
Constraint Order

Packing

Nikolaus Furian

6.Mai 2011

Doctoral Dissertation

Departement of Engineering and Business Informatics

Graz University of Technology, Austria

Declaration

I declare that this dissertation is my own work, based on my original research

and expressed in my own words. Any use made within it of works of others in

any form (e.g., ideas, figures, text and tables) is properly acknowledged at this

point of use. I have not submitted this thesis for any other course or degree.

Graz, Mai 2010 Nikolaus Furian

i

Acknowledgments

I would like to thank all those who contributed to this dissertation by their

positive support, their feedback and their constructive suggestions. First and

foremost I would like to thank Prof. Vössner for his guidance and his support. I

am grateful for a number of discussions with Prof. Vössner that helped to design

the presented algorithms and frameworks.

I also want to thank my colleagues for making the institute a great place to

work and Ramona Lichtenegger for proof reading.

I am very thankful to the company SAA Engineering and especially all the

people working on the project that funded my dissertation. During my various

visits in Vienna they became more than partners.

Finally, but most important, I want to thank my family, for their support dur-

ing my whole life, Sabine Woschitz, for her support, patience and love over the last

years and my closest friends, Philipp Glatz, Vera Jüttner, Matthias Kohlhauser,

Andreas Maderbacher, David Maierhofer and Carl Suppan, for making me who I

am.

Graz, Mai 2010 Nikolaus Furian

ii

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit einem Problem der Produktionspla-

nung in der Betonfertigteil-Industrie. Betonfertigteile werden auf Metall-Paletten

gefertigt die sequentiell verschiedene Fertigungsstationen durchlaufen. Dabei

ist die Auslastung der Paletten, und somit Anordnung der einzelnen Teile von

höchstem Interesse um den Gesamt-Output eines Werkes steigern zu können.

Bereits Verbesserungen im prozentualen Bereich können zu signifikanten Um-

satzsteigerungen führen.

Im Gegensatz zu bekannten Packungs- und Verschnittproblemen hat die Be-

tonfertigteil - Industrie mit einer Vielzahl an Nebenbedingung zu kämpfen, die

dem Problem eine neue Komplexität verleihen. Inhalt dieser Arbeit ist es dieses

Problem mathematisch zu formulieren um bekannte Lösungsverfahren für Packungs-

und Verschnittprobleme zu adaptieren und zu testen. Weiter wird ein für diese

Problemklasse untypisches Verfahren auf das vorliegende Problem zugeschnitten.

Ergebnisse zeigen, dass diese neue Methode weit bessere Resultate erzielt als

Standardverfahren.

Um die diskutierten Algorithmen für praktische Anwendungen tauglich zu

machen beschäftigt sich diese Arbeit auch mit geometrischen Fragestellungen

die allen Packungs- und Verschnittproblemen zu Grunde liegen. Dabei wird eine

Methode entwickelt die besonders auf die speziellen Bedürfnisse der Betonfertigteil-

Industrie eingeht und in dieser Domäne Standard-Verfahren bezüglich Laufzeiten

deutlich übertrifft.

Im Gegensatz zu den meisten bisher diskutierten Problemen weist das hier

behandelte eine sehr große Zahl an Nebenbedingungen bezüglich der Verteilung

der Teile und deren Position auf. Daher wird eine generelle Klassifizierung

von möglicher Nebenbedingungen innerhalb Packungs- und Verschnittproblemen

vorgenommen, die es ermöglicht alle bisherigen und auch zukünftig auftretenden

Bedingungen einzuteilen. Weiter wird im Kontext spezieller Lösungsverfahren

ein zusätzliches Framework zur Einteilung von Platzierungsregeln vorgestellt,

welches es Entwicklern von Algorithmen ermöglicht eine bessere Erweiterbarkeit

iv

und Modularität zu bewahren ohne große Einbußen bezüglich Laufzeiten in Kauf

nehmen zu müssen.

Abstract

This thesis is concerned with a bin packing problem in production planning in the

precast-concrete-part industry. Precast-concrete-parts are produced on metal-

pallets which sequentially run through several production-stations. In doing so

the occupancy rate of the pallets, and therefore the allocation of parts on the

pallets, are of great interest to enhance the overall output of plants. Already

minor improvements can have significant positive influence on the business volume

of the producer.

In contrast to well known cutting and packing problems the precast-concrete-

part industry has to face an enormous number of additional constraints, which

lead to a whole new problem complexity. Part of this thesis is the formulation

of mathematical representation and objective function of the problem to adapt

popular algorithms for standard cutting and packing problems and to evaluate

those. Furhtermore, a method which is usually used within other applications is

redesigned to fit the precast-concrete-part industry. Results achieved with this

new method clearly dominate results of standard procedures.

To enhance theoretical concepts to useful algorithms for practical applica-

tions some geometrical issues, underlying any cutting and packing problems, are

discussed in this thesis. Thereby a method is developed which is responsive to

the special requirements of the precast-concrete-part industry and clearly outper-

forms standard procedure within this domain.

In contrast to common cutting and packing tasks the proposed problem shows

a big number of constraints regarding the allocation of parts and their layouts.

Therefore a classification of possible constraints is made, allows the reader to clas-

sifyall previous and also future constraints. Furthermore in the domain of certain

solving strategies, a second framework for the classification of layout-constraints

is proposed. The latter enables designers of algorithms to maintain modularity

and extendibility without increasing the computational effort significantly.

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Industrial Context . 3

1.3 Overview of different problem structures and existing work 4

1.3.1 Classifications . 5

1.3.2 Relevant Algorithms . 7

1.4 Formulation of Constrained Order Packing 8

1.5 Lower bounds and exact algorithms: a short overview and outlook 10

1.5.1 Branch and Bound . 11

1.5.2 Constraint Programming 12

1.5.3 Mixed Integer Program . 13

2 Standard Heuristics for COP 14

2.1 Sequence Based Algorithms . 14

2.1.1 Sequence Models . 15

2.1.2 IBH Nesting Heuristic . 16

2.1.3 Next Fit Nesting Heuristics 17

2.1.4 First Fit Nesting Heuristics 18

2.1.5 Best Fit Nesting Heuristics 24

2.1.6 Global Algorithms - Simulated Annealing 24

2.1.7 Global Algorithms - Genetic Algorithms 28

2.2 Set Based Global Algorithms . 32

2.2.1 SubSetSum . 32

2.2.2 Tabu Serach . 35

2.2.3 Genetic Algorithm . 38

2.3 Test data . 39

2.4 Results . 40

vi

CONTENTS vii

3 Network Search Methods for COP 50

3.1 Network Graph Representation 51

3.2 A∗ Relaxation . 52

3.2.1 Dijkstra’s algorithm and A∗ 52

3.2.2 An A∗ Algorithm for COP 54

3.2.3 RA∗: A Heuristic Relaxation of A∗ for COP 55

3.3 Lower Bounds and Worst Case Scenarios 57

3.3.1 Lower Bounds for COP . 58

3.3.2 Worst-Case Scenarios of RA∗ 63

3.4 Improvements for Computational Performance 65

3.4.1 Tabu Lists . 65

3.4.2 Improved Data Structure for O 66

3.4.3 Improved Data Structure for LA 66

3.5 Experimental Results . 67

4 Translational Containment Problem: Dealing with Geometry 74

4.1 Containment Problems . 74

4.2 Geometry . 77

4.2.1 Nesting Routines . 77

4.2.2 No-fit Polygon and Inner-Fit-Rectangle 78

4.2.3 Placing Points from Parallel Edges 80

4.3 Heuristics for the Strip Packing Problem 82

4.3.1 The 2-exchange Heuristic 84

4.3.2 A Tabu Search Approach 84

4.4 Experimental results . 85

5 Generalized Classification of Constraints 91

5.1 Combinatorial Constraints . 91

5.1.1 Multi Bin/Strip/Level Sequential Constraints 91

5.1.2 Subset Constraints . 93

5.2 Layout Constraints for Small Items 93

5.2.1 Position of Small Item with Respect to a Large Item (PSLI) 93

5.2.2 Position of Small Items to Each Other (PSS) 94

5.2.3 Positions of Small Items to Each Other and to Large Item

(PSSLI) . 95

5.3 Influence of Constraints . 97

CONTENTS viii

6 Constraint Handling Incorporating a Specific Problem Domain 98

6.1 General Handling of Constraints 98

6.1.1 Non-Constructive Constraints 99

6.1.2 Semi-Constructive Constraints 99

6.1.3 Constructive Constraints 100

6.2 Handling in an Algorithmic Way 101

6.2.1 A Real World Example . 101

6.2.2 Handling of Combinatorial Constraints 102

6.2.3 Handling of Layout Constraints 102

6.3 Sample Sub Set Constraints . 103

6.3.1 Limited Difficulty per Bin 103

6.3.2 Preferred/Maximum Number of Parts per Bin 105

6.3.3 Half Parts on One Bin . 105

6.3.4 Conflict Constraints . 105

6.4 Sample Layout Constraints . 106

6.4.1 Constructive Constraints 106

6.4.2 Semi Constructive Constraints 110

6.4.3 Non Constructive Constraints 112

6.5 Discussion . 114

7 Conclusion and Further Work 116

7.1 The Model . 116

7.2 Solving Methods . 117

7.3 Polygonal Parts . 118

7.4 Constraints in General . 118

7.5 Further Research . 119

Bibliography 120

Chapter 1

Introduction

Various forms of bin packing and stock cutting problems have been introduced

and discussed in literature over the last decades. Based on their origins, for ex-

ample the paper industry, the clothing industry or engineering industries, the

problems have many properties and boundary conditions. A common feature of

all problems is that a set of small items has to be placed entirely within a set

of large items so that they do not overlap. They vary though over additional

restrictions to the shapes and dimensions of small and large items, cutting re-

strictions (Guillotine or Non-Guillotine cuts), allowed rotations and the existence

of conflicts. The latter don’t allow certain small items to be placed together in

one large item. Furthermore, problems can be distinguished according to their

optimization criteria. Either the set of small items, parts, that has to be placed

is predefined and the minimal subset of large items, bins or stock materials has

to be found, or the set of bins or stock materials is fixed and one tries to place

the maximum subset of parts.

Constrained Order Packing (COP), the problem this thesis is based, is mo-

tivated by an application of the precast-concrete-part production. Informally

speaking, it consists of a set of two dimensional parts that have to be allocated in

a minimum number of identical rectangular bins. Furthermore, the packing has

to satisfy a set of new constraints, consisting of order constraints, conflicts and

restrictions on positions of parts in bins.

In the following section the motivation for this thesis is illustrated. In section

1.2 the industrial context of the problem is illustrated to give the reader a better

understanding of where constraints and requirements come from. In section 1.3

a short overview of existing literature and classifications of bin packing and stock

cutting problems is given. Section 1.5 demonstrates the complexity of COP and

summarizes some thoughts on possibilities to compute exact solutions.

1

CHAPTER 1. INTRODUCTION 2

1.1 Motivation

During the planning step for production precast-concrete-part producers have to

deal with a bin packing problem on a daily basis. The main aspects of this prob-

lem are a highly profit-sensitive behavior and special requirements arising from

the production process, that give the problem a distinctive structure. Although

there exist a couple of automatic planning tools, that also comprehend solving

routines for the proposed problem, they lack in performance. In addition, the

algorithmic background has not been published in a scientific way. Therefore

the purposes of this thesis are to define a mathematical problem representing

the main structures and needs of the concrete part industry and to develop an

algorithm that fits these special needs.

The formulation of the problem is based on the observation that although dif-

ferent precast-concrete-part companies have different products, requirements and

resulting bounding conditions, the main aspects and basic conditions or struc-

tures of the production process are identical in the whole industry. Therefore

the aim is to build a mathematical model which comprehends all structure giv-

ing conditions while ignoring company specific regulations and which further can

easily be adapted for practical applications. This enables the design, evaluation

and comparison of different solving strategies from a scientific point of view.

Under the realistic assumption that plants are working to capacity and the

constant availability of new commissions, improvements of the production plan-

ning process lead to a direct enhancement of the plants’ total output. Considering

the pricing of concrete parts compared to a plant’s capacity, small changes in the

planning quality can have a significant influence on the company’s business vol-

ume. Therefore the utilization of the production line is from special interest for all

producers. Unless most existing tools allow an automatic planning process, they

often lack in the required performance. The outcome of this deficiency is that in

many plants the planning is still done manually. In many cases manual planning

lead to better solutions compared to results of existing automatic routines, but

take quite a lot effort in terms of planning time. Hence a new automatic planning

tool must consist of an algorithm that is able to outperform previously used tools

and more importantly must be able to compute a planning that is at least as good

as manually designed production plans. Further the time consumption has to be

reduced significantly. Also from other fields it is known that human packers or

planners with years of experience are able to produce astonishing good packings

what makes this task quite challenging.

CHAPTER 1. INTRODUCTION 3

1.2 Industrial Context

As mentioned before COP is motivated by the production of concrete parts for

prefabricated buildings. The production process of these parts can be briefly

described as follows. After buildings have been planned with CAD-tools they

are divided in wall and ceiling/floor elements. To produce these wall and ceiling

elements they are further split in smaller parts that fit production requirements.

In several steps parts are then produced on identical rectangular iron-bins in

plants. Therefore bins sequently move through several workstations where dif-

ferent production steps are performed. These steps can roughly be summarized

by:

1. Placing shutters on pallet to surround shape of parts

2. Placing iron-reinforcements corresponding to type of parts.

3. Placing mountparts, as for example windows or doors.

4. Pouring concrete in shuttered areas.

5. Harden concrete into special chambers.

6. Remove parts from pallet and staple them to stacks.

To ensure the producibility of parts during all steps the satisfaction of several

constraints have to be satisfied. Examples are restrictions on combinations of

parts on one single pallet, position of parts to the pallet or each other and the

order in which parts are produced and therefore placed in bins.

Surrounding parts with shutters requires a certain space on the pallet where

no other parts can be placed. At a glance on could assume that these shutters can

be treated as additional parts that must be positioned relative to the part they

are surrounding. This would yield to the usage of artificial enlarged parts during

calculations that already contain the space for the required shutters. However in

many cases it is often possible that the same shutter can be used on both sides to

envelop the shape of two parts. In that case the space for one additional shutter

is saved which results in a tighter packing.

Most structure giving constraints arise from requirements on the production

sequence given by step 6. After production, parts are removed from bins and

stapled to transport units, stacks, at so called staple stations. To ensure a smooth

work flow on building sites the single parts of one stack should already be stapled

in the order they are needed to erect the actual building. It is therefore crucial

CHAPTER 1. INTRODUCTION 4

that the parts are produced in the inverse order they are needed, so that the

part of a stack that is needed first is the last one which is removed from a pallet.

Since bins move sequently through different workstations in the plant parts lower

in the stack must be placed on a preceding pallet than parts higher in the stack.

Furthermore, only a limited number of staple stations are available according

to space restrictions, which means that only a limited number of parts can be

produced at a time. The stacks themselves must also be produced in a certain

sequence, however, for optimality reasons this order may be violated to a certain

extent. Figure 1.1 illustrates the ordering of parts.

1
2

1
1 2

2

3

3

Production Sequence

1

2

3

1

2

1

2

3

Staple Stations

...

1 2 3 m

…

Figure 1.1: The structure of COP.

Beside these order constraints many other conditions evolve from the pro-

duction process. These conditions vary over different plants and even different

commissions of a plant. Some of them are explained more in detail in chapter 6.

For the design and evaluation of different solution approaches a simplified

mathematical problem, based on bin packing, will be formulated in section 1.4.

The porpuse of this problem is to model the most structure-giving constraints ba

avoiding to deal with too many details.

1.3 Overview of different problem structures and

existing work

In this section a short overview of different bin packing and stock cutting problems

and relevant literature is given. Since there is a vast number of publications

dealing with these topics the author is well aware that neither the overview of

existing literature nor the classification of the different problem types is complete.

For more general surveys and typologies of packing problems see for example

CHAPTER 1. INTRODUCTION 5

Dykhoff [26], Dykhoff and Finke [28] and Downsland and Downsland [25], or more

recently Lodi, Martello and Vigo [50, 49] and Wäscher, Haußner and Schumann

[66]. For a more detailed bibliography see, for example, Dyckhoff, Scheithauer

and Terno [27].

1.3.1 Classifications

The first typology of cutting and packing (C&P) problems by Dykhoff [26] pro-

vides a classification based on four basic features. However, this typology has

some inconsistencies, a misleading nomenclature and other drawbacks and was

therefore extended and improved by Wäscher, Haußner and Schumann [66]. The

latter define so called Basic and Variant C&P problems and classify them accord-

ing to the following five criteria:

• dimensionality

• kind of assignment

• assortment of small items

• assortment of large items

• shape of small items

In the following the criteria are explained more in details as proposed by

Wäscher, Haußner and Schumann [66]:

Dimensionality

Dimensionality describes the geometric dimension of large and small items. Basic

problems can have one, two or three dimensions. Problems with more dimensions

are classified as variant problems.

Kind of assignment

The distinction between basic optimization criteria is called the kind of assort-

ment criteria. In case of output maximization problems one wants to place the

subset of small items with maximum value in a given and fixed set of large items.

Mostly the whole set of small items does not fit on the large items and criteria

for the value of a subset may differ. These problems are selection problems for

the set of small items.

CHAPTER 1. INTRODUCTION 6

Whereas in case of input minimization problems the entire set of small items

can be placed in the set of large items and one wants to find the best selection of

large items that is able to host all small items.

Assortment of small items

Assortment of small items describes the heterogeneity of small items, distinguish-

ing three cases:

• identical small items, all items have the same size and orientation,

• weakly heterogeneous assortment of small items, small items can be split

into a few groups of items with same size and orientation,

• strongly heterogeneous of small items, small items seldom have same size

and orientation and therefore are not split into groups.

Assortment of large items

Wäscher, Haußner and Schumann [66] distinguish between problems where the

set of large items consists of only one or several small items. In case of one large

item one dimension may be variable. In case of several large items all dimensions

have to be fixed and the set can be classified the same way as the assortment of

small items.

Shape of small items

Two- or three dimensional problems can be classified among the shape of the

small items. In the three-dimensional case shapes can be regular (boxes, balls,

etc.) or irregular. In the two-dimensional case the classification can be extended

by rectangular items, circular items and others.

Based on these features, Wäscher, Haußner and Schumann [66] define six Ba-

sic C&P problems, Identical Item Packing Problem, Placement Problem, Knap-

sack Problem, Open Dimension Problem, Cutting Stock Problem and Bin Packing

Problem. COP is based on the two-dimensional Bin Packing Problem, or more

precisely on the Single Bin-Size Bin Packing Problem according to Wäscher,

Haußner and Schumann [66]. Therefore small items are referred to as parts and

large items as bins from now on.

Due to rotation and packing constraints further classifications can be made.

According to, for example, Lodi, Martello and Vigo [48] problems can further be

classified whether parts may be rotated by 90◦ and whether guillotine cutting is

CHAPTER 1. INTRODUCTION 7

required. Guillotine cutting forces parts to be obtained by so called edge-to-edge

cuts parallel to the edges of the bin. Based on these constraints four different

classes of bin packing problems were defined by Lodi, Martello and Vigo [48]:

• 2BP |O|G: the items cannot be rotated, they are oriented (O) and guillotine

cutting is required

• 2BP |R|G: the items may be rotated by 90◦ (O) and guillotine cutting is

required

• 2BP |O|F : the items are oriented and cutting is free

• 2BP |R|F : the items may be rotated by 90◦ and cutting is free

For COP parts may be rotated by 90◦ and guillotine cuts are not required, there-

fore it is based on 2B|P |R|F .

1.3.2 Relevant Algorithms

Algorithms to solve two-dimensional bin packing problems can be divided into

three main classes: heuristics and metaheuristic approaches, approximation algo-

rithms and exact methods. Exact branch and bound methods and lower bounds

can be found in Martello and Vigo [53] and Fekete and Schepers [30]. Clautiaux,

Jouglet and El Hayek [16], Boschetti and Mingozzi [9] and Dell’Amico et al [23]

provide further lower bounds for the non-orientated case. For approximations al-

gorithms see, for example, Carlier, Clautiaux and Moukrinh [15] or Caprara, Lodi

and Monaci [12], for the special case of square bins see also Carlier, Clautiaux

and Moukrinh [15], Correa [17] and Zhang[68].

There is a vast number of heuristic algorithms for Bin Packing problems and

there are various types of approaches. Babu and Babu [4, 5] use fast heuristic

methods to place the set of parts in the set of bins in a given sequence for both.

Further, they search the space of sequences of parts and bins using a Genetic

algorithm. Wu et al. [67] use the same sequence based idea but control the

search over sequences with a Simulated Annealing algorithm. Rohlfshagen and

Bullinaria [62] and Lima and Yakawa [43] try to overcome redundancies of se-

quence based algorithms and state new set based genetic approaches in which

individuals are based on the bins themselves. Caprara and Pferschy [13, 14] state

greedy based algorithms where one bin is filled at a time as good as possible

according to the set of non placed parts. Although their concept is usually used

for the one-dimensional bin packing problem, it can easily be adopted for the

two-dimensional version. Lodi, Martello and Vigo [48, 47, 51] provide a Tabu

CHAPTER 1. INTRODUCTION 8

Search where parts in the weakest bins, in terms of occupancy, are tried to be al-

located to other bins. Liu et al. [46] introduce a model for further objectives and

constraints and uses particle swarm optimizations for solving these problems. An

agent based approach for guillotine cutting problems can be found in Polyakovsky

and M’Hallah [59]. Terashima-Maŕın et al. [64] define a virtual state cube where

each point in the cube represents a progress state in the solving procedure. Fur-

thermore, simple heuristics are assigned to the different state points in the cube.

At each iteration in the solving procedure, the actual state is calculated and the

nearest state point in the cube is determined. The heuristic assigned to this point

is then used to perform the next step. The assignment of heuristics to points in

the cube is controlled with the help of a Genetic algorithm by Terashima-Maŕın et

al. [64] and a classifier system described in Terashima-Maŕın, Flores-Álvarez and

Ross [65]. Hayek, Moukrin and Negre [41] introduce techniques for pretreatments

of parts that reduce the complexity of an instance without losing generality.

Conflicts are often referred to as constraints that forbid certain parts to be

placed together in one bin. Epstein and Levin [45] and Gendreau, Laporte and

Semet [34] provide solving techniques for the one-dimensional bin packing prob-

lem based on so called conflict graphs and Epstein, Levin and van Stee [29] discuss

square packing with conflicts.

1.4 Formulation of Constrained Order Packing

As mentioned above Constrained Order Packing (COP) is based on the produc-

tion process of concrete parts. Their shapes are enclosed by iron shutters in the

bins, concrete is poured into these shuttered areas and after further production

steps parts are removed from bins and stapled to transport units.

The theoretical problem is defined as follows: We are given an infinite set

of ordered identical rectangular bins B = (bk), k ∈ N with length L and width

W , a set of n stacks, S = {s1 . . . sn}, where each stack si, i = 1, . . . , n consists

of mi ≥ 1 ordered rectangular parts, pi,1, . . . , pi,mi
of length li,j ≤ L and width

wi,j ≤ W . Furthermore, part pi,j can be of two different types ti,j ∈ T = {(t1, t2)}
and h different material qualities, qi,j ∈ Q = {q1, . . . qh}. Further, let P =

{pi,j|1 ≤ i ≤ n, 1 ≤ j ≤ mi} be the set of all parts, Pt1 the set of all parts of type

t1 and analog Pt2 the set of all parts of type t2 for a given set S. Without loss

of generality one can assume that all input data are integers. To formulate the

problem and its constraints some further definitions are required.

Definition 1.4.1 (Allocation). For given sets B and S an allocation A denotes a

function A : P → N that allocates every part p ∈ P to an integer k. An allocation

CHAPTER 1. INTRODUCTION 9

A on (B × S) is geometrically feasible if ∀k ∈ N all parts A−1(k) can be fully

placed in bin bk, without overlapping and further all parts p ∈ Pt1 ∩ A−1(bk) are

placed on the left boarder of bin bk. Let

Akmax = max
{
k ∈ N :

∣∣A−1(k)
∣∣ ≥ 1

}
(1.1)

be the number of active bins.

To obtain a geometrically feasible allocation parts may be rotated and no

guillotine cuts are required. The condition that parts of type t1 have to be placed

on the left boarder of a bin represents the class of constraints that limit feasible

positions of parts in bins.

Definition 1.4.2 (Open and closed stacks). For given sets B, S and an allocation

A a stack si with 1 ≤ i ≤ n is called open at bin bk if A(pi,1) ≤ k and A(pi,mi
) ≥

k + 1 and it is called closed at bin bk if A(pi,mi
) ≤ k. Further let Ok be the set of

all open stacks at bin bk and Ck be the set of all closed stacks at bin bk.

An instance of COP is then given by (B × S × Q × T ×m × ow), where m

denotes the maximum number of open stacks and ow the opening window for

stacks with ow ≥ m.

Given an instance I of COP the problem is to find the smallest k0 for which

a geometrically feasible allocation A with Akmax = k0 exists that satisfies the

following constraints:

Order within one stack

Looking at industrial applications stacks can be seen as transport units. After

they have been transported to the construction sites parts of a stack are used in

a certain order. To avoid reordering, they must be already stapled, and therefore

also produced in that particular order. This means that if a part is allocated

to a bin, all parts at a lower level in the stack have to be allocated to the same

or an earlier bin in the production sequence. For all pi,j with i = 1, . . . , n and

j = 1, . . . ,mi,

pi,j = k ⇒ ∀l < j, A(pi,l) ≤ k. (1.2)

Order of stacks

Stacks have to be produced just in time according to their delivery date to ensure

that they can be transported right away and to minimize storage costs. This

CHAPTER 1. INTRODUCTION 10

requires that they are closed in the given order. This constraint may be violated

to some extent, that is a stack si ≥ ow + 1 is allowed to be open at bin bk if

all stacks up to si−ow are closed at bin bk. For all stacks si and bins bk with

i = ow + 1, . . . , n and k ∈ N,

si ∈ Ok ⇒ ∀l ≤ i− ow, sl ∈ Ck. (1.3)

Maximum number of open stacks

Stacks are stapled at so called staple-stations which are limited to m,

∀k ∈ N, |Ok| ≤ m. (1.4)

Only one material quality per bin

The production of parts requires that in one bin, only parts made of materials

with same qualities are placed,

∀k ∈ N,
∣∣{qi,j|pi,j ∈ A−1(k)

}∣∣ = 1. (1.5)

Definition 1.4.3 (Feasible Allocation). A geometrically feasible allocation that

satisfies constraints (1.2), (1.3), (1.4) and (1.5) is called feasible.

One may notice that two-dimensional bin packing is a special case of COP

where each stack consists of only one part, the maximum number of open stacks

and the stack window are equal to the number of stacks and parts have all the

same material quality. In this case constraints (1.2), (1.3), (1.4) and (1.5) are

always satisfied. Therefore COP is NP hard in the strong sense, since the two-

dimensional bin packing problem is such.

1.5 Lower bounds and exact algorithms: a short

overview and outlook

Martello and Vigo [53] and Fekete and Schepers [30] were the first ones who

calculated lower bounds for 2B|P |O except the continuous bound. Further they

introduced branch and bound algorithms that use outer and inner tree searches

combined with lower bounds to solve 2B|P |O to optimality. Bounds for the non-

oriented version 2B|P |R can be found in Dell’Amico, Martello and Vigo [23],

Boschetti and Mingozzi [9] and more recently in Clautiaux, Jouglet and El Hayek

[16].

CHAPTER 1. INTRODUCTION 11

To be able to use any of these bounds for COP they have to be modified.

One possibility would be to partition the set of parts according to their material

quality, calculate lower bounds for all disjunct subsets and sum them up to an

overall lower bound. Although these bounds take constraint (1.5) into account,

they neglect all other constraints (1.2), (1.3) and (1.4). For more details the

reader is referred to section 3.3. In the following sections some thoughts on

different methods for solving COP to optimality are summarized.

1.5.1 Branch and Bound

The idea presented in Martello and Vigo [53] can briefly be summarized as follows.

Initially parts are sorted in non-increasing order of their area and a first incumbent

solution is calculated with a fast heuristic. In an outer tree branching scheme, at

each level j the jth part is allocated to all so called active bins and, if allowed, also

to a new empty bin. Bins are closed when the continuous lower bound indicates

that no further part of all unplaced parts can be placed in the bin.

The inner tree procedure checks if parts really fit into the bins they are allo-

cated to, when a fast heuristic fails. Further on, the outer tree is searched depth

first. Lower bounds are used to cut branches, check if for a given decision node

optimality can already be obtained by applying a heuristic for the rest-problem

and checking if a new decision node can be generated by allocating the jth part

to a new empty bin.

If one wants to modify this branching scheme for COP, some additional aspects

have to be considered. Before decision nodes are created by allocating a part to

an active bin it has to be checked if this allocation is allowed, in the sense that

the allocation doesn’t makes it impossible to create feasible allocations of all

further parts. Although at a first glance it seems that (1.5), (1.2), (1.3) and

(1.4) might tighten the decision tree, one has to consider that for standard bin

packing problems the order of bins is not crucial during the searching process

described above. As parts and stacks are ordered in COP, the initially sorting

method might be modified in a way, to still satisfy the order within a stack and

the order of stacks themselves. But for COP it is crucial at which bin a stack is

opened and at which it is closed since these decisions can affect the possibilities

to allocate later parts. To ensure that no possibility is lost during the branching

of the outer tree new decision nodes might be generated by allocating the part to

new bins between already existing bins, if possible in the sense described above.

This gives the outer tree a whole new complexity.

CHAPTER 1. INTRODUCTION 12

1.5.2 Constraint Programming

Solving COP to optimality using by Constraint Programming (CP) leads to se-

rious difficulties. During the work for this thesis two problems for Constraint

Programming solving engines were formulated. Basically the models differ in

the abstraction level at which CP is used. The first model applies CP on the

allocation-finding problem and uses heuristics to answer the question whether a

set of parts can be placed in a single bin. The second one also considers geomet-

rical issues and defines variables and corresponding domains for the position of

parts. In addition to (1.5), (1.2), (1.3) and (1.4) constraints are that parts must

not overlap, be fully placed in the bin and parts of type t1 have to be placed on

the left boarder of a bin. For both problems the objective was to find an alloca-

tion for all parts for a given number of bins, and to find the smallest number of

bins that leads to a feasible solution to optimize the global objective.

Both models have been implemented and solved using the Choco 1 library

for Java 1.6.0.17. While for the second model a feasible solution could not be

found in reasonable time even for smallest instances, the solver was able to find

a single feasible solution for problems with approximately 3 stacks, in total 20

parts and 4 bins using the first model within a couple of seconds. However, for

bigger instance run times explode and therefore real world problems cannot be

solved by applying this technique.

The main reason for the failure is that (1.2), (1.3) and (1.4) are not practicable

for really restrictive or strong propagation steps during the CP solving process.

Unless certain combinations of parts in a bin can be eliminated after placing

a part in a bin by activating it in the CP algorithm, the remaining number of

possibilities is too big. This results from the fact that at this stage no geometric

information is available. Consider the following example: Placing the first part

of a stack in a bin, or in other words activating a variable that represents this

situation, does not necessarily give the opportunity to cut down the domain of

other variables of this form. It cannot be ruled out that, for example, the last

part of the stack is placed in the same bin, or that a stack which is on the outside

of the opening window is opened at the same bin. It still might be possible that

all parts from that stack fit in this particular bin, or in the second example that

all necessary stacks can be closed in the considered bin. While (1.4) leads to the

same issues, (1.5) has a more useful structure but is not restrictive enough for

real world applications where for instances of 200 parts mostly not more than 3

different material qualities occur. Defining additional area constraints for each

1www.choco.sourcefourge.net

CHAPTER 1. INTRODUCTION 13

bin reduces this behavior but still does not allow efficient propagation steps.

1.5.3 Mixed Integer Program

While formulations of Mixed Integer Programs (MIP) are wide spread for common

cutting and packing problems, an MIP for COP would be cumbersome. Even for

standard problems MIP mostly fails to find optimal solutions with reasonable

computational effort. For COP the situation gets even worse since especially

(1.2), (1.3) and (1.4) lead to a huge number of additional bounding conditions.

Therefore, in the next chapter heuristic approaches to solve COP are adapted

and discussed. Although the algorithm introduced in chapter 3 can be used to

compute exact solutions using adapted lower bounds, the proper modeling of an

exact algorithm and the question up to which problem sizes optimal solutions can

be calculated within reasonable time is left for further research.

Chapter 2

Standard Heuristics for COP

In this chapter several heuristic methods for C&P problems from literature are

revisited and modified to solve COP problems. These approaches are divided into

two classes, sequence based- and set based algorithms. Sequence based algorithms

try different sequences in that parts are placed in the bins by a fast and simple

sub-heuristic. Whereas set based algorithms search for subsets of parts that may

be placed in one or a couple of bins. They also use sub-algorithms to determine

whether a set of parts can be placed into one or a few bins.

In the following sections sequence based and set based approaches that can

be found in literature are described. Therefore two new models for handling se-

quences and constraints are introduced. Further, nesting heuristics are adapted

for the special needs of these models and Simulated Annealing and Genetic Al-

gorithms is used to search through the solutions space of different sequences. In

section 2.2 a Tabu Search concept that loosely is based on a framework by Lodi

et al. [48], a greedy search method based on Caprara and Pferschy [13] and a

set based Genetic Algorithm based on the ideas from Iama and Yakawa [43] are

introduced. In section 2.3 some benchmark instances are defined to test and

evaluate the proposed approaches, in section 2.4 results are reported and some

conclusions are drawn.

2.1 Sequence Based Algorithms

Sequence based algorithms are hybrid algorithms consisting of two heuristics. A

global heuristic explores the space of sequences by which parts are placed in bins

by using an additional, fast and simple sub-heuristic, a so called nesting heuristic.

One may notice that the latter could also be used as a stand-alone algorithm by

just pre-ordering the parts following a certain strategy and place them. They are

14

CHAPTER 2. STANDARD HEURISTICS FOR COP 15

mostly used for problems with different bin sizes but can easily be adopted for

problems with a fixed bin size.

Babu and Babu [4] define a sequence model that consists of two concepts, a

set of bins and the order in which they are filled and a permutation of integer

numbers, each representing one part. Finding a set of bins that is able to host all

parts is crucial in this approach, but since for COP we assume that all bins are

identical, it can be neglected for further discussion. Note that even parts with

the same dimensions are represented by different integers.

Babu and Babu [4] also provide an nesting heuristic that transforms a given

sequence into a actual layout. It is based on a bottom-left strategy and is extended

to irregular shaped parts in Babu and Babu [5]. Wu et al. [67] provide an

improved version of this nesting heuristic which is called IBH. Furthermore, Babu

and Babu [4] use a Genetic Algorithm where strings are represented by sequences.

Wu et al. [67] control the search through the space of different sequences by a

Simulated Annealing algorithm.

Since ordering of parts is a key point in COP problems new extended models

for sequences that consider at least some of the constraints (1.2), (1.3) and (1.4)

are needed and defined in section 2.1.1. It follows a discussion of the IBH algo-

rithm and the introduction of three nesting heuristics for COP, that are based on

the IBH approach. Finally the Genetic Algorithm from Babu and Babu [4] and

the Simulated Annealing algorithm from Wu et al. [67] are presented.

2.1.1 Sequence Models

With the sequence model proposes by [4] all possible permutations of parts are

allowed. Since for COP a feasible allocation has to satisfy constraints (1.2), (1.3)

and (1.4), this concept would be cumbersome for our problem. It would be useful

if the allocation that results of placing each part in a single bin, according to the

order given by a sequence, already satisfies some of the constraints (1.2), (1.3)

and (1.4). Let’s call this allocation unit-allocation of a sequence. Furhter, let’s

call a sequence weakly ordered if it’s unit-allocation satisfies (1.2) and strongly

ordered if it satisfies (1.2), (1.3) and (1.4). Finally, let’s define two sequence-

models, the SWSO (Sequences with Strong Order) model, where only strongly

ordered sequences are allowed and second the SWWO (Sequences with Weak

Order) model where only weakly ordered sequences are allowed.

Consider the example given by table 2.1, where m = 2, ow = 3 and the order

of stacks and parts within stacks are given by the ordering in the table. Table

2.2 shows some examples for weakly-, strongly- and not ordered sequences.

CHAPTER 2. STANDARD HEURISTICS FOR COP 16

Stacks Parts
s1 1,2,3
s2 4,5,6
s3 7,8,9
s4 10,11,12

Table 2.1: Ordered stacks and parts.

Sequences Ordering
I (1, 4, 7, 10, 2, 3, 5, 6, 8, 11, 9, 12) weakly ordered
II (1, 4, 5, 6, 2, 7, 3, 10, 8, 11, 12, 9) strongly ordered
III (1, 2, 3, 4, 7, 9, 8, 5, 6, 10, 11, 12) not ordered

Table 2.2: Examples for ordered sequences.

One can see that sequence I is weakly ordered since its unit-allocation satisfies

(1.2), but it is not strongly ordered for two reasons. First, looking at it’s unit

allocation one may notice that |O3| = 3 since stack s1, s2 and s3 are open at bin

b3. Second at bin b4 stack s4 is opened which violates constraint (1.3) since stack

s1 is not closed. Further, sequence III is not even weakly ordered since part 9

comes before part 8.

2.1.2 IBH Nesting Heuristic

The original nesting heuristic proposed by [4] fills bins one by one. Parts are

placed according to a bottom-left (BL) strategy in the current bin. After placing

a part new reference points are obtained corresponding to the left-top and right-

bottom corners of the part. Depending on surrounding parts some points may be

projected horizontally or vertically to be used. The obtained points are stored

in a sorted list according to their bottom-left position, figure 2.1 illustrates this

concept. The next part in the sequence is then placed with its bottom-left point

on the first point in the list. If overlapping occurs or the part is not fully placed

within the bin the next point from the list is considered, otherwise the point

is deleted from the list and the algorithm moves on to the next part. If all

points have been checked and no feasible one was found, an additional bin is

selected to nest the remaining parts. Obviously, the drawback of this algorithm

is that if no points are available for the next part a new bin is selected, neglecting

the possibility that parts further down the sequence may fit in the current bin.

Further, it does not consider rotations.

CHAPTER 2. STANDARD HEURISTICS FOR COP 17

Figure 2.1: Reference points.

Wu et al. [67] propose an improved heuristic (IBH) that overcomes these

drawbacks. First a preprocessing is performed where parts are ordered according

to maximum area first and parts are rotated so that the longer sides are aligned

to the x-axis. The list of reference points is obtained in the same way as in Babu

and Babu [4]. However, if one part cannot be translated to the first point in the

list without overlapping or not fully within the bin, a 90◦ rotation of the part is

performed and it is translated again. If still no feasible placement is achieved the

next part in the sequence is selected and the steps described above are repeated.

If all parts have been checked and no one could be feasibly translated to the

point, the latter is deleted from the list. If the list of points is empty, the next

bin is selected.

In the following three nesting algorithms are proposed that perform, in differ-

ent versions, on the SWSO- and SWWO models and produce feasible allocations,

meaning that all requirements on the layout and constraints (1.2), (1.3), (1.4)

and(1.5) are satisfied. The first is based on the IBH nesting heuristic described

above, the second and third are based on first- and best fit nesting heuristics, see

for example Berkey and Wang [6], combined with the placing rules from above.

2.1.3 Next Fit Nesting Heuristics

The next fit nesting heuristic (NFNH) is based on the approaches from Babu and

Babu [4] and Wu et al. [67]. For the SWSO model the algorithm from Babu and

Babu [4] can be used directly. However, constraint (1.5) has to be checked before

a part is placed in the current bin bk. If it is not satisfied a new bin has to be

selected. To use IBH two modifications have to be done. First, no preprocessing

is performed since the ordering in the sequence must not be changed. Second, if

one wants to translate a part from further down the list to a reference point in the

current bin, it has to be checked if a feasible allocation can be obtained by placing

the part into the bin. That means that the allocation up to the current bin has

CHAPTER 2. STANDARD HEURISTICS FOR COP 18

to satisfy constraints (1.2), (1.3), (1.4) and (1.5). In case that any constraint is

violated the part is not considered for translation to the current reference point

and the next part from the sequence is selected. Furthermore, if the current part

has type t1 only reference points on the left boarder of the bin are considered.

2.1.4 First Fit Nesting Heuristics

Several different forms of first fit nesting heuristics (FFNH) appear in literature,

see for example Berkey and Wang [6]. The main idea is to place parts according

to a given sequence but considering all bins used so far. Each iteration step the

current part is placed in the first bin it fits or in a new bin if it does not fit in

any. In the context of this work that means that a list of reference points, sorted

according to the bottom-left position of reference points, for each bin used so far

is kept. However, due to the special constraints of COP it may be unpossible to

place the current part in the first part it fits without violating (1.2), (1.3), (1.4)

or (1.5). The basic idea is to calculate a first- and a last bin to consider (FBC

and LBC) for allocating the current part, neglecting geometrical constraints. It

is then placed in the first bin, within this interval, it can be geometrically feasible

translated to, meaning that no overlapping occurs, it is placed fully within the

bin, in case the part has type t1 it is attached to the left boarder of the bin

and constraint (1.5) is not violated. If no such bin could be found a new one is

selected.

SWSO:

For strongly ordered sequences the calculation of the first- and last bins to con-

sider can be done straight forward. The last bin to consider is simply the last

bin used so far, to determine the first bin to consider bins are checked backward,

starting with the one that has been added last. Further, let’s distinguish between

parts that are first, last or middle parts in the order within their stacks. For

middle parts the first considered bin is the first in which another part of the same

stack is allocated. For first parts of a stack bins have to be checked whether

last parts from other stacks are placed in them and the other way around. This

ensures that the order of opened and closed stacks given by the strongly ordered

sequence is not violated and the resulting allocation is still feasible. FBC is then

CHAPTER 2. STANDARD HEURISTICS FOR COP 19

given by

FBCi,j =

max

{
A−1

(
pĩ,mĩ

)
: 1 ≤ ĩ ≤ n, ĩ 6= i

}
for j = 1,

A−1 (pi,j−1) for 2 ≤ j ≤ mi − 1,

max
{{
A−1

(
pĩ,1
)

: 1 ≤ ĩ ≤ n, ĩ 6= i
}
∪ {A−1(pi,j−1)}

}
else,

where A−1 is set to one for unplaced parts.

One may notice that the calculation of the first considered bin for first and

last parts can be improved since the order of open and closed stacks given by the

sequence can be violated and still a feasible allocation might result. However, in

this approach for the SWSO model the information when stacks are opened and

closed should be contained in the sequence itself. Table 2.3 shows some possible

iteration steps of FFNH based on the example given by table 2.1 and sequence

II from table 2.2, (1, 4, 5, 6, 2, 7, 3, 10, 8, 11, 12, 9).

bins parts allocated at step 6 parts allocated at step 9
b1 1,4,5 1,4,5
b2 6 6,7
b3 2 2,3
b4 10

Table 2.3: Iteration steps of FFNH based on the SWSO model.

At step 6 parts 1,4,5,6 and 2 have been placed in bins b1, b2 and b3. The first

bin to consider for the next part 7 is then bin b2 since part 6 is the last element

of stack s2 and part 7 is the first element of stack s3. At step 9 parts 7,3, and

10 have also been allocated, the first considered bin for part 8 is bin b2 because

placing it in bin b1 would violate constraint (1.2).

SWWO:

Calculating first- and last bins to consider for the SWWO model is more compli-

cated. During iterations of FFNH it might occur that constraints (1.2), (1.3) and

(1.4) are violated. However, it must be secured that these errors can be corrected

by placing parts from further down the sequence. Therefore it can be necessary

to insert additional new bins between already activated bins and renumber all

bins later than the inserted one.

Looking at sequence I in table 2.2 one may notice that after part 7 three

stacks are opened, so an allocation for the first three parts must ensure that at

CHAPTER 2. STANDARD HEURISTICS FOR COP 20

least one stack out of stacks s1 and s2 can be closed before stack s3 is opened. In

particular that means that if we assume that parts 1 and 2 are placed in bin b1,

part 7 must not be placed in bin b1 since it might not be possible to close stack s1
or s2 in bin b1. Analogously part 10 must not be placed in the same bin as part 1

because stack s1 has to be closed before stack s3 is opened. To ensure that errors

can be corrected in later iteration steps some additional definitions and rules for

calculating the first- and last bins to consider are needed. For further discussion

let (B × S ×Q× T ×m× ow) be an instance of COP.

Definition 2.1.1 (Partial allocation). Let S̃ be a subset of S where each si ∈ S̃
consists of m̃i, with 0 < m̃i ≤ mi, parts pi,1 . . . pi,m̃i

. An allocation Ã on the

subproblem (B × S̃) is called a partial allocation. For a partial allocation Ã a

stack si ∈ S̃ is called pseudo closed at bin bk if A (pi,m̃i
) ≤ k and m̃i < mi,

further, let C̃k be the set of all pseudo closed stacks.

Note that the definition for closed and open stacks stays the same for partial

allocations. Furthermore, for each bin bk a set CBk of stacks that have to be

closed before bk is kept and updated after every iteration where a part pi,1 with

i ∈ {1, . . . , n} has been placed. Given a partial allocation Ã the first bin - FBCi,j
and the last bin LBCi,j to consider for parts pi,j with i ∈ {1, . . . , n} and j ≥ 2

are given by

FBCi,j = Ã(pi,j−1) (2.1)

and

LBCi,j = min
{
{k|si ∈ CBk} ∪

{
Ãkmax + 1

}}
− 1. (2.2)

LBCi,j is the bin before the first bin where stack si has to be finished. Figure 2.2

illustrates FBC and LBC for a part pi,j with j ≥ 2.

Figure 2.2: FBC and LBC for pi,j wiht j ≥ 2.

To calculate LBCi,1 for a part pi,1 with i ∈ {1, . . . , n} formula (2.2) still can

be used, but (2.1) has to be changed to

FBCi,1 = min
{
k|∀l ≤ j − ow ∧ sl ∈ S̃, sl ∈ C̃k−1 ∨ sl ∈ Ck

}
, (2.3)

CHAPTER 2. STANDARD HEURISTICS FOR COP 21

where C̃−1, C−1 = {}. It is the first bin where all stacks, that must be finished

before stack si, are at least pseudo closed at the previous bin, as also shown in

figure 2.3.

Figure 2.3: FBC for pi,1.

One may note that LBCi,1 might be negative or FBCi,j might be bigger than

the number of active bins. In that case a new bin has to activated either before

the first active bin or after the last active bin. If FBCi,1 > LBCi,1 a new active

bin has to be inserted after bin LBCi,1. After calculating FBCi,j and LBCi,j all

bins bk with FBCi,j ≤ k ≤ LBCi,j are checked on the following conditions:

1. All parts in bin bk must have the same material quality as part pi,j.

2. If placing a part pi,1 then

|Ok| −
∣∣∣C̃k−1∣∣∣ < m for k ≥ 2. (2.4)

3. If placing a part pi,1 and bin bk consists of a part pl,mi
then

{1, . . . , i− ow} ⊂
{
C̃k−1 ∪ Ck

)
. (2.5)

4. If placing a part pi,mi
and bin bk consists of a part pl,1 with l 6= i, then

CBk ⊂
{
C̃k−1 ∪ Ck

}
. (2.6)

5. The part can be fully placed within the bin without overlapping and in case

that it has type t1 it can be placed on the left boarder of the bin.

Part pi,j is then placed in the first bin between FBCi,j and LBCi,j which

satisfies these conditions. If no bin can be found a new empty bin is inserted

CHAPTER 2. STANDARD HEURISTICS FOR COP 22

after LBCi, and the part is placed in that bin. The need of the conditions stated

above is explained in the following. For all considered example let’s assume that

m = 3, all parts have the same material quality and are from the same type.

Ad 1. Part pi,j may only be placed in bin bk if all parts that have been previously

placed in bin bk have the same material quality.

Ad 2. During calculations it can happen that the number of open bins exceeds

m. Consider the simple weakly ordered sequence where all first parts of stacks

have to be placed first, e.g.

(p1,1, p2,1, p3,1, p4,1, . . .) .

After placing part p4,1 there are 4 stacks open which violates constraint (1.4).

Therefore (2.4) ensures that even if too many stacks are opened at bin bk, stack

si is only opened if enough stacks are pseudo closed at the bin before. Thereby

enough stacks can be closed before bin bk and a feasible overall allocation is

still possible. Figure 2.4 illustrates a partial allocation that might occur during

calculations, let m1 > 2 and m2 > 2.

Figure 2.4: Example for (2.4).

The next part to place is p4,1 with FBC4,1 = 1 and LBC4,1 = 2. The part

does obviously not fit into bin b1 and therefore bin b2 has to be checked on the

condition (2.4). Since O2 = {s1, s2, s3} and C̃1 = {} one is not allowed to place

part p4,1 in bin b2. None of the stacks in O2 can be finished before bin b2 and

therefore opening s4 would never result in a feasible allocation. A new bin has to

be activated and p4,1 is placed in latter.

Ad 3. and 4. The third and fourth conditions forbid first and last parts of

stacks to be placed together in a bin unless all stacks that have to be closed before

are at least pseudo closed. This ensures that whole stacks can be inserted between

CHAPTER 2. STANDARD HEURISTICS FOR COP 23

these first and last parts, which might be necessary to satisfy (1.3). Figure 2.5

draws a simple example.

Figure 2.5: Example for (2.5).

Let’s assume that ow = 5, m1 = 4 and the next part to place is p7,1. Then

FBC7,1 = 3 and LBC7,1 = 4. Although p7,1 fits in b3 and s1 is closed at b3 one is

not allowed to place p7,1 in that bin due to the following reason: If a part does

not fit in any bin between FBC and LBC it is placed in a new bin after LBC as

described above. Placing p7, 1 in b3 means that p2,1 has to be placed before that

bin since s2 has to be closed before s7 is opened. But inserting a new bin before b3
and placing p2,1 in latter would result in an violation of (1.4), since 4 stacks would

be open, that could not be corrected any more. The fourth condition serves the

same purpose as the third the other way round.

After placing the first part of a stack si in bin bk CBk has to be updated.

All stacks that must be finished before si according to (1.3) are inserted in CBk.

Furthermore, if the number of open stacks exceeds m, some of the pseudo closed

stacks also have to be finished before bk. Here the first Ok −m stacks of C̃k, ac-

cording to the order of stacks, are chosen to be inserted in CBk. If one places parts

from table 2.1 according to sequence I from table 2.2, (1, 4, 7, 10, 2, 3, 5, 6, 8, 11, 9, 12),

table 2.4 shows some possible iteration steps. One may notice that stack s1 has

bk step 4 CBk step 5 CBk step 7 CBk

b1 1 1 1
b2 4 4 4
b3 7 s1 7,10 s1, s2 2,3
b4 7,10 s1, s2

Table 2.4: Iteration steps of FFNH based on the SWWO model.

to be finished before b3 and therefore is added to CB3. Part 10 is the next part

CHAPTER 2. STANDARD HEURISTICS FOR COP 24

to place, the first considered bin is FBC = 2 and the last is LBC = 3. Placing

part 10 in the third bin would result in 4 open stacks at b3 but stack s1 and s2
are pseudo-closed and therefore a feasible allocation is still possible, however, s1
and s2 must be added to CB3. The next part in the sequence is part 2 which is a

middle part of stack s1. The first considered bin is bin b1 and the last is b2 since

stack s2 is in CB3. Let’s assume that part 2 cannot be placed either in bin b2 or

b3 due to geometrical reasons and/or different material qualities a new bin before

bin b3 has to be inserted and part 2 is placed in that bin. Let’s further assume

that part 3 is also placed in that bin.

2.1.5 Best Fit Nesting Heuristics

The best fit nesting heuristic (BFNH) presented works similar to the FFNH for

the SWSO model from last section. It also places parts between first and last

bins considered, but parts are placed in the bin they fit best. Finding the best

bin for a part is a matter of evaluating all reference points in bins between FBC

and LBC. Therefore a measure for the fitness of a reference point is needed.

Here the aggregate length of the fraction of a part’s boarder that is attached to

other parts or the bin is chosen. Note that reference points can have different

fitness values for the same part considered with different orientations. Figure 2.6

illustrates this fitness function. The attached fractions of part 4 are highlighted

for both orientations and the same reference point.

Figure 2.6: Fitness function for reference points.

2.1.6 Global Algorithms - Simulated Annealing

The Simulated Annealing algorithm was first introduced by Metropolis et al.

[54] to simulate the annealing process. It is a neighborhood search meaning

that at each iteration it attempts to move from the current solution to a close

solution given by a defined neighborhood. Although basic neighborhood search

algorithms only accept new solutions if they have better objective values than the

CHAPTER 2. STANDARD HEURISTICS FOR COP 25

current solution, simulated annealing randomly allows moves to worse solutions.

Therefore the difference of the objective values (∆E) is computed. Depending

on this difference and on the current temperature T the probability

P (∆E) = exp

(
−∆E

kBT

)
(2.7)

for accepting the new solution is calculated, where accepting worse solutions

avoids getting trapped in local optima. Temperature T starts with an high initial

value T0 and is decreasing over iterations. It stays the same for L iterations, where

L is a control parameter called the Markov chain length. After L iterations it

is decreased by a cooling function, which ensures that at later iterations worse

solutions are more likely to be rejected. The algorithm terminates when the

overall maximum number of iterations has been reached or, optionally, if for

a certain number of iterations no improvement of the objective value could be

obtained. Figure 2.7 shows the flow chart of a standard Simulated Annealing

algorithm.

In the context of this thesis solutions are represented by the sequences and

neighborhood solutions are derived from them. Therefore Wu et al. [67] pro-

pose part exchange moves, which randomly swap two parts in the sequence, as a

neighborhood operator.

(1, 4, 7, 10, 2, 3, 5, 6,8, 11, 9, 12) (2.8)

(8, 4, 7, 10, 2, 3, 5, 6,1, 11, 9, 12) (2.9)

(2.8) shows a possible sequence for parts 1, . . . , 10. Part 1 and 8 have been

randomly chosen and are swapped, the resulting sequence is showed by (2.9).

A new solution is then obtained by placing parts using a nesting heuristic with

respect to the new sequence (2.8). Furthermore, at early iterations swaps of parts

that have a big distance in the sequence are preferred whereas at later iterations

adjacent parts are more likely to be subjected to a part exchange move. This

ensures that solutions differ more at early iterations and later when the search is

more stable, fine-tuning of sequences is performed.

For SWWO and SWSO models parts cannot be randomly swapped in the

sequences since that would destroy the ordering of the latter. Therefore new

operators for finding neighborhood sequences are defined in the following way:

Given a sequence, two parts pi,j and pĩ,j̃ are randomly chosen in the way that

parts from the same stack cannot be chosen at the same time and first- and last

parts of stack are more likely chosen for the SWSO model. Further, let seqi,j and

CHAPTER 2. STANDARD HEURISTICS FOR COP 26

Fins Start-Solution

Update Step-
Sólution

Check Iteration
Max

Check
improvement max

Worse solution
accepted?

Is Neighbor
better?

Find Neighbor
from Step-Solution

Decode and
Judge solution

Calculate
Acceptance

Increase
improvement

Stop Return best
solution found

Set improvement
to zero Increase iteration

Increase
improvement

yes

no

yes

no

yesno

yes

no

Figure 2.7: Simulated Annealing.

seqĩ,j̃ be their positions and dist = seqi,j − seqĩ,j̃ the distance between them in

the current sequence. Note that without loss of generality we can assume that

seqi,j ≤ seqĩ,j̃. We iteratively try to swap part pi,j with the following part in

sequence. If the swapping would destroy the ordering of the sequence, meaning

CHAPTER 2. STANDARD HEURISTICS FOR COP 27

that its unit allocation does not satisfy the required constraints any more, or

dist swappings have been performed, we stop. If part pi,j and pĩ,j̃ have been

swapped we try to swap part pĩ,j̃ dist− 1 times with the previous part, otherwise

dist swappings are attempted. Again if swapping would destroy the ordering we

stop. That means that parts pi,j and pĩ,j̃ are exchanged as far as possible in the

sequence. For weakly ordered sequences parts may only be swapped if they do

not belong to the same stack. For strongly ordered sequences also (1.3) and (1.4)

have to be checked when attempting to swap the last part of stack si with the

first part of stack sj with i 6= j. In particular that means that opening stack sj
before closing stack si is allowed due to the order of stacks and that not more

than m stacks are open. To evaluate the objective value of a sequence they are

decoded with a nesting heuristic described in the previous sections.

Reconsider sequence I for the example given by table 2.1 and the SWWO

model. Let’s assume that part 1 and 8 have been randomly selected.

(1, 4, 7, 10, 2, 3, 5, 6,8, 11, 9, 12) (2.10)

(4, 7, 10,1, 2, 3, 5, 6,8, 11, 9, 12) (2.11)

(4, 7,8, 10,1, 2, 3, 5, 6, 11, 9, 12) (2.12)

First we swap part 1 with parts 4,7 and 10 and notice that it cannot be swapped

with part 2, since they belong to the same stack. In the resulting sequence (2.11)

we swap part 8 with parts 6, 5, 3, 2, 1, and 10 and get the resulting neighborhood

sequence (2.12). Further, also reconsider sequence II for the SWSO model and

let’s assume that part 6 and 10 have been selected. One may notice that part 6

can be swapped with part 2, but must not be swapped with part 7, since that

would yield in three open stacks. One may also notice that part 10 cannot be

swapped with part 3, since s1 has to be finished before stack s2 is opened. (2.14)

shows the resulting sequence,

(1, 4, 5,6, 2, 7, 3,10, 8, 11, 12, 9) (2.13)

(1, 4, 5, 2,6, 7, 3,10, 8, 11, 12, 9). (2.14)

The same cooling procedure as Wu et al. [67] is used, starting with an initial

temperature T0 and after every L iterations multiplying the current temperature

with a constant α, called the cooling rate. As the initial solution the sequence

that results when one adds the parts of one stack per time to the sequence is

suggested. For the example given by table 2.1 the initial solution would then be

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12). The objective value of a solution is simply given

CHAPTER 2. STANDARD HEURISTICS FOR COP 28

by the number of its active bins.

2.1.7 Global Algorithms - Genetic Algorithms

Genetic Algorithm is a guided local search technique based on principles of ge-

netics introduced by Goldberg [36]. A population of solutions is updated at each

iteration according to natural mechanics like reproduction, crossover and muta-

tion, to reach a global optimum. Therefore solutions have to be coded as strings

and decoding algorithms, which produce actual solutions from strings, have to

be defined. As in nature strings, or individuals, with good objective values are

more likely to be chosen for reproduction. New strings are obtained from two

chosen parent strings of the current population, by applying a crossover opera-

tor. Thereby significant features of both parent strings should be inherited to the

offspring. Furthermore, strings are subject to mutations, which are small random

changes of their structure. Figure 2.8 shows the flow chart of a standard Genetic

Algorithm.

Crossover?

Generation max
reached?

Mutation?Select individual to
crossover with Perform crossover Perform Mutation

For each
individual selected

Select all
Individuals for
Reproduction

Judge
Generation

Update
Generation

Find
Startpopulation

Return best
solution found

no

no

yes

no

yesyes

Figure 2.8: Genetic Algorithm.

CHAPTER 2. STANDARD HEURISTICS FOR COP 29

Babu and Babu [4] introduce a Genetic Algorithm for bin packing problems

where strings are represented by sequences of parts, same as described in the

previous sections. To decode sequences to actual solutions they use the nesting

algorithms described in section (2.1.2). The Genetic Algorithm proposed for COP

is based on the ideas from Babu and Babu [4], although some modifications have

to be performed.

Initial solution:

Sequences for the initial population are generated in the following way: For the

SWWO model each sequence is created iteratively, at each iteration a stack with

some parts that have not been added to the sequence yet, is chosen randomly.

The first part, according to the order of parts within the stack, that has not been

considered yet, is added next to the sequence. This procedure is repeated until

all parts have been added to the sequence. To compute initial sequences for the

SWSO model, first random weakly ordered sequences are creeated, decoded with

the FFNH from section 2.1.4. Afterwards the obtained solution is transformed to

a strongly ordered sequence. The fitness, or objective value, of a sequence is, as

for the Simulated Annealing algorithm, the number of active bins in the decoded

solution.

Selcetion:

The selection of individuals (sequences) for reproduction is done in the same way

as in Babu and Babu [4], first the average and maximum objective value of all

sequences (favg, fmax) in the current populations are calculated. The difference

of the maximum value and the objective value of each sequence (fi for the i th

sequence) is then diveded by that average. The resulting value

pi =
fi − fmax
favg

(2.15)

is called the probability of selecting individual i. Each sequence i with pi ≥ 1 is

then added bpic times to the population for reproduction. Obviously the resulting

population has a smaller size than the original one and therefore the sequence

with the highest decimal part of the estimated probabilities that has not been

considered before, is added to the reproduction population until the size of the

original population is reached.

CHAPTER 2. STANDARD HEURISTICS FOR COP 30

Crossover:

The next step is to perform the crossover operator on the sequences in the repro-

duction population. The aim of this operator is to partially exchange information

of the two parent sequences and build a new offspring based on this information.

The selection of a certain crossover operator strongly depends on the specific

problem. Each sequence is subjected to crossover operation with a certain proba-

bility, pcross. This probabilities is usually between 0.6 and 0.9 and also dependent

on the specific problem, as proposed by Goldberg [36]. Therefore a random num-

ber in the range of [0, 1] for each individual in the reproduction population is

generated. If this particular random number is smaller than pcross the crossover

operator is applied on the related sequence, otherwise it is left unchanged.

If a sequence is chosen for crossover, its mate is randomly selected from the

current population. The crossover operator proposed in this work is based on the

operator used by Babu and Babu [4], where the order of parts up to a randomly

generated crossover site is taken from one parent sequence and the remaining

parts are added in the order they appear in the other parent sequence.

Assuming that all sequences are weakly ordered their crossover operator can

be used directly. Since the first parent sequence is weakly ordered the offspring

sequence is weakly ordered up to the crossover site. Furthermore, since the sec-

ond parent sequence is also weakly ordered all remaining parts are added without

violating the order within stacks. Figure 2.9 shows the principle of the described

operator for the SWWO model and the example from table 2.1, where under-

lined numbers indicate information from the first parent and bold numbers of the

second parent. Further, the crossover site is selected as 5.

Figure 2.9: Crossover operator for SWSO.

First all parts up to part 3 from the first parent are copied to the offspring.

Then all remaining parts are considered in the order given by the second parent

and are added if not copied before. Therefore parts 10,11 and 12 are added next.

The following parts 1 and 4 have already been copied and are neglected. The

CHAPTER 2. STANDARD HEURISTICS FOR COP 31

next part to add is then part 5 and so on.

The SWSO model though requires a different crossover operator. The whole

first parent sequence is copied to the offspring sequence. The parts after the

crossover site are then subjected to a reordering. Iteratively all parts at positions

after the crossover site, except the last, are considered for swapping with the

following part. The swapping is performed if parts appear in the other order in

the second parent sequence and if the offspring would maintain being strongly

ordered. Therefore parts are not allowed to be swapped with parts from the same

stack, further, (1.3) and (1.4) have to be checked. If no iteration resulted in any

swapping the final offspring is found. (2.16) and (2.17) show two possible parent

sequence for the example given by table 2.1 and the SWSO model. Let’s assume

that the crossover site was selected as 7.

(1, 2, 4, 5, 3, 6,7, 10, 8, 11, 12, 9) (2.16)

(7, 8, 9, 1, 2, 4, 3, 5, 6, 10, 11, 12) (2.17)

The first step is to copy (2.16) to the offspring sequence. Second one may notice

that part 8 comes before part 10 in (2.17) and we are allowed to swap. But part

10 cannot be swapped again since part 11 is from the same stack. Next parts to

swap are 12 and 9. The offspring after the first step is shown by (2.18).

(1, 2, 4, 5, 3, 6,7, 8, 10, 11, 9, 12) (2.18)

In step 2 we swap part 11 with part 9 shown in (2.19). (2.20) is the final offspring

sequence after swapping parts 10 and 9.

(1, 2, 4, 5, 3, 6,7, 8, 10, 9, 11, 12) (2.19)

(1, 2, 4, 5, 3, 6,7, 8, 9, 10, 11, 12) (2.20)

Mutation:

The last operator is the mutation operator. The aim of this operator is to apply

minor changes to each sequence with a small probability, called the mutation

probability, pmut. The resulting sequence might have a better objective value or

will change the sequence in a way we will benefit from in later iterations. It also

overcomes that sequences in the current population become too similar and the

algorithm gets trapped in a local minima. It might also occur that sequences

get significantly worse and are not considered any more in the next iteration.

The selection of a mutation operator and the mutation probability are problem

CHAPTER 2. STANDARD HEURISTICS FOR COP 32

specific, for more detailed information see also Goldberg [36]. Babu and Babu [4]

use a operator that randomly swaps two parts in a sequence and also applies 90◦

rotations to these parts. The mutation operator used here replaces a sequence

with a neighborhood sequence obtained from the neigborhood operator described

in section 2.1.6. Rotations are not applied since parts are rotated in the nesting

heuristics if required.

2.2 Set Based Global Algorithms

A major drawback of sequence based approaches is that similar sequences often

result in the same allocation, where set based approaches try to overcome these

redundancies. They are also hybrid algorithms, where a global heuristic selects

subsets of parts that are than allocated to one or more bins by a nesting algorithm,

which can either be exact or heuristic. A simple, but effective example for such

an approach is the SubSetSum algorithm from Caprara and Pferschy [13] which

is basically a greedy algorithm for one dimensional bin packing problems. Lodi,

Martello and Vigo [48] propose a tabu search that reallocates the parts placed

in a sub set of bins from a current solution. Lima and Yakawa [43] try to over-

come some redundancies of Genetic Algorithms based on sequences by defining

crossover and mutation operators that can be applied directly to allocations.

2.2.1 SubSetSum

The SubSetSum algorithms proposed by Caprara and Pferschy [13, 14] are basi-

cally greedy methods. Bins are activated one at a time, for each bin all possible

subsets of unplaced parts are computed. The problem to find all possible subsets

is of course NP-hard, but, as mentioned in Caprara and Pferschy [13], still can

be solved with quite low computational effort, even for large sets of parts. The

best sub set that can actually be placed in one bin is then allocated to a new bin

and the set of unplaced part is updated.

One may note that the number of subsets of the set of unplaced parts can be

dramatically reduced for COP problems. Subsets containing parts with different

material qualities don’t have to be considered at all. Furthermore, only certain

combinations of parts from a single stack can be allocated to a single bin. Assume

that one places the first and the third, but not the second part of a stack in one

single bin, then no feasible allocation can be obtained any more. Therefore one

does not have to compute subsets of parts, instead ranges of unplaced parts for

each stack can be combined. In addition the order of stacks must not be violated

CHAPTER 2. STANDARD HEURISTICS FOR COP 33

and so parts of stack si with i > ow have only to be considered if all stacks sj
with j ≤ i − ow are closed at the previous bin, or will be closed in the current

bin. One may further notice that not all possible ranges must be combined.

Therefore maximum ranges for each stack can be computed by adding up the

areas of unplaced parts until the aggregate area exceeds the area of a bin or parts

with different material qualities have been detected. If the aggregate area of parts

corresponding to a certain combination exceeds the area of a bin, then no other

combination that comprehends these parts has to be considered any more. This

decreases the computational effort to calculate all possible subsets significantly.

Figure 2.10 shows a simple example of 5 stacks that have been allocated up to

the lower lines. The upper lines indicate the maximum ranges for the current bin,

for example all unplaced parts of stack s1 would fit in the current bin. Further,

the material quality and area of parts are provided in the corresponding box.

Let’s assume that m = 3, ow = 4 and L ·W = 200.

Figure 2.10: Example for computing sets of unplaced parts.

Figure 2.11 shows the search tree of computing all sets of unplaced parts

for the example given by figure 2.10. Stacks are considered sequently starting

with s1. Possible ranges for stack s1 are 0, 1 and 2. In the second step these

ranges are combined with ranges of stack s2 as there are 0, 1, 2 and 3. Note

that combinations of parts from stack s1 and s2 can be reduced to the single

set {p1,6, p2,5} by checking the aggregate area of parts against the area of a bin.

Furthermore, the third part of stack s3 cannot be combined with any other part

since it has a different material quality. In the next step one can see that parts of

stack s4 can only be added to combinations where either stack s1 or s2 has been

finished, otherwise more than 3 stacks would be open. Restrictions for parts of

CHAPTER 2. STANDARD HEURISTICS FOR COP 34

stack s5 are even tighter since s1 has to be closed before s5 is opened.

Figure 2.11: Search tree of finding possible sets of unplaced parts.

Furthermore, for two dimensional problems a nesting algorithm, that checks

whether a subset of parts can be placed in a single bin, is needed. Here a sequence

based heuristic that places parts on an infinite strip with the same width as the

original bin is used. The goal is to find a sequence and a corresponding packing

where the right most point of all parts is not further right than the length of a

bin. According to the typology of Wäscher, Hauner and Schumann [66] this is

a Rectangular Strip Packing Problem. Several publications propose sophisticated

algorithms for both regular (rectangular), and irregular problems, for more details

see for example Hopper and Turton [42]. Specific for this problem is that the set

of parts is usually very small and computational effort is more than crucial. More

general heuristics that can also deal with irregular shaped parts is introduced in

chapter 4.

To place parts on the strip reference points are calculated in the same way

as described for the IBH nesting heuristic in section 2.1.2. Reference points are

stored in a sorted list with respect to their left-bottom position. A feasible place-

ment of parts has been detected if all parts have been placed and the rightmost

point does not exceed L. Figure 2.12 gives an example for the strip-packing

method.

The fitness value of an sequence is given by the x-coordinate of the rightmost

point. To guide the search through the space of different sequences with length

bigger or equal to four, a 2-exchange neighborhood, as for example proposed

by Gomes and Oliveira [38], and tabu lists to avoid visiting recently explored

sequences are used. For general information on tabu search see e.g. Glover and

Laguna [35]. For subsets consisting of less or equal than three parts we simply

CHAPTER 2. STANDARD HEURISTICS FOR COP 35

Figure 2.12: Strip packing as sub-routine.

check all possible sequences.

The SubSetSum algorithm from Caprara and Pferschy [13] is modified by

Caprara and Pferschy [14]. They have observed the ’wrong’ allocation of large

parts cause bad solutions and even bad approximation bounds. To overcome this

drawback they discuss two new versions of the SubSetSum heuristic. The Large

items first algorithm allocates all parts that are bigger than the half of the bin

capacity in separate bins. Note that in every feasible allocation these items have

to be packed in separate bins anyway. In the next step all these bins are filled

one by one by allocating optimal subsets of the remaining parts to them. After

bins with large parts are filled, all unplaced items are packs according to the

SubSetSum heuristic.

The Largest Remaining item first algorithm works similar as the standard

SubSetSum algorithm. But instead of considering all possible subsets of unplaced

parts for the current bin, only subsets containing the largest unplaced part are

considered. One may notice that the Large items first algorithm would be cum-

bersome for COP problems, however, the Largest Remaining item first approach

can be easily used for COP problems. All possible subsets of unplaced parts for

the current bin are first sorted by the area of their largest part and then by their

objective value, which is the degree of occupation of the bin. Subsets are then

checked in that order whether their parts can actually be placed in a bin feasibly.

The first feasible subset is then allocated and the next bin is activated.

2.2.2 Tabu Serach

Lodi, Martello and Vigo [47, 48, 51] propose a uniformed tabu search framework

for several versions of two-dimensional bin packing problems, with or without

rotations and guillotine cuts. First their framework is summarized and its dif-

CHAPTER 2. STANDARD HEURISTICS FOR COP 36

ficulties when applying it to COP problems are discussed, further, a modified

algorithm for COP problems, which is based on their concept is stated. A main

feature of their approach is the use of a unified parametric neighborhood, whose

size and structure are varied during the search. Furthermore, they use heuris-

tic algorithms, varying over the different problem types, which actually perform

neighborhood moves. These moves consist of reallocating a subset of parts from

the current solution to new bins by applying a heuristic algorithm, which actually

packs a subset of parts to new bins. Let H denote that heuristic, and H(S) the

number of bins it produces for a subset S of all parts in their approach. Moves

always attempt to empty a specific target bin of the current solution. Therefore

one part of the target bin and all parts of k other bins are allocated by H to new

H(S) bins. Note that the number of bins used for reallocating, k, defines the size

and the structure of the current neighborhood. Its value automatically changes

during the search and further, they keep k distinct tabu lists. The target bin is

selected as the weakest bin of the current solution in terms of a filling function

that considers the area occupied by parts and the number of parts in the bin.

The algorithm proceeds as follows:

1. First an incumbent initial solution is computed by placing each part in

a separate bin. Furthermore, a lower bound for the optimal solution is

computed.

2. At each iteration a target bin is selected.

3. Given the target bin, a subroutine that considers parts in the latter one

at a time is called. At each each iteration of the subroutine all possible

combinations of the considered part of the target bin and the parts in k

additional bins are reallocated.

4. If the number of resulting bins is less than k the move is performed imme-

diately and the subroutine terminates.

5. If exactly k new bins result and the move is not tabu, or the weakest

bin could be emptied, it is also performed immediately and the subroutine

terminates.

6. In both cases k is decreased by one, the target bin is reselected and the

subroutine starts again.

7. If the number of resulting new bins is equal to k+1 and parts in the weakest

bin of all newly obtained bins and remaining parts of the current target bin

CHAPTER 2. STANDARD HEURISTICS FOR COP 37

can be placed in one single bin and the move is not tabu, a penalty for that

move is calculated. Otherwise the penalty for this move is set to infinity.

8. If during the whole subroutine, meaning considering all parts from the

target bin and all combinations of k additional bins, no move with finite

penalty has been detected, either k is increased by one or a diversity step

is performed if k = kmax, otherwise the move with the smallest penalty is

performed.

9. The algorithm terminates if a certain time limit has been reached or if the

optimal solution has been found, which can be detected by the lower bound.

Figure 2.13 shows the flow chart of the algorithm described above, where the

listed steps are also referred in the chart. Lodi, Martello and Vigo [48] propose

two diversification procedures controlled by a counter d that is increased each

diversification step. Instead of selecting the weakest bin for reallocating the d th

weakest bin is selected. If d = dmax or d is bigger than the number of bins of the

current solution a stronger diversification step is proposed. Parts placed in the

’weaker’ half of all bins are reallocated by placing each part in a separate bin and

reseting all tabu lists and d. As mentioned before kmax tabu lists are stored, each

having an own tabu tenure. For k > 1 the corresponding penalty values of moves

are stored in the lists, for k = 1 the values of the filling function are stored.

Obviously selecting any k additional bins and reallocating parts in them would

not work properly for COP. A way out could be to select only k neighbor bins of

the weakest bin. However, using FFNH or BFNH from sections 2.1.4 and 2.1.5

to reallocate parts of them would result in too similar allocations and the search

would be to narrow. Therefore each iteration the attempt to empty the current

weakest bin is split in two stages:

1. In the first stage the weakest bin is determined and we select a part from the

current weakest bin and try to reallocate it to any other bin using BFNH.

2. The resulting move, if not tabu, is performed and we go back to 1.

3. If all parts of the weakest bin have been considered for reallocation and

there are still parts left in the weakest bin we move on to the second stage.

4. In the second stage all possible k neighbor bins of the weakest bin are con-

sidered. All parts in the neighbor bins and in the weakest bin are reallocated

using the SubSetSum algorithm from section 2.2.1.

CHAPTER 2. STANDARD HEURISTICS FOR COP 38

5. If the obtained solution uses less than k + 1 bins the move is performed

immediately, k is decreased and we go back to the first stage (1).

6. Same if the reallocation results in k + 1 bins and the move is not tabu.

7. If more than k+ 1 bins result and the move is not tabu, it is still performed

but k is not decreased and we go back to the first stage (1).

8. If all moves on k neighbor bins were either tabu or worse than the current

bins and k < kmax, we increase k and go to the beginning of stage two again

(4).

9. Else if k = kmax and the algorithm has not reached a maximum time limit

we perform a diversification step and go back to (1).

Figure 2.14 shows the flow chart from the modified tabu search algorithm.

As the initial solution also the allocation that results when placing each part

in a separate bin, ordered first according to the order of stacks and second to

the order within stacks is chosen. We also two different diversification steps are

proposed, controlled by a counter d that is increased each time diversification is

performed. For d < dmax all parts in the d th weakest bin are placed in separate

bins. If d = dmax parts in the weaker half of the bins are placed in separate bins,

furthermore, tabu lists and d are reseted.

2.2.3 Genetic Algorithm

A major drawback of the Genetic Algorithm from Babu and Babu [4], discussed

in section 2.1.7, is that similar sequences often result in the same packing. These

redundancies can be overcome if the crossover- and mutation operator could be

applied directly on the solution, namely the bins. The latter operators for the

one-dimensional bin packing problem are for example introduced by Rohlfshagen

and Bullinaria [62] and Lima and Yakawa [43]. The Genetic Algorithm for COP

problems presented in this section is roughly based on the ideas of Lima and

Yakawa [43] and the sequence based concept from section 2.1.7. The initial pop-

ulation is build the same way as in section 2.1.7 by randomly generating weakly

ordered sequences and applying the FFNH to obtain actual solutions. Also the

population for reproduction is calculated in the same way as in section 2.1.7.

The crossover operator for two parent allocations A1 and A2 works as follows.

Two crossover sites, represented by stacks, are selected randomly, thereby the

’distance’ of these two stacks in the order of stacks must not be smaller than the

CHAPTER 2. STANDARD HEURISTICS FOR COP 39

opening window ow. Let si and sj with j − i ≥ ow be these two stacks. Then

let bki with ki = A−11 (pi,mi
) be the last bin that contains a part of si and bkj

with kj = A−11 (pj,1) the first bin that contains a part of sj, in the first parent

allocation. All bins up to bki and later than bkj are copied to the offspring solu-

tion. Some parts in these bins might be from stacks between si and sj. These

parts are deleted from the offspring solution. All remaining and deleted parts are

then placed in the order they appear in the second parent solution in bins of the

offspring solution, using FFNH. Figure 2.15 shows the principle of the proposed

technique.

For mutation the allocation is translated to a sequence and the mutation

operator for weakly ordered sequences is applied and FFNH is used to compute

a allocation from the obtained sequence.

2.3 Test data

Since, as far as the author is aware, COP is a new problem no benchmark problems

exist in literature. Therefore three classes of test cases that are based on data from

industrial applications are defined. Problems of class I, small problems, consists of

6 stacks and 50 parts, in particular one stack with 15 parts, 2 stacks with 10 parts

and 3 stacks with 5 parts. Medium sized problems, class II problems, consists of

16 stacks and 150 parts and large problems, class III, of 28 stacks and 250 parts.

Distribution of parts over stacks for class II and III problems are shown in table

2.5. We choose m = 3, ow = 4 for class I instance and m = 4, ow = 8 for class II

and III. Note that the order of stacks is generated randomly. Further, distinguish

Stack sizes Number of stacks class II Number of stacks class III
15 3 5
10 5 7
8 3 5
7 3 5
5 2 6

Total 16 28

Table 2.5: Stacks and their sizes.

four classes of parts are distinguished. For each class lengths and widths of parts

are integers and uniformly distributed over a given interval, furthermore, let’s

assume that Q = {A,B,C,D}. For each class the material quality of parts is

uniformly distributed over a subset of Q, and parts of class PII are of type t1 with

CHAPTER 2. STANDARD HEURISTICS FOR COP 40

probability p = 0.75 and parts of class PIII with p = 0.25. The probabilities of

parts being from a certain class, intervals of length and width, possible material

qualities and types for the four different classes are shown in table 2.6. Each bin

has length L = 20 and width W = 10. Further, 10 instances of small, medium

Classes Probability Length Width Material qualities Types
PI 0.35 [15, 20] [1, 5] {A,B,C,D} t2
PII 0.15 [10, 20] [5, 10] {C,D} t1,t2
PIII 0.35 [1, 10] [5, 10] {A,B,C,D} t1,t2
PIV 0.15 [1, 10] [1, 5] {A,B} t2

Table 2.6: Classes of parts.

and large problems have been generated and all proposed algorithms are tested

on them. The results and discussion are provided in the following section.

2.4 Results

To compare and discuss the different approaches introduced in this work, all

heuristic algorithms are coded in Java 1.6.0 17 and implemented on a Intel(R)

Core(TM)2 Duo CPU T830 @2.40 GHz 2.40Ghz PC with 2 GB RAM. Since run

times of algorithms for industrial applications are very crucial a time limit of

180 seconds for each algorithm was applied. Note that, although the runtime

of the SubSetSum algorithm is non controllable, all runs terminated within 180

seconds. Due to the stochastic features of the Simulated Annealing- and Genetic

Algorithms 10 independent runs for each test instance have been performed and

best- and average results were reported. Esed parameter sets resulted from the

experience of intensive testing. The parameters chosen for the Simulated An-

nealing algorithms are: starting temperature, T0 = 75, cooling rate, α = 0.8

and Markov chain length, L = number of parts to be placed. Furthermore, the

algorithm terminates if either the time limit of 180 seconds is reached, or no im-

provement of the objective value appeared for 15000 iterations. Table 2.7 and 2.8

compare the best- and average bin usages for all test instances of the proposed

Simulated Annealing algorithm using the SWSO and SWWO sequence models

and FFNH, BFNH and NFNH heuristics.

One can see that for small instances all versions produce similar results and

notable differences in performance occur only for class II and III problems. For the

SWSO model we also see that NFNH performs worst in terms of average results

and best results for every test instance. Further, FFNH and BFNH perform

CHAPTER 2. STANDARD HEURISTICS FOR COP 41

SWSO

NFNH FFNH BFNH

Class×Instance Avg. Best Avg.
run-

time(s)

Avg. Best Avg.
run-

time(s)

Avg. Best Avg.
run-

time(s)

I×1 26.2 25 3.6 27.3 27 4.1 27.2 27 7.5
I×2 23.9 23 3.6 23.7 23 38.7 21.9 21 6.7
I×3 29.5 29 4.1 29.5 29 4.1 28.6 28 6.8
I×4 27.7 27 4.0 27 27 4.4 26.1 26 6.6
I×5 25.4 23 3.3 23.4 21 4.3 23 23 7.1
I×6 26 25 4.1 25.9 25 4.1 25.9 25 6.6
I×7 26.4 25 3.6 26 26 4.0 24.1 24 6.6
I×8 23.7 23 3.9 22.2 22 4.2 21.8 21 7.3
I×9 26.3 26 4.0 26 26 4.1 26.1 26 7.1
I×10 26 25 4.1 26.1 26 4.1 25.2 25 7.4

II×1 65.3 62 12.1 63.2 60 11.7 62.6 61 24.0
II×2 70.1 67 12.7 67.6 66 12.8 67.2 66 25.2
II×3 70.1 66 12.7 65.8 64 12.0 65.7 64 24.1
II×4 73.2 71 13.0 66.7 65 12.3 66.5 64 23.2
II×5 68.8 66 13.2 63.7 60 12.1 64.3 63 24.1
II×6 72.3 70 13.5 66.5 64 12.2 67.6 63 23.9
II×7 69 66 12.8 64 62 12.4 64.7 63 24.5
II×8 71.8 70 13.4 67.1 63 12.7 66.9 64 24.7
II×9 72.4 68 13.2 69.1 67 12.2 67.6 66 23.8
II×10 67.8 65 13.4 63.8 62 12.1 63.5 62 24.7

III×1 122.9 120 23.6 112.9 110 20.4 112.1 109 38.4
III×2 119.8 114 22.5 106.5 103 20.0 106.4 105 38.3
III×3 126.7 121 24.1 116.5 111 20.7 114.5 111 40.0
III×4 114.7 112 23.0 107.7 103 20.1 106.8 103 39.4
III×5 122.3 120 22.7 111.2 107 19.7 111.6 108 37.8
III×6 123.9 121 24.5 112.7 110 20.7 112.7 110 38.1
III×7 123.3 121 24.1 115.5 112 20.2 113 109 38.5
III×8 123.1 117 22.7 112.1 109 19.9 110.9 108 37.9
III×9 119.8 117 22.2 106.6 104 19.7 107.3 104 39.4
III×10 120.8 118 22.4 108.1 102 20.3 108.7 105 39.8

Table 2.7: Average and best bin usage for Simulated Annealing using the SWSO
model.

quite similar in terms of best results, but for 7 medium and 6 large instances

BFNH had better average results. Also for the SWWO model FFNH and BFNH

perform almost the same, but results are clearly worse than for the SWSO model.

Average run times are, as expected, higher using BNFH than FFNH and NFNH.

Moreover they are higher for the SWWO model.

CHAPTER 2. STANDARD HEURISTICS FOR COP 42

SWWO

FFNH BFNH

Class×Instance Avg. Best Avg.
run-

time(s)

Avg. Best Avg.
run-

time(s)

I×1 28 28 45.2 28 28 67.2
I×2 24 24 18.3 24.9 24 96.3
I×3 29.2 29 5.4 29.8 29 15.5
I×4 27 27 5.9 27 27 16.3
I×5 22.1 22 50.9 23 23 23.1
I×6 25 25 158.6 25 25 141.2
I×7 26.1 26 31.9 24.6 24 84.4
I×8 22 22 112.7 22.1 22 138.3
I×9 26 26 67.3 26 26 52.4
I×10 26 26 5.6 25.4 25 10.4

II×1 67.8 65 65.4 67.8 66 68.5
II×2 73.8 71 83.8 69.9 67 80.3
II×3 70.1 61 55.7 68.1 66 71.1
II×4 73.6 70 78.5 74.8 71 80.3
II×5 68.7 64 40.7 66.9 65 79.5
II×6 73.9 67 64.4 72.5 68 84.2
II×7 67.3 64 47.8 67.8 66 82.9
II×8 73.1 69 74.1 73.3 72 11.1
II×9 75.4 73 66.1 73.9 69 91.7
II×10 71.6 69 134.4 71.7 67 68.7

III×1 119.6 116 156.3 120.4 114 171.9
III×2 116.3 107 146.8 117.7 114 161
III×3 133.4 125 162.3 131.3 126 177.1
III×4 116.9 112 168.1 117.4 113 171.8
III×5 121 117 165.5 119.9 113 167.7
III×6 121 116 158.2 121 117 176.8
III×7 129 126 147.7 122.4 117 161.0
III×8 120.8 115 155.7 119.4 113 157.8
III×9 117.7 111 119.7 117.8 111 157.4
III×10 116 110 158.4 118.1 113 145.9

Table 2.8: Average and best bin usage for Simulated Annealing using the SWWO
model.

The parameter set for the proposed Genetic Algorithms is given by: the pop-

ulation size equals the number of parts to be placed, the mutation probability,

pmut = 0.25 and the crossover probability, pcross = 0.65. The algorithm terminates

if either the time limit of 180 seconds or the maximum number of iterations, 2000,

has been reached. Table 2.9 summarize results for the SWSO sequence model and

CHAPTER 2. STANDARD HEURISTICS FOR COP 43

table 2.10 compares the results for the SWWO model and the set based crossover

operator.

SWSO

NFNH FFNH BFNH

Class×Instance Avg. Best Avg.
run-

time(s)

Avg. Best Avg.
run-
time

Avg. Best Avg.
run-

time(s)

I×1 27 26 4.0 27.2 27 4.7 27.3 27 8.3
I×2 24.3 24 4.2 24 24 4.5 22.9 22 7.2
I×3 31.7 31 3.9 32.1 30 4.4 30.1 29 7.5
I×4 27.8 27 4.3 27.1 27 4.9 26 26 7.5
I×5 25.1 24 3.9 22 21 4.8 23.5 22 8.0
I×6 28.5 27 4.1 27.3 26 4.7 26.9 26 7.5
I×7 26.7 25 4.1 26.3 26 4.9 25.2 24 7.7
I×8 25.4 23 3.9 23.2 22 4.7 23 22 8.1
I×9 27.5 26 4.1 26.1 26 4.7 26.1 26 8.1
I×10 28.3 25 3.9 27.5 27 4.7 26.2 26 7.7

II×1 72.3 70 86.7 65 62 109.1 65.4 62 139.3
II×2 78.2 72 89.0 70 68 111.0 69.6 67 139.9
II×3 76.6 73 90.7 66.9 65 114.7 67.2 66 138.3
II×4 79.2 76 85.1 69.1 67 114.1 68.4 66 138.5
II×5 75.2 72 84.4 65.4 62 112.7 64.9 62 153.2
II×6 80.5 77 87.7 69.5 68 114.1 69.6 65 140.5
II×7 76.5 72 92.3 67.1 65 117.1 65.7 62 145.1
II×8 79 76 88.1 68.1 66 109.2 68 67 135.8
II×9 79.6 76 88.3 72.1 70 114.4 69.7 69 137.4
II×10 78.1 75 85.5 65.9 64 113.9 67.2 64 141.6

III×1 141.3 134 180.0 118.1 114 180.0 120.4 114 180.0
III×2 134.1 131 180.0 112.5 109 180.0 112.3 108 180.0
III×3 142.7 136 180.0 123.3 120 180.0 122.9 119 180.0
III×4 130 126 180.0 110.3 108 180.0 111.4 108 180.0
III×5 137.9 130 180.0 117.5 111 180.0 117.5 115 180.0
III×6 142.7 138 180.0 117.8 115 180.0 118.7 116 180.0
III×7 141.9 136 180.0 119.7 115 180.0 119.8 116 180.0
III×8 138.4 133 180.0 115.8 111 180.0 116 112 180.0
III×9 132.4 128 180.0 113.1 110 180.0 114.4 111 180.0
III×10 131.4 126 180.0 113.3 110 180.0 114 112 180.0

Table 2.9: Average and best bin usage for Genetic Algorithms using the SWSO
model.

One can observe that for the SWSO model NFNH is also dominated, same

as results for Simulated Annealing have shown. Where FFNH and BFNH work

similar on medium sized instances, FFNH produces better results for large in-

CHAPTER 2. STANDARD HEURISTICS FOR COP 44

SWWO

FFNH BFNH Set based

Class×Instance Avg. Best Avg.
run-

time(s)

Avg. Best Avg.
run-

time(s)

Avg. Best Avg.
run-

time(s)

I×1 24.8 22 6.8 25.2 24 8.1 29 29 73.5
I×2 20.1 18 7.0 20.8 19 8.0 25.9 25 65.5
I×3 26.9 24 6.9 27.6 26 8.2 33.5 33 78.3
I×4 25.2 24 7.0 25.3 24 8.3 28 28 65.7
I×5 21.1 19 6.5 20.9 20 8.3 26.3 25 65.0
I×6 24.3 23 6.5 23.7 23 7.9 28.8 28 69.7
I×7 23.9 23 6.6 23 22 7.9 28 27 66.3
I×8 22.8 22 6.6 22.8 21 8.3 25.5 25 64.5
I×9 24.9 24 6.6 25.1 25 8.6 29.6 28 70.4
I×10 25 24 6.8 23.7 22 8.5 30.8 29 0

II×1 74.3 71 122.4 72.7 69 128.3 74.8 74 180.0
II×2 80.6 78 114.5 82 78 123.6 76.3 75 180.0
II×3 79.9 76 124.8 81.3 79 127.7 75.5 75 180.0
II×4 76.8 73 114.4 77 75 122.4 80.4 79 180.0
II×5 74.8 73 115.0 73.9 69 120.3 73.4 71 180.0
II×6 81.1 76 121.4 80.7 78 126.1 82.6 81 180.0
II×7 76 73 116.7 77.9 75 124.9 74.2 73 180.0
II×8 81.7 80 118.4 80.9 77 123.9 78.3 76 180.0
II×9 79.6 77 116.9 81.5 78 124.4 81 80 180.0
II×10 80.1 76 113.8 80.2 77 120.4 81.7 78 180.0

III×1 137.7 133 180.0 141.8 136 180.0 138.4 136 180.0
III×2 136.3 130 180.0 131 135.5 180.0 131.9 129 180.0
III×3 146.8 141 180.0 147.4 142 180.0 151.1 148 180.0
III×4 130.8 127 180.0 127 132.5 180.0 128.8 126 180.0
III×5 135.9 132 180.0 134.6 131 180.0 131.2 128 180.0
III×6 139.3 133 180.0 140.9 136 180.0 137.7 135 180.0
III×7 140.1 137 180.0 142.1 136 180.0 140.1 138 180.0
III×8 135.1 128 180.0 135.2 130 180.0 129 126 180.0
III×9 136.1 134 180.0 135.6 131 180.0 127.7 123 180.0
III×10 133.2 130 180.0 133.2 129 180.0 129.8 128 180.0

Table 2.10: Average and best bin usage for Genetic Algorithms using the SWWO
model and the set based crossover operator.

stances. For eight out of ten large instances it performed same or better than

BFNH in terms of average and best results. However, for the SWWO model we

cannot observe that results of one heuristic are dominated by the results of the

other one. Furthermore, results for the SWSO model are significantly better then

for the SWWO model. Apparently crossover and mutation operators work way

CHAPTER 2. STANDARD HEURISTICS FOR COP 45

better on strongly ordered sequences. The set based approach is in the range of

the sequence based algorithm based on the SWWO model in terms of results but

has notable higher run times.

Table 2.11 shows the results computed with the Tabu search-, SubSetSum-

and Modified SubSetSum algorithms. The parameters for the Tabu search were

chosen as follows: start value of k, kstart = 23, maximum diversification counter,

dmax = 10 and the maximum number of iterations is 20000. Since these algorithms

are deterministic we run them only once on each instance.

Tabu Search SubSetSum Modified SubSetSum

Class×Instance No. of
bins

run-
time(s)

No. of
bins

Run-
time

No. of
bins

run-
time(s)

I×1 30 12.2 30 0.02 30 0.03
I×2 24 23.9 28 0.03 28 0.02
I×3 32 13.4 34 0.02 34 0.01
I×4 28 13.9 30 0.03 32 0.06
I×5 26 10.3 27 0.03 27 0.08
I×6 27 11.4 29 0.03 29 0.03
I×7 26 19.9 26 0.03 26 0.06
I×8 33 7.2 28 0.03 29 0.01
I×9 28 34.0 33 0.03 33 0.03
I×10 29 6.9 30 0.03 30 0.02

II×1 67 102.2 65 0.3 68 0.3
II×2 90 85.7 72 0.2 79 0.3
II×3 72 69.7 71 0.2 77 0.3
II×4 81 180.0 77 0.2 76 0.1
II×5 64 180.0 72 0.3 69 0.2
II×6 77 43.7 70 0.1 72 0.1
II×7 78 43.8 69 0.2 72 0.3
II×8 82 47.7 76 0.1 74 0.2
II×9 107 46.9 78 0.2 80 0.3
II×10 71 40.8 66 0.1 72 0.1

III×1 143 180.0 123 0.4 121 0.6
III×2 117 180.0 112 0.3 115 0.6
III×3 134 180.0 120 0.2 116 0.2
III×4 118 180.0 112 0.5 114 0.5
III×5 185 180.0 113 0.3 117 0.5
III×6 151 180.0 116 0.3 116 0.4
III×7 146 180.0 123 0.6 127 0.5
III×8 171 180.0 117 0.4 123 0.4
III×9 136 180.0 123 0.4 115 0.3
III×10 127 180.0 112 0.4 116 0.3

Table 2.11: Bin usage for Tabu Search, SubSetSum and Modified SubSetSum.

CHAPTER 2. STANDARD HEURISTICS FOR COP 46

The following observations can be made: first, against intuition, the standard

version of the SubSetSum algorithm performs slightly better than the modified

version. One may also note that run times are very low for both versions. Further,

for small and medium instances results of the Tabu search algorithm are in the

range of the results of SubSetSum, for large instances though Tabu search per-

forms far worse. Moreover the Tabu search algorithm seems to be quite unstable,

meaning that it performs very badly on some particular instances.

Furthermore, one can see that sequence based algorithms perform better than

set based algorithms in terms of average- and best results. For sequence based al-

gorithms Simulated Annealing shows to be the more competitive approach. Tabu

search produces very good results for a few instances and performs extraordinary

poor for others. Remarkable is though that SubSetSum is indeed not that strong

as Simulated Annealing but computes comparative good results with notable

small run times. This shows that it uses the special problem structures to narrow

the search space in an efficient way. As mentioned above the computational effort

to compute all possible subsets of parts for the next bin can be reduced dramati-

cally, compared to standard bin packing problems, by considering the additional

constraints. For sequence based approaches it takes far more sophisticated tech-

niques, as Simulated Annealing, and time to outperform SubSetSum. This lead

to the design ideas for a heuristic algorithm for COP that is based on the Sub-

SetSum algorithm but uses network-search techniques to backtrack decisions, as

described in more details in the next chapter.

CHAPTER 2. STANDARD HEURISTICS FOR COP 47

Check time limit

Lower bound
reached

K=kmax?

Move with finite
penalty found

All
 parts from
weakest bin

tried?

All
 combinations

of k bins
tried?

5. Weakest bin
empty?

Check
 tabu lists and new

allocaton

Judge new bins

5. Check tabu lists

no yes

same

worse

yes

no

no

no

better

yes

yes

yesno

yes

no

yes

no

1. Compute initial
solution and lower

bound

Set k=kstart

2. Calculate
weakest bin

Reconsider parts
from weakest bin 8. Increase bin 8. Deversification Perform best

move found
4.5.6. Perform

move

9. Return best
solution found

3. Select part from
weakest bin

3. Select k
additional bins

3. Allocate parts
from k bins + part
from weakest bin

7. Calc penaly of
move

4.5.6. Decrease k

no

yes

Lower bound
reached

K=kmax?

Move with finite
penalty found

All
 parts from
weakest bin

tried?

All
 combinations

of k bins
tried?

Reconsider parts
from weakest bin 8. Increase bin 8. Deversification Perform best

move found
4.5.6. Perform

move

9. Return best
solution found

3. Select part from
weakest bin

3. Select k
additional bins

Figure 2.13: Tabu Search by Lodi et al. [48].

CHAPTER 2. STANDARD HEURISTICS FOR COP 48

Find initial solution Return best
solution found

5.6.7. Perform
move

9. Diversification
K=kstart

1. Determine
weakest bin

1. Select part from
weakest bin

2. Perform move

4. Select k
neighbor bins

4. SubSetSum on
k+1 bins

8. Increase k

5.6. decrease k

Check tabu list

Fits in other bin?

All parts
considered

Check iteration
max

K=kax

All
 combinations

tried?

Judge new bins

Check tabu lists

Check tabu lists

no

yes

yes

no

yes

no
no

yes

no yes

no

worse

same

better

no

yes

yes

Figure 2.14: Modified tabu search.

CHAPTER 2. STANDARD HEURISTICS FOR COP 49

Figure 2.15: Principle of set based GA.

Chapter 3

Network Search Methods for

COP

In the last chapter different approaches were classified into sequence and set

based approaches and adapted to solve COP. Although Sequence based heuristics

showed to be more competitive in terms of results, they were not able to benefit

from the special structure of COP. Whereas SubSetSum, a simple set based greedy

algorithm based on ideas from Caprara and Pferschy [13], produced comparative

good results requiring small computational effort. The latter algorithm fills one

bin at time by calculating all subsets of unplaced parts and allocating the best

set, which can be geometrically feasible placed in a single bin, to an additional

active bin. The advantage of this approach is that constraints (1.2), (1.3), (1.4)

and (1.5) can be used to reduce the number of possible subsets of unplaced parts.

In particular only combinations of ranges for each stack, instead of subsets, have

to be computed when considering (1.2). Furthermore, (1.5) can be used to tighten

this ranges notably and the number of ranges bigger than zero can be limited by

(1.3) and (1.4).

In section 3.1 these ideas are used to construct a directed network graph where

nodes represent possible allocation status of stacks during calculations. Section

3.2 provides a search algorithm on that graph, which is based on standard network

search algorithms. In section 3.3 lower bounds and worst case scenarios for the

proposed algorithm are discussed. In section 3.4 some techniques to speed up

calculations and improve results are presented. The performance of the proposed

algorithm, compared to standard heuristics, is evaluated in section 3.5.

50

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 51

3.1 Network Graph Representation

During each iteration of the SubSetSum algorithm all possible subsets of unplaced

parts are computed. The best that can be geometrically feasible allocated to a

single bin is then translated to a new active bin. Note that the progress of the

algorithm could be measured by the set of unplaced parts, or respectively the

set of already allocated parts. More precisely, at each iteration, the set of placed

parts can be described by a progress vector which is defined as follows. For the

following discussion let I = (B × S ×Q×m× ow) be an instance of COP.

Definition 3.1.1 (Progress Level). Let S̃ be a subset of S where each si ∈ S̃

consists of parts pi,1 . . . pi,m̃i
, with 0 ≤ m̃i ≤ mi. If there exists a feasible allocation

Ã on the sub problem (B × S̃ ×Q×m× ow), subset S̃ is called a progress level

of I, the vector

vS̃ = (m̃1, . . . , m̃2) (3.1)

its progress vector and

APS̃ = {pi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m̃i} (3.2)

the set of allocated parts. Further, let N be the set of all progress Levels and

S̃1, S̃2 ∈ N . We say that S̃2 dominates S̃1, S̃1 ≤ S̃2, if

vS̃1,i
≤ vS̃2,i

for i = 1, . . . , n. (3.3)

Consider the directed graph G = (N,E) where each node S̃ ∈ N represents

one progress level of I and the set of edges, E, is given by

E =
{(
S̃1, S̃2

)
|S̃2 ≥ S̃1 , parts APS̃2

\ APS̃1
can be placed in a single bin

}
(3.4)

Note that obviously the placement of parts must satisfy all required constraints

on the layout, namely that parts are placed fully within the bin, that parts do not

overlap and parts of type t1 are placed at the left boarder of the bin. Informally

speaking an edge exists if and only if all parts that have been allocated at S̃2 but

not at S̃1 can be placed in a single bin. The length of an edge e is chosen as

|e| = β −

∑
pi,j∈APS̃2

\APS̃1

li,jwi,j

LW
, (3.5)

β minus the fraction of the unused area when placing all parts to get from S̃1 to

S̃2 in a single bin, where β is a parameter free to choose. Obviously there is no

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 52

edge e ∈ E with |e| < 0 if β ≥ 1. Note that the size of G strongly depends on m,

ow and most of all on the dimension of bins and parts. Further, one can see that

S̃0 = {}, the initial allocation, is the source node and S̃ = S, the final allocation,

is the sink node of G. Every feasible allocation A for I can be represented by a

path from the initial allocation to the final allocation, by translating each edge

to a single bin, and the other way round. The problem of finding an allocation

with smallest Amax can then be formulated as the problem to find the shortest

path from S0 to S in G. In the next section a standard algorithm for shortest

path problems is discussed and an adapted version is applied on the graph from

above.

3.2 A∗ Relaxation

The idea to translate Bin Packing, or more precisely stock cutting, problems to a

network search problem can already be found in Albano and Sapuppo [1]. Albano

and Sapuppo [1] consider the irregular Strip Packing problem where irregular

shaped parts are placed on a strip with fixed width and infinite length. The goal

is to find an allocation that minimizes the used length of the strip. Nodes in

their network represent placed parts and their orientations. The shortest path

from the initial calculation to the final allocation is obtained by the A∗ algorithm.

However, they conclude that the network is too large for finding optimal solutions

with A∗ and propose some techniques to speed up calculations. Thereby it cannot

be granted that an optimal solution is found, but computational results proof

that the competitive ability of the approach. Therefore next the principles of the

A∗ algorithm are summarized, and heuristic variants and the arising difficulties

for COP are discussed. Finally some of the strategies proposed by Albano and

Sapuppo [1] to speed up calculations are improved to fit COP.

3.2.1 Dijkstra’s algorithm and A∗

Dijkstra’s algorithm was first introduced by Dijstra [24] and computes the shortest

path from a starting node v0 to either all other nodes v ∈ V with v 6= v0 or to a

destination node vd for a directed graph G = (V,E) with nonnegative length of

edges e ∈ E. The two versions only differ in their termination criteria. Due to the

structure of COP only the algorithm to find the shortest path between two nodes

is considered. Informally speaking it consists of a set of labeled nodes LA and a

set of expanded nodes O. At each iteration the node v ∈ LA with the smallest

label is selected, labels of all adjacent nodes are updated and v is put in O. The

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 53

algorithm terminates as soon as vd is selected from LA. Let λv denote the label

of node v, ρv its predecessor and | (v, ṽ) | the length of edge (v, ṽ). Algorithm 1

shows the pseudo code of Dijkstra’s algorithm.

Algorithm 1 Dijkstra’s algorithm

1: v = v0; λṽ =∞ ∀ṽ 6= v ∈ V ; ρv = NULL; LA = {v} , O = {}
2: while vd /∈ O do
3: select and remove v ∈ LA with smallest λv and put in O.
4: for all (v, ṽ) ∈ E do
5: if ṽ /∈ O and λv + | (v, ṽ) | < λṽ then
6: λṽ = λv + | (v, ṽ) |; ρṽ = v.
7: if ṽ /∈ LA then
8: insert node ṽ in LA.
9: end if

10: end if
11: end for
12: end while

A drawback of this algorithm is that it expands nodes regardless of the prob-

ability that they lie on the optimal path from v0 to vd. Consider the example

where one wants to calculate the shortest path between two cities in a road net-

work and the destination is located south of the origin. Obviously nodes north

of the start node are less likely on the shortest path and therefore may not need

to be expanded. Furthermore, determining the node with smallest label in L

has high computational costs. Several techniques to reduce computational effort

have been introduced in the past, for an general overview see for example Fu et al.

[33]. Basically they can be classified whether they try to reduce the search costs

for finding the node with the smallest label, by using special data structures, or

if the search space of expanded nodes is tightened. As one will see, the use of

special data structures, as for example buckets or threshold list, is not essential

for the algorithm we propose for COP. However, since the network described in

section 3.1 is huge for industrial applications, methods to cut down the number

of expanded nodes are from great interest. Hart et al. [40] proposed the use of

heuristic estimators est(v, vd) for the path from v to vd. The label of a node v in

algorithm 1 is substituted by fv = λv + est(v, vd), the sum of the length of the

current path from v0 to v, the label from the algorithm 1 and the estimated value

est(v, vd). This sum represents the probability of node v to be on the desired

shortest path. The search algorithm based on these ideas, called A∗, selects node

v with the smallest value fv from set LA and updates its predecessors. Algorithm

2 shows the pseudo code of A∗.

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 54

Algorithm 2 A∗

1: v = v0; λṽ =∞, fṽ =∞ ∀ṽ 6= v ∈ V ; ρv = NULL; LA = {v} , O = {}
2: while vd /∈ O do
3: select and remove v ∈ LA with smallest fv and put in O.
4: for all (v, ṽ) ∈ E do
5: if ṽ /∈ O and λv + | (v, ṽ) |+ est(ṽ, vd) < fṽ then
6: λṽ = λv + | (v, ṽ) |; fṽ = λv + | (v, ṽ) |+ est(ṽ, vd); ρṽ = v.
7: if ṽ /∈ L then
8: insert node ṽ in LA
9: end if

10: end if
11: end for
12: end while

Despite to so called pruning algorithms where whole areas of the network

are neglected during search, Hart et al. [40] proofed that A∗ is still admissible,

meaning that it always finds optimal paths, if est always underestimates the

real lengths. In that case est is called conservative. For other methods to limit

the search area as bi-directional search, sub goal methods or hierarchical search

methods the reader is referred to Fu et al. [33].

3.2.2 An A∗ Algorithm for COP

Some major problems arise when calculating a shortest path in networks describ-

ing an instance of COP. Industrial data sets often consist of more than 20 stacks

and 200 parts. Obviously the corresponding networks consist of a vast number

of nodes. Moreover, it would be too time consuming to check all possible edges

on their existence, meaning to check if parts can be placed in a single bin. A

advantage of A∗ is that one does not necessarily need to know the whole net-

work in advance. Whenever a node Sc is selected from LA, one can calculate

all possibly adjacent nodes. That means that all progress steps that could be

reached from Sc without violating (1.2), (1.3), (1.4) or (1.5) and the resulting

edge would have length smaller than one are calculated. Let Sa be one of these

possible adjacent nodes of Ss. Still there might not be n feasible allocation for

parts APSa \ APSc in a single bin. However, checking the existence of each edge

obtained in the described way has immense computational costs and therefore is

done only if required in the next steps. Furthermore, nodes are marked as checked

and unchecked to avoid allocating the same set of parts more than once. For each

adjacent progress level Sa the following label-update procedure is performed. If

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 55

Sa is already in O we move on to the next node. Otherwise if Sa has not been

added to LA yet, we label Sa, mark it as unchecked and put it in L. For Sa ∈ L
we distinguish three cases:

• λSa > λSc + |(Sc, Sa)|

• λSa ≤ λSc + |(Sc, Sa)|, with Sa unchecked

• λSa ≤ λSc + |(Sc, Sa)|, with Sa checked

In the first case it is attempted to allocate parts APSa \APSc to a single bin,

if possible the label and predecessor of Sa are updated and latter is marked as

checked. In the second case it is attempted to allocate parts APSa \APρSa
, where

ρSa denotes the current predecessor. If possible the node is marked as checked and

the algorithm moves on. Else label and predecessor are updated and Sa is marked

unchecked. The third case requires no action since a feasible and better path to

Sa has already been found. Note that it is still an admissible search algorithm

when using conservative estimators. The pseudo code of the procedure described

above is provided by algorithm 3. Where ALLOC denotes an exact subroutine

to allocate parts in a bin that is based on the heuristic method of section 2.2.1

but using a exact branch and bound search procedure instead of Tabu search.

The choice of a heuristic estimator est is crucial in the proposed approach. In

section 3.3 an idea how to use lower bounds for standard Bin Packing problems

for COP is provided and some results from literature are revisited. However,

none of the bounds guarantee acceptable run times for real world applications.

Therefore a heuristic relaxation of A∗, where run times are totally controllable,

is given in the next section.

3.2.3 RA∗: A Heuristic Relaxation of A∗ for COP

As mentioned above, computing optimal solutions for real world sized data sets of

COP is often not possible in reasonable time. Although the use of data structures

designed especially for COP reduces the computational effort significantly, the

exponential complexity of the problem extinguishes these reductions for larger

problems. Therefore a heuristic relaxation of A∗ for COP that is based on some

ideas from Albano and Sapuppo [1] is introduced. The main feature is that run

times of the algorithm are controllable. The algorithm can be scaled between the

exact version from last section and the SubSetSum algorithm from section 2.2.1,

where obviously better solutions require more computational effort.

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 56

Algorithm 3 A∗ for COP

1: Sc = S0; λS̃ =∞, fS̃ =∞ ∀S̃ 6= Sc ∈ N ; ρSc = NULL; LA = {Sc} , O = {}
2: while S /∈ O do
3: set Ẽ = {} .
4: select Sc ∈ N with smallest fSc and put in O.
5: calculate all Sa with

∑
p∈APSa\APSc

λpwp

LW
≤ 1 and put (Sc, Sa) in Ẽ.

6: for all (Sc, Sa) ∈ Ẽ do
7: if Sa /∈ O then
8: if Sa ∈ LA then
9: if Sa > λSc + | (Sc, Sa) | ∧ ALLOC (APSa \ APSc) then

10: mark Sa as checked; λSa = λSc+| (Sc, Sa) |; fSa = λSc+| (Sc, Sa) |+
est (Sc, Sa); ρSa = Sc.

11: else if Sa ≤ λSc + | (Sc, Sa) | ∧ Sa marked unchecked then
12: if ALLOC

(
APSa \ APρSa

)
then

13: mark Sa as checked.
14: else
15: λSa = λSc + | (Sc, Sa) |; fSa = λSc + | (Sc, Sa) | + est (Sc, Sa);

ρSa = Sc.
16: end if
17: end if
18: else
19: mark Sa as unchecked; λSa = λSc+| (Sc, Sa) |; fSa = λSc+| (Sc, Sa) |+

est (Sc, Sa); ρSa = Sc; insert Sa in LA.
20: end if
21: end if
22: end for
23: end while

Albano and Sapuppo [1] propose to limit LA to a fixed size, if exceeding this

size nodes with worst labels are erased. Further, when the search is at the kth

level only nodes with level higher than k − t are expanded, where t is a given

threshold and k−t is called Expansion band. In the following a data structure for

LA that combines and improves these ideas is defined. In addition to λS̃, fS̃ and

ρS̃ also the depth in the search tree, dṼ , for each Ṽ that is expanded during the

search is stored. Instead of a simple list to store nodes in LA, t sorted lists are

kept, where nodes are stored in lists according to their depth in the search tree

and sorted by increasing label within a single list. Let dmax denote the largest

depth of all nodes expanded so far, then a node S̃ with depth dS̃ >= dmax−t+1 is

stored in list t−dmax+d. Further, after all adjacent nodes of Sc have been inserted

to the data-structure, lists 1 to t−1 are resized. Thereby the progress levels with

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 57

highest labels are removed until no more vertices than a given maximum number,

αi with i = 1, . . . , t − 1, are stored in list i. The maximum number of nodes is

obtained by

αi =
nmax

(t− i)
, (3.6)

where t and nmax are parameters free to chose. With these parameters one is

able to control the total numbers of expanded nodes and thereby the runtime

of the algorithm. Obviously small t, nmax lead to small run times and the other

way around. Furthermore, the quality of obtained solutions is negative correlated

to the computational effort put in. However, as already mentioned by Albano

and Sapuppo [1], small changes of t have often no affect on the number of used

bins. Note that since the list of nodes with the highest depth is not restricted

the algorithm always terminates finding a feasible solution.

Let I be an Instance of COP. Further, let SSS(I), A∗(I) and RA∗(I, t, nmax)

denote the number of active bins obtained by the SubSetSum-, A∗- and RA∗

algorithm. Then

SSS(I) = RA∗(I, 1, nmax), (3.7)

and

lim
t,nmax→∞

RA∗(I, t, nmax) = A∗(I). (3.8)

This basically means that choosing t = 1 results in the SubSetSum algorithm and

that for nmax and t chosen large enough RA∗ produces optimal results. However,

the non existence of approximation bounds is shown in section 3.3.2.

Since in general no optimal solution is found there is no need to use an exact

method to allocate a set of parts to a single bin. Therefore the sub-routine

ALLOC from the last section can be replaced by a heuristic method to save

computational effort. Here the same method as in section 2.2.1 is used. A more

general investigation of possible heuristic methods, that can also deal with parts

of polygonal shape is given in chapter 4.

3.3 Lower Bounds and Worst Case Scenarios

As the number of expanded nodes is also dependent on the used heuristic esti-

mator est and its accuracy we will revisit some lower bounds for standard Bin

Packing problems and adapt them for COP. Further, the non-existence of ap-

proximation bounds for both, the SubSetSum- and RA∗ algorithm is shown.

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 58

3.3.1 Lower Bounds for COP

Over the last years a couple of lower bounds for oriented and non oriented Bin

Packing problems have been proposed. In general all of them could be used for

COP right away. However, they do not deal with any type of conflict or ordering

constraints and use only geometric information. Therefore a simple framework to

tighten any bound for the non-oriented Bin Packing problem, 2PB|R|F according

to Lodi et al. [48] is introduced by considering different material qualities of parts

and the resulting conflict constraints. Let

P = Pq1 ∪ . . . Pqh with Pqi ∩ Pqj = {} for i 6= j and i, j ∈ {1, . . . , h} (3.9)

be a partition of parts of an Instance I of COP, where all parts of a subset Pqi
have the same material quality,

∀ w ∈ {1, . . . , h} , ∀ pi,j, pĩ,j̃ ∈ Pqw qi,j = qĩ,j̃. (3.10)

Further, if LB(P) is a lower bound for 2PB|R|F then

LBCOP (P) =
h∑
i=1

LB (Pqi) (3.11)

is a valid lower bound for I.

A trivial lower bound for all types of Bin Packing problems is the continuous

bound that is given by

LC (P) =

⌈∑
pi,j∈P li,jwi,j

LW

⌉
. (3.12)

Martello and Vigo [53] showed that the absolute worst-case performance of LBcont

is 1
4

for oriented- and non-oriented standard Bin Packing problems, what in gen-

eral does not hold for COP due to the additional constraints.

Martello and Vigo [53] and Fekete and Schepers [31] were the first that pro-

vided lower bounds for the oriented problem except this continuous bound. For

the non-oriented problem only a few results exist in literature as for example

Dell’Amico et al [23], Boschetti and Mingozzi [9] and more recently Clautiaux et

al. [16]. Since dominance results of Clautiaux et al. [16] hold only for square

bins results for 2PB|R|F are summarized and used within the framework (3.11)

on instances of COP. Since some results for non-oriented problems consist of a

transformation of the original instance to an instance for the oriented problem

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 59

let’s first have a look on a lower bound for 2PB|O|F introduced by Carlier et al.

[15]. Therefore let DR = (P × B) be an instance of 2PB, where P = 1, . . . , n is

the set of parts with length li and width wi and B = L×W a bin.

The lower bound LCCM of Carlier et al. [15] for 2PB|O|F

A lot of bounds for the oriented problem are obtained by applying so called dual-

feasible functions (DFF) Johnson [44] on both dimensions of the instance and

calculating the continuous lower bound for the resulting instance, see also Fekete

and Schepers [32].

Definition 3.3.1. Let f be a discrete application from [0, X] to [0, X ′] where X

and X ′ are integers. Then f is called a discrete DFF if

x1 + . . .+ xk ≤ X ⇒ f (x1) + . . . f (xk) ≤ X ′. (3.13)

Furthermore, only DFF that are increasing and super additive are considered,

i.e. if f is a given DFF, x+ y < z ⇒ f(x) + f(y) ≤ f(z). Moreover Carlier et al.

[15] introduce data-dependent DFF which have the properties of a DFF but only

for a specific instance. What follows is a summary of definitions of DFF (fk0 ,fk2)

and DDFF (fk1) used by Carlier et al. [15]. Note that fk0 is a classical family of

DFF and fk2 an improved version of latter introduced by Boschetti and Mingozzi

[9]. Let C be an integer value and k = 1, . . . , C
2

then

fk0 (x) =

0, if x < k,

x, if k ≤ x ≤ C − k,
C, if C − k < x ≤ C,

(3.14)

and

fk1 (x) =

0, if x < k,

1, if k ≤ x ≤ C
2
,

MC(C, J)−MC(C − x, J), if C
2
< x,

(3.15)

where fk1 is defined for given integer values C and c1, . . . , cn (I = {1, . . . , n}).
Further, set J is given by J =

{
i ∈ I : 1

2
C ≥ ci ≥ k

}
and MC(X, J) denotes the

optimal value for the one-dimensional knapsack problem over the instance given

by J and X, meaning the maximum number of items ci ∈ J that can be packed

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 60

in a bin of size X. Further, fk2 is given by

fk2 (x) =

2
⌊
x
k

⌋
, if x < C

2
,⌊

C
k

⌋
, if x = C

2
,

2
(⌊

C
k

⌋
−
⌊
C−x
k

)⌋
, if C

2
< x,

(3.16)

then

LDDFFCCM = max
u∈{0,1,2},v∈{0,1,2}

max
1≤k≤W/2,1≤l≤L/2

{⌈∑
i∈P

fku (wi)f
l
v(li)

fku (W)f lv(L)

⌉}
, (3.17)

is a valid lower bound for 2PB|O|F . LDDFFCCM is tightened by using the frame-

work of Boschetti and Mingozzi [8] where four different bounds (LF,2aBM , LF,2bBM ,

LF,3BM and LF,4BM) are considered. The bound first transforms the instance into a

one-dimensional problem by multiplying lengths and widths of parts, the second

considers large, tall and wide items seperatly. The third and fourth bound result

from applying fk1 and a weaker version of fk2 on both dimensions of the problem,

for more details the reader is referred to [8, 15].

The lower bound LBR
DA of Dell’Amico et al. [23]

The basic idea is to transform the original instance to an instance consisting of

only square parts and calculating a lower bound for latter. The square parts

are obtained by an pseudo-polynomial algorithm called CUTSQ Boschetti and

Mingozzi [9] that works as follows. Initially parts are considered in the orientation

r where lri ≥ wri . At each iteration the maximum number of squares with length

wj are cut from the current rectangle with dimensions (lj, wj). Afterwards the

remaining rectangle is rotated by 90◦. These steps are iterated as long as wj > 1

of the remaining rectangle. Let M denote the set of square obtained in the

way described above and λj the length of square j ∈ M . For a given integer

0 ≤ q ≤ 1
2
W M is then partitioned in the following subsets

S1 = {j ∈M : λj > L− q}

S2 =

{
j ∈M : L− q ≥ λj >

1

2
L

}
S3 =

{
j ∈M :

1

2
L ≥ λj >

1

2
W

}
S4 =

{
j ∈M :

1

2
W ≥ λj ≥ q

}
.

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 61

Further, let S23 = {j ∈ S2 ∪ S3 : λj > W − q}. Then

LBR
DA = max

0≤q≤ 1
2
W

{
|S1|+ L̃+ L̂

}
is a valid lower bound for 2PB|R|F . L̃ is given by

L̃ = |S2|+ max

⌈∑

j∈S3\S3
λj

L

⌉
,

 |S3 \ S3|
L

bW2 +1c

 ,

and denotes a valid lower bound for squares in S2 ∪ S3, where S3 is the set of

large parts in S3 that fit in bins where parts of S2 have been placed. Furhter, L̂

is given by

L̂ = max

0,

∑

j∈S2∪S3∪S4
λj

2 −
(
LWL̃−

∑
j∈S23

λj (W − q)
)

LW

 .

The lower bound LRBM of Boschetti and Mingozzi [9]

LRBM is the combination of two other lower bounds LR,1BM and LR,2BM and is given by

the maximum of these. The first, LR,1BM , reduces the problem to a oriented problem

by transforming parts that might be rotated to the largest square contained.

Therefore dimensions of parts are resized as follows:

l̄ =

{
min {lj, wj} , if lj ≤ W and wj ≤ L

lj, else
(3.18)

and

w̄ =

{
min {lj, wj} , if lj ≤ W and wj ≤ L

wj, else
(3.19)

Since, as mentioned above, orientation is not a issue for the new obtained prob-

lem, lower bounds for 2PB|O|F can be used to compute bounds for 2PB|R|F .

Boschetti and Mingozzi [9] propose the use of LFBM introduced by [8] that ba-

sically is the maximum of four different bounds. For more details the reader is

referred to [8, 9]. Since LFCCM dominates L2
BM let’s apply the modified version of

LR,1BM where latter is used.

The second bound, LR,2BM , considers both dimension of parts and also possi-

ble rotations by 90◦ by them. Therefore the set of parts is divided into P ′ =

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 62

{
i ∈ P : li 6= li

}
and P ′′ = P \ P . Further, let 1 ≤ k ≤ 1

2
W and 1 ≤ l ≤ L, then

LR,2BM is given by

LBR,2
BM = max

k,l

{⌈∑n
i=1 µ

k,l(i)⌊
W
k

⌋ ⌊
L
l

⌋ ,

⌉}
(3.20)

where

µk,l (i) =

{
min

{
ηl,L(li)× ηk,W (wi), η

l,L(wi)× ηk,W (li)
}
, if i ∈ P ′

ηl,L(li)× ηk,W (wi), else,
(3.21)

and

ηk,X (x) =

{⌊
X
k

⌋
−
⌊
X−x
k

⌋
, if x > X

2⌊
x
k

⌋
, else.

(3.22)

The lower bound LRCJE of Clautiaux et al. [16]

The idea ofClautiaux et al. [16] is to transform a given instance I = (P × B)

with n parts and B = (L×L) to a new oriented problem with 2n parts as follows:

D̂F = (P̂ F ×B) with D̂F = {1, . . . , 2n} such that

• li = li and wi = wi for i ∈ {1, . . . , n}

• li = wi−n and wi = li−n for i ∈ {n+ 1, . . . , 2n}

The main result of Clautiaux et al. [16] is that D̂F needs at most twice the number

of bins needed for DR. Therefore any valid lower bound LBF for 2PB|O|F can

be used to obtain a valid lower bound for 2PB|R|F by calculating
⌈
LBF (D̂

F

2
)
⌉
.

The bound resulting from applying these scheme on LFCCM of Carlier et al. [15]

is called LRCJE Clautiaux et al. [16]. However, if bins are no squares one dummy

item per bin has to be added to the new instance to fill the area exceeding the

largest square contained in the bin. Therefore Clautiaux et al. [16] state a lifting

procedure to compute the right number of dummy items that has to be added.

However, dominance results hold only for the case when bins are squares. For

rectangular bins and also in the case where some parts must not be rotated LRCJE
shows some drawbacks.

Since in general RA∗ does not compute optimal solutions non-conservative

bounds could also be used for calculations. To avoid time consuming calculations

it is suggested in this work to use an estimator of the form

est = α(I)LC, (3.23)

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 63

where α is a function over instances of COP depending on n, m, ow and

Var (|Pq1| , . . . , |Pqh |) .

3.3.2 Worst-Case Scenarios of RA∗

Although Caprara and Pferschy [13] showed some absolute approximation bound

of the SubSetSum algorithm for the one-dimensional Bin Packing problem, for

more details see Caprara and Pferschy [13], no such bounds exist neither for

SubSetSum nor for RA∗ for COP as will be shown in the following.

Definition 3.3.2. Let OPT (I) denote the optimal solution value for instance I

of COP and zH(I) the solution value obtained by a heuristic algorithm H. The

(asymptotic) worst-case ratio of H is then given by the smallest constant β such

that

zH(I) ≤ βH ·OPT (I). (3.24)

Let’s assume that there exists a constant β̃RA
∗

satisfying (3.24) for fixed t,

nmax and est ≡ 0. Consider the following instance AB of COP: B = L×W , the

set of stacks, S = {s1, . . . , s2m−1}, the set of different material qualities, all parts

are of type t2, and the stack window, ow = 2m− 1. Let the stack sizes be given

by

mi =

{
m+ 1, if i ≤ m,

4, if else.

Further, let

li,j =

m+ 1, for i ≤ m and j = 1,

2, for i ≤ m and j ≥ 2,

2m, for i ≥ m+ 1 and j = 2,

1, for i ≥ m+ 1 and j 6= 2

and

qi,j =

Aj for i ≤ m,

Aj, for i ≥ m+ 1 and j = 1,

Bi,j, else,

and wi,j = W for i ∈ {1, . . . n} , j ∈ {1, . . .mi}. Figure 3.1 illustrates dimensions

and material quality of parts.

RA∗ starts with placing the first part of a stack from {s1, . . . , sm} and parts

pm+1,1, . . . , p2m−1,1 together in the first bin. Afterwards the algorithm places parts

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 64

…

… … …

…A1

A2

A3

A4

Am+1

A1

Bm+1,2 B2m-1,2

A1

Bm+1,3

Bm+1,4

B2m-1,3

B2m-1,4

×m

×m (1)m − ×

…

… … …

…A1

A2

A3

A4

Am+1

A1

Bm+1,2 B2m-1,2

A1

Bm+1,3

Bm+1,4

B2m-1,3

B2m-1,4

…

… … …

…A1

A2

A3

A4

Am+1

A1

Bm+1,2 B2m-1,2

A1

Bm+1,3

Bm+1,4

B2m-1,3

B2m-1,4

×m

×m (1)m − ×

Figure 3.1: Dimensions and material qualities of parts.

pm+1,2, . . . , p2m−1,2 in separate bins and thereby loses the ability to go back to the

first node. If we chose m ≥ max {nmax, t+ 1} all nodes Sa with vCa,i = 4 and

depth dSa for i > m are deleted from LA when a node with dSa + 1 is labeled.

This follows from the fact that there are always m − 1 nodes Sa with vCa,i = 3

explored and a new depth is always obtained by placing a part from stacks s1 to

sm. Figure 3.2 illustrates this behavoir. Therefore RA∗ places all parts pi,j with

i ∈ 1, . . . ,m and j ≥ 2 in separate bins. The overall numbers of bins is given by

RA∗ (AB) = m+m2 + 3 (m− 1) . (3.25)

The optimal solution finishes stacks sm+1 to s2m−1 after the first bins an uses only

m + m − 1 bins for the remaining parts. The overall number bins used is then

given by

OPT (AB) = m+ 3(m− 1) +m− 1. (3.26)

Therefore no approximation bound can exist sinceRA∗(AB) is increasing quadrat-

ically with respect to m where OPT (AB) shows linear behavior.

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 65

)1(−× m

)1(−× m

)1(−× m

)1(−× m

)1(−× m

1×

1×

1×

1×

1×S1 + S1 +

S1 + S1 +)1(−× m

…

…

…

…

…

…

D
ep

th

Nodes

…

+

…

)1(−× m

)1(−× m

)1(−× m

)1(−× m

)1(−× m

1×

1×

1×

1×

1×S1 + S1 +

S1 + S1 +)1(−× m

…

…

…

…

…

…

D
ep

th

Nodes

…

+

…

Figure 3.2: Dimensions and material qualities of parts.

3.4 Improvements for Computational Performance

Intensive testing showed that the calls of the sub-routine ALLOC and the tests

if a node is in LA or O need the most computational effort within RA∗. The

problem to find suitable data structures for LA and O is also a wide spread issue

in the literature for shortest paths. For a more information see for example Fu

et al. [33]. Therefore first an technique to reduce the number of calls of ALLOC

is shown and afterwards data-structures for LA and O, which take advantage of

the special structure of COP are provided.

3.4.1 Tabu Lists

Obviously the tests if a set of parts can be feasibly placed in a single bin are

very time consuming. During calculations it often occurs that a set of parts

that has to be allocated has already been tested before, or more general that a

set of part consisting all of these parts has been allocated before. Furthermore,

experience showed that especially calls of ALLOC that return a negative result,

meaning that the considered parts cannot be placed in a single bin, are very time

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 66

Figure 3.3: Data structure for O.

consuming. Therefore a list of sets of parts that could not be placed in a single

bin is kept. ALLOC first checks whether the considered set of parts is a subset

of any set stored in this list. Although the search in this list is not cheap in

terms of computational effort, the overall performance of the algorithm improves

significantly.

3.4.2 Improved Data Structure for O

To reduce the effort for searching O for a node Sa the list can be replaced by

an array of lists. Each entry of the array stores nodes with the corresponding

number of open and closed stacks. Thereby the search for Sa can be reduced to a

fraction of the overall number of nodes in O. Since in most practical applications

the sizes of stacks themselves do not exceed 20 parts the array is mostly growing

with respect to the number of parts to be allocated. Figure 3.3 illustrates the

proposed structure.

3.4.3 Improved Data Structure for LA

When expanding a possible edge (Sc, Sa) at line 8 in Algorithm 3, node Sa has

to be tested on being already in LA. In general it cannot be granted that the

existing node has the same depth in the search tree as the same node with updated

label. Since nodes are separated to different list in LA according to their depth

all list have to be searched. Especially for large instances and higher values of

nmax and t this search procedure is very time consuming. Since the proposed

relaxation of RA∗ requires the structure implied by the depths of nodes a similar

construct as described in the last section for O is not possible. Although keeping

an additional array like in the last section and storing positions of nodes in both

structures yields in a reduction of search costs, deleting nodes from LA would

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 67

d=36d=35d=34d=33d=31 d=32

Label

Depth in search tree

Number closed stacks
N

um
beropen

stacks

d=36d=35d=34d=33d=31 d=32

Label

Depth in search tree

d=36d=35d=34d=33d=31 d=32 d=36d=35d=34d=33d=31 d=32

Label

Depth in search tree

Number closed stacks
N

um
beropen

stacks
Number closed stacks

N
um

beropen
stacks

Figure 3.4: Data structure for LA.

require to change position entries of nodes and the savings of computational effort

are lost. Therefore the use of chains of nodes with same number of open and closed

stacks is suggested where the first nodes of these chains are stored in an array.

Deleting a node from LA becomes then an issue of deleting it in the sorted lists

and changing predecessor and successor of the node in the corresponding chain.

The search for a node with particular coordinates is first done in the chain of

nodes with the same number of open and closed stacks. If found, the search in

LA can be reduced to a single list since the depth is now known. Furthermore,

since the label of the node is then also known and lists in LA are sorted more

sophisticated search methods can be used. Figure 3.4 shows the new structure.

3.5 Experimental Results

For evaluation of RA∗ it has been tested on the instances defined in section 2.3

using the following parameter sets:

The expansion band was selected as t = 15. As Albano and Sapuppo [1]

already stated small changes of t mostly do not lead to changes in results. The

size of LA, given by nmax, has a much bigger influence on the quality of results.

Therefore two different scenarios for nmax, both depending on the size of an

instance were tested:

n1
max =

10000 for n = 50,

800, for n = 150,

500, for n = 250

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 68

and

n2
max =

20000 for n = 50,

1600, for n = 150,

1000, for n = 250

Furthermore, results for RA∗ were obtained using the following estimator est:

est = (1.2− 10Var

(
|PQA

|
|P|

, . . . ,
|PQD

|
|P|

)
LC. (3.27)

This estimator is based on the observation that lower bounds tend to be weaker for

instances where the cardinalities of subsets of parts with same material qualities

do not vary that much.

All parameters resulted from intensive testing. Table 3.1 shows lower bounds

and results of all tested instances. Bounds were calculated using LCOP and dif-

ferent bounds for Bin Packing problems. Furthermore, Opt. denotes the optimal

solution if it could be found within a time limit of 1200 seconds.

One can see that all lower bounds are quite weak, due to the fact that they

do not consider order- and stack constraints. This is also a reason why optimal

solutions could not be found for problems of class II and III. Comparing the results

obtained under n1
max with results under n2

max one may note that larger nmax does

not necessarily lead to better solutions, in most cases though results tend to be

slightly better. However, runtimes are more than three times higher than for

n1
max what is, for industrial applications, not justified by the small improvement

of used bins.

Table 3.2 shows the performance of standard heuristics from chapter 2 on

the same instances. Although a time limit of 180 seconds was applied to these

algorithms we can see that using n1
max all runs of RA∗ terminated within this

limit and therefore one is able to compare results.

Figures 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10 compare the results of our algorithm

with the results from secion 2.4.

One can see that RA∗ outperforms all other heuristics significantly, as all

other algorithms are not able to profit from the structures of COP as RA∗ does.

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 69

RA∗

Bounds n1
max n2

max

LBC LBR
DA LR

BM LR
CJE Opt. Bins Nodes Time Bins Nodes Time

I×1 15 15 18 18 27 27 8119 1.9 27 8119 1.9
I×2 12 11 14 15 21 21 7379 1.6 21 7379 1.6
I×3 15 16 20 18 28 28 7064 1.3 28 7064 1.3
I×4 16 16 19 18 25 25 8436 1.5 25 8436 1.5
I×5 14 14 15 17 21 21 8680 2.5 21 8680 2.5
I×6 14 14 15 16 25 25 13607 4.3 25 13607 4.3
I×7 13 13 16 17 24 24 9957 2.6 24 9957 2.6
I×8 13 13 14 16 21 21 9554 4.5 21 9954 4.5
I×9 15 14 17 15 26 26 12234 3.1 26 12234 3.1
I×10 15 14 16 16 25 25 6850 1.0 25 6850 1.0

II×1 37 37 42 40 ∗ 57 41680 48.2 56 85245 202.9
II×2 40 40 45 43 ∗ 60 42727 43.9 61 97768 202.0
II×3 43 43 48 44 ∗ 59 51408 66.3 59 97865 244.0
II×4 39 39 42 42 ∗ 60 46882 51.8 60 92765 196.8
II×5 39 39 44 42 ∗ 56 39529 44.0 56 76600 160.6
II×6 42 41 46 42 ∗ 61 62045 73.9 61 111920 241.0
II×7 42 43 45 44 ∗ 58 47541 63.5 58 94729 229.5
II×8 42 42 46 43 ∗ 59 44977 46.5 59 96833 197.1
II×9 44 46 49 47 ∗ 64 53598 65.8 63 101273 252.1
II×10 38 37 40 38 ∗ 59 59964 70.1 58 112178 263.9

III×1 68 68 74 70 ∗ 98 51055 50.8 98 101473 180.6
III×2 64 65 69 67 ∗ 96 55554 55.5 95 104153 189.8
III×3 67 66 75 68 ∗ 104 61789 63.3 101 113452 198.1
III×4 64 64 71 68 ∗ 93 51063 56.6 92 92262 167.7
III×5 69 68 74 70 ∗ 99 52907 60.3 101 113817 230.5
III×6 68 66 75 71 ∗ 99 57745 67.1 97 107223 239.8
III×7 67 65 73 68 ∗ 98 51721 56.4 101 117827 231.1
III×8 67 67 72 70 ∗ 101 59877 61.6 97 104818 186.7
III×9 70 70 76 71 ∗ 96 50151 52.1 97 109878 241.9
III×10 67 67 73 69 ∗ 99 53128 58.7 96 178301 178.3

Table 3.1: Experimental Results for RA∗.

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 70

SA GA SSS Tabu

Class×Instance Bins Time Bins Time Bins Time Bins Time

I×1 27(27, 2) 7, 5 27(27, 3) 8, 3 30 < 0.1 30 12, 2
I×2 21(21, 9) 6, 7 22(22, 9) 7, 2 28 < 0.1 24 23, 9
I×3 28(28, 6) 6, 8 29(30, 1) 7, 5 34 < 0.1 32 13, 4
I×4 26(26, 1) 6, 6 26(26) 7, 5 30 < 0.1 28 13, 9
I×5 23(23) 7, 1 22(23, 5) 8, 0 27 < 0.1 26 10, 3
I×6 25(25, 9) 6, 6 26(26, 9) 7, 5 29 < 0.1 27 11, 4
I×7 24(24, 1) 6, 6 24(25, 2) 7, 7 26 < 0.1 26 19, 9
I×8 21(21, 8) 7, 3 22(23) 8, 1 28 < 0.1 33 7, 2
I×9 26(26, 1) 7, 1 26(26, 1) 8, 1 33 < 0.1 28 34, 0
I×10 25(25, 2) 7, 4 26(26, 2) 7, 7 30 < 0.1 29 6, 9
II×1 61(62.6) 24.0 62(65.4) 139.3 65 0.3 67 102.2
II×2 66(67.2) 25.2 67(69.6) 139.9 72 0.2 90 85.7
II×3 64(65.7) 24.1 66(67.2) 138.3 71 0.2 72 69.7
II×4 64(66.5) 23.2 66(68.4) 138.5 77 0.2 81 180.0
II×5 63(64.3) 24.1 62(64.9) 153.2 72 0.3 64 180.0
II×6 63(67.6) 23.9 65(69.6) 140.5 70 0.1 77 43.7
II×7 63(64.7) 24.5 62(65.7) 145.1 69 0.2 78 43.8
II×8 64(66.9) 24.7 67(68) 135.8 76 0.1 82 47.7
II×9 66(67.6) 23.8 69(69.7) 137.4 78 0.2 107 46.9
II×10 62(63.5) 24.7 64(67.2) 141.6 66 0.1 71 40.8
III×1 109(112.1) 38.4 114(120.4) 180.0 123 0.4 143 180.0
III×2 105(106.4) 38.3 108(112.3) 180.0 112 0.3 117 180.0
III×3 111(114.5) 40.0 119(122.9) 180.0 120 0.2 134 180.0
III×4 103(106.8) 39.4 108(111.4) 180.0 112 0.5 118 180.0
III×5 108(111.6) 37.8 115(117.5) 180.02 113 0.3 185 180.0
III×6 110(112.7) 38.1 116(118.7) 180.0 116 0.3 151 180.0
III×7 109(113) 38.5 116(119.8) 180.0 123 0.6 146 180.0
III×8 108(110.9) 37.9 112(116) 180.0 117 0.4 171 180.0
III×9 104(117.3) 39.4 111(114.4) 180.0 123 0.4 136 180.0
III×10 105(108.7) 39.8 112(114) 180.0 112 0.4 127 180.0

Table 3.2: Standard Heuristics.

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 71

Average performance

20

25

30

35

40

Ix1 Ix2 Ix3 Ix4 Ix5 Ix6 Ix7 Ix8 Ix9 Ix10

Bi
ns

SA
GA
SSS
TABU
RA*

Figure 3.5: Comparisons of average performances for class I instances.

Best performance

20

25

30

35

40

Ix1 Ix2 Ix3 Ix4 Ix5 Ix6 Ix7 Ix8 Ix9 Ix10

Bi
ns

SA
GA
SSS
TABU
RA*

Figure 3.6: Comparisons of best performances for class I instances.

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 72

Average performance

55

65

75

85

95

105

IIx1 IIx2 IIx3 IIx4 IIx5 IIx6 IIx7 IIx8 IIx9 IIx10

Bi
ns

SA
GA
SSS
TABU
RA*

Figure 3.7: Comparisons of average performances for class II instances.

Best performance

55

65

75

85

95

105

IIx1 IIx2 IIx3 IIx4 IIx5 IIx6 IIx7 IIx8 IIx9 IIx10

Bi
ns

SA
GA
SSS
TABU
RA*

Figure 3.8: Comparisons of best performances for class II instances.

CHAPTER 3. NETWORK SEARCH METHODS FOR COP 73

Average performance

90
95

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185

IIIx1 IIIx2 IIIx3 IIIx4 IIIx5 IIIx6 IIIx7 IIIx8 IIIx9 IIIx10

Bi
ns

SA
GA
SSS
TABU
RA*

Figure 3.9: Comparisons of average performances for class III instances.

Best performance

90
95

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185

IIIx1 IIIx2 IIIx3 IIIx4 IIIx5 IIIx6 IIIx7 IIIx8 IIIx9 IIIx10

Bi
ns

SA
GA
SSS
TABU
RA*

Figure 3.10: Comparisons of best performances for class III instances.

Chapter 4

Translational Containment

Problem: Dealing with Geometry

This chapter serves the need of evaluation of different strategies and heuristics

used for the ALLOC subroutine from last chapter. The main aim is to find

suitable heuristics that are able to search the space of different sequences effi-

ciently under consideration of special circumstances. These involve that instances

placed by ALLOC are usually very small, trivial solutions have to be detected

instantly and negative calls should not result in a computational overhead. Fur-

ther, techniques to extend ALLOC and thereby COP to polygonal shaped parts

are provided.

In the following section containment problems are introduced, in section 4.2

the concept of no-fit polygons is revisited. Further, a new method to obtain and

validate placing points is introduced. In section 4.3 some heuristics for Strip

Packing are adapted for the containment problem. Finally in section 4.4 some

experimental results are given and conclusions are drawn.

4.1 Containment Problems

Containment problems consist of the question whether a set of n irregular shaped

parts P1, . . . , Pn can be fit fully in an enclosing shape, the container, without

overlapping. They can be found in various industrial applications, as for example

the clothing-, leather-, steel- and concrete parts industry, just to mention a few.

Depending on their origin, problems vary over the allowance of rotations and

homogeneity of parts and the shape of the container. The problem which is in

the focus of this chapter is motivated by the need of an adequate ALLOC routine

for RA∗ and real world applications of the concrete part production. Therefore it

74

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 75

has some specific attributes and requirements, compared to standard problems,

that affect the choice of solving procedures. It is based on the translational

problem containment problem, where the container is given by a rectangle of

length L and width W and parts must not be rotated. Further, more than 95

percent of parts have only orthogonal edges, only a few are irregular shaped. In

addition, instances tend to be small, normally the set of parts has a cardinality

between 2 and at maximum 10.

Publications dealing with the pure containment problem are very rare, Milenkovic

[57, 55, 56], Milenkovic and Daniels [58], Daniels and Milenkovic [19, 21, 20]

and Daniels [18] propose solving techniques for the rotational and translational

containment- and also minimum enclosure problems. Grinde and Cavalier [39]

focus on the special case where the set of parts consists only of two polygons.

Since the containment problem is NP hard (as shown for example in V.J

Milenkovic [57]) finding exact solutions, in terms of ’yes’ or ’no’, has quite high

computational costs. A drawback of heuristic methods is that they cannot cor-

rectly answer the question on the existence of a feasible layout with ’no’ if the fail

to find one. However, for many applications correctness is far less important than

computational time, i. e. the containment problem is a sub problem of a heuristic

algorithm on a global problem. Optimality is already lost in the global heuristic

and therefore non-exact, but quick, solutions of the containment problem might

be from greater interest, which is also the case for the ALLOC routine. Further,

for the applications arising from the concrete part production the problem is

nested in an automatic planning tool that operates both online and offline and a

semi-automatic production planning tool. In all three cases solutions are required

within a few Millie seconds to ensure a smooth work flow; on the other hand the

correctness of a negative solution can be neglected. In addition, a lot of instances

have trivial solutions, meaning that a feasible layout can be found very easily.

This is especially the case for very small instances with less or equal than 4 parts.

Therefore requirements on an algorithms range from detecting trivial solutions

at a glance, to find more complex layouts for medium instances and also deciding

that no solution can be found within very short computational times. Examples

for trivial and medium instances are given in figures 4.1 and 4.2.

Looking at heuristic solving procedures, the problem can either be formulated

as Single Knapsack Problem or as Open Dimension Problem, or more precisely

Strip Packing Problem, according to Wäscher, Hauner and Schumann [66]. For

Single Knapsack Problems a set of strongly heterogeneous parts have to be ac-

commodated in a single knapsack. Normally not all parts can be accommodated

and so the value of parts in the knapsack has to be maximized. The Strip Packing

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 76

Figure 4.1: Trivial example of a containment problem with 3 parts.

Figure 4.2: Medium instance of a containment problem with 7 parts.

Problem consists of packing strongly heterogeneous parts on a strip of fixed width

and infinite length. The goal is to minimize the used length of the strip. In terms

of containment a feasible solution is found as soon as a layout is obtained, where

the right-most point of all parts does not exceed L, as illustrated in figure 4.3. In

the following this approach is used to solve the containment problem described

above.

L

W

Figure 4.3: Strip packing used for containment.

Most of the algorithms on Strip Packing use no-fit polygons, for example

Gomes and Oliveira [38], compaction and separation techniques, see for exam-

ple Gomes and Oliveira [37], or φ-functions by Stoyan et al. [63] to deal with

the geometry of the problem. Although especially compaction and separation

and φ-functions are able to find very tight layouts of parts they are not cheap

in terms of computational effort. When using no-fit polygons runtimes can be

significantly reduced by avoiding recalculation of no-fit polygons and calculat-

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 77

ing them in advance as a preprocessing step. However, for large instances with

strongly heterogeneous parts or online algorithms this preprocessing step is not

possible or too time consuming. Therefore a new geometric method to obtain

placing points of parts is introduced and used within some heuristics for the

Strip Packing Problem.

4.2 Geometry

Any cutting and packing problem has to deal with the same geometry issues, as

there are that parts must not overlap and must be fully placed within a strip

bin or any other large object. In this chapter the focus is on heuristics for the

strip packing problem that use nesting routines to place parts on the strip in

a given sequence. Further, they also consist of a higher level heuristic that ex-

plores the solution space of different sequences. Trivial instances can thereby be

solved rather quickly since mostly only one layout has to be generated, medium

instances still can be solved in a reasonable amount of time and runtimes are well

controllable for instances where no feasible solution can be found.

Therefore, given a sequence of parts, nesting routines must be able to quickly

generate a feasible layout and should also be able to fill holes at a later stage.

Assuming that shapes of parts are polygons or at least approximated by the

latter, the main task for any geometric routine can then be reduced to find pos-

sible placing points for a part, considering a set of parts that has already been

placed within the strip. What follows is a description of the principle of the

proposed nesting routine and methods to calculate possible placing points using

no-fit polygons. Further, a new approach to obtain placing points from parallel

edges is introduced.

4.2.1 Nesting Routines

The proposed nesting routine is based on the procedure used by Gomes and

Oliveira in [38]. Given a set of already placed parts P1, . . . , Pm at points (xj, yj)

with 1 ≤ j ≤ m and a set of possible placing points (x̃i, ỹi) with 1 ≤ i ≤ k

the next part is placed according to a greedy-bottom-left strategy on the strip.

Meaning that it’s reference point is placed on the point (x̃l, ỹl) with 1 ≤ l ≤ k

that satisfies the following conditions:

• x̃l ≤ xi for 1 ≤ i ≤ k.

• If x̃l = x̃i then ỹl ≤ ỹi for 1 ≤ i ≤ k.

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 78

Due to the special requirements of the containment problem that the rightmost

point of all parts must not exceed L, the proposed nesting routine stops placing

parts if the current part exceeds L to improve runtimes. In that case, for a better

search behavior of heuristics exploring the solution space of different sequences,

the procedure returns the x-coordinate of the rightmost point plus an additional

penalty of L for each unplaced part as an objective value. Whereas zero is

returned, in case that a feasible layout for all parts has been found.

4.2.2 No-fit Polygon and Inner-Fit-Rectangle

The concept of the no-fit polygon was first introduced by Art [2] in 1996. Nowa-

days they are commonly used for intersection tests and finding possible placing

points for parts. Algporithms in this work follow a constructive approach that is

based on Burke et al. [11]. The no-fit polygon of part B with respect to part A,

NFPA,B can briefly be described as follows: The polygon NFPA,B results of trac-

ing a reference point of part B when orbiting part B around a fixed part A, whilst

ensuring that the two parts always touch but never intersect (see also Burke et

al. [11]), as illustrated in figure 4.5. As the reference point, the point resulting

from combining the smallest x-coordinate with the smallest y-coordinate of all

points from a part is chosen, see figure 4.4.

reference point

Figure 4.4: Reference point of a part.

From the definition of NFPA,B it immediately follows that (A.M. Gomes and

J.F. Oliveira in [38]):

• If the reference point of part B is placed in the interior of NFPA,B then B

and A intersect.

• If the reference point of part B is placed on the boundary of NFPA,B then

B and A touch.

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 79

B

A

NFPA,B

Figure 4.5: Resulting NFPA,B when B orbits around A.

• Else both parts neither intersect nor touch.

Therefore the NFP can be used to calculate layouts where parts do not inter-

sect, furthermore, it also reduces the detection of intersection of two polygons to a

simple-point-in-polygon test. Note that NFPA,B can be calculated independently

from the position of part A. For intersection tests and placing point calculations

the position of NFPA,B has only to adjusted to the position of part A. Hence in

many cases it is possible to calculate NFPs for all possible pairs of parts offline

in a preprocessing step.

To ensure that all parts are fully placed within the strip a similar construct as

the no-fit polygon is used the, inner-fit rectangle. The inner-fit rectangle IFRA,B

represents the feasible region for placing the reference point of a part B so that

the part is fully placed within a larger rectangle A. IFRA,B can be calculated

by subtracting the width and length of the rectangle enclosure of part B from

the width and length of rectangle A. From its definition it follows that (see also

A.M. Gomes and J.F. Oliveira in [38]):

• If the reference point of part B is placed in the interior of IFRA,B then B

is contained by A.

• If the reference point of part B is placed on the boundary of IFRA,B then

B is contained by A and B and A touch.

• Else part B is not contained by A.

Note that the inner-fit rectangle for a strip of infinite length can also be seen

as a strip with infinite length. Finding a placing point for a part Pi with respect

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 80

to a set of already placed parts P1, . . . , Pj becomes now a matter of finding a

placing point that is outside of NFPPl,Pi
with 1 ≤ l ≤ j and within the interior

of IFRS,Pi
, where S denotes the strip. For finding tight layouts we can further

assume that the placing point has to be on the boundary of at least one no-fit

polygon and the inner-fit rectangle, or at the boundary of at least two no-fit

polygons. Thereby every part is in contact with the boundary of at least two

other parts or one part and the strip.

Following the assumptions from above any feasible placing point for part Pi
is:

• a vertex of NFPPi,Pl
,

• a vertex of IFRS,Pi
,

• an intersection point of two edges of NFPPi,Pl
and NFPPi,Pk

or

• an intersection point of two edges from NFPPi,Pl
and IFRS,Pi

,

where Pl and Pk are parts that have already been placed. All points have to

be checked on lying outside the interior of other no-fit polygons and within the

inner-fit rectangle.

4.2.3 Placing Points from Parallel Edges

Although in most cases no-fit polygons and inner-fit rectangles can be calculated

offline in a preprocessing step, there exist several industrial application where

this is not possible due to runtime restrictions. Most algorithms and applications

where these concepts have been used do not consist of more than approximately

50 different parts. Calculating no-fit polygons for each pair of parts, even for

different rotations, can still be done in reasonable computational time. For the

concrete part industry instances with more than 300 strongly heterogeneous parts

and four possible rotations for each part are no exceptional case, where one would

have to calculate more than
(
1200
2

)
no-fit polygons. In many cases a packing of

these parts in multiple containers is often required in a couple of minutes where

instances change on a daily basis. Furthermore, a semi-automatic production

tool where the user allocates a subset of parts to a single bin and a heuristics

tries to find an actual layout of these parts would also require no-fit polygons

of all pairs of parts within the loading process of the software tool. For these

applications and also online algorithms it is therefore not possible to calculate all

no-fit polygons in advance.

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 81

Furthermore, a main characteristic of instances from the concrete part in-

dustry is that, although parts are strongly heterogeneous and in many cases

non-convex, more than 95% of parts consist only of edges with orthogonal angles.

Therefore placing points can be also derived from the procedure described in the

following.

Given a set of already placed parts P1, . . . , Pm at points (xj, yj) with 1 ≤
j ≤ m on strip S placing the next part Pi, all pairs of edges that are parallel

and might touch after placing part Pi are calculated. Let’s assume that ed,Pi

for d = 1, . . . , hPi
denote the edges of part Pi and αed,Pi

for d = 1, . . . , hPi
the

corresponding angles, where edges of parts are oriented anti-clockwise. Therefore

possible touching and parallel edges have to satisfy(
αed,Pi

+ 180
)

mod 360 = αed̃,Pl
. (4.1)

In the next step for each pair of edges satisfying (4.1) a placing line for the

reference point of part Pi is calculated, i.e. placing the reference point on this

line results in a layout where both edges touch, as shown in figure 4.6.

placing line

Figure 4.6: Placing line.

All placing lines resulting from edges of part Pi with edges from any part on

the strip or from edges of the strip itself are stored in a list and used to obtain

placing points. Therefore each pair of placing lines is checked on intersection.

For any resulting placing point at least two pairs of parallel edges would touch in

the resulting layout.

To compute placing points resulting from a single placing line the part is

first set on the line. Iterating through each point of part Pi and parts Pj with

1 ≤ j ≤ m placing points result from intersecting a line, parallel to the considered

placing line, with all edges from other parts and the strip. Figure 4.7 illustrates

this behavior.

The drawback of using single placing lines to compute placing points is obvi-

ously that a lot useless points are obtained. To avoid too much computational

overhead placing lines can be reduced in size by considering adjacent edges and

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 82

Figure 4.7: Placing points from a single placing line.

are possibly eliminated if they can never lead to feasible layouts, as shown in fig-

ure 4.8. Furthermore, placing points resulting from single placing lines are only

computed if and only if at least one part of parts Pj with 1 ≤ j ≤ m and Pi has a

non-orthogonal edge. In the other case intersecting all pairs of placing lines leads

to all possible placing points.

placing line

Figure 4.8: Reducing size and number of placing lines.

All resulting placing points are then ordered according to their bottom-left

position. Points are checked on possible intersections and containments of parts

in that order, until a feasible point has been found. In general this is quite

expensive in terms of computation time, however, a lot of computational effort

can be avoided by simple tests, as for example checks on bounding rectangles,

special procedures if parts are rectangular shaped etc.. If the algorithm fails to

find any placing points from parallel edges because no parallel edges exist, no-fit

polygons are computed and placing points are obtained as described in section

4.2.2. The proposed approach is summarized by algorithm 4.

4.3 Heuristics for the Strip Packing Problem

Several heuristics for the strip packing problem have been introduced over the

last decades, including approaches like Simulated Annealing, Genetic algorithms,

Compaction and Separation, Tabu Search and many more. For a general overview

see for example Hopper and Turton [42]. To solve the containment problem and

suite the special requirements coming from the concrete part industry heuristics

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 83

Algorithm 4 Placing Points from parallel edges

1: PL = {}, PP = {}
2: for all parts Pl on strip S do
3: compute all pairs of edges of part Pl and Pi that satisfy (4.1) and put

resulting placing lines in PL.
4: end for
5: for all

(
pl, p̃l

)
with pl, p̃l ∈ PL : pl 6= p̃l do

6: if pl and p̃l intersect then
7: put intersection point in PP .
8: end if
9: end for

10: if parts Pj with 1 ≤ j ≤ m and Pi have non-orthogonal edges then
11: Compute placing points using only one placing line and put them in PP .
12: end if
13: while P 6= {} do
14: find most bottom-left point p in PP .
15: translate Pi to p.
16: if resulting layout is non-overlapping and part is fully on strip then
17: return {p}
18: else
19: delete p from PP .
20: end if
21: end while
22: if PL = ∅ then
23: call no-fit polygons procedure to calculate placing points.
24: end if
25: return PP

need to be simple but effective. Therefore two methods to search the solution

space of different sequences of parts were implemented during this work. They

lead to good results on standard benchmark instances, but still seem to be promis-

ing for finding quick solutions for small instance of the containment problem, a

description of both heuristics follows. Further, note that for instances with less

or equal to 3 parts all possible sequences are tried instead of calling a heuristic

method. Obviously the procedure stops as soon as layout has been found where

the rightmost-point of all parts does not exceed L.

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 84

4.3.1 The 2-exchange Heuristic

The 2-exchange heuristic introduced by Gomez and Oliveira [38] is a guided local

search procedure where from a current solution, represented by a sequence of

parts, neighborhood solutions are obtained by exchanging parts in the sequence.

It is an improvement algorithm where neighborhood solutions are only accepted

if they improve the current solution. The algorithm terminates if no better so-

lution was found within the neighborhood or a maximum number of iterations

has been reached. Neighborhoods are built by exchanging pairs of parts in the

current sequence where the size of the neighborhood is controlled by a parame-

ter δ, by exchanging only parts with a smaller distance in the sequence than δ.

Three different neighborhood sizes were tried, δ ∈ {1, 2, 3}. Furthermore, three

strategies to choose a better solution from the neighborhood to become the new

current solution were proposed:

• the first better solution (first better)

• the best solution (best)

• a randomly chosen solution among all better solutions (random better).

For more details the reader is referred to by Gomez and Oliveira [38]. If a solution

with smaller objective value than L is found the algorithm terminates right away.

4.3.2 A Tabu Search Approach

The approach used in this work is based on the Tabu Search combined with hill

climbing method introduced by Burke et al. [10] and is only slightly different at

some steps. A neighborhood of fixed size of the current solution is created by

using a neighborhood operator that is chosen randomly among a set of different

operators. All operators randomly exchange positions of a subset of parts in the

current sequence. Operators differ over the cardinality of the subsets to be ex-

changed, which ranges from 1 to 4 (note that in the original algorithm also higher

values than 4 have been tried) and are therefore called 1OPT , 2OPT ,3OPT and

4OPT . Since by the definition from above, 1OPT would not change the sequence

at all it randomly chooses one part from the sequence, removes it and inserts it at

random position. Among all generated neighborhood solutions, the best is chosen

and the search continues with the new current sequence. Despite to the original

algorithm where a Tabu list for solutions is kept, in the approach described in

this section a Tabu list is kept for operators instead for solutions. Due to the

focus on small instances this avoids cycling of the search path quite effective.

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 85

Different values for the Tabu-tenure have been tried, see section 4.4. If the se-

lected operator is tabu, a single hill-climbing step is performed where only one

neighborhood-solution is generated. The algorithm terminates if no improvement

of the best solution could be obtained or a maximum number of iterations has

been reached. The following pseudo code shows the described algorithm (where

δ is a parameter that describes the size of the neighborhood),

Algorithm 5 Tabu Search and hill climbing method

1: current = FindStartSolution(); best = NestingProcedure(current);
neighbors = {}.

2: if best ≤ L then
3: return true
4: end if
5: while not reached iteration maximum do
6: operator = SelectOperator().
7: while neighbors.size < 5 do
8: neighbors.add(GenerateRandomNeighbor(current,operator))
9: end while

10: foundBetter = false
11: for all neighbor ∈ neighbors do
12: if NestingProcedure(neighbor)¡best then
13: if NestingProcedure(neighbor) ≤ L then
14: return true
15: else
16: best = NestingProcedure(neighbor); current = neighbor; foundBet-

ter = true.
17: end if
18: end if
19: end for
20: if !foundBetter then
21: return false
22: end if
23: end while
24: return false

4.4 Experimental results

The proposed approaches were tested and compared on a real world data-set,

consisting of 50 parts. For each n ∈ {2, . . . , 8}, 1000 subsets with cardinality n

have been randomly generated. All proposed algorithms have been tested on these

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 86

instances with all possible combinations of parameters, δ ∈ {1, 2, 3}, first better,

random better and best for the 2-exchange heuristic, Tabu tenure l ∈ 1, 2, 3 for

the Tabu Search approach and maximum iteration numbers itermax ∈ {2, 5, 10}
for both. Furthermore, all different settings have been runned using the no-fit

polygon approach and the parallel-edge approach. Tables 4.1, 4.2, 4.3 and 4.4

show the results for the parallel-edge approach. Where ’feas’ denotes the number

of calls that resulted in a feasible layouts, ’nests’ the average number of calls

of the nesting procedure per instance and time the average runtime of for one

instance in seconds.

2-exchange-first better-parallel edges
parts δ = 1 δ = 2 δ = 3

feas nests time feas nests time feas nests time
itermax = 2

2 1000 1045 0.001
3 623 3341 0.041
4 480 2431 0.003 480 2642 0.003 490 2609 0.003
5 315 2896 0.005 315 3513 0.006 329 3446 0.005
6 141 3529 0.007 141 4213 0.008 159 4558 0.009
7 54 4060 0.009 54 4634 0.011 66 5192 0.012
8 1 4654 0.012 1 5633 0.015 1 6545 0.018

itermax = 5

4 483 2642 0.010 483 11494 0.015 494 13637 0.018
5 352 3513 0.021 352 16706 0.029 347 18528 0.032
6 154 4213 0.035 154 22700 0.049 174 26193 0.056
7 69 4635 0.052 69 27001 0.071 94 29925 0.076
8 3 5633 0.066 3 30294 0.095 8 35704 0.111

itermax = 10

4 483 2609 0.023 483 28853 0.040 495 40053 0.054
5 352 3446 0.053 352 47793 0.091 347 61759 0.115
6 154 4558 0.097 154 65608 0.156 177 84926 0.198
7 71 5192 0.148 71 78966 0.230 99 95461 0.273
8 3 6545 0.202 3 90327 0.328 9 108609 0.328

Table 4.1: Results for 2-exchange-first better-parallel edges.

For the different versions of the 2-exchange heuristic one may note that results

tend to improve for increasing values of δ and obviously the number of iterations

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 87

2-exchange-random better-parallel edges
parts δ = 2 δ = 3 δ = 1

feas nests time feas nests time feas nests time
itermax = 2

4 493 4623 0.006 493 8712 0.011 495 12785 0.017
5 327 7170 0.012 343 13698 0.023 342 20339 0.034
6 159 10378 0.021 174 20200 0.40 177 30104 0.060
7 70 13191 0.031 85 25938 0.059 95 38628 0.090
8 3 15967 0.043 7 31885 0.09 8 47758 0.136

itermax = 5

4 495 10482 0.014 496 20378 0.027 496 30559 0.042
5 335 17164 0.030 349 33287 0.058 348 49672 0.088
6 168 25439 0.053 179 49786 0.102 182 74402 0.157
7 80 32616 0.081 92 64191 0.158 98 95550 0.238
8 5 39839 0.110 10 79471 0.233 14 118938 0.365

itermax = 10

4 497 19065 0.027 496 38605 0.054 497 56972 0.079
5 344 33327 0.064 350 65098 0.200 354 97695 0.180
6 175 50142 0.112 183 98694 0.341 189 147067 0.327
7 90 64436 0.171 97 127348 0.351 102 189738 0.526
8 7 79537 0.238 10 158839 0.507 17 237127 0.781

Table 4.2: Results for 2-exchange-random better-parallel edges.

allowed. As already proposed by Gomez and Oliveira [38] random-better and

best strategies outperform the first better strategy clearly. However, runtimes

for itermax larger or equal to 5 reach values that might not be acceptable for

applications described in previous sections. We further note that results for the

Tabu-search are not competitive with the 2-exchange heuristic in terms of best

results. However, taking computational effort into account quite good results can

be yield by the Tabu Search approach. Furthermore, no clear conclusion on the

influence of different settings of l on the obtained results can be drawn.

Results for the Tabu Search algorithm, using the no-fit polygon method, are

reported in table 4.5.

The first main conclusion of the comparison of the parallel edges and the

no-fit polygon approach is that, although the no-fit polygon is the more general

approach, no clear dominance of one technique over the other can be observed.

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 88

2-exchange-best-parallel edges
parts δ = 1 δ = 2 δ = 3

feas nests time feas nests time feas nests time
itermax = 2

4 492 4622 0.006 495 8699 0.012 495 12779 0.017
5 321 7181 0.013 344 13698 0.024 344 20308 0.036
6 158 10373 0.022 177 20177 0.046 177 30102 0.068
7 75 13179 0.034 89 25904 0.072 99 38545 0.108
8 5 15965 0.046 8 31872 0.102 11 47721 0.155

itermax = 5

4 495 9958 0.014 497 19477 0.027 497 28933 0.040
5 335 17154 0.033 348 33162 0.063 348 49515 0.093
6 159 25498 0.101 180 49606 0.120 181 73991 0.179
7 78 32561 0.196 91 63982 0.193 102 95190 0.289
8 6 39809 0.132 12 79360 0.296 13 118819 0.456

itermax = 10

4 495 18018 0.014 497 36397 0.051 497 54253 0.077
5 335 33404 0.033 348 64912 0.126 348 97245 0.188
6 159 50458 0.101 180 98026 0.241 181 145811 0.356
7 78 64677 0.100 92 126788 0.403 102 189102 0.589
8 7 79216 0.131 13 157308 0.616 13 236779 0.976

Table 4.3: Results for 2-exchange-best-parallel edges.

This is a result of situations where placing parts on worse points, in terms of

bottom left positions, yields in better overall packings. Secondly one can see that

runtimes are dramatically reduced by using the parallel edge approach. Even for

higher values of itermax the average values hardly exceed a tenth second. This

shows that the parallel-edge approach is able to compute competitive results with

significant savings in terms of effort. Therefore it suites the described scenarios

and their applications better than previously published algorithms for relative

problems.

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 89

Tabu Search-parallel edges
parts l = 1 l = 2 l = 3

feas nests time feas nests time feas nests time
itermax = 2

4 491 5138 0.007 486 5207 0.007 488 5202 0.007
5 323 6523 0.012 316 6614 0.012 324 6464 0.011
6 152 7795 0.016 153 7874 0.017 156 7845 0.016
7 67 8599 0.022 75 8594 0.022 66 8620 0.022
8 5 8983 0.027 6 9084 0.028 5 9003 0.028

itermax = 5

4 496 11461 0.016 490 10011 0.014 493 9459 0.013
5 341 14625 0.028 342 12844 0.025 336 12143 0.023
6 170 17882 0.042 169 15884 0.032 170 14741 0.034
7 85 19655 0.056 83 17378 0.049 83 16146 0.045
8 9 20800 0.073 8 18279 0.063 5 17344 0.059

itermax = 10

4 497 21233 0.003 497 17705 0.025 495 14646 0.021
5 343 27856 0.054 346 22620 0.044 342 19043 0.036
6 179 34602 0.084 174 28066 0.069 175 23514 0.056
7 91 37556 0.115 98 30624 0.092 82 25565 0.074
8 8 40848 0.155 10 33160 0.124 9 27561 0.085

Table 4.4: Results for Tabu Search-parallel edges.

CHAPTER 4. TRANSLATIONAL CONTAINMENT PROBLEM: DEALING
WITH GEOMETRY 90

Tabu Search-no-fit polygons
parts l = 1 l = 2 l = 3

feas nests time feas nests time feas nests time
itermax = 2

4 493 4623 0.028 495 8704 0.034 495 12773 0.039
5 328 7167 0.051 343 13688 0.066 341 20337 0.081
6 158 10362 0.084 180 20120 0.113 176 30067 0.143
7 77 13113 0.124 90 25784 0.177 95 38454 0.230
8 5 15939 0.153 7 31831 0.223 8 47697 0.307

itermax = 5

4 494 10425 0.036 495 20586 0.051 495 30441 0.066
5 336 17191 0.077 349 33243 0.114 347 49756 0.155
6 168 25462 0.141 184 49647 0.226 184 74387 0.314
7 84 32446 0.221 94 63938 0.382 101 95248 0.535
8 5 39819 0.266 7 79495 0.488 8 119121 0.765

itermax = 10

4 497 19042 0.055 497 38061 0.079 496 57410 0.106
5 344 33439 0.124 348 65781 0.208 348 98539 0.288
6 173 50167 0.248 186 98360 0.446 186 147544 0.629
7 88 64484 0.425 98 127108 0.803 104 189174 0.954
8 6 79562 0.573 9 158787 1.086 11 237779 1.666

Table 4.5: Results for Tabu Search-no-fit polygons.

Chapter 5

Generalized Classification of

Constraints

Different industrial applications of different bin packing and stock cutting prob-

lems result in various requirements and constraints. As diverse as their origins

are their influences on resulting packings, cuttings or layouts. Although various

forms of constraints appear in industrial applications, some basic types can be

identified. Due to the diversity of the requirements, the proposed basic types are

relatively general and contain a variety of sub types which are not listed com-

pletely. However, the discussed framework should enable the reader to identify,

and thereby classify, the most common constraints that appeared in literature.

Further, the classification should hold for all problem types within the family

of cutting and packing problems, therefore a more general nomenclature is used

in this chapter. In the following the proposed types are explained and some

examples are given.

5.1 Combinatorial Constraints

Combinatorial constraints deal with combinations of small items in large items

or more general the distributions of small items over large items or levels of large

items.

5.1.1 Multi Bin/Strip/Level Sequential Constraints

Multi regional sequential constraints describe a class of restrictions concerning

the allocation of small items over more than one placement region. A placement

region can either be a single large item, or a level within one large item. This

91

CHAPTER 5. GENERALIZED CLASSIFICATION OF CONSTRAINTS 92

region might not have fixed dimensions, as for examples levels in strips. It is

important to stress that these constraints to do not concentrate on the layout

of small items within regions, they rather restrict the distribution of small items

over placement areas for a higher purpose. Their main characteristic is that, in

general, for their validation the information about subsets of small items in more

than one region is required. This is, technically speaking, what separates them

from subset constraints, which are discussed in the next section.

Constraints that focus on sequential orders of small items in a single region

are also often referred to as sequential constraints. But due to the ability to

check feasibility of packings only on the layout of parts in a single region, they

are part of another class of constraints, in the proposed framework, and discussed

in section 5.2.3.

Multi regional sequential constraints play an important role for problems deal-

ing with some real world restrictions on due dates, limited buffer space or other

machining restrictions. They mainly appear where the set of small items can be

divided in several subsets, mostly representing commissions or transport units.

The production sequence of these subsets is in many cases not free to choose,

what requires the modeling of sequential constraints.

The most simple, but perhaps also most important example are due date con-

straints, see Reinertsen and Vossen [60]. Due dates require commissions to be

finished either before a fixed time point or at before other commissions. In both

cases the order in which small items are allocated to large items, and as a con-

sequence produced, is constrained. In times where the reduction of storage costs

becomes more and more important, these constraints obviously gain significant

interest and are part of many real world applications of cutting and packing.

The other most relevant example of multi regional sequential constraints are

restrictions on combinations of commissions, or more general subsets of small

items, that can be produced at time. This is mostly motivated by space restric-

tions, as for example in Rinalid and Franzl [61], or machining restriction. Single

commissions are stapled and thereby subsumed in defined areas that are only

available to a certain extent. These constraints are mostly referred to as sequen-

tial constraints in literature, but to the belief of the author the term should also

contain due date like constraints as described above.

The COP problem, discussed in previous chapters, contains both versions, due

dates represented by constraint (1.3) and combinatorial restrictions represented

by (1.4). Furthermore, it provides another example for sequential constraints,

where small items within one commission have to satisfy a strict ordering, as

imposed by (1.2).

CHAPTER 5. GENERALIZED CLASSIFICATION OF CONSTRAINTS 93

5.1.2 Subset Constraints

Subset constraints are restrictions on possible subsets of small items within one

large item. They do not have any effect on the layout of small items within

the large item and never consider more than one large item. The mainly forbid

certain sets of small items to be placed together in a single bin. Although they

are not exhaustively discussed in literature, some examples should be mentioned

due to their relevance for industrial applications.

Conflicts, the most simple form, are often referred to as constraints that forbid

pairs of small items to be placed together in a single large item, see for example

Epstein and Levin [45]. More general versions of subset constraints are given by

so called color and cardinality constraints. First deal with problems where a each

small item has a given color and the number of occurring colors within one large

item is limited by a chosen value, as for example proposed by M. Dawande et al.

[22]. Cardinality constraints require the number of small items within one large

item to be between given lower- and upper bounds. Marques and Arenales [52]

or Babel et al. [3] state different problems containing cardinality constraints.

5.2 Layout Constraints for Small Items

Constraints on the layout restrict possible position of small items in a single large

item. They range from restrictions that deal only with positions of small items

to the large items, to restrictions on the positions of all small items to each other

and to one large item. Therefore they can be divided in the following subclasses.

5.2.1 Position of Small Item with Respect to a Large Item

(PSLI)

This class contains constraints that define relations between the position of a small

item and the large item. In other words it defines conditions on the position of a

small item within a large item. Besides the obvious constraint that small parts

must be fully placed within the large item, examples are rotational constraints,

defective areas and many more.

Rotations

Any restriction of possible rotations of small items can be seen as restrictions

on possible positions of small items with respect to the large items. They occur

in several forms, some forbid rotations at all and some allow only rotations of

CHAPTER 5. GENERALIZED CLASSIFICATION OF CONSTRAINTS 94

orthogonal angles. There are also many examples where different subsets of small

items are connected with different constraints, i.e. only some items are allowed

to be rotated. A more complex version of rotational constraints was introduced

by Birgin and Lobato [7], where parts might be rotated by any degrees of the

form α + k ∗ 90◦ for k ∈ {0, 1, 2, 3} and a fixed α for all small items.

Defective Areas

Defective areas are often referred to as regions within a large item that must not

overlap with any small items. In a more general way they can be limited to sets

of small items, meaning that only certain small items must not overlap with a

defective area.

General Position Constraints

Other examples may be requirements of the form that parts of a certain type

must be placed at a given border of the large item or must be placed in a certain

region.

5.2.2 Position of Small Items to Each Other (PSS)

Constraints that deal with geometric relations of small items to each other are

found in this class. Important is though that it only contains constraints that do

not consider positions of parts with respect to the large item. As this definition

is quite general, some examples are listed, which show some common subtypes.

Since the relation between the positions of two parts is stressed in almost every

cutting and packing problem it is described separately.

Position of Two Small Items to Each Other

Geometric relations between two small items are part of every cutting and packing

problem as it is always requested that small items do not overlap.

Cutting Constraints

Guillotine cutting is often found by two-dimensional orthogonal problem types.

It requires that all small items can be derived from edge to edge cuts from the

large item they are nested in.

CHAPTER 5. GENERALIZED CLASSIFICATION OF CONSTRAINTS 95

Another examples can be found in many industries where the cutting process

produces kerf, as shown in figure 5.1. This requires that a certain distance is kept

between any pair of small items.

Kerf/2

Figure 5.1: Example of items where cutting produces kerf.

Support and Loading Constraints

Support and Loading Constraints often occur for three-dimensional pallet loading

problems. Support constraints ensure that for every box, boxes placed below

provide enough support so that the box holds. Loading problems are the opposite,

which ensure that boxes can hold the weight placed above.

General Position Constraints

For many applications it is required that certain small items are placed besides or

within a certain distance. This can be found, for example, in the concrete industry

where certain pairs of parts require special treatment routines and therefore need

to be placed close together.

5.2.3 Positions of Small Items to Each Other and to Large

Item (PSSLI)

This class is the most general one that contains all constraints that require pack-

ings or cuttings to have a certain form, meaning the whole resulting layout of

small items within one large items must satisfy certain conditions with respect

to the large item. Some examples are listed below.

Balance Constraints

For many problems balancing of small items is a key point, mainly because the

weight of small items should be equally distributed over the large item for various

CHAPTER 5. GENERALIZED CLASSIFICATION OF CONSTRAINTS 96

reasons.

Sequential Constraints

Sequential constraints on a single region ensure that small items are placed ac-

cording to a given order within one region. They are also referred to as drop

off constraints, which ensure that after removing a set of small items a given

set is free admissible from one or more sides of the large item. For instance,

when loading a truck it must be ensured that after removing items belonging to a

commission the items of the next commission are reachable, without rearranging,

from the door of the truck.

Regional Constraints

Depending on the application, large items often contain different quality regions.

Unless in many cases this has only an effect on the optimization criteria it can

also be demanded that, out of a given set of small items, enough items are placed

within a region. Examples range from shelf packing problems to the leather

industry. For shelf packing certain areas in the shelf provide a better visibility,

as people tend to look at certain regions first and more often. Therefore in many

problems a set of products, or at least a big enough sub set of them must be

placed in certain regions. As leather stocks are obviously a natural product the

quality might vary over a single leather sheet. Products of higher quality therefore

have to be cut out from certain regions, what requires the formulation of regional

constraints.

Level Packing

Level packing is often required for two-dimensional orthogonal problems. Basi-

cally small items are placed in levels within a strip or bin, meaning that all items

in one level are placed on the same height coordinate. The next level starts then

at the highest point of all items of the previous level, as illustrated by figure 5.2.

General Position Constraints

A very special constraint, but an good example for this class, can be found in the

concrete part industry, where for some plants and some types of small items it

is required that items are attached altering at the upper and lower border of the

large item. Resulting layouts should have a form as shown in figure 5.3.

CHAPTER 5. GENERALIZED CLASSIFICATION OF CONSTRAINTS 97

Level 1 Level 2 Level 3 …

Figure 5.2: Level Packing.

Figure 5.3: Altering attachment of small items.

5.3 Influence of Constraints

In a formal and strict way all existing constraints ensure that requirements on

distributions-, sub sets- and layouts of small items are always satisfied. However,

consider the following example: Several small items are cut from a single rectan-

gular large item. After cutting small items are removed by automatic grappler.

Latter is not able to reach the very left- and right side of the large item. Therefore

placing thin items at the very end of the large item (in both directions) results in

unproducable layouts. However it might be possible that non-reachable items can

be removed by hand from a worker, what obviously takes longer, but a resulting

tighter layout of small items might be from greater interest than the loss of time.

Especially for the concrete part industry scenarios like these are very com-

mon. Thus constraints that affect the optimization criteria, or in other words

soft constraints, have to be modeled. In contrast to real constraints, or so called

hard constraints, that actual define rules for placing small items, soft constraints

extend the objective function. How to model these extensions is dependent on

the underlying problem. The basic options are scaling or the definition of multi-

dimensional objective functions.

Chapter 6

Constraint Handling

Incorporating a Specific Problem

Domain

In this chapter some general thoughts on the handling of constraints for multi-

constrained problems are reported. Furthermore, they are explained using the

example of a real world application, namely an automatic and semi-automatic

planning tool used for production of precast-concrete-parts. This chapter serves

the purpose to show the principles of handling and evaluating these constraints.

6.1 General Handling of Constraints

To formulate a general framework to handle constraints of cutting and packing

problems is a very critical task. In the last chapter we have seen several classes-,

types- and examples of different constraints. To find suitable techniques to model

and also handle them, independently from a solving strategy for the underlying

problem, is not reasonable in many cases. This is especially the case for heuristic

solving methods that constructively build solutions at some stage. A classical

example, that is subject of many cutting and packing problems, are guillotine

cuts. As mentioned in the last chapter guillotine cutting requires that all small

items can be obtained by an edge to edge cut from the remaining large item.

Several constructive heuristics deal with that issue and try to find feasible lay-

outs using highly sophisticated, optimized, but also very diverse strategies. Any

general handling would only limit the diversity of these approaches and would

therefore be counterproductive.

On the other hand a lot of constraints only differ in their origin but are quite

98

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 99

similar in terms of structure and purpose. For these a general structure might

have some advantages, which could include, for example, generality or extensibil-

ity. Furthermore, most of multi regional sequential- and sub set constraints can

be handled in the same way. To the belief of the author it is therefore worth to

re-classify constraints according to their possibilities of general handling.

Note that these handlings and classifications base on the assumption that

layouts are gained constructively by translating parts to placing points, as de-

scribed in chapter 4. Therefore constraints on the layout have an influence on the

computation, or at least evaluation of possible placing points. In particular hard

constraints make some resulting placing points infeasible, where soft constraints

have only an affect on the fitness value of placing points, which was in chapter

4 only defined by the bottom-left position of points. Further, note that a more

general handling for non-layout constraints is omitted since this would depend

too much on the underlying solving method. For all types examples coming from

a real world application are given.

6.1.1 Non-Constructive Constraints

Non-constructive constraints (NCC) are conditions that do not have any effect

on the computation of placing points at all. The might make some geometrically

possible placing points infeasible, but do not require the computation of extra

placing points. An illustrative example is the condition that parts of a certain

type have to be attached to a specified border of the bin. As long as the left border

is not completely covered by other attached parts most strategies to compute

placing points will return at least one point that result in a layout where the item

is attached to the left border.

This class mostly contains constraints of type PSLI but also PSS, for example

support constrains. Evaluating a placing point becomes an issue of checking

which boxes have been placed below and if they provide enough support, where

in general no additional points have to be calculated.

6.1.2 Semi-Constructive Constraints

Semi-constructive constraints (SCC) are constraints that basically work the same

way as NCC constraints, but require the computation of extra placing points, if all

points that were returned from the standard procedure are infeasible. Therefore

they can also be seen as placing point generating constraints.

Consider the example illustrated by figure 6.1, where the gray regions mark

defective areas which must not overlap with any small item placed. Any point

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 100

computing routine would only return points A,B,C or D resulting from the inner-

fit rectangle or parallel edges for item I. That would mean that no feasible point

for item I can be found and item I would become unplacable. Therefore it is not

enough to just evaluate placing points according to the defective area constraint,

it is also necessary to obtain placing points from it, as for example E,F,G and H.

B

A

C

DE

F G

H

I

defective areas

Figure 6.1: Placing points resulting from defective areas.

The main characteristic of semi-constructive constraints is that they only add

areas, edges or points to the problem which the point computing algorithm has to

consider. However, they never affect the way that placing points are computed.

6.1.3 Constructive Constraints

Constructive constrains (CC) have a direct influence on the strategy by which

placing points are computed. They are nested within the routines that return

possible placing points and therefore can neither be generalized nor evaluated in

a general way.

The simplest examples are cutting procedures that produce a kerf. The con-

straint is not evaluated at some point but for obtaining placing points a slightly

larger item is used. More complex examples will be given in later. Most examples

can be found within PSS and PSSLI constraints.

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 101

6.2 Handling in an Algorithmic Way

It is very important to add at this point that NCC, SCC and CC are not an

exclusive partition of constraints. Depending on the solving approach, modeling

or just personal preferences, the same constraint could be either in one or the

other class. When a certain balancing conditions on the layout of small items

is required, one basically has the possibilities to compute the standard placing

points and choose the one where the balance is optimal (NCC) or use the condition

to compute the really most balancing point (CC). Other examples are guillotine

cutting, level packing or even the attachment of small items to a certain border

of the large item.

Especially the last example shows the tradeoff between computational effort

and generality of an approach. Obviously using the constraint that a certain small

item must be placed at the left hand side of the large item can reduce the costs

for computing possible placing points. On the other hand working on real world

applications might include a big number of constraints from this type. Therefore

using all of them within the placing point generating routine can easily lead to a

very complex algorithm that is not extendable and maintainable at all.

In the following the handling of several constraints that are subject of a real

world problem based on COP are introduced. The problem is solved using the

RA∗ algorithm from chapter 3. Geometry issues are handled by a constructive

approach using the 2-exchange algorithm combined with the parallel edge tech-

nique form chapter 4, thereby polygonal shaped parts can be packed. Note that,

although the proposed strategy could be used for other problems as well, it is not

attempted to serve for are general framework or purpose. In the following small

items are referred to as parts and large items as bins.

6.2.1 A Real World Example

The discussed real world application is mainly based on the COP problem dis-

cussed in previous chapters. However, instead of rectangular parts any polygonal

shaped parts might be placed and orthogonal rotations are allowed. Furthermore,

as mentioned before, parts are surrounded by iron shutters and concrete is poured

in these shuttered areas. At a glance these shutters could be seen similar as a kerf

that results from cutting procedures and therefore makes parts only larger. But

as we will see in the following discussion this is not the case in reality. Further,

in addition to constraints (1.2), (1.3), (1.4) and (1.5) there exist a vast number

of other constraints, on the layout and also on the combinations of parts within

a single bin. These constraints have been omitted during the discussion of COP

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 102

since they are not structure giving and do not have a big influence on the perfor-

mance of global algorithms. Due to the large number of them it is still worth to

discuss a proper modeling and handling of the latter.

6.2.2 Handling of Combinatorial Constraints

Multi regional sequential and sub set constraints can be handled directly in the

RA∗ algorithm. When computing all possible adjacent vertices of the current

node, possible combinations are checked on the required constraints. Note that

both, hard- and soft constraints can be handled that way. Where hard constraints

cut down the number of possible adjacent nodes, still neglecting geometrical fea-

sibility, soft constraints and corresponding penalties can be added to the edge

length, which becomes then

|e| = β −

∑
pi,j∈APS̃2

\APS̃1

li,jwi,j

LW
+ pe, (6.1)

where pe is the penalty value.

6.2.3 Handling of Layout Constraints

To model SCC and NCC constraints within the algorithm proposed in chapter 4

an objective oriented data structure has been added to the problem. Based on this

structure algorithm 4 was extended by evaluating functions of these constraints.

As mentioned above constructive constraints cannot be handled generally and

are part of placing point finding strategies.

The choice of an objective oriented approach was mainly motivated by the

fact that for the discussed real world problem there exist constraints that are not

active for all parts. This results from different types of parts and also varying

preferences of different producers. In particular production planners are able to

switch certain constraints on and off, or in case of soft constraints assign different

penalty weights.

Each part holds two list of so called active constraints, constraints that are

switched on, one for hard- and one for soft constraints. Each constraint is rep-

resented by an object, providing the corresponding penalty weight, a method to

evaluate the position of a part and, in case of a semi-constructive constraint, a

method to compute additional placing points, or if necessary additional edges or

polygons to compute points. On the other hand, a placing point does not only

hold the corresponding x- and y-coordinate, it also holds the overall penalty of

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 103

the part placed on it. Thereby it is possible to evaluate only relevant constraints

per part and keep a good usability for production planners.

Finding the best placing point for the next part in the placing sequence be-

comes now a matter of computing all possible points, evaluating them and finding

the point with the smallest penalty, where splits are resolved over the bottom-left

criteria. The procedure is summed up by algorithm 6 and 7.

Note that constructive constraints are not modeled as objects in this frame-

work. They are rather nested within the procedures to calculate placing points

and also the procedure CheckResultingLayout(). To choose the constraints, which

are modeled as constructive is a critical task and is heavily dependent on the un-

derlying problem. As an example could be mentioned that it would be possible

to model the usage of shutters as a SCC by simply generating edges within the

constraint that represent the enlarged part. Tests if a placing point actually

uses the enlarged parts and enough space for shutters is left, could then be done

within the CheckLayout() procedure of the constraint. Obviously this is a rather

cumbersome approach compared with a preprocessing step that enlarges parts in

advance.

6.3 Sample Sub Set Constraints

What follows is a sample of implemented real-world sub sets constraints in ad-

dition to (1.5). Furthermore, the need and purpose of each constraint for the

production procedure is explained

6.3.1 Limited Difficulty per Bin

As described above bins sequentially traverse several work stations during the pro-

duction process. At each work station one or more tasks are executed. Although

having bins with a very tight layout is favorable, exceeding a certain difficulty

level of parts nested in one bin, can lead to considerable delays at these worksta-

tions. The gain from the tighter layout is then lost by the bottleneck produced

by a very ’difficult’ filled bin. The most general solution to this problem would

be to ensure that bins are filled almost equally in terms of difficulty. However,

this led serious problems in real world application for several reasons. Therefore

a maximum level of difficulty for each bin is introduced. The difficulty of a bin is

computed by adding up difficulty indicators of single parts to be nested. These

parameters are calculated in a preprocessing step depending on number of edges,

compared to their length and the occurrence of so called mountparts. Mountparts

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 104

Algorithm 6 Placing Points from parallel edges with constraint handling

1: PP = {};
2: for all rotations in {0◦, 90◦, 180◦, 270◦} do
3: rotate part; PL = {}; EC = {} (Edges From Constraints);
4: for all constraints CO assigned to Pi do
5: PP = PP ∪ CO.FindPlacingPointsFromConstraint();
6: EC = EC ∪ CO.FindEdgesFromConstraint();
7: end for
8: for all parts Pl on strip S do
9: compute all pairs of edges of part Pl, Pi and EC that satisfy (4.1) and

put resulting placing lines in PL;
10: end for
11: CaclulatePlacingPointsFromParEdges();
12: end for
13: for all points P in PP do
14: for all hard constraints HC assigned to Pi do
15: if ¬HC.CheckLayout() then
16: delete P from PP ;
17: end if
18: end for
19: for all soft constraints SC assigned to Pi do
20: P.Penalty+ = SC.CalcPenaltyOfLayout()H;
21: end for
22: end for
23: while P 6= {} do
24: find point P with smallest penalty in PP ; translate Pi to p;
25: if CheckResultingLayout() then
26: return {P}
27: else
28: delete P from PP ;
29: end if
30: end while
31: if PL = ∅ then
32: return NofitProcedure();
33: end if

are for examples doors, windows, power outlets or connectors for facilities.

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 105

Algorithm 7 NofitProcedure

1: CalulatePlacingPointsFromNofitPolygons().
2: for all points P in PP do
3: for all hard constraints HC assigned to Pi do
4: if ¬HC.CheckLayout() then
5: delete P from PP ;
6: end if
7: end for
8: for all soft constraints SC assigned to Pi do
9: P.Penalty+ = SC.CalcPenaltyOfLayout()H;

10: end for
11: end for
12: return {p} with smallest penalty in PP .

6.3.2 Preferred/Maximum Number of Parts per Bin

For similar reasons as for the limitation of the difficulty of a filled bin, some plants

require the limitation of the number of nested parts in a single bin. Thereby it

has to be distinct between a soft constraint that defines the preferred number of

parts per bin. Further, a hard constraint simple forbids combinations of more

parts than a free chosen number to be nested together in a single bin. Both, and

also the difficulty constraint, are classical cardinality constraints.

6.3.3 Half Parts on One Bin

Half parts are special parts that basically split a level in a stack into two parts.

However, for stapling issues it is important that they are placed in the same bin.

Combinations are therefore checked on containment of none or both of every pair

of half parts.

6.3.4 Conflict Constraints

Constraint (1.5) is a typical conflict constraint. If forbids parts with different

material qualities to be placed together in the same bin. Although all conflict

constraints could be modeled as one constraint, they are still seen as different

constraints in the discussed real world problem. The main reason for this is that

different plants might have different possibilities and therefore do not need all of

them, therefore they need to be adjustable in a comfortable and easy way. The

most important examples are:

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 106

• same concrete quality

• same part type (wall, ceiling, stone part...)

• same part height (third dimension)

6.4 Sample Layout Constraints

In the following a sample of layout constraints is presented and discussed. Thereby

examples for each class of both, the general and the algorithmic, classifications

are given.

6.4.1 Constructive Constraints

Shuttered Parts

Although, at a glance, shuttered parts seem to be the same as a kerf, the situa-

tion is more complex. Using separate shutters for each part only enlarges parts,

however, for parallel edges the same shutter might be used on both sides de-

pending on the circumstances. This has an affect on the calculation of placing

points, and on the feasibility of layouts. In case of parallel edges standard pro-

cedures do not work anymore. While enough space between original parts has

to be kept, the enlarged parts might overlap and still a feasible layout results.

Feasible overlapping mainly occurs for two reasons, as shown in figure 6.2 (i):

enlarged parts overlap because of the overlapping area (A) of shutters and sec-

ondly because of adjacent shutters (B). Situation B is resolved by using a shutter

that only touches the parallel shutter and filling the hole with especially shaped

polystyrene parts, as shown in figure 6.2 (ii). This method is also used when

corners are in short distance of edges and their shutters, as illustrated by figure

6.3, where the unshuttered area is also filled with a polystyrene part.

These settings lead to a split approach, for each part the original and the

enlarged shape are kept. Further, techniques to compute placing points and

approaches to check resulting layouts are extended:

Calculation of placing points During the computation of placing lines re-

sulting from parallel edges the minimal distance that must be kept between these

edges, is computed. This distance results from the ability of using a single shutter

and its width. According to this distance a shifted placing line is stored instead

of the original one.

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 107

(i)

B

A

(ii)

polystyerene

Figure 6.2: The use of shutters.

polysterene

Figure 6.3: Shutters and corners.

While the calculation of placing points resulting from the intersection of two

placing lines is still done in the same way, for placing points resulting from a single

placing line some minor adoptions have to be made. Instead of using points and

edges of original parts, the enlarged part of already placed parts and the original

part to place are used to obtain points, as shown by figure 6.4.

Check on the feasibility of layouts. The check on the feasibility of the layout

of an already placed part pl and a newly placed part pi is done in two steps. First

the enlarged version of part pl is checked on overlapping with the original part

pi. There, overlapping is strictly forbidden. In the second step parallel edges are

checked separately on their distance. The latter must either be equal to the width

of one shutter or bigger than the width of two shutters. The first case is only

considered feasible if and only if these two edges are allowed to use one shutter

on both sides.

For some applications it is also required that between edges with very acute

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 108

Figure 6.4: Placing points from a single parallel edge involving shutters.

angles, as shown in figure 6.5, there has to be space for an extra shutter. This

avoids the need of too difficult polystyrene parts.

extra space

Figure 6.5: Extra space between acute edges.

Double Walls

Double walls are a very common product in the concrete industry. Basically

double wall parts consist of two concrete plates that are connected with iron

grids. Once brought to the building site and into position, the space between

plates is filled with concrete what results in very solid walls. This requires the

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 109

production two separate plates. After producing the first it is hardened with the

iron already attached, flipped it over and connected with the second, where the

concrete has not hardened yet. The critical step of this procedure is obviously

the flipping of the first plate. Thereby the plates are fixed on the bins and the

latter is flipped. Therefore the two plates are placed with the right offset in the

two different bins, as illustrated by figure 6.6.

Figure 6.6: Principles of double walls.

Unfortunately in general, as one can also see from figure 6.6, the two plates

do not have the same dimensions. However, for simplicity we can assume that

double wall parts have only rectangular shapes. The first and trivial attempt to

resolve this problem would be to find an enveloping shape of both plates and to

compute layouts for latter. However, in many cases it is required that first- and

second plates of different parts can be placed overlapping, see figure 6.7. This

requires a more sophisticated method to gain and check the distance between two

parallel edges during placing points computation and evaluation. In particular

an enclosing rectangular for both plates is kept instead of the original part and

in addition for each edge the distance to plate one and two is also stored. With

this information it is possible to calculate a shifting length for parallel edges,

which ensures that the distances between plates one and two of both parts is

either equal to the width of one shutter or bigger than the width of two shutters.

Figure 6.8 shows this technique. Furthermore, the check on the feasibility of a

layout has also to be slightly modified.

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 110

Figure 6.7: Overlapping double walls.

shutter

Distance plate 2 Distance plate 1

Figure 6.8: Distance between plates.

6.4.2 Semi Constructive Constraints

Mountparts and areas

As mentioned before mountparts are doors windows and etc. that are placed on

a fixed position within the part. In many plants mountparts are inserted with

cranes that are not able to reach all areas of a bin. Therefore mountparts must

not be placed in these defective areas, what requires that the parts they are nested

within are not placed in corresponding areas. These corresponding areas result

from the relative position of mountparts to their ’parent’-parts. Fortunately the

defective areas can be modeled as orthogonal strips, as shown in figure 6.1. To

obtain extra placing points, equivalent to E,F,G and H in figure 6.1 additional

edges are added, where attaching the part to these edges results in a touching

layout of the mountpart and the defective area, see figure 6.9. This constraint

can be seen as PSLI according to the classification of the last chapter.

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 111

Figure 6.9: Placing points from door-mountparts.

Half parts

Half parts where already subject of a sub set constraint, namely that they have

to be placed in the same bin. But placing them in the same bin is not enough to

ensure producability. Moreover they have to be placed above each other, while

the ordering of them does not matter. Figure 6.10 shows two different feasible

layouts, where halfparts are displayed in gray. One may note that half parts are

another example for PSS constraints.

(i)

(ii)

Figure 6.10: Possible positions of half parts.

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 112

Shift Parts with Iron From Side

Parts with an iron-overhang must not be attached to left and right bin sides,

at least they must be shifted a little towards the center of the bin. For bins

with a length of approximately ten meters the shift normally does not exceed two

centimeters. During the planning step parts and their overhangs are only given

in an accurate drawn plan. According to the plans, overhangs would not reach

over the bin side when attaching the part to it. In the real production process

inaccuracies can occur while bending the overhangs, as shown by figure 6.11, and

they might reach out of the bin. To avoid this, parts have to be shifted a little

bit inwards. This is realized by adding extra edges, as one can also see in figure

6.11. Since the constraints concerns only positions of parts with iron overhangs

with respect to bin sides it can be classified as PSLI and SCC.

Figure 6.11: Bending errors of iron-overhangs.

6.4.3 Non Constructive Constraints

Fine Edges

Some edges of parts are marked as fine, which means that they will form an outer

edge of the overall resulting building. Therefore any inaccuracies and small errors

are more visible in the end product than for other edges. Since bins normally have

fixed shutters of higher quality at their sides one wants fine edges to be attached

to them. This constrains exist in both version, soft and hard, depending on

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 113

preferences of different plants. It can also happen that a part has more than one

fine edges, in that case, the aim is at least one of them is attached to a preferred

border.

This constraint is classical example for being non-constructive and PSLI, any

point that does not result in the attachment of at least one fine edge of the part

is either deleted or punished.

Attachment

In this context attachment constraints are referred to as constraints that force

parts of certain types to be attached to defined borders of the bin. Moreover in

some cases also altering layouts, as described by figure 5.3, are requested. For

altering layouts placing points are evaluated over the position and sequence of

previous placed parts. Possible specifications are:

• all parts parts attached to either lower or upper border

• all parts attached to lower border of bin

• all parts attached to upper border of bin

• altering, starting at lower border

• altering, starting at upper border

• altering, starting at any border

Note that these settings might vary over different types of parts and the

constraint is of type PSSLI.

Balancing of Parts

Balancing of parts is an issue in many packing problems. In this particular

example it can be necessary to place parts altering left and right according to the

center point of the weight of already placed parts. This is mainly to avoid that

parts placed on one half of the bin are not to heavy compared to parts placed in

the other half. For simplicity this constraint is modeled non-constructive. Placing

points are evaluated on their contribution to the balance of the resulting layout.

Although this is neither a very general nor sophisticated approach, it fulfills the

requirements of the underlying problem.

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 114

Maximum Number of Parts in Y-Direction

To avoid too complicated layouts some production planner do not want the num-

ber of parts aligned in y-direction of a bin to exceed a fixed value. This can

easily be modeled as a non-constructive constraint that forbids placing points

that would result in a higher number of parts aligned in y-direction. Consider

the example given by figure 6.12, assuming that the number of parts in y-direction

is limited by 4. Translating the next part to point A would result in 5 parts above

each other and is therefore not feasible, whereas point B results in a valid layout.

A

B

Figure 6.12: Feasibility of placing points depending on y-direction constraint.

It is simply counted how much parts would reach into the strip generated by

the boundaries of the translated part and the resulting number is compared to the

maximum number. The only information needed for evaluation are the positions

of previous placed parts, therefore the constraint is member of the PSS class.

6.5 Discussion

In this chapter a classification of constraints with respect to algorithmic handling,

under the domain of certain solving strategies, was introduced. Thereby three

main types of layout constraints can be identified, namely NCC, SCC and CC.

In general these classes are not exclusive; according to the developer, certain

constraints can be either SCC/NCC or CC. However, given a problem with a

specific set of constraints, the chosen design and corresponding distribution of

constraints over the three classes, has a striking influence on the quality of the

intended algorithm. In the process additional aspects have to be considered.

CHAPTER 6. CONSTRAINT HANDLING INCORPORATING A SPECIFIC
PROBLEM DOMAIN 115

From a theoretical point of view SCC and NCC can slow down the point gen-

erating routines within the algorithm. This is because all points, even infeasible

ones, are first calculated and then evaluated with respect to the constraints. Us-

ing the constraints during the point calculating process would lead to less points,

and therefore less computational effort. Consider the example where a part has

to be placed on the lower boarder of a bin, only points, and therefore edges on

the lower boarder have to be taken into account when computing placing points.

However, for practical applications this effect can be lost when the number of

constraints exceeds a certain size. A big number of CC makes the methods cum-

bersome and the time savings often almost vanish. Tests have shown that in

practical applications with a quite small medium number of layout constraints

(2-5), the savings are negligible small.

On the other hand modeling only CC constraints makes algorithms and code

hardly extendable and adaptable, as for the the precast-concrete-part industry,

where each plant has different requirements and new products are launched on

a regular basis. New products lead to new parts, which often have special re-

quirements during the production process, which lead to new constraints. With

a clean objective oriented modeling of NCC and SCC these constraints can easily

be added without changing the core algorithm. Further, constraints can easily

be ’switched’ on and off to fulfill every company’s special needs.

To sum up, for problems with a small set of constraints, which does not change

over time the modeling of NCC and SCC can lead to small drawbacks in terms of

computational effort. For medium to large sets of constraints, which might also be

changing over time, these drawbacks hardly exist and the benefit of extendibility

and adaptability clearly dominates.

Chapter 7

Conclusion and Further Work

This thesis dealt with a highly constrained bin packing problem in the precast-

concrete-part industry. The discussion of this problem included a proper math-

ematical formulation as well as representation of the problem itself and the op-

timization objective, the adaption of standard solving procedures and the de-

velopment of a more problem specific technique. During this process also lower

bounds for COP were discussed. Finally, the work deals with different types of

constraints that have occurred within C&P problems over the last decades. In the

following the main aspects are summarized and some ideas for further research

are given.

7.1 The Model

A basic mathematical model, that comprehends all main aspects of real world

problems in the proposed industry, was formulated. The aim was to keep the

model as simple as possible, without losing the structure which makes it differ

from standard problems. Therefore stacks and allocations of parts were defined.

Furthermore, four different combinatorial constraints, which are part of almost

every real world application in that field, were introduced.

The first constraint is a standard conflict constraint that allows only parts

made of the same material quality to be placed in the same bin. The second one

ensures that parts of a single stack are placed in bins according to their levels

in the stack. This avoids time consuming reordering on actual building sites

and is part of almost every ceiling production as well as most wall productions.

Thirdly, the number of stacks that can be produced at a time is limited to a given

parameter. Due to limited space in so called stapling areas every producer has to

deal with restrictions of this form. Finally, stacks themselves must be produced

116

CHAPTER 7. CONCLUSION AND FURTHER WORK 117

in a given order, which might be violated to some extent. In all companies in

which the production is at least near ’on demand’ stacks have to be finished in

the order of their delivery dates.

Further, one very basic representative of layout constraints was added to the

model. This was mainly because local search routines should also work and be

tested under circumstances where they are not allowed to place parts free in bins.

7.2 Solving Methods

After a brief discussion of possibilities for solving COP to optimality in chapter

1, standard heuristics for bin packing were discussed in chapter 2. Two classes of

heuristics have been defined; sequence based and set based algorithms.

Sequence based algorithms use nesting heuristics to place parts in bins in a

given sequence and a global algorithm to control the search over different se-

quences. Since the ordering of parts is a key aspect of COP two extended models

for sequences were defined and tested, weakly and strongly ordered sequences.

Further, well known nesting heuristics were adapted for computing solutions of

COP. The first main result of this work was that strongly ordered sequences lead

to significantly better results than weakly ordered sequences. Although strongly

ordered sequences lead to a smaller possible neighborhood and therefore a more

narrow search, weakly ordered sequences ask for more complex nesting heuristics

and placing rules. This leads to cumbersome routines and therefore to worse re-

sults. The second observation was that Simulated Annealing outperforms other

heuristics, as Genetic Algorithms, for searching the space of different sequences.

Set based algorithms do not represent solutions with sequences, but they

define operators directly on allocation of parts. Based on examples taken from

literature a Tabu Search method, a Genetic Algorithm and a Greedy Algorithm

were adapted and tested for COP. To conclude one can say that sequence based

algorithms outperform set based methods.

However, the promising results of the Greedy Algorithm led to the formu-

lation of a network search method. Thereby a network of decision nodes was

defined. Nodes in this network represent partial allocations of parts, or in other

words progress levels of the allocation process. Edges represent decisions to place

the difference of parts between two levels in a single bin. The length of edges

was defined according to the utilization of the bin’s capacity. In this context a

solution of COP can be represented by a path through this network, where the

start node is the level where no part was placed and the end node represents

a full allocation of parts. One may note that the Greedy Algorithm basically

CHAPTER 7. CONCLUSION AND FURTHER WORK 118

chooses the cheapest adjacent edge in every node and thereby computes a greedy

path through the network. Based on this network a special version of Dijkstra’s

algorithm was proposed which is able to compute optimal solutions of COP. Since

for practical applications the network gets too big and Dijkstra’s algorithm takes

too much computational effort, a heuristic relaxation RA∗ from an A∗ algorithm

was developed. Results showed that RA∗ suited the special restrictions of COP

better than the discussed standard heuristics. During that discussion a frame-

work of lower bounds for COP was introduced. Furthermore lower bounds for

bin packing problems were used within that framework.

7.3 Polygonal Parts

For the purpose of designing and evaluating solving strategies for COP polygonal

shaped parts could be neglected. However, in industrial applications parts can

also have polygonal shape or be at least approximated by the latter. Therefore in

chapter 4 methods to deal with more complex geometrical tasks were discussed

under the domain of strip packing problems. The wide-spread no-fit polygon

approach was compared to a more practical method, which was especially suitable

for the concrete industry. Results showed that for small instances, where parts

tend to have mainly orthogonal edges the parallel edge approach, introduced in

this work, is far more efficient in terms of computational effort than standard

no-fit procedures. Although the no-fit approach is more general, the solution

qualities do not differ significantly.

7.4 Constraints in General

Constraints appear in many cutting and packing problems nested in many differ-

ent industries. One aim of this thesis was to define a general framework that al-

lows the reader to classify various types of constraints. Thereby two main classes,

combinatorial- and layout constraints, were identified, whereby each class can be

divided in further subclasses.

Especially for layout constraints a second classification towards the algorith-

mic handling was proposed. It is important to add that this classification is only

valid in the domain of point-generating placing methods within nesting routines.

Further it is not general and can differ over problems, solving strategies and per-

sonal preferences. However, the classification can be assisting for a developer

to identify constraints during the design process and evaluate their influence on

CHAPTER 7. CONCLUSION AND FURTHER WORK 119

extendibility and performance of the intended method.

7.5 Further Research

During this project some tasks, that could be from interest for further research,

were left undone. First, results showed that lower bounds computed by the frame-

work in chapter 3 tend not to be very tight. Since a lot of exact solving procedures

need tight bounds to perform well, meaning to find optimal solution for medium

sized problems in a reasonable amount of time, the improvement of bounds could

be an interesting topic. Furthermore, the formulation of more sophisticated exact

algorithms, as methods like branch and bound, column generation or other linear

programming techniques, is also left undone. Although results of RA∗ were quite

promising, it could still be of interest to investigate the performance of other

heuristics or further enhancements of RA∗ on COP.

The constraint classification mentioned in chapter 5 could also be extended

by a detailed bibliography of practical constraints that appear in literature, since

the examples given do not claim completeness.

Bibliography

[1] A. Albano and G. Sapuppo. Optimal allocation of two-dimensional irregualr

shapes using heuristic search methods. IEEE Transactions on Systems, Man

and Cybernetics, 10(5):242–248, 1980.

[2] R.C. Art. An approach to the two dimensional irregular cutting stock prob-

lem. IBM Cambridge Scientific Centre, Report 36-Y08, 1966.

[3] L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-

packing problems with cardinality constraints. Discrete Apllied Mathematics,

143:238–251, 2004.

[4] A. Ramesh Babu and N. Ramesh Babu. Effective nesting of rectangular

parts in multiple rectangular sheets using genetic and heuristic algorithms.

International Journal of Production Research, 37(7):1625–1643, 1999.

[5] A. Ramesh Babu and N. Ramesh Babu. A generic approach for nesting of 2-d

parts in 2-d sheets using genetic and heuristic algorithms. Computer-Aided

Design, 33:879–891, 2001.

[6] J.O. Berkey and P.Y. Wang. Two dimensional finite bin packing algorithms.

Journal of the Operations Research Society, 38:423–429, 1987.

[7] E.G. Birgin and R.D. Lobato. Orthogonal packing of rectangles within

isotropic convex regions. Submitted.

[8] A. Boschetti and A. Mingozzi. The two-dimensional finite bin packing prob-

lem. part i: New lower bounds for the oriented case. 4OR, 1:27–42, 2003.

[9] A. Boschetti and A. Mingozzi. The two-dimensional finite bin packing prob-

lem. part ii: New lower and upper bounds. 4OR, 1:135–147, 2003.

[10] E. K. Burke, R. S. R. Hellier, G. Kendall, and G. Whitwell. A new bottom-

left-fill heuristisc algorithm for the two-dimensional irregular packing prob-

lem. Operations Research, 54(3):587–601, 2006.

120

BIBLIOGRAPHY 121

[11] E.K. Burke. Complete and robust no-fit polygon generation for the irregular

stock cutting problem. European Journal of Operational Research, 179:27–

49, 2007.

[12] A. Caprara, A. Lodi, and M. Monaci. An approximation scheme for the

two-stage, two-dimensional bin packing problem. In Proc. 9th Conf. Inte-

ger Programming and Combinatorial Optinmization (IPCO 2002), Springer

Lecture Notes in Computer Science, volume 2337, pages 320–334. Springer,

Berlin, 1999.

[13] A. Caprara and U. Pferschy. Worst-case analysis of the subset sum algorithm

for bin packing. Operations Research Letters, 32:159–166, 2004.

[14] A. Caprara and U. Pferschy. Modified subset sum heuristics for bin packing.

Information Processing Letters, 96:18–23, 2005.

[15] J. Carlier, F. Clautiaux, and A. Moukrin. New reduction procedures and

lower bounds for the two-dimensional bin packing problem with fixed orien-

tation. Computers and Operations Research, 33:2223–2250, 2007.

[16] F. Clautiaux, A. Jouglet, and J. El Hayek. A new lower bound for the non-

oriented two-dimensional bin packing problem. Operations Research Letters,

35:365–373, 2007.

[17] J. Correa. Near-optimal solutions to two-dimensional bin packing with 90

degree rotations. Electronic Notes in Discrete Mathematics, 18:89–95, 2004.

[18] K. Daniels. Containment algorithms for nonconvex polygons with apllications

to layout. Dissertation, Harvard University, Cambridge, MA, 1995.

[19] K. Daniels and V. J. Milenkovic. Rotational polygon containment and min-

imum enclosure using only robust 2d constructions. In: Proc., 8th Canad.

Conf. Comput. Geom., pages 33–38, 1996.

[20] K. Daniels and V. J. Milenkovic. Multiple translational containment: Ap-

proximate and exact algorithms. In: Proc., 6th ACM-SIAM Sympos. Dis-

crete Algorithms, pages 205–214, 1997.

[21] K. Daniels and V. J. Milenkovic. Multiple translational containment, part i:

An approximate algorithm. Algorithmica, 19:148–182, 1997.

BIBLIOGRAPHY 122

[22] M. Dawande, J. Kalagnaman, and J. Sethuraman. Variabled sized bin pack-

ing with color constraints. Electronic Notes in Discrete Mathematics, 7:154–

157, 2001.

[23] M. Dell’Amico, S. Martello, and D. Vigo. A lower bound for the non-

oriented two dimensional bin packing problem. Discrete Applied Mathe-

matics, 118:13–24, 2002.

[24] E.W. Dijkstra. A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1:269–271, 1959.

[25] K.A. Downsland and W.B. Downsland. Packing problems. European Journal

of Operational Research, 56(1):2–14, 1992.

[26] H. Dyckhoff. A typology of cutting and packing problems. European Journal

of Operational Research, 44:145–159, 1990.

[27] H. Dyckhoff, G. Scheithauer, and J. Terno. Cutting and packing. In F. Maffi-

oli M. Dell’ Amico and S. Martello, editors, Annoted Bibliographies in Com-

binatorial Optimization. John Wiley & Sons, Chichester, 1997.

[28] H. Dyckhoff and U.Finke. Cutting and packing in production and distribu-

tion: A typology and bibliography. Physica Verlag, Heidelberg, 1992.

[29] L. Epstein, A. Levin, and R. van Stee. Two-dimensional packing with con-

flicts. Acta Informatica, 45(3):155–175, 2008.

[30] S.P. Fekete and J. Schepers. On more-dimensional packing iii: Exact algo-

rithms. Technical paper ZPR97-290, Mathematisches Institut, Universitt zu

Kln, 1997.

[31] S.P. Fekete and J. Schepers. On more-dimensional packing ii: Bounds. Tech-

nical Report ZPR97-289, Mathematisches Institut, Universitt zu Kln, 2000.

[32] S.P. Fekete and J. Schepers. A general framework for bounds for higher-

dimensional orthogonal packing problems. Math., Methods Oper. Res.,

60:311–329, 2004.

[33] L. Fu, D. Sun, and L.R. Rilett. Heuristic stortest path algorithms for trans-

portation applications: State of the art. Computers and Operations Research,

33:3324–3343, 2006.

BIBLIOGRAPHY 123

[34] M. Gendreau, G. Laporte, , and F. Semet. Heuristics and lower bounds for

the bin packing problem with conflicts. Computers and Operations Research,

31.

[35] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,

Boston, 1997.

[36] D.E. Goldberg. Genetic algorithms in search, optimization and machine

learning. Addison-Wesley, 1989.

[37] A. M. Gomes and J. F. Oliveira. Solving irregular strip packing problems by

hybridising simulated annealing and linear programming. European Journal

of Operational Research, 171:811–829, 2006.

[38] A. M. Gomes and J.F. Oliveira. A 2-exchange heuristic for nesting problems.

European Journal of Operations Research, 141(2):359–370, 2002.

[39] R .B. Grinde and T .M. Cavalier. A new algorithm for the two-polygon

containment problem. Computers & Operations Research, 24(3):231–251,

1997.

[40] P. E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heurisitic

determination of minimum cost paths. IEEE Transactions, Systems Science

and Cybernetics, 4(2):100–107, 1968.

[41] J. El Hayek, A. Moukrim, and S. Negre. New resolution algorithm and

pretreatments for the two-dimensional bin-packing problem. Computers and

Operations Research, 35.

[42] E. Hopper and B.C.H. Turton. A review of the application of meta-heuristic

algorithms to 2d strip packing problems. Artificial Intelligence Review,

16:257–300, 2001.

[43] H. Iima and T. Yakawa. A new design of genetic algorithm for bin packing.

Congress on Evolutionary Computation, 2:1044–1049, 2003.

[44] D.S. Johnson. Near optimal bin packing algorithms. Dissertation, Massachus-

setts Institute of Technology, Cambridge, MA, 1973.

[45] l. Epstein and a. Levin. Approximation and Online Algorithms, volume 4368,

chapter On Bin Packing with Conflicts, pages 160–173. Springer Heidelberg.

BIBLIOGRAPHY 124

[46] D.S. Liu, K.C. Tan, S.Y. Huang, C.K. Goh, and W.K. Ho. On solving

multiobjective bin packing problems using evolutionary particle swarm op-

timization. European Journal of Operational Research, 190:357–382, 2008.

[47] A. Lodi, S. Martello, and D. Vigo. Approximation algorithms for the ori-

ented two-dimenional bin packing problem. European Journal of Operational

Research, 112:158–166, 1999.

[48] A. Lodi, S. Martello, and D. Vigo. Heuristic and metaheuristic approaches

for a class of two-dinemsional bin packing problems. INFORMS Journal on

Computing, 11:345–357, 1999.

[49] A. Lodi, S. Martello, and D. Vigo. Recent advances on two-dimensional bin

packing problems. European Journal of Operational Research, 123:379–396,

2002.

[50] A. Lodi, S. Martello, and D. Vigo. Two dimensional bin packing problems:

A survey. European Journal of Operational Research, 141:241–252, 2002.

[51] A. Lodi, S. Martello, and D. Vigo. Tspack: A unified tabu search code

for multi-dimensional bin packing problems. Annals of Operations Research,

131:203.213, 2004.

[52] F. P. Marques and M. N. Arenales. The constrained compartmentalised

knapsack problem. Computers & Operations Research, 34:2109–2129, 2007.

[53] S. Martello and D. Vigo. Exact solution of the two-dimensional finite bin

packing problem. Management Science, 44(3), 1998.

[54] N. Metropolis, A.W. Rosenbluth, A. Teller, and E.J. Teller. Simulated an-

nealing. Journal of Chemical Physics, 21:1087–1092, 1953.

[55] V. J. Milenkovic. Translational polygon containment and minimal enclo-

sure using linear programming based restriction. In: Proc. 28th Ann. ACM

Sympy. Theory Comput, 6:109–118, 1996.

[56] V. J. Milenkovic. Multiple translational containment, part ii: Exact algo-

rithms. Algorithmica, 19:183–218, 1997.

[57] V. J. Milenkovic. Rotational polygon containment and minimum enclosure

using only robust 2d constructions. Computational Geometry, 13:3–19, 1999.

BIBLIOGRAPHY 125

[58] V. J. Milenkovic and K. Daniels. Translational polygon containment and

minimal enclosure using mathematical programming. International Trans-

actions in Operational Research, 6:525–554, 1999.

[59] S. Polyakovsky and R. M’Hallah. An agent-based approach to the two-

dimensional guillotine bin packing problem. European Journal of Operational

Research, 192:767–781, 2009.

[60] H. Reinertsen and T.W.M. Vossen. The one-dimensional cutting stock prob-

lem with due dates. European Journal of Operational Research, 201:701–711,

2010.

[61] F. Rinaldi and A. Franz. A two-dimensional strip cutting problem with

sequencing constraint. European Journal of Operational Research, 183:1371–

1384, 2007.

[62] P. Rohlfshagen and J.A. Bullinaria. A genetic algorithm with exon shuffling

crossover for hard bin packing problems. Proceedings of the 9th annual con-

ference on Genetic and evolutionary computation, pages 1365–1371, 2007.

[63] Y. Stoyan, G. Scheithauer, N. Gil, and T. Romanova. φ-functions for com-

plex 2d-objects. 4OR: Quarterly Journal of the Belgian French and Italian

Operations Research Societies, 2:69–84, 2004.

[64] H. Terashima-Maŕın, C. J. Faŕıas Zárate, P. Ross, and M. Valenzuela-

Rendón. A ga-based method to produce generalized hyper-heuristics for the

2d-regular cutting stock problem. Proceedings of the 8th annual conference

on Genetic and evolutionary computation, pages 591–598, 2006.

[65] H. Terashima-Maŕın, E. J. Flores-Álvarez, and P. Ross. Hyper-heuristics and

classifier systems for solving 2d-regular cutting stock problems. Proceedings

of the 2005 conference on Genetic and evolutionary computation, pages 637–

643, 2005.

[66] G. Wäscher, H. Haußner, and H. Schumann. An improved typology of cutting

and packing problems. European Journal of Operational Research, 183:1109–

1130, 2007.

[67] TH. Wu, JF. Chen, C. Low, and PT. Tang. Nesting of two-dimensional

parts in multiple plates using hybrid algorithm. International Journal of

Production Research, 41(16):3883–3900, 2003.

BIBLIOGRAPHY 126

[68] G. Zhang. An 3-approximation algorithm for two dimensional bin packing.

Operations Research Letter, 33:121–126, 2005.

