
Sara Shahzad

Analyzing the Extreme Programming

Practices and Knowledge Management

in Software Engineering Education

-

Shrinking the Gap between Industry

and Academia

————————–

Dissertation
vorgelegt an der

Technischen Universität Graz

zur Erlangung des akademischen Grades
Doktor der Technischen Wissenschaften

(Dr.techn.)

durchgeführt am Institut für Softwaretechnologie
Technische Universität Graz

Betreuer: Univ.-Prof.Dr.techn.Dipl.-Ing. Wolfgang Slany
Begutachter 1: Univ.-Prof.Dr.techn.Dipl.-Ing. Wolfgang Slany
Begutachter 2: FH.-Prof. Univ.-Doz. Dr. Elke Hochmüller

März 2010

“To my mother whose passion for education became my strength
and motivation to accomplish this goal of my life”

Acknowledgements

Praise be to Almighty ALLAH, the Beneficent, the Merciful, Who
has awarded me with this great achievement of my life.

I dedicate this achievement to my parents who have always in-
spired me and helped me in my studies. I also dedicate and share
my joy with my brothers, sister and in-laws especially my father
in-law though he is not among us anymore but due to his support I
was able to avail this opportunity to study in Austria.

I find no words of thanks for my family, especially for my husband
Syed Tanveer Shahzad and for my little stars Salleh and Daniyal.
Their share in my studies is beyond words which cannot be ex-
plained, only my achievement is more than everything for them. I
owe my deepest gratitude to my supervisor Professor Dr. Wolfgnag
Slany for his constant encouragement, help, and invaluable super-
vision of my research. Lots of sincere wishes and thanks for my
external supervisor Professor Dr. Elke Hochmüller for her guidance,
support, and encouragement in the final and critical stages of my re-
search. Many thanks to my colleagues at the Institute for Software
Technology whose help and guidance also has a share in the success
of my PhD studies. My heartiest tribute to my country Pakistan, to
the Higher Education Commission of Pakistan (HEC), and to the
Austrian Agency for International Cooperation in Education and
Research (ÖAD-GmbH). Special thanks to my employer University
of Peshawar (Pakistan), and to the Institute for Software Technol-
ogy, Technical University of Graz (Austria), for their positive role
and for providing all possible support required for my studies.

Sara Shahzad

1

Abstract

Software engineering education has emerged as a combination and
unification of theories from the diverse fields of social sciences and
psychology, learning and education, and from the field of manage-
ment sciences, along with the required computer related technical
skills and knowledge which are necessary for the software engineering
profession. The merger of all these fields into software engineering
education and the concept of university-industry collaboration has
changed the face of the conventional teaching process. It has taken
the traditional student-teacher classroom interaction to a broader
spectrum of practical-oriented training which covers not only the
coaching of the classical concepts of software engineering but also
provides training into how to cope with the challenges of real-life
software development industry. Furthermore, the easy availability
of experience based knowledge from professional software engineers
and from the people related to software development industry, di-
rectly from the person or through computer-based knowledge shar-
ing and collaboration mechanism, further assists in enhancing and
broadening the learning experience of the students. On top of this
knowledge management also plays an important part into this spec-
trum.

This thesis provides an insight into the findings of the research
conducted about agile software development methodologies, espe-
cially Extreme Programming (XP) methodology, through a research
and development project conducted in an academic environment and
the application of the results and lessons learned from the project
in designing a software development methodology course taken as
a case study to develop a structure and organization framework for
teaching XP.

This research contribution includes a framework based on the
structure and organization a of course for teaching XP in a univer-
sity environment to a large group of students incorporating many
unconventional pedagogical aids and concepts to simulate an indus-
try like situation within a university setup. The framework is agile
and can be adopted for teaching other classical and modern soft-
ware design methodologies and also other subjects based on theory
and practice. The framework also provides a research strategy, well
blended into the routine structure of the course, for gathering empir-
ical data which allows a self test mechanism. This research strategy

can also be adapted according to requirements of the course for
which the framework is implemented.

The in-practice experience of teaching and the analysis of the
framework in the case study demonstrates that there is a need
for more research and improvement in teaching software develop-
ment methodologies to fulfill not only the technical demands of
the software development industry but also to provide the new
software engineers a training in the fields related to the profession
of software engineering so that they have better chances to survive
in the industry.

Keywords: Agile Software Development Processes, Extreme Pro-
gramming, Software Engineering Education, Knowledge Manage-
ment,

Zusammenfassung

Die Ausbildung zum Softwareingenieur stellt sich immer mehr
aus einer Kombination aus und Verbindung von mehreren Diszi-
plinen heraus: Sozialwissenschaft, Psychologie, Bildungswis-
senschaften und Management ebenso wie technische Kenntnisse und
Wissen aus dem Bereich der Informatik, die alle für die Beherrschung
des Berufsbildes des Software Engineers notwendig sind. Die Kom-
bination dieser Themen in Verbindung mit einem verstärkten Aus-
tausch zwischen Hochschulen und Industrie hat sich auf die Art
und Weise ausgewirkt, wie die Lehre dieser Disziplin stattfindet.
Das klassische Lehrer-Schüler-Bild wurde dabei von einer wesentlich
breiteren und praxisnäheren Ausbildung abgelöst, die nicht nur
die klassischen Themen der Informatik umfasst, sondern vermehrt
auch auf die Anforderungen der kommerziellen Software Industrie
Rücksicht nimmt. Zudem beeinflusst die einfache Verfügbarkeit von
Expertenwissen aus der Industrie — sei es aus erster Hand oder
über ein Computer-gestütztes Wissensmanagementsystem in Kom-
bination mit kollaborativen Werkzeugen — ein vertieftes und er-
weitertes Lernerlebnis der Schüler und Studierenden

Diese Dissertation vermittelt einen Einblick in die
Forschungsergebnisse, die im Bereich der agilen Softwareen-
twicklung — insbesondere Extreme Programming (XP) — während
eines Forschungsprojektes im wissenschaftlichen Umfeld ermittelt
wurden. Weiters wird die Anwendung der Ergebnisse und die
im Rahmen einer Lehrveranstaltung gewonnenen Erfahrungen
vorgestellt, die sich mit der Erstellung eines Frameworks zum
Lehren von Extreme Programming beschäftigte.

Der wissenschaftliche Beitrag der vorliegenden Dissertation ver-
steht sich dabei als Framework zur strukturellen und organ-
isatorischen Gestaltung einer Lehrveranstaltung für Extreme Pro-
gramming für eine große Gruppe von Studierenden im universitären
Umfeld. Dabei werden unkonventionelle pädagogische Ansätze und
Konzepte eingesetzt, um möglichst praxisnahe Bedingungen zu
simulieren.

Dieses Framework selbst ist ebenfalls agil und leicht an das
Vermitteln anderer moderner Softwareentwicklungsmethoden oder
allgemeiner Themenbereiche aus Theorie und Praxis anpassbar.
Mittels einer Forschungsstrategie, welche in die Struktur der
Lehrveranstaltung eingebettet ist, wurden empirische Daten für die

Analyse der Methodik erhoben. Diese Strategie kann einfach auf
die Anforderungen von Lehrveranstaltungen angepasst werden, bei
denen das Framework verwendet werden soll. Die praxisnahe Lehre
und die Analyse des Frameworks in einer Case Study zeigen, dass
dieser Forschungsbereich noch weitere Forschungsmöglichkeiten
bietet, um die Lehre nicht nur auf die technischen Aspekte
der Anforderungen aus der Industrie anzupassen, sondern den
Studierenden auch eine sehr gute ganzheitliche Ausbildung zum
Softwareentwickler mit guten Erfolgschancen in der Industrie
anbieten zu können.

Stichwörter: Agile Softwareentwicklungsprozesse, Extreme Pro-
gramming, Didaktik und Lehre des Software Engineerings, Wissens-
management

Contents

1 Introduction and Motivation 10
1.1 Introduction . 10
1.2 Research Focus and Motivation 11
1.3 Research Problem . 12
1.4 Organization of the Thesis 13

2 Research Foundations and Literature Review 15
2.1 Issues in Software Engineering Education 16
2.2 Teaching Agile Software Development Methodologies 17
2.3 Summary . 20

3 Research Context and Motivation 21
3.1 Introduction to m3 Project 21
3.2 XP Process: Learning from Experience 22

3.2.1 Inside View of an Extreme Process 22
3.2.2 Optimizing Extreme Programming 24

3.3 Integrating Extreme Programming and User-
Centered Design . 28
3.3.1 User Interface Design for a Mobile Multimedia

Application 28
3.3.2 Agile User-Centered Design Applied to a Mo-

bile Multimedia Streaming Application 30
3.3.3 Concept and Design of a Contextual Mobile

Multimedia Content Usability Study 34
3.4 Integration of Extreme Programming and User-

Centered Design . 41

4 Analyzing the m3 Experience 45
4.1 Introduction . 45

6

4.2 Learning from Experience: Analysis of the m3 Process 46
4.3 Process Tailoring for Process Improvement 47
4.4 XP Process Background and Setup 47
4.5 Iteration-wise Improvement Process 49

4.5.1 Release and Iteration Planning Process 51
4.5.2 Fixed Time slots 54
4.5.3 Pair Programming 55
4.5.4 Customer Role 55
4.5.5 Usability Engineer Role 55
4.5.6 Test First Design 56

4.6 Learning Protocol: Tips and Tricks 56
4.7 Conclusion . 57

5 Framework of KM in XP Education 59
5.1 Introduction . 59

5.1.1 Research Goals 60
5.2 Basis of Study Setup 61
5.3 Study Setup and Case Selection 63
5.4 Organization of the Extreme Programming Teaching

Framework . 64
5.5 Course Organization 65

5.5.1 Part-I : XP-Visualization phase 67
5.5.2 Part-II : XP Realization Phase 71

5.6 Knowledge Management Perspectives 74
5.6.1 XP in Knowledge Management and Educa-

tional Context 75
5.6.2 Examination as a KM Tool 80
5.6.3 Wiki as a Source of Knowledge Management

in Classroom XP 80
5.7 Implications of Project Management and Industrial

Setup . 81
5.7.1 Work Environment 81
5.7.2 Daily Routine 82
5.7.3 40-Hours Week 82
5.7.4 Communication among Course Organizers

and Teams . 83
5.7.5 Changing Teams during Project 83
5.7.6 Customer-Manager Workshop 84
5.7.7 Project Presentation/Trade show 84

5.7.8 Planned and Surprise Meetings/Visits 84
5.8 Summary and Conclusion 84

5.8.1 Guidelines for Course Organization and Man-
agement . 85

6 Data Analysis and Results 89
6.1 Introduction . 89
6.2 XP Practices Survey 90

6.2.1 Methodology 90
6.3 XP Education Perspective Survey 91
6.4 Analysis and Results 91

6.4.1 Analysis of XP Practices Survey 92
6.4.2 Analysis of XP Education Perspective Survey 96

6.5 Summary of Results and Discussion 99

7 Limitations and Future Work 108
7.1 Summary of Data Collection and Results 108
7.2 Limitations of the Study 109
7.3 Future Research . 110
7.4 Conclusion . 111

A XP Practices Survey 112

B XP Education Perspective Survey 124

List of Publications

The following publications have been produced in the context of this
research.

1. User Interface Design for a Content-aware Mobile Multimedia
Application: An Iterative Approach (2007) [46]

2. Inside view of an Extreme Process (2008) [98]

3. User Interface Design for a Mobile Multimedia Application: An
Iterative Approach (2008) [48]

4. Optimizing Extreme Programming (2008) [45]

5. Probing an agile Usability Process (2008) [112]

6. Integrating Extreme Programming and User-Centered Design
(2008) [50]

7. Agile User-Centered Design Applied to a Mobile Multimedia
Streaming Application (2008) [49]

8. Concept and Design of a Contextual Mobile Multimedia Con-
tent Usability Study (2009) [51]

9. Learning from Experience: The analysis of an Extreme Pro-
gramming Process (2009) [97]

10. Integration of Extreme Programming and User-Centered De-
sign: Lessons Learned (2009) [52]

11. Knowledge Management Issues in Teaching Extreme Program-
ming (2009) [96]

Chapter 1

Introduction and
Motivation

1.1 Introduction

Software engineering is passing through a revolution. A demand for
new tools and techniques for software development comes almost on
daily basis. The technical advancement is being made with an over-
whelming pace. The software development industry demands for
new developers with the skills matching that of experienced soft-
ware engineers. Educational institutions are expected to play their
role in this regard but the situation in this paradigm has not been
very ideal. In 1994, Gibbs [29] suggested that the prerequisite for
the development and improvement in software engineering was soft-
ware engineering education [40]. Along with many other reasons it
was argued by the academicians that the education system lacked
in proper training and education of the developers [29]. After more
than a decade the situation is still not under control to a large ex-
tent. The flagship conference on Software engineering education
and training (CSEE&T) held in 2009 [105] asked for contribution
in the field of software engineering education especially to focus on
the fact that the education and training process in the field of soft-
ware engineering needed drastic change for improvement as the fresh
graduates were lacking skills considered important for the profession
of software engineering.

The seriousness of this matter is felt by researchers from the
fields of academia as well as from the software development indus-

10

Chapter 1 Introduction and Motivation 11

try. A special attention is placed on teaching Software Development
Methodologies (SDMs) and many researchers have investigated in
this field of education to provide the students with the skills re-
quired by the industry. Agile SDMs are in center of focus as these
are gaining more and more popularity in the industry. The demand
for professional expertise in agile SDMs has prompted many uni-
versities around the world to offer graduate level courses teaching
different agile SDMs. There are many universities where Extreme
Programing (XP) methodology ([8],[9]) is being taught as an agile
SDM. As XP takes a humanistic approach to software development
([34], [7]) it is desirable that this property of XP practices is high-
lighted in teaching. Many studies covering different aspects of XP
teaching have been presented at different international conferences
and research forums. For example, Williams and Upchurch [109]
and Assassa et al. [28] examine the use of XP in teaching soft-
ware engineering skills. Hazzan and Dubinsky [32] have formulated
principles for teaching SDMs based on the analysis of XP practices.
LeJeune [65] also examines the use of XP as a model for software
development from students’ perspective. Some researcher and aca-
demicians, like Schneider and Johnston [95] have also shown their
reservations about the use of XP to teach large scale software de-
velopment process.

1.2 Research Focus and Motivation

While many of the studies have covered different aspects of XP as
a whole and the use of individual XP practices in teaching software
development practices (for example, [73]) there is still a lot to be
explored in using XP as an overall process for teaching SDM. The
motivation behind exploring ways to teach XP as an SDM comes
from the continuing demands of software development industry to
produce better trained developers in agile processes facilitated by
the room for experimentation due to the agile nature of the XP
process and developing interest of the research community and peo-
ple from industry to collaborate in software engineering education
to provide the students with a better SDM learning experience in
order to expose the students to real-life software industry situation.
Experts from academia and industry have done formal as well as
informal university-industry collaboration and have evaluated the

Chapter 1 Introduction and Motivation 12

effects to see how it meets the critical needs of software engineering
education and professional development activities [11]. Carrington
[14] has also proposed an industry/university collaboration to up-
grade software engineering knowledge and skills in industry. Fur-
thermore, the inherent property of knowledge management activi-
ties in XP emphasized by the practice of teamwork offers more in
the direction of learning, education and training for real-life soft-
ware development activities. Bjørnson and Dingsøyr [12] emphasize
the greater satisfaction of agile development organizations regarding
knowledge management as compared to companies following other
non-agile methodologies. The explicit ideas of role playing in XP
further enhances the education related aspects of SDMs. Lastly and
most importantly the guidelines provided for software engineering
education ([41],[5]) provide a good motivation for further research
into the direction of agile software engineering education.

1.3 Research Problem

The thesis is focused on defining an educational and teaching so-
lution for young developers to learn XP as an agile software devel-
opment methodology in a way that they are able to be integrated,
readily and easily, into the software development industry using XP
and other agile techniques as software development methodology.
The research question can be formulated as:

How conventional and non-conventional pedagogical
techniques can be combined with the concepts of XP
practices to create a better learning, understanding, and
knowledge management solution for the students of
software development methodologies?

To answer this question it is eminent that first a thorough
knowledge and research into the field of agile software development
methodologies is required. This research is based on the findings of
a software development project which used XP as software develop-
ment methodology. The practical experience with the XP method-
ology has provided an insight into the logic and rationale behind XP
practices. It has also provided a pattern for learning and applying
the methodology in development teams. It has also highlighted the

Chapter 1 Introduction and Motivation 13

problems which may be encountered while applying the methodol-
ogy in software development teams. These conceived concepts of
“practical” XP are combined with inherent knowledge management
capabilities of XP following the general guidelines for software en-
gineering education ([41],[5]) which has paved the way to define a
structure and organization framework to teach XP to a large group
of students in a university environment. The study presented here
can be treated as a general guideline for structuring and organizing
an XP course for students having little or no knowledge about soft-
ware development methodologies. The framework revolves around
the a humanistic approach to teaching using knowledge management
concepts; assisted by the concepts from the theory of learning and
development such as role playing; exposes to a real-life experience
in the form of simulation of information handling and management
model of corporate industry; and provides a close to real XP style
setup. The framework is agile and can be adopted for teaching
other classical and modern software design methodologies and also
other subjects based on theory and practice. The framework also
provides a research strategy, well blended into the routine structure
of the course, for gathering empirical data which allows a self test
mechanism. This research strategy can also be adapted according to
requirements of the course for which the framework is implemented.
It can also be scaled to be implemented as a coaching course for
XP and other agile methodologies to train developers new to agile
software development methodologies.

1.4 Organization of the Thesis

The study presented here is adapted and formalized according to
the concepts of conducting and presenting research in software en-
gineering provided by Runeson and Höst in [90]. The author has
adapted the study to the guidelines provided by Runeson and Höst
for conducting a case study research and software engineering re-
search. In this regard the case study is selected keeping in view the
goals set for the research, the details of the study conducted are
presented, data is collected to analyze the working of the concepts
implemented during the study. The data is analyzed and reviewed
with respect to the goals of the research.

Following is the general organization of the thesis and a short

Chapter 1 Introduction and Motivation 14

description of each chapter.
Chapter 2 provides research foundations and literature review

taken to formalize the research and to identify the problems, incom-
pletenesses, and shortcomings in the field of software engineering
education.

Chapter 3 gives an account of the research background based
on a project in which the author participated for a test ground for
investigating the field of agile software development methodologies.
This chapter summarizes the work done by the author for the project
from May 2007 to June 2009 which has provided the opportunity
to investigate the practical aspects of agile software development
methodologies and set the basis for the proposed study.

Chapter 4 reports on what is concluded from this project and is
then used as the motivation of the actual study conducted. It gives
details of the lessons learned from working with XP methodology.

Chapter 5 gives XP teaching course case study design, planning
and protocol and the outlines the actual study conducted in order
to collect the data for the empirical and descriptive analysis of the
research.

Chapter 6 presents the details of the analysis and provides the
results.

Chapter 7 discusses the results, specifies limitations of the study
and gives future directions for following and enhancing the study.

Appendices provide a view of the questionnaires which are used
for data collection for the analysis of the study.

Chapter 2

Research Foundations and
Literature Review

Software engineering education has become of interest since the ad-
vancement in software development techniques. Not only the people
from academia but also computer professionals and people from in-
dustry and business community have taken part and played their
role in enhancing the field of software engineering education. The
reason for this multi faceted acceptance of the field of software engi-
neering education is that it is effecting the whole software develop-
ment industry. Technological advancement has not been utilized to
its full extent because of the inability of the software development
force to tackle with and work with it optimally. For this reason
measures have been demanded on the development of the workforce
so that the industry can get trained professionals who can readily
be integrated into the running software development activities, and
with reduced effort. To attain this there is a need to establish an
education system which can provide the students with the required
technical knowledge and skills, and an exposure to the kind of envi-
ronment and situation in which they have to survive ultimately in
the industry.

The software engineering education system still lacks in the re-
quired infrastructure which fulfills these requirements most opti-
mally. There is an ongoing process which has been started to
improve the education system and to introduce the improvements
whatever is needed according to the requirement of the industry.
The professional skills have been tried to improve the situation by

15

Chapter 2 Research Foundations and Literature 16

introducing knowledge about the latest tools. A lot of research has
been conducted in this regard. The output of the research is given in
the form of guidelines, frameworks, and information to tackle with
different problems occurring in the education as well as in software
engineering industry.

In the context of this research the author concentrated on the is-
sues concerning with the software engineering education in general
and specifically with teaching agile software development method-
ologies, especially extreme programming. The objective of this chap-
ter is to provide a brief review of the concepts on which this research
is based. These include introduction to software engineering edu-
cation, agile software development methodologies, and knowledge
management, and about some other issues are considered to bridge
the gap between the education and training provided by academia
and the requirements of the software development industry. Al-
though the spectrum set in this review study is wide but the focus
is on the specific issue of software engineering education.

The following sections give a review about the topics related to
the context of this thesis described in the previous paragraph. The
selection is based on the issues presented, the experience of the
researcher with software engineering education and the experience
of the author with the agile software development methodology. The
studies mentioned here present only a subset of the studies that the
author reviewed for research and are mentioned here for the purpose
of setting a base for the background of the research and for setting
a ground for refining the concepts regarding the research problem.

2.1 Issues in Software Engineering Education

The guidelines presented for software engineering education in 1999
by Bagert et al. [5] acknowledged that the academic programs were
not devoting enough time for areas of software engineering neces-
sary to be taught for “effective commercial software development”.
To tackle that issue a set of guidelines was provided to assist the
faculty in the design, organization and implementation of software
engineering and other related courses. In a previous report named
“Software Chronic Crisis” [29] Gibbs gave reasons for the failure of
many large scale software projects and suggested that software en-
gineering education needed to be improved. Some other researchers

Chapter 2 Research Foundations and Literature 17

and practitioners had also emphasized the need to equip software
developers not only with the technical knowledge but also to prepare
them to practice software engineering. Hilburn [40] also presented
a conceptual model for improving software engineering education
by tackling issues related with people, processes, and technology.
Later on Hilburn et al. ([41],[42]) proposed guidelines for software
engineering education. Shaw [99] identified four crucial challenges
of providing education based on roles related to software develop-
ment, providing education for promoting good software development
skills, keeping education and training up to current state of the art
technology and standard, and the establishment of essentials that
accurately represent the ability of software developers. She also pro-
posed a set of aspirations for the educators to meet these challenges
in future. Basili et al. [6] talked about experimentation as a tool
for the advancement in software engineering education, Žagar et
al. [106] discussed knowledge management and social issues related
with software engineering education and presented an approach to
teaching in [107]. Thompson [102] presented a software engineering
education framework in 2008.

2.2 Teaching Agile Software Development
Methodologies

Many software development methodologies (SDMs) have been de-
signed to provide an organization and structure to software design
process. Agile SDMs have their roots in “Agile Manifesto” [39] pre-
sented in 2001 and have become of greatest interest as they provide
a flexible way of tackling with the problems in software develop-
ment while maintaining the basic requirements of completeness and
timely delivery of software.

Agile SDMs have been applied by many organizations in soft-
ware development industry and have shown success [53]. Of all agile
methodologies XP ([8],[9],[10]) has been practiced and researched a
lot throughout the world and practitioners and educators both have
taken interest in using and promoting the XP methodology. XP
defines a humanistic approach to software development and follows
a set of values, principles and practices. With the increasing use
of XP and other agile SDMs in the software development industry

Chapter 2 Research Foundations and Literature 18

educational institutes have been facing the demand to educate new
developers in this field so that they are ready to work with agile
methodologies when they enter the software development industry.
To provide an understanding of the XP methodology many studies
have been presented to review the basic concepts behind the prac-
tices of XP as well as to see how these actually work and to be
implemented. The research in the field of software engineering ed-
ucation and that of teaching XP have both now taken a common
ground. In 2006, Hazzan and Dubinsky presented an educational
framework ([33]) which is based on a collection of 14 principles to
teach Software development methodologies. Hazzan and Dubinsky
have used the concepts of XP ([8],[9],[10]) to exemplify these princi-
ples. This framework is a follow-up of their experience with teaching
a course of XP at a university [32] and of their framework presented
in [21]. Many studies have been presented in this regard. Some of
these are mentioned in the table 2.1.

Table 2.1: Agile/XP in Software Engineering Education
Publications Focus Year
Kivi et al. [60] about team designing 2000
Williams [109] about software engineering skills and XP 2001
Jovanovic et al.[57] Introducing programming 2002
Hazzan/Dubinsky [32] Teaching SDMs 2003
Schneider/Johnston [94] SE Education 2003
Hedin et al. [35] Introducing SE 2003
Williams et al. [111] Teaching Agile 2005
Schneider/Johnston [95] Criticizing XP for SE Teaching 2005
Hedin et al. [35] XP teaching 2005
Assassa [28] XP teaching case study 2006
Williams et al. [110] Pair programming 2008

In general, many approaches have been adopted for strengthening
software engineering education. One of these which is widely used
and researched is university-industry collaboration. Macias [70],
while presenting an empirical assessment of XP discussed that most
software engineering education systems stress on providing coach-
ing in the theoretical aspects of software development and assume
that a small project will provide enough training to understand the
practical concepts of the process. But it is not true. A more true
representation of real-world software development is needed by the

Chapter 2 Research Foundations and Literature 19

students to visualize the software engineering paradigm. One option
is university-industry collaboration to provide training of theoreti-
cal concepts in universities and using industry platform for practical
training. [62] proposed a model to close the gap between industry
and software engineering education. Along with informal industry-
university collaboration a formal collaboration platform also exits
between universities and software development industry. Beckman
et al. [11] defined such a case of collaboration.

Team learning is another concept used for enhancing learning.
van Solingen et al. suggest that the quality of developers is measured
by the extent of their knowledge [104] and include team learning
in one of the nine enablers for learning in software development
projects - hence depicting the importance of practice in learning.

Knowledge management in software development teams has been
another issue of interest. Bjørnson and Dingsøyr ([12]) conclude
that agile companies are more satisfied with their knowledge man-
agement activities as compared to traditional software development
organizations. This eventually leads to the concepts of agile knowl-
edge management (AKM) which removes barriers of long term or-
ganizational goals and the corporate hierarchy of roles, which exist
in business organizations to “promote collaboration and sharing”
of meaningful knowledge [72]. Project management also applies to
this situation as business organizations need a prompt reaction to
change propagated by timely collaboration and sharing of knowledge
among stakeholders, hence integrating AKM and project manage-
ment concepts. All this knowledge management structure revolves
around each and every person associated with the development pro-
cess including developers, managers, customers, other stakeholders,
and also usability experts associated with the team and the project.

Role playing is another concept which is widely used and re-
searched in the field of education and has also been explored for
software engineering education. Henry et al. [37] define that as soft-
ware engineering is not only a technical activity but also involves
human effort in which the issues of “communication, collaboration,
motivation, work environment, team harmony, sense of purpose, en-
gagement, training, education, etc” take a central place so letting
students play different roles which exist in software development
industry also pays off the effort. [3] also favours the same concept.

Chapter 2 Research Foundations and Literature 20

2.3 Summary

All the concepts mentioned in the previous sections and along with
many other provide a foundation for further study and research in
the field of more fruitful agile SDMs education and training. One
such attempt is made by this study which presents a teaching frame-
work as set of guidelines which may be adopted to organize and
structure a graduate course for providing training in XP methodol-
ogy. The setup of this framework is greatly inspired by the educa-
tional framework suggested by Hazzan and Dubinsky [33]. The ben-
efits of this framework is the simplicity in organization and structure
of the framework itself. The basic concept that is adopted is that
the emphasis should be placed on teaching the methodology and not
on making the framework more complicated. The framework is de-
signed keeping in mind the current education and knowledge level of
the course participants and therefore should be adapted according
to the level of education and knowledge of the population sample
for which it is used.

Chapter 3

Research Context and
Motivation

The following sections provide an overview of the research conducted
from May 2007 to August 2009 in the context of m3 project. The
project is about developing a mobile multimedia streaming applica-
tion for large archives of audio-video (AV) content, with a research
interest to examine the use of agile software development method-
ologies, especially extreme programming (XP) and user-centered de-
sign (UCD) for mobile applications [51]. The research has been
conducted at Graz University of Technology, within the compe-
tence network Softnet Austria (www.soft-net.at) and funded by the
Austrian Federal Ministry of Economics (bm:wa), the province of
Styria, the Steirische Wirtschaftsförderungsgesellschaft mbH.(SFG),
and the city of Vienna in terms of the center for innovation and tech-
nology (ZIT).

3.1 Introduction to m3 Project

The project has its name “m3” from the words mobile multimedia.
The development team consists of five developers, a project man-
ager and a business person who has also performed the duties of the
on-site customer and has contributed to the research [45]. The au-
thor has participated in the project as a developer in the team. The
results of the research have been presented, in the form of research
papers, at different international academic forums (in conferences
and workshops) and have been reviewed by fellow researchers and

21

Chapter 3 Research Context and Motivation 22

academicians. The research papers are grouped into two categories.
One category relates to the team’s experience with the adoption of
XP, the lessons learned, the retrospective review of the XP process
applied. The other category is the application of UCD in the con-
text of m3 project, which emphasizes the usability aspects of the
application by giving the details of the usability process employed,
the human-computer interaction (HCI) instruments used, and the
integration of the UCD into the XP process [49].

The rest of this chapter is arranged as follows. Each section
presents the summary of a publication selected from the group of
research papers which have been published in the context of m3
project (refer to List of Publications). A total of six publications are
selected to be included in this chapter. The publications in category
“XP Process” are directly related to the main research idea of the
author presented here in this thesis and describe the motivation for
this research. Whereas, the publications selected under category
“Integrating Extreme Programming and User-Centered Design” are
indirectly related to the main topic of the research presented as
the m3 project has provided a context for the research conducted.
These papers are summarized here to provide an introduction to the
project as well as to show how the learning process in the context
of XP and UCD has worked. The papers, presenting the ongoing
work on the m3 project, are published between the years 2007 to
2009 and outline the details of the progress of the project during a
given period of time around which these papers were produced. As
the overall concept is of iterative improvement, therefore, in some
cases, the implementation of the same idea seems conflicting from
one publication to another. What still holds of the process is defined
in publication [52] summarized at the end of this chapter.

3.2 XP Process: Learning from Experience

3.2.1 “Inside View of an Extreme Process”
(Item 2 in List of Publications)

Summary:

This paper has been presented at the 9th International Confer-
ence on “Agile Processes in Software Engineering and Extreme Pro-

Chapter 3 Research Context and Motivation 23

gramming”. The paper presents the m3 project, team setup, and
the XP environment in which the project is being developed. The
paper has been published as a short paper and is presented as a
poster at the conference. It attempts to provide a precise outline
of the goals of the research, the m3 project, and most importantly
the details of the process which was being followed at that stage
during the project development. In the end this paper provided the
motivation to the author to look into the process aspects of XP in
detail and research into the learning process being followed by the
m3 team.

The paper is divided into sections defining the motivation behind
using XP as the development, the detail introduction of the m3
project, and the process of evaluating the XP methodology which is
one of the main goals of this research. The paper is short, concise,
self explanatory, and provides an overall view of the m3 project.

XP Motivation: The m3 project relates to the development of a
multimedia streaming application for mobile devices with an
emphasis to utilize huge archives of TV and radio programs
and other documentary and entertainment content. XP was
selected as design methodology with an intention to use it in
a progressive manner: applying each practice, and looking for
the improvement and optimization of the whole XP process at
the same time. The m3 team was not a usual XP or develop-
ment team but was rather a team of researchers who aimed at
participating in the software development as a test-project for
their PhD research. The agile nature of the XP process facili-
tated the team to schedule and investigate their research ideas
during the tight schedule of the project.

The Project The project team consists of six PhD students, five
developers (a mix professional programmers and members from
academia) and one business person. The members of the team
belonged to different social and cultural backgrounds, as two
of the team members were from Asia and the rest of the team
was European. The customer of the team was a qualified busi-
ness person, who also performed the business related functions
associated with the project. He also performed team media-
tion during meetings and discussion to keep the team focused
on the topic of discussion. His professional experience in team

Chapter 3 Research Context and Motivation 24

mediation helped in this regard.

The team’s XP-room facilitated team discussions as it is sur-
rounded by six white boards, to place the story cards as well
as for drawing graphs and diagrams. The space also provided
to having three pairing stations and six private sitting places
for the team members.

Evaluating the Process Process evaluation was given utmost im-
portance along with the routine developmental tasks. As the
team members were researchers so they had enough interest to
perform these tasks. The data required for analyzing the pro-
cess performance was collected from the implemention of the
practices. Different tools for planning (e.g., “xplanner” [23])
and for empirical data collection (e.g., “Shodan 2.0 Input Met-
ric Survey” [63]) were used in the project. In order to develop
the base for research and development side-by-side the team
made use of routine weekly retrospective meetings to discuss
and reflect on the process.

3.2.2 “Optimizing Extreme Programming”
(Item 4 in the List of Publications)

Summary:

This paper presents the initial experience of the m3 team with XP
methodology during the first year of the project. The main objective
of the paper is to present the team’s approach towards XP, and what
worked and not worked for the team and the project. Initially, XP
was applied as a whole, using all applicable practices defined by Kent
Beck ([8] [9]). Due to the unique setting of the project and the team
setting it soon became obvious that some changes were required
in the XP process. To find an optimized process for m3 project,
the applied process was evaluated continuously to see how it was
working for the project. It was noticed that some practices could
be adopted directly but for some practices structural modifications
were needed to make them work for the team and the project [101].
It was concluded that even though XP was a simple and light weight
process, it had to be tailored to the nature of each team and project.

The paper starts by introducing the on-going research in the field
of agile software development methodologies especially XP. The pa-

Chapter 3 Research Context and Motivation 25

per also briefly provides the results of the evaluation of the XP pro-
cess for which the data was collected through code analysis, process
evaluation tools, and notes of process review meetings.

The important points of the main sections of the paper are sum-
marized below.

Project Environment This section outlines the research and de-
velopment setup of the project which is about developing a
multimedia streaming application for mobile phones. The ob-
jectives of the project are to develop a software product ac-
cording to needs of the users and the optimization of the XP
process. The application is being developed using XP in a pro-
gressive manner, that is, applying each practice that can be
applied and analyzing the process for possible improvement, in
the context of the project. So, the developers, also being re-
searchers, are developing the application and at the same time
consciously looking for improvement in the process.

The team consists of five developers and a product manager.
The product manager plays the role of an “on-site customer”
who also communicates with the other project partners. The
developers also communicate with the usability engineer who
is working in a close collaboration with the team.

Process This section is divided into two subsections namely “fully
implemented practices” and “partially implemented practices”.
As the name implies the section fully implemented practices
provides details about the XP practices which the team ap-
plied following the guidelines provided by Kent Beck ([8] [9])
from the very beginning of the project. These were the prac-
tices with which the team was satisfied and which were work-
ing for the project. These practices included small releases,
planning game, pair programming, co-location, collective code
ownership, and 40-hours week. Whereas, due to the particular
nature of the project setting and the fact that it was the first ex-
perience of all team members to work with XP methodology, it
was possible to implement some of the practices only partially.
The team knew about the application of those practices but in
its opinion these were not working all the time. The practices
of on-site customer, metaphor, simple design, refactoring, and
test first design are mentioned in this section.

Chapter 3 Research Context and Motivation 26

Reflection The team was holding a retrospective review meeting on
the process after every iteration and release, to reflect over the
XP process and application development. The empirical data
was collected from various sources, describing the performance
of each applied XP practice. For example, the “Shodan 2.0
survey” [63] was filled in by the whole team at the end of each
release. The XP tracker tool “xplanner” [23], and different code
analysis tools (for example, [1] [2]) were used for collecting
quantitative data. The analysis of all that data provided an
insight into the performance of the team and the XP process.

Conclusion This section concludes the paper by specifying what
was achieved in the first year of practicing XP. It was observed
that most of the practices were helpful for the m3 project which
had multiple objectives to achieve. Those objectives included
academic research, application development and business. The
practices of pair programming, co-location, face-to-face com-
munication, stand-up and planning meetings, and retrospective
review meetings were given higher ranking, as compared to the
rest of the XP practices. These practices contributed in the
improvement of the process and had also increased the overall
morale of the team.

The following figures represent a pictorial view of the some notable
facts presented in the process. Figure 3.1 shows the segmentation
of the main workload aspects after the first one-month release.

Figure 3.1: Contribution of Application, Research and Business aspects in a
Release

The figures 3.2 and 3.3 show the planning boards of a release
and iteration, respectively, presenting the story cards planned for

Chapter 3 Research Context and Motivation 27

the development cycle.

Figure 3.2: Selected story cards on the Release-Board (Release Planning)

Figure 3.3: Selected story cards on the Iteration-Board (Iteration Planning)

Figure 3.4 shows a graph comparing lines of executable code,
lines of test code and test coverage. The data was collected using
Emma, a Java code coverage tool [1] and LinesOfCodeWichtel [2],
and was based on the work performed during the second release of
the project.

Chapter 3 Research Context and Motivation 28

Figure 3.4: Executable code versus test code and coverage

3.3 Integrating Extreme Programming and
User-Centered Design

3.3.1 “User Interface Design for a Mobile Multimedia Ap-
plication: An Iterative Approach”
(Item 3 in List of Publications)

Summary:

This paper introduces main features of the m3 application, the
process that was followed as the design methodology, the important
details of the development process, the development team, and the
goals of the project. The main objective of the paper is to present
the application, different stages of the user interface (UI) design,
application usage scenarios and the approach to application devel-
opment.

The following subsections give a brief summary of the paper.

Application This section provides an overview of different multi-
media streaming applications, in order to have a comparison
with the m3 application. The comparison has been made on
the basis of the range of facilities provided by different appli-
cations which includes different options for streaming AV con-
tent, type of multimedia archives (for example, broadcast data
or user-provided content), and a range of client side application
with facilities like content search and Web 2.0 ([83]) features.
It was established that none of these applications, at that time,

Chapter 3 Research Context and Motivation 29

provided streaming of large archives of data on mobile phones
with an advanced search facility.

Usage Scenarios This section presents different usage scenarios of
the application from which the idea of the application was con-
ceived. These usage scenarios place emphasis on the availability
of the application anywhere and all the times as the applica-
tion was being developed for mobile phones. The important
usage scenarios which are defined are concerned with providing
video(TV) archives for subway riders, and radio archives for car
drivers who can search for their favorite program and watch or
listen to it while traveling. The users may also perform general
search in the content or watch any multimedia content recom-
mended by other users of the application. It was suggested
that the application should provide standard play options like
stop, pause, and resume letting the users consume the content
according to their own timetables.

Usability The paper also emphasizes the usability issues of the UI
of a mobile application. It introduces the steps which were
carried out to design the user interface in an iterative manner.
The graphic representation of the UI design workflow (shown in
Figure 3.5 in the original paper) shows the cycle of UI design
process from writing UI related user stories by the customer
to the design of mock-ups by the developers, and refining the
mock-ups iteratively according to the wishes of the customer.
Once a mock-up was designed in accordance to the specifica-
tions given by the customer, it was presented to the usability
engineer who then gave usability related feedback on the mock-
up which was then incorporated in the design during the next
iterative development. Hence employing the “quick feedback-
and-change cycle”. The usability feedback was incorporated
into automated usability tests to ensure that everything was
working according to what was required.

User-Centered Application Design This section introduces the
idea of UCD and its integration into the development process.
It emphasizes that the design of UI cannot be separated from
the design of the underlying application. It is also stated that
to focus on the usability issues inherent with mobile applica-
tion design, user-centered application design and iterative UI

Chapter 3 Research Context and Motivation 30

design were integrated. It is also noted that not only the cus-
tomer’s opinion but also end user input is important for the
usable design of the application [56]. It is concluded that itera-
tive feature development and UI design process helps to evolve
system according to the needs of the user.

User-Based Recommendations This section gives details of the
user-based recommendations system which is suggested as an-
other feature of m3 application, implementable by keeping
track of user-id to help maintain a user profile by the sys-
tem. The user data collection can be done by means of two
information acquiring models, the interactive model and the
behavior-based model. The interactive model is based on user-
provided ratings of the multimedia content, and behavior based
model is based on the usage data collected by the system. A
combined interactive-behavior based system is also suggested.

Conclusion It is concluded that the critical factor for the success of
this kind of application is the user acceptance, which depends
upon the fact that how much the application fulfills the users’
needs. For this purpose, the usability engineering plays its role.
In case of m3 application this usability engineering is facilitated
by the iterative development process of XP.

Figures 3.5, 3.6, 3.7 are also presented in this paper. The work-
flow presented in Figure 3.5 illustrates the iterative design approach.
Figure 3.6 and shows the process of designing the UI from a paper
mock-up.

Figure 3.7 depicts a refined process of UI design, showing the
progress from paper mock-up (a refined version of mock-up given in
3.6) to HTML mock-up and then to the actual interface design.

3.3.2 “Agile User-Centered Design Applied to a Mobile
Multimedia Streaming Application”
(Item 7 in List of Publications)

Summary:

The goal of this paper is to provide a detailed overview of the
integrated XP and UCD process adopted for the m3 project, and

Chapter 3 Research Context and Motivation 31

Figure 3.5: Iterative UI design workflow.

to show how this integrated process preserved and multiplied the
benefits of the two approaches. That is, the UCD process helped
evolving the application in conformance with user orientation and
needs. On the other hand, the inherent quality of XP as being
people-oriented in its practices and the agility of the overall pro-
cess allowed the development team to work according to the wishes
of the customer and outcomes of the usability testing procedures.
The paper cites many references about researchers’ view of human-
orientation promoted by UCD and then draws a similarity of focus
between XP and UCD. It conforms to the idea that that customer
involvement is the most important success factor in software de-
velopment projects [75]. A review of integration of agile software
development approaches and UCD is given stating previous experi-
ences of many researchers and usability experts. [44], [24], [74], [18],
and [77] are some of the studies mentioned in this regard.

The following subsections provide a summary of the main sections
of the paper to provide an insight into the XP and UCD in general,
and the way these were adopted in the project. It clearly explains
the team’s approach to UCD. The paper provides a brief account of a
usability study conducted in the context of m3 project as a working
example of what has been established in other papers presented

Chapter 3 Research Context and Motivation 32

(a) Paper mock-up. (b) Application on mobile.

Figure 3.6: From paper mock-up to mobile: the first search-results screen.

about m3 project.

Similarities among XP and UCD This section lists down those
practices of XP which can be seen as matching or fulfilling the
needs of UCD [31]. Most importantly, the on-site customer of
XP can act as the end user to test prototypes as suggested
by UCD. Usability testing can be embodied very easily into
the continuous integration and test-driven-development prac-
tices of XP, to run usability tests on regular basis whenever
UI is modified or developed. Iterative development process is
inherent both in XP and UCD, therefore, here again the two
methodologies fit together very nicely.

Project This section introduces the project, the team, and goals
associated with the project. The main features and function-
ality of the m3 application constitute the main content of this
section. It gives a detailed overview of the search, channels,
media feeds, and clip detail functionality provided in the ap-
plication.

Approach to User-Centered Design This section outlines the
process of the UCD which is adopted for the project. It details
the step by step procedure of the used to incorporate the UCD
into the XP process. The pictorial view of this procedure is
provided in the form of a loop named as “workflow” for UCD
(see figure 3.5 in the original text) which is self explanatory and
can easily be followed for this kind of XP-UCD process. A de-

Chapter 3 Research Context and Motivation 33

(a) Paper mock-up.

(b) HTML mock-up. (c) Final Application.

Figure 3.7: An additional HTML mock-up: a refactored search-results screen.

tailed implementation of all the steps involved in this workflow
model is also provided in this section.

Usability Study The basic approach to UCD followed for m3 ap-
plication was to make usability evaluations in small iterative
steps. The prototypes of the UI of the system were designed
and tested throughout the development process. The whole
process of designing and testing of UI is depicted in the form
of a loop which shows the real process followed and the peo-
ple involved in the process. Figure 3.5 (in the original text)
presents this process. The process used low-fidelity as well as
high-fidelity mock-ups according to the requirements of the sit-
uation. End-user tests, user studies, personas, extended unit
tests, usability tests, and usability expert evaluations were in-
tegrated into the process at different phases of development as
suggested by the customer and the usability engineers.

Chapter 3 Research Context and Motivation 34

Figures 3.8, 3.14, 3.11, 3.12, 3.13 have been presented as part of
this publication.

Figure 3.8: The integration of HCI instruments into XP [112].

Figure 3.8 shows the integration of XP and UCD using HCI in-
struments.

Figure 3.14 shows an example for prototype. The prototype of
the home page is shown in the figure.

Figure 3.11 showing detail page with usability fixes in red circles.
Figure 3.12 shows the recommended menu layout and arrange-

ment.
Figure 3.13 shows the space on top of the “Clip Detail” page

which should be used more efficiently.

3.3.3 “ Concept and Design of a Contextual Mobile Mul-
timedia Content Usability Study”
(Item 8 in the List of Publications)

Summary:

Chapter 3 Research Context and Motivation 35

Figure 3.9: The prototype of the home page

This paper presents the setup of a usability study which was con-
ducted in October 2008 in the context of m3 application. The main
purpose of the study was to gain an insight into the field of mobile
user-experience. The study was focused on gathering the scientifi-
cally relevant data which could help to analyze the pattern of user
consumption of multimedia content, in order to facilitate further
development and improvement of the application. Understanding
the coherence among factors like content type, consumption times
and consumption contexts was also an important goal of the study.
Both qualitative and experience data were considered important for
the significant results of this study.

Chapter 3 Research Context and Motivation 36

Figure 3.10: The prototype of the Channel page showing the calender

The context of this study is the development process that was
followed during application development. To get maximum benefit
of user-centered design approach XP methodology was employed for
the development of m3 application which facilitated the integration
of multiple HCI instruments into the iterative development, hence
evolving a comprehensive iterative UI design process ([112] [48] [64]).

The paper briefly states different aspects of the application de-
velopment, UI design process, and user-centered design procedure
adopted for m3 application. The highlights of the main sections of
the paper are summarized in the following sections.

Application This section gives a detailed outline of the applica-
tion under study and provides a tour to the main features of
the application’s user interface. The user interface is grouped
into three top level pages. The main functionality of the ap-
plication is depicted with the help of screen-shots of the appli-
cation which show the main page called “Home” (see Figure
3.14 in the original text) containing feature for Search, and to
displays top-rated and most recent clips. The page also pro-

Chapter 3 Research Context and Motivation 37

Figure 3.11: The menu entries without any visual separation

vides links to the other two pages named as “Channels” and
“Categories” page. Details of functionality and usage of each
feature is explained. These features include a searchable list of
TV and radio channels along with their daily schedules, list of
the whole available multimedia content filtered by particular
categories under which the content is filed, a special page for
each clip giving specific details about the clip along with other
Web 2.0 features like clip rating and comments.

Selection of Respondents The basic criteria used to select re-
spondents for the study is given in this section. 16 respondents
were selected within the age group of 18 and 35 years. They
were selected on the basis of their interests in watching differ-
ent types of multimedia content. The topics of interest were
politics, economics, technical studies, music and other enter-
tainment categories. Respondents belonging to a particular in-
terest group were to be directed to watch some particular type

Chapter 3 Research Context and Motivation 38

Figure 3.12: Improvements of menu layout and arrangement

of content on regular basis. For example, the respondents be-
longing to politics and economics interest group were advised to
watch news related clips on regular basis throughout the span
of the study. Another selection criteria for the respondents was
their experience with using and consuming multimedia content
on mobile phones.

Study Setup The overall setup of the study to be conducted is
explained in this section. It gives details about the usability
evaluation methods to be used and the choice of the type of
content used for the study. It was decided to use two different
methods for the study, namely “Diary study” and “Contex-
tual overview”. It was decided to use same respondents to
conduct both methods. To follow a logical setting it was de-
cided to first conduct the diary study and then the contextual
overviews. All respondents were going to fill in questionnaires
asking for some general information about them and their ex-

Chapter 3 Research Context and Motivation 39

Figure 3.13: Usability fix: Use the space on top of the “Clip Detail” more
efficiently

perience about multimedia content consumption.

Media Content To be able to gather relevant data, four specific
content category types were selected, representing different in-
formation and entertainment levels. It was also taken care of
that all clips were entirely different in audio-video content and
in other static details. The clips of longer duration were se-
lected for diary study, and for contextual interviews clips of
shorter duration were selected to control the length of inter-
views.

Diary Study In the diary study each respondent was supposed to
use the application for one week on the mobile device that was
to be provided. The activities of the respondents while us-
ing the application were to be recorded in different log files
maintained under the web server and streaming server of the
application. The “user-tracking” implemented in the applica-

Chapter 3 Research Context and Motivation 40

tion was meant to provide comprehensive information on the
clips consumption (for example, when, how many and how long
video clips were watched by different respondents).

Contextual Interviews In this study method the respondents had
to use the application in four controlled and different “video”
sessions. During each contextual interview (one video session in
a specific context) a respondent was going to be accompanied
by a usability engineer. The process included filling in a pre-
questionnaire covering general and demographic data as well as
personal experience of mobile multimedia consumption. The
next step was to watch four videos from different content type
categories and then provide a qualitative observations to the
interviewer. A post-video questionnaire was also designed for
respondents to collect more personal views of the respondents
about the application. The application logs were maintained
to collect the data. Different locations were to be selected to
conduct contextual interviews to get significant results from the
individual contextual interviews.

Expected Results and Conclusion This section provides a list
of results that were expected to be captured from that study.
The main results expected from diary study were the infor-
mation about coherence between time of day of multimedia
content consumption and content type, coherence between con-
text of consumption and content type, along with the statistical
data about average number of watched clips and average time
a clip was watched. The expected results from contextual in-
terview included availability of different contexts, availability
of qualitative feedback from user on content types in different
contexts and the availability of user experience data concerning
context variables like light, noise, and being around in a public
place. The results were to be correlated to the age and gender
of the respondents.

Figures 3.14, 3.15 are given reflecting the process carried out during
this stage of process.

Chapter 3 Research Context and Motivation 41

Figure 3.14: Home Page.

3.4 “Integration of Extreme Programming and
User-Centered Design: Lessons Learned”
(Item 10 in List of Publications)

Summary: This paper has been presented and published in the

proceedings of the 10th international conference on agile software
development. This paper is the sum-up of the usability process
that has been conducted during the application development. It
highlights the HCI instruments used and the process that was used
to apply these instruments. There have been a lot of issues regarding
the usability of mobile applications which are tried to be tackled in
the context of this project, by employing a combined XP and UCD
process in order to benefit from the practices of both methodologies.
A lot of studies have been conducted in this context which show the
growing interest of agile and HCI communities in integrating both
methodologies.

The paper gives details about m3 project by defining this integra-

Chapter 3 Research Context and Motivation 42

Figure 3.15: Categories Page.

tion process, and the way it was evolved and followed. It also high-
lights the important aspects of the HCI instruments that were used
by providing a review of each instrument, and stating the lessons
learned by the team. The paper starts by providing a brief account
on the project and the development team. The main theme of the
paper is to review what was done and learned by the team during
the three years of the development process and the use of UCD ap-
proach from the beginning of the project. It gives a detailed account
of a retrospective meeting conducted by the team along with the of-
ficial off-site usability engineer who has been working with the team
in close collaboration and whose usability related feedback had been
incorporated into the application on regular basis. The HCI instru-
ments that have been used for the usability engineering process are
also discussed separately, highlighting how these were applied and
how the team adjusted to their integration into the development
process. Below is the brief summary from the main sections of the
paper.

User Studies User studies are a way to get information about the

Chapter 3 Research Context and Motivation 43

end users to uncover their requirements and expectations from
the application. In the context of m3 project laddering inter-
views, field studies, and a large field trial study was conducted
with 100 plus real end-users located throughout Austria. This
trial study made use of diary studies, contextual interviews,
laboratory usability tests, questionnaires, and focus groups.

Personas Personas were introduced into the process in the begin-
ning but these were not actually used in the way required for
these to deliver results. The personas were then explicitly re-
introduced by the usability engineer to make the benefits of
using personas apparent to the development team. Use of per-
sonas helped in refining the focus of the development towards
on-site customer and the real-end user.

Lightweight Prototypes Both low-fidelity and high-fidelity
mock-ups were used for UI development and usability evalua-
tion of the application by the customer. To minimize the risk
of developing only on-site customer focused application ad-hoc
input was taken regularly from the off-site usability engineer.
Conducting formal small usability tests after every release and
access to an on-site usability engineer to further reduce this
risk was a suggestion given by the projects off-site usability
engineer.

Usability Expert Evaluations Usability expert evaluations were
provided by the off-site usability engineer at different stages
during the development by using instant messaging, email, and
video-conferencing. That input was needed while writing UI
related stories as well as during the implementation of the UI. A
suggestion was to train the usability engineer in writing stories
so that he could write usability related stories according to the
usability requirements of the mobile platform.

Usability Tests Usability tests with real end users were conducted
by the usability engineers, with developers as observers [49].
It was noticed that involvement of developers in the usabil-
ity process refined the team’s focus on the usability aspects of
the application which was beneficial on the development side.
To easily incorporate the results of the usability study it was
suggested to conduct small usability tests after every three it-

Chapter 3 Research Context and Motivation 44

erations and extensive usability tests after each release when
a considerable amount of development on the UI design was
made.

Chapter 4

Analyzing the m3
Experience

This chapter presents a theoretical analysis of the XP process im-
plemented as the development methodology for m3 application.

4.1 Introduction

The m3 XP process passed through many stages of modifications
and refinement during the development of the application. The re-
search papers produced based on the m3 project are presented in
chapter 3 which outline how the XP process evolved for the m3
project. As one of the main research goals of the project was to
analyze the XP practices in order to find their best suited imple-
mentation for the team and the project, therefore, a conscious and
continuous effort was made to understand the contribution of each
practice towards the development of the application. The social and
technical aspects of the practices effecting the team and the project
were also investigated. The retrospective meetings which were held
after every release played a vital role in this regard. A substantial
amount of effort was put in these meetings by all team members to
reflect on individual XP practices and on the overall XP process.

This chapter is based on the authors publication titled “Learning
from Experience: The analysis of an Extreme Programming Pro-
cess” [97] presented in the list of publications. In that publication
the author specifically investigated the team’s self learning process
of XP practices. This self learning resulted in the evolution of the

45

Chapter 4 Analyzing the m3 Experience 46

XP process for m3 project, which has been presented in [45], [98],
and in [97]. The following section gives an account of the XP process
as it evolved in different stages and provides a theoretical analysis
of the reasons for modifying or refining the implementation of the
different practices during the application development.

4.2 Learning from Experience: Analysis of the
m3 Process

Software development is a dynamic process which is affected by the
changes in the product market, as well as, in the user requirements.
Agile development methodologies tend to tackle this problem by in-
corporating an iterative process to answer the continuous flow of
user requirements throughout the development process. XP, which
is a widely practiced agile methodology, asks for a customer on-site
who works in close collaboration with the development team and
manage the changing requirements into the development process.
The inclusion of customer input in the routine development process
is not an easy task, as it requires a lot of effort from the development
team and flexibility in the process itself. Also, the setup of a soft-
ware development process varies with the type of organization and
the product that is being developed. This process adaptability must
be paired with flexibility in the process which needs to be continu-
ously molded according to the changing business demands. Keenan
[58] defines different ways of process molding and tailoring which
are termed as static process tailoring and dynamic process tailor-
ing. Static tailoring is defined as the changes made in the process
before starting the project and dynamic tailoring is the ”continuous
process adaptation” made during the software development. Process
adaptation is quite ignored in the first version of XP [8], introduced
by Kent Beck. However, in the later versions of the book ([9] [10]) it
is said that the process should be adapted according to the require-
ments of the organization and the product. This opens the doors
for XP process improvement which provides software development
organizations with mechanisms to evaluate their existing processes
to identify possibilities for improving, implementing improvements
and also to evaluate the performed improvements [26] [93].

Chapter 4 Analyzing the m3 Experience 47

4.3 Process Tailoring for Process Improvement

Agile software development principles give a high value to the dy-
namic process tailoring during the on-going projects. Regular pro-
cess retrospectives greatly help in this regard [59]. Agile principle of
self-organization also dictates that enough flexibility exists within
the process and the development teams have enough authority to ad-
just the process according to the needs [38]. Release and iteration-
wise agile retrospectives as part of the XP process help overcom-
ing the shortcomings of traditional post-project retrospectives by
opening a space for the dynamic process improvement [19]. These
retrospectives provide a formal platform for discussing the problems
and suggesting improvements in the process and incorporating them
dynamically in the coming development cycles, which are not pos-
sible using traditional retrospectives that allow learning only from
finished projects [61]. The process adjustment and improvement in
this project is mostly based on continuous team reflections made on
the process after iterations and releases. The team’s experience also
shows that start of a new iteration or release is the most plausible
check-point to introduce a change in the process.

4.4 XP Process Background and Setup

Although it has been suggested by many experts that a step wise
introduction of agile practices must be made and many agile prac-
titioners like Eckstein [22] suggest implementing one technique at a
time and addressing the most pressing problem first.

The m3 team opted to use the “big bang” [69] concept of method-
ology implementation for the said project. As the project was a
“green-field” project and none of the team members had any prior
experience of the XP practices, thus, they decided to use only XP,
not mixed with any other development process, in order to experi-
ence it in “pure” form. The standard books of XP by Kent Beck [8]
[9] [10] were used as initial guide for setting up the process details.
The team used the read-discuss-and-learn loop to understand the
process. No initial training was taken by any of the team mem-
bers. It is also felt by Lindvall [68] that agile methodologies require
less training and practices like pair programming are a type of con-
tinuous training which is better than explicit training. He further

Chapter 4 Analyzing the m3 Experience 48

suggests that the application and implementation of agile practices
can be learned by self training as many successful teams have done
it.

In the said project the initial process setup included the practices
of planning, pair programming, daily stand-up meetings and small
releases and iterations. Infrastructure setup was made for contin-
uous integration and a coding standard was adopted when actual
programming tasks were started. Different experience reports de-
scribing XP paradigm were also studied. The team also applied
some of the practices in the way that “successful” teams had de-
fined. One of the main ideas that were taken from another team’s
experience was to pair-work in blocks of time [27]. Two-hour work-
ing sessions were defined for a whole eight-hour day. Hence each
working day consisted of three two-hour pair-working sessions and
breaks in between. This was somewhat like the “Pomodoro” ap-
proach [30] which proposes to work in 25-minute sessions and each
session is followed by a five minutes break. The initial setup of some
of the practices as defined in [45] is summarized below:

� The first release was taken as a one-month release with four
iterations of one week each.

� It was a common decision that every task, including coding and
non-coding tasks, will be done in pairs. (Many managerial and
infrastructure setup related tasks have been done by the team
in the first release. The team has also worked on a scientific
paper writing assignment which is also done in pairs).

� Three types of stories were identified by the team: Application,
Science and business.

� The business person, also a permanent member of the team,
was identified as the on-site customer.

� The work was done 40 hours per week.

During the initial stages of the application development the team
members had different concepts and views about the XP process.
Figure 4.1 shows the subjective analysis of the XP practices used in
first three releases (that is, in R1, R2 and R3) of the project. The
team used Shodan 2.0 survey [63] to analyze the XP practices adher-
ence in the team. As the team was learning and implementing the

Chapter 4 Analyzing the m3 Experience 49

XP process at the same time and was working to figure out the suit-
able way of using different practices the graph of individual practices
can be seen go up and down from one release to another. For exam-
ple, in case of pair programming the team had been experimenting
with different styles and schedules for doing pair programming and
was not much satisfied with most of them so the graph is gradu-
ally going down from first release to third release. Whereas morale
of the team starting to rise again from release 2 to release 3 as it
started to learn and understand the logic behind using most of the
XP practices.

Figure 4.1: Subjective analysis of XP practices after third release using Shodan
2.0 survey [63]

4.5 Iteration-wise Improvement Process

Agile practitioners greatly advise agile project teams to reflect on
and iteratively improve their behavior in a logical way [91]. For
the said project team the practice of conducting iteration and re-
lease retrospective has played the focal role in understanding the
process and in improving the team behavior. The team had been
conducting these retrospectives at the end of the iteration and each
release to take a critical view of all the major events occurred in
the concluding development cycle. The team members discussed

Chapter 4 Analyzing the m3 Experience 50

any technical, business, process or team related issues that came
up during the concluding development cycle. The issues were then
resolved with the consent of the whole team. The team members
especially emphasized over XP practices that were being used and
discussed them in detail. Any practice was then partially or com-
pletely modified (as needed) to improve the overall process. These
end-of-release/iteration retrospectives have proved to be very useful
as they provide an opportunity to settle down the details of the pro-
cess without disturbing the actual work. Also, these retrospectives
have allowed the team to learn-by-experience and to have a fresh-
start again. Table 4.1 shows a set of XP practices for which the
team was satisfied that these were working to a greater extent as
compared to other practices after three releases in the application
development.

Table 4.1: Key practices of release R1, R2 and R3
- Co-location
- Release/Iteration planning
- Pair programming
- Test-driven development
- Sustainable Pace
- On-site customer
- Continuous integration

XP practices were always at the center of discussion as research
in different aspects of XP was the goal of all team members. The
team had even taken one week out from one of the releases when
some major changes in process implementation were to be made.
As the team was working in an academic research setting, therefore,
it was possible to do so. This ability to self organize the develop-
ment process has not only helped the team to improve but also to
understand the practices for which none of them had any previous
training. Each of the practices had gone through a continuous ad-
justment loop over multiple development cycles. This iteration-wise
improvement of practices had made it easy for the team to clearly
understand the situation and make the change accordingly.

The rest of this section outlines each implemented practice one
by one and defines the way the details of the practices were modified
since their initial setup defined in section 4.4. The main reasons of
the modifications are also provided.

Chapter 4 Analyzing the m3 Experience 51

4.5.1 Release and Iteration Planning Process

The planning process had been a two-stage activity since the start of
the project. The internal details of the planning process had gone
through major changes at many stages. These details are briefly
explained below:

Release and Iteration length

Release length had been changed from one to two months and then
to three months. After a couple of two-month releases, when the
planning process matured and estimates became better the team
decided to start with three months release cycles. This helped to
get rid of extra administrative work for the planning process and also
to save time which was being spent in organizing release planning
meetings which, at that time, were also attended by the delegates
from the project partners. Similarly, it was decided to have two-
week iterations instead of one week iterations to save the time spent
every week on iteration planning.

User-Stories

The following items had been discussed and tackled regarding user
stories since the initial process setup.

� Different Story Types: Initially the team was using three types
of stories, that is, application related stories (called application
stories), and business related stories (called business stories, for
example, stories to prepare for a business meeting with project
partners), and research/science related stories(called science
stories, for example, writing a technical paper for a conference).
After some time another story type was defined called “mis-
cellaneous” stories which included developer stories as well as
management related tasks. Many problems were encountered
due to this division and need of different story types. The
major problem was due to different planning requirements for
different story types. For example, science and business stories
required too much time to complete and hence there was al-
ways a feeling that it was not possible to give suitable amount
of time to actual development work in iterations. Figure 4.2
which shows the graph of project velocity over 24 iterations

Chapter 4 Analyzing the m3 Experience 52

clearly depicts this problem. Although a lot of work had been
done from iteration 11 to iteration 17 but none of it was related
to application development, rather it was almost all for non ap-
plication related stories. That is why the velocity of application
development became zero. As no time could be given to ap-
plication related stories. Also, estimating stories like writing a
paper was quite illogical.

Finally, with the consent of the whole team, it was decided
to plan and estimate only application stories. Science related
tasks and business related tasks and other managerial tasks
are done whenever required but are not calculated towards it-
eration and release velocities. The developer stories (infras-
tructure stories and spikes) were defined but are attached with
some application story.

Figure 4.2: Velocity of application and non-application related stories after first
three releases. Showing distribution of effort among application and other story
types

� Planning Stories: As the team proceeded with planning and
estimating different types of stories it was understood that
planning non-technical stories, such as business related and
science stories, was very difficult in the sense that such stories
could not be estimated properly. Business and science stories
could not be divided into smaller stories. Planning those big
stories in any release and iteration meant that more than 50%
of the working velocity was eaten up by them and sometimes

Chapter 4 Analyzing the m3 Experience 53

virtually no time was left for application stories. As described
above, the team first took out business stories from planning
process. That solved a lot of planning and estimation problems
and the working velocity got better. Seeing the improvement,
the team did the same with science and miscellaneous type sto-
ries. Developer stories were considered technical debt and were
done along with application related stories when required.

� Story Estimation: From the beginning of the project the team
had been estimating stories in real time (in days and in hours)
and the time was calculated for pairs (as pair days and pair
hours). Some of the developers were not comfortable with this
type of estimation as due to the unpredictable nature of some
stories it was impossible to estimate them for some logical time
duration. The team then started estimating stories in story-
points. The team used poker game cards bearing numbers 0, 1,
2, 3, 5, 8, 13. A given story was estimated by all the developers
simultaneously by showing up a card of his/her estimate. Close
estimates by all developers resulted in a consensus and too
much different estimates resulted in a discussion between the
highest and lowest bidder. After discussion an agreement was
supposed to be reached and the story was re-estimated.

� Story Writing: Many changes were made in the story card
template and the way the stories were written. The team had
understood that writing a story in a form that it was actually
understandable and featured all required ideas when the devel-
opers actually start working on the story was also a big task.
It was not as trivial as writing a description of a task. Even
a simple statement could introduce many misunderstandings
between developers and the customer at the end. The same
sentence was usually understood differently by people. That
meant that the customer had to remain with the developers
all the time to clarify the actual sense of the story whenever
demanded by any developer. It became quite difficult as the
customer was also the business person and had to deal with
the business side of the project. Also, generally, even if the
customer is there all the time with an XP team it can become
very cumbersome for the customer to explain story cards again
and again throughout the release. Therefore, after an year’s ex-

Chapter 4 Analyzing the m3 Experience 54

perience with story writing, the team had shifted to the story
writing template specified by [81] and found it quite useful in
getting rid of all the ambiguities and misunderstandings about
stories during iterations. Although it took some time for the
team to understand and accurately use the new story template
but when all team members had clearly understood it they were
actually very happy with that as the developers considered it
as the best thing to clarify everything about a story at planning
time.

� Story Size: In the beginning the team did not pay too much
attention on the size of the story. Big stories had also been
a source of bad planning and estimation. After much experi-
mentation, with the consent of the whole team, and according
to the suggestion given by some XP practitioners, it had been
decided to write stories of considerably small sizes. Also, the
stories were decided to be written by the customer together
with a developer one day before the planning day. Previously,
when the team was strictly following “customers write and de-
velopers estimate” it was quite difficult for the customer to
understand the depth of stories and extent of the detail needed
to make it unambiguous and clear enough to convey the real
matter. Also when the customer was putting up stories at the
release planning day or adding stories at the iteration planning,
many stories were starting a point of long discussions among
the development team and the customer in order to understand
and clarify the story. Sometime it meant re-writing each and
every story. Most of the time it usually resulted in anguished
developers and depressed customer after the planning meetings.

4.5.2 Fixed Time slots

Two hour blocks system of pair programming was dropped after
a couple of months of practice. Working in two-hour blocks was
not a good experience. It was felt by the developers that it was
tiring and too restrictive. Due to this reason the pair programming
timings were soon made flexible (in the range of one to three hours)
to introduce more agility. Pairing times finally depended upon the
pair partners. As there were only five developers so frequent pair
switching was anyway not possible.

Chapter 4 Analyzing the m3 Experience 55

4.5.3 Pair Programming

The practice of pair programming had been applied since the begin-
ning of the project. The team composed of 5 developers with one
developer always working solo. Any person could accept to work as
solo and would work on either a spike task or any other task which
was logical to be done alone.

In the beginning all types of tasks, including administrative and
science related tasks, were performed by pairs only. But with the
exclusion of non application related stories the pair work was also
then required only for programming and design related tasks as it
had become clear with experience that pair working on non-technical
tasks was not as productive as it was expected.

4.5.4 Customer Role

Initially, customer role was not well defined. User stories were writ-
ten both by developers and the customer. As developers also had a
say in selecting the stories for release and iterations it lead to long
discussions during planning meetings. Also, due to unclear defini-
tion of acceptance criteria by the customer it was difficult for the
developers and the customer to understand when to mark stories as
finished. With this experience finally it was decided that the cus-
tomer was the only one to define and accept stories. Stories were
marked as finished only when these were formally accepted by the
customer.

4.5.5 Usability Engineer Role

Initially the development team was directly communicating with
the off-site usability engineer of the project. The developers could
ask the usability engineer directly for usability related feedback on
the user interface design mock-ups. The customer, as well as, the
product manager were also communicating with the usability engi-
neer regarding the same or some other issues. It sometimes created
confusion among the developers and the customer. Due to this rea-
son, it was decided that in general the customer and the product
manager would do all the correspondence with usability engineer
regarding the usability feedback. The usability engineer and the
developers might talk directly with each other if it was necessary

Chapter 4 Analyzing the m3 Experience 56

on some technical grounds. Also, the developers and usability en-
gineer were communicating for research related issues, for example,
usability tests and user studies.

4.5.6 Test First Design

Only one of the developers had a previous experience of test driven
development (TDD). Rest of the team took some time to get used
to this type of coding habit. Some of the team members even had
reservations in the beginning about the usefulness of the practice
in some programming assignments. So it was not made a manda-
tory practice for the team. During the project the team attended a
test-driven development workshop which clarified much of the mis-
conceptions of team members about TDD. In the end every team
member started making a conscious effort to use TDD and tried to
use the practice in routine coding assignments.

4.6 Learning Protocol: Tips and Tricks

The author has tried to gather some learning experience in the form
of tips for new developers and teams who want to start with XP
process. The tips presented here are given in the context of learning
issues and do not cover an experienced professional’s point of focus.

� Although not necessary, as suggested in [68] but for new de-
velopers short training workshops especially for pair program-
ming, planning and customer related tasks can be very helpful
and productive.

� Customer role should be made explicit so that the developers
have very clear idea where their opinion is required and where
they do not need to make any comment.

� Instead of experimenting with story writing, story card tem-
plate and velocity calculation new developers and teams should
begin with some already experimented templates. This will
save them from getting lost in the small details and instead
they will be able to concentrate on the logic behind using the
practice of story writing and velocity calculation.

Chapter 4 Analyzing the m3 Experience 57

� A culture of short discussions among team members should be
established from the very beginning so that everyone gets used
to the way of communication of each other which is very im-
portant to take positive participation in planning and reflection
meetings. Someone’s personal negative point of view about any
team member can hinder in the discussion as well as in the de-
velopment process. Short stand up meetings in which every
team member can take part can be a good training for more
important planning and reflection meetings.

� In the context of m3 project the team has learned a lot towards
the usability process and its integration on XP. It is thus under-
stood that the role of the usability engineer should be clearly
defined and understood by every team members. This is neces-
sary for positive communication among managers, customers,
developers and usability engineers. Also, if the project is sup-
posed to be a usability intensive application development (for
example a web application) then some prior training in usabil-
ity studies and exercises will make it possible for the developers
to understand this concept, which will be very helpful in latter
stages in the development.

4.7 Conclusion

The adaptability of the XP process has helped the m3 team to mold
individual practices according to the requirements of the project.
The reason behind taking an overview of the change and improve-
ment made in the process since the beginning of the project is to
find a pattern between the changes in the business requirements and
their effects on the process. It is learned that a need to modify the
implementation of a practice arises when it appears not to be helping
the development process and this becomes very visible when some
major change in the business requirement is to be accommodated.
We have seen many changes in the implementation of planning and
pair programming practices due to this issue.

Dynamic method tailoring and continuous retrospectives on the
process go side by side. The ability of learning lessons from experi-
ence during a process cycle and the provision to tailor the process
according to the change required as soon as it becomes logical is a

Chapter 4 Analyzing the m3 Experience 58

great benefit to agile teams.
Experiences of other agile teams and practitioners have also

helped in tailoring the process. Although, this report provides a
purely theoretic picture of the team’s experience, still this analysis
may be sufficient for the general agreement on many facts of experi-
ence. For example, the “big bang” way of deploying all XP practices
at once may lead to slow and complicated process adaptation for a
team. As it happened in the said project that the team tried to
master a lot of practices like planning different story types, pair
programming, customer involvement, and test-first development at
the same time. Each of these practices should be given enough time
separately to let the developers and other team members take max-
imum benefit from them.

As we have also learned from the experience of other teams, our
experience will also be of interest specially for those teams who are
working under similar circumstances as being in academic setting
and working on a research cum business project.

Also, we have understood that not only experience of developers
counts towards the success of the project but also the experience of
the XP customer as being an on-site customer also counts towards
good and proper planning and hence in “ on-time product delivery”
by the team.

Finally, the analysis of the whole XP process discussed in this
chapter depicts that XP is not a strict process that needs to be
followed on as-it-is basis. It leaves a room for experimentation and
self-learning. Hence, provided with some basis guidance, it presents
a good opportunity for new developers to learn and understand the
overall structure and requirements of software development activity.

Chapter 5

Framework of Knowledge
Management in Extreme
Programming Education

This chapter gives details of the case study selected for the research.
The chapter outlines the research goals defined for the study, study
setup, design and organization of the case study. An outline of the
actual study conducted in order to collect the data for the empirical
analysis of the study is also presented. The chapter concludes by
giving the framework in the form of guidelines for an XP course
organization and management.

5.1 Introduction

As the ultimate goal of the research was associated with defining
a teaching framework for graduate software design methodology
course an ongoing university software engineering course was taken
as the case project. The author took the role of the instructor to
facilitate the research and at the same time to guide the participants
of the course, hence fulfilling the conditions for an action research
project. The following goals were identified which define the basis
of the research.

59

Chapter 5 Framework of KM in XP Education 60

5.1.1 Research Goals

� The major goal was identified as of defining a framework for
structure and organization of an agile software development
methodology course in order to analyze the learning and teach-
ing issues of XP practices and agile knowledge management.
The desired objective was to provide students a “meaningful
experience” with learning a software development methodol-
ogy which becomes useful and helpful for them while working
in software development industry in professional life.

� To develop an innovative way of teaching XP so that the stu-
dents not only learn XP as a software development method-
ology but can also visualize the development process as an
organized activity to achieve a goal. At the same time the
students should be able to grasp the logic behind individual
values, principles, and practices of the methodology, and see
how the practices fit together and contribute towards software
development.

� To expose and emphasize the knowledge management aspects
of individual XP practices and to demonstrate how formal as
well as informal knowledge management helps in the learning
process.

� To build a culture of student involvement in learning activities
and the activities of fellow students on top of this knowledge
management structure in order to create a knowledge sharing
environment.

� To highlight the importance of communication among students
by integrating social structure of XP practices and role playing
activities with pedagogical techniques of communication.

� Along with this the research was to define a general framework
for teaching software engineering and other subjects which have
an extended objective to teach the theoretical bases as well as
to present the practical aspects of that theoretical base.

Chapter 5 Framework of KM in XP Education 61

5.2 Basis of Study Setup

The setup of this study is greatly inspired by the educational frame-
work suggested by Hazzan and Dubinsky [33] which is based on a
collection of 14 principles to teach Software development method-
ologies (SDMs). A snapshot of this framework is given in figure 5.1.
Hazzan and Dubinsky have used the concepts of XP to exemplify
these principles. This framework is a follow-up of their experience
with teaching a course of XP at a university [32]. Van der Duim
et al have analyzed the use of industrial projects in industrial set-
ting for educational software engineering projects [103]. They have
highlighted different educational and organizational problems occur-
ring due to this real life setup for education. It is pointed out that
pure industry setup introduces a lot of complexity for the students,
which is due to their lack of technical knowledge and structure and
experience to deal with real life situations, the lack of social and
human content in industry-like settings, and the lack of participa-
tion by some team members in each team. van der Duim et al have
based their study on the seven point guidelines for education given
by Chickering and Gamson in [16], which are given in table 5.2.

Knowledge management is another important concept worth
adding to the guidelines provided by Hazzan and Dubinsky (fig-
ure ??) and by van der Duim et al. (figure ??). Levy and Hazzan
describe in [66] that although not new the combination of knowl-
edge management and agile development methodologies is emerging
as a requirement of business organizations. Both knowledge man-
agement and agile development methodologies not only benefit each
other but also tend to diminish the shortcomings and risks associ-
ated with one another. Bjørnson and Dingsøyr ([12]) conclude that
agile companies are more satisfied with their knowledge management
activities as compared to traditional software development organi-
zations. This eventually leads to the concepts of agile knowledge
management (AKM) which removes barriers of long term organi-
zational goals and the corporate hierarchy of roles, which exist in
business organizations to “promotes collaboration and sharing” of
meaningful knowledge [72]. Project management also applies to this

Chapter 5 Framework of KM in XP Education 62

Table 5.1: Framework for teaching SDM by Hazzan and Dubinsky

Principle 1: Inspire the SDM’s nature

Principle 2: Let the learners experience the SDM principles as much
as possible

Principle 3: Explain while doing

Principle 4: Elicit reflection on experience

Principle 5: Establish diverse teams

Principle 6: Assign roles to team members

Principle 8: Manage time

Principle 9: Be aware of the abstraction levels

Principle 10: Inspire a process of an on-going and gradual
improvement

Principle 11: Use metaphors or “other world’s concepts”

Principle 12: Consider the awareness needed for the
implementation of the SDM practices

Principle 13: Listen to participants’ feelings towards
the presented SDM

Principle 14: Emphasize the SDM in the context of the software world

situation as business organizations need a prompt reaction to change
propagated by timely collaboration and sharing of knowledge among
stakeholders, hence integrating AKM and project management con-
cepts. All this knowledge management structure revolves around
each and every person associated with the development process in-
cluding developers, managers, customers, other stakeholders, and
also usability experts associated with the team and the project.

Chapter 5 Framework of KM in XP Education 63

Table 5.2: Good practices by van der Duim et al.

Good practice : Encourages contacts between students and faculty

Good practice : Develops reciprocity and cooperation among students

Good practice : Uses active learning techniques

Good practice : Gives prompt feedback

Good practice : Emphasizes time on task

Good practice : Communicates high expectations

Good practice : Respects diverse talents and ways of learning

5.3 Study Setup and Case Selection

The author perceived her mental model of learning and teaching
software development methodologies from her experience of working
with XP for m3 project, as described in chapter 3 and chapter 4. The
author visualized a set of guidelines for herself (given in 4.6), which
were further enhanced by the concepts of knowledge management in
learning environments along with the concepts defined in section 5.2
and including the concepts of active learning (for exmple, [13]), role
playing (for example, [37] [3]), using students as teaching devices
(for example, [86]), the use of experimentation in classroom (for
example, [6]), and the benefits of simulation in teaching software
engineering concepts (for example, [20],[84]).

To reach the goals associated with this study, outlined in sec-
tion 5.1.1, an XP methodology teaching course was reorganized and
restructured. It was a regular course being conducted at Graz Uni-
versity of Technology since 2005. Due to the structural and or-
ganizational flexibility provided by the university the course was
the appropriate case study providing a platform for defining, im-
plementing and analyzing the perceived XP teaching model. The
objective was to introduce XP on a platform which could help the
students to visualize the actual working of the methodology in real
industry setup while eliminating the dangers of introducing extra
industry-related complexities (as mentioned in [103]). At the same
time, emphasizing the knowledge management concept by bringing

Chapter 5 Framework of KM in XP Education 64

out this inherent quality of the practices of XP and making the stu-
dents understand its role in learning which in turn teaches sharing
of knowledge. To enhance the effectiveness of this model setup the
concepts of project management related to software development
industry, including corporate roles and the communication channels
which exist among them were also introduced. This provided an
environment simulating the industry like situation at an academic
setting, providing the students an experience of simple but real soft-
ware development project, with an ultimate goal to analyze how to
shrink the conceptual gap between industry and academia with-
out effecting the academic environment of university [25]. Many
experience reports have been presented by researchers and prac-
titioners showing different aspects of teaching XP in classrooms.
[87],[78],[110],[80],[94],[28],[35],[32],[43] are only some of them which
the author had studied in the context of planning and organizing
this course. [57] and [73] report on the of XP practices especially
pair programming to teach basic programming skills. Hedin et at.
[36] has specifically reported on teaching XP to a large group of
students which was also the case with the course selected for this
research.

5.4 Organization of the Extreme Programming
Teaching Framework

The XP teaching framework is defined in the form of the organi-
zation and structure of the software engineering course selected as
the case study. The course has been a regular university course and
is part of the computer science curriculum of Graz University of
Technology. The course is attended by both bachelor and master
level students. Both groups of students attend this course in differ-
ent semesters of their study programs. Due to this reason the said
class is a mix of students with different levels of education, different
experience of computer science study, and also some of the students
(mostly master level students) even have work experience of soft-
ware development industry. This also adds a further dimension in
the proper organization of the course so that the course is of interest
for all of the attendees according to their existing level of knowledge.

Extreme programming methodology is being taught in this course

Chapter 5 Framework of KM in XP Education 65

as a software development methodology since 2005. Since then the
course has been evolved in organization and structure using different
pedagogical aids and techniques. Mostly, attempts have been made
to make the course as practical-oriented as possible. It has been
the main critical feedback given by the students in previous years’
end-of-course reviews.

The author participated in organizing and conducting this course
offered in summer semester in 2009 [96]. With an academic objective
to transfer the personal experience of working with XP methodology
([47] [98] to the students which the author had learned through hard
experience ([97] [45]). The research interests of the author defined
in previous sections also motivated her to take full participation in
organizing and arranging the structure of the course so that it fulfills
the education needs of the students and at the same time become a
case study for the research.

The rest of this chapter presents the course organization, the
knowledge management perspective of the practices of XP, and the
implications of project management and industrial setup in order
to provide the students with an experience of industry simulated
environment.

5.5 Course Organization

The course was divided into two clearly defined and organized parts,
named as ”XP-Visualization” phase and ”XP-Realization” phase.
As the names depict the first phase was more about learning the con-
cepts and design of different values, principles and practices of Ex-
treme Programming methodology and the second phase was about
implementing those practices in a software development project.
This section defines the structure and organization of both phases;
giving the details of how the two parts were managed and scheduled.
Table 5.3 gives the general outline of course specifying the clear sep-
aration between the two phases and the amount of time spent on
each topic covered in the class. The time is mentioned as ”XP-days”
which is equivalent to eight hours. This unit of time also suits the
concept of XP and makes sense as it was attempted to teach XP in
XP way.

Chapter 5 Framework of KM in XP Education 66

Table 5.3: Course Outline

Topic Duration
XP-Visualization Phase
Introduction and orientation 1 XP-day
XP hour 1 XP-day
Planning game: planning process in detail 1 XP-day
UIPaper mock-up design and usability exercises 1 XP-day
Test Driven Development exercise 1 XP-day
Mid-term examination 1/4 XP-day
Mini-project 3/4 XP-day
XP-Realization Phase
Release 1. Iteration 1. 2 XP-days
Release 1. Iteration 2. 2 XP-days
Release 2, Iteration 1. 2 XP-days
Trade show/ project display Preparation 1 XP-day
Final exam and project presentation/tradeshow 1 XP-day

In the context of the research interests of the author, a number of
formal surveys were also designed and conducted during the course.
The questions of the surveys were focused on gathering informa-
tion regarding the applicability of XP methodology as a software
engineering course and also the acceptance of the XP practices by
the students. Also the students were asked to give their opinion
about the way the course was organized, especially regarding the
project management and industry simulation concept presented and
highlighted in the way the course was conducted. For this reason
three different surveys were scheduled at different stages during the
course. The details of the surveys will be given in the next chapter.
Along with the surveys informal feedback from students was also col-
lected through planned and unplanned discussion sessions, planning
and retrospective meetings during the whole semester, also from
the course “wiki” which also contributed to promote the project
management and industry simulation concepts of the course. This
research base provided a mix of qualitative and quantitative research
methods which is thought to provide an opportunity to gain a better
understanding of the factors that impact students’ experience of XP
methodology [76].

Chapter 5 Framework of KM in XP Education 67

5.5.1 Part-I : XP-Visualization phase

XP-Visualization phase was designed keeping in mind the necessary
and basic concepts of XP, and the level of knowledge of majority
of the students about software development and programming tech-
nique. The time constraint had also been given importance as the
whole duration of the course was 14 weeks. Table 5.4 provides an
outline of this phase. The objective of this phase was to introduce
XP practices in most meaningful and constructive way, and at the
same time to provide the students with an opportunity to get a
hands-on experience of XP methodology. In the same context the
knowledge management concepts associated with XP practices were
also elaborated so that the students get the optimal learning bene-
fit from the course. All XP practices included in XP-Visualization
phase (refer to table 5.4) were carried out as part of the exercises
presented to the students using the concepts of active learning [13]
to motivate the students by using unconventional ways of teach-
ing and for faster distribution of knowledge among student software
development teams [96].

The knowledge management and issues with learning XP
methodology [54], explored and analyzed by the author in the learn-
ing experience case study [97] explained in chapter 5, prompted the
course organizers to decide that the emphasis would be placed more
on providing training in the XP practices than on scope of the ap-
plication to be developed in the second phase of the course. For this
reason, the modes of active learning were adopted further enhanced
by the implementation of role playing strategies ([37] [3]), teaching
devices [86], the concepts of experimentation in classroom [6], and
the use of simulation in teaching software engineering concepts [20],
in all exercises carried out in this phase. Each exercise was meant
to teach particular XP practices. The idea of exercises was further
refined using the concepts defined by different XP coaches and world
renowned agile practitioners, presented by them at different inter-
national XP and agile methodologies related workshops and other
research and training forums.

The following sections briefly mention the main features of each of
the exercises conducted during this phase.

Chapter 5 Framework of KM in XP Education 68

Table 5.4: Outline of XP-Visualization Phase

Day-1 Introduction to course structure and organization
Introduction to XP and Agile.

Day-2

XP Hour: Full day exercise including brief introduction of XP process
involving students in XP roles, imposing co-location, story writing exercise,
prioritization and estimation, demonstrating pairing concepts,
acceptance testing, concept of releases,
iterations, and velocity calculation.

Day-3

Planning Game: Planning process in detail,
role of customer on-site, feature identification, story
template, distinction of roles in story writing and
estimation. Concept of estimation in points and in real
time. Concept of planning according to previous
iteration’s velocity.

Day-4
Paper Mock-up and Usability exercises: Concept of
designing paper mock-up and introduction to usability
testing, concept of integration of usability testing
into XP process.

Day-5 Test Driven Development exercises: Introduction
to TDD, unit testing, test first approach, code
sharing, code integration.

Extreme Hour Exercise

The basic idea of this exercise was to introduce the whole concept
and working of XP process in the simplest way and in the shortest
period of time. This exercise is mainly used by agile practitioners
and coaches to introduce XP to software development teams who
do not have any prior experience with XP. This, usually a one-hour
exercise, is known as “extreme” exercise as it encompasses every as-
pect of the XP methodology in a very short amount of time. In the
context of this course a non-programming but “creative” problem
was taken as a “project” for this exercise. The students were divided
into teams, just like real XP teams, where each team had a manager,
a customer, a coach and some developers. The developers had to
design a paper model of an aircraft according to the specifications
provided by the customer. The task was divided into two iterations
of 30 minutes each. The exercise included the planning process, de-
velopment phase, acceptance testing and velocity calculation for the
iterations worked. Starting the course with such an exercise for stu-
dents proved helpful in introducing the XP methodology, all in one

Chapter 5 Framework of KM in XP Education 69

go, and also in developing their interest in the subject from the start
of the course. It also helped in increasing their understanding of the
XP practices when these were covered in detail later in the course.
From this exercise the students received not only the overview of
the whole XP process but it also gave them a clear idea of roles that
exist in XP teams. The roles were introduced intentionally at this
initial stage as the students were required to choose their roles they
were supposed to play for the rest of the course, a requirement of
the planned structure of the course.

Planning Game

As learned from experience ([45],[98]), novice XP teams are feared
to get lost in finding an appropriate and fitting planning process
for the project as well as for the team. The guidelines and gen-
eral outline of a planning process provided in classic literature of
XP ([8],[10],[9]) need adjustment according to the nature of specific
teams and specific project. Otherwise a lot of time is feared to be
spent on discussions among the team members about the process
and on decision of what, when and how to do things [45]. For this
reason, in the context of this course, an in-depth training of the
planning process was organized. The planning game exercise was
carefully designed keeping in mind the students’ existing knowledge
of the XP and logic of planning. The exercise emphasized on the
following points:

� The logic behind planning. Why we do it?

� Clear definition and separation of XP roles (for example, cus-
tomers, developers, managers, etc.).

� User stories writing, and estimation.

� Concept of prioritization of user stories and their scope.

� The overall planning process.

To make things easier for the students, a full day planning work-
shop was conducted in which the students were given a programming
project to plan. Students were divided into teams and different roles
were assigned to team members so that they could understand the
concept and duties of each role by actually performing it. Story

Chapter 5 Framework of KM in XP Education 70

writing style and concept was introduced with the help of a gen-
eral template for story writing provided by the course organizers. It
provided them a quick understanding of writing unambiguous sto-
ries which is necessary to promote the concept that stories should
be written in a way so that the developers can clearly understand
what the customer really wants. The planning workshop was con-
trolled by scheduling the planning activities into a proper time table
which further clarified the way the whole planning process was to
be performed. Through this exercise the students were also able to
understand each role as they were guided which role was to do what
at any particular stage in the process.

Usability Testing Exercise

An attempt was made to introduce the concept of usability testing
of applications. The idea was to show the students how usability
testing process could be integrated into the XP life cycle [49]. This
exercise could be emphasized only at a very basic level as most
of the students did not have any prior knowledge about usability
testing. Only some of the master level students had some prior
theoretical knowledge of usability testing and its concepts. Due to
time constraints it was not possible to introduce the concepts of
usability testing to an extent that an exhaustive usability testing
exercise could be done. So it was decided to do a very shallow
introduction of the technique and details were left to the students’
choice if they wanted to use the concept in detail in the second part
of the course.

TDD Exercise

Test driven development is another one of the main concepts of
XP. A TDD workshop was arranged to teach basics of test driven
development and the concept behind test-first programming. The
idea was to let the students understand the technique and to orga-
nize their programming skills instead of doing only cow-boy style
programming. Again, the same concept of team designing and con-
ceptual exercise was employed using a programming problem but
the main emphasis was put on testing only, instead of on the whole
XP process.

Chapter 5 Framework of KM in XP Education 71

5.5.2 Part-II : XP Realization Phase

This phase was about implementing all visualized XP practices dur-
ing application development project as the second major part of
the XP course. The idea was to let the students understand the
software development process in a broader spectrum while applying
XP practices. Efforts were made to create a close-to-real situation
by assigning development and management side roles which exist
in XP. The students were asked to participate in teams and work
only according to the requirements of their roles in the development
process.

To further introduce the real world business organizations con-
cepts and requirements the roles hierarchy was also introduced in
teams but only at level of communication. All roles in all teams
were given same importance as is the spirit of XP.

As a preparation of the second part of the course the following
concepts were pre-decided and explained to the course participants.

Team Composition

As already explained in section 5.5.1, to emphasize that all work
should be done in XP-teams the concept of roles was introduced
in the beginning of the course. It was explained that during the
first part of the course the teams were to be created randomly for
each XP exercise. But from the start of the XP-realization phase
permanent teams were needed to be made for the rest of the course.
The teams were decided and created by the course instructors. Each
team was to have a manager, a customer, a coach, and a number of
developers depending upon the size of the team. The coach was also
considered as part of development team. The teaming process was
completed during the first part of the course and all teams’ members
were assigned the roles they were going to play in XP-realization
phase. But as defined earlier these teams started working only in
the second part of the course. The idea was to let the students to feel
the emotional and social pressure of joining a new team and a new
project, which is very common in software development industry
and always happens when a new project is started.

Chapter 5 Framework of KM in XP Education 72

Roles and Role Selection

It was explicitly mentioned in the introductory lecture of the course
that the students would be assigned different roles mostly according
to their own choice. The roles were defined according to the actual
roles that exist in real software development teams. The following
roles were defined:

� Manager

� Customer

� Coach

� Developer

To make roles assignment transparent and to assign appropri-
ate roles fitting according to a student’s personality, character and
personal interests the students were asked to fill in a question-
naire which posed different questions concerning their general ap-
titude, social and communication habits, programming experience
and knowledge, and also about the students analytical abilities. The
performa provided a self evaluation and grading criteria on the basis
of which the students were able to suggest which role (or roles) best
suited them and which they wanted to play in the teams. The final
role assignments were done by the course instructors keeping in view
the students’ choice, on the basis of the analysis of their response to
self evaluation questionnaire, as well as also on the availability of a
role within teams, as for example no team could have two managers.

A snapshot of the performa is given in table 5.5.

Team Distribution

The course was attended by almost 100 students. Ten teams were
made and each team was assigned roles as defined in section 5.5.2.
Extra care was taken to distribute the female students among the
teams as they were only the 15% of the total course participants.
They were randomly distributed among different teams to eliminate

Chapter 5 Framework of KM in XP Education 73

Table 5.5: Roles Self Assessment
Roles Self Assessment
Grade the following as 1(highest) - 5(lowest)
Role Description

Team Leader

You meet 80% or more of
all important and urgent
decisions in less than 3 minutes.
Only for 15% of all important and
urgent decisions you need
more information and more time.

Analyst

You can analyze technical
problems very well and can
compile one nearly perfect solution
for it. You possess exact specialized
knowledge and you know the necessary
tools in some areas, which are
relevant for your work and/or our exercise
(Java, IDEs, programming).

Designer You are good in brainstorming and in
generating creative ideas and solutions.
You are often optimist.

Team member

A good atmosphere in the team is important
for you. Good relations among coworkers in
your team is very important for you, and
you help to make it possible. If one of your
team colleagues has technical or problems
within personal ranges, you recognize this
very fast and talk with the concerned
person in order to find a good solution.
You engage yourself for the common work.

the factor of male and female programmers. Each team had at-least
one female member.

Table 5.6: Project Timeline
Release 1. Iteration 1.
Release 1. Iteration 2.
Release 2. Iteration 1.
Preparation of project presentation/tradeshow
Final exam and project presentation/tradeshow

Chapter 5 Framework of KM in XP Education 74

Project

All teams were given the same project, with some preliminary design
requirements but decision about the major functionality was left up
to the customers of the teams. They were supposed to decide what
extra features they wanted their application to have. The table 5.6
shows the project timeline.

5.6 Knowledge Management Perspectives

Along with all the general issues of knowledge management (KM)
that have been discussed in sections 5.2 and 5.3 there were some
more pressing reasons for a profound knowledge management in or-
ganizing and managing this course. These reasons are explained in
the following lines:

Diverse Technical Base The students registered in this course
have different knowledge of software engineering and related
subjects as they come from many different academic faculties.
Due to this reason there is also a difference in the courses that
they have completed so far.

Diverse Technical Background The students registering for the
course are in different semesters of their study programs, that
is why they also have different technical backgrounds. For ex-
ample, some undergraduate students are in second semester
of their study program while others are in registered in fourth
semester. Also, many students already have work experience of
software development industry, some of them even have several
years of experience. This is very helpful in KM when students
work in teams, as great care is taken to distribute experienced
students evenly over the teams.

Different level of Education The course is offered to both grad-
uate and undergraduate students. The participants are of dif-
ferent age groups, with difference in their technical knowledge
base, as well as in practical experience with software develop-
ment.

According to the format of the course, and for better and diverse
knowledge experience on behalf of the students, there is a need to

Chapter 5 Framework of KM in XP Education 75

distribute students among teams with these diverse technical skills
and backgrounds. It is also taken care of that female students are
equally distributed although they constitute on average around 15
percent of the whole class.

5.6.1 XP in Knowledge Management and Educational
Context

This section briefly defines some of the team practices of the XP
that have been applied, to date, in the context of this course, their
KM issues and the educational context in which these are applied.

Pair Programming

Pair programming defines an interactive coding session among two
developers sitting together in front of the same computer and sharing
a keyboard and a mouse. Both developers work on the same piece
of code at the same time. They act as a driver and navigator. The
driver is the developer who controls the keyboard and the mouse at
a time and the other partner acting as a navigator guiding through
design and test process. According to the format of the practice the
driver and navigator swap their role very frequently thus both get
opportunity to code [9].

Knowledge Management Factor
This practice involves very informal and spontaneous communi-

cation but generates a lot of knowledge as both developers, pairing
together, share their technical knowledge and experience regarding
design, coding and testing [15]. This practice is characterized as
providing a great learning experience as it gives an opportunity to
the pair partners to learn from the experience of each other and at
the same time apply their own knowledge in the domain. To make
sure that the knowledge generated and shared by the pairs is also
distributed to the whole team the pair partners are switched very
frequently, and this also helps the whole team to come together [15]
[9]. This practice embodies a social process as it allows not only to
share technical and situational knowledge but also lets the develop-
ers to know better about each others’ strengths and weaknesses.

Educational Context
In the context of said course the students are asked to work on

different coding and non-coding assignments. In the first part of

Chapter 5 Framework of KM in XP Education 76

the course the students have done many non-coding process-related
assignments. It has been a good experience to ask the students to
work in pairs on writing assignments, and on tasks like designing pa-
per mock-ups. This has been done in order to teach them designing
and coding related tasks as well as the pair-working practice before
they actually start pair programming. This practice is of great im-
portance in the context of this course as it is defined that there is
a mix of students with different skill levels and educational back-
ground. This practice greatly helps in providing almost the same
knowledge level among the whole class. Also, the pair learning con-
cept is introduced using this practice.

Retrospectives

In XP, project retrospectives allow continuous learning by having a
flash-back on what has been done in a previous development cycle
[9]. These are postmortem reviews, taken by the whole team to-
gether, which allow to learn from what is done and then refine the
process if required. These retrospectives are performed on a regu-
lar basis during a software development process and hence allow to
refine the knowledge and apply it in the same project.

Knowledge Management Factor
The practice of retrospective makes it possible to identify obsta-

cles that have hindered the process or the development one way or
the other. The team also discusses the success factors in order to
make sure that that the whole team understands how things work
better. The team may also raise points of concern regarding any
technical or management related issues. In this way it provides a
platform for communicating one’s own voice to all concerned people
[15].

Educational Context
In the first part of the course, this practice is used to get feedback

from students about their learning experience. In every lecture the
students are given exercises about XP practices. As an after-class
assignment the students are asked to write a brief review report on
what they did in the exercise, how well they managed it, and also
about their experience - did they like it the way it was conducted
or did they have problems. These reviews done by students are
allowing them to speak their thoughts and convey their problems to
their course organizer in a very informal but organized way. This

Chapter 5 Framework of KM in XP Education 77

also reveals how well they are understanding the concepts of XP.
Also, as these reviews are published on the course wiki site and are
visible to all course participants, this has resulted in easy sharing
and distributing knowledge among the whole class.

Planning Game

Extreme programming process divides the whole development pro-
cess in releases and iterations. Each release consists of more than
one iteration. Before each release and iteration the planning meet-
ings are conducted to discuss and settle system requirements as well
as business requirements. These planning meetings are attended by
the whole team including all developers, managers and customers
[9].

Knowledge Management Factor
The planning is always done with the whole team. This makes the

whole process visible to everyone. Each team member knows what
is going to be done the next development cycle (release or iteration).
Any change in the previous plan also becomes visible to everyone.
This transparent process removes any danger of miscommunication
among developers, customers and managers.

Educational Context
The students attending this course are greatly encouraged to

make use of this practice. They were encouraged to do a small plan-
ning exercise while they were starting to prepare for their exam.
According to feedback given by the students it was a new experi-
ence for them to properly plan how they were going to prepare for
the exam and it was very time efficient, it helped them to be more
organized and to do more in less time.

On-Site Customer

Extreme programming requires a customer with the development
team to allow direct communication among the customer and the
developers when needed. This helps the customer, who is investing
lots of his money into the project, to make sure that the development
is done according to the specified requirements [9].

Knowledge Management Factor
Direct communication among the customer and the development

team is very important. In conventional software engineering pro-

Chapter 5 Framework of KM in XP Education 78

cess the flow of information from customer to developers, and vice
versa, is through the management. This results in late delivery of
information to the customer and developer parties and even, some-
times, in loss of important information. The inclusion of a customer
in the XP team removes these problems and provides quick customer
feedback to the developers which makes their task easier. On the
other hand, being with the development team all the time makes it
convenient for the customer to introduce new requirements at the
earliest.

Educational Context
The students are divided into teams during first part of the course

and are assigned customer, manager, coach, and developer roles.
The students taking the role of customer get a good training in
acting as the customer of the product that his/her team develops.
Although the real customer tasks come in the second part of the
course but they also get to play their role in the first part of the
course in a couple of non-programming exercises, and even in exam
preparation. They learn how to formulate their requirements in a
form that developers can understand, and to specify the acceptance
criteria to understand the success or failure of a task at the end.

Story Cards

In XP, customers write the requirements of the system to be devel-
oped in the form of a narrative which is called a story. These stories
are usually written on paper cards and are displayed in the room
where the development team works.

Knowledge Management Factor
The story cards are usually displayed on a wall or at a prominent

place in the XP work room. This makes the development plan visible
and transparent to every one in the team. All developers know
what their colleagues are working at, and for the managers and the
customers it provides an efficient way of looking at the status of the
project.

Educational Context
In many different exercises during the course the students playing

the customer role in each team write stories for the developers spec-
ifying the tasks to be done. In this way they learn how to specify
their requirements in a form that the other members of their team
are able to understand. The customers are encouraged to discuss

Chapter 5 Framework of KM in XP Education 79

the stories first with their managers and then they ask one of the
developers to help them in formulating the stories. The story cards
help the developers to organize their work and to visualize at what
stage they are working.

Stand-Up Meetings

A stand-up meeting is a short and efficient means of communication
among the whole XP team. Theoretically, a stand-up meeting is
called every morning before starting to work. It is also attended
by all team members. Every one tells very briefly what he/she did
the day before and what they expect to do that day. It is called
a stand-up meeting as it is kept very short by forcing everyone to
stand, not involving any detail question and answering. If there are
any points of discussion then these are discussed outside the scope
of stand-up meetings [9].

Knowledge Management Factor
As defined above, it is a very quick means of sharing important

knowledge with the whole team. Everyone gets a very quick review
of the progress since the last stand-up meeting and also about who is
doing what during the rest of the day. It provides enough knowledge
to everyone to organize themselves.

Educational Context
It has become customary in the course to start every lecture with

a stand-up meeting. This practice was initially adopted to give the
students a practical experience about stand-up meetings in an XP
way. But now that this has been practiced many times it is ac-
cepted as a good way of sharing some very important knowledge at
the beginning of the lecture. In the start of the course the organizer
encouraged every one to speak although only some students actu-
ally participated. The idea was to let the students have a courage
to speak in front the whole class. That training worked and more
students started to participate in stand-up meetings. Now that
student groups are created and roles are defined, the teams man-
agers are asked to represent their teams in stand-up meetings. In
XP-realization phase this practice is performed individually within
teams.

Chapter 5 Framework of KM in XP Education 80

5.6.2 Examination as a KM Tool

The students are required to take examination at the end of each
part of the course. The examination preparation is also introduced
as an XP process where the customer is asked to make planning
of what to prepare for the examination. The customer writes the
preparation tasks in the form of stories. The whole team works with
the customer in defining the stories for the exam preparation. The
stories are worked on in pairs, hence performing pair learning. To
further enhance the learning process the examination is also taken
in pairs. Two students sit together, discuss the questions and write
answers which are according to the combined knowledge of the pair.
This way of examination spreads knowledge and let the students
learn from each other.

5.6.3 Wiki as a Source of Knowledge Management in
Classroom XP

Since the start of the course, a wiki site has been set up to facilitate
collaboration among all course participants. Wikis are known to
be helpful in education systems and in promoting learning [4]. The
course’s initial format was based on individual students, which was
then defined for pairs and then for teams. The students have been
given different assignments which they have worked on individually,
in pairs and in teams. To further promote learning and sharing
knowledge which they gather in lectures and in exercises the students
upload their assignments on the wiki. This has allowed to make work
assignments, and reviews of class exercises done by the students,
visible to every one and also it is helping the course organizer to
review and understand how the course is working out. The course
wiki is providing the following modes of knowledge management:

Support for Personal Portals

Each student has been encouraged to use his/her personal wiki page
to put every kind of information which could be useful for others
as well as for the course. In the very first class all participants of
the course are advised to put their contact information on the wiki-
page. They are also encouraged to mention their knowledge and
skill of programming tools and methodologies, their technical likes

Chapter 5 Framework of KM in XP Education 81

and expertise and also what they intend to gain from the course.
The students are also advised to personalize their wiki pages so
that the class as well as the course organizer is able to have a better
and fast acquaintance with the students. The XP exercises review
assignments which they are asked to put on their wiki pages also
serve as a good way of knowledge sharing and this has helped the
course organizer to understand how students are following the course
and what aspects of the course need to be refined.

Team Portals

As the students start working in teams, each team is given a team
portal which is used by all team members to put information about
their team organization, their meetings, team assignments and all
other team related activities. Each team portal shows the team
members, their roles, and their expertise and skills. This external-
ization of knowledge on team level portrays a specific KM model
which is required from the general educational aspect as well as
from the point of view of teaching XP.

The Scrapbook: Role-based Experience and Feedback

Each team’s wiki portal manages a scrap book for all roles, for ex-
ample, developers, customer, etc., in the team. Each role enters
its review of the practice and exercise at the end of each work day.
Thus, this scrap book works as an on-line retrospective of the course.

5.7 Implications of Project Management and
Industrial Setup

5.7.1 Work Environment

As mentioned before, attempts were made to simulate an industry-
like situation as closely as possible. Shared work place and work en-
vironment play a very important role in XP ([8] [10] as XP method-
ology asks for a team work and that the whole team sits together
all the time. For this purpose all teams were asked to arrange a
team room for them, ideally a place where they could sit together
and work for the rest of the course. The minimum requirements for

Chapter 5 Framework of KM in XP Education 82

the rooms were to have place for team meetings and pair program-
ming sessions. Different options were also provided for arranging
the work place to facilitate the information sharing and communi-
cation among the whole team [98]. Consequently, each student team
arranged a routine work place along with facilities to display story
cards, place for pair programming, planning and reflection meetings.

5.7.2 Daily Routine

To start with a proper training in project management and to make
it an organized experience for the students a formal daily routine
was defined for this phase. In the beginning it was followed strictly
and then the teams were asked to take over and organize themselves
according to their convenience, hence giving a clear idea of how it
should be done, and, at the same time, saving the spirit of agility.
A general sketch of the “minimum” daily routine is given in table
5.7 which was followed by all student teams during the whole XP-
Realization phase.

Table 5.7: General daily routine
A short overview of the day’s activity by the instructor
Teams meeting in their XP rooms
Stand-up meeting
Planning (only on planning days)
Manager and Customer : Administrative tasks
Development team: Coding sessions, pairing
End of day: Progress presentation by managers to the instructor
End of day: Refactoring of the code by the development team

5.7.3 40-Hours Week

It was also decided to work according to “40-hours week” theme
of XP methodology. To do so the course was organized as a full
day activity once a week for the whole semester. This provided
an opportunity to the students to have consecutive eight hours for
the course once a week during which they could work with their
team members and work with core practices of XP (stand-up meet-
ing, planning game, pair programming, refactoring and retrospective

Chapter 5 Framework of KM in XP Education 83

meetings) on daily basis. This, otherwise, would not have been pos-
sible if the course time was distributed on multiple days in time slots
of two or three hours during the week.

5.7.4 Communication among Course Organizers and
Teams

It was decided to make the communication among the course orga-
nizers and student teams in a way to simulate the communication
style, flow, and hierarchy of business organizations. It was done in
a kind of official and professional manner to give the students a feel-
ing of working in a software development industry. Also it provided
an opportunity to teach communication skills which are an integral
part of not only teaching but also of an important aspect of XP
[55]. All course related instructions were sent to the managers of
the student teams by email from the course organizer. The teams’
managers were then responsible to organize their teams according
to the given instructions. This exercise was greatly liked by the
teams and it especially helped the managers to play their role more
properly in the teams.

5.7.5 Changing Teams during Project

Another concept of real software development organizations is that
in real life people (employees) are not made to work with the same
team or even on the same project from start to end of the projects.
The team members are changed, their roles are changed within the
possible limit, and even people are hired and fired. To simulate this
concept on a small scale the teams of the best programmers of each
team were changed after first release of the project. Each team se-
lected its own best programmer through voting without telling them
what would be done with this criterion. The best programmers were
then given a “promotion” by sending them to some other team. Al-
though in the beginning the students did not like the idea of being
forced to leave their team but then gradually they understood the
idea behind this, and due to the practices like pair programming,
stand up meetings, and collective code ownership which were fol-
lowed in all teams the new team members quickly adjusted in their
respective teams.

Chapter 5 Framework of KM in XP Education 84

5.7.6 Customer-Manager Workshop

To further motivate the students about the idea of an XP customer
a member of a commercial XP team was invited who was acting
as a customer in his team since three years. The customer gave a
talk to all student managers and customers regarding his personal
experiences of performing the duties of a customer. It proved to
be a good experience as the students were able to ask questions
which they had in mind regarding their own experience with the
roles they had played during the course. It was also suggested by
the students that this kind of workshop would be of much more
benefit if conducted at different stages during the course, especially
during planning exercises.

5.7.7 Project Presentation/Trade show

The course concluded with a presentation of the projects developed
by all teams. Managers of all teams prepared a thorough presen-
tation of their projects and presented it to all course participants.
This activity was called Trade-show and it was the only time when
all teams came to know about the way the projects were developed
by the other teams.

5.7.8 Planned and Surprise Meetings/Visits

To add another dimension of industry-like setting the teams received
planned and surprise visits from the course instructor during their
routine work. The objective was to keep a check on the working
of the teams and also to evaluate their work for the grading of the
course. Likewise, the course instructor arranged occasional meetings
with the managers of the teams to inquire about their teams’ activity
and status of the work, any problems the teams were facing or to
discuss any issues related to project or XP process prevailing with
specific teams.

5.8 Summary and Conclusion

We can gather all this experience of XP learning and teaching and
accumulate it in form of guidelines for organizing, teaching, and
managing a course of practical XP for graduate students. This set of

Chapter 5 Framework of KM in XP Education 85

guidelines constitute a flexible framework for teaching such a course
of XP in a university environment and in the author’s opinion fulfills
the minimum requirements of course organization and management
in general, and especially to teach XP.

5.8.1 Guidelines for Course Organization and Manage-
ment

In the light of what the author perceived from her understanding and
learning of XP during m3 project (refer to section 4.6) and the goals
defined for this case study (refer to section 5.1.1) the author defines
the following guidelines as a framework of structure and organization
of XP teaching embedding KM in different forms.

� Organize the course in large time blocks, for example, four
hours a time twice a week or eight hours once a week (as is
done by the author). This gives an opportunity to incorporate
XP practices already in organizing the course. Also on the
other hand it makes the management of the course easier.

� Depending upon the total number of students make teams of
about six to eight students (in the case defined above it was
nine on average which was just ideal).

� Distribute the students into teams as fairly as possible. A class
of computer science students is usually a mix of excellent, good
and average programmers. Distribute them equally in all teams
so that the knowledge can be distributed evenly among all stu-
dents.

� Make an even distribution of male and female students. Female
students are usually good in general management of teamwork.

� Instead of directly starting with fixed teams let the students
know each other in the whole class by making random teams
in the beginning. Working in fixed teams from the very be-
ginning restricts the knowledge distribution and is also against
the general concept of agility.

� Introduce roles in the teams. Roles of XP are ideal for teaching
programming as well as management. The team size defined
above also makes it easy to have a manager, a customer, a
coach and a number of developers in each team.

Chapter 5 Framework of KM in XP Education 86

� It is better to take students’ consent in assigning roles. You
can always impose a role onto a team member if a given role is
not available in a team any more.

� Employ some general technique for personality evaluation be-
fore assigning roles. This way it will be possible to assign roles
according to personality of students, and also the students will
be able to give their consent about a role more confidently as
they themselves will understand what they are good at accord-
ing to the traits of their personality. But try using some simple
way for personality evaluation and do not make it more tech-
nical and time consuming than required.

� Role assignment should be done before making teams. This
way it is more flexible and gives a better opportunity for even
distribution of expertise among teams.

� Clearly defining and specifying theory and practical part of
course will be very helpful for the students to visualize their
goals at a particular stage in course. Also managing theory
and practice in two separate parts is more easy and simple.

� Instead of using lecture based approach use different teaching
aids to make the theory part more interesting for the students.
This also provides them with a good learning experience. Ar-
ranging lectures in the form of short and to-the-point workshop-
style exercises makes it very easy to teach the logic and actual
working of XP practices. As there is always a time constraint
with university courses therefore it should be decided before
hand how much time can be alloted to each practice (as in the
case described above not all practices were taught in separate
exercises and workshops. It is also possible to define exercises
which demonstrate more than one practice).

� Practices like planning game, story writing and estimation, and
customer focus can be demonstrated using logical and simula-
tion exercises. Practices requiring technical knowledge, for ex-
ample pair programming and test driven development should
be taught using programming exercises.

� Follow a set schedule for almost everything including theory
and practice. Although it is against the spirit of agility but too

Chapter 5 Framework of KM in XP Education 87

much agility in the class room will result in chaotic situation,
especially during workshops, and the goals of the workshops
will not be met.

� Try to specify activities for each role. For example in planning
game explicitly define the role and activity of managers, cus-
tomers and developers. No member of a team should be sitting
idle most of the time. It will reduce the interest of the students
in certain roles. For some practices it is not possible to involve
all roles, for example, in acceptance testing exercise most of
the work is done by the customers and developers do not have
enough work to do.

� From management point of view giving the same project to all
teams is more convenient.

� Guide and facilitate the students to arrange their team rooms
or work places.

� Define fixed time slots for iterations and releases.

� Simulating the corporate industry style communication link
among the course organizer, managers and customers will also
provide a good learning and training experience for managers
and customers.

� Define protocols for the duties of managers, customers, coaches,
and developers during project.

� Arrange workshops for managers and customers, ideally invit-
ing professionals from the software development industry. This
will provide them a good guidance about what they are doing.

� Define a schedule for daily routine during project and make
sure that all teams follow it. Specify the schedule as minimum
requirement and leave room for additional activities so that the
teams can also learn to organize themselves.

� Supervise the work of each team during project time and make
sure the practices are being properly followed.

� A protocol defining what to look for during visits to the teams
will be helpful in comparing activities of different teams.

Chapter 5 Framework of KM in XP Education 88

� Control the work of each team by asking them to report on the
work done by the team at the end of the day. It can be done by
having arranged meetings as well as surprise visits to teams.

� Introduce real life situation by changing goals of the application
being developed as the XP project.

� Award teams with appreciation certificates that perform better
than others during the course and after the final project.

� Provide a collaboration platform for all students and teams so
that they can communicate as well as share knowledge easily
and efficiently. For example, setting up the course wiki and al-
lowing the students to manage personal as well as team portals
is a good way to supervise teams’ activities as well as knowl-
edge management, also provides an opportunity to the course
instructor to understand students view about the different as-
pects of the course.

� In case of some social or communication related problem among
team members ask the manager to work as moderator and re-
solve small issues occurring in team work.

� It is also ideal to have student assistants for supervising and
guiding the teams during project. Define a protocol of duties
for the student assistants.

Chapter 6

Data Analysis and Results

This chapter presents the details of the analysis and discusses the
results based on the study conducted in the context of this research.
The chapter presents the details of the surveys conducted and the
notable results gathered from the analysis of the surveys’ data are
discussed in detail.

6.1 Introduction

One of the main objectives of this course was to use it as a research
base for analyzing XP in the educational context, the acceptance
and adherence to XP practices by the students and also to find out
the students’ opinion about the way the course was organized. To
do so it was decided to collect data from more than one source using
two different questionnaire-based surveys. Observational data was
also collected from course wiki site. That data was not formally
analyzed but was used as a continuous feedback from the students
and was continuously incorporated by the author into the course
organization and structure. Two surveys were designed, as part of
the course, conducted during the course at predefined stages. The
students were informed about this research base in the start of the
course. They were given a brief introduction of the surveys to be
conducted, and also the motivation behind conducting these surveys.
For this purpose participation in the surveys was made necessary for
all students. It was made clear that for the validity of the results it
was necessary that all students take serious participation in the sur-
veys. The surveys were designed as short and concise questionnaires

89

Chapter 6 Analysis and Results 90

and were to be done via an on line survey portal.
The following subsections give a brief introduction of the surveys

which have been used to collect data for the empirical and descrip-
tive analysis of the course.

6.2 XP Practices Survey

A questionnaire regarding XP practices was sent out to the students
three times during the whole semester. The timing of the survey was
selected carefully to analyze the learning process and the acceptance
of the XP practices by the students. The survey was conducted at
the following stages:

� In the very first lecture of the course when students had no
previous university training of any agile methodology,

� After the end of XP-visualization phase,

� At the end of XP-realization phase.

6.2.1 Methodology

The survey was conducted through an on line web-based survey
portal to eliminate the chances of manual and human errors in data
collection [79]. The survey was designed as a descriptive survey
as the goal was to collect students’ responses about their perspec-
tive and experience with XP in general and specifically about all
practices. The survey mostly provided closed-ended questions as
multiple-choice and point-scaled. Most of the questions were de-
signed using 5-point Likert scale [67]. Open-ended questions were
also provided to collect students response about benefits and draw-
backs of the practices. The survey was meant to provide a descrip-
tive analysis by defining frequencies and cross-tabulation method as
the goal was to understand the opinion of students about practices
of XP during different phases in the course [82]. The qualitative
research methods were also used in some cases to answer the “why”
and “how” questions regarding some aspects analyzed.

The questionnaire posed 14 main questions (one for each prac-
tice) and each question was divided into five sub-subquestions. The
questions were mainly adopted from Shodan 2.0 survey [63]. The

Chapter 6 Analysis and Results 91

questions’ structure was kept similar for all practices so that the
students could concentrate more on the question and not on the
structure. It also made the design of the questionnaire more sim-
ple. Apart from these 14 questions there were three more questions
regarding general information about the students.

The analysis of this survey shows how the different practices of
XP were learned and understood by the students during the course
of the training. The author has followed the analysis and reporting
method used by Salo and Abrahamsson in [92] because of the simi-
larity of goals with the analysis of the survey. Other surveys and re-
lated studies which have been considered include [17],[100],[85],[88],
and [89]. All these surveys have explored and analyzed different as-
pects including usability, applicability, etc., of agile and especially
XP methodology. The questionnaire is provided in appendix A.

6.3 XP Education Perspective Survey

This survey was conducted only once, at the end of the course.
It posed questions regarding the way the course was organized and
about the exercises that were carried out to teach different XP prac-
tices. The main objective in conducting this survey was to analy-
sis the students’ acceptance of the course organization and teach-
ing framework nd also to get a general evaluation of the course
from them. This survey was also organized as a descriptive survey
and contained questions regarding general educational background
of students and their current and past experience with using XP
practices. The survey was designed a a combination of open-ended
and closed-ended multiple choice questions. The descriptive analy-
sis was done following the same methodology which was used for XP
practices survey defined in section 6.2. The survey questionnaire is
provided in appendix ??.

6.4 Analysis and Results

This section provides results of the analysis of the surveys men-
tioned in the previous sections in this chapter. The results are self
explanatory and can be followed very easily. The results are ana-
lyzed from the point of view of teaching and learning aspects of XP.

Chapter 6 Analysis and Results 92

The data is gathered during the course the main objective of which
was to introduce XP methodology in the frame work of knowledge
management, semi-industrial setup and of role playing. The results
emphasize the students’ perspective about using XP as a software
development methodology during and after the course.

6.4.1 Analysis of XP Practices Survey

This questionnaire was filled in by 87 students (with 80% male
20% female students) and at three stages during the course, that
is, before the start of the training in the very first lecture, after
XP-visualization phase was finished, and after XP-realization was
finished at the end of the course. The results were presented in per-
centage of students. In the first survey only 8% of students said they
had already done XP to some extent and 37% of the students said
they knew nothing about XP. The rest of the students had either
read about it or only heard about the methodology. Therefore, the
responses of the all the students in first survey were based upon only
on their prior knowledge about the methodology. The second ques-
tionnaire was filled in by the students after XP-visualization phase
was finished in which XP practices were taught using lectures, class-
room workshops, and small exercises. Up to that point they had
not used the methodology in a full software project. Third time
the questionnaire was filled in by the students when they had been
working with XP since four months and they had classroom train-
ing of XP-visualization phase and of practicing XP in the project
during XP-realization phase. The questions regarding XP practices
measured the aspects like their “knowledge about a practice, experi-
ence of working with the methodology, easy to learn, easy to apply,
helpfulness, enjoyable, already widely used, and easy to introduce
in the team”. Different 5-point scales were used, for example [-
2(not at all), -1, 0, 1, +2(absolutly positive)] and [Nothing, Heard
about,Read about, Done it, Everything]. The data from the three
questionnaires was analyzed separately to find out the opinion of
students about XP while in a specific phase in the course, and at
the end the results from all the three questionnaires were compared
to see the effect on the student learning and their interest and opin-
ion about XP practices after different phases of the course.

Chapter 6 Analysis and Results 93

Comparison analysis

Following are some of the comparison analysis results based on spe-
cific aspects about all XP practices.

� The aspect of “Helpfulness” of XP practices. This comparison
shows how helpful were the different practices during different
phases in the course.

� The aspect of “Easy to learn” for XP practices was analyzed in
comparison as one of the goals of the study was to test the XP
course organization framework for its effectiveness in increasing
the learning of the methodology.

� The aspect of “Enjoyment” related with learning and practicing
the XP practices in general and in relation with the way the
course was organized and structured. This was also done to see
how much the mode of teaching was able to grasp the interest
the students in learning XP methodology. This also showed
how well the students were taking the team work and other
social aspects related to XP practices.

Discussion of Comparison Analysis Results

� Aspect of Helpfulness Figure 6.1 shows the comparison anal-
ysis of XP practices based on the aspect of “Helpfulness” us-
ing the data collected three times through the questionnaire
of XP practices survey. Blue coloured bars represent the data
collected before training started, red coloured bars represent
the data collected after the XP-visualization phase was com-
pleted, and green coloured bars represent the data collected
at the end of the course after XP-realization phase was com-
pleted. Y-axis gives the names of all practices for which the
data was collected. X-axis shows the percentage of students
who agreed to the aspect of helpfulness of particular practices
in the software development process. For example, the gradual
increase in the graph of planning game from first questionnaire
to the third questionnaire shows that the students gradually
understood the logic behind using the practice and considered
it helpful for the development process. Similar trend exists
for the practices of small releases, collective code ownership,

Chapter 6 Analysis and Results 94

continuous integration, sustainable pace, and for daily stand-
up meetings. The graph for the practice of metaphor shows
almost 40% decrease in the popularity of the practice for the
aspect of helpfulness. It was because most of the students ar-
gued that they did not feel the usefulness of the practice in the
context of the project at that small scale. Most of the students
considered talking about and consciously following the same
metaphor for their project as extra overhead. Even though in
the begining they thought that it was a useful concept to be
used in projects. Some practices, for example, simple design,
pair programming,coding standards, and the practice of whole
team, lost their importance in the XP-visualization phase but
then again the students foundout that they were actually help-
ful in actual software development.

� Aspect of learning The graph of “Easy to learn” 6.2 aspect
related to XP practices shows trends of the similar nature as
shown in the aspect of “Helpfulness”. More than 60% stu-
dents voted that planning game was easy to learn after the last
questionnaire, as compared to 32% votes in the first question-
naire and only 18% votes in the second questionnaire. This
is due to the fact that students initial knowledge of the prac-
tice was based on only what they had learned in books. The
students general feedback was that too many small details had
to be followed during the planning game, which most of the
students thought as waste of time in XP-visualization phase as
they wanted to start coding right away. But when they worked
on the complete programming project in XP-realization phase
and actually planned the project development they understood
the practice and learned it easily. Same is the case with small
releases, simple design, TDD, refactoring, collective code own-
ership, coding standards, and sustainable pace. It is obvious
that this trend existed for all practices realted to the tasks of
coding. The students gradually learned and understood the
practice of onsite customer and the concept of whole team,
starting from the begining to the end of the course after work-
ing on the project in the XP-realization phase.

� Aspect of Enjoyment Figure 6.3 shows with which of the prac-
tices students enjoyed working during different phases of the

Chapter 6 Analysis and Results 95

course. Working in Small releases was voted high as it made
the programming tasks plan-able and easier. They enjoyed
refactoring, collective code ownership, working with sustain-
able pace, having on-site customer, and daily stand-up meet-
ings also worked a lot for them in the XP-realization phase.
Pair programming showed somewhat negative trend, but only
with a decrease of 5-10% from first questionnaire to the last
questionnaire.

Individual Questionnaire Analysis

Different aspects related to the XP practices were analyzed after
XP-visualization and XP-realization phases to see how the training
in the two phases worked for the students. Following are some of
the results given by the the analysis.

Discussion of Individual Questionnaire Analysis

Planning Game - Easy to Introduce In figure 6.4 it can be seen that
about 32% of the students said that planning game was easy to
introduce and 11% students were absolutly positive about it. Only
4% of the students showed their reservations about the aspect after
XP-reaslization phase.

Planning Game - Easy to Apply Figure 6.5 shows that 38% of stu-
dents can apply planning game easily and 10% of the students are
absolutly positive about this aspect. So the students are more sure
about the application of the practice as compared to the fact that
they can easily introduce it in a team.

Metaphor - Easy to Introduce During XP-visualization phase the
teams said that metaphor for an application was not easy to intro-
duce and use. But after using this concept during the application
development most of the students were satisfied with that practice,
although there were many who said they did not need it. Figure 6.6
shows 43% positive and 22% neutral response for this aspect after
XP-realization phase.

Simple Design - Helpful Helpfulness of the practice of simple design
was voted positive by a total of 75% students (with 50% being ab-
solutly positive and 25% positive). Only a total of 5% students gave
negative response. Rest of the students remained neutral.

Table 6.1 shows a ranking of all practices on the aspect of helpful-
ness after XP-realization phase. Small release is ranked first followed

Chapter 6 Analysis and Results 96

by planning game and pair programming. Metaphor is placed in the
last position.

Table 6.1: Ranking Practices on the basis of Helpfulness

XP Practice Percentage Rank
Small Releases 83 1
Planning Game 82 2
Pair Programming 81 3
On-Site Customer 79 4
Simple Design 78 5
Refactoring 77 6
Coding Standards 82 6
Daily Stand-up Meetings 76 7
Whole Team 73 8
Sustainable Pace 72 9
Test Driven Development 71 10
Collective Code Ownership 69 11
Continuous Integration 69 11
Metaphor 52 12

6.4.2 Analysis of XP Education Perspective Survey

The survey gathered data about the past experience of students
in the field of computer science. 62.86% of students was studying
computer related subjects for 0-2 years. 52% of the students had 0-2
years experience of working in software development industry. Only
16.87% students had 4-6 years of experience of the field of computer
science, mostly as a student and in very few cases as a professional.
37.35% students said they wanted to work as a developer in software
development teams. 25% students said they would like to take a
management post. 50% of the students rated themselves as good
to excellent programmers. Only 4.82% students said that they were
not programmers at all.

Following are the results concluded from the descriptive and qual-
itative analysis of the survey regarding XP methodology.

� 61.45% students said that they liked the concept of pair pro-
gramming, someone actively working along while doing a pro-
gramming task.

Chapter 6 Analysis and Results 97

� 48% students rated programming expertise as most important
skill for a software developer. 27.71% said working in teams
was important for a software developer.

� 55.42% of the students said that they were satisfied with using
XP during application development, 16.87% of students said
they wanted to use some other methodology. The main reasons
specified were short time for the project as a lot of time was
spent on learning technical skills and practices like test driven
development. Some of the students argued that XP practices
were adding overhead. Rest of the students remained neutral.

� 65.65% students said they will advocate XP methodology in
their future work. Some students argued that it would be better
if selecting some practices from the whole set of XP process was
possible.

� 80% of the students said TDD was the harder practice to real-
ize, 12% of the students said that pair programming was also
difficult to do properly because of too much difference in tech-
nical knowledge of students.

� 53.01% students said they liked team work and 34.94% stu-
dents said they were selective about their team mates. 7.23%
students said they preferred working alone.

� 78.31% students were in the favour of collective code ownership.

� 81.93% students liked the idea of task prioritization and esti-
mation.

� 38.55% of students was in the favour of daily standup meet-
ings, 48.19% said it was a good practice only when there was
some information to share. 8.43% students said they would
attend a standup meeting if sharing views with others was not
mandatory.

� 56.63% students said having an onsite customer was the best
thing for a development team. 13.25% students said the cus-
tomer should be a trained customer to be productive for the
team.

� 74.70% students said open workspace raised the productivity
of the team. But still only 22.89% ranked it as an important

Chapter 6 Analysis and Results 98

practice (reference table 6.3). Most of the students considered
practtices like pair programming and coding standards as being
more important as compared to open workspace.

� 51% of students concluded that working on application devel-
opment with XP methodology was fun and it was a success
factor for a software project.

XP Practices Ranking

Table 6.2: XP practice ranking done by students according to “Dislike” aspect

XP Practice Percent Rank
metaphor 37.35% 1
Test Driven Development 25.30% 2
Short Releases/Iterations 15.66% 3
Acceptance/Functional Testing 14.46% 4
Pair Programming 13.25% 5
Collective Code Ownership 12.05% 6
Planning Game 9.64% 7
Simple Design 9.64% 7
40 Hours Week 9.64% 7
Standup Meeting 7.23% 8
Coding Standards 7.23% 8
Refactoring 7.23% 8
Open Work Space 7.23% 8
Continuous Integration 4.82% 9
On Site Customer 4.82% 9

Table 6.2 shows a ranking of the practices according to the aspect
of “dislikeness” measured using XP education perspective survey.
For example, although the practice of metaphor was considered as
easy to introduce in a team (refer to figure 6.6) but it was ranked
as being least helpful (refer to table 6.1) and was also disliked by
most of the students.

Table 6.3 ranks the practices according to their importance at
the end of the course (measured in XP education perspective ques-
tionnaire). Here again the practice of metaphor is ranked as least
important. Pair programming is ranked as the most important prac-
tice for a development process.

Chapter 6 Analysis and Results 99

Table 6.3: XP practice ranking done by students according to “Importance”
aspect

XP Practice Percent Rank
Pair Programming 72.29% 1
Simple Design 67.47% 2
Test Driven Development 59.04% 3
Standup Meeting 57.83% 4
On Site Customer 55.42% 5
40 Hours Week 55.42% 5
Planning Game 51.81% 6
Collective Code Ownership 51.81% 6
Coding Standards 45.78% 7
Continuous Integration 38.55% 8
Short Releases/Iterations 36.14% 9
Refactoring 32.53% 10
Acceptance/Functional Testing 28.92% 11
Open Work Space 22.89% 12
Metaphor 20.48% 13

6.5 Summary of Results and Discussion

All the data is collected and analyzed using descriptive and quali-
tative data analysis techniques as the main idea was to collect stu-
dents’ opinion about the course, the XP practices, the way the course
was taught, and the effect of the semi-industrial role-based knowl-
edge emphasized training of XP in university environment. The key
results concerning XP in general and XP practices are as follows:
62.65% students said they will advocate for XP in future, team work
(53.01%), collective code ownership (78.31%), usefulness of story es-
timation and prioritization (81.93%), standup meetings (38.55%),
onsite customer (56.63%), common workspace (74.70%). In XP ed-
ucation perspective survey (refer to table 6.3) practices of pair pro-
gramming, simple design and TDD were ranked first, second and
third with 72.29%, 67.47% and 59.04% positive responses, respec-
tively as being most important practices for the development pro-
cess. In the same way, 40-hour week was voted by 55.42% students
and planning game received 51.81% of positive votes. Metaphor
ranked last and was the most disliked practice. Refactoring and ac-
ceptance testing also received only 32.53% and 28.92% votes with

Chapter 6 Analysis and Results 100

respect to their importance felt by students during project. 51%
students voted for the fun factor related to working with XP.

Although a descriptive analysis is performed on the results col-
lected from different sources of data but it is not attempted to prove
any hypothesis. The data collected under same aspect using differ-
ent sources showed common as well as contradictory results in some
cases. These cases need to be analyzed in detail using more spe-
cific research methods. For example, although practice of metaphor
was found easy-to-introduce after XP-realization phase but it was
ranked as most disliked practice at the end of course in XP educa-
tion perspectives survey (refer to section 6.3). Also it showed a drop
from 98% to 58% while comapred on the basis of “helpfulness” after
three xp practices surveys (refer to figure 6.1). Also there is a need
to correlate the aspect of importance of XP practices measured in
XP education perspective survey with the aspects of helpfulness, en-
joyable, easy to learn and easy to introduce. The analysis presented
here is not fully exhaustive, the author has presented some of only
those results which were calculated keeping in mind the main goals
associated with the research conducted.

Being descriptive in nature and also because of human nature the
results are supposed to be affected by the personal and subjective
opinions, level of knowledge of students, immaturity of concepts on
behalf of students, provide only a very limited view on the concepts
and aspects which were tried to be measured [92]. All questions in
the survey provided “do not know” or neutral (0) options to avoid in-
correct input which is not actually meant by students. This concept
is also used and accepted and also used by Salo and Abrahamson in
[92].

Apart from all these points and facts described above, the re-
sults show positive aspects of the XP teaching in general and the
improvement in learning and understanding of XP practices from
one phase to another phase (refer to figure 6.2, 6.1, and 6.3). This
was what mainly intended to see from the analysis.

Chapter 6 Analysis and Results 101

Figure 6.1: Comparing the aspect of “Helpfulness” - increased or decreased from
one phase to the other phase of XP training

Chapter 6 Analysis and Results 102

Figure 6.2: Comparing the aspect of “Easy to Learn” - increased or decreased
from one phase to the other phase of XP training

Chapter 6 Analysis and Results 103

Figure 6.3: Comparing the aspect of “Enjoyment” - increased or decreased from
one phase to the other phase of XP training

Chapter 6 Analysis and Results 104

Figure 6.4: Aspect of “Easy to Introduce ” for planning game after XP-
realization phase

Chapter 6 Analysis and Results 105

Figure 6.5: Aspect of “Easy to Apply ” for planning game after XP-realization
phase

Chapter 6 Analysis and Results 106

Figure 6.6: Aspect of “Easy to Introduce ” for metaphor after XP-realization
phase

Chapter 6 Analysis and Results 107

Figure 6.7: Aspect of “Helpful ” for simple design practice after XP-realization
phase

Chapter 7

Limitations and Future
Work

In the following sections the author provides a summary of results,
the limitations of the study as well as some perceived future direc-
tions which can be taken from the result of this study. A general
conclusion is provided at the end of this chapter

7.1 Summary of Data Collection and Results

The software engineering course selected as case study was orga-
nized and structured keeping in mind the research goals set by the
author. To make it simple and less precarious both for the author
herself and for the students the analysis component was embedded
into the course structure. The data collection was planned within
the course outline and was placed at logical points and stages during
the course so that the flow of teaching and learning was not dis-
turbed and students had enough and required extent of knowledge
about the XP process to fill in the questionnaire share at that time.
It has helped in maintaining the validity and completeness of the
data. The other reason for embedding the data collection process
into the routine work was that it normalized the “extra work” con-
cept in the minds of the students and they considered questionnaires
as part of the course just like other activities performed in the con-
text of the course. The data was collected from multiple sources.
Two surveys were conducted with the help of questionnaires de-
signed specifically according to the specifications of the course. One

108

Chapter 7 Limitations and Future Work 109

of the surveys namely “XP practices survey” was conducted using an
iterative approach to analyze the XP learning process and its rela-
tionship with the kind of training being provided. This survey was
conducted, with similar questions and format, three times during
the course at different stages of the course. The second survey was
conducted only once, that is, at the end of the course as it posed
questions regarding the overall XP teaching and learning process,
the students’ personal view about the XP process, and about the
course structure and organization in general.

The analysis of the data collected through XP practices survey
presented in chapter 6 provides an insight into different aspects
of XP practices. It reflects the XP learning process and its rela-
tionship with the kind of training being provided. The data col-
lected after the lecture-cum-workshop based training done in XP-
visualization phase reflects the students extent of knowledge after
learning the concepts in a controlled semi instruction-based environ-
ment (discussed in detail in chapter 5). The data collected after all-
programming XP-realization phase reflects the students’ concepts
about the XP practices after they have learned the XP method-
ology by instruction and learning (in XP-visualization phase) and
from the practical experience (in XP-realization phase). The data
was also collected from other sources such as from the course wiki
site which collected students’ views about daily routine work and
exercises.

All this data is analyzed to view the actual output of the study.
The results are discussed section 6.5 in chapter 6. The descriptive
analysis performed on the data provides students perspective about
the aspects of “knowledge about a practice, experience of working
with the methodology, easy to learn, easy to apply, helpful, enjoy-
able, already widely used, and easy to introduce in the team”.

7.2 Limitations of the Study

The author acknowledges the methodological limitation of this re-
search. The design and the structure of the framework were adapted
from the general guidelines provided by different experts in the field
of software engineering education and from the professional in the
industry. But it also contains personal bias on behalf of the author
as her knowledge about the domain is based on her one time personal

Chapter 7 Limitations and Future Work 110

experience of working with the methodology. Although the span of
the experience is the continuous work using the XP methodology
for three years but still the factor of non-exhaustive exposure of the
domain is involved. Similarly the data collected for the analysis is
also based on what was the personal idea of the author, although the
data collection surveys were designed and adapted from a previously
tested study.

The data analysis was also performed using descriptive and qual-
itative methods as the main research idea was to collect the views of
the participants (students) of the course about XP practices in gen-
eral. No formal hypothesis was defined which needed to be proved.
The reason was that the author was aware of the unavailability of
multiple case studies to cross compare the results to have an ac-
curate finding about any hypothesis. Although cross-comparison
analysis of the coding metrics gathered from the student projects
can give a better reflection on the study performed but using only
the analysis of the coding metrics was not considered to be adequate
for an extensive research study design.

7.3 Future Research

The study provides an opportunity of several directions for future
research. It can be replicated to similar case studies involving teach-
ing of XP. As the author is a member of academia therefore this
direction is of utmost priority. The author plans to apply the study
and the framework on some other university based courses in differ-
ent universities. The findings of the study conducted are adequate
to make several simple and logical improvements in the structure
of the framework. The analysis of the XP education perspective
survey outlines specifies points of improvement in the exercises and
structure of the workshops done in XP-realization phase.

The case replication can also be performed by choosing case stud-
ies from industry to use it as a training framework for professional
software engineers having none, little or more knowledge about the
agile software development paradigm. The content and format of
the workshops can be adjusted to include more directions of agility
and can be made more advanced according to the level of knowl-
edge of the sample population on which it is to be applied. The
analysis structure can be readily applied to such cases with some

Chapter 7 Limitations and Future Work 111

modification in the questionnaires with respect to the data collec-
tion requirements of the case study.

The author plans to adjust the framework to test it for other
SDMs as well and to make a comparison study of the usefulness of
the framework for coaching and training students and/or profession-
als using XP, and other agile and non-agile SDMs.

7.4 Conclusion

The study opens the doors for further improvement in software engi-
neering education. It has attempted to simulate industry-like situa-
tion in an academic environment which is not as complicated as the
real industry setup so that the students can concentrate on learn-
ing XP instead of facing other non-educational activities along with
the learning process. Role playing activity has been liked by the
students because of the fact that the students were able to choose
their roles according to their preferences and personality evaluated
with the help of a simple personality evaluation form. Many of the
students were of the opinion that they were able to identify their
personal qualities and apply it in the roles of managers, customers,
and developers. The role specific training was also possible as each
role was given only role specific tasks to perform in XP-realization
phase. In XP-visualization phase the roles were swapped continu-
ously first to provide an opportunity to all students to test their
abilities in different roles and also to get knowledge about the work-
ing of all roles which contributed to the better understanding of
other roles played by their colleagues in XP-realization phase. The
overall performance of the framework has been satisfactory from
the point of view of the author and also supported by the results
and observations of the data analyzed. This further gives a chance
to research into the field of design, structure, and organization of
software development courses.

Appendix A

XP Practices Survey
Questionnaire

112

Appendix A XP Practices Survey 113

Appendix A XP Practices Survey 114

Appendix A XP Practices Survey 115

Appendix A XP Practices Survey 116

Appendix A XP Practices Survey 117

Appendix A XP Practices Survey 118

Appendix A XP Practices Survey 119

Appendix A XP Practices Survey 120

Appendix A XP Practices Survey 121

Appendix A XP Practices Survey 122

Appendix A XP Practices Survey 123

Appendix B

XP Education Perspective
Survey Questionnaire

124

Appendix B XP Education Perspective Survey 125

Appendix B XP Education Perspective Survey 126

Appendix B XP Education Perspective Survey 127

Appendix B XP Education Perspective Survey 128

Appendix B XP Education Perspective Survey 129

List of Figures

3.1 Contribution of Application, Research and Business
aspects in a Release 26

3.2 Selected story cards on the Release-Board (Release
Planning) . 27

3.3 Selected story cards on the Iteration-Board (Iteration
Planning) . 27

3.4 Executable code versus test code and coverage . . . 28
3.5 Iterative UI design workflow. 31
3.6 From paper mock-up to mobile: the first search-

results screen. 32
3.7 An additional HTML mock-up: a refactored search-

results screen. 33
3.8 The integration of HCI instruments into XP [112]. . 34
3.9 The prototype of the home page 35
3.10 The prototype of the Channel page showing the cal-

ender . 36
3.11 The menu entries without any visual separation . . . 37
3.12 Improvements of menu layout and arrangement . . . 38
3.13 Usability fix: Use the space on top of the “Clip De-

tail” more efficiently 39
3.14 Home Page. 41
3.15 Categories Page. 42

4.1 Subjective analysis of XP practices after third release
using Shodan 2.0 survey [63] 49

4.2 Velocity of application and non-application related
stories after first three releases. Showing distribution
of effort among application and other story types . . 52

130

6.1 Comparing the aspect of “Helpfulness” - increased or
decreased from one phase to the other phase of XP
training . 101

6.2 Comparing the aspect of “Easy to Learn” - increased
or decreased from one phase to the other phase of XP
training . 102

6.3 Comparing the aspect of “Enjoyment” - increased or
decreased from one phase to the other phase of XP
training . 103

6.4 Aspect of “Easy to Introduce ” for planning game
after XP-realization phase 104

6.5 Aspect of “Easy to Apply ” for planning game after
XP-realization phase 105

6.6 Aspect of “Easy to Introduce ” for metaphor after
XP-realization phase 106

6.7 Aspect of “Helpful ” for simple design practice after
XP-realization phase 107

List of Tables

2.1 Agile/XP in Software Engineering Education 18

4.1 Key practices of release R1, R2 and R3 50

5.1 Framework for teaching SDM by Hazzan and Dubinsky 62
5.2 Good practices by van der Duim et al. 63
5.3 Course Outline . 66
5.4 Outline of XP-Visualization Phase 68
5.5 Roles Self Assessment 73
5.6 Project Timeline . 73
5.7 General daily routine 82

6.1 Ranking Practices on the basis of Helpfulness 96
6.2 XP practice ranking done by students according to

“Dislike” aspect . 98
6.3 XP practice ranking done by students according to

“Importance” aspect 99

132

Bibliography

[1] Emma: Java code coverage tool. http://emma.sourceforge.net/.

[2] LinesOfCodeWichtel. www.andreas-berl.de/linesofcodewichtel/en/index.html.

[3] Steven K. Andrianoff and David B. Levine. Role playing in an object-oriented
world. In SIGCSE ’02: Proceedings of the 33rd SIGCSE technical symposium on
Computer science education, pages 121–125, New York, NY, USA, 2002. ACM.

[4] Naomi Augar, Ruth Raitman, and Wanlei Zhou. Teaching and learning on-
line with wikis. In Proceedings of Beyond the Comfort Zone: 21st ASCILITE
Conference, pages 95–104. Jossey-Bass Publishers, 2004.

[5] Donald J. Bagert, Greg Hislop, Michael Lutz, Thomas B. Hilburn, and
Thomas B. Hilburn. Guidelines for software engineering education version 1.0.
Technical report, CiteSeerX - Scientific Literature Digital Library and Search
Engine [http://citeseerx.ist.psu.edu/oai2] (United States), 1999.

[6] V R Basili, R W Selby, and D H Hutchens. Experimentation in software engi-
neering. IEEE Trans. Softw. Eng., 12(7):733–743, 1986.

[7] Kent Beck. Extreme programming: A humanistic discipline of software devel-
opment. In FASE, pages 1–6, 1998.

[8] Kent Beck. Extreme Programming Explained: Embrace Change (1st Edition).
Addison-Wesley Professional, 1999.

[9] Kent Beck and Cynthia Andres. Extreme Programming Explained : Embrace
Change (2nd Edition). Addison-Wesley Professional, November 2004.

[10] Kent Beck and Martin Fowler. Planning Extreme Programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[11] H. Beckman, G. O’Mary, J. Lawrence, and C.L. Parish. Tracking and evaluating
industry/university collaborations for software engineering education and train-
ing. In Software Engineering Education and Training, 1999. Proceedings. 12th
Conference on, pages 102–103, Mar 1999.

[12] Finn Olav Bjørnson and Torgeir Dingsøyr. A survey of perceptions on knowl-
edge management schools in agile and traditional software development environ-
ments. In Pekka Abrahamsson, Michele Marchesi, and Frank Maurer, editors,
XP, volume 31 of Lecture Notes in Business Information Processing, pages 94–
103. Springer, 2009.

[13] Charles C. Bonwell and James A. Eison. Active learning: Creating excitement
in the classroom (J-B ASHE Higher Education Report Series (AEHE)). Jossey-
Bass, February 1991.

133

[14] David Carrington, Paul Strooper, Sharron Newby, and Terry Stevenson. An in-
dustry/university collaboration to upgrade software engineering knowledge and
skills in industry. Journal of Systems and Software, 75(1-2):29 – 39, 2005. Soft-
ware Engineering Education and Training.

[15] Thomas Chau and Frank Maurer. Knowledge sharing in agile software teams.
Logic versus approximation: Essays dedicated to Michael M. Richter on the oc-
casion of his 65th birthday, LNCS 3075:173–183, 2004.

[16] A. W. Chickering and Z. F. Gamson. Seven principles for good practice in
undergraduate education. AAHE Bulletin, 39(7):3–7, 1987.

[17] T CHOW and D CAO. A survey study of critical success factors in agile software
projects. Journal of Systems and Software, 81(6):961–971, June 2008.

[18] Larry L. Constantine and Lucy A. D. Lockwood. Usage-centered software en-
gineering: an agile approach to integrating users, user interfaces, and usability
into software engineering practice. In ICSE ’03, pages 746–747. IEEE Computer
Society, 2003.

[19] Esther Derby and Diana Larsen. Agile retrospectives: Making good teams great.
Pragmatic Bookshelf, 2006.

[20] Anke Drappa and Jochen Ludewig. Simulation in software engineering train-
ing. In ICSE ’00: Proceedings of the 22nd international conference on Software
engineering, pages 199–208, New York, NY, USA, 2000. ACM.

[21] Yael Dubinsky and Orit Hazzan. A framework for teaching software development
methods. Computer Science Education, 15(4):275–296, 2005.

[22] Jutta Eckstein. Agile software development in the large: Diving into the deep.
Dorset House Publishing Company, Incorporated, New York, NY, USA, June
2004.

[23] Jacques Morel et al. Xplanner: (xp) project planning and tracking tool.
http://www.xplanner.org/. Visited on 04.01.2008.

[24] Jennifer Ferreira, James Noble, and Robert Biddle. Agile development iterations
and UI design. In Agile 2007, pages 50–58. IEEE Computer Society, 2007.

[25] Libero Ficocelli. Industry and academia: How can we collaborate? appeared in
Journal ”Loading...,”, 1(1), 2007.

[26] William A. Florac, Anita D. Carleton, and Julie R. Barnard. Statistical process
control: Analyzing a space shuttle onboard software process. IEEE Software,
17(4):97–106, 2000.

[27] Troy Frever and Paul Ingalls. The pairing session as the atomic unit of work.
Agile 2006, pages 165–169, 2006.

[28] Hmood Al Dossari Ghazy Assassa, Hassan Mathkour. Extreme programming:
A case study in software engineering courses. In Proceedings of the 1st National
Information Technology Symposium, NITS, Riyadh, Saudi Arabia, pages 233–
240, 2006.

[29] W. Gibbs. Software’s chronic crisis. Scientific American,, 3:86–95, September
1994.

[30] Federico Gobbo and Matteo Vaccari. The pomodoro technique for sustainable
pace in extreme programming teams. In XP 2008, pages 180–184, 2008.

[31] Jan Gulliksen, Bengt Göransson, Inger Boivie, Stefan Blomkvist, Jenny Persson,
and Äsa Cajander. Key principles for user-centred systems design. Behaviour
& Information Technology, Special Section on Designing IT for Healthy Work.,
Vol. 22 No. 6:397–409, 2003.

[32] Orit Hazzan and Yael Dubinsky. Teaching a software development methodol-
ogy: The case of extreme programming. Conference on Software Engineering
Education and Training, 1:176, 2003.

[33] Orit Hazzan and Yael Dubinsky. Teaching framework for software development
methods. In ICSE ’06: Proceedings of the 28th international conference on
Software engineering, pages 703–706, New York, NY, USA, 2006. ACM.

[34] Orit Hazzan and James E. Tomayko. Human aspects of software engineering:
The case of extreme programming. In XP 2004, pages 303–311, 2004.

[35] Görel Hedin, Lars Bendix, and Boris Magnusson. Introducing software engineer-
ing by means of extreme programming. In ICSE, pages 586–593. IEEE Computer
Society, 2003.

[36] Görel Hedin, Lars Bendix, and Boris Magnusson. Teaching extreme program-
ming to large groups of students. Journal of Systems and Software, 74(2):133–
146, 2005.

[37] Tyson R. Henry and Janine LaFrance. Integrating role-play into software engi-
neering courses. J. Comput. Small Coll., 22(2):32–38, 2006.

[38] Jim Highsmith. Agile project management: Creating innovative products. Addi-
son Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

[39] Jim Highsmith and Martin Fowler. The agile manifesto. Software Development
Magazine, 9(8):29–30, 2001.

[40] Thomas B. Hilburn. Software engineering education: A modest proposal. IEEE
Software, 14:44–48, 1997.

[41] Thomas B. Hilburn, Greg Hislop, Donald J. Bagert, Michael Lutz, Susan Mengel,
and Michael McCracken. Guidance for the development of software engineering
education programs. Journal of Systems and Software, 49(2-3):163 – 169, 1999.

[42] Thomas B. Hilburn, Susan Mengel, Donald J. Bagert, and Dale Oexmann. Soft-
ware engineering across computing curricula. In ITiCSE ’98: Proceedings of the
6th annual conference on the teaching of computing and the 3rd annual confer-
ence on Integrating technology into computer science education, pages 117–121,
New York, NY, USA, 1998. ACM.

[43] Mike Holcombe, Marian Gheorghe, and Francisco Macias. Teaching xp for real:
some initial observations and plans. In In Proceedings of 2nd International
Conference on Extreme Programming and Flexible Processes in Software Engi-
neering, pages 14–17. Pearson Education Inc, 2001.

[44] Andreas Holzinger, Maximilian Errath, Gig Searle, Bettina Thurnher, and Wolf-
gang Slany. From extreme programming and usability engineering to extreme
usability in software engineering education (XP+UE→XU). In COMPSAC ’05:
Proceedings of the 29th Annual International Computer Software and Applica-
tions Conference (COMPSAC’05) Volume 2, pages 169–172, Washington, DC,
USA, 2005. IEEE Computer Society.

[45] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang
Slany, Martin Umgeher, and Thomas Vlk. Optimizing Extreme Programming.
In ICCCE 2008: Proceedings of the International Conference on Computer and
Communication Engineering, Kuala Lumpur, Malaysia, pages 1052–1056. IEEE,
2008.

[46] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang
Slany, Martin Umgeher, Thomas Vlk, and Peter Wolkerstorfer. User interface de-
sign for a content-aware mobile multimedia application: An iterative approach.
In Frontiers in Mobile and Web Computing: Proceedings of MoMM2007 & ii-
WAS2007 Workshops, volume 231, pages 115–120, Jakarta, Indonesia, December
2007. 5th @WAS International Conference on Mobile Computing and Multime-
dia (MoMM2007), 3-5 December, 2007, Jakarta, Indonesia ISBN : 978-3-85403-
231-1.

[47] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang
Slany, Martin Umgeher, Thomas Vlk, and Peter Wolkerstorfer. User interface
design for a mobile multimedia application: An iterative approach. In ACHI
2008, First International Conference on Advances in Computer-Human Inter-
action, February 10-15, 2008, Sainte Luce, Martinique, France, pages 189–194.
IEEE Computer Society, 2008.

[48] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang
Slany, Martin Umgeher, Thomas Vlk, and Peter Wolkerstorfer. User interface
design for a mobile multimedia application: An iterative approach. In ACHI
2008, First International Conference on Advances in Computer-Human Interac-
tion, Sainte Luce, Martinique, France, pages 189–194. IEEE Computer Society,
February 10-15, 2008.

[49] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang
Slany, Martin Umgeher, and Peter Wolkerstorfer. Agile User-Centered Design
Applied to a Mobile Multimedia Streaming Application. In USAB 2008, volume
5298/2008 of LNCS, pages 313–330. Springer Berlin / Heidelberg, November
2008.

[50] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang
Slany, Martin Umgeher, and Peter Wolkerstorfer. Integrating Extreme Program-
ming and User-Centered Design. In PPIG 2008, The 20th Annual Psychology of
Programming Interest Group Conference, Lancaster University, UK. 10th - 12th
September 2008, 2008.

[51] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang
Slany, Martin Umgeher, and Peter Wolkerstorfer. Concept and design of a con-
textual mobile multimedia content usability study. In ACHI 2009, Second In-
ternational Conference on Advances in Computer-Human Interaction, February
1-7, 2009 - Cancun, Mexico. IEEE Computer Society, 2009. To appear.

[52] Zahid Hussain, Harald Milchrahm, Sara Shahzad, Wolfgang Slany, Manfred
Tscheligi, and Peter Wolkerstorfer. Integration of extreme programming and
user-centered design: Lessons learned. In Pekka Abrahamsson, Michele March-
esi, and Frank Maurer, editors, XP 2009, volume 31 of LNBIP, pages 174–179.
Springer, 2009.

[53] Zahid Hussain, Wolfgang Slany, and Andreas Holzinger. Investigating agile user-
centered design in practice: A grounded theory perspective. In A. Holzinger and

K. Miesenberger, editors, HCI and Usability for e-Inclusion. 5th Symposium of
theWorkgroup Human-Computer Interaction and Usability Engineering of the
Austrian Computer Society, volume 5889 of Lecture Notes in Computer Science,
pages 279–289, Berlin, Heidelberg, New York, 2009. Springer.

[54] SystemShare Inc. Extreme programming an effective framework for knowledge
management. electronic, 2003. Accessed: May 2009.

[55] Daniel M. Johnson, Peter Sutton, and Neil Harris. Extreme programming re-
quires extremely effective communication: Teaching effective communication
skills to students in an it degree. An IT Degree. Proceedings of 18 th ASCILITE
2001, 2001.

[56] Timo Jokela and Pekka Abrahamsson. Usability assessment of an extreme pro-
gramming project: Close co-operation with the customer does not equal to good
usability. In 5th International Conference, PROFES ’04, pages 393–407, 2004.

[57] V. Jovanovic, T. Murphy, and A. Greca. Use of extreme programming (xp)
in teaching introductory programming. In Frontiers in Education, Annual, vol-
ume 3, pages F1G23–22, Los Alamitos, CA, USA, 2002. IEEE Computer Society.

[58] Frank Keenan. Agile process tailoring and problem analysis (aptly). In ICSE
’04: Proceedings of the 26th International Conference on Software Engineering,
pages 45–47, Washington, DC, USA, 2004. IEEE Computer Society.

[59] Norman L. Kerth. Project retrospectives: a handbook for team reviews. Dorset
House Publishing Co., Inc., New York, NY, USA, 2001.

[60] J. Kivi, D. Haydon, J. Hayes, and G. Schneider, R.and Succi. Extreme pro-
gramming: A university team design experience. In IEEE, editor, Electrical
and Computer Engineering, 2000 Canadian Conference on, volume Volume 2,
of Electrical and Computer Engineering, 2000 Canadian Conference on, pages
Page(s):816 – 820, 7-10 March 2000.

[61] A. S. Koch. Agile software development evaluating the methods for your organi-
zation. Artech House. Boston, 2005.

[62] Andrew J. Kornecki, Iraj Hirmanpour, Massood Towhidnajad, Roger Boyd,
Theresa Ghiorzi, and Linda Margolis. Strengthening software engineering educa-
tion through academic industry collaboration. Software Engineering Education
and Training, Conference on, 0:204, 1997.

[63] Bill Krebs. http://agile.csc.ncsu.edu/survey/shodan survey.html. Visited on
04.01.2008.

[64] Michael Leitner, Peter Wolkerstorfer, Reinhard Sefelin, and Manfred Tscheligi.
Mobile multimedia: identifying user values using the means-end theory. In Pro-
ceedings of the 10th international conference on Human computer interaction
with mobile devices and services, pages 167–175, Amsterdam, The Netherlands,
2008. ACM.

[65] Noel F LeJeune. Teaching software engineering practices with extreme program-
ming. J. Comput. Small Coll., 21(3):107–117, 2006.

[66] M. Levy and O. Hazzan. Knowledge management in practice: The case of
agile software development. In Cooperative and Human Aspects on Software
Engineering, 2009. CHASE ’09. ICSE Workshop on, pages 60–65, May 2009.

[67] R. Likert. A technique for the measurement of attitudes. Archives of Psychology,
22(140):1–55, 1932.

[68] Mikael Lindvall, Vic Basili, Barry Boehm, Patricia Costa, Forrest Shull,
Roseanne Tesoriero, Laurie Williams, and Marvin Zelkowitz. Empirical findings
in agile methods. In In Proceedings of the Second XP Universe and First Agile
Universe Conference on Extreme Programming and Agile Methods - XP/Agile
Universe 2002, pages 197–207. Springer-Verlag, 2002.

[69] Kim Man Lui and Keith C. C. Chan. A road map for implementing extreme
programming. In Mingshu Li, Barry W. Boehm, and Leon J. Osterweil, edi-
tors, ISPW, volume 3840 of Lecture Notes in Computer Science, pages 474–481.
Springer, 2005.

[70] F. Macias. Empirical Assessment of Extreme Programming. PhD thesis, Uni-
versity of Sheffield., 2004.

[71] Michele Marchesi and Giancarlo Succi, editors. Extreme Programming and Ag-
ile Processes in Software Engineering, 4th International Conference, XP 2003,
Genova, Italy, May 25-29, 2003 Proceedings, volume 2675 of Lecture Notes in
Computer Science. Springer, 2003.

[72] John McBurnie. Agile knowledge management. Article online, January 2010.

[73] Charlie McDowell, Linda Werner, Heather E. Bullock, and Julian Fernald. The
impact of pair programming on student performance, perception and persistence.
In ICSE ’03: Proceedings of the 25th International Conference on Software En-
gineering, pages 602–607, Washington, DC, USA, 2003. IEEE Computer Society.

[74] Paul McInerney and Frank Maurer. UCD in agile projects: dream team or odd
couple? Interactions, 12(6):19–23, 2005.

[75] Marc McNeill. User centred design in agile application development.
http://www.thoughtworks.com/pdfs/agile and UCD MM.pdf.

[76] Grigori Melnik and Frank Maurer. Introducing agile methods in learning envi-
ronments: Lessons learned. In Marchesi and Succi [71], pages 172–184.

[77] Thomas Memmel, Harald Reiterer, and Andreas Holzinger. Agile methods and
visual specification in software development: A chance to ensure universal access.
In Constantine Stephanidis, editor, HCII Universal Access in HCI, volume 4554
of LNCS, pages 453–462. Springer, 2007.

[78] Matthias M. Müller and Walter F. Tichy. Case study: Extreme programming
in a university environment. In 23rd International Conference on Software En-
gineering, pages 537–544. IEEE Computer Society, 2001.

[79] Peter M. Nardi. Doing Survey Research: A Guide to Quantitative Methods.
Allyn & Bacon, 2005.

[80] J. Fernando Naveda, Kent Beck, Richard P. Gabriel, Jorge L. Dı́az-Herrera,
Watts S. Humphrey, Michael McCracken, and David West 0002. Extreme pro-
gramming as a teaching process. In Wells and Williams [108], pages 239–239.

[81] Dan North. Whats in a story? DanNorth.net website (last visit : 2008.08.29),
February, 11th 2007.

[82] A. N. Oppenheim. Questionnaire design and attitude measurement / A.N. Op-
penheim. Heinemann, London :, 1968.

[83] Tim O’Reilly. What is web 2.0 - design patterns and business models for the
next generation of software, September 2005.

[84] Mittermeir R., Bollin A., Hochmüller E., Jäger S., and Wakounig D. Ameise -
an interactive environment to acquire project-management experience. In Eigen-
verlag Universität Klagenfurt, editor, Methods and tools for development of se-
mantic enabled systems and services for multimedia content, interoperability and
reusability, Proceedings of HUBUSKA Third Open Workshop, Klagenfurt, Aus-
tria, 27-28 April 2006, pages 79–92, 2006.

[85] Vinay Ramachandran and Anuja Shukla. Circle of life, spiral of death: Are
xp teams following the essential practices? In Wells and Williams [108], pages
166–173.

[86] Valentin Razmov and Richard Anderson. Pedagogical techniques supported by
the use of student devices in teaching software engineering. In SIGCSE ’06:
Proceedings of the 37th SIGCSE technical symposium on Computer science ed-
ucation, pages 344–348, New York, NY, USA, 2006. ACM.

[87] Patrick Reed. An agile classroom experience. In AGILE 2008, pages 478–483.
IEEE, 2008.

[88] Donald J. Reifer. How good are agile methods? IEEE Softw., 19(4):16–18, 2002.

[89] B. Rumpe and A. Schröder. Quantitative survey on extreme programming
projects. Extreme Programming and Agile Methods XP/Agile Universe 2002,
2002.

[90] Per Runeson and Martin Höst. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineering,
14(2):131–164, April 2009.

[91] O. Salo and P. Abrahamsson. Integrating agile software development and soft-
ware process improvement: a longitudinal case study. ISESE, page 10 pp., 2005.

[92] O. Salo and P. Abrahamsson. Agile methods in european embedded software
development organisations: a survey on the actual use and usefulness of extreme
programming and scrum. Software, IET, 2(1):58 –64, February 2008.

[93] Outi Salo. Enabling software process improvement in agile software development
teams and organisations. PhD thesis, University of Oulu, 2006.

[94] J. Schneider and L. Johnston. Extreme programming at universities - an educa-
tional perspective. In ICSE ’03: Proceedings of the 25th International Conference
on Software Engineering, pages 594–599, 2003.

[95] Jean-Guy Schneider and Lorraine Johnston. Extreme programming: Helpful
or harmful in educating undergraduates? Journal of Systems and Software,
74(2):121–132, 2005.

[96] Sara Shahzad. Knowledge management issues in teaching extreme program-
ming. In 9th International Conference on Knowledge Management and Knowl-
edge Technologies, I-Know and I-Semantics, 2009., pages 278–288, September
2009.

[97] Sara Shahzad. Learning from experience: The analysis of an extreme program-
ming process. In Sixth International Conference on Information Technology:
New Generations, 2009. ITNG ’09., pages 1405–1410, April 2009.

[98] Sara Shahzad, Zahid Hussain, Martin Lechner, and Wolfgang Slany. Inside view
of an extreme process. In Pekka Abrahamsson, Richard Baskerville, Kieran
Conboy, Brian Fitzgerald, Lorraine Morgan, and Xiaofeng Wang, editors, XP,
volume 9 of Lecture Notes in Business Information Processing, pages 226–227.
Springer, 2008.

[99] Mary Shaw. Software engineering education: A roadmap. In Proceedings of the
22 nd International Conference on Software Engineering, ACM, pages 371–380.
Press, 2000.

[100] A. Sillitti, M. Ceschi, B. Russo, and G. Succi. Managing uncertainty in require-
ments: a survey in documentation-driven and agile companies. pages 10 pp. –17,
Sept. 2005.

[101] Bjornar Tessem. Experiences in learning xp practices: A qualitative study,
xp2003. In Marchesi and Succi [71], pages 131–137.

[102] J Barrie Thompson. Software engineering practice and education: An interna-
tional view. In SEESE ’08: Proceedings of the 2008 international workshop on
Software Engineering in east and south Europe, pages 95–102, New York, NY,
USA, 2008. ACM.

[103] Louwarnoud van der Duim, Jesper Andersson, and Marco Sinnema. Good prac-
tices for educational software engineering projects. In ICSE ’07: Proceedings
of the 29th international conference on Software Engineering, pages 698–707,
Washington, DC, USA, 2007. IEEE Computer Society.

[104] R. van Solingen, E. Berghout, R. Kusters, and J. Trienekens. From process
improvement to people improvement: enabling learning in software development.
Information and Software Technology, 42(14):965 – 971, 2000.

[105] Vasudeva Varma, Jocelyn Armarego, and Pankaj Jalote, editors. Proceedings
22nd Conference on Software Engineering Education and Training, CSEET
2009, Hyderabad, India, 17-20 February. 2009. IEEE Computer Society, 2009.

[106] Mario Žagar, Ivana Bosnić, and Marin Orlić. Enhancing software engineering
education: a creative approach. In SEESE ’08: Proceedings of the 2008 interna-
tional workshop on Software Engineering in east and south europe, pages 51–58,
New York, NY, USA, 2008. ACM.

[107] Mario Žagar, Ivana Bosnić, and Marin Orlić. Enhancing software engineering
education: a creative approach. In SEESE ’08: Proceedings of the 2008 interna-
tional workshop on Software Engineering in east and south europe, pages 51–58,
New York, NY, USA, 2008. ACM.

[108] Don Wells and Laurie A. Williams, editors. Extreme Programming and Agile
Methods - XP/Agile Universe 2002, Second XP Universe and First Agile Uni-
verse Conference Chicago, IL, USA, August 4-7, 2002, Proceedings, volume 2418
of Lecture Notes in Computer Science. Springer, 2002.

[109] L. Williams and R. Upchurch. Extreme programming for software engineering
education?, 2001.

[110] Laurie Williams, D. Scott McCrickard, Lucas Layman, and Khaled Hussein.
Eleven guidelines for implementing pair programming in the classroom. In AG-
ILE ’08: Proceedings of the Agile 2008, pages 445–452, Washington, DC, USA,
2008. IEEE Computer Society.

[111] Laurie Williams, Sarah E. Smith, and Michael Rappa. Resources for agile soft-
ware development in the software engineering course. In Conference on Software
Engineering Education and Training,, pages 236–238, Los Alamitos, CA, USA,
2005. IEEE Computer Society.

[112] Peter Wolkerstorfer, Manfred Tscheligi, Reinhard Sefelin, Harald Milchrahm,
Zahid Hussain, Martin Lechner, and Sara Shahzad. Probing an agile usability
process. In CHI ’08: human factors in computing systems, pages 2151–2158,
New York, USA, 2008. ACM.

	Introduction and Motivation
	Introduction
	Research Focus and Motivation
	Research Problem
	Organization of the Thesis

	Research Foundations and Literature Review
	Issues in Software Engineering Education
	Teaching Agile Software Development Methodologies
	Summary

	Research Context and Motivation
	Introduction to m3 Project
	XP Process: Learning from Experience
	Inside View of an Extreme Process
	Optimizing Extreme Programming

	Integrating Extreme Programming and User-Centered Design
	User Interface Design for a Mobile Multimedia Application
	Agile User-Centered Design Applied to a Mobile Multimedia Streaming Application
	Concept and Design of a Contextual Mobile Multimedia Content Usability Study

	Integration of Extreme Programming and User-Centered Design

	Analyzing the m3 Experience
	Introduction
	Learning from Experience: Analysis of the m3 Process
	Process Tailoring for Process Improvement
	XP Process Background and Setup
	Iteration-wise Improvement Process
	Release and Iteration Planning Process
	Fixed Time slots
	Pair Programming
	Customer Role
	Usability Engineer Role
	Test First Design

	Learning Protocol: Tips and Tricks
	Conclusion

	Framework of KM in XP Education
	Introduction
	Research Goals

	Basis of Study Setup
	Study Setup and Case Selection
	Organization of the Extreme Programming Teaching Framework
	Course Organization
	Part-I : XP-Visualization phase
	Part-II : XP Realization Phase

	Knowledge Management Perspectives
	XP in Knowledge Management and Educational Context
	Examination as a KM Tool
	Wiki as a Source of Knowledge Management in Classroom XP

	Implications of Project Management and Industrial Setup
	Work Environment
	Daily Routine
	40-Hours Week
	Communication among Course Organizers and Teams
	Changing Teams during Project
	Customer-Manager Workshop
	Project Presentation/Trade show
	Planned and Surprise Meetings/Visits

	Summary and Conclusion
	Guidelines for Course Organization and Management

	Data Analysis and Results
	Introduction
	XP Practices Survey
	Methodology

	XP Education Perspective Survey
	Analysis and Results
	Analysis of XP Practices Survey
	Analysis of XP Education Perspective Survey

	Summary of Results and Discussion

	Limitations and Future Work
	Summary of Data Collection and Results
	Limitations of the Study
	Future Research
	Conclusion

	XP Practices Survey
	XP Education Perspective Survey

