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ermöglicht haben, einen Einblick in ein spannendes Gebiet der Mathematik zu
erhalten. Von seinem großen Wissen und der Begeisterung, dieses mitzuteilen,
habe ich enorm profitiert.



ii

Abstract

The rapid development in many sciences, such as economics, biology, sociology,
geology, physics and others, had a great impact on statistics, and vice versa. In
particular, the progress in computer science and hardware technology led to a
substantial increase in the amount of data being collected and analyzed. As the
size of the data grows, so does often the dimensionality, and tools such as principal
component analysis become inevitable for analyzing and modeling. A fundamen-
tal tool in this theory is the multivariate central limit theorem. It allows to deal
with important issues such as parameter estimation and model diagnosis. For ex-
ample, suppose that we have a sample of n random variables X(n) = (X1, . . . , Xn)
and a collection of estimators for some parameters

g(d) =
(
g1(X1, . . . , Xn), ..., gd(X1, . . . , Xn)

)T
,

based on the sample X(n). If the multivariate central limit theorem holds, one
can use T -tests and F -tests to decide upon the redundance of various parameters
and the model quality. We may summarize these procedures in the confidence
ellipsoids {

Θd |
(
g(d) −Θd

)T
Γ̂−1

(
g(d) −Θd

)
≤ n−1χ2

1−α(d)
}
, (1)

where Γ̂ is an estimator of the covariance matrix, and χ2
1−α(d) the quantile of

the χ2 distribution with d degrees of freedom, corresponding to the confidence
level 1−α. Unfortunately, as the dimension d grows, the above ellipsoids become
less and less informative, as everything is ’summed up’. It is therefore more
convenient to use the maximum function instead of adding all the elements, i.e.
to consider

Vd =
√
n max

1≤h≤d
γ̂−1
h,h

∣∣gh(X1, ..., Xn)− θh
∣∣,

where γ̂2
h,h denotes an estimator of the diagonal elements γ2

h,h of the covariance
matrix Γ. Suppose that we have

a−1
d

(
Vd − bd

) w−→ G as d→∞ (2)

for some sequences ad, bd, where G is an extreme value distribution. Then we can
formulate the simultaneous confidence band{

Θd |
√
n max

1≤h≤d
γ̂−1
h,h

∣∣gh(X1, ..., Xn)− θh
∣∣ ≤ adG1−α + bd

}
, (3)

where G1−α corresponds to the quantile of an extreme value distribution with
confidence level 1 − α. It turns out that in many cases the actual growth rate
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of adG1−α + bd is of the magnitude O
(√

log d
)
, which is much smaller than

√
d

for large d, reflecting the growth rate of the ellipsoids in (1). Moreover, us-
ing the maximum function allows for immediate inference for subsets or single
components, whereas the ellipsoids in (1) are rather inappropriate for such pur-
pose. However, establishing weak convergence to an extreme value distribution
of functionals of the above type is a very delicate problem, as the difficulties in
the proofs of Erdős-Darling type limit theorems clearly indicate. The purpose
of this thesis is to develop techniques allowing to establish (2) for a variety of
different settings, which include covariance estimators, Yule-Walker estimators
in case of autoregressive processes, and also change-point analysis in increasing
dimension. The statistical gains from our program are considerable, e.g. an im-
proved efficiency of a number of statistical procedures used previously in the
literature. Our methods lead also to some new theoretical facts, among others
limit theorems for random vectors with increasing dimensions and an analogue
of the Berry-Esseen inequality in the context of the Cramér-Wold device, used
repeatedly in our thesis.
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Chapter 1

Why Extreme Inference?

1.1 Introduction

Data analysis grew out from mathematical statistics and by now it has become
a fundamental tool in applied sciences. In the 1960’s, John Tukey was one of
the first mathematicians recognizing the great importance of its development
as an independent discipline. It uses methods from various mathematical fields
ranging from number theory to functional analysis, but its interplay with other
disciplines such as economics, biology, chemistry, geology, physics and other sci-
ences, has also had a tremendous impact on its development. In particular, the
progress in computer science and hardware technology have completely changed
the scenery. Over the last few decades, data management and data processing
have become crucial factors in science and technology and substantial progress
has taken place in data gathering and data processing mechanisms. Recent ex-
amples include biotech data, economical data, financial data, and imagery.

Inevitably, many of the data sets encountered in practice are multidimen-
sional, leading to profound mathematical difficulties. Working with high dimen-
sional data has both its advantages and disadvantages, or as Donoho [40] puts
it, ”the blessings and curses of high dimensionality”. A cartesian grid of spacing
1/10 on the unit cube in 10 dimensions has 1010 points; if the cube in 20 dimen-
sions were considered, we would have 1020 points. Thus optimizing a function
over a continuous product domain of a few dozen variables by performing a search
on some discrete space defined by a crude discretization, we will be faced with the
problem of making tens of trillions of evaluations of the function. This precludes,
under almost any computational scheme foreseeable today, the use of exhaustive
enumeration strategies, requiring completely new techniques, such as principal
component analysis or dynamic programming, developed by Richard Bellman.
In order to give some more insight on this subject, I will present a brief overview

1
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of some classical examples and possible solutions offered by the literature.

1.1.1 The ’curses’ of high dimension

Non-parametric estimation

Suppose we have a data set of d-dimensional variables whose first coordinate
depends on the others through a model of the form

Xi,1 = f(Xi,2, . . . , Xi,d) + εi. (1.1.1)

Suppose that f is of unknown form, i.e. we are not using a specific model for
f such as, for example, a linear model. Instead, we assume merely that f is a
Lipschitz function and the noise variables

{
εi
}
i∈N are i.i.d. Gaussian r.v.’s with

mean 0 and variance 1. How does the accuracy of estimation depend on n, the
number of observations in our data set? Denote with F the class of Lipschitz
functions on [0, 1]d. A standard calculation in minimax decision theory [30] shows

that for any estimator f̂ we have

sup
f∈F

∥∥f̂(x)− f(x)
∥∥

2
≥ Cn−1/(2+d), (1.1.2)

where ‖.‖2 denotes the L2 norm. This lower bound is nonasymptotic. Thus get-
ting an estimate for f with accuracy 0.01 for large d requires trillions of samples.
The very slow rate of convergence in high dimensions is the ugly consequence of
dimensionality.

Model selection

Suppose that, contrary to the previous example, we model f as a linear func-
tion, i.e. we consider the linear regression problem, where there is a dependent
variable Xi,1 which we want to model as a linear function of Xi,2, ..., Xi,d as in

(1.1.1). Standard techniques provide us with estimators α̂ =
(
α̂1, ..., α̂d

)T
for

the regression coefficients. To investigate whether the model fits or not, one can
use the F-test. If d is very large, we might have overparameterized the model,
and having many irrelevant variables can easily lead to wrong conclusions and
poor performance. Hence we are highly interested in reducing the dimension of
the parameter vector α̂. For this reason, statisticians have, for a long time, con-
sidered model selection by searching among subsets of the possible explanatory
variables, trying to find a few variables among the many which will adequately
explain the dependent variable. The history of this approach goes back to the
early 1960’s when computers began to be used for data analysis and automatic
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variable selection became a possibility. A natural approach is via hypothesis test-
ing; for instance, we can use the T -test to accept or reject the hypothesis αi = 0
for some 1 ≤ i ≤ d. If d is large, we need to test simultaneously the hypoth-
esis αi1 = αi2 = ... = αim = 0, for some m ∈ N. By combining the T -tests,

a popular approach is to consider the statistic
(
α̂i1 , ..., α̂im

)
Σ̂
(
α̂i1 , ..., α̂im

)T
. Let

α =
(
αi1 , ..., αim

)T
be the true parameter vector. Inference may then be based

on the ellipsoids{
α ∈ Rm |

(
α̂i1 − αi1 , ..., α̂im − αim

)
Γ̂−1
(
α̂i1 − αi1 , ..., α̂im − αim

)T ≤ m−1χ2
q(m)

}
,

(1.1.3)

where Γ̂ denotes an estimator of the covariance matrix Γ and χ2
q(m) is the q-

quantile of the chi-square distribution with m degrees of freedom. This approach
seems reasonable, but it has some drawbacks. Since one essentially sums up all
the errors, it is difficult to provide inference for single elements. This is especially
the case if m is large. Hence it is desirable to have a procedure which is essentially
invariant of m and which allows for simple inference for the single elements.

Before investigating which, if any, parameters are redundant, it has become com-
mon practice to first establish an upper bound for d. This approach goes back to
the 1960’s, path breaking contributions are due to [1] and [86, 87]. The idea is to
optimize over the penalized form

min {RSS (Model) + λ(d)Model Complexity} , (1.1.4)

where RSS denotes the sum of squares of some residuals, and the model com-

plexity is the number of variables α =
(
αi1 , ..., αid

)T
used in forming the model.

Early formulations used λ(d) = 2σ2, where σ2 is the assumed variance of the
noise

{
εi
}
i∈N in (1.1.1). The overall idea is to impose a cost on large com-

plex models. More recently, one sees proposals of the form λ(d) = 2σ2 log d or
λ(d) = 2σ2 log log d. With these logarithmic penalties, one takes into account in
an appropriate way the true effects of searching for variables to be included among
many variables. This approach stems from information theoretic arguments, and
a variety of results indicate that this form of logarithmic penalty is quite satis-
factory; for a survey see [31] and [82]. That is, with this logarithmic penalty, one
can mine one’s data to one’s taste, while controlling the risk of finding spurious
structure. The logarithm increases slowly with d, a faster increase would indicate
that automatic variable selection is in general hopeless: one loses too much by
searching for the right variables. Having decided upon a specific choice of d, one
can then use the ellipsoid in (1.1.3) to single out redundant parameters. This
procedure is commonly referred to as subset-modelling, and is an active field of
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research.

Covariance Estimation

An important concept in probability theory and statistics is dependence. A lot
of different dependence concepts and models have been established over the past
years, such as Markov chains, martingales, mixing, etc. More recently, emphasis
has been put on various projective dependence measures, see for instance [41, 129].
A fundamental concept in multivariate analysis is covariance, and more recently,
also copulas. Suppose that we have data

{
Xi,j

}
1≤i≤n,1≤j≤d where the vectors

X(i) = (Xi,j | 1 ≤ j ≤ d) are assumed to be samples from a Gaussian distribution
with mean zero and covariance Γ. We are interested in knowing whether Γ = I
as compared to Γ 6= I, where I denotes the identity. In the spirit of principal
component analysis, and depending on the alternative hypothesis, it is natural to
rephrase the question as λ1 = 1 versus λ1 > 1, where λ1 is the top eigenvalue of
the covariance matrix. It then becomes natural to develop a test based on l1, the
top eigenvalue of the empirical covariance matrix Γ̂. Thus, finding the asymp-
totic null distribution of l1 is very important. Exact formulas go back to Anderson
(1962), but are not very useful in practice; already for moderate d, and also if
n is proportional to d, one cannot apply them since they are extremely compli-
cated. We are interested, instead, in a simple approach assuming that d is large.
Suppose we are in a setting of many observations and many variables. What is
the behavior of the top eigenvalue of Γ̂? Consider the case where d/n → β, i.e.
we have large dimension and large sample size. This problem has been studied
for decades; see [32] for references. Classical results in random matrix theory,
e.g. the Wigner semicircle law, concern infinite matrices and give information
about the bulk spectrum of Γ̂; but unfortunately they do not accurately predict
the top eigenvalue. Tracy and Widom introduced substantial new ideas in the
study of the top eigenvalues of certain ensembles of infinite random matrices, and
finally Johnstone [72], extending and adapting this work to a statistical setting,

has been able to obtain asymptotic results for the top eigenvalue of Γ̂ in the
so-called null case. This, however, requires knowledge of the single parameters
µj = E

(
X

(i)
j

)
and σ2

i = Var
(
X

(i)
j

)
, in particular one needs that µ1 = ... = µd,

and σ2
1 = ... = σ2

d. There seems to be evidence that even if these conditions are
violated, l1 will asymptotically follow the Tracy-Widom law. There is another
promising approach due to T. Jiang [71]. Instead of considering the maximum
eigenvalue l1, he considers the maximum entry of the empirical correlation ma-
trix Σ̂. Denote this entry with max

∣∣Σ̂∣∣. Then, based on methods developed by
Dembo et al. [36, 37], he shows that, given appropriate moment assumptions,

n
(
max

∣∣Σ̂∣∣)2 − 4 log n+ log log n
w−→ G, (1.1.5)
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where G is an extreme value distribution. Empirical studies show that the results,
though derived asymptotically, are useful for small d as well. Hence one obtains,
from a high-dimensional analysis, useful results in moderate dimensions.

A related problem is the following. Suppose that we are given a time series{
Xk

}
k∈N, possibly non-Gaussian, and we want to test E(XhX0) = φh = 0 for

h ∈ I, where I is some index set with |I| = d. Such a test is important in the
inference of stochastic processes. For example, after a model is fitted to some
observed data, one would like to inspect the residuals and perform model diag-
nostics. If the residuals do not behave like a white noise sequence, one may need
to find a better model which can capture more structural information from the
data. Various tests for white noise have been proposed in the literature: they
include Fisher’s test, generalized likelihood ratio test, and the Neyman test, see
Section 7.4 in [49]. Another general test is the Ljung-Box test, proposed in [83],
which has the form

QLB = n(n+ 2)
d∑

k=1

ρ̂2
k

n− k
, where ρ̂2

k =
φ̂k

φ̂0

, (1.1.6)

and behaves as χ2(d) if the sample size n is large enough. Recently, Wu [131]
proposed the test statistic

QW = max
1≤h≤d

∣∣∣∣ φ̂k
φ̂0

∣∣∣∣, (1.1.7)

and established an upper tail bound for the asymptotic distribution of QW (suit-
ably normalized) under general dependence conditions, if d = dn is of the magni-
tude O

(
n1/2(log n)−1/2

)
. He then used his result to demonstrate that a test based

on (1.1.7) has far more power than the Ljung-Box test based on (1.1.6). More-
over, his test is practically invariant to the dimension d = dn, which is another
attractive feature. However, showing that QW (suitably normalized) converges
weakly to an extreme value distribution is a much harder problem than it was
in the previous case of the correlation matrix Σ̂. Due to the more complicated
dependence structure, arguments based on [36, 37] cannot be used, and another
approach needs to be developed.

1.1.2 The ’blessings’ of high dimension and the main ques-
tion

In the previous examples we have seen that using the maximum function as a
statistic yields very good results. A possible explanation is the concentration of
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measure phenomenon, a terminology introduced by V. Milman for a remarkable
fact about probabilities on product spaces in high dimensions. Suppose we have
a Lipschitz function f on the d-dimensional sphere. Place a uniform measure P
on the sphere, and let X be a random variable with law P . Then

P
(
|f(X)− E(f(X))|d > t

)
≤ C1 exp(−C2 t

2), (1.1.8)

where |.|d denotes the usual Euclidian norm, and C1, C2 are constants indepen-
dent of f and of the dimension. In short, a Lipschitz function is nearly constant
for large d. But even more importantly: the tails behave at worst like a scalar
Gaussian random variable with controlled mean and variance. Variants of this
phenomenon are known for many high-dimensional situations; e.g. discrete hyper-
cubes Zd2 with the Hamming distance. The roots of these phenomena are quite
old: they go back to the isoperimetric problem of classical geometry. Milman
credits Paul Lévy with the first modern general recognition of the phenomenon.
There is a vast literature on this problem and we find that using the maximal
function fits well into this framework. Suppose we take the maximum of d i.i.d.
Gaussian random variables X1, ..., Xd. As the maximum is a Lipschitz functional,
we know from the concentration of measure principle that the distribution of the
maximum behaves not worse than a standard normal distribution in the tails.
Using other arguments, one can show that

lim sup
d→∞

(2 log d)1/2 max(X1, ..., Xd)− (2 log d)1/2

log log d
=

1

2
, (1.1.9)

hence the chance that the maximum exceeds
√

2 log d+ t decays very rapidly in t.
These properties indicate that the statistic max(X1, ..., Xd) is a promising candi-
date when one is dealing with higher dimensions. To highlight the advantages, let
us, for comparison, consider the well-known χ2(d) based test statistics, and the
corresponding ellipsoids. Suppose that we have a sample of n random variables
X(n) = (X1, . . . , Xn), and we have a collection of estimators

g(d) =
(
g1(X1, . . . , Xn), ..., gd(X1, ..., Xn)

)T
, (1.1.10)

based on the sample X(n). Suppose that a multivariate CLT is valid, i.e.

√
n
(
g(d) − E

(
g(d)

)) w−→ N
(
0,Γ
)
, (1.1.11)

where Γ is some covariance matrix. Let E
(
g(d)

)T
= Θd =

(
θ1, ..., θd

)
. Then, in

spirit of the χ2(d) based tests mentioned earlier, we can formulate the confidence
ellipsoids {

Θd |
(
g(d) −Θd

)T
Γ̂−1

(
g(d) −Θd

)
≤ n−1χ2

1−α(d)
}
, (1.1.12)
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where Γ̂ is an estimator of the covariance matrix, and χ2
1−α(d) the quantile of the

χ2 distribution with d degrees of freedom, corresponding to the confidence level
1− α. In contrast, consider now the statistic

Vd =
√
n max

1≤h≤d
γ̂−1
h,h

∣∣gh(X1, ..., Xn)− θh
∣∣, (1.1.13)

where γ̂2
h,h denotes an estimator of the diagonal elements γ2

h,h of the covariance
matrix Γ. Suppose that we have

a−1
d

(
Vd − bd

) w−→ G, (1.1.14)

for some sequences ad, bd, where G is an extreme value distribution. Then we can
formulate the simultaneous confidence band{

Θd |
√
n max

1≤h≤d
γ̂−1
h,h

∣∣gh(X1, ..., Xn)− θh
∣∣ ≤ adG1−α + bd

}
, (1.1.15)

where G1−α corresponds to the quantile of an extreme value distribution with
confidence level 1 − α. Since we assumed that the (multivariate) CLT is valid,
one can expect (and indeed this is the case), that adG1−α+bd is of the magnitude
O
(√

2 log d
)
. Compared to the ellipsoid given in (1.1.12), the above confidence

band now has the following advantages:

(i) it is essentially invariant to the dimension d if d is large enough,

(ii) yields a much smaller confidence region since 2 log d� d,

(iii) only requires to estimate the variances γ2
h,h,

(iv) provides immediate inference for the single estimators gh(X1, ..., Xn).

It is therefore natural to pose the following question:

When does (1.1.14), i.e. weak convergence to an extreme value distribution hold?

The answer to this question depends on the relation between the growth rate of
the dimension d = dn and the sample size n. Note that in the extreme case of
independence we can choose d = dn = n. It is, however, impossible to reach this
rate in general. On the other hand, it is not hard to show that if the multivariate
CLT holds for all fixed d, then there exists a sequence dn →∞ such that (1.1.14)
is valid. However, a logarithmic growth rate of d would be undesirable, since it
provides no practical use. Hence, we should reformulate the above question to

Given a dependence condition, what is the highest growth rate of d = dn

such that (1.1.14) holds?
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The aim of this thesis is to provide partial answers to this question in several
different settings. The thesis is structured as follows. In Chapter 2, we outline
some technical difficulties, and which tools one may use to circumvent them.
Motivated by covariance estimators, a very general approach is then presented
in Chapter 3, which allows for a growth rate of essentially dn = O (log n), if
the sample size is n. In chapter 4, we show that by strengthening some of the
structural assumptions, one may obtain a growth rate of O

(
n1/6(log n)−α/3

)
,

α > 3. Chapter 5 addresses the problem of establishing simultaneous confidence
bands for the Yule-Walker estimators in case of autoregressive processes, which
also leads to new estimators for the possible order of such processes. Finally,
chapter 6 deals with change-point analysis if the dimension increases, and the
problem of detecting global and local changes.



Chapter 2

Tools

As outlined in the previous chapter, our ultimate goal is to establish weak con-
vergence of extremal statistics such that the growth rate of the dimension is as
large as possible. There is a wide literature on extreme values of dependent
random variables which gives precise conditions when and how fast the maxi-
mum of a dependent sequence converges weakly to an extreme value distribution.
In particular, the well known conditions D(un) and D∗(un) of Leadbetter [79]
(see also [80, 84]) provide a satisfactory solution. However, verifying D(un) and
D∗(un) in the situations investigated in our dissertation (such as extremal statis-
tics involving covariances) is a very difficult technical problem. If un is an in-
creasing sequence tending to infinity and we set Yh,n =

√
n
(
gh(X1, ..., Xn)− θh

)
,

1 ≤ h ≤ dn, where gh(X1, ..., Xn) is as in (1.1.10), condition D(un) can be formu-
lated as

Condition D(un). There exists a sequence αn,l, with limn→∞ liml→∞ αn,l = 0
such that for any 1 ≤ i ≤ j ≤ dn with j − i ≥ l we have∣∣∣∣P( max

1≤h≤dn
Yh,n ≤ un

)
− P

(
max
1≤h≤i

Yh,n ≤ un
)
P
(

max
j≤h≤dn

Yh,n ≤ un
)∣∣∣∣ ≤ αn,l.

Typically, the sequence un is chosen to satisfy the condition

P
(
Yh,n > un

)
=

z

dn
+ O

(
d−1
n

)
, (2.0.1)

since then one can show that

exp(−z) ≤ lim inf
n→∞

P
(

max
1≤h≤dn

Yh,n ≤ un
)
.

We will discuss this point in detail later. Now let us take a closer look at condition
D(un). If we assume that

{
Yh,n

}
1≤h≤dn

is an array of Gaussian random variables,

9
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then it is possible (cf. [17, 38]) to verify condition D(un) if the array satisfies one
of the conditions

(a)
∑∞

h=1 r
2
h <∞,

(b) For some β > 0 we have rh(log h)2+β → 0,

where rh := lim supn→∞ sup|i−j|≥h
∣∣E(Yi,nYj,n)∣∣, and we require in addition r1 < 1.

Unfortunately, however, the array
{
Yh,n

}
1≤h≤dn

is not Gaussian in our case. If
the multivariate CLT holds, we are close to a Gaussian distribution, but we need
to quantify this closeness by either a distributional or a.s. remainder term. Hence
the following approach seems reasonable:

(1) Show that
{
Yh,n

}
1≤h≤dn

is ’close enough’ to a Gaussian vector,

(2) use this to verify that the conditions D(un) and D∗(un) are valid.

Note that point (2) actually amounts to verifying the conditions (a), (b) given
above, hence the major task is to deal with (1). The issue of Gaussian approxima-
tion has been studied for decades in the literature, and is still a very active field of
research. Depending on the actual need, one may essentially distinguish between
strong invariance principles, and Berry-Esséen type results; a small overview is
given in the next sections.

2.1 Berry-Esséen type results

The first results concerning the remainder term in the CLT were obtained by A.M.
Lyapunov in his works of 1900-1901. His investigations inspired many scientists
to begin the analysis of approximation errors in limit theorems. A famous contri-
bution is the Berry-Esséen theorem proved in the early 1940’s. Since then, many
authors have studied this problem in a variety of different situations. Roughly
speaking, one can classify them according to the following three categories:

(1) the probability metric used,

(2) the dependence condition of the involved random variables,

(3) the space of the random variables.

In this section, we will restrict ourselves to the space Rd; for results in more
general spaces, see for instance [77, 107, 110, 139] and the references there. The
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classical Berry-Esséen theorem says that, given an i.i.d. sequence of zero mean
random variables X1, ..., Xn, we have for some C > 0

sup
x∈R

∣∣P(n−1/2σ−1(X1 + ...+Xn

)
≤ x

)
− Φ(x)

∣∣ ≤ C E|X1|3√
n

, (2.1.1)

where σ2 = E
(
X2

1

)
, and Φ(x) denotes the standard normal distribution function.

The function that measures the discrepancy between the two probability measures
above, is in fact, a metric. Let P,Q be two probability measures on Rd, and denote
with Pn the measure induced by the normalized sum Sn = n−1/2

∑n
k=1Xk. Then

the metric dU(P,Q) defined by

dU(P,Q) = sup
x∈Rd

∣∣P (x)−Q(x)
∣∣, (2.1.2)

is often referred to as the Kolmogorov or uniform metric, and we may rewrite
(2.1.1) as

dU(Pn,Φ) ≤ C
C E|X1|3√

n
. (2.1.3)

Several other metrics have also been proposed, e.g., the mean metric

ζ1(P,Q) =

∫
|P (x)−Q(x)|dx, (2.1.4)

or the distance of total variation

dV(P,Q) = sup
{
|P (A)−Q(A)| : A ∈ B

}
, (2.1.5)

where B denotes the class of Borel sets. The concept of considering a metric
on a particular type of sets has proved to be very useful; frequently used classes
are C, the set of all convex sets, and S, the set of all spheres. One of the most
convenient metrics in general probability theory is the Lévy-Prokhorov metric
defined as

π(P,Q,B) = inf
{
ε : Q(A) ≤ P (Aε) + ε, P (A) ≤ Q(Aε) + ε for all A ∈ B

}
,

(2.1.6)

where Aε = {x | d(x,A) < ε} and d(., .) it is some metric on Rd. This metric
has remarkable properties, and in some sense, is the weakest possible (cf. [110,
Section 2.1]).
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2.1.1 I.I.D. random variables

In the one dimensional case, it is known that the Berry-Esséen estimate in (2.1.1)
is optimal, namely there exist measures Pn such that

lim
n→∞

√
n dU(Pn,Φ) = C > 0.

Ibragimov [67] and Ibragimov and Linnik [68] showed that the finiteness of the
moment E|X1|2+δ, 0 < δ < 1, guarantees the decrease rate n−δ/2 for dU(Pn,Φ)
as n tends to infinity, and this rate is unimprovable. For δ ≥ 1, we have
dU(Pn,Φ) = O

(
n−1/2

)
, and it is already mentioned above that this estimate

is sharp in the general case. The convergence rate in the CLT has been studied
for practically all known metrics; for most of them the analogue of the Berry-
Esséen estimate holds, i.e. the convergence rate is O

(
n−1/2

)
. A notable exception

is the total variation metric, see e.g. [110].

In theory, the distribution of the sum Sn = n−1/2
∑n

k=1Xk can be expressed by
convolutions, but evaluating these directly is generally impossible. A natural tool
to handle them is Fourier analysis, and in one dimension the use of characteristic
functions is a very effective method. However, in higher dimensions characteristic
functions no longer lead to optimal results, for a discussion see [110, Section
3.6]. Thus finding a different approach is an important question, which was
exhaustively answered by Zolotarev [139], who introduced the s-metric ζs, which
is an example of the so-called ideal metrics. Ideal metrics have the properties
of semiadditivity and homogeneity of order s (cf. [110]), which makes deductions
of convergence rate estimates very simple. Let s > 0. Then we can represent s
as s = m + α, where [s] = m denotes the integer part, and 0 ≤ α < 1. Let Fs
be the class of all real-valued functions f such that the m-th derivative exists, is
bounded and satisfies ∣∣f (m)(x)− f (m)(y)

∣∣ ≤ ∣∣x− y∣∣α. (2.1.7)

The metric ζs for two probability measures P,Q is then defined as

ζs(P,Q) = sup

{∣∣∣∣∫ f(x)(P −Q)(dx)

∣∣∣∣ : f ∈ Fs

}
.

The s-metrics are not very strong metrics, they are, however, stronger than the
Lévy-Prokhorov metric; in fact, the following estimates (cf. [110, Theoerem 6.4.2])
are valid.

Theorem 2.1.1. Let P,Q be probability measures on Rd. Then the inequalities

π(P,Q,C) ≤ c d1/8ζs(P,Q)1/4,

π(P,Q,B) ≤ c d1/4ζs(P,Q)1/4,
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are valid, where c is an absolute constant.

These inequalities, together with the properties of the s-metric, provide an
essential tool, and will in fact give the largest growth rate of the dimension dn in
(1.1.14).

2.1.2 Dependent random variables

In case of dependent random variables, the techniques presented in the previ-
ous section are no longer directly applicable. However, by various blocking and
truncation arguments, one may construct an approximation with independent
random variables, and then use the results from the previous section. There ex-
ist, however, completely different methods, which rely heavily on the assumed
dependence condition. The most popular dependence structure is the class of
martingales. The problem of embedding a martingale

{
Mt

}
t≥0

into Brownian
motion goes back to Skorohod, and has been considered by many authors. For
more details, we refer to the next section. This embedding procedure is a very
powerful tool, and leads to the theorem below, proved by Brown and Heyde in [27]
(see also [58]). To formulate the result, let

{
Xn, Fn, n = 0, 1, 2...

}
, be a mar-

tingale with X0 = 0 a.s., Xn =
∑n

i=1 Yi, n ≥ 1, and Fn the σ-field generated by
X0, X1, ..., Xn. Put

σ2
n = E

(
Y 2
n | Fn−1

)
, s2

n =
∑
k=1

E
(
σ2
k

)
, (2.1.8)

and suppose that there is a constant 0 < δ ≤ 1 such that E
∣∣Yn∣∣2+2δ

< ∞,
n = 1, 2, . . ..

Theorem 2.1.2. There exist positive constants K1, K2, depending only on δ,
such that

sup
x∈R

∣∣P(Xn ≤ snx
)
− Φ

(
x
)∣∣

≤ K1

(
s−2−2δ
n

n∑
k=1

E
∣∣Yk∣∣2δ + E

∣∣( n∑
k=1

σ2
k

)
− σ2

n

∣∣1+δ

)1/(3+2δ)

(2.1.9)

≤ K2

(
s−2−2δ
n

n∑
k=1

E
∣∣Yk∣∣2δ + E

∣∣( n∑
k=1

Y 2
k

)
− σ2

n

∣∣1+δ

)1/(3+2δ)

, (2.1.10)

where Φ(x) denotes the distribution function of the standard normal distribution.

This result has been generalized and refined over the years, see for instance [28,
70] and the references there. Many classes of sequences of r.v.’s can be approxi-
mated by martingales, leading to more general results. Another powerful method
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is Stein’s method, originally developed to deal with the CLT. In connection with
Mallivian calculus, this enables one to obtain Berry-Esseen type results and ap-
plies even for noncentral limit theorems when the underlying processes have long
memory (cf. [23, 94, 95]).

2.2 Strong invariance principles

In many applications, a normal approximation presented as in the previous sec-
tion is not sufficient. Instead of quantifying the difference of the measures via
various metrics, one is rather interested in constructing normal approximations
on the same probability space. The method and the quality of such approxi-
mations depend heavily on the dependence structure of the underlying random
variables X1, X2, . . .. The most frequently studied cases are where the Xk are
either independent, or martingale differences. All other cases can be reduced, in
some way or other, to one of the latter problems.

2.2.1 Martingales

Many important stochastic processes, when suitably scaled, can be embedded
into a Brownian motion {Wt}t≥0. Such an embedding was first introduced by
Skorohod [117], and was later extended to martingales and semimartingales,
(cf. [43, 44, 90, 118]). For the question which probability measures can be em-
bedded into a Brownian motion, we refer to [91] and in particular to [96], which
gives a complete survey on this topic.

Theorem 2.2.1. Let {Sn =
∑n

k=1Xk, Fn, n ≥ 1} be a zero mean, square in-
tegrable martingale. Then there exists a probability space supporting a standard
Brownian motion {Wt}t≥0 and a sequence of nonnegative variables τ1, τ2... with
the following properties. If Tn =

∑n
h=1 τh, S ′n = W (Tn), X ′1 = S ′1, X ′n =

S ′n − S ′n−1, for n ≥ 2, and Gn is the σ-field generated by S ′1, . . . , S
′
n and Wt

for 0 ≤ t ≤ Tn, then

(i) {Sn, n ≥ 1} d
= {S ′n, n ≥ 1},

(ii) Tn is Gn-measurable,

(iii) For each real number r ≥ 1,

E
(
τ rn | Gn−1

)
≤ CrE

(
|X ′n|2r | Gn−1

)
= CrE

(
|X ′n|2r | X ′n−1, ..., X

′
1

)
a.s.

where Cr = 2(8/π2)r−1Γ(r + 1), and

(v) E
(
τn | Gn−1

)
= E

(
X ′n

2 | Gn−1

)
.
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The above theorem is an essential tool in deriving both CLT’s, strong invari-
ance principles and the LIL for various processes that can be approximated by
martingales. For example, consider a stationary, ergodic sequence

{
Xk

}
k∈N. The

usual steps are

(i) Decompose Sn =
∑n

k=1Xk into Mn + An, where Mn is a martingale with
respect to some filtration Fn.

(ii) Show that max1≤k≤n |Ak| = O
(
n1/2

)
a.s.

(iii) Prove that the increments ∆Mk = Mk −Mk−1 satisfy

n∑
k=1

(∆Mk)
2 = nσ2 + O(n) a.s. for some σ2 ≥ 0.

(iv) Use results about the increments of a Brownian motion (cf. ) to deduce
that

Sn − σWn = O
(
n1/2

)
a.s. (2.2.1)

Much of the research in this area has naturally been devoted to the question
under what conditions this approach is possible, and which approximation rates
can be obtained. Note that point (iii) implies that the best possible approximation
rate in (2.2.1) is O

(
n1/4

)
, since we cannot obtain a better convergence rate than

O
(
n1/2

)
in (iii). Very recent and optimal results which address this question

are due Wu [130], Wu and Woodroofe and . One of the main advantages of the
embedding method lies in its generality, but there are also some drawbacks. One
of those is the convergence rate, which is not sufficient in many cases, another one
is that, in general, this method breaks down in higher dimensions. It is possible
to embed a d-dimensional process in a d-dimensional Brownian motion, see e.g.
the excellent survey of Obloj [96] and the references therein, but the stopping
times are no longer as tractable as in Theorem 2.2.1.

2.2.2 I.I.D. approximations

Let X1, X2, ... be independent and identically distributed random variables with
zero mean and unit variance, and define Sn =

∑n
k=1Xk. By the strong law of

large numbers we have n−1Sn → 0 almost surely as n → ∞. Rates of conver-
gence in this result are provided by the CLT and the LIL. For a long time, the
Skorohod embedding scheme described in the previous section provided the best
known Wiener approximation for the partial sums Sn and the question was posed
whether this constitutes the best possible approximation or not. This question
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was answered in the negative by Csörgő and Révész in [30], who introduced a
completely different method to approximate partial sums of i.i.d. random vari-
ables and used this to show that under some (rather restrictive) conditions there
is a version of Sn and a Brownian motion {Wt}t≥0 such that almost surely∣∣Sn −Wn

∣∣ = O
(
n1/6+ε

)
, ε > 0.

Their key idea, namely constructing an approximating sequence via the quantile
transformation, was substantially refined in the celebrated Hungarian construc-
tion of Komlós, Major and Tusnády [74, 75, 76], who proved the following.

Theorem 2.2.2. Let X,X1, X2, . . . be i.i.d. random variables with mean zero,
variance 1 and satisfying E

(
exp(tX)

)
< ∞ for some |t| ≤ t0. Then the se-

quence (Xk)k≥1 can be redefined on a suitable probability space together with a
sequence (Yk)k≥1 of i.i.d. standard Gaussian random variables such that putting
Sn =

∑n
k=1Xk, Tn =

∑n
k=1 Yk we have for all x > 0 and every n

P

(
max
k≤n

∣∣Sk − Tk∣∣ > C log n+ x

)
< K exp(−λx),

where C,K, λ depend only on F , and λ can be taken as large as desired by choosing
C large enough. Consequently, |Sn − Tn| = O (log n) a.s.

If only the first p > 2 moments of X exist, the analogous result to the above
is

Theorem 2.2.3. Suppose that E
∣∣X|p < ∞, p > 2. Then for an appropriate

construction we have ∣∣Sn − Tn∣∣ = O
(
n1/p

)
a.s.

As it was also shown in [76], the above convergence rates are optimal. Saha-
nenko (1982) extended the Komlós-Major-Tusnády theorems for independent, not
necessarily identically distributed random variables. A different, but very general
approach was proposed by Berkes and Philipp [16], which provides approximation
rates for possibly dependent random variables in Rd or more generally, in Hilbert
spaces. This approach has been extended by various authors to a variety of dif-
ferent dependence conditions, see [31] for a general overview on these results. A
novelty of this approach was that it allows approximation for sequences where
Xn ∈ Rdn with dn → ∞. Unfortunately, approximation rates like in Theorems
2.2.2 and 2.2.3 could not be obtained with this approach. It was therefore nat-
ural to ask if it is possible to extend the results of the Hungarian construction
presented earlier to higher dimensions, i.e. for d ≥ 2. Affirmative answers were
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given by Einmahl [46], Einmahl and Mason [47], and Zaitsev [137, 138]. Recently,
Berthet and Mason [18] (see also Einmahl and Mason [47]) pointed out that the
Strassen–Dudley theorem (see Theorem 11.6.2 in [45]) in combination with a spe-
cial case of Theorem 1.1 and Example 1.2 of Zaitsev [136] yields the following
coupling inequality.

Lemma 2.2.4. Let X1, ..., Xn be independent, mean zero random vectors in Rd,
d ≥ 1, such that for some B > 0, |Xi| ≤ B, i = 1, ..., n, where |.| denotes the
usual Euclidian norm in Rd. If the probability space is rich enough, then for each
δ > 0, one can define independent normally distributed mean zero random vectors
ξ1, . . . , ξn with ξi and Xi having the same covariance matrix for i = 1, . . . , n, such
that for universal constants C1 > 0 and C2 > 0,

P

{∣∣ N∑
i=1

(Xi − ξi)
∣∣ > δ

}
≤ C1d

2 exp

(
−C2δ

Bd2

)
.

This coupling inequality will be an essential tool in proving some of the results
presented in Chapters , and . Note that the dimension d is contained explicitly
in the bound, hence we will be able to give precise conditions on the growth rate
of d = dn. A drawback of Lemma 2.2.4 is that it is only valid for a sequence of
bounded random variables, thus various truncation and blocking arguments are
needed to make this result applicable in more general cases.



Chapter 3

Extremes of Covariances and a
General Device

3.1 Introduction

Let
{
Xk

}
k∈Z be a stationary process with mean zero and finite variances and let

φh = E
(
XkXk+h

)
, k, h ∈ Z be the covariance function. A wide range of statistical

techniques, including regression analysis, principal component analysis, cluster
analysis, linear and quadratic discriminant analysis, require the estimation of
covariances. A natural estimate is the sample covariance φ̂n,h = 1

n

∑n
i=h+1 XiXi−h.

Depending on the magnitude of h, a different normalization, such as (n − h)−1

is often convenient. Studying the asymptotic properties of φ̂n,h is very important
for applications, and has been extensively discussed in the literature, see for
instance [4, 25, 58, 60, 61, 124, 131] and the references therein. We formulate
here some important contributions in more detail. Let Xk =

∑∞
i=0 αiεk−i, k ∈ Z

be a linear process, where
{
εk
}
k∈Z is an IID sequence of real-valued random

variables with E
(
ε1
)

= 0, E
(
ε21
)
< ∞, and αi ∈ R. In Brockwell and Davis [25,

Section 7.2] it is shown that for bounded lags 0 ≤ h ≤ d, a multidimensional CLT
holds under the short memory condition

∑∞
i=0 |αi| < ∞. More precisely, for any

d ∈ N we have

n1/2
{(
φ̂n,0, φ̂n,1, ..., φ̂n,d

)T − (φ0, φ1, ..., φd
)T} d−→

{
ξh
}

0≤h≤d, (3.1.1)

where
{
ξh
}
h∈N is a mean zero Gaussian process, whose covariance structure can

be explicitly expressed in terms of the coefficients
{
αi
}
i∈N by Bartlett’s formula,

see for instance [4, 25, 60]. The case of unbounded lags hn was discussed in
Keenan [73] for stationary processes satisfying a strong mixing assumption, and

18
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it was proved that under hn →∞ and hn = O
(
log n

)
we have

n1/2
{(
φ̂n,hn , φ̂n,hn+1, ..., φ̂n,hn+d

)T − (φhn , φhn+1, ..., φhn+d

)T} d−→
{
Gh

}
0≤h≤d,

(3.1.2)

where
{
Gh

}
h∈N is the stationary Gaussian linear process defined by

Gh =
∑
i∈Z

φiηh−i,

where {ηi, i ∈ Z} is an IID sequence of mean zero Gaussian random variables,
see for instance Wu [131]. Note that the covariance structure of the Gaussian
limit processes in (3.1.1) and (3.1.2) are different. It seems that so far this linear
process

{
Gh

}
h∈N has not been explicitly studied in the literature. However, it is

worth mentioning that in the case of a long memory process
{
Xk

}
k∈Z, a variety of

different limit processes can be obtained, see for instance [66, 132]. The condition
hn = O

(
log n

)
was later weakened for linear processes by Harris et al. [64], and,

quite recently, by Wu [131], whose results we will discuss now in more detail. For
bounded lags, Wu established a similar result as in (3.1.1) under a very general
dependence condition that includes linear processes, but also many nonlinear
processes. In case of unbounded lags, he showed that the condition hn = O

(
log n

)
can be relaxed to hn = O

(
n
)
. In case of d = 1, this can again be weakened to

hn → ∞. In this context, Wu also raised the issue of simultaneous confidence
bands, and proposed to study the asymptotic behavior, as n→∞, of the object

max
0≤h≤dn

∣∣φ̂n,h − φh∣∣. (3.1.3)

He noted that obtaining the asymptotic distribution of (3.1.3) can be used to
construct confidence intervals for {φk, k ≥ 0}, which in turn can be used to test
the hypothesis of white noises φ1 = φ2 = ... = 0. Wu established an asymptotic
upper distributional bound, and conjectured ( [131, Conjecture 1]) that

Conjecture 3.1.1.

P

(
a−1
n

(
max

0≤h≤dn
σ−1/2n1/2

∣∣φ̂n,h − φh∣∣− bn) ≤ z

)
→ exp(−2e−z), (3.1.4)

provided dn →∞, dn = O
(
n1/2(log n)−2

)
, where

an = (2 log dn)−1/2, bn = (2 log dn)1/2 − 1/2(2 log dn)−1/2(log log dn + log 4π),

and σ =
∑

k∈Z φ
2
k.
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The aim of this chapter is to verify this conjecture for linear processes under
the condition dn = O(log n/ log log n). Due to (3.1.1) one can expect that the

limiting behavior of (3.1.3) is the same as if one replaces n1/2(φ̂n,h − φh) by its
limiting distribution

{
ξh
}

and one can try to make this heuristics precise by an
almost sure invariance principle. Many strong invariance techniques rely on mar-
tingale approximation and Skorohod embedding (see e.g. Hall and Heyde [58]),
but this method already breaks down for dimension two. Other approaches are
based on approximations with IID sequences, see for instance [16, 75, 109], in
which case strong approximation procedures with increasing dimension are pos-
sible. However, applying these results in this particular situation (which requires
some careful truncation arguments, see e.g. [14]) is not easy and leads to more
restrictive conditions than martingale approximation. We will circumvent the
difficulty of increasing dimension by using a general estimate for the rate of con-
vergence of the Cramér-Wold device, which puts us back to dimension one.

This chapter is structured as follows. In Section 3.2 the main results are pre-
sented. This includes a partial verification of Conjecture (3.1.1), but also a Berry-

Esséen type result (Theorem 3.2.4) for the sample covariances
{
φ̂n,h

}
1≤h≤dn

.

In Section 3.3, the main tool for the proofs is presented, which can be de-
scribed as a quantitative Cramér-Wold device, and is formulated in Theorem
3.3.1. This result essentially allows to replace the normalized sample covariances{
n1/2

(
φ̂n,h− φh

)}
1≤h≤dn

in (3.1.4) with their limiting processes
{
ξh
}

0≤h≤dn
. Sec-

tion 3.4 is devoted to establishing a Gaussian approximation result that is very
useful for verifying the assumptions made in Theorem 3.3.1. Finally, the remain-
ing proofs are given in Section 3.5.

3.2 Main results

Before discussing bounds for the magnitude of the dimension dn such that (3.1.4)
holds, we address the question under what conditions such a sequence dn → ∞
exists. To this end, we introduce the quantity

ζn,h :=

√
nVar(φ̂n,h)−1

(
φ̂n,h − φh

)
, 1 ≤ h ≤ d.

Theorem 3.2.1. Let
{
Xk

}
k∈Z be a stationary process such that (3.1.1) is valid

for every d ≥ 1. Put φi,j = Cov(ξi, ξj), rn := sup|i−j|≥n |φi,j|, and let r1 < 1.
Assume that one of the following two conditions is satisfied:

(a)
∑∞

n=1 r
2
n <∞,

(b) For some β > 0, rn(log n)2+β → 0.
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Then there exists a sequence dn →∞ such that

P

(
a−1
n

(
max

0≤h≤dn

∣∣ζn,h∣∣− bn) ≤ z

)
→ exp(−e−z),

where an = (2 log dn)−1/2 and bn = (2 log dn)1/2−(8 log dn)−1/2(log log dn+4π−4).

Note that the difference in the limiting extreme distributions in Conjecture
3.1.1 and the above theorem are due to the different centering sequences bn. As
already mentioned, very general conditions for (3.1.1) are given e.g. in [131]. In
order to establish a bound for the growth rate of dn, we need to estimate the
convergence rate in (3.1.1). This issue is dealt with in detail in Section 3.3,
and allows us to formulate our main result. For simplicity, we focus on linear,
short memory processes

{
Xk

}
k∈Z, Xk =

∑∞
i=0 αiεk−i such that

{
εk
}
k∈Z is an IID

sequence of real-valued random variables and αi ∈ R.

Theorem 3.2.2. Let Xk =
∑∞

i=0 αiεk−i, k ∈ Z be a linear process such that

(1)
∑∞

i=0

√∑∞
j=i α

2
j <∞,

∑∞
i=0 α

2
i > suph≥1

∑∞
i=0 |αiαi+h|.

(2) E
(
εk
)

= 0, E
(
ε2k
)

= 1, E
(
ε8k
)
<∞, k ∈ Z.

(3) The density function of X1 exists and is continuous.

Then we have

P

(
a−1
n

(
max

0≤h≤dn

∣∣ζn,h∣∣− bn) ≤ z

)
→ exp(−e−z),

where dn = λ log n/ log log n, λ > 0 sufficiently small, an = (2 log dn)−1/2 and
bn = (2 log dn)1/2 − (8 log dn)−1/2(log log dn + 4π − 4).

Remark 3.2.3. Note that condition (1) is valid if αn � n−γ, γ > 3/2.

Theorem 3.2.2 can be deduced by the following more general result, which
can be viewed as a Berry-Esséen type result for increasing dimension.

Theorem 3.2.4. Assume that the conditions of Theorem 3.2.2 hold. If dn =
λ log n/ log log n with λ > 0 sufficiently small, then

lim
n→∞

sup
x1,...,xdn∈R

∣∣P(ζn,1 ≤ x1, ..., ζn,dn ≤ xdn
)
− P

(
ξ1 ≤ x1, ..., ξdn ≤ xdn

)∣∣→ 0,

where
{
ξk
}
k∈N is the normalized Gaussian process appearing in (3.1.1).
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Remark 3.2.5. We did not try for maximum generality in the above theorems;
the assumption of linearity and in particular the dependence condition can be
relaxed by using ideas from [130] and [131]. This allows for instance to consider
martingale differences

{
εk
}
k∈Z instead of an IID sequence. We will see in the

next chapter, that one can obtain a significantly larger growth rate for dn if one
only allows for an IID sequence

{
εk
}
k∈Z.

It is interesting that the same result (same growth rate for the dimension dn)
was obtained in [73], if the process

{
Xk

}
k∈Z is strongly mixing. This, however, is

a fairly strong assumption, and is generally not true for linear processes, see for
instance Andrews [5].

As already mentioned, the proofs of the Theorems 3.2.2 and 3.2.4 are based on
a general estimate for the rate of convergence of the Cramér-Wold device. Loosely
speaking, this quantitative Cramér-Wold device essentially tells us that the dif-
ference of the distribution functions of two random vectors X = (X1, . . . , Xd)
and Z = (Z1, . . . , Zd) is small, if the difference of the distribution functions of the
linear combinations s1X1 + ... + sdXd and s1Z1 + ... + sdZd, is small. For more
details, we refer to the next section.

3.3 A quantitative Cramér-Wold device

Given vectors s, t ∈ Rd, we denote the usual scalar product with sTt, and put
|s| =

√
sTs. For a function f ∈ L2 or f ∈ L1, we write F(f) and ϕf simultane-

ously for the Fourier transform of f , and, given a random variable X, we write
ϕX(s) = E

(
exp(isX)

)
.

Theorem 3.3.1. Let X = (X1, . . . , Xd) and Z = (Z1, . . . , Zd) be d-dimensional
random vectors with mean 0 such that X has a continuous density and Z is Gaus-
sian. Assume E(XiXj) = φi,j, φi,i = 1, 1 ≤ i, j ≤ d, and put R =

∑d
i,j=1 |φi,j|.

Assume also that

sup
x

∣∣P(Xj ≤ x
)
− P

(
Zj ≤ x

)∣∣ ≤ X , 1 ≤ j ≤ d, (3.3.1)

and

sup
{x: |x|≥θ}

∣∣P(sTX ≤ x
)
− P

(
sTZ ≤ x

)∣∣ ≤ X , θ,X > 0, (3.3.2)

for all s = (s1, ..., sd) with max1≤i≤d |si| ≤M . Then for any a ≥ 0 we have∣∣P(|X1| ≤ a, ..., |Xd| ≤ a)− P
(
|Z1| ≤ a, ..., |Zd| ≤ a)

∣∣ ≤ ε = min{ε1, ε2},
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where

ε1 = C(a+ d)d
(
MX + θ + dM−1/4

)
+ C exp(−a2/2) +RM−1/2 exp(−M(

√
2R)−1),

ε2 = Xd+ Cd exp(−a2/2), (3.3.3)

with an absolute constant C.

Remark 3.3.2. The condition that the density function of X exists can be weak-
ened, but it simplifies the calculations substantially and since Theorem 3.3.1 suf-
fices for the purposes of the present paper, we will keep this condition. Also,
Theorem 3.3.1 can be modified for sets of the form{

b1 ≤ X1 ≤ a1, ..., bd ≤ Xd ≤ ad
}
,

which will be apparent from the proof.

Remark 3.3.3. Condition (3.3.1) is the Kolmogorov distance of the two random
variables Xj, Zj, and it is contained in condition (3.3.2) if θ = 0 and M ≥ 1.
Also, note that the assumption of Gaussianity of the vector Z is not a necessity,
and is only reflected via the tail estimate given in (3.3.4). Thus, Theorem 3.3.1
can be adapted to non-Gaussian cases.

The classical Cramér-Wold device states that a sequence of real-valued d-
dimensional vectors Xn = (X1,n, . . . , Xd,n) (here d is fixed) converges in distri-
bution to the vector Z = (Z1, . . . Zd), if and only if all the linear combinations
s1X1,n + ...+ sdXd,n converge in distribution to s1Z1 + ...+ sdZd, a fact that can
readily be proved via characteristic functions. Note that this reduces the problem
of establishing weak convergence in Rd to establishing weak convergence in R and
vice versa. The new feature of Theorem 3.3.1 is that it gives an explicit upper
bound for the approximation error in terms of the dimension d. This allows us to
treat cases where d = dn → ∞, which is exactly the case encountered in Theo-
rems 3.2.2 and 3.2.4. However, the idea of reducing the dimension from d to one
is also the main idea in the proof of Theorem 3.3.1.

The proof requires some preliminary results. Denote with FX(x) the distri-
bution function of a random variable X, and with Φ(x) the standard normal
distribution function. We will use repeatedly the tail estimate

1− Φ(x) ≤ (2π)−1/2x−1 exp(−x2/2) (x > 0) (3.3.4)

and the fact that

|ϕX(1)− ϕY (1)| ≤ E(|X|) + E(|Y |) + 2
(
E(X2) + E(Y 2)

)
≤ 2

(
E(X2) +

√
E(X2) + E(Y 2) +

√
E(Y 2)

)
(3.3.5)
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for any square integrable random variables X, Y . We will further use the following
well known connection between Fourier transform and convolution.

Lemma 3.3.4. Let
{
hj(x)

}
1≤j≤d and f(x1, ..., xd) be a collection of real valued,

integrable functions such that their Fourier transform is integrable. Put

T (y1, ..., yd) =

∫
Rd
f(x1, ..., xd)

h∏
j=1

hj(yj − xj) d x1...d xd

Then we have

F(T )(s1, ..., sd) = F(f)(s1, ..., sd)
d∏
j=1

F(hj)(sj),

for any s1, ..., sd, and in particular

sup
y1,...,yd

∣∣T (y1, ..., yd)
∣∣ ≤ (2π)−d/2

∥∥F(T )(s1, ..., sd)
∥∥

1
a.s.

where ‖ · ‖1 denotes L1(−∞,∞) norm.

The next lemma is a continuity result.

Lemma 3.3.5. Under the conditions of Theorem 3.3.1 we have∣∣P(|X1| ≤ a1, ..., |Xd| ≤ ad
)
− P

(
|X1| ≤ a1 + δ, ..., |Xd| ≤ ad + δ

)∣∣
≤ C

(
dX + δ

d∑
j=1

exp(−a2
j/2)

)
,

for ai > 0, 1 ≤ i ≤ d and δ ≥ 0, with an absolute constant C > 0.

Proof. First observe that∣∣P(|X1| ≤ a1, ..., |Xd| ≤ ad
)
− P

(
|X1| ≤ a1 + δ, ..., |Xd| ≤ ad + δ

)∣∣
≤

d∑
j=1

(
P
(
−aj − δ ≤ Xj ≤ −aj

)
+ P

(
aj ≤ Xj ≤ aj + δ

))
. (3.3.6)

By assumption (3.3.1) of Theorem 3.3.1 and by properties of the Gaussian dis-
tribution function, this is smaller than

2dX + C

d∑
j=1

(
Φ(aj + δ)− Φ(aj)

)
≤ C

(
dX + δ

d∑
j=1

exp(−a2
j/2)

)
.
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Proof of Theorem 3.3.1. The idea of the proof is to approximate the probabilities

P
(
−a ≤ X1 ≤ a, ...,−a ≤ Xd ≤ a) and P

(
−a ≤ Z1 ≤ a, ...,−a ≤ Zd ≤ a)

using mollifiers (smooth truncation functions), and then estimate the various
approximation errors with the help of Fourier transforms. We will repeatedly use
the fact that ϕsTX(1) = ϕX(s1, ..., sd). Throughout this proof, C denotes absolute
constants that may vary from one formula to another.

Let us first establish the bound ε2, whose derivation is rather straightforward.
We have that∣∣P(−a ≤ X1 ≤ a, ...,−a ≤ Xd ≤ a)− P

(
−a ≤ Z1 ≤ a, ...,−a ≤ Zd ≤ a)

∣∣
=
∣∣1− P(max

1≤j≤d
|Xj| ≥ a

)
− 1 + P

(
max
1≤j≤d

|Zj| ≥ a
)∣∣

≤ d

(
max
1≤j≤d

P
(
|Xj| ≥ a

)
+ max

1≤j≤d
P
(
|Zj| ≥ a

))
.

By the assumptions and relation (3.3.4), we conclude that

d

(
max
1≤j≤d

P
(
|Xj| ≤ a

)
+ max

1≤j≤d
P
(
|Zj| ≤ a

))
≤ C

(
dX + d exp(−a2/2)

)
,

which yields the claim. Unfortunately, establishing the bound ε1 is more involved.
To this end, let BM := {x ∈ R1 : |x| ≤ M} and denote 1BM (x) (x ∈ R1) and
1BM (x) (x ∈ Rd) the indicator function of BM and the indicator function of
BM × · · · × BM , respectively. For any a > 0, put Ia(x) := 1[−a,a](x). Fix a > 0,
let h = h(x1, ..., xd) be a real-valued function, and define

Hh(y1, ..., yd) :=

∫
Rd
Ia(y1 − x1)Ia(y2 − x2) . . . Ia(yd − xd)h(x1, ..., xd) dx1...d xd

Let f = fX1,...,Xd(x1, ..., xd) and g = gZ1,...,Zd(z1, ..., zd) be the density functions of
X and Z. Clearly

P
(
−a ≤ X1 ≤ a, ...,−a ≤ Xd ≤ a) =

∫
[−a,a]d

fX1,...,Xd(x1, ..., xd) dx1...dxd = Hf (0, ..., 0),

and the same is valid for g. Thus∣∣P(−a ≤ X1 ≤ a, ...,−a ≤ Xd ≤ a)− P
(
−a ≤ Z1 ≤ a, ...,−a ≤ Zd ≤ a)

∣∣
=
∣∣Hf (0, ..., 0)−Hg(0, ..., 0)

∣∣ =
∣∣Hf−g(0, ..., 0)

∣∣.
For some b > 0 we introduce the quantity

Jf−g(z1, ..., zd) :=

∫
Rd

d∏
j=1

(2b)−1Ib(zj − yj)Hf−g(y1, ..., yd)d y1...d yd.
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Then we have the following bound for
∣∣Hf−g(0, ..., 0)

∣∣:
∣∣Hf−g(0, ..., 0)

∣∣ =
∣∣∫

Rd

d∏
j=1

(2b)−1Ib(−yj)Hf−g(0, ..., 0)dy1, ..., dyd
∣∣

≤
∣∣∫

Rd

d∏
j=1

(2b)−1Ib(−yj)Hf−g(y1, ..., yd)dy1, ..., dyd
∣∣+ sup

|yj |≤b,1≤j≤d

∣∣Hf−g(y1, ..., yd)−Hf−g(0, ..., 0)
∣∣

≤
∣∣Jf−g(0, ..., 0)

∣∣+ sup
|yj |≤b,1≤j≤d

∣∣Hf−g(y1, ..., yd)−Hf−g(0, ..., 0)
∣∣.

By Lemma 3.3.5, we have

sup
|yj |≤b,1≤j≤d

∣∣Hf−g(y1, ..., yd)−Hf−g(0, ..., 0)
∣∣ ≤ C

(
dX + d b exp(−a2/2)

)
.

Choosing b−1 = d, we obtain

sup
|yj |≤b,1≤j≤d

∣∣Hf−g(y1, ..., yd)−Hf−g(0, ..., 0)
∣∣ ≤ C

(
dX + exp(−a2/2)

)
. (3.3.7)

Hence we need to study
∣∣Jf−g(0, ..., 0)

∣∣ if b−1 = d. By Lemma 3.3.4, we have that

sup
z1,...,zd

∣∣Jf−g(z1, ..., zd)
∣∣ ≤ (2π)−d/2

∥∥F(Jf−g)∥∥1

= (2π)−d/2
∥∥F(Hf−g)

d∏
j=1

F
( 1

2b
Ib
)∥∥

1
= (2π)−d/2

∥∥F(f − g)
d∏
j=1

F(Ia)(sj)
d∏
j=1

F
( 1

2b
Ib
)∥∥

1

= (2π)−d/2
∥∥F(f − g)

d∏
j=1

(
F
( 1

2b
Ib
)
F(Ia)(sj)

)∥∥
1

:= Ωd. (3.3.8)

Notice that∣∣F(f − g)(sd)
∣∣ ≤ ∣∣F(f − g)(sd)1B√M (sd)

∣∣+
∣∣F(f − g)(sd)1Rd\B√M (sd)

∣∣
=
∣∣ϕsTd ·X

(1)− ϕsTd ·Z
(1)
∣∣1B√M (sd) +

∣∣F(f − g)(sd)
∣∣1Rd\B√M (sd)

:= A(sd) +B(sd).

To treat A(sd), observe that∣∣ϕsdT·X(1)− ϕsTd ·Z
(1)
∣∣ ≤ ∣∣E(exp(isTd ·X)1BM (sTd ·X)

)
− E

(
exp(isTd · Z)1BM (sTd · Z)

)∣∣
+
∣∣E(exp(isTd ·X)1R\BM (sTd ·X)

)∣∣+
∣∣E(exp(isTd · Z)1R\BM (sTd · Z)

)∣∣
≤
∣∣E(exp(isTd ·X)1BM (sTd ·X)

)
− E

(
exp(isTd · Z)1BM (sTd · Z)

)∣∣
+ P

(
sTd ·X ∈ R \BM

)
+ P

(
sTd · Z ∈ R \BM

)
:= C(sd) +D(sd) + E(sd).
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Let Bθ,M := {x | θ ≤ |x| ≤M}. Then by Lemma 3.3.5, we have that

C(sd) =
∣∣E(exp(isTd ·X)1BM (sd

T ·X)
)
− E

(
exp(isTd · Z)1BM (sTd · Z)

)∣∣
≤
∣∣E(exp(isTd ·X)1Bθ(s

T
d ·X)

)
− E

(
exp(isTd · Z)1Bθ(s

T
d · Z)

)∣∣
+
∣∣E(exp(isTd ·X)1Bθ,M (sTd ·X)

)
− E

(
exp(isTd · Z)1Bθ,M (sTd · Z)

)∣∣
≤ 8θ +

∣∣E(exp(isTd ·X)1Bθ,M (sTd ·X)
)
− E

(
exp(isTd · Z)1Bθ,M (sTd · Z)

)∣∣
:= 8θ + F (sd).

Put

µsd(u) := P
(
0 ≤ sTd ·X ≤ u

)
− P

(
0 ≤ sTd · Z ≤ u

)
= FsTd ·X

(u)− FsTd ·Z
(u).

By the conditions of Theorem 3.3.1, this gives us the following bound for F (sd)

F (sd) =

∣∣∣∣∫
BM,θn

(
cosu+ i sinu

)
d
(
FsdT·X(u)− FsdT·Z(u)

)∣∣∣∣
≤

4M∑
j=1

(∣∣∣∣∫ (j+1)π/2

jπ/2

sinxµsd(dx)

∣∣∣∣+

∣∣∣∣∫ (j+1)π/2

jπ/2

cosxµsd(dx)

∣∣∣∣
)

+

∣∣∣∣∫ π/2

θ

sinxµsd(dx)

∣∣∣∣+

∣∣∣∣∫ π/2

θ

cosxµsd(dx)

∣∣∣∣.
For a continuous random variable θ ≤ U ≤ π/2, an application of integration by
parts gives us∫ π/2

θ

cosxdFU(x) = − cos θFU(θ) + cos π/2FU(π/2)−
∫ π/2

θ

FU(x)d cosx

= − cos θFU(θ) +

∫ π/2

θ

FU(x) sinxdx.

Since | cosx| and | sinx| are bounded by one, we obtain from the conditions of
Theorem 3.3.1 and integration by parts∣∣∣∣∫ π/2

θ

cosxµsd(dx)

∣∣∣∣ ≤ C
∣∣P(θ ≤ sTd ·X ≤ π/2

)
− P

(
θ ≤ sTd · Z ≤ π/2

)∣∣
≤ CX .

Similarly, one obtains the same bound for
∫ (j+1)π/2

jπ/2
cosxµsd(dx) and

∫ (j+1)π/2

jπ/2
sinxµsd(dx)

for 1 ≤ j ≤M , hence we obtain

F (sd) ≤ CM X .
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In order to treat D(sd) and E(sd), notice that the assumptions of Theorem 3.3.1
give us ∣∣E(sd)−D(sd)

∣∣ ≤ CX .

On the other hand, using Lemma 3.3.4, we get

1B√M (sd)E(sd) ≤ sup
sd∈B√M

√
2σ2

sd

π
M−1 exp(−M2(2σ2

sd
)−1)

≤
√

2R2
dM

πM2
exp(−M(

√
2Rd)

−1)

≤
√

2R2
d

πM
exp(−M(

√
2Rd)

−1) := G,

where σ2
sd

=
∑d

i,j=1 sjsiρi,j ≤ Rd sup1≤i≤d |si|2. Hence we obtain

1B√M (sd)
∣∣E(sd) +D(sd)

∣∣ ≤ 2G+ CX ,

and thus

A(sd) ≤ C (M X + θ +G+ X ) 1B√M (sd).

Continuing in equation 3.3.8, we obtain

Ωd = (2π)−d/2
∥∥F(f − g)

d∏
j=1

(
F
( 1

2b
Ib
)
F(Ia)(sj)

)∥∥
1

≤ (2π)−d/2
∥∥(An(sd) +Bn(sd)

) d∏
j=1

(
F
( 1

2b
Ib
)
F(Ia)(sj)

)∥∥
1

≤ (2π)−d/2
∥∥1B√M (sd)

d∏
j=1

(
F
( 1

2b
Ib
)
F(Ia)(sj)

)∥∥
1
C (M X + θ +G)

+ (2π)−d/2
∥∥ d∏
j=1

(
F
( 1

2b
Ib
)
F(Ia)(sj)

)
1Rd\B√M (sd)Bn(sd)

∥∥
1
.

Since F(Ia)(s) = (2 sin as)s−1, we obtain

(2π)−d/2
∥∥∥∥ d∏
j=1

1B√M (sd)

(
F
( 1

2b
Ib
)
F(Ia)(sj)

)∥∥∥∥
1

≤
d∏
j=1

∥∥sin bsj sin asj
bs2
j

∥∥
1

≤ C
(
a+ b−1

)d
,
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and similarly, since |Bn(s)| ≤ 2,

(2π)−d/2
∥∥∥∥ d∏
j=1

1Rd\B√M (sd)Bn(sd)

(
F
( 1

2b
Ib
)
F(Ia)(sj)

)∥∥∥∥
1

≤ Cd
∥∥(bs2)−11R\B√M (s)

∥∥
1

d∏
j=2

∥∥sin bsj sin asj
bs2
j

∥∥
1

≤ Cd(b−1 + a)dM−1/2.

Piecing everything together, we obtain the bound

Ωn,d ≤ C(b−1 + a)d
(
M X + θ +G+ X + dM−1/2

)
≤ C(a+ d)d

(
M X + θ +G+ X + dM−1/2

)
,

which completes the proof.

3.4 Normal approximation

Let

Sn,h = n−1/2

n−h∑
k=0

(
XkXk+h − φh

)
(1 ≤ h ≤ dn), Sn =

dn∑
h=0

shSn,h (3.4.1)

with some sequence dn → ∞ of positive integers and real coefficients sh. In
this section we prove, under suitable assumptions, a normal approximation for
the r.v.’s Sn,h, 1 ≤ h ≤ dn and Sn. Using the quantitative Cramér-Wold de-
vice obtained in the previous section, it will then follow that the distribution
of Xn = (Sn,1, . . . , Sn,dn) is close to the distribution of a Gaussian vector Zn =
(Zn,1, . . . , Zn,dn), with the same covariance structure. In Section 3.5 we will show
that the distribution of Zn converges to the finite dimensional distributions of a
Gaussian process

{
ξk
}
k∈Z and using the extremal theory of Gaussian processes,

Theorem 3.2.2 will follow.

Theorem 3.4.1. Let Xk =
∑∞

i=0 αiεk−i, k ∈ Z be a linear process such that the
εi are i.i.d. random variables and

(i)
∑∞

i=0

√∑∞
j=i α

2
j <∞,

(ii) E
(
ε1
)

= 0, E
(
ε21
)

= 1, E
(
ε81
)
<∞.
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Let dn → ∞,Mn → ∞, θn → 0 be positive sequences satisfying d4
nM

4
n = O

(
nr
)
,

0 < r < 1/2 and assume also max0≤h≤dn |sh| ≤Mn. Then there exist a Gaussian
random variable Zn with Var(Zn) = Var(Sn) and a Gaussian vector {Zn,h, 1 ≤
h ≤ dn} with the same covariance structure as {Sn,h, 1 ≤ h ≤ dn} such that

sup
{x:|x|≥θn}

∣∣P(Sn ≤ x
)
− P

(
Zn ≤ x

)∣∣ ≤ C
(
n−1/10+r + n−1/2θ−2

n

)
,

sup
x

∣∣P(Sn,h ≤ x
)
− P

(
Zn,h ≤ x

)∣∣ ≤ C
(
n−1/10+r

)
, 0 ≤ h ≤ dn,

Proof. The proof is based on martingale approximation and an estimate of the
speed of convergence in the martingale CLT by Heyde and Brown [27]. Denote
with Gi = σ(εk, k ≤ i) the σ-algebra generated by the innovations

{
εk
}
k≤i. For

the proof, it is convenient to introduce the following projection operator

PiX = E
(
X
∣∣Gi)− E

(
X
∣∣Gi−1

)
.

For j < k, put

Xk := X
(k≤j)
k +X

(k>j)
k = X

(k<j)
k +X

(k=j)
k +X

(k>j)
k

=
∞∑
i=0

αk−j+iεj−i +

k−j−1∑
i=0

αiεk−i

=
∞∑
i=0

αk−j+1+iεj−i−1 + αk−jεj +

k−j−1∑
i=0

αiεk−i.

Note that for h ≥ 0,

PiXkXk+h = X
(k=i)
k X

(k+h=i)
k+h − E

(
X

(k=i)
k X

(k+h=i)
k+h

)
+X

(k=i)
k X

(k+h<i)
k+h +X

(k<i)
k X

(k+h=i)
k+h .

(3.4.2)

For fixed n, we introduce the martingale

Ml :=
∞∑
k=1

d∑
h=1

sh
(
E
(
XkXk+h

∣∣Gl)− E
(
XkXk+h

∣∣G0

))
, l ≥ 0,

and the process

Rl :=
∞∑

k=l+1

d∑
h=1

sh
(
E
(
XkXk+h − φh

∣∣Gl)), l ≥ 0.

Thus, we obtain the decomposition

Sn = Mn +R0 −Rn+d.
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Note that by stationarity, for k ≥ 0 it holds that∥∥Rk

∥∥2

2
=
∥∥R0

∥∥2

2
,

and using (3.4.2) in connection with Assumption (i), (ii), we obtain∥∥Rk

∥∥2

2
=
∥∥R0

∥∥2

2
≤ Cd2 max

1≤h≤d
|sh|2 = O

(
nr/2

)
. (3.4.3)

For the martingale differences Ml −Ml−1, we have that

∆Ml = Ml −Ml−1 =
∞∑

i=l−d

Pl
( d∑
h=1

shXiXi+h

)
,

in particular, proceeding as in the case of the process
{
Rl

}
l∈N, we have that∥∥∆Ml

∥∥4

4
≤ Cd4 max

1≤h≤d
|sh|4. (3.4.4)

In addition, we put

σn,d :=
n∑
l=1

E
(
∆M2

l

)
. (3.4.5)

For computational reasons, we now introduce the martingales Nn
l , defined as

Nn
l :=

n∑
k=1

E
(
∆M2

k − E(∆M2
k )
∣∣Gl),

and the corresponding martingale differences

∆Nn
l = Nn

l −Nn
l−1 =

n∑
i=l

Pl
(
∆M2

i

)
.

For a discrete time martingale {Mk}k∈N, denote with

[M,M ]k :=
k∑
l=0

∆M2
l

the square bracket of a martingale. Using the L2 orthogonality of the martingale
differences, we then have that∥∥[M,M ]n − E

(
[M,M ]n

)∥∥2

2
=
∥∥Nn

n

∥∥2

2
=
∥∥ n∑
k=0

∆Nn
k

∥∥2

2
=

n∑
k=0

∥∥∆Nn
k

∥∥2

2

=
n∑
k=0

∥∥ n∑
i=0

Pk
(
∆M2

i

)∥∥2

2
=

n∑
k=0

n∑
i=0

∥∥Pk(∆M2
i

)∥∥2

2
.
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Proceeding as in the case of the process
{
Rl

}
l∈N, one readily computes that

∞∑
i=0

∥∥∆M2
i

∥∥2

2
≤ Cd4 max

1≤h≤d
|sh|4. (3.4.6)

It now follows from [27, Theorem], that

sup
x∈R

∣∣P(σ−1/2
n,d Mn ≤ x

)
− Φ(x)

∣∣ ≤ C
(
σ−1
n,dd

4 max
1≤h≤d

|sh|4
)1/5

. (3.4.7)

We will now show that we can essentially replace Mn with Sn,d in (3.4.7). To this
end, let γn be a positive, monotone decreasing sequence. For a random variable
U , we define the following sets:

AU := {ω||U(ω)| ≤ γn},
A+
U := A ∩ {ω|U(ω) ≥ 0},

A−U := A ∩ {ω|U(ω) < 0}.

For a random variable V , we now have that∣∣P(V + U ≤ x
)
− P

(
V ≤ x

)∣∣ ≤ P
(
{x− U ≤ V ≤ x} ∩ AU

)
+ P

(
AcU
)

≤ P
(
{x− U ≤ V ≤ x} ∩ A+

U

)
+ P

(
{x ≤ V ≤ x− U} ∩ A−U

)
+ P

(
AcU
)

≤
∣∣P({x− γn ≤ V ≤ x} ∩ A+

U

)
+ P

(
{x ≤ V ≤ x+ γn} ∩ A−U

)
+ P

(
AcU
)

≤ P
(
x− γn ≤ V ≤ x

)
+ P

(
x ≤ V ≤ γn + x

)
+ P

(
AcU
)

≤ 2P
(
x− γn ≤ V ≤ x+ γn

)
+ P

(
AcU
)
.

The Markov inequality yields

P
(
Ac
)
≤

E
(
U2
)

γ2
n

,

hence, substituting U = σ
−1/2
n,d (R0 −Rn+d), V = σ

−1/2
n,d Mn, we obtain∣∣P(σ−1/2

n,d Sn ≤ x
)
− P

(
σ
−1/2
n,d Mn ≤ x

)∣∣
≤ 2P

(
x− γn ≤ σ

−1/2
n,d Mn ≤ x+ γn

)
+

C

γ2
n σn,d

. (3.4.8)

According to (3.4.7), the above is smaller than

C
(
σ−1
n,dd

4 max
1≤h≤d

|sh|4
)1/5

+ 2 sup
x∈R,
|y|≤γn

∣∣Φ(x− y)− Φ(x+ y)
∣∣+

C

γ2
n σn,d

≤ C
(
σ−1
n,dd

4 max
1≤h≤d

|sh|4
)1/5

+ 4γn +
C

γ2
n σn,d

.
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By equating the last two terms, we obtain γn = σ
−1/3
n,d , hence

sup
x∈R

∣∣P(σ−1/2
n,d Sn ≤ x

)
− Φ(x)

∣∣ ≤ C
(
σ−1
n,dd

4 max
1≤h≤d

|sh|4
)1/5

. (3.4.9)

We will now consider the two cases Var(Sn) ≤ n2/3 and Var(Sn) > n2/3. In the
first case, note that

sup
{x||x|≥θn}

∣∣P(n−1/2Sn ≤ x
)
− P

(
Zn ≤ x

)∣∣ = sup
{x|x≥θn}

∣∣P(n−1/2Sn > x
)
− P

(
Zn > x

)∣∣
+ sup
{x|−x≥θn}

∣∣P(n−1/2Sn ≤ x
)
− P

(
Zn ≤ x

)∣∣
≤ 4

Var(Sn)n−1

θ2
n

≤ 4n−1/3θ−2
n .

In order to treat the second case, by the Cauchy-Schwarz inequality, we have∣∣Var(Sn)− σn,d
∣∣ ≤ Var

(
R0 −Rn+d

)
+ 2
√

Var
(
R0 −Rn+d

)
Var(Sn),

which implies that σn,d ≥ Cn2/3. Put

∆n,d := σ−1
n,d

(
Var
(
R0 −Rn+d

)
+ 2
√

Var
(
R0 −Rn+d

)
Var(Sn)

)
, (3.4.10)

and note that ∆n,d = O
(
n−1/3+r/4

)
. In addition, one readily verifies∣∣Var(Sn)1/2σ
−1/2
n,d − 1

∣∣ ≤ ∆n,d. (3.4.11)

This gives us the following bound

sup
{x||x|≥θn}

∣∣P(n−1/2Sn ≤ x
)
− P

(
Zn ≤ x

)∣∣ ≤ C
(
σ−1
n,dd

4 max
1≤h≤d

|sh|4
)1/5

+ sup
{x||x|≥θn}

∣∣Φ(xn1/2σ
−1/2
n,d

)
− Φ

(
xn1/2Var(Sn)−1/2

)∣∣.
Due to (3.4.11), we have

sup
{x||x|≥θn}

∣∣Φ(xn1/2σ
−1/2
n,d

)
− Φ

(
xn1/2Var(Sn)−1/2

)∣∣
≤ sup
{x||x|≥θn}

sup
{y||y|≤∆n,d}

∣∣Φ(xn1/2Var(Sn)−1/2
)
− Φ

(
(x+ y)n1/2Var(Sn)−1/2

)∣∣,
and since ∆n,dn

1/2Var(Sn)−1/2 = O(n−1/6+r/4), this is further smaller than∣∣Φ(0)− Φ(Cn−1/6)
∣∣ ≤ Cn−1/6+r/4.
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Piecing everything together, we obtain

sup
{x||x|≥θn}

∣∣P(n−1/2Sn ≤ x
)
− P

(
Zn ≤ x

)∣∣ ≤ C
(
n−1/10+r + n−1/6+r/4 + n−1/2θ−2

n

)
≤ C

(
n−1/10+r + n−1/3θ−2

n

)
.

It is clear that from the previous computations, we also have that

sup
x

∣∣P(n−1/2Sn,h ≤ x
)
− P

(
Zn,h ≤ x

)∣∣ ≤ C
(
n−1/10+r

)
, 0 ≤ h ≤ d,

which completes the proof.

3.5 Proof of the theorems

For the proof of the Theorems 3.2.1, Theorem 3.2.2 and Theorem 3.2.4, we require
some additional results (Lemma 3.5.1, Lemma 3.5.2, Lemma 5.7.1 and Corollary
3.5.3), whose proof will be given at the end of this section.

Lemma 3.5.1. Let Zn, Z be mean zero Gaussian random variables such that∣∣Var(Zn)− Var(Z)
∣∣ ≤ n−q, q > 0.

Then for any θn > 0

sup
{x||x|≥θn}

∣∣P(Zn ≤ x
)
− P

(
Z ≤ x

)∣∣ ≤ C
(
n−q/2θ−2

n

)
.

Let Sn,h be defined by (3.4.1), put ρn,i,j = Cov(Sn,i, Sn,j), ρi,j = limn Cov(Sn,i, Sn,j),
and rn := sup|i−j|≥n |ρi,j|, provided the limit exists.

Lemma 3.5.2. Let λ > 0, dn = λ log n/(log log n), let
{
Xk

}
k∈Z be a linear

process satisfying the conditions of Theorem 3.4.1. Then the limit ρk,l exists for
all k, l ∈ N and

a) max0≤k,l≤dn |ρn,k,l − ρk,l| = O
(
n−2/3

)
,

b) min0≤k≤dn |ρn,k,k| ≥ c > 0,

c) rn → 0,

d)
∑

1≤k,l≤n |ρk,l| = O (n).

Corollary 3.5.3. Let
{
Xk

}
k∈Z be a linear process satisfying the conditions of

Theorem 3.4.1. Assume in addition that
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• max0≤h≤dn |sh| ≤Mn,

• d2
nM

2
n = O

(
nr
)
, 0 < r < 1/6.

Then we have

sup
{x||x|≥θn}

∣∣P(n−1/2Sn ≤ x
)
− P

(
Zdn ≤ x

)∣∣ ≤ C
(
n−1/10+r + n−1/4θ−2

n

)
,

where Sn is as in Proposition 3.4.1, and Zdn is a mean zero Gaussian random
variable with Var(Zdn) =

∑dn
i,j=0 sisjρi,j.

The following result is a key ingredient, and is due to C. Deo and can be found
in [38, Theorem 1].

Lemma 3.5.4. Let
{
ξi
}
i∈N be Gaussian process, where E

(
ξi
)

= 0, E
(
ξ2
i

)
= 1 for

all i ∈ N. Put φi,j = Cov(ξi, ξj), rn := sup|i−j|≥n |φi,j|, and let r1 < 1. Assume
that one of the following two conditions is satisfied:

(a)
∑∞

n=1 r
2
n <∞,

(b) For some β > 0, rn(log n)2+β → 0.

Then it holds

P

(
a−1
n

(
max

1≤h≤n

∣∣ξh∣∣− bn) ≤ z

)
→ exp(−e−z),

where an = (2 log n)−1/2 and bn = (2 log n)1/2 − (8 log n)−1/2(log log n+ 4π − 4).

Proof of Theorem 3.2.2. In this proof, C always denotes a generic, positive con-
stant, that may vary from one formulae to another. We will only consider the case
of z ≥ 0, the other case z < 0 follows in the same manner. Put σn,h = Var(Sn,h),
σh = Var(ξh), and

Ψn(z) := P

(
a−1
n

(
max

0≤h≤d
σ
−1/2
n,h

∣∣Sn,h∣∣− bn) ≤ z

)
,

Φn(z) := P

(
a−1
n

(
max

0≤h≤d
σ
−1/2
h

∣∣ξh∣∣− bn) ≤ z

)
,

Ψn(A(n)) := P
(
σ
−1/2
n,1

∣∣Sn,1∣∣ ≤ A(n), ...σ
−1/2
n,d

∣∣Sn,dn∣∣ ≤ A(n)
)
,

Φn(A(n)) := P
(
σ
−1/2
1

∣∣ξ1

∣∣ ≤ A(n), ...σ
−1/2
d

∣∣ξd∣∣ ≤ A(n)
)
,

where
{
ξh
}
h∈N is a mean zero Gaussian process with Cov(ξi, ξj) = ρi,j, i, j ≥ 0.

Put A(n) = zan + bn, θn = n−1/24, p = min{1/10 − r, 1/48} and M(n) = np/4,
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and note that d4
nM(n)4 = n3p/2 ≤ n1/8. Then by Corollary 3.5.3 and Theorem

3.3.1 we have ∣∣Ψn(z)− Φn(z)
∣∣ =

∣∣Ψn(A(n))− Φn(A(n))
∣∣ = O(1), (3.5.1)

hence it suffices tho show that

Φn(z)→ exp(−e−z).

Per assumption, we have
∑∞

i=0 α
2
i > suph≥1

∑∞
i=0 |αiαi+h|, hence we deduce from

the proof of Lemma 3.5.2 that

sup
k,l:|k−l|=1

∣∣(σkσl)−1ρk,l
∣∣ < 1,

thus the claim follows from Lemma 3.5.2 and Lemma 3.5.4.

Proof of Theorem 3.2.1. Put σn,h = Var(Sn,h), σh = Var(ξh), and denote with
L(., .) the Lévy distance, i.e.

L(X, Y ) = inf{ε > 0 : F (x) ≤ G(x+ ε) + ε and G(x) ≤ F (x+ ε) + ε, for all x},

where F and G are distribution functions of the r.v. X and Y . By assumption,
we have

n−1/2
{(
φ̂0, φ̂1, ..., φ̂d

)T − (φ0, φ1, ..., φd
)T} d−→

{
ξh
}

0≤h≤d

for any finite d ∈ N, where
{
ξh
}
h∈N is a mean zero Gaussian process. On the

other hand, it follows from Lemma 5.7.1 that

P

(
a−1
n

(
max

0≤h≤n
σ
−1/2
h

∣∣ξh∣∣− bn) ≤ z

)
→ exp(−e−z),

where an = (2 log n)−1/2 and bn = (2 log n)1/2 − (8 log n)−1/2(log log n + 4π − 4).
Let V be a r.v. with cdf F (z) = exp(−e−z), and put

EX,dn = a−1
dn

(
max

0≤h≤dn
σ
−1/2
dn,h

∣∣Sndn ,h∣∣− bdn),
Eξ,dn = a−1

dn

(
max

0≤h≤dn
σ
−1/2
h

∣∣ξh∣∣− bdn).
Then for any ε > 0, we can chose a dn and a corresponding ndn such that

L (V,EX,dn) ≤ L (V,Eξ,dn) + L (EX,dn , Eξ,dn) ≤ ε,

hence the claim follows.
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Proof of Theorem 3.2.4. Let A
(n)
d =

{
1 ≤ j ≤ d | |xj| ≥ log n

}
, 1 ≤ j ≤ d and

denote with |A(n)
d | the cardinality of the set A

(n)
d . Note that the sets A

(n)
d may

substantially vary for each d. Let A
(n),c
d be the complement of A

(n)
d with respect

to the total set {1, ..., d}. We then have∣∣P( ⋂
j∈A(n),c

d

{ζn,j ≤ xj} ∩
⋂

j∈A(n)
d

{ζn,j ≤ xj}
)
− P

( ⋂
j∈A(n),c

d

{ζn,j ≤ xj}
)∣∣

≤
∑
j∈A(n)

d

P
(
ζn,j > |xj|

)
≤ X d+ C d exp

(
−(log n)2/2

)
,

and the same bound is valid for the vector
(
ξ1, ..., ξd

)T
. Since dn = O (log n), the

above bound converges to zero as n increases, hence it suffices to establish the
claim for max1≤j≤d |xj| ≤ log n. To this end, note that under the assumptions of
Theorem 3.3.1 we have the more general conclusion∣∣P(−b < ζn,1 ≤ x1, . . . ,−b < ζn,d ≤ xd

)
− P

(
−b < ξ1 ≤ x1, . . . ,−b < ξd ≤ xd

)∣∣
≤ C(x+ b+ d log d)d

(
MX + θ + dM−1/4

)
+RM−1/2 exp(−M(

√
2R)−1)

(3.5.2)

+ Cd−1

d∑
j=1

exp(−x2
j/2) := ε,

where x = maxj{xj}. In addition, observe that∣∣P(ζn,1 ≤ x1, ..., ζn,d ≤ xd)− P
(
−b < ζn,1 ≤ x1, ...,−b < ζn,1 ≤ xd)

∣∣
≤ d max

1≤j≤d
P
(
|ζn,j| ≥ b

)
≤ dX + CdP

(
|ξj| ≥ b

)
≤ C d

(
X + exp(−b2/2)

)
.

We choose now d = dn = λ log n/ log log n, λ > 0 and b = bn = dn log dn. Suppose
now that

lim sup
d→∞

d−1

d∑
j=1

exp(−x2
j/2) = 0. (3.5.3)

Then by virtue of Theorem 3.4.1 and arguing as in the proof of Theorem 3.2.2,
one easily verifies that limn→∞ εn = 0 and limn→∞ dnXn + dn exp(−b2

n/2) = 0
for appropriately increasing sequences Xn, θ−1

n , Mn and sufficiently small λ > 0,
where εn is the quantity in formula (3.5.2) with variable parameters dn,Xn,Mn, , Rn, θn.
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This leaves us to consider the case were (3.5.3) is violated. This implies that we
must have

lim sup
d→∞

d−1

d∑
j=1

exp(−x2
j/2) ≥ δ > 0. (3.5.4)

Define the sets B
(n)
d =

{
1 ≤ j ≤ d | exp(−x2

j/2) ≥ δ/2
}

, and note that these

sets may substantially differ for each d. Due to (3.5.4), we have that |B(n)
d | → ∞

as n (and hence also d) increases, where |B(n)
d | denotes the cardinality of the set.

We thus obtain∣∣P(ζn,1 ≤ x1, ..., ζn,d ≤ xd)− P
(
ξ1 ≤ x1, ..., ξd ≤ xd)

∣∣
≤ P

( ⋂
j∈B(n)

d

{ζn,j ≤ xj}
)

+ P
( ⋂
j∈B(n)

d

{ξj ≤ xj}
)

≤ P
( ⋂
j∈B(n)

d

{ζn,j ≤
√
−2 ln δ/2}

)
+ P

( ⋂
j∈B(n)

d

{ξj ≤
√
−2 ln δ/2}

)
.

Since |B(n)
d | → ∞ as n (and hence also d) increases, [39, Theorem] implies that

P
(⋂

j∈B(n)
d
{ξj ≤

√
−2 ln δ/2}

)
→ 0. On the other hand, it follows from the proof

of Theorem 3.2.1 that there exists a sequence of subsets B
(n),∗
d ⊂ B

(n)
d , such that

limn |B(n),∗
d | → ∞ and

lim
n

∣∣P( ⋂
j∈B(n),∗

d

{ζn,j ≤
√
−2 ln δ/2}

)
− P

( ⋂
j∈B(n),∗

d

{ξj ≤
√
−2 ln δ/2}

)∣∣→ 0.

Since P
(⋂

j∈B(n)
d
{ζn,j ≤

√
−2 ln δ/2}

)
≤ P

(⋂
j∈B(n),∗

d
{ζn,j ≤

√
−2 ln δ/2}

)
, we

conclude that

lim
n

∣∣P(ζn,1 ≤ x1, ..., ζn,d ≤ xd)− P
(
ξ1 ≤ x1, ..., ξd ≤ xd)

∣∣ = 0,

if (3.5.3) is violated. Piecing everything together, the claim follows. This com-
pletes the proof of Theorem 3.2.4.

Proof of Lemma 3.5.1. Put σn = Var(Zn), σ = Var(Z), rn :=
∣∣σn − σ

∣∣, L :=
rn/(σσn), and

φσ(x) = (
√

2πσ)−1/2 exp(−x2/(2σ)).
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Then∣∣∫ ∞
0

(
(
√

2πσ)−1/2 exp(−x2/(2σ))− (
√

2πσn)−1/2 exp(−x2/(2σn))
)
dx
∣∣

≤
∫ ∞

0

ϕσ(x)

√
1 +

rn
σn

∣∣exp(x2rn/(σσn)− 1
∣∣dx+

∣∣√1 +
rn
σn
− 1
∣∣

≤
∣∣rnσ−1

n

∣∣+

√
1 +

rn
σn

(∫ L−1

0

ϕσ(x)x2Ldx+ 2

∫ ∞
L−1

ϕσ(x) exp(x2L)dx

)

≤
∣∣rnσ−1

n

∣∣+

√
1 +

rn
σn

(
σL+ (1− 2σσ−1

n L)

∫ ∞
L−1

ϕσ(x)dx

)
:= A. (3.5.5)

If we have that σn ≥ 2
√
rn = 2n−q, q > 0, an application of Lemma 3.3.4 gives

the following upper bound for A.

A ≤ 4

(
√
rn +

∫ ∞
L−1

ϕσ(x)dx

)
≤ 5
√
rn = 5n−q/2.

On the other hand, if σn < 2
√
rn, we obtain as in the proof of Theorem 3.4.1

sup
{x||x|≥θn}

∣∣P(Zn ≤ x
)
− P

(
Z ≤ x

)∣∣ ≤ C
(√

rnθ
−2
n

)
,

which completes the proof.

Proof of Lemma 3.5.2. Put E
(
ε4
)

= η and let Λn,h = n−1/2
∑n

j=0

(
XjXj+h − φh

)
.

Since dn = O (log n), we have that

E
(
Sn,k, Sn,l

)
= E

(
Λn,k,Λn,l

)
+O

(
n−1(log n)2

)
= E

(
Λn,k,Λn,l

)
+O

(
n−2/3

)
,

and it thus suffices to consider E
(
Λn,k,Λn,l

)
. Due to [25, section 7.2], it holds

that

E
(
Λn,k,Λn,l

)
=
∑
|m|<n

n− |m|
n

Tm, (3.5.6)

where

Tm = φmφm+k−l + φm+kφm−l + (η − 3)
∑
i

αiαi+kαi+mαi+m+l.

In particular, it holds that

ρk,l = lim
n
ρn,k,l = (η − 3)φkφl +

∞∑
m=−∞

(
φmφm+k−l + φm+kφm−l

)
. (3.5.7)
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We will now show a). Since∫ ∞
1

1(
x(x+m)3/2

)dx = O
(
(m
√
m)−1

)
, (3.5.8)

we have that

φm =
∞∑
i=0

αiαi+m = O
(
(m
√
m)−1

)
. (3.5.9)

We thus obtain for 0 ≤ k, l ≤ dn∑
|m|>n1/3

(
φmφm+k−l + φm+kφm−l

)
= O

(
n−2/3

)
.

Using this, we obtain for 0 ≤ k, l ≤ dn the decomposition

ρk,l =
∞∑
|m|=0

Tm =
∑

|m|≤n1/3

Tm +O
(
n−2/3

)
, (3.5.10)

which yields

max
0≤k,l≤dn

|ρn,k,l − ρk,l| = O
(
n−2/3

)
,

and thus a). b) follows from (6.5.16), while c) follows from (6.5.24) and (3.5.8).
Finally, d) follows from (6.5.24) and (3.5.8).

Proof of Corollary 3.5.3. By [131, Theorem 1], we have for any fixed d ∈ N, that{
Sn,h

}
0≤h≤d

d−→
{
ξh
}

0≤h≤d,

where
{
ξh
}

0≤h≤d is a Gaussian process with Cov(ξi, ξj) = ρi,j, 0 ≤ i, j ≤ d. Put

Sn,h,s = n−1/2
∑n

k=0 sh
(
XkXk+h−φh

)
, and ξh,s = shξh, where max0≤h≤d |sh| ≤M .

Then Proposition 3.5.2 implies

∣∣Var
( d∑
h=0

Sn,h,s
)
− Var

( d∑
h=0

ξh,s
)∣∣ ≤ n−2/3d2M2 ≤ n−1/2,

and the claim follows from Lemma 3.5.1 and Theorem 3.4.1.



Chapter 4

Obtaining a larger Growth Rate

4.1 Introduction

Let us reconsider the problem discussed in the previous chapter, i.e; we want to
study the asymptotic behavior, as n→∞, of the object

max
0≤h≤dn

∣∣φ̂n,h − φh∣∣. (4.1.1)

We essentially established a growth rate of dn = O (log n) using the quantiative
Cramér-Wold device discussed in Section 3.3. The prove was based on martingale
approximations and characteristic functions. The advantage of this approach was
that it allows for very general processes. On the other hand, as for instance Sena-
tov [110] pointed out, using characteristic functions as a tool in higher dimensions
cannot lead to optimal results. Moreover, this is also the case when using mar-
tingale approximations for obtaining Gaussian approximations (cf. Chapter 2).
Narrowing down the class of potential processes allows to use different tools which
yield much larger growth rates for dn, more precisely, we will establish analogues
of Theorem 3.2.2 with the growth rate dn = O

(
n1/6(log n)−α/3

)
, for some α > 3.

To this end, note that in case of linear processes, one may write

φ̂n,h =
1

n

n∑
k=1

gh(εk+h, εk+h−1, ...), (4.1.2)

where the functions gh are defined via

gh(εk+h, εk+h−1, ...) := Xk+hXk =
∞∑
i=0

∞∑
j=0

αiαjεk+h−iεk−j. (4.1.3)

Instead of considering the particular case of the covariance estimators
{
φ̂n,h

}
1≤h≤dn

,

we will generally discuss functions gh(εk+h, εk+h−1, ...) under a mild dependence
condition, that is easy to verify.

41
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4.2 Main results

Let
{
εk
}
k∈Z be a sequence of zero mean IID random variables. In the sequel, we

will consider the array of zero mean random variables Xk,h = gh(εk+h, εk+h−1, ...),
k ∈ Z, 1 ≤ h ≤ dn, where gh are measurable functions such that Xk,h are
proper random variables. For convenience, we will also write gh(ξk+h), with
ξk = (εk, εk−1, ...). The class of processes that fits into this framework is large,
and contains a variety of linear and nonlinear processes including ARCH, GARCH
and related processes, see for instance [52, 104, 120, 121]. A very nice feature
of the representation given above is that it allows to give simple, yet very ef-
ficient and general dependence conditions. Following Wu [133], let

{
ε′k
}
k∈Z be

an independent copy of
{
εk
}
k∈Z on the same probability space, and define the

’filters’ ξ
(m,′)
k, , ξ

(m,∗)
k,h as ξ

(m,′)
k,h = (εk+h, εk+h−1, ..., ε

′
k−m, εk−m−1, ...) and ξ

(m,∗)
k,h =

(εk+h, εk+h−1, ..., εk−m, ε
′
k−m−1, ...). We put ξ′k,h = ξ

(0,′)
k,h = (εk+h, εk+h−1, ..., ε

′
0, ε−1, ...)

and ξ∗k,h = ξ
(0,∗)
k,h = (εk+h, εk+h−1, ..., ε0, ε

′
−1, ...). In analogy, we put X

(m,′)
k,h =

gh
(
ξ

(m,′)
k,h

)
and X

(m,∗)
k,h = gh

(
ξ

(m,∗)
k,h

)
, in particular we have X ′k,h = X

(0,′)
k,h and

X∗k,h = X
(0,∗)
k,h .

As a dependence measure, one may now consider the quantities
∥∥Xk,h − X ′k,h

∥∥
p

or
∥∥Xk,h − X∗k,h

∥∥
p
, p ≥ 1, where ‖.‖pp = E(|.|p). For example, if we define the

linear processes Xk,h =
∑∞

i=0 αi,hεk−i, the condition

∞∑
k=0

∥∥Xk,h −X ′k,h
∥∥

2
<∞ (4.2.1)

is valid if
∑∞

i=0 |αi,h| < ∞, provided that E
(
ε20
)
< ∞. Dependence conditions of

the type of (4.2.1) are often quite general and easy to verify in many cases, see
for instance [15, 34, 42, 130] and the references there. For fixed h, we will always
express the dependence condition in terms of

∥∥Xk,h − X ′k,h
∥∥
p

in the sequel (cf.

Assumption 4.2.1).
For 1 ≤ h ≤ dn, we denote the partial sums with

Sn,h =
1√
n

n∑
k=1

Xk,h,

and define the dn-dimensional vector

Sn =
(
Sn,1, Sn,2, ..., Sn,dn

)T
.
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In order to state the main results, we require the following additional notation.
We formally define the limit covariance

ϕh,l = lim sup
n→∞

∣∣E(S(mn)
n,h , S

(mn)
n,l

)∣∣, h, l ∈ N, (4.2.2)

and for k ≥ 0 the total limit covariance

rk = sup
|h−l|≥k

|ϕh,l|. (4.2.3)

The main results are derived under the following dependence and regularity
conditions.

Assumption 4.2.1. Assume that for some p ≥ 4 it holds that

(i) max
1≤h≤dn

∥∥Xk,h −X ′k,h
∥∥
p

= O
(
k−β
)
, β > 3/2,

(ii) lim inf
n→∞

min
1≤h≤dn

Var
(
Sn,h

)
> 0.

Note that (i) implies in particular that max1≤h≤dn
∥∥Xk,h

∥∥
p
< ∞, this follows

for instance from Lemma 4.3.3. We also mention that instead of (i), one may also
use the condition

max
1≤h≤dn

∥∥Xk,h −X(h,′)
k,h

∥∥
p

= O
(
k−β
)
, β > 3/2. (4.2.4)

We can now give the main result.

Theorem 4.2.2. Assume that r1 < 1 and that rn(log n)2+γ → 0, for some γ > 0.
Then, if in addition Assumption 4.2.1 is valid, we have for z ∈ R

lim
n→∞

P

(
a−1
n

(
max

1≤h≤dn

∣∣Sn,hVar
(
Sn,h

)−1/2∣∣− bn) ≤ z

)
= exp(−e−z),

where an = (2 log dn)−1/2 and bn = (2 log dn)1/2−(8 log dn)−1/2(log log dn+4π−4),
and dn = O

(
n1/6(log n)−α/3

)
, for some α > 4.

The conditions needed to prove the above theorem can essentially be divided
into two classes. Assumption 4.2.1 is needed to allow for a suitable Gaussian ap-
proximation for the random vector Sn, whereas condition (a) or (b) is required to
establish weak convergence to an extreme-value type distribution. On the whole,
the above conditions are quite general and, as pointed out earlier, include many
weakly dependent processes.

In general, the variance Var
(
Sn,h

)
is not known in practice and needs to be

estimated. One may hope that the above Theorems are still valid if one replaces
Var
(
Sn,h

)
with the corresponding estimates V̂ar

(
Sn,h

)
, and indeed this is the case

if the following mild condition is imposed on potential variance estimators ψ̂h.
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Assumption 4.2.3.

lim sup
n→∞

P
(

max
1≤h≤dn

∣∣V̂ar
(
Sn,h

)
− Var

(
Sn,h

)∣∣ > (log n)−α
)

= 0, α > 1.

We then have that

Theorem 4.2.4. Assume that the assumptions of Theorem 4.2.2 are satisfied. If
in addition Assumption 4.2.3 is valid, we have

lim
n→∞

P

(
a−1
n

(
max

1≤h≤dn

∣∣Sn,hV̂ar
(
Sn,h

)−1/2∣∣− bn) ≤ z

)
= exp(−e−z),

where an = (2 log dn)−1/2 and bn = (2 log dn)1/2−(8 log dn)−1/2(log log dn+4π−4),
and dn = O

(
n1/6(log n)−α/3

)
, for some α > 3.

The literature (cf. [4, 25, 60]) provides many potential candidates to estimate
the long run variance σ2

h = limn→∞Var
(
Sn,h

)
. A popular estimator is Bartlett’s

estimator, or more general, estimators of the form

σ̂2
h =

∑
|j|≤r

ω(k/r)γ̂j,h (4.2.5)

with weight function ω(x), where γj,h = E
(
X0,hXj,h

)
and γ̂j,h = n−1

∑n−j
k=1 Xk,hXk+j,h.

Considering the triangular weight function ω(x) = 1−|x| for |x| ≤ 1 and ω(x) = 0
for |x| > 1, one recovers the Bartlett estimator in (4.2.5). One may also use the
plain estimate

σ̂2
h = γ̂0,h + 2

ln∑
i=1

γ̂i,h, (4.2.6)

see for instance [112, 113]. In particular, Wu [131, Proposition 1] provides the
following result, which we have reformulated for our setting.

Proposition 4.2.5. Let ln ∈ N, ln →∞ as n increases with ln = O
(√

n
(
dn(log n)α

)−1
)

,

where α > 1. If Assumption 4.2.1 holds, then

lim sup
n→∞

P
(

max
1≤h≤dn

∣∣V̂ar
(
Sn,h

)
− Var

(
Sn,h

)∣∣ > (log n)−α
)

= 0, α > 1.

Consequently, Theorem 4.2.4 is valid if one uses the variance estimator given
in (4.2.6).

Let us briefly reconsider the case of the covariance estimators φ̂n,h in case of
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linear processes
{
Lk
}
k∈Z, more precisely, let Lk =

∑∞
i=0 αiεk−i be a linear pro-

cess, where
{
εk
}
k∈Z is a mean zero IID sequence. We are interested in establishing

simultaneous confidence bands for the covariances φh = E
(
LhL0

)
, which, as men-

tioned in Chapters 1 and 3, is an important issue. To this end, let

Sn,h =
1√
n

n−h∑
k=0

(
LkLk+h − φh

)
, 0 ≤ h ≤ dn,

where φh =
∑∞

i=0 αiαi+h.
Then the following variant of Theorem 4.2.2 holds.

Theorem 4.2.6. Assume that 0 < ‖ε0‖8 <∞, and that

• |αi| > 0 for at least one i ∈ N0,

• |αi| = O
(
i−β
)
, with β > 3/2.

Then for z ∈ R it holds that

lim
n→∞

P

(
a−1
n

(
max

1≤h≤dn

∣∣Sn,hVar
(
Sn,h

)−1/2∣∣− bn) ≤ z

)
= exp(−e−z),

where an = (2 log dn)−1/2 and bn = (2 log dn)1/2−(8 log dn)−1/2(log log dn+4π−4),
and dn = O

(
n1/6(log n)−α/3

)
, for some α > 3.

Naturally, an analogue version of Theorem 4.2.4 is valid, and Proposition 4.2.5
is also valid under the conditions given in Theorem 4.2.6.

4.3 Proofs

The proof of Theorem 4.2.2 is developed in a series of Lemmas. To this end, we
formally introduce the following notation. Let

{
Uk
}
k∈Z be a stationary process,

adapted to some filtration Fk. We define the projection operator PkUi as

PkUi = E
(
Ui | Fk

)
− E

(
Ui | Fk−1

)
, k, i ∈ Z.

Let us consider the partial sums Λn =
∑n

i=1 Ui. Many of the following re-
sults are based on martingale approximations for Λn. Various different approx-
imating martingale sequences have been proposed in the literature, see for in-
stance [70, 100, 101, 128, 130] and the references there. In our setting, the
following approximating sequence of martingales, introduced by Gordin [55], is
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appropriate. Define the martingale
{
Mk

}
k∈Z and the remainder process

{
Rk

}
k∈Z

as

Mk =
∞∑
i=1

E
(
Ui | Fk

)
, Rk =

∞∑
i=k+1

E
(
Ui | Fk

)
.

Note that both processes are stationary (if the above series converge), this follows
for instance from Lemma 3.84 in [70]. We can now decompose Λn as

Λn = Mn −M1 +M1 −Rn, (4.3.1)

where we note that M1 = R0. We will frequently use the above decomposition for
varying underlying processes

{
Uk
}
k∈Z. We will, however, abuse the notation by

always writing Mn, Rn for the corresponding martingale and remainder process,
regardless of the specific process

{
Uk
}
k∈Z. In addition, we define the martingale

differences

Dk = Mk+1 −Mk. (4.3.2)

Another essential tool will be approximations with mn-dependent random
variables. To this end, we introduce the following notation. Let

{
εk
}
k∈Z be a

sequence of zero mean IID random variables. We define the following two σ-
algebras

Fk = σ
(
εj, j ≤ k

)
, Fk+m

k−m = σ
(
εj, k −m ≤ j ≤ k +m

)
, (4.3.3)

and for 1 ≤ h ≤ dn the random variables

Y
(≤m)
k,h = E

(
Xk,h | Fk+m

k−m
)
,

Y
(>m)
k,h = Xk,h − Y (≤m)

k,h = Xk,h − E
(
Xk,h | Fk+m

k−m
)
. (4.3.4)

In addition to the conditional approximations defined above, we denote the cor-
responding partial sums as

S
(m)
n,h =

1√
n

n∑
k=1

Y
(≤m)
k,h , S

(>m)
n,h =

1√
n

n∑
k=1

Y
(>m)
k,h , 1 ≤ h ≤ dn,

and the random vector

S(m)
n =

(
S

(m)
n,1 , S

(m)
n,2 , ..., S

(m)
n,dn

)T
, S(>m)

n =
(
S

(>m)
n,1 , S

(>m)
n,2 , ..., S

(>m)
n,dn

)T
.
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When dealing with extreme value-type distributions, the following notation
also turns out to be quite convenient. For z ∈ R we put

udn(z) = an z + bn,

where an, bn are as in Theorem 4.2.2, and we usually write udn instead of udn(z) if
the dependence on z is not important. Note in particular the following asymptotic
expansion

u2
dn(z) = u2

dn = 2 log dn − log log dn +O (1) , (4.3.5)

and, for a standard Gaussian random variable Z the tail estimate

P
(
|Z| ≥ udn(z)

)
=

z

dn
+ O

(
d−1
n

)
, (4.3.6)

which we will extensively use in the sequel. Throughout the proofs, we will always
assume that the sequences m = mn and dn satisfy

• dn = O
(
n1/6(log n)−α/3

)
, for some α > 3.

• 2dn ≤ mn = O
(
n1/6(log n)−α/3

)
, where α > 3 is as above.

The proof of Theorem 4.2.2 essentially consists of three steps. In the first step
we collect some preliminary results concerning the magnitude of S

(mn)
n,h , S

(>mn)
n,h ,

and related quantities. The second step consists of various truncation arguments,
which essentially allows to consider mn-dependent sequences

{
Xk,h

}
k∈N. Finally,

the third steps presents an appropriate Gaussian approximation, which allows to
apply results from the literature to deduce the result.

4.3.1 Step one - preliminary results

Lemma 4.3.1. Assume that Assumption 4.2.1 is valid. Then

max
1≤h≤dn

∥∥S(>mn)
n,h

∥∥
2

= O
(
m3/2−β
n + n−1/2

)
.

Remark 4.3.2. Note that the assumption dn ≥ nδ for some δ > 0 implies that
we have in particular

max
1≤h≤dn

∥∥S(>mn)
n,h

∥∥
2

= O
(
(log n)−q

)
, (4.3.7)

for any q > 0, since dn < mn.
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Proof of Lemma 4.3.1. First note that the Cauchy-Schwarz inequality implies∥∥Xk,h −X ′k,h
∥∥

2
≤
∥∥Xk,h −X ′k,h

∥∥
4

= O
(
k−β
)
. (4.3.8)

Using that S
(>mn)
n,h = Mn −M1 − (Rn −R0), we obtain∥∥S(>mn)

n,h

∥∥
2
≤ 2
∥∥R0

∥∥
2

+
∥∥Mn

∥∥
2
.

Using the orthogonality of the martingale increments Dk we have

∥∥Mn

∥∥
2

=
∥∥ ∞∑
k=0

P0(Y
(>mn)
k,h )

∥∥
2
≤

∞∑
k=0

∥∥P0(Y
(>mn)
k,h )

∥∥
2
.

Since E
{
E
(
Xk,h | Fk+m

k−m
)
| F0

}
= 0 for k > m, we obtain that∥∥P0(Y

(>mn)
k,h )

∥∥
2
≤ 2 min

{∥∥Y (>mn)
k,h

∥∥
2
,
∥∥Xk,h −X ′k,h

∥∥
2

}
. (4.3.9)

Let F ′k = σ(ε′k, ε
′
k−1, ...). Then for any p ≥ 1 we have by the triangular and

Jensen’s inequality∥∥Y (>mn)
k,h

∥∥
p
≤
∥∥Xk,h −X(mn,∗)

k,h

∥∥
p

+
∥∥E(Xk,h −X(mn,∗)

k,h | σ
(
Fk+mn
k−mn ∪ F

′
k−mn−1

))∥∥
p

≤ 2
∥∥Xk,h −X(mn,∗)

k,h

∥∥
p
,

where we also used the fact that

X
(mn,∗)
k,h − E

(
X

(mn,∗)
k,h | Fk+mn

k−mn

)
= E

(
X

(mn,∗)
k,h −Xk,h | σ

(
Fk+mn
k−mn ∪ F

′
k−mn−1

))
.

Hence we obtain from the above that

∞∑
k=1

∥∥P0(Y
(>mn)
k,h )

∥∥
2
≤

mn∑
k=1

2
∥∥Xk,h −X(mn,∗)

k,h

∥∥
2

+
∞∑

k=mn+1

∥∥Xk,h −X ′k,h
∥∥

2

= 2mn

∥∥X1,h −X(mn,∗)
1,h

∥∥
2

+
∞∑

k=mn+1

∥∥Xk,h −X ′k,h
∥∥

2
. (4.3.10)

By [129, Theorem 1 (iii)] and Assumption 4.2.1 (i) we have for p ≥ 2

∥∥X1,h −X(mn,∗)
1,h

∥∥2

p
≤ C

0∑
i=−∞

∥∥Xmn+h−i,h −X ′mn−i,h
∥∥2

p
= O

(
m1−2β
n

)
, (4.3.11)

and we thus obtain that∥∥Mn

∥∥
2
≤

∞∑
k=1

∥∥P0(Y
(>mn)
k,h )

∥∥
2

= O
(
m3/2−β
n

)
. (4.3.12)
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On the other hand, using (4.3.11) and similar arguments as above, we have

√
n
∥∥R0

∥∥
2
≤ 2

∞∑
k=0

∥∥Xk,h −X∗k,h
∥∥

2
= O

(
∞∑
k=1

k1/2−β

)
= O(1).

Piecing everything together, the claim follows.

Lemma 4.3.3. Assume that Assumption 4.2.1 is valid. Then

lim sup
n→∞

max
1≤h≤dn

∥∥∥∥ 1√
L

L∑
k=1

Y
(≤mn)
k,h

∥∥∥∥
4

<∞,

for any 1 ≤ L ≤ n.

Proof of Lemma 4.3.3. Using the martingale decomposition S
(≤mn)
n,h = Mn−M1−

(Rn −R1), we obtain as in Lemma 4.3.1∥∥S(≤mn)
L,h

∥∥
4
≤ 2
∥∥R1

∥∥
4

+
∥∥ML

∥∥
4

= O
(
L−1/2

)
+
∥∥ML

∥∥
4
.

Let Dk = Mk+1 −Mk be the martingale differences. Then an application of [35,
Proposition 4] yields

∥∥ML

∥∥2

4
≤ 8

L

L∑
k=0

∥∥D2
k

∥∥
2

= O (1) . (4.3.13)

For x ≥ 1, let rx be the solution of the equation

x = (1 + rx)
9 exp(x2/2).

As x → ∞, one has the expansion r2
x = 2 log x − (18 + O(1)) log(1 +

√
2 log x),

see [57]. The following result is a reformulation of Theorem 3 in [131], which we
have adapted for our cause.

Lemma 4.3.4. Assume that Assumption 4.2.1 is valid. Let bn = dn/n + n−2/3.
Then

max
1≤h≤dn

∣∣∣∣P
(∣∣ n∑

k=1

Xk,h

∣∣ > σh
√
nrx

)
− 2
(
Φ(rx)− 1

)∣∣∣∣ ≤ C (bnx)1/5 (Φ(rx)− 1
)
,

uniformly over x ∈ [1, b−1
n ], where C is independent of h, n.
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4.3.2 Step two - truncation

We will frequently use the following result.

Lemma 4.3.5. Let Z
(1)
n =

(
Z

(1)
1 , ..., Z

(1)
n

)T
be a zero mean n-dimensional Gaus-

sian random vector, such that

Var
(
Z

(1)
i

)
= 1, 1 ≤ i ≤ dn.

Suppose that Z
(2)
n =

(
Z

(2)
1 , ..., Z

(2)
n

)T
is another n-dimensional random vector such

that

lim
n→∞

P
(
max |Z(2)

n | > (log n)−δ
)

= 0, (4.3.14)

for some δ > 1/2. Then∣∣P(max |Z(1)
n + Z(2)

n | ≤ un
)
− P

(
max |Z(1)

n | ≤ un
)∣∣→ 0, (4.3.15)

as n tends to infinity.

Proof of Lemma 4.3.5. We have∣∣P(max |Z(1)
n + Z(2)

n | ≤ un
)
− P

(
{max |Z(1)

n + Z(2)
n | ≤ un} ∩ {max |Z(2)

n | ≤ (log n)−δ}
)∣∣

≤ P
(
max |Z(2)

n | > (log n)−δ
)
,

which tends to zero as n increases due to condition (4.3.14). Moreover, it holds
that∣∣P({max |Z(1)

n + Z(2)
n | ≤ un} ∩ {max |Z(2)

n | ≤ (log n)−δ}
)∣∣

≤ P
(
un − (log n)−δ ≤ max |Z(1)

n | ≤ un
)

+ P
(
un ≤ max |Z(1)

n | ≤ un + (log n)−δ
)

≤ n

(
max
1≤i≤n

P
(
un − (log n)−δ|Z(1)

i | ≤ un
)

+ max
1≤i≤n

P
(
un ≤ |Z(1)

i | ≤ un + (log n)−δ
))

.

Using the tail estimate 1− Φ(x) ≤ (2π)−1/2x−1 exp(−x2/2) for x > 0, the above
is smaller than

C n
(
(log n)−δu−1

n exp
(
−u2

n/2 + un(log n)−δ
)

+ (log n)−δu−1
n exp

(
−u2

n/2− un(log n)−δ
))
.

Note that un(log n)−δ → 0 as n increases, thus by relation (4.3.5) the above is
bounded by C (log n)−δ. Hence the claim follows.

Lemma 4.3.6. Assume that

lim
n→∞

P
(

max
1≤h≤dn

∣∣Sn,hVar
(
S

(m)
n,h

)−1/2∣∣ ≤ udn
)

= exp(−e(−z)), (4.3.16)

and that Assumption 4.2.1 is valid. Then

lim
n→∞

P
(

max
1≤h≤dn

∣∣Sn,hVar
(
Sn,h

)−1/2∣∣ ≤ udn
)

= exp(−e(−z))
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Proof of Lemma 4.3.6. Put

I
(m)
n,h :=

Sn,h√
Var
(
Sn,h

) − Sn,h√
Var
(
S

(m)
n,h

)
=

Sn,h√
Var
(
S

(m)
n,h

) Var
(
S

(m)
n,h

)
− Var

(
Sn,h

)√
Var
(
Sn,h

)(√
Var
(
S

(m)
n,h

)
+
√

Var
(
Sn,h

))
:=

Sn,h√
Var
(
S

(m)
n,h

)II(m)
n,h ,

and note that relation (4.3.7) implies that

lim sup
n→∞

max
1≤h≤dn

∣∣II(m)
n,h

∣∣(log n)1/2+δ = 0, δ > 1/2. (4.3.17)

We thus obtain that for sufficiently large n

P
(

max
1≤h≤dn

∣∣I(m)
n,h

∣∣ > (log n)−δ
)
≤ P

(
max

1≤h≤dn

∣∣Sn,hVar
(
S

(m)
n,h

)−1/2∣∣ > (log n)−δ
∣∣II(m)

n,h

∣∣−1)
≤ P

(
max

1≤h≤dn

∣∣Sn,hVar
(
S

(m)
n,h

)−1/2∣∣ >√3 log n
)

= O(1).

Then, arguing as in the proof of Lemma 4.3.5 yields

∣∣P( max
1≤h≤dn

∣∣Sn,hVar
(
Sn,h

)−1/2∣∣ ≤ un
)
− P

(
max

1≤h≤dn

∣∣Sn,hVar
(
S

(m)
n,h

)−1/2∣∣ ≤ un
)∣∣

≤ P
(
un − (log n)−δ ≤ max

1≤h≤dn

∣∣Sn,hVar
(
S

(m)
n,h

)−1/2∣∣ ≤ un
)

+ P
(
un ≤ max

1≤h≤dn

∣∣Sn,hVar
(
S

(m)
n,h

)−1/2∣∣ ≤ un + (log n)−δ
)

= O(1),

hence the claim follows.

Lemma 4.3.7. Assume that

lim
n→∞

P
(

max
1≤h≤dn

∣∣S(mn)
n,h Var

(
S

(m)
n,h

)−1/2∣∣ ≤ udn
)

= exp(−e(−z)), (4.3.18)

and that Assumption 4.2.1 is valid. Then

lim
n→∞

P
(

max
1≤h≤dn

∣∣Sn,hVar
(
S

(m)
n,h

)−1/2∣∣ ≤ udn
)

= exp(−e(−z)).
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Proof of Lemma 4.3.7. Let δ > 1/2. Then, proceeding as in the proof of Lemma
4.3.5, we obtain that∣∣P( max

1≤h≤dn

∣∣S(mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≤ un
)
− P

(
max

1≤h≤dn

∣∣Sn,hVar
(
S

(mn)
n,h

)−1/2∣∣ ≤ un
)∣∣

≤ P
(
udn − (log n)−δ ≤ max

1≤h≤dn

∣∣S(mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≤ udn
)

+ P
(
udn ≤ max

1≤h≤dn

∣∣S(mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≤ udn + (log n)−δ
)

+ P
(

max
1≤h≤dn

∣∣S(>mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≥ (log n)−δ
)
.

Due to Lemma 4.3.3 and relation (4.3.7) we have for sufficiently large n that

P
(

max
1≤h≤dn

∣∣S(>mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≥ (log n)−δ
)

≤ dn max
1≤h≤dn

P
(
|S(>mn)
n,h |Var

(
S

(>mn)
n,h

)−1/2
>
√

log n
)
.

Setting bn = n−2/3, x = b−1
n , an application of Lemma 4.3.4 yields that the

above is bounded by Cdn
(
Φ(rx) − 1

)
, for some C > 0, where r2

x ≥ 1/2 log n
for sufficiently large n. Hence, using the well known tail estimate 1 − Φ(x) ≤
(2π)−1/2x−1 exp(−x2/2) for x > 0, we thus obtain

P
(

max
1≤h≤dn

∣∣S(>mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≥ (log n)−δ
)

= O
(
dnn

−1/2
)

= O(1). (4.3.19)

On the other hand, for any z′ < z < z′′, we have for sufficiently large n the
inequalities

P
(
udn(z)− (log n)−δ ≤ max

1≤h≤dn

∣∣S(mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≤ udn(z)
)

≤ P
(
udn(z′) ≤ max

1≤h≤dn

∣∣S(mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≤ udn(z)
)
,

P
(
udn(z) ≤ max

1≤h≤dn

∣∣S(mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≤ udn(z) + (log n)−δ
)

≤ P
(
udn(z) ≤ max

1≤h≤dn

∣∣S(mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≤ udn(z′′)
)
.

In addition, condition (4.3.18) yields that

P
(
udn(z′) ≤ max

1≤h≤dn

∣∣S(mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≤ udn(z)
)

+ P
(
udn(z) ≤ max

1≤h≤dn

∣∣S(mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≤ udn(z′′)
)
→ exp(−e(−z′′))− exp(−e(−z′)),
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as n tends to infinity. This implies that we can chose sequences z′n ↑ z, z′′n ↓ z,
such that

lim
n→∞

P
(
udn(z′n) ≤ max

1≤h≤dn

∣∣S(mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≤ udn(z)
)

= exp(−e(−z))− exp(−e(−z)) = 0,

lim
n→∞

P
(
udn(z) ≤ max

1≤h≤dn

∣∣S(mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≤ udn(z′′n)
)

= exp(−e(−z))− exp(−e(−z)) = 0,

which completes the proof.

We will now approximate
{
Xk,h

}
k∈N with an mn-dependent sequence. To

this end, let d∗n = dn + dn(log n)α. We divide the set of integers {1, 2, ...} into
consecutive blocks H1, I1,H2, I2... . The blocks are defined by recursion, more
precisely, define

Hj :=
{
k ∈ N | 1 + (j − 1)d∗n ≤ k ≤ jd∗n

}
,

and

Ij =
{
k ∈ N | jd∗n − 2mn − 1 ≤ k ≤ jd∗n

}
.

Note that unlike to many other authors, we do not use a dyadic (or triadic)
scheme, since it turns out that the Gaussian approximation used in Section 4.3.3
works better with the blocks defined above.

For 1 ≤ j ≤ dn/d∗ne we define the random variables

η
(m,1)
j,h =

∑
k∈Hj

Y
(≤m)
k,h , η

(m,2)
j,h :=

∑
k∈Ij

Y
(≤m)
k,h , (4.3.20)

and the random vectors

η
(m,i)
j =

(
η

(m,i)
j,1 , η

(m,i)
j,2 , ..., η

(m,i)
j,dn

)T
, i ∈ {1, 2}. (4.3.21)

In this spirit, we also define the partial sums as

S
(m,i)
n,h =

1√
n

dn/d∗ne∑
j=1

η
(m,i)
j,h , i ∈ {1, 2},

and the random vectors

S(m,i)
n =

(
S

(m,i)
n,1 , S

(m,i)
n,2 , ..., S

(m,i)
n,dn

)T
, i ∈ {1, 2}.
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Note that we have the representation

S(m)
n = S(m,1)

n + S(m,2)
n =

1√
n

dn/d∗ne∑
j=1

(
η

(m,1)
j + η

(m,2)
j

)
.

In addition, we assume throughout the remainder of this paper that Λ
(m,i)
n,h , i ∈

{1, 2} are Gaussian copies of S
(m,i)
n,h ,i ∈ {1, 2}, in other words, Gaussian processes

with the same covariance structure as S
(m,i)
n,h ,i ∈ {1, 2}.

Lemma 4.3.8. Let d∗n = dn + dn(log n)α, α > 3, and assume that

lim
n→∞

P
(

max
1≤h≤dn

∣∣S(mn)
n,h Var

(
S

(mn,1)
n,h

)−1/2∣∣ ≤ udn
)

= exp(−e(−z)), (4.3.22)

and that Assumption 4.2.1 is valid. Then

lim
n→∞

P
(

max
1≤h≤dn

∣∣S(mn)
n,h Var

(
S

(mn)
n,h

)−1/2∣∣ ≤ udn
)

= exp(−e(−z)).

Proof of Lemma 4.3.8. By the cauchy-Schwarz inequality, we have∣∣Var
(
S

(mn,1)
n,h

)
− Var

(
S

(mn)
n,h

)∣∣ ≤ Var
(
S

(mn,2)
n,h

)
+ 2

√
Var
(
S

(mn,2)
n,h

)
Var
(
S

(mn,1)
n,h

)
,

hence

max
1≤h≤dn

∣∣Var
(
S

(mn,1)
n,h

)
− Var

(
S

(mn)
n,h

)∣∣ = O
(

max
1≤h≤dn

√
Var
(
S

(mn,2)
n,h

))
. (4.3.23)

Per construction, we have

Var
(
S

(mn,2)
n,h

)
=

1

n

dn/d∗ne∑
j=1

Var
(
η

(mn,2)
j,2

)
≤ C(d∗n)−1Var

(
η

(mn,2)
1,2

)
,

and due to Assumption 4.2.1 (ii) the right hand side is bounded by

C(d∗n)−1dn = O
(
(log n)−α/2

)
. (4.3.24)

One can now proceed exactly as in the proof of Lemma 4.3.6.
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4.3.3 Step three - normal approximation

To simplify the notation a little, we will assume from now on that

Var
(
S

(mn,1)
n,h

)
= 1, max

1≤h≤dn
Var
(
S

(mn,2)
n,h

)
= O

(
(log n)−α

)
, α > 3.

Note that this does not pose any additional restraint due to the previous results.
In the sequel, we will be dealing with d-dimensional spheres. To this end, we
define the open sphere with center x as

B(x, r, d) = {y ∈ Rd | |x− y| < r},

and we denote with S the system of all such spheres. In this spirit, we define the
Lévy-Prokhorov metric as

π
(
U, V ;S

)
= inf

{
ε : V (A) ≤ U(Aε) + ε, U(A) ≤ V (Aε) + ε for all A ∈ S

}
,

where U, V are probability distributions, and Aε = {x : d(x,A) < ε} is the
ε-neighborhood of a set A, and d(x,A) is the distance between x and the set A.
For a random variable X, we will write PX(A) for the probability P (X ∈ A), and
ΦX(A) if the distribution is Gaussian with the same covariance structure as X.

An important tool for estimating convergence rates for the Lévy-Prokhorov met-
ric are the ζs-metrics (cf. [110, 139]), which are examples of the so-called ideal
metrics. Ideal metrics have the properties of semiadditivity and homogeneity of
order s (cf. [110]), which make deductions of convergence rate estimates very
simple. Let s > 0. Then we can represent s as s = m+α, where [s] = m denotes
the integer part, and 0 ≤ α < 1. Let Fs be the class of all real-valued functions
f , such that the m-th derivative exists, is bounded and satisfies∣∣f (m)(x)− f (m)(y)

∣∣ ≤ ∣∣x− y∣∣α. (4.3.25)

The metric ζs for two probability measures P,Q is then defined as

ζs(P,Q) = sup

{∣∣∣∣∫ f(x)(P −Q)(dx)

∣∣∣∣ : f ∈ Fs

}
.

Based on the ζs-metrics, we have the following estimate for the the Lévy-
Prokhorov metric.

Lemma 4.3.9. We have

π
(
P
S
(mn,1)
n

,Φ
S
(mn,1)
n

,S
)1+s ≤ c(s)(ns/2−1d∗n)−1ζs

(
Pη(mn,1)

1
,Φη(mn,1)

1

)
,

π
(
P
S
(mn,2)
n

,Φ
S
(mn,2)
n

,S
)1+s ≤ c(s)(ns/2−1d∗n)−1ζs

(
Pη(mn,2)

1
,Φη(mn,2)

1

)
.
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Proof of Lemma 4.3.9. By inequality [110, 6.1.3] (see also Dudley), we have

π
(
P
S
(mn,1)
n

,Φ
S
(mn,1)
n

,S
)
≤ c(s)ζs

(
P
S
(mn,1)
n

,Φ
S
(mn,1)
n

)
.

Using the semi-addivity of the ζs metric, we obtain

ζs
(
P
S
(mn,1)
n

,Φ
S
(mn,1)
n

)
= ζs

(
P
n−1/2(η(mn,1)

1 +...+η(mn,1)

dn/d∗ne
)
,Φ

n−1/2(η(mn,1)
1 +...+η(mn,1)

dn/d∗ne
)

)
≤ ζs

(
P
n−1/2η(mn,1)

1
,Φ

n−1/2η(mn,1)
1

)
+ ζs

(
P
n−1/2(η(mn,1)

2 +...+η(mn,1)

dn/d∗ne
)
,Φ

n−1/2(η(mn,1)
2 +...+η(mn,1)

dn/d∗ne
)

)
≤
dn/d∗ne∑
j=1

ζs
(
P
n−1/2η(mn,1)

j
,Φ

n−1/2η(mn,1)
1

)
.

In addition, the homogeneity of the ζs metric implies that

dn/d∗ne∑
j=1

ζs
(
P
n−1/2η(mn,1)

j
,Φ

n−1/2η(mn,1)
j

)
≤ dn/d∗neζs

(
P
n−1/2η(mn,1)

1
,Φ

n−1/2η(mn,1)
1

)
≤ 2(ns/2−1dn)−1ζs

(
Pη(mn,1)

1
,Φη(mn,1)

1

)
,

which completes the proof.

Lemma 4.3.10. If Assumption 4.2.1 is valid, then

ζ3

(
Pη(mn,1)

1
,Φη(mn,1)

1

)
= O

(
d5/2
n (d∗n)3/2

)
, (4.3.26)

ζ3

(
Pη(mn,2)

1
,Φη(mn,2)

1

)
= O

(
d5/2
n (d∗n)3/2

)
(4.3.27)

The proof goes along the lines of [110], see also Zolotarev [139] for the original
argument.

Proof of Lemma 4.3.10. Fix any function f ∈ F3. Using Taylor’s formula with
the integral representation for the remainder term, we have.

f(x) = f(0) +
dn∑
i=1

∂f(0)

∂xi
xi + (2!)−1

dn∑
i1,i2=1

xi1xi2

∫ 1

0

(
∂2f(λx)

∂xi1∂xi2
(1− λ)

)
dλ.

Using this, we obtain for the expectation given below the estimate∫
f(x)(Pη(mn,1)

1
− Φη(mn,1)

1
)(dx)

= (2!)−1

∫ ( dn∑
i1,i2=1

xi1xi2

∫ 1

0

(
∂2f(λx)

∂xi1∂xi2
(1− λ)

)
dλ

)
(Pη(mn,1)

1
− Φη(mn,1)

1
)(dx).
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Moreover, using that∣∣∣∣∫ 1

0

(
∂2f(λx)

∂xi1∂xi2
− ∂2f(λ0)

∂xi1∂xi2

)
(1− λ)dλ

∣∣∣∣ ≤ ∫ 1

0

(∣∣λx
∣∣(1− λ)

)
dλ

≤
∣∣x∣∣ ∫ 1

0

λ(1− λ)dλ

≤ C
∣∣x∣∣,

the above estimate simplifies to

∣∣∣∣∫ f(x)(Pη(mn,1)
1

− Φη(mn,1)
1

)(dx)

∣∣∣∣ ≤ C
dn∑

i1,i2=1

∫ (∣∣x∣∣∣∣xi1xi2∣∣) ∣∣Pη(mn,1)
1

− Φη(mn,1)
1

∣∣(dx)

≤ C
dn∑

i1,i2=1

∫ (∣∣x∣∣∣∣xi1xi2∣∣) (Pη(mn,1)
1

+ Φη(mn,1)
1

)
(dx).

An application of the Cauchy-Schwarz inequality now yields∫ (∣∣x∣∣∣∣xi1xi2∣∣)Pη(mn,1)
1

≤

√∫ ∣∣x∣∣2Pη(mn,1)
1

√∫
(xi1xi2)

2Pη(mn,1)
1

.

Lemma 4.3.3 now implies that∫ ∣∣x∣∣2Pη(mn,1)
1

=
dn∑
i=1

E
((
η

(mn,1)
i,1

)2
)

= O (dnd
∗
n) . (4.3.28)

In addition, an application of the Cauchy-Schwarz inequality yields(∫
(xi1xi2)

2Pη(mn,1)
1

)1/2

≤
(∫

x4
i2
Pη(mn,1)

1

∫
x4
i1
Pη(mn,1)

1

)1/4

= O (d∗n) ,

where the last assertion follows from Lemma 4.3.3. Hence we obtain that

dn∑
i1,i2=1

∫
(xi1xi2)

2Pη(mn,1)
1

= O
(
d2
nd
∗
n

)
, (4.3.29)

which together with (4.3.28) yields∣∣∣∣ ∫ f(x)(Pη(mn,1)
1

− Φη(mn,1)
1

)(dx)

∣∣∣∣ = O
(
d5/2
n (d∗n)3/2

)
.

Since the function f was arbitrary, the claim follows.
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Lemma 4.3.11. Let vn ≥ 0. If Assumption 4.2.1 holds, we have∣∣P
S
(mn,1)
n

(
B(0, vn, dn)

)
− Φ

S
(mn,1)
n

(
B(0, vn, dn)

)∣∣ = O(1),∣∣P
S
(mn,2)
n

(
B(0, vn, dn)

)
− Φ

S
(mn,2)
n

(
B(0, vn, dn)

)∣∣ = O(1)

Proof of Lemma 4.3.11. It follows from Lemma 4.3.9 and 4.3.10 that

π
(
P
S
(mn,1)
n

,Φ
S
(mn,1)
n

,S
)3 ≤ c(3)ζ3

(
P
S
(mn,1)
n

,Φ
S
(mn,1)
n

)
= O(εn),

where

εn = n−1/2d5/2
n (d∗n)1/2 = (log n)−α/2, (4.3.30)

where we point out that α/6 > 1/2. Hence we obtain the inequalities

P
S
(mn,1)
n

(
B(0, vn, dn)

)
− Φ

S
(mn,1)
n

(
B(0, vn, dn)

)
≤ Φ

S
(mn,1)
n

(
B(0, vn + εn, dn)

)
+ ε1/3n − Φ

S
(mn,1)
n

(
B(0, vn, dn)

)
,

and

Φ
S
(mn,1)
n

(
B(0, vn, dn)

)
− P

S
(mn,1)
n

(
B(0, vn, dn)

)
≤ P

S
(mn,1)
n

(
B(0, vn + εn, dn)

)
+ ε1/3n − PS

(mn,1)
n

(
B(0, vn, dn)

)
.

Arguing as in the proof of Lemma 4.3.5, we obtain that

Φ
S
(mn,1)
n

(
B(0, vn + εn, dn)

)
− Φ

S
(mn,1)
n

(
B(0, vn, dn)

)
≤ dn

(
max

1≤i≤dn
P
(
vn − ε1/3n ≤ |Λ(mn,1)

n,i | ≤ vn
)

+ max
1≤i≤dn

P
(
vn ≤ |Λ(mn,1)

n,i | ≤ vn + ε1/3n

))
= O(1),

since ε
1/3
n = (log n)−α/6. Hence we conclude that

Φ
S
(mn,1)
n

(
B(0, vn, dn)

)
− Φ

S
(mn,1)
n

(
B(0, vn, dn)

)
= O(1). (4.3.31)

In the same manner, we obtain

P
S
(mn,1)
n

(
B(0, vn, dn)

)
− Φ

S
(mn,1)
n

(
B(0, vn, dn)

)
≤ dn

(
max

1≤i≤dn
P
(
vn − ε1/3n ≤ |S(mn,1)

n,i | ≤ vn
)

+ max
1≤i≤dn

P
(
vn ≤ |S(mn,1)

n,i | ≤ vn + ε1/3n

))
.

(4.3.32)
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By the classical Berry-Esséen bound, we have that

max
1≤i≤dn

sup
x∈R

∣∣P(S(mn,1)
n,i ≤ x

)
− P

(
Λ

(mn,1)
n,i ≤ x

)∣∣ ≤√d∗n
n

max
1≤i≤dn

E
((

(d∗n)−1/2η
(mn,1)
i,1

)3
)

= O

(√
d∗n
n

)
.

Since dn(d∗n)1/2n−1/2 = O(1), we can replace the random variables S
(mn,1)
n,i with

their Gaussian versions Λ
(mn,1)
n,i in (4.3.32), and we already know from the above

that the magnitude of the resulting expression is O(1). We thus conclude that

P
S
(mn,1)
n

(
B(0, vn, dn)

)
− P

S
(mn,1)
n

(
B(0, vn, dn)

)
= O(1), (4.3.33)

which together with (4.3.32) yields∣∣P
S
(mn,1)
n

(
B(0, vn, dn)

)
− Φ

S
(mn,1)
n

(
B(0, vn, dn)

)∣∣ = O(1). (4.3.34)

Lemma 4.3.12. Let d∗n = dn + dn(log n)α, α > 3, and assume that Assumption
4.2.1 is valid. Then

lim
n→∞

∣∣P( max
1≤h≤dn

∣∣S(mn)
n,h

∣∣ ≤ un
)
− P

(
max

1≤h≤dn

∣∣Λ(mn)
n,h

∣∣ ≤ un
)∣∣ = 0.

Proof of Lemma 4.3.12. Let Z be a standard Gaussian random variable, and δ >
1/2. We have

P
(

max
1≤h≤dn

∣∣Λ(mn,2)
n,h

∣∣ > (log n)−δ
)
≤ dn max

1≤h≤dn
P
(∣∣Λ(mn,2)

n,h

∣∣ > (log n)−δ
)

= dn max
1≤h≤dn

P
(∣∣Z∣∣2 > (log n)−2δVar

(
Λ

(mn,2)
n,h

))
≤ dnP

(∣∣Z∣∣ > (log n)−δ+α/2
))
.

Since α > 3, we can chose δ > 1/2 such that α/2− δ > 1/2. Then, arguing as in
the proof of Lemma 4.3.5, we obtain

dnP
(∣∣Z∣∣ > (log n)−δ+α/2

))
= O(1),

hence

P
(

max
1≤h≤dn

∣∣Λ(mn,2)
n,h

∣∣ > (log n)−δ
)

= O(1), δ > 1/2. (4.3.35)
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Similarly, using Lemma 4.3.11 and relation (4.3.35) we obtain

P
(
max

∣∣S(mn,2)
n

∣∣ > (log n)−δ
)

= O(1), δ > 1/2. (4.3.36)

Since u2
n = O (log n), repeating the arguments of Lemma 4.3.14 together with the

approximation given by Lemma 4.3.11 yields that∣∣P( max
1≤h≤dn

∣∣S(mn,1)
n,h

∣∣ ≤ un
)
− P

(
max

1≤h≤dn

∣∣S(mn)
n,h

∣∣ ≤ un
)∣∣ = O(1), (4.3.37)

and the same is true for Λ
(mn)
n,h . Hence we obtain that,∣∣P( max

1≤h≤dn

∣∣S(mn)
n,h

∣∣ ≤ un
)
−P
(

max
1≤h≤dn

∣∣Λ(mn)
n,h

∣∣ ≤ un
)∣∣

≤
∣∣P( max

1≤h≤dn

∣∣S(mn,1)
n,h

∣∣ ≤ un
)
− P

(
max

1≤h≤dn

∣∣Λ(mn,1)
n,h

∣∣ ≤ un
)∣∣+ O(1).

But by Lemma 4.3.11 we have∣∣P( max
1≤h≤dn

∣∣S(mn,1)
n,h

∣∣ ≤ un
)
− P

(
max

1≤h≤dn

∣∣Λ(mn,1)
n,h

∣∣ ≤ un
)∣∣ = O(1),

hence the claim follows.

4.3.4 Proofs of Theorem 4.2.2 and 4.2.4

Proof of Theorem 4.2.2. Due to the results of Sections 4.3.1, 4.3.2 and 4.3.3, it
suffices to establish that

P
(

max
1≤h≤dn

∣∣Λ(mn)
n,h

∣∣ ≤ un
)
→ exp(−z). (4.3.38)

Note however, that the truncation and blocking arguments have altered the co-
variance structure, i.e. the covariance matrices of Sn,h and Λ

(mn)
n,h , 1 ≤ h ≤ dn are

not the same. Fortunately, it will be sufficient that the covariance structures are
close enough. To this end, note that the Cauchy-Schwarz inequality and Lemma
4.3.3 imply that for 1 ≤ i, j ≤ dn∣∣∣∣Cov

(
Sn,i, Sn,j

)
− Cov

(
Λ

(mn)
n,i ,Λ

(mn)
n,j

)∣∣∣∣ ≤ C max
1≤h≤dn

(∥∥S(>m)
n,h

∥∥
2

+
∥∥S(m,2)

n,h

∥∥
2

)
.

By Lemma 4.3.1 we have
∥∥S(m,2)

n,h

∥∥
2

= O
(
m

3/2−β
n + n−1/2

)
, and Lemma 4.3.3

implies that
∥∥S(m,2)

n,h

∥∥
2

= O
(
d

1/2
n (d∗n)−1/2

)
= O

(
(log n)α/2

)
. Hence we obtain that∣∣∣∣Cov

(
Sn,i, Sn,j

)
− Cov

(
Λ

(mn)
n,i ,Λ

(mn)
n,j

)∣∣∣∣ = O
(
(log n)2+γ

)
, γ > 0. (4.3.39)
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Per assumption, we have that r1 < 1, and in addition rn(log n)2+γ → 0
for some γ > 0, where ϕh,l = lim supn→∞

∣∣E(Sn,h, Sn,l)∣∣, h, l ∈ N, and rk =
sup|h−l|≥k |ϕh,l|. Hence, for large enough n, it follows from (4.3.39), that these

conditions are also valid if we replace Sn,h with Λ
(mn)
n,h . Thus (4.3.38) follows from

Theorem 1 in [38].

Proof of Theorem 4.2.4. In order to increase the readability, we introduce the
following notation. Denote with σ2

h = Var
(
Sn,h

)
, and σ̂2

h = V̂ar
(
Sn,h

)
. We need

to show that the error

max
1≤h≤dn

∣∣(σ−1
h − σ̂

−1
h

)
Sn,h

∣∣ (4.3.40)

is sufficiently small in probability, since then the claim follows from Theorem
4.3.6 and arguments used in the proof of Lemma 4.3.6. To this end, we have

∣∣(σ−1
h − σ̂

−1
h

)
Sn,h

∣∣ =

∣∣∣∣Sn,hσh σ̂2
h − σ2

h

σ̂h
(
σ̂h + σh

)∣∣∣∣ ≤ ∣∣∣∣Sn,hσh σ̂2
h − σ2

h

σ̂2
h

∣∣∣∣.
In addition, for 0 < εn ≤ 1 we have

P
(

max
1≤h≤dn

(
|σ̂2
h − σ2

h|σ̂−2
h

)
≥ εn

)
≤ P

(
max

1≤h≤dn

(
|σ̂2
h − σ2

h|(1 + εn)σ−2
h

)
≥ εn

)
≤ P

(
max

1≤h≤dn

(
|σ̂2
h − σ2

h|σ−2
h

)
≥ εn/2

)
,

which due to Assumption 4.2.1 is bounded by P
(
max1≤h≤dn |σ̂2

h − σ2
h| ≥ C ε

)
, for

some C > 0, which does not depend on n or h. Choosing εn = (log n)−α, α > 1,
we thus obtain from Assumption 4.2.3

P
(

max
1≤h≤dn

(
|σ̂2
h − σ2

h|σ̂−2
h

)
≥ εn

)
= O(1). (4.3.41)

In addition, it follows from the above that for some δ > 1/2

P
(

max
1≤h≤dn

∣∣(σ−1
h − σ̂

−1
h

)
Sn,h

∣∣ > (log n)−δ
)
≤ P

(
max

1≤h≤dn

∣∣Sn,hσ−1
h

∣∣ ≥ (log n)−δ+α
)

+ P
(

max
1≤h≤dn

(
|σ̂2
h − σ2

h|σ̂−2
h

)
≥ (log n)−α

)
.

Since α > 1, we can choose a δ > 1/2 such that α − δ > 1/2. Then, arguing as
in the proof of Lemma 4.3.11 or using Theorem 4.2.2, one deduces that

P
(

max
1≤h≤dn

∣∣Sn,hσ−1
h

∣∣ ≥ (log n)−δ+α
)

= O(1). (4.3.42)

Using (4.3.41), we thus obtain

P
(

max
1≤h≤dn

∣∣(σ−1
h − σ̂

−1
h

)
Sn,h

∣∣ > (log n)−δ
)

= O(1), δ > 1/2. (4.3.43)

Due to Theorem 4.2.2, we can now use the same arguments as in the proof of
Lemma 4.3.6, which yields the claim.
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4.3.5 Proof of Theorem 4.2.6

In order to proof Theorem 4.2.6, we need to validate Assumption 4.2.1. We will
do so in the lemmas given below. To this end, let

Xk,h = Lk+h−1Lk − φh−1. (4.3.44)

In order to verify Assumption 4.2.1 (i), the following result is useful.

Lemma 4.3.13. Assume that ‖ε‖8 <∞ and that
∑∞

i=0 |αi| <∞. Then∥∥Xk,h −X ′k,h
∥∥

4
≤ C

(
|αk|+ |αk+h|

)
,

where C does not depend on h, k.

For m ≥ 0 and k ≥ l ≥ 0, let

Tm = φmφm+k−l + φm+kφm−l + (η − 3)
∞∑
i=0

αiαi+kαi+mαi+m+l, (4.3.45)

with the convention that αi = 0 for i < 0, and φm = φ|m|, if m < 0. In addition,

put ρ
(n)
i,j = E

(
Sn,iSn,j

)
/
√

E
(
S2
n,i

)
E
(
S2
n,j

)
. We then have the following two results.

Lemma 4.3.14. Suppose that 0 < ‖ε‖4 <∞. If

• |αi| > 0 for at least one i ∈ N0,

• |αi| = O
(
i−β
)
, with β > 3/2,

then

E
(
Sn,kSn,l

)
=

∞∑
m=−∞

Tm +O
(
n−1/3d1/2

n

)
. (4.3.46)

In particular, it holds that infh≥L ϕh,h > 0, for some finite L ≥ 0.

Lemma 4.3.15. Suppose that ‖ε‖4 <∞, and that

(i)
∑∞

m=0 |φm| <∞,

(ii) lim suph→∞ supm≥L

∣∣∣∣φm+h

φm

∣∣∣∣ < 1, for some finite L > 0.
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Then we have

lim sup
n→∞

sup
i,j≥M0: 1≤|i−j|

∣∣ρ(n)
i,j

∣∣ < 1,

for some finite M0 > 0.

Remark 4.3.16. Note that since limm→∞ |φm| = 0, one can actually assume that
L = 0 in condition (ii) of Lemma 4.3.15.

We are now ready to proof Theorem 4.2.6.

Proof of Theorem 4.2.6. The assumption |αi| = O
(
i−β
)

of Theorem 4.2.6 to-
gether with Lemma 4.3.13 implies that Assumption 4.2.1 (i) is valid, and (ii)
follows from Lemma 4.3.14. Moreover, discarding the first M0 elements of

max
1≤h≤dn

∣∣Sn,hVar
(
Sn,h

)−1/2∣∣
has no effect on the limit distribution, and thus it suffices to establish that r1 =
sup|h−l|≥1 |ϕh,l| < 1 for min{h, l} ≥M0, where M0 is finite. This, however, follows
directly from Lemma 4.3.15. In addition, the estimate (4.3.46) together with the
definition of Tm in (4.3.45) implies that rn(log n)3 → 0, which completes the
proof.

Proof of Lemma 4.3.13. We have that∥∥Xk,h −X ′k,h
∥∥

4
≤
∥∥ε′0αk ∞∑

i=0,
i 6=k+h

αiεk+h−i + ε′0αk+h

∞∑
i=0,
i 6=k

αiεk−i + (ε′0)2αkαk+h

∥∥
4

+
∥∥ε0αk ∞∑

i=0,
i 6=k+h

αiεk+h−i + ε0αk+h

∞∑
i=0,
i 6=k

αiεk−i + (ε0)2αkαk+h

∥∥
4

≤ C
(
|αk|+ |αk+h|

)
,

which completes the proof.

Proof of Lemma 4.3.14. Put Rn,k = n−1/2
∑n

k=1

(
LkLk+h − φh

)
.

An application of the Cauchy-Schwarz inequality yields

E
(
Sn,kSn,l

)
= E

(
Rn,kRn,l

)
+O

(
n−1/2d1/2

n

)
,

hence it suffices to consider E
(
Rn,kRn,l

)
. Due to [25, section 7.2], it holds that

E
(
Rn,k, Rn,l

)
=
∑
|m|<n

n− |m|
n

Tm, (4.3.47)
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in particular, we have

$k,l = lim
n→∞

E
(
Rn,k, Rn,l

)
= (η − 3)φkφl +

∞∑
m=−∞

(
φmφm+k−l + φm+kφm−l

)
.

(4.3.48)

Moreover, we have the decomposition

∑
|m|≤n

n−m
n

Tm =
∞∑

m=−∞

Tm +
∑
|m|>n

Tm + n−1
∑
|m|≤n

mTm.

Note that for k ≥ l, we have

∑
|m|>K

∣∣Tm∣∣ ≤ C

 ∑
|m|>K

|αm|+
∑
|m|>K

(
|φm|+ |φm+k|

)
≤ C

∑
i>K

|αi|+
∑
|m|>K

|φm|

 := θK ,

with limK→∞ θK = 0. Thus we get the estimate

n−1
∑
|m|≤n

m|Tm| ≤ λ
∑
|m|≤λn

|Tm|+
∑
|m|>nλ

|Tm| = O (θλn + λ) .

Note that

∞∑
|m|>K

|φm| ≤ 2
∞∑

m>K

∞∑
i=0

|αiαi+m| ≤ C

∞∑
m>K

|αi|, (4.3.49)

which implies θK = O
(
K−1/2

)
. Hence choosing λ = λn = n−1/3 gives

n−1
∑
|m|≤n

m|Tm| = O
(
n−1/3

)
,

which implies (4.3.46). Finally note that since limm→∞ |φm| = 0, we have

lim sup
h

sup
k≥h

∣∣ ∞∑
m=−∞

Tm −
∞∑

m=−∞

φ2
m

∣∣ = 0, (4.3.50)

hence infh≥L ϕh,h > 0, for some finite L ≥ 0.
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Proof of Lemma 4.3.15. Due to Lemma 4.3.14, we can assume that

E
(
Sn,k, Sn,l

)
= (η − 3)φkφl +

∞∑
m=−∞

(
φmφm+k−l + φm+kφm−l

)
. (4.3.51)

Now suppose first that min{k, l} ≥M0, for someM0 > 0. Thus, since limm→∞ |φm| =
0, we have from (4.3.51) that

$k,l =
∞∑

m=−∞

φmφm+k−l + ε(M0), (4.3.52)

where ε(M0) ↓ 0 as M0 increases. Condition (ii) and Remark 4.3.16 imply that for
some K ≥ L large enough, we have

sup
m

∣∣∣∣φm+h

φm

∣∣∣∣ ≤ ϑ(K) < 1, K ≤ h. (4.3.53)

Hence we obtain

√
$k,k$l,l ≥

∞∑
m=−∞

φ2
m −O

(
ε(M0)

)
, (4.3.54)

and

∞∑
m=−∞

φ2
m −

∞∑
m=−∞

φmφm+h ≥ (1− ϑ(K))
∞∑

m=−∞

φ2
m.

Hence, for large enough but fixed M0 and K, we deduce that that the Cauchy-
Schwarz inequality is strict, i.e. ∣∣ρ(n)

i,j

∣∣ < 1. (4.3.55)

Now suppose that h < K. Then the Cauchy-Schwarz inequality (in l2) implies
that ∣∣∣∣ ∞∑

m=−∞

φmφm+h

∣∣∣∣ ≤ ∞∑
m=−∞

φ2
m,

and we have equality if and only if v1 = λv2, λ ∈ R and v1 = (..., φm, ...)
T ,

v2 = (...φm+h, ...)
T . This implies that φm = λφm+h, and consequently

φ0 = λφh = λ2φ2h = ... = λnφnh. (4.3.56)
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Since |φnh| → 0, we must have |λ| > 1. We thus conclude that∣∣∣∣ ∞∑
m=−∞

φm −
∞∑

m=−∞

φmφm+h

∣∣∣∣ = |λ− 1|
∞∑

m=−∞

φ2
m > 0.

Since K is finite, we deduce that

min
1≤h<K

∣∣∣∣ ∞∑
m=−∞

φm −
∞∑

m=−∞

φmφm+h

∣∣∣∣ = ε(K) > 0,

which together with (4.3.54) implies that for large enough (but finite) M0, we
have (4.3.55), which completes the proof.



Chapter 5

Extremes of Yule-Walker
Estimators

5.1 Introduction

Let
{
Xk

}
k∈Z be a q-th order autoregressive process AR(q) with coefficient vector

Θq ∈ Rq. A considerable literature in the past years dealt with various aspects
and problems on AR(q)-processes, see for instance [4, 25, 60, 85] and the references
therein. More recently, people have moved on to more complicated models such as
ARCH [22, 48], GARCH [21] and related models, which again have been extended
in many different directions. However, in many applications, AR(q)-processes still
form the backbone and are often used as first approximations for further analysis,
in particular, many estimation and fitting procedures can be based on preliminary
AR(q) approximations. This includes for instance ARMA, ARCH and GARCH
models ( [20, 56, 62]). Thus, AR(q) processes have moved from the spotlight to
the backstage area, yet their significance remains unchallenged.

When fitting an AR(q) model, two important questions arise: how to choose
the order q, and having done so, which estimators are to be used. Naturally, these
two problems can hardly be separated and are often dealt with simultaneously, or
at least so in preliminary estimates. An extensive literature has evolved around
these two issues, pioneering contributions in this direction are due to Akaike [1, 2],
Mallows [86, 87], Walker [123] and Yule [134], for more details we refer to [4, 24,
25, 60, 85]. In order to be able to describe some of the basic results, we recall
that an AR(q) process

{
Xk

}
k∈Z is defined through the recurrence relation

Xk = θ1Xk−1 + ...+ θqXk−q + εk, (5.1.1)

where it is often assumed that
{
εk
}
k∈Z is an IID sequence. Let φh = E

(
XkXk+h

)
,

k, h ∈ Z be the covariance function. A natural estimate for φh is the sample

67
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covariance φ̂n,h = 1
n

∑n
i=h+1XiXi−h. Depending on the magnitude of h, a different

normalization, such as (n − h)−1 is sometimes more convenient. Denote with

Θq =
(
θ1, ..., θq

)T
the parameter vector and put Φq =

(
φ1, ..., φq

)T
, and let Γq =(

φ|i−j|
)

1≤i,j≤q be the q × q dimensional covariance matrix. Then it follows from

(5.1.1) that

ΓqΘq = Φq. (5.1.2)

Hence a natural idea is to replace the corresponding quantities by estimators

Φ̂q =
(
φ̂n,1, ..., φ̂n,q

)T
, Γ̂q =

(
φ̂n,|i−j|

)
1≤i,j≤q, and thus define the estimator Θ̂q =(

θ̂1, ..., θ̂q
)T

via

Γ̂−1
q Φ̂q = Θ̂q and σ̂2(q) = φ̂0 − Θ̂T

q Φ̂q, (5.1.3)

where σ2 = E
(
ε20
)
. These estimators are commonly referred to as the Yule-Walker

estimators, and they have some remarkable properties. For example, if
{
Xk

}
k∈Z

is causal, then the fitted model

Xk = θ̂1Xk−1 + ...+ θ̂pXk−q + εk

is still causal, see for instance [25] and [93]. Another interesting feature is that
even though the Yule-Walker estimators are obtained via moment matching meth-
ods, their variance is asymptotically equivalent with those obtained via a maxi-
mum likelihood approach. More precisely, for m ≥ q it holds that

√
n
(
Θ̂m −Θm

) d−→ N
(
0, σ2Γ−1

m

)
, (5.1.4)

where Θm =
(
θ1, ..., θq, 0, ..., 0

)T
, see for instance [25]. These asymptotic results

form the basis for earlier estimation methods of the order q ( [105, 122, 126]),
which focused on a fixed, finite number of possible orders and consist of multiple-
testing-procedures, which in practice leads to the difficulty of having a required
level. On the other hand, as it was pointed out by Shwarz [116], a direct like-
lihood approach fails, since it invariably chooses the highest possible dimen-
sion. Akaike [1] and Mallows [86, 87], developed a different approach, which
is based on a ’generalized likelihood function’, which has been further developed
by various authors. Shibata [114] investigated the asymptotic distribution and
showed that the estimator defined as in (5.1.5) is not consistent. This issue
was successfully dealt with by Akaike [2] (BIC), Hannan and Quinn [63] (HQC),
Parzen [99], Rissanen [108] and Shwarz [116] (SIC), who introduced consistent
modifications (Parzen’s CAT-criterion is conceptually different). For more re-
cent advances and generalizations, see for instance Barron et al. [12], Foster and
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George [50], Shao [111] and the detailed review on model selection given by Leeb
and Pötscher [82]. Here and now, we will content ourselves with briefly discussing
Akaike’s approach and closely related criteria. Akaike’s generalized likelihood
function leads to the expression

AIC(m) = n log σ̂2(m) + 2m, (5.1.5)

where n is the sample size and σ̂2(m) is as in (5.1.3). The order q is then obtained
by minimizing AIC(m), m ∈ {0, 1, ..., K}, for some predefined K > 0. Consistent
modifications are obtained by inserting an increasing sequence Cn, and AIC(m)
then becomes

ÃIC(m) = n log σ̂2(m) + 2Cnm. (5.1.6)

Most modifications result in Cn = O (log n), even though the arguments are some-
times quite different. A notable exception is the idea of Hannan and Quinn [63],
who successfully employed the LIL to obtain Cn = O (log log n).

The aim of this chapter is to introduce a different approach, based on the
quantity max1≤i≤dn

∣∣θ̂i − θi∣∣, where dn is an increasing function in n. It is shown
for instance that appropriately normalized, this expression converges weakly to
a Gumbel-type distribution. On one hand, this allows to construct simultane-
ous confidence bands for the Yule-Walker-estimators Θ̂dn , but also permits us to
construct a variety of different, consistent estimators for the order q of an autore-
gressive process. The asymptotic distribution of such a particular estimator is
also derived. As a byproduct, it is shown that known consistent criteria such as
BIC, SIC and HQC are also consistent if the parameter space is increasing, i.e.
consistency even holds if q ∈ {0, ..., dn}, where dn = O

(
nδ
)
. This partially gives

answers to questions raised by Hannan and Quinn [63], Shibata [114], and extends
results given by An et al. [3]. In addition, the general method seems to be very
useful for model fitting for subset autoregressive processes (see for instance [89]),
which is highlighted in Remark 5.2.7 and Section 5.3.

5.2 Main Results

We will frequently use the following notation. For a matrix A =
(
ai,j
){

1≤i≤r,
1≤j≤s

},

r, s ∈ N we put

max
∣∣A∣∣ = max

1≤i≤r,1≤j≤s

∣∣ai,j∣∣. (5.2.1)

In addition, we will use the abbreviation ‖.‖p =
(
E(|.|p)

)1/p
. The main results are

dealing with an array of AR(q) processes, more precisely, we consider the family
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of AR(dn) processes
{
X

(r)
k

}
k∈Z, 1 ≤ r ≤ dn, where dn = O

(
nδ
)

(more details
are given later). Since we are always only dealing with a single member of this
array, the index (r) is dropped for convenience, and we just consider an AR(dn)
process

{
Xk

}
k∈Z, keeping in mind that the parameters

{
θi
}

1≤i≤dn
may depend

on n. This implies that Xk satisfies the recurrence relation

Xk = θ1Xk−1 + ...+ θdnXk−dn + εk, k ∈ Z, (5.2.2)

where
{
εk
}
k∈Z defines the usual innovations. We specifically point out that{

θi
}

1≤i≤dn
are not required to be all different from zero, only one parameter

should be nonzero to exclude the trivial case. All of the results are derived under
the following assumption regarding the AR(dn) process

{
Xk

}
k∈Z.

Assumption 5.2.1.

•
∑dn

i=1

∣∣θi∣∣ ≤ ϑ < 1, where ϑ does not depend on n,

•
{
εk
}
k∈Z is a mean zero IID-sequence of random variables, such that

∥∥εk∥∥p <
∞ for some p > 4,

∥∥εk∥∥2

2
= σ2, k ∈ Z.

We point out that Assumption 5.2.1 implies that the AR(dn)-process
{
Xk

}
k∈Z

is causal, and admits the representation

Xk =
∞∑
i=0

ψiεk−i, with |ψi| ≤ ϑi,

see also Lemma 5.6.1. Also, it is clear from the proofs that condition
∑dn

i=1

∣∣θi∣∣ ≤
ϑ < 1 can be considerably relaxed and reformulated for instance in terms of the
eigenvalues of the covariance matrix Γdn and the spectral density function of the
process

{
Xk

}
{k∈Z} (see also [13]). However, the current formulation significantly

simplifies the notation and some of the proofs.
In accordance to the previously established notation, we introduce the inverse

and estimated inverse matrix

Γ−1
dn

=
(
γ∗i,j
)

1≤i,j≤dn
, Γ̂−1

dn
=
(
γ̂∗i,j
)

1≤i,j≤dn
. (5.2.3)

In addition, we will use the convention that θ0 = θ̂0 = −1. Put

rk,n = max
k≤h,i≤dn

∣∣∣∣ i−1∑
r=0

θrθr+h −
dn−h∑

r=dn+1−i−h

θrθr+h

∣∣∣∣, (5.2.4)

where a sum is taken to be zero if its upper limit is less than its lower limit. We
can now formulate our main result.
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Theorem 5.2.2. Let
{
Xk

}
k∈Z be an AR(dn) process satisfying Assumption 5.2.1.

Suppose that dn = O
(
nδ(p)

)
and that supn rk,n(log k)2+β → 0, for some β > 0.

Then for z ∈ R

P

(
a−1
n

(√
n max

1≤i≤dn

∣∣(γ̂∗i,iσ̂2(dn))−1/2(θ̂i − θi)
∣∣− bn) ≤ z

)
→ exp(−e−z),

where an = (2 log dn)−1/2 and bn = (2 log dn)1/2−(8 log dn)−1/2(log log dn+4π−4).

Remark 5.2.3. The exact specification of δ(p) is not very simple and involves a
maximization-minimization problem, which is given in Theorem 5.4.3. An upper
bound is δ(p) < 1/10, and thus for smaller n the restriction nδ(p) is rather strong.
However, numerical results (see Section 5.3) indicate that at least in the cases of
n ∈ {125, 250, 500, 1000} the true bound is bigger, good results were obtained for
instance with dn ∈ {2 log n, 4 log n, 6 log n}.

The proof of Theorem 5.2.2 essentially consists of two main steps. The first
step deals with estimating the error max

∣∣Γ̂−1
dn
−Γ−1

dn

∣∣ (Theorem 5.4.2), the second
step with approximating

√
n(Θdn−Θdn) by an appropriate Gaussian random vec-

tor (Theorem 6.6.4). The partial result of the Gaussian approximation also has
a practical relevance, since it gives us an upper bound on how close the expres-
sion

√
nmax1≤i≤dn

∣∣(γ̂∗i,iσ̂2(dn))−1/2(θ̂i − θi)
∣∣ is to a correspondingly transformed

Gaussian distribution, see Remark 5.4.7 for more details.
The above result allows us to construct the simultaneous confidence bands{

Θdn ∈ Rdn
∣∣ a−1

n

(
max

1≤i≤dn

∣∣(γ̂∗i,i)−1/2(θ̂i − θi)
∣∣− bn) ≤ n−1/2

√
σ̂2(dn)V1−α

}
,

(5.2.5)

where V1−α denotes the 1 − α quantile of the Gumbel-type distribution given
above. In the literature ( [4, 25, 60]) one often finds the confidence ellipsoids{

Θm ∈ Rm
∣∣ (Θ̂m −Θm

)
Γm

(
Θ̂m −Θm

)T ≤ n−1σ̂2(dn)χ2
1−α(m)

}
, (5.2.6)

where χ2
1−α(m) denotes the 1− α quantile of the chi-square distribution with m

degrees of freedom. By the law of large numbers, we have χ2
1−α(dn) ≈ dn, and

since
(
anV1−α+bn

)2 ≈ log dn the confidence band given in (5.2.5) is asymptotically
much smaller than the one in (5.2.6). In addition, (5.2.5) immediately gives

bounds for the single elements
{∣∣θ̂i − θi∣∣}1≤i≤dn

.
Theorem 5.2.2 can not only be used to construct simultaneous confidence

bands for the Yule-Walker estimators Θ̂dn , but also provides a test for the degree
of an an AR(q)-process. To be more precise, for an AR(q)-process

{
Xk

}
k∈Z

satisfying the assumptions of Theorem 5.2.2, we formulate the null hypothesis
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H0 : q ≤ q0, and the alternative HA : q > q0. It follows immediately from
Theorem 5.2.2 that under H0 we have

P

(
a−1
n

√
n
(

max
q0+k≤i≤dn

∣∣(γ̂∗i,iσ̂2(dn))−1/2θ̂i
∣∣− bn) ≤ z

)
→ exp(−e−z),

for any fixed integer k > 0, since we are assuming that θi = 0 for i > q0.
Conversely, it is not hard to verify (see the proof of Theorem 5.2.4 for details)
that the quantity

a−1
n

√
n
(

max
q0+1≤i≤dn

∣∣(γ̂∗i,iσ̂2(dn))−1/2θ̂i
∣∣− bn)

explodes under the alternative HA : q > q0. This can be used to establish a lower
bound for the order q or to test if the order was chosen sufficiently large. This is
particularly useful if q is large compared with the sample size and the magnitude
of Θq, in which case the AIC and related criteria sometimes heavily fail to get
anywhere near the true order. More details on this subject and examples are
given in Section 5.3. Generally speaking, such situations are often encountered
in so-called subset autoregressive models, see Remark (5.2.7).

The above conclusions lead to the following family of estimators q̂
(1)
zn for q. Let

zn be a monotone sequence that tends to infinity as n increases. Then we define
the estimator

q̂(1)
zn = min

{
q ∈ N

∣∣ a−1
n

√
n
(

max
q+1≤i≤dn

∣∣(γ̂∗i,iσ̂2(dn))−1/2(θ̂i − θi)
∣∣− bn) ≤ zn

}
.

(5.2.7)

Using the above ideas, it is not hard to show that the estimators q̂
(1)
zn are

consistent if zn does not grow too fast. In fact, under some more conditions
imposed on the sequence zn, we can even derive the asymptotic distribution of
the estimators.

Theorem 5.2.4. Let
{
Xk

}
k∈Z be an AR(q)-process, and assume that the condi-

tions of Theorem 5.2.2 are satisfied. Assume in addition that zn = O
(√

n(log n)−1
)

,

and κndn → 0 as n increases, where κn is as in Theorem 5.4.3. Then if zn →∞,
the estimator q̂

(1)
zn in (5.2.7) is consistent. Moreover, the following expansion is

valid.

P
(
q̂(1)
zn = k + q

)
=
e−zn

dn
+ O

(
e−zn

dn
+ d−z

2
n+1

n

)
+O (κndn)

for k ∈ N, k > 0.
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This immediately gives us the following corollary.

Corollary 5.2.5. Assume that the conditions of Theorem 5.2.4 are satisfied. If
zn = O (| log κn|+ |2 log dn|), then

P
(
q̂(1)
zn = k + p

)
=
e−zn

dn
+ O

(
e−zn

dn

)
for k ∈ N, k > 0.

Remark 5.2.6. From the above corollary we obtain that in some sense, the
estimators q̂

(1)
zn possess a discrete uniform asymptotic distribution, which yields

the surprising conclusion

P
(
q̂(1)
zn = 1 + q

)
≈ P

(
q̂(1)
zn = 1000 + q

)
.

However, this fact can be explained by the maximum function in the definition of
q̂

(1)
zn , more precisely, due to the weak dependence of the Yule-Walker estimators

Θ̂dn . The maximum function essentially does not care at which index i the
boundary zn is exceeded, and this results in the uniform distribution. It turns
out (see Section 5.3) that a modified version of the estimator q̂

(1)
zn is a very efficient

preliminary estimator that establishes a decent lower bound.

An asymptotic uniform-type distribution clearly is not a desirable property for
an estimator. However, similar to Akaike’s method, we can introduce a penalty
function and construct different yet also consistent estimators for the order q. To
this end, for x ∈ R put (x)+ = max(0, x) and let Υn,i = a−1

n

√
n
(∣∣(γ̂∗i,iσ̂2(dn))−1/2θ̂i

∣∣−
bn
)
. Then we introduce a new estimator q̂

(2)
zn as

q̂(2)
zn = argmin

q∈N

{
max

q+1≤i≤dn

{(
Υn,i − zn

)+}
+ log(1 + q)

}
.

More generally, let F =
(
fd
)
d∈N be a collection of continuous functions such that

• fd is a map from Rd+2 to R,

• fd(0, ..., 0, q, d) < fd(0, ..., 0, q + 1, d) for all d, q ∈ N,

• if an, dn →∞ as n increases, then fdn(..., an, ..., q, dn)→∞ as n increases,
regardless of the values of the other coordinates.

Define

q̂(f)
zn = argmin

q∈N
fdn
(
0, ..., 0, (Υn,q+1 − zn)+, ..., (Υn,dn − zn)+, q, dn

)
. (5.2.8)
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Then arguing as in the proof of Theorem 5.2.4 it can be shown that this constitutes
a consistent estimator for the true value q. For example, the following estimator

q̂(3)
zn = argmin

q∈N

{ ∑
q+1≤i≤dn

(
Υn,i − zn

)+
+ q
}
,

satisfies the conditions above and is consistent.

Remark 5.2.7. Note that instead of defining a specific order q, one can also con-

sider a special lag configuration, for example, Θq =
(
θ1, θ2, 0, ...0, θ10, θ11, ..., θq

)T
.

Such configurations are commonly referred to as subset autoregressive models, see
for instance [26, 88, 89, 119, 127] and the references therein. The AIC(m) and
especially related consistent criteria have problems dealing with such subset au-
toregressive models, which can be seen as follows. By Hannan [60, Chapter VI],
we have for m ∈ N

ÃIC(m)n−1 = log
(
σ̂2(m)

)
+ 2n−1Cnm = log φ̂n,0 +

m∑
j=1

log(1− θ̂2
j (m)) + 2n−1Cnm.

(5.2.9)

For large enough n we can assume that θ̂2
j (m) < 1 and hence

m∑
j=1

log(1− θ̂2
j (m)) ≈ −

m∑
j=1

θ̂2
j (m).

This shows that in case of subset autoregressive models, the penalty function
2n−1Cnm is too severe and should be replaced, at least in theory, by 2n−1Cn

∑{
1≤i≤m,
θi 6=0

} 1,

since this is impossible in practice. Of course the same problem arises if some of
the

{
θi
}

1≤i≤q are close to zero. On the other hand, a maximum based estimator

like q̂
(1)
zn does not face this problem. This is empirically confirmed in Section 5.3.

An important theoretical assumption for estimators related to AIC(m) is that
the parameter space for q is finite, i.e; it is usually assumed in advance that
q ∈ {1, .., K}, where K is ’chosen sufficiently large’, but finite. In [63], K is
allowed to increase with the sample size with unknown rate, which was specified
later by An et al. [3]. Note however that for the estimators defined above we
allow K = Kn = dn. Before extending this result, we give precise definitions
of BIC, HQC and SIC, as the literature does not seem to be very clear on this
subject, in particular in the case of the BIC and SIC. In the sequel, the following
definitions are used.

BIC(m) = log σ̂2(m) +mn−1 log n,

SIC(m) = log σ̂2(m) +m/2n−1 log n,

HQC(m) = log σ̂2(m) + n−12cm log log n, c > 1. (5.2.10)
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In case of the BIC, HQC, An et al. [3] obtained the rates Kn = O (log(n))
(BIC) and Kn = O (log log(n)) (HQC), in particular, it is always assumed that
the true order q is fixed.

Using some of the results of Section 5.4 and 5.5, this result can be extended.

Theorem 5.2.8. Let
{
Xk

}
k∈Z be an AR(q) process satisfying Assumption 5.2.1.

Assume in addition that Cn, Kn are positive sequences such that

• limnCn(2 log log n)−1 > 1, Cn = O (n),

• 4 logKn ≤ Cn, Kn = O (
√
n).

Then the estimators for the order q defined as

q̂∗n = argmin
0≤m≤Kn

(
log σ̂2(m) + n−1Cnm

)
,

are consistent. If
{
Xk

}
k∈Z is an AR(dn) process where dn = O

(
nδ(p)

)
is as in

Theorem 5.2.2, then the above defined q̂∗n is also consistent.

Theorem 5.2.8 thus implies the bounds Kn ∈
{
n1/4, n1/8, (log n)c/2

}
for BIC,

SIC and HQC. In particular, it is not required that the true order q is fixed. On
the other hand, the setting in An et al. [3] is more general, and they also show
that the estimators are strongly consistent.

5.3 Simulation and numerical results

In this section we will perform a small simulation study to compare some of the
previously mentioned estimators.

We will look at the performance in case of AR(6), AR(12) and AR(24)
processes. The sample size n satisfies n ∈ {125, 250, 500, 1000}, as for the di-
mension dn, we chose the functions dn ∈ {2 log n, 4 log n, 6 log n}, and rounded
up the values. This implies that the parameter space q ∈ {0, .., K} satisfies
K ∈ {10, 12, 13, 14}, K ∈ {20, 23, 25, 29}, K ∈ {29, 34, 38, 42}.

To introduce the estimators q̂
(4)
zn (dn), q̂

(5)
zn (dn), we require some additional no-

tation. For 1 ≤ k ≤ dn, define
{
γ̂∗i,i(k)

}
1≤i≤k and

{
θ̂i(k)

}
1≤i≤k via the usual

relation

Θ̂k = Γ̂−1
k Φ̂k. (5.3.1)

The estimators are now defined as

q̂(4)
zn (k) = min

{
q ∈ N

∣∣ a−1
n

√
n
(

max
q+1≤i≤k

∣∣(γ̂∗i,i(k)σ̂2(k))−1/2θ̂i(k)
∣∣− bn) ≤ zn

}
,

q̂(5)
zn (dn) = max

1≤k≤dn
q̂(4)
zn (k).
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Note that the definition of an, bn remains unchanged. Usually, the ’maximum’
version q̂

(5)
zn (dn) outperforms its counterpart q̂

(4)
zn (dn), at least in the examples given

below. The values for zn were chosen as zn ∈ {xn, yn}, where xn satisfies anxn +
bn = 2.71 for n ∈ {125, 250}, anxn + bn = 2.91 for n ∈ {500, 1000}. Similarly, we
have anyn + bn = 3 for n ∈ {125, 250}, anyn + bn = 3.2 for n ∈ {500, 1000}. This
means that the estimators get less parsimonious when dn increases. Of course
an adaption to maintain the same confidence level is possible, but the general
picture remains the same.

For the criteria AIC, BIC , HQC and SIC we use the definitions given in
(5.1.5) and (5.2.10), in case of HQC we chose c = 1, since, as pointed out by
Hannan and Quinn [63], ”it would seem pedantic to chose values as c = 1.01”.
The following modifications are also considered.

AIC(m)∗ = max
{

AIC(m), q̂(5)
yn (dn)

}
, BIC(m)∗ = max

{
BIC(m), q̂(5)

yn (dn)
}
,

HQC(m)∗ = max
{

HQC(m), q̂(5)
yn (dn)

}
, SIC(m)∗ = max

{
SIC(m), q̂(5)

yn (dn)
}
.

(5.3.2)

All simulations were carried out using the program R. In order to get a
sample of size n, a sample path of size 1000 + n was simulated and the first 1000
observations were discarded.

Generally speaking, unreported simulations show that in many cases the mod-
ified criteria AIC(m)∗,BIC(m)∗... perform nearly identical as the none-modified
ones AIC(m),BIC(m)... . This is in particular the case when dealing with full
parameter sets, i.e. θi 6= 0, 1 ≤ i ≤ q, and θq is sufficiently large. If this is

the case, the estimators q̂
(5)
xn (dn), q̂

(5)
yn (dn) performance is somewhere between the

BIC(m) and HQC(m). On the other hand, if the model is not full and/or the
order q is sufficiently large, then the differences can be quite striking. The aim
of the following examples is to illustrate this behavior.

5.3.1 AR(6)

First note that the definitions of xn, yn result in

P
(
max |ξ| ≤ 2.71

)
≥ 0.92, P

(
max |ξ| ≤ 3

)
≥ 0.97, dn ∈ {10, 12},

P
(
max |ξ| ≤ 2.91

)
≥ 0.95, P

(
max |ξ| ≤ 3.2

)
≥ 0.98, dn ∈ {13, 14},

where ξ =
(
ξ1, ..., ξdn

)T
is a dn-dimensional mean zero Gaussian random vector

where the covariance matrix is the identity.
The results shown in Tables 5.1, 5.2 hint at what is to be expected in case of

full models, namely that the modifications AIC(m)∗,BIC(m)∗... perform nearly as
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n q̂ AIC AIC* BIC BIC* HQC HQC* SIC SIC* q̂
(5)
yn q̂

(5)
xn

125 < 5 428 427 943 808 746 704 550 545 816 701
5 65 65 10 30 32 40 58 58 28 41
6 344 341 45 143 191 214 295 294 137 196
7 66 65 1 5 23 24 54 53 5 14
< 7 97 102 1 14 8 18 43 50 14 48

250 < 5 93 89 693 432 328 282 202 188 440 299
5 24 23 14 32 32 32 33 31 42 38
6 646 632 287 481 586 595 649 634 467 543
7 96 95 5 8 37 35 74 73 4 9
> 7 141 161 1 47 17 56 42 74 47 111

Table 5.1: Simulation of an AR(6) process with coefficients Θ6 =
(0.1,−0.3, 0.05, 0.2,−0.1, 0.2)T , ε ∼ N (0, 1), 1000 repetitions, dn ∈ {10, 12}.

good as the normal versions AIC(m),BIC(m)... . The estimators q̂
(5)
xn (dn), q̂

(5)
yn (dn)

perform also quite well.
Contrary to the previous results, Tables 5.5 and 5.6 show the difference of the

modified estimators (and q̂
(5)
xn (dn), q̂

(5)
yn (dn)), if the model is very sparse. Except

for the case n = 1000, the modifications are notable better.

5.3.2 AR(12)

The definitions of xn, yn result in

P
(
max |ξ| ≤ 2.71

)
≥ 0.85, P

(
max |ξ| ≤ 3

)
≥ 0.94, dn ∈ {20, 23},

P
(
max |ξ| ≤ 2.91

)
≥ 0.9, P

(
max |ξ| ≤ 3.2

)
≥ 0.96, dn ∈ {25, 29},

where ξ =
(
ξ1, ..., ξdn

)T
is a dn-dimensional mean zero Gaussian random vector

where the covariance matrix is the identity.
The results are depicted in the Tables 5.5, 5.6 and 5.7, 5.8, and are quite simi-

lar as in the case of the AR(6)-processes. If the model is rather full, AIC(m)∗,BIC(m)∗...
perform nearly as good as the normal versions AIC(m),BIC(m)..., whereas in case
of the sparse model, a significant difference can be observed.

5.3.3 AR(24)

In this case the definitions of xn, yn result in

P
(
max |ξ| ≤ 2.71

)
≥ 0.795, P

(
max |ξ| ≤ 3

)
≥ 0.912, dn ∈ {29, 34},

P
(
max |ξ| ≤ 2.91

)
≥ 0.86, P

(
max |ξ| ≤ 3.2

)
≥ 0.94, dn ∈ {38, 42},
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n q̂ AIC AIC* BIC BIC* HQC HQC* SIC SIC* q̂
(5)
yn q̂

(5)
xn

500 < 5 1 1 177 75 29 25 15 15 86 52
5 3 3 9 11 6 6 3 3 17 14
6 730 713 805 874 913 889 892 867 865 849
7 108 108 8 8 42 42 57 57 0 2
< 7 158 175 1 32 10 38 33 58 32 83

1000 < 5 0 0 3 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 724 709 990 951 952 917 934 901 955 885
7 103 101 7 9 36 34 47 44 5 7
> 7 173 190 0 40 12 49 19 55 40 108

Table 5.2: Simulation of an AR(6) process with coefficients Θ6 =
(0.1,−0.3, 0.05, 0.2,−0.1, 0.2)T , ε ∼ N (0, 1), 1000 repetitions, dn ∈ {13, 14}.

n q̂ AIC AIC* BIC BIC* HQC HQC* SIC SIC* q̂
(5)
yn q̂

(5)
xn

125 < 5 719 699 998 854 944 842 839 787 854 747
5 11 11 0 0 2 2 7 7 0 11
6 168 181 2 124 43 126 107 145 124 184
7 44 44 0 4 8 11 23 24 4 8
< 7 58 65 0 18 3 19 24 37 18 50

250 < 5 290 276 960 437 723 424 550 396 438 321
5 6 6 0 3 2 3 5 5 3 5
6 491 488 39 513 245 503 376 494 513 573
7 91 90 1 2 21 21 40 40 1 7
> 7 122 140 0 45 9 49 29 65 45 94

Table 5.3: Simulation of an AR(6) process with coefficients Θ6 =
(0.1, 0, 0.05, 0, 0, 0.2)T , ε ∼ N (0, 1), 1000 repetitions, dn ∈ {10, 12}.
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n q̂ AIC AIC* BIC BIC* HQC HQC* SIC SIC* q̂
(5)
yn q̂

(5)
xn

500 < 5 21 21 761 102 267 98 164 85 102 56
5 0 0 1 0 0 0 0 0 0 1
6 663 655 234 871 675 822 736 796 874 863
7 125 124 4 3 50 49 69 68 0 10
< 7 191 200 0 24 8 31 31 51 24 70

1000 < 5 0 0 168 1 3 1 1 1 1 0
5 0 0 0 0 0 0 0 0 0 0
6 702 683 822 949 940 905 919 887 955 898
7 121 119 9 9 43 42 52 52 3 9
> 7 177 198 1 41 14 52 28 60 41 93

Table 5.4: Simulation of an AR(6) process with coefficients Θ6 =
(0.1, 0, 0.05, 0, 0, 0.2)T , ε ∼ N (0, 1), 1000 repetitions, dn ∈ {13, 14}.

n q̂ AIC AIC* BIC BIC* HQC HQC* SIC SIC* q̂
(5)
yn q̂

(5)
xn

125 < 11 705 701 995 966 931 917 812 807 969 929
11 79 79 2 3 22 22 54 54 1 2
12 141 141 3 23 40 47 97 98 22 47
13 48 48 0 4 6 9 30 30 4 11
> 13 27 31 0 4 1 5 7 11 4 11

250 < 11 257 257 854 730 573 560 423 421 748 620
11 39 39 9 10 31 31 39 39 3 11
12 495 493 135 247 349 356 442 441 237 313
13 115 115 2 4 40 40 65 65 3 13
> 13 94 96 0 9 7 13 31 34 9 43

Table 5.5: Simulation of an AR(12) process with nonzero coefficients θ1 = 0.1,
θ3 = −0.4, θ5 = 0.5,θ7 = −0.1, θ8 = 0.05,θ10 = −0.3, θ12 = 0.2 ε ∼ N (0, 1), 1000
repetitions, dn ∈ {20, 23}.
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n q̂ AIC AIC* BIC BIC* HQC HQC* SIC SIC* q̂
(5)
yn q̂

(5)
xn

500 < 11 19 19 367 256 110 106 75 73 269 183
11 4 4 4 4 6 6 6 6 2 2
12 684 680 618 705 808 793 808 797 702 758
13 129 128 10 12 63 62 78 76 4 8
> 13 164 169 1 23 13 33 33 48 23 49

1000 < 11 0 0 11 2 0 0 0 0 2 1
11 0 0 0 0 0 0 0 0 0 0
12 679 676 970 947 925 900 896 873 958 914
13 151 150 17 17 61 60 79 78 6 13
> 13 170 174 2 34 14 40 25 49 34 72

Table 5.6: Simulation of an AR(12) process with nonzero coefficients θ1 = 0.1,
θ3 = −0.4, θ5 = 0.5,θ7 = −0.1, θ8 = 0.05,θ10 = −0.3, θ12 = 0.2 ε ∼ N (0, 1), 1000
repetitions, dn ∈ {25, 28}.

n q̂ AIC AIC* BIC BIC* HQC HQC* SIC SIC* q̂
(5)
yn q̂

(5)
xn

125 < 10 884 853 1000 920 995 920 963 910 920 861
11 3 3 0 0 0 0 1 1 0 3
12 68 94 0 71 5 71 25 70 71 114
13 11 13 0 3 0 3 4 7 3 5
> 13 34 37 0 6 0 6 7 12 6 17

250 < 10 509 421 999 555 934 552 792 530 555 424
11 3 3 0 3 0 2 2 3 3 4
12 340 419 1 421 59 419 170 416 421 514
13 67 68 0 2 4 6 18 19 2 5
> 13 81 89 0 19 3 21 18 32 19 53

Table 5.7: Simulation of an AR(12) process with nonzero coefficients θ1 = 0.1,
θ3 = −0.4, θ12 = 0.2 ε ∼ N (0, 1), 1000 repetitions, dn ∈ {20, 23}.
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n q̂ AIC AIC* BIC BIC* HQC HQC* SIC SIC* q̂
(5)
yn q̂

(5)
xn

500 < 11 77 58 983 125 613 125 402 115 125 78
11 0 0 0 2 0 2 0 1 2 1
12 663 678 17 858 360 834 532 808 858 870
13 104 103 0 3 15 16 39 40 3 4
> 13 156 161 0 12 12 23 27 36 12 47

1000 < 11 0 0 689 2 67 2 35 2 2 2
11 0 0 0 0 0 0 0 0 0 0
12 706 701 307 971 880 926 893 907 972 936
13 124 123 2 2 39 38 54 53 1 3
> 13 170 176 2 25 14 34 18 38 25 59

Table 5.8: Simulation of an AR(12) process with nonzero coefficients θ1 = 0.1,
θ3 = −0.4, θ12 = 0.2 ε ∼ N (0, 1), 1000 repetitions, dn ∈ {25, 28}.

where ξ =
(
ξ1, ..., ξdn

)T
is a dn-dimensional mean zero Gaussian random vector

where the covariance matrix is the identity. The behavior shown in Tables 5.9,
5.10 and 5.11, 5.12, is as in the previous two cases. The difference in the sparse
model is perhaps the most striking one.

5.4 Proofs and ramification

In this section, we will prove the Theorems 5.2.2, 5.2.4, 5.2.8, and also explicitly
mention some auxiliary results which have interest in themselves. Throughout
this section, we will assume that Assumption 5.2.1 is valid. For dn ≤ m let
Γ−1
m =

(
γ∗i,j
)

1≤i,j≤m be the inverse of the covariance matrix Γm =
(
γi,j
)

1≤i,j≤m
associated to the AR(dn)-process

{
Xk

}
k∈Z. Due to Galbraith and Galbraith [51],

it holds that

σ2γ∗i,j =
α∑
r=0

θrθr+j−i −
dn+i−j∑
r=β

θrθr+j−i, 1 ≤ i ≤ j ≤ m, (5.4.1)

where

α = min
{
i− 1, dn + i− j,m− j

}
, β = max

{
i− 1,m− j

}
,

and either of the sums is taken to be zero if its upper limit is less than its lower
limit. The second sum is zero unless m − dn + 1 ≤ i ≤ j ≤ dn while both sums
are zero if j − i > dn. Note that this implies σ2(m)γ∗m,m = 1 for m > dn. In
addition, throughout this section and particularly in the proofs of the presented
results, we use the notation σ̂2 = σ̂2(dn).
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n q̂ AIC AIC* BIC BIC* HQC HQC* SIC SIC* q̂
(5)
yn q̂

(5)
xn

125 < 23 972 970 1000 996 1000 996 992 990 996 989
23 12 12 0 1 0 1 5 5 1 2
24 3 3 0 1 0 1 1 1 1 6
25 10 10 0 0 0 0 2 2 0 1
> 25 3 5 0 2 0 2 0 2 2 2

250 < 23 518 516 995 923 872 840 727 717 924 845
23 120 120 2 13 48 50 77 78 12 25
24 185 186 3 57 67 90 135 138 57 98
25 89 89 0 1 7 8 38 38 1 10
> 25 88 89 0 6 6 12 23 29 6 22

Table 5.9: Simulation of an AR(24) process with nonzero coefficients θ1 = 0.6,
θ2 = −0.1,θ4 = 0.05, θ7 = 0.15, θ8 = −0.27, θ10 = 0.1, θ12 = −0.2, θ15 = −0.25,
θ18 = 0.05, θ20 = 0.1, θ21 = −0.3,θ24 = 0.17, ε ∼ N (0, 1), 1000 repetitions,
dn ∈ {29, 34}.

n q̂ AIC AIC* BIC BIC* HQC HQC* SIC SIC* q̂
(5)
yn q̂

(5)
xn

500 < 23 63 62 716 545 302 288 210 205 589 430
23 38 38 55 60 87 87 85 85 58 71
24 513 512 208 357 490 500 525 526 326 437
25 192 192 18 28 93 93 129 129 19 27
> 25 194 196 3 10 28 32 51 55 8 35

1000 < 23 0 0 81 30 6 5 3 3 42 18
23 0 0 34 31 8 7 6 6 48 35
24 562 552 835 857 796 775 761 741 868 842
25 197 195 48 45 140 137 160 156 7 24
> 25 241 253 2 37 50 76 70 94 35 81

Table 5.10: Simulation of an AR(24) process with nonzero coefficients θ1 = 0.6,
θ2 = −0.1,θ4 = 0.05, θ7 = 0.15, θ8 = −0.27, θ10 = 0.1, θ12 = −0.2, θ15 = −0.25,
θ18 = 0.05, θ20 = 0.1, θ21 = −0.3,θ24 = 0.17, ε ∼ N (0, 1), 1000 repetitions,
dn ∈ {38, 42}.
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n q̂ AIC AIC* BIC BIC* HQC HQC* SIC SIC* q̂
(5)
yn q̂

(5)
xn

125 < 23 1000 991 1000 991 1000 991 1000 991 991 969
23 0 2 0 2 0 2 0 2 2 6
24 0 6 0 6 0 6 0 6 6 20
25 0 1 0 1 0 1 0 1 1 1
> 25 0 0 0 0 0 0 0 0 0 4

250 < 23 857 768 1000 817 998 817 986 815 817 702
23 1 15 0 27 0 26 0 25 27 39
24 99 166 0 142 2 143 13 145 142 225
25 20 22 0 3 0 3 0 3 3 5
> 25 23 29 0 11 0 11 1 12 11 29

Table 5.11: Simulation of an AR(24) process with nonzero coefficients θ1 = 0.6,
θ2 = −0.1,θ4 = 0.05, θ10 = 0.1, θ12 = −0.2, θ24 = 0.17, ε ∼ N (0, 1), 1000
repetitions, dn ∈ {29, 34}.

n q̂ AIC AIC* BIC BIC* HQC HQC* SIC SIC* q̂
(5)
yn q̂

(5)
xn

500 < 23 351 270 1000 383 952 380 854 379 383 256
23 2 8 0 51 0 48 0 41 51 61
24 451 522 0 547 45 550 130 545 547 637
25 74 73 0 0 3 3 13 13 0 2
> 25 122 127 0 19 0 19 3 22 19 44

1000 < 23 10 6 986 15 440 15 280 15 15 3
23 0 0 0 14 0 13 0 11 14 12
24 718 715 14 941 522 908 659 887 941 905
25 121 118 0 3 32 31 46 45 3 8
> 25 151 161 0 27 6 33 15 42 27 72

Table 5.12: Simulation of an AR(24) process with nonzero coefficients θ1 = 0.6,
θ2 = −0.1,θ4 = 0.05, θ10 = 0.1, θ12 = −0.2, θ24 = 0.17, ε ∼ N (0, 1), 1000
repetitions, dn ∈ {38, 42}.
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Note that we can rewrite the equation defining the AR(dn)-process as

Y = XΦdn + Z, (5.4.2)

where Y =
(
X1, ..., Xn

)T
, Z =

(
ε1, ..., εn

)T
, and the n × dn design matrix X is

given as

X =


X0 X−1 ... X1−dn
X1 X0 ... X2−dn
... ...

Xn−1 Xn−2 ... Xn−dn

 .

The following two results are key ingredients.

Proposition 5.4.1. Let
{
Xk

}
k∈Z be an AR(dn) process, such that Assumption

5.2.1 is valid. Let dn be an increasing sequence in n, ε > 0. Then

P

(
max

∣∣Γ−1
dn
− Γ̂−1

dn

∣∣ > ε

)
= O

(
ε−pn−p/2dpn +

(dn log n)p

np/2

)
.

Theorem 5.4.2. Let
{
Xk

}
k∈Z be an AR(dn) process, such that Assumption 5.2.1

is valid. Then we have

P
(
max

∣∣n1/2(Θ̂dn −Θdn)− n−1/2Γ−1XTZ
∣∣ ≥ ε

)
= O

(
ε−pn−p/2d2p

n (log n)p + n−1
)
,

where dn is chosen as dn = O
(
nδ
)
, and δ needs to satisfy the conditions given in

Theorem 5.4.3 given below.

The proofs of Proposition 5.4.1 and Theorem 5.4.2 are given in Section 5.6.1.
Based on the above results, we can now prove the following.

Theorem 5.4.3. Under the same conditions as in Theorem 5.4.2, we have for
x > 0 that∣∣∣∣P(max

∣∣n1/2(Θ̂dn −Θdn)
∣∣ ≤ x

)
− P

(
max

∣∣ξdn

∣∣ ≤ x

)∣∣∣∣ = O (κn) ,

where ξdn =
(
ξn,1, ..., ξn,dn

)T
is a dn-dimensional mean zero Gaussian random

vector with covariance matrix Γξdn , such that max
∣∣n−1Γξdn−σ

2Γdn

∣∣ = O
(
n−δ/2

)
,

where dn = O
(
nδ
)
, κn = O

(
n−1/8+δ + n1/ν−1/2+δ + n−p(1/3−2δ)(log n)p

)
and δ

must satisfy

δ < min

{
8 + 3p− (4 + p)ν

(8 + 5p)ν
,

(3ν − 4)(4 + 5p)

(52 + 25p)ν − 16

}
.
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Remark 5.4.4. For fixed p > 4, the largest possible values for δ can be obtained
by computing

max
2≤ν

(
min

{
8 + 3p− (4 + p)ν

(8 + 5p)ν
,

(3ν − 4)(4 + 5p)

(52 + 25p)ν − 16
, 1/2− 1/ν

})
.

For example, for p = 16 we obtain δ <, with ν =.

Using the above results, we obtain the following corollaries.

Corollary 5.4.5. Under the same conditions as in Theorem 5.4.2, we have

P
(∣∣σ̂2 − σ2

∣∣ ≥ ε
)

= O
(
n−1 + ε−pn−p/2dn(log n)p/2 + ε−p/2n−p/2dn(dn log n)p/2

)
.

Corollary 5.4.6. Theorem 5.4.3 remains valid if one replaces max
∣∣n1/2(Θ̂dn −

Θdn)
∣∣ with the normalized version max1≤i≤n

∣∣√n(γ̂∗i,iσ̂
2)−1/2(θ̂i − θi)

∣∣.
Remark 5.4.7. The above theorem also has the following practical relevance:
The rate of convergence to an extreme-value type distribution as given in Theorem
5.2.2 can be rather slow, see for instance [10, 97]. On the other hand, we get from
the above corollary that∣∣∣∣P(max

1≤i≤n

∣∣√n(γ̂∗i,iσ̂
2)−1/2(θ̂i − θi)

∣∣ ≤ x
)
− P

(
max

∣∣ξdn

∣∣ ≤ x

)∣∣∣∣ = O (κn) ,

where ξdn =
(
ξn,1, ..., ξn,dn

)T
is a dn-dimensional mean zero Gaussian random

vector with covariance matrix Γξdn , that is close to the matrix

Γ∗dn =
(
γ∗i,j/

√
γ∗i,iγ

∗
j,j

)
1≤,i,j≤dn

=
{
ρi,j
}

1≤,i,j≤dn
.

Corresponding quantiles can be obtained for instance via a Monte Carlo tech-
nique. However, if dn is sufficiently large, one has that

P

(
max

∣∣ξdn∣∣ ≤ x

)
≈ P

(
max

∣∣ηdn∣∣ ≤ x

)
,

where ηdn =
(
ηn,1, ..., ηn,dn

)T
is a sequence of IID mean zero Gaussian random

variables with unit variance. A bound for the error can be given by using the
techniques developed by Berman [17] and Deo [38], see also the proof of Theorem
5.2.4.

Throughout the proofs, the following inequality will be frequently used. For
random variables X1, ..., Xq, and ε > 0, the inequality between the geometric and
arithmetic mean implies

P
( q∏
i=1

|Xi| ≥ ε
)
≤

q∑
i=1

P
(
|Xi| ≥ ε1/q

)
. (5.4.3)
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Proof of Theorem 5.4.3. Let χn,ε = ε−pn−p/2d2p
n (log n)p + n−1. Then Theorem

5.4.2 implies

P
(
max

∣∣n1/2(Θ̂dn −Θdn)
∣∣ ≤ x

)
≤ P

(
max

∣∣n1/2(Θ̂dn −Θdn)− n−1/2Γ−1XTZ
∣∣ ≥ 2ε

)
+ P

(
max

∣∣n−1/2Γ−1XTZ
∣∣ ≤ x+ 2ε

)
= O (χn,ε) + P

(
max

∣∣n−1/2Γ−1XTZ
∣∣ ≤ x+ 2ε

)
.

As in Brockwell and Davis [25, Section 8.10], by setting Uk =
(
Xk−1, ..., Xk−dn

)T
εk,

k ∈ N, we have

n−1/2XTZ = n−1/2

n∑
k=1

Uk.

Note in particular that E
(
Uk

)
= 0, and

E
(
UkU

T
k+h

)
=

{
σ2Γdn , if h = 0,
0dn×dn , if h 6= 0,

(5.4.4)

since εk is independent of
{
Xk−i

}
i≥1

. Note that since |θi| < 1, using the repre-

sentation (5.4.1) for
{
γ∗i,j
}

1≤i≤dn
, we obtain that

σ2 max
∣∣Γ−1

dn

∣∣ < 2.

From Corollary 5.5.3 we obtain that on a possible larger probability space there

exists a dn-dimensional Gaussian vector ξdn =
(
ξn,1, ..., ξn,dn

)T
with the covariance

matrix Γξdn , such that for 2 ≤ ν

P

(
max

∣∣n−1/2Γ−1
dn

XTZ− ξdn
∣∣ > n1/ν−1/2

)
= O

(
n−1
)
. (5.4.5)

Using this we obtain

P
(
max

∣∣n1/2(Θ̂dn −Θdn)
∣∣ ≤ x

)
≤ P

(
max

∣∣ξdn∣∣ ≤ x+ ε+ n1/ν−1/2

)
+O (χn,ε) .

Observe that for y > 0

P

(
max

∣∣ξdn∣∣ ≤ x+ y

)
− P

(
max

∣∣ξdn∣∣ ≤ x

)
≤

dn∑
h=0

P

(
x ≤

∣∣ξh∣∣ ≤ x+ y

)

≤
dn∑
h=0

P

(∣∣ξh∣∣ ≤ y

)
= O (ydn) ,
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hence

P
(
max

∣∣n1/2(Θ̂dn −Θdn)
∣∣ ≤ x

)
≤ P

(
max

∣∣ξdn∣∣ ≤ x

)
+O

(
(ε+ n1/ν−1/2)dn + χn,ε

)
.

(5.4.6)

Similarly, one establishes the lower bound

P
(
max

∣∣n1/2(Θ̂dn −Θdn)
∣∣ ≤ x

)
≥ P

(
max

∣∣ξdn∣∣ ≤ x

)
−O

(
(ε+ n1/ν−1/2)dn + χn,ε

)
.

(5.4.7)

Setting ε = n−c, we obtain the inequalities

δ <
1

2
− 1

ν
, δ <

1− 2c

4
, δ < c.

Hence we can choose c = 1/8, and thus obtain

(ε+ n1/ν−1/2)dn + χn,ε ≤ n−1/8+δ + n1/ν−1/2+δ + n−p(1/3−2δ)(log n)p,

which completes the proof.

Proof of Corollary 5.4.5. Trivially, it holds that

σ̂2 − σ2 = φ̂0 − φ0 + Θ̂T
dnΦ̂dn −ΘT

dnΦdn

= φ̂0 − φ0 +
(
Θ̂T
dn −ΘT

dn

)(
Φ̂dn −Φdn

)
+
(
Θ̂T
dn −ΘT

dn

)
Φdn +

(
Θ̂T
dn −ΘT

dn

)
Φdn .

Since
∑dn

i=1 |θi| < 1, Lemma 5.6.1, the Markov and Minikowski inequality yield

P
(∣∣ΘT

dn

(
Φ̂dn −Φdn

∣∣ ≥ ε
)
≤
∥∥∥∥ dn∑
i=1

|θi||φ̂i − φi|
∥∥∥∥p
p

ε−p

≤

(
dn∑
i=1

|θi|
∥∥φ̂i − φi|∥∥p

)p

ε−p = O
(
n−p/2ε−p

)
.

Since
∑∞

h=0 |φh| ≤ C <∞ we have

P
(∣∣(Θ̂T

dn −ΘT
dn

)
Φdn

∣∣ ≥ ε
)
≤ P

(
C max

∣∣Θ̂dn −Θdn

∣∣ ≥ ε
)
.

An application of Theorem 5.4.2 yields

P
(
max

∣∣(Θ̂dn −Θdn)− n−1Γ−1XTZ
∣∣ ≥ ε

)
= O

(
ε−pn−pd2p

n (log n)p + n−1
)
.
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Using the notation of the proof of Theorem 6.6.4 we have

Γ−1XTZ =
∑

i≤i≤dn

Ui.

By Lemma 5.6.1, we can present Xk as Xk =
∑∞

i=0 ψiεk−i. Set X
(n)
k =∑dA logne

i=0 ψiεk−i, A > 0, Y
(n)
k =

∑∞
i>dA logne ψiεk−i and define U

(n)
k =

(
U

(1)
k , ..., U

(dn)
k−dn+1

)T
,

where U
(h)
k = X

(n)
k−h−1εk, 0 ≤ h ≤ dn−1, and similarly V

(n)
k =

(
V

(1)
k , ..., V

(dn)
k−dn+1

)T
,

where V
(h)
k = Y

(n)
k−h−1εk, 0 ≤ h ≤ dn − 1. This implies

P
(
max

∣∣Γ−1XTZ
∣∣ ≥ nε

)
≤ P

(
max

∣∣ ∑
1≤i≤dn

Ui
(n)
∣∣ ≥ nε/2

)
+ P

(
max

∣∣ ∑
1≤i≤dn

Vi
(n)
∣∣ ≥ nε/2

)
≤

dn∑
h=1

P
(∣∣ ∑

1≤i≤n

U
(h)
i

∣∣ ≥ nε/2
)

+
dn∑
h=1

P
(∣∣ ∑

1≤i≤n

V
(h)
i

∣∣ ≥ nε/2
)
.

By the Markov inequality and Lemma 6.6.10 we have

dn∑
h=1

P
(∣∣ ∑

1≤i≤n

U
(h)
i

∣∣ ≥ nε/2
)
≤ (nε/2)−p

dn∑
h=1

∥∥∥∥∑
l≤i≤n

U
(h)
i

∥∥∥∥p
p

≤ C(nε)−pdn(n log n)p/2

= Cε−pn−p/2dn(log n)p/2.

On the other hand, for large enough A > 0 we have
∥∥V (h)

i

∥∥
p

= O (n−1) , and thus

the Markov and Minikowski inequality imply

dn∑
h=1

P
(∣∣ ∑

1≤i≤n

V
(h)
i

∣∣ ≥ nε/2
)
≤ C(nε/2)−p

dn∑
h=1

∥∥∥∥ ∑
1≤i≤n

V
(h)
i

∥∥∥∥p
p

≤ C(nε/2)−p
dn∑
h=1

( ∑
1≤i≤n

∥∥V (h)
i

∥∥
p

)p

= O
(
(nε)−pdn

)
.

Since dn = O
(
n−1/8

)
this results in a total bound

P
(∣∣(Θ̂T

dn −ΘT
dn

)
Φdn

∣∣ ≥ ε
)

= O
(
n−1 + ε−pn−p/2dn(log n)p/2

)
. (5.4.8)

In addition, observe that

P
(∣∣(Θ̂T

dn −ΘT
dn

)(
Φ̂dn −Φdn

)∣∣ ≥ ε
)
≤ P

(
dn max

∣∣Θ̂T
dn −ΘT

dn

∣∣max
∣∣Φ̂dn −Φdn

∣∣ ≥ ε
)
,
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which by the inequality given in (5.4.3) is smaller than

P
(
max

∣∣Θ̂T
dn −ΘT

dn

∣∣ ≥√εd−1
n

)
+ P

(
max

∣∣Φ̂dn −Φdn

∣∣ ≥√εd−1
n

)
.

By the bounds derived above we thus obtain

P
(∣∣(Θ̂T

dn −ΘT
dn

)(
Φ̂dn −Φdn

)∣∣ ≥ ε
)

= O
(
n−1 + ε−p/2n−p/2dn(dn log n)p/2 + ε−p/2dp/2n n−p/2

)
= O

(
n−1 + ε−p/2n−p/2dn(dn log n)p/2

)
.

Piecing everything together, we obtain

P
(∣∣σ̂2 − σ2

∣∣ ≥ ε
)

= O
(
n−p/2ε−p + n−1 + ε−pn−p/2dn(log n)p/2 + ε−p/2n−p/2dn(dn log n)p/2

)
= O

(
n−1 + ε−pn−p/2dn(log n)p/2 + ε−p/2n−p/2dn(dn log n)p/2

)
,

which completes the proof.

Proof of Corollary 5.4.6. First note that using the representation (5.4.1) for
{
γ∗i,j
}

1≤i≤dn
,

we obtain from Assumption 5.2.5 that

σ2 min
1≤i≤dn

∣∣γ∗i,i∣∣ ≥ 1−
dn∑
i=1

|θi| ≥ ϑ > 0. (5.4.9)

Since σ2 > 0, it suffices to show that the error difference
√
n
∣∣(γ̂∗i,iσ̂2)−1/2(θ̂i − θi)− (γ∗i,iσ

2)−1/2(θ̂i − θi)
∣∣ (5.4.10)

is sufficiently small in probability, in which case the claim follows from Theorem
5.4.3.

We will first derive bounds for the difference ∆i =
∣∣(γ̂∗i,iσ̂2)−1/2(θ̂i − θi) −

(γ∗i,iσ
2)−1/2(θ̂i − θi)

∣∣. It holds that

P
(

max
1≤i≤dn

∣∣(γ̂∗i,iσ̂2)−1/2(θ̂i − θi)− (γ∗i,iσ
2)−1/2(θ̂i − θi)

∣∣ ≥ ε
)

≤ P
(

max
1≤i≤dn

∣∣((γ̂∗i,iσ̂2)1/2 − (γ∗i,iσ
2)1/2

)
(γ̂∗i,iσ̂

2)−1/2(θ̂i − θi)(γ∗i,iσ2)−1/2
∣∣ ≥ ε

)
.

Due to (5.4.9), the expression
∣∣(θ̂i − θi)(γ

∗
i,iσ

2)−1/2
∣∣ can be controlled by The-

orem 6.6.4 (we give some details later), hence we need to study
∣∣(γ̂∗i,iσ̂2)1/2 −

(γ∗i,iσ
2)1/2

∣∣(γ̂∗i,iσ̂2)−1/2. Since∣∣∣∣(γ̂∗i,iσ̂2)1/2 − (γ∗i,iσ
2)1/2

(γ̂∗i,iσ̂
2)1/2

∣∣∣∣ =

∣∣∣∣ γ̂∗i,iσ̂
2 − γ∗i,iσ2

(γ̂∗i,iσ̂
2)1/2 + (γ∗i,iσ

2)1/2

1

(γ̂∗i,iσ̂
2)1/2

∣∣∣∣
≤
∣∣∣∣
(
γ̂∗i,iσ̂

2 − γ∗i,iσ2
)

γ̂∗i,iσ̂
2

∣∣∣∣,
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it suffices to treat
(
γ̂∗i,iσ̂

2 − γ∗i,iσ2
)
(γ̂∗i,iσ̂

2)−1.
For 0 < ε ≤ 1 we have{∣∣σ2γ∗i,i − σ̂2γ̂∗i,i

∣∣ ≥ εγ̂∗i,iσ̂
2
}
⊆
{∣∣σ2γ∗i,i − σ̂2γ̂∗i,i

∣∣(1 + ε) ≥ εγ∗i,iσ
2
}

⊆
{∣∣σ2γ∗i,i − σ̂2γ̂∗i,i

∣∣ ≥ εγ∗i,iσ
2/2
}

⊆
{∣∣σ2γ̂∗i,i − σ̂2γ̂∗i,i

∣∣+
∣∣σ2γ∗i,i − σ2γ̂∗i,i

∣∣ ≥ εγ∗i,iσ
2/2
}

Since σ2, γ∗i,i ≥ C > 0, we have from Proposition 5.4.1 that

P
(

max
1≤i≤dn

∣∣σ2γ∗i,i − σ2γ̂∗i,i
∣∣ ≥ ε min

1≤i≤dn
γ∗i,i
)

= O
(
ε−pn−p/2dpn +

(dn log n)p

np/2

)
.

In order to treat
∣∣σ2γ̂∗i,i − σ̂2γ̂∗i,i

∣∣, note that∣∣σ2γ̂∗i,i − γ̂∗i,iσ̂2
∣∣ ≤ ∣∣σ2 − σ̂2

∣∣∣∣γ∗i,i − γ̂∗i,i∣∣+ γ∗i,i
∣∣σ2 − σ̂2

∣∣.
Using the inequality given in (5.4.3) we obtain from Proposition 5.4.1 and

Corollary 5.4.5

P
(

max
1≤i≤dn

∣∣σ2γ̂∗i,i − γ̂∗i,iσ̂2
∣∣ ≥ ε

)
= O (ζn,ε) , (5.4.11)

where ζn,ε = n−1 + ε−pn−p/2dn(log n)p/2 + ε−p/2n−p/2dn(dn log n)p/2, and conse-
quently for 1 ≤ i ≤ dn

P
(

max
1≤i≤dn

∣∣σ2γ∗i,i − σ̂2γ̂∗i,i
∣∣(γ̂∗i,i)−1 ≥ εσ̂2

)
= O

(
ε−pn−p/2dpn + χn,ε

)
,

if 0 < ε ≤ 1. This implies that for ε∗ > 0 we have

P
(√

n max
1≤i≤dn

∆i ≥ ε
)

≤ P
(

max
1≤i≤dn

∣∣((θ̂i − θi)(γ∗i,iσ2)−1/2
∣∣ ≥ ε(ε∗)−1

)
+ P

(∣∣(γ̂∗i,iσ̂2)1/2 − (γ∗i,iσ
2)1/2

∣∣ ≥ ε∗γ̂∗i,iσ̂
2
)

= P
(√

n max
1≤i≤dn

∣∣(θ̂i − θi)(γ∗i,iσ2)−1/2
∣∣ ≥ ε(ε∗)−1

)
+O

(
(ε∗)−pn−p/2dpn + ζn,ε∗

)
.

Since σ2, γ∗i,i ≥ C > 0, and application of Theorem 5.4.3 (remains valid) yields∣∣∣∣P(√n max
1≤i≤dn

∣∣(θ̂i − θi)(γ∗i,iσ2)−1/2
∣∣ ≥ ε(ε∗)−1

)
− P

(
max

1≤i≤dn

∣∣ξi(γ∗i,iσ2)−1/2
∣∣ ≥ ε(ε∗)−1

)∣∣∣∣ = O(κn)

if ε(ε∗)−1 ≥ 1, where ξdn =
(
ξn,1, ..., ξn,dn

)T
is a dn-dimensional Gaussian vector.

Choosing ε∗ = ε(log n)−1 we obtain

P
(

max
1≤i≤dn

∣∣ξi(γ∗i,iσ2)−1/2
∣∣ ≥ ε(ε∗)−1

)
≤

dn∑
i=1

P
(∣∣ξi(γ∗i,iσ2)−1/2

∣∣ ≥ log n
)

= O
(
n−1
)
.
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Piecing everything together, we get

P
(√

n max
1≤i≤dn

∆i ≥ ε
)

= O
(
ε−pn−p/2(dn log n)p + ζn,ε(logn)−1 + κn

)
. (5.4.12)

This finally entitles us to establish a decent approximation of P
(
max1≤i≤dn

∣∣(γ̂∗i,iσ̂2)−1/2(θ̂i−
θi)
∣∣ ≤ x

)
. From the above we have∣∣∣∣P(√n max

1≤i≤dn

∣∣(γ̂∗i,iσ̂2)−1/2(θ̂i − θi)
∣∣ ≤ x

)
− P

(√
n max

1≤i≤dn

∣∣(γ∗i,iσ2)−1/2(θ̂i − θi)
∣∣ ≤ x+ ε

)∣∣∣∣
≤ P

(√
n max

1≤i≤dn
∆i ≥ ε

)
,

and as before an application of Theorem 5.4.3 gives us∣∣∣∣P(√n max
1≤i≤dn

∣∣(γ∗i,iσ2)−1/2(θ̂i − θi)
∣∣ ≤ x+ ε

)
− P

(√
n max

1≤i≤dn

∣∣(γ∗i,iσ2)−1/2(θ̂i − θi)
∣∣ ≤ x

)∣∣∣∣
= P

(
x ≤ max

1≤i≤dn

∣∣ξi(γ∗i,iσ2)−1/2
∣∣ ≤ x+ ε

)
+O(κn)

≤
dn∑
i=1

P
(
x ≤

∣∣ξi(γ∗i,iσ2)−1/2
∣∣ ≤ x+ ε

)
+O(κn) = O (κn + dnε) .

This yields a total approximation error of the magnitude

P
(√

n max
1≤i≤dn

∆i ≥ ε
)

+O (κn + dnε)

= O
(
ε−pn−p/2(dn log n)p + ζn,ε(logn)−1 + κn + dnε

)
. (5.4.13)

By comparing this error bound with the one given in the proof of Theorem 5.4.3,
one finds that the latter is the dominating one, hence the conditions given in
Theorem 5.4.3 remain unchanged.

We are now ready to prove Theorems 5.2.2 and 5.2.4.

Proof of Theorem 5.2.2. By Corollary 5.4.6, it suffices to consider the absolute

value of a sequence of mean zero Gaussian random variables ξdn =
(
ξn,1, ..., ξn,dn

)T
,

with covariance matrix Γ∗ξdn
, that satisfies max

∣∣Γ∗ξdn − Γ∗dn
∣∣ = O

(
n−δ/2

)
, where

Γ∗dn =
(
γ∗i,j/

√
γ∗i,iγ

∗
j,j

)
1≤,i,j≤dn

=
{
ρi,j
}

1≤,i,j≤dn
. Results for the maximum of the

absolute value of Gaussian sequences is for example treated in [38] (see also [17]
for earlier contributions), and is stated in Section 5.7 as Lemma 5.7.1. It thus
remains to verify the conditions of Lemma 5.7.1. To this end, let us first assume
that Γ∗ξdn

= Γ∗dn .
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Equation (5.4.9) in the proof of Corollary 5.4.6 implies that

σ2 min
1≤i≤dn

∣∣γ∗i,i∣∣ ≥ ϑ > 0.

In addition, the Cauchy-Schwarz inequality yields ρi,j ≤ 1 which gives us

sup
h,k
|Cov

(
ξk, ξk+h

)
| ≤ 1.

Suppose now that for some subsequence n′ and corresponding sequences k′n, h
′
n,

with h′n ≥ 1 we actually have

lim
n′

∣∣Cov
(
ξk′n , ξk′n+h′n

)∣∣= |φh′n | = 1. (5.4.14)

If we consider the corresponding subsequence of the 2× 2 submatrices

An′ =
(
(φ0, φh′n)t, (φh′n , φ0)t

)
,

then it follows that the smaller eigenvalue λAn′ ,2
converges to zero. Hence we

obtain from Cauchy’s interlacing ( [106]) theorem that the smallest eigenvalue
λn of Γdn tends to zero, which however contradicts Proposition 5.6.2. Hence we
must have

lim sup
n→∞

sup
h,k, h≥1

∣∣Cov
(
ξk, ξk+h

)∣∣ < 1. (5.4.15)

The remaining conditions of Lemma 5.7.1 are now explicitly assumed in the
conditions of Theorem 5.2.2, hence the claim follows if Γ∗ξdn

= Γ∗dn . However,

since (log n)2+β = O
(
n−δ/2

)
, it follows that the conditions are also verified in case

of max
∣∣Γ∗ξdn − Γ∗dn

∣∣ = O
(
n−δ/2

)
, for large enough n.

Proof of Theorem 5.2.4. Let q0 = q be the true order of the AR(q)-process
{
Xk

}
k∈Z,

put

θi,n = a−1
n

√
n
(∣∣(γ̂∗i,iσ̂2)−1/2(θ̂i − θi)

∣∣− bn),
and assume first that k ∈ N, k > 0. Note that θi = 0 for i > q. Then we have
that

P
(
q̂zn = k + q

)
= P

(
{θq+k,n > zn} ∩ { max

k+q+1≤i≤dn
θi,n ≤ zn}

)
= P

(
max

k+q≤i≤dn
θi,n ≤ zn

)
− P

(
max

k+q+1≤i≤dn
θi,n ≤ zn

)
.
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As in the proof of Theorem 5.2.2, we can approximate the sequence
{
θi,n
}

1≤i≤dn
by a suitably transformed corresponding sequence of mean zero Gaussian random

variables ξdn =
(
ξn,1, ..., ξn,dn

)T
with covariance matrix Γ∗ξdn

. Note that this ap-

proximation gives us an error term of the order O (κn), where κn is as in Theorem

5.4.3. Let ηdn =
(
ηn,1, ..., ηn,dn

)T
be another sequence of IID mean zero Gaus-

sian random variables with unit variance. Following Deo [38], we obtain from
max

∣∣Γ∗ξdn − Γ∗dn
∣∣ = O

(
n−δ/2

)
and the Assumptions regarding the covariance

structure of
{
θi,n
}

1≤i≤dn
that for fixed l ∈ N∣∣P( max

q+l≤i≤dn
a−1
n

(∣∣ξn,i∣∣− bn) ≤ zn
)
− P

(
max

q+l≤i≤dn
a−1
n

(∣∣ηn,i∣∣− bn) ≤ zn
)∣∣

≤ C
∑

1≤i<j≤dn

∣∣ρi,j∣∣(d− 2z2n
1+|ρi,j |

n

)
.

Imitating the technique in Berman [17], we obtain that the above quantity is of

the magnitude O
(
d

(−z2n+1)/2
n

)
. We thus obtain that

P
(
q̂zn = k + q

)
= P

(
max

q+k+1≤i≤dn
a−1
n

(∣∣ηn,i∣∣− bn) ≤ zn
)
− P

(
max

q+k≤i≤dn
a−1
n

(∣∣ηn,i∣∣− bn) ≤ zn
)

+O (κn) + O
(
d(−z2n+1)/2
n

)
= P

(
a−1
n

(∣∣ηn,1∣∣− bn) ≤ zn
)dn−k−q (

1− P
(
a−1
n

(∣∣ηn,1∣∣− bn) ≤ zn
))

+O (κn) + O
(
d(−z2n+1)/2
n

)
.

From the definition of an, bn, and since zn →∞, we obtain that ( Deo [38])

lim
n
P
(
a−1
n

(∣∣ηn,1∣∣− bn) ≤ zn
)dn−k−q → 1, (5.4.16)

P
(
a−1
n

(∣∣ηn,1∣∣− bn) > zn
)

=
e−zn

dn
+ O

(
e−zn

dn

)
. (5.4.17)

This yields

P
(
q̂zn = k + q

)
=
e−zn

dn
+ O

(
e−zn

dn
+ d(−z2n+1)/2

n

)
+O (κn) , (5.4.18)

and in particular

P
(
q̂zn > q

)
=

dn∑
k=1

P
(
q̂zn = k + q

)
= e−zn + O

(
e−zn + d−z

2
n+2

n

)
+O (κndn) ,

(5.4.19)
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and per assumption the right hand side goes to zero as n increases. We now
consider the case P

(
q̂zn < q

)
. To this end, let k ∈ N, k > 0. Then we have

P
(
q̂zn = q − k

)
≤ P

(
θq−k,n ≤ zn

)
= P

(
a−1
n

(∣∣ξn,q−k +
√
nθq−k

∣∣− bn) ≤ zn
)

+O(κn).

Since |θq−k| > 0 and zn = O
(√

n(log n)−1
)

, one readily verifies by known prop-

erties of the Gaussian cdf that P
(
a−1
n

(∣∣ξn,q−k +
√
nθq−k

∣∣ − bn) ≤ zn
)

= O (κn),
and hence

P
(
q̂zn = q − k

)
= O (rn) , (5.4.20)

and in particular

P
(
q̂zn < q

)
= O (κnq)→ 0, (5.4.21)

as n increases. This together with (5.4.19) establishes consistency.

Proof of Theorem 5.2.8. Let us first assume that the the true order q0 of the
autoregressive process is fixed, i.e. q0 = q for some finite q.

The proof then consists of two parts. It is first shown that P
(
q̂∗n < q

)
→ 0,

whereas in the second part the claim P
(
q̂∗n > q

)
→ 0 is established.

By Hannan [60, Chapter VI], it holds that for k ∈ N

log
(
σ̂2(k)

)
= log φ̂n,0 +

k∑
j=1

log(1− θ̂2
j (k)). (5.4.22)

Then, arguing as in Hannan and Quinn [63], we have due to Cn = O(n) that for
large enough n

fn(k) = log
(
σ̂2(k)

)
+ n−1Cnk

is a decreasing function in k for 0 ≤ k < q, and strictly decreasing for q−1 ≤ k ≤ q
(since θ2

q > 0) with probability approaching one. This implies that eventually
q̂∗n ≥ q, hence it suffices to establish that the probability of overestimating the
order goes to zero as n increases, i.e.

lim
n
P
(
(min

{
q ≤ k ≤ Kn

∣∣ log
(
σ̂2(k)

)
+ n−1Cnk

}
≥ q + 1

)
= 0. (5.4.23)

Using relation (5.4.22), the above can be rewritten as

P
(
min

{
q ≤ k ≤ Kn

∣∣ log
(
σ̂2(k)

)
+ n−1Cnk

}
≥ q + 1

)
(5.4.24)

= P

(
min

{
q ≤ k ≤ Kn

∣∣ log φ̂n,0 +
k∑
j=1

log(1− θ̂2
j (k)) + n−1Cnk

}
≥ q + 1

)
.

(5.4.25)
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Using the same arguments as in [3], it follows that it suffices to establish

lim
n
P

(
max

1≤k≤Kn−q

(
k+q∑
j=1+q

− log(1− θ̂2
j (k))

)
≥ n−1Cnk

)
= 0. (5.4.26)

However, it holds that

P

(
max

1≤k≤Kn−q

(
k+q∑
j=1+q

− log(1− θ̂2
j (k))

)
≥ n−1Cnk

)

≤
Kn−q∑
k=1

P

(
k+q∑
j=1+q

− log(1− θ̂2
j (k)) ≥ n−1Cnk

)

≤
Kn−q∑
k=1

k+q∑
j=1+q

P
(
− log(1− θ̂2

j (k)) ≥ n−1Cn

)
, (5.4.27)

hence it suffices to treat

P
(
− log(1− θ̂2

j (k)) ≥ n−1Cn

)
≤ P

(
|θ̂j(k)| ≥ n−1/2

√
Cn

)
,

for large enough n and q < j ≤ Kn. Since it is no longer of any relevance, we
drop the index k for the sake of simplicity. Since θj = 0 for q < j ≤ Kn, following
the proof of Theorem 5.4.2 (which amounts to setting dn = 1 in Theorem 5.4.2),
we obtain that

P
(∣∣n1/2θ̂j − n−1/2(γ∗j,j)

−1

n∑
i=1

U
(j)
i

∣∣ ≥ ε
)

= O
(
ε−pn−p/2(log n)p + n−1

)
.

In addition, we have from Corollary 5.5.3 that on a possible larger probability
space

P

(∣∣∣∣
(
n−1/2(γ∗j,j)

−1

n∑
i=1

U
(j)
i

)
− ξj

∣∣∣∣ ≥ n1/ν−1/2

)
= O

(
n−1
)
,

where ν ≥ 2 and ξj is a Gaussian random variable with positive variance. Setting
ε = 2n1/ν−1/2 we thus obtain

P
(∣∣n1/2θ̂j − ξj

∣∣ ≥ ε
)

= O
(
ε−pn−p/2(log n)p + n−1

)
.

By known properties of the Gaussian cdf, we have

P
(
|ξj| ≥

√
Cn

)
= O

(
C−1/2
n exp(−Cn/2)

)
,
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thus, using the bounds derived above, we obtain

P
(
|θ̂j(k)| ≥ n−1/2

√
Cn − ε

)
= O

(
C−1/2
n exp(−Cn/2) + ε−pn−p/2(log n)p + n−1

)
,

where ε = 2n1/ν−1/2. Having (5.4.27) in mind, we thus require that

K2
n

(
C−1/2
n exp(−Cn/2) + ε−pn−p/2(log n)p + n−1

)
→ 0

as n increases. Since p > 4, this amounts to

Kn = O
(
n1/2

)
, 4 logKn ≤ Cn,

which completes the proof if the order of the process is finite.
Let us now consider the case of unbounded order, i.e. q0 = dn. The above

arguments are still valid to establish limn P
(
q̂∗n > dn

)
= 0, however, showing that

limn P
(
q̂∗n < dn

)
= 0 turns out to be a little more involved. To establish this

claim, note that by Theorem 5.4.3 we have

max
∣∣Θ̂−Θ

∣∣ ≤ n−1/4

with probability approaching one. Thus we obtain

max
∣∣Θ̂2 −Θ2

∣∣ ≤ max
∣∣Θ̂−Θ

(∣∣max
∣∣Θ̂−Θ

∣∣+ 2 max
∣∣Θ∣∣) ≤ 3n−1/4 (5.4.28)

with probability approaching one, since max
∣∣Θ2

∣∣ ≤ ϑ < 1. Let xi ∈ {θi −
3n−1/4, θi + 3n−1/4}. Then we deduce from the above, that for large enough n,
xi ∈ {−3n−1/4, ϑ∗} where |ϑ∗| < 1. This in turn implies that for large enough n

k∑
j=0

∣∣log(1− θ̂2
j (k))− log(1− θ2

j (k))
∣∣ ≤ k∑

j=0

∣∣θ̂2
j (k)− θ2

j (k)
∣∣ 1

|1− xi|

≤ 3kn−1/4 1

1− ϑ∗
,

with probability approaching one. Since dnn
−1/4 = O(1), relation (5.4.22) thus

yields that

log
(
σ̂2(k)

)
− log φ̂n,0 =

k∑
j=1

log(1− θ̂2
j (k)) =

k∑
j=1

log(1− θ2
j (k)) +O

(
kn−1/4 1

1− ϑ∗
)

is a monotone decreasing function in 0 ≤ k < dn, strictly decreasing in k = dn, for
large enough n with probability approaching one. This yields that limn P

(
q̂∗n <

q
)

= 0.
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5.5 Gaussian approximation

In this section we obtain under suitable assumptions, a normal approximation for
the quantity n−1/2XTZ, where we used the notation introduce in Section 5.4.

As in the proof of Theorem 5.4.3, let Uk =
(
Xk−1, ..., Xk−dn

)T
εk, k ∈ N. We

have

n−1/2XTZ = n−1/2

n∑
k=1

Uk,

with E
(
Uk

)
= 0 and

E
(
UkU

T
k+h

)
=

{
σ2Γdn , if h = 0,
0dn×dn , if h 6= 0,

(5.5.1)

since εk is independent of
{
Xk−i

}
i≥1

.
The main Theorem is formulated below.

Theorem 5.5.1. Let ν ≥ 2. Then under Assumption 5.2.1, on a possible
larger probability space, there exists a dn-dimensional Gaussian vector ξdn =(
ξ(1), ..., ξ(dn)

)T
with covariance matrix Γξdn , such that max

∣∣n−1Γξdn − σ
2Γdn

∣∣ =

O
(
n−δ/2

)
, and

P

(
max

∣∣∣∣
(

n∑
k=1

Uk

)
− ξdn

∣∣∣∣ ≥ n1/ν

)
= O

(
n−1
)
,

where dn = nδ and δ is chosen such that

δ < min

{
8 + 3p− (4 + p)ν

(8 + 5p)ν
,

(3ν − 4)(4 + 5p)

(52 + 25p)ν − 16

}
.

Remark 5.5.2. Note that for ν = 2 and p ≥ 4 this results in 0 < δ < 1/14.

Corollary 5.5.3. Let Γ−1
dn

=
(
γ∗i,j
)

1≤i,j≤dn
be the inverse of the covariance matrix

Γdn. Then under the same conditions as in Theorem 6.6.4, we have that

P

(
max

∣∣∣∣Γ−1
dn

{(
n∑
k=1

Uk

)
− ξdn

}∣∣∣∣ ≥ n1/ν

)
= O

(
n−1
)
.

Proof. By relation (5.4.1) and condition
∑dn

i=1

∣∣θi∣∣ = ϑ < 1 we have that for fixed
i

dn∑
j=1

|γ∗i,j| ≤
dn∑
j=1

(
α∑
r=0

∣∣θrθr+j−i∣∣+
dn∑
r=β

∣∣θrθr+j−i∣∣) ≤ 2ϑ2.
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Hence the claim readily follows from

max

∣∣∣∣Γ−1
dn

{(
n∑
k=1

Uk

)
− ξdn

}∣∣∣∣ ≤ 2 max

∣∣∣∣
(

n∑
k=1

Uk

)
− ξdn

∣∣∣∣.

The proof of Theorem 6.6.4 follows [14, Theorem 4.1] in broad brushes, with
some essential changes in the details. To this end, we require some preliminary
results. For an n-dimensional vector x = (x1, ..., xn), we denote with |x|n =(∑n

i=1(xi)
2
)1/2

the usual euclidian norm. The following coupling inequality is
due to Berthet and Mason [19].

Lemma 5.5.4 (Coupling inequality). Let X1, ..., XN be independent, mean zero
random vectors in Rn, n ≥ 1, such that for some B > 0, |Xi|n ≤ B, i =
1, ..., N . If the probability space is rich enough, then for each δ > 0, one can
define independent normally distributed mean zero random vectors ξ1, ..., ξN with
ξi and Xi having the same variance/covariance matrix for i = 1, ..., N , such that
for universal constants C1 > 0 and C2 > 0,

P

{∣∣ N∑
i=1

(Xi − ξi)
∣∣
n
> δ

}
≤ C1n

2 exp

(
−C2δ

Bn2

)
.

The proof of Theorem 6.6.4 is based on a blocking argument, which in turn
requires carefully truncated random variables. By Lemma 5.6.1, we can present
Xk as Xk =

∑∞
i=0 ψiεk−i. Set X

(n)
k =

∑dA logne
i=0 ψiεk−i, A > 0, and define X(n)

and U
(n)
k in an analogue manner, and V

(n)
k such that Uk = U

(n)
k + V

(n)
k . Then{

U
(n)
k

}
0≤k≤n are 2dA log ne-dependent sequences, with E

(
U

(n)
k

)
= E

(
V

(n)
k

)
= 0

and

E
(
U

(n)
k U

(n),T
k+h

)
=

{
σ2Γ

(n)
dn
, if h = 0,

0dn×dn , if h 6= 0,
(5.5.2)

Denote with U
(n)
k =

(
U

(1)
k , ..., U

(dn)
k

)t
, V

(n)
k =

(
V

(1)
k , ..., V

(dn)
k

)t
the single com-

ponents of U
(n)
k and V

(n)
k .

Lemma 5.5.5. There is an absolute constant C such that

E
∣∣∣∣∑
l≤i≤k

U
(h)
i

∣∣∣∣p ≤ C
(
(k − l + 1)dA log ne

)p/2
.

Remark 5.5.6. An analogue result is valid for V
(n)
k .
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Proof of Lemma 6.6.10. Put K = dA log ne, and denote with ‖.‖p = (E|.|p)1/p.
Then per construction, we can rewrite∑

l≤i≤k

U
(h)
i = S1 + ...+ SK ,

where Si is a sum of independent random variables with at most (k − l + 1)/K
terms. Minikowski’s inequality gives us

‖S1 + ...+ SK‖p ≤ ‖S1‖p + ...+ ‖SK‖p.

By Rosenthal’s inequality, we have

E
∣∣Si∣∣p ≤ C

(
(k − l + 1)/K

)p/2
= C ((k − l + 1)/K)p/2 ,

hence ∥∥∥∥∑
l≤i≤k

U
(h)
i

∥∥∥∥p
p

≤ C
(
(k − l + 1)K

)p/2
.

Proof of Theorem 6.6.4. The proof is based on two truncation and a blocking ar-
gument. The first truncation consist of approximating

∑n
k=1 Uk with

∑n
k=1 U

(n)
k .

Due to the Markov inequality and Lemma 5.6.1, we can always find an A large
enough such that

P

(
max

∣∣∣∣ n∑
j=1

(
Uj −Uj

(n)
)∣∣∣∣ ≥ n1/ν

)
= O

(
n−1
)
,

and we can move on to the second truncation step, which is a little more involved.
For a random variable ε, let IεB = 1(ε){|ε|≤B} for B > 0, and similarly, IεBc =
1(ε){|ε|>B}. Consider the quantity

IB = εk

∞∑
i=0

ψiεk−i−1 − εkIεkB
∞∑
i=0

ψiεk−i−1I
εk−i−1

B .

Applying the Minikowski, Cauchy-Schwarz and Markov inequality we obtain for
p ≥ 1

∥∥IB∥∥2
≤

∞∑
i=0

|ψi|
∥∥εkIεkBcεk−i−1

∥∥
2

+
∞∑
i=0

|ψi|
∥∥εkεk−i−1I

εk−i−1

Bc

∥∥
2

≤ C
∥∥ε1∥∥2

4

(
E(Iε1Bc)

)1/4 ≤ C
∥∥ε1∥∥2

4

∥∥ε1∥∥p/4p
B−p/4. (5.5.3)
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One readily verifies that this bound is still valid if we replace εk−iI
εk−i
B by the

centered version εk−iI
εk−i
B −E

(
εk−iI

εk−i
B

)
. If we us the truncation introduced above,

we can construct the truncated version U
(n,B)
k =

(
U

(1,B)
k , ..., U

(dn,B)
k

)t
of U

(n)
k .

Using the Markov and Cauchy-Schwarz inequality together with Lemma 6.6.10
we have

P
(
max

∣∣ n∑
k=1

U
(n)
k −U

(n,B)
k

∣∣ ≥ x
)
≤ Cdnx

−1 max
1≤h≤dn

∥∥ n∑
k=1

U
(h)
k − U

(h,B)
k

∥∥
2

≤ Cdnx
−1(n log n)1/2

∥∥εk−iIεk−iB − E
(
εk−iI

εk−i
B

)∥∥
2
,

and using (5.5.3) the above is of the magnitude

P
(
max

∣∣ n∑
k=1

U
(n)
k −U

(n,B)
k

∣∣ ≥ x
)

= O
(
dnx

−1(n log n)1/2B−p/4
)
. (5.5.4)

We will discuss the this bound later. We will now construct a Gaussian approxi-
mation for the random vectors U

(n,B)
k . To this end, let ν, β, δ, b, p > 0 be numbers

such that

1

ν
− β

1 + β
− 2b− 3δ > 0, 2/ν − 1/(1 + β)− 2δ > 0, (5.5.5)

β

β + 1
> δ, −pb/4 + 1/2− 1/ν + δ < 0. (5.5.6)

We will now construct an approximation for the truncated random vector U
(n,B)
k .

To this end, we first divide the set of integers {1, 2, ...} into consecutive blocks
H1, J1, H2, J2.... The blocks are defined by recursion. Fix β > 0. If the largest
element of Ji−1 is ki−1, then Hi = {ki−1 + 1, ..., ki−1 + iβ} and Ji = {ki−1 +
iβ + 1, ..., ki}, where ki = min{l : l − 2ddne ≥ ki−1 + iβ}. Let |.| denote the
cardinality of a set. It follows from the definition of Hi, Ji that |Hi| = iβ and
|Ji| = O(dn). Note that the total number of blocks is approximately m = n1/(1+β)

if β(1 + β)−1 > δ. For 1 ≤ h ≤ dn, let

ξ
(h)
k =

∑
i∈Hk

(
U

(h,B)
i

)
and η

(h)
k =

∑
i∈Jk

U
(h,B)
i ,

and define the vectors

ξk =
(
ξ

(1)
k , ξ

(2)
k , ..., ξ

(dn)
k

)T
and ηk =

(
η

(1)
k , η

(2)
k , ..., η

(dn)
k

)T
.

Note that per construction, we have that
{
ξk
}
k∈N is a sequence of independent

random vectors with |ξk|dn ≤ dnm
βB2. By Lemma 6.6.9, we can define a sequence
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of independent normal random vectors ξ∗k =
(
ξ

(1,∗)
k , ξ

(2,∗)
k , ..., ξ

(dn,∗)
k

)T
, such that

for x > 0

P

(
max

0≤h≤dn

∣∣∣∣ m∑
j=1

(
ξ

(h)
j − ξ

(h),∗
j

)∣∣∣∣ ≥ x

)
≤

dn∑
h=1

P

(∣∣∣∣ m∑
j=1

(
ξ

(h)
j − ξ

(h),∗
j

)∣∣∣∣ ≥ x

)

≤
dn∑
h=0

P

(∣∣∣∣ m∑
j=1

(
ξj − ξ∗j

)∣∣∣∣
dn

≥ x

)
≤ C1d

3
n exp

(
− C2x

2d3
nm

βB2

)
.

Hence, if 1/ν − β/(1 + β)− 2b− 3δ > 0, we obtain

P

(
max

0≤h≤dn

∣∣∣∣ m∑
j=1

(
ξ

(h)
j − ξ

(h),∗
j

)∣∣∣∣ ≥ n1/ν

)
= O

(
n−1
)
. (5.5.7)

Similar arguments show that under the same conditions as above, there exists a

sequence of independent normal random vectors η∗k =
(
η

(1,∗)
k , η

(2,∗)
k , ..., η

(dn,∗)
k

)T
,

such that

P

(
max

0≤h≤dn

∣∣∣∣ m∑
j=1

(
η

(h)
j − η

(h),∗
j

)∣∣∣∣ ≥ n1/ν

)
= O

(
n−1
)
.

By Lemma 6.6.10, we have that Var
(
η

(h),∗
j

)
≤ Cd2

n for all j ≤ m, h ≤ dn. Hence
if 2/ν − 1/(1 + β) − δ > 0, by known properties of the tails of a normal cdf, we
obtain that

P

(
max

0≤h≤dn

∣∣∣∣ m∑
j=1

η
(h),∗
j

∣∣∣∣ ≥ n1/ν

)
≤

dn∑
h=0

P

(∣∣∣∣ m∑
j=1

η
(h),∗
j

∣∣∣∣ ≥ n1/ν

)
= O

(
n−1
)
. (5.5.8)

This yields

P

(
max

0≤h≤dn

∣∣∣∣ m∑
j=1

(
η

(h)
j + ξ

(h),
j − ξ(h),∗

j

)∣∣∣∣ ≥ n1/ν

)
= O

(
n−1
)
. (5.5.9)

Let η∗∗k =
(
η

(1,∗∗)
k , η

(2,∗∗)
k , ..., η

(dn,∗∗)
k

)T
be a copy of η∗k such that η∗∗i and ξ∗j are

independent for i 6= j. By enlarging the probability space if necessary, we can
then construct η∗∗k in such a manner that

Var
(
ξ∗k + η∗∗k

)
= (|Hk|+ |Jk|)Var

(
U

(n,B)
k

)
. (5.5.10)
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Piecing everything together, we obtain that

P

(
max

0≤h≤dn

∣∣∣∣ m∑
j=1

(
ξ

(h)
j + η

(h)
j − ξ

(h,∗)
j − η(h,∗∗)

j

)∣∣∣∣ ≥ n1/ν

)
= O

(
n−1
)
.

Finally, we obtain from the above

P

(
max

∣∣∣∣ n∑
j=1

Uk −
m∑
j=1

(
ξj
∗ − ηj∗∗

)∣∣∣∣ ≥ 2n1/ν

)
≤ P

(
max

∣∣∣∣ n∑
j=1

(
Uj −Uj

(n,B)
)∣∣∣∣ ≥ n1/ν

)
+O

(
n−1
)
.

Due to (5.5.4), we have that

P

(
max

∣∣∣∣ n∑
j=1

(
Uj −Uj

(n,B)
)∣∣∣∣ ≥ 2n1/ν

)
≤ P

(
max

∣∣∣∣ n∑
j=1

(
Uj −Uj

(n)
)∣∣∣∣ ≥ n1/ν

)
+ C dnn

1/2−1/ν(log n)B−p/4.

Now choose B = nb. Then we obtain from the inequalities in (5.5.5), that δ is
largest for β = −4+3ν−2bν

4+2ν+4bν
, which results in δ < min{1/5 (−1− 2b+ 3/ν) , β(1 +

β)−1}. On the other hand, we obtain from the above that −pb/4+1/2−1/ν+δ <
0. Hence, choosing b = (6ν − 8)(8ν + 5νp)−1 yields

δ < min

{
8 + 3p− (4 + p)ν

(8 + 5p)ν
,

(3ν − 4)(4 + 5p)

(52 + 25p)ν − 16

}
,

which gives the desired bound. It thus remains to deal with the covariances.
Note that the truncation and blocking arguments have altered the covariance
structure. To quantify the error which stems from the first truncation, note that
by the Cauchy-Schwarz inequality we have

max
∣∣Cov

( n∑
k=1

Uk,
n∑
k=1

Uk

)
− Cov

( n∑
k=1

Uk
(n),

n∑
k=1

Uk
(n)
)∣∣

≤ max
1≤i,j≤dn

√√√√Var
( n∑
k=1

U
(j)
k

)
Var
( n∑
k=1

V
(j)
k

)
+ Var

( n∑
k=1

V
(j)
k

) ,

which by Lemma 6.6.10 is bounded by

C n log n max
1≤j≤dn

√
V

(j)
1 = O

(
n−1
)
,

where the last inequality is valid if we choose A large enough. Similar argu-
ments, using the results from (5.5.4), one obtains that the error in the covariance
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structure which results from bounding the random vectors Uk
(n) is of the order

O
(
n3/2(log n)1/2B−p/8

)
. Finally, in a similar manner, one obtains that the error

which results from the blocking argument is of the size O
(
n

2+β
2(1+β)d

1/2
n

)
. Piecing

these bounds together, we obtain that

max
∣∣n−1Γξdn − σ

2Γdn

∣∣ = O
(
n

−β
2(1+β)d1/2

n (n log n)1/2n−pb/8
)
.

Using the relations (5.5.5), we deduce that

max
∣∣n−1Γξdn − σ

2Γdn

∣∣ = O
(
n1/ν−δ/2) = O

(
n−δ/2

)
. (5.5.11)

5.6 Proofs of the auxiliary results

5.6.1 Proofs of Section 5.4

We will first show Proposition 5.4.1. To this end, we require some auxiliary
results.

Lemma 5.6.1. Let
{
Xk

}
k∈Z be an AR(q) process such that Assumption 5.2.1 is

satisfied. Then

(i) Xk =
∑∞

i=0 ψiεk−i, with |ψi| ≤ ϑi,

(ii)
∣∣Cov

(
Xk, Xk+h

)∣∣ = O
(
ρh
)
, |ρ| < 1,

(iii)
√
n
∥∥φ̂n,h − φh∥∥p = O(1), p ≥ 1.

Proof. Property (i) simply follows by iterating the recurrence relation of an AR(q)
process, and (ii) follows readily from (i). In order to show (ii), let Fj = σ

(
εi, i ≤

j
)

and S
(h)
j =

∑j
k=1

(
XkXk+h − E(XkXk+h)

)
. Note that by (i) we have

•
∥∥XkXk+h − E(XkXk+h)

∥∥
p
<∞, and

• δ∞,p =
∑∞

j=1 j
−3/2

∥∥E(S(h)
j

∣∣F0

)∥∥
p
<∞.

Then by Theorem 1 in [102] we have

√
n
∥∥φ̂n,h − φh∥∥p ≤ Cp

(∥∥XkXk+h − E(X1X1+h)
∥∥
p

+ 80δ∞,p

)
= O

(
1
)
,

hence the claim follows.
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The next two Propositions help us to establish bounds for the eigenvalues of
the covariance matrix Γdn .

Proposition 5.6.2. Let
{
Xk

}
k∈Z be an AR(q) process, such that Assumption

5.2.1 is satisfied. Denote with λ1 ≤ λ2 ≤ ... ≤ λn the eigenvalues of the covariance

matrix Γn of
(
X1, ..., Xn

)T
. Then we have that

σ2

(1 + ϑ)2
≤ λ1 ≤ λn ≤

σ2

ϑ2
.

In order to proof Proposition 5.6.2, we require the following auxiliary result.

Proposition 5.6.3. Let
{
Xk

}
k∈Z be an AR(q) process, such that Assumption

5.2.1 is satisfied. Then we have that

sup
λ
fX(λ) ≤ σ2

2πϑ2
, inf

λ
fX(λ) ≥ σ2

2π(1 + ϑ)2
,

where σ2 = E
(
ε2
)
.

Proof of Proposition 5.6.3. By Lemma 5.6.1 we have that
{
Xk

}
k∈Z is causal, and

can be represented as Xk =
∑∞

i=0 ψiεk−i. Since the innovations
{
εk
}
k∈Z have a

spectral density function fε(λ) = σ2/(2π), we obtain from [25, Theorem 4.4.1]
that the density function fX(λ) exists, and by [25, Theorem 4.4.2] fX(λ) is given
as

fX(λ) =
σ2

2π
∣∣θ(e−iλ

)∣∣2 ,
where θ(s) = 1−

∑q
j=1 θjs

j. Since θ
(
e−iλ

)
= 1−

∑q
j=1 θie

−iλj, it holds that

∣∣1− q∑
j=1

|θj|
∣∣2 ≤ ∣∣θ(e−iλ

)∣∣2 ≤ ∣∣1 +

q∑
j=1

|θj|
)∣∣2,

hence the claim follows.

Proposition 5.6.2 can now readily be deduced.

Proof of Proposition 5.6.2. By [25, Proposition 4.5.3], we have that

2π inf
λ
fX(λ) ≤ λ1 ≤ λn ≤ 2π sup

λ
fX(λ),

hence the claim follows from Proposition 5.6.3.
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We are now in the position to show Proposition 5.4.1. To this end, we will
introduce the following matrix norm. For a matrix A =

(
ai,j
)

1≤i,j≤dn
we define∥∥A∥∥ = sup

∣∣Ax
∣∣
dn
,
∣∣x∣∣

dn
≤ 1, x ∈ Rdn ,

where |.|dn denotes the usual dn-dimensional euclidian norm.

Proof of Proposition 5.4.1. We first remark that Proposition 5.6.2 implies that∥∥Γdn

∥∥ ≤ σ2

ϑ2
,
∥∥Γ−1

dn

∥∥ ≤ (1 + ϑ)2

σ2
.

We introduce the following abbreviations. Put

E =
∥∥Γ−1

dn

∥∥, F =
∥∥Γ̂−1

dn
− Γ−1

dn

∥∥, G =
∥∥Γ̂dn − Γdn

∥∥.
One readily verifies that

G =
∥∥Γ̂dn − Γdn

∥∥ ≤ ∑
i,j≤dn

(
φ̂n,|i−j| − φ|i−j|

)2
. (5.6.1)

By Lemma 5.6.1 we have
√
n
∥∥φ̂n,|i−j|− φ|i−j|∥∥p ≤ Cp for some finite constant Cp.

Thus the Markov inequality in connection with Minikowski’s inequality implies

P
(∥∥Γ̂dn − Γdn

∥∥ ≥ (log n)−1
)

= O
(

(dn log n)p

np/2

)
. (5.6.2)

It follows from Lemma 3 in [13] that

F ≤ (E + F )GE,

and in particular if E G < 1

F ≤ E2G/(1− EG).

Hence we have for sufficiently large n

P
(
F ≥ ε

)
≤ P

(
G ≥ (log n)−1

)
+ P

(
G ≥ E2/2ε

)
.

Since E < C, where C does not depend on n, we obtain from (5.6.1), (5.6.2) and
the Markov inequality

P
(
F ≥ ε

)
= O

(
ε−pn−p/2dpn +

(dn log n)p

np/2

)
.

Since

max
∣∣Γ̂−1

dn
− Γ−1

dn

∣∣ ≤ ∥∥Γ̂−1
dn
− Γ−1

dn

∥∥,
the claim follows.



CHAPTER 5. EXTREMES OF YULE-WALKER ESTIMATORS 106

We now introduce the estimator Θ̃ =
(
θ̃1, ..., θ̃d

)T
. Recall that we can write

Y = XΦd + Z, (5.6.3)

where Y =
(
X1, ..., Xn

)T
, Z =

(
ε1, ..., εn

)T
. Define the n × dn design matrix

X as

X =


X0 X−1 ... X1−dn
X1 X0 ... X2−dn
... ...

Xn−1 Xn−2 ... Xn−dn

 ,

and the estimator Θ̃ as

Θ̃ =
(
XTX

)−1
XTY. (5.6.4)

Proposition 5.6.4. Let
{
Xk

}
k∈Z be an AR(dn) process, such that Assumption

5.2.1 is satisfied. Then for ε > 0

P
(
max

∣∣√n(Θ̂− Θ̃
)∣∣ ≥ ε

)
= O

(
ε−pn−p/2d2p

n +
(dn log n)p

np/2
+ n−1

)
,

where dn is as in Theorem 6.6.4.

Proof. Following the proof of [25, Theorem 8.10.1], we have the following decom-
position.
√
n
(
Θ̂− Θ̃

)
=
√
nΓ̂−1

dn

(
Φ̂dn − n−1XTY

)
+ n1/2

(
Γ̂−1

dn
− n(XTX)−1

)
n−1XTY.

For the i-th component of
√
n
(
Φ̂dn − n−1XTY

)
we have

n−1/2

0∑
k=1−i

XkXk+i +
√
nXn

(
(1− n−1i)Xn − n−1

n−i∑
k=1

(Xk +Xk+i)
)
.

Using the Minikowski and the Cauchy-Schwarz in equality we get∥∥n−1/2

0∑
k=1−i

XkXk+i +
√
nXn

(
(1− n−1i)Xn − n−1

n−i∑
k=1

(Xk +Xk+i)
)∥∥

p/2

≤
√
|1− i|
n

∥∥|1− i|−1/2

0∑
k=1−i

(XkXk+i − φi)
∥∥
p/2

+ n−1/2

0∑
k=1−i

|φi|

+
∥∥√nXn

∥∥
p

(∥∥Xn

∥∥
p

+ n−1/2
∥∥n−1/2

n−i∑
k=1

(Xk +Xk+i)
∥∥
p

)
:= An.



CHAPTER 5. EXTREMES OF YULE-WALKER ESTIMATORS 107

Since 0 ≤ i ≤ dn, we obtain from Lemma 5.6.1 that An = O
(
n−1/2d

1/2
n

)
, and

hence by the Markov inequality

P
(
max

∣∣√n(Φ̂dn − n−1XTY
)∣∣ ≥ ε

)
= O

(
ε−pn−p/2dp/2n

)
. (5.6.5)

From the proof of Corollary 5.5.3, we have that
∑dn

j=1 |γ∗i,j| ≤ 2ϑ2. Then we obtain
from Proposition 5.4.1

P
(
max

∣∣√nΓ̂−1
dn

(
Φ̂dn − n−1XTY

)∣∣ ≥ ε
)
≤ P

(
max

∣∣Γ̂−1
dn
− Γdn

−1
∣∣ ≥ d−1

n

)
+ P

(
max

∣∣√n(Φ̂dn − n−1XTY
)∣∣ ≥ 2ε

)
= O

(
ε−pn−p/2dpn +

(dn log n)p

np/2

)
.

(5.6.6)

We will now treat the second part. It holds that

√
n
(
Γ̂−1

dn
− n(XTX)−1

)
= Γ̂−1

dn

√
n
(
n−1(XTX)− Γ̂dn

)
n(XTX)−1.

Note that by (5.6.5), we obtain from the Markov inequality that

P
(
max

∣∣n−1/2XTX− n1/2Γ̂dn

∣∣ ≥ ε
)

= O
(
ε−pn−p/2dp/2n

)
. (5.6.7)

One readily verifies that Proposition 5.4.1 is also valid if one replaces Γ̂−1
dn

with
n(XTX)−1, in fact, it is evident from the definition that n(XTX)−1 is actually
the better estimator, hence it holds that for ε > 0

P
(
max

∣∣n(XTX)−1 − Γdn

−1
∣∣ ≥ ε

)
= O

(
ε−pn−p/2dpn +

(dn log n)p

np/2

)
. (5.6.8)

Recalling that
∑dn

j=1 |γ∗i,j| ≤ 2ϑ2, we obtain from the inequality given in (5.4.3)

that by appropriately adding and subtracting Γ−1
dn

and using Proposition 5.4.1,
(5.6.7) and (5.6.8), that

P
(
max

∣∣√n(Γ̂−1
dn
− n(XTX)−1

)∣∣ ≥ ε
)

= O
(
ε−pn−p/2dpn +

(dn log n)p

np/2

)
. (5.6.9)

Moreover, it holds that

n−1XTY =
(
n−1XTX− Γdn

)
Φdn + ΓdnΦdn + n−1XTZ.

By Lemma 5.6.1 and Assumption 5.2.1 we have that
∣∣ΓdnΦdn

∣∣ ≤ C, where C
does not depend on n. In addition, we deduce from Theorem 6.6.4 that on a
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possible larger probability space, there exists a sequence
{
ξn,h
}

0≤h≤dn
of mean

zero Gaussian random variables with strictly positive variance such that

P

(
max

0≤h≤dn

∣∣√n(φ̂n,h − φh)− ξn,h
∣∣ > 1

)
= O

(
n−1
)
. (5.6.10)

By known properties of the Gaussian distribution function, we obtain that

P

(
n−1/2 max

0≤h≤dn

∣∣ξn,h∣∣ ≥ 1

)
≤

dn∑
h=0

P

(∣∣ξn,h∣∣ ≥ n1/2

)
= O

(
dne

−n/2) = O
(
n−1
)
.

(5.6.11)

From the proof of Proposition 5.4.1, an application of the Markov inequality
yields

P
(
max

∣∣n−1XTX− Γdn

∣∣ ≥ 1
)

= O
(
n−p/2dpn

)
,

hence for large enough C > 0 we obtain

P
(
max

∣∣n−1XTY
∣∣ ≥ C

)
= O

(
n−p/2dpn

)
, (5.6.12)

which gives us

P
(
max

∣∣n−1/2
(
Γ̂−1

dn
− n(XTX)−1

)
n−1XTY

∣∣ ≥ ε
)
≤ P

(
max

∣∣n−1XTY
∣∣ ≥ C

)
+ P

(
max

∣∣√n(Γ̂−1
dn
− n(XTX)−1

)∣∣ ≥ Cd−1
n ε
)

= O
(
ε−pn−p/2d2p

n +
(dn log n)p

np/2
+ n−p/2dpn

)
.

Thus, we finally obtain from the previous calculations and (5.6.6) that

P
(
max

∣∣√n(Θ̂− Θ̃
)∣∣ ≥ ε

)
= O

(
ε−pn−p/2d2p

n +
(dn log n)p

np/2
+ n−1

)
. (5.6.13)

We are now in the position to proof Theorem 5.4.2.

Proof of Theorem 5.4.2. We have that

P
(
max

∣∣n1/2(Θ̂−Θ)− n−1/2Γ−1XTZ
∣∣ ≥ 2ε

)
≤ P

(
max

∣∣n1/2(Θ̂− Θ̃)
∣∣ ≥ ε

)
+ P

(
max

∣∣n1/2(Θ̃−Θ)− n−1/2Γ−1XTZ
∣∣ ≥ ε

)
.
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From Proposition 5.6.4, we have

P
(
max

∣∣n1/2(Θ̂− Θ̃)
∣∣ ≥ ε

)
= O

(
ε−pn−p/2d2p

n +
(dn log n)p

np/2

)
. (5.6.14)

The proof of Proposition 5.6.4 gives us

n1/2(Θ̃−Θ)− n−1/2Γ−1XTZ =
(
n(XTX)−1 − Γ−1

)
n−1/2XTZ, (5.6.15)

and

P
(
max

∣∣n(XTX)−1 − Γdn

−1
∣∣ ≥ ε

)
= O

(
ε−pn−p/2dpn +

(dn log n)p

np/2

)
. (5.6.16)

Due to Theorem 6.6.4, on a possible larger probability space, there exists a dn-

dimensional Gaussian vector ξdn =
(
ξn,1, ..., ξn,dn

)T
with strictly positive variance

such that

P

(
max

∣∣n−1/2XTZ− ξdn
∣∣ ≥ 1

)
= O

(
n−1
)
. (5.6.17)

Proceeding as in the proof of Proposition 5.6.4 we have

P

(
n−1/2 max

0≤h≤dn

∣∣ξn,h∣∣ ≥ log n

)
= O

(
n−1
)
,

hence

P
(
max

∣∣n−1/2XTZ
∣∣ ≥ log n

)
= O

(
n−1
)
, (5.6.18)

and we conclude

P
(
max

∣∣(n(XTX)−1 − Γ−1
)
n−1/2XTZ

∣∣ ≥ εdn log n
)

≤ P
(
max

∣∣n−1/2XTZ
∣∣ ≥ log n

)
+ P

(
max

∣∣n(XTX)−1 − Γdn

−1
∣∣ ≥ ε

)
= O

(
ε−pn−p/2dpn +

(dn log n)p

np/2
+ n−1

)
,

yielding

P
(
max

∣∣n1/2(Θ̂−Θ)− n−1/2Γ−1XTZ
∣∣ ≥ ε

)
= O

(
ε−pn−p/2d2p

n (log n)p + n−1
)
.
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5.7 Additional results

The following result is due to C.Deo [38, Theorem 1] and describes the asymptotic
behavior of the absolute value of a Gaussian, possible nonstationary sequence{
ξi
}
i∈N.

Lemma 5.7.1. Let
{
ξi
}
i∈N be Gaussian process, where E

(
ξi
)

= 0, E
(
ξ2
i

)
= 1 for

all i ∈ N. Put φi,j = Cov(ξi, ξj), rn := sup|i−j|≥n |φi,j|, and let r1 < 1. Assume
that one of the following two conditions is satisfied:

(a)
∑∞

n=1 r
2
n <∞,

(b) For some β > 0, rn(log n)2+β → 0.

Then it holds

P

(
a−1
n

(
max

1≤h≤n

∣∣ξh∣∣− bn) ≤ z

)
→ exp(−e−z),

where an = (2 log n)−1/2 and bn = (2 log n)1/2 − (8 log n)−1/2(log log n+ 4π − 4).



Chapter 6

Change-Point Analysis with
increasing Dimension - Global
and Local Changes

6.1 Introduction

Let X1, X2, ..., Xn denote some collected observations. Structural stability is a
very important topic in statistics and econometrics, excellent surveys can be found
in Banerjee and Urga [11] and Perron [103], for deeper mathematical insights
we refer to Csörgő and Horváth [29, 32]. Many authors studied testing for the
stability of the mean µi = E(Xi), 1 ≤ i ≤ n in case of independent and dependent
observations, whereas others considered tests for a change in variance or some
other parameters, see for instance [6, 7, 9, 14, 54, 65, 69] and the references
therein. A very popular method to detect possible changes are so called CUSUM
statistics, which are based on the CUSUM process defined by

Sn(t) ≡
{
n−1/2

∑[(n+1)t]
i=1

(
Xi −Xn

)
, if 0 ≤ t < 1,

0, if t = 1,
(6.1.1)

where Xn = n−1
∑n

i=1Xi. Usually, the point where the statistic reaches its
maximum is considered as the change point, if the test statistic exceeds a certain
critical value. Naturally, these quantiles arise from the asymptotic distribution
of the CUSUM process Sn(t). If a functional limit theorem holds for the process

Mn(t) = n−1/2
∑[nt]

i=1 Xi, i.e.

Mn(t)
D[0,1]−−−→ σWt, 0 ≤ t ≤ 1,

111
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where Wt is a Brownian motion and D[0, 1] stands for the space of c?dl?g functions
on [0, 1], then it follows for instance that

sup
0≤t≤1

σ−1
∣∣Sn(t)

∣∣ w−→ sup
0≤t≤1

∣∣Bt

∣∣, (6.1.2)

where Bt denotes a Brownian Bridge, and
w−→ stands for weak convergence. It

is well established in the literature (cf. [29, 78]) that a weight function w(t)
will increase the power of testing procedures against certain alternatives. In

particular, the weight function
(
t(1− t)

)−1/2
has received considerable attention,

we refer to [29, 32] and the references there for more details on the subject. A
theoretical drawback of weight functions is that usually, a functional limit theorem
is no longer sufficient to determine the asymptotic distribution, more refined
methods need to be used, such as strong or almost sure approximations, often also
called strong invariance principles, for details see [16, 74, 76, 109, 130, 135] and
the references there. Based on these methods, under appropriate assumptions,
one obtains that

sup
0≤t≤1

σ−1

∣∣Mn(t)
∣∣

w(t)

w−→ sup
0≤t≤1

∣∣Bt

∣∣
w(t)

. (6.1.3)

When testing for a change point, it is usually assumed that the basic model
is known, and a certain parameter space is fixed. However, when first fitting
a model, these facts are not known a priori, nor is the dimension of a possible
parameter space. For example, suppose that, given a mean zero time series{
Xk

}
k∈N, we would like to fit an AR(p) model. Various procedures are known

(cf. [4, 25, 60]), and, in some way or other, they all depend on the covariances
φh = E

(
XhX0

)
, hence it is crucial to know whether or not the covariance structure

can assumed to be stable, and, if not, where a change point is located. As a
rule of thumb, one may say that fitting an AR(p) model requires estimating
the first p + 1 covariances φ0, ..., φp. Unfortunately, we do not know anything
yet about the possible order p. The situation is quite similar when considering
MA(q) processes, or, more generally speaking, ARMA(p,q) processes, or linear
or nonlinear regression.

Summarizing, we see that we would require a procedure that, in some sense,
is invariant with respect to the number of parameters of the underlying model. If
we stick to the example of the covariances, a possible approach is to proceed as in
Aue et al. [7] or Lee et al. [81]. Given a meanzero, stationary sequence

{
Xk

}
k∈N,

they considered the usual covariance estimators φ̂h,n = 1
n

∑n−h
k=1 XkXk+h, and

defined the CUSUM statistic as

Λn(t) =

(
[nt]√
n

(
φ̂0,[nt] − φ̂0,n

)
, ...,

[nt]√
n

(
φ̂p,[nt] − φ̂p,n

))T
, 0 ≤ t ≤ 1.
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It was then established that the ellipsoid Λn(t)T Γ̂−1
n Λn(t) satisfies

Λn(t)T Γ̂−1
n Λn(t)

D[0,1]−−−→
p∑
i=0

(
Wt,i

)2
, for fixed p (6.1.4)

where
{
Wt,i

}
t≥0

is a sequence of independent Brownian motions, and Γ̂n is a
consistent estimator of the covariance. According to Lee et al; one may then use

Λn = max
p≤k≤n

Λn(k/n)T Γ̂−1
n Λn(k/n)

as test statistic, whose quantiles are determined via (6.1.4). This approach is
reasonable, in particular, since a change in a single parameter will often result in
a global change, i.e. most, if not all of the covariances get altered, and summing
up all the errors measures the total discrepancy. In view of the forgoing remarks,
it is therefore desirable to extend this result to the case where one allows p = pn
to increase in n. In addition, using a weighted modification Λn(t)ν = (t(1 −
t)1/νΛn(t), 1/2 ≤ ν will increase the power (cf. [32]). It is, however, possible that
only a few or even a single covariance changes, see for instance Example 6.3.8.
In this case, we only have a local change, and measuring this with Λn(t) may not
be the best thing to do. Similarly, suppose that we have a d-dimensional time
series

{
Xk,h

}
k∈Z, 1≤h≤d, where d is fairly large, and we are interested in testing

simultaneously for the stability of the mean µh = E
(
Xk,h

)
via the estimators

µ̂h,n = 1
n

∑n−h
k=1 Xk,h. If we consider the previous approach, based on the ellipsoids

in (6.1.4), then as before we will detect a global change if most of the µh change.
However, if only a single or a few components have undergone a change in mean,
we may not detect it since the ellipsoids in (6.1.4) measure the discrepancy of the
whole set. Hence, in order to detect local changes, we propose to consider the
(possible weighted) maximum, i.e

Υn,d = max
0≤h≤d

(
ψ̂−1
h sup

l≤t≤1−l
w(t)−1

∣∣∣∣ [nt]√n(µ̂h,[nt] − µ̂h,n)
∣∣∣∣) , (6.1.5)

for some 0 < l < 1/2, where w(t) is some weight function and ψ̂2
h is a variance

estimator. One can expect that for some increasing sequence dn, and suitably
normalized with sequences an, bn, it holds that

a−1
n

(
Υn,dn − bn

) w−→ G,

where G denotes an extreme value distribution. The following two question arise.

(i) What growth rate for dn is possible?
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(ii) What can we say about the magnitude of an, bn?

Answering these question is important, and indeed we will show that (see
Section 5.2)

(i) dn may be chosen as dn = O
(
nδ
)

for some δ > 0,

(ii) for any fixed x ≥ 0, we have (anx+ bn)2 = O (log dn) = O (log n).

The statistic Υn,d now has the property that it is practical invariant of d = dn,
if dn is sufficiently large. Moreover, we are no longer required to estimate the
complete covariance matrix Γn, we only need the elements of the diagonal.

The aim of this chapter is twofold. On one hand, we will generalize the
approach based on the ellipsoids (6.1.4) to a weighted version which allows for an
increase in dimension with an explicit growth rate. On the other hand, we will
provide answers to the questions (i) and (ii) in a general setting, which includes,
among others, the statistic Υn,d. The chapter is structured as follows. In Section
6.2 the main results are presented, alongside some comments and remarks. Based
on two general key results, the proofs are presented in Section 6.5. In Sections
6.6 and 6.7, the above mentioned key results are shown, which may have interest
in themselves.

6.2 Main results

Let
{
Xk,h

}
k,h≥1

be a collection of random variables such that for each h0,
{
Xk,h0

}
k≥1

is a zero mean stationary sequence. Given a sequence
{
εk
}
k∈Z of independent and

identically distributed random variables, we define the following two σ-algebras.

Fk = σ
(
εj, j ≤ k

)
, Fk+m

k−m = σ
(
εj, k −m ≤ j ≤ k +m

)
. (6.2.1)

We will always assume that
{
Xk,h

}
k,h≥1

is adapted to Fk+h, more specifically,

we assume that Xk,h is Fk+h measurable for each k, h ≥ 1. Hence we implic-
itly assume that Xk,h can be written as as function gh,k = gh(εk+h, εk+h−1, ...).
For convenience, we will write gh(ξk+h), with ξk = (εk, εk−1, ...). The class of
processes that fits into this framework is large, and contains a variety of lin-
ear and nonlinear processes including ARCH, GARCH and related processes, see
for instance [52, 104, 120, 121]. A very nice feature of the representation given
above is that it allows to give simple, yet very efficient and general dependence
conditions. Following Wu [133], let

{
ε′k
}
k∈Z be an independent copy of

{
εk
}
k∈Z

on the same probability space, and define the ’filters’ ξ
(m,′)
k, , ξ

(m,∗)
k,h as ξ

(m,′)
k,h =

(εk+h, εk+h−1, ..., ε
′
k−m, εk−m−1, ...) and ξ

(m,∗)
k,h = (εk+h, εk+h−1, ..., εk−m, ε

′
k−m−1, ...).
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We put ξ′k,h = ξ
(0,′)
k,h = (εk+h, εk+h−1, ..., ε

′
0, ε−1, ...) and ξ∗k,h = ξ

(0,∗)
k,h = (εk+h, εk+h−1, ..., ε0, ε

′
−1, ...).

In analogy, we put X
(m,′)
k,h = gh

(
ξ

(m,′)
k,h

)
and X

(m,∗)
k,h = gh

(
ξ

(m,∗)
k,h

)
, in particular we

have X ′k,h = X
(0,′)
k,h and X∗k,h = X

(0,∗)
k,h .

As a dependence measure, one may now consider the quantities
∥∥Xk,h − X ′k,h

∥∥
p

or
∥∥Xk,h − X∗k,h

∥∥
p
, p ≥ 1, where ‖.‖pp = E(|.|p). For example, if we define the

linear processes Xk,h =
∑∞

i=0 αi,hεk−i, the condition

∞∑
k=0

∥∥Xk,h −X ′k,h
∥∥

2
<∞ (6.2.2)

is valid if
∑∞

i=0 |αi,h| < ∞, provided that E
(
ε20
)
< ∞. Dependence conditions of

the type of (6.2.2) are often quite general and easy to verify in many cases, see
for instance [15, 34, 42, 130] and the references there.

Another feature of the above representation is that it allows to quantify ap-
proximations with m-dependent variables. To this end, let

Y
(≤m)
k,h = E

(
Xk,h | Fk+m

k−m
)
, Y

(>m)
k,h = Xk,h − Y (≤m)

k,h = Xk,h − E
(
Xk,h | Fk+m

k−m
)
.

(6.2.3)

Then one can show (cf. Proposition 6.2.4), that

∥∥Y (>m)
k,h

∥∥
p
≤ C

∞∑
i=0

∥∥Xmn+h+i,h −X ′mn+i,h

∥∥2

p
.

Remark 6.2.1. Note that we have not defined a sample space for the sequence{
εk
}
k∈Z. One may both consider cases where

{
εk
}
k∈Z ∈ R or R∞.

We also introduce the following notation. Put

S
(n,l)
h =

l∑
k=1

Xk,h, M
(n)
t,h = n−1/2

 [nt]∑
k=1

Xk,h − t
n∑
k=1

Xk,h

 , (6.2.4)

and, for 0 < l < 1, the weighted version of M
(n)
t,h

Z
(n,l)
h = n−1/2 sup

l≤t≤1−l

∣∣∑[nt]
k=1Xk,h − t

∑n
k=1Xk,h

∣∣√
t(1− t)

. (6.2.5)

We use the abbreviation S
(n)
h = S

(n,n)
h , and we denote the corresponding random

vectors with S(n) =
(
S

(n)
1 , S

(n)
2 , ..., S

(n)
dn

)t
, M

(n)
t =

(
M

(n)
t,1 ,M

(n)
t,2 , ...,M

(n)
t,dn

)t
, and
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Z
(n)
l =

(
Z

(n,l)
1 , Z

(n,l)
2 , ..., Z

(n,l)
dn

)t
. Put φi,j = E

(
Xk,i, Xk,j

)
, k ≥ 1, where we point

out that this is well defined since we can write Xk,h = gh(ξk+h), and thus φi,j does
not depend on k. We formally define the variance as

ψh = lim
n
n−1E

(
S

(n)
h S

(n)
h

)
, (6.2.6)

and for 1 ≤ i ≤ j ≤ dn the sample correlation

ρ
(n)
i,j = E

(
S

(n)
i S

(n)
j

) (
Var
(
S

(n)
i

)
Var
(
S

(n)
j

))−1/2

. (6.2.7)

We will also frequently use the following notation. For a matrix A =
(
ai,j
){

1≤i≤r,
1≤j≤s

},

r, s ∈ N we put

max
∣∣A∣∣ = max

1≤i≤r,1≤j≤s

∣∣ai,j∣∣. (6.2.8)

To state our main results, we need some dependence assumptions that are
given below.

Assumption 6.2.2. For m = mn = O
(
nθ
)
, 0 < θ < 1, d = dn = O

(
nδ
)
, δ > 0

we suppose that

(i) sup
h
‖X1,h‖p <∞, for some p > 8, E

(
X1,h

)
= 0, for all 1 ≤ h ≤ dn,

(ii) sup
h

∞∑
j=0

j|φj,h| <∞,

(iii) lim sup
n→∞

max
1≤h≤dn

max
1≤l≤n

∥∥∥∥ l∑
j=1

Y
(>mn)
j,h

∥∥∥∥
p

= O (1) , p > 8,

(iv) lim sup
n→∞

sup
i,j:1≤|i−j|

∣∣ρ(n)
i,j

∣∣ < 1,

(v) lim sup
n→∞

(log n)2

 dn∑
r=
√

logn

sup
r≤|i−j|

∣∣ρ(n)
i,j

∣∣ = 0.

Remark 6.2.3. Note that Assumption 6.2.2 (ii) implies that

ψ2
h = lim

n
n−1Var

( ∑
1≤k≤n

Xk,h

)
<∞, (6.2.9)

and in particular suph ψ
2
h <∞.
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The conditions in Assumption 6.2.2 can be divided into the classes C1:(i)-(iii)
and C2:(iv),(v). Conditions C1 are necessary to construct appropriate approxi-

mating Gaussian processes for S
(n)
h and M

(n)
t,h , whereas conditions C2 are required

to establish weak convergence to an extreme value distribution G, and reflect the
well-known conditions for Gaussian sequences, see for instance [17], [38] and [79].
Note that condition (v) may be considerably weakened (cf. Theorem 6.7.5), this,
however, would lead to a much less tractable condition, that is hard to verify di-
rectly. In view of the previous discussion on dependence measures, it is desirable
to provide easy conditions for (ii) and (iii) in terms of

∥∥Xk,h −X ′k,h
∥∥
p
, k, h ≥ 1.

Proposition 6.2.4. Suppose that max1≤h≤dn
∥∥Xk,h − X

′

k,h

∥∥
p

= O
(
k−β
)
, with

θ ≥ 2
2β−1

, p > 8, where β > 5/3. Then Assumption 6.2.2 (ii), (iii) are valid.

As noted by Aue et al. [8], one may weaken the moment assumptions by
strengthening the dependence conditions. This is accomplished by considering
the transformation Uk,h = |Xk,h|δ. Indeed one then obtains for ρ ∈ (0, 1] that∥∥Uk,h − U ′k,h∥∥p ≤ ∥∥Xk,h −X

′

k,h

∥∥ρ
p ρ

, and consequently

∞∑
k=1

∥∥Uk,h − U ′k,h∥∥p ≤ ∞∑
k=1

∥∥Xk,h −X
′

k,h

∥∥ρ
p ρ
.

6.3 Global changes

In this section, we present approximation results that can be used to detect global
changes. To this end, we introduce the random vector

M
(n)
t =

(
M

(n)
t,1 ,M

(n)
t,2 , ...,M

(n)
t,dn

)t
,

where Bt,h = Wt,h − tW1,h, 1 ≤ h ≤ dn is a sequence of Brownian Bridges, where
the Brownian motions

{
Wt,h

}
0≤t≤1, 1≤h≤dn

have the covariance matrix ΓW(n) . De-

note with ΓS(n) the covariance matrix of the vector n−1S(n), defined in (6.2.4).

Theorem 6.3.1. Suppose that Assumption 6.2.2 (i) - (iii) holds, and let Γn be
a sequence of regular matrices such that limL→∞ limn→∞ P

(
max |Γ−1

n | ≥ L
)

= 0.
Then on a possible larger probability space, we have that∣∣∣∣ sup
λn/n≤t≤1−λn/n

∣∣w(t)−1
(
M

(n)
t

)t
Γ−1
n M

(n)
t

∣∣− sup
λn/n≤t≤1−λn/n

∣∣w(t)−1Bt
tΓ
−1
n Bt

∣∣∣∣∣∣ = Op(1).

The dimension dn = O
(
nδ
)

must satisfy the relation

θ ≤ δ < min

{
4(p− 2ν)

(−4 + 3p)ν
,

2 + p− 2(1 + θ)ν

(2 + 4θ + p(4 + θ))ν

}
, (6.3.1)
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where we require p > 4ν and d2
nλ
−1/2+1/ν
n = O (n−κ), for some κ > 0. Moreover,

it holds that max
∣∣ΓS(n) −ΓW(n)

∣∣ = O
(
n−γ
)
, for some γ > 0. Alternatively, if one

sets dn = O
(
(log n)δ

)
, for arbitrary δ > 0, then we require

ν < min

{
4 + 2p

4 + 4θ + pθ + 4θ2 + pθ2
,

2

1− 2θ
, p/4

}
, (6.3.2)

and d2
nλ
−1/2+1/ν
n = O ((log n)−κ), for some κ > 0.

Remark 6.3.2. Conditions (i) and (iii) of Assumption 6.2.2 can in fact be weak-
ened to p > 4. This, however, leads to a less tractable bound for δ.

Remark 6.3.3. Instead of considering the statistic Λ
(n,1)
t = supλn/n≤t≤1−λn/n

∣∣w(t)−1Ωdn
t

∣∣,
where Ωdn

t =
∣∣w(t)−1

(
M

(n)
t

)t
Γ−1
n M

(n)
t

∣∣, one may also use Λ
(n,2)
t = n−1

∑n
k=1 Ωdn

k/n.

In fact, Theorems 6.3.1, 6.3.5 and 6.3.6 also apply to Λ
(n,2)
t , and we will therefore

not mention it any further.

It would be desirable to strengthen the above result such that we actually have
equality in the covariance structures, i.e. ΓS(n) = ΓW(n) , since then we can replace

Bt
tΓ
−1
n Bt with

∑dn
h=1

(
B

(∗)
t,h

)2
, where

{
B

(∗)
t,h

}
0≤t≤1, 1≤h≤dn

are independent Brownian

Bridges. Unfortunately, this requires more knowledge about the matrix ΓS(n) ,
and even then, this seems to be rather difficult to establish in general. Before we
discuss this in more detail, we will briefly touch on the weight function w(t) in
Theorem 6.3.1.

It is well established in the literature, that a weight function increases the
power of a testing procedure against an alternative. The specific choice w(t) =√
t(1− t) is particularly interesting, since it standardizes the Brownian Bridge

Bt = Wt− tW1, for details on this subject, we refer to [29, 32]. We will, however,
briefly discuss the choice of λn in Theorem 6.3.1. It is reported in [32] that
the sequence λn = (log n)3/2 yields good results in practice. Evaluating the
conditions in Theorem 6.3.1 yields that one may choose the dimension dn such
that dn = O

(
(log n)δ

)
, with δ < 3/4− 3/(2ν) where ν satisfies (6.3.2).

Instead of considering the weight function w(t) =
√
t(1− t), one may also

work with functions v(t) satisfying the following conditions.

• v(t) is a function on (0, 1) increasing in a neighborhood of 0, and decreasing
in a neighborhood of 1,

• infc≤t≤1−c v(t) > 0 for all 0 < c < 1/2,

• the function I(v, c) =
∫ 1

0
1

t(t−1)
exp(− cv2(t)

t(t−1)
)dt is finite for some 0 < c < 1/2.
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It is then possible (cf. [14, 78]) to establish an analogue version of Theorem 6.4.1,
where w(t) is replaced with v(t), satisfying the conditions above. In particular,
one may also choose v(t) = 1, i.e. no weight function at all.

We will now continue to discuss the issue as to when and how we have ΓS(n) =
ΓW(n) . As pointed out earlier, we need additional structural assumptions con-
cerning the sequence of matrices ΓS(n) . One possibility is to formulate conditions
in terms of the eigenvalues λ1, ..., λn, which are given below together with some
additional assumptions regarding the process

{
Xk,h

}
k,h≥1

.

Assumption 6.3.4. Assume that for p > 8

(i) suph ‖X1,h‖p <∞, E
(
X1,h

)
= 0,

(ii) max1≤h≤dn
∥∥Xk,h −X

′

k,h

∥∥
p

= O
(
kβ
)
, where β ≥ (4 +

√
82)(2

√
81− 16)−1 ≈

6.185...,

(iii) P
(
max

∣∣Γ̂S(n) − ΓS(n)

∣∣ ≥ n−γ
)

= O
(
1
)
, γ > 0,

(iv) The eigenvalues of the matrix ΓS(n) satisfy 1/Mn ≤ λ1 ≤ ... ≤ λdn ≤ Mn,
where Mn = O

(
dn
)
.

Under the above assumptions, the following result is valid.

Theorem 6.3.5. Assume that Assumption 6.3.4 holds. Then on a possible larger
probability space, we have that∣∣∣∣ sup
λn/n≤t≤1−λn/n

∣∣w(t)−1
(
M

(n)
t

)t
Γ̂−1

S(n)M
(n)
t

∣∣− sup
λn/n≤t≤1−λn/n

∣∣w(t)−1

dn∑
h=1

(
B

(∗)
t,h

)2∣∣∣∣∣∣ = Op(1),

where
{
B

(∗)
t,h

}
0≤t≤1, 1≤h≤dn

are independent Brownian Bridges, λn = (log n)λ, λ >

0 and the dimension satisfies dn = O
(
(log n)λ/6 ∧ (log n)(log log n)−δ

)
, δ > 1.

Now suppose that we want to test for changes in the mean of S(n). Denote
with µ =

(
E
(
Xk,1

)
, ...E

(
Xk,dn

)t
the vector of the means, and recall that per

assumption E
(
Xk,h

)
= 0 for k, h ≥ 1. We may thus formulate our null hypothesis

as

H0 : 0 = µ1 = µ2 = ... = µn,

and the alternative

HA : 0 = µ1 = µ2 = ... = µk∗ 6= µk∗+1 = ... = µn.
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Theorem 6.3.5 provides us with a parameter free (except for the dimension dn,
which is known however) asymptotic expression. For l > 0, the exact distribution

of Ω
(d)
l = supl≤t≤1−l w(t)−1

∑d
h=1

(
B

(∗)
t,h

)2
is not known, however, there exist various

asymptotic results (cf. [29]), and it holds that for instance that

P

(√
Ω

(d)
l ≥ x

)
=
xd exp(−x2/2)

2d/2Γ(d/2)

(
log

(1− l)2

l2
− d

x2
log

(1− l)2

l2
+

4

x4
+O

(
x−4
))

,

as x tends to infinity. Naturally, one may also use simulated quantiles to provide
inference. Next, we turn our attention to the behavior of the statistic Ω

(dn)
λn/n

if the
alternativeHA holds. As is common practice in the literature, we assume that the
time of change k∗ = dτne, τ ∈ (0, 1) depends on n. Let S(n) = S(≤dτne) + S(>dτne),
where S(≤dτne) denotes the pre-change vector, and S(>dτne) the post-change vector,
and define M

(≤dτne)
t , M

(>dτne)
t in an analogue manner.

If we assume that the mean has changed, and that Assumption 6.3.4 is valid
for both

{
Xk,h

}
1≤h,1≤k≤k∗ and

{
Xk,h − E

(
Xk,h

)}
1≤h,k∗<k, then Theorem 6.3.5

remains valid for both sequences. In particular, we obtain that

Theorem 6.3.6. Assume that Assumption 6.3.4 is valid for both
{
Xk,h

}
1≤h,1≤k≤k∗

and
{
Xk,h − E

(
Xk,h

)}
1≤h,k∗<k, and let χn = O

(
n2d−2

n

)
. Then

lim inf
n→∞

χ−1
n sup

λn/n≤t≤1−λn/n

∣∣w(t)−1
(
M

(n)
t

)t
Γ̂−1

S(n)M
(n)
t

∣∣ =∞,

in probability.

Consider now the following examples.

Example 6.3.7. Let
{
Lk
}
k∈Z be an AR(q) process where q may depend on n,

and the innovations
{
εk
}
k∈Z are a zero mean IID sequence, with

∥∥εk∥∥p < ∞,

p > 16. For simplicity, suppose that the parameters ζq =
(
1, ζ1, ζ2, ..., ζq

)
satisfy∑q

j=1 |ζj| ≤ ϑ < 1. Hence the process
{
Xk

}
k∈Z can be represented as Lk =∑∞

i=0 ϕiεk−i, where |ϕn| = O
(
ρn
)
, 0 < ρ < 1. We can test for stability in the

parameter ζq by testing the stability of the covariances φh = E
(
L0Lh

)
. Note that

a change in a parameter will most likely result in a change in most, if not all
covariances (one may construct counterexamples though). Naturally, this reflects

a global change, and thus using Ω
(dn)
λn/n

as test statistic seems reasonable. Put

S
(n)
h = (n−h)φ̂h =

∑n−h
k=1 LkLk+h. Let dn be as in Theorem 6.3.5. Then, using the

causal representation of Lk given above together with Lemma 6.5.8, it is not hard
to verify that conditions (i)-(iii) of Assumption 6.3.4 are valid. Unfortunately,
validating condition (iv) seems to be impossible in general, however, numerical
examples indicate that this seems to be valid in most cases.
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Example 6.3.8. Contrary to the previous example, let
{
Lk
}
k∈Z be an MA(q)

process, where q may depend on n. As before, we want to test for stability in
the parameters by testing the stability of the covariances. Suppose that at time
k∗+ 1,

{
Lk
}
k∈Z becomes an MA(q + 1) process. If we use the first dn covariance

estimators S
(n)
h = (n− h)φ̂h =

∑n−h
k=1 LkLk+h to form Ω

(dn)
λn/n

, and if q � dn, then

the statistic Ω
(dn)
λn/n

will often fail to detect a change, since the change is no longer
global. The reason for this is that φh = 0 for h > q, before the change, and φh = 0
for h > q + 1 after the change, and hence the vast majority of the covariances
remains unaltered.

Example 6.3.9. Let Xk,h =
∑∞

i=0 αiLk−i,h, where
{
Lk,h

}
k∈Z is an IID sequence

for every fixed h, and
{
Lk,h

}
h∈Z is an AR(dn) process with parameter ζ =(

1, ζ1, ..., ζdn
)

for every fixed k, i.e. Lk,h = ζ1Lk,h−1 + ...+ ζdnLk,h−dn + εk,h, where{
εk,h
}
h∈Z is a zero mean white noise sequence, i.e. it holds that E

(
εk,iεk,j

)
= 0

for i 6= j. Note that this results in n−1Cov
(
S

(n)
i , S

(n)
j

)
= E

(
L0,iL0,j

)∑∞
r=0 α

2
r,

where S
(n)
h =

∑n
k=1Xk,h. Suppose that

∑q
j=1 |ζj| ≤ ϑ < 1. Proposition 6.5.6 now

implies that the eigenvalues of the covariance matrix Γ
(n)
S are bounded from below

and above, i.e; Assumption 6.3.4 (iv) is valid. Assume in addition |αk| = O
(
k−β
)
,

where β is as in Assumption 6.3.4 (ii), and that
∥∥εk,h∥∥p < ∞ for p > 8, k ∈ Z,

1 ≤ h ≤ dn. Then Assumption 6.3.4 is valid, and we may use the statistic Ω
(dn)
λn/n

to test for global changes in the mean µ =
(
E
(
Xk,1

)
, ...E

(
Xk,dn

))t
. Note however,

that this test has low power if dn is rather large, and we only have local changes
in the vector µ, i.e; we only have changes in q � dn components of µ.

6.4 Local changes

In this section, we present approximation results that can be used to detect
local changes. Under the hypothesis of Assumption 6.2.2, we can formulate the
following two results.

Theorem 6.4.1. Suppose that Assumption 6.2.2 (i) - (v) holds, and that infh ψ
2
h >

0. Then

lim
n→∞

P

(
max

1≤h≤dn
ψ−1
h Z

(n,l)
h ≤ un(z)

)
= exp(−z),

where z = exp(−x), and θl =
(
2 log(1−l)−2 log l

)
and un = un(z) = anx+bn, with

an = (2 log n)−1/2 and bn =
√

2 log n+ (2 log n)−1/2
(

1
2

log log n+ log θl − 1
2

log π
)
.
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For ν > 2, the dimension dn = O
(
nδ
)

must satisfy the relation

θ ≤ δ < min

{
1

ν
− 2

p
,

2 + p− 2(1 + θ)ν

(4 + 4θ + p(7 + θ))ν

}
, (6.4.1)

where we require p > 4ν. Alternatively, if one sets dn = O
(
(log n)δ

)
, for arbitrary

δ > 0, then we require

ν < min

{
4 + 2p

4 + 4θ + pθ + 4θ2 + pθ2
,

2

1− 2θ
, p/4

}
. (6.4.2)

Theorem 6.4.2. Suppose that Assumption 6.2.2 (i) - (v) holds, and that infh ψ
2
h >

0. Then

lim
n→∞

P

(
max

1≤h≤dn
ψ−1
h sup

0≤t≤t

∣∣M (n)
t,h

∣∣ ≤ vn(z)

)
= exp(−z),

where vn = vn(z) = enx+ fn, with en = 1/4
(
log(2n)/2

)−1/2
, fn =

√
1/2 log(2n),

and z = exp(−x). The parameters dn, θ and p must satisfy the same conditions
as in Theorem 6.4.1.

Remark 6.4.3. In both Theorems, conditions (i) and (iii) of Assumption 6.2.2
can in fact be weakened to p > 4. This, however, leads to a less tractable bound
for δ.

Note that in contrast to Theorem 6.4.1, Theorem 6.4.2 does not include any
weight function, and in particular not the parameter l. For more details on other
possible weight functions we refer to the previous section or [29, 32].

A very important issue in practice is the rate of convergence. It is well known that
the actual rate of convergence of extremes to an extreme value distribution can be
very slow, and depends on the underlying distribution (cf. [33, 59, 97, 98]). On the
other hand, the approximation error resulting from Gaussian approximations can
be remarkably small, in particular in the non weighted case (cf. Theorem 6.6.4).
This suggests that using simulated quantiles is more appropriate. On the first
glance, this would require to estimate the covariances ρ

(n)
i,j , 1 ≤ i, j ≤ dn. However,

the proof of Theorem 6.7.5 (cf. [79, Theorem 2.1]) shows that one can approximate

max1≤h≤dn ψ
−1
h Z

(n,l)
h (resp. max1≤h≤dn ψ

−1
h sup0≤t≤t

∣∣M (n)
t,h

∣∣) with a sequence of in-

dependent, weighted Brownian Bridges max1≤h≤dn supl≤t≤1−l |Bt,h(t(1 − t))−1/2|
(resp. max1≤h≤dn supl≤t≤1−l |Bt,h|), hence estimating the covariance matrix is not
necessary if dn is large enough.

In general, the variance ψh is not known in practice and needs to be estimated.



CHAPTER 6. CHANGE-POINT ANALYSIS AND EXTREMES 123

One may hope that the above Theorems are still valid if one replaces ψh with
the corresponding estimates ψ̂h, and indeed this is the case if the following mild
condition is imposed on potential variance estimators ψ̂h.

Assumption 6.4.4. For some α > 1, the estimators ψ̂h satisfy

P
(

max
1≤h≤dn

|ψ̂2
h − ψ2

h| ≥ (log n)α
)

= O(1). (6.4.3)

We then have the corresponding analogue of the above results.

Theorem 6.4.5. Assume that the conditions of Theorem 6.4.1 hold, and that
Assumption 6.4.4 holds. Then

lim
n→∞

P

(
max

1≤h≤dn
ψ̂−1
h Z

(n,l)
h ≤ un(z)

)
= exp(−z),

where un(z) and dn are as in Theorem 6.4.1.

Remark 6.4.6. An analogue result is valid for max1≤h≤dn ψ
−1
h sup0≤t≤t

∣∣M (n)
t,h

∣∣.
The literature (cf. [4, 25, 60]) provides many potential candidates to estimate

the long run variance ψ2
h. A popular estimator is Bartlett’s estimator, or more

general, estimators of the form

ψ̂2
h =

∑
|j|≤r

ω(k/r)γ̂j,h (6.4.4)

with weight function ω(x), where γj,h = E
(
Y0,hYj,h

)
and γ̂j,h = n−1

∑n−j
k=1 Yk,hYk+j,h.

Considering the triangular weight function ω(x) = 1−|x| for |x| ≤ 1 and ω(x) = 0
for |x| > 1, one recovers the Bartlett estimator in (6.4.4). One may also use the
plain estimate

ψ̂2
h = γ̂0,h + 2

ln∑
i=1

γ̂i,h, (6.4.5)

see for instance [112, 113]. In particular, Wu [131, Proposition 1] provides the
following result, which we have reformulated for our setting.

Proposition 6.4.7. Let ln ∈ N, ln →∞ as n increases with ln = O
(√

n
(
dn(log n)α

)−1
)

,

where α > 1. If Assumption 6.2.2 holds, then

lim sup
n→∞

P
(

max
1≤h≤dn

∣∣ψ̂2
h − ψ2

h

∣∣ > (log n)−α
)

= 0, α > 1

where ψ̂2
h is as in (6.4.5).
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Consequently, Theorem 6.4.5 is valid if one uses the variance estimator given
in (6.4.5). As in Section 6.3, using the therein established notation, we may now
formulate the null hypothesis and the alternative as

H0 : 0 = µ1 = µ2 = ... = µn,

and

HA : 0 = µ1 = µ2 = ... = µk∗ 6= µk∗+1 = ... = µn.

Using Υn,dn = max1≤h≤dn ψ̂
−1
h Z

(n,l)
h as a test statistic, Theorem 6.4.5 provides

us with a parameter free asymptotic distribution. In addition, it is a relatively
easy task to show that this test is consistent, i.e. Υn,dn will explode under the
alternative HA. To verify this, suppose that µk∗ changes at least in element µk∗,h,

and that n−1/2ψ̂−1
h S

(n,[nt])
h

D[0,1]−−−→ Wt. Then

Υn,dn ≥ ψ̂−1
h Z

(n,l)
h = OP

(
1
)

+O
(√

n
)
,

which proves consistency.

So far, nothing was said about the dependence conditions C2 made in Assump-
tion 6.2.2. For an illustrative purpose, we consider the following very important
example. Let Lk =

∑∞
i=0 αiεk−i be a linear process, where

{
εk
}
k∈Z is a mean zero

IID sequence. We are interested in the stability of the covariances φh = E
(
LhL0

)
,

which, as previously mentioned, is an important issue. To this end, we consider
Yk,h = Lk+h−1Lk − φh−1.

Theorem 6.4.8. Assume that Assumption 6.4.4 holds, and that

(i)
∥∥ε1∥∥12

<∞,

(ii)
∑∞

i=0 i
λ|αi| <∞, where λ satisfies the condition given below,

(iii) lim suph→∞ supm≥L
φm+h

φm
< 1, for some finite L > 0.

Then

lim
n→∞

P

(
max

1≤h≤dn
ψ̂−1
h Z

(n,l)
h ≤ un(z)

)
= exp(−z),

where un(z) is as in Theorem 6.4.1, and

δ <
1

5

(√
154− 12

)
≈ 0.08193, and λ >

2
√

154− 19

4(
√

154− 48)
≈ 3.5512.
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Remark 6.4.9. An analogue result is valid for max1≤h≤dn ψ
−1
h sup0≤t≤t

∣∣M (n)
t,h

∣∣.
To estimate the variance, one may use the estimator proposed in Proposition

6.4.7. However, if the assumptions of Theorem 6.4.8 hold, lengthy and tedious
calculations show that by [4, Theorem 9.3.4] (see also [53]), we have in case of
the Bartlett weights that

lim sup
n→∞

max
1≤h≤dn

n

r
Var

(
ψ̂2
h

)
<∞,

provided that r/n → 0. Hence if we choose r = rn = O (nd−1
n (log n)−2α), α > 1,

the Markov inequality implies

P
(

max
1≤h≤dn

|ψ̂2
h − ψ2

h| ≥ (log n)α
)
≤ dn(log n)2α max

1≤h≤dn
Var

(
ψ̂2
h

)
= O(1),

thus Assumption 6.4.4 is valid. Let us briefly reconsider examples 6.3.7, 6.3.8 and
6.3.9 of the previous section. The conditions stated in example 6.3.7 satisfy those
of Theorem 6.4.8 if we assume in addition that lim suph→∞ supm≥L

φm+h

φm
< 1, for

some finite L > 0, an this is also the case in example 6.3.8. In case of Example
6.3.9, we can apply Theorem 6.4.5, but we need to verify Assumption 6.2.2.
Condition (i) is trivially valid, conditions (ii)-(iii) follow from Proposition 6.2.4,

whereas condition (v) holds since supi,j:k≤|i−j| ρ
(n)
i,j decays exponentially fast in k.

Verifying condition (iv) however is a little more involved. First, note that the

Cauchy-Schwarz inequality yields ϕ
(n)
|i−j| := ρ

(n)
i,j ≤ 1. Suppose now that for some

subsequence n′ and corresponding sequences k′n, h
′
n, with h′n ≥ 1 we actually have

lim
n′

∣∣Corr
(
S

(n′)
k′n

, S
(n′)
k′n+h′n

)∣∣= |ϕ(n′)
|h′n|
| = 1. (6.4.6)

If we consider the corresponding subsequence of the 2× 2 submatrices

An′ =
(
(ϕ

(n)
0 , ϕ

(n)
|h′n|

)t, (ϕ
(n)
|h′n|
, ϕ

(n)
0 )t

)
,

then it follows that the smaller eigenvalue λAn′ ,2
converges to zero. Hence we

obtain from Cauchy’s interlacing theorem ( [106]) that the smallest eigenvalue
λn of ΓS(n) tends to zero, which however contradicts Proposition 6.5.6. Hence we
must have

lim sup
n→∞

sup
h,k, h≥1

∣∣Corr
(
S

(n)
k , S

(n)
k+h

)∣∣ < 1. (6.4.7)
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6.5 Proofs and ramifications

Throughout the proofs, C denotes a generic constant that may vary from one
formula to another. The proofs are essentially based on the following two theo-
rems, whose proof is given in Sections 5.5 and 6.7. We point out that the proof of
Theorem 6.4.2 is almost identical with the one of Theorem 6.4.1, this is also true
for all the related results. The sole difference is that one has to apply Theorem
6.7.6 instead of 6.5.2. We therefore omit all proofs involving the non-weighted
quantity sup0≤t≤t

∣∣M (n)
t,h

∣∣.
Theorem 6.5.1. Assume that the assumptions of Theorem 6.6.4 hold, and let
λn = O(n) be a monotone increasing sequence. Then, for each n, we can define a

dn-dimensional Brownian Bridge
{
B

(n)
t

}
t≥0

=
{
B

(n)
t,h

}
0≤t≤1,
0≤h≤dn

such that

max
0≤h≤dn

sup
λn≤t n≤n−λn

∣∣M (n)
t,h − ψhB

(n)
t,h

∣∣(
t(1− t)

)1/2
= OP

(
λ−1/2+1/ν
n

)
,

for ν ≥ 2. The dimension dn = O
(
nδ
)

must satisfy the relation

θ ≤ δ < min

{
4(p− 2ν)

(−4 + 3p)ν
,

2 + p− 2(1 + θ)ν

(2 + 4θ + p(4 + θ))ν

}
,

where we require p > 4ν. In addition, we have that max
∣∣Γ(n)

M − Γ
(n)
B

∣∣ = O
(
n−γ
)
,

for some γ > 0. Alternatively, if one sets dn = O
(
(log n)δ

)
, for arbitrary δ > 0,

then we require

ν < min

{
4 + 2p

4 + 4θ + pθ + 4θ2 + pθ2
,

2

1− 2θ
, p/4

}
.

Let
{
Wt

}
t≥0

be a Brownian motion, and denote with

B
(l)
h = sup

l≤t≤1−l

∣∣∣∣Wt,h − tW1,h√
t(1− t)

∣∣∣∣ (6.5.1)

the weighted Brownian Bridge. Then Theorem 6.5.1 essentially allows us to
replace max1≤h≤dn ψ

−1
h Z

(n,l)
h with max1≤h≤dn B

(l)
h , hence it suffices to show that

max1≤h≤dn B
(l)
h , appropriately normalized, converges in distribution to the desired

extreme value distribution. This step is accomplished in the Theorem given below.

Theorem 6.5.2. Suppose that

(i) lim supn→∞ (log n)2
(∑dn

r=
√

logn supr≤|i−j|
∣∣ρi,j∣∣) = 0,
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(ii) max1≤h≤n supi,j:2≤|i−j|
∣∣ρi,j∣∣ < 1.

Then

lim
n→∞

P

(
max

1≤h≤n
B

(l)
h ≤ un(z)

)
= exp(−z),

where z = exp(−x), and θl =
(
2 log(1−l)−2 log l

)
and un = un(z) = anx+bn, with

an = (2 log n)−1/2 and bn =
√

2 log n+ (2 log n)−1/2
(

1
2

log log n+ log θl − 1
2

log π
)
.

Before proving the results of Section 6.3 and 6.4, we will show the validity of
Proposition 6.2.4.

Proof of Proposition 6.2.4. Let F ′k = σ(ε′k, ε
′
k−1, ...). Then for any p ≥ 1 we have

by Jensen’s and the triangular inequality∥∥Y (>mn)
k,h

∥∥
p
≤
∥∥Xk,h −X(mn,∗)

k,h

∥∥
p

+
∥∥E(Xk,h −X(mn,∗)

k,h | σ
(
Fk+mn
k−mn ∪ F

′
k−mn−1

))∥∥
p

≤ 2
∥∥Xk,h −X(mn,∗)

k,h

∥∥
p
,

where we also used the fact that

X
(mn,∗)
k,h − E

(
X

(mn,∗)
k,h | Fk+mn

k−mn

)
= E

(
X

(mn,∗)
k,h −Xk,h | σ

(
Fk+mn
k−mn ∪ F

′
k−mn−1

))
.

By [129, Theorem 1 (iii)] and we have for p ≥ 2∥∥X1,h −X(mn,∗)
1,h

∥∥2

p
≤ C

0∑
i=−∞

∥∥Xmn+h−i,h −X ′mn−i,h
∥∥2

p
= O

(
m1−2β
n

)
, (6.5.2)

which leads to ∥∥Y (>mn)
k,h

∥∥
p

= O
(
m1/2−β
n

)
. (6.5.3)

Consequently, using the triangular inequality and the above, we obtain that

max
1≤l≤n

∥∥∥∥ l∑
j=1

Y
(>mn)
j,h

∥∥∥∥
p

≤
n∑
k=1

∥∥Y (>mn)
k,h

∥∥
p

= O
(
nm1/2−β

n

)
= O(1),

which proves Assumption 6.2.2 (iii). In order to show (ii), note that the Cauchy-
Schwarz inequality implies∣∣E(Xk,hX0,h

)∣∣ =
∣∣E(X0,hE

(
Xk,h | Fh

)∣∣ ≤ ∥∥X0,h

∥∥
2

∥∥E(Xk,h | Fh
)∥∥

2

≤
∥∥X0,h

∥∥
2

∥∥Xk,h −X(k,∗)
k,h

∥∥
2
,

and it follows from (6.5.2) that

∞∑
j=0

j|φj| ≤ C

∞∑
j=0

∥∥Xj,h −X(j,∗)
j,h

∥∥
2

= O

(
∞∑
j=1

j3/2−β

)
= O(1).
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B
(l)
h = sup

l≤t≤1−l

∣∣∣∣Wt,h − tW1,h√
t(1− t)

∣∣∣∣ (6.5.4)

6.5.1 Proofs of Section 6.3

We will first give the proof of Theorem 6.3.1.

Proof of Theorem 6.3.1. Define the random vector

Zn =
(
Z

(n,λn/n)
1 , Z

(n,λn/n)
2 , ..., Z

(n,λn/n)
dn

)t
,

Bn =
(
B

(λn/n)
1 , B

(λn/n)
2 , ..., B

(λn/n)
dn

)t
,

and for a function f(t), we denote with |f |∗n := supλn/n≤t≤1−λ/nw(t)−1
∣∣f(t)

∣∣. Let
us first assume that max |Γ−1

n | ≤ L, for some constant L. We have that∣∣|M(n)
t Γ−1

n M
(n)
t |∗n − |BtΓ

−1
n Bt|∗n

∣∣ ≤ ∣∣|M(n)
t −Bt)

tΓ−1
n Bt|∗n

∣∣+
∣∣|Bt

tΓ
−1
n (M

(n)
t −Bt)|∗n

∣∣
+
∣∣|(M(n)

t −Bt)
tΓ−1

n (M
(n)
t −Bt)|∗n

∣∣.
Using that max |Γ−1

n | ≤ L, this is further smaller than∣∣|M(n)
t Γ−1

n M
(n)
t |∗n − |BtΓ

−1
n Bt|∗n

∣∣ ≤ 2Cd2
n

(
max

∣∣Zn −Bn

∣∣) (max
∣∣Bn

∣∣)+ d2
n

(
max

∣∣Zn −Bn

∣∣)2
.

By Theorem 6.6.7, we have that that max
∣∣Zn − Bn

∣∣ = Op
(
λ
−1/2+1/ν
n

)
. Let

K > 0. Since we have d2
nλ
−1/2+1/ν
n = O (n−κ), for some κ > 0, we obtain the

bound

P
(∣∣Zt

nΓ
−1
n Zn −Bt

nΓ
−1
n Zn

∣∣ ≥ K
)
≤ O(1) + 2P

(
max

∣∣Bn

∣∣ ≥ (C dnλn)−1
)

≤ CdnP
(
B

(λn/n)
1 ≥ nη

)
,

for some η > 0. Lemma 6.7.1 implies that P
(
B

(λn/n)
1 ≥ nη

)
= O

(
d−2
n

)
which

yields

dnP
(
B

(λn/n)
1 = O(1).

Hence we can choose a sequence Kn that tends to zero as n increases, such that

P
(∣∣|M(n)

t Γ−1
n M

(n)
t |∗n − |BtΓ

−1
n Bt|∗n

∣∣ ≥ K
)

= O(1). (6.5.5)

Moreover, we can choose a sequence Ln with limn Ln = ∞ and max |Γ−1
n | ≤ Ln,

such that (6.5.5) remains valid, hence the claim follows.
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The proof of Theorem 6.3.5 is more involved, and will be developed in a
series of Lemmas. The difficulty mainly consists in controlling the error of
max

∣∣Γ̂−1
S(n) − Γ−1

W(n)

∣∣, which, however, is unpleasant enough. To this end, we
require the following Lemma which may be folklore, however, we could not find
a reference for it.

Lemma 6.5.3. Let A =
(
ai,j
)

1≤i,j≤d and B =
(
bi,j
)

1≤i,j≤d be two regular d × d
dimensional matrices, such that

• max
∣∣A∣∣ ≤ 1, max

∣∣B∣∣ ≤ 1

• max
∣∣A−B

∣∣ ≤ ε, for some ε > 0.

Denote with A−1 =
(
a∗i,j
)

1≤i,j≤d , B−1 =
(
b∗i,j
)

1≤i,j≤d the inverse matrices of A,B.

Then it holds that

max
∣∣A−1 −B−1

∣∣ ≤ d!dε
(∣∣det(A)

∣∣+ d!dε
)

+ max |A−1|d!dε∣∣det(A)2 − | det(A)d!dε|
∣∣

(
1− d!dε∣∣det(A)2 − | det(A)d!dε|

∣∣
)−1

.

Lemma 6.5.4. Let A be a d-dimensional regular matrix, such that the eigen-
values satisfy 0 < 1/M ≤ λ1 ≤ ... ≤ λn ≤ M < ∞. Then it holds that
max

∣∣A−1
∣∣ ≤ √dM .

Proof of Lemma 6.5.4. It holds that

max
∣∣A−1

∣∣ ≤√ ∑
1≤i,j≤d

∣∣a∗i,j∣∣2 =

√√√√ d∑
i=1

λ−2
i ≤

√
dM,

where A−1 =
(
a∗i,j
)

1≤i,j≤d.

Put

Γdn =
(
φ|i−j|

)
1≤i,j≤dn

, Γ−1
dn

=
(
γ∗i,j
)

1≤i,j≤dn
. (6.5.6)

Let A =
(
ai,j
)

1≤i,j≤dn
be a dn×dn regular matrix. Based on these two results,

we can now control the distance max
∣∣A− Γdn

∣∣ as follows.

Corollary 6.5.5. Let d = dn = log n(log log n)−δ, δ > 1, and 0 < γ < γ+. If

max
∣∣A− Γdn

∣∣ ≤ n−γ
+

,

then ∣∣A−1 − Γ−1
dn

∣∣ = O
(
n−γ
)
.
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Proof. This follows directly by evaluating the bound in Lemma 6.5.3, using
det A =

∏n
i=1 λi and the relation

log dn! = dn log dn − dn +O (log dn) .

We are now ready to prove Theorem 6.3.5.

Proof of Theorem 6.3.5. First note that by Proposition 6.2.4, the assumptions of
Theorem 6.3.1 are validated. Next, we notice that∣∣|M(n)

t Γ−1
S(n)M

(n)
t |∗n − |M

(n)
t Γ̂−1

S(n)M
(n)
t |∗n

∣∣ ≤ ∣∣|M(n)
t (Γ−1

S(n) − Γ̂−1
S(n))M

(n)
t |∗n

≤ d2
n max

∣∣Γ−1
S(n) − Γ̂−1

S(n)

∣∣max
∣∣Zn

∣∣2.
(6.5.7)

Let A be a matrix such that max
∣∣ΓS(n) −A

∣∣ = O
(
n−γ
)
. Then Assumption

implies that

P
(

max
∣∣Γ̂S(n) −A

∣∣ ≥ n−γ
)

= O(1). (6.5.8)

Using Corollary 6.5.5 we thus obtain

P
(

max
∣∣Γ̂−1

S(n) − Γ−1
W(n)

∣∣ ≥≥ n−γ
−
)

= O
(
1
)
, (6.5.9)

where 0 < γ− < γ.
Hence we obtain from Theorem 6.6.4 and (6.5.7) that for K > 0

P
(∣∣|M(n)

t Γ̂−1
S(n)M

(n)
t |∗n − |M

(n)
t Γ−1

W(n)M
(n)
t |∗n

∣∣1/2 > K
)
≤ O(1) + P

(
max

∣∣Zn

∣∣ ≥ K dnn
−1/4

)
≤ O(1) + P

(
max

∣∣Bn

∣∣ ≥ K dnn
−γ−/2).

Arguing as in the proof of Theorem 6.3.1, one obtains that

P
(
max

∣∣Bn

∣∣ ≥ K dnn
−γ−/2) = O(1),

hence it remains to evaluate the bounds provided by Theorem 6.3.1. The condi-
tion β ≥ (4+

√
82)(2

√
81−16)−1 implies that we may choose θ = 1/24(4

√
82−32),

which allows us to choose ν > 3. This in turn implies that dn = O
(
(log n)λ/6 ∧

(log n)(log log n)−δ
)
, δ > 1, which completes the proof.
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Proof of Theorem 6.3.6. As in the proof of Theorem 6.3.5 one derives that

Γ̂−1
S(n) = τΓ−1

s(n,1)
+ (1− τ) + τΓ−1

s(n,2)
+ Op

(
1
)
,

where the matrices Γs(n,1) ,Γs(n,2) denote the pre respectively post-change covari-
ance matrices. Moreover, Assumption 6.3.4 implies that

µt
k∗+1

(
τΓ−1

s(n,1)
+ (1− τ) + τΓ−1

s(n,2)

)
µk∗+1 = τ

dn∑
i=1

x2
iλ

(1)
i + (1− τ)

dn∑
i=1

y2
i λ

(2)
i

≥ d−1
n

(
τ

dn∑
i=1

x2
i + (1− τ)

dn∑
i=1

y2
i

)
,

for some xi, yi ∈ R, 1 ≤ i ≤ dn where at least one xj and one yk are non-zero,
where 1 ≤ j, k ≤ dn. Using Theorem 6.3.5, one thus obtains for some C > 0

sup
λn/n≤t≤1−λn/n

∣∣w(t)−1
(
M

(n)
t

)t
Γ̂−1

S(n)M
(n)
t

∣∣ ≥ OP (n2d−2
n

)
+ Cn2d−2

n ,

hence the claim follows.

Proof of Lemma 6.5.3. Let

adj
(
A
)

=
(
Ã
)T
,

be the complementary matrix, where Ã =
(
ãi,j
)

1≤i,j≤d and ãi,j denotes the cofac-

tors of the matrix A. The cofactors satisfy

ãi,j = (−1)i+jMi,j,

where
(
Mi,j

)
1≤i,j≤d stands for the minors of the matrix A, and are computed via

the subdeterminants. It then holds that

A−1 = adj
(
A
)
/ det(A). (6.5.10)

This formula can be found in any textbook about linear algebra. We also recall
the following property of the determinant det(A) of the matrix A.

det(A) =
∑
σ∈Sd

sign(σ)
d∏
i=1

ai,σ(i),
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where Sd denotes the set of all permutations σ, and sign(σ) = 1 (−1) if σ is
even (uneven). For regular matrixes A,B, denote with A−1 =

(
a∗i,j
)

1≤i,j≤d ,

B−1 =
(
b∗i,j
)

1≤i,j≤d their inverses. We obtain from (6.5.10) that

∣∣a∗i,j − b∗i,j∣∣ ≤ ∣∣∣∣ ã∗j,i
det(A)

−
b̃∗j,i

det(B)

∣∣∣∣.
Since we have that |Sd| = d!, we get∣∣det(A)− det(B)

∣∣ ≤ d!d max
1≤i,j≤d

∣∣ai,j − bi,j∣∣ ≤ d!dε.

hence we conclude ∣∣ã∗j,i − b̃∗j,i∣∣ ≤ d!dε,

and ∣∣a∗i,j − b∗i,j∣∣ ≤ ∣∣det(B)(a∗i,j − b∗i,j)
∣∣+
∣∣b∗i,j(det(A)− det(B))

∣∣∣∣det(A)2 − | det(A)d!dε|
∣∣

≤
d!dε

(∣∣det(A)
∣∣+ d!dε

)
+
∣∣b∗i,j(det(A)− det(B))

∣∣∣∣det(A)2 − | det(A)d!dε|
∣∣

≤
d!dε

(∣∣det(A)
∣∣+ d!dε

)
+ a∗i,jd!dε+ d!dε

∣∣a∗i,j − b∗i,j∣∣∣∣det(A)2 − | det(A)d!dε|
∣∣ .

Since |a∗i,j| ≤ max |A−1| we thus obtain

∣∣a∗i,j − b∗i,j∣∣
(

1− d!dε∣∣det(A)2 − | det(A)d!dε|
∣∣
)
≤
d!dε

(∣∣det(A)
∣∣+ d!dε

)
+ max |A−1|d!dε∣∣det(A)2 − | det(A)d!dε|

∣∣ ,

which completes the proof.

Proposition 6.5.6. Let
{
Xk

}
k∈Z be an AR(q) process with parameter ζ =(

1, ζ1, ..., ζdn
)
, such that

∑q
j=1 |ζi| ≤ ϑ < 1. Denote with λ1 ≤ λ2 ≤ ... ≤ λn

the eigenvalues of the covariance matrix Γn of
(
X1, ..., Xn

)T
. Then we have that

σ2

(1 + ϑ)2
≤ λ1 ≤ λn ≤

σ2

ϑ2
.

In order to proof Proposition 6.5.6, we require the following auxiliary result.
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Proposition 6.5.7. Let
{
Xk

}
k∈Z be an AR(q) process with parameter ζ =(

1, ζ1, ..., ζdn
)
, such that

∑q
j=1 |ζi| ≤ ϑ < 1. Then we have that

sup
λ
fX(λ) ≤ σ2

2πϑ2
, inf

λ
fX(λ) ≥ σ2

2π(1 + ϑ)2
,

where σ2 = E
(
ε2
)
.

Proof of Proposition 6.5.7. It is easy to show that
{
Xk

}
k∈Z can be represented as

Xk =
∑∞

i=0 ψiεk−i. Since the innovations
{
εk
}
k∈Z have a spectral density function

fε(λ) = σ2/(2π), we obtain from [25, Theorem 4.4.1] that the density function
fX(λ) exists, and by [25, Theorem 4.4.2] fX(λ) is given as

fX(λ) =
σ2

2π
∣∣ζ(e−iλ

)∣∣2 ,
where ζ(s) = 1−

∑q
j=1 ζjs

j. Since ζ
(
e−iλ

)
= 1−

∑q
j=1 ζie

−iλj, it holds that

∣∣1− q∑
j=1

|ζj|
∣∣2 ≤ ∣∣ζ(e−iλ

)∣∣2 ≤ ∣∣1 +

q∑
j=1

|ζj|
)∣∣2,

hence the claim follows.

Proposition 6.5.6 can now readily be deduced.

Proof of Proposition 6.5.6. By [25, Proposition 4.5.3], we have that

2π inf
λ
fX(λ) ≤ λ1 ≤ λn ≤ 2π sup

λ
fX(λ),

hence the claim follows from Proposition 6.5.7.

6.5.2 Proofs of Section 6.4

We first give the proof of Theorem 6.4.1.

Proof of Theorem 6.4.1. By Theorem 6.5.1 we can approximate max1≤h≤dn ψ
−1
h Z

(n,l)
h

with max1≤h≤dn Bh, such that the error has magnitude OP (n−ε). Since un(z) is
defined up to an error of magnitude O

(
(log n)−1/2

)
, we thus obtain

P
(

max
1≤h≤dn

ψ−1
h Z

(n,l)
h ≤ un(z)

)
≤ O

(
1
)

+ P
(

max
1≤h≤dn

Bh ≤ un(z′)
)
,

where z′ < z. Similarly, one obtains a lower bound with z′′ > z. The claim will
follow from Theorem 6.5.2 if we can show that the conditions of class C2 are
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verified for max1≤h≤dn Bh. Setting δ < γ in Theorem 6.6.4 and evaluating the

set of inequalities (A)-(G) in Theorem 6.6.4, one obtains that max
∣∣Γ(n)

M −Γ
(n)
B

∣∣ =
O
(
n−δ
)

and the two conditions (6.4.1) and (6.4.2). This implies that conditions
C2 are satisfied. We thus obtain for large enough n

exp(−z′′) ≤ P
(

max
1≤h≤dn

ψ−1
h Z

(n,l)
h ≤ un(z)

)
≤ exp(−z′).

Choosing appropriate subsequences z′n ↓ z, z′′n ↑ z, we conclude that

lim
n→∞

P
(

max
1≤h≤dn

ψ−1
h Z

(n,l)
h ≤ un(z)

)
= exp(z).

In order to proof Theorem 6.4.5, we need to show that the error

max
1≤h≤dn

∣∣(ψ−1
h − ψ̂

−1
h

)
Z

(n,l)
h

∣∣ (6.5.11)

is sufficiently small in probability, since then the claim follows from Theorem
6.4.1.

Proof of Theorem 6.4.5. It holds that

∣∣(ψ−1
h − ψ̂

−1
h

)
Z

(n,l)
h

∣∣ =

∣∣∣∣Z(n,l)
h

ψh

ψ̂2
h − ψ2

h

ψ̂h
(
ψ̂h + ψh

)∣∣∣∣ ≤ ∣∣∣∣Z(n,l)
h

ψh

ψ̂2
h − ψ2

h

ψ̂2
h

∣∣∣∣.
In addition, for 0 < εn ≤ 1 we have

P
(

max
1≤h≤dn

(
|ψ̂2
h − ψ2

h|ψ̂−2
h

)
≥ εn

)
≤ P

(
max

1≤h≤dn

(
|ψ̂2
h − ψ2

h|(1 + εn)ψ−2
h

)
≥ εn

)
≤ P

(
max

1≤h≤dn

(
|ψ̂2
h − ψ2

h|ψ−2
h

)
≥ εn/2

)
,

which due to Remark 6.2.3 is bounded by P
(
max1≤h≤dn |ψ̂2

h − ψ2
h| ≥ C ε

)
, for

some C > 0, which does not depend on n or h. Choosing εn = (log n)−α, α > 1,
we thus obtain from Assumption 6.4.4

P
(

max
1≤h≤dn

(
|ψ̂2
h − ψ2

h|ψ̂−2
h

)
≥ εn

)
= O(1). (6.5.12)

In addition, it follows from the above that for some δ > 1/2

P
(

max
1≤h≤dn

∣∣(ψ−1
h − ψ̂

−1
h

)
Sn,h

∣∣ > (log n)−δ
)
≤ P

(
max

1≤h≤dn

∣∣Z(n,l)
h ψ−1

h

∣∣ ≥ (log n)−δ+α
)

+ P
(

max
1≤h≤dn

(
|ψ̂2
h − ψ2

h|ψ̂−2
h

)
≥ (log n)−α

)
.
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Since α > 1, we can choose a δ > 1/2 such that α − δ > 1/2. Then one readily
deduces from Theorem 6.4.1

P
(

max
1≤h≤dn

∣∣Z(n,l)
h ψ−1

h

∣∣ ≥ (log n)−δ+α
)

= O(1). (6.5.13)

Using (6.5.12), we thus obtain

P
(

max
1≤h≤dn

∣∣(ψ−1
h − ψ̂

−1
h

)
Z

(n,l)
h

∣∣ > (log n)−δ
)

= O(1), δ > 1/2, (6.5.14)

and hence the claim follows from Theorem 6.4.1.

In order to proof Theorem 6.4.8, we need to validate Assumption 6.2.2. We
will do so in a series of lemmas. To this end, for m ≥ 0 and k ≥ l ≥ 0, let

Tm = φmφm+k−l + φm+kφm−l + (η − 3)
∞∑
i=0

αiαi+kαi+mαi+m+l, (6.5.15)

with the convention that αi = 0 for i < 0, and φm = φ|m|, if m < 0. We then
have the following Lemmas.

Lemma 6.5.8. Suppose that 0 < ‖ε‖4 <∞. Then

(i) if
∑

i≥0 |αi| <∞, then E
(
Sn,kSn,l

)
=
∑∞

m=−∞ Tm + O(1).

(ii) if
∑

i≥0 i|αi| <∞, then E
(
Sn,kSn,l

)
=
∑∞

m=−∞ Tm +O
(
n−1/2d

1/2
n

)
.

In particular, it holds that infh≥L ψh > 0, for some finite L ≥ 0.

Lemma 6.5.9. Suppose that

(i)
∥∥ε∥∥

4
<∞,

(ii)
∑∞

i=0 i
3 log(1 + i)λ|αi| <∞, λ > 0.

Then

lim sup
n→∞

(log n)2

 dn∑
r=
√

logn

sup
r≤|i−j|

∣∣ρ(n)
i,j

∣∣ = 0.

Lemma 6.5.10. Suppose that ‖ε‖4 <∞, and that

(i)
∑∞

m=0 |φm| <∞,
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(ii) lim suph→∞ supm≥L

∣∣∣∣φm+h

φm

∣∣∣∣ < 1, for some finite L > 0.

Then we have

lim sup
n→∞

sup
i,j≥M0: 1≤|i−j|

∣∣ρ(n)
i,j

∣∣ < 1,

for some finite M0 > 0.

Remark 6.5.11. Note that since limm→∞ |φm| = 0, one can actually assume that
L = 0 in condition (ii) of Lemma 6.5.10.

Lemma 6.5.12. Let
∥∥ε∥∥

12
<∞, and assume that

(i)
∑∞

i=0 i
λ|αi| <∞, for some λ ≥ 2.

(ii) m = mn = nθ ≥ 2dn, θ > 0.

Then

lim sup
n→∞

max
1≤h≤dn

max
1≤l≤n

∥∥∥∥ l∑
j=1

Y
(>mn)
j,h

∥∥∥∥
6

= O
(
n−(4λ−2)θ+1

)
.

We are now ready to proof Theorem 6.4.8.

Proof of Theorem 6.4.8. The assumptions of Theorem 6.4.8 together with Lemma
6.5.12 and the bound given in (6.5.19) imply that Theorem 6.5.1 is applicable.
Hence, for any finite M0 > 0 we have

P

(
max

1≤h≤M0

ψ−1
h Z

(n,l)
h ≤ un(z)

)
= O(1).

Moreover, discarding the first M0 elements has no effect on the limit distribution,
and thus it suffices to establish Assumption 6.2.2 (iv) for min{k, l} ≥M0, where
M0 is finite. This, however, follows directly from Lemma 6.5.10. In addition,
Assumption 6.2.2 (v) is validated by Lemma 6.5.9. Setting θ = δ, p = 6 and
explicitly evaluating the bounds (A) - (E), (G) in the proof of Theorem 6.6.4 and
taking (6.6.17) also into account (instead of (F)), leads to the inequalities

δ <
1

5

(√
154− 12

)
≈ 0.08193, and λ >

2
√

154− 19

4(
√

154− 48)
≈ 3.5512.

In case of dn = O ((log n)γ), setting λ ≥ 2 and p = 6, we obtain from Lemma
6.5.12 that θ ≤ 1/6. One readily verifies that the conditions of Theorem 6.4.1 are
satisfied, which yields the claim.
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Proof of Lemma 6.5.8. Put Rn,k = n−1/2
∑n

k=1

(
LkLk+h − φh

)
.

An application of the Cauchy-Schwarz inequality yields

E
(
Sn,kSn,l

)
= E

(
Rn,kRn,l

)
+O

(
n−1/2d1/2

n

)
,

hence it suffices to consider E
(
Rn,kRn,l

)
. Due to [25, section 7.2], it holds that

E
(
Rn,k, Rn,l

)
=
∑
|m|<n

n− |m|
n

Tm, (6.5.16)

in particular, we have

$k,l = lim
n→∞

E
(
Rn,k, Rn,l

)
= (η − 3)φkφl +

∞∑
m=−∞

(
φmφm+k−l + φm+kφm−l

)
.

(6.5.17)

Moreover, we have the decomposition∑
|m|≤n

n−m
n

Tm =
∞∑

m=−∞

Tm +
∑
|m|>n

Tm + n−1
∑
|m|≤n

mTm.

Note that for k ≥ l, we have

∑
|m|>K

∣∣Tm∣∣ ≤ C

 ∑
|m|>K

|αm|+
∑
|m|>K

(
|φm|+ |φm+k|

)
≤ C

∑
i>K

|αi|+
∑
|m|>K

|φm|

 := θK ,

with limK→∞ θK = 0. Thus we get the estimate

n−1
∑
|m|≤n

m|Tm| ≤ λ
∑
|m|≤λn

|Tm|+
∑
|m|>nλ

|Tm| = O (θλn + λ) ,

hence choosing an appropriate sequence λn > 0 with limn→∞ λn = 0, we conclude∑
|m|≤n

n−m
n

Tm =
∞∑

m=−∞

Tm + O(1), (6.5.18)

which gives (i). In order to establish (ii), note that

∞∑
j=0

j|φj| ≤
∞∑
j=0

j
∞∑
i=0

|αiαi+j| ≤ C
∞∑
i=0

i|αi|, (6.5.19)
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which implies θK = O (K−1). Hence choosing λ = λn = n−1/2 gives

n−1
∑
|m|≤n

m|Tm| = O
(
n−1/2

)
,

which implies (ii). Finally note that since limm→∞ |φm| = 0, we have

lim sup
h

sup
k≥h

∣∣ ∞∑
m=−∞

Tm −
∞∑

m=−∞

φ2
m

∣∣ = 0, (6.5.20)

hence infh≥L ψh > 0, for some finite L ≥ 0.

Proof of Lemma 6.5.9. Due to Lemma 6.5.8, we can assume that

E
(
Sn,k, Sn,l

)
= (η − 3)φkφl +

∞∑
m=−∞

(
φmφm+k−l + φm+kφm−l

)
, (6.5.21)

since (log n)2d2
nn
−1/2 = O(1). Condition (ii) implies that αi = O (i−3), and since∫∞

1
(y(y +m))−3 dy = O (m−3), we conclude that φm = O (m−3). Using this,

similar computations yield that

E
(
Sn,k, Sn,l

)
= O

(
|k − l|−3

)
. (6.5.22)

Since infh≥L ψh > 0, for some finite L > 0, we obtain that

(log n)2

dn∑
r=
√

logn

sup
r≤|i−j|

∣∣ρ(n)
i,j

∣∣ = O

(log n)2)2

∞∑
r=
√

logn

r−3

 = O(1), (6.5.23)

which completes the proof.

Proof of Lemma 6.5.10. Due to Lemma 6.5.8, we can assume that

E
(
Sn,k, Sn,l

)
= (η − 3)φkφl +

∞∑
m=−∞

(
φmφm+k−l + φm+kφm−l

)
. (6.5.24)

Now suppose first that min{k, l} ≥M0, for someM0 > 0. Thus, since limm→∞ |φm| =
0, we have from (6.5.24) that

$k,l =
∞∑

m=−∞

φmφm+k−l + ε(M0), (6.5.25)
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where ε(M0) ↓ 0 as M0 increases. Condition (ii) and Remark 6.5.11 imply that for
some K ≥ L large enough, we have

sup
m

∣∣∣∣φm+h

φm

∣∣∣∣ ≤ ϑ(K) < 1, K ≤ h. (6.5.26)

Hence we obtain

√
$k,k$l,l ≥

∞∑
m=−∞

φ2
m −O

(
ε(M0)

)
, (6.5.27)

and

∞∑
m=−∞

φ2
m −

∞∑
m=−∞

φmφm+h ≥ (1− ϑ(K))
∞∑

m=−∞

φ2
m.

Hence, for large enough but fixed M0 and K, we deduce that that the Cauchy-
Schwarz inequality is strict, i.e. ∣∣ρ(n)

i,j

∣∣ < 1. (6.5.28)

Now suppose that h < K. Then the Cauchy-Schwarz inequality (in l2) implies
that ∣∣∣∣ ∞∑

m=−∞

φmφm+h

∣∣∣∣ ≤ ∞∑
m=−∞

φ2
m,

and we have equality if and only if v1 = λv2, λ ∈ R and v1 = (..., φm, ...)
T ,

v2 = (...φm+h, ...)
T . This implies that φm = λφm+h, and consequently

φ0 = λφh = λ2φ2h = ... = λnφnh. (6.5.29)

Since |φnh| → 0, we must have |λ| > 1. We thus conclude that∣∣∣∣ ∞∑
m=−∞

φm −
∞∑

m=−∞

φmφm+h

∣∣∣∣ = |λ− 1|
∞∑

m=−∞

φ2
m > 0.

Since K is finite, we deduce that

min
1≤h<K

∣∣∣∣ ∞∑
m=−∞

φm −
∞∑

m=−∞

φmφm+h

∣∣∣∣ = ε(K) > 0,

which together with (6.5.27) implies that for large enough (but finite) M0, we
have (6.5.28), which completes the proof.
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Proof of Lemma 6.5.12. Let

Lk = L
(≤m)
k + L

(>m)
k =

∞∑
i≤m

αiεk−i +
∞∑
i>m

αiεk−i.

Then

Y
(>m)
k,h = L

(>m)
k L

(≤m)
k+h + L

(≤m)
k L

(>m)
k+h + L

(>m)
k L

(>m)
k+h − E

(
L

(>m)
k L

(>m)
k+h

)
.

Lengthy and tedious calculations show that

max
1≤l≤n

∥∥∥∥ l∑
k=1

Y
(>m)
k,h

∥∥∥∥6

6

= O

(∥∥∥∥ n∑
k=1

Y
(>m)
k,h

∥∥∥∥6

2

)
.

The Minikowski and Cauchy-Schwarz inequality imply∥∥∥∥ l∑
k=1

Y
(>m)
k,h

∥∥∥∥
2

≤
n∑
k=1

∥∥Y (>m)
k,h

∥∥
2
≤ C

n∑
k=1

(∥∥L(>m)
k

∥∥2

4
+
∥∥L(>m)

k+h

∥∥2

4

)
.

Evaluating this bound using m ≥ 2dn and lim supn→∞
∣∣αnnλ∣∣ <∞ yields

n−1

∥∥∥∥ l∑
k=1

Y
(>m)
k,h

∥∥∥∥
2

= O


√√√√ ∑

i>m−h

α4
i +

( ∑
i>m−h

α2
i

)2
 = O

(
m−(4q−2)

)
= O

(
n−(4λ−2)θ

)
.

Hence the claim follows.

6.6 Gaussian approximation

Let
{
Xk,h

}
k,h≥1

be a collection of random variables such that for each h0,
{
Xk,h0

}
k≥1

is a zero mean stationary sequence.
Throughout the proofs, C denotes a generic constant that may vary from one

formula to another. Recall the notation

Y
(≤m)
k,h = E

(
Xk,h | Fk+m

k−m
)
, (6.6.1)

Y
(>m)
k,h = Xk,h − Y (≤m)

k,h = Xk,h − E
(
Xk,h | Fk+m

k−m
)
. (6.6.2)

The Gaussian approximation is obtained under the following Assumption.
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Assumption 6.6.1. For m = mn = nθ, 0 < θ < 1, d = dn = nδ, 0 < δ, ψh > 0
we suppose that

(i) lim sup
n→∞

max
1≤h≤dn

∥∥Y (≤m)
k,h

∥∥
p
<∞,

(ii) lim sup
n→∞

max
1≤h≤dn

max
1≤l≤n

∥∥∥∥ l∑
j=1

Y
(>mn)
j,h

∥∥∥∥
p

= O (1) , p > 8,

(iii) lim sup
n→∞

max
1≤h≤dn

∣∣∣∣Var

(
n∑
k=1

Xk,h

)
− ψhn

∣∣∣∣ <∞.
Remark 6.6.2. If the above assumptions hold for some m = mn = (log n)λ, one
can set θ = 0 in all the conditions given below that involve θ.

Lemma 6.6.3. Suppose that suph
∑∞

j=0 j|φj,h| <∞. Then Assumption 6.6.1 (iii)
holds, and ψh = φ0,h + 2

∑∞
j=1 φj,h.

Proof of Lemma 6.6.3. We have

Var
( n∑
i=1

Xi,h

)
=
∑
1≤i,j

φ|i−j|,h =
k∑
i=1

k−i∑
j=1−i

φ|j|,h = ψh +O

(
∞∑
i=0

∞∑
j=i

|φj,h|

)

= ψh +O

(
sup
h

∞∑
j=0

j|φj,h| <∞

)
= ψh +O(1).

For a dn-dimensional Brownian motion
{
W

(n)
t

}
t≥0

=
{
W

(n)
t,h

}
t≥0,

0≤h≤dn
, we de-

note the covariance matrix with Γ
(n)
W , and similarly, we write Γ

(n)
S for the covari-

ance matrix of the vector n−1/2S(n).
The main Theorem is formulated below.

Theorem 6.6.4. Suppose that Assumption 6.6.1 is valid. Then for each n and
ν ≥ 2, on a possible larger probability space, there exists a dn-dimensional Brow-
nian motion

{
W

(n)
t

}
t≥0

=
{
W

(n)
t,h

}
t≥0,

0≤h≤dn
such that for some q > 1

P

(
max

0≤h≤dn
max
1≤i≤n

∣∣∣∣ i∑
k=1

Xk,h − ψhW (n)
i,h

∣∣∣∣ ≥ n1/ν

)
= O

(
n−q
)
,

where 0 < ψ2
h = limn n

−1Var
(∑

1≤i≤nXk,h

)
<∞, and

θ ≤ δ < min

{
4(p− 2ν)

(−4 + 3p)ν
,

2 + p− 2(1 + θ)ν

(2 + 4θ + p(4 + θ))ν

}
,
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where we require p > 4ν. In addition, we have that max
∣∣Γ(n)

W − Γ
(n)
S

∣∣ = O
(
n−γ
)
,

for some γ > 0. Alternatively, if one sets dn = O
(
(log n)δ

)
, for arbitrary δ > 0,

then we require

ν < min

{
4 + 2p

4 + 4θ + pθ + 4θ2 + pθ2
,

2

1− 2θ
, p/4

}
.

Remark 6.6.5. Note that by setting θ = 0 and letting p → ∞, we obtain
the upper bound δ < 1/9. In addition, we point out that conditions (i),(ii) of
Assumption 6.6.1 can be weakened too p > 4, which however leads to a less
tractable bound for δ.

Based on this result, we can derive the following two Theorems.

Theorem 6.6.6. Assume that the assumptions of Theorem 6.6.4 hold. Then,
for each n, we can define two independent dn-dimensional Brownian motions{
W

(1,n)
t,h

}
t≥0

=
{
W

(1,n)
t,h

}
t≥0,

0≤h≤dn
,
{
W

(2,n)
t,h

}
t≥0

=
{
W

(2,n)
t,h

}
t≥0,

0≤h≤dn

P

(
max

0≤h≤dn
sup

1≤x≤n/2

∣∣∣∣ ∑
1≤i≤x

Xi,h − ψhW (n)
x,h

∣∣∣∣/x1/ν

)
= O

(
1),

and

P

(
max

0≤h≤dn
sup

1≤x≤n/2

∣∣∣∣ ∑
n−x≤i≤n

Xi,h − ψhW (n)
x,h

∣∣∣∣/x1/ν

)
= O

(
1),

with ν > 2.

Theorem 6.6.7. Assume that the assumptions of Theorem 6.6.4 hold, and let
λn = O(n) be a monotone increasing sequence. Then, for each n, we can define a

dn-dimensional Brownian Bridge
{
B

(n)
t

}
t≥0

=
{
B

(n)
t,h

}
0≤t≤1,
0≤h≤dn

such that

max
0≤h≤dn

sup
λn≤t n≤n−λn

∣∣M (n)
t,h − ψhB

(n)
t,h

∣∣(
t(1− t)

)1/2
= OP

(
λ−1/2+1/ν
n

)
,

for ν ≥ 2.

Remark 6.6.8. Note that in both Theorems, we still have the relation max
∣∣Γ(n)

W−
Γ

(n)
S

∣∣ = O
(
n−γ
)
, for some γ > 0, for the corresponding Brownian motion.

The proof of Theorem 6.6.4 follows [14, Theorem 4.1] in broad brushes, with
some (essential) changes in the details. To this end, we require some preliminary
results. The following coupling inequality is due do Berthet and Mason [19].
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Lemma 6.6.9 (Coupling inequality). Let X1, ..., XN be independent, mean zero
random vectors in Rn, n ≥ 1, such that for some B > 0, |Xi|n ≤ B, i =
1, ..., N . If the probability space is rich enough, then for each δ > 0, one can
define independent normally distributed mean zero random vectors ξ1, ..., ξN with
ξi and Xi having the same variance/covariance matrix for i = 1, ..., N , such that
for universal constants C1 > 0 and C2 > 0,

P

{∣∣ N∑
i=1

(Xi − ξi)
∣∣
n
> δ

}
≤ C1n

2 exp

(
−C2δ

Bn2

)
.

Lemma 6.6.10. There is an absolute constant C such that

E
∣∣∣∣∑
l≤i≤k

Y
(≤m)
k,h

∣∣∣∣p ≤ C
(
(k − l + 1)dm+ 1e

)p/2
.

Proof of Lemma 6.6.10. Put K = 2dm + 1e, and denote with ‖.‖p = (E|.|p)1/p.
Then per construction, we can rewrite∑

l≤i≤k

Y
(≤m)
k,h = R1 + ...+RK ,

where Ri is a sum of independent random variables with at most (k − l + 1)/K
terms. Minikowski’s inequality gives us

‖R1 + ...+RK‖p ≤ ‖R1‖p + ...+ ‖RK‖p.

By Rosenthal’s inequality and Assumption 6.6.1 (i), we have

E
∣∣Ri

∣∣p ≤ C
(
(k − l + 1)/K

)p/2
= C ((k − l + 1)/K)p/2 ,

hence ∥∥∥∥∑
l≤i≤k

Y
(≤m)
k,h

∥∥∥∥p
p

≤ C
(
(k − l + 1)K

)p/2
.

Proof of Theorem 6.6.4. The proof is based on a blocking and truncation argu-
ment, which requires us to have numbers β, δ, κ, θ, p, q, ν that satisfy the following
conditions

(A) max{θ, δ} < β(β + 1)−1,

(B) ν−1 − β(2 + 2β)−1 − κ− 3δ > 0,
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(C) ν−1 − (1− β)(2 + 2β)−1 > 0,

(D) ν−1 − (β/4 + 1/p)(1 + β)−1 − δ/4− (1 + δ)/p > 0,

(E) 1 < ν−1 + pκ/2− δ − θβ(1 + β)−1(p/4 + 1)− θ,

(F) p > 4ν,

(G) β(2(1 + β))−1 = γ + δ.

which we will use as reference, and therefore they are not completely simplified.
If we fix γ, θ, p, ν, and suppose that θ ≤ δ, then using the above inequalities we
obtain

ν − 2

ν + 2
< β < min

{
−2(2 + p− 2ν + 2γν + 3γpν − 2θν)

4 + 2p− 6ν + 4γν − 4pν + 6γpν − 8θν − pθν
,
−16ν + 8γν + 8p+ 2γνp

12ν − 8γν + 8p− 3νp+ 2γνp
∨∞

}
,

where x∨y = min(x, y) if x, y ≥ 0, and x∨y = y if x < 0. Using relation (G) one
thus obtains a bound for δ. Note that if we just require γ > 0, then the above
simplifies to

ν − 2

ν + 2
< β < min

{
−2(2 + p− 2ν − 2θν)

4 + 2p− 6ν − 4pν − 8θν − pθν
,
−16ν + 8p

12ν + 8p− 3νp
∨ 0

}
.

Alternatively, if we set dn = O
(
(log n)δ

∗)
, then we may set δ = 0 in (A)-(G),

and an evaluation amounts to

ν < min

{
4 + 2p

4 + 4θ + pθ + 4θ2 + pθ2
,

2

1− 2θ
, p/4

}
.

We will now construct an approximation for the random variables R
(h)
i . To

this end, we first divide the set of integers {1, 2, ...} into consecutive blocks
H1, I1,H2, I2... . The blocks are defined by recursion. Fix β > 0. If the
largest element of Ii−1 is ki−1, then Hi = {ki−1 + 1, ..., ki−1 + iβ} and Ii =
{ki−1 + iβ + 1, ..., ki}, where ki = min{l : l − (Υ dn) ∨mn − 1 ≥ ki−1 + iβ}, for
some constant Υ > 0, where x ∨ y = max(x, y) for x, y ∈ R. Let |.| denote the
cardinality of a set. It follows from the definition of Hi, Ii that |Hi| = iβ and
|Ii| ≥ dn+1. Note that the total number of blocks is approximately cn = n1/(1+β),
due to (A). For 1 ≤ h ≤ dn, let

U
(m,1)
k,h =

∑
i∈Hk

Y
(≤m)
i,h and U

(m,2)
k,h =

∑
i∈Ik

Y
(≤m)
k,h ,

V
(m,1)
k,h =

∑
i∈Hk

Y
(>m)
i,h and V

(m,2)
k,h =

∑
i∈Ik

Y
(>m)
k,h ,
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and define the vectors

U
(m,i)
k =

(
U

(m,i)
k,1 , U

(m,i)
k,2 , ..., U

(m,i)
k,dn

)T
,

V
(m,i)
k =

(
V

(m,i)
k,1 , V

(m,i)
k,2 , ..., V

(m,i)
k,dn

)T
, i ∈ {1, 2},

Throughout this proof, we will always assume that m = mn = nθ. For a random
variable X, let IXB = 1(X){|X|≤B} for B > 0, and similarly, IXBc = 1 − IXB =
1(X){|X|>B}. In addition, we put EX

B = E
(
XIXB

)
. Let

ξ
(m)
k,h = U

(m,1)
k,h I

U
(m,1)
k,h

Bn
− EU

(m,1)
k,h

Bn
, η

(m)
k,h = U

(m,2)
k,h I

U
(m,2)
k,h

Bn
− EU

(m,2)
k,h

Bn
,

and define the random vectors

ξ
(m)
j =

(
ξ

(m)
j,1 , ξ

(m)
j,2 , ..., ξ

(m)
j,dn

)T
, η

(m)
j =

(
η

(m)
j,1 , η

(m)
j,2 , ..., η

(m)
j,dn

)T
.

As a first step, we will show that the truncation error is negligible, more
precisely, we will show that

P

(
max

1≤h≤dn
max

1≤i≤cn

∣∣ i∑
j=1

U
(m,1)
j,h + U

(m,2)
j,h − ξ

(m)
j − η

(m)
j

∣∣ ≥ n1/ν

)
= O

(
n−q
)
. (6.6.3)

To this end, let x > 0. Then the Markov and Lévy’s maximal inequality imply
that

P

(
max

1≤h≤dn
max

1≤i≤cn

∣∣ i∑
j=1

U
(m,1)
j,h − ξ(m)

j,h

∣∣ ≥ x

)
≤ Cx−2dn max

1≤h≤dn

cn∑
i=1

∥∥U (m,1)
i,h − ξ(m)

i,h

∥∥2

2
.

Using the Cauchy-Schwarz inequality, we obtain

max
1≤h≤dn

∥∥U (m,1)
i,h − ξ(m)

i,h

∥∥2

2
≤
∥∥U (m,1)

i,h

∥∥2

4

∥∥IU(m,1)
i,h

B

∥∥2

4
≤
∥∥U (m,1)

i,h

∥∥2

4

∥∥U (m,1)
i,h

∥∥p/2
p
B−p/2,

which, by Lemma 6.6.10, is of the magnitude O
(
(miβ)p/4+1

)
. We thus obtain

that

P

(
max

1≤h≤dn
max

1≤i≤cn

∣∣ i∑
j=1

U
(m,1)
j,h − ξ(m)

j,h

∣∣ ≥ x

)
≤ Cx−1dnm

p/4+1B−p/2
cn∑
i=1

(iβ)p/4+1

= O
(
x−1dn c

β(p/4+4)+1
n B−p/2

)
.

Setting x = 2n1/ν and B = Bn = nκ, we find that relation (E) establishes

O
(
x−1dn c

β(p/4+4)+1
n B−p/2

)
= O (n−q).
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By the same argument, one also establishes that

P

(
max

1≤h≤dn
max

1≤i≤cn

∣∣∣∣ i∑
j=1

U
(m,2)
j,h

∣∣∣∣ ≥ x

)
= O

(
n−q
)
, (6.6.4)

which together with the previous result gives us (6.6.3).
Note that per construction and relation (A), choosing the constant Υ big

enough, we have that
{
ξ

(m)
j

}
j∈N and

{
η

(m)
j

}
j∈N are sequences of independent

random vectors. In addition, we have the bound∣∣ξ(m)
j

∣∣
dn
≤ dnBn

∣∣η(m)
j

∣∣
dn
≤ dnBn. (6.6.5)

Hence, by Lemma 6.6.9, we can define a sequence of independent normal random

vectors ξ
(m,∗)
j =

(
ξ

(m,∗)
j,1 , ξ

(m,∗)
j,2 , ..., ξ

(m,∗)
j,dn

)T
, such that for x > 0

P

(
max

1≤h≤dn
max

1≤i≤cn

∣∣∣∣ i∑
j=1

(
ξ

(m)
j,h − ξ

(m,∗)
j,h

)∣∣∣∣ ≥ x

)
≤

dn∑
h=1

cn∑
i=1

P

(∣∣∣∣ i∑
j=1

(
ξ

(m)
j,h − ξ

(m,∗)
j,h

)∣∣∣∣ ≥ x

)

=
dn∑
h=1

cn∑
i=1

P

(∣∣∣∣ i∑
j=1

(
ξ

(m)
j,h − ξ

(m,∗)
j,h

)∣∣∣∣
2

≥ x

)

≤
dn∑
h=1

cn∑
i=1

P

(∣∣∣∣ i∑
j=1

(
ξ

(m)
j,h − ξ

(m,∗)
j,h

)∣∣∣∣
dn

≥ x

)

≤ C1

cn∑
i=1

d3
n exp

(
− C2x

2d3
nBn

)
≤ C1cnd

3
n exp

(
− C2x

2d3
nBn

)
.

Hence due to (B), we obtain

P

(
max

1≤h≤dn
max

1≤i≤cn

∣∣∣∣ i∑
j=1

(
ξ

(m)
j,h − ξ

(m,∗)
j,h

)∣∣∣∣ ≥ n1/ν

)
= O

(
n−q
)
, (6.6.6)

for q > 1. Similar arguments show that under the same conditions as above, there

exists a sequence of independent normal random vectors η
(m,∗)
j =

(
η

(m,∗)
j,1 , η

(m,∗)
j,2 , ..., η

(m,∗)
j,dn

)T
,

such that

P

(
max

1≤h≤dn
max

1≤i≤cn

∣∣∣∣ i∑
j=1

(
η

(m)
j,h − η

(m,∗)
j,h

)∣∣∣∣ ≥ n1/ν

)
= O

(
n−q
)
,
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for q > 1. By Lévy’s maximal inequality, we have

P

(
max

1≤h≤dn
max

1≤i≤cn

∣∣∣∣ i∑
j=1

η
(m,∗)
j,h

∣∣∣∣ ≥ n1/ν

)
≤ 2

dn∑
h=1

P

(∣∣∣∣ cn∑
j=1

η
(m,∗)
j,h

∣∣∣∣ ≥ n1/ν

)
.

By Lemma 6.6.10, we have that Var
(
η

(m,∗)
j,h

)
≤ Cd2

n for all j ≤ cn, h ≤ dn. Hence
if (D) holds, by known properties of the tails of a normal cdf, we obtain that

P

(
max

1≤h≤dn
max

1≤i≤cn

∣∣∣∣ i∑
j=1

η
(m,∗)
j,h

∣∣∣∣ ≥ n1/ν

)
= O

(
n−q
)
, (6.6.7)

for q > 1. This yields

P

(
max

1≤h≤dn
max

1≤k≤cn

∣∣∣∣ i∑
j=1

(
ξ

(m)
j,h + η

(m)
j,h − ξ

(m,∗)
j,h

)∣∣∣∣ ≥ n1/ν

)
= O

(
n−q
)
, (6.6.8)

for q > 1.

Let η
(m,∗∗)
j =

(
η

(m,∗∗)
j,1 , η

(m,∗∗)
j,2 , ..., η

(m,∗∗)
j,dn

)T
be an independent copy of η

(m,∗)
j

such that η
(m,∗)
j and ξ

(m,∗∗)
j are independent. Proceeding as in the proof of [14,

Theorem 4.1], by enlarging the probability space if necessary, there exists a dn-

dimensional Brownian motion
{
Wt

}
t≥0

=
{
W

(h)
t

}
t≥0,

0≤h≤dn
, such that

W
(h)
ki

=
∑

1≤j≤i

d
(h)
j

(
ξ

(m,∗)
j,h + η

(m,∗∗)
j,h

)
,

where d
(h)
j is chosen such that

∥∥d(h)
j (ξ

(m,∗)
j,h + η

(m,∗∗)
j,h )

∥∥2

2
= |Hj|+ |Jj|.

We will now establish that

d
(h)
j = 1/ψh(1 +O(j−β/2)). (6.6.9)

To this end, note that per construction∥∥ξ(m,∗)
j,h + η

(m,∗∗)
j,h

∥∥2

2
=
∥∥ξ(m,∗)

j,h

∥∥2

2
+
∥∥η(m,∗∗)

j,h

∥∥2

2
=
∥∥ξ(m)

j,h

∥∥2

2
+
∥∥η(m)

j,h

∥∥2

2
.

In addition, Assumption 6.6.1 (ii) implies that∣∣∥∥U (m,1)
j,h + V

(m,1)
j,h

∥∥
2
−
∥∥ξ(m)

j,h

∥∥
2

∣∣ ≤ ∥∥ξ(m)
j,h − U

(m,1)
j,h

∥∥
2

+
∣∣∥∥V (m,1)

j,h

∥∥
2

=
∥∥ξ(m)

j,h − U
(m,1)
j,h

∥∥
2

+O
(
1
)
.
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Moreover, it follows from computations performed when establishing (6.6.3) that∥∥ξ(m)
j,h − U

(m,1)
j,h

∥∥
2

= O
(
1
)
, hence∣∣∥∥U (m,1)
j,h + V

(m,1)
j,h

∥∥
2
−
∥∥ξ(m)

j,h

∥∥
2

∣∣ = O
(
1
)
.

Similarly, one gets that∣∣∥∥U (m,2)
j,h + V

(m,2)
j,h

∥∥
2
−
∥∥η(m)

j,h

∥∥
2

∣∣ = O
(
1
)
.

Hence Assumption 6.6.1 (iii) implies that∥∥(ξ
(m,∗)
j,h + η

(m,∗∗)
j,h )

∥∥2

2
= ψH

(
|Hj|+ |Jj|

)
+O

(
1
)
,

and thus (6.6.9) follows. Relation (6.6.9) implies that

Var

(
cn∑
j=1

(1− ψhd(h)
j )(ξ

(m,∗)
j,h + η

(m,∗∗)
j,h )

)
= O

(
cn∑
j=1

j−β

)
= O

(
n(1−β)/(1+β)

)
.

Hence by Lévy’s maximal inequality, it follows from (C) that

P

(
max

1≤h≤dn
max

1≤i≤cn

∣∣∣∣ i∑
j=1

(
ξ

(m,∗)
j,h + η

(m,∗∗)
j,h

)
− ψhW (h)

ki

∣∣∣∣ ≥ n1/ν

)

≤ 2
dn∑
h=1

P

(∣∣∣∣ cn∑
j=1

(
ξ

(m,∗)
j,h + η

(m,∗∗)
j,h

)
(1− ψhd(h)

j )

∣∣∣∣ ≥ n1/ν

)
≤ CdnP

(
Zn ≥ n1/ν

)
= O

(
n−q
)

for q > 1, where Zn is a mean zero Gaussian random variable with Var(Zn) =
O
(
n(1−β)/(1+β)

)
. Next, it is shown that.

P

(
max

1≤h≤dn
max

1≤i≤cn
max

ki≤l≤ki+1

∣∣∣∣ l∑
j=ki+1

Y
(≤m)
j,h

∣∣∣∣ > n1/ν

)
= O

(
n−q
)
, (6.6.10)

and

P

(
max

1≤h≤dn
max

1≤i≤cn
sup

ki≤s≤ki+1

∣∣∣∣W (h)
s −W

(h)
ki

∣∣∣∣ > n1/ν

)
= O

(
n−q
)
. (6.6.11)

To this end, note that by Lemma 6.6.10 and Móriz et al. [92][Theorem 3.1], it
holds that

E

(
max

ki≤l≤ki+1

∣∣∣∣ l∑
j=ki+1

Y
(≤m)
j,h

∣∣∣∣p/2
)
≤ C

(
ki+1 − ki

)p/4(
m+ 1

)p/4
(6.6.12)

= O
(
(iβm)p/4

)
. (6.6.13)
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Using the Markov inequality, we thus obtain

P

(
max

1≤h≤dn
max

1≤i≤cn
max

ki≤l≤ki+1

∣∣∣∣ l∑
j=ki+1

Y
(≤m)
j,h

∣∣∣∣ > n1/ν

)
≤

dn∑
h=1

cn∑
i=1

P

(
max

ki≤l≤ki+1

∣∣∣∣ l∑
j=ki+1

Y
(≤m)
j,h

∣∣∣∣ > n1/ν

)

≤ Cn−p/ν
dn∑
h=1

cn∑
i=1

(
ki+1 − ki

)p/4(
dn + 1

)p/4
≤ C n−p/ν d(p+4)/4

n

cn∑
i=1

iβp/4 = O
(
n−p/νc(βp+4)/4

n d(p+4)/4
n

)
= O

(
n−p/ν+(βp+4)/(4+4β)+δ(p+4)/4

)
,

which proves (6.6.10) due to relation (D). The same argument also of applies
to (6.6.11), by replacing the maximal inequality of Móriz et al. [92] by the
corresponding results for the increments of the Wiener process in Csörgö and
Horváth [32]. Piecing everything together, we obtain that

P

(
max

1≤h≤dn
max

1≤i≤cn
sup

ki≤s≤ki+1

∣∣∣∣ψhW (h)
s −

i∑
j=1

U
(m,1)
j,h + U

(m,2)
j,h

∣∣∣∣ > n1/ν

)
= O

(
n−q
)
.

(6.6.14)

Suppose now that

P

(
max

1≤h≤dn
max

1≤i≤cn
max

ki≤l≤ki+1

∣∣∣∣ l∑
j=0

Y
(>m)
j,h

∣∣∣∣ > n1/ν

)
= O

(
n−q
)
. (6.6.15)

This together with (6.6.10) yields

P

(
max

1≤h≤dn
max

1≤i≤cn
max

ki≤l≤ki+1

∣∣∣∣ l∑
r=0

Xr,h −
i∑

j=1

U
(m,1)
j,h + U

(m,2)
j,h

∣∣∣∣ > n1/ν

)
= O

(
n−q
)
,

(6.6.16)

which together with (6.6.14) gives the desired approximation result. Hence we
need to verify (6.6.15). To this end, note that Assumption 6.6.1 (ii) implies that

P

(
max

1≤h≤dn
max

1≤i≤cn
max

ki≤l≤ki+1

∣∣∣∣ l∑
j=0

Y
(>m)
j,h

∣∣∣∣ > n1/ν

)
≤ Cdncnn

−p/ν+1Λn,p, (6.6.17)

where Λn,p = max1≤l≤n
∥∥∑l

j=1 Y
(>m)
j,h

∥∥p
p
. We thus require 1/ν − 2/pδ − p−1(β +

1)−1 − (q + 1)/p > 0. Using condition (A), this is true if 1/ν − (2β + 1)(pβ +
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p)−1 − (1 + q)/p > 0. Since by (F) p > 4ν, we can choose a q > 1 such that
p > (3 + q)ν, and it follows that

(2 + q)ν − p
p− (3 + q)ν

< 0 < β, (6.6.18)

hence this imposes no additional restriction, and (6.6.15) thus holds.
Regarding the covariance structure of

{
Wt

}
t≥0

, note that the blocking and
truncation argument has slightly changed the covariance structure. In order to
quantify the error, note first that by stationarity, the covariance structure within
the vectors ξ

(m)
j and η

(m)
j is the same for all j, and hence this is also true for the

approximations ξ
(m,∗)
j and η

(m,∗∗)
j . Put Ik,i :=

∑
r∈Hk Xr,i and IIk,i :=

∑
r∈Ik Xr,i,

and define I
(∗)
k,i ,II

(∗)
k,i in the same manner. Then the Cauchy-Schwarz inequality

implies∣∣∣∣E
(

l∑
k=1

(Ik,i + IIk,i)
l∑

k=1

(Ik,j + IIk,j)

)
− E

(
l∑

k=1

(I
(∗)
k,i + II

(∗)
k,i )

l∑
k=1

(I
(∗)
k,j + II

(∗)
k,j )

)∣∣∣∣
≤

√√√√Var
( l∑
k=1

Ik,i
)
Var
( l∑
k=1

IIk,j
)

+

√√√√Var
( l∑
k=1

Ik,j
)
Var
( l∑
k=1

IIk,i
)

= O


√√√√ l∑

k=1

|Ik|
l∑

k=1

|Hk|

 = O
(
lβ/2+1

√
mn ∨ dn

)
= O

(
n

2+β
2(1+β)

√
mn ∨ dn

)
,

which gives us an upper bound for the error which stems from the blocking
argument. Using the bound given in (6.6.3), a similar argument shows that

the error which arises from the truncation of the random vectors U
(m,i)
k,h ,V

(m,i)
k,h ,

i ∈ {1, 2} is of the magnitude O
(
n

2+β
2(1+β)

−1/4√mn ∨ dn
)
. Finally, the error which

comes from the conditioning argument is of the order O
(
n

2+β
2(1+β)

)
, this follows

again by a similar argument as before, using Assumption 6.6.1 (ii). Combining all

bounds, we obtain that the total error is of the magnitude O
(
n

2+β
2(1+β)

√
mn ∨ dn

)
.

Using relation (G), we thus obtain that max
∣∣∣∣ = O

(
n−γ
)
.

which completes the proof.

Proof of Theorem 6.6.6. Using Theorem 6.6.4, one can proceed exactly as in the
proof of [14, Theorem 4.2].

Proof of Theorem 6.6.6. Using Theorem 6.6.4, one can proceed exactly as in the
proofs of Theorem 4.3 and 4.4 in [14].
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Proof of Theorem 6.5.1. This immediately follows from Lemma 6.6.3 and Theo-
rem 6.6.7. The bound for δ simplifies since ν = 2, p > 8 and thus δ < 3/4 <
1− 2/p, which is always valid due to Remark 6.6.5.

6.7 Extremes of weighted extremes of Brownian

Bridges

In this Section, we present some general results about the weak convergence of
the maximum of extremes of (weighted) Brownian Bridges. The main results,
together with some notation and preliminary remarks are given in Section 6.7.1,
whereas Section 6.7.2 is solely devoted to the proofs.

6.7.1 Preliminary remarks and main results

Throughout the proofs, C denotes a generic constant that may vary from one
formula to another.

For 1 ≤ h ≤ n, let
{
Wt,h

}
t≥0

,
{
W

(∗)
t,h

}
t≥0

and
{
W

(∗∗)
t,h

}
t≥0

be independent

Brownian motions, and
{
W
◦

t,h

}
t≥0

be an additional Brownian motion, which may

depend on the latter three. Denote the covariance with ρi,j = E
(
W1,iW1,j

)
.

For 1 ≤ i ≤ j ≤ n, consider the Hilbert spaces

Si,j =
{
X | 〈X,X〉H <∞, X ∈ σ

(
Wt,i,Wt,i+1, ...,Wt,j, 1 ≤ t ≤ 0

)}
,

equipped with the skalar product 〈X, Y 〉H =
∫ 1

0
E(Xt, Yt)dt. If |ρi,j| > 0 for some

1 ≤ i < j, then we can decompose Si,j in distribution as

S1,n
d
= S1,i ⊕ Si+1,j−1 ⊕ S(∗)

j,n ,

such that 〈X, Y 〉H = 0 for X ∈ S1,i, Y ∈ S(∗)
j,n . In particular, S1,n can be redefined

such that any W
◦
t ∈ Sj,n can be written as

W
◦

t,h = W
(∗)
t,h

√
1− ρ2

i,j,h +Wt,hρi,j,h, (6.7.1)

the numbers ρi,j,h can for instance determined via the Gram-Schmidt procedure.
Note that we have the following inequality

|ρi,j,h| ≤
i∑

r=1

|ρr,h| ≤
n∑

r=|h−i|

sup
r≤|k−l|

|ρk,l|. (6.7.2)
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In addition, we require the following notation, where we drop the dependence
on l for the sake of readability.

Bh = sup
l≤t≤1−l

∣∣∣∣Wt,h − tW1,h√
t(1− t)

∣∣∣∣, B
(∗)
h = sup

l≤t≤1−l

∣∣∣∣W (∗)
t,h − tW

(∗)
1,h√

t(1− t)

∣∣∣∣
B

(∗,i,j)
h = sup

l≤t≤1−l

∣∣∣∣
√

1− ρ2
i,j,h

(
W

(∗)
t,h − tW

(∗)
1,h

)
+ ρi,j,h

(
Wt,h − tW1,h

)√
t(1− t)

∣∣∣∣, 1 ≤ i ≤ j ≤ h ≤ n

B
(∗∗,i,j)
h = sup

l≤t≤1−l

∣∣∣∣
√

1− ρ2
i,j,h

(
W

(∗)
t,h − tW

(∗)
1,h

)
+ ρi,j,h

(
W

(∗∗)
t,h − tW

(∗∗)
1,h

)√
t(1− t)

∣∣∣∣, 1 ≤ i ≤ j ≤ h ≤ n

We require the following tail estimate (cf. [78]).

Lemma 6.7.1. Let 0 < l < 1. Then we have

P (Bh ≥ x) =
x exp(−x2/2)√

2π

(
log

(1− l)2

l2
− 1

x2
log

(1− l)2

l2
+

4

x4
+O

(
x−4
))

.

Corollary 6.7.2. Let θl =
(
2 log(1− l)− 2 log l

)
, z = exp(−x). Then

P
(
Bh ≥ un

)
=
z

n
+ O

(
1

n

)
,

where un = un(z) = anx+ bn, with an = (2 log n)−1/2 and bn =
√

2 log n+
(2 log n)−1/2

(
1
2

log log n+ log θl − 1
2

log π
)
.

Remark 6.7.3. Note that un is similar to the well-known normalizing sequence
in case of a Gaussian random variable ξ. The difference, apart form a constant,
stems from the fact that 1−Φ(un) � φ(un)/un, whereas P (Bh ≥ un) � φ(un)un,
where Φ(x) denotes the cdf of ξ, with corresponding density function φ(x). Also
note that

u2
n = 2 log n+

1

2
log log n+ O(log log n). (6.7.3)

Proof of Corollary 6.7.2. By Lemma 6.7.1 we have

z

n
+ O

(
1

n

)
= un exp(−u2

n/2)
θl√
2π
.

Taking logarithms one obtains

u2
n = 2

(
x+ log n+ log un + log θl −

1

2
log 2π

)
+ O(1), (6.7.4)
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which implies that un/
√

2 log n→ 1. Plugging this in equation (6.7.4) yields that

un = (2 log n)−1/2

(
x+

1

2
log log n+ log θl −

1

2
log π

)
+
√

2 log n+ O
(
(log n)−1/2

)
,

which yields the claim.

In case of the non weighted Brownian Bridge, we have the following tail esti-
mate (cf. [115]).

Lemma 6.7.4. It holds that

P
(

sup
0≤t≤1

∣∣Wt − tW1

∣∣ ≥ x
)

= 2
∞∑
k=1

(−1)k+1 exp(−2k2x2).

Consequently, one obtains for z = exp(−x) that

P
(

sup
0≤t≤1

∣∣Wt − tW1

∣∣ ≥ vn(z)
)

=
z

n
+ O

(
n−1
)
,

where vn = vn(z) = enx+ fn, with en = 1/4
(
log(2n)/2

)−1/2
, fn =

√
1/2 log(2n).

The proof of Theorem 6.5.2 is based on the more general Theorem 6.7.5, that
is given below.

Theorem 6.7.5. Suppose that un = un(z) is as in Corollary 6.7.2, and that

(i) max1≤h≤n supi,j:un≤|i−j|
∣∣ρi,j,h∣∣ = O(u−1

n ),

(ii) supi,j:uN≤|i−j|
∣∣ρi,j∣∣ = O(u−2

N ),

(iii) supi,j:1≤|i−j|
∣∣ρi,j∣∣ < 1.

Then

lim
n→∞

P

(
max

1≤h≤n
Bh ≤ un(z)

)
= exp(−z).

Proof of Theorem 6.5.2. We need to show that the assumptions in Theorem 6.5.2
imply those needed in Theorem 6.7.5. Since u2

n = O (log n), Assumption (i) of
Theorem 6.5.2 implies (i), (ii) of Theorem 6.7.5 using the inequality given in
(6.7.2). In addition, condition (ii) of Theorem 6.5.2 is identical with condition
(iii) of Theorem 6.7.5.

In an analogue manner, using Lemma 6.7.4 one obtains that
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Theorem 6.7.6. Suppose that vn = vn(z) is as in Lemma 6.7.4, and that

(i) max1≤h≤n supi,j:vn≤|i−j|
∣∣ρi,j,h∣∣ = O(v−1

n ),

(ii) supi,j:vN≤|i−j|
∣∣ρi,j∣∣ = O(v−2

N ),

(iii) supi,j:1≤|i−j|
∣∣ρi,j∣∣ < 1.

Then

lim
n→∞

P

(
max

1≤h≤n
sup

0≤t≤1

∣∣Wt − tW1

∣∣ ≤ vn(z)

)
= exp(−z).

6.7.2 Proofs

Limit theorems for the maximum of a sequence of dependent random variables
have a long tradition, early contributions are due to Berman [17], Loynes [84], and
Watson [125]. Finally, in [79], Leadbetter provided the famous and quite general
conditions D(un) and D∗(uN), which imply weak convergence to an extreme value
distribution (see also [84] for earlier formulations). We will slightly adapt these
conditions to our cause.

Condition D(un). There exists a sequence αn ↓ 0, such that for any 1 ≤ i ≤ j
with

√
log n ≤ j − i we have∣∣∣∣P(max

1≤h≤i
Bh ≤ un, max

j≤h≤n
B

(∗,i,j)
h ≤ un

)
− P

(
max
1≤h≤i

Bh ≤ un, max
j≤h≤n

B
(∗∗,i,j)
h ≤ un

)∣∣∣∣ ≤ αn,

where un is as in Corollary 6.7.2.

Condition D∗(un). For any k ∈ N , it holds that

lim sup
n→∞

∑
1≤|i−j|≤n

P
(
Bi ≥ unk, Bj ≥ unk

)
= O

(
1

k

)
, (6.7.5)

where un is as in Corollary 6.7.2.

We have the following Lemma, which reflects Condition D(un).

Lemma 6.7.7. Let Ln be a monotone increasing sequence such that

max
1≤h≤n

sup
i,j:Ln≤|i−j|

∣∣ρi,j,h∣∣ = O(u−1
n ). (6.7.6)

Then there exists a sequence αn with limn→∞ αn = 0 such that for any 1 ≤ i ≤ j
with Ln ≤ j − i we have condition D(un)∣∣∣∣P(max

1≤h≤i
Bh ≤ un, max

j≤h≤n
B

(∗,i,j)
h ≤ un

)
− P

(
max
1≤h≤i

Bh ≤ un, max
j≤h≤n

B
(∗∗,i,j)
h ≤ un

)∣∣∣∣ ≤ αn.
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Proof of Lemma 6.7.7. We have that∣∣∣∣P(max
1≤h≤i

Bh ≤ un, max
j≤h≤n

B
(∗,i,j)
h ≤ un

)
− P

(
max
1≤h≤i

Bh ≤ un, max
j≤h≤n

B
(∗∗,i,j)
h ≤ un

)∣∣∣∣
=

∣∣∣∣E(1{max1≤h≤iBh≤un}1{maxj≤h≤nB
(∗,i,j)
h ≤un}

− 1{max1≤h≤iBh≤un}1{maxj≤h≤nB
(∗∗,i,j)
h ≤un}

)∣∣∣∣
≤ E

∣∣1{maxj≤h≤nB
(∗,i,j)
h ≤un}

− 1{maxj≤h≤nB
(∗∗,i,j)
h ≤un}

∣∣
= P

(
max
j≤h≤n

B
(∗,i,j)
h ≤ un, max

j≤h≤n
B

(∗∗,i,j)
h > un

)
+ P

(
max
j≤h≤n

B
(∗,i,j)
h > un, max

j≤h≤n
B

(∗∗,i,j)
h ≤ un

)
= 2P

(
max
j≤h≤n

B
(∗,i,j)
h > un, max

j≤h≤n
B

(∗∗,i,j)
h ≤ un

)
≤ 2

n∑
j=h

P
(
B

(∗,i,j)
h > un, B

(∗∗,i,j)
h ≤ un

)
.

We can split up the probabilities on the right hand side as

P
(
B

(∗,i,j)
h > un, B

(∗∗,i,j)
h ≤ un

)
≤ P

(√
1− ρ2

i,j,hB
(∗)
h > un − εn,

√
1− ρ2

i,j,hB
(∗)
h ≤ un + ε

)
+ 2P

(
B

(∗∗)
h > |ρ−1

i,j,h|εn
)

:= In + IIn,

where εn > 0. Note that condition (6.7.6) implies that we can chose εn such that
limn→∞ εn = 0, and

max
1≤h≤n

sup
i,j:Ln≤|i−j|

∣∣ρi,j,h∣∣ε−1
n ≤ (2un)−1. (6.7.7)

Hence we have

P
(
B

(∗∗)
h > |ρ−1

i,j,h|εn
)
≤ P

(
B

(∗∗)
h > 2un

)
,

and Lemma 6.7.1 now yields that

In ≤ P
(
Bh > 2un

)
= O

(
n−1
)
. (6.7.8)

We will now treat IIn. To this end, denote with f(x) the continuous density

function of the random variable
√

1− ρ2
i,j,hB

(∗)
h . Since εn ↓ 0, we have

P

(√
1− ρ2

i,j,hB
(∗)
h > un − εn,

√
1− ρ2

i,j,hB
(∗)
h ≤ un + εn

)
=

∫ un+εn

un−εn
f(x)dx

≤ Cεnf(un) ≤ Cεn

∫ ∞
un

f(x)dx = CεnP
(
B

(∗)
h ≥ un(1− ρ2

i,j,h)
−1/2

)
≤ CεnP

(
B

(∗)
h ≥ un

)
= O

(
n−1εn

)
.
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Using (6.7.8) we thus obtain

P
(
B

(∗,i,j)
h > un, B

(∗∗,i,j)
h ≤ un

)
= O

(
n−1
)
, (6.7.9)

which yields

n∑
j=h

P
(
B

(∗,i,j)
h > un, B

(∗∗,i,j)
h ≤ un

)
= O(1). (6.7.10)

Hence the claim follows.

Lemma 6.7.8, given below, corresponds to Condition D∗(un).

Lemma 6.7.8. Let N = nk, for some k ∈ N, and suppose that

(i) supi,j:uN≤|i−j|
∣∣ρi,j∣∣ = O(u−2

N ),

(ii) supi,j:1≤|i−j|
∣∣ρi,j∣∣ < 1.

Then we have condition D∗(uN)

lim sup
n→∞

∑
1≤|i−j|≤n

P
(
Bi ≥ unk, Bj ≥ unk

)
= O

(
1

k

)
.

Proof of Lemma 6.7.8. We have the following decomposition∑
1≤|i−j|≤n

P
(
Bi ≥ unk, Bj ≥ unk

)
=

∑
1≤|i−j|≤unk

P
(
Bi ≥ unk, Bj ≥ unk

)
+

∑
unk<|i−j|≤n

P
(
Bi ≥ unk, Bj ≥ unk

)
. (6.7.11)

Note that the following inequality is valid.

P
(
Bi ≥ unk, Bj ≥ unk

)
= P

(
Bi ≥ unk, B

(∗,i,j)
j ≥ unk

)
≤ P

(
Bi ≥ unk, |ρi,j,j|Bi +

√
1− ρ2

i,j,jB
(∗)
j ≥ unk

)
We will now treat the second sum on the right hand side in (6.7.11). To this

end, let unk ≤ |i− j| and εn > 0. Then

P
(
Bi ≥ unk, |ρi,j,j|Bi +

√
1− ρ2

i,j,jB
(∗)
j ≥ unk

)
≤ P

(
Bi ≥ unk, B

(∗)
j ≥ unk − εn

)
+ P

(
|ρi,j,j|Bi ≥ εn

)
= P

(
Bi ≥ unk

)
P
(
B

(∗)
j ≥ unk − εn

)
+ P

(
|ρi,j,j|Bi ≥ εn

)
.
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Arguing as in the proof of Lemma 6.7.7, we obtain from condition (i) that

P
(
|ρi,j,j|Bi ≥ εn

)
≤ P

(
Bi ≥ 2unk

)
= O

(
(nk)−1−θ) , (6.7.12)

for some θ > 0, such that εn = O
(
u−1
nk

)
. Moreover, we obtain - again in analogy

to the proof of Lemma 6.7.6 - that

P
(
un ≥ B

(∗)
j ≥ unk − εn

)
= O

(
εn(nk)−1

)
= O

(
(unknk)−1

)
. (6.7.13)

We thus deduce that

P
(
Bi ≥ unk, |ρi,j,j|Bi +

√
1− ρ2

i,j,jB
(∗)
j ≥ unk

)
= O

(
(nk)−2

)
+ O

(
(unknk)−1

)
,

(6.7.14)

if unk ≤ |i− j|. Since u2
n = O (log n) by Remark 6.7.3, we obtain∑

unk<|i−j|≤n

P
(
Bi ≥ unk, Bj ≥ unk

)
= O

(
k−1−θ) , (6.7.15)

for some θ > 0. It remains to treat the first sum on the right hand side in (6.7.11).
To this end, note that for some λ > 1

P
(
Bi ≥ unk, Bj ≥ unk

)
≤ P

(
Bi ≥ unk, |ρi,j,j|Bi +

√
1− ρ2

i,j,jB
(∗)
j ≥ unk

)
=

∫ ∞
unk

P

B(∗)
j ≥

unk − x|ρi,j,j|√
1− ρ2

i,j,j

PBi
(
dx
)

≤
∫ λunk

unk

P

B(∗)
j ≥

unk − x|ρi,j,j|√
1− ρ2

i,j,j

PBi
(
dx
)

+ P
(
Bi ≥ λunk

)

≤ P

B(∗)
j ≥ unk

1− λ|ρi,j,j|√
1− ρ2

i,j,j

+ P
(
Bi ≥ λunk

)
.

Since |ρi,j,j| < 1 by condition (ii), we can chose λ > 1 such that (1− λ|ρi,j,j|)(1−
ρ2
i,j,j)

−1/2 > 0. Hence, arguing as before, we obtain that

P
(
Bi ≥ unk, Bj ≥ unk

)
= O

(
(nk)−1−θ) , (6.7.16)

for some θ > 0. Since u2
n = O (log n) by Remark 6.7.3, we obtain∑

1≤|i−j|≤unk

P
(
Bi ≥ unk, Bj ≥ unk

)
= O

(
k−1−θ) , (6.7.17)

which completes the proof.
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We will now proceed as in [79] to obtain the desired results. To this end, write
M(E) = max{Bh : h ∈ E} for any set E of integers.

Lemma 6.7.9. Suppose that D(un) holds. Let N, r, k be fixed integers and
E1, E2, ...Er subintervals of (1, 2...dn), such that Ei and Ej are separated by at
least k when i 6= j. Then∣∣∣∣P

(
r⋂
j=1

(
M(Ej) ≤ un

))
−

r∏
j=1

P (M(Ej) ≤ un)

∣∣∣∣ ≤ (r − 1)αn

Proof of Lemma 6.7.9. One can proceed exactly as in the proof of Lemma 2.3
in [79].

Let k be a fixed integer, and write N = nk, n = 1, 2.... We divide the first
N = nk integers into 2k consecutive intervals as follows. Let m be a fixed integer
and write I1 = (1, 2, ..., n−m), I∗1 = (n−m + 1, ..., n), I2 = (n + 1, ..., 2n−m),
I∗1 = (2n−m+ 1, ..., 2n), and so on.

Lemma 6.7.10. Assume that D(un) holds. Then

(i) 0 ≤ P
(⋂r

j=1

(
M(Ij) ≤ un

))
− P

(
max1≤h≤N Bh ≤ uN

)
≤
∑k

j=1 P
(
M(Ij) ≤

uN ≤M(I∗j ),

(ii) P

∣∣∣∣(⋂r
j=1

(
M(Ij) ≤ un

))
−
∏k

j=1

(
M(Ij) ≤ un

)∣∣∣∣ ≤ kαn,

(iii)
∣∣∏k

j=1

(
M(Ij) ≤ un

)
−
∏k

j=1 P
(
max1+(j−1)n≤h≤jnBh ≤ un

)
≤ K max1≤j≤k P

(
M(Ij) ≤

uN ≤M(I∗j )
)
,

for some constant K. Hence, by combining (i), (ii), (iii),

∣∣P( max
1≤h≤N

Bh ≤ uN
)
−

k∏
j=1

P
(

max
1+(j−1)n≤h≤jn

Bh ≤ un
)

≤ (k +K) max
1≤j≤k

P
(
M(Ij) ≤ uN ≤M(I∗j )

)
+ kαn. (6.7.18)

Proof of Lemma 6.7.10. One can proceed exactly as in the proof of Lemma 2.4
in [79].

Lemma 6.7.11. Suppose that

min
1≤h≤N

inf
i,j:1≤|i−j|

∣∣ρi,j,h∣∣ < 1.

Then

max
1≤j≤k

P
(
M(Ij) ≤ uN ≤M(I∗j ) = O(1). (6.7.19)
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Proof of Lemma 6.7.11. The claim follows by using the same arguments as in the
proof of Lemma 6.7.7 and 6.7.8.

It then follows from Lemma 6.7.10 that∣∣∣∣P( max
1≤h≤N

Bh ≤ uN
)
−

k∏
j=1

P
(

max
1+(j−1)n≤h≤jn

Bh ≤ un
)∣∣∣∣ = O(1). (6.7.20)

Proof of Theorem 6.7.5. First note that the assumptions cover the conditions
needed for Lemmas 6.7.7 and 6.7.8. Now let k > 0 be an integer, and N = nk.
Note that for 1 ≤ i ≤ k

P
(

max
1+(i−1)n≤h≤in

Bh ≤ uN
)

= 1− P

 in⋃
j=1+(i−1)n

{Bh > uN}


≥ 1−

in∑
j=1+(i−1)n

P
(
Bj > uN

)
.

Hence we deduce from Corollary 6.7.2 that

lim inf
n→∞

P
(

max
1+(i−1)n≤h≤in

Bh ≤ uN
)
≥ 1− z

k
,

and thus (6.7.20) implies that(
1− z

k

)k
≤ lim inf

n→∞
P
(

max
1≤h≤N

Bh ≤ uN
)
. (6.7.21)

Corresponding we also have by Lemma 6.7.8 and Corollary 6.7.2 that

P
(

max
1+(i−1)n≤h≤in

Bh ≤ uN
)
≤ 1−

in∑
j=1+(i−1)n

P
(
Bj > uN

)
+

∑
1≤|h−j|≤n,

1+(i−1)n≤h,j≤in

P
(
Bj > uN , Bh > uN

)

= 1− z

k
+ O

(
1

k

)
.

Hence we obtain

lim sup
n→∞

P
(

max
1+(i−1)n≤h≤in

Bh ≤ uN
)
≤ 1− z

k
+ O

(
1

k

)
, (6.7.22)

which together with (6.7.21) yields(
1− z

k

)k
≤ lim inf

n→∞
P
(

max
1≤h≤N

Bh ≤ uN
)
≤ lim sup

n→∞
P
(

max
1+(i−1)n≤h≤in

Bh ≤ uN
)

≤
(

1− z

k
+ O

(
1

k

))k
. (6.7.23)
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Proceeding as in the proof of Theorem 3.1 in [79], one shows that one can replace
N = nk with n in (6.7.23). The result then clearly follows by letting k →∞.
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