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Abstract

V isual object classification and tracking are two of the cardinal problems in computer
vision. Both tasks are extremely complicated and far from being solved. Recent

advances towards building better detection and tracking systems were mainly achieved
by improved representations and applying better learning algorithms. For the learning,
usually supervised algorithms are applied which demand large amounts of hand-labeled
data in order to yield accurate results. However, hand-labeling is a tedious and time-
consuming task, which is also prone to human errors. Additionally, learning only from
labeled data is not natural and there exist tasks, such as tracking-by-detection, where the
learners have to be able to exploit both labeled and unlabeled data. Also, the growing
number of digital images present in the web and off-line databases makes human hand-
labeling hardly possible. Hence, we need learning techniques that are able to exploit
huge amounts of unlabeled data with a reduced quantity of human interaction. These
considerations have led to an increased interest in semi-supervised learning methods that
learn from a small amount of labeled data and a large amount of unlabeled data.

In this thesis, we propose several novel approaches to semi-supervised learning using
ensemble methods, such as boosting or random forests, and show their applicability on
various computer vision tasks. The reasons for studying ensemble methods is that they
are powerful and fast and are already used in many computer vision applications. In
the first part of the thesis, we propose a novel semi-supervised boosting algorithm based
on visual similarity learning and demonstrate its applicability to object detection. Then,
we extend the method to on-line learning. In the second part of the thesis, we propose a
novel random forest method that is able to learn from both labeled and unlabeled data. We
demonstrate the benefits of the approach on both several machine learning tasks and object
categorization where our method is able to train one inherent multi-class classifier rather
than several one-versus-all classifiers. In the subsequent chapter, we demonstrate how to
extend random forests to on-line mode. We also show how to apply random forests to a
learning paradigm that is very similar to semi-supervised learning, i.e., multiple instance



learning. Finally, we hypothesize that visual object tracking can be formulated as a one-
shot-semi-supervised learning task. In the tracking experiments, we demonstrate that
applying the proposed on-line semi-supervised and multiple instance learning methods
lead to more stable and higher accurate tracking results.



Kurzfassung

V isuelle Objekterkennung und -verfolgung gehören zu den wichtigsten Aufgaben der
Computer Vision. Für beide Problemstellungen gibt es eine grosse Anzahl praktis-

cher Anwendungen, beide sind jedoch weit davon entfernt als gelöst betrachtet zu werden.
Die in den letzten Jahren auf diesen Gebieten erreichten Fortschritte basieren meistens
auf der Entwicklung von einerseits besseren Möglichkeiten Objekte zu beschreiben, zum
Beispiel in Form von Mustern oder Merkmalen, und andererseits auf der Entwicklung
und der Anwendung besserer maschineller Lernverfahren. Als Lernalgorithmen werden
meistens vollständig überwachte Methoden verwendet, die üblicherweise eine grosse An-
zahl an hand-gelabelten Daten benötigen um ausreichend akkurate Resultate zu liefern.
Vollständig überwachte Verfahren haben jedoch das Problem, dass es meist schwierig
und sehr aufwändig ist an gelabelte Daten zu gelangen. Ausserdem leben uns biologische
Systeme vor, dass in der Natur Lernen zu einem Grossteil auf der Grundlage von un-
gelabelten Daten basiert. Zusätzlich führt die wachsende Anzahl von Bildern im Internet
und in Datenbanken dazu, dass hand-basiertes Labeln von Daten immer schwieriger wird.
Moderne Systeme, die in der Praxis zur Anwendung kommen, benötigen also Algorith-
men, die in der Lage sind, von grossen Mengen an ungelabelten Daten zu lernen. Diese
Überlegungen haben dazu geführt, dass die Forschung im Bereich des maschinellen Ler-
nens sich in letzter Zeit vermehrt auf die Entwicklung von sogenannten halb-überwachten
Lernverfahren konzentriert. Solche Verfahren sind in der Lage sowohl von einer kleinen
Menge von gelabelten Daten als auch von einer grossen Menge an ungelabelten Daten zu
lernen.

In dieser Doktorarbeit präsentieren wir mehrere neue Methoden des halb-überwachten
Lernens basierend auf sogenannten Ensemble Verfahren, wie zum Beispiel Boosting oder
Random Forests, und zeigen deren Anwendbarkeit auf einer Vielzahl von Computer Vi-
sion Applikationen. Die Motivation sich auf Ensemble Verfahren zu konzentrieren basiert
auf der Tatsache, dass diese Algorithmen sich als sehr effizient erwiesen haben und
bereits in sehr vielen Computer Vision Problemen zur Anwendung kommen. Im er-



sten Teil dieser Arbeit schlagen wir einen neuen halb-überwachten Boosting Algorithmus
vor, der zusätzlich paar-weise Distanzfunktionen zwischen Bildern lernt und evaluieren
diesen Ansatz auf Objekterkennungsproblemen. Zusätzlich zeigen wir, wie man diese
Methode erweitern kann, damit sie on-line lernfähig ist. Im zweiten Teil dieser Ar-
beit beschäftigen wir uns mit Random Forests und präsentieren einen Algorithmus, der
sowohl von gelabelten als auch von ungelabelten Daten lernen kann. Wir demonstrieren
die Vorteile dieser Methode, wie inherente mehrklassenfähigkeit und erhöhter Lern- und
Evaluierungsgeschwindigkeit, sowohl an Beispielen des maschinellen Lernens als auch an
visueller Objektkategorisierung. Darauffolgend zeigen wir, wie man mit Random Forests
an sequentiell eintreffenden Daten, also on-line, lernen kann. Weiters zeigen wir, wie man
Random Forests für ein nah-verwandtes Gebiet des halb-überwachten Lernens, nämlich
Multiple Instance Learning, anwenden kann und präsentieren einen neuen Algorithmus,
MILForests. Im experimentellen Teil zeigen wir, dass MILForests in der Lage sind state-
of-the-art Multiple Instance Ergebnisse zu erziehlen, dabei jedoch viel schneller sind als
konkurrierende Verfahren.

Schlussendlich befassen wir uns mit dem konkreten Problem der visuellen Objek-
tverfolgung und zeigen, dass Objektverfolgung als halb-überwachtes Lernproblem for-
muliert werden kann. Wir können daher die in dieser Arbeit vorgeschlagenen on-line
halb-überwachten Algorithmen für Objektverfolgung verwenden. In den Experimenten
zeigen wir, dass der Einsatz unserer halb-überwachten Methoden zu stabileren Objek-
tverfolgungsresultaten führt.
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Chapter 1

Introduction

“W hat does the frog’s eye tell the frog’s brain?” - Lettvin et al. [Lettvin et al., 1959]
asked themselves this question in the 50’s of the 20th century. At the first glance,

for many of us this question might not be relevant and we might rather wonder what
drove Lettvin et al. to spend years if not decades to investigate a frog’s visual physiology.
However, by taking a closer look, we can observe how remarkable the skills of this tiny
animal are: A frog searches prey by using its eyes, seeks it and in fractions of a second
catches it with its tongue. Furthermore, it is able to survive from its predators by visually
recognizing enemies and escaping from them. Hence, one can say that vision is prob-
ably the most important sense for a frog and without its eyes survival would probably
not be possible. But how does this work? How is an animal as simple as a frog able
to perform this remarkable visual tasks? Of course, the answer to that question is by no
means trivial, but from a biological perspective, one can imagine that it is simpler to study
these mechanisms on a frog that has a rather simple cognitive visual system compared
to higher order species such as mammals; and this was also the reason why Lettvin et
al. chose to investigate basic perceptual physiology using frogs, i.e., due to their simplic-
ity. Stepping forward from the 50’s of the last century to the present, i.e., 2010, science
has made significant progress in understanding visual processes and not at least due to the
groundbreaking work of [Lettvin et al., 1959] and other perceptual physiologists [Palmer,
1999,Livingstone, 2008] we do not only have reasonable insights on what the frog’s eyes
tell the frog’s brain but also started understanding what human eyes tell the human brain.
Even more, besides investigating the functionality of cognitive vision, nowadays the rapid
development of computational technologies and digital cameras has allowed researchers
and engineers to take over a more active role and investigate in building machines that are
able to analyze and understand the world using visual intelligence such as humans. The
research discipline that is concerned with developing mathematical techniques and algo-
rithms in order to understand digital images and videos is called computer vision [Marr,

1
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Figure 1.1: The eyes are the most important senses for a frog.

1982] and states the scientific field where the thesis at hand is placed.

Why is it worth doing research on computer vision? The answer to this question can
be split up into two parts: First, from a researcher’s perspective and due to the human pi-
oneering spirit, i.e., simply because we want to find out if we can do it. Second, because
there exist a huge amount of potential applications. Some of these are optical character
recognition (OCR), web-based image search, industrial machine inspection, biomedical
imaging, surveillance, 3D model building and photogrammetry, automotive safety, bio-
metrics, robotics, etc.. See also David Lowe’s website of industrial vision applications 1.
Overall, computer vision already now comprises a multi-billion dollar market with ex-
pected steady growth.

Vision is hard The human visual system rapidly and effortlessly recognizes a large
number of diverse objects despite large variations in the object’s position, pose, lighting
and background clutter. Additionally, we can easily segment an object, analyze its shape
and track it. Building computational systems that are able to achieve the same perfor-
mance is extremely hard. One of the reasons for this difficulty is that “reverse engineering
the brain” in order to emulate it on machines is very complicated. Although cognitive sci-
ence has made large progress in understanding the brain’s solution to perform visual tasks
(see above), we are still far from fully understanding how human perception works. Ad-
ditionally, unlike humans, we provide computers with digital data and from a machine’s
perspective, an image is nothing else than a matrix of numbers. The size and the quality
of the matrices may vary a lot. Hence, the way how computer vision is done today can be
also interpreted as searching for useful information in matrices and researchers still argue
if this is the right path to follow.

Computer vision is an inverse discipline, that is we have to find a solution for a prob-
lem where we get provided by an insufficient amount of information; and inverse prob-
lems are typically ill-posed, i.e., there does not a exist a unique solution [Hadamard,

1 http:://www.cs.ubc.ca/spider/lowe/vision.html (01.04.2010)
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1902]. Hence, computer vision has often to make use of probabilistic approaches and the
success of the methods relies on how good our probabilistic models are and on the quality
of information with which we feed them. Finally, the human visual system is able to cope
with large scales of data and thus acts as a massively parallel computer, comprised of
billions of elements. Hence, when doing vision on machines we also have to cope with a
huge amount of data, which requires both large computational power and highly efficient
algorithms in order to deliver results in acceptable time if not real-time. Altogether, these
are big challenges both for algorithm designers and hardware developers.

The role of Machine Learning and Training Samples Computer vision can be subdi-
vided into several disciplines, such as, structure from motion, segmentation, reconstruc-
tion, action recognition, etc. [Szeliski, 2010]. In this thesis, we are mainly dealing with
visual recognition and classification as well as object tracking. A typical machine per-
ception or pattern recognition system can be subdivided into the following steps (See also
Duda [Duda et al., 2001]):

1. Sensing

2. Segmentation

3. Feature extraction and selection

4. Classification

5. Post-processing

The success of a recognition system clearly depends on the quality of either of these
steps; however, especially good representations in terms of features and training accu-
rate classifiers mostly determine the overall quality of a recognition system. Hence, in
recent years, further developments in terms of representation and novel machine learning
algorithms have brought the highest accuracy improvements. In fact, especially machine
learning techniques become increasingly relevant for computer vision and, according to
this observation, this is also the reason why in this thesis we mainly focus on the devel-
opment and application of learning and classification algorithms for computer vision.

The task of a machine learning algorithm is to, based on provided training samples,
train classifiers that predict the labels of samples that have not been observed during train-
ing. In practice, both the training samples and their corresponding labels are provided by
a human labeler. The learners are thus called supervised methods. A lot of research
has been focused on developing new classifiers and learning algorithms. If enough and
proper training samples exist, these approaches can obtain very high recognition and clas-
sification performances. However, one fact that has been often ignored or overlooked in
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the literature is that for many practical problems obtaining enough labeled data is a very
tedious, time-consuming and costly task and is sometimes not even possible. Addition-
ally, the critical labeling process is often subject to human errors which deteriorates the
classification performance.

The lack of sufficient labeled training data and the problems involved in the label-
ing process have led to recent attentions towards the investigation of unsupervised and
semi-supervised learning (SSL) methods. Unsupervised learning methods try to find an
interesting (natural) structure in the data using training samples without their correspond-
ing labels, i.e., unlabeled data. Although unsupervised learning in principle is convenient
because human labeling can be fully avoided, it can by far not reach the discriminative
performance of supervised learning algorithms. In contrast, semi-supervised learning
tries to exploit both, a reasonably small amount of labeled data and a large amount of
unlabeled data. It thus tries to combine the benefits of both supervised learning – because
highly discriminative classifiers are delivered – and unsupervised learning – because it
holds the potential to reasonably exploit a massive amount of unlabeled data.

Especially computer vision motivates the research on semi-supervised learning algo-
rithms because the world wide web and the mass production of digital cameras at very
low costs let the number of digital images and videos increase in vertiginous numbers. It
is clear that one wants to exploit this data in order to get better, for instance, categorization
and recognition systems. Since some of the data are labeled and many are unlabeled or
ambiguously labeled, e.g., due to surrounding text, semi-supervised learning algorithms
are the natural choice for exploiting the huge amount of digital images.

Finally, what makes semi-supervised learning also interesting for computer vision is
that humans use the same learning strategy. In other words, there exists a large agreement
among experts that the power of human perception is also a result of a long-winded learn-
ing process where we continuously observe a considerable exorbitant number of data, yet,
most of it unlabeled. Hence, semi-supervised learning is not only useful from a technical
or machine learning perspective it is also biologically plausible.

Off-line versus On-line Learning Most of the previously proposed semi-supervised
learning algorithms are so called off-line methods. This means that they get the entire
training set, both labeled and unlabeled, at the same time. Off-line learning eases op-
timization because the entire data can be exploited at once and usually delivers good
results. Moreover, training and testing of the classifier are clearly separated. As we previ-
ously stated, semi-supervised learning is natural, however, doing it off-line is not natural
at all. In the real world, learning is usually a continuous process. This means that if
we want to reflect biological systems on machines, we also need incremental or on-line
learning methods and it is thus worthwhile to investigate on-line semi-supervised learn-
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ing algorithms. Additionally, in practice there exist many scenarios where the data arrives
sequentially and systems have to be updated without re-training the entire model. This
is, for example, the case in robot navigation or visual object tracking. Finally, in order
to learn from large amounts of data, as argued in the SSL literature, it is essential to ap-
ply algorithms that are computationally efficient and can operate with limited amounts of
memory. On-line learning methods are faster and require less amount of memory com-
pared to off-line algorithms which makes them ideal for semi-supervised learning tasks.

Object Tracking Semi-supervised learning methods are mainly applied in order to in-
crease the accuracy of a classifier by exploiting additional huge amounts of unlabeled
data. However, SSL can also be applied on a task which, at the first glance, does not seem
to be related to learning from both labeled and unlabeled data, i.e., visual object tracking.
In fact, if we consider a tracking task, where an a priori unknown object is marked in the
first frame a powerful tracking approach is to learn a binary classifier with the marked
patch as positive sample and the surrounding patches as negatives, respectively. Then, the
tracking of the object is performed by using this classifier to re-detect the marked object
in the subsequent frames. Hence, such approaches are also called tracking-by-detection
methods. In order to make the classifiers adaptive towards rapid appearance and illumina-
tion changes, typically the classifier updates itself on the re-detected object, according to
hand-designed update rules. As already mentioned, such approaches yield highly accurate
trackers which are also fast because the object has only to be discriminated versus its local
background and the model complexity can be kept very low. Nevertheless, one problem
that all of these methods have in common is that slight errors during the self-updating
process can easily accumulate and finally lead to failure of tracking, i.e., the object is
lost. This is also called drifting. One reason for drifting of these tracking-by-detection
approaches lies in the fact that supervised learners are abused for an in principle unsuper-
vised learning task. In fact, one can easily see that labeled data is only available at the
first frame when the object is marked. In all subsequent frames the task of the tracker is
to act autonomously and without getting any additional labels for the data it is observing.
Hence, the learner over time has to be able to exploit both labeled data and unlabeled data,
which is a natural semi-supervised learning problem. Following this observation, in this
thesis, we will propose novel on-line semi-supervised learning algorithms and we will
show that applying these methods to visual object tracking results in more robust tracking
results.
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1.1 Contribution

The content of this thesis is mainly based on the work presented in [Leistner et al.,
2008, Grabner et al., 2008, Leistner et al., 2009b, Leistner et al., 2009a, Saffari et al.,
2009b] and some further work that at this time is currently under reviewing process for
major conferences and journals, respectively. Overall, this work is the result of strong
collaborations, mostly with Helmut Grabner, Amir Saffari, Peter M. Roth and Prof. Horst
Bischof, and others. The main contributions of this thesis can be summarized as follows:

In general, we introduce novel semi-supervised ensemble learning methods and show
their suitability for computer vision problems. We concentrate on ensemble methods such
as boosting and random forests because they are able to deliver highly accurate results and
are frequently used in computer vision. In particular, as first contribution, we present an
algorithm that combines semi-supervised boosting and visual similarity learning. The mo-
tivation for such a combination stems from the fact that semi-supervised learning methods
often demand a priori given similarity or distance functions in order to guide the learn-
ing algorithm during exploitation of the unlabeled data. However, especially in computer
vision, it is often difficult to decide which similarity measure should be taken. We take
the limited amount of labeled data in order to train a discriminative pair-wise similarity –
pair-wise learning has further the advantage that less labeled data is needed – and use this
similarity for semi-supervised boosting on visual data. Furthermore, we show that in prin-
ciple any classifier can be used as prior and the classifiers can be combined in a principled
way. In the experiments, we show that our approach makes sense for computer vision and
demonstrate several applications, such as training object detectors from a small amount
of labeled data or transferring classifier knowledge between different camera views.

The second main contribution of this thesis studies the development of novel on-line
semi-supervised boosting methods and their application to the task of visual object track-
ing. In more detail, we show how on-line boosting can be extended to semi-supervised
learning and propose a novel algorithm called On-line SemiBoost. Based on this exten-
sion, we formulate tracking as an one-shot semi-supervised learning task and demon-
strate that our semi-supervised boosting algorithms lead to much more stable tracking
results. Additionally, we study the robustness of on-line boosting methods which are
usually highly susceptible to class-label noise. As a further contribution, we present an
on-line boosting algorithm which allows for the flexible incorporation of robust loss func-
tions and extend this algorithm also to semi-supervised learning.

Besides boosting, random forests are currently one of the most frequently applied
ensemble methods in computer vision. Since random forests usually demand a huge
amount of labeled data in order to enroll their full potential, in this thesis, we also propose
an algorithm that leverages random forests for semi-supervised learning. This algorithm
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has several benefits over previously proposed SSL methods: first, it is inherently multi-
class. Second, it is fast and scales well to large amounts of data and, third, it provides an
inherent mechanism to detect during the learning if unlabeled data helps to improve the
classification accuracy or not. We further show how to extend random forests to on-line
learning and, as with boosting, show how to perform on-line SSL with random forests.

Finally, we also study multiple instance learning because it is an increasingly popular
machine learning paradigm and has been recently applied to numerous computer vision
applications, such as, object detection, content-based image retrieval and tracking. We
will show that multiple instance learning is very similar to semi-supervised learning and
present a method that allows for multiple instance learning with random forests.

1.2 Outline

The thesis is organized as follows: First, in Chapter 2 we review the main theoretical
issues about statistical learning basics as well as ensemble methods that are used through-
out this thesis. In the following Chapter 3, we introduce the concept of semi-supervised
learning and give a more detailed overview of the most important approaches and related
work. In Chapter 4, we present a semi-supervised boosting method (i.e., SemiBoost) that
uses learned similarity functions. We illustrate the efficiency of the method on tasks such
as car and face detection. In general, also for the remaining chapters, we will give ex-
perimental results inside a chapter if it is necessary to illustrate the behavior of a method.
Mostly, we will do this for the off-line methods. All on-line methods will be evaluated on
the tracking task in Chapter 9.

In Chapter 5 we introduce our on-line semi-supervised boosting algorithm. In the
chapter, we also study the robustness of on-line boosting towards class label noise and
present an on-line algorithm which is less susceptible to noise. Based on this algorithm,
we will then also introduce a more robust on-line semi-supervised boosting method.

Chapter 6 demonstrates how one can perform semi-supervised learning with another
popular ensemble method, i.e., random forests, and in Chapter 7 we will also present an
on-line version of this approach. Chapter 8 will discuss multiple instance learning (MIL)
as another popular strand of machine learning that is very similar to SSL, and we will
introduce a novel MIL algorithm based on random forests.

In Chapter 9, we first show how object tracking can be formulated as an on-shot semi-
supervised learning task, using the methods proposed in this work, and we will discuss
several issues that arise in this context. In the tracking experiments, we analyze most of
the on-line methods presented in this thesis on benchmark tracking sequences. The thesis
concludes with the final Chapter 10 where we summarize the work and give an outlook to
potential future work.
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Chapter 2

Preliminaries and Notations

T he goal of this thesis is to investigate and develop new semi-supervised learning meth-
ods. This chapter reviews some basic machine learning notations and learning meth-

ods that are frequently used throughout the thesis.

2.1 Machine Learning and Classification

Machine learning is a major sub-field of artificial or computational intelligence and is con-
cerned with the study of algorithms that improve through experience [Mitchell, 1997,Al-
paydin, 2010]. Formally, one deals with a labeled datasetDL = {(x1, y1), . . . , (x|DL|, y|DL|)}
⊆ X × Y where xi ∈ X = Rd and yi ∈ Y . Note that as notations, usually lower case
letters (e.g., x, λ) are used for scalar variables and bold face letters (e.g., x, λ) denote
vectors. Sets are represented by calligraphy letters (e.g., X ). For a binary classification
problem, usually Y = {+1,−1} and the samples are split into two sets X L = X+ ∪ X−
of all samples with a positive class and the set of all samples with negative class, respec-
tively. Then, a classification function or hypothesis in form of H : X → Y is trained
using the labeled samples. Note that we use the letters H,F and G interchangeably to
denote classification functions. Methods that are provided with both data and their cor-
responding labels are also called supervised learning methods. The goal of supervised
learning is to provide a classifier which has low prediction error on future data that has
not been observed during training. In more detail, for a given label y ∈ Y and if the
misclassification error is H(X) 6= y, we can define the generalization error (GE) to be

GE(θ) = E(x,y)∼D[I(H(x) 6= y)], (2.1)

where D is a joint distribution over X ×Y , I(·) is the indicator function and θ is a param-
eter vector. E(x,y)∼D is the expected prediction over an independent test sample. I(·) is

9
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also called 0− 1 loss function. In general, a loss function `(x, y, h(x)) ∈ [0,∞] measures
the empirical quality of the hypothesis h(x) on the example (x, y). Further, H is the set
of all possible hypotheses and `(·) is a function which maps to real-valued predictions.

During learning, the goal is to find hypotheses and values for θ that minimize the
generalization error. However, this is usually a difficult task since D is not known and
one can only minimize GE on the trainingset DL. Furthermore, directly minimizing the
0 − 1 loss is also difficult since it is not convex. So, we use a convex upper bound of the
0− 1 loss which is easier to minimize and the training error becomes

ĜE(θ) =
1

n

n∑
i=1

`(xi, yi; θ). (2.2)

ĜE(θ) is also known as empirical risk and for `(·) one usually takes a convex function
such as e−(xi,yi;θ). Note that the empirical risk is only a surrogate for the real generaliza-
tion. Two additional import terms in machine learning that help to understand the success
and failure of classification methods are bias and variance [Friedman et al., 2001]. In par-
ticular, we can measure the mean-squared-error of the learned classifier H(x) to the true
conditional probability p(y|x) as err

(
H(x), p(y|x)

)
= E[(H(x) − p(y|x))2] [Alpaydin,

2010]. This term we can further split up to

err
(
H(x), p(y|x)

)
= E[(H(x)− E[H(x)])2]︸ ︷︷ ︸

variance

+ (E[H(x)]− p(y|x))2︸ ︷︷ ︸
bias

. (2.3)

The variance is the variation of the prediction of the learned classifiers, i.e., the
squared difference between the predictions on the training samples and its average predic-
tion. The bias measures how much the expected predictions vary from the correct ones.
Reliable learning methods should have both low variance and low bias; however, since
this is difficult to achieve – because low bias often results in higher variance and vice
versa – one has often has to make a so called “bias-variance trade-off”.

Optimizing ĜE(θ) also may contain the risk of overfitting, i.e., the classifier will fit
perfectly to the statistical noise given by the training data but will poorly generalize. A
popular remedy for overfitting is regularization, which penalizes complex solutions for θ.
In particular, in regularization, one extends ĜE(θ) with an additional regularization term
r(θ) so that it becomes

ĜE(θ) =
1

n

n∑
i=1

`(xi, yi; θ) + r(θ). (2.4)

In order to get an unbiased measure of GE we can also split up labeled samples
{(xi, yi)}n+m

J=n+1 from the training set DL and measure the test error on these samples.
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In supervised learning, one can further differentiate between generative and discrim-
inative methods. Generative methods try to capture the class conditional density p(x|y).
For classification one can then apply Bayes theorem [Duda et al., 2001]:

p(y|x) =
p(x|y)p(y)

p(x)
(2.5)

Examples for popular generative models are principal component analysis (PCA), inde-
pendent component analysis (ICA), latent Dirichlet allocation (LDA), Gaussian Mixture
Models (GMM) or Hidden Marcov Models (HMM) ( See [Duda et al., 2001] for de-
tails on these approaches). Discriminative models compute p(y|x) directly and thus are
mainly focused on how well they separate positives from negatives, for a two-class prob-
lem. For the classification task, discriminative methods are mostly preferred because
in practice they have been shown to be more effective. Popular discriminative learning
approaches are, for instance, boosting [Freund and Schapire, 1999] or support vector ma-
chines (SVMs) [Schoelkopf and Smola, 2002].

In contrast to supervised approaches, unsupervised methods do not have labels Y for
the data and aim to find an interesting (natural) structure in X using only unlabeled data
DU = {x1, . . . , x|DU |} ⊆ X . Since there are no labeled samples available, unsupervised
learning can also be considered as estimators for the density p(x) which is likely to have
generated the underlying distribution X . Popular applications of unsupervised methods
are, for instance, clustering or dimensionality reduction [Hinton and Sejnowski, 1999,
Duda et al., 2001].

2.2 Off-line versus On-line Learning

We have seen that the goal of machine learning is to train predictor functions on pro-
vided training data. We now can further discriminate among different learning methods
depending on how the data and in particular in which order they are provided to the learn-
ing algorithm. Usual learning methods are called batch or off-line learning methods. In
these approaches, all the training data is given in advance, i.e., the learning algorithm can
observe all samples simultaneously. In order to learn a model, these methods repeatedly
process the entire training set until a certain stopping criterion is met; for instance, the
training error has fallen under a certain threshold or the maximum number of iterations
has been reached.

In contrast to off-line methods, there exist incremental or on-line approaches where
the data is usually not provided at once but arrives sequentially. Both incremental and
on-line methods process only one sample at a time and then update the model. The main
difference between the two is that in on-line learning each sample is discarded after an
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update, in incremental learning not. On-line learning is always incremental, whereas,
incremental learning can be done either on-line or off-line1. Formally, for any given
sequence of training samples (x1, y1), . . . , (xT , yT ) a sequence of hypotheses h1, . . . , hT
is generated, such that ht only depends on ht−1 and the current sample (xt, yt). A training
sample can be kept or can be discarded after having updated the model but usually no
re-processing of previous samples is necessary. In contrast to off-line learning, training
and testing the classifier can take place at any time and are not fully separated.

On-line learning takes place in consecutive rounds and can also be explained in form
of a “question-answer” game between the learner and an expert or adversary environment,
where a “question-answer pair” corresponds to a training sample. Suppose you have a
learner that predicts the shortest daily path from your home to your working place if you
travel by car. The classifier should be updated on a daily basis, should be adaptive, e.g.,
to temporal construction sites, and you want predictions to be available all the time. The
decision of this problem depends on several inputs, such as distance, allowed travel speed
and traffic-jam probability, etc.. These inputs are selected by the expert and provided to
the learner. To answer the question for the shortest path, for each training sample xt the
learner builds a hypothesis which maps the set of questions to a prediction ŷt. Then, the
expert reveals the true label yt. The quality of the learner’s answer is assessed by a loss
function that measures the discrepancy between the predicted answer and the correct one.
The goal of the learner is to minimize the cumulative loss suffered along this run. To
achieve this goal, the learner updates the hypothesis after each round, i.e., after each daily
trip to work, so as to be more accurate in later rounds. Hence, by deducing information
from previously observed samples, the learning algorithm tries to improve its predictions
from day to day. The example again illustrates another substantial characteristic of on-line
models: an applicable classifier is already present after having observed the first training
sample, and training and evaluation phases are less separated than in off-line methods.

One important notion in on-line learning is the regret factor. Given any fixed hypoth-
esis h ∈ H, the regret of an on-line learning algorithm is defined as

R(h, T ) =
T∑
t=1

`(ht, (xt, yt))−
T∑
t=1

`(h, (xt, yt)), (2.6)

where T is the number of hypotheses. As we can see, the regret is the difference of
the cumulative loss of the on-line learner and the cumulative loss of the optimal fixed
hypothesis h. Due to its higher practical relevance, on-line learners are often analyzed in
terms of their regret. Note that throughout this thesis we use the term batch-learning and
off-line as well as incremental- and on-line learning interchangeably. For further details

1 Definition by Warren S. Sarle, “ftp://ftp.sas.com/pub/neural/FAQ2”, (22.4.2010)
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and general discussions about on-line learning methods we refer the reader to [Blum,
1996, Shalev-Shwartz, 2007] and the references therein.

2.3 Ensemble Methods

There exist a reasonable amount of different machine learning methods. Most of them
perform more or less different depending on the tasks and how their hyperparameters
are tuned for a given problem. This is also theoretically underpinned by the No Free
Lunch Theorem [Wolpert, 1996], which states that there does not exist a single learning
algorithm that in any domain always induces the most accurate learner. Hence, it often
makes sense to combine multiple learners to an ensemble, which performs better than
each individual method alone. In particular, ensemble methods are learning algorithms
that are a combination of several learning methods, i.e., base learners [Dietterich, 1998],
and are thus also called meta learning approaches because they work on top of other
learning algorithms. The combination of the different learners can be by weighted or
unweighted voting. The underlying idea of ensemble methods is to find a combination of
the base learners that overall performs better than the individual parts. Typical conditions
on the base learners are that they are both accurate and diverse. In the terminology of
ensemble methods a classifier is accurate if it has a generalization error lower one half;
i.e., it performs better than random guessing. The classifier can be considered as diverse if
they make different errors on new data points x. Consider the case of building an ensemble
of n classifiersH = {h1, h2, . . . , hn}with n ≥ 3. If the error rates of the n hypotheses are
all smaller 1

2
and if the errors are independent, then the probability that the majority vote

will be wrong can be illustrated by the area under a binomial distribution where more
than N

2
base classifiers are wrong. According to this binomial distribution, [Dietterich,

1998] shows that for an ensemble of, e.g., 21 classifiers with each having an error of 1
3

the
probability that the ensemble is wrong is 0.026, which illustrates the power of combining
several classifiers to an ensemble.

One of the simplest forms of ensembles are based on Bayesian Voting. If we have
several hypotheses h ∈ H, Bayesian Voting simply combines all hypotheses by building
their weighted sum in form of

P (f(x) = y|S, x)
∑
h∈H

h(x)P (h|S), (2.7)

where S is a training sample. As can be seen, the individual hypotheses determine their
weights by themselves with their posterior probability P (y|x).

Besides Bayesian Voting, Stacking is another simple and popular ensemble method [Wolpert,
1992]. There, the underlying idea is to split the training data into a so called held-in and



14 Chapter 2. Preliminaries and Notations

held-out dataset, respectively. In a cross-correlation manner, the individual learning meth-
ods are trained on the held-in set and their weighted combination is determined depending
on their performance on the held-out set.

Another popular ensemble method is called Bagging or Bootstrap aggregating [Breiman,
1996a]. In Bagging, an ensemble is built by letting several classifiers sub-sample from
the original training set with replacement. As a result, each classifier on average sees
1 − 1

e
of the data, which corresponds to ≈ 63%. Thereby, for each learner slightly dif-

ferent “views” on the learning problem are generated which both increases the diversity
among the learners and eases the learning tasks for the base classifiers because they can
concentrate on fewer samples. The final classifier is simply built by the non-weighted
combination of the base classifiers in form of

F (x) =
T∑
t=1

ft(x). (2.8)

As Breiman showed, Bagging is a very successful method to reduce the variance of
learning functions. In the following, we will review a method that was developed out of
bagging and is able to minimize both bias and variance.

2.3.1 Boosting

Boosting [Freund and Schapire, 1999] is a general method for improving the accuracy of
any given learning algorithm. It is a typical ensemble method, i.e., the algorithm combines
several weak classifiers to a strong one in the form

F (x) =
T∑
t=1

αtft(x), (2.9)

where αt determines the influence of the tth weak learner. In contrast to previous ensem-
ble methods, e.g., bagging, boosting forms the ensemble in an iterative process, i.e., the
committee evolves over time, where in each iteration t one weak classifier is added to
the ensemble until a certain stopping criterion is met. Boosting has shown to converge
quadratically if the error of each weak learner is less than 50%; i.e., the weak learner is at
least better than random guessing.

Although [Kearns and Valiant, 1994] were the first to mention that several weak learn-
ers can be “boosted” to a strong one, it was the introduction of AdaBoost by Freund and
Schapire [Freund and Schapire, 1997] that finally led to the popular boosting variant as
we know it today and helped it to become one of the most powerful learning algorithms.
AdaBoost, during learning, keeps a weight distribution Dt(i) over the training samples.
According to this distribution, in each iteration boosting selects the best weak learner
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and adds it to the model. After each iteration t the samples are re-weighted according
to a given loss function, e.g., e−yF (x) in case of AdaBoost, which forces the algorithm to
concentrate on hard samples and leave out easy samples, respectively. We illustrate the
method in Algorithm 16. See also [Freund and Schapire, 1999] for a good introduction.

Algorithm 2.1 AdaBoost [Freund and Schapire, 1997]

Require: Training set S = {(x1, y1), . . . , (xm, ym)} with yi ∈ Y = {−1,+1}
1: Set D1(i) = 1

m

Require: max iterations T
2: for t = 1, 2, . . . , T do
3: // Normalize weights wi so that Dt is a probability distribution
4: wt,i =

wt,i∑m
j=1
wt,j

5: Train weak learners using Dt

6: Get weak hypothesis fWeakt : X → {−1,+1} with error
7: εt = Probi∼Di [fWeakt(xi) 6= yi]

8: if εt = 0orεt >
1
2

then
9: break

10: end if
11: Set αt = 1

2
ln 1−εt

εt

12: // Update weight distribution
13:

Dt+1(i) =
Dt(i)

Zt
×
{
e−αt iffWeakt(xi) = yi
eαt fWeakt(xi) 6= yi

=
Dt(i)e

−αtfWeakt(xi)

Zt
,

14: where Zt is a normalization factor
15: end for
16: Output the final hypothesis: fStrong = sign

(∑T
t=1 αt · fWeakt(x)

)
Friedman et al. [Friedman et al., 2000] showed that boosting approximates adaptive

logistic regression, which explains the power of the method. They also showed in their
“statistical view of boosting” that the output of a boosted classifier F (x) can be trans-
formed via a monotone logistic transformation into a probability in form of

P (y = 1|x) =
1

1 + e−F (x)
. (2.10)

As was already mentioned, boosting is very popular, and besides the fact that it is a
very powerful learning algorithm its popularity also stems from the fact that it is rather
easy to implement. Another important property of the algorithm that led to its over-
whelming success is the fact that virtually no parameter tuning is necessary. In fact, the
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only parameter that has to be set is the maximum number of iterations T . One may argue
that the setting of this parameter is crucial because the algorithm might tend to overfit
if T is set to a large number. However, as several researchers have shown [Rudin et al.,
1999], boosting does hardly overfit, even if T is very large. Furthermore, boosting still
decreases the generalization error, even long after the training error has reached zero.
Theoretically, [Freund and Schapire, 1999] showed that this can be explained by the fact
that boosting still increases the margin over the training samples after the training set is
perfectly separated which further decreases the generalization error.

2.4 On-line Boosting

The AdaBoost algorithm as discussed above is an off-line learning method, i.e., it assumes
having access to the entire training data space at once. However, there exist also a popular
extension of boosting towards on-line learning, which is used in many application and is
shortly discussed in this section.

As we have seen, boosting additively combines several weak classifiers ft(x) to a
strong one F (x). During learning, boosting keeps a weight distribution over the training
samples in order to concentrate on hard samples and to reduce the effort on easy-to-learn
samples, respectively. Since in the on-line case the training data arrives sequentially and
samples are usually not stored1, the difficult task is to estimate the weight distribution
over the training samples. Oza and Russel [Oza and Russell, 2001,Oza, 2001] introduced
an on-line version of AdaBoost. The algorithm starts with an ensemble of T weak clas-
sifiers. [Oza and Russell, 2001] then proposed to estimate the weight distribution of the
sequentially arriving training samples using a Poisson distribution and compute the im-
portance λi of the ith sample by propagating it through the set of weak classifiers. The
importance plays the role of the weight distribution p(xi) in the off-line case. In fact, λ is
increased proportional to the error e of the weak classifier if the sample is still misclassi-
fied and decreased, otherwise. The error of the weak classifier ê = λw

λw+λc
is estimated by

the sum of correctly λc and incorrectly λw importances seen so far. Oza has proven that
the approach converges to its off-line counterpart in case of using Naı̈ve Bayes classifiers.
Note that for arbitrary weak classifiers a proof of convergence is still an open research
problem. However, the work of Oza suggests that if the used on-line weak learners are
converging to their off-line counterparts also the entire on-line boosting algorithm will
converge.

1 Note that there in principle does not exist a law that forbids the storage of training samples for the on-line
setting. In this work, however, we refer to the term “on-line” to learning classifiers without the necessity of
storing samples.
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Figure 2.1: On-line boosting for feature selection [Grabner and Bischof, 2006] .

2.4.1 On-line Boosting for Feature Selection

In off-line learning, boosting is often used for feature selection [Tieu and Viola, 2000],
i.e., the tth weak corresponds to feature ft drawn from a feature pool F which has the
lowest weighted training error. This has been shown to be particularly useful in computer
vision applications, where features can be simple Haar-like filters [Viola and Jones, 2001,
Papageorgiou et al., 1998] or keypoints. Since feature selection is also demanded in
the on-line setting, Grabner and Bischof [Grabner and Bischof, 2006] introduced on-line
boosting for feature selection.

In their method, the main idea is to introduce selectors S = hsel(x), where each
selector holds M weak classifiers {h1(x), . . . , hM(x)}. Boosting is then performed not
directly on the weak classifiers but on the selectors. When training a selector, its M
weak classifiers are trained and the one with the lowest estimated error is selected, i.e.,
hsel(x) = arg minm e (hm(x)).

The workflow of the AdaBoost on-line training framework used for feature selection is
as follows: A fixed number ofN selectors hsel1 , .., hselN are initialized with random features.
The selectors are updated, as soon as a new training sample 〈x, y〉 is available, and the
weak classifier with the smallest estimated error is selected. For the updating process of
the weak classifier any on-line learning algorithm is applicable. Finally, the weight αn of
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the n-th selector hseln is updated and the importance λn is passed to the next selector hseln+1.
Contrary to the off-line version, the on-line classifier is available at any time of the training
process as a linear combination of the N selectors. While the method’s schematics are
illustrated in Figure 2.1 the detailed steps are depicted in Algorithm 2.2.
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Algorithm 2.2 On-line Boosting for feature selection

Require: training (labeled or unlabeled) example 〈x, y〉, y ∈ {−1,+1,#}
Require: strong classifier F (initialized randomly)
Require: weights λcorrn,m , λwrongn,m (initialized with 1)

1: // for all selectors hseln
2: for n = 1, 2, . . . , N do
3: // update the selector hseln
4: for m = 1, 2, . . . ,M do
5: // update each weak classifier
6: fn,m = update(hn,m, 〈x, y〉, λ)

7: // estimate errors
8: if fweakn,m (x) = y then
9: λcorrn,m = λcorrn,m + λn

10: else
11: λwrongn,m = λwrongn,m + λn
12: end if
13: en,m =

λwrongn,m

λcorrectn,m +λwrongn,m

14: end for
15: // choose weak classifier with the lowest error
16: m+ = arg minm(en,m), en = en,m+ , f seln = fn,m+

17: if en = 0 or en > 1
2

then
18: exit
19: end if
20: // calculate voting weight
21: αn = 1

2
· ln
(

1−en
en

)
22: // update importance weight
23: if f seln (x) = y then
24: λ = λ · 1

2·(1−en)

25: else
26: λ = λ · 1

2·en
27: end if
28: // replace worst weak classifier with a new one
29: m− = arg maxm(en,m)

30: λcorrn,m− = 1; λwrongn,m− = 1;

31: get new fweakn,m−

32: end for
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2.4.2 Random Forests

As we have seen above, boosting is a further development of bagging and usually out-
performs bagging on many problems. In turn, Random Forests (RF) are closer to the
original bagging idea. Random Forests were proposed by Breiman [Breiman, 2001] and
are bagged ensembles of N de-correlated decision trees . Trees are perfect candidates for
bagging because they are usually high-variance as well as low-bias learners.

The main idea of random forests is to reduce the correlation among the trees in order to
improve the variance reduction of bagging by growing trees that perform random selection
on the input variables. We thus talk about randomized trees. We denote the nth tree of
the ensemble as fn(x) = f(x, θn) : X → Y , where θn is a random vector capturing
the various stochastic elements of the tree, such as the randomly sub-sampled training
set or selected split tests at its decision nodes. We also denote the entire forest as F =

{f1, · · · , fN}, whereN is the number of trees in the forest. During training of randomized
trees each decision node of the tree creates a set of random tests m ≤ p, where p is the
number of all input variables. m is usually set to

√
p. Each node selects the best split

according to some quality measurement which scores the potential information gain

∆H = − |Il|
|Il|+ |Ir|

H(Il)−
|Ir|

|Il|+ |Ir|
H(Ir), (2.11)

where Il and Ir are the left and right subsets of the training data, respectively. The node
score H(I) is usually measured using the entropy H(I) = −

∑K
i=1 p

j
i log(pji ) or the Gini

H(I) = −
∑K

i=1 p
j
i (1 − pji ) , where pji is the label density of class i in node j. The

recursive training continues until a maximum depth is reached or no further information
gain is possible. The trees are usually grown to their full size without pruning. We depict
the training process in Algorithm 2.3.

Each tree in the forest is built and tested independently from other trees, hence the
overall training and testing procedures can be performed in parallel. During the training,
each tree receives a new bootstrapped training set generated from the original training
set by sub-sampling with replacement. We refer to those samples which are not included
during the training of a tree as the Out-Of-Bag (OOB) samples of that tree. These samples
can be used to compute the so called Out-Of-Bag-Error (OOBE) of the tree as well as
for the ensemble. According to Breiman [Breiman, 1996b], the OOBE is an unbiased
estimate of the generalization error and one can thus use it in order to get better estimates
of model parameters. This is very similar to performing n-fold cross-validation; however,
in random forests it is part of the learning strategy and is thus inherently provided.

Random forests are multi-class classifiers and we can write the estimated probability
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Algorithm 2.3 Random Forest [Breiman, 2001]

Require: Training set S = {(x1, y1), . . . , (xm, ym)} with yi ∈ Y = {−1,+1}
Require: The size of the forest N
Require: Maximum depth D of the decision trees

1: for n = 1, 2, . . . , N do
2: Bootsrap with replacement training samples {(x1, y1), . . . , (xm, ym)} from X ×Y
3: Train a random-tree via recursively repeating the following steps:
4: while depth d < D and there exist non-pure nodes do

i Randomly select m variables from the p input variables

ii For each selected variable calculate the potential info gain and pick the best

iii Split the node and add two child nodes

5: end while
6: end for
7: Output the final forest F

for predicting class k for a sample as

p(k|x) =
1

N

N∑
n=1

pn(k|x), (2.12)

where pn(k|x) is the estimated density of class labels of the leaf of the nth tree. The final
multi-class decision function of the forest is defined as

C(x) = arg max
k∈Y

p(k|x). (2.13)

Breiman [Breiman, 2001] defined the classification margin of a labeled sample (x, y)

as
ml(x, y) = p(y|x)−max

k∈Y
k 6=y

p(k|x). (2.14)

It is obvious that for a correct classification ml(x, y) > 0 should hold. Therefore, the
generalization error is given by

GE = E(X,Y )(ml(x, y) < 0), (2.15)

where the expectation is measured over the entire distribution of (x, y). [Breiman, 2001]
showed that the generalization error of random forests is upper bounded by

GE ≤ ρ̄
1− s2

s2
, (2.16)
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where ρ̄ is the mean correlation between pairs of trees in the forest. The correlation is
measured in terms of the similarities of the predictions. s is the strength of the ensemble
(i.e., the expected value of the margin over the entire distribution). As can be seen, the
size of the correlation of pairs in bagged trees limits the benefits of averaging.

In randomized trees, usually only the node tests are selected randomly; however, their
cut-points or thresholds are well tuned. Geurts et al. [Geurts et al., 2006] showed that
even when selecting the thresholds randomly, thus yielding extremely randomized trees,
a random forest is able to achieve highly accurate results. Moreover, since the random
selection of thresholds further decreases the correlation of the trees Guerts et al. suggested
to leave out the bagging part and to provide each tree with the entire training set.

Meanwhile, random forests have become increasingly popular and are frequently ap-
plied in practice. Their popularity is due to several reasons: RFs have demonstrated
to be better or at least comparable to other state-of-the-art methods in both classifica-
tion [Breiman, 2001] and clustering [Moosmann et al., 2006]. Breiman showed that ran-
dom forests can be also used for learning distance functions and in order to perform
regression tasks. Caruana et al. [Caruana et al., 2008] empirically demonstrated that RFs
outperform most state-of-the-art learners on high dimensional data problems. Analyzing
random forests theoretically in order to explain their power is less straight-forward than,
for instance, analyzing boosting or SVMs because they are not based on similar clean
mathematical formulations. [Breiman, 2001] tries to give some theoretical justification in
terms of the rule of large numbers but no detailed proofs are delivered. More recently,
Lin and Jeon [Lin and Jeon, 2006] gave a plausible explanation by showing that random
forests can be viewed as an approximated adaptively weighted k-nearest neighbor method.
For more detailed discussions and proofs we refer the reader to [Breiman, 2001, Lin and
Jeon, 2006].

Especially, the speed in both training and evaluation of randomized trees is one of their
main appealing properties. Additionally, RFs can easily be parallelized, which makes
them interesting for multi-core and GPU implementations [Sharp, 2008]. RFs are inher-
ently multi-class, therefore it is not necessary to build several binary classifiers for solving
multi-class problems. Finally, compared to boosting and other ensemble methods, RFs
are more robust against label noise [Breiman, 2001].

These advantages of random forests have also led to increased interest in the computer
vision domain. For instance, recently Gall and Lempinsky [Gall and Lempinsky, 2009]
presented an efficient object detection framework based on random forests. Shotton et
al. [Shotton et al., 2008] presented a real-time algorithm for semantic segmentation based
on randomized trees. Bosch and Zisserman used RFs for object categorization [Bosch
et al., 2007]. Randomized trees have also successfully been applied to visual tracking
using keypoints [Lepetit and Fua, 2006].
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2.4.2.1 Random Naı̈ve Bayes and Ferns

The success of random forests has led to generalizing the idea of random input variable
selection to other classification methods that have similar characteristics as decision trees,
i.e., fast and simple computation with low bias and high variance. For example, such
classifiers can be naı̈ve Bayes’ classifiers where the Bayes’ conditional model given in
Equation (2.5) is approximated assuming the input feature variables as independent. In
more detail, we can write Equation (2.5) in form of

p(y|f1, . . . , fN) =
p(y)p(f1, . . . , fN |y)

p(f1, . . . , fN)
, (2.17)

where fi are the conditionally dependent input feature variables. Since this feature de-
pendency is a problem in practice, e.g., due to a large N , the naı̈ve Bayes’ assumption
is simply to consider all of the features to be conditionally independent. Hence, we can
write

p(y|f1, . . . , fn) = p(y)
M∏
m=1

p(fi|y), (2.18)

where we the denominator of Equation (2.17) is assumed to be constant and can thus be
skipped. The idea of random naı̈ve Bayes’ [Prinzie and den Poel, 2007] is now to form
a committee of bagged naı̈ve Bayes’ classifiers, where the features for each classifier
comprise a randomly selected subset of the entire feature input space. Such a classifier
can finally be written as

p(y|x) =
T∑
t=1

M∏
m=1

pt(y|f ti ). (2.19)

[Prinzie and den Poel, 2007] showed that this approach is able to match the performance
of randomized trees on some data sets; however, being even faster.

Later Ozuysal et al. [Özuysal et al., 2007] highlighted that assuming all features to be
independent as in naı̈ve Bayes’ and totally ignoring the correlations among the features,
although fast, can cause low accuracy results, especially in computer vision applications.
Therefore, they introduced an approach called randomized ferns that is similar to semi-
naı̈ve Bayes approaches [Zheng and Webb, 2005] and is thus somewhere between naı̈ve
Bayes and the original Bayes’ theorem. In detail, random ferns consist of M groups of
size S = N

M
, where for each fern the joint probability of its features is calculated; however,

the entire ensemble is combined using the independence assumption among the ferns as

p(f1, . . . , fn|y) =
M∏
k=1

p(Fk|y), (2.20)
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where Fk = {fk,1, fk,S}, k = 1, . . . ,M represents the kth fern. The method has shown to
perform comparable to random forests and to yield excellent results on the task of visual
tracking using keypoints.

2.5 Summary

In this chapter, we have introduced the basic notations and formulations which are used
throughout this thesis. We have further reviewed off-line and on-line learning and dis-
cussed the differences of the two learning paradigms. As the main focus of this work lies
on ensemble methods, we have given a detailed introduction to this family of learning
algorithms. In particular, we discussed boosting and random forests as these two methods
are the baseline approaches for the rest of the thesis. In the following chapter, we will
formally introduce semi-supervised learning and discuss related work within discipline.



Chapter 3

Overview of Semi-Supervised Learning

A s we have seen in the previous chapter, there in principle exist two basic paradigms on
how to learn from training data. In the first, supervised learning, training samples are

provided together with their corresponding class labels and in the second, unsupervised
learning, training samples are given without their labels.

Semi-supervised learning (See also [Chapelle et al., 2006, Zhu and Goldberg, 2009]
and for a good overview.) is somewhere between supervised and unsupervised methods,
thus learns a classifier from both labeledDL and unlabeledDU data. Usually, one assumes
that there are much more unlabeled samples available than labeled, i.e., |DU | � |DL|.
Besides classification, semi-supervised learning (SSL) is also used for clustering and re-
gression. In this work, however, we mainly concentrate on classification tasks.

In general, SSL methods can be split up in either transductive or inductive approaches.
Transductive learning aims to train a good classifier for the unlabeled training data in form
H : X l+u → Y l+u, which means that the unlabeled data exploited during training are also
the test data. Note that this does not necessarily mean that the error for samples that were
not observed during training is also low.

Contrary, in inductive learning given both labeled {(xi, y)}li=1 and unlabeled training
data {(xi)}ui=1 the goal is to train a classifier H : X → Y with low generalization error.
However, as we will see later in the literature the terms inductive and transductive are
frequently mixed up and there exist methods, e.g., transductive support vector machines
(TSVM) [Vapnik, 1998, Joachims, 1999], that are in their nature inductive learners. Ad-
ditionally, we will also see that there are ways to convert transductive approaches into
inductive ones.

25
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3.1 Relations to Cognitive Science and Biology

It is clear that humans observe the environment mostly without getting any labels for
what they see, hear or smell. Occasionally, of course, they do get labels, especially during
childhood. Hence, there seems to be a connection on how humans tend to learn and the
machine learning perspective of semi-supervised learning. The investigation on how both
humans and machines learn may lead to intertwined answers. Additionally, the question
arises if an improved understanding of how humans learn from both labeled and unlabeled
data may also lead to improved machine learning methods.

Although intuitively, parallelisms of the domains must be given, it is a hard task to
conduct proofs. Yet, some recent studies give some first insights to how humans are
able to exploit huge amounts of unlabeled data. For instance, co-training, being one of
the most frequent used SSL algorithms, has similarities to learning of humans. It has
been shown [Bahrick et al., 2002] that the redundancy that co-training exploits is also
exploited by humans; i.e., infants exploit the redundancy of their sensors in order to guide
the development of selective attention, perception and cognition.

Another recent study [Zaki and Nosofsky, 2007] showed that humans tend to change a
model learned from labeled data once they see the unlabeled test data. In particular, Zaki
et al. showed that humans change their classification boundaries according to unlabeled
data, something which is a typical SSL assumption. The same phenomenon was also
observed by Zhu et al. [Zhu et al., 2007]. For more complicated tasks, however, it was
also shown that unlabeled data does not always help humans in order to improve their
performance on a given task [Vandist et al., 2009].

Another interesting arising research domain also inspired by the human learning na-
ture is curriculum learning; i.e., providing data in a well defined order so that it is easier
to assimilate. Curriculum learning builds on the fact that humans get easy data provided
first and then successively go forward to more complicated tasks. Recent work [Bengio
et al., 2009] has shown that such strategies can also improve learning algorithms and that
also semi-supervised learning methods might benefit from such a strategy, which overall
suggests that curriculum learning is a promising research direction for future machine
learning methods.

3.2 Why does SSL work?

In order to understand why semi-supervised learning works, let us start with a simple
example: Consider, a program which has to classify email messages and news, depending
on their topic, belonging to either football or ice hockey. Due to the high overlap in
related terms, for instance, “players”, “penalty”, “referee”, etc., it can be very hard for an
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unsupervised algorithm to find the right partitions between the two terms. For example,
an unsupervised method, e.g., a clustering algorithm, could find many different ways to
partition the data. For instance, it can find clusters for “world cup” and “penalty”, etc..
Contrary, adding a supervised term to the learning will ease findings of discriminative
features between the football and ice hockey class, for instance, “stick”, “ball”, “Messi”,
“Gretzky”, etc.. Clearly, these discriminative features will also allow for better exploiting
the unlabeled samples. Hence, an intuitive explanation suggests that by learning from the
labeled data, the algorithm gets a better guideline on what it should focus while exploiting
the unlabeled data.

In principle, in SSL one wants to improve a classifier H : X → Y via incorporating
large amounts of unlabeled data compared to having only a limited amount of labeled
samples. However, since there is no direct link between the distribution P (x) and the tar-
get labels Y most approaches assume an underlying structure that correlates the unlabeled
data with some class label and, hence, makes them informative. In order to make classifier
learning benefit from additional unlabeled data we thus have to impose certain assump-
tions about how P (x) influences target labels. For instance, one of the most frequently
used assumptions is that the real decision boundary lies in regions of low density and one
can thus exploit additional unlabeled data in order to find these regions. We illustrate this
so called large margin assumption in Figure 3.1 using a toy example.
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Figure 3.1: Typical SSL assumption: Unlabeled data (grey) helps to change the decision
boundary so that it falls into areas of low density (right).

From a loss function perspective, many approaches use these assumptions about P (x)

in order to regularize the supervised loss function in the form of:∑
(x,y)∈Xl

`(y, h(x)) + λ
∑
x∈Xu

`u(h(x)), (3.1)

where h(·) is a binary classifier, and `u(·) encodes the regularizer based on the unla-
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beled samples. The regularization paradigm can be further subdivided into two main
approaches:

Cluster and Manifold Assumption Some algorithms try to infer the cluster or mani-
fold structure of the feature space with unlabeled samples and use it as an additional cue
for the supervised learning process. Note that cluster and manifold approaches are in
principle very similar and often differ only by their used metrics. For example in clus-
ter kernels [Chapelle et al., 2003], the cluster assumption states that the target function
is locally smooth over subsets of the features space delineated by some property of the
marginal density. Approaches based on the manifold assumption assume that the target
function lies on a low-dimensional manifold. Label Propagation [Zhu and Ghahramani,
2002] or Laplacian SVMs [Belkin et al., 2006]. The latter two are graph-based methods
where `u has the form of

`u(h(x)) =
∑
x′∈Xu
x′ 6=x

s(x,x′)‖h(x)− h(x′)‖2, (3.2)

where s(x,x′) is a similarity function. Using this regularization term, one can enforce the
classifier to predict similar labels if the samples are similar. While graph-based methods
are quite powerful, the pair-wise terms increase their computational complexity.

Another interesting approach, termed expectation regularization (ER), was proposed
by Mann et al. [Mann and Mccallum, 2007] and developed further for semi-supervised
boosting by Saffari et al. [Saffari et al., 2008, Saffari et al., 2009a], which improves both
computational efficiency and robustness compared to previous methods. ER is a method
for exponential-family parametric models where the basic idea is to augment the label-
likelihood objective function with a term that encourages the model predictions on unla-
beled data to match prior expectations (e.g., label priors).

Large Margin Approaches Another class of methods such as Transductive Support
Vector Machines (TSVM) [Joachims, 1999, Sindhwani et al., 2006], tries to maximize
the margin of the unlabeled samples by avoiding dense regions of the feature space for
the decision boundary. For example, variants of Transductive Support Vector Machines
maximize the margin for the unlabeled samples by

`u(h(x)) = max(0, 1− |h(x)|). (3.3)

In general, there is no strict separation between the different SSL assumptions and
often they overlap and are used simultaneously. For instance, in the literature the cluster
and manifold assumption are sometimes treated as separate ideas and sometimes as being
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the same. The same holds for the large margin assumption along with the cluster assump-
tion. In later sections we will take a closer look on these assumptions and the derived
approaches.

When does SSL not work? As has been discussed above, unlabeled data can only help
if there exists a link between the marginal distribution P (x) and the target function to
be learned and for learning algorithms that choose the right assumptions on how P (x) is
connected with the conditional distribution P (y|x). In fact, if there does not exist such
a link or the wrong assumptions are applied, semi-supervised learning can even lead to
worse results. There have been several works that theoretically underpinned this issue,
e.g., [Balcan and Blum, 2005,Kääriäinen, 2005,Rigollet, 2007,Lafferty and Wasserman,
2008, Ben-David et al., 2008].

Recently, Singh et al. [Singh et al., 2009] presented a finite sample analysis method
in order to characterize the value of unlabeled data. In more detail, they showed that
semi-supervised learning can improve the performance of a supervised learning task if
the complexity of the distribution under consideration is too high to be learned using n
labeled data points, but is small enough to be learned using m� n unlabeled data points.
However, it is still an open question if SSL can also improve the accuracy if n is large and,
additionally, there is still no guarantee that exploiting unlabeled data helps to improve the
classification performance. For more theoretical details about when SSL can fail and
when not, we refer the reader to the cited references of this paragraph. In the following,
we will look more into detail of some of the most popular SSL approaches.

3.3 Self-Training

Self-training is the most naı̈ve approach to semi-supervised learning. In principle, these
methods are wrapper methods, i.e., they allow supervised learning methods to be ap-
plied to a semi-supervised learning task. In self-training, first a supervised classifier
H is learned using only the labeled training data DL = {(xi, yi)}li=1, where l is short
for |L|, then this classifier is used to predict the labels for the unlabeled data DU =

{(xj)}l+uj=l+1, where u is short for |U |. The classifier is re-trained using DL ∪ DU with
DU = {(xj, y∗j )}l+uj=l+1, where y∗j are self-predicted labels. For the re-training step, either
a most confident sub-set or the entire unlabeled data can be used.

Self-training may work well if its underlying assumption, i.e., at least the high con-
fidence predictions are correct, tend to be true. For easy separable data, this is often the
case. However, if H makes many errors on predicting the labels, these errors may easily
be accumulated over the iterations and lead to failure of the method. Even if only few la-
bels are predicted wrongly, self-training can fail if supervised learners are applied that are
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highly susceptible to class-label noise, such as boosting methods (See also section 5.2).

3.4 Generative Methods

In principle, by looking only at unlabeled data, what we can get is an estimate for the
marginal data distribution P (x). If we know how the instances from each class are dis-
tributed, we can decompose the mixture into individual classes and apply such mixture
models to semi-supervised learning.

Generative models perform classification by finding good estimates for p(x|y) and
p(y). The class conditional p(x|y) can be estimated using some model parameters, e.g.,
the mean µ and covariance matrix σ of a Gaussian distribution. p(y) has to be estimated
for K classes. All parameters in p(x|y) and p(y) can be summarized in one vector θ.
Given the training data D, during training generative models try to find good estimates
for θ using the maximum likelihood estimate (MLE)

θ̂ = argmax
θ

p(D|θ) = argmax
θ

log p(D|θ) (3.4)

Note that the log likelyhood log p(D|θ) is often preferred to estimating the likelihood
directly because it is easier to handle. When we rewrite the log likelihood as follows

log p(D|θ) = log
l∏

i=1

p(xi, yi|θ) =
l∑

i=1

p(yi|θ)p(xi|yi, θ), (3.5)

the MLE can be easily found using constrained optimization.
For the semi-supervised learning problem, where D = DL ∪ DU , the log likelihood

function changes to

log p(D|θ) =log
( l∏
i=1

p(xi, yi|θ)
l+u∏
i=l+1

p(xi|θ)
)

=
l∑

i=1

log p(yi|θ)p(xi|yi, θ) +
l+u∑
i=l+1

log p(xi|θ). (3.6)

The task of a semi-supervised algorithm is now to find the MLE of Equation 3.6 which
needs to fit both the labeled and the unlabeled instances. Note that since the labels for the
unlabeled samples are not given, they become additional optimization variables, which
makes the overall optimization problem non-convex and thus difficult.
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Expectation Maximization In generative SSL methods, one of the most frequent op-
timization methods used is the expectation maximization (EM) algorithm. If the training
data given isD = DL∪DU , then the missing (hidden) variables areH = {yl+1, . . . , yl+u}.
The EM algorithm is an iterative method to find the model parameters θ that locally max-
imize p((D)|θ). EM in each iteration consists of two steps, an expectation step (E-step)
and a maximization step (M-step). It keeps a distribution qt(H) over the hidden variables.
In practice, EM was used for many SSL problems, e.g., text classification [Nigam et al.,
2006], etc.. However, since it is a local optimizer, it can get stuck in local minima. We
depict the EM method in detail in Algorithm 3.1.

Algorithm 3.1 Expectation Maximization
Require: Labeled data Xl and unlabeled data Xu
Require: Initial parameter θ0

repeat
E-step: compute qt(H) = p(D|θ, θt)
M-step: find θt+1 that maximizes

∑
H qt(H) log p(D,H|θt+1)

t = t+ 1

until p(D|θt) converges
Output the final parameters θ.

3.5 Co-Training and Multi-View Learning

Co-training 1 [Blum and Mitchell, 1998] which exploits the redundancy of unlabeled
input data is another popular SSL method. In co-training, two initial classifiers h1, h2

are trained on some labeled data DL using different redundant “views”. Different views
can be, for instance, different types of uncorrelated features. Then, one classifier updates
the other one on samples of the unlabeled data set DU where it is most confident. Co-
training is a wrapper method, which means it does not matter which learning algorithms
are applied as long as they are able to deliver confidence-rated predictions. We depict the
algorithmic steps in Algorithm 3.2.

The approach has shown to converge if two conditions hold:

1. There exist two separate views x = [x(1), x(2)] and the task is solvable under each
view.

2. The views should be conditionally independent given the class label;
i.e., P (x(1)|y, x(2)) = P (x(1)|y) and P (x(2)|y, x(1)) = P (x(2)|y).

1 A.K.A. collaborative bootstrapping or multi-view learning.
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Algorithm 3.2 Co-Training [Blum and Mitchell, 1998]
Require: Labeled data Xl and unlabeled data Xu
Require: Two learners F1(x) and F2(x)

Require: Set max iterations T
for t = 1, . . . , T do

Train F1(x) on Xl using only a subset x1 of x
Train F2(x) on Xl using only a subset x2 of x
Let F1(x) label p positive and n negative samples from Xu
Let F2(x) label p positive and n negative samples from Xu
Add the self-labeled samples to Xl

end for
Output the final classifier as F (x) = F1(x) + F2(x).

Co-training iteratively makes the two (diverse) classifiers agree on the predictions on
the unlabeled data. Note that this increases the decision margin and is hence another
explanation why the unlabeled data can help improving the classification accuracy in
such scenarios. [Dasgupta et al., 2002] showed that when the two views are sufficient and
conditionally independent, the generalization error of co-training is upper-bounded by the
disagreement between the two classifiers. Zhou et al. [Zhou and Xu, 2007] showed that
in principle a single labeled training sample can be sufficient for co-training to converge
successfully.

One of the main limitations of co-training is the condition that the two sets have to be
conditionally independent given the class in order to converge. This condition was later
relaxed by [Balcan et al., 2004], but only by introducing another condition which is “the
classifiers must never be confident but wrong”. Meanwhile, there exist improvements of
the original algorithm in terms of robustness, e.g., [Leskes and Torenvliet, 2008, Shen
et al., 2005] and [Wang and Zhou, 2007] provided a PAC-style proof that co-training can
even work if conditional independence is not given.

Another problem in co-training arises when the observations of the views can be noisy.
For instance, consider one wants to build a co-training system which should classifier
vehicles in either cars or trucks, respectively. One solution for such a task would be to
train a classifier on audio signals and another one based on visual appearance. However,
in case of occlusions – e.g., a truck occludes a car – the visual classifier would correctly
yield “no car detected” but the audio classifier may detect that acoustic signal of the car’s
engine. In such a case, both classifiers are in principle making the correct predictions but
disagree on the assigned labels. If this happens frequently during the learning process,
typical co-training would fail. However, recently, Christoudias et al. [Christoudias et al.,
2008a, Christoudias et al., 2008b] showed that this problem of noise and disagreement in
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multi-view learning can be tackled via incorporating conditional entropy measures into
the learning and by applying Gaussian processes, respectively.

When we talk about co-training we mainly refer to the case when two classifiers train
each other. If more than two classifiers are used, we denote the learning approach as
multi-view learning. For example, tri-training [Zhou and Li, 2005] is an extension of
co-training that uses three classifiers instead of two. [Zhou and Li, 2005] has shown both
theoretically and empirically that tri-training has weaker conditions in order to converge,
which makes it more applicable in practice. However, [Blum and Mitchell, 1998] argued
in their co-training approach that there are not many candidate classifiers that can agree on
unlabeled data in two views. In principle this is positive because a small hypothesis space,
which also fits the labeled data well, is less likely to overfit. While taking more classifiers
decreases the independence conditions among the classifiers, it is simultaneously harder
to find multiple views where each of them is strong enough in order to deliver reliable
votes on the unlabeled data.

3.6 Graph-based Methods

Graph-based semi-supervised learning methods assume the entire training set D consist-
ing of both labeledDL and unlabeled samplesDU as fully connected graph g = {(V,E)}.
According to this principle, labeled and unlabeled samples are represented as nodes and
edges represent similarities or distances among the samples, respectively. Given such a
graph, the main assumption is that the labels are smooth with respect to the graph, such
that they vary slowly on the graph. If two instances are connected by a strong edge, i.e.,
they are considered to being highly similar, their labels should be the same. The sim-
ilarities can be encoded in a weight matrix W, where Wij is non-zero if xi and xj are
neighbors. A popular weight matrix is the Gaussian kernel or radial basis function (RBF)

Wij = exp
(
− ||xi − xj||2

2σ2

)
, (3.7)

where σ is the kernel bandwidth. Known labels are used to propagate information through
the graph in order to label all the nodes.

Based on the graph representation of the data, there exist several different ways to
perform semi-supervised learning:

Graph-based SSL with harmonic functions Zhu et al. [Zhu et al., 2003] presented a
graph-based SSL framework based on Gaussian random fields and harmonic functions.
A harmonic function is a function that has the same values as given labels on the labeled
data and satisfies the weighted average property on the unlabeled data. This means that an
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(a) (b) (c)

Figure 3.2: Graph-based semi-supervised learning: Given some labeled and unlabeled
data (a), we can create a connected graph (b). Given this graph, the final solution looks as
illustrated in (c).

unlabeled node gets assigned with the labels of its neighbors’ values. In particular, Zhu et
al. compute a real-valued function f : V → R on a given graph G = (V,E) and assign
labels to the unlabeled data using f . They form a Gaussian random field pβ(f) = e−βE(f)

Zβ

over the quadratic energy function

E(f) =
1

2

∑
i,j

wij(f(i)− f(j))2 (3.8)

and the partition function Zβ =
∫
f |L=fl

exp(−βE(f)))df . The function that mini-
mizes Equation (3.8) satisfies ∆f = 0 and is thus called harmonic. The harmonic charac-
teristic enforces that the value of f for an unlabeled sample is the average of its neighbor-
ing points. ∆ is the combinatorial Laplacian, in particular, given as ∆ = D −W where
D = diag(di) with entries di =

∑
j wij and W = [wij] is the weight matrix.

[Zhu et al., 2003] showed that there exist a closed-form and globally optimal solution
for the harmonic energy minimization and highlighted the tight connections to electri-
cal networks and random walks. Similar to the work of Zhu et al. there exist various
semi-supervised approaches exploiting graphs, for example, using low density separa-
tion [Chapelle and Zien, 2005] or approaches based on mincut [Blum and Chawla, 2000]
and randomized mincut [Blum et al., 2001].

Manifold Assumption Graph-based SSL based on harmonic functions has two draw-
backs: first, it is a transductive method and second the labels of labeled instances are
fixed, which can cause troubles in case of class label noise. Semi-supervised manifold
regularization [Belkin et al., 2006] addresses these issues. In general, a manifold is a
topological space that is locally Euclidean. The points in a small neighborhood are ex-
pressed as coordinates in Euclidean spaces using so called coordinate charts or patches.
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The differences of the coordinate charts can be expressed using transition maps or transi-
tion functions [Weisstein, 2002].

Definition 3.1: A d-dimensional manifold M =
⋃
α

Uα is a mathematical object that

generalizes domains in Rd. Each one of the “patches” Uα that coverM is endowed with
a system of coordinates α : Uα 7→ Rd.

If two patches Uα and Uβ overlap, the transition functions β ◦ α−1 : α(Uα
⋂
Uβ) 7→

Rd must be smooth, i.e., infinitely differentiable. A Riemannian Manifold inherits from
its local system of coordinates most geometrical notions available on Rd, such as metrics,
angles, volumes, etc..

In manifold regularization, f is defined over the entire feature space f : X 7→ R and is
regularized with respect to the graph Laplacian ∆. In more detail, a manifold regularizer
can be written as

Ω(f) = λ1||f ||2 + λ2fTLf, (3.9)

where ||f ||2 =
∫
x∈X f(x)2dx is an additional regularization term which enforces smooth-

ness in order to improve generalization performance and λ1, λ2 ≥ 0 are the convex
weightings of the two regularization terms. Given an arbitrary loss function, for instance,
`(x, y, f(x)) = (y − f(x))2, the complete problem can be written as

min
f :X 7→R

l∑
i=1

(yi − f(x))2 + λ1||f ||2 + λ2fTLf. (3.10)

Having the problem rewritten in terms of manifold regularization, various learning
methods have been applied to learn classifiers from both labeled and unlabeled data, for
instance, boosting, support vector machines and least-squares. Although there have been
many successful SSL algorithms based on the manifold assumption, they do not work if
the given data lies on a mixture of manifold, which occurs frequently in practice where
manifolds tend to intersect and partially overlap. Recently, Goldberg et al. [Goldberg
et al., 2009] studied the problem of semi-supervised learning in multi-manifold scenarios.
Their algorithm works by combining the single manifold and the cluster assumption in
order to find piecewise smooth parts of the target function.

Xu et al. [Xu et al., 2009] presented a framework for features selection via manifold
regularization. In their method, an optimal subset of features is identified by maximizing
a performance measure that combines the classification margin with manifold regulariza-
tion. In particular, the feature selection is formulated as a convex-concave optimization
problem, where the saddle point holds the optimum.
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3.7 Boosting and SSL

There exist several approaches to semi-supervised learning with boosting, e.g., [Collins
and Singer, 1999,Bennett et al., 2002,d’Alche Buc et al., 2002]. The main idea in most of
these approaches is to add an unsupervised regularization term to the supervised loss func-
tion of boosting that penalizes decision boundaries passing through high density regions.
Similar to Equation (3.1) semi-supervised boosting loss functions look as follows

L(X) = Ll(Xl) + βLu(Xu) (3.11)

=
∑

(x,y)∈Xl

`l (yH(x)) + β
∑
x∈Xu

`u(H(x)),

whereLl andLu are the loss functions for the labeled and unlabeled samples, respectively.
Note that this is similar to TSVMs and related algorithms that exploit the large margin
assumption. In the following, we will shortly review some more recently proposed semi-
supervised boosting methods.

3.7.1 SERBoost

Mann and McCallum [Mann and Mccallum, 2007] analyzed many SSL algorithms and
pointed out that although there exist a vast amount of SSL approaches, most of them
need tedious parameter tuning and have bad scaling behavior of O(n3), where n is the
number of unlabeled samples, which makes them hardly applicable in practice. In order
to tackle these issues, they proposed the Expectation Regularization (XR) method which
augments a log-likelihood objective function with a term that penalizes model predictions
on unlabeled data that deviate from certain expectations. Algorithms based on XR scale
very well and do not need complicated parameter tuning.

Based on the idea of expectation regularization, Saffari et al. [Saffari et al., 2008]
proposed a semi-supervised boosting algorithm called SERBoost. SERBoost assumes a
given prior conditional probability in form PP (y|x) with y ∈ {−1,+1}) and x ∈ Rd.
The prior distribution is used in order to impose certain expectations over the labels of
the unlabeled samples. Similar to previous SSL boosting approaches, the loss function is
written as

L(H(x),X ) = Ll(H(x),Xl) + βLu(H(x),Xu), (3.12)

where X = XL ∪ XU , XL = {(x1, y1), . . . , (xl, yl)} and XL = {(x1), . . . , (xu)} and
β ≥ 0 defines the importance of the unlabeled loss. For the labeled loss the exponen-
tial formulation is used to be Ll(H(x),Xl) =

∑
x∈XL e

−yH(x). For the unlabeled loss the
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Kullback-Leibler (KL) divergence is used between the prior probability and learned dis-
tribution to be Lu(H(x),Xu) = E(D(PP ||P̂ )). For unlabeled samples pseudo labels are
introduced to be yp = 2P+

p (x)− 1. Finally, the overall loss function can be written as

L(H(x),X ) =
∑
x∈XL

e−yH(x) +
∑

x∈XU

e−ypH(x)cosh(H(x)). (3.13)

For learning the boosting model Saffari et al. use a boosting approach that performs gradi-
ent descent in function space [Mason et al., 1999]. The method as shown experimentally
to deliver good results using various sources of priors.

3.7.2 Boosting with Manifold Regularization

Another way to perform semi-supervised boosting is to exploit the manifold assumption
as used in ManifoldBoost proposed by [Loeff et al., 2008]. ManifoldBoost regularizes the
loss function by incorporating unlabeled data using the graph Laplacian L and learns the
model using GradientBoost. In detail, the loss function used in ManifoldBoost is written
as

L(H(x),X ) =
∑
x∈XL

`(yi, H(xi)) +
∑
i,j

H(xi)Li,jH(xj). (3.14)

The unlabeled loss enforces labels of an unlabeled sample to be the average of its K
nearest neighbors and yields a final classifier ensemble which is smooth on the underly-
ing manifold. Note that there exist also other SSL boosting approaches working on the
manifold assumptions, such as [Kegel and Wang, 2005, Chen and Wang, 2008].

3.7.3 Co-training and Boosting

There also exist approaches that use boosting in order to perform co-training. While
[Collins and Singer, 1999] use co-training in the original setting as proposed in [Blum
and Mitchell, 1998], i.e., co-training is the meta algorithm for two common boosters,
Leskes and Torenvliet [Leskes and Torenvliet, 2008] proposed a new boosting algorithm
that is more directly targeted towards the co-training principle. In particular, the method,
AgreementBoost, is based on the observation that co-training works by enforcing two
diverse classifiers to agree on their predictions on the unlabeled samples which increases
the generalization margin of the combined classifier. In order to enforce agreement during
the boosting iterations Leskes and Torenvliet added a regularization term to the boosting
loss that penalizes disagreement of the weak learners on the unlabeled samples:

L(H(x),X ) =
∑
x∈XL

`(yi, H(xi)) +
∑

x∈XU

V (xj), (3.15)

where V (xj) is a term penalizing high variance over the unlabeled data.
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3.8 Computer Vision Applications

In computer vision, the probably most frequently applied semi-supervised learning algo-
rithm is co-training. For example, Levin et al. [Levin et al., 2003] used co-training to train
a car detector. They start with a small number of hand labeled samples and generate addi-
tional labeled examples by applying co-training of two boosted off-line classifiers, where
one uses gray-value images and the other is trained from background subtracted images,
respectively. Moreover, Javed et al. [Javed et al., 2005] applied an arbitrary number of
classifiers and extended the method to on-line learning. In particular, they first generate a
seed model by off-line boosting, which is improved later on by on-line boosting. If mul-
tiple disjoint views exist, co-training can also be applied for tracking, e.g., [Tang et al.,
2007, Yu et al., 2008, Liu et al., 2009]. There also exist several approaches based on deep
neural networks in order to improve the visual recognition performance using unlabeled
data, e.g., [Yu et al., 2008, Mobahi and Collobert, 2009]. Recently, Fergus et al. [Fergus
et al., 2009] presented a semi-supervised framework that is able to learn object classifiers
from 80 million images. In particular, they propose a graph-based method that scales
linear with the number of samples and thus allows for large-scale usage. Guillaumin et
al. [Guillaumin and Schmid, 2010] proposed a multimodal SSL approach used for im-
age categorization, where the main idea is to additionally to the visual information, also
exploit other sources of information such as text, which is surrounding images on web
pages. Socher and Fei-Fei [Socher and Fei-Fei, 2010] applied Semi-supervised learning
to image-segmentation.

3.9 SSL from weakly related data

As has been shown above, there exist a large amount of methods and algorithms for the
semi-supervised learning problem. The main differences between these approaches are
often only based on their assumptions which they are imposing over the unlabeled data
(e.g., manifold assumption or large margin assumption, etc.) and on which supervised
learning method they are based, such as SVMs or boosting. Yet, one assumption that
most of them have in common is that the underlying marginal data distribution P (X ,Y)

is i.i.d., which means they draw samples from data of which they assume it is identical
and independently distributed. However, in practice, unlabeled data does not necessarily
come from the same distribution as the labeled data.

Another problem that occurs in practice but is ignored by most approaches is the fact
that although unlabeled data is usually easy to obtain, unlabeled data which consists of
sufficient amounts of target class samples is not. For instance, consider the problem of
training a visual object detector for alpacas (see Figure 3.3a). For this task, it is difficult
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to obtain many labeled images with alpacas. However, it is also difficult to obtain many
unlabeled images containing alpacas. The same is true for mongoose (Figure 3.3b) and
many other target objects.

a) b)

Figure 3.3: Examples for difficult to obtain images: alpaca (a) and mongoose (b)

A practically useful semi-supervised learning algorithm has to be able to handle weakly
related unlabeled data. Unfortunately, there is only a limited amount of approaches that
try to tackle this problem and it is also not part of this thesis. However, recently, there
have been proposed some first algorithmic attempts that are worth to be mentioned:

Self-taught Learning Raina et al. [Raina et al., 2007] highlighted the problem that
unlabeled data often does not consist of sufficient samples from the target class and pre-
sented a framework called “self-taught learning” or STL. In STL, the main idea is to
perform transfer learning from unlabeled data; i.e., although the unlabeled data is not
necessarily related to the target class and labels are not available, they show that learning
can still benefit from such samples. In particular, STL assumes of having labeled data
DL = {(x1, y1), . . . , (xl, yl)} drawn i.i.d. from some distribution. Additionally, they sup-
pose a set of unlabeled data DU = {(xl+u), . . . , (xl+u)}, however, not necessarily drawn
from the same distribution as DL. Yet, although they assume DU only weakly related to
DL, they do not assume the unlabeled data to be totally unrelated. The STL consists of two
steps: First, an unsupervised learning method, i.e., sparse coding [Olshausen and Field,
1996], is applied to DU in order to obtain a higher-level sparse representation of the un-
labeled images. This representation is then used in order to train a common SVM on DL.
Although the approach of Raina et al. is trivial and seems to be straight-forward, an eval-
uation of STL on several domains, e.g., object categorization, character recognition and
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text classification, showed that even with this low-sophisticated method weakly-related
unlabeled data can help improving the classification accuracy.

Semi-Supervised Learning from Weakly-Related Unlabeled Data Building on the
similar ideas as self-taught learning, recently Yang et al. [Yang et al., 2008] presented an
improved version of STL called “Semi-Supervised Learning with Weakly-Related Unla-
beled Data” (SSLW). In particular, Yang et al. highlight that many SSL approaches are
based on the cluster assumption, which, however is violated if the unlabeled data is only
weakly related to the target classes. SSLW also tries to find a better data representa-
tion that is both informative to the target class and consistent with the feature coherence
patterns of the weakly related unlabeled data.

In more detail, out of the labeled dataDL, SSLW uses a document-word matrixMD =

(d1,d2, . . . ,dl), where di ∈ NV represents the word-frequency vector for document di
and V is the size of the vocabulary. Additionally, they make use of a second matrix, the
word-document matrix G out of both labeled and unlabeled data. G = (g1, g2, . . . , gV ),
where gi = (gi,1, gi,2, . . . , gi,n) represents the occurance of the ith word in all the n docu-
ments.

For a SVM-formulation one could now use MD in order to build the kernel K =

MT
DMD for the SVM’s dual formulation. However, such a kernel would discard weakly

related documents, i.e., set the similarity to zero. Therefore, Yang et al. augment the
kernel with a word-correlation matrix R ∈ RV×V to be K = MT

DRMD. In R, Rij

represents the correlation between ith and the jth words. The goal is now to find the
optimal R that maximizes the categorization margin. This is done by regularizing R

according toG by introducing an internal representation of wordsW = (w1,w2, . . . ,wV ),
wi is the internal representation of the ith word. The word-correlation matrix can then be
written as R = WTW . Now, the dual formulation of the SVM can be changed to a
min-max problem in order to find both the maximum α and minimum R.

min
R∈∆,U,W

max
α

αTe− 1

2
(α ◦ y)T(MT

DRMD)(α ◦ y) (3.16)

Equation 3.16 can be efficiently solved using Second Order Cone Programming (SOCP)
[Boyd and Vandenberghe, 2004]. For text categorization, SSLW has successfully demon-
strated of being able to leverage the usage of both labeled and weakly-related unlabeled
data in order to increase the generalization error and significantly outperformed self-
taught learning and state-of-the-art SSL methods such as TSVM [Bennett and Demiriz,
1999] and manifold regularization [Belkin et al., 2006].

EigenTransfer Self-taught learning and SSLW can both also be considered as a trans-
fer learning problem; however, without knowing the class labels of the source data.
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Recently, Dai et al. [Dai et al., 2009] proposed a general transfer learning framework,
EigenTransfer, were transfer learning from unlabeled data is considered a sub-problem of
general transfer learning. In EigenTransfer, the main idea is to create a weighted graph
G = (E, V ) of both source and target data, where the nodes V = {vi}ni=1 represent in-
stances, features and labels and the edges E = {eij}ni,j=1 represent the relations between
end nodes, connecting the target and the source data. In particular, the weights φij of the
edges are based on the number of co-occurances between the end nodes in the target and
the source data. By learning the spectra, i.e., a set of eigenvalues, of this graph, Dai et
al. obtain an eigen feature representation for all the nodes in the task graph. The new
feature representation can then be used in order to transfer knowledge from the source to
the target domain.

In case of self-taught learning, in the task graph, the nodes that usually carry the labels
of the source data are empty. [Dai et al., 2009] use normalized cut in order to learn the
spectra of the graph. In more detail, they calculate the graph Laplacian L = D − W

out of the adjacency matrix W and the diagonal matrix D. Then the first N eigenvectors
of L build a new feature space where any supervised learning algorithm can be applied.
In the experiments EigenTransfer has proven to be a meaningful approach to self-taught
learning.

Although the three methods shorty described in this section tried to tackle the problem
of semi-supervised learning from unlabeled data that is either weakly related to the target
class or the amount of good positive unlabeled data is limited, the problem is yet in its
beginnings and still there remains several open questions and there is large room for
further investigation.

3.10 Summary

In this chapter, we have introduced the concept of semi-supervised learning and reviewed
the current state-of-the-art. We have seen that there exist a vast amount of SSL algo-
rithms, most of them extensions of popular supervised learning methods, and that they
are already frequently used in many applications. Note that we left out a detailed re-
view of semi-supervised kernel methods, because this would go beyond the scope of this
work. However, we refer the interested reader to [Huang et al., 2006]. Most importantly,
we showed that semi-supervised learning works by imposing certain assumptions, e.g.,
manifold or cluster assumptions, over the unlabeled data and that using the correct as-
sumptions often decides over the success of an algorithm depending on the actual data
set. In the following chapters, we will concentrate our further discussion on the usage of
ensemble-based learning methods since they have demonstrated to be very powerful and
are often used in various computer vision applications.
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Chapter 4

SemiBoost and Visual Similarity
Learning

A s we have motivated in the previous chapter, semi-supervised learning is an increas-
ingly important learning paradigm with various potential practical applications. Ad-

ditionally, we have seen that there already exist a large amount of different SSL ap-
proaches. A large subset of SSL methods, especially those based on graphs and the mani-
fold assumption, rely on a priori given similarities or distance measures which are needed
in order to compare samples (labeled and unlabeled) in feature space. It is clear that the
accuracy of these similarities determines the success of the semi-supervised learners. One
way to obtain good similarities is to learn similarity or distance functions that can then be
used for further reasoning or processing.

In the following, we present an approach that combines visual similarity learning
and semi-supervised boosting using manifold regularization. In particular, we use a lim-
ited amount of labeled samples in order to, first, train a discriminant distance function
and, second, use this distance function as a metric in order to guide a variant of Semi-
Boost [Mallapragada et al., 2009] through exploiting a huge set of unlabeled data.

4.1 Learning Distance Functions

In machine learning problems, the distance metrics are often given in huge matrices that
encode standard distances such as the Euclidean or the Chi-Squared. Although this works
for many applications it has several fundamental problems: First, the data stored in ma-
trices grows with O(n2), where n is the number of samples. Second, it is often hard to
decide which is the best similarity metric in order to solve a certain task. Especially in
computer vision, it is difficult to determine what makes some digital images similar and

43
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Figure 4.1: SemiBoost uses graph-based regularization in order to train a boosted classi-
fier from both labeled and unlabeled data.

some dissimilar. Finally, if we deal with high-dimensional features spaces, we would
like to prefer distance measures that take only a discriminant subset of the features into
account which leads to both higher efficiency and accuracy.

In recent years, these arguments have led to approaches that learn distance or similar-
ity functions based on labeled training data, which has the advantage that the discriminant
information can be extracted from the eventually high dimensional data that best supports
the task and eases further discriminative processing. Hence, learning distance or simi-
larity functions has become an important strand of research within machine learning. In
computer vision, there exist several approaches that investigated learning of similarity
functions for object categorization in order to handle high intraclass variance and low
interclass variance, e.g., [Nowak and Jurie, 2007, Frome et al., 2007, Babenko et al.,
2009a, Jain et al., 2008, Jain et al., 2008]. A learned metric can also be plugged into other
classifiers, for instance, as a kernel to a SVM or into a knn-classifier [Shakhnarovich et al.,
2005]. Metric learning has also been used for image retrieval [Hertz et al., 2004,Torralba
et al., 2008] and even for human pose estimation and tracking [Shakhnarovich, 2005].

4.2 SemiBoost

We assume a typical semi-supervised learning setting in form of a labeled data set X L =

{(x1, y1), . . . , (x|XL|, y|XL|)} ⊆ X × Y where xi ∈ X = Rd and yi ∈ Y and an unlabeled
data set in form X U = {x1, . . . , x|XU |} ⊆ X . Additionally, we focus on the binary
classification problem, therefore Y = {+1,−1} and the samples are split into two sets
X L = X+ ∪ X− of all samples with a positive class and the set of all samples with
negative class, respectively. The goal is to learn a boosted classifier H : X → Y which is
trained using both labeled and unlabeled samples.

SemiBoost [Mallapragada et al., 2009] is a manifold-based approach and uses the
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following unlabeled loss function:

`u =
∑
x∈XU

(
C
∑

x′∈XU
s(x,x′)eF (x)−F (x′) +

∑
(x′,y′)∈XL

s(x,x′)e−2y′F (x)
)
, (4.1)

where C is a trade-off parameter and s(x,x′) is a similarity measure between two data
samples. The unlabeled loss function is a combination of two terms: the first term regu-
larizes only over the unlabeled samples, while the second term uses both labeled and un-
labeled data samples. If one uses a symmetric similarity measure, i.e., s(x,x′) = s(x′,x),
the unlabeled loss can be simplified as

`u =
∑
x∈XU

(
C
∑

x′∈XU
s(x,x′) cosh(F (x)− F (x′)) +

∑
(x′,y′)∈XL

s(x,x′)e−2y′F (x)
)
. (4.2)

As in general manifold-based SSL approaches (Equation (3.2)), s(x, x′) enforces the
graph-based smoothness over the data, i.e., that if x and x′ are very similar also the labels
should be the same.

As can be seen, [Mallapragada et al., 2009] ignores the standard loss over labeled
data. However, we observed that this term can be informative and, therefore, we propose
the following loss function∑
(x,y)∈XL

e−yF (x)+
∑
x∈XU

(
λu

∑
x′∈XU

s(x,x′) cosh(F (x)−F (x′))+λl
∑

(x′,y′)∈XL
s(x,x′)e−2y′F (x)

)
,

(4.3)
where λu and λl determine how much the unlabeled loss terms can influence the training.
In the following, we will use this formulation of SemiBoost.

4.2.1 Learning

The learning of a boosting model consists of finding weak learners fi(·) and their weights
αi sequentially. This means we need to solve

(αi, fi) = arg min
α,f
L, (4.4)

where L is the loss function represented in Equation (4.3).
We now have to solve the following optimization problem

arg min
f(x),α

=
∑

x′∈XU

( ∑
(x,y)∈XL

s(x, x′)e−2y(F (x′)+αf(x′))

+λu
∑

x′∈XU
s(x, x′)e((F (x′)−F (x))eα(f(x)−f(x′))

)
. (4.5)
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Mallapragada et al. suggest the following approximations in order to simplify the
minimization of the objective function. First, e(α(fi−fj)) is bounded as

e(α(fi−fj)) ≤ 1

2
(e2αfi + e−2αfj). (4.6)

This results in an overall upper bound of the objective function

F ≤
∑

x′∈XU

( ∑
(x,y)∈XL

s(x, x′)e−2y(F (x′)+αf(x′))

+λu
∑

x′∈XU

s(x, x′)
2

e((F (x′)−F (x))(e2αf(x) + e−2αf(x′)
)
. (4.7)

The objective function can be further written as

F ≤
∑

x′∈XU
e(−2αf(x′))pie

(2αf(x′)))qi. (4.8)

pi and qi are two different terms depending on the label of y′ and are formulated as

px = λl
∑

(x′,y′)∈XL
I(y′ = 1)s(x,x′)e−2F (x′) +

λu
2

∑
x∈XU

s(x,x′)eF (x′)−F (x), (4.9)

and

qx = λl
∑

(x′,y′)∈XL
I(y′ = −1)s(x,x′)e−2F (x′) +

λu
2

∑
x∈XU

s(x,x′)eF (x)−F (x′), (4.10)

where I(·) is the indicator function. Moreover, px and qx can be considered as the confi-
dence for a sample of being positive and negative, respectively. For details about the exact
derivation of px and qx we refer the reader to [Mallapragada et al., 2009]. Using these two
terms, we compute the pseudo-labels and weights of unlabeled samples by:

ŷx = sign(px − qx) (4.11)

and
wx = |px − qx|. (4.12)

Calculating the derivative of the loss function with respect to α and setting it to zero yields
the optimal α for the weak classifier as

α =
1

4
ln

∑
x∈XU

(
piI(f(x) = 1) + qiI(f(x) = −1)

)∑
x∈XU

(
piI(f(x) = −1) + qiI(f(x) = 1)

) (4.13)
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Therefore, at each step of boosting, we compute the pseudo-labels and weights of
unlabeled samples and use them to find the best weak learner and its corresponding weight
similar to the AdaBoost algorithm. Note that if no unlabeled data is used, the algorithm
reduces to standard boosting. The detailed steps of the algorithm are summarized in
Algorithm 4.1.

Algorithm 4.1 SemiBoost

Require: labeled training data (x, y) ∈ X L and unlabeled data x′ ∈ X U

Require: Similarity measure s(x, x′)
Require: Weak learners fi
Require: weight parameters λu, λl
Require: max iterations T

1: for t = 1, 2, . . . , T do
2: Compute pi and qi for every given sample
3: ŷx = sign(px − qx)

4: wx = |px − qx|
5: Train weak classifier ft(x)

6: Compute αt using Equation (4.13)
7: F (x)← F (x) + αtft(x)

8: end for

4.2.2 Learning Visual Similarities

Being a manifold-based approach SemiBoost has the power to exploit both labeled and
unlabeled samples if a similarity measure s(x, x′) is given. The similarity can be obtained
from a distance measure d(x, x′), e.g., by using a radial basis function

s(x, x′) = e

(
− d(x,x′)2

σ2

)
, (4.14)

where σ2 is the scale parameter [Zhu et al., 2003]. The crucial point is how to measure the
distance d(x, x′) between points. Popular measurements are, for example, the Euclidean
distance ||x− x′|| or the Chi-Square distance (x−x′)2

2(x+x′) .
As already mentioned above, a more powerful and flexible approach is to learn the

distance function from labeled data, which is also known as metric learning. The advan-
tage of discriminative learning of distance functions is that the metric can much better
support task-specific classification. We use boosting to learn pair-wise distance functions
similar to the method proposed by Hertz et al. [Hertz et al., 2004]. A distance function is
a function of pairs of data points to be positive real numbers, usually (but not necessary)
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Figure 4.2: SemiBoost combined with a learned similarity measure from given labeled
samples.

symmetric with respect to its arguments. The learning problem can be defined as a learn-
ing problem on the product space as F d : X × X → Y = [−1 1]. To train a maximum
margin classifier the training set

Dd = {(x, x′,+1)|y = y′, x, x′ ∈ DL} ∪
∪{(x, x′,−1)|y 6= y′, x, x′ ∈ DL} (4.15)

is built by taking pairs of images of “same” and “different” class. Using pairs allows
us to create a large number of training samples while having only a few labeled starting
samples. In particular, if we omit pairs with self-similarities such as (x, x), we can create
n·(n−1)

2
training pairs out of n positive samples. The symmetry of the distance is not

satisfied automatically, therefore it has to be enforced by introducing each pair twice,
i.e., both (x, x′) and (x′, x). This also means that the number of training samples in fact
becomes n · (n− 1). Then, as in [Hertz et al., 2004] we use boosting to learn a classifier.
The trained and normalized classifier F d(x, x′) ∈ [−1 1] is interpreted as a distance

d(x, x′) =
1

2
(F d(x, x′) + 1). (4.16)

The conversion into a similarity s(x, x′) can be done as proposed in Equation (4.14),
i.e., using a radial basis function. This learned similarity can now be used as a prior for
SemiBoost as depicted in Figure 4.2.

4.2.3 Using Arbitrary Classifiers as Similarity-Priors

Above, we have discussed the issue of training a pair-wise classifier which can serve as a
distance measure for SemiBoost. However, sometimes it is the case that we have already
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Figure 4.3: SemiBoost combined with a learned similarity measure from given labeled
samples.

given a non-pair-wise classifier that is able to deliver confidence-rated predictions, for
instance, an object detector, which can already (partially) solve our problem. We will
denote such a classifier as prior or prior classifier F P (x). From a practical perspective
and as can be seen in Figure 4.3, it would be now beneficial to incorporate such a prior
into SemiBoost in order to exploit unlabeled data. Therefore, we have to approximate the
pair-wise similarity s(x, x′) using the non-pair-wise prior F P (x).

In the following, we first show how the training can be done. Second, for evaluation
we can use the prior by combining it with the newly trained classifier. Thereby, we benefit
from the information which is already encoded in the prior classifier. Roughly speaking,
the newly trained classifier can be rather “small”, only correcting the mistakes of F P (x).

In more detail, we assume that we have access to a prior classifier F P (x) : X →
[−1, 1] (e.g., an already trained face detector). The classifier has to provide a confidence
measure of its classification. The more confident the decision is the higher the absolute
value of the response. We can use boosting for training such a classifier and the responds
can be translated into a probability [Friedman et al., 2000]. We can now incorporate this
classifier into SemiBoost using the following approximation

|F (x, x′)| ≈ |F (x)− F (x′)|. (4.17)

In other words, a discriminative pair-wise function measuring the distance between x
and x′ is approximated by the difference of a conventional classification function for two
samples.
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Figure 4.4: The similarity between two samples x and x′ is approximated by the differ-
ence of the responses from an a priori given classifier F P (·).

Discussion If F (x, x′) is a large margin function and two samples are identical F (x, x′)
will be zero whereas F (x, x′) will be large the more dissimilar x and x′ are. The same
holds for taking F (x)−F (x′) which also will be zero if the two samples are identical and
large the more dissimilar they are. Hence, approximating the similarity using a non-pair-
wise classifier corresponds to indirectly measuring the distance to the decision boarder.
The principle is visualized in Figure 4.4.

According to this discussion, we define as distance measure

d(x, x′) = |F P (x)− F P (x′)| (4.18)

as the absolute difference of the classifier response to the decision boundary. In other
words, samples are similar if they have a similar classifier response. The distance is con-
verted to a similarity using Equation (4.14) as described in the previous subsection. Now,
we are able to proceed training on the proposed SemiBoost manner.

4.2.4 Classifier Combination

If we train a SemiBoost classifier H(x) using the prior classifier F P (x) as similarity
measure, it makes sense to use this prior knowledge for the final classification process as
well (i.e., combine the two classifiers). This is closely related to the approach proposed
by Schapire et al. [Schapire et al., 2002]. Similarly, we use the prior knowledge as the 0th

weak classifier f0(x) = σ−1(P P (y = 1|x)) where P P (y = 1|x) is the a priori probability
of the sample corresponding to the positive class and σ−1(·) is the inverse function of our
logistic model (see [Friedman et al., 2000])). Since we use boosting to train the prior
classifier, we end up with f0(x) = F P (x) which is included in the combined classifier
FC(x) = α0F

P (x) + F (x). Note that for ease of notation, in the following we will write
F P (x) = α0F

P (x).
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Similar to the standard boosting we can take a look at the expected value of the loss
function [Friedman et al., 2000] and compared to Equation (2.10) we get for the combined
classifier

P (y = 1|x) =
eF

P (x)+F (x)

eFP (x)+F (x) + e−FP (x)−F (x)
. (4.19)

If we are only interested in the decision we see that a sample is classified as positive if we
set P (y = 1|x) ≥ 0.5 and after some mathematical rewriting we get

ŷ = sign
(
sinh(F P (x) + F (x))

)
= sign

(
F P (x) + F (x)

)
. (4.20)

Discussion The interpretation is as follows. A label switch can happen, i.e., F (x) can
overrule F P (x), if the combined term has a different label as the prior F P (x). As can
be easily seen, this is the case if |F | > |F P |. Therefore, the more confident the prior
is, the harder it is that the label changes. We do not make any statements whether this
is a correct or incorrect label switch. Note that overall the prior classifier can be wrong,
but it has to provide an “honest” decision. Meaning, if it is highly confident it must be
ensured to be a correct decision. There are also relations to the co-training [Balcan et al.,
2004] assumptions, i.e., a classifier should be never “confident but wrong”. By rewriting
Equation (4.20) as

ŷ =sign(sinh(F P (x) + F (x)) =

=sign(cosh(F (x)) sinh(F P (x)) + cosh(F P (x)) sinh(F )) (4.21)

one sees that the two classifiers weight each other using hyperbolic functions. The fac-
tor obtained by cosh(·) ≥ 1 weights the decision of the corresponding classifier passed
through the asymmetric sinh(·) function. By an additional scaling factor more emphasis
can be put either on the prior or the newly trained classifier; however, this is not explored
in this thesis.

Summarizing, after training F (x) the expected target of an example is obtained by a
combined decision. The combined classifier can now be interpreted as improving F P (x)

using labeled and unlabeled samples. We train F (x) with SemiBoost using labeled and
unlabeled data, since F P (x) is used to calculate the similarity via (Equation (4.18) and
Equation (4.14)) these two classifiers are tightly coupled via the training process and
Equation (4.21) is not just a simple sum rule. If we use a complex classifier, i.e., consisting
of many weak classifiers, and have a lot of training data F (x) will “absorb” the entire
knowledge of F P (x); therefore the usual setting is that we us a rather small F (x) to only
correct F P (x).
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4.2.5 Toy Experiment

In the following, we will illustrate the basic learning behavior of the algorithm using
a simple toy experiment. We consider a two class classification problem depicted in
Figure 4.5. The underlying data generating process produces positive samples around
the point (0.5, 0.5) and negative samples at a circle centered at the same point with ra-
dius 1 (both with variance 0.1). First, we train a “common” boosting classifier (as weak
classifiers a linear separator is used) on just the labeled examples (red and blue circles).
Second, we use our proposed SemiBoost approach. Additionally, we use 100 unlabeled
points (black crosses) drawn from the distributions above. As distance measure the Eu-
clidean distance is used and converted to a similarity measure using Equation (4.14) with
σ2 = 0.01. The left side of the plot shows the samples and the decision border. The
right side of each subfigure depicts the probability for the positive class P (y = 1|x).
Figure 4.5(a) shows a weak decision due to the limited number of samples, Figure 4.5(b)
using additional unlabeled data an essentially improved decision is obtained by Semi-
Boost.

The second toy example (Figure 4.6) shows improvement of a prior classifier. We
build an “honest” prior by estimating the positive and negative probability using a kernel
density estimation (Gaussian-distribution with σ2 = 0.05) on the labeled samples. This
prior serves as similarity measures for SemiBoost, which is used to train a small classifier
(10 weak classifiers). The combined classifier performs better than the prior and the newly
trained alone, respectively.

4.3 Experiments on Visual Classification and Detection

The goal of the following experiment is to demonstrate the applicability of the proposed
method on visual object classification and detection. In particular, we want to show that
SemiBoost combined with learning of visual similarities can be used in various applica-
tions without needing additional information such as background modeling or high-level
features.

Classification from Few Labeled Examples

For the first experiment, we collected a set of 1100 30 × 30 car patches with the help of
a simple motion detector from a common traffic scene (see Figure 4.7) and, additionally,
1100 random negative patches from the same scene. 300 positives and 300 negatives were
kept as an independent test set. In order to train the classifiers we use simple Haar-like
features as in [Viola and Jones, 2001].
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(a) Boosting with labeled data only

(b) SemiBoost: Boosting with labeled and unlabeled data

Figure 4.5: Toy Example 1: Positive and negative labeled (red and blue circles) and
unlabeled samples (back crosses) are used for learning via “common” boosting (a) and
using the proposed SemiBoosting approach (b) which additionally takes unlabeled data
into account.

Figure 4.6: Toy Example 2: The decision boundary of an “honest” prior (green) is “cor-
rected” by a SemiBoost classifier (red) and the combined decision boundary (blue) is
archived.
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(a) Car samples (b) Background samples

Figure 4.7: Some representative collected positive and negative input samples.

First, we trained a similarity function on randomly selected pairs of images as ex-
plained in Section 4.2.2. The similarity function was evaluated by converting the normal-
ized classifier F (x, x′) to a distance measure using Equation (4.16) and passing it through
a radial basis function (Equation (4.14)) with σ = 0.01. Then, we measured the average
distance similarity to the labeled positive and labeled negative samples, respectively. This
mean similarity was then converted to a hard label depending on whether the test sample
was on average more closely to negatives or positives, i.e.,

C(x) = arg max
k∈{−1,1}

1

|Xk|
∑

x′
s(x, x′). (4.22)

In Figure 4.8 we depict the classification performance of the similarity measure over the
boosting iterations on the unlabeled data. We varied the number of training samples from
5 to 20. As can be observed, even with a small amount of labeled samples very good
classification accuracies can be achieved. However, this method has the disadvantage
that (i) all the labeled samples have to be kept for evaluation and (ii) in order to get a
prediction for a test sample, its distance has to be measured to all the training samples,
which is computationally very expensive. Therefore, in the following we will train a
classifier F (x) which during evaluation does not have these disadvantages of similarity
functions but rather uses a trained pair-wise similarity function during training in order to
exploit unlabeled data.

In the next experiment, we trained a similarity classifier with 15 labeled samples and
used it as prior for SemiBoost. In Figure 4.9(a) we depict the performance measured in
terms of receiver-operator characteristic (ROC) curve of the final classifier depending on
how many unlabeled samples were used. As can be seen, the more unlabeled samples are
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Figure 4.8: Performance of the similarity over the iterations.

(a) ROC depending on the number of un-
labeled samples

(b) classifier improvement over the boost-
ing iterations

Figure 4.9: Learning of a car-detector: Performance of the proposed approach improves
significantly compared to the common approach (no unlabeled data is used) both when
(a) including more weak classifiers and (b) use more unlabeled data.

exploited, the better is the final performance. In Figure 4.9(b) we show how the perfor-
mance increases for 1600 unlabeled samples over the boosting iterations in comparison to
standard AdaBoost. Note that the final boxplot was obtained by repeating the experiment
5 times. As can be seen, the performance increases continuously when adding further
weak classifiers and significantly outperforms the standard boosting.
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Improving a Detector

Contrary to the previous experiment, where we used a pair-wise classifier, in this experi-
ment we want to show that with our method it is possible to improve any given classifier
on related unlabeled samples as proposed in Section 4.2.4. Therefore, for each of the
following two experiments, we first train a Viola/Jones detector [Viola and Jones, 2001]
on labeled data. We denote this classifier as F P (x). The response of the last cascade layer
is used as our prior classifier. The final detection results are obtained by non-maxima
suppression as post processing step.

Figure 4.10(a) depicts the results by applying the prior classifier trained on the fre-
quently used MIT+CMU faces where state-of-the-art results are achieved. Now, we want
to improve this classifier using related unlabeled data; i.e., the unlabeled data set should
contain a significant amount of faces. Since this also can be a tedious task, we propose a
simple approach to data-mine related unlabeled samples using web image search engines,
where the key idea is to feed the search engine with queries that might lead to resulting
images containing our target objects. For instance, if we want to train a car detector, we
could use “highway”, “road”, “traffic”, etc. as queries and denote the obtained images as
our first unlabeled data set X U . Of course, the thus obtained images might be still very
noisy. So, in a next step we refine X U by applying F P (x) in a sliding-window manner
over different scales in order to bootstrap for “interesting” unlabeled samples. We crop all
detected objects of F P (x) and copy them to a new unlabeled set X U∗ . After having ob-
tained X U∗ and some labeled data X L, we can now apply SemiBoost in order to improve
F P (x). We depict the approach in Algorithm 4.2.

Algorithm 4.2 Simple data mining for informative unlabeled data

Require: Labeled training data (x, y) ∈ X L

1: Train cascaded detector F P (x) on X L using [Viola and Jones, 2001]
2: Use a web image search engine in order to collect huge amounts of possibly useful

images X U ; pass phrases that are much likely related to your target object
3: Apply F P (x) in a sliding window manner on X U and copy all detections to X U∗

4: Train a SemiBoost classifier F (x) on X L and X U∗ using F P (x) as prior
5: Output the final classifier F (x)

As proof of concept, we applied F P (x) on 300 random images downloaded from
Google-Image search with the keyword “team”. The delivered detections (>4000) are
used as additional unlabeled data. The 50 most confident detections were used as positive
labeled data and the 50 least confident detections were used as negative ones for training
the SemiBoost classifier with only 30 weak classifiers. The proposed combination strat-
egy (Equation (4.20)) improved the results (higher detection and lower false positive rate
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(a) prior (b) trained (c) combined

Figure 4.10: Detection results of a face detector (a) which serves as prior to build a
SemiBoost classifier using additional unlabeled data. This classifier alone (b) has not the
power of delivering good results but the combination improves the result essentially.

as well as a better alignment of the detections) as shown in Figure 4.11. Note, the trained
classifier alone consists only of 30 weak classifiers which yields poor results when applied
on the image (Figure 4.10). Of course, when using more weak classifiers it will learn the
prior information as well. Additionally, Figure 4.11 shows representative examples which
were obtained by our approach. Note that the most related approach, i.e., [Levin et al.,
2003], fails on this task when only using single views and we hence omit the detailed
comparison.

Scene Adaption

In the next experiment, we want to test our approach on a typical task occurring often in
practice; i.e., scene adaptation or visual transfer learning. In particular, in multi-camera
surveillance scenarios instead of collecting huge amounts of labeled data in order to train
a general object detector one can collect data for specific camera views or scenarios and
train a classifier only on these. This has the advantage that the model complexity can be
reduced, which results in faster detectors, and that usually the accuracy can be increased
because the classifier has only to discriminate the target object versus one specific back-
ground. However, as collecting and labeling the data for each camera is cost and time
intensive (e.g., consider networks with tens or hundreds of surveillance cameras), one is
interesting in reusing as much information as possible between the cameras for training.
In the following, we demonstrate that our approach is also useful for such a problem.

For this purpose, we trained a car detector for a specific scene (i.e., “scene 1” illus-
trated in Figure 4.12(a)) using 1000 labeled samples. When applying this classifier on
a different scene with a similar view point, as expected, it performs significantly worse.
Hence, in order to adapt the detector to the different scene (i.e., “scene 2”, Figure 4.12(b)),
we apply a simple motion detector to get potential positive samples of scene given in
Figure 4.12(b). After collecting 1000 of them and additionally cropping 1000 random
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Figure 4.11: Detection results of a state-of-the-art face detector (left) and the improved
results obtained by the proposed strategy (right). As can be seen, incorporating additional
unlabeled data helps to increase both recall and precision.
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(a) scene 1 (b) scene 2 (c) improved results

Figure 4.12: A scene specific car detector for scene 1 (a) is applied on a “similar” scene
(b). The poor behavior can be significantly improved using unlabeled data taken from the
second scene as shown by a typical frame (c).

Figure 4.13: ROC curve for “scene 2” for the starting classifier (red) and the improved
classifier (blue) using unlabeled samples from the target scene.

sub-patches from the scene these 2000 serve as unlabeled examples to train a SemiBoost
classifier with 30 weak classifiers using the classifier trained on scene 1 as prior. A typical
frame superimposed with the detection result is shown in Figure 4.12(b)(c). The detection
results improved (much lower false positive rate and higher detection rate) as shown in
Figure 4.13.

4.4 Summary

In this chapter, we introduced a boosting algorithm that combines semi-supervised learn-
ing with learning of distance metrics. Learning distance metrics is especially interesting
for computer vision applications because for a given task it is often hard to say which
metric to take. Distance functions can be learned using a small amount of data and can be
used as prior information in order to support the exploitation of unlabeled data during a
SSL process. We demonstrated the approach on several vision applications such face de-
tection and visual transfer learning. In the following chapter, we will show how to extend
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this approach to on-line learning.



Chapter 5

On-line Semi-Supervised Boosting

A lthough there have been proposed a large amount of approaches to the SSL task,
most of them operate in off-line or batch mode 1. Recall from Chapter 2 that off-

line methods assume having access to the entire training data at any time, which eases
optimization and typically yields good classifiers. In practice, however, on-line learning
capability is demanded because learners often have limited access to the problem domain
due to dynamic environments or streaming data sources. Additionally, on-line learning
methods usually require less memory to operate which makes them ideal for incremental
learning problems, interactive learning or in cases where limited hardware resources do
not allow for full data storage, for instance on mobile devices. Finally, in supervised
learning on-line methods are frequently applied to large scale data problems due to their
inherent good scaling characteristics.

These benefits make on-line approaches also interesting for semi-supervised learning
and leverage the usage of SSL in scenarios that require sequential data analysis. Further-
more, the goal of SSL is to benefit from large amounts of unlabeled data. Yet, the bad
scaling behavior of current state-of-the-art SSL methods, which can be up toO(n3) [Mann
and Mccallum, 2007], where n is the number of unlabeled samples, often limits their ap-
plicability in practice. This seems to be in particular paradox in a field that claims to
benefit from the huge amounts of unlabeled data that are often available for free. Hence,
incorporating on-line learning techniques into SSL has also the potential to make them
operate in really large data scenarios. Although on-line learning can bring several ad-
vantages to semi-supervised learning, in the literature there exist only a small amount of
approaches dealing with on-line SSL, e.g., methods based on deep neural networks [We-
ston et al., 2008] or convex programming in kernel space [Goldberg et al., 2008].

In this chapter, we discuss on-line semi-supervised learning algorithms based on on-
line boosting [Oza, 2001]. The reasons for developing such algorithms are that boosting

1 Note that throughout this text we use the two terms interchangeably with equal meaning.
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is one of the most successful learning algorithms and its on-line variant is easy to imple-
ment, practically converges to the off-line version [Oza, 2001] and is frequently applied
in practice. Additionally, as we already shortly discussed in Chapter 1, in this work, we
target visual object tracking based on “tracking-by-detection” as one of our main appli-
cations and on-line boosting has shown to be a very powerful and fast method for this
task [Grabner and Bischof, 2006]. As we will discuss later in more detail, i.e., in Chap-
ter 9, visual object tracking based on on-line supervised learning suffers severely from the
so called “drifting problem”; i.e., due to the self-learning nature of this approach small
tracking errors, such as misalignment, wrong updates, etc., can accumulate over time and
finally lead to failure of the approach. One explanation for this problem is that usually
supervised learners are applied for the tracking task; i.e., the learning method assumes
all samples being truely labeled, in the ideal case without class-label noise. However, in
the tracking application, labeled data can only be provided at the first frame when the
target object is usually marked by hand. During the tracking process, the classifier has to
label the samples (patches) by itself; it thus has to perform self-learning. Since in self-
learning scenarios noisy labels are quite common, applying a supervised learning method
is the main cause for “drifting”. This argument is even more valid for on-line boosting
which due to the exponential loss function is known to be highly susceptible to class label
noise [Long and Servedio, 2008b]. Consequently, we highlight that tracking-by-detection
can naturally be considered as a semi-supervised learning problem; i.e., a small fraction
of labeled data is only available at the very first frame while in all subsequent frames dur-
ing on-line operation no true labels can be considered to be available. Thus, for tracking
the ideal learner is a semi-supervised method, which inherently is able to cope with both
labeled and unlabeled data.

5.1 On-line SemiBoost

On-line boosting for feature selection, as described above, is a fully supervised learn-
ing algorithm. In the following, we show how to extend on-line boosting to the semi-
supervised case using SemiBoost introduced in Chapter 4.

For our on-line variant of SemiBoost we adopt the combined loss function given in
Equation (4.3). For minimizing this loss we use on-line boosting for feature selection
as described above. In order to get weight and label estimates for unlabeled samples,
according to the formulation of SemiBoost, we have to calculate px and qx defined in
Eq. 4.9 and Equation 4.10, respectively. Yet, these terms cannot be evaluated directly due
to the sums over pairs of either labeled and unlabeled samples. Since we are in a pure
on-line setting we cannot access the whole training data at once. Hence, in the following
we show how to circumvent the pair-wise calculations in the on-line setting using several
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approximations.
First, we need a similarity measurement s(x, x′) in order to incorporate the unlabeled

data. As we mentioned in the previous chapter, in principle, s(x, x′) can be any similarity
function, also a matrix where the distances among the samples are encoded. However,
since in the on-line setting it is not possible to calculate such a matrix a priori, we learn
the similarity s(x, x′) ≈ F sim(x, x′) by a classifier using boosting similar to [Hertz et al.,
2004]. Furthermore, we only have to sum over the similarity of the current (unlabeled)
sample x and the set of positive or negative samples. Given the labeled samples in ad-
vance, we can train a classifier a priori which measures the similarity, to the positive or
negative class. If one of the samples is always positive this can be approximated by learn-
ing a classifier which has to describe the positive class

∑
xi∈X+ F sim(x, xi) ≈ F+(x), i.e.,

provides a probability measure that x corresponds to the positive class. In the same man-
ner, a classifier is built for the negative class

∑
xi∈X− F

sim(x, xi) ≈ F−(x). Instead of
learning generative classifiers, we propose to learn a discriminative classifier F P (x) which
has to distinguish between the two classes, i.e., F+(x) ∼ F P (x) and F−(x) ∼ 1−F P (x).
Since we use boosting to learn such a prior classifier, it can be translated into a probability
using p(y = 1|x) = (1 + e−H(x))−1.

Plugging this observations into the former definitions we get

p̃x ≈ e−Fn−1(x)
∑

xi∈X+

S(x, xi) ≈ e−Fn−1(x)F+(x) ≈ e−Fn−1(x)eF
P (x)

eFP (x) + e−FP (x)
, (5.1)

q̃x ≈ eFn−1(x)
∑

xi∈X−
S(x, xi) ≈ eFn−1(x)F−(x) ≈ eFn−1(x)e−F

P (x)

eFP (x) + e−FP (x)
. (5.2)

Since we are interested in the difference of the approximated values, we finally get the
“pseudo-soft-label”

z̃n(x) = p̃n(x)− q̃n(x) =
sinh(F P (x)− Fn−1)

cosh(F P (x))
= tanh(F P (x))−tanh(Fn−1(x)). (5.3)

It is now straight forward to extend SemiBoost to on-line boosting. As already stated
above, for the labeled examples (xn, yn), y ∈ {−1,+1} nothing changes. For each unla-
beled sample xn while propagating through the selectors, after each selector not only the
weight (the importance λn) of the example is adapted, but also its target yn may change.
Hence, for unlabeled samples in each iteration n, we set

ỹn = sign(z̃n(x)) and λn = |z̃n(x)|, (5.4)

where z̃n(x) is defined in Equation 5.3.
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Discussion As we have seen, by training a prior classifier F P from labeled samples a
priori provided, it is possible to include unlabeled data into the on-line boosting frame-
work using pseudo-labels and pseudo-importances. Note that if some labeled data is given
in advance, this data can be used to train the prior (or even update the prior when it arrives
over time). However, it should also be clear that the incorporation of prior knowledge
is not limited to a prior classifier and in principle any source of prior knowledge can
be incorporated. Our on-line semi-supervised boosting algorithm for feature selection is
sketched in Algorithm 5.1. As can be seen, compared to the original on-line boosting
algorithm [Grabner and Bischof, 2006] only a few lines of code have to be changed in
order to incorporate unlabeled data.

5.2 On Robustness of On-line Boosting

Currently, boosting is one of the best and thus one of the mostly applied classification
methods in machine learning. This is also true for the on-line variant, which is frequently
applied in practice. However, boosting is proven, from both the theoretical and the exper-
imental point of view to be sensitive to label noise. For off-line boosting, this issue was
discovered relatively early and, hence, different more robust methods [Maclin and Opitz,
1997, Mason et al., 1999, Dietterich, 1998, Friedman et al., 2000, Freund, 2000, Domingo
and Watanabe, 2000,Long and Servedio, 2008b,Masnadi-Shirazi and Vasconcelos, 2008]
have been proposed.

Although for on-line boosting robustness is highly important because it is frequently
applied in autonomous learning problems, in contrast to the off-line case, up to now this
issue has not been studied. Thus, in the following, we study the robustness of on-line
boosting for feature selection in terms of label noise. In particular, we follow the work of
Long et al. [Long and Servedio, 2008b], who showed that the loss function has not only
high influence to the learning behavior but also on the robustness. Especially convex loss
functions (typically used in boosting) are highly susceptible to random noise. Hence, to
increase the robustness the goal is to find more suitable less noise sensitive loss functions.
For that purpose, we first introduce a generic boosting algorithm, which we call On-
line GradientBoost, where arbitrary loss functions can be plugged in easily. In fact, this
method extends the GradientBoost algorithm of Friedman et al. [Friedman, 2001] and
is similar to the AnyBoost algorithm of Mason et al. [Mason et al., 1999]. Based on
this algorithm, we develop different on-line boosting methods using the loss functions
proposed for robust off-line boosting algorithms.

We talk about label noise, if a sample was assigned a wrong label during the labeling
process of the data. AdaBoost is highly susceptible to noise. This sensitivity comes from
the fact that AdaBoost increases the weight of a mis-classified sample in each iteration.
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Algorithm 5.1 On-line SemiBoost
Require: A training sample: (xn, yn) ∈ XL or (xn) ∈ XU .
Require: Prior knowledge: F P

Require: Number of selectors M .
Require: Number of weak learners per selector K.

1: Set the initial weight λm = e−yF (0) = 1

2: for m = 1 to M do
3: // Update weight estimation
4: if (xn, yn) ∈ XL then
5: ym = y, λm = e−yFm−1(x)

6: else
7: // Update pseudo label and weight
8: z̃m(x) = tanh(F P (x))− tanh(Fm−1(x))

9: ym = sign(z̃m(x)), λm = |z̃m(x)|
10: end if
11: for k = 1 to K do
12: Train kth weak learner fkm(x) with sample (xn, ym) and weight λm.
13: Estimate the error:
14: if fweakm,k (x) == y then
15: λcm,k = λcm,k + λk
16: else
17: λwm,k = λwm,k + λk
18: end if
19: ekm =

λwn,m
λcn,m+λwn,m

20: end for
21: Find the best weak learner with the least total weighted error: j = arg min

k
ekm.

22: Set fm(xn) = f jm(xn).
23: Set αm = 1

2
ln
(

1−em
em

)
24: end for
25: Output the final model: F (x)

This re-weighting strategy allows boosting to concentrate on hard samples while easy
samples are less emphasized. However, if the sample has a wrong label and the previous
weak learners are assigning the true (but hidden) label to the sample, AdaBoost still will
consider this as a mis-classification and dramatically (exponentially) increase its weight.
This can finally corrupt the learning result. Therefore, the performance of the boosting
algorithm will be highly dependent on the presence of such noisy samples.
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In the case of off-line boosting, Maclin and Optiz [Maclin and Opitz, 1997] were one
of the first to note the sensitivity of the AdaBoost algorithm [Freund and Schapire, 1996]
to label noise. Later, Dietterich [Dietterich, 1998] conducted more experimental studies
analyzing different ensemble building methods and also noted the sensitivity of AdaBoost
to label noise. Mason et al. [Mason et al., 1999] was one of the first to analyze boosting
algorithms in the context of functional gradient descent. They also proposed a theoreti-
cally inspired loss-function and a boosting algorithm using that loss called DoomII, which
showed increased robustness to label noise. Next, in their seminal work Friedman et
al. [Friedman et al., 2000] showed the connection of boosting algorithms to the stage-
wise additive logistic regression methods from the applied statistics domain. Based on
minimizing the negative log-likelihood, they proposed a loss-function and a correspond-
ing boosting algorithm called LogitBoost, which also showed to be more resistant to label
noise. Domingo and Watanabe [Domingo and Watanabe, 2000] and Freund [Freund,
2000] also investigated this issue by proposing the MadaBoost and BrownBoost methods,
respectively, which also try to decrease the label noise sensitivity of AdaBoost.

Random Noise Defeats all convex potential Boosters Fast forwarding to recent works
in this field, Long and Servedio [Long and Servedio, 2008b] analyzed different convex
loss-functions used in designing boosting algorithms and showed that from a theoretical
point of view all of these methods will be sensitive to the label noise. In more detail, con-
sider any boosting algorithm using a non-convex loss function. In case of no noise, there
exists a simple data set which is easily learnable by this boosting algorithm. However,
if there exists a nonzero random classification noise rate ν, the same data set cannot be
learned more accurately than 1

2
.

Definition 1. A function f : R → R is a convex potential function if it satisfies the
following properties:

1. f is convex and nonincreasing

2. f is differentiable and f ′ is continuous

3. f ′(0) < 0 and lim
x→∞

f(x) = 0

Many well known boosting algorithms are based on potential functions f that satisfy
the above Definition 1 and have thus problems with noise. Among these algorithms are
AdaBoost [Freund and Schapire, 1999], LogitBoost [Friedman et al., 2000] and Mad-
aBoost [Domingo and Watanabe, 2000]. For a detailed analysis and proof we refer the
reader to [Long and Servedio, 2008b].

However, we would like to highlight that there exist efficient boosting algorithms that
are based on non-convex loss functions such as Boosting by Majority [Freund, 1995],
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BrownBoost [Freund, 2000] or MartingaleBoost [Long and Servedio, 2005, Long and
Servedio, 2008a]. Also recently, Masnadi-Shirazi and Vasconcelos [Masnadi-Shirazi and
Vasconcelos, 2008] studied the problem of loss-function design from the perspective of
probability elicitation in statistics and, based on this, derived a non-convex loss-function
for boosting. This algorithm, denoted as SavageBoost, has shown to be highly resistant to
the presence of label noise while also converging fast in case of no noise.

5.2.1 Loss-Functions

By reviewing robust off-line boosting algorithms in the previous section, we can realize
that most of the efforts in order to remedy the noise sensitivity weakness of boosting has
been mainly focused on either heuristics or designing better loss-functions. However,
increased noise robustness based on heuristics has often the drawback the algorithm per-
forms worse compared to the original AdaBoost in situations without any label noise,
whereas better loss-function design has shown to yield algorithms that are more noise
robust but simultaneously do not perform worse compared to the original method in case
of no noise. Hence, in the following, we will concentrate on how to leverage the usage of
more robust loss functions for on-line boosting.

In Figure 5.1 we depict a few of the loss-functions commonly used in boosting and
other machine learning methods. The corresponding loss-functions used in this figure are
shown in Table 5.1. Here, y ∈ {−1,+1} are the binary labels of a sample x and F (x) is
the real output of the classifier with the decision rule of ŷ = sign(F (x)). Traditionally,
yF (x) is called the classification margin of a sample. For the binary case, i.e., y ∈
{−1,+1} the margin is defined as

m(x, y; f) = fy(x)− fk 6=y(x) (5.5)

It can easy be seen that the margin should be positive, i.e., m(x, y; f) for a correct
classification and negative in case of mis-classification, respectively. Based on the margin,
different boosting algorithms apply different loss functions `(x, y; f) that usually upper
bound the zero-one loss, i.e., `0−1(x, y; f) = I(m(x, y; f) ≤ 0) but are easier to optimize.

From Figure 5.1 it is clear that the main difference between these loss functions is
how they deal with mis-classified samples. There are two scenarios for mis-classification
of a sample:

1. The sample is noise-free and it is the learning model which is not able to classify it
correctly.

2. The sample has a label noise and the learning model is recovering its true (but
hidden) label.
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Figure 5.1: Different loss functions used in boosting and supervised machine learning
methods.

Losses Functions

0-1 Loss `0−1(yF (x)) = I(yF (x) < 0)

Exponential [Freund and Schapire, 1996] `exp(yF (x)) = exp(−yF (x))

Logit [Friedman et al., 2000] `log(yF (x)) = log(1 + exp(−yF (x)))

DoomII [Mason et al., 1999] `doom(yF (x)) = 1− tanh(yF (x))

Savage [Masnadi-Shirazi and Vasconcelos, 2008] `sav(yF (x)) = 1/(1 + exp(2yF (x)))2

Hinge `hin(yF (x)) = max(0, 1− yF (x))

Table 5.1: Loss functions used in Figure 5.1.

More specifically for a binary problem, let yn be a noisy label, i.e., yn = −yt, where
yt is the true label. If y = yt 6= ŷ, we have to consider the first case; if y = yn 6= ŷ (and
equally ŷ = yt), the second one. For both cases, the higher the confidence of the classifier
F (x) the more the margin will be located towards the left part of Figure 5.1.

It clearly can be seen that different loss functions behave differently in such situations
by covering different parts of the mis-classification spectrum. AdaBoost, which uses the
exponential loss, has the most aggressive penalty for a mis-classification. This justifies
why AdaBoost dramatically increases the weight of mis-classified samples. Going further,
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one can see that Logit and Hinge losses are less aggressive and their penalty increases
linearly on the left side of the figure. In contrast, DoomII and Savage follow totally
different strategies. First, their loss-functions are non-convex. Second, they almost give
up on putting pressure over the classifier when there is a severe mis-classification (i.e.,
F (x) is large). Notably, DoomII gives up much earlier but maintains a higher overall
penalty compared to the Savage loss.

5.2.2 On-line GradientBoost

To allow a comparison of different loss functions, we propose an on-line formulation of
the GradientBoost [Friedman, 2001] for feature selection, which we call On-line Gradi-
entBoost. GradientBoost performs stage-wise functional gradient descent over a given
loss function [Mason et al., 1999, Friedman et al., 2000, Friedman, 2001]. For an illustra-
tion see also Figure 5.2. More specifically, for a loss `(·), we want to find a set of base
functions or weak learners {f1(x), · · · , fM(x)} and their corresponding boosting model

F (x) =
M∑
m=1

fm(x) (5.6)

which minimizes this loss.

(a) Gradient Descent (b) Functional Gradient Descent

Figure 5.2: Comparison of common gradient descent (a) and functional gradient descent
(b).

Given a loss function `(·) and a training dataset, X = {(x1, y1), · · · , (xN , yN)}, xn ∈
RD, yn ∈ {−1,+1}, the empirical loss is

L(F (x)) =
N∑
n=1

`(ynF (xn)). (5.7)
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According to the gradient descent principle in optimization, at stage t of Gradient-
Boost, we are looking for a base function which has the maximum correlation with nega-
tive direction of the loss function. This can be written as

ft(x) = arg max
f(x)

−∇LTf(x), (5.8)

where ∇L is the gradient vector of the loss at Ft−1(x) =
∑t−1

m=1 fm(x). This can be
simplified to

ft(x) = arg max
f(x)

−
N∑
n=1

yn`
′(ynFt−1(xn))f(xn). (5.9)

where `′(·) shows the derivatives of the loss with respect to Ft−1.
This can also be written as the maximum projection of the weak learner on to the

negative gradient via the inner product:

ft(x) = arg max
f∈F
〈−∇LT (X , f(X )〉, (5.10)

whereF = {f1, . . . , fm} is the set of weak learners. See also Figure 5.3 for an illustration
of the resulting boosting principle.

The sample weights are calculated as wn = −`′(ynFt−1(xn)). Thus, the optimization
is equivalent to maximizing the weighted classification accuracy

ft(x) = arg max
f(x)

N∑
n=1

wnynf(xn). (5.11)

Figure 5.3: Illustration of Gradient Boosting.
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On-line Learning

Based on these derivations, we propose an on-line version of GradientBoost, which we
show in Algorithm 5.2. As in [Grabner and Bischof, 2006] we keep a fixed set of weak
learners and perform boosting on the selectors. The mth selector maintains a set of K
weak learners Sm = {f 1

m(x), · · · , fKm (x)} and at each stage it selects the best performing
weak learners. The optimization step Equation (5.11) is then performed iteratively by
propagating the samples through the selectors and updating the weight estimate λm ac-
cording to the negative derivative of the loss function. Thus, the algorithm is independent
of the used loss function.

Algorithm 5.2 On-line GradientBoost
Require: A training sample: (xn, yn).
Require: A differentiable loss function `(·).
Require: Number of selectors M .
Require: Number of weak learners per selector K.

1: Set F0(xn) = 0.
2: Set the initial weight wn = −`′(0).
3: for m = 1 to M do
4: for k = 1 to K do
5: Train kth weak learner fkm(x) with sample (xn, yn) and weight wn.
6: //Compute the error
7: ekm ← ekm + wnI(sign(fkm(xn)) 6= yn).
8: end for
9: Find the best weak learner with the least total weighted error: j = arg min

k
ekm.

10: Set fm(xn) = f jm(xn).
11: Set Fm(xn) = Fm−1(xn) + fm(xn).
12: Set the weight wn = −`′(ynFm(xn)).
13: end for
14:

15: Output the final model: F (x)

In Figure 5.4 we plot the functions for the weight updates for different popular loss
functions. As can be seen, the exponential loss has an unbounded weight update function,
while all other loss functions are bounded between [0, 1]. Most importantly, Logit and
Hinge weight update functions saturate at 1, as the margin decreases, while the weights
of Doom and Savage fades out. This also illustrates the success of SavageBoost on noisy
samples; i.e., in contrast to AdaBoost if a sample is misclassified with high accuracy it is
not incorporated into the learning with exponentially growing weight but it is considered
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as outlier and the weight is thus decreased. LogitBoost can be considered as lying between
these two extremes; i.e., if a sample is misclassified with high accuracy the logit-loss
neither increases the weight nor decreases the weight but keeps it constant to one.

Figure 5.4: Weight update functions for different loss functions.

5.2.3 Competitive Study

In this section, we will conduct a competitive study with the proposed on-line Gradi-
entBoost on machine learning data in order to study the influence of the different loss
functions. Therefore, we chose 8 benchmark datasets from UCI and LIBSVM reposito-
ries, which are shown in Table 6.1. We compare the performance of on-line AdaBoost and
GradientBoost by using exponential, Logit, DoomII, and Savage losses. Note, when using
exponential loss, we get the on-line formulation of RealBoost of Friedman et al. [Fried-
man et al., 2000]. For these experiments, we randomly introduce label noise into the
training set and train the on-line classifiers for 5 epochs. We repeat all these experiments
for 3 times and report the average test errors.

We also repeat these experiments for two different kinds of weak learners, i.e., (i)
decision stumps which assume the feature responses being Gaussian distributed, where
the means µ+, µ− and the standard deviations σ+, σ− are estimated with the help of
a Kalman filter [Grabner and Bischof, 2006], and (ii) fixed-binned on-line histograms.
Some variants of on-line GradientBoost, e.g., RealBoost, need confidence-rated weak
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predictions which can be easily calculated using on-line histograms as weak learners.
Following [Friedman et al., 2000] we use the probabilistic output of the classifier in form
of

f(x) =
1

2
log

p+(x)

1− p+(x)
, (5.12)

where p+(x) is the probability of a sample to be positive. Histograms can also inherently
describe multi-modal distributions, which as we show in the experiments is also helpful
for algorithms which in principle do not require confidence-rated predictions.

In total we conducted 192 experiments per classifier, which hopefully shows clearly
which methods perform best in presence of noise. For multi-class datasets, we used an
one-vs-all strategy and incorporated the ratio between positive and negative samples in
the initial weight of samples.

Dataset # Train # Test # Class # Feat.

DNA 1400 1186 3 180

Letter 15000 5000 26 16

Magic 9510 9510 2 10

Pendigits 7494 3498 10 16

SatImage 3104 2000 6 36

Shuttle 30450 14500 7 9

Splice 1000 2175 2 60

USPS 7291 2007 10 256

Table 5.2: Datasets used in machine learning experiments.

Figures 5.5(a) and 5.5(b) show the test error with respect to the amount of label noise
in the training set for each classifier and each dataset by using stumps and histograms,
respectively. The main outcome of these experiments is that on average On-line Gradi-
entBoost using Logit or Savage losses performs best. Even though using the DoomII loss
function provides excellent results outperforming the others for some datasets, the results
obtained by using Logit and Savage loss-functions are consistently among the best.

Additionally, as it can be seen, the Real loss-function does not perform very well when
using stumps, but is competitive when the weak learner is switched to histograms. The
reason for this behavior could be attributed to the fact that stumps are not able to return
probabilistic outputs which are required by on-line GradientBoost losses. By referring to
Figure 5.4, we can see that for the Real loos-function does not provide a bounded weight
update function, and therefore, without a probabilistic estimates, the sample weights grow
unbounded. Additionally, by comparing these two figures it becomes clear that, in gen-
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eral, histograms are better than stumps; especially, for AdaBoost and RealBoost signifi-
cant improvements can be achieved.

Figure 5.6 shows the number of wins for each classifier over different noise levels
over all datasets and weak learners. As can be seen, SavageBoost wins more than all
other methods, but LogitBoost gains more and more wins if the noise level is increased,
while SavageBoost has no win when the noise level is at its maximum.

5.2.4 Autonomous Training of Scene-Specific Person Detectors

Finally, we analyze on-line boosting when learning object detectors based on co-training
[Blum and Mitchell, 1998]. The idea is to train a scene-specific highly accurate and com-
pact classifier with a limited amount of labeled data. The usefulness of such an approach
has been demonstrated by Levin et al. [Levin et al., 2003] using off-line boosting and by
Javed et al. [Javed et al., 2005] using the on-line version proposed by Oza. As we re-
viewed in Section 3.5, for co-training two initial classifiers h1 and h2 are trained on some
labeled data DL. Then, these classifiers update each other using an unlabeled data set
DU based on their confidence-rated predictions. Abney [Abney, 2007] showed that co-
training classifiers aim to minimize the error on the labeled samples while increasing the
agreement on the unlabeled data. Thus, the unlabeled data helps to improve the margin of
the classifiers and to decrease the generalization error. However, in this way also wrong
updates may be performed, which arises the need for robust methods. Co-training is thus
a perfect application to test the practical impact of robust learners.

Therefore, we compared on-line GradientBoost to a state-of-the-art on-line AdaBoost [Grab-
ner and Bischof, 2006] classifier for training scene-specific person detectors. For Gradi-
entBoost, we chose the logistic loss, since the theoretical considerations as well as ex-
perimental results on the machine learning data show that this loss can be considered a
suitable trade-off between accuracy and robustness. Note that we skipped the results for
Savage-loss since it performs similar to the logit-loss. We also use histograms with 32
bins as weak learners. For both, AdaBoost and GradientBoost, the same implementation
framework with the same features was used. Since the main purpose of this experiment
is the comparison of the two on-line algorithms for the detection task, we only use sim-
ple Haar-features [Viola and Jones, 2002a], and generate the different feature “views” via
randomly subsampling from a large overcomplete feature set. For both on-line boosting
methods we used 50 selectors each of them having 150 features. Note that [Levin et al.,
2003, Javed et al., 2005] trained two classifiers using two different representations, one
for gray-value images and the other from background subtracted images.

In particular, we trained the initial classifiers using only 25 labeled positives samples,
which are then updated by on-line co-training. To demonstrate the learning progress,



5.2. On Robustness of On-line Boosting 75

(a) Stumps

(b) Histograms

Figure 5.5: Results of the machine learning experiments when (a) stumps and (b) his-
tograms are used as weak learners: test error is shown with respect to the label noise
level. Classifiers: AdaBoost (blue), Real (green), Logit (red), DoomII (cyan), Savage
(magenta).
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(a) Stumps (b) Histograms

Figure 5.6: Different number of wins for the machine learning experiments when (a)
stumps and (b) histograms are used as weak learners: test error is shown with respect
to the label noise level. Classifiers: AdaBoost (blue), Real (green), Logit (red), DoomII
(cyan), Savage (magenta).

after a pre-defined number of processed training frames t we saved a classifier (i.e., t = 0,
t = 250, t = 500, and t = 750), which was then evaluated on an independent test
sequence (i.e., the current classifier was evaluated but no updates were performed!). To
analyze the detection results, we compare precision-recall-curves (RPC) obtained from
a a 50% overlap criterion. The corresponding curves for AdaBoost and GradientBoost are
illustrated in Figure 5.7(a) and Figure 5.7(b), respectively. It clearly can be seen that using
the non-robust learner the system fails completely. In fact, the wrong updates cannot be
handled and the classifier is degraded. In contrast, even starting from a similar initial
level, using GradientBoost, finally, a competitive classifier can be obtained.

Discussion We have seen that boosting is highly susceptible to noisy data. Nevertheless,
the on-line version is often used in self-learning applications where an adaptive learner is
needed but noise is an inherent problem. For the off-line case in principle there exist two
approaches to remedy the sensitivity to noise; i.e., heuristics and the design of smarter
loss-functions. As heuristics often perform well in case of noise they have the problem
that they usually cannot take pace with AdaBoost in case of “clean” training samples
whereas smarter loss function design has shown to fulfill this requirement. Therefore, we
introduced on-line GradientBoost that provides a flexible way of using any robust loss
and demonstrated in the experiments that in practice this can lead to much better results.
Thus, in the following we will incorporate the gained insights of this section and propose
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(a) AdaBoost (b) GradientBoost

Figure 5.7: Co-training using (a) the non-robust on-line AdaBoost algorithm and (b) the
robust On-line GradientBoost algorithm.

a more robust semi-supervised boosting method based on the logistic loss.

5.3 On-line SERBoost

Based on the above introduced on-line GradientBoost, we now can also develop an on-
line semi-supervised boosting algorithm that performs functional gradient descent and
is thus able to incorporate arbitrary loss functions. Since for the off-line case, SER-
Boost [Saffari et al., 2008] is a popular semi-supervised boosting algorithm that is based
on GradientBoost (see also Section 3.7.1) it is also a promising candidate for our on-line
semi-supervised method. However, SERBoost as proposed in [Saffari et al., 2008] uses
the exponential loss. Hence, in the following we first derive SERBoost for the logistic
loss and then present the on-line version.

In detail, we use the following log-likelihood for the loss over labeled samples

Ll(X L) =
∑

(x,y)∈Xl

log
(
1 + e−2yF (x)

)
(5.13)

=
∑

(x,y)∈XL
log
(
e−yF (x)(eyF (x) + e−yF (x))

)
=

∑
(x,y)∈XL

−yF (x) + log
(
eF (x) + e−F (x)

)
.

SERBoost performs SSL based on given priors which encode designed assumptions
over the unlabeled data. [Saffari et al., 2008] use the Kullback-Leibler (KL) divergence
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between the prior probability and the optimized model in order to define the loss function
for the unlabeled data. The optimization reduces to minimizing the cross entropy

H(Pp, P ) = −
∑

z∈{−1,1}

Pp(y = z|x) logP (y = z|x)

= − (2Pp(y = 1|x)− 1)︸ ︷︷ ︸
yp(x)

F (x) + log
(
eF (x) + e−F (x)

)
.

(5.14)

Thus, the loss over unlabeled samples results in

Lu(X U) =
∑
x∈XU

H(Pp, P̂ ) =
∑
x∈XU

−yp(x)F (x) + log
(
eF (x) + e−F (x)

)
. (5.15)

Here, yp(x) = 2Pp(y = 1|x)− 1 ∈ [−1, 1] is the prior soft label. For the prior proba-
bility Pp(y = 1|x) any available prior information can be used. Since the formulation of
Equation (5.15) is the logit loss of Eq (5.13) in case the prior soft label yp(x) is casted to
a hard label ∈ {−1, 1}, we do not further pass it to an exponential function as in [Saffari
et al., 2008]. As a result, both labeled and unlabeled loss are based on a coherent logistic
function.

5.3.1 On-line learning

In order to minimize the loss we use the on-line GradientBoost as introduced above. As
Grabner et al., we keep a fixed set of weak learners and perform boosting over the selec-
tors. The semi-supervised loss is iteratively optimized by propagating the samples through
the selectors and updating the weight estimate λm according to the negative derivative of
the loss. Hence, we need to compute the negative gradients aij with respect to the current
classifier of the logit loss function:

ax(z) =
∂ zF (x)− log

(
eF (x) + e−F (x)

)
∂F (x)

= z − tanh(F (x)), (5.16)

where z is either the hard label y for labeled samples, or the soft prior label yp(x) for
unlabeled samples. Therefore, the update rule for unlabeled samples can be written as

∀x ∈ X U :wx = |yp(x)− tanh(F (x))|
ŷx = sign (yp(x)− tanh(F (x)))

We depict a summary of the update rules for unlabeled samples depending on popular
loss functions in Table 5.3 and show the entire algorithm in Algorithm 5.3.
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Dataset KL-Exponential [Saffari et al., 2008] KL

wU
x ← |yp(x) cosh(F (x))− sinh(F (x))|e−ypF (x) |yp(x)− tanh(F (x))|

ŷx ← sign(yp(x) cosh(F (x))− sinh(F (x))) sign(yp(x)− tanh(F (x)))

Table 5.3: Comparison of update rules depending on different loss functions; i.e., expo-
nential and logit loss.

5.4 Machine Learning Experiments

In this set of experiments, we evaluated on-line SemiBoost and on-line SERBoost on stan-
dard semi-supervised benchmark data sets taken from [Chapelle et al., 2006] 1. The data
consists of both artificial and real-life data. Furthermore, on some data sets the cluster
assumption holds while on some the manifold assumption holds. A summary of the data
sets is presented in Table 5.4. We compared our methods to supervised off-line variants
of nearest neighbor (1-NN), SVM and AdaBoost. We used LaRank SVM [Bordes et al.,
2007] on-line GradientBoost with logistic loss (OLogitBoost) [Leistner et al., 2009a] as
well as standard on-line boosting (OAdaBoost) [Grabner and Bischof, 2006] with LaRank
as weak learners. For semi-supervised comparison we took the off-line versions of SER-
Boost [Saffari et al., 2008], ManifoldBoost [Loeff et al., 2008] and TSVM [Joachims,
1999]. For both on-line and off-line SERBoost we used k-means clustering as prior. For
SemiBoost we used the Euclidean distance in order to calculate Sij , with σ set using
5-fold cross validation. For all boosting methods we used 50 weak learners. For gradient-
based methods we set the shrinkage factor to ν = 0.1. The importance λ of the unlabeled
data was set to 0.1. We present the results in Table 5.5.

As can be seen, both on-line SemiBoost and on-line SERBoost are competitive SSL
methods and both are able to match the results of their off-line counterparts. As expected,
SemiBoost has slight advantages on manifold-like data sets while SERBoost performs
very well on cluster-based data sets. Interestingly, OSemiBoost is able to match the per-
formance of OSERBoost on g241c, a manifold-based set, with l = 10 and OSERBoost is
able to outperform OSemiBoost on Digit1, a cluster-based set, with l = 10.

5.5 Summary and Conclusion

In this chapter, we introduced a novel on-line semi-supervised boosting algorithm based
on SemiBoost. The algorithm is thus called on-line SemiBoost. We further illustrated
that one of the major drawbacks of current boosting algorithms, both off-line and on-line,

1 http://www.kyb.tuebingen.mpg.de/ssl-book
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Algorithm 5.3 On-line SERBoost with logistic loss
Require: A training sample: (xn, yn) ∈ XL or (xn) ∈ XU .
Require: Prior knowledge: ∀(xi, yi) ∈ XU , y : Pp(y|x)

Require: Number of selectors M .
Require: Number of weak learners per selector K.

1: Set F0(xn) = 0.
2: if (xn, yn) ∈ XL then
3: Set the initial weight wn = 1

2

4: else
5: Set the initial weight wUn = |yp(xi)− tanh(0)| = |yp(xi)|.
6: Set the initial label ŷn = sign (yp(xn)).
7: end if
8: for m = 1 to M do
9: if (xn, yn) ∈ XL then

10: Set the weight wn = 1
1+eynFm(xn)) .

11: else
12: // Estimate unlabeled weights and pseudo labels
13: Set the weight wPn = |yp(xi)− tanh(ynFm(xn))|.
14: Set the label ŷn = sign (yp(xi)− tanh(ynFm(xn)).
15: end if
16: for k = 1 to K do
17: Train kth weak learner fkm(x) with sample (xn, yn) and weight wn.
18: //Compute the error
19: ekm ← ekm + wnI(sign(fkm(xn)) 6= yn).
20: end for
21: Find the best weak learner with the least total weighted error: j = arg min

k
ekm.

22: Set fm(xn) = f jm(xn).
23: Set Fm(xn) = Fm−1(xn) + fm(xn).
24: Set the weight wn = 1

1+eynFm(xn)) .
25: end for
26:

27: Output the final model: F (x)

is that they are highly susceptible to class label noise and that this is mostly due to the
usage of non-robust loss functions. Based on this insight we proposed an on-line version
of GradientBoost, which performs boosting as functional gradient descent and allows for
easy incorporation of robust loss functions. Based on on-line GradientBoost we further
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Dataset # Samples Dimension # Class Comment

BCI 400 117 2 manifold

Digit1 1500 241 2 manifold

g241d 1500 241 2 cluster

g241c 1500 241 2 cluster

Table 5.4: Data sets for the machine learning experiments.

Method
Manifold-like Cluster-like

l=10 l=100 l=10 l=100
BCI Digit1 BCI Digit1 g241c g241d g241c g241d

Supervised Methods
SVM 49.85 30.6 34.31 5.53 47.32 46.66 23.11 24.64
1-NN 49 13.65 48.67 3.89 47.88 46.72 43.93 42.45

OAdaBoost 46.9 18.9 24.6 8.2 36.1 42.7 22.8 26.1
LaRank 46.9 18.9 25.6 9.5 36.1 42.7 23.4 26.1
OLogitBoost 46.5 18.9 24.5 8.3 35.9 42.7 22.7 26.3

Semi-Supervised Methods
TSVM 49.15 17.77 33.25 6.15 24.71 50.08 18.46 22.42
ManifoldBoost 47.12 19.42 32.17 4.29 42.17 42.8 22.87 25
SERBoost 46.9 15 49 13.1 13.1 4.4 13.2 4.4
SemiBoost-RF 49.77 10.57 47.12 2.56 48.41 41.26 47.19 39.14

OSemiBoost 37.1 19.1 26.3 5.1 12.9 38.6 16.5 4.4
OSERBoost 42.5 16.7 29 14.9 12.9 4.4 14.2 4.4

Table 5.5: Classification error on semi-supervised learning benchmark data sets for 10
and 100 labeled samples, respectively. The upper half evaluates super-vised methods,
the lower part semi-supervised approaches. For both supervised and semi-supervised
approches, we depict results achieved both off-line and on-line. The best performing
method is marked bold.

proposed on-line SERBoost using logistic loss functions and thus allows the usage of
more robust loss functions for on-line semi-supervised boosting. In Chapter 9, we will
depict detailed evaluations of the methods for the task of object tracking.
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Chapter 6

Semi-Supervised Random Forests

I n Chapter 3, we have seen that there exist various semi-supervised learning approaches,
many of them based on two of the most successful learning algorithms in the machine

learning field, i.e., support vector machines [Schoelkopf and Smola, 2002] and boost-
ing [Freund and Schapire, 1999]. Yet, as we discussed in Chapter 2, for supervised learn-
ing, recently random forests [Breiman, 2001] emerged as an interesting alternative to
SVMs and boosting. What makes random forests interesting, especially to computer vi-
sion, is their speed during both training and evaluation along with the fact that they are
perfectly suitable for multi-core architectures. In addition, they are inherently multi-class
and are more noise tolerant than other state-of-the-art methods, especially compared to
boosting.

However, random forests suffer from the same disadvantages as other popular dis-
criminative learning methods: they need a huge amount of labeled data in order to achieve
good performance. Even worse, due to their bagging and tree nature it has been shown [Caru-
ana et al., 2008] that on many data sets they even demand more training data than other
methods in order to develop their full potential and to outperform competitive approaches.
This rises the suggestion that RFs would presumably benefit even more from large amounts
of unlabeled data than competitive methods.

In this chapter, we propose a novel semi-supervised learning algorithm for RFs al-
lowing the algorithm to make use of both labeled and unlabeled training data. In fact,
the beneficial characteristics of random forests as stated above make them also interest-
ing candidates for semi-supervised learning. Especially their ability to handle multi-class
tasks makes RFs very attractive for SSL problems because most previous semi-supervised
methods only focus on binary problems. Multi-class problems are often decomposed to
a set of binary tasks with 1-vs-all or 1-vs-1 strategies. Considering the fact that most of
the state-of-the-art SSL methods have high computational complexity, such a strategy can
become a problem when dealing with a large number of samples and classes.

83
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6.1 Semi-Supervised Learning with Random Forests

As discussed in Chapter 3, there exist various regularization approaches to semi-supervised
learning, where the large-margin-assumptions and manifold assumptions are the most
popular ones. Since we target applications with a large amount of data and manifold
regularization leads to algorithms that are at least quadratic, i.e. O(n2), in terms of the
number of samples, in this work, we chose to use a maximum margin approach. In partic-
ular, we propose to exploit the additional unlabeled data in order to maximize the margin
over the entire random forest. As RFs are multi-class classifiers, in the following we will
define the margin maximizing properties of decision trees for multi-class problems and
subsequently define the margin over the unlabeled samples.

Based on this max-margin definition we incorporate the hidden labels of unlabeled
samples as additional optimization variables. Our overall optimization problem will then
become non convex. In order to solve this problem, we use a deterministic annealing-style
optimization strategy which preserves the diversity among the trees and, due to its random
nature, both fits perfectly to the nature of randomized trees and does not slow-down the
training speed significantly.

6.1.1 Margin for Multi-Class Classification

Recently, Zou et al. [Zou et al., 2008] extended the concept of Fisher-consistent loss
functions [Lin, 2004] from binary classification to the domain of multi-class problems.
This concept provides an understanding about the success of margin-based loss functions
and their statistical characteristics.

Let g(x) = [g1(x), · · · , gK(x)]T be a multi-valued function; i.e., in our case the pre-
diction function of the random forest. g(x) is called a margin vector, if

∀x :
K∑
i=1

gi(x) = 0. (6.1)

In such a case, one can define the margin for the ith class as gi(x) and the true margin as
gy(x). For a Fisher consistent loss function, this quantity is naturally linked to the optimal
Bayes’ decision rule [Zou et al., 2008]; which means that all learners that are based on
Fisher consistent loss functions and are able to minimize them inherently approximate
Bayes’ decision rule.

We define a loss function `(gy(x)) to be a margin maximizing loss if `(gy(x)) is
differentiable and for the first derivative `′(gy(x)) ≤ 0 for all values of gy. Therefore, an
optimization based on this kind of loss functions will lead to maximizing the true margin.
In this respect, the exponential loss of boosting, the hinge loss of SVMs, and the negative
log-likelihood loss of statistical models are all margin maximizing loss functions.
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For decision trees, local tests at each node are selected based on a score which mea-
sures the purity of the node. As we have seen in Chapter 2, usual choices are the entropy
(L(Rj) = −

∑K
i=1 p

j
i log(pji )) or the Gini index (L(Rj) =

∑K
i=1 p

j
i (1 − pji )), where pji

is the label density of class i in node j. In the following Theorem, we relate such scores
to multi-class margin maximizing loss functions and show that one can pick any margin
maximizing loss function and derive a local score measurement.

Theorem 6.1.1. Given a margin maximizing loss function `(gy(x)), the local score for a
decision nodeRj is defined as L(Rj) =

∑K
i=1 p

j
i `(p

j
i − 1

K
).

Proof: We can write the empirical loss at this node as

L(Rj) =
1

|Rj|
∑

(x,y)∈Rj

`(gy(x)). (6.2)

Defining the margin vector as gj(x) = [pj1 − 1
K
, · · · , pjK − 1

K
]T , we can develop the

empirical loss as

L(Rj) =
1

|Rj|
∑

(x,y)∈Rj

K∑
i=1

I(y = i)`(pji −
1

K
)

=
1

|Rj|

K∑
i=1

`(pji −
1

K
)
∑

(x,y)∈Rj

I(y = i)

=
K∑
i=1

pji `(p
j
i −

1

K
).

2

Using the results of Theorem 6.1.1, we can see that the entropy score minimizes the
calibrated negative log-likelihood while the Gini index is related to the hinge loss func-
tion. Thus, we can conclude that traditional decision trees greedily optimize multi-class
maximum margin criteria.

6.1.2 Margin for the Unlabeled Data

Now that we have a better understanding with respect to the maximum margin behavior
of the decision trees, the extension of this concept to unlabeled data is straight-forward.
In the absence of a label, there is no known true margin, therefore, we define the margin
as:

mu(xu) = max
i∈Y

gi(xu). (6.3)
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Note that the predicted label for an unlabeled sample is C(x) = arg max
i∈Y

gi(xu). Hence,

this is equivalent to the margin of the labeled samples, given in Eq (2.14), but only using
the predicted label.

6.1.3 Learning

Similar to the traditional regularization-based semi-supervised learning methods, we also
regularize the loss for the labeled samples with a loss over the unlabeled samples. Based
on the definition of the margin for unlabeled samples, we use the same loss function used
to grow the trees in a forest also to be the loss for the unlabeled samples. We can write
the overall loss as

L(g) =
1

|Xl|
∑

(x,y)∈Xl

`(gy(x))+

+
α

|Xu|
∑
x∈Xu

`(mu(x)), (6.4)

where α defines the contribution rate of the unlabeled samples.
Note that when training only on labeled data, usually convex loss functions are used

(standard RF algorithm). Using additional unlabeled data makes the loss non-convex
because also the hidden labels ŷu of the unlabeled samples have to be optimized. In fact,
due to the integer values of ŷu the problem is a type of integer programming which is
NP-complete [Boyd and Vandenberghe, 2004]. Thus, we need a (global) optimization
method over the forest that is highly resistant to local minima.

6.1.4 Optimization

In this work, we formulate the optimization process in a deterministic annealing (DA)
framework. DA is a homotopy method where an eventually difficult combinatorial op-
timization problem is rewritten in an easier form and then gradually deformed to its
original version [Rose, 1998]. It emerged from simulated annealing optimization tech-
niques [Kirkpatrick et al., 1983] which is based on a sequence of random moves and
the cost to accept a move depends on the cost of changing the current state. The fre-
quency of the random moves is reduced from high values to zero depending on an an-
nealing schedule which successively reduces a so called temperature parameter T , i.e.,
T0 > T1 > . . . > T∞ = 0. Theoretically, simulated annealing can find a global min-
imum, however, using unrealistic annealing schedules. Deterministic annealing, as the
name suggests, brings determinacy into to annealing process by replacing stochastic sim-
ulations by the use of expectation. In particular, one tries to minimize the entropy H of
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the distribution p in form of:

p∗ = arg min
p∈P

Ep(F(y))− TH(p), (6.5)

where P is a space of probability distributions and F(y) is our objective function. The
optimization problem is than gradually deformed to its original form using a cooling
parameter T. In more detail, in a first step the discrete variables are treated as random
variables over which a space of probability distributions is defined. In the second step,
the original problem is replaced by a continuous optimization term. Although DA cannot
guarantee a global optimal solution, the method has proven to be a both fast and robust
optimization technique which is able to avoid poor local minima. Note that Sindhwani
et al. [Sindhwani et al., 2006] used a similar approach for developing a semi-supervised
kernel machine. Using DA, we treat unknown labels of the unlabeled samples as addi-
tional optimization variables. Additionally, the random nature of DA allows us to keep
high diversity among the trees, which is a necessity (as can be seen in Equation (2.16))
for an improvement of the generalization error of the forest.

Based on that, we propose to optimize a regularized loss function with the usage of
deterministic annealing. Note that it is not straight-forward to directly apply those ideas
to RFs. Firstly, during the training of RFs, the only place where a loss function is used
is when selecting a test for a decision node. Since the pool of tests are mainly generated
randomly, the overall quality of the chosen decision test is not an important factor (i.e., we
are not looking for the best possible decision test, but for a test that performs sufficiently
well). Hence, the effect of directly implementing a regularization term inside the local
decision nodes is very small, if any. Therefore, we circumvent node-level regularization
and apply deterministic annealing on the forests level, however, still training each tree
independently.

6.1.4.1 Deterministic Annealing

We apply deterministic annealing to iteratively solve Equation (6.4), by introducing a
distribution over the predicted labels of unlabeled samples, p̂, and enforcing a controlled
uncertainty into the whole optimization process. We write the new loss function as

LDA(g, p̂) =
1

|Xl|
∑

(x,y)∈Xl

`(gy(x))+ (6.6)

+
α

|Xu|
∑
x∈Xu

K∑
i=1

p̂(i|x)`(gi(x))+

+
T

|Xu|
∑
x∈Xu

K∑
i=1

H(p̂),
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where T is the temperature parameter and H(p̂) = −
∑K

i=1 p̂(i|x) log(p̂(i|x)) is the en-
tropy over the predicted distribution. Note that when the temperature is high, the domi-
nating term is the entropy which needs to be minimized. Hence, at such stages, the model
will maintain a large amount of uncertainty. As the system cools down, by decreasing the
temperature T 7→ 0, the optimization process will mainly operate over the original loss
function Eq (6.4).

For a given temperature level, the learning problem can be written as

(g∗, p̂∗) = arg min
g,p̂

LDA(g, p̂). (6.7)

We split this optimization problem up into a two-step convex optimization problem analog
to an alternating coordinate descent approach. At the first step, we fix the distribution
p̂ and optimize the learning model. In the second step, we treat the hidden labels of
unlabeled samples as random binary variables. These random variables are defined over
a space of probability distributions P . We then search distributions p̂ ∈ P over our
unlabeled data which solve our optimization problem in Equation (8.3). Note again that
both individual steps are convex optimization problems.

In detail, for a given distribution over the unlabeled samples, we randomly choose a
label according to p̂. We repeat this process independently for every tree in the forest. At
this stage, the optimization problem for the nth tree becomes

g∗n = arg min
g

1

|Xl|
∑

(x,y)∈Xl

`(gy(x))+

+
α

|Xu|
∑
x∈Xu

`(gŷu(x)), (6.8)

where ŷu is the randomly chosen label for this sample according to the distribution p̂.
Since the margin maximizing loss function is convex, this loss function is also convex.

After we trained the random forest, we enter the second stage where we find the
optimal distribution according to

p̂∗ =arg min
p̂

α

|Xu|
∑
x∈Xu

K∑
i=1

p̂(i|x)`(gi(x))+

+
T

|Xu|
∑
x∈Xu

K∑
i=1

p̂(i|x) log(p̂(i|x)). (6.9)

For each sample, we can take the derivatives w.r.t. each class of the distribution and set
them to zero to find the optimal solution. In detail, we define:

hi(p̂,x) = p̂(i|x)(α`(gi(x)) + T log(p̂(i|x))). (6.10)
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The derivatives of this function can be written as

dhi
dp̂i

= α`(gi(x)) + T log(p̂(i|x)) + T. (6.11)

By setting the derivatives to zero, we get

p̂∗(i|x) = exp(−α`(gi(x)) + T

T
)/Z(x), (6.12)

where Z(x) =
∑K

i=1 p̂
∗(i|x) is the partition function. Note again that when the tempera-

ture is high, the distribution is close to a uniform distribution, while at very low tempera-
tures it simulates a Dirac delta function, which is the hard decision rule of Equation (2.13)
over the unlabeled data.

6.1.5 Airbag

As we have discussed in Section 3.2, in semi-supervised learning there is no guarantee
that unlabeled data always helps, for instance, if the problem structure is badly matched,
if the unlabeled data is corrupted or from a different distribution, etc.. A nice aspect of
random forests is that we can directly monitor the strength of the ensemble by measuring
the OOBE for the entire forest at each iteration (see also Section 2.4.2). By considering
Equation (2.16) we can see that the strength of the forest has an inverse relationship with
the generalization error (i.e., the stronger the forest, the lower is its error). Furthermore,
the OOBE has shown to be a good estimate of the generalization error [Breiman, 1996b].
This means we can use the OOBE to estimate our model parameters. Note that this is
similar to performing n-fold cross-validation; however, in random forests the OOBE is
inherently provided along the learning without any additional steps or costs.

This means that we can also use the OOBE in order to measure the influence when
learning from unlabeled data; i.e., measure if it helps or it does not help. However, one
problem that might occur with this approach is that due to [Breiman, 1996b] the OOBE
is only a low-bias estimate for the generalization error if we have enough data and this is
mostly not the case in SSL. Fortunately, over the iterations of the deterministic annealing
process and as we will see in the experiments, even if the OOBE does not perfectly reflect
the real test error, the development of the OOBE corresponds to the dynamics of the real
error.

Hence, we propose to monitor the dynamics of the OOBE of the ensemble in order to
estimate the influence of the unlabeled data. In more detail, let emF be the OOBE of the
forest at iteration m. Then we monitor the improvements measured by em−1

F − emF and if
this is not positive after a few trials, we stop the training and discard the latest forest.
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Algorithm 6.1 Semi-supervised Random Forests
Require: A set of labeled, Xl, and unlabeled data Xu.
Require: The size of the forest: N .
Require: A starting heat parameter T0 and a cooling function c(T,m)

1: Train the RF: F ← trainRF(Xl).
2: Compute the OOBE: e0

F ← oobe(F ,Xl).
3: Set the epoch: m = 0.
4: repeat
5: Get the temperature: Tm+1 ← c(Tm,m).
6: Set m← m+ 1.
7: ∀xu ∈ Xu, k ∈ Y : Compute p∗(k|xu).
8: for n from 1 to N do
9: ∀xu ∈ Xu : Draw a random label, ŷu from p∗(·|xu) distribution.

10: Set Xn = Xl ∪ {(xu, ŷu)|xu ∈ Xu}.
11: Re-train the tree: fn ← trainTree(Xn).
12: end for
13: Set emF ← oobe(F ,Xl).
14: until Stopping condition
15: if emF > e0

F then
16: Reset the RF: F ← trainRF(Xl).
17: end if
18: Output the forest F .

Discussion As we have seen, in contrast to most other SSL methods, semi-supervised
random forests provide a principled way to detect if unlabeled data rather harm the sys-
tem than help. As a reaction, we can use an airbag mechanism in order to stop the semi-
supervised learning process and use only the labeled data. We call our method determin-
istic annealing based Semi-Supervised Random Forests (DAS-RF) and show the overall
learning and airbag procedures in Algorithm 6.1.

6.2 Prior Regularization

The semi-supervised random forest method as introduced above, i.e., DAS-RF, is able to
successfully perform SSL by exploiting the unlabeled data in order to increase the classi-
fication margin and does not demand any prior information. However, as we have seen in
previous chapters, there exist powerful methods, e.g., [Mann and Mccallum, 2007,Saffari
et al., 2008], which have shown that incorporating prior information or designer-provided
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expectations into SSL - if available - can lead to simple, well performing and scalable
SSL algorithms. Thereby, the prior information can come from various sources of knowl-
edge and does not necessarily have to be highly accurate; for instance, it can come from
only the label priors Pp(y), human labelers, from other classifiers or even maximum en-
tropy [Berger et al., 1996], where in the latter case all classes have the identical conditional
probability.

In more detail, assume we have given a prior probability in form of

∀x, k ∈ Y : q(k|x). (6.13)

The goal of the learning algorithm is to produce a model, which is able to match the
prior probability over the training samples. This divergence can be measured, e.g., in
form of Kullback-Leibler (KL) divergence which measures the expected amount of added
uncertainty by using the probability distribution of p(z) instead of the true distribution
q(z).

DKL(q‖p) = H(q, p)−H(q). (6.14)

Note that when two distributions q and p are the same, then DKL(q‖p) = 0 since there is
no added uncertainty. Additionally, note that the KL divergence is not symmetric in the
above form with respect to p and q but can be symmetrized by

DSKL(q‖p) =
1

2
(DKL(q‖p) +DKL(p‖q)). (6.15)

Inducing prior knowledge at node-level As it was done in [Saffari et al., 2008] for
boosting, it is now also natural to incorporate prior knowledge over the learning of the
randomized trees by measuring the KL-divergence between the current model and the
prior and penalizing high deviations. As we will see in the following, this can be enforced
at the node-level of the trees.

In more detail, recall from Section 2.4.2 that during training of a randomized tree
each node selects the best split according to some quality measurement which scores the
potential information gain

∆H = − |Il|
|Il|+ |Ir|

H(Il)−
|Ir|

|Il|+ |Ir|
H(Ir), (6.16)

where Il and Ir are the left and right subsets of the training data, respectively, and H(I) is
the node score, usually measured using the entropy or the Gini. Furthermore, we assume
having prior information available in form of a conditional probability distribution q(y|x).
We can now use SKL-divergence in order to enforce the node so that it not only minimizes
the impurity of the labeled samples but also favors splits that match the prior by decreasing
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the cross entropy over the unlabeled samples. The prior-regularized node score can be
rewritten as

∆H∗ = ∆H + β∆DSKL(q‖p̂), (6.17)

where ∆H corresponds to Equation (6.16) and β is a constant steering the influence of
regularization. The symmetrized cross entropy information gain can further be written as

∆DSKL(q‖p̂) = − |Iul |
|Iul |+ |Iur |

DSKL(Iul )− |Iur |
|Iul |+ |Iur |

DSKL(Iur ), (6.18)

where Iul and Iur are the left and right subsets of unlabeled data that fall into this node,
respectively.

Discussion The algorithm as introduced above leverages random forests to incorporate
unlabeled data using priors similar as in the XR approach for boosting [Saffari et al.,
2008]. The overall behavior of a randomized tree is a as follows: (i) minimize the impu-
rity over labeled data through recursive splitting decision nodes and (ii) simultaneously
minimize the cross entropy to a given prior q over the unlabeled data. Since usually
|Xl| � |Xu|, it is clear that already after few splits the labeled samples are usually fully
separated and for the rest of the tree-growing procedure the cross entropy is minimized;
i.e., the tree finally ends up learning the prior.

6.3 Experiments

In this section, we will give some detailed experimental analyses of the proposed DAS-
RF method and will evaluate it on standard machine learning benchmarks and on object
categorization. For all of the experiments, the main purpose is to proof the concept of the
approach, analyze its empirical behavior and compare it to other SSL methods.

6.3.1 Machine Learning

The first experiment starts with an evaluation of DAS-RF on machine learning bench-
marks. For all experiments, we set the α = 0.1 and used 100 trees.

For fair comparison, we implemented the original random forest (RF) algorithm as
proposed by Breiman [Breiman, 2001] and evaluated it within the same framework as our
DAS-RF. Also SERBoost [Saffari et al., 2008] and RMSBoost [Saffari et al., 2009a] were
evaluated in the same framework. For SVM and TSVM we used standard packages. We
use the g50c, Letter, and SensIt datasets from the Semi-Supervised Benchmarks [Chapelle
et al., 2006] and LibSVM repository [Chang and Lin, 2001]. A summary of these data sets
is presented in Table 6.1. For g50c, we use the original splits. For the last two datasets, we
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Dataset # Train # Test # Class # Feat.

g50c 50 500 2 50

Letter 15000 5000 26 16

SensIt (com) 78823 19705 3 100

Table 6.1: Data sets for the machine learning experiments.

Method SVM TSVM SER RMSB RF DAS-RF

g50c 91.7 93.1 91.9 94.2 89.1 93.3

Letter 70.3 65.9 76.5 79.9 76.4 79.7

SensIt 80.2 79.9 81.9 83.7 76.5 84.3

Table 6.2: Classification accuracy (in %) for machine learning datasets. DAS-RF stands
for our method. We mark the best method bold-face and underline the second best.

randomly partition the original training set into two disjoint sets of labeled and unlabeled
samples. We randomly select 5% of the training set to be labeled and assign the rest
(95%) to the unlabeled set. We repeat this procedure 10 times and report the average
classification accuracy in Table 6.2. As can be seen from this table, our method is always
among the best two over these datasets with respect to other semi-supervised methods.
Table 6.3 also shows the average computation time for these methods. It can also be seen,
that DAS-RF is of course slower than the supervised methods, which comes from the
fact that has to process 20 times more unlabeled data on the larger datasets. However,
compared to the other semi-supervised methods, our method is faster in the presence of
large amounts of data. Since our method is inherently parallel, we also implemented it on
a GPU resulting in an additional 3-times speed-up compared to the CPU implementation.

Method SVM TSVM SER RMSB RF DAS-RF GPU-DAS-RF

Letter 25 74 3124 125 35 72 29

SensIt 195 687 1158 514 125 410 137

Table 6.3: Computation (train+test) time (in seconds) for machine learning datasets.
Compared to supervised RFs, our method is slower due to the iterative optimization over
the unlabeled data but has the same speed during testing. Note that for the g50c data the
computation times where similar for all algorithms.
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Algorithm l = 15 l = 30

RF 0.72 0.64

DAS-RF 0.70 0.60

LinSVM 0.74 0.65

improvement 2% 4%

Table 6.4: Comparison of RF and DAS-RF in terms of classification error over different
numbers of labeled samples.

6.3.2 Object Categorization

For performing the categorization experiments, we chose the popular Caltech-101 dataset
consisting of 101 object categories with between 31 and 800 labeled samples per cate-
gory. Bosch et al. [Bosch et al., 2007] demonstrated state-of-the-art performance on that
dataset using Random Forests. This dataset still provides a challenging benchmark for an
inherently multi-class classifier.

In particular, for representation we use the L1-normalized PHOG 1 shape descriptors
as introduced by Bosch et al. with 180 and 360 degrees, respectively. We trained RFs
with 100 trees, using the information gain as node splitting criterion, ten random tests
and a maximum tree depth of twenty. Additionally, in contrast to [Bosch et al., 2007], we
train multi-class RFs. Please node that it is a much harder task to train a single multi-class
classifier for 100 classes than 100 one-vs.-all classifiers. For training, we use a randomly
chosen subset of labeled data and all other samples as unlabeled data. Also, note that in
this work, we use much weaker representations and less engineering for the sake of speed
and clarity than, for instance, compared to [Bosch et al., 2007].

For our SSL process, we allow a maximum of m = 20 iterations. For the cooling
starting parameter we chose a simple exponential cooling function. We conduct our ex-
periments with the typical amount of 15 and 30 labeled data, respectively. The final results
are depicted in Table 6.4 while the improvement over the iterations is given in Figure 6.1.
In these experiments, we also compare the results with the linear SVM for sanity check.

Binary Classification In the next experiment, we trained 100 1-vs.-all binary classi-
fiers trained with 30 labeled samples and measured their improvements. In Table 6.5 we
depicted the five best improving binary classifiers. Note that on all classes we got an
average improvement of 33% and never observed an increasing error rate during training
with DAS-RF. The reason why the improvements here are much better than compared to
the multi-class experiment is that the latter problem is much more difficult.

1 (10.3.2009) Available for download at http://www.robots.ox.ac.uk/ vgg/research/caltech/phog.html
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Figure 6.1: Improved average performance over the iterations for the multi-class prob-
lem.

Class RFerr DAS-RFerr Relative Improvement

C4 0.0081 0.0033 58%

C5 0.0078 0.002 65%

C20 0.011 0.0013 87.5%

C33 0.007 0.003 52%

C81 0.0027 0.001 62.5%

Table 6.5: Comparison of RF with DAS-RF based on the binary classification error.

6.3.3 Airbag

The purpose of this experiment is to show two things: First, it shows that if unlabeled data
does not help, the dynamics of the OOBE can be used as a safety mechanism and, second,
that trivial self-training RFs do not succeed on a difficult multi-class categorization task.
Hence, we trained two semi-supervised multi-class classifiers. However, while one was
trained using the same settings as above the second one was trained on artificial corrupted
unlabeled data. Additionally, we trained a RF performing self-learning on the (not cor-
rupted) unlabeled data, i.e., without using DA. The results are depicted in Figure 6.2. As
can be seen, after 6 iterations the OOBE increases over a tolerance level from one itera-
tion to the other one and we can automatically stop the training. As a result, we get the
same performance as if only training on labeled data. The self-learning experiment fails
even on not corrupted unlabeled data.

6.4 Summary

In this chapter, we introduced a novel semi-supervised learning method using random
forests. We formulated the hidden labels of unlabeled samples as additional optimization
variables and minimized the overall loss function using deterministic annealing. DA is a



96 Chapter 6. Semi-Supervised Random Forests

Figure 6.2: Training a DAS-RF on corrupted unlabeled data (green) and its OOBE (green
dashed) and on not corrupted data (blue). After 6 iterations the SSL stops and it is trained only on
labeled data. Self-learning is depicted in red.

fast non-convex optimization method based on random processes and thus fits perfectly
into the nature of random forests. We further showed that random forests’ out-of-bag-
error can be used in order to measure if unlabeled data helps or not. In the experimental
part, we evaluated our method on both machine learning benchmarks and object catego-
rization on the Caltech-101 data set. In both experiments, we showed that DAS-RFs are
able to robustly benefit from unlabeled data and solve multi-class SSL tasks.



Chapter 7

On-line Semi-Supervised Random
Forests

I n the previous chapter, we introduced a semi-supervised learning variant using random-
ized trees called DAS-RF. However, this algorithm is only suitable for off-line learning

whereas we argued in previous chapters that in many applications on-line learners are re-
quired and especially for semi-supervised learning on-line methods are interesting due to
their good scaling behavior compared to batch learners.

In this chapter, we will show that semi-supervised random forests based on DA-
optimization can be extended to on-line learning. Semi-supervised RFs as introduced
in the previous chapter use an off-line two-step optimization procedure, where in one step
the objective function F is optimized and in the second step the distribution p̂ over the
unlabeled samples, respectively. In order to modify the algorithm so that it is suitable for
on-line learning, i.e., both labeled and unlabeled samples arrive sequentially, one has to
hence change both optimization steps to operate in on-line mode.

7.1 On-Line Random Forests

The original RF algorithm as proposed by Breiman [Breiman, 2001] is designed to learn
in batch or off-line mode, i.e., each tree is trained on a full sub-set of labeled samples
drawn from X . To make the algorithm operate in on-line mode, there exist two main
questions that have to be answered:

1. How to perform bagging in on-line mode?

2. How to grow random trees on-the-fly?

97
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7.1.1 On-Line Bagging

For the bagging part, we use the method proposed by Oza et al. [Oza, 2001] where the
sequential arrival of the data is modeled by a Poisson distribution. Each tree ft(x) is
updated on each sample k times in a row where k is a random number generated by
Poisson(λ) and λ is usually set to a constant number, in our case equal to one. Oza proved
convergence of this method to off-line bagging.

7.1.2 On-Line Random Decision Trees

Compared to on-line bagging, on-line learning of the decision trees is less trivial due to
their recursive hard splitting nature which does not allow to correct errors further down
the tree. There exist incremental methods for single decision trees but they are either
memory intensive, because every node sees and stores all the data [Utgoff et al., 1997],
or have to discard important information if parent nodes change. Some methods alleviate
this problem by combining decision trees with ideas from neural networks [Basak, 2004]
but have the disadvantage that they usually lose the O(log n) evaluation time because
samples are propagated to all nodes. In the following, we propose an on-line random
forest algorithms that works by circumventing the pure recursive training of the trees
by using a tree-growing procedure similar to evolving-trees [Pakkanen et al., 2004] or
Hoeffding trees [Pfahringer et al., 2007].

Recall that in randomized decision trees, each decision node in a tree contains a test
in form of g(x) > θ. These tests usually contain two main parts: (i) a randomly generated
test function, g(x) which usually returns a scalar value and (ii) a threshold θ which based
on the random feature decides the left/right propagation of samples. In off-line mode,
RFs select randomly a set of such tests and then pick the best according to a quality
measurement. If the threshold is also chosen randomly, the resulting RF is usually referred
to Extremely Randomized Forest [Geurts et al., 2006].

In on-line mode, we grow extremely randomized trees by generating the test functions
and thresholds randomly. During growing of a randomized tree, each decision node ran-
domly creates a set of tests and picks the best according to a quality measurement such as
the commonly used entropy or Gini. Computing such quality measures depends mainly
on the estimation of the label densities, which can be performed in on-line mode.

More specifically, when a node is created it creates a set of N random tests S =

{(g1(x), θ1), . . . , (gN(x), θN)}. This node then starts to collect the statistics of the sam-
ples falling in it. It also maintains the statistics of the splits made with each test in S. De-
note by pj = [pj1, . . . , p

j
K ] the statistics of class labels in node j. For a random test s ∈ S,

two sets of statistics are also collected: pjls = [pjls1 , . . . , pjlsK ] and pjrs = [pjrs1 , . . . , pjrsK ]

corresponding to the statistics of samples falling into left (l) and right (r) partitions ac-
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cording to test s.
The gain with respect to a test s can be measured as:

∆L(Rj, s) = L(Rj)−
|Rjls|
|Rj|

L(Rjls)−
|Rjrs|
|Rj|

L(Rjrs), (7.1)

where Rjls and Rjrs are the left and right partitions made by the test s and |.| denotes
the number of samples in a partition. Note that ∆L(Rj, s) ≥ 0. A test with higher gain,
produces better splits of the data with respect reducing the impurity of a node. Therefore,
when splitting a node, the test with highest gain is chosen as the main decision test of that
node.

When operating in the off-line mode, the decision node has access to all the data
falling to that node, and therefore has a more robust estimate of these statistics, compared
to a node operating in on-line mode. In the on-line mode, the statistics are gathered
over time, therefore, the decision when to split depends on 1) if there has been enough
samples in a node to have a robust statistics and, 2) if the splits are good enough for the
classification purpose. Because, the statistics of the subsequent children nodes are based
on this selection and since the errors in this stage cannot be corrected further down the
tree when we already made a decision, we need to develop a method which can tell the
node when it is appropriate to perform a split.

Therefore, we propose the following non-recursive strategy for on-line learning of the
random decision trees: A newly generated tree starts with only one root node with a set
of randomly selected tests. For each test in the node we gather the statistics on-line. We
introduce two hyperparameters: 1) the minimum number of samples a node has to see
before splitting α, 2) the minimum gain a split has to achieve β. Thus, a node splits when
|Rj| > α and ∃s ∈ S : ∆L(Rj, s) > β.

After a split occured, we propagate the pjls and pjrs to the subsequent newly gener-
ated left and right leaf nodes, respectively. This way, a new node starts already with the
knowledge of its parent nodes, and therefore, can also perform classification on-the-fly
even without observing a new sample. The entire on-line RF algorithm is depicted in
Algorithm 7.1.

Note that this tree-growing strategy is similar to that of evolving trees (ETrees) [Pakka-
nen et al., 2004]. An ETree is a tree-structed self-organizing map (SOM) used in many
data analysis problems. In particular, in ETrees each node counts the number of observa-
tions seen so far and splits the node after a constant threshold has been exceeded. Another
similar approach to ours is that of a Hoeffding tree [Pfahringer et al., 2007]. A Hoeffd-
ing tree is also a growing decision tree, where the split decision is made on the Hoeffding
bound which theoretically guarantees that with probability 1−ρ the true statistical average

of a random variable r is r̂ − ε with ε =
√

ln(1/ρ)
2n

, where n is the number of observations
performed and r̂ is the current estimate of the random variable.
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Algorithm 7.1 On-Line Random Forests

Require: Sequential training example 〈x, y〉
Require: The size of the forest: T
Require: The minimum number of samples: α
Require: The minimum gain: β

1: // For all trees
2: for t from 1 to T do
3: k← Poisson(λ)
4: if k > 0 then
5: // Update k times
6: for u from 1 to k do
7: j = findLeaf(x).
8: updateNode(j, 〈x, y〉).
9: if |Rj| > α and ∃s ∈ S : ∆L(Rj, s) > β then

10: Find the best test: sj = arg maxs∈S ∆L(Rj, s).
11: createLeftChild(pjls)

12: createRightChild(pjrs)

13: end if
14: end for
15: else
16: Estimate OOBEt ← updateOOBE(〈x, y〉)
17: end if
18: end for
19: Output the forest F .

Although both the ETree and the Hoeffding tree would definitely also be a useful
choice for our splitting criterion, we believe that our approach, i.e., continuously measur-
ing the gain of a potential split, fits better to the inherent nature of decision trees.

Temporal Knowledge Weighting For some applications, such as tracking, the distribu-
tion of samples might change over time. Therefore, it is required to have temporal knowl-
edge weighting that allows unlearning old information. If the algorithm is operating in
such a scenario, we allow our forest to discard the entire tree. Note that the Poisson pro-
cess of on-line bagging leaves out some trees from being trained on a sample. Therefore,
we can estimate the OOBEt of each tree on-line. Based on this estimate, we propose
to discard trees randomly from the ensemble where the probability of discarding a tree
depends on its out-of-bag-error and also its age at (the number of samples it has seen so
far). Since in an ensemble of trees the impact of a single tree is relatively low, discarding
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one tree usually does not harm the performance of the entire forest. However, doing this
continuously ensures adaptivity throughout time. This process is shown in Algorithm 7.2,
where γ determines the temporal knowledge weighting rate. During the training of the
forest, one tree is randomly chosen based on its age and if its OOBE is large, then the
tree is replaced with a new tree. In out tracking experiments, we fixed γ = 0.05.

Algorithm 7.2 Temporal Knowledge Weighting
Require: The knowledge weighting rate: γ

1: Select a tree randomly from {ft|ft ∈ F , at > 1/γ}.
2: if OOBEt > rand() then
3: // Discard the tree.
4: ft = newTree()
5: end if

7.2 On-line Deterministic Annealing

Now that we know how to do on-line training of the randomized trees, we also have to
perform the deterministic annealing on-line. This means we have to estimate p̂ on-line by
examining the sequentially arriving samples.

In fact, instead as in the off-line case where we estimated the set of distributions p̂ ∈ P
over all the unlabeled samples at once, we now find the best distribution for a single
sample. Therefore, if a new sample xi arrives, we initialize a new distribution p̂i using
the current confidence output of Ft. Then, we iteratively apply the optimization of Ft and
p̂i only for the current sample xi following the same two-step procedure and annealing
schedule as in the off-line case. Note however, that during the successive decrease of the
temperature parameter T0 > T1 > . . . > T∞ = 0, we all the time continue growing the
tree in order to incorporate the intermediate steps. Since this steps might be suboptimal,
however, we keep only the tree state for T = 0 and discard all the others. Afterwords, xi
is discarded and the training proceeds with the next sample xi+1. We depict the algorithm
in Algorithm 7.3.

7.3 Summary

In this chapter, we have extended the learning principle of DAS-RF to on-line learning.
We showed that therefore, basically, two steps are necessary: the random forests have to
be on-line learning capable as well as the deterministic annealing has to be performed
on-line. We presented a novel on-line formulation of random forests that circumvents
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Algorithm 7.3 On-Line Semi-supervised Random Forests

Require: Sequential training example 〈x, y〉
Require: The size of the forest: T
Require: The minimum number of samples: α
Require: The minimum gain: β
Require: A starting heat parameter T0 and a cooling function c(T,m)

1: // Labeled update
2: if y ∈ K then
3: Ft ← update(Ft−1, x, y)
4: else
5: // Unlabeled update
6: Set the epoch: m = 0.
7: repeat
8: Get the temperature: Tm+1 ← c(Tm,m).
9: Set m← m+ 1.

10: Compute p∗(k|x).
11: // For all trees
12: for n from 1 to N do
13: Draw a random label, ŷ from p∗(·|x) distribution.
14: Update the tree: f tn ← updateTree(f t−1

n , x, ŷ).
15: end for
16: until Stopping condition
17: end if
18: Output the forest F .

the recursive split nature of decision trees by letting them learn using a tree-growing
mechanism. DA can be made on-line by applying the annealing schedule on a single
sample.



Chapter 8

Multiple Instance Learning with
Random Forests

S emi-supervised learning algorithms have to learn from ambiguously labeled samples
because the true labels of unlabeled samples are unknown. In machine learning, there

exist a second learning paradigm called multiple-instance learning (MIL) [Keeler et al.,
1990, Dietterich et al., 1997] which is very similar to SSL and also has to resolve ambi-
guities during the learning process. In particular, in multiple-instance learning, training
samples are provided in form of bags, where each bag consists of several instances. La-
bels are only provided for the bags and not for the instances. The labels of instances inside
positive bags are unknown, but it is guaranteed that at least one instance has a positive
label. Contrary, in negative bags all instances can be considered as being negative. (See
also Figure 8.1 for an illustration of the principle.)

In this chapter, we present a multiple-instance learning algorithm based on random
forests. We thus call the method MILForests. MILForests bring the advantages of ran-
dom forests – i.e., speed, multi-class capability, multi-processing, noise resistance, etc.–
to multiple-instance learning, where usually different methods have been applied. In turn,
extending random forests in order to allow for multiple-instance learning allows vision
tasks where RFs are typically applied to benefit from the flexibility of MIL. MILForests
are very similar to conventional random forests. However, since the training data is pro-
vided in form of bags, during learning the real class labels of instances inside bags are
unknown. In the following, we will show that multiple-instance learning is a special case
of SSL because all instances inside negative bags can be considered as labeled samples
and all instances inside positive bags as unlabeled, respectively. Based on this insight we
can use a similar optimization approach as for the semi-supervised RFs, i.e., deterministic
annealing, in order to find the hidden class labels of instances in positive bags.
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Figure 8.1: Multiple instance learning principle: Positive bags (blue regions) consist of
both positive and negative instances; however, the “real” instance labels are unknown to
the learner. By contrast, in negative bags (red) all instances are guaranteed to be negative.

8.1 Related Work

As we have seen in Chapter 2, in traditional supervised learning training data is pro-
vided in form of {(x1, y1) . . . (xn, yn)}, where xi is an instance and, in the binary case,
yi ∈ {−1,+1} the corresponding label. In multiple instance learning training samples
are given in bags {(B1, y1), . . . , (Bn, yn)}, where each bag may consist of an arbitrary
number of instances, i.e., Bi = {x1

i , x
2
i , . . . , x

ni
i }. Negative bags B−i consist of only neg-

ative instances. Ambiguity is introduced into learning by the constraint that for positive
bags B+

i , it is only guaranteed that there exist at least one positive instance (also called
witness of the bag). There is no information about other instances in the bag. In fact, they
might not even belong to the negative class. The task is to learn either a bag classifier
f : B → {−1, 1} or an instance classifier f : Rd → {−1, 1}. However, bag classification
can be obtained automatically from instance classification, e.g., by using the max opera-
tor pi = max

j
{pij} over posterior probability estimates pij for the j-th instance of the i-th

bag.
There exists a vast amount of literature and many different approaches on how to

solve the MIL problem. Here, we briefly review some of the most popular ones. The
most naı̈ve approach is to simply ignore the MIL setting and train a supervised classifier
on all instances with the bag label. Blum and Kalai [Blum and Kalai, 1998], for instance,
showed that one can achieve reasonable results when training an instance classifier that is
robust to class label noise. As we will show later in the experimental part, RFs are also
promising candidates for such a naı̈ve approach.

Many MIL methods work by adapting supervised learners to the MIL constraints,
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mostly using SVM-type learners. For example, Andrews et al. [Andrews et al., 2003]
proposed two different types of SVM-MIL approaches mi-SVM and MI-SVM. They dif-
fer basically on their assumptions, i.e., the first method tries to identify the labels of all
instances in a bag while the latter one finds only the witness and ignores all others. An-
other SVM-based approach MICA [Mangasarian and Wild, 2005] tries to find the witness
using linear programming.

There also exist some boosting-based methods, e.g., [Viola et al., 2006]. Wang and
Zucker [Wang and Zucker, 2000] trained a nearest neighbor algorithm using Hausdorff
distance. Other popular approaches are based on the diverse-density assumption, for ex-
ample [Maron and Lozano-Perez, 1997,Zhang and Goldman, 2001], which more directly
tries to address the MIL problem via finding a more appropriate feature representation for
bags. In MILES, Chen et al. [Chen et al., 2006, Foulds and Frank, 2008] trained a su-
pervised SVM on data mapped into a new feature space based on bag similarities. There
exist also approaches for training decision trees in a MIL fashion, e.g., [Blockeel et al.,
2005].

While multiple-instance learning has been used in many applications such as text-
categorization [Andrews et al., 2003], drug activity recognition [Dietterich et al., 1997] or
computer security problems [Ruffo, 2000], especially computer vision is one of the most
important domains where multiple instance-learning algorithms are recently applied, be-
cause in practice data is often provided in a similar manner. For example, in case of
object detection bounding boxes are usually cropped around the target object and pro-
vided as positive training samples. The decision where exactly to crop the object and at
which size is up to the human labeler and it is often not clear if those patches are best
suited for the learner. Additionally, it would also ease the labeling effort if the exact
object position has not to be labeled. Hence, it would be desired to provide the learner
only a rough position of the positive object and leave it on its own how to incorporate
the information in order to deliver best classification results. For standard supervised
learning techniques it is hard to resolve such ambiguously labeled data. Applying MIL
in this example, the rough object position would correspond to a bag and patches inside
the bag to instances. During training, MIL would find those patches that lead to best
classification results and leave out the others. Furthermore, many authors applied MIL to
image retrieval [Zhang and Goldman, 2002, Vijayanarasimhan S. Grauman, 2008] or im-
age categorization tasks [Chen et al., 2006]. Another computer vision application where
multiple-instance learning can be used is to tackle the alignment problem when training
appearance-based detectors based on boosting [Viola et al., 2006], speed-up classifier cas-
cades [Zhang and Viola, 2008] or even action recognition [Stikic and Schiele, 2009]. In
case of object tracking, it is mostly hard to decide which patches to use for updating the
adaptive appearance model. If the tracker location is not precise, errors may accumulate
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which finally leads to drifting. Recently, Babenko et al. [Babenko et al., 2009b] demon-
strated that using MIL for tracking leads to much more stable results. For most of these
vision tasks SVM variants or boosting have been used.

8.2 Multiple Instance Learning as a special case of Semi-
supervised Learning

At the first glance, multiple instance learning and SSL do not seem to have many things
in common. In the literature, they are hence considered as being two different branches
of machine learning. However, it can be easily shown [Zhou and Xu, 2007] that multiple-
instance learning can be seen as a special case of semi-supervised learning, however, with
having an additional constraint on some parts of the unlabeled data and without knowing
one single real positive instance.

More formally, consider a training set consisting of bags {(B1, y1), . . . , (Bn, yn)} and
assume p positive and q negative bags, with p + q = n. The negative bags are or-
dered before the positive bags, i.e., {(B−1 , y1), (B−2 , y2) . . . , (B+

n−1, yn−1), (B+
n , yn)}. If

we then take the instances bag-by-bag into an instance set {(x1,1, y1,1), (x1,2, y1,2), . . . ,

. . . , (xn,ni−1, yn,ni−1), (xn,ni , yn,ni)} it can easily be seen that the first Q =
∑q

i=1 ni in-
stances are from negative bags and the remaining P =

∑n
i=q+1 ni are from positive bags.

Now, we can denote Xl = Q and Xu = P subject to ∀i ∈ Xu :
∑ni

j=1 I(yj = 1) ≥ 1.
If we interpret Xl as labeled data set with yi = −1 and Xu as unlabeled data set, we can
easily see that MIL is a special case of semi-supervised learning, however, having the
additional constraint that for a sub-sequence of instances {xi,1, . . . , xi,ni} coming from
the same positive bag B+

i at least one instance is positive. Note that MIL can hence
also be interpreted as an asymmetric semi-supervised learning problem, because latency
is only given for the positive bags and the instances therein. Also based on this insight, in
the following section we will present a multiple-instance learning method using random
forests.

8.3 MILForests

In the following, we introduce a novel multiple instance learning algorithm using ran-
domized trees called MILForests. MILForests deliver multi-class instance classifiers in
form of F (x) : X → Y = {1, . . . , K}. Formally, in contrast to the binary case, for
multi-class MIL problems the data is provided in form of {(B1, y1), . . . , (Bn, yn)}, where
yi ∈ {1, . . . , K}. This means that for all bags the instance labels are unknown and can
consist of labels {1, . . . , K}. It is only guaranteed that at least one instance has the bag
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label. This makes MILForests different to most previous MIL algorithms that only yield
binary classifiers and require to handle a multi-class problem by a sequence of binary
ones.

One obvious way to design RFs capable of solving MIL tasks is to adopt MIL ver-
sions for single decision trees [Blockeel et al., 2005]. However, strategies developed for
common decision trees are hard to apply for RFs due to the random split nature of their
trees. For example, improper regularization of trees of a RF on the node level can de-
crease the diversity ρ̄ among trees and thus increase the overall generalization error (see
Eq. (2.16)). Additionally, the method proposed in [Blockeel et al., 2005] is based on sim-
ple heuristics and needs a complicated inter-node communication channel. Thus, in order
to perform multiple instance learning with random forests one has to find an optimization
strategy that preserves the diversity among the trees. In fact, this is a similar condition as
for SSL with random forests. Hence, following this condition and the arguments stated in
the previous section 8.2, we makes sense to use a similar optimization strategy as for our
semi-supervised random forests introduced in Chapter 6.

Therefore, we formulate multiple instance learning as an optimization procedure where
the labels of the instances become the optimization variables. The algorithm tries to un-
cover the true labels of the instances in an iterative manner. Given such labels, one can
train a supervised classifier which then can be used to classify both instances and bags.

Let Bi, i = 1, . . . , n denote the i-th bag in the training set with label yi. Each bag
consists of ni instances: {x1

i , . . . , x
ni
i }. We write the objective function to optimize as:

({yji }∗, F ∗) =arg min
{yji },F (·)

n∑
i=1

ni∑
j=1

`(Fyji
(xji )) (8.1)

s.t. ∀i :

ni∑
j=1

I(yi = arg max
k∈Y

Fk(xji )) ≥ 1.

The objective in this optimization procedure is to minimize a loss function `(·) which
is defined over the entire set of instances by considering the condition that at least one
instance in each bag has to be from the target class. Note that I(·) is an indicator function
and Fk(x) is the confidence of the classifier for the k-th class, i.e., Fk(x) = p(k|x)− 1

K
.

Often, the loss function depends on the classification margin of an instance. In the case
of Random Forests, the margin can be written as [Breiman, 2001]

m(x, y) = p(y|x)−max
k∈Y
k 6=y

p(k|x) = Fy(x)−max
k∈Y
k 6=y

Fk(x). (8.2)

Note that for a correct classification m(x, y) > 0 should hold. Overall, it can easy be
seen that Eq. (8.1) is a non-convex optimization problem because a random forest has
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to be trained and simultaneously a suitable set of labels yji has to be found. Due to the
integer values of the labels yji , this problem is a type of integer programming and is
usually difficult to solve. In order to solve this non-convex optimization problem without
loosing too much of the training speed of random forests, we will need a fast optimization
procedure. As we have seen in the previous chapter for SSL, deterministic annealing
is an ideal candidate for such a task and we will hence use it also here for solving our
MIL-constrained learning task.

8.3.1 Optimization

In order to optimize our MIL objective function (Eq. (8.1)), we propose the following
iterative strategy: In the first iteration, we train a naı̈ve RF that ignores the MIL constraint
and uses the corresponding bag labels for instances inside that bag. Then, after the first
iteration, we treat the instance labels in positive bags as random binary variables. These
random variables are defined over a space of probability distributions P . We now search
a distribution p̂ ∈ P for each bag which solves our optimization problem in Eq. (8.1).
Based on p̂ each tree randomly selects the instance labels for training. Hence, based on
the optimization of p̂ we try to identify the real but hidden labels of instances.

We reformulate the objective function given in Eq. (8.1) so that it is suitable for DA
optimization

LDA(F, p̂) =
n∑
i=1

ni∑
j=1

K∑
k=1

p̂(k|xji )`(Fk(x
j
i )) + T

n∑
i=1

H(p̂i), (8.3)

where T is the temperature parameter and

H(p̂i) = −
ni∑
j=1

K∑
k=1

p̂(k|xji ) log(p̂(k|xji )) (8.4)

is the entropy over the predicted distribution inside a bag. It can be seen that the parameter
T steers the importance between the original objective function and the entropy. If T is
high, the entropy dominates the loss function and the problem can be easier solved due
to the convexity. If T = 0 the original loss dominates (Eq. (8.1)). Hence, DA first solves
the easy task of entropy minimization and then by continuously decreasing T from high
values to zero gradually solves the original optimization problem, i.e., finding the real but
hidden instance labels y and simultaneously training an instance classifier.
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In more detail, for a given temperature level, the learning problem can be written as

(F ∗, p̂∗) =arg min
p̂,F (·)

LDA(F, p̂) (8.5)

s.t. ∀i :

ni∑
j=1

I(yi = arg max
k∈Y

Fk(xji )) ≥ 1.

We split this optimization problem up into a two-step convex optimization problem
analog to an alternating coordinate descent approach. In the first step, the objective func-
tion F is optimized by fixing the distribution p̂ and optimizing the learning model. In
the second step, the distribution p∗ over the bags according to the current entropy level is
adjusted. Note that both individual steps are convex optimization problems.

The detailed optimization now runs analogue to the SSL case; i.e., for a given distri-
bution over the bag samples, we randomly choose a label according to p̂. We repeat this
process independently for every tree f in the forest. Let {ŷij} be the randomly drawn
labels according to the distribution p̂ for t-th tree. The optimization problem for the t-th
tree becomes

f ∗t =arg min
f

n∑
i=1

ni∑
j=1

`(fŷji
(xji )) (8.6)

s.t. ∀i :

ni∑
j=1

I(yi = arg max
k∈Y

fk(xji )) ≥ 1.

Since the margin maximizing loss function is convex, this loss function is also convex. In
order to not violate the MIL constraint, after having randomly selected instance labels for
a bag, we always set the instance with the highest probability according to p̂ equal to the
bag label. At this stage we train all the trees in the forest by the formulation given above.

After we trained the random forest, we enter the second stage where we find the
optimal distribution according to

p̂∗ =arg min
p̂

n∑
i=1

ni∑
j=1

K∑
k=1

p̂(k|xji )`(Fk(x
j
i )) + T

n∑
i=1

H(p̂i). (8.7)

The optimal distribution is found by taking the derivative w.r.t p and setting it to zero. We
depict all detailed steps of the method in Algorithm 8.1.

8.4 On-line MILForests

Although there have been proposed numerous approaches to the MIL problem, most of
them operate in off-line or batch mode. In practice, however, it would also be desired
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Algorithm 8.1 MILForests

Require: Bags {Bi}
Require: The size of the forest: T
Require: A starting heat parameter T0

Require: An ending parameter Tmin
Require: A cooling function c(T,m)

1: Set: ∀i : ŷji = yi
2: Train the RF: F ← trainRF({ŷji }).
3: Init epochs: m = 0.
4: while Tm+1 ≥ Tmin do
5: Get the temperature: Tm+1 ← c(Tm,m).
6: Set m← m+ 1.
7: ∀xji ∈ Bi, k ∈ Y : Compute p∗(k|xji )
8: for t from 1 to T do
9: ∀xji ∈ Bi : Select random label, ŷji according to p∗(·|xji )

10: Set the label for instance with highest p∗(·|xji ) equal to bag label
11: Re-train the tree:
12: ft ← trainTree({ŷji }).
13: end for
14: end while
15: Output the forest F .

to apply MIL in scenarios where we have limited access to the problem domain due to
dynamic environments or streaming data sources. In the following, we hence take this
considerations into account and show how MILForests can be extended to on-line learn-
ing.

MILForest as introduced above are trained off-line using a two-step optimization pro-
cedure Eq. (8.3), where in one step the objective functionF is optimized and in the second
step the distribution p̂ over the bags, respectively. In order to modify the algorithm so that
it is suitable for on-line learning, i.e., the bags Bi arrive sequentially, one has to change
both optimization steps to operate in on-line mode. As we have seen in the previous
chapter, randomized decision trees can be trained on-line using a tree-growing scheme.

Besides on-line training of the randomized trees, we also have to perform the deter-
ministic annealing on-line. This means we have to estimate p̂ on-line by examining the
sequentially arriving samples. For calculating DA on-line we can make use of the same
principle as was shown in the previous chapter, except the fact that in MIL we do not
assume the individual instances to arrive sequentially but the bags. Therefore, if a new
bag Bi arrives, we initialize a new distribution p̂i over its instances using the current con-
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fidence output of Ft. Then, we iteratively apply the optimization of Ft and p̂i only for the
current bag Bi following the same two-step procedure and annealing schedule as in the
off-line case (Eq. (8.6),Eq. (8.7)). Afterwards, Bi is discarded and the training proceeds
with the next bag Bi+1.

8.5 Experiments

In the following we will evaluate the proposed algorithm on standard MIL machine learn-
ing benchmark datasets. We also evaluated the on-line extension of MILForests, however,
depict the results in the final experimental Chapter 9 along with other competitive on-line
learning algorithms. Note that, in general, we abstain from any data set or feature engi-
neering procedures, since the main purpose is to compare the different learning methods.

8.5.1 Benchmark Datasets

We first evaluate our proposed MILForests on popular benchmark datasets used in most
studies of multiple-instance learning algorithms, i.e., the Musk1 and Musk2 drug activity
datasets proposed by Dietterich [Dietterich et al., 1997] and the Tiger, Elephant and Fox
image datasets proposed by Andrews et al. [Andrews et al., 2003]1. For sanity check we
also tested common random forests [Breiman, 2001], i.e., ignoring the MIL constraint.
For all learners we used 50 trees with a maximum depth of 20. As cooling schedule we
used a simple exponential function in form of Tt = e−t·C , where t is the current iteration
and the constant C = 1

2
.

As can be observed, the performance of the individual approaches varies highly de-
pending on the data set. The experiments show that MILForests achieve state-of-the-art
performance and are even outperforming several SVM-based approaches and those based
on boosting. Especially for the vision problems, we are always among the best. Also the
naı̈ve RF approach yields surprisingly good performance, especially on Fox and Musk1;
however, it cannot catch up with the performance of its MILForest counterpart. One
explanation for this might be that RFs are less susceptible to noise compared to other
learning methods, which is necessary for the naı̈ve approach [Blum and Kalai, 1998].
Compared to its most similar SVM variant (AL-SVM), MILForest outperforms it on two
datasets, draws on one and performs worse on two. Finally, it has to be mentioned that
especially for [Gehler and Chapelle, 2007] and [Bunescu and Mooney, 2007] better re-
sults can be achieved by incorporating prior knowledge into the learners, e.g., how many
“real” positives exist inside bags; which however also holds for MILForests.

1 Note that for repeatability we will make our C++ implementation available on-line.
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Method Elephant Fox Tiger Musk1 Musk2

RandomForest [Breiman, 2001] 74 60 77 85 78

MILForest 84 64 82 85 82

MI-Kernel [Andrews et al., 2003] 84 60 84 88 89

MI-SVM [Zhou et al., 2009] 81 59 84 78 84

mi-SVM [Zhou et al., 2009] 82 58 79 87 84

MILES [Chen et al., 2006] 81 62 80 88 83

SIL-SVM [Bunescu and Mooney, 2007] 85 53 77 88 87

AW-SVM [Gehler and Chapelle, 2007] 82 64 83 86 84

AL-SVM [Gehler and Chapelle, 2007] 79 63 78 86 83

EM-DD [Zhang and Goldman, 2001] 78 56 72 85 85

MILBoost-NOR [Viola et al., 2006] 73 58 56 71 61

Table 8.1: Results and comparisons in terms of percent classification accuracy on popular
MIL benchmark datasets. We mark either of the two best performing methods bold face.

Method Corel-1000 Corel-2000 Testing[sec.] Training[sec.]

MILForest 59 66 4.6 22.0

MILES 58 67 180 960

Table 8.2: Results and comparisons on the COREL image categorization benchmark.
Additionally, we put the training and testing times in seconds.

8.5.2 Corel Dataset

Here, we evaluate our proposed methods on the Corel-1000 and Corel-2000 image dataset
for region-based image classification. The data set consists of 2000 images with 20 differ-
ent categories. Each image is a bag consisting of instances obtained via oversegmentation.
It is thus a typical MIL problem. In order to allow for fair comparison we used the same
data settings and features as proposed by Chen et al. [Chen et al., 2006]. For the results
we used the same settings as in our previous experiments. In contrast to most other ap-
proaches, we did not train 20 1-vs.-all classifiers, but trained one multi-class forest, which
is usually a more difficult task. We compare MILForests with MILES, the original algo-
rithm proposed on this data set [Chen et al., 2006]. Since MILES is a binary algorithm we
trained 20 1-vs.-all MILES classifiers and depict the results in Table 8.2. As can be seen,
MILForests achieve competitive results for multi-class scenarios, however, being much
faster. We measured the average time on a standard Core Duo machine with 2.4 Ghz.
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Figure 8.2: Some samples of the 20 COREL categories and their corresponding segmen-
tations [Chen et al., 2006].

8.6 Summary

In this chapter, we reviewed multiple instance learning as another import machine learning
paradigm that has tight relations to SSL. In fact, we showed that MIL can be treated as
special case of SSL, however, with the difference that unlabeled data coming from the
same bag are constrained that at least one instance should have the bag label. Following
from this insight, we showed how we can use DA in order to train multiple instance
random forests. In the experiments, we demonstrated that MILForests achieve state-of-
the-art results on benchmark data sets while being faster than competitive methods and
inherently multi-class. In Chapter 9, we will evaluate the on-line version on the task of
visual object tracking.
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Chapter 9

Visual Object Tracking

I n this chapter, we will apply and test the proposed on-line learning methods of this
thesis on one of the cardinal problems in computer vision, i.e., visual object tracking.

Tracking of a priori unknown objects and object types in 2D image space is one of the
biggest challenges in computer vision. In detail, the goal of tracking is to continuously
try to locate a target region in a video by estimating the relative displacement between
successive frames when either the camera and/or the object is moving. Despite the huge
amount of research spent on this task it is still hard to design robust tracking systems that
can perform similar to humans. Visual trackers have to cope with all variations that occur
in natural scenes such as shape and appearance changes, different illuminations as well as
varying poses or partial occlusions.

According to [Comaniciu et al., 2003], the process of tracking can be divided into two
major components: (i) filtering and association and (ii) target representation and localiza-
tion. The first class of approaches tries to exploit motion information of the target from
previously seen frames and predicts future object locations. For these kind of approaches
usually filtering techniques such as Kalman filters [Kalman, 2008] or particle filters [Li
et al., 2007] are used. This is also related to the problem of data association [Bar-Shalom,
2008], which models the correspondences of multiple target candidates. The second ap-
proach, target representation and localization, ignores temporal information as well as
object dynamics and, as the name suggests, more deals with finding good representations
for the target object, which are then used for localization. One of the most popular meth-
ods within this field is global template-based tracking [Avidan, 2007], where the main
idea is to define some error function based on the pixel intensities for some target image.
For instance, often the Normalized-Cross Correlation (NCC) is used to compare the given
template with the target image

c(u, v) =
1

n

∑
x,y

(f(x+ u, y + v)− f̄) · (t(x, y)− t̄)
σf · σt

, (9.1)
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where t(x, y) is the image function of the template and f(x+u, y+ v) is the sub-patch of
the input image at location (u, v). t̄ and f̄ are the mean values of the template and the sub-
patch, σt and σf are the corresponding standard deviations, respectively. n is the number
of pixels in the template. Note that for calculating the mean f̄ and standard deviations
σf one can use integral data structures in order to drastically speed-up the calculations of
the pixel sums 1. Template matching is not limited to simple raw pixel correspondences
and can also be extended to higher-level representations, such as histograms of oriented
gradients (HOGs) [Adam et al., 2006]. In order to model simple or complex motions in
template tracking usually parametric models can also be incorporated [Shi and Tomasi,
1994, Baker and Matthews, 2004]. See also [Yilmaz et al., 2006] for a more detailed
review.

9.1 Tracking as a discriminative Classification Problem

A recently dominating trend in tracking is to apply appearance-based classifiers in or-
der to track objects because they are able to deliver highly accurate results in real-time
speeds. Such tracking-by-detection systems [Liu and Leordeanu, 2005, Avidan, 2007]
usually train a classifier at the very first frame versus its local background and perform
re-detection in the succeeding frames. In order to handle rapid appearance and illumi-
nation changes, recent works, e.g., [Grabner and Bischof, 2006] use on-line classifiers
that perform self-updating on the target object. Such on-line classifiers are usually highly
accurate and fast since they only have to discriminate the object from its current local
background. Figure 9.1 illustrates the tracking approach as proposed in [Grabner and
Bischof, 2006]. As can be seen, the process starts by marking the target object in frame
t = 0. An initial classifier F0(x) is then trained based on X0 = X+

0 ∪ X−0 , where X+
0

corresponds to one patch, the marked target object, and X−0 corresponds to surrounding
negative patches. At frame t = t + 1 the trained classifier is applied in a sliding window
manner in a predefined local search region in order to re-detect the marked object. The
actual detection is positioned at the peak of the estimated confidence map. Then, similar
to frame t = 0, F0(x) is on-line updated with Xt+1 = X+

t+1 ∪ X−t+1, where X+
t+1 corre-

sponds to the estimated location of the target object, and X−t+1 corresponds to surrounding
patches of the estimated detection. Since this tracking process runs in loops, we also talk
about a “tracking loop”.

Although the approach of Grabner and Bischof has been shown to yield fast and highly
accurate trackers, its main drawback lies in the fact that it can easily drift in case of
wrong updates during learning [Matthews et al., 2004]. This comes from the fact that

1 www.idiom.com/ zilla/Papers/nvisionInterface/nip.html (14.5.2010)



9.1. Tracking as a discriminative Classification Problem 117

Figure 9.1: The original on-line AdaBoost tracking loop as proposed by [Grabner and
Bischof, 2006].

Figure 9.2: Tracking of a textured patch with difficult background (same texture). As
soon as the object becomes occluded the original tracker from [Grabner and Bischof,
2006] (dotted cyan), drifts away. Our proposed methods (yellow) successfully re-detects
the object and continues tracking.

the approach performs self-learning; i.e., the tracker relies only on its own predictions.
Yet, during tracking it is hard to decide where to select the positive and negative updates
necessary for self-updating. As we have seen above, usually simple heuristics are used
where positive updates are taken at the peak of the confidence map and negative updates
from low-confident regions. If the update patches are selected wrongly due to a wrong
confidence map, errors can be accumulated over time ending up in learning wrong things.
Additionally, if the object is in principle re-detected correctly but the alignment is not
perfect also slightly wrong updates are generated (a.k.a. label jitter) and can lead to
drifting. Figure 9.2 further illustrates the problem.
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9.2 An one-shot semi-supervised learning formulation for
tracking

Tracking-by-detection, in principle, is an ill-posed problem. The complicated task in
tracking using an appearance-based on-line classifier is to continuously apply self-training
while avoiding wrong updates that my cause drifting. As already discussed above, the
problem with these approaches is that the self-updating process may easily cause drift-
ing in case of wrong updates. Even worse, the tracking-by-detection approach suffers
also from the fact that usually on-line counterparts of supervised learning algorithms are
used, which are not designed for handling ambiguity of class labels; for example, de-
spite the fact that boosting is known to by highly susceptible to label noise – as we have
seen in Section 5.2 – it is widely used in self-learning based tracking methods. This
severe problem of adaptive tracking-by-detection methods can also be explained by the
exploration-exploitation problem or the stability-plasticity dilemma [Grossberg, 1998]:
If the classifier is trained only with the first frame, it is less error-prone to occlusions and
can virtually not drift. However, non adaptive classifiers are not able to follow an object
undergoing rapid appearance and viewpoint changes. On the other hand, on-line classi-
fiers that perform self-learning on their confidence maps are highly adaptive but easily
drift in case of wrong updates.

As can be easily observed, the only time when the classifier can assume having correct
labels is at frame t = 0. During ongoing tracking, the classifier observes exclusively unla-
beled samples and can only rely on its own believes. Hence, from a learning perspective,
we have to solve a learning task where the individual samples arrive sequentially, are only
labeled at the beginning and the rest of the time unlabeled, respectively. We thus state the
following proposition:

Tracking-by-detection is an one-shot semi-supervised learning problem!

Following this observation, we further argue that one should apply semi-supervised
learning methods rather than supervised ones, which is more intuitive. Hence, in Fig-
ure 9.4 we present a modified tracking loop where labeled data exist only in the first
frame. In all subsequent frames t with t = 1, · · · ,∞, we exploit subpatches as unlabeled
samples. Since this is a classical semi-supervised learning formulation, we can use one of
the semi-supervised boosting approaches (i.e., on-line SemiBoost and on-line SERBoost)
or semi-supervised random forests, introduced in this thesis as learners. As the semi-
supervised boosting approaches need a prior classifier that “guides” the on-line learner
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Figure 9.3: The semi-supervised tracking loop: as can be seen, the on-line classifier is
“aware” that putative update patches are unlabeled data, which are incorporated using
prior knowledge in form of a static classifier.

Figure 9.4: Detection and tracking in principle can be viewed as the same problem, de-
pending on how fast the classifier adapts to the current scene. On the one side a general
object detector (e.g., [Viola and Jones, 2002b]) is located and on the other side a highly
adaptive tracker (e.g., [Grabner and Bischof, 2006]). Our approach is somewhere in be-
tween, benefiting from both approaches: (i) be sufficiently adaptive to new appearance
and lightning changes, and the simplification of object vs. background and (ii) limit
(avoid large) drifting by keeping prior information from the object.

through the exploitation of unlabeled data, we train a supervised learner at the first frame
which is never updated throughout the tracking. Roughly speaking, one can think of the
prior classifier as a fixed point and the on-line classifier exploring the space around it.
This means that the classifier can adapt (or “drift”) to new situations but has always the
possibility to recover.

9.2.1 Convex Combination of Loss Functions

As proposed above, using on-line SSL for tracking, samples are only passed to the super-
vised loss at the first frame. During run-time, the unlabeled samples are used to regularize
the classifier learned at the first frame rather than learning new samples with a powerful
supervised loss. As a result, the tracker is more stable and less susceptible to occlusions
while it is simultaneously more adaptive than a static classifier [Grabner et al., 2008]. An
intuitive explanation for the increased robustness is that a semi-supervised tracker learns
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with lower weights in case of reduced confidences of both the current classifier and the
prior. However, rapid appearance changes of the target object also result in reduced con-
fidence measurements. In such cases, semi-supervised trackers usually perform inferior
to supervised one [Babenko et al., 2009b], where a supervised loss would lead to bet-
ter results. To alleviate this drawback of SSL, we propose to pass each patch to both a
supervised and an unsupervised loss function using the following convex combination

`(F (x)) = (1− α)`l(F (x)) + α`u(F (x)), (9.2)

where `l is a supervised loss performing self-learning and `u is a semi-supervised loss
where all sub-patches are considered to be unlabeled samples and α steers the importance
of the two terms. The supervised loss thus corresponds to self-learning and, as we have
argued above, would in principle reduce the stability of the tracker. However, as we
showed in Section 5.2, if we make use of more robust loss functions than the common
exponential loss, we can handle self-learning and thus the noise that comes along with it
up to a certain extend. Hence, we will use SERBoost for the proposed tracker, because
it allows for using robust loss functions and α can be set to smaller values than using an
exponential loss. This also allows for increasing the influence of the supervised loss in
easier scenarios and in cases where the object rapidly changes its appearance, making the
SSL tracker more adaptive.

9.2.2 Space-Time Regularization

Digital images provided in form of videos are naturally constrained in form of temporal
coherence; i.e., two successive frames are very likely to contain the same content. For
object tracking, this means that (i) the background cannot be expected to change signif-
icantly between two successive frames and (ii) that the target object does not change its
appearance and location significantly from one frame to the other one. This observation
is contrast to trackers based on Kalman filters or particle filters, which predict the motion
of an object based on previous observations but do not make assumptions about the ap-
pearance of an object over space and time [Yilmaz et al., 2006]. In the following we will
show that space-time coherence can also be exploited during learning by using the con-
straint as additional regularization term for an on-line semi-supervised learning algorithm
in order to improve the tracking accuracy. Note that Mobahi and Collobert [Mobahi and
Collobert, 2009] used a similar principle in order to improve the classification accuracy
of deep neural networks from unlabeled videos.

From a semi-supervised learning perspective, the space-time coherence can be eas-
ily incorporated into boosting by using manifold regularization techniques. According to
these principles, it is enforced that unlabeled samples (in our case patches) that lie spa-
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(a)

(b)

Figure 9.5: Dependency graph between neighboring samples of current and past frames
(a) and (b) similarity matrix encoding this relation for 3 frames (block structure due to the
grouping of positive and negative samples).

tially close to each other should share the same labels. Extending this idea from space also
to time, samples from past frames are also taken into consideration, which is facilitated
by the fact that the object motion between frames is limited. However, the influence of
frames decreases with a constant factor the more they lie in the past. In the following we
will discuss the approach in more detail and show how the space-time constraint can be
calculated and how we can transform the thus obtained similarity measure among points
into a prior. This prior can then be easily used as a regularization term for semi-supervised
boosting.

Similarity Measure

Similarities between samples are described by utilizing a graph based model, which is
sketched in Fig. 9.5(a). The similarity of a sample is depending on the spatio-temporal
and the visual distance to other samples, with the expectation that close neighbors encode
a high similarity.

Spatial-temporal similarity is measured based on the Euclidean distance of samples in
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a polar coordinate system with its origin at the current object location:

dS(xi,xj) =
1

σr
‖ri − rj‖+

1

σφ
‖ϕi − ϕj‖

dT (xi,xj) = |ti − tj|. (9.3)

r is the distance of a samples from the current object location and ϕ encodes the angle.
Parameter σr is chosen in dependence on the object size (e.g., 1/10 of object size) and
parameter σφ is set such that samples with in an angle (e.g., π/4) are assumed similar. k
is a weighting factor for decreasing influence in time (e.g., k = − log(0.8))

Visual similarity measures the appearance difference of samples based on their clas-
sifier confidences:

dA(xi,xj) =
1

σA
‖F (xi)− F (xj)‖ , (9.4)

where σA controls the deviation for confidence values (e.g., 0.3 if confidences are normal-
ized to lie in [−1, 1])
The resulting similarity measure combines the different distances in a multiplicative way,
such that samples are similar only in the case they are close in space, time and appearance:

s(xi,xj) = exp

(
−d

2
S

2
− d2

A

2
− kdT

)
(9.5)

All similarity measures are combined in a similarity matrix S with sij = s(xi,xj).

Prior Calculation

The space-time prior probability P+
p,ST (xi) = Pp,ST (y = 1|xi) of a sample xi now de-

pends on its own and its neighboring samples:

P+
p,ST (xi) =

∑
xj∈N (xi)

s(xi,xj)P
+(xj)∑

xj∈N (xi)
s(xi,xj)

(9.6)

In Eq (9.6) the probability P+(xj) can come from a static or adaptive prior classifier,
the current classifier F (x). We apply a simple combination of both. We use a logistic
mapping P+(x) = (1 + e−2F (x))−1 between confidence rated predication and probability.
The calculation of prior probabilities is computed efficiently in matrix-vector form[

P+
p,ST (x1) . . . P+

p,ST (xn)
]T

(9.7)

= S ·
[
pp|t . . . pp|(t−k)

]T
with pp|t′ =

[
P+
p (x1)t′ . . . P+

p (xn)t′
]
.
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Figure 9.6: Spatial temporal coherence between samples in tracking: Thick points are
samples from the current frame, thin circles are samples from previous frames. (left)
classification from appearance based prior, (right) the smiliarity encoding S smoothes of
individual (wrong) predictions. Color encoded is the probability of samples belonging to
the positive class.

Figure 9.6 demonstrates how the space-time prior calculation influences the algorithm.
Standard SERBoost is using the prior information directly, illustrated in the left part.
Noise in the prior thus will directly effect the algorithm. By taking spatio-temporal and
visual neighbors into consideration noise can be suppressed beforehand.

9.2.3 Tracking and Multiple Instance Learning

As we have discussed above, one of the main problems facing tracking-by-detection
methods is label jitter; i.e., misalignment of object detections. Recently, Babenko et
al. [Babenko et al., 2009b] proposed an on-line MILBoost formulation and showed that
in tracking label jitter can be handled by using multiple instance learning techniques. Us-
ing MIL, the classifier in principle is still performing self-learning; however, the allowed
positive update area around the current tracker location can be increased and the classifier
resolves the ambiguities of where to take the final positive updates by itself, yielding more
robust results. See also Figure 9.8 for an illustration. As the MILForest algorithm intro-
duced in Chapter 8 is also on-line learning capable, we can apply it to tracking and will
present some experimental results in the following section along with the other methods
discussed in this thesis.

9.3 Experiments

The experimental section in principle consists of two parts: In the first part, we will
analyze on-line SemiBoost (OSB) and compare to its supervised counterpart where we
show that it is less susceptible to drifting. In the second part, we will more quantitatively
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(a) sylv sequence

(b) tiger1 sequence

(c) faceocc1 sequence

Figure 9.7: Comparison between prior calculation from pure prior (top row) and prior
smoothing via the additional spatio-temporal constraint (bottom row). Note the smooth
and correct prior calculation in comparison due to the incorporation of spatial, temporal
and appearance based similarity measures. A green patch means the prior could not decide
for one of the two classes.

evaluate all the proposed on-line methods of this work on standard tracking benchmark
data sets.
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Figure 9.8: Three different ways to update an on-line classifier for tracking (Illustration
taken from [Babenko et al., 2009b]): (A) Update with single positive patch (green) and
many negative patches [Grabner and Bischof, 2006] (B) Take several positive and negative
patches and update a traditional classifier. (C) Put all the putative positive patches into
bag and let a multiple instance learner incorporate the positive patches by itself so that it
can get the best classification results.

9.3.1 Analysis of On-line SemiBoost

First, we perform experiments demonstrating the specific properties of our tracking ap-
proach. Second, we evaluated our tracker on different scenarios showing that we can cope
with a large variability of different objects.

Note that the main purpose of the tracking experiments is the comparison of the influ-
ence of the different on-line learning methods. Hence, we use simple Haar-like features
for representation [Viola and Jones, 2001] which can be calculated efficiently using inte-
gral data-structures, did not implement any rotation or scale search and avoid any other
engineering methods, although these things would definitely improve the overall results.
The performance (speed) depends on the size of the search region which we have defined
by enlarging the target region by one third of the object size in each direction (for this re-
gion the integral representation is computed). In our experiments we neither use a motion
model nor a scaled search window, which both however can be incorporated quite easily.
The strong classifier consists of only 25 selectors each with a feature pool of 50 weak
classifiers. All experiments are performed on a common 2.4 GHz PC with 2 GB RAM,
where we achieve 25 fps tacking speed.
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Figure 9.9: Tracking a face in an image sequence under various appearance changes.
The first row illustrates three different types of update strategies for the tracker, i.e., (i)
on-line boosting (cyan), (ii) prior classifier (red) and (iii) a heuristic combination of (i)
and (ii) using the sum-rule, i.e., 0.5(F P (x) + F (x)) (green). The second row shows the
SemiBoost tracker using the same off-line prior. The last row depicts confidence values
of the tracked patch over time for the prior and the SemiBoost tracker, respectively.

9.3.2 Illustrations

We illustrate details of our tracker on frontal faces. As prior classifier and for initializa-
tion of the tracking process we take the default frontal face detector from OpenCV Version
1.01. This demonstrates that we can use any prior in our method. The primary focus of
the experiments is to compare the SemiBoost tracker with other combination methods for
the prior and the on-line method2. As can be seen from Fig. 9.9, our approach (second
row) significantly outperforms the on-line booster, the prior classifier and a heuristic com-
bination of prior and on-line booster (first row). Additionally, even if the prior has very
low confidence (third row), the tracker is still able to correctly follow the (side) face. This
shows that we can adapt to appearance changes.

Fig. 9.10 depicts some illustrative samples taken for updates for both the on-line
tracker and our tracker. As can be observed, while both approaches track the same object,
they incorporate totally different updates. After some time the on-line booster performs

1 http://sourceforge.net/projects/opencvlibrary/, 2008/03/16
2 The OpenCV detector fails on side looking faces.
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Figure 9.10: Typical updates used for the former on-line boosting tracker (first column).
If the tracker loses the object and due to the self-learning update strategy which delivers
hard updates, it focuses on another image region. The remaining columns show how
samples are incorporated by the SemiBoost tracker. While they are propagated through
the selectors, their importance and label can change, with respect to the prior.

wrong updates with still high confidence. This is the main reason for drifting. Further-
more, in the SemiBoost method both sample labels and sample weights change while
propagating through the selectors of the SemiBoost tracker while being constant for the
former approach. Only such samples are incorporated which are necessary to augment
the prior knowledge or invert it in order to be adaptive. Positive samples are inherently
treated with caution, i.e., only few positive examples are considered.

9.3.3 One-Shot Prior Learning

For these experiments, the prior is learned from the first frame only. In fact, we build
a trainingset XP = 〈xo,+1〉 ∪ {〈xi,−1〉|xi 6= xo} where xo corresponds to the marked
image region and negative samples are generated from the local neighborhood. We added
invariance to the training set by creating “virtual” samples [Girosi and Chan, 1995] by
performing affine warping on the first frame in order to train a more robust classifier (See
also Figure 9.11). Since this trainingset is quite small the time needed to train the prior
classifier F P is negligible. After this one-shot training, the prior classifier is kept constant.
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(a) Original Image (b) Virtual Samples

Figure 9.11: Creation of “virtual” samples through affine warping.

In Figure 9.12, we compare our new method to the on-line boosting approach on
various tracking scenarios. First, as can be seen in row 1, we are still able to handle
challenging appearance changes of the object. Row 2 of Figure 9.12 depicts tracking
during a fast movement. Since some incorrect updates and the self-learning strategy of
the on-line boosting tracker loses the target and focuses on another part while the semi-
supervised tracker is able to re-detect the object. An extremal case is shown in row 3,
where we remove the object from the scene. If the object is present again and thanks to
the fixed prior our proposed approach has not forgotten the appearance as it is the case
for the other tracker and snap to the object again. The next experiment (row 4) focuses
on the long term behavior. We chose to track a non-moving object in a static scene for
about 1 hour. In order to emphasize the effect we use rather dark illumination conditions.
While our proposed tracker stays at the object, the on-line booster starts to drift away. The
reason is the accumulation of errors. The final experiment shows a special case of drifting
as depicted in the last row of Figure 9.12. Two very similar objects are put together in the
scene. Since the pure on-line tracker has not the additional prior information, it is very
likely that it is unstable and may switch to another object. Additionally, we choose two
public available tracking sequences which have been already used in other publications as
can be seen in the last two rows. Our approach performs comparable to the previous on-
line tracker on appearance changes (sixth row). After the object was totally occluded (last
row), our approach is able to recover the correct object while the former on-line tracker
gets confused and starts tracking the second (wrong) car. Additional tracking videos are
included as supplementary material.

2 http://www.vividevaluation.ri.cmu.edu/datasets/datasets.html,

2007/06/12.
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9.3.4 Benchmark Sequences

In this part of the experimental section, we will quantitatively evaluate and compare all
of the discussed on-line learning variants in this thesis. Therefore, we use eight publicly
available sequences including variations in illumination, pose, scale, rotation and appear-
ance, and partial occlusions. The sequences Sylvester and David are taken from [Ross
et al., 2008] and Face Occlusion 1 is taken from [Adam et al., 2006], respectively. Face
occlusion 2, coke, Girl, Tiger1 and Tiger2 are taken from [Babenko et al., 2009b]. All
video frames are gray scale and of size 320× 240.

Evaluation Method

To show the real accuracy of the compared tracking methods, we use the overlap-criterion
of the VOC Challenge [Everingham et al., 2007], which is defined as

RT ∩RGT/RT ∪RGT , (9.8)

whereRT is the tracking rectangle andRGT the groundtruth. Since we are interested in the
alignment accuracy of our tracker and the tracked object, rather than just computing the
raw distance we measure the accuracy of a tracker by computing the average detection
score for the entire video. Since it is very difficult or nearly impossible to reach the
maximum of 1.0 for this criterion, a value larger than 0.8 can be seen as nearly perfect
tracking result, 0.5 to 0.8 would be acceptable.

Tracking performance

As it is the main purpose to compare the learning methods, we use the same simple
Haar-like features as representation for all the learning methods, did not implement any
rotation or scale search and avoid any other engineering methods. All trackers where
initialized by generating 100 virtual samples [Girosi and Chan, 1995] at the first frame
using affine transformations. For all boosting methods, we used 50 selectors with each 50

weak classifiers. For all variants of random forests we used 50 trees and a feature pool of
randomly selected 500 Haar features.

Influence of the convex combination In the first experiment, we depict the perfor-
mance of OSERB on four tracking sequences depending on different settings for α. We
run each tracker 5 times and report the median with respect to the average overlap score
on the whole sequence. The results are given in Figure 9.13 together with an on-line
AdaBoost (OAB) performing self-learning and a static classifier only trained at the first
frame (PRIOR). All classifiers where trained using additional “virtual” positive samples
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generated by applying several affine transformations on the marked target patch of the first
frame. As can be seen, the value of α has significant influence on the performance of OS-
ERB. However, it can also be observed that on all sequences for a wide range of αOSERB
is able to outperform the competing methods. In particular, OSERB outperforms the com-
peting methods on scenarios where both the target and the background are changing, e.g.,
David, and usually a more adaptive classifier would be expected to perform better. It also
outperforms the other methods on sequences where the target object becomes occluded,
e.g., Face occluded 2, and usually a less adaptive classifier would be preferred. Another
surprising result of this experiment is the performance of the non-adaptive tracker which
is able to match the performance of OAB on three out of four scenarios and significantly
outperforms OAB on the Girl sequence.
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Figure 9.12: Comparisons of the SemiBoost tracker (yellow) and On-line AdaBoost (dotted cyan).

SemiBoost is still able to adapt to appearance changes while limiting the drifting. Additionally, results on

two public sequences are shown (last two rows). The first sequence have been provided by Lim and Ross

( [Ross et al., 2008]) and the second sequence is taken from the VIVID-PETS 2005 dataset.
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(a) David (b) Girl

(c) Face occlusion 2 (d) Sylvester

Figure 9.13: Tracking performance depending on different values of α (blue) in compar-
ison to a prior classifier trained at the first frame (black) and and on-line boosting tracking
(red).
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Quantitative Comparison In Table 9.1 we depict detailed results for all tracking se-
quences compared to MILBoost [Babenko et al., 2009b], SemiBoost (OSB) and on-line
AdaBoost (OAB) [Grabner and Bischof, 2006]. For OSB – as it is not based on robust loss
functions – we used only the unsupervised loss by setting α = 1. For OSERB, we report
the results with α = 0.5. Note that for tracking on-line DAS-RF and on-line MILForests
are virtual the same; hence, we only report the results for MILForests. STB corresponds
to boosting with space-time regularization. PSRF corresponds to on-line semi-supervised
RFs using priors. ORF is the on-line random forest method introduced in Chapter 7 and
RF is a random forest trained only at the first frame on the target object plus virtual sam-
ples. The latter is thus a static tracker similar to the one proposed in [Lepetit and Fua,
2006].

Sequence OSERB MILBoost OSB OAB ORF MILForest STB PSRF RF

sylv 0.64 0.61 0.46 0.50 0.53 0.59 0.55 0.58 0.50
david 0.69 0.54 0.31 0.32 0.69 0.72 0.66 0.52 0.32
faceocc2 0.77 0.65 0.63 0.64 0.72 0.77 0.66 0.75 0.79
tiger1 0.65 0.51 0.17 0.27 0.38 0.55 0.43 0.59 0.34
tiger2 0.42 0.50 0.08 0.25 0.43 0.53 0.48 0.45 0.32
coke 0.2 0.33 0.08 0.25 0.35 0.35 0.38 0.17 0.15
faceocc1 0.77 0.63 0.71 0.47 0.71 0.77 0.65 0.75 0.77
girl 0.77 0.53 0.69 0.38 0.70 0.71 0.65 0.63 0.74

Table 9.1: Tracking results on the benchmark sequences measured as average detection
window and ground truth overlap over 5 runs per sequence. The best performing method
is marked bold-face and the second best underlined, respectively.

As can be seen, for all of the sequences at least one of the proposed methods in this
thesis is outperforming the state-of-the-art, i.e., MILBoost or AdaBoost. Additionally, it
can be seen that OSERB always performs better than OSB; which speaks for the usage
of robust loss functions and the convex combination of both a supervised and an unsu-
pervised loss. The space-time regularized SERBoost (STB) also delivers accurate results;
however, it cannot take pace with the SERBoost version that is only regularized with a
prior classifier.

We can also see that all random forest-based methods deliver accurate results. As
expected, the self-learning variant ORF performs better on sequences that demand an
adaptive classifier, such as tiger1 or coke. By contrast, the static random forest classifier
RF performs best when it rather comes to occlusions and the adaptivity rate is not so
important, as in faceocc1 and faceocc2. The prior regularized random forest version
PSRF is somewhere between ORF and RF. On average, the best performing random forest
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method is MILForest, which compared to all methods performs best on three sequences
and second best on two. Withing the random forest approaches, MILForests seem thus to
be a feasible compromise between plasticity and stability.

Taking an overall look at the results, OSERB and MILForest are the two best per-
forming methods. While OSERB has highest accuracy on four out of eight sequences
and second highest on two, MILForest performs best on three and second best on two,
respectively. Hence, the experiments do not reveal a clear “winning” approach. Concern-
ing the run-time, MILForests learn faster, because they demand less features and benefit
from random splitting. However, for evaluation, OSERB is slightly faster because due
to the feature selection process, less features have to be evaluated. Note, however, that
both approaches run in real-time, i.e., > 25fps, on a standard 2.4 GHZ machine with
4 GB memory. Some representative results for OSERB, MILForests and MILBoost are
illustrated in Figures 9.14 and 9.14, respectively.

9.4 Summary

In this chapter, we discussed one of the most important applications of on-line boosting,
i.e., visual object tracking and showed that the drifting problem can be reduced by for-
mulating this task as one-shot semi-supervised learning using our proposed algorithms.
Finally, for the tracking task, we showed that images taken from videos naturally pro-
vide spatial and temporal coherence constraints that can be exploited by an on-line semi-
supervised, leading to more meaningful regularizations. We compared all of the methods,
which where proposed in this thesis, on standard benchmark data sets and showed that
both the semi-supervised boosting formulation and the one using random forests are able
to outperform the state-of-the-art on this task.
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Figure 9.14: Illustrative comparison of SERBoost (red) and MILForests (yellow) and
MILBoost (blue) on the coke, david, faceocc1 and faceocc2 sequences.
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Figure 9.15: Illustrative comparison of SERBoost (red) and MILForests (yellow) and
MILBoost (blue) on the girl, sylvester, tiger1 and tiger2 sequences.



Chapter 10

Conclusion

“Learning has just started!”, Vladimir Vapnik

I n this thesis, we addressed semi-supervised learning algorithms using ensemble meth-
ods, and we proposed new SSL methods using boosting and random forests. Our moti-

vation for investigating SSL originated from the fact that machine learning techniques are
very important for nowadays computer vision applications but providing huge amounts of
human labeled data for those methods is highly impracticable and handicaps their wide-
spread usage. Semi-supervised learning holds the potential to alleviate this problem by
enabling learners to exploit large amounts of unlabeled data, thus, reducing the effort to
hand-label data to a minimum.

We further concentrated on ensemble methods due to several reasons: First, they are
highly effective and have been shown to be competitive alternatives to other methods,
for instance, SVMs. Second, they are easy to implement, which guarantees widespread
usage as well as easy repeatability and, third, they are already used in many computer
vision applications.

We showed that SSL techniques often demand prior knowledge in order to exploit
unlabeled data. However, it is often not clear which prior knowledge to take and how to
obtain the right priors. In Chapter 4, we introduced a method that combines the usage of
visual similarity learning and semi-supervised boosting. The similarities are obtained by
learning pair-wise distance functions which has the advantage that (i) the discriminative
learned distances best support the discriminative exploitation of the unlabeled data in the
further processing and (ii) already a small amount of data is sufficient in order to get
proper results. We also showed how to incorporate any source of prior knowledge and
how to combine the classifiers if the prior knowledge is provided in form of a classifier.
In the experimental section of Chapter 4, we demonstrated several potential applications
of this method ranging from classifier improvement to transfer learning in typical multi-
camera surveillance settings.
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As many applications demand on-line capability, in Chapter 5 we presented a semi-
supervised formulation of on-line boosting. We further discussed the lack of robustness
of standard boosting in case of label noise and proposed a novel on-line boosting vari-
ant using more robust loss functions. Incorporating these insights into semi-supervised
boosting further resulted in a new on-line semi-supervised boosting method based on ro-
bust logistic loss functions.

The second ensemble method discussed in this thesis are random forests. The mo-
tivation for studying RFs stems from the fact that, in recent years, RFs have emerged
as a popular classification method, which is increasingly often used in computer vision.
However, random forests need large amounts of data in order to enroll their full poten-
tial. Therefore, in Chapter 6, we introduced an approach that allows for training random
forests with both labeled and unlabeled data, called DAS-RF. We evaluated the method
on various machine learning data sets and also for visual object categorization where we
showed that we can train a classifier that is inherently able to discriminate between 100
classes on the Caltech-101 data set and also successfully improves its accuracy on unla-
beled data. During the learning, semi-supervised RFs treat the hidden class labels of the
unlabeled data as additional optimization variables. This means, e.g., that in case of 100
classes, for each sample the classifier has a chance of 1

100
to estimate the right label; which

indicates the complexity of such a task. The method has, furthermore, several appealing
characteristics: It is fast, parallel, inherently multi-class and allows for easy detection if
unlabeled data either corrupts the results or really helps. Especially the latter character-
istics might lead to easier practical usage of the method. Since one may be interested in
applying RFs on sequentially arriving data and in dynamic environments, in Chapter 7,
we showed how to extend DAS-RFs to on-line learning.

In Chapter 8, we reviewed multiple instance learning. MIL can be applied in numerous
computer vision applications, which makes it worthwhile investigating in this machine
learning strand. Multiple instance learning is very similar to SSL. In fact, we showed that
MIL is a special case of semi-supervised learning, where sub-groups of unlabeled data,
i.e., bags, have the additional constraint that at least one instance’s real label corresponds
to the bag label. Hence, we also introduced a method, MILForests, that extends random
forests to multiple instance learning using similar optimization techniques as for DAS-
RFs. The method can be used both off-line and on-line. In the experimental section,
we demonstrated that MILForests deliver state-of-the-art MIL results but are faster than
competitive methods.

Finally, in Chapter 9 we showed that visual object tracking based on on-line classifiers
is an one-shot semi-supervised learning task, where labeled data is only provided at the
first frame of a video sequence and all the remaining frames correspond to unlabeled data.
Following this insight, we highlighted that not supervised but semi-supervised learning
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methods should be used for tracking, which are inherently designed for exploiting un-
labeled data in streaming data scenarios. Thus, using on-line SemiBoost allowed us to
change the previously used self-learning tracking loop into a loop where the tracker is
“aware” that, beginning with the second frame, secure labeled data cannot be guaranteed
and the patches have thus to be incorporated via an unsupervised loss. We demonstrated
that the resulting tracker is less susceptible to drifting while being more adaptive than an
off-line classifier trained on the first frame. In order to increase the adaptivity we further
showed that it is beneficial to during tracking pass sub-patches through both a supervised
and an unsupervised loss, however, using robust loss functions which can handle a certain
amount of noisy data. We also showed that the multiple-instance formulation of random
forests performs better than using the MIL extension for boosting.

10.1 Discussion

This thesis introduced and discussed several semi-supervised learning methods that are
applicable in both off-line and on-line scenarios. We showed that unlabeled data, which
is available in many vision applications, can be exploited by our methods, and that we
can achieve significantly improved results compared to using only labeled data. Both,
our semi-supervised versions of boosting and random forests are easy to implement and
only comprise small run-time overheads, which allows for straight-forward extension of
systems that are already using either of the supervised base-line algorithms.

However, there remain several concerns and open questions that were not discussed
throughout this thesis: The semi-supervised boosting methods used in this thesis are based
on prior knowledge in form of classifiers. We did not talk about scenarios where we have
several classifiers/experts/annotators providing possibly noisy predictions over the unla-
beled data. This is often the case in practice, but until now we do not have any mecha-
nism to decide how to benefit from these multiple sources and discard those that are not
helping at all. DAS-RFs would in principle allow for testing each prior using the airbag-
mechanism. However, considering many priors and large amounts of data it would be
impracticable to test each prior first and we rather need a more inherent approach. Fur-
thermore, for boosting, we only discussed binary classification tasks. Recently, however,
we showed in [Saffari et al., 2009a] that also for boosting SSL can be done effectively
with multiple classes. For further details about multi-class semi-supervised boosting we,
henceforth, refer the reader to the thesis of Amir Saffari [Saffari, 2010]

Concerning tracking, we showed that all of our methods, especially, OSERB and MIL-
Forests, outperform the state-of-the-art tracking-by-detection methods. Nevertheless, we
were not able to indicate a clear winner. Using space-time regularization led to better
label predictions of the unlabeled data. Unexpectedly, this does not have a significant
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positive effect on the tracking accuracy, although the updates are much nicer. These con-
cerns indicate that currently, from a learning perspective, tracking has arrived at a tech-
nically mature state; this means, principle improvements of the learning methods and the
regularization approaches do not yield significant improvements for tracking anymore.
Thus, research might from now on better focus on investigating better representations and
combinations of existing representations in order to gain progress. These considerations
also coincide with recent research results [Parikh and Zitnick, 2010] in the area of visual
recognition which indicates that nowadays not the learning algorithms but the way how
we represent objects is what is lacking behind humans. Nevertheless, as also nowadays
representations are usually hand-tuned and it is difficult to design proper representations,
one trend is also to learn the representation from a huge set of labeled data [Zeiler et al.,
2010, Brown et al., 2010]. Also, one has to question the currently used benchmark data
sets and we have probably to come up with new more challenging data sets.

The incorporation of both a supervised and an unsupervised loss during tracking led
to higher accuracy of semi-supervised boosting. However, we saw that the values of the
steering parameter α have to bet set differently for distinctive sequences in order to yield
best results. This is not elegant and arises the question if we can find a control system
that during tracking autonomously steers the effect of the supervised and the unsupervised
loss, respectively.

10.2 Outlook

The above discussion rises several possibilities and ideas for future research. One of
the main concerns is that although there exist already very powerful and highly accurate
semi-supervised learning techniques, in practice, people still favor supervised learning
and accept hand labeling large amounts of data. So, future research has to definitely
focus on making current SSL approaches more suitable for practice and we also have to
search for more possible applications. As we shortly discussed in Chapter 3, one problem
that most of the existing semi-supervised learning methods have in common and what
currently hinders their usage in practice is the fact that they assume both the labeled and
the unlabeled data to origin from the same distribution and are hence i.i.d.. In practice, this
is often not the case; for instance, if someone wants to train a car detector for a specific
scene for which he has some labeled data collected and wants to improve the classifier
with unlabeled data, however, collected from different scenes. When using currently
state-of-the-art SSL methods in such a situation, it is hard to guarantee that the unlabeled
data will have any positive effect.

Another practical concern is that although unlabeled data can be easily collected, it is
often hard to collect unlabeled data that consist of the right target object. Such a situation,
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e.g., may occur if one wants to improve a scene-specific car detector with unlabeled data
– probably from different scenarios – that does not contain any cars. For these situations,
the question arises if we can design methods that also benefit from unlabeled data that
does not contain the target objects. Also falling into this strand of research are recent
attempts, e.g., [Lampert et al., 2009, Farhadi et al., 2009, Wang et al., 2010] to describe
objects by their attributes and then re-use these attributes to also learn better classifiers
from categories where there is only a limited number of samples available.

Future work should probably also concentrate on incorporating special constraints
into SSL that are provided by computer vision applications. For instance, as we have
seen in the previous chapter, space-time regularization can be such a constraint. Another
constraint could be 3-dimensional information or, in general, multi-sensor fusion, etc..

The two main methods we investigated in this thesis were boosting and random forests.
Both methods have their individual advantages and disadvantages. Hence, in future work
we will concentrate on finding an algorithm that combines the two algorithms.
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Publications

M y work at the Institute of Computer Graphics and Vision at Graz University of Tech-
nology led to the following list of publications. For the sake of completeness, in the

following these publications are reported in an inverse chronological order. Note that this
thesis is mainly based on a subset of these papers.

(1) Christian Leistner, Amir Saffari, Martin Godec, Bernhard Zeisl and Horst Bischof,
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on On-line Learning
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Learning with Randomized Trees, submitted to ECCV 2010
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AAPR / ÖAGM, 2008

(22) Christian Leistner, Helmut Grabner and Horst Bischof, Semi-supervised Boosting
using Visual Similarity Learning, In Proc. IEEE CVPR, 2008

(23) Helmut Grabner, Christian Leistner and Horst Bischof, Semi-supervised On-line
Boosting for Robust Tracking, In Proc. ECCV, 2008 T

(24) Helmut Grabner, Christian Leistner and Horst Bischof, Time-Dependent On-line
Boosting for Robust Background Modeling, In Proc. VISAP, 2008

(25) Clemens Arth, Christian Leistner and Horst Bischof, Object Reacquisition and
Tracking in Large-Scale Smart Camera Networks, In Proc. IEEE ICDSC, 2008

(26) Clemens Arth, Christian Leistner and Horst Bischof, Robust Local Features and
Their Application in Self-Calibration and Object Recognition on Embedded Sys-
tems, In Proc. IEEE CVPR Workshop on ECV, 2007

(27) Clemens Arth, Christian Leistner and Horst Bischof, TRICAM: An Embedded Plat-
form for Remote Traffic Surveillance, In Proc. IEEE CVPR Workshop on ECV,
2006



146 Chapter A. Publications



Appendix B

Acronyms

DA Deterministic Annealing

EM Expectation Maximization

GE Generalization Error

HOG Histograms of Oriented Gradients

KL Kullback-Leibler

MIL Multiple Instance Learning

MLE Maximum Likelihood Estimate

OAB On-line AdaBoost

OOBE Out-of-bag Error

ORF On-line Random Forest

OSB On-line SemiBoost

OSERB On-line SERBoost

PSRF Prior-regularized Semi-supervised Random Forests

RBF Radial Basis Function

RF Random Forest

SSL Semi-supervised Learning

STB Space-time Boost
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SVM Support Vector Machine

XR Expectation Regularization
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