owners were an important source of information during the project
realization phase.

5.3.3 Delivery Team
With the migration of the department’s development process to Scrum, a delivery team
was installed so that the Scrum-teams could concentrate on the new development process.
It was expected that the productivity of the development teams would slightly decrease in
the first three months. The delivery team consisted of people of the former test department
and had the responsibility to prepare the system integration. Before every release, it had
to build the whole system, conduct the system integration and user acceptance tests and
finally to prepare and fulfill the deployment at the customer’s machines.

5.3.4 Additional Meetings
In addition to the 6 Scrum meetings (estimation meeting, sprint planning 1, sprint plan-
ning 2, daily scrum, sprint review and sprint retrospective), two more meetings were
held in the sprints. The sprint kick-off meeting was intended to bring all Scrum-teams,
Product-Owners, Scrum-Masters and the development department leaders together to start
into the new sprint. Another purpose was to spread news and talk about critical events in
the upcoming sprint. The kick-off usually had a time period between 30-45min and was
held on the first day of the sprint. The second additional meeting was a technical meeting,
where the architects, domain-owners, the development department leader and one team
member of each Scrum-team met. The purpose was to talk about technical, functional and
architectural issues of the project each Scrum-team was working on in the current sprint.
This meeting was held to find out possible problems and dependencies between the user
stories of the different projects and Scrum-teams. The length of this meeting usually was
about 90min and it always took place on the third day of the sprint. This time was chosen
because every team should have already finished the planning and have had the chance to
go deep enough into the code to know potential functional and architectural issues.

5.3.5 Software Defect Handling
One important function of the company in question was to maintain the shipped software
system. Since the software system was in operational use and was growing release by
release there was a backlog of change requests, bugs due to requirements misunderstand-
ings or missing requirements, merge/integration failures and simply wrong implemented
functions. It was the maintenance department’s responsibility to support the customer and

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 99

cope with these defects. These defects have had to be fixed and therefore were submitted
into the company’s ticket system with an according priority. If defects turned out to be
an implementation issue they were forwarded to the development department so that they
could be planned into the sprints (sprint planning). Therefore they were called “planned
defect-tickets”. Usually every team got a certain amount of defect-tickets to fix in a
sprint. Note that these tickets did not have necessarily something to do with the teams’
recent sprints. Some of the defects were much older and were caused in the pre-Scrum
era. One can see these tickets as a kind of mini user stories which have had to be finished
in a sprint since they were part of the team’s commitment. If the customer reported such
a defect during the sprint and the priority was high enough it was immediately distributed
to one of the Scrum-teams and must have been fixed prior to the current user story. These
incident tickets sometimes had to be fixed within 24 hours. These tickets were called
“unplanned defect-tickets” and sometimes appeared when a new release was deployed or
during the going-live process.

5.4 The Performance of a Scrum Team
In this section sprint data over a period of the whole year 2009 are analyzed and com-
mented. During this period of time the department had 6 Scrum teams, whereas all teams
performed similarly, so one team’s data is used as an example to describe the situation of
the whole department’s Scrum practice.

5.4.1 Brief Explanation of Story Burn-Down Charts
A story burn-down chart [16, 17, 18] in Scrum is used to see how the team finishes user
stories during the sprint and if they are still on track with their estimated development
speed. After the sprint planning, the team commits to a number of user stories with a
certain amount of user story points. Each workday in the sprint, the team works on those
user stories. When one user story is finished, the amount of user story points the team
estimated for this story, are subtracted from the total amount of user story points to work
off. So the chart should reflect the decrease of the user story points during the sprint. This
decrease of the user story points is called the burn-down. The ratio of decrease depends
on the size of the user story points and the development speed of the team. So the chart
can be used to visualize the work speed of the team, and whether they potentially run
into problems or whether they are about to reach their sprint goal too early. In both cases
the Scrum Master has to act together with the Product Owner and the Team. A typical
burn-down chart has the user story points on the y-axis and the sprint days on the x-axis.
Just for orientation an ideal burn-down line can be drawn from the upper left - the total
amount of user story points at the beginning of the sprint to the lower right where zero user
story points should be left at the end of the sprint. This line can usually not be reached in
reality since the granularity is the size of one user story and therefore it rather looks like
steps down to zero. Figure 5.1 could be a typical story burn-down chart. One can see that

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 100

Figure 5.1: A typical story burn-down graph.

the ideal line is once under-run which shows that this user story was finished earlier than
expected. Its vertical difference is bigger than with all other user stories and it brings the
burn-down graph below the theoretical line. The chart also shows that the third and the
one user story before the last, needed two, respectively three sprint days for completion.

5.4.2 Brief Explanation of Velocity Charts
The amount of scored user story points of a sprint is called the velocity of the team. A
velocity chart [16, 17, 18] in Scrum is used to display a consolidated view of the team’s
scored user story points over a number of sprints. One can see the scored user stories of a
sprint in relation to the other sprints. Usually with a stable team within a stable environ-
ment a team should be able to score approximately the same amount of user story points
in consecutive sprints. Because of knowledge transfer and the increase of the team’s per-
formance the velocity, the team’s scored user story points, should slightly increase from
sprint to sprint. In reality, sick days, vacation and other events decrease the team size
and hence influence the velocity, therefore such a velocity chart does not tell much about
the real team performance and the sprint’s circumstances but give only a hint about some
irregularities during a sprint if the graph displays sudden changes. In Figure 5.2 one can
see an example velocity graph. On the vertical axis, the scored user story points are plot-
ted, on the horizontal axis the sprints. The resulting graph shows the velocity (the scored
user story points of a sprint) of each sprint and irregularities can be easily recognized. For
instance in the graph one can see that the velocity is increased from the first sprint to the
second, then falls down in the third sprint and stays the same for the 4th sprint. In the 5th
sprint and increase of the scored user story points in relation to the 4th is depicted fol-
lowed by a steep decline in the 6th sprint. Unfortunately it is not possible to see whether
this decline was caused because half of the team became sick or a very difficult project
could not be finished in the sprint. Therefore a simple velocity chart cannot be used to
judge a team’s performance. To give a slightly better idea about the team’s performance,

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 101

Figure 5.2: A typical velocity graph.

one can put the velocity in relation to the available person days.

5.4.3 Overview of the Sprints in 2009
The collected Sprint burn-down graphs of one year for a team can be found in Appendix E.
In the discussion of remarkable sprints, it will be referred to the images in the appendix.
In Figure 5.3 an overview of the 23 sprints of the year 2009 of a single team are de-
picted. The values on the x-axis are the sprints from the first sprint started in January
2009 until the 23rd sprint which ended in the middle of December 2009. The values on
the y-axis show the user story points. All sprints longer than two weeks were normalized
to two week sprints to have consistent and comparable data. The diamonds (blue) rep-
resent the committed; the vertical bars (red) represent the scored story points. The thick
ramp (green) represents the trend of the velocity. Started from the third sprint trends were
computed. According to Gloger [17, 18] it takes a team at least 3 sprints to accommodate
to Scrum. The dotted (red) graph represents the team-size; the dashed (blue) graph rep-
resents the number of unplanned defect-fixing tasks in person days. The straight (black)
line represents the trend of the unplanned defect-fixing tasks. The drawback of this graph
is that it only displays the velocity which can significantly differ from sprint to sprint
depending on the available person days for each sprint due to e.g., members on leave or
helping other teams, etc. In Figure 5.4, the velocity is set into relation with the available
person days using the formula: V ppd = V

PD
∗100. The values on the x-axis are the sprints

starting with the 4th sprint. The values on the y-axis represent the velocity per person days
of one team. The bars (blue) represent the velocity per person days of one team from the
4th sprint in the middle of February until the 23rd sprint which ended in the middle of
December 2009. The thick straight graph (orange) represents the linear trend of the ve-
locity per person days over the depicted sprints. The velocity in context with the available
person days provides a more realistic view on the team’s achievements per sprint. It is
noticeable that the trend in both graphs has ascending slopes. The velocity trend has an

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 102

Figure 5.3: One team’s velocity graph over the 23 sprints of the year 2009.

increase by 67% and the trend of the velocity per person days has an increase of 70%.
It is very interesting to see that in Figure 5.3, the first sprint was fabulous followed by a
second sprint where less than a third of the committed user story points could be scored
which indicates a problem in the correlation between the team’s reference user story and
the user stories which were to be done in this sprint. It is normal that there is a break-in of
the velocity in the first sprints. In the following sprints the team reacted to this and sprint
two and three in the velocity graph show the leveling process and the recovery of sprint
two. Furthermore one can see that in the first half of the year, the commitments were not
met four times, in the second half only once. The three consecutive times in the first half
(sprint 7, 8, 9), where the commitments were not met correlate with team restructuring
and a high rate of unplanned defect-fixing tasks which had to be done additionally to the
committed user stories. In the second half, in 4 sprints more was achieved than commit-
ted. However, the most interesting sprints are number 12, 15, 16 and 19 which will be
discussed in detail in the following section. It is also remarkable, that the last three sprints
of the year, although better than the average of the first half of the year are less productive
than the sprints around sprint 19. This can be set in context with the upcoming end of the
year but also again to the increased unplanned defect-fixing tasks in sprint 22. It is also
visible that the trend of the unplanned defect-tickets decreased over the year which is an
indicator for an increased development quality.

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 103

Figure 5.4: The velocity in relation to person days.

5.4.4 Discussion of Selected Sprints
Of the 23 sprints of the year 2009, 7 were selected for interestingness and grouped by
characteristics of velocity and interesting issues that happened during these sprints.

Low velocity & sprint goals missed

The sprints 7, 8 and 9 were the three consecutive sprints in the first half of the year where
the sprint goals were missed. This had several reasons. In sprint 7, the lowest velocity
was scored, where only 40% of the committed user story points could be scored. First, the
Product-Owner reported changes for the user stories for the running sprint and also had
some change-requests for user stories from the previous sprint. The second reason was
that defects of already reviewed user stories of the previous sprint popped up. These user
stories had to be fixed. On top of this, additional defect-fixing tasks which had nothing to
do with this project with an amount of 5.7 person days had to be done. At that time, un-
planned defect-fixing tickets were not considered although the experience of the previous
sprints showed a high burden of unplanned tasks. Third, the planned leave of some team
members in the first week of the sprint lowered the theoretical development power, which
can be seen in Figure E.7. This had not been considered in the team’s estimations and
commitment for this sprint. Finally, team conflicts showed up concerning the develop-
ment power of one team member despite that team member being coached by two other

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 104

team members.
Sprint 8, although it was one day shorter (9 days) than a normal sprint, was slightly better
than sprint 7. Interestingly, the team was eager to make up for the suboptimal performance
of sprint 7 and committed to 30% more user story points than in the previous sprint. In
the end they only scored 50% of the committed user story points (Figure E.8). The main
reason was that through requirements changes reported by the Product-Owner, a couple
of user stories were rendered obsolete after the sprint review. It was the Scrum-Master’s
mistake not to stand against this practice. Of course this would not have changed the
outcome, only the statistics for the sprint. Furthermore, it turned out that two unfinished
user stories were far more complex than estimated in the planning meeting. The Scrum-
Master as well as the team failed to re-estimate these stories and communicate with the
Product Owner. A further reason for the low velocity of the team was that a team member
left the company and did not finish the committed tasks. The year’s highest burden of
unplanned defect-fixing tasks was assigned to the team, with an amount of over 9 per-
son days which were done additionally. An impediment with the development machine
cost another 1.9 person days of development power. A sprint external Product-Owner di-
rectly accessed team members without the knowledge of the current Product-Owner and
the Scrum-Master. This behavior drained development power of about 1.5 person days.
This only could happen, because the Scrum-Master was not collocated with the team and
was informed by the team members only at the next daily Scrum. This communication
deficiency was an issue for a couple of sprints but could be settled within the first half of
the year. Summarizing sprint 8 was not that bad, since a lot of work was achieved by the
team in spite of all the problems.
Sprint 9 (Figure E.9) was better than the sprint 7 and 8, but again, the sprint goal was
missed by one user story (three user story points). Due to the order from the management
to reduce the collected overtime of the team members, the sprint length was reduced from
the initially planned 15 days to a 9 day sprint (one day shorter than the normal sprint).
The reasons for not meeting the sprint goal were similar to the reasons of sprint 8, but
did not have that negative effect than to the previous sprint. 84% of the committed user
story points could be scored by the team. The problems were that the development power
was decreased through members on leave by 5 person days, defect-fixing tasks turned
out not to be reproducible which wasted development time and three user stories hat to
be descoped due to unclear requirements where already development time was spent for
them. The unplanned defect-fixing tasks with an amount of 4.2 person days were the half
of the previous sprint’s burden, and were done additionally. Again, there were troubles
with another sprint external Product-Owner who drained development time from team
members without telling the current Product-Owner and the Scrum-Master. The interest-
ing part of this was that the Product-Owner who complained about this practice in the
first place, did the same in another sprint. This indicates a lack of farsightedness, team
work and communication among the Product-Owners. During the sprint, the requirement
changes reported by the Product-Owner, forced the team to work until the last sprint day.
At the sprint’s end another team member left the company and reduced the team size to
5 team members, which had a negative impact on the team’s velocity on contrary to the

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 105

first leave, although the member’s main skills were not in development.

High velocity & more problems

Sprint 12 (Figure E.12) was the sprint with the year’s highest velocity per person days (see
Figure 5.4). The team which was restructured in sprint 11 (2 members were exchanged
for the sake of knowledge transfer) worked euphorically and scored 23 story points. The
development power was constantly decreased due to the vacation of one team member and
another was helping out another team half of the sprint. The high burden of unplanned
defect-fixing tasks with an amount of 8.2 person days and a user story which was added
during the sprint did not break the team’s commitment although it had to work until the
last sprint day to finish all user stories.
Sprint 15 (Figure E.15), although the sprint goal was missed by three user story points,
also had a very high velocity per person day rate (see Figure 5.4). The reason why story
points were missed, were that the Product-Owner had planned and sold a project which
had not been properly estimated by architects. The team estimated much more user story
points in its first encounter with the project. Furthermore there was a communication
problem between Product-Owners because the team was initially exclusively planned for
one project during sprint 15 but due to a deadline had to finish a user story which did not
fit in to the previous sprint. The team was hustled by the Product-Owner to commit to
the last user story which was known to be quite challenging, since it was a big one. The
Scrum-Master asked the team and the Product-Owner to split the story but both parties
agreed that this was impossible. The team’s development power was decreased through
the vacation of one team member, but at least the unplanned defect-fixing tasks kept in
limit with an amount of 2 person days. Towards the end of the sprint the team and the
Product-Owner realized that the user story could not be finished and therefore was split
but not descoped by the Product-Owner and got negative credits by the department leader.
In the sprint retrospective the team stated that it was rightly punished for its own naivety,
not to split the story in the planning meeting and to agree to commit to the whole final
user story.
Sprint 16 (Figure E.16) was “the horror sprint” of the year 2009. At first glance, it looks
impressive in the velocity graph. One can see an increase of 53% (11 story points). If
this is compared to the value with the velocity per person days one notices a decrease of
17% (13 story points per person days) which indicates, that there went something wrong.
Almost everything went wrong in sprint 16, except that the team met the sprint goal and
achieved the highest velocity aside the first sprint. In the estimation meeting, which took
place one day before sprint start, the team communicated that it was impossible to im-
plement all needed functionality for the user stories the Product-Owner planned for this
sprint. Obviously no architect had checked the project for feasibility before the project
was sold and scheduled. The team’s statement to the user stories was not accepted by the
Product-Owner, since a going-live was scheduled for the consecutive sprint. The Product-
Owner’s opinion was that the team’s commitment did not play a role and the project must
be finished anyway. The team and the Scrum-Master did not accept this and went with the

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 106

Product-Owner to the department management. Unfortunately the department leader was
on vacation and his substitute meant that all other teams were fully occupied and could
not take over some of the user stories. Therefore he was not able to do anything about
that. The promises of the management to descope functionality and find a solution for
such a critical situation were not kept. The team was additionally assigned one unplanned
defect with unknown origin and potential high but unknown priority which took 7.6 per-
son days. This had a sustainable negative effect on the team’s and the Scrum-Master’s
trust into the management of this department. The team agreed to do its best but did not
commit to the amount of story points demanded by the Product-Owner. Furthermore the
team revealed serious architectural shortcomings of the user stories, but nonetheless came
up with a simple but unesthetic solution which should be scheduled for refactoring in an
upcoming sprint. But the architects of the department did not agree with this solution,
so the technical meetings for the affected user stories drained valuable development time.
Until a manageable solution for these problems were found it lasted until the middle of
the second sprint week. Of course all independent features of the sprint’s user stories
were implemented until that time, otherwise it would have been impossible for the team
to finish. In the second sprint week, the Product-Owner went on a long planned vacation.
A developer from another team supported the team from Wednesday of the second sprint
week until the sprint’s end. This can be seen in the sprint’s burn-down graph, where the
development power went over 100% (see Figure E.16). Additionally, the team agreed to
come in at the weekend to be able to finish the user stories, and already planned vacations
of two team members were deferred to a later time. All in all, there were many mistakes
made. First the Scrum-Master did not escalate the problem to the next higher manage-
ment hierarchy when help was refused by the department leader. Second, an additional
ticket was assigned to an already “drowning” team by the department leader’s substitute.
Third, architectural solutions were unnecessarily complicated and a solution was delayed,
since it could not be agreed to an unesthetic but simple solution suggested by the team.
Fourth, the additional developer was assigned too late. Fifth, the Product-Owner refused
to think about descoping functionality and went on vacation whereas the team deferred
their vacation dates. Only the Product-Owner’s substitute agreed at the end of the second
sprint week, to a temporary partial abandonment of functionality until the next release.
Nevertheless the team finished the necessary amount of user stories which look nice in
the statistics but had a very high price in reality. Unfortunately, it was not possible for the
purpose of this thesis to get access to the actual booked hours spent on this project which
would relativize this Pyrrhic victory.
Sprint 19 (Figure E.19) had the highest velocity and the highest velocity per person days
in this year. The unplanned defect-fixing tasks with an amount of 1.8 person days were
low compared with the rest of the year. The development power was decreased through
one team member’s leave during the whole sprint. The only drawback was the high de-
pendencies between the user stories, so their finalization moved to the sprint’s end, which
can be seen in the burn-down graph. Comparing the burn-down graphs from sprint 19
until sprint 23 (refer to Figures E.19, E.20, E.21, E.22, E.23) one can see that the ac-
tual graph (blue) moves closer to the planned (green) graph towards the ideal line in the

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 107

middle, which indicated that the user stories could be worked off as planned in the sprint
planning, with no interruptions through unplanned tasks or other impediments.

5.4.5 Achieved Improvements
The Scrum Masters identified certain achieved improvements on different aspects of the
software development process through the department’s transition to Scrum, which are
briefly described here.

Team work Through Scrum, real teams were formed from a former loose group of de-
velopers who were put together. This could be seen at the change of the daily Scrum
Meeting. At the beginning people tried to work in their field of interest and exper-
tise. Therefore, if their stuff was done at one user story, they wanted to move on
to the next. From the 5th sprint on, people started to work together on a user story
and it happened that two people or more solved one task. Furthermore they realized
that helping other team members and working as a team increased the quality.

Knowledge transfer This point is tightly coupled with the previous one. Through real
team work and the awareness for the team, the knowledge transfer increased greatly.
This was not possible before Scrum since the experts were always overburdened
and did not have time coach new members in the department. Since Scrum it was
possible to integrate newbie within about 3 or 4 weeks and getting them productive.
It turned out in retrospectives that it was perceived positively when a team expert
was on vacation, which gave the team the possibility to show what they are able to
achieve. When this happens, knowledge transfer can be considered as working and
the department is prepared to grow another team.

Code quality Again, intensive team work made it possible to increase the code quality
through frequent code reviews in the teams. Peer reviews automatically happen in
pair programming and coaching sessions and became standard in the teams. For
every user story, one team member was determined by the team to be responsible to
organize a short code review. This was also recorded in the department’s definition
of done.

Overtime Before Scrum, the expert coders were constantly overburdened with projects
in the fields of their expertise. Through the fact that the projects were worked off
by whole teams and due to the knowledge transfer in the teams, it was possible to
ease the overtime peak for the experts and reach a uniform level of utilization for
all team members.

Vacation planning Through overlapping skill sets in the teams, it was easier for the team
members to plan and go on vacation and this also in a shorter term. Furthermore
it proved to be convenient that the team in agreement with the Scrum-Master were
empowered to authorize vacation applications within the limit of 14 days. Of course

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 108

it must have been considered that the team was able to fulfill its work and if crit-
ical projects have already been scheduled to a full team those vacations were not
granted.

5.4.6 Suggestions for Further Improvement
Estimation meetings A big problem which needs to be solved is that most of the times

the estimation meeting takes place one day before the first sprint planning meeting.
This is too short to think about the introduced user stories and peak into the code
base to identify potential pitfalls and the architecture. During the 23 sprints of
2009 it happened twice that an estimation meeting was held in the last week of
the previous sprint. The Product-Owners’ excuse is that there is no time since
the customer orders the projects in such a short-time before the sprint, that it is
impossible to conduct an estimation meeting earlier than one day before the sprint
start.

Lack of available information It happened two times that a user story had to be can-
celed due to lack of information. In 80% of the sprints not all requirements for the
user stories were available nor was it possible to get in touch with the customer to
get access to a person who was able to define the requirements. This is the rea-
son for many delays of the user stories’ finalization until the very end of the sprint,
which poses a high risk that bugs and shortcomings in the implementation which
are found in the sprint review are almost impossible to fix in the same sprint and are
deferred to the consecutive sprint.

Requirement changes during the sprint This point is tightly coupled with the previous
one. Due to requirements changes during the sprint, user stories are delayed until
the end and valuable development hours are wasted. It happened more than once
that a user story was implemented twice or three times until the requirements were
fixed. The problem is, that most of the time these requirements changes were nec-
essary otherwise the user stories were not shippable. Especially with short term and
high priority projects the requirements have to be very well defined. Having a high
priority project and no idea what the requirements are is a clear contradiction.

Priority problems In about 50% of the sprints in the year 2009, more than one project
was done in a sprint. Longer projects lasted for one and a half sprint. Other projects
were so small that a team was not fully utilized in a sprint. Often priority struggles
between different Product-Owners occurred during a sprint about whose user story
had higher priority. Furthermore, it happened that a Product-Owner who had a
project with the team in previous sprints, wanted to have some bugs fixed or changes
for already reviewed user stories. He directly accessed the team members without
the knowledge of the other Product-Owner or the Scrum-Master. The reason for
that was typically a lack of communication between the Product-Owners.

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 109

Unplanned defect-fixing tasks These are activities for fixing software defects that oc-
curred in the software system which was in operation at the customer’s site. These
defects are reported by the maintenance department to the development department,
which in turn assigned them to a certain Scrum-team (see Section 5.3.5). The prob-
lem is that these activities are not trivial and sometimes very time consuming. In one
sprint (see the dotted (red) graph in Figure 5.3) it took two additional person weeks.
With short sprints and small teams of about 5 members, as in the department’s case,
this is a serious threat for the sprint goal and seriously disturbs the team’s sprint.
It happened more than once that the initially committed user stories were delayed
to the end of the sprint (see collected burn-down graphs in Appendix E) and some-
times that the sprint goal was missed (see Figure 5.3). Since these tasks are neither
estimated nor rewarded with story points, they are not visible in the burn-down
charts and are ignored by the Product-Owners and the development department’s
managers. This has a demotivating effect on the team members, who do not get re-
ward for doing additional work but negative criticism if the sprint goal was “missed
in action”. Fortunately, the trend over the year 2009 was negative and the assigned
unplanned defect-fixing tasks were decreasing.

Dependencies between user stories User stories should be designed in a way that they
are independent from each other. If this is not possible, they must be combined to
a bigger user story and then split up into independent parts. It is very inconvenient
if a user story’s requirements change and this in turn requires a change in already
finished user stories. This is a waste of time should be avoided in Scrum [16].

Short term high priority projects It is questionable if the kind of projects that the de-
partment realized in 2009 were well suited for Scrum. The Scrum-Masters are
convinced that Scrum can be applied to all kinds of projects. However, short-term
projects, which last in average not more than one or two 2-week sprints and have
an immediate release and going-live date after the sprint, need a well organized and
disciplined project and release management [16].

Architecture A good software architecture is the base of an expandable and maintain-
able system. The problem in this department is that due to the short term projects,
architecture only gets a raw deal. It often happens that suboptimal solutions are
implemented and never refactored. This makes the system more complex than nec-
essary and more expensive to expand. This is a typical situation of accruing techni-
cal debts [99, 100] which have to be paid back to keep a maintainable system. The
department leaders know this, but have been unable to bring up neither the budget
nor the time for a serious refactoring sprint.

Scrum only in the development According to literature [101], an organization-wide Scrum
transition needs between three to 5 years time. The development department has
switched to Scrum successfully in 2009, but the way how projects are engaged,
negotiated and managed has not been switched. Only the interaction between the

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 110

former project managers and the developers has changed due to Scrum. The project
manager, now called Product-Owner, has to write the product-backlog, introduce
it to the team in the estimation meetings and show up at the daily Scrum. The
Scrum Masters in this department are convinced that for an effective implementa-
tion of Scrum, not only the development but the whole organization must undergo
the transition. Practices described in [102, 103, 104] for a successful company re-
organization support this endeavor.

Development Efficiency & Effectivity Due to internal reports from the Product-Owners
the efficiency of the development in 2009 was about 25%-30% less than before
Scrum. This indicates a huge potential for further optimizations, but the Scrum-
Masters are convinced that this is tightly coupled with the previous point, namely
that Scrum is not yet established in the whole organization.

Software Release At the beginning of 2009 a separate delivery team was founded to
keep the work of preparing the release away from the Scrum-teams. This delivery
team was quite small, had no coding skills and had extreme workload peaks for the
time of the delivery and going live dates. Furthermore it was very time consuming
to coordinate the development teams to adhere to the code freeze. It frequently
happened, that after the code freeze further changes had to be done since the Scrum-
teams were often forced by requirements changes to finalize and review the user
stories until the very end of the sprints. The review of user stories often brought
up further defects in the user stories’ implementations. At the end of September
2009, the delivery team was closed and the delivery process was given to the whole
development department. From then on, the responsibility for the delivery process
was rotated between the Scrum-teams. First evaluations showed an improvement,
but still the delivery process needs too much time and resources and therefore is a
hot spot for optimizations.

5.5 Scrum Evaluation
At the beginning of the year 2009 the development process was migrated from a tradi-
tional waterfall to an agile development method, namely Scrum. Between the 7th Septem-
ber and the 2nd October 2009, a survey with the goal to evaluate the introduction to Scrum
was conducted. In the department the 36 developers of the Scrum-Teams were invited to
take part at the survey. 32 of them completed the survey which is 89%. The 11% which
were not taken into account consisted of 2 developers who started but did not finish until
the deadline and 2 developers who did not attend due to personal reasons or vacation.

5.5.1 Goals of the Evaluation
The goal of the evaluation was threefold. First it was conducted with the purpose to
evaluate the software development process in the department from the Scrum-Teams’

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 111

view. Second, the Scrum-Masters wanted to verify their identified fields of problems with
those identified by the members of the Scrum-teams through the evaluation. Finally it
was the purpose to give an opportunity to anonymously comment the overall situation
and to avoid the intrinsic tendency to relativize negative statements through a face-to-face
dialog. The Scrum evaluation survey was conducted in German language and the question
catalog with the 121 questions is available in Appendix F. The questions, translated to
English, with the associated quantifiable data can be found in Appendix G. The additional
comments of the developers are omitted in the appendix, but included in the summary in
Section 5.5.4.

5.5.2 Survey Design
First, one Scrum-Master wrote a basic catalog of question concerning most of the aspect
of Scrum in this department. Then they met and discussed and enhanced this catalog and
shaped some of the formulations. Furthermore the Scrum-Masters had the tasks to find
out additional questions trough a dialog with the team members. The dialog had the pur-
pose to find out additional problem areas of the daily work of developers which have been
forgotten in the initial version of the questionnaire but it turned out, that the initial version
was quite complete. Finally the catalog contained over 200 questions which was defi-
nitely too big. It was cut down to 121 questions, where a couple of these questions were
conditional ones and would only be asked if a certain answer was given beforehand. The
survey questions were distributed over 9 different topics concerning a.) general informa-
tion, b.) the Scrum-Team, c.) the Scrum-Master, d.) the Product-Owner, e.) meetings, f.)
the project handling, g.) the defect-ticket handling, h.) support of other Scrum-Teams or
developers and finally i.) the delivery process. Since the Scrum-Masters only meet once
a week to discuss this topic and due to vacation time, the process of finding the questions
took about 4 weeks.

5.5.3 Technical Survey Setup
It was decided amongst the Scrum-Masters to conduct the survey online, instead of via
printed forms. Some Scrum-Masters also were concerned with the amount of questions,
the privacy and that it would be a good thing to keep the data in-house. One Scrum-
Master evaluated a couple of online-tools for questionnaires and finally found a proper
one, namely LimeSurvey [105]. LimeSurvey only needs a web server (e.g., Apache [106]
which supports PHP5.2 [107] or higher and a database (e.g., MySQL5.x [108]. Through
this it was possible to easily install the survey-server and therefore keep the data in-house.
One Scrum-Master tested the created survey for consistency, executed several test runs to
estimate the average duration and experimented with several methods of data analysis. An
average survey run took about 10 to 15 minutes including additional comments for each
topic. Two more requirements had to be met. First, anonymity and second that the survey
was filled out by every participant only once, were important. Furthermore, a registration
through the participant was considered to be cumbersome. These requirements were met

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 112

Figure 5.5: Scrum evaluation log-in with appropriate key.

through the possibility to conduct a survey as “closed”. A unique token was generated
for each participant’s email address and sent to the participant. It was only possible to
log on to this survey with the proper token (see Figure 5.5). LimeSurvey does not store
the link between the generated token and the submitted data which guaranteed enough
anonymity. In Figure 5.6 the interface of the survey can be seen. At the top of the survey
page, a progress bar indicated how much of the survey had already been completed. This
feature was very convenient for the participants and got positive feedback. It was possible
to pause and log-in with the token at a later time to complete the survey.

5.5.4 Survey Results
The complete data of the survey are given in Appendix G. In this section, the results are
condensed and additional comments given by the developers during the evaluation are
described.

General Information

The section “general information” was concerned with information about prior knowledge
of Scrum and the attitude towards Scrum and the perceived quality of Scrum introduction
in the department. 63% (20) of the developer knew Scrum before it was introduced in
the department, where 6% (2) had already practical experience with Scrum. The attitude
towards Scrum is rated positively by 94% (30) only 6% (2) rated their attitude as Scrum-

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 113

Figure 5.6: The first page of the Scrum evaluation survey using the LimeSurvey tool.

skeptical. The working situation had positively changed for 72% (23), remained the same
for 19% (6). 9% (3) of the developers felt an aggravation of their working situation.
The top three perceived advantages of Scrum are, a.) team-work rated by 91% (29), b.)
daily feedback rated by 69% (22) and c.) self organization rated by 47% (15). Additional
suggested advantages were increased knowledge transfer (4 times), shorter learning phase
for newbie (once), less overtime (once), tighter co-operation with Product-Owner (once),
fixed teams (once) and short notice vacation planning (once).
The top three points which need to be improved are, a.) sprints are too short rated by 78%
(25), b.) requirement changes during the sprint rated by 69% (22) and c.) impossibility
of knowledge acquisition outside project boundaries. Additional suggested disadvantages
were, too many meetings/overhead (4 times), “forced commitments” due to fixed and too
close release dates (2 times), Scrum is only implemented in the development but not in
project engagement or management (once), team members become exchangeable (once)
and projects are introduced too late which leads to stress (2 times).
94% (30) of the developers rather want to keep the Scrum process where 6% (2) would
prefer to change to the pre-Scrum method again. The cases pro Scrum and against Scrum
are listed in Table 5.1. 81% (26) of the developers rated that the migration to Scrum was
positively accomplished. 84% (27) rated the presented information for this migration as
sufficient, 16% (5) rated it insufficient. The top three positively perceived points of the
migration to Scrum were a.) timely information rated by 53% (17), b.) transparency of the
planned migration 41% (13) and c.) good preparation rated by 34% (11). The top three
points which need improvement are, a.) better training for Scrum rated by 41% (13), b.)

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 114

earlier communication rated by 25% (8) and c.) the migration plan could have been more
transparent.

One can conclude that the transition from the former development method to Scrum went
well. The overall attitude towards Scrum is positive, although some comments from a few
people are rather Scrum-skeptical. These comments, especially the negative ones, show
that there is need for more information and discussions during sprint retrospectives.

Cases against Scrum Cases pro Scrum
More time for knowledge acquisition Better knowledge transfer

More efficient and goal oriented development Shorter time for knowledge acquisition

Personal allocation was better Self organization/ personal freedom

No discussions about the process Prioritized user stories

Clear architectural presetting Structured approach

Less stress Larger projects in less time realizable

Less documentation Less overtime

More job variation Work is more relaxed

Feeling for success was more intense Real team-work

Defect-ticket handling was easier Direct influence on success

More time for testing Testing skills are improved in the teams

More time for research Sequential working on user stories

More intensive contact to senior developers Transparency of project progress

Projects were longer and had better planning Fixed teams make sense

The old approach was more agile No roles such as developer, tester, database-
guy but team member with certain skills

Table 5.1: Cases pro and against Scrum.

Scrum-Team

The section “Scrum-Team” of the questionnaire was concerned with the inner team or
interpersonal issues within the Scrum-teams and how they are solved. The answers given
in this section of the questionnaire reflect the atmosphere in the teams. 97% (31) of the
developers are rather satisfied with the team they are working with; only 3% (1) are not.
84% developers do not, 16% (5) do have problems on a personal level in the teams and 9%
(3) would appreciate a moderator to solve them. The following are exemplary comments
to the question about the kind of problems which occur within the team:

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 115

• Without consulting the team, team members changed tasks they should work on
until the next daily scrum.

• The attitudes, seriousness towards the commitment is individually different amongst
the team members.

• Constant discussions in the team about fundamental Scrum topics are annoying.

19% (6) of the team members can imagine changing the team, whereas 81% (26) are not
willing to consider a team-change themselves. 31% (10) would agree to change teams if
they were asked to, but 69% (22) would strongly express their unwillingness for a team
change. Concerning single points of knowledge, 81% (26) of the team members feel that
they exist in their own team, 19% (6) do not see a single point of knowledge in their team.
Therefore 69% (22) see an increased effort of distributing knowledge in their own team,
31% (10) see less effort of distributing knowledge in their team. 97% (31) feel that there
is too little time to acquire new knowledge outside of the project scope which they feel is
an innovation killer. The developers are rather satisfied with the knowledge distribution
within the own team. The distribution of the work amongst the team members was rated
as fair by 97% (31) of the team members. The current team size is rated as adequate by
81% (26) of the team members. Table 5.2 lists the team sizes the team members found
acceptable. All team members feel that real team work happens in the teams. To optimize
the work and decrease overhead 85% (27) would see an office space for each team as
positive, 16% (5) think this is not necessary.

Summarizing, the developers are fond of working in teams. Although there are personal
problems between team members, the majority would not like to change the team. This
indicates that from a group of developers, real teams were formed. Interesting is, that in
spite of increased knowledge transfer between the teams, single points of knowledge still
exist after 9 months of Scrum. Furthermore it is remarkable that the majority states, that
it is not possible to acquire knowledge outside project boundaries. This is a sign of too
much workload.

Min. team size Optimum Max. team size
3-5 4-6 5-7

Table 5.2: Inquired Scrum-team size.

Scrum-Master

The section “Scrum Master” asks questions about the attitude towards the Scrum-Master,
which problems occurred between the team and the Scrum-Master, and how they can be
solved. 97% (31) of team members are satisfied with their Scrum-Masters. The area of
the Scrum-Masters’ responsibilities is clear to 81% (26) of the developers, whereas 19%
(6) developers expressed their unclarity with following comments:

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 116

• The Scrum-Master’s work is generally unclear.

• If there are no impediments, what does a Scrum-Master do?

• Is the Scrum-Master part of the team?

• The Scrum-Masters meet frequently with the department and development leaders
- what do they talk about?

• Some work full-time in the Scrum-Master role, other only part-time and are archi-
tects or domain-owners, why?

Concerning the impediments a Scrum-Master has to solve, 88% (28) of the team mem-
bers feel informed about them. 97% (31) feel that the solution of the impediments is
timely achieved from the moment the impediment was noticed. The support of the team’s
work by the Scrum-Master is perceived as positive by 94% of the team members. 97%
(31) of the team members do not have problems with their Scrum-Master. One person
(i.e. 3%) do have a problem that the Scrum-Master’s are too weak in keeping the team,
the Product-Owners and the process Scrum-conform and would like the Scrum-Master to
put more focus on the adherence to Scrum-rules. The second issue is that this person per-
ceives the Scrum-Master as a “spy” of the management who does not bring back feedback
to the team.

Although the role of Scrum-Master was rated very positively, critical comments were
given concerning the Scrum-Master’s work besides solving impediments. Moreover,
these comments indicate that there is a potential for future conflicts. Obviously, team
members perceived that the Scrum-Masters, who had mostly been developers themselves,
were not on the same level in the hierarchy as developers, although the Scrum-Master role
is definitely no step up in the company’s career levels. Therefore the Scrum-Masters must
put the focus more on transparency and information about their work.

Product-Owner

The section “Product-Owner” is concerned with the interaction between the Product-
Owners (former project manager) and the development teams. Answers given in this
section of the questionnaire reflect the attitude towards the Product-Owner, the problems
between team and Product-Owner and possible ways to solve them. 78% (25) of the team
members are satisfied with their Product-Owners. The support of the team’s work by the
Product-Owner is perceived by 94% (30) of the team members as positive only two people
(6%) are not satisfied by the support. The area of responsibilities of the Product-Owner is
clear to 94% (30) of the developers, whereas two people (6%) felt unclarity. One person
expressed that he thought the main task of the Product-Owner was to present meaningful
user stories and be a proxy for the customer. However, the user stories were often un-
clear, not consistent and without purpose. The person concluded that in his opinion the
Product-Owner failed to do his job. Another person stated that the Product-Owner’s re-
sponsibilities were clear only concerning the team but not known beyond that. 66% (21)

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 117

of the team members do not have problems with their Product-Owners. 34% (11) of the
developers have problems with their Product-Owner, and 19% (2) of them would prefer
a moderator’s help to solve the problems between them. As examples of the kind of the
problems between the Product-Owner and the team following points were given:

• The quality of the requirements specifications are very low.

• Some user stories are written in the estimation meeting.

• Changes of the requirements during the sprint lead to delay and additional work in
the subsequent sprint.

• Prioritization of the user stories and the defect-fixing tickets, which are treated as
mini user stories, are not clearly defined by Product-Owner and maintenance.

• The vision, which should be presented in the estimation meeting, often is not even
mentioned.

• Product-Owners often have too little knowledge about the user stories and their in-
terconnections which causes additional work and need time for the team to research
this information.

The user stories the Product-Owner introduces before the sprint start are rated by 56%
(18) of the developers as sufficiently detailed, 44% (14) think that the user stories are
not formulated in enough detail. The estimation meeting and the introduction of the
user stories are rated to take place too late by 69% (22) developers. Asked for the time
when the estimation meeting takes place 47% (15) voted for “directly before sprint start”
(e.g. the sprint starts on Tuesday, the estimation meeting takes place on the day before)
and 41% (13) voted for “during the week before the sprint start”. The latter correctly
follows the guidelines of the department’s Scrum process. 88% (28) of the developers
experienced requirement changes during the sprint where 28% (9) of the developers rated
these changes as “mostly”, 34% (11) as “often” and 34% (11) as “rarely” with good cause.
72% (23) did not, but 28% (9) did experience a “sprint disturbing direct access to team
members” through the Product-Owner. This is perceived to happen rather “rarely” or
“very rarely”. 87% (28) of the team member did not, 13% (4) did experience a “sprint
disturbing direct access to team members” through a sprint-external Product-Owner who
wants to get some additional tasks or changes done from previous sprints. But this is
perceived to happen “rarely” or “very rarely”. Additional comments that were given at
the end of this questionnaire section are:

• The team should throw back the Product-Owner’s user stories if they do not have
clear requirements. Unfortunately this happens too rarely and so the team wastes
time to research the requirements doing the Product-Owner’s job.

• Through direct access to team members through the Product-Owner not only tasks
are delayed but the whole commitment could be put on risk if this happens too
often.

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 118

• The Product-Owner should earlier consult developers to get an idea what effort
certain features cause that are promised to the customer.

• Between the estimation meeting and the sprint planning meetings there is not enough
time to familiarize oneself with the user stories and do some research.

• Direct access to team members happens through department leaders from the main-
tenance.

• Additional work load for team members emerge if they are consulted for technical
questions by the Product-Owners.

The data show, that here is a large potential for further optimizations. The Scrum-Masters’
finding of problematic points in the department’s Scrum process are supported by the data
of the evaluation. The most important issues are to improve the specifications of the user
stories, that the needed requirements for the user stories are brought in time and that the
estimation meetings are held one week before the sprint-planning meetings otherwise it
is impossible for the team members to think about the upcoming sprint.

Meetings

The Scrum framework introduces 6 meetings into a sprint and developers are known not to
be fond of meetings, the section “meetings” was an important section in the questionnaire
to get feedback about the meeting situation. The Scrum-meetings and their intended
purpose were rated as clear by 91% (29) of the developers. 9% (3) developers mentioned
some unclear points concerning the separation of the first and second sprint planning
and stated that there is no increase of information between those two meetings. The
realization of the meetings are rated as “rather positive” to “positive” by 84% (27) of the
developers. 25% (8) (of the developers rated the number of meetings as “adequate”, 75%
(24) as too many. The meetings themselves are rated as “rather efficient”, 22% (7) as
“rather inefficient” although the time invested into the meetings are rated by 75% (24)
as “rather positive”, 25% (8) as “rather negative”. The idea of a public demonstration of
the achievements of the last sprint, additionally to the sprint review, is rated as “rather
positive” by 44% (14) of the developers and “rather negative” by 56%. 75% (25) of
the developers feel that there are unnecessary meetings which could be spared and gave
following comments:

• If the estimation meeting takes place one week before the sprint start, the first sprint
planning meeting can be omitted since the increase of information between the two
meetings is marginal.

• The sprint kickoff meeting where the management and the Product-Owner tells
some news and which Scrum-team is staffed for which project could be omitted.

• The sprint planning meetings, the daily scrum and the sprint retrospective happen
too often.

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 119

• The estimation meeting and sprint planning on the same day is too much and does
not make sense.

• There is too little time between the first sprint planning and the second.

• The whole team is rather passive during the sprint review only the one showing the
user stories has something to do which is rather expensive.

• The estimation meeting and the first sprint planning meeting can be combined since
they happen mostly on two adjacent days.

• It should be discussed whether all team members have take part in all meetings.

56% (18) of the team members are convinced that the goal of each meeting is met, 44%
(14) are not and gave the following comments:

• In the second sprint planning often problems of technical nature are discovered or
there is not enough time to go deeper.

• The requirements of the user stories are often unclear even after the sprint planning
meetings.

• In the technical meetings often problems are discussed which need too much time,
Therefore, no solutions can be found.

• The time between second sprint planning and the technical meeting is too long.

• Daily Scrum is only a tool to observe the team members and problems neglected.

• The time for the estimation meeting is often too short and is continued in the first
sprint planning meeting.

• All influencing factors should be known by the end of the first sprint planning meet-
ing.

Concluding, it can be stated that meetings are not popular in general and that there is a lot
of potential to improve the meeting situation. The meetings must be improved concerning
the efficiency and that they are held in time, which is especially true for the estimation
meeting. If the requirements are not clear after the second sprint planning meeting, it
should be an alarm for the Scrum-Master, the Product-Owner and the team and hence a
commitment must not be given for that user story. The Scrum-meetings are intended to
be work-meetings and not to sit together and talk a little bit about the upcoming sprint.
It is the job of the Scrum-Master to ensure that this is understood and lived by the team
members.

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 120

Project handling

This section is concerned with the general handling of projects and reflects the overall
view of the current development process and where improvements can be made. 75%
(24) of the developers stated to be satisfied with the project handling through the Product-
Owners and the management. 81% (26) stated they were interested how projects originate
and evolve from an idea to the realization through the Scrum-team, who is involved, and
how the responsible people decide and how it comes to these decisions. The current
project planning and realization is rated “not Scrum-conform” by 53% (17) of the devel-
opers. The period of time for the project planning and realization is rated as “rather too
short” by 56% of the developers, 40% (13) rated as “adequate” and 3% (1) as “longer
than needed”. “Forced commitments” were already experienced by 91% (29) of the de-
velopers which means that the estimations and the commitment of the team did not play a
role since a given release and going-live date directly after the sprint rendered their com-
mitment as useless and was perceived with a frequency between “sometimes” and “quite
often”. A “forced commitment” means that the team has to finish all the user stories that
are demanded by the Product-Owner due to a fixed deadline (going live date) immediately
after the sprint. The current sprint length of 10 days was rated as “too short” by 78% (25)
of the team members, 9% (3) rated as “adequate” and 15% (4) rated as “irrelevant”. 91%
(29) of the developers stated that during the sprint and also towards the end of the sprint
they work with full energy to reach the committed sprint goal, whereas 9% (3) admit not
to be that motivated and gave following comments:

• Improper information and requirement changes during the sprint as well as solu-
tions which turn out to have flaws based on the improper information from the
Product-Owner are frustrating.

• Unknown or late release- and going-live dates are perceived as demotivating.

• Different attitudes towards the commitments cause friction in the teams.

• The teams’ estimations are based on inexact information. If these estimations turn
out to be not exact and the commitment cannot be achieved, it is negatively judged
by the Product-Owners and the management.

The teams’ sprint efforts were rated as “slightly increased” by 16%(5) of the developers,
as “high” by 59% (19) and as “maximum” by 25% (8). “System architectural topics
are discussed with too little effort and most of the time too late” stated 59% (19) of
the developers. 41% (13) are satisfied with the architectural discussion around the user
stories. “Technical meetings for discussing architectural and technical issues have most
of the time an influence on the already estimated user stories”. This was experienced by
50% (16) of the developers. 69% (11) of those experienced an increase of complexity
of the user stories most of the time. 31% (5) experienced a different influence (increase
or decrease) of the complexity of the user stories. The frequency of such influences on
the user stories’ complexity were experienced by 41% (13) of all team members rated

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 121

between “very often” by 3% (1), “often” by 6% (2) and “quite often” by 31% (10).

This section of the evaluation shows that the there is a big potential for improvements in
the whole project handling chain which is rated not to be Scrum-conform by over 50% of
the developers, as well as the time from the vision over the planning to the implementation
as too short. The projects might be not adequate for Scrum-teams but the question is for
what kind of agile methodology these projects would fit, this will be one of the future
goals to find out. The projects are in general rather small, one to two, maximum three
sprints long and with very little time to realization and often with fixed deadlines which
lead to “forced commitments”. Here also is potential for improvement, there is no such
thing as a “forced commitment” since if the team says, it cannot do it, there is no way to
force the team to be convinced that it can be done and to commit itself to the full amount
of the user stories. The Scrum-Master as well as the team must explicitly stand against
such practices.

Defect-ticket handling

The Scrum-teams are usually confronted with two kinds of defect-tickets during the sprint,
the “planned defect-tickets” which are planned aside the user stories and committed for
the particular sprint and the “unplanned defect-tickets” which occur during the sprint
and have to be fixed until the end of the sprint. The differences between planned and
unplanned tickets are described in Section 5.3.5. This part of the questionnaire was to find
out how the current practice of defect-ticket handling performs from the developer’s view
and where things can be improved. 81% (26) of the team members stated to be satisfied
with the current way of defect-ticket handling. 56% (18) rated the way of defect-ticket
handling as Scrum-conform, 44% (14) did not agree. An alternative way of handling
defect-tickets would be appreciated by 38% (12) of the developers and gave following
suggestions:

• Per sprint one team should be responsible for all occurring defect-tickets.

• Unplanned defect-tickets should be considered in the velocity by certain user story
points.

• If more defect-tickets are expected, less user stories must be planned which is rarely
the case.

• For small planned defect-tickets, no sprint planning is necessary. It would take
longer to plan the solution than to fix the defect.

• In Scrum there is no such thing as ticket.

84% (27) rated the distribution of the defect-tickets among the teams as “fair”, 16% (5)
did not agree. They state that the responsibilities and distribution to certain teams are
not transparent and that the teams have no knowledge about other team’s tickets and their
interdependency. 22% (7) of the developers rated the amount of unplanned defect-tickets

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 122

allocated to their team as “excessive” and a risk for the sprint commitment. 78% (25) of
the team members are contend with the amount of unplanned defect-tickets. 87% (28) are
satisfied with the analysis of the defect-tickets through the maintenance department. 19%
(6) rated the analysis through the maintenance department between “slightly negative” to
“negative” and expressed their experience by following comments:

• Defect-tickets often turn out being simple misconfiguration in the system or database
flaws on maintenance’s test systems. This is annoying and costs a lot of time.

• Ancient and low-priority tickets (sometimes older than a year) should simply be
discarded.

• Defect-tickets especially when older, should be checked against the current version
before assigned to a team, it is often the case that with the current version a bug
became a feature or is already fixed.

• Often, a reproduction of the ticket’s defect is not possible on the internal develop-
ment and testing machines, and sometimes data for testing a special constellation is
not even available.

78% (25) of the developers already experienced missing their committed sprint goal due
to unplanned defect-fixing tasks with a frequency of “quite often” by 28% (9) and “some-
times” by 50% (16). 22% (7) did not experience problems with unplanned defect-tickets
and their team’s sprint goal. 81% (26) of the team members were satisfied by the distri-
bution of the tickets and felt that they are assigned to the right teams. 19% (6) are not
satisfied and experienced that they had to put extra effort in research to fix a defect where
other teams would have had the knowledge. Furthermore they were criticized by the man-
agement or the maintenance department that the fix took that long.

The fact that unplanned defect-tickets were assigned to Scrum-teams in addition to project
user stories led to many conflicts. Originally it had been expected that unplanned defect-
tickets would not influence the committed user stories. This is possible to a certain extent
but it happened rather often that unplanned defect-fixing tasks had an amount of over a
person-week which necessarily has an impact on the committed user stories. Another
demotivating factor was that if the team increased the effort and made over-hours to meet
the sprint goal and additionally fix the defects, it did not reflect in the sprint statistics.
Here is a big necessity to change these effects which the Scrum-Master together with the
Product-Owner must pursue, that teams are not overburdened by unplanned defect-fixing
tasks. The situation relaxed towards the end of the of the year which can be seen in the
overall velocity chart in Figure 5.3 and related to the improved quality of code the teams
produced over the year. The majority of defects to fix came from the code which was
produced in the pre-Scrum era.

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 123

Inter-team support

The section “inter-team support” asked questions about collaboration between teams.
With inter-team support the support of one team by a single team-external person or by a
whole team is meant. This happens if technical problems arise or if too many unplanned
defect-tickets pose a risk for missing the sprint goal. 97% (31) of the developers are sat-
isfied with the mutual team support nevertheless gave some comments for improvement:

• The official way for organizing team support (request to the department leader) is
tedious. Therefore, we should foster direct and uncomplicated support which is
much faster.

• If support is arranged by the department leader then always discussions arise.

• Coordination of the support is a must to prevent problems with side effects working
on the same module.

• A common integrated development environment (IDE) is a must, especially for the
database guys.

81% (26) of the developers do not know clearly define guidelines for inter-team support
and 63% (20) do not think this would make sense. 97% (31) see no problem with inter-
team support and 69% (22) did not experience risking the sprint goal by helping out
another team. 31% (10) of the team members have experienced a risk for missing the
sprint goal through supporting another team with a frequency between “quite often” and
“sometimes”.

There is not much to improve with inter-team support. The teams themselves work well
together and are open to help where needed. It also shows that the self organization of the
teams render clear defined guidelines for inter-team support expendable.

Delivery process

The delivery team was responsible to prepare the release with all the integration testing
and user acceptance tests and finally the deployment on the customer’s machines. The
section “delivery process” of the questionnaire reflects how well the work between the
Scrum-teams and the delivery team went. 81% (26) of the developers were generally
satisfied with the co-operation with the delivery team, 19% (6) were not. 78% (25) of the
developers stated that the delivery team’s responsibility were clear. 22% (7) expressed
their unclarity through following additional comments:

• It is not clear who tests what. Should the regression test be done through the devel-
opment team and if to what extent?

• The responsibilities of the delivery team are not clear since some tasks, initially
on the deliver team’s side are already done by the development teams like merg-
ing, user acceptance test specifications, test machine setup and partially the user
acceptance tests themselves as well as the deployment.

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 124

75% (24) stated that the handover process to the delivery team was clear. 25% (8) did not
share this opinion, but 100% (32) were convinced that a clear definition of the handover
process would make sense. 53% (17) of the team members already experienced risking
the own sprint goal due to delivery team support and this with a frequency between “often”
with 3% (1), “quite often” with 25% (8) and “sometimes” with 25% (8). The idea that
the acceptance test at the customer’s facility should be done through the Scrum-Team,
rated 40% (13) of the developers as “positive” and 60% (19) as “negative”. Additional
comments to these ideas were given as follows:

• If the team shall lead the user acceptance tests, a closer relation to the customer is
needed.

• If the team shall lead the user acceptance tests, what purpose has the delivery team
then?

• The Scrum-team has a deeper knowledge of the implemented features and therefore
can better lead though the acceptance tests.

• If there is no delivery team any more, neutral and objective testing is on risk.

• If the delivery team is closed down, the regression testing will not be done any
more.

• If the Scrum-teams take over the deliver team’s responsibilities, this additional ef-
fort will decrease the available time for development.

• The delivery team has a better overview of the whole system and its functionality.

This section of the questionnaire reveals potential of improvement for the co-operation
between the development teams and the delivery team. However, after the Scrum eval-
uation was finished, the delivery team was broken up and the delivery tasks were taken
over by one Scrum-team which changed for each release. The members of the delivery
team acted as consultants for the current release-Scrum-team and it turned out that these
tasks could be handled better by the Scrum-teams than by the explicit delivery-team. The
delivery team was formed to keep the responsibilities off the Scrum-teams so that they
could concentrate onto development and the Scrum process, which proved to be a good
decision. Nevertheless, the takeover of the delivery-tasks by the Scrum-teams should
have taken place a couple of months earlier, which would have spared everyone a lot of
discussions and blaming from all sides.

CHAPTER 5. A SOFTWARE DEPARTMENT’S TRANSITION TO SCRUM 125

5.6 Conclusion
The transition to Scrum was prepared and implemented very well and a clear, believable
vision for the transition was communicated. This is also reflected by the answers to the
questions in the section “general information” of the Scrum evaluation survey. The first
half of the year 2009 was dedicated to get used to Scrum, to form real teams out of loose
groups of developers and to work on the delivery reliability. From about the fifth sprint on,
team conflicts became visible and correlated with the scored user story points. What had
more impact were the amount of unplanned defect-fixing tasks, the teams got assigned to.
Team restructuring happened three times, at the beginning of sprint 8, and at the end of the
consecutive sprint one member left the company. In the eleventh sprint, two team mem-
bers were exchanged to distribute knowledge, which had a positive impact on the team.
Although the size of the team went down from 7 to 5 the team became more productive
until the end of the year this indicates that smaller Scrum-teams are more productive.
The second half of the year 2009 was dedicated to optimizations where also the close
down of the delivery team happened. The overhead of coordinating 6 Scrum-teams to fin-
ish critical projects to a certain date (code freeze), often before the end of the sprint was
too high. Furthermore the delivery team was also responsible for merging the different
modules but did neither have the programming expertise nor the knowledge of the module
structure to be very good with these tasks, so over the time more and more tasks were done
by the teams supporting the delivery team. At the beginning of September 2009 the task
of delivery and all its responsibilities were overtaken by one Scrum team, which changed
every delivery. This was to decrease the coordination overhead and worked considerably
better than in the old constellation.
At the beginning of this chapter, several crucial points for improvements were listed.
Some of them were addressed during the year 2009, namely a.) single points of detailed
knowledge, b.) too much overtime, c.) problems of coaching novice coders, d.) quality
decline of delivery and finally e.) decreased team morale. Nevertheless, there are many
more topics for improvement that not only correlate with the Scrum-Masters’ opinion but
also with the outcome of the Scrum evaluation. A transition to and implementation of
Scrum is not a panacea [16] for all difficulties in software development and management,
but hard work. It probably takes about three to 5 years [101] to establish Scrum in the
whole organization and one must be clear about, that only parts of the positive effects
using Scrum will show after a short time. Changes should be done step by step using
the Deming-cycle [109]: Plan, Do, Check, Act. Only through constant review and con-
sidering feedback it makes sense to do the next step. Since there is no approach that
guarantees success, the management of the organization must stand behind the decision
but should be careful with statements that show too much determination to the transition,
like “Within the next year, the productivity will be increased by 25%”, but also have the
potential to demotivate and discourage the employees who primarily must implement the
change. According to [104], fear, disinterest, and frustration are the main impediments
for a successful change in the organization.

Chapter 6

Conclusions

For production of software in a commercial context a working software development
process is vital. Agile software development methods became very popular in the last
decades as an answer to the demands of short time to market and changing requirements.
This thesis is concerned with the research question of how agile software development
methods are applied in practice.

In the htmlButler project it was decided to use an agile development methodology. Ex-
treme Programming (XP) was chosen, since it became very popular recently. The people
centered approach of XP makes it the ideal process for small and mid-sized projects. The
htmlButler project progress with its mediocre success, the team problems as well as the
problems applying the XP principles made it necessary to analyze these problems and
to investigate whether XP was the right choice. In Chapter 3 the goals of the htmlButler
project are described and the outcome of the project as well as the problems with the intro-
duction of XP is analyzed. For this purpose a post mortem questionnaire was conducted
between the developers which showed massive problems in team and the lack of guidance
through the management. The last part of the questionnaire was designed in a way that
the data could be used to estimate the project success potential using the “Chaos Report”
algorithm. The results of the ”Chaos Report” algorithm, together with an assessment of
the manpower in research teams dealing with the same topics as the htmlButler project,
clearly show that the htmlButler project was too ambitious for the given project setting
(a ”high risk project” according to the Chaos Report algorithm’s categorization). If this
assessment had taken place at the beginning of the project, it would have been possible
to react earlier to most of the problems, and thus increase the output of the htmlButler
project.
Furthermore, in Chapter 4 the question arose whether agile methods in general and XP
specifically, are used and how they are applied within a commercial project context in the
Austrian IT industry. This is especially interesting since it was already hard to introduce
XP in a small team of computer science students, who were familiar with agile software
development methods. For this purpose 100 companies of the Austrian IT industry were
contacted for a telephone interview, where 40 agreed to participate in the survey. The out-
come was disillusioning, in that despite the wide acceptance of agile methods in academia

126

CHAPTER 6. CONCLUSIONS 127

and amongst enthusiastic software development adepts, the application of agile methods
in commercial environments is rare. The survey showed that although there is a gen-
eral awareness about agile development there is a lack of specific knowledge about agile
methodologies, e.g., XP and Scrum and that there is a tendency to believe that an adoption
of some agile practices or practices they consider as agile are enough for agile develop-
ment. Furthermore, this study shows that people consider as the most severe obstacles
to practical application of agile methods “lack of knowledge”, “refusal of management”
and “lack of time”. It also shows that there is no really systematic approach towards agile
development in practice. These reasons implicate that in order to foster agile software
development in practice, increased efforts must be made by enthusiasts to educate not
only developers but also and especially people in management positions in the software
industry.
In Chapter 5, a transition of a software development department from a waterfall process
to the Scrum framework was described. The reasons for the transition to an agile soft-
ware development methodology and why Scrum was chosen were manifold. However,
the most relevant reasons for the transition were a.) rapidly changing requirements in all
projects, b.) the lack of knowledge transfer from experts to novice coders as well as, c.)
the decreasing code quality and emerging bugs in the released versions of the system. Af-
ter the transition, all 23 sprints of one Scrum team in the year 2009 were monitored and
analyzed in the scope of this thesis. The overall velocity chart for the year 2009 showed
interesting tendencies and events like a.) the transient effect of the velocity during the
first sprints, b.) a correlation between team problems and scored user story points, c.) an
overall positive trend of the velocity and the velocity per person days and d.) a decreas-
ing amount of unplanned defect fixing tasks during the sprints. The main improvements
that were achieved during the year 2009 are a.) established real team work, b.) improved
knowledge transfer, c.) improved code quality and d.) decreased overtime for all develop-
ers. Nevertheless, there are many more topics for improvements left, the most important
being a.) lack of available information, b.) requirement changes during the sprints, c.)
increasing technical debt through short term high priority projects and d.) that Scrum was
only established in the development but not yet in the whole organization. The conducted
Scrum evaluation amongst the development teams supports the findings of the analysis.
In addition, it shows that the general attitude towards Scrum and the perception of the
transition to Scrum was positive 9 months after introduction.

Summarizing, this thesis contains concrete descriptions of how agile software develop-
ment methods are applied in practice. To some extent, the results directly point to possible
solutions for the problems that have become apparent. In order to advance the application
of agile software development methods in commercial settings, the issues of team build-
ing, software project management and education of all involved parties have emerged as
the most important ones. At the same time these are the most promising topics for further
research.

Bibliography

[1] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jef-
fries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber,
Jeff Sutherland, Dave Thomas. Manifesto for Agile Software Development.
http://agilemanifesto.org, 2001. visited: July, 2006.

[2] Alistair Cockburn. Agile Software Development. Addison-Wesley Longman, Am-
sterdam, October 2001.

[3] Jim Highsmith, Alistair Cockburn. Agile Software Development: The Business of
Innovation. Computer, 34(9):120–122, September 2001.

[4] Ken Schwaber, Mike Beedle. Agile Software Development with Scrum. Prentice
Hall, 1st edition, October, 15th 2001.

[5] Scott W. Ambler. Introduction to Test Driven Design (TDD).
http://www.agiledata.org/essays/tdd.html, 2002. visited March 2008.

[6] Jim Highsmith. Agile Software Development Ecosystems. Addison-Wesley Long-
man, Amsterdam, March 2002.

[7] Pekka Abrahamsson, Juhani Warsta, Mikko T. Siponen, Jussi Ronkainen. New
Directions on Agile Methods: A Comparative Analysis. In Proceedings of the
International Conference on Software Engineering, pages 244–254. IEEE, 2003.

[8] Barry W. Boehm. Get Ready For The Agile Methods, With Care. Computer,
35(1):64–69, January 2002.

[9] Mike Cohn. Agile Estimating and Planning. Prentice Hall, 2005.

[10] Alan S. Koch. Agile Software Development: Evaluating the Methods for Your
Organization. Artech House, 2005.

[11] Peter Schuh. Integrating Agile Development in the Real World. Cengage Charles
River Media, 2005.

128

BIBLIOGRAPHY 129

[12] Scott W. Ambler. The Agile Unified Process (AUP).
http://www.ambysoft.com/unifiedprocess/agileUP.html, June 2006. visited
October 2007.

[13] John Hunt. Agile Software Construction. Springer, 2006.

[14] Stefan Roock. Jeff De Luca on Feature Driven Development - An Interview.
http://www.it-agile.de/fddinterview english.html, April 2007.

[15] Ken Schwaber. Agiles Projekt Management mit Scrum. Microsoft Press, 2007.
German Edition of Agile Project Management with Scrum.

[16] Roman Pichler. Scrum - Agiles Projektmanagement erfolgreich einsetzen.
dpunkt.verlag, 2008.

[17] Boris Gloger. Scrum. Produkte zuverlässig und schnell entwickeln. Hanser Verlag,
1st edition, April 2008.

[18] Boris Gloger. Scrum - Produkte zuverlässig und schnell entwickeln. Hanser Verlag,
2nd edition, 2009.

[19] James Bach. What software reality is really about. Computer, 32 Issue 12:148 –
149, 1999.

[20] Kent Beck, Cynthia Andres. Extreme Programming Explained: Embrace Change.
Addison-Wesley Longman, Amsterdam, 2nd ed. edition, December, 2nd 2004.

[21] Ian Sommerville. Software Engineering. Addison-Wesley, 5th edition, 1996.

[22] Andreas Spillner, Tilo Linz. Basiswissen Softwaretest, chapter 3, page 41. dpunkt,
2005.

[23] Barry W. Boehm. Software Engineering: R & D Trends and Defense Needs. In
Peter Wegner, editor, Research Directions in Software Technology, number 717.
Cambridge MA: MIT Press, 1979.

[24] Meir M. Lehman. Laws of Software Evolution Revisited. In Carlo Montangero,
editor, Proceedings of Software Process Technology, 5th European Workshop,
EWSPT96, Nancy, France, volume 1149 of Lecture Notes in Computer Science.
Springer, October 9-11 1996.

[25] IEEE. IEEE Std 1219-1998, IEEE Standard for Software Maintenance. IEEE
Computer Society, USA, http://www.ieee.org, October 1998.

[26] Alain Abran, James W. Moore, Pierre Bourque, Robert Dupuis. Guide to the Soft-
ware Engineering Body of Knowledge 2004 Version [SWEBOK] Software Engi-
neering Body of Knowledge, A. Abran and J. W. Moore, eds., IEEE Computer
Society Press, Los Alamitos, CA, 2001. IEEE Computer Society, Los Alamitos,
California, http://computer.org, 2004 edition, 2004.

BIBLIOGRAPHY 130

[27] IEEE/EIA. IEEE/EIA 12207.0-1996 IEEE/EIA Standard Industry Implementation
of International Standard ISO/IEC 12207: 1995 (ISO/IEC 12207) Standard for
Information Technology Software Life Cycle Processes. IEEE Computer Society,
USA, http://www.ieee.org, March 1998.

[28] Bennet P. Lientz, E. Burton Swansons. Software Maintenance Management.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1980.

[29] ISO/IEC. Software Engineering-Software Maintenance ISO/IEC 14764:1999.
ISO/IEC Geneva, Switzerland, 1999.

[30] Guimarares T. Managing Application Program Maintenance Expenditures, volume
Communications of the ACM 26 (10), pages 739–746. ACM, 1983.

[31] Thomas M. Pigoski. Practical Software Maintenance: Best Practices for Manag-
ing Your Software Investment. John Wiley & Sons, 1997.

[32] Jussi Koskinen. Software Maintenance Costs. Information Technology Research
Institute, University of Jyväskylä http://www.cs.jyu.fi/∼koskinen/smcosts.htm,
September 2003.

[33] Shari Lawrence Pfleeger, Joanne M. Atlee. Software Engineering—Theory and
Practice. Prentice-Hall International, 3rd edition, August, 31st 2005.

[34] Barry W. Boehm. Software Engineering Economics. Prentice-Hall Advances in
Computing Science & Technology Series. Prentice Hall PTR, November, 1st 1981.

[35] Marcario Polo, Mario Piattini, Francisco Ruiz. Advances in Software Maintenance
Management: Technologies and Solutions, chapter Chapter 8 - Software Mainte-
nance Cost Estimation, page 312. Idea Group (IGI) Publishing, 2003.

[36] Pankaj Jalote. An Integrated Approach to Software Engineering. Text in Computer
Science. Springer, Berlin, 3rd edition, November, 30th 2005.

[37] Bijay K. Jayaswal, Peter C. Patton. Design for Trustworthy Software: Tools, Tech-
niques, and Methodology of Developing Robust Software. Prentice Hall Interna-
tional, 2006.

[38] W. W. Royce. Managing the Development of Large Software Systems. In IEEE
WESCON, pages 1–9, August 1970. Reprint in proceedings of the 9th International
Conference on Software Engineering (ICSE-9), pages 328-338, 1987, Monterey,
CA.

[39] Herbert D. Benington. Production of Large Computer Programs, volume IEEE
Annals of the History of Computing 5. IEEE, October-December 1983.

BIBLIOGRAPHY 131

[40] Victor R. Basili and Albert J, Turner. Iterative Enhancement: A Practical Tech-
nique for Software Development, volume SE-1, pages 390–396. IEEE, December
1975.

[41] Meir M. Lehman. The Programming Process. IBM Res. Rep. RC 2722, IBM Re-
search Centre, Yorktown Heights, NY 10594, September 1969.

[42] Barry W. Boehm. Guidelines for Verifying and Validating Software Requirements
and Design Specifications. In Proc. European Conf. Applied Information Technol-
ogy (IFIP 79), pages 711–719, September 1979.

[43] Barry W. Boehm. A Spiral Model of Software Development and Enhancement,
volume Computer vol. 21. IEEE, 1988.

[44] Thomas Grechenig, Mario Bernhart, Roland Breiteneder, Karin Kappel. Soft-
waretechnik: Mit Fallbeispielen aus realen Entwicklungsprojekten. Pearson
Studium, October, 21st 2009.

[45] Ivar Jacobson, Grady Booch, James Rumbaugh. Unified Software Development
Process. Addison-Wesley Longman, Amsterdam, 1999.

[46] The Eclipse Foundation. Introduction to OpenUP.
http://www.eclipse.org/epf/general/OpenUP.pdf, August 2007. visited Octo-
ber 2007.

[47] Scott W. Ambler. Enterprise Unified Process (EUP).
http://www.enterpriseunifiedprocess.com/, September 2007. visited October
2007.

[48] Per Kroll, Philippe Kruchten. The Rational Unified Process Made Easy: A Practi-
tioner’s Guide to the RUP. Addison Wesley, 2003.

[49] John Hunt. Guide to the Unified Process Featuring UML, Java and Design Pat-
terns. Springer, 2003.

[50] Jim Arlow, Ila Neustadt. UML 2.0 and the Unified Process: Practical Object-
Oriented Analysis and Design. Addison-Wesley Longman, Amsterdam, 2 edition,
July, 14th 2005.

[51] Kent Beck. Embracing Change with Extreme Programming. Computer, 32(10):70–
77, October 1999.

[52] Duane Truex, Richard Baskerville, Julie Travis. Amethodical Systems Develop-
ment: The Deferred Meaning of Systems Development Methods. Accounting,
Management and Information Technology, 10:53 – 79, 2000.

[53] Peter Naur. Understanding Turing’s Universal Machine — Personal Style in Pro-
gram Description. The Computer Journal, 36:351–372, 1993.

BIBLIOGRAPHY 132

[54] Richard Baskerville, Julie Travis, Duane P. Truex. Systems Without Method: The
Impact of New Technologies on Information Systems Development Projects. In
Kenneth E. Kendall, Kalle Lyytinen, Janice I. DeGross, editor, Proceedings of the
IFIP WG8.2 Working Conference on The Impact of Computer Supported Technolo-
gies in Information Systems Development, Minneapolis, Minnesota, USA, volume
A-8 of IFIP Transactions, pages 241–269. North-Holland, 14-17 June 1992.

[55] Watts S. Humphrey. A Discipline for Software Engineering. SEI Series in Software
Engineering. Addison Wesley, January 1995.

[56] Watts S. Humphrey. Introduction to the Personal Software Process. SEI Series in
Software Engineering. Addison Wesley, March, 5th 1997.

[57] Christian Schindler. Agile Software Development Methods and Practices in Aus-
trian IT-Industry: Results of an Empirical Study. In Masoud Mohammadian, editor,
Proc. 2008 International Conference on Computational Intelligence for Modelling,
Control & Automation (CIMCA 2008), Intelligent Agents, Web Technologies & In-
ternet Commerce (IAWTIC 2008), Innovation in Software Engineering (ISE 2008),
pages 321–326, Vienna, Austria, December 10-12 2008. IEEE Computer Society.

[58] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, US edition, October, 5th 1999.

[59] Laurie Ann Williams. The Collaborative Software Process. PhD thesis, University
of Utah Department of Computer Science, 2000.

[60] Jim Highsmith. Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. Dorset House Publishing Co Inc.,U.S., January 2000.

[61] Sam Bayer, Jim Highsmith. RADical Software Development. The American Pro-
grammer Magazine, June 1994.

[62] Alistair Cockburn. Crystal Clear A Human-Powered Methodology for Small
Teams. Addison Wesley Professional, October, 19th 2004.

[63] Stephen R. Palmer, John M. Felsing. A Practical Guide to the Feature-Driven
Development. Coad Series. Prentice Hall International, Februar 2002.

[64] Frederick Phillips Brooks Jr. The Mythical Man-Month: Essays on Software Engi-
neering. Addison-Wesley, anniversary edition edition, 1995.

[65] Pranjal Arya and Christian Schindler and Wolfgang Slany. Human-Agent interac-
tion in the light of ontology sharing and large scale cooperation. In Proc. Int. Conf.
on Intelligent Agents, Web Technologies and Internet Commerce (IAWTIC 2005),
pages 158–161, Vienna, Austria, November 28-30 2005. IEEE Computer Society.

BIBLIOGRAPHY 133

[66] Karl Neuhold and Christian Schindler and Wolfgang Slany. The htmlButler Ap-
proach: Through Shared Ontologies and Large Scale Cooperation to Enhanced
Wrapper Usability. In Proc. 6th International Conference on Knowledge Manage-
ment (I-KNOW06), pages 35–38, Graz, Austria, September 6-8 2006.

[67] R. Baumgartner and S. Flesca and G. Gottlob. Visual Web Information Extraction
with Lixto. In Proceedings of VLDB, 2001.

[68] M. Herzog and G. Gottlob. InfoPipes: A flexible Framework for M-Commerce
Applications. In Proceedings of TES workshop at VLDB, 2001, 2001.

[69] Sahuguet, A. Azavant, F. Web ecology: Recycling HTML pages as XML docu-
ments using w4f. In Proceedings WebDB, 1999, 1999.

[70] David Huynh, Stefano Mazzocchi, and David Karger. Piggy Bank: Experience the
Semantic Web Inside Your Web Browser. In Proceedings of the 4th International
Semantic Web Conference, ISWC 2005, Galway, Ireland, volume 3729 of Lecture
Notes in Computer Science, November 6-10 2005.

[71] Wales, J. and Sanger, L. The Wikipedia Project. http://wikipedia.org. visited June
2005.

[72] Flickr. http://www.flickr.com. visited: September 2005.

[73] Goodger, B. et al. XML User Interface Language (XUL) 1.0.
http://www.mozilla.org/projects/xul/xul.html, 2001. visited: January 2006.

[74] Mozilla Foundation. Mozilla.org. http://www.mozilla.org/. visited: January 2006.

[75] M. Hatala and G.Richards. Global vs. Community Metadata Standards: Empow-
ering Users for Knowledge Exchange. In Proceedings of the First International
Semantic Web Conference., 2002.

[76] M. Missikoff and X.F. Wang. Consys - A Group Decision-Making Support Sys-
tem For Collaborative Ontology Building. In Proceedings of Group Decision &
Negotiation 2001 Conference, 2001.

[77] M. Stonebraker and J. Hellerstein. Content Integration for E-Business. In ACM
Sigmod Conference, 2001.

[78] W3C and Refsnes-Data. W3C RSS Tutorial, 2006. visited June 2006.

[79] Wikipedia. WikiWikiWeb. http://en.wikipedia.org/wiki/WikiWikiWeb. visited
June 2005.

[80] Enrico Motta, Marta Sabou. Next Generation Semantic Web Applications. In
Proceedings of the 1st Asian Semantic Web Conference (ASWC), Beijing, China,
3-7 September, 2006, 2006.

BIBLIOGRAPHY 134

[81] Martin Lechner. XP Team Psychology - An Inside View. In PPIG 2008, The
20th Annual Psychology of Programming Interest Group Conference, Lancaster
University, September, 10th - 12th 2008. PPIG 2008, The 20th Annual Psychology
of Programming Interest Group Conference, Lancaster University, UK. 10th - 12th
September 2008.

[82] Philippe Kruchten. The Rational Unified Process - An Introduction. Addison-
Wesley Longman, Amsterdam, 3rd edition, December 2003.

[83] Kweku Ewusi-Mensah. Software Development Failures: Anatomy of Abandoned
Projects. MIT Press, 2003.

[84] StandishGroup. The CHAOS Report. The Standish Group, 1994.
http://standishgroup.com.

[85] Robert L. Glass. IT Failure Rates - 70% or 10 - 15%. Software, IEEE, 22(3):110–
112, May - June 2005.

[86] Robin F. Goldsmith. REAL CHAOS, Two Wrongs May Make a Right. IT Metrics
and Productivity Journal http://www.compaid.com/, 2008/12/17, December 2008.

[87] Norman L. Kerth. Project Retrospectives - A Handbook for Team Reviews. Dorset
House Publishing Co Inc.,U.S., 2001.

[88] Laurie Williams and Robert Kessler. Pair Programming Illuminated. Addison
Wesley, 2003.

[89] Bruce W. Tuckman. Developmental Sequence in Small Groups. Psychological
Bulletin, 63 (3)(3):384–399, June 1965. Reprint (with permission) in Group Facil-
itation: A Research and Applications Journal No. 3, Spring 2001 (doi).

[90] Günther Krumpak. IT-Business in Österreich. Bohmann, 2001.

[91] IT-Business in Österreich 2008. Monitor Bohmann, Vienna, 2008.

[92] IDC CEMA. Austria IT Services 2008-2012 Forecast and 2007 Vendor Shares.
IDC Central Europe GmbH, August 2008.

[93] Christian Hofer. Software Development in Austria: Results of an Empirical Study
among Small and Very Small Enterprises. In Proceedings of the 28th Euromicro
Conference (EUROMICRO-02), 2002.

[94] Kohsuke Kawaguchi et.al. Hudson - an extensible continuous integration engine.
https://hudson.dev.java.net/. visited January 2008.

[95] ThoughtWorks, Inc. Cruisecontrol a framework for a continuous build process.
http://cruisecontrol.sourceforge.net, 2001. visited January 2008.

BIBLIOGRAPHY 135

[96] Wolfgang H. Janko and Edward W. N. Bernroider and Walter Ebner. Soft-
warestudie 2000 Eine empirische Untersuchung der österreichischen Software-
branche. ADV, 2000.

[97] COMMISSION OF THE EUROPEAN COMMUNITIES. COMMISSION REC-
OMMENDATION of 06/05/2003 concerning the definition of micro, small and
medium-sized enterprises. Brussels, 06/05/2003 C(2003) 1422 final, 2003.

[98] European Commission. European commission - sme definition.
http://ec.europa.eu/enterprise/enterprise policy/sme definition, May 2003. visited:
June 2008.

[99] Ward Cunningham. The WyCash portfolio management system. OOPS Messenger,
4(2):29–30, 1993. DBLP:journals/oopsm/Cunningham93.

[100] Kane Mar, Michael James. Technical Debt and Design Death.
http://danube.com/scrum/whitepapers, 2006.

[101] Ken Schwaber. The Enterprise and Scrum. Microsoft Press, June, 13th 2007.

[102] John P. Kotter. Leading Change. Mcgraw-Hill Professional, September, 1st 1996.

[103] Jim Collins. Good to Great: Why Some Companies Make the Leap...And Others
Don’t . Harper Business, October, 16th 2001.

[104] John P. Kotter, Dan S. Cohen. The Heart of Change: Real Life Stories of How
People Change Their Organizations. Mcgraw-Hill Professional, July, 1st 2002.

[105] Carsten Schmitz, Thibault Le Meur, David Olivier, Jason Cleeland, Amit Ku-
mar, Evan Wills, Karolina Maneva-Jakimoska, Bob Cunningham, Jörg Schneider,
Daniel Dao Quang Minh, Mac Duy Hai,Tim Wahrendorff. Lime Survey, the open
source survey application... refreshingly easy and free. http://www.limesurvey.org,
2009.

[106] Apache HTTP Server Project. http://httpd.apache.org/, 2009.

[107] PHP: Hypertext Preprocessor. http://php.net/, 2009.

[108] MySQL Community Server. http://www.mysql.com/, 2009.

[109] William Edwards Deming. Out of the Crisis. The MIT Press, August, 11th 2000.

[110] Meir M. Lehman, Lazlo A. Belady. Program Evolution: Process of Software
Change. London: Academic Press, 1985.

Appendices

136

Appendix A

Lehman’s Laws

Lehman’s investigation of the software process in a period of over 20 years led to his eight
“laws” of software evolution [24]and are briefly described below:

• Continuing Change (1974)
A program used in a real life environment must be adapted continuously otherwise
it will progressively degrade in its usefulness since the operational context changes
over time.

• Increasing Complexity (1974)
The complexity of an evolving system increases since the structure becomes more
complex when changes are made. The increase of complexity makes further changes
more difficult therefore additional resources must be provided to keep the structure
simple in spite of implemented changes.

• Self-Regulation (1974)
Program evolution is a self-regulating process. Software is implemented within a
wider organizational context therefore the completion of the program is constrained
by the wider objectives and constraints of this context at all levels. All feedback
controls the way the system evolves. The time between releases and the number of
change requests due to discovered errors tend to be invariant.

• Law of Conservation of Organizational Stability (1978)
Over the life span of a program the average rate of work tends to be constant and
independent of the resources and to its development.

• Conservation of Familiarity (1978)
Over the life span of a program the average changes in each release tend to be
constant.

• Continuing Growth (1991)
This is closely coupled with the first law. The features of a program (functional ca-
pability) must continuously increase to keep the usefulness of the program. System
growth is driven by feedback from its users.

137

APPENDIX A. LEHMAN’S LAWS 138

• Declining Quality (1996)
Program quality tends to decrease. A program is built on certain assumptions and
over time due to a changing environment these assumptions become invalid.

• Feedback Systems (1996 already recognized 1971)
Evolution processes are feedback systems. Feedback plays a role in all of the laws,
this was recognized in [41]. Later Studies in the 1970’s showed self-stabilizing
feedback system behavior. “The process leads to an organization and a process
dominated by feedback,” [110].

These consolidated findings formulated as “laws” show that software has an evolution-
ary nature and without maintenance, software would cease to be useful with the time.

Appendix B

htmlButler Project Post Mortem
Questionnaire

In this Appendix the questions for the htmlButler post mortem survey are described. This
survey was conducted by means of word processing files which were sent to the involved
developers by email. The discussion of the consolidated data can be found in Chapter 3.

B.1 Introduction
This is an anonymous questionnaire. The purpose is to analyze the htmlButler project and
find out which and how things could be done in a different way to improve the overall
outcome of similar projects in future. Any information which could be traced back to you
will be eliminated in the evaluation process and will neither be disclosed to public nor
used in another way as previously described.

B.2 General Information
Have you been staffed full-time/part-time (e.g. 40h/week or less) to the project:
� full
� part

Did you participate the complete period (1st Feb. 2005 - 31st Jan. 2007) in the
project:
� Yes
� No

Did you enjoy your time on the project:
� (5) excellent
� (4)
� (3)

139

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 140

� (2)
� (1)
� (0) not at all

Was your area of work in the project clear to you:
� (5) absolutely
� (4)
� (3)
� (2)
� (1)
� (0) not at all

Was the project-target clear to the developers:
� (5) absolutely
� (4)
� (3)
� (2)
� (1)
� (0) not at all

Was the project-target clear to the project- and upper managers:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) not at all

Please rate your motivation at the START of your time in the project:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

Please rate your motivation at the END of your time in the project:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 141

Please rate your own contribution to the project:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) nothing

Please rate your own ability to work independently:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) cannot work independently

Please rate your payment:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

I see myself as someone who...

...is reserved ...is generally trusting

...tends to be lazy ...is relaxed, handles stress well

...has few artistic interests ...is outgoing sociable

...tends to find fault with others ...does a thorough job

...gets easily nervous ... has an active imagination

...is considerate and kind to almost everyone

Table B.1: Self assessment. Scale: 5 (“strongly agree”) ... 0 (“strongly disagree”).

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 142

B.3 Teamwork
How many developers were involved in the project:
� (5) too many
� (4)
� (3)
� (2)
� (1)
� (0) too few

How many developers participated in the project during your time:

Please rate your capacity/ability for teamwork:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

Please rate the capacity/ability for teamwork for your coworkers:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

Did you have problems with team members:
� Yes
� No

If yes, please tell the number of team members you had problems with:
...and please describe the reason with short terms:

Please rate the team spirit (moral/mood) of the team at the START of the project:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 143

Please rate the team spirit (moral/mood) of the team at the END of the project:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

Please rate the ability of the team members to work independently:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

Was the distribution of work among the team members fair:
� Yes
� No

If not, did you have to work more than others:
� Yes
� No

Do you favor agile methods to traditionally software development methods:
� Yes
� No

Have you worked in a software project before:
� Yes
� No

Have you worked with agile methods before:
� Yes
� No

Have you worked in a project utilizing agile methods before:
� Yes
� No

Please rate you experience level with agile methods:
� (5) excellent

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 144

� (4)
� (3)
� (2)
� (1)
� (0) poor

Please rate your experience level in programming:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

Did you have problems making yourself understood in the meetings:
� Yes
� No

Did pair programming work in your team:
� Yes
� No

Do you think the team members were on an equal knowledge level:
� Yes
� No

If not: did the knowledge transfer work:
� Yes
� No

Did the team follow the test first paradigm:
� Yes
� No

Did the team follow the collective code ownership:
� Yes
� No

Please rate the frequency of internal meetings during the project:
� (5) too many
� (4)
� (3)
� (2)

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 145

� (1)
� (0) too few

Please rate the usefulness of internal meetings during the project:
� (5) a must
� (4)
� (3)
� (2)
� (1)
� (0) wasted time

Please rate the frequency of the general project meetings (with the shareholders)
during the project:
� (5) too many
� (4)
� (3)
� (2)
� (1)
� (0) too few

Please rate the usefulness of the general project meetings (with the shareholders)
during the project:
� (5) a must
� (4)
� (3)
� (2)
� (1)
� (0) wasted time

Do you think the XP paradigm was appropriate for the intended project:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

Do you think the XP paradigm was appropriate for the team:
� (5) excellent
� (4)
� (3)
� (2)
� (1)

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 146

� (0) poor

Please rate your satisfaction with the other developer’s work during the project:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

Rate the enforcement of the established agile methods:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

B.4 Management
How many managers were involved in the project:

With how many managers did you have contact during your time at the project:

Where there a clear hierarchy in the management:
� Yes
� No

Please rate the perceived competence of the project manager:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

Did the targets of the project manager match with the upper management/shareholders:
� Yes
� No

Please rate the agreement of the project manager with the upper management/shareholder:

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 147

� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

Please rate your satisfaction with the project manager’s work during the project:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

Please rate your satisfaction with the upper management/shareholders during the
project:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

Please rate the leadership style of the project manager:
� (5) excellent
� (4)
� (3)
� (2)
� (1)
� (0) poor

How many layers of management did you experience during the project:

Do you think there was a common project plan at the beginning of the project:
� Yes
� No

Do you think there was a common project plan during the project:
� Yes
� No

Do you think there was a common project plan for the end phase of the project:

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 148

� Yes
� No

Please rate the organization of the project:
� (5) plan driven
� (4)
� (3)
� (2)
� (1)
� (0) chaotic

With your knowledge today do you think this project could be done successfully?:
� Yes
� No

With the experience made in the project would you participate again?:
� Yes
� No

B.5 XP Practices in General
The following topics are to be rated by the following scale:
10...fanatic, 9...always, 8...regular, 7...often, 6...usually, 5...half and half
4...common, 3...sometimes, 2...rarely, 1...hardly ever, 0...disagree/never.

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 149

How strict/effective did you apply the following...

Automated Unit
Tests

Customer Acceptance
Tests

Test First Design

Pair Program-
ming

Refactoring Release Planning

Customer Access Short Releases Stand Up Meet-
ing

Continuous Inte-
gration

Coding Standards Collective Own-
ership

Sustainable Pace Simple Design System Metaphor

Lessons Learned Growth (are team mem-
bers getting smarter
over time?)

Synergy

Morale Artifact Reduction (do
’just enough’ documen-
tation)

Table B.2: Strictness of XP practices on a scale between 10 (“fanatic”) and 0 (“dis-
agree/never”).

B.6 Experience with XP Practices

B.6.1 Planning Game/Release Planning: Plan work incrementally
How long have you worked with and applied this practice:

This practice was...

helpful easy to learn easy to apply

enjoyable already widely used easy to introduce
in a team

Table B.3: Planning game/release planning. Please rate on a scale between 5 (“totally
true”) and 0 (“strongly disagree”).

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 150

Please briefly describe the rating of “easy introduction” of this practice:

Please briefly describe what are the benefits/problems/drawbacks you see:

B.6.2 Small Releases: Release as quickly as possible to increase time
to market, and get feedback as soon as possible.

How long have you worked with and applied this practice:

This practice was...

helpful easy to learn easy to apply

enjoyable already widely used easy to introduce
in a team

Table B.4: Small releases. Please rate on a scale between 5 (“totally true”) and 0
(“strongly disagree”).

Please briefly describe the rating of “easy introduction” of this practice:

Please briefly describe what are the benefits/problems/drawbacks you see:

B.6.3 Metaphor: If possible, define a metaphor for the system being
developed. For example, the shopping cart metaphor is widely
used to describe an online ordering system.

How long have you worked with and applied this practice:

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 151

This practice was...

helpful easy to learn easy to apply

enjoyable already widely used easy to introduce
in a team

Table B.5: Metaphor. Please rate on a scale between 5 (“totally true”) and 0 (“strongly
disagree”).

Please briefly describe the rating of “easy introduction” of this practice:

Please briefly describe what are the benefits/problems/drawbacks you see:

B.6.4 Simple Design: Use the simplest design that will work for the
functionality (user story) being implemented. Do not design
for things that may never actually be used.

How long have you worked with and applied this practice:

This practice was...

helpful easy to learn easy to apply

enjoyable already widely used easy to introduce
in a team

Table B.6: Simple design. Please rate on a scale between 5 (“totally true”) and 0
(“strongly disagree”).

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 152

Please briefly describe the rating of “easy introduction” of this practice:

Please briefly describe what are the benefits/problems/drawbacks you see:

B.6.5 Testing: Test everything, and try to automate the testing if pos-
sible.

How long have you worked with and applied this practice:

This practice was...

helpful easy to learn easy to apply

enjoyable already widely used easy to introduce
in a team

Table B.7: Testing. Please rate on a scale between 5 (“totally true”) and 0 (“strongly
disagree”).

Please briefly describe the rating of “easy introduction” of this practice:

Please briefly describe what are the benefits/problems/drawbacks you see:

B.6.6 Refactoring: Instead of designing the entire system up front,
design as you go, making improvements as needed. Change the
implementation without changing the interface to the function-
ality, and use automated testing to determine the impact of the
refactoring.

How long have you worked with and applied this practice:

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 153

This practice was...

helpful easy to learn easy to apply

enjoyable already widely used easy to introduce
in a team

Table B.8: Refactoring. Please rate on a scale between 5 (“totally true”) and 0 (“strongly
disagree”).

Please briefly describe the rating of “easy introduction” of this practice:

Please briefly describe what are the benefits/problems/drawbacks you see:

B.6.7 Pair Programming: Programming in teams of two (or three)
allow for a discussion to occur in real-time that addresses re-
quirement, design, testing, and programming concerns.

How long have you worked with and applied this practice:

This practice was...

helpful easy to learn easy to apply

enjoyable already widely used easy to introduce
in a team

Table B.9: Pair programming. Please rate on a scale between 5 (“totally true”) and 0
(“strongly disagree”).

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 154

Please briefly describe the rating of “easy introduction” of this practice:

Please briefly describe what are the benefits/problems/drawbacks you see:

B.6.8 Collective Code Ownership: Anyone on the team can make a
change to any code at any time.

How long have you worked with and applied this practice:

This practice was...

helpful easy to learn easy to apply

enjoyable already widely used easy to introduce
in a team

Table B.10: Collective code ownership. Please rate on a scale between 5 (“totally true”)
and 0 (“strongly disagree”).

Please briefly describe the rating of “easy introduction” of this practice:

Please briefly describe what are the benefits/problems/drawbacks you see:

B.6.9 Continuous Integration: The entire code base is constantly be-
ing rebuilt, and retested in an automated fashion.

How long have you worked with and applied this practice:

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 155

This practice was...

helpful easy to learn easy to apply

enjoyable already widely used easy to introduce
in a team

Table B.11: Continuous integration. Please rate on a scale between 5 (“totally true”) and
0 (“strongly disagree”).

Please briefly describe the rating of “easy introduction” of this practice:

Please briefly describe what are the benefits/problems/drawbacks you see:

B.6.10 Sustainable Pace: Ideally, team members do not need to work
more than 40 hours per week to meet project deadlines. Burn-
ing the midnight oil is chunked by management in favor of
consistent, predictable, repeatable delivery.

How long have you worked with and applied this practice:

This practice was...

helpful easy to learn easy to apply

enjoyable already widely used easy to introduce
in a team

Table B.12: Sustainable pace. Please rate on a scale between 5 (“totally true”) and 0
(“strongly disagree”).

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 156

Please briefly describe the rating of “easy introduction” of this practice:

Please briefly describe what are the benefits/problems/drawbacks you see:

B.6.11 Coding Standards: In order to maximize communication, cod-
ing standards are defined by the team, and used to ensure
consistent coding practices.

How long have you worked with and applied this practice:

This practice was...

helpful easy to learn easy to apply

enjoyable already widely used easy to introduce
in a team

Table B.13: Coding standards. Please rate on a scale between 5 (“totally true”) and 0
(“strongly disagree”).

Please briefly describe the rating of “easy introduction” of this practice:

Please briefly describe what are the benefits/problems/drawbacks you see:

B.6.12 On-Site Customer: Having constant and direct access to the
customer allows the team to work at the fastest possible speed.

How long have you worked with and applied this practice:

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 157

This practice was...

helpful easy to learn easy to apply

enjoyable already widely used easy to introduce
in a team

Table B.14: On-site customer. Please rate on a scale between 5 (“totally true”) and 0
(“strongly disagree”).

Please briefly describe the rating of “easy introduction” of this practice:

Please briefly describe what are the benefits/problems/drawbacks you see:

B.6.13 Daily Standup Meeting
How long have you worked with and applied this practice:

This practice was...

helpful easy to learn easy to apply

enjoyable already widely used easy to introduce
in a team

Table B.15: Daily standup meeting. Please rate on a scale between 5 (“totally true”) and
0 (“strongly disagree”).

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 158

Please briefly describe the rating of “easy introduction” of this practice:

Please briefly describe what are the benefits/problems/drawbacks you see:

B.6.14 Whole Team: The team functions as a whole. Members are
encouraged to be more generalized than specialized. Learn-
ing about all technologies and requirements is encouraged.

How long have you worked with and applied this practice:

This practice was...

helpful easy to learn easy to apply

enjoyable already widely used easy to introduce
in a team

Table B.16: Whole team. Please rate on a scale between 5 (“totally true”) and 0 (“strongly
disagree”).

Please briefly describe the rating of “easy introduction” of this practice:

Please briefly describe what are the benefits/problems/drawbacks you see:

B.6.15 Comments
Please, feel free to give comments to the project:

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 159

B.7 Fundamental Project Questions

Topic At
Project-
Start

At
Project-
End

User involvement - 19%

Do we have the right users? � Yes � Yes
� No � No

Are the users involved often and from the beginning? � Yes � Yes
� No � No

Is there a quality recording of the users? � Yes � Yes
� No � No

Do we alleviate/encourage user involvement? � Yes � Yes
� No � No

Do we know what are the users’ needs? � Yes � Yes
� No � No

Executive management support - 16%

Do we have the key executives? � Yes � Yes
� No � No

Have the key executives financial share in the project results? � Yes � Yes
� No � No

Is a failure of the project acceptable? � Yes � Yes
� No � No

Is there a well defined project plan? � Yes � Yes
� No � No

Has the project team a financial share in the project results? � Yes � Yes
� No � No

Table B.17: Fundamental project questions - part 1.

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 160

Topic At
Project-
Start

At
Project-
End

Clear statement of requirements - 15%

Do I have a clear vision? � Yes � Yes
� No � No

Do I have a functional analysis? � Yes � Yes
� No � No

Do I have a risk analysis? � Yes � Yes
� No � No

Do I have a business case? � Yes � Yes
� No � No

Is the project progress measurable? � Yes � Yes
� No � No

Proper planning - 11%

Do we have a problem statement? � Yes � Yes
� No � No

Do we have a solution statement? � Yes � Yes
� No � No

Do we have the appropriate people in the team? � Yes � Yes
� No � No

Do we have a well-founded, hard specification? � Yes � Yes
� No � No

Do we have achievable milestones? � Yes � Yes
� No � No

Realistic expectations - 10%

Do we have clear expectation specifications? � Yes � Yes
� No � No

Do we have prioritized requirements? � Yes � Yes
� No � No

Do we have small milestones? � Yes � Yes
� No � No

Are we able to react well to changes? � Yes � Yes
� No � No

Are we able to practice prototyping? � Yes � Yes
� No � No

Table B.18: Fundamental project questions - part 2.

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 161

Topic At
Project-
Start

At
Project-
End

Small project milestones - 9%

Do we apply the 80/20 rule? � Yes � Yes
� No � No

Do we follow a TOP-DOWN design? � Yes � Yes
� No � No

Do we have time-limits? � Yes � Yes
� No � No

Do we use a prototyping tool? � Yes � Yes
� No � No

Can we measure the progress? � Yes � Yes
� No � No

Competent staff - 8%

Do I know which competencies are necessary? � Yes � Yes
� No � No

Do we have the right people in the team? � Yes � Yes
� No � No

Do we have a training program? � Yes � Yes
� No � No

Do we have incentives (awards, bonus)? � Yes � Yes
� No � No

Does the staff have an overview? � Yes � Yes
� No � No

Ownership - 6%

Do we have a well-defined organization? � Yes � Yes
� No � No

Does everyone know their own role? � Yes � Yes
� No � No

Are there success awards/bonuses offered? � Yes � Yes
� No � No

Is everybody committed to the project? � Yes � Yes
� No � No

Do we have well-defined roles? � Yes � Yes
� No � No

Table B.19: Fundamental project questions - part 3.

APPENDIX B. HTMLBUTLER POST MORTEM QUESTIONNAIRE 162

Topic At
Project-
Start

At
Project-
End

Clear visions and objectives - 3%

Is the vision shared by everyone? � Yes � Yes
� No � No

Does the vision fit the company objectives? � Yes � Yes
� No � No

Are the objectives achievable? � Yes � Yes
� No � No

Are the objectives measurable? � Yes � Yes
� No � No

Are there honest checks for meaningfulness? � Yes � Yes
� No � No

Hard working, focused staff - 3%

Is there appeal for success? � Yes � Yes
� No � No

Is there concentration on quantifiable deliverables? � Yes � Yes
� No � No

Has every team member part-ownership? � Yes � Yes
� No � No

Do the team members work well together? � Yes � Yes
� No � No

Do the team members trust each other and is trust increasing? � Yes � Yes
� No � No

Table B.20: Fundamental project questions - part 4.

Appendix C

Questionnaire for the Empirical Survey
concerning Agile Methods in Austrian
IT Industry (German)

In this Appendix, the base questions for the survey concerning the use of agile software
development methods in the Austrian IT-Industry are described. This survey was con-
ducted in German language, for the English version refer to Appendix D. Since the sur-
vey was conducted as a telephone interview, additional questions and answers emerged
through the dialog with the interview participants. These questions and answers are not
included here but were integrated in the data analysis in Chapter 4.

C.1 Telefonumfrage Agile Softwareentwicklungsmetho-
den

Firma:
Name und Tel.-Nr. der Kontaktperson:
Interesse an den Umfrageergebnissen:
� Ja
� Nein

• Sie sind in der Firma tätig als:
� Manager
� Entwickler

• Wie viele Mitarbeiter hat die Firma gesamt:

– Wie viele Mitarbeiter hat der Standort:

– Wie viele Mitarbeiter hat die Entwicklungsabteilung:

– Wie viele Mitarbeiter hat Ihr Team:

163

APPENDIX C. SURVEY QUESTIONNAIRE (GERMAN) 164

• Sind Ihnen Agile Softwareentwicklungsmethoden (SWE-Methoden) generell bekannt?
� Ja
� Nein

– Wenn JA (bekannt), unterstützen Sie persönlich den Einsatz dieser in Ihrer
Firma/Team?
� Ja
� Nein

– Wenn NEIN (bekannt, nicht unterstützt), warum nicht (bspw. zu aufwändig,
nicht effektiv, etc.)? Bitte beschreiben Sie kurz den Grund:

• Würden Sie generell lieber mehr Zugriff auf Informationen zu Agilen SWE-Methoden
haben?
� Ja
� Nein

• Glauben Sie, dass Agile SWE-Methoden in der Praxis oft eingesetzt werden?
� Ja
� Nein

– Wenn NEIN (nicht eingesetzt), woran könnte das Ihrer Meinung nach liegen:

• Welche Agilen Methoden fallen Ihnen im Stegreif ein, bitte geben Sie ein paar
Beispiele:

• Setzen Sie bereits agile Methoden, bzw. haben Sie versucht eine agile Methodik in
Ihrer Firma/Team einzusetzen?
� Ja
� Nein

– Wenn JA (bereits eingesetzt), bitte beschreiben Sie kurz Ihre Erfahrung damit
(was funktionierte, was nicht):

– Wenn NEIN (nicht eingesetzt), warum nicht? Bitte beschreiben Sie kurz den
Grund:

APPENDIX C. SURVEY QUESTIONNAIRE (GERMAN) 165

• Kennen Sie die agile SWE-Methode “Extreme Programming” (XP)?
� Ja
� Nein

• Generieren Sie mit Hilfe von Tools Dokumentation aus dem Source-Code?
� Ja
� Nein

• Benutzen Sie “Unit-Tests”?
� Ja
� Nein

• Verwenden Sie den “Test-First” Ansatz?
� Ja
� Nein

• Führen Sie “Continuous Integration” aus bzw. haben Sie eine “Nightly Build” Plat-
tform?
� Ja
� Nein

• Kennen Sie die agile Praktik “Pair Programming” (PP)?
� Ja
� Nein

– Wenn NEIN (unbekannt), bitte beschreiben Sie kurz was Sie sich darunter
vorstellen könnten:

– Wenn NEIN (unbekannt), bitte beschreiben Sie kurz wie es z.B. bei der Fehler-
suche aussieht?

– Wenn JA (bekannt), was sind für Sie die Vorteile von “Pair Programming”?
Bitte beschreiben Sie diese kurz:

– Wenn JA (bekannt), haben Sie “Pair Programming” bereits in Ihrem Team
ausprobiert?
� Ja
� Nein

∗ Wenn JA (eingesetzt), bitte beschreiben Sie kurz das Ergebnis (was funk-
tionierte/ was funktionierte nicht):

APPENDIX C. SURVEY QUESTIONNAIRE (GERMAN) 166

· Details: Bitte beschreiben Sie kurz in welchen Situationen/Phasen
Sie “Pair Programming” eingesetzt haben (z.B.: Prototyping, Design,
Architektur, Entwicklung, Fehlersuche):

∗ Wenn NEIN (nicht eingesetzt), warum nicht? Bitte beschreiben Sie kurz
den Grund warum Sie “Pair Programming” noch nicht ausprobiert haben:

• Planen Sie “Pair Pogramming” in Zukunft einzusetzen bzw. zu unterstützen?
� Ja
� Nein

– Wenn JA (PP einsetzen), die Praktik “Pair Programming” alleine oder in Verbindung
mit anderen Agilen Methoden oder Praktiken (welche?):

– Wenn NEIN (PP nicht einsetzen), warum nicht? Bitte beschreiben Sie kurz
den Grund:

• Planen Sie andere agile Methoden in Zukunft einzusetzen bzw. zu unterstützen?
� Ja
� Nein

– Wenn JA (andere Methoden einsetzen), bitte geben Sie an welche anderen
Methoden Sie in Zukunft einsetzen wollen:

– Wenn NEIN (kein Plan), warum nicht? Bitte beschreiben Sie kurz den Grund

• Termin-Einschätzungen, Liefertreue, bitte bewerten Sie die folgende Aussage:
“In der Software-Branche werden Termine generell NICHT eingehalten”
� (1) trifft voll zu
� (2)
� (3)
� (4)
� (5) trifft gar nicht zu

APPENDIX C. SURVEY QUESTIONNAIRE (GERMAN) 167

Werden Termine eingehalten? Glaube bzw. Erwartung Erfahrung
als Auftraggeber (Kunde) � Ja � Ja

� eher Ja � eher Ja
� eher Nein � eher Nein
� Nein � Nein
� k.A. � k.A.

als Beauftragter (Verkäufer) � Ja � Ja
� eher Ja � eher Ja
� eher Nein � eher Nein
� Nein � Nein
� k.A. � k.A.

Table C.1: Persönliche Bewertung der Liefertreue

Appendix D

Questionnaire for the Empirical Survey
concerning Agile Methods in Austrian
IT Industry (English)

In this Appendix the base questions for the survey concerning the use of agile software
development methods in the Austrian IT-Industry are described. This survey was orig-
inally conducted in German language. The German version of the questionnaire can be
found in Appendix C. Since the survey was conducted as a telephone interview, additional
questions and answers emerged through the dialog with the interview participants. These
questions and answers are not included here but were integrated in the data analysis in
Chapter 4.

D.1 Telephone survey “Agile Development Methods”
Company:
Name and telephone No. of contact:
Interested in the survey outcome?
� Yes
� No

• You work in this company as a:
� Manager
� Developer

• How many employees has this company:

– How many employees are at your location:

– How many employees work at the development department:

– How many members are in your team:

168

APPENDIX D. SURVEY QUESTIONNAIRE (ENGLISH) 169

• Are you generally aware of “agile software development (SWD) methods” ??
� Yes
� No

– If YES (aware of), do you personally support the adoption of these methods
in your company or team?
� Yes
� No

– If NO (aware but no support), why not (e.g., too elaborate, not effective, etc.)?
Please, briefly describe your reasons:

• Would you like to have better access to more information concerning agile SWD-
Methods?
� Yes
� No

• Do you think that agile SWD-Methods are often adopted in practice?
� Yes
� No

– If NO (no adoption), in your opinion, what could be reasons for that?

• Which agile SWD-methods do you remember ad hoc? Please name a few exam-
ples:

• Do you already apply agile SWD-methods in practice or did you already try to
adopt them in your company or team?
� Yes
� No

– If YES (adoption), please, briefly describe your experiences (what did, what
did not work):

– If NO (no adoption), why not? Please, briefly describe your reasons:

• Do you know the agile SWD-method called “Extreme Programming”(XP)?
� Yes
� No

APPENDIX D. SURVEY QUESTIONNAIRE (ENGLISH) 170

• Do you use tools to automatically generate documentation from your source codes?
� Yes
� No

• Do you use “Unit-Tests”?
� Yes
� No

• Do you apply the “Test-First” paradigm?
� Yes
� No

• Do you adhere to “Continuous Integration” or do you have a “Nightly Build” plat-
form?
� Yes
� No

• Do you know the agile practice of “Pair Programming” (PP)?
� Yes
� No

– If NO (unknown), please briefly describe what you could imagine by the term
“Pair Programming”:

– If NO (unknown), please, describe how, e.g., finding bugs look like in your
team

– If YES (known), what do think are the advantages of “Pair Programming”?
Please, briefly describe them:

– If YES (known), did you already try out “Pair Programming” in your team?
� Yes
� No

∗ If YES (tried out), please briefly describe your experiences (what did,
what did not work):

· Details: Please, briefly describe in which situation or phases of the
development process you applied “Pair Programming” (e.g., Proto-
typing, Design, Architecture, Development, Debugging):

APPENDIX D. SURVEY QUESTIONNAIRE (ENGLISH) 171

∗ If NO (not tried out), why not? Please, briefly describe your reasons why
you did not try out “Pair Programming”:

• Do you have plans for the future to adopt or support the practice of “Pair Program-
ming”?
� Yes
� No

– If YES (plan), are there plans to adopt “Pair Programming” alone or in com-
bination with another agile SWD-Method (which one)?:

– If NO (no plan to), why not? Please, briefly describe you reasons:

• Do you have plans for the future to adopt or support other agile SWD-Methods in
in your team or company?
� Yes
� No

– If YES (adopt other methods), please, briefly describe which methodologies
you plan to adopt or support:

– If NO (no other methods), why not? Please, briefly describe your reasons:

• Dead-Line assessment, delivery reliability, please rate the following phrase:
“In the software-branch dead-lines are generally NOT met.”
� (1) totally true
� (2)
� (3)
� (4)
� (5) not true at all

APPENDIX D. SURVEY QUESTIONNAIRE (ENGLISH) 172

Are dead-lines met? Belief / Expectation Experience
as a sponsor (customer) � Yes � Yes

� rather Yes � rather Yes
� rather No � rather No
� No � No
� n.s. � n.s.

as an appointee (supplier) � Yes � Yes
� rather Yes � rather Yes
� rather No � rather No
� No � No
� n.s. � n.s.

Table D.1: Personal rating of adherence to deadlines

Appendix E

Scrum Transition - Collected
Burn-Down Graphs

In this appendix the collected burn-down graphs of a whole year during an IT-department’s
transition to scrum, are documented. Sprint relevant information and some statistical data
for each sprint are given aside the sprint burn-down graph. Interpretation of the data as
well as a discussion of some remarkable sprints, according to the graphs and notes, is
given in Chapter 5.

How to read the burn-down graph The vertical bar (shaded green) represents the de-
velopment power of the team in percent. It is decreased by the absence of team members
(vacations and meetings, etc.). The dotted graph (gray) represents the ideal burn-down,
which can never be exactly reached due to the granularity of the user stories, but gives
a hint where the real graph should converge to. The dashed graph (green) represents the
planned, and the solid graph (blue) the real burn-down of the user story points.

E.1 Initial Sprint
Sprint phase: Wednesday 7th January 2009 - Monday 19th January 2009

Sprint 1 Remarks

• The first sprint was one day shorter as the normal sprint due to a national holiday.

• The team members’ leave decreased the available person days by 3.

• One team member worked on non sprint related issues.

• The review of two user stories brought up software defects which had impact on the
rest of the user stories and their architecture. This led to an overall delay.

173

APPENDIX E. SCRUM TRANSITION 174

• The Product-Owner became sick and his substitute did not have all needed infor-
mation.

• The estimation meeting for the second sprint was not done during the sprint as
planned due to lack of time of the Product-Owner.

Sprint length in days 9

Original number of team members 7

Theoretically available person days 63

Actual available person days 42

Person days available for development 23

Number of user stories 8

Number of all tasks 46

Number of all delayed tasks 5

Number of unplanned tasks 10

Time needed for unplanned tasks [h] -

User story points committed 32

User story points scored 32

Table E.1: Statistics for sprint 1.

APPENDIX E. SCRUM TRANSITION 175

Figure E.1: The burn-down graph of the first sprint.

E.2 Sprint 2
Sprint phase: Tuesday 20th January 2009 - Monday 2nd February 2009

Sprint 2 Remarks

• During the second week of the sprint the Scrum-Master was on leave and had to be
substituted.

• The team members’ leave decreased the available person days by 4.

• One team member worked on non sprint related issues.

• One big user story was not split and proved to be far more complex than in the
sprint planning which in combination with the unplanned tasks had its impact on
the scored user story points for this sprint.

• 10 unplanned tasks with a total development effort of one person week had to be
done additionally.

APPENDIX E. SCRUM TRANSITION 176

Sprint length in days 10

Original number of team members 7

Theoretically available person days 70

Actual available person days 55.5

Person days available for development 38

Number of user stories 5

Number of all tasks 71

Number of all delayed tasks 35

Number of unplanned tasks 9

Time needed for unplanned tasks [h] 32.5

User story points committed 29

User story points scored 18

Table E.2: Statistics for sprint 2.

Figure E.2: The burn-down graph of sprint 2.

APPENDIX E. SCRUM TRANSITION 177

E.3 Sprint 3
Sprint phase: Tuesday 3rd February 2009 - Monday 16th February 2009

Sprint 3 Remarks

• The team’s estimation of the user stories and the commitment was lower than in
sprint 2.

• During the first week of the sprint, the Scrum-Master was on leave and had to be
substituted.

• There was too much work in parallel. The team did not focus together on one user
story.

• One team member worked two days on non sprint related issues.

• Unfinished user stories from the second sprint had to be finished.

• 23 unplanned tasks with a total development effort of 1.3 person weeks had to be
done additionally.

Sprint length in days 10

Original number of team members 7

Theoretically available person days 70

Actual available person days 66

Person days available for development 55

Number of user stories 5

Number of all tasks 84

Number of all delayed tasks 39

Number of unplanned tasks 23

Time needed for unplanned tasks [h] 56h

User story points committed 29 (19)

User story points scored 29

Table E.3: Statistics for sprint 3.

APPENDIX E. SCRUM TRANSITION 178

Figure E.3: The burn-down graph of sprint 3.

E.4 Sprint 4
Sprint phase: Tuesday 17th February 2009 - Monday 2nd March 2009

Sprint 4 Remarks

• All the sprint’s user stories were related to refactoring. The required refactoring
effort were hard to estimate without exact knowledge of the code.

• Only a basic approach to implement the refactoring user stories could be agreed
upon in the sprint planning meeting. Therefore the exact procedure and the tasks
were partially defined on demand or while doing pair programming respectively.

• The team members’ leave decreased the available person days by 9.

• One team member worked on non sprint related issues which reduced the available
person days by another 10.

• Tasks and bug fixes from the previous sprint disturbed the current sprint.

• The team started to work together on the user stories sequentially.

• 8 unplanned tasks with a total development effort of 1.6 person weeks had to be
done additionally.

APPENDIX E. SCRUM TRANSITION 179

Sprint length in days 10

Original number of team members 7

Theoretically available person days 70

Actual available person days 52

Person days available for development 35

Number of user stories 8

Number of all tasks 32

Number of all delayed tasks 12

Number of unplanned tasks 5

Time needed for unplanned tasks [h] 64.25

User story points committed 25

User story points scored 25

Table E.4: Statistics for sprint 4.

Figure E.4: The burn-down graph of sprint 4.

APPENDIX E. SCRUM TRANSITION 180

E.5 Sprint 5
Sprint phase: Tuesday 3rd March 2009 - Monday 16th March 2009

Sprint 5 Remarks

• The team members’ leave decreased the available person days by 6.

• One user story turned out to be a never-ending story with many dependencies and
hidden defects.

• The team, the Scrum-Master as well as the sprint’s Product-Owner were not happy
with the amount of unplanned defect fixing tasks the team had been assigned. The
Scrum-Master and the Product-Owner organized a meeting with the head of the
department concerning this issue.

• 15 unplanned tasks with a total development effort of 1.33 person weeks had to be
done additionally.

Sprint length in days 10

Original number of team members 7

Theoretically available person days 70

Actual available person days 65

Person days available for development 52

Number of user stories 6

Number of all tasks 50

Number of all delayed tasks 12

Number of unplanned tasks 15

Time needed for unplanned tasks [h] 51.25

User story points committed 16

User story points scored 16

Table E.5: Statistics for sprint 5.

APPENDIX E. SCRUM TRANSITION 181

Figure E.5: The burn-down graph of sprint 5.

E.6 Sprint 6
Sprint phase: Tuesday 17th March 2009 - Monday 6th April 2009

Sprint 6 Remarks

• This sprint lasted three weeks.

• The team members’ leave decreased the available person days by 5.

• The Scrum-Master was five days on leave in the last week before sprint review.

• The Product-Owner forgot two user stories which were really important to the cus-
tomer - so there had to be a second planning and a revision of the commitment.

• The Product-Owner reported requirement changes during the sprint.

• In spite of full utilization of the team, an extra user story was added which had to
be finished because a manager “made a promise” to a customer.

• 14 unplanned tickets with a total development effort of 1.1 person weeks had to be
done additionally.

APPENDIX E. SCRUM TRANSITION 182

Sprint length in days 15

Original number of team members 7

Theoretically available person days 105

Actual available person days 98

Person days available for development 85

Number of user stories 17

Number of all tasks 96

Number of all delayed tasks 36

Number of unplanned tasks 14

Time needed for unplanned tasks [h] 42.75

User story points committed 31

User story points scored 31

Table E.6: Statistics for sprint 6.

Figure E.6: The burn-down graph of sprint 6.

APPENDIX E. SCRUM TRANSITION 183

E.7 Sprint 7
Sprint phase: Tuesday 7th April 2009 - Monday 20th April 2009

Sprint 7 Remarks

• A couple of changes and defects of the previous sprint had a negative impact on this
sprint.

• The team members’ leave decreased the available person days by 10.

• In this sprint the problem of a single point of knowledge became visible: Knowl-
edge was not distributed through the team. The expert wanted to do all tasks for
himself and failed, while the other team members fixed the bugs of the previous
sprint. In retrospective they agreed to increase the teamwork and knowledge trans-
fer.

• The Product-Owner reported changes of the requirements during the sprint.

• 10 unplanned tasks with a total development effort of 1.1 person weeks had to be
done additionally.

Sprint length in days 10

Original number of team members 7

Theoretically available person days 70

Actual available person days 59

Person days available for development 49

Number of user stories 8

Number of all tasks 41

Number of all delayed tasks 16

Number of unplanned tasks 10

Time needed for unplanned tasks [h] 44.25

User story points committed 20

User story points scored 8

Table E.7: Statistics for sprint 7.

APPENDIX E. SCRUM TRANSITION 184

Figure E.7: The burn-down graph of sprint 7.

E.8 Sprint 8
Sprint phase: Tuesday 21st March 2009 - Monday 4th May 2009

Sprint 8 Remarks

• The sprint was one day shorter due to a national holiday.

• The team members’ leave decreased the available person days by 4.

• The team committed too much for such a short sprint.

• One team member left the company and did not finish committed tasks.

• An impediment with the testing machine kept the whole team off development for
a total amount of 15 person hours. The defect could be found with the help of all
team members and the database administrator.

• Due to changes in the requirements which were communicated after the sprint re-
view a lot of functionality became obsolete.

• Communication problems between Product Owners of different projects became
a problem. A sprint-external Product-Owner negatively influenced this and previ-
ous sprints through directly asking team members to fix small defects of previous

APPENDIX E. SCRUM TRANSITION 185

projects. The Scrum-Master as well as the current Product Owner of this sprint
were not informed but realized the not sprint related work at the next daily scrum.

• For a scheduled defect fixing task, the defect turned out to be irreproducible. This
wasted valuable development time.

• 9 unplanned tasks with a total development effort of 1.8 person weeks had to be
done additionally.

Sprint length in days 9

Original number of team members 7

Theoretically available person days 63

Actual available person days 56

Person days available for development 43

Number of user stories 6

Number of all tasks 42

Number of all delayed tasks 26

Number of unplanned tasks 9

Time needed for unplanned tasks [h] 69.8

User story points committed 26

User story points scored 13

Table E.8: Statistics for sprint 8.

APPENDIX E. SCRUM TRANSITION 186

Figure E.8: The burn-down graph of sprint 8.

E.9 Sprint 9
Sprint phase: Tuesday 5th May 2009 - Monday 18th (25th) May 2009

Sprint 9 Remarks

• The sprint 9 was initially planned as a three week sprint. Due to reduction of over-
time and leave days the Product-Owner and the team agreed to run a two week
sprint and go on leave the third week making a 9-day sprint.

• The team members’ leave decreased the available person days for that shorter sprint
by 5 more person days.

• One team member left the company and reduced the team at the end of the sprint.

• Unclear requirements of three user stories let the Product-Owner descope them and
defer them to a later sprint.

• A sprint-external Product-Owner negatively influenced this sprint through directly
asking team members to fix small defects of previous projects. The Scrum-Master
as well as the current Product Owner of this sprint were not informed but realized
the not sprint related work at the next daily scrum.

APPENDIX E. SCRUM TRANSITION 187

• For a scheduled defect fixing task, the defect turned out to be irreproducible. This
wasted valuable development time.

• Due to requirement changes the team needed to work until the end of the last sprint
day which deferred the overall sprint review.

• 12 unplanned tasks with a total development effort of 0.9 person weeks had to be
done additionally.

Sprint length in days 10

Original number of team members 7

Theoretically available person days 70

Actual available person days 49

Person days available for development 36

Number of user stories 6 (9)

Number of all tasks 40

Number of all delayed tasks 14

Number of unplanned tasks 12

Time needed for unplanned tasks [h] 32

User story points committed 19 (24)

User story points scored 16

Table E.9: Statistics for sprint 9.

APPENDIX E. SCRUM TRANSITION 188

Figure E.9: The burn-down graph of sprint 9.

E.10 Sprint 10
Sprint phase: Tuesday 26th May 2009 - Monday 8th June 2009

Sprint 10 Remarks

• The sprint was one day shorter due to a national holiday.

• The team members’ leave decreased the available person days by 1.

• The department-wide scrum team restructuring caused uncertainty in the teams.
This was intensified by the fact that two team members had left the company in the
previous two sprints.

• One user story had to be descoped by the Product Owner due to lack of information.

• One user story had to be completely canceled by the Product Owner since the cus-
tomer did not want its functionality any more.

• One planned defect fixing task with low priority was rendered out of scope by the
unplanned tasks and could not be finished in this sprint.

• 10 unplanned tasks with a total development effort of 1.3 person weeks had to be
done additionally.

APPENDIX E. SCRUM TRANSITION 189

Sprint length in days 9

Original number of team members 5

Theoretically available person days 45

Actual available person days 41

Person days available for development 34

Number of user stories 7 (10)

Number of all tasks 34

Number of all delayed tasks 10

Number of unplanned tasks 10

Time needed for unplanned tasks [h] 49.5

User story points committed 12 (18)

User story points scored 12

Table E.10: Statistics for sprint 10.

Figure E.10: The burn-down graph of sprint 10.

APPENDIX E. SCRUM TRANSITION 190

E.11 Sprint 11
Sprint phase: Tuesday 9th June 2009 - Monday 22nd June 2009

Sprint 11 Remarks

• The sprint was shorter by two days due to national holidays.

• The team members’ leave decreased the available person days by 1.

• The team was restructured: two members were exchanged to distribute knowledge
between teams.

• The team emphasized design and knowledge transfer.

• The scheduled defect fixing task was descoped by Product-Owner since it had low
priority and maintenance had no time an staff to care.

• 8 unplanned tasks with a total development effort of 0.7 person weeks had to be
done additionally.

Sprint length in days 8

Original number of team members 5

Theoretically available person days 40

Actual available person days 38.5

Person days available for development 32

Number of user stories 4 (5)

Number of all tasks 27

Number of all delayed tasks 8

Number of unplanned tasks 8

Time needed for unplanned tasks [h] 26

User story points committed 15 (18)

User story points scored 15

Table E.11: Statistics for sprint 11.

APPENDIX E. SCRUM TRANSITION 191

Figure E.11: The burn-down graph sprint 11.

E.12 Sprint 12
Sprint phase: Tuesday 23rd June 2009 - Monday 6th July 2009

Sprint 12 Remarks

• The team members’ leave decreased the available person days by 11.

• One team member was half the sprint occupied supporting another team.

• The team accepted an additional user story to be added during the sprint.

• The Product-Owner deferred the sprint review to the next sprint due to lack of time.

• 10 unplanned tasks with a total development effort of 1.6 person weeks had to be
done additionally.

APPENDIX E. SCRUM TRANSITION 192

Sprint length in days 10

Original number of team members 5

Theoretically available person days 50

Actual available person days 39.5

Person days available for development 28

Number of user stories 6

Number of all tasks 33

Number of all delayed tasks 4

Number of unplanned tasks 10

Time needed for unplanned tasks [h] 63.5

User story points committed 23

User story points scored 23

Table E.12: Statistics for sprint 12.

Figure E.12: The burn-down graph of sprint 12.

APPENDIX E. SCRUM TRANSITION 193

E.13 Sprint 13
Sprint phase: Tuesday 07th July 2009 - Monday 20th July 2009

Sprint 13 Remarks

• The team members’ leave decreased the available person days by 15.

• The Product-Owner reported requirement changes during the sprint which led to a
much higher complexity of two user stories, a split and a descoping of two sched-
uled defect fixing tasks.

• An estimation meeting for the next sprint was done but then the Product-Owner de-
cided that another team should work on this project since it had previously worked
in this field. This wasted a lot of time.

• 5 unplanned tasks with a total development effort of 0.5 person weeks had to be
done additionally.

Sprint length in days 10

Original number of team members 5

Theoretically available person days 50

Actual available person days 33

Person days available for development 19

Number of user stories 4 (6)

Number of all tasks 36

Number of all delayed tasks 14

Number of unplanned tasks 5

Time needed for unplanned tasks [h] 21

User story points committed 14 (17)

User story points scored 14

Table E.13: Statistics for sprint 13.

APPENDIX E. SCRUM TRANSITION 194

Figure E.13: The burn-down graph of sprint 13.

E.14 Sprint 14
Sprint phase: Tuesday 21st July 2009 - Monday 3rd August 2009

Sprint 14 Remarks

• The Scrum-Master was on leave in the second week of the sprint.

• The team members’ leave decreased the available person days by 11.

• There were two Product-Owners in this sprint.

• The Planning meeting for user stories of second Product-Owner took place at the
end of the first sprint week.

• Changes in the requirements for the second Product-Owner’s user story had neg-
ative influence on the development power - therefore two defect fixing tasks with
low priorities were descoped.

• 12 unplanned tasks with a total development effort of 1.3 person weeks had to be
done additionally.

APPENDIX E. SCRUM TRANSITION 195

Sprint length in days 10

Original number of team members 5

Theoretically available person days 50

Actual available person days 27

Person days available for development 39

Number of user stories 6 (8)

Number of all tasks 29

Number of all delayed tasks 10

Number of unplanned tasks 12

Time needed for unplanned tasks [h] 50.5

User story points committed 12 (18)

User story points scored 12

Table E.14: Statistics for sprint 14.

Figure E.14: The burn-down graph of sprint 14.

APPENDIX E. SCRUM TRANSITION 196

E.15 Sprint 15
Sprint phase: Tuesday 4th August 2009 - Monday 17th August 2009

Sprint 15 Remarks

• The team members’ leave decreased the available person days by 9.

• One user story which did not fit into the last sprint had to be done, although the
team was exclusively planned for another Product-Owner’s project. This was again
the result of communication problem between the Product-Owners.

• The team over-committed in this sprint.

• The last user-story turned out to be too complex and had to be split. The second
part could not be finished in this sprint. The project of the second Product-Owner
seemed to be in severe time pressure.

• 5 unplanned tasks with a total development effort of 0.4 person weeks had to be
done additionally.

Sprint length in days 10

Original number of team members 5

Theoretically available person days 50

Actual available person days 41

Person days available for development 28

Number of user stories 7

Number of all tasks 43

Number of all delayed tasks 19

Number of unplanned tasks 5

Time needed for unplanned tasks [h] 15.5

User story points committed 24

User story points scored 21

Table E.15: Statistics for sprint 15.

APPENDIX E. SCRUM TRANSITION 197

Figure E.15: The burn-down graph of sprint 15.

E.16 Sprint 16
Sprint phase: Tuesday 18th August 2009 - Monday 31st August 2009

Sprint 16 Remarks

• The team members’ leave decreased the available person days by 1.

• At the estimation meeting for this sprint the team communicated that it was im-
possible to implement all the functionality the Product-Owner had planned for this
sprint.

• The commitment of the team did not play a role since there was a going-live date.

• The Scrum-Master and the Product-Owner escalated the problem. Unfortunately
the department leader was on leave and the substitute did not take the right mea-
surements in spite of the timely communication by the team, the Scrum-Master and
the Product-Owner.

• In spite of the overburden of the team it got assigned to one more unplanned task
with potential high but unknown priority and to 12 other unplanned defect fixing
tasks with high priority.

APPENDIX E. SCRUM TRANSITION 198

• These actions had a sustainable negative effect on the team’s and Scrum-Master’s
trust into the management.

• Architecture of this project showed severe shortcomings and a solution could not
be found before the middle of the second sprint week. Obviously no architect had
checked the functionality before the project was sold and scheduled.

• Together with the Product-Owner, some functionality was descoped and postponed
to the following sprint.

• The team power got increased by one developer of another team. The team agreed
to come in at the weekend to be able to hold the going-live date.

• One team member deferred his planned holidays for about two weeks. A second
team member deferred his planned holiday for one day.

• 13 unplanned tasks with a total development effort of 1.5 person weeks had to be
done additionally.

Sprint length in days 10

Original number of team members 5

Theoretically available person days 50

Actual available person days 56

Person days available for development 52

Number of user stories 5

Number of all tasks 82

Number of all delayed tasks 12

Number of unplanned tasks 13

Time needed for unplanned tasks [h] 58.5

User story points committed 32!

User story points scored 32

Table E.16: Statistics for sprint 16.

APPENDIX E. SCRUM TRANSITION 199

Figure E.16: The burn-down graph of sprint 16.

E.17 Sprint 17
Sprint phase: Tuesday 1st September 2009 - Monday 21st September 2009

Sprint 17 Remarks

• This sprint was a three week sprint.

• The team members’ leave decreased the available person days by 15.

• During the last 6 days of the sprint the Scrum-Master on leave and had to be sub-
stituted.

• User stories from the last sprint had to be finished for the going live date. The
integration phase started in the first week of the sprint. Therefore two Product-
Owners shared the team.

• Some planned user stories needed to be clarified by the customer and had to be
deferred to the next sprint.

• The team embraced two more defect fixing tasks.

• 5 unplanned tasks with a total development effort of one person day had to be done
additionally.

APPENDIX E. SCRUM TRANSITION 200

Sprint length in days 15

Original number of team members 5

Theoretically available person days 75

Actual available person days 60

Person days available for development 5

Number of user stories 10 (8)

Number of all tasks 50

Number of all delayed tasks 4

Number of unplanned tasks 5

Time needed for unplanned tasks [h] 8

User story points committed 26

User story points scored 28

Table E.17: Statistics for sprint 17.

Figure E.17: The burn-down graph of sprint 17.

APPENDIX E. SCRUM TRANSITION 201

E.18 Sprint 18
Sprint phase: Tuesday 22nd September 2009 - Monday 5th October 2009

Sprint 18 Remarks

• The Scrum-Master was on leave during the first 4 days of the sprint.

• The team members’ leave decreased the available person days by 10.

• The team had to re-estimate 5 of the user stories which showed to be more complex
than expected.

• At the sprint planning meeting 4 user stories with an amount of 10 user story points
were descoped due to lack of information and requirements. 4 user stories with an
amount of 11 user story points were embraced instead.

• Due to the lack of technical information about these user stories, a lot of time was
wasted and the completion of the user stories took until the end of the sprint.

• 8 unplanned tasks with a total development effort of 0.9 person weeks had to be
done additionally.

Sprint length in days 10

Original number of team members 5

Theoretically available person days 50

Actual available person days 41

Person days available for development 39

Number of user stories 7

Number of all tasks 53

Number of all delayed tasks 11

Number of unplanned tasks 8

Time needed for unplanned tasks [h] 34.5

User story points committed 26

User story points scored 26

Table E.18: Statistics for sprint 18.

APPENDIX E. SCRUM TRANSITION 202

Figure E.18: The burn-down graph of sprint 18.

E.19 Sprint 19
Sprint phase: Tuesday 6th October 2009 - Monday 19th October 2009

Sprint 19 Remarks

• The team members’ leave decreased the available person days by 10.

• Due to heavy dependencies between the user stories, most of them were finished at
the end of the sprint (see Figure E.19).

• Only a limited number of unplanned tasks occurred.

• Two unplanned tasks with a total development effort of about 0.4 person weeks had
to be done additionally.

APPENDIX E. SCRUM TRANSITION 203

Sprint length in days 10

Original number of team members 5

Theoretically available person days 50

Actual available person days 41

Person days available for development 39

Number of user stories 14

Number of all tasks 88

Number of all delayed tasks 24

Number of unplanned tasks 2

Time needed for unplanned tasks [h] 14

User story points committed 31

User story points scored 31

Table E.19: Statistics for sprint 19.

Figure E.19: The burn-down graph of sprint 19.

APPENDIX E. SCRUM TRANSITION 204

E.20 Sprint 20
Sprint phase: Tuesday 20th October 2009 - Monday 2nd November 2009

Sprint 20 Remarks

• The sprint was one day shorter as the normal sprint due to a national holiday.

• The team members’ leave decreased the available person days by 2.

• The initial plan was to assign 6 different project topics, with 5 different Product-
Owners of a total amount of twice the average user story points the team can work
off in a normal sprint to the team. The reason was that the different Product-Owners
did not communicate and thought they could use the team in this sprint. The Scrum-
Master organized a meeting to bring the Product-Owners together to prioritize the
projects.

• Support for another team proved less demanding as expected, so another user story
with an amount of two user story points was embraced.

• This was the first sprint in which there were no unplanned defect fixing tasks.

Sprint length in days 9

Original number of team members 5

Theoretically available person days 45

Actual available person days 43

Person days available for development 37

Number of user stories 6 (5)

Number of all tasks 34

Number of all delayed tasks 8

Number of unplanned tasks -

Time needed for unplanned tasks [h] -

User story points committed 23

User story points scored 25

Table E.20: Statistics for sprint 20.

APPENDIX E. SCRUM TRANSITION 205

Figure E.20: The burn-down graph of sprint 20.

E.21 Sprint 21
Sprint phase: Tuesday 3rd November 2009 - Monday 16th November 2009

Sprint 21 Remarks

• The team members’ leave decreased the available person days by 3.

• Like in the last sprint, too many user stories were initially planned and another
meeting was organized with the Product-Owners to prioritize.

• A very detailed and good sprint planning meeting took place. The only drawback
was that it happened only one day before sprint begin.

• The sprint estimation and commitment of the team were questioned by the manage-
ment who feared that the team members would not work 100% and laze around.

• The team became more careful with estimations due to the last sprint experiences
(hidden complexities). The team wanted to guarantee their commitment.

• An additional user story was embraced since capacities were free.

• 6 unplanned tasks with a total development effort of about 0.4 person weeks had to
be done additionally.

APPENDIX E. SCRUM TRANSITION 206

Sprint length in days 10

Original number of team members 5

Theoretically available person days 50

Actual available person days 47

Person days available for development 42

Number of user stories 8 (7)

Number of all tasks 52

Number of all delayed tasks 8

Number of unplanned tasks 6

Time needed for unplanned tasks [h] 15

User story points committed 22

User story points scored 25

Table E.21: Statistics for sprint 21.

Figure E.21: The burn-down graph of sprint 21.

APPENDIX E. SCRUM TRANSITION 207

E.22 Sprint 22
Sprint phase: Tuesday 17th November 2009 - Monday 30th November 2009

Sprint 22 Remarks

• The team members’ leave decreased the available person days by 3.

• Management changed the process how defect-fixing tasks were worked off. A cer-
tain percentage of the sprint’s person days were now reserved for defect fixing tasks.
These days are not available for work on the project. The reason was that Product-
Owners had frequently descoped low priority defect fixing tasks in previous sprints.

• Careful estimation by the team made it possible to finish critical tasks for integration
tests and even embrace another user story.

• 10 unplanned tasks with a total development effort of 1.1 person weeks had to be
done additionally.

Sprint length in days 10

Original number of team members 5

Theoretically available person days 50

Actual available person days 43

Person days available for development 37

Number of user stories 6 (4)

Number of all tasks 43

Number of all delayed tasks 6

Number of unplanned tasks 10

Time needed for unplanned tasks [h] 44.5

User story points committed 18

User story points scored 21

Table E.22: Statistics for sprint 22.

APPENDIX E. SCRUM TRANSITION 208

Figure E.22: The burn-down graph of sprint 22.

E.23 Sprint 23
Sprint phase: Tuesday 1st December 2009 - Monday 17th December 2009

Sprint 23 Remarks

• The last sprint of the year was scheduled to be a 12 day sprint.

• The team members’ leave decreased the available person days by 4.

• One team member was transferred to another project which decreased the available
person days by another 4.

• Architectural changes during the sprint were made necessary through lack of com-
munication between the team and the system architects.

• One unplanned task with a total development effort of 0.2 person weeks had to be
done additionally.

APPENDIX E. SCRUM TRANSITION 209

Sprint length in days 12

Original number of team members 5

Theoretically available person days 60

Actual available person days 52

Person days available for development 43

Number of user stories 8

Number of all tasks 57

Number of all delayed tasks 7

Number of unplanned tasks 1

Time needed for unplanned tasks [h] 7.5

User story points committed 25

User story points scored 25

Table E.23: Statistics for sprint 23.

Figure E.23: The burn-down graph of sprint 23.

Appendix F

Scrum Evaluation Questionnaire
(German)

In this Appendix the 121 questions for the Scrum evaluation survey are described. This
survey was conducted in German language. The questions which could be quantified
and their consolidated data are described in Appendix G in English language. Since the
evaluation survey was conducted via the web-based tool LimeSurvey, the layout of the
questionnaire was different.

F.1 Allgemeine Fragen
Hier werden allgemeine Fragen zur agilen Softwareentwicklung gestellt und die Umstel-
lung der Abteilung auf Scrum.

1 War Dir Scrum bereits vor der Einführung in der Abteilung bekannt? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

2 Wie lange kanntest Du bereits Scrum bevor es in dieser Abteilung eingeführt
wurde? *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “1” (War Dir Scrum bereits vor der Einführung in
dieser Abteilung bekannt?)
Bitte wähle die zutreffende Antwort aus:
� länger als 12 Monate
� 6-12 Monate
� < 6 Monate

210

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 211

3 Hast Du Scrum bereits vor der Einführung praktisch eingesetzt? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

4 Wenn ja, wie lange hast Du damit praktische Erfahrung? *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind: Die Antwort war
“Ja” bei der Frage “3” (Hast Du Scrum bereits vor der Einführung in dieser Abteilung
praktisch eingesetzt?)
Bitte wähle die zutreffende Antwort aus:
� länger als 12 Monate
� 6-12 Monate
� < 6 Monate

5 Sind Dir noch andere agile Softwareentwicklungsmethoden (außer Scrum) bekannt? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

6 Wenn Dir auch andere bekannt sind, bitte zähle diese kurz auf.
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “5” (Sind Dir noch andere agile Softwareentwick-
lungsmethoden (außer Scrum) bekannt?)
Bitte schreibe Deine Antwort hier:...

7 Hast Du diese, Dir bekannten agilen Softwareentwicklungsmethoden (außer Scrum),
bereits praktisch eingesetzt? *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “5” (Sind Dir noch andere agile Softwareentwick-
lungsmethoden (außer Scrum) bekannt?)
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

8 Wenn ja, wie lange hast Du damit praktische Erfahrung? *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “7” (Hast Du diese, Dir bekannten agilen Softwa-
reentwicklungsmethoden (außer Scrum), bereits praktisch eingesetzt?) Bitte wähle die
zutreffende Antwort aus:
� länger als 12 Monate
� 6-12 Monate
� < 6 Monate

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 212

9 Wie würdest Du Deine Einstellung zur aktuellen Scrum Praxis einschätzen? *
Bitte wähle die zutreffende Antwort aus:
� sehr positiv (5)
� (4)
� (3)
� (2)
� (1)
� strikt ablehnend (0)

10 Hat sich an Deiner Arbeitssituation durch die Einführung von Scrum etwas verändert? *
Bitte wähle die zutreffende Antwort aus:
� viel besser
� eher besser
� gleich
� eher schlechter
� viel schlechter

11 Empfundene Vorteile unserer momentanen Scrum Praxis.
Bitte wähle alle Punkte aus, die zutreffen:
� Team-Work
� bekannte Sprintlänge
� tägliches Feedback
� priorisiertes Entwickeln
� Selbstorganisation
� Sonstiges:

12 Empfundene Nachteile unserer momentanen Scrum Praxis.
Bitte wähle alle Punkte aus, die zutreffen:
� Sprint zu kurz
� permanente Kontrolle/Überwachung
� Änderungen während des Sprints
� Keine Möglichkeit für Wissenserwerb außerhalb der Projekte
� Sonstiges:

13 Wenn du entscheiden könntest: würdest du wieder zur Arbeitsweise vor Scrum
zurückkehren? *
Bitte wähle die zutreffende Antwort aus:
� auf jeden Fall bei Scrum bleiben (5)
� (4)
� (3)
� (2)
� (1)
� unbedingt zurückkehren (0)

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 213

14 Optional, bitte gib an was spricht für a.) die frühere Arbeitsweise und b.) die
Beibehaltung von Scrum?
Bitte schreibe Deine Antwort hier:...

15 Wie hast Du die Einführung von Scrum in Deiner Abteilung empfunden? *
Bitte wähle die zutreffende Antwort aus:
� sehr positiv (5)
� (4)
� (3)
� (2)
� (1)
� sehr negativ (0)

16 War die Information über die Umstellung ausreichend? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

17 Was ist positiv gelaufen?
Bitte wähle alle Punkte aus, die zutreffen:
� zeitgerechte Information
� transparenter Umstellungsplan
� ausreichende Schulungen
� individuelle Information
� gute Vorbereitung
� Sonstiges:

18 Was hätte man verbessern können?
Bitte wähle alle Punkte aus, die zutreffen:
� Information früher kommunizieren
� Plan der Umstellungsplan transparenter gestalten
� mehr Schulungen zu dem Thema abhalten
� bessere Vorbereitung
� Sonstiges:

19 Optionale abschließende Kommentare oder Ergänzungen zu den obigen Fragen.
Bitte schreibe Deine Antwort hier:...

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 214

F.2 Team
Hier werden Fragen zum Scrum-Team gestellt.
20 Bitte gib die Zufriedenheit mit deinem Team an. *
Bitte wähle die zutreffende Antwort aus:
� sehr zufrieden
� (5)
� (4)
� (3)
� (2)
� (1)
� sehr unzufrieden (0)

21 Gibt es Probleme im Team? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

22 Wenn es Probleme im Team gibt, welcher Art sind diese? (Bitte beschreibe diese
kurz)
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “21 [B02]” (Gibt es Probleme im Team?)
Bitte schreibe Deine Antwort hier:...

23 Wenn es Probleme im Team gibt ... *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “21” (Gibt es Probleme im Team?) Bitte wähle alle
Punkte aus, die zutreffen:
� ...können diese Probleme intern gelöst werden?
� ...bedarf es Hilfe von außerhalb des Teams?

24 Würdest Du von dir aus gerne das Team wechseln? *
Bitte wähle die zutreffende Antwort aus:
� sehr gerne (5)
� (4)
� (3)
� (2)
� (1)
� niemals (0)

25 Würdest Du einem, von außerhalb des Teams, angeregten Teamwechsel zustim-
men? *
Bitte wähle die zutreffende Antwort aus:

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 215

� sehr gerne (5)
� (4)
� (3)
� (2)
� (1)
� niemals (0)

26 Gibt es in Deinem Team Wissensinseln? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

27 Wieviel Aufwand fließt im Team in die Wissensweitergabe (Wissensverbreiterung)? *
Bitte wähle die zutreffende Antwort aus:
� sehr viel (5)
� (4)
� (3)
� (2)
� (1)
� gar keiner (0)

28 In welchem Rahmen findet die Wissensverbreiterung hauptsächlich statt? *
Bitte wähle die zutreffende Antwort aus:
� innerhalb Projektarbeit (5)
� (4)
� (3)
� (2)
� (1)
� außerhalb Projektarbeit (0)

29 Bitte gib Deine Zufriedenheit mit der Wissensverbreiterung im Team an. *
Bitte wähle die zutreffende Antwort aus:
� sehr zufrieden (5)
� (4)
� (3)
� (2)
� (1)
� sehr unzufrieden (0)

30 Findest Du die Arbeitsverteilung im Team gerecht? *
Bitte wähle die zutreffende Antwort aus:
� vollkommen (5)
� (4)

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 216

� (3)
� (2)
� (1)
� überhaupt nicht (0)

31 Wie findest Du die momentane Größe Deines Teams? *
Bitte wähle die zutreffende Antwort aus:
� zu groß
� passend
� zu klein

32 Was ist Deiner Meinung nach die optimale Teamgröße?
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war NICHT “passend” bei der Frage “31 [B10]” (Wie findest Du die mo-
mentane Größe Deines Teams? (Teamgröße))
Bitte schreibe hier Deine Antwort(en):
Minimalgröße=...
Maximalgröße=...
Optimalgröße=...

33 Wie funktioniert die Zusammenarbeit im Team? *
Bitte wähle die zutreffende Antwort aus:
� intensive Zusammenarbeit (5)
� (4)
� (3)
� (2)
� (1)
� gar nicht, arbeiten getrennt (0)

34 Sollte Deiner Meinung nach das Team ein gemeinsames Büro teilen? *
Bitte wähle die zutreffende Antwort aus:
� unbedingt (5)
� (4)
� (3)
� (2)
� (1)
� nicht nötig (0)

35 Optionale abschließende Kommentare oder Ergänzungen zu den obigen Fragen.
Bitte schreibe Deine Antwort hier:...

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 217

F.3 Scrum Master
Hier werden Fragen zum Scrum Master gestellt.

36 Bitte gib die Zufriedenheit mit Deinem ScrumMaster (SM) an. *
Bitte wähle die zutreffende Antwort aus:
� sehr zufrieden (5)
� (4)
� (3)
� (2)
� (1)
� sehr unzufrieden (0)

37 Ist Dir der Aufgabenbereich/Verantwortungsbereich des (SM) klar? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

38 Wenn der Aufgabenbereich/Verantwortungsbereich des SM unklar ist, beschreibe
bitte kurz WAS Dir unklar ist.
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Nein” bei der Frage “37 [C02]” (Ist Dir der Aufgabenbereich/Verantwortungsbereich
des (SM) klar?)
Bitte schreibe Deine Antwort hier:...

39 Gibt es Probleme mit Deinem SM? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

40 Wenn es Probleme mit Deinem SM gibt, welcher Art sind diese? (Bitte beschreibe
diese kurz)
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “39 [C03]” (Gibt es Probleme mit Deinem SM?)
Bitte schreibe Deine Antwort hier:...

41 Wenn es Probleme mit Deinem SM gibt ... *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “39 [C03]” (Gibt es Probleme mit Deinem SM?)
Bitte wähle alle Punkte aus, die zutreffen:
� ...können diese Probleme intern gelöst werden?
� ...bedarf es Hilfe eines Moderators?

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 218

42 Bist Du über die Impediments die der SM löst informiert? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

43 Werden Impediments von Deinem SM zeitgerecht gelöst?
Bitte wähle die zutreffende Antwort aus:
� vollkommen (5)
� (4)
� (3)
� (2)
� (1)
� überhaupt nicht (0)

44 Wie gut unterstützt der SM die Arbeit des Teams? *
Bitte wähle die zutreffende Antwort aus:
� sehr gut (5)
� (4)
� (3)
� (2)
� (1)
� sehr schlecht (0)

45 Optionale abschließende Kommentare oder Ergänzungen zu den obigen Fragen.
Bitte schreibe Deine Antwort hier:...

F.4 Product Owner
Hier werden Fragen zum Product Owner gestellt.

46 Bitte gib Deine Zufriedenheit mit den Product Ownern (POs) an. *
Bitte wähle die zutreffende Antwort aus:
� sehr zufrieden (5)
� (4)
� (3)
� (2)
� (1)
� sehr unzufrieden (0)

47 Sind dir der Aufgabenbereich/Verantwortungsbereich des PO klar? *

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 219

Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

48 Wenn der Aufgabenbereich/Verantwortungsbereich des PO unklar ist, beschreibe
bitte kurz WAS Dir unklar ist.
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Nein” bei der Frage “47 [D02]” (Sind dir der Aufgabenbereich/Verantwortungsbereich
des PO klar?)
Bitte schreibe Deine Antwort hier:...

49 Gibt es Probleme mit POs? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

50 Wenn es Probleme mit dem PO gibt, welcher Art sind diese? (Bitte beschreibe
diese kurz)
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “49 [D03]” (Gibt es Probleme mit POs?)
Bitte schreibe Deine Antwort hier:...

51 Wenn es Probleme mit POs gibt ... *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “49 [D03]” (Gibt es Probleme mit POs?)
Bitte wähle alle Punkte aus, die zutreffen:
� ...können diese Probleme intern gelöst werden?
� ...bedarf es Hilfe eines Moderators?

52 Wie gut unterstützt der PO die Arbeit des Teams? *
Bitte wähle die zutreffende Antwort aus:
� sehr gut (5)
� (4)
� (3)
� (2)
� (1)
� sehr schlecht (0)

53 Bitte gib die Qualität der Planung und die Ausarbeitung der Userstories (US)
an. *
Bitte wähle die zutreffende Antwort aus:
� sehr gut (5)
� (4)

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 220

� (3)
� (2)
� (1)
� sehr schlecht (0)

54 Werden die US früh genug vorgestellt? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

55 Wann werden in der Regel die User Stories (US) vom PO vorgestellt? *
Bitte wähle die zutreffende Antwort aus:
� mind. 1 Woche vor dem Sprint
� in der Woche vor dem Sprint
� unmittelbar vor dem Sprint
� im SP1
� direkt im Sprint

56 Finden Änderungen von Anforderungen während eines Sprints statt? *
Bitte wähle die zutreffende Antwort aus:
� sehr oft (5)
� (4)
� (3)
� (2)
� (1)
� niemals (0)

57 Sind diese Änderungen Deiner Meinung nach berechtigt (d.h. US nicht abnehm-
bar wenn Änderung nicht durchgeht)? *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war NICHT “niemals (0)” bei der Frage “56 [D07]” (Finden Änderungen
von Anforderungen während eines Sprints statt? (Häufigkeit)) Bitte wähle die zutref-
fende Antwort aus:
� immer (4)
� meistens (3)
� öfters (2)
� manchmal (1)
� nie (0)

58 Findet ein Direktzugriff des PO auf Team Mitglieder in einem Ausmaß statt, dass
die im Daily Scrum geplante Arbeit verzögert wird? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 221

� Nein

59 Wenn ein störender Direktzugriff des PO stattfindet, wie häufig findet dieser
statt? *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “58 [D08]” (Findet ein Direktzugriff des PO auf Team
Mitglieder in einem Ausmaß statt, dass die im Daily Scrum geplante Arbeit verzögert
wird?)
Bitte wähle die zutreffende Antwort aus:
� sehr oft (5)
� (4)
� (3)
� (2)
� (1)
� niemals (0)

60 Findet ein Direktzugriff eines sprintexternen POs auf Team Mitglieder in einem
Ausmaß statt, dass die im Daily Scrum geplante Arbeit verzögert wird? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

61 Wenn ein störender Direktzugriff des sprintexternen PO stattfindet, wie häufig
findet dieser statt? *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “60 [D09]” (Findet ein Direktzugriff eines sprintex-
ternen POs auf Team Mitglieder in einem Ausmaß statt, dass die im Daily Scrum geplante
Arbeit verzögert wird?)
Bitte wähle die zutreffende Antwort aus:
� sehr oft (5)
� (4)
� (3)
� (2)
� (1)
� niemals (0)

62 Optionale abschließende Kommentare oder Ergänzungen zu den obigen Fragen.
Bitte schreibe Deine Antwort hier:...

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 222

F.5 Meetings
Hier werden Fragen zu den stattfindenden Besprechungen gestellt.

63 Ist Dir der Zweck aller Besprechungen bekannt? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

64 Wenn der Zweck einer Besprechung unklar ist, beschreibe bitte kurz WAS Dir
unklar ist.
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Nein” bei der Frage “63 [E01]” (Ist Dir der Zweck aller Besprechungen
bekannt?)
Bitte schreibe Deine Antwort hier:...

65 Bitte gib Deine Zufriedenheit mit der Durchführung der Besprechungen an. *
Bitte wähle die zutreffende Antwort aus:
� sehr zufrieden (5)
� (4)
� (3)
� (2)
� (1)
� sehr unzufrieden (0)

66 Gibt es Deiner Meinung nach überflüssige Meetings? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

67 Welche Meetings sind Deiner Meinung nach überflüssig?
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “66 [E02a]” (Gibt es Deiner Meinung nach überflüssige
Meetings?)
Bitte schreibe Deine Antwort hier:...

68 Wird mit jeder der Besprechungen der vorgesehene Zweck erreicht? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

69 Wenn der Zweck der Besprechungen nicht erreicht wird, bitte beschreibe kurz
welche das sind und was dabei schief läuft.

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 223

Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Nein” bei der Frage “68 [E03]” (Wird mit jeder der Besprechungen der
vorgesehene Zweck erreicht?)
Bitte schreibe Deine Antwort hier:...

70 Wie findest Du die Anzahl der Besprechungen? *
Bitte wähle die zutreffende Antwort aus:
� viel zu viele (4)
� zu viele (3)
� passend (2)
� zu wenige (1)
� viel zu wenige (0)

71 Wie findest Du die Effizienz der Besprechungen? *
Bitte wähle die zutreffende Antwort aus:
� sehr effizient (5)
� (4)
� (3)
� (2)
� (1)
sehr ineffizient (0)

72 Wie gut findest Du den Aufwand für die Besprechungen investiert? *
Bitte wähle die zutreffende Antwort aus:
� sehr gut (5)
� (4)
� (3)
� (2)
� (1)
� sehr schlecht (0)

73 Wie stehst Du zu einem allgemeinen ”Public Demo Meeting” wo alle Teams die
Ergebnisse ihres letzten Sprints vorstellen? *
Bitte wähle die zutreffende Antwort aus:
� sehr positiv (5)
� (4)
� (3)
� (2)
� (1)
� strikt ablehnend (0)

74 Optionale abschließende Kommentare oder Ergänzungen zu den obigen Fragen.
Bitte schreibe Deine Antwort hier:...

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 224

F.6 Projektabwicklung
Hier werden Fragen zur generellen Projektabwicklung gestellt.

75 Bitte gib die Zufriedenheit mit der generellen Projektabwicklung an. *
Bitte wähle die zutreffende Antwort aus:
� sehr zufrieden (5)
� (4)
� (3)
� (2)
� (1)
� sehr unzufrieden (0)

76 Wäre es für Dich wichtig zu wissen wie Projekte zustande kommen? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

77 Wie gut verträgt sich Deiner Meinung nach die Projektplanung mit unserer Um-
setzung von Scrum? *
Bitte wähle die zutreffende Antwort aus:
� sehr gut (5)
� (4)
� (3)
� (2)
� (1)
� sehr schlecht (0)

78 Hast Du den Eindruck, dass genug Zeit für die Planung und Umsetzung der Pro-
jekte vorhanden ist? *
Bitte wähle die zutreffende Antwort aus:
mehr als genug (4)
� eher mehr als genug (3)
� ausreichend (2)
� eher zu wenig (1)
� zu wenig (0)

79 Wie Häufig gibt es ”forced commitments”, sodass Umfang und zeitlicher Rah-
men vom Kunden/PO bereits vorgegeben sind (Teamschätzungen sind irrelevant

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 225

oder haben nur informativen Charakter)? *
Bitte wähle die zutreffende Antwort aus:
� sehr oft (5)
� (4)
� (3)
� (2)
� (1)
� niemals (0)

80 Wie findest Du die Dauer eines ”normalen” Sprints von 2 Wochen? *
Bitte wähle die zutreffende Antwort aus:
� zu lang (3)
� passend (2)
� egal (1)
� zu kurz (0)

81 Wird mit vollem Einsatz daran gearbeitet (besonders gegen Ende des Sprints),
das Commitment einzuhalten? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

82 Wenn nein, bitte beschreibe kurz den Grund?
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Nein” bei der Frage “81 [F07]” (Wird mit vollem Einsatz daran gear-
beitet (besonders gegen Ende des Sprints), das Commitment einzuhalten?)
Bitte schreibe Deine Antwort hier:...

83 Wie groß ist Deiner Meinung nach der Einsatz Deines Teams, das Commitment
einzuhalten? *
Bitte wähle die zutreffende Antwort aus:
� maximal (5)
� (4)
� (3)
� (2)
� (1)
� minimal (0)

84 Wird der Architektur in den Projekten genug Aufmerksamkeit geschenkt? *
Bitte wähle die zutreffende Antwort aus:
� zu viel
� passend
� zu wenig

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 226

85 Wann finden die Einbindung der Architekten und die Überlegungen zur Ar-
chitektur statt? *
Bitte wähle die zutreffende Antwort aus:
� zu spät
� zeitgerecht
� zu früh

86 Haben die Architekturüberlegungen vom technischen Meeting Einfluss auf die
Team-Schätzungen der User Stories (US)? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

87 Wenn die Architekturüberlegungen Einfluss auf die Schätzungen haben, werden
diese ... *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “86 [F10]” (Haben die Architekturüberlegungen vom
technischen Meeting Einfluss auf die Team-Schätzungen der User Stories (US)?)
Bitte wähle die zutreffende Antwort aus:
� meist nach oben revidiert
� unterschiedlich revidiert
� meist nach unten revidiert

88 Wie oft ist es vorgekommen, dass ein ”Architektur-Veto” die Abnahme einer US
verzögert bzw. verhindert hat? *
Bitte wähle die zutreffende Antwort aus:
� sehr oft (5)
� (4)
� (3)
� (2)
� (1)
� niemals (0)

89 Optionale abschließende Kommentare oder Ergänzungen zu den obigen Fragen.
Bitte schreibe Deine Antwort hier:...

F.7 Tickets
Hier werden Fragen zur Abarbeitung von geplanten und ungeplanten Tickets gestellt.

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 227

90 Bitte gib die Zufriedenheit mit der Art der Ticketabarbeitung an. *
Bitte wähle die zutreffende Antwort aus:
� sehr zufrieden (5)
� (4)
� (3)
� (2)
� (1)
� sehr unzufrieden (0)

91 Wie gut passt unsere derzeitige Art der Ticketbearbeitung mit dem Scrum-Entwicklungsprozess
zusammen? *
Bitte wähle die zutreffende Antwort aus:
� vollkommen (5)
� (4)
� (3)
� (2)
� (1)
� überhaupt nicht (0)

92 Würdest Du eine andere Form der Ticket Abarbeitung bevorzugen? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

93 Bitte mache einen kurzen Vorschlag für eine andere Vorgehensweise der Tick-
etabarbeitung.
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “92 [G03]” (Würdest Du eine andere Form der Ticket
Abarbeitung bevorzugen?)
Bitte schreibe Deine Antwort hier:...

94 Findest Du die Aufteilung der Tickets unter den Teams gerecht? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

95 Wenn nicht, bitte beschreibe kurz den Grund.
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Nein” bei der Frage “94 [G04]” (Findest Du die Aufteilung der Tickets
unter den Teams gerecht?)
Bitte schreibe Deine Antwort hier:...

96 Wie findest Du die Anzahl aller Tickets pro Sprint? *

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 228

Bitte wähle die zutreffende Antwort aus:
� übermäßig
� passend
� gering

97 Wenn übermäßig, gefährdet die Anzahl aller Tickets das Sprint-Ziel? *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “übermäßig” bei der Frage “96 [G05]” (Wie findest Du die Anzahl aller
Tickets pro Sprint? (Anzahl))
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

98 Bitte gib die Zufriedenheit mit der Vorab-Analyse der Tickets durch die ”Main-
tenance” an. *
Bitte wähle die zutreffende Antwort aus:
� sehr zufrieden (5)
� (4)
� (3)
� (2)
� (1)
� sehr unzufrieden (0)

99 Bitte erkläre kurz den Grund bzw. Deinen Verbesserungsvorschlag.
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Antwort war gleich oder kleiner als “(2)” bei der Frage “98 [G06]” (Bitte gib die Zufrieden-
heit mit der Vorab-Analyse der Tickets durch die ”Maintenance/OCSO” an. (Zufrieden-
heit))
Bitte schreibe Deine Antwort hier:...

100 Wie oft wurde ein Sprint-Commitment auf Grund der Ticket-Last gebrochen? *
Bitte wähle die zutreffende Antwort aus:
� häufig (3)
� öfters (2)
� manchmal (1)
� nie (0)

101 Werden Deiner Meinung nach die Tickets dem jeweils richtigen Team zugewiesen? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

102 Wenn nein, bitte beschreibe kurz den Grund und Deinen Verbesserungsvorschlag.

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 229

Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Nein” bei der Frage “101 [G08]” (Werden Deiner Meinung nach die
Tickets dem jeweils richtigen Team zugewiesen?)
Bitte schreibe Deine Antwort hier:...

103 Optionale abschließende Kommentare oder Ergänzungen zu den obigen Fra-
gen.
Bitte schreibe Deine Antwort hier:...

F.8 Support
Hier werden Fragen zur Unterstützung von anderen (Scrum) Teams gestellt.

104 Wie gut funktioniert die Unterstützung zwischen den Teams? *
Bitte wähle die zutreffende Antwort aus:
� sehr gut (5)
� (4)
� (3)
� (2)
� (1)
� sehr schlecht (0)

105 Wenn die Unterstützung nicht optimal funktioniert, bitte beschreibe kurz den
Grund und mach einen Verbesserungsvorschlag.
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Antwort war gleich oder kleiner als “(3)” bei der Frage “104 [H01]” (Wie gut funktioniert
die Unterstützung zwischen den Teams? (Qualität))
Bitte schreibe Deine Antwort hier:...

106 Gibt es klare Richtlinien wie eine Unterstützung ablaufen soll. *

Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

107 Wenn es keine klaren Richtlinien gibt, wäre es Deiner Meinung nach sinnvoll? *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Nein” bei der Frage “106 [H02]” (Gibt es klare Richtlinien wie eine
Unterstützung ablaufen soll.)
Bitte wähle nur eine der folgenden Antworten aus:

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 230

� Ja
� Nein

108 Gab es bei der Unterstützung anderer Teams Schwierigkeiten? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

109 Wenn es bei der Unterstützung Schwierigkeiten gab, bitte beschreibe diese kurz
und mache einen Verbesserungsvorschlag.
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “108 [H02b]” (Gab es bei der Unterstützung anderer
Teams Schwierigkeiten?)
Bitte schreibe Deine Antwort hier:...

110 Gab es schon mal die Situation, dass Unterstützung für ein anderes Team den
eigenen Sprint beeinträchtigt bzw. gefährdet hat? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

111 Wenn ja, bitte gib die Häufigkeit an. *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “110 [H03]” (Gab es schon mal die Situation, dass
Unterstützung für ein anderes Team den eigenen Sprint beeinträchtigt bzw. gefährdet
hat?)
Bitte wähle die zutreffende Antwort aus:
� häufig (3)
� öfters (2)
� manchmal (1)
� nie (0)

112 Optionale abschließende Kommentare oder Ergänzungen zu den obigen Fra-
gen.
Bitte schreibe Deine Antwort hier:...

F.9 Delivery
Hier werden Fragen zur Zusammenarbeit mit dem Delivery Team gestellt.

113 Bitte gib Deine Zufriedenheit mit der Zusammenarbeit mit dem Delivery Team

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 231

an. *
Bitte wähle die zutreffende Antwort aus:
� sehr zufrieden (5)
� (4)
� (3)
� (2)
� (1)
� sehr unzufrieden (0)

114 Sind Dir die Aufgaben des Delivery Teams klar? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

115 Wenn die Aufgaben des Delivery Teams unklar sind, beschreibe bitte kurz WAS
Dir unklar ist.
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Nein” bei der Frage “114 [I02]” (Sind Dir die Aufgaben des Delivery
Teams klar?)
Bitte schreibe Deine Antwort hier:...

116 Ist Dir der Übergabeprozess der Projekte ans Delivery Team klar? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

117 Wenn nein, wäre Deiner Meinung nach ein klar definierter Übergabeprozess
sinnvoll? *
Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Nein” bei der Frage “116 [I04]” (Ist Dir der Übergabeprozess der Pro-
jekte ans Delivery Team klar?)
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

118 Hat es durch die Unterstützung des Delivery-Teams Beeinträchtigungen des
Sprints (Gefährdung des Commitments) gegeben? *
Bitte wähle nur eine der folgenden Antworten aus:
� Ja
� Nein

119 Wenn es durch die Unterstützung zu Sprint-Beeinträchtigungen kam, wie häufig
ist das passiert? *

APPENDIX F. SCRUM EVALUATION QUESTIONNAIRE (GERMAN) 232

Beantworte diese Frage nur, wenn folgende Bedingungen erfüllt sind:
Die Antwort war “Ja” bei der Frage “118 [I05]” (Hat es durch die Unterstützung des
Delivery-Teams Beeinträchtigungen des Sprints (Gefährdung des Commitments) gegeben?)
Bitte wähle die zutreffende Antwort aus:
� häufig
� (3)
� öfters (2)
� manchmal (1)
� nie (0)

120 Wie stehst Du zu der Idee, die Abnahme beim Kunden durch das eigene Team
durchführen zu lassen? *
Bitte wähle die zutreffende Antwort aus:
� sehr positiv (5)
� (4)
� (3)
� (2)
� (1)
� sehr negativ (0)

121 Optionale abschließende Kommentare oder Ergänzungen zu den obigen Fra-
gen.
Bitte schreibe Deine Antwort hier:...

Vielen Dank für die Beantwortung des Fragebogens �

Appendix G

Scrum Evaluation Detailed Data
(English)

In this appendix the data of the scrum evaluation, which could be quantified are listed
in tables. The additional comments and questions which were textually answered are
omitted here for brevity but are included in the discussion in Chapter 5.

G.1 General Information

Yes No

20 12

62.5% 37.5%

Table G.1: Q1: Have you been aware of Scrum before it was introduced in this depart-
ment?

longer than 12 months 6-12 months < 6 months

7 4 9

Table G.2: Q2: How long did you know Scrum before it was introduced in this depart-
ment?

233

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 234

Yes No

2 30

6.25% 93.75%

Table G.3: Q3:Did you have practical experience with Scrum before it was introduced in
this department

longer than 12 months 6-12 months < 6 months

1 1 0

3.12% 3.12% 0%

Table G.4: Q4: How long did you have practical experience with Scrum before it was
introduced in this department?

Yes No

13 19

40.62% 59.37%

Table G.5: Q5: Do you know other agile software development methodologies (other than
Scrum)?

Yes No

4 9

12.5% 29.12%

Table G.6: Q7: Do you have practical experience with the named agile methodologies

longer than 12 months 6-12 months < 6 months

1 1 2

3.12% 3.12% 6.25%

Table G.7: Q8: How long did you have practical experience with the named agile meth-
ods?

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 235

absolutely
positive (5)

(4) (3) (2) (1) absolutely
negative (0)

positive negative

3 14 13 2 0 0 30 2

9.38% 43.75% 40.63% 6.25% 0% 0% 93.75% 6.25%

Table G.8: Q9: How would you rate your attitude towards Scrum?

much better better same worse much worse

7 16 6 3 0

21.87% 50% 18.75% 9.37% 0%

Table G.9: Q10: Did your work experience change with the introduction of Scrum in this
department?

Advantage #votes votes [%]

team-work 29 90.62%

team-work 29 90.62%

known sprint length 7 21.87%

daily feedback 22 68.75%

prioritized development 8 25%

self organization 15 46.87%

Table G.10: Q11: Advantages through the current Scrum practice.

Disadvantage #votes votes [%]

sprint too short 25 78.12%

permanent stress ” 9 28.12%

permanent observation/supervision 10 31.25%

changes during the sprint 22 68.75%

no possibility for knowledge acquisition aside projects 15 46.87%

Table G.11: Q12: Disadvantages through the current Scrum practice.

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 236

keep Scrum by
all means (5)

(4) (3) (2) (1) absolutely
switch
back (0)

positive negative

11 10 9 2 0 0 30 2

34.37% 31.25% 28.12% 6.25% 0% 0% 93.75% 6.25%

Table G.12: Q13: Would you change back to the pre-Scrum development method, if you
could?

absolutely
positive (5)

(4) (3) (2) (1) absolutely
negative (0)

positive negative

3 14 9 5 1 0 26 6

9.37% 43.75% 28.12% 15.62% 3.12% 0% 81.25% 18.75%

Table G.13: Q15: How did you experience the introduction of Scrum in this department?

Yes No

27 5

84.37% 15.62%

Table G.14: Q16: Was the information for the transition to Scrum sufficient?

timely information 17 53.12%

transparent transition plan 13 40.62%

sufficient training 9 28.12%

individual information 5 15.62%

well preparation 11 34.37%

Table G.15: Q17: What went well with the Scrum transition?

earlier information communication 8 25%

make the migration plan more transparent 7 21.87%

offer more trainings for this topic 13 40.62%

better preparation 5 15.62%

Table G.16: Q18: What could have been better with the Scrum Transition?

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 237

G.2 Team

very happy (5) (4) (3) (2) (1) very dissat-
isfied (0)

positive negative

18 8 5 0 1 0 31 1

56.25% 25% 15.62% 0% 3.12% 0% 96.87% 3.12%

Table G.17: Q20: Please rate you satisfaction with your Scrum-team.

Yes No

5 27

15.63% 84.38%

Table G.18: Q21: Do you have problems with your team?

...can these problems be solved internally? 5 15.62%

...do you need a moderator to solve these problems? 3 9.37%

Table G.19: Q23: If you have problems ...

gladly (5) (4) (3) (2) (1) never (0)

0 2 4 3 9 14

0% 6.25% 12.5% 9.37% 28.12% 43.75%

Table G.20: Q24: Would you like to change the team?

gladly (5) (4) (3) (2) (1) never (0)

0 3 7 5 11 6

0 9.37% 21.87% 15.62% 34.37% 18.75%

Table G.21: Q25: Would you change the team if you were asked by your superior?

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 238

Yes No

26 6

81.3% 18.8%

Table G.22: Q26: Do you have single points of knowledge in your team?

very much (5) (4) (3) (2) (1) nothing (0)

1 7 14 8 2 0

3.12% 21.87% 43.75% 25% 6.25% 0%

Table G.23: Q27: How much effort does the team invest for knowledge distribution?

inside project scope (5) (4) (3) (2) (1) outside project scope

17 11 3 1 0 0

17 11 3 1 0 0

Table G.24: Q28: In which scope does your team distribute knowledge?

very happy (5) (4) (3) (2) (1) very dissat-
isfied (0)

positive negative

2 11 14 3 2 0 27 5

6.25% 34.37% 43.75% 9.37% 6.25% 0% 84.37% 15.62%

Table G.25: Q29: Please rate your satisfaction with knowledge distribution in you team.

absolutely (5) (4) (3) (2) (1) absolutely
not (0)

positive negative

3 21 7 1 0 0 31 1

9.37% 65.62% 21.87% 3.12% 0% 0% 96.9% 3.12%

Table G.26: Q30: Is the distribution of work fair among the members of your team?

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 239

too big adequate too small

5 26 1

15.6% 81.3% 3.1%

Table G.27: Q31: Please rate the current size of your team.

Minimum Optimum Maximum
Team Size Team Size Team Size

size 3 4 5 4 5 6 5 6 7

#votes 2 1 3 1 3 2 1 3 2

votes [%] 33.3 16.7 50 16.7 50 33.3 16.7 50 33.3

Table G.28: Q32: In your opinion what is the a.)minimum, b.)optimum and c.) maximum
team size? (The Percentage is related to the number of people who rated the team size
either “too big” or “too small”, see Table G.27)

intensive
team-
work (5)

(4) (3) (2) (1) no teamwork;
work alone (0)

positive negative

12 17 3 0 0 0 32 0

37.5% 53.12% 9.37% 0% 0% 0% 100% 0%

Table G.29: Q33: Please rate the teamwork in your team.

absolutely (5) (4) (3) (2) (1) not necessary (0) positive negative

11 9 7 0 0 5 27 5

34.37% 28.12% 21.87% 0% 0% 15.6% 84.4% 15.6%

Table G.30: Q34: In your opinion, should the team be located in the same office?

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 240

G.3 Scrum-Master

very happy (5) (4) (3) (2) (1) very dissat-
isfied (0)

positive negative

15 12 4 1 0 0 31 1

46.87% 37.5% 12.5% 3.12% 0% 0% 96.9% 3.1%

Table G.31: Q36: Please rate your satisfaction with your Scrum-Master.

Yes No

26 6

81.3% 18.8%

Table G.32: Q37: Are the Scrum-Master’s responsibilities clear to you?

Yes No

1 31

3.1% 96.9%

Table G.33: Q39: Do you have problems with your Scrum-Master?

...can these problems be solved internally? 1 3.12%

...do you need a moderator to solve these problems?” 1 3.12%

Table G.34: Q41: If you have problems with your Scrum-Master ...

Yes No

28 4

Table G.35: Q42: Are you informed about the impediments the Scrum-Master has to
solve?

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 241

absolutely (5) (4) (3) (2) (1) absolutely
not (0)

positive negative

13 17 1 1 0 0 31 1%

40.62% 46.87% 3.12% 3.12% 0% 0% 96.9% 3.12%

Table G.36: Q43: Are the impediments solved in time from the moment they occur?

very good (5) (4) (3) (2) (1) very bad (0) positive negative

18 10 2 2 0 0 30 2

56.25% 31.25% 6.25% 6.25% 0% 0% 93.8% 6.3%

Table G.37: Q44: How well does the Scrum-Master support the work of the team?

G.4 Product-Owner

very
happy (5)

(4) (3) (2) (1) very dissat-
isfied (0)

positive negative

4 11 10 3 4 0 25 7

12.5% 34.37% 31.25% 9.37% 12.5% 0% 78.1% 21.9%

Table G.38: Q46: Please rate you satisfaction with the Product-Owners.

Yes No

30 2

93.8% 6.3%

Table G.39: Q47: Are the Product-Owner’s responsibilities clear to you?

Yes No

11 21

34.4% 65.6%

Table G.40: Q49: Do you have problems with Product-Owners?

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 242

...can these problems be solved internally? 6 18.8%

...do you need a moderator to solve these problems?” 6 18.8%

Table G.41: Q50: If there are problems with Product-Owners ...

very
good (5)

(4) (3) (2) (1) very
bad (0)

positive negative

5 16 9 2 0 0 30 2

15.62% 50% 28.12% 6.25% 0% 0% 93.75% 6.25%

Table G.42: Q52: How well does the Product-Owner support the work of the team?

very
good (5)

(4) (3) (2) (1) very
bad (0)

positive negative

1 6 11 9 5 0 18 14

3.12% 18.75% 34.37% 28.12% 15.62% 0% 56.3% 43.8%

Table G.43: Q53: Please rate the quality of planning- and preparation of the user-stories.

Yes No

10 22

31.25% 68.75%

Table G.44: Q54: Are the user-stories introduced early enough?

min. one week
before sprint
start

in the week
before sprint
start

directly before
the sprint start

in the first
sprint plan-
ning meeting

during the
sprint

2 13 15 2 0

6.3% 40.6% 46.9% 6.3% 0%

Table G.45: Q55: When are the user-stories introduced through the Product-Owner.

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 243

very often (5) (4) (3) (2) (1) never negative positive

5 9 14 3 1 0 28 4

15.63% 28.12% 43.75% 9.37% 3.12% 0% 87.5% 12.5%

Table G.46: Q56: Have you experienced requirement changes during the sprint?

always mostly quite often sometimes never

1 9 11 11 0

3.1% 28.1% 34.4% 34.4% 0%

Table G.47: Q57: Are the requirements changes reasonable and necessary?

Yes No

10 22

31.25% 68.75%

Table G.48: Q58: Have you experienced direct access to team-members through the
Product-Owner so that the daily tasks are delayed?

very often (5) (4) (3) (2) (1) never (0)

1 1 2 4 2 0

10% 10% 20% 40% 20% 0%

Table G.49: Q59: Please rate the frequency of direct access to team-members through
the Product-Owner. (The Percentage is related to the number of people who experienced
direct access, see Table G.48)

Yes No

6 26

18.75% 81.25%

Table G.50: Q60: Have you experienced direct access to team-members through a sprint-
external Product-Owner so that the daily tasks are delayed?

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 244

very often (5) (4) (3) (2) (1) never (0)

0 0 1 2 3 0

0% 0% 16.66% 33.33% 50% 0%

Table G.51: Q61: Please rate the frequency of direct access to team-members through
sprint-external Product-Owners. (The Percentage is related to the number of people who
experienced direct access of a sprint external Product-Owner, see Table G.50)

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 245

G.5 Meetings

Yes No

29 3

90.62% 9.37%

Table G.52: Q63: Are you familiar with the purpose of all meetings?

very
happy (5)

(4) (3) (2) (1) very dissat-
isfied (0)

positive negative

0 6 21 5 0 0 27 5

0% 18.75% 65.62% 15.62% 0% 0% 84.37% 15.62%

Table G.53: Q65: Please rate your satisfaction with the realization of the meetings.

Yes No

24 8

75% 25%

Table G.54: Q66: In your opinion, are there unnecessary meetings?

Yes No

18 14

56.25% 43.75%

Table G.55: Q67: In your opinion, is the intended purpose of all meetings met?

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 246

far too many too many adequate too few far too few

1 23 8 0 0

3.12% 71.87% 25% 0% 0%

Table G.56: Q69: Please rate the number of meetings.

very effi-
cient (5)

(4) (3) (2) (1) very ineffi-
cient (0)

positive negative

0 5 20 7 0 0 25 7

0% 15.62% 62.5% 21.87% 0% 0% 78.12% 21.87%

Table G.57: Q71: Please rate the efficiency of the meetings.

very good (5) (4) (3) (2) (1) very bad positive negative

0 7 17 6 1 1 24 8

0 21.87% 53.12% 18.75% 3.12% 3.12% 75% 25%

Table G.58: Q72: Please rate how well the time is invested in the meetings.

absolutely
positive (5)

(4) (3) (2) (1) absolutely
negative (0)

positive negative

2 4 8 7 8 3 14 18

6.25% 12.5% 25% 21.87% 25% 9.37% 43.75% 56.25%

Table G.59: Q73: Please rate your attitude towards a ”public demonstration”.

G.6 Project Handling

very
happy (5)

(4) (3) (2) (1) very dissat-
isfied (0)

positive negative

1 11 12 7 1 0 24 8

3.12% 34.37% 37.5% 21.87% 3.12% 0% 75% 25%

Table G.60: Q75: Please rate your satisfaction with the current project handling.

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 247

Yes No

26 6

81.25% 18.75%

Table G.61: Q76: Would you like to know how the projects originate and evolve from
their idea to their realization?

very good (5) (4) (3) (2) (1) very bad (0) positive negative

2 3 10 8 7 2 15 17

6.25% 9.37% 31.25% 25% 21.87% 6.25% 46.9% 53.1%

Table G.62: Q77: Please rate the match between the project handling and the current
practice of Scrum.

more than enough rather more than enough adequate rather too few too few

0 1 13 18 0

0% 3.12% 40.62% 56.25% 0%

Table G.63: Q78: Please rate whether there is enough time for project planning and
realization?

very often (5) (4) (3) (2) (1) never (0) negative positive

6 9 14 2 1 0 29 3

18.75% 28.12% 43.75% 6.25% 3.12% 0% 90.62% 9.32%

Table G.64: Q79: How often did you experience ”forced commitments” in the planning
of the sprints.

too long adequate does not matter too short

0 3 4 25

0% 9.37% 12.5% 78.12%

Table G.65: Q80: Please rate the sprint length.

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 248

Yes No

29 3

90.62% 9.37%

Table G.66: Q81: Do you work with full energy on reaching the sprint goal especially at
the end of the sprint.

max. effort (5) (4) (3) (2) (1) min. effort positive negative

8 19 5 0 0 0 32 0

25% 59.37% 15.62% 0% 0% 0% 100% 0%

Table G.67: Q83: Please rate your team’s effort to keep the sprint goal.

too much adequate too few

0 13 19

0% 40.62% 59.37%

Table G.68: Q84: Please rate the amount of architectural considerations for the projects.

too late timely too early

19 13 0

59.37% 40.62% 0%

Table G.69: Q85: Please rate the time of the architectural considerations for the projects.

Yes No

16 16

50% 50%

Table G.70: Q86: Do the architectural considerations in the technical meetings have an
influence on the estimation of the user-stories?

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 249

increased different decreased

11 5 0

68.8% 31.3% 0%

Table G.71: Q87: Please rate how the estimations are influenced and changed

very often (5) (4) (3) (2) (1) never (0) negative positive

1 2 10 6 5 8 13 19

3.12% 6.25% 31.25% 18.75% 15.62% 8 40.62% 59.37%

Table G.72: Q88: Please rate the frequency where an architectural veto delayed the review
and acceptance of a user-story.

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 250

G.7 Defect Handling

very
happy (5)

(4) (3) (2) (1) very dissat-
isfied (0)

positive negative

0 12 14 2 2 2 26 6

0% 37.5% 43.75% 6.25% 6.25% 6.25% 81.25% 18.8%

Table G.73: Q90: Please rate your satisfaction with the current defect-ticket handling
process.

absolutely (5) (4) (3) (2) (1) absolutely
not (0)

positive negative

0 8 10 8 3 3 18 14

0% 25% 31.25% 25% 9.37% 9.37% 56.25% 43.75%

Table G.74: Q91: Please rate the match of the defect handling process with the current
Scrum practice.

Yes No

12 20

37.5% 62.5%

Table G.75: Q92: Would you prefer a different way of defect handling?

Yes No

27 5

84.37% 15.62%

Table G.76: Q94: Is there a fair distribution of the defect fixing tasks amongst the teams?

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 251

exceeding adequate marginal

7 25 0

21.87% 78.12% 0%

Table G.77: Q96:Please rate the number of defect fixing tasks assigned to your team.

Yes No

7 0

100% 0%

Table G.78: Q97: Does the amount of defect fixing tasks risk the sprint goal?

very
happy (5)

(4) (3) (2) (1) very dissat-
isfied

positive negative

3 11 12 5 1 0 26 6

9.37% 34.37% 37.5% 15.62% 3.12% 0% 81.25% 18.75%

Table G.79: Q98: Please rate your satisfaction with the defect pre-analysis through the
maintenance department.

often frequently sometimes never

0 9 16 7

0% 28.12% 50% 21.87%

Table G.80: Q99: Please rate the frequency of missing the sprint goal due to assigned
defect fixing tasks.

Yes No

26 6

81.25% 18.75%

Table G.81: Q101: Are the defect fixing tasks assigned to the right teams?

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 252

very good (5) (4) (3) (2) (1) very bad (0) positive negative

4 26 1 1 0 0 31 1

12.5% 81.25% 3.12% 3.12% 0% 0% 96.87% 3.12%

Table G.82: Q104: Please rate how well the inter-team support works.

Yes No

6 26

18.75% 81.25%

Table G.83: Q106: Are there clearly defined guidelines for inter-team support?

Yes No

6 20

23.1% 76.9%

Table G.84: Q107: If there are no clearly defined guidelines, would it make sense to have
them? (The Percentage is related to the number of people who experienced no guidelines,
see Table G.83)

Yes No

1 31

3.1% 96.9%

Table G.85: Q108: Have you already experienced problems supporting another team?

Yes No

10 22

31.25% 68.75%

Table G.86: Q110: Have the team’s sprint goal been risked through support of another
team?

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 253

often frequently sometimes never

0 2 7 1

0% 6.3% 21.9% 3.1%

Table G.87: Q111: Please rate the frequency of risking the sprint goal through inter-team
support.

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 254

G.8 Delivery

very
happy (5)

(4) (3) (2) (1) very dissat-
isfied (0)

positive negative

4 10 12 2 3 1 26 6

12.5% 31.25% 37.5% 6.25% 9.37% 3.12% 81.3% 18.8%

Table G.88: Q113: Please rate the satisfaction of the co-operation with the delivery team.

Yes No

25 7

78.12% 21.87%

Table G.89: Q114: Are the Delivery Team’s responsibilities clear to you?

Yes No

24 8

75% 25%

Table G.90: Q116: Are you familiar with the hand-over process of the projects to the
delivery team?

Yes No

8 0

100% 0%

Table G.91: Q117: If not, would it make sens to clearly define the hand-over process to
the delivery team? (The Percentage is related to the number of people who have not been
familiar with the hand over process, see Table G.90)

APPENDIX G. SCRUM EVALUATION DETAILED DATA (ENGLISH) 255

Yes No

17 15

53.12% 46.87%

Table G.92: Q118: Have you experienced risking the team’s the sprint goal through sup-
port of the delivery team?

often frequently sometimes never

1 8 8 0

3.12% 25% 25% 0%

Table G.93: Q119: Please rate the frequency of risking the team’s sprint goal when sup-
porting the delivery team.

absolutely
positive (5)

(4) (3) (2) (1) absolutely
negative (0)

positive negative

4 7 2 6 8 5 13 19

12.5% 21.87% 6.25% 18.75% 25% 15.62% 40.62% 59.37%

Table G.94: Q120: Please rate your attitude towards the idea that the team conducts the
acceptance tests at the customer’s site?

	Introduction
	Motivation and Outline
	Contributions of this Thesis

	Software Development
	Specification
	Design & Implementation
	Validation, Verification
	Maintenance (Evolution)
	Common Development Models

	Analysis of the htmlButler Project
	Design and Implementation
	Project Analysis
	Conclusion

	Agile Methods in Austrian IT-Industry - a Survey
	Introduction
	Survey Setup and Procedure
	Company Characteristics
	Agile Methods and Practices
	Future Plans for Agile Method Adoption
	Perception of Adherence to Deadlines
	Conclusion

	A Software Department's Transition to Scrum
	Initial Situation
	Transition Schedule and Scrum Roles
	The Department's Scrum Characteristics
	The Performance of a Scrum Team
	Scrum Evaluation
	Conclusion

	Conclusions
	Bibliography
	Appendices
	Lehman's Laws
	htmlButler Post Mortem Questionnaire
	Introduction
	General Information
	Teamwork
	Management
	XP Practices in General
	Experience with XP Practices
	Fundamental Project Questions

	Survey Questionnaire (German)
	Telephone Interview Questions

	Survey Questionnaire (English)
	Telephone Interview Questions

	Scrum Transition
	Initial Sprint
	Sprint 2
	Sprint 3
	Sprint 4
	Sprint 5
	Sprint 6
	Sprint 7
	Sprint 8
	Sprint 9
	Sprint 10
	Sprint 11
	Sprint 12
	Sprint 13
	Sprint 14
	Sprint 15
	Sprint 16
	Sprint 17
	Sprint 18
	Sprint 19
	Sprint 20
	Sprint 21
	Sprint 22
	Sprint 23

	Scrum Evaluation Questionnaire (German)
	Allgemeine Fragen
	Team
	Scrum Master
	Product Owner
	Meetings
	Projektabwicklung
	Tickets
	Support
	Delivery

	Scrum Evaluation Detailed Data (English)
	General Information
	Team
	Scrum-Master
	Product-Owner
	Meetings
	Project Handling
	Defect Handling
	Delivery

