
Dipl.-Ing. Michael Karner Bakk.techn.

Co-Simulation of

Cross-Domain Automotive Systems

�������������

Dissertation

vorgelegt an der

Technischen Universität Graz

zur Erlangung des akademischen Grades
Doktor der Technischen Wissenschaften

(Dr.techn.)

durchgeführt am Institut für Technische Informatik
Technische Universität Graz

Vorstand: O.Univ.-Prof. Dipl.-Ing.Dr. techn.Reinhold Weiÿ

Graz, im April 2011

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich
und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am .
(Unterschrift)

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

. .
date (signature)

Kurzfassung

Simulation ist heutzutage eines der Schlüsselgebiete während der Entwicklung von Sy-
stemen im Fahrzeug. Allerdings kann mit den bisher gängigen Simulationsmethoden (eine
Modellierungssprache, ein Simulator) die hohe Zahl an beteiligten unterschiedlichen Domä-
nen (z.B. Mechanik, Elektronik, Software) mit ihren vielfältigen Anforderungen nicht mehr
vernünftig beherrscht werden. Dadurch gewinnt Co-Simulation auch im Automobilbereich
immer mehr an Bedeutung. Durch den Einsatz von spezialisierten Modellierungssprachen
und Simulationsprogrammen für die jeweilige Domäne bietet Co-Simulation Flexibilität
bei gleichzeitig gesteigerter Realitätsnähe. Allerdings hat Co-Simulation, gerade im domä-
nenübergreifenden Bereich, gewisse Einschränkungen.

Diese Arbeit beschäftigt sich mit domänenübergreifender Co-Simulation von Fahrzeug-
systemen. Co-Simulation wird um Run-Time Co-Simulation Model Switching erweitert,
einer neuen und �exibleren Variante von Co-Simulation. Die Idee besteht darin, die Co-
Simulation nicht nur wie bisher üblich einmalig statisch zu de�nieren, sondern anhand
bestimmter Kriterien wie beispielsweise Zeit oder Signalverhalten zur Laufzeit die verwen-
deten Simulationsmodelle zu variieren. Durch Flexibilitäts- als auch E�zienzsteigerun-
gen wird dadurch eine verbesserte Analyse von domänenübergreifenden Systemen möglich.
Basierend auf diesem Ansatz wird eine Methodik zur leistungsfähigen Analyse von do-
mänenübergreifenden Systemen im Fahrzeug entwickelt. Ausgehend von spezi�zierten Sy-
stemanalysezielen werden geeignete Simulationsmodelle entwickelt und durch den Einsatz
von modi�zierten Verfahren aus dem Gebiet der Safety Analyse eine geeignete Run-Time
Co-Simulation Model Switching Kon�guration erstellt. Dies ermöglicht eine e�ziente und
ganzheitliche Simulation und Analyse von domänenübergreifenden Systemen im Fahrzeug.

Anhand von Beispielen aus dem Bereich domänenübergreifender Systeme im Fahrzeug
wird die vorgestellte, auf Run-Time Co-Simulation Model Switching basierende Methodik
angewandt und validiert. Im Rahmen der Beispiele werden sowohl FlexRay als auch AUTO-
SAR und Simulationsmodelle für komplette Fahrzeuge (mit Fokus auf den Antriebsstrang)
in eine gemeinsame Co-Simulation integriert, und deren Zusammenspiel wird analysiert.

Abstract

Today, simulation is a key issue for the development of state-of-the-art automotive systems.
However, due to the increasing number of interacting domains (e.g. mechanics, electronics,
software) and their very di�erent requirements, standard simulation cannot handle the
challenges arising anymore. It is limited to the features of a single modelling language and
tool which do not allow to cover all the required details for an extensive simulation-based
system analysis. As a result, co-simulation is gaining importance within the development of
automotive systems. By using specialised modelling languages and tools for each domain,
co-simulation features enhanced �exibility and real-world behaviour. However, especially
for cross-domain interaction, co-simulation bears a number of challenges.

This work focuses on the co-simulation of cross-domain automotive systems. Run-time
co-simulation model switching, a �exible novel co-simulation methodology, is developed.
The main idea is to perform co-simulation not only as a pre-de�ned static setup like in tra-
ditional co-simulation approaches. Instead, according to de�ned criteria like time or signal
behaviour, simulation model variations are performed during co-simulation execution time.
This enhanced co-simulation methodology provides the system developer with a new degree
of freedom in simulating automotive systems. It enhances co-simulation e�ciency, �exib-
ility and cross-domain analysis capabilities. Based on this new methodology, an approach
for the e�cient analysis of cross-domain automotive systems is developed. According to
speci�ed system analysis goals, suitable simulation models are developed and, by using ad-
apted techniques from the area of safety analysis, a suitable run-time co-simulation model
switching con�guration allowing to ful�l the system analysis goals is created.

The proposed run-time co-simulation model switching methodology is successfully ap-
plied and validated within the co-simulation of several cross-domain automotive systems,
including FlexRay, AUTOSAR and power-train focused simulation of a complete vehicle.

Acknowledgements

In the beginning, I would like to thank my supervisor Prof. Dr. Reinhold Weiÿ for his
helpful advice during the conduction of my dissertation at the Institute for Technical In-
formatics at Graz University of Technology. I especially want to thank Dr. Christian Steger
for his exceptional support and extraordinary mentoring during the last years. Addition-
ally, I am grateful to Dr. Eric Armengaud, project leader of TEODACS, whose continuing
enthusiasm and motivation were really priceless.

I would like to thank all people and companies involved within the TEODACS project, they
are too numerous to list them all. My special thanks go to the Virtual Vehicle Competence
Center for providing the framework for the TEODACS project, especially to Univ.-Doz.
Dr. Daniel Watzenig as head of vehicle E/E and software. Furthermore, I would like to
thank Dr. Markus Pistauer and DI Andreas Schuhai from CISC Semiconductor for provid-
ing valuable support and �nancing after the completion of TEODACS.

Moreover, I would like to thank all my students. They performed outstanding work. I
especially want to thank Martin Krammer and Stefan Krug. Both provided a valuable con-
tribution to the TEODACS FlexRayXpert.Sim framework. Furthermore, my thanks go to
the entire sta� at the Institute for Technical Informatics for their support, constructive
comments and helpful suggestions during my work.

Last but not least, I would like to thank my parents for their enduring support throughout
all my academic studies. With their ongoing motivation, they helped me to successfully
handle even critical situations. I would not have got that far without them.

Graz, April 2011 Michael Karner

Extended Summary

Driver assistance systems are integrated into today's cars in an increasing number. As a
result, also the X-by-wire approach becomes more and more important. To handle this
overwhelming demand for computational power, the number of electronic control units
(ECU) within a car is growing. For example, more than 70 di�erent ECUs distributed
all over the car are nothing exceptional anymore. Most of them are safety critical sys-
tems with the respective real-time requirements. These few examples demonstrate that
currently, most of the innovation potential within cars comes from electronics. The intro-
duction of new functionalities like driver assistance systems, the enhancement of mechanic
solutions by electronic components and even the replacement of mechanic components by
their electronic counterparts (X-by-wire) are typical challenges and goals during the devel-
opment of tomorrow's cars. Additionally, due to the close interactions within mechanics,
electronics and software (e.g. adaptive cruise control systems), the analysis and handling
of cross-domain e�ects are gaining importance.

To get rid of this enormous amount of complexity, new concepts have been introduced
into the automotive industry. For example, due to the need for a fast but also reliable
communication system, FlexRay has been developed. FlexRay is a time-triggered commu-
nication system, featuring both high bandwidth and reliability. However, FlexRay bears
a couple of challenges like the complex con�guration and the e�ects of internal and ex-
ternal in�uences on the FlexRay system. To handle the increasing demand and complexity
of software within the car, AUTOSAR has been developed as an industry standard for
managing distributed automotive applications. However, with FlexRay, what seems to be
simple on paper, becomes extremely complex in practice.

As a result, simulation during the development of automotive systems is highly required.
Typical simulation approaches use one modelling language within one simulation tool.
However, the complex cross-domain interaction and the enormous number of di�erent sys-
tems interacting with each other lead to very di�erent requirements for the modelling
language and simulation tool. These wide-spread needs in automotive system simulation
simply cannot be handled anymore by using standard simulation. Hence, the topic of
co-simulation is gaining more and more importance within the development of automotive
systems. In co-simulation, di�erent modelling languages and simulation tools are used
within a common simulation (= co-simulation), see Fig. 1. The most suitable tool can be
used for each automotive component, allowing for a more e�cient simulation approach.
There are, however, still some drawbacks, especially for cross-domain co-simulation. For
example, as the co-simulation performance is determined mainly by the slowest simulator
involved, coupling simulation tools from di�erent domains with very di�erent time con-
stants has so far not been practical.

„Classical“
Simulation

Distributed
Simulation

Non-Distributed
Co-Simulation

Distributed
Co-Simulation

of Computers

o
f M

od
ell

ing
 To

ols

= 1 > 1

= 1

> 1

Figure 1: Di�erentiation between Simulation and Co-Simulation (based on [1])

This work is part of the TEODACS project (Test, Evaluation and Optimisation of De-
pendable Automotive Communication Systems). The project aims at understanding the
di�erent internal and external e�ects in�uencing a dependable communication network
(especially FlexRay) and the applications using this network. For this, a co-simulation
environment is created containing FlexRay simulation models, models of distributed ap-
plications by using AUTOSAR concepts and even a power-train focused simulation of a
complete car. Additionally, the same setup is also available in real hardware, allowing for
interaction and comparison between the co-simulation and reality.

Within this work, a new methodology for the e�cient co-simulation of cross-domain auto-
motive systems is described (see Fig. 2 and Fig. 3). This methodology is based on run-
time co-simulation model switching (RCMS). In RCMS, standard static co-simulation is
enhanced to have dynamic behaviour. As a result, the simulation models used within the
co-simulation can be changed during the execution of the co-simulation. Basically, there
are two di�erent types of RCMS. The �rst one is time-triggered RCMS. Here, co-simulation
model switching is de�ned in advance by selecting the points during co-simulation execu-
tion when a model switch should take place. The other type of RCMS is adaptive RCMS.
A signal analysis is performed during the execution of the co-simulation, comparing the sig-
nal behaviour to a user-de�ned set of criteria. If the signal behaviour matches a criterion,
a co-simulation model switching to a speci�c simulation model is initiated. An important
point within both types of RCMS is the correct synchronisation of the upcoming model
to allow for seamless switching between the models. By using RCMS, the developer gains
an enormous amount of �exibility compared to standard static co-simulation while at the
same time improving co-simulation performance, cross-domain interaction and analysis
possibilities.

Based on RCMS, this work presents a new methodology for the co-simulation of cross-
domain automotive systems. It can be split in two main parts: the development and
the execution of the cross-domain automotive co-simulation. The development of a co-

simulation for cross-domain automotive systems is shown in Fig. 2. Based on a speci�cation
of automotive system analysis goals, an integrated development of both RCMS con�gur-
ation and simulation models is done. Starting from an initial simulation model design,
the design of a suitable RCMS con�guration to ful�l the speci�ed system analysis goals
is performed. This RCMS con�guration design process uses methodologies from the area
of safety analysis (failure mode and e�ects analysis (FMEA), subsystem hazard analysis
(SSHA), system hazard analysis (SHA)) which are adapted for the goal of designing a
suitable RCMS con�guration. The feedback generated during this process can be used
to enhance the simulation model design and implementation process, �nally leading to a
suitable RCMS con�guration and the according simulation models targeted for ful�lling
the speci�ed system analysis goals. The second part of the new methodology for the
co-simulation of cross-domain automotive systems is the actual execution of the RCMS
con�guration (see Fig. 3) developed during the �rst part. Here, after the RCMS con�g-
uration and simulation models have been integrated into the cross-domain co-simulation
environment, the co-simulation is started and RCMS (both time-triggered and adaptive)
is executed according to the con�guration. By doing so, results suitable for ful�lling the
speci�ed system analysis goals are gained.

Design of Run-Time Co-Simulation Model Switching Configuration Simula tion M odelM eta I nforma tion

Specification of
Automotive Cross-

Domain System
Analysis Goals

Design &
Implementation

of Simulation Models

Simulation
Models

Run-Time Model
Switching Adapted

SHA

Run-Time Model
Switching Adapted

SSHA

Run-Time Model
Switching Adapted

FMEA

Run-Time
Co-Simulation

Model Switching
Configuration

Si m u l at i o n M
o d e l

R e q u i r e m
e n t s

Figure 2: Development of a Co-Simulation of Cross-Domain Automotive Systems

Execution of Run-Time
Co-Simulation Model
Switching

Adaptive
Switching

Time-
Triggered
Switching

Automotive
Cross-Domain

Co-Simulation Results

Cross-Domain Automotive
Co-Simulation Integration

Simulation
Models

Run-Time
Co-Simulation

Model Switching
Configuration

Figure 3: Execution of a Co-Simulation of Cross-Domain Automotive Systems

In conclusion, this dissertation allows for an e�cient and �exible co-simulation of cross-
domain automotive systems within the TEODACS project. The main bene�ts of the
new RCMS-based methodology are its improved co-simulation performance, �exibility and
cross-domain analysis capabilities compared to standard co-simulation. It allows for a
consistent and e�cient way of analysing cross-domain automotive systems by using co-
simulation. RCMS provides the developers of automotive systems with new degrees of
freedom in analysis, allowing for the examination of e�ects which until now have not been
able to be modelled at the required level of detail or simulated within a reasonable amount
of time. Essential contributions within this dissertation are the development of RCMS to
introduce dynamic into co-simulation, the development of a methodology to design a suit-
able RCMS con�guration for speci�ed system analysis goals and the new methodology for
the co-simulation of cross-domain automotive systems by using RCMS. Another contribu-
tion is the development of a cross-domain co-simulation consisting of FlexRay (electronics),
AUTOSAR concepts (software) and the powertrain-focused simulation of a complete car
(mechanics).

Contents

Table of contents ix

1 Introduction to Co-Simulation of Cross-Domain Automotive Systems 1

1.1 Motivation . 1
1.1.1 Simulation of Automotive Systems . 2
1.1.2 Automotive Cross-Domain Simulation . 3

1.2 Co-Simulation of Cross-Domain Automotive Systems 4
1.2.1 The TEODACS Project . 4
1.2.2 Problem Description . 4
1.2.3 Contribution and Signi�cance . 5
1.2.4 Organisation of the Thesis . 5

2 Related Work 6

2.1 Simulation of Automotive Systems . 6
2.1.1 Simulation of Single Automotive Components 7
2.1.2 Simulation of Automotive Multi-ECU Networks 8

2.2 Co-Simulation . 9
2.2.1 Co-Simulation Features & Frameworks . 9
2.2.2 Design of Co-Simulation Con�gurations . 10

2.3 Run-Time Simulation Model Switching . 11
2.3.1 Run-Time Simulation Model Switching in Homogeneous and Heterogeneous

Environments . 11
2.3.2 Adaptive Run-Time Simulation Model Switching 12

2.4 Summary . 13

3 Novel Methodology for Co-Simulation of Cross-Domain Automotive Systems 14

4 Methodology Evaluation and Case Studies 22

4.1 Co-Simulation of FlexRay-based Cross-Domain Automotive Systems 22
4.1.1 Example 1: Distributed Application Delay Analysis 22
4.1.2 Example 2: Analysis of FlexRay Signal Integrity E�ects 28

4.2 Validation of RCMS Accuracy . 31
4.3 Validation of FlexRay Simulation Model Accuracy 33
4.4 Summary . 34

5 Conclusion and Future Work 35

5.1 Conclusion . 35
5.2 Future Work . 36

viii

6 Publications 38

6.1 Run-Time Co-Simulation Model Switching for E�cient Analysis of Embedded Systems 40
6.2 Optimizing HW/SW Co-Simulation based on Run-Time Model Switching 58
6.3 Holistic Simulation of FlexRay Networks by Using Run-Time Model Switching . . 64
6.4 Verfahren zum Umschalten von heterogenen Simulationsmodellen zur Laufzeit . . . 70
6.5 A Cross-Domain Co-Simulation Platform for the E�cient Analysis of Mechatronic

Systems . 82
6.6 Heterogeneous Co-Simulation Platform for the E�cient Analysis of FlexRay-based

Automotive Distributed Embedded Systems . 96
6.7 Exploration of the FlexRay Signal Integrity using a Combined Prototyping and

Simulation Approach . 106

References 112

List of Figures

1 Di�erentiation between Simulation and Co-Simulation v
2 Development of a Co-Simulation of Cross-Domain Automotive Systems vi
3 Execution of a Co-Simulation of Cross-Domain Automotive Systems vii

1.1 Volkswagen Phaeton: Automotive Electronics as Distributed System 2
1.2 TEODACS Overview . 4

3.1 Co-Simulation of Cross-Domain Automotive Systems 15
3.2 Shifting of Complexity . 16
3.3 Run-Time Co-Simulation Model Switching Synchronisation 17
3.4 Run-Time Co-Simulation Model Switching . 18
3.5 Design of a Suitable RCMS Con�guration . 20

4.1 Case Study: Automotive Data Transmission for Analysis of Delays within a Distrib-
uted Application . 23

4.2 Adaptive Switching Criterion (Engine Torque) Mapped to Detected Critical Areas 26
4.3 Control Signal Delay for Di�erent FlexRay Con�gurations 27
4.4 Time-Triggered Switching within a FlexRay Frame 28
4.5 Co-Simulation Setup for FlexRay Signal Integrity E�ects Analysis 29
4.6 Communication Controller Error Detection Output Excerpt 30
4.7 TxD/RxD Excerpt of a Switched FlexRay Frame 31
4.8 VHDL-AMS Simulation vs. Synchronised SystemC/VHDL-AMS RCMS 32
4.9 Comparison of Measurement and Simulation Waveforms 33

6.1 Co-Simulation of Cross-Domain Automotive Systems 39

x

List of Abbreviations

AUTOSAR Automotive Open System Architecture
ECU Electronic Control Unit
EPL Electrical Physical Layer
FMEA Failure Mode and E�ects Analysis
HDL Hardware Description Language
ICOS Independent Co-Simulation
IEEE Institute of Electrical and Electronics Engineering
RCMS Run-Time Co-Simulation Model Switching
RTL Register Transfer Level
SAE Society of Automotive Engineers
SHA System Hazard Analysis
SoC System on Chip
SSHA Sub-System Hazard Analysis
swFMEA Switching-Adapted Failure Mode and E�ects Analysis
swSHA Switching-Adapted System Hazard Analysis
swSSHA Switching-Adapted Sub-System Hazard Analysis
SyAD System Architect Designer
TDMA Time Division Multiple Access
TLM Transaction Level Modelling
TEODACS Test, Evaluation and Optimisation of Dependable Automotive Communication Systems
VHDL Very High Speed Integrated Circuit Hardware Description Language
VHDL-AMS VHDL-Analogue and Mixed Signal

Chapter 1

Introduction to Co-Simulation of

Cross-Domain Automotive Systems

Automotive systems have evolved rapidly during the last decade, especially in the area of
electronics and software. Due to the enormous number of new functionalities, often founded
by safety critical real-time systems, automotive electronics in today's cars are organised as
complex, distributed systems. However, at the same time, the level of complexity reaches
new heights, requiring new methodologies for the development of automotive systems. A
possible answer to this question is simulation, and especially co-simulation.

1.1 Motivation

In today's cars, over 80% of the innovation potentials come from electronics [2]. Addition-
ally, the 2009 world market for automotive embedded electronics represents about 3 billion
units delivered per year for a budget encompassing approximately 160 billion Euros with
an annual growth of 9 percent [3]. For example, within current upper-class cars like the
Volkswagen Phaeton (see Fig. 1.1), the number of electronic control units (ECU) can be
over 80, while at the same time, the software running on these ECUs is comprising more
than 100 million lines of code [4], [5] and the components are connected using more than
2000 cables with a total length of nearly 4 kilometres.

This enormous complexity is mainly caused by the introduction of new functionali-
ties and the enhancement of existing components within the car. For example, existing
mechanic solutions are enhanced or even replaced by electronic components (e.g. X-by-
wire, engine management, car dynamics), or new advanced functionalities like radars and
distance sensors for active safety are introduced. For dealing with this increased level of
complexity, the automotive industry introduced several new standards. For example, to
ful�l the demand for a fast but also reliable communication system, FlexRay has been
developed [7]. It is based on a time-triggered approach and features both high perfor-
mance and reliability. Another example is the Automotive Open System Architecture
(AUTOSAR) [8], an automotive middleware for the development of automotive distributed
applications. However, new concepts like FlexRay or AUTOSAR on the one side help to
deal with the increased complexity and requirements within safety critical real-time auto-
motive systems, but on the other side, they introduce even more complexity because they

1

1. Introduction 2

Figure 1.1: Volkswagen Phaeton: Automotive Electronics as Distributed System [6]

have to be managed too. Additionally, it can be seen that not only the overall complexity
is rising, but at the same time, the cross-domain interactions (e.g. mechanics, electronics,
software) become more and more important for the development of automotive systems [9].
As a result, simulation nowadays is a must during the development of automotive systems.
Otherwise, the system complexity could not be managed anymore.

1.1.1 Simulation of Automotive Systems

As demonstrated before, due to the wide range of requirements, the exploding complexity
and the di�erent components involved, simulation is a great necessity for the develop-
ment process of automotive systems. Typically, there are two di�erent kinds of simulation
performed, the simulation of single components (e.g. [10], [11]) and the simulation of a mul-
titude of (di�erent) components interacting with each other (e.g. [12], [13]). Both kinds
of simulation are practically used throughout the industry and academia. Simulation al-
lows to have a closer look at the component(s), eliminating the black box behaviour of
real hardware. The functionality can be veri�ed in advance, hence reducing development
e�ort due to avoiding costly redesigns and leading to faster time to market. Both time and
money are crucial within the automotive industry.

However, there are some important drawbacks. When simulating only single automo-
tive components, for example by using SystemC [14], there is no real interaction with other
components and the environment. As a result, the system behaviour cannot realistically be
simulated. It is reduced to the theoretical behaviour of the component within a sterile en-
vironment. The simulation of a single component can de�nitely help the developer during
the design and implementation of this component. Yet, in most environments, it cannot
be used to demonstrate whether a component works correctly under all conditions and

1. Introduction 3

within a distributed system. The missing interaction with other components and the envi-
ronment, especially the missing cross-domain interactions, massively restrict the usability
of single-component simulations of automotive systems.

Performing a multi-component simulation (e.g. an automotive multi-ECU network)
overcomes some of the problems arising during single-component simulation as an interac-
tion between the di�erent components of the simulation is possible. There are several ways
to perform such a simulation. For example, a multi-ECU network simulation is typically
performed either by using specially designed hardware (residual bus/network simulation)
or by using high abstraction level simulation models of the network components. Another
possibility is to only simulate a single layer out of the multitude of layers building a net-
work. All of these three possibilities have several disadvantages, lacking either observability
(hardware-based solutions) or accuracy for the overall network (high-level simulation, sim-
ulation of single network layers). Additionally, the typical multi-ECU network simulation is
missing cross-domain interaction required for the analysis of the overall system behaviour.

In summary, simulation of single components and multi-component simulation both
have several individual drawbacks. Hence, simulation as often performed until now is not
enough to handle the complexity and challenges arising during the development process of
today's automotive systems.

1.1.2 Automotive Cross-Domain Simulation

Standard simulation is not enough for the holistic simulation of automotive systems. Due
to the limitations to the features of one modelling language and the according simulation
tools, the exploding complexity is still not manageable. Additionally, there are only a
few modelling languages and tools supporting multiple domains. Well-known examples
are VHDL-AMS [9], [15], [16], Saber MAST [17], Modelica [18] and SystemC-AMS [19].
However, cross-domain simulation of automotive systems is clearly required [20], [21], [22],
[23].

A possible solution to achieve an e�cient cross-domain simulation of automotive sys-
tems is by using co-simulation [24]. Co-simulation means to simulate a system using
di�erent modelling languages, abstraction levels and tools in one common simulation [25].
While co-simulation already is a relatively well-known approach for the development of au-
tomotive systems (see e.g. [25], [26]), it still has some important drawbacks. For example,
to maintain system integrity, the overall co-simulation performance is determined by the
slowest simulator involved. If connecting simulation tools from di�erent domains having
very di�erent requirements (e.g. microelectronics with simulation time steps in the area
of picoseconds and typical time intervals under observation of several milliseconds, and
mechanics with time steps in the area of milliseconds and time intervals under observa-
tion of several seconds or even minutes), this de�nitely is a problem. Within the typical
time intervals for microelectronics, nothing important may happen within the mechanic
simulation. By contrast, the relevant time intervals for mechanic simulation cannot be
simulated with microelectronics simulation within a reasonable amount of time. Hence,
standard co-simulation is not always a suitable solution to perform cross-domain simulation
of automotive systems.

1. Introduction 4

1.2 Co-Simulation of Cross-Domain Automotive Systems

1.2.1 The TEODACS Project

This thesis is part of the TEODACS project [27]. TEODACS means Test, Evaluation and
Optimisation of Dependable Automotive Communication Systems. The goal of this project
is to understand the interactions between the layers building a dependable network like
FlexRay and to evaluate the di�erent e�ects in�uencing the communication (e.g. topol-
ogy, EMC, cross-domain interaction). The approach is based on the development of a
cross-domain co-simulation framework (FlexRayXpert.Sim) tightly interfaced to a realistic
prototype (FlexRayXpert.Lab), see Fig. 1.2. The simulation framework provides observ-

0

0,2

0,4

0,6

0,8

1

1,2

1 6 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1 6
1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
6

9
1

9
6

1
0
6

1
1
1

1
1
6

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

2
0
1

2
0
6

2
1
1

2
1
6

2
2
1

2
2
6

2
3
1

2
3
6

2
4
1

2
4
6

2
5
1

2
5
6

2
6
1

2
6
6

2
7
1

2
7
6

2
8
1

2
8
6

2
9
1

2
9
6

Car Simulator
CarMaker /

AVL InMotionTM

Car Simulator
CarMaker /

AVL InMotionTM
(real-time)

FlexRay network:
realistic hardware prototype

Hardware prototype platform
FlexRayXpert.Lab

Co-simulation platform
FlexRayXpert.Sim

Interface testcase definition
(car environment, stimuli)

Stimulation
and analysis

Transceiver

Comm.
Controller

FlexRay network:
Co-Simulation framework CISC SyAD®

CarMaker
Interface

FlexRay Channel
FlexRay Topology

FlexRay
Node

FlexRay
node n - i

FlexRay
node n + m

Host (SystemC)

Comm.
Controller

Host

Transceiver

Comm.
Controller

FlexRay
Node

Host (SystemC)
Middleware

Transceiver

Transceiver

Transceiver

Tester Node

Transceiver

TransceiverTransceiver

Middleware
Application Application

Middleware

analog level

sample level

frame level

signal level

Figure 1.2: TEODACS Overview

ability of the internal components, hence enables the e�cient analysis of the cross-domain
system. It features high �exibility for testing new con�gurations and the possibility to val-
idate the system during earlier phases of the development process. The prototype presents
a real behaviour both in the time and value domain. The coupling of these two platforms
combines the advantages of the two approaches: It enables for example the validation of
the simulation models and the analysis of real scenarios within the simulator. Within this
thesis, the TEODACS FlexRayXpert.Sim co-simulation framework has been developed,
see left side of Fig. 1.2.

1.2.2 Problem Description

As shown in section 1.1, several limitations and drawbacks in the simulation of automotive
systems exist.

• Simulation of single components: no real interaction with other components and the
environment

• Simulation of multi-ECU networks: missing observability (hardware-based solutions)
or high-level and/or single-layer simulation only (missing details)

1. Introduction 5

• Missing of cross-domain interactions which are required for detailed analysis of system
behaviour

• Co-Simulation: restrictions in cross-domain systems

The main challenge of this thesis is to solve the problem that at the same time, both high
accuracy and acceptable simulation performance are required to enable a holistic analysis
of cross-domain automotive systems within a reasonable amount of time. Based on this,
a further challenge is the creation of an e�cient cross-domain co-simulation environment
for automotive systems. Another important challenge is to de�ne a co-simulation-based
system analysis �ow to design a suitable co-simulation con�guration for a speci�ed system
analysis goal, including simulation models ful�lling the analysis goals.

1.2.3 Contribution and Signi�cance

This thesis comprises the following major contributions:

1. Design of a �exible co-simulation methodology based on run-time co-simulation
model switching (RCMS). By exchanging the simulation models used during run-time
of the co-simulation, it is possible to get high co-simulation performance while at the
same time having the necessary result details when required. For this, time-triggered
RCMS and adaptive RCMS are speci�ed in detail. RCMS allows for the e�cient
integration of multiple domains into a common co-simulation. [28], [29], [30], [31]

2. A RCMS-based methodology for the analysis of cross-domain automotive systems is
developed. Based on speci�ed system analysis goals, suitable simulation models are
designed and, by using adapted techniques from the area of safety analysis, a suitable
RCMS con�guration allowing to ful�l the system analysis goals is created. [28]

3. Development of a comprehensive case study: TEODACS FlexRayXpert.Sim, a cross-
domain automotive co-simulation framework for the analysis of dependable automo-
tive communication systems. [32], [33], [34]

1.2.4 Organisation of the Thesis

The remainder of this thesis is organised as follows. Chapter 2 describes related work in the
areas of simulation of automotive systems, co-simulation and run-time simulation model
switching. In Chapter 3, the methodology of run-time co-simulation model switching and
its application for the co-simulation of automotive systems are explained. The case study
comprising the TEODACS FlexRayXpert.Sim automotive co-simulation framework based
on RCMS is described in Chapter 4. Chapter 5 concludes this thesis and provides an
outlook on possible future work.

Chapter 2

Related Work

Due to the rising demand for safety critical real-time systems within cars, the complexity
of automotive systems is exploding. With up to 80 di�erent ECUs forming a complex,
distributed system the development process cannot be handled anymore without the sup-
port of simulation. This chapter evaluates typical methodologies for the simulation of
automotive systems and depicts their advantages and limitations. Additionally, it is eval-
uated if state-of-the-art co-simulation and run-time model switching techniques are able
to overcome these limitations.

2.1 Simulation of Automotive Systems

With more than 100 million lines of code [4], more than 80 di�erent ECUs [5] and ex-
tensive cross-domain interaction (software, electronics, mechanics) [9], simulation plays a
key role during the development process of automotive systems. However, the enormous
system complexity cannot be handled easily even by using simulation. By introducing new
technologies like FlexRay [7] [35] and AUTOSAR [8] [36], the demand for simulation is
enhanced even more. Simulation allows to have a closer look at the system, eliminating
the black box behaviour of real hardware. The functionality can be veri�ed in advance,
hence reducing development e�ort due to avoiding costly redesigns and leading to faster
time to market.

Generally, there are two main concepts for the simulation of automotive systems: the
simulation of single components and the simulation of a multitude of (di�erent) components
interacting with each other. In sections 2.1.1 and 2.1.2, an overview of both types of
simulations is provided. Due the enormous number of di�erent components and possible
combinations within a car, the focus is set to safety critical real-time systems (esp. FlexRay
and AUTOSAR) and the simulation of automotive multi-ECU networks (as an example
for simulating interacting components).

For the communication between automotive safety critical real-time systems, FlexRay
ful�ls the demand for dependability and high communication performance. It is based on a
time-triggered approach resulting in deterministic communication behaviour and provides
a bandwidth of up to 10 Mbit/s per channel [35]. However, the challenges when using
FlexRay are lying in its complexity. For example, there are more than 1048 di�erent
ways to con�gure a FlexRay network [37]. Additionally, the FlexRay signal integrity on

6

2. Related Work 7

the electrical physical layer (EPL) plays an important role for the dependability of the
network. Hence, the development of simulation models for FlexRay components is of great
interest.

AUTOSAR [8] [36] is an architecture for automotive embedded software. By using dif-
ferent abstraction levels, component-based design and by de�ning processes and method-
ologies for the development and tool-supported generation of software, it is aiming to
achieve enhanced reusability, maintainability, transferability of functions throughout the
network, scalability and the integration of safety requirements. However, the enormous
complexity when performing AUTOSAR-based development cannot be handled easily. As
a result, the simulation of AUTOSAR-based systems is an important topic within industry
and academia.

2.1.1 Simulation of Single Automotive Components

The simulation of single automotive components is a well-known approach used by both
industry and academia. By focussing on a clearly de�ned component, it is possible to
generate a detailed simulation model covering the complete behaviour of the component.
This is exceptionally helpful during the development process of the modelled component
as the intended functionality can be easily tested and veri�ed. Additionally, the e�ects
of changes in e.g. important algorithms or functionalities can be evaluated very quickly.
High-level (e.g. Simulink, SystemC) and low-level modelling languages and tools (VHDL(-
AMS), Saber) can be used for the simulation of single automotive components, depending
on the simulation purpose.

As illustrated before, the development of simulation models for FlexRay components
is of great interest. In the following, several examples for simulation models of FlexRay
components are given.

The logical FlexRay protocol is handled by the communication controller, hence, this
component is one of the most interesting to simulate, but also one of the most complex.
Several di�erent modelling languages are used for this task, typically high-level ones (e.g.
SystemC, C, State�ow). In [38], Lari et al. present a Verilog model of a communication
controller. It is modelled at behavioural level, hence, at a relatively abstracted level. The
authors introduce errors like bit �ips into the simulation model to analyse which type
of error occurring within which part of the communication controller leads to a missing
FlexRay frame. As a result, the most fragile parts of the FlexRay controller are detected to
be the controller host interface and the clock synchronisation process. The least sensitive
part of the controller according to Lari et al. is the coding and decoding unit which,
by speci�cation, is designed to be more fault-tolerant. Another simulation model of a
communication controller is shown by Kim et al. [11]. It is implemented at system level
and uses SystemC as hardware description language (HDL). The authors use the simulation
model for veri�cation purposes before building a correspondent register transfer level (RTL)
model.

While the communication controller is responsible for handling the logical FlexRay
protocol, the EPL is handled by the FlexRay transceiver. It is responsible for conversion
between digital high/low values and their corresponding representation on the FlexRay
bus. Additionally, the transceiver performs tasks regarding power saving, bus wakeup etc.
Several simulation models are available. In [39], a generic transceiver model implemented

2. Related Work 8

using VHDL-AMS is presented. Another VHDL-AMS-based transceiver model is developed
by Muller et al. in [40]. It is a mixed-mode behavioural model and the authors perform
several tests to demonstrate e�ectiveness and speci�cation conformance of the developed
model. Another behavioural simulation model of a speci�c NXP transceiver is shown
in [10]. It is implemented using Saber. All of these transceiver models focus on the
validation of the single component (e.g. conformance test).

There are some important drawbacks when simulating only single components as there
is no real interaction with other components and the environment. As a result, the system
behaviour cannot be realistically simulated. It is reduced to the theoretical behaviour of
the component within a sterile environment. The simulation of a single component can
de�nitely help the developer during the design and implementation of this component.
However, in most environments, it cannot be used to demonstrate whether a component
works correctly under all conditions and within a distributed system. The missing of inter-
action with other components and the environment, especially the missing cross-domain
interactions, massively restrict the usability of single-component simulations for automo-
tive systems.

2.1.2 Simulation of Automotive Multi-ECU Networks

A possible way to overcome the limitations of simulating single components only is to
simulate a multitude of (di�erent) components interacting with each other. This has
the advantage that the simulation behaviour is more realistic. Hence, e�ects propagated
throughout the system can be examined in detail. There are several di�erent approaches
to perform such a simulation, each having di�erent advantages and limitations.

High-level simulation is a very common way to simulate an automotive network of
multiple ECUs. For example, in [12], Krause et al. present a timing simulation of in-
terconnected AUTOSAR software components. It is implemented using SystemC, and
AUTOSAR concepts like ports and runnables are mapped to their corresponding SystemC
equivalents. Another high-level simulation of a large heterogeneous system including sev-
eral ECUs communicating via a network is described by Buchmann et al. [41]. The im-
plementation is done by using TLM. A hardware abstraction layer is used for high-level
access to the hardware components. The simulation is carried out at a very high abstrac-
tion level resulting in high simulation performance, but also losing many important details
about the communication. In [42], another TLM approach for communication networks is
presented. The transaction level model of a FlexRay network is used for an evaluation of
time performances according to di�erent protocol parameters. The FlexRay interface is
described in a time-behavioural way using TLM techniques in which selected components
of the FlexRay protocol are modelled. Another high-level approach for the simulation of
automotive multi-ECU networks is shown by Albert et al. [43]. The ECUs are simulated by
using Simulink and the time-triggered busses (FlexRay, CAN) by using TrueTime. Within
an example, the e�ects of communication on an active front steering are examined. Ober-
maisser et al. [44] demonstrate a simulation framework for distributed real-time systems
based on time-triggered control. Here, the emphasis is placed on accurate reproduction of
the temporal behaviour of the platform. A signi�cant drawback of high-level approaches
is the loss of details. Even minor changes within the system con�guration parameters may
lead to notably di�erent network behaviour. By using only high-level modelling like TLM,

2. Related Work 9

lots of these subtle details may be abstracted away, making the automotive system simu-
lation not realistic enough for trustworthy in-detail veri�cation of the complete network.
However, such simulation approaches can be very useful for the analysis of e.g. scheduling
at application level.

The simulation of components within a single FlexRay layer is shown in [45]. Bollati et
al. present a Saber-based simulation of the FlexRay EPL components, namely transceiver,
termination, cable and passive star. An analysis of the FlexRay signal integrity is per-
formed for a network consisting of several nodes. While the simulation itself is highly
detailed, it is missing interaction with other components and FlexRay layers except the
EPL. Hence, its usability is limited regarding overall automotive system analysis.

A further approach for analysing automotive multi-ECU networks is residual bus sim-
ulation, which enables the emulation of an entire sub-network. Industrial solutions from
e.g. Elektrobit [46], dSPACE [47] and Vector [48] are available. All of these examples are a
combination of hardware and software components: The software emulates the functional-
ities of the missing ECUs, and the application messages are transmitted to a real network
using dedicated hardware components. Hence, the advantages of simulation (observability,
traceability, �exibility...) are lost for many parts of the system. This makes residual bus
simulation feasible only for very speci�c and clearly de�ned requirements.

It can be seen that several di�erent approaches for the simulation of automotive multi-
ECU networks exist, especially of dependable communication networks. However, these so-
lutions usually cover only a speci�c part of the network (missing interaction), are hardware-
based (missing advantages of simulation) and/or are working on a very high abstraction
level (missing required details for in-depth system analysis).

2.2 Co-Simulation

Co-simulation is a well-known step during the development of embedded systems. The
idea behind co-simulation is to simulate a system by using di�erent HDLs and/or mul-
tiple abstraction levels within a single common simulation (co-simulation) [25], [24], [49].
By using co-simulation, it is possible to handle the increased system complexity, as not
all simulation models involved have to be implemented using the same abstraction level,
modelling language and tool. This allows for an iterative re�nement process during system
development in which selected parts of the system are already modelled using highly de-
tailed simulation models, while other parts are still modelled in a very abstract way. As a
result, the �exibility of the system development is enhanced, allowing veri�cation already
in early phases of the design and shortening the overall development cycle.

Due to the rising complexity of automotive systems which cannot be handled anymore
by using standard simulation, co-simulation is also increasingly used in the automotive
area by industry and academia [26], [9], [20], [21], [22], [23], [50]. It is often seen as possible
answer to allow for a cross-domain simulation of complex automotive system, resulting in
enhanced analysis and development capabilities.

2.2.1 Co-Simulation Features & Frameworks

Several co-simulation frameworks have been proposed in the past. Some of them are part
of scienti�c projects (e.g. [24], [51]), while others are available as commercial solutions

2. Related Work 10

(e.g. [52], [26]). However, they all basically have to face and solve similar challenges:

• Establishing a connection between di�erent simulation tools (data exchange)

• Integrating di�erent HDLs based on di�erent concepts

• Maintaining co-simulation consistency by synchronised execution of the di�erent sim-
ulation tools

• Providing an interface for co-simulation con�guration de�nition (graphical or textual)

Due to the amount of di�erent co-simulation frameworks, only a few selected ones can
be shown here. In [24], Bouchhima et al. propose a co-simulation framework that en-
ables coupling of SystemC and Simulink models, thus connecting the worlds of continuous
and discrete-event simulation. Another co-simulation framework is shown by Birrer et
al. in [51]. Here, the integration of SystemC models into a Verilog-A/AMS simulation is
performed. By doing so, the gap between system level description and hardware imple-
mentation can be bridged. An example for a commercial co-simulation framework is CISC
SyAD [52]. Based on the work described by Kajtazovic et al. [25], it features the coupling
of several simulators from both discrete-event and continuous time simulation. Supported
HDLs are for example SystemC, VHDL(-AMS) and Simulink. An example for a dedicated
automotive co-simulation environment is ICOS (Independent Co-Simulation) [26]. This
co-simulation framework enables the coupling of di�erent domains within a co-simulation
(e.g. powertrain, thermodynamics, electrics).

Common ground for typical co-simulation frameworks is the problem of cross-domain
co-simulation support. As the overall co-simulation performance is determined by the
slowest simulator involved, the integration of simulation models coming from di�erent
domains having very di�erent time constants presents a huge problem. While most of
the frameworks simply neglect the problem, generating implicit restrictions on the cross-
domain co-simulation capabilities, some frameworks try to deal with it. For example, in
ICOS [26], di�erent advanced coupling algorithms are used to minimise the error due to the
di�erent time constants of the di�erent domains involved. However, this methodology is not
applicable for all types of domains and simulation tools (e.g. microelectronics simulation).
As a result, cross-domain co-simulation like strongly required by automotive systems is
still an important problem to be solved.

A very important fact within current co-simulation frameworks is that the co-simulation
con�guration has to be de�ned prior to the actual co-simulation execution. Hence, co-
simulation as de�ned until now is a static approach with which the connections between
the di�erent models and their level of detail are statically de�ned in advance.

2.2.2 Design of Co-Simulation Con�gurations

The task of hardware/software partitioning in general is a well-known approach [53], [54].
However, this is di�erent for the task of designing a suitable co-simulation con�guration.
For standard static co-simulation, this task is quite manageable and mainly determined
by the already existing simulation models. As a result, only some model-speci�c solutions
exist, dealing with the generation of a co-simulation con�guration for standard static co-
simulation.

2. Related Work 11

In [55], Bragagnini et al. present a model-speci�c approach to determine the co-
simulation partitioning between SystemC and the NS-2 network simulator for a sensor
node. A very similar approach is performed by Bombieri et al. [56] with a SystemC/NS-
2 partitioning performed by just comparing advantages and limitations of four di�erent
partitioning variants against each other. A more general approach is described by Fummi
et al. [57]. The authors describe a two-phase partitioning process followed by several re-
�nement steps with the target of �nding a suitable co-simulation con�guration for the
co-simulation of a networked-embedded system. For the individual components of the sim-
ulation model, it is decided whether they should be modelled using SystemC, NS-2 or an
instruction set simulator. However, again this approach is relatively tailored to networked
embedded systems.

In summary, there is a lack in methodologies for designing suitable co-simulation con-
�gurations. This is due to the fact that standard static co-simulation usually does not
have such a high complexity and is mainly driven by already existing simulation models
which are about to be connected within a co-simulation.

2.3 Run-Time Simulation Model Switching

Very often during a system development process, an iterative re�nement of simulation
models is performed. High abstraction level models are replaced by accordingly low ab-
straction level models showing more details but also having less simulation performance.
While this exchange is performed between two consecutive simulation runs, in run-time
simulation model switching, the simulation model exchange is performed during the sim-
ulation process. The main idea is to have di�erent implementations of the same module
and to change the simulation model of a module while the simulation is executed. The
idea behind run-time simulation model switching has been demonstrated within di�erent
areas, for example the simulation model of an MPEG4 encoder [58], for road tra�c sim-
ulation [59], VLSI circuit simulation and power estimation [60] and even for dynamically
adaptive software [61].

2.3.1 Run-Time Simulation Model Switching in Homogeneous and Het-

erogeneous Environments

The idea of run-time simulation model switching has been the topic of some research.
Existing works mainly deal with switching between simulation models developed within the
same modelling language (homogeneous environment) and at high abstraction levels. For
example, in [62], [63], [64], [65] and [66], the authors propose switching between di�erent
SystemC TLM models. Within their implementation, the goal is to change the timing
accuracy of TLM-based bus transfers during simulation. The selection of the level of
accuracy can be performed either statically at elaboration time or dynamically during the
simulation by using timing annotation macros in the source code. A similar approach
is presented by Beltrame et al. [58]. Here, SystemC TLM is extended to support multi-
accuracy models and power estimation with the possibility to switch between di�erent
model accuracies at run-time. This switch has to be performed manually. Hines et al.
propose in [67] and [68] run-time simulation model switching for modelling of inter-module
communication of real time systems. Their tool Pia allows the designer to specify at

2. Related Work 12

multiple levels of detail the communication between components. The designer has to use
the Pia modelling language proposed by the authors to describe the necessary interfaces
and components for the various abstraction levels. During experiments, a speed-up in the
area of 10-100 is achieved. Run-time simulation model switching is also proposed by Yoo
and Jerraya [49]. They suggest dynamic switching between several abstraction levels of
a processor simulation to improve co-simulation performance. However, no results or an
actual implementation are available. Run-time simulation model switching is also used
for the simulation of road tra�c [59]. Here, Claes et al. implement several road tra�c
models using the same modelling language. Another example is given by Rao et al. [60].
They perform VLSI circuit simulation and power estimation by using run-time simulation
model switching. Within their work, the simulation models are implemented using the
same modelling language.

Current run-time simulation model switching focuses on switching within the same
modelling language (homogeneous environment) and on high abstraction levels. No work is
available regarding run-time co-simulation model switching in heterogeneous environments.
As a result, run-time simulation model switching at its current level is not suitable to
support the co-simulation of cross-domain automotive systems.

2.3.2 Adaptive Run-Time Simulation Model Switching

Run-time simulation model switching requires a command to actually change the simula-
tion model. This command can be given manually (like in some of the examples within
the previous section) or given automatically according to the current simulation model
condition. This adaptive run-time simulation model switching is currently only supported
in a few implementations. However, it allows the switching to be more �exible, and hence,
more e�ective in terms of simulation performance.

In [66], Radetzki et al. automatically adapt a SystemC TLM simulation model to cycle
accuracy if bus transfers are initiated or completed. In [62], the same authors use anno-
tation macros within the source code to adapt the model accuracies during the simulation
execution depending on the current state. Within [59], Claes et al. perform a run-time
simulation model switching within a road tra�c simulation. They use the tra�c density
as criterion and de�ne a lower and upper bound. If the tra�c density passes the boundary,
a switch to the high or low detailed simulation model is triggered. If the tra�c density
stays between the two bounds, the current model is continued to be used. Another exam-
ple for adaptive run-time simulation model switching is presented in [60] for VLSI circuit
simulation including power estimation. Within this work, two di�erent types of adaptive
switching are described. Proactive switching is used if the power values stay the same for
some time. This causes a change of the simulation model used at the next cycle. The
second type is reactive switching. If power estimates are missing, an immediate simulation
model change is performed. This includes a roll-back of the simulation and reprocessing of
data, causing massive simulation overhead but preventing the loss of power estimates.

It can be seen that there are several ways to perform adaptive run-time simulation
model switching. Typically, a set of criteria is required which, however, within all the
examples, is extremely tailored for a speci�c use case. Hence, no generic criteria-based
adaptive run-time simulation model switching is available which would be required to
apply adaptive run-time simulation model switching to a multitude of applications.

2. Related Work 13

2.4 Summary

With the exploding complexity in automotive systems, it is obvious that simulation gains
more and more importance within the development process. Simulation allows to have
a closer look at the system, eliminating the black box behaviour of real hardware. The
functionality can be veri�ed in advance, hence reducing development e�ort due to avoiding
costly redesigns and leading to faster time to market. However, as demonstrated within
this chapter, standard simulation is not enough to handle the requirements for a holistic
analysis of automotive systems due to several limitations (e.g. simulation performance,
level of detail, interacting components, cross-domain interactions). A possible solution
would be co-simulation, the simulation of di�erent simulation models implemented by us-
ing di�erent HDLs and abstraction levels within a common simulation. However, current
co-simulation is not able to su�ciently deal with the integration of simulation models
coming from domains with very di�erent time constants. But the e�ective simulation of
complex cross-domain systems is required for the analysis of automotive systems of today.
A possible solution would be run-time simulation model switching. By changing the simu-
lation models used for a module during simulation, it would be possible to overcome several
of the challenges of cross-domain co-simulation within a heterogeneous environment. How-
ever, current run-time simulation model switching is only available on high abstraction
levels within homogeneous environments, and the criteria to perform the more e�ective
adaptive simulation model switching cannot be de�ned in a generic way.

The goal of this thesis is to develop a methodology for the co-simulation of cross-domain
automotive systems based on run-time simulation model switching. The main objectives
are:

• Design of a �exible co-simulation methodology based on RCMS. Speci�cation of time-
triggered RCMS and adaptive RCMS to allow for the e�cient integration of multiple
domains into a common co-simulation.

• Development of a RCMS-based methodology for the analysis of cross-domain automo-
tive systems: design of suitable simulation models and a suitable RCMS con�guration
to ful�l speci�ed system analysis goals.

• Development of a comprehensive case study: cross-domain automotive co-simulation
framework for the analysis of dependable automotive communication systems.

Chapter 3

Novel Methodology for

Co-Simulation of Cross-Domain

Automotive Systems

Overview

As previously explained, the challenges for the co-simulation of cross-domain automotive
systems cannot be simply handled by using existing techniques. In the following, a new
methodology for the co-simulation of cross-domain automotive systems is proposed. Stan-
dard static co-simulation is enhanced by introducing RCMS. This allows to e�ciently
bringing together di�erent domains and simulation models having very di�erent time con-
stants in a single co-simulation. By providing a methodology for the design of a suitable
RCMS con�guration for given system analysis goals, acceptable co-simulation performance
and the required accuracy of the simulation results can be achieved at the same time.

In Fig. 3.1, an overview of the proposed methodology for the co-simulation of cross-
domain automotive systems by using RCMS is given. For speci�ed system analysis goals,
this RCMS-based methodology allows the design and implementation of suitable simulation
models for obtaining the required accuracy of the results while at the same time optimis-
ing co-simulation performance by using RCMS. While some steps are performed by using
already existing state-of-the-art approaches (e.g. implementation of simulation models),
other steps are completely new or largely adapted (e.g. all steps regarding RCMS). Within
Chapter 6, individual parts of the methodology are discussed in more detail. Section 6.1
provides an overview of the complete RCMS-based methodology for the co-simulation of
cross-domain automotive systems. Additionally, the topics of adaptive RCMS and design
of a suitable RCMS con�guration are discussed in detail. Within Sections 6.2, 6.3 and
6.4, the fundamentals of RCMS are presented in detail and a validation of RCMS is per-
formed. Sections 6.5-6.7 show the design and implementation of simulation models for
a cross-domain automotive system. Additionally, cross-domain automotive co-simulation
integration within an RCMS enabled framework is discussed and results are presented.

14

3. Novel Methodology for Co-Simulation of Cross-Domain Automotive Systems 15

Specification of
Automotive

Cross-Domain
System Analysis Goals

Design of
Simulation Models

Design of
Run-Time Co-Simulation

Model Switching
Configuration

Execution of Run-Time
Co-Simulation Model

Switching

Automotive
Cross-Domain

Co-Simulation Results

Implementation of
Simulation Models

Cross-Domain
Automotive

Co-Simulation
Integration

Publication
in Section

6.1

Publication
in Section
6.5 - 6.7

Publication
in Section

6.2, 6.5, 6.6

Publication
in Section

6.1

Publication
in Section
6.5 - 6.7

Publication
in Section

6.1

Publication
in Section
6.2 – 6.4

Publication
in Section
6.2 - 6.3
6.5 - 6.6

Figure 3.1: Co-Simulation of Cross-Domain Automotive Systems

Run-Time Co-Simulation Model Switching

The idea behind RCMS is to change the simulation models that are used for a speci�c
part of the co-simulation (a module, see Fig. 3.4) at run-time. This allows to speed up the
co-simulation while at the same time providing high accuracy when required. It provides
the developer with a new degree of freedom for de�ning the intervals for each module for
which a computational expensive high-detail simulation model is required and when a sim-
pler and faster model su�ces (`shifting of complexity', see Fig. 3.2). Within this thesis,
the existing co-simulation framework CISC SyAD R© has been enhanced to support RCMS.

The possibilities of RCMS can be compared with to oscilloscope, having the capability
to zoom into signi�cant parts of the simulation, while performing a fast (less accurate)
run for the less interesting part of the simulation. And like an oscilloscope has a trigger
condition, a trigger condition is also required for RCMS. The following criteria can act as
a possible trigger source.

• Time (time-triggered RCMS)

• Events generated by an online signal analysis performed by the provided RCMS
implementation (adaptive RCMS)

• Events generated by an external analysis logic (complex system speci�c criteria,
adaptive RCMS)

3. Novel Methodology for Co-Simulation of Cross-Domain Automotive Systems 16

M odel
Accuracy Low:

Selected
Effects

Sim ulation
Speed

100%
High Level

100%
Low Level

Run-Tim e
Switched

High:
Multitude of

Effects

Slow FastDynam ically
Adaptable

...

...
Z %Y %

Co-Sim ulation
M odel

Dynam ically
Adaptable

Sim ulated Tim e

Figure 3.2: Shifting of Complexity

Time-triggered RCMS uses a-priori de�ned switching points, with time acting as trig-
ger source. Hence, it may not be applicable to all types of systems or simulation models.
However, it has one important advantage: Based on the principle of shifting of complex-
ity (see Fig. 3.2), the developer has the possibility to simply adjust the trade-o� between
the simulation performance and the model accuracy achieved. This is a great bene�t, as
in fact the developer can specify the simulation performance in advance, hence adjust-
ing the simulation time needed. By specifying the simulated time (including concurrent
simulation time) for each simulation model of the module, the developer can select the
relation between simulation performance and accuracy according to the requested needs.
Thus, the simulation performance improvement factor in comparison with standard static
co-simulation methodologies is more or less freely selectable by the developer. This is of
great advantage when simulating complex systems. It is possible to estimate the resulting
overall co-simulation performance for time-triggered RCMS in advance.

While time-triggered RCMS is rather simple to handle, it has some major drawbacks.
It is a relatively in�exible approach as it has to be de�ned before the simulation starts.
It is not able to react to spontaneous events and also requires predictable system be-
haviour for e�cient switching. It also introduces additional overhead as switching takes
place according to the current time and not if the current situation would really require it.
More information about time-triggered RCMS can be found in Sections 6.2 (Optimizing
HW/SW Co-Simulation based on Run-Time Model Switching) and 6.3 (Holistic Simulation
of FlexRay Networks by Using Run-Time Model Switching).

In adaptive RCMS, the current system behaviour acts as trigger source for switching.
The idea behind it is to perform a run-time analysis of the behaviour of de�ned signals
within the co-simulation. Depending on the analysis results, a switch to the most suitable
simulation model for a module is initiated. The run-time signal analysis is performed
by comparing the current signal behaviour to a set of criteria de�ned by the developer.
If a criterion matches during the analysis, a switch to the according simulation model
is initiated. This principle is shown in Fig. 3.4. The actual process of run-time signal
analysis is performed by using a sliding window. Hence, not only the current value but
also values from the past can be included within the analysis process. Within the current
implementation, the following signal analysis criteria are supported for adaptive RCMS.

3. Novel Methodology for Co-Simulation of Cross-Domain Automotive Systems 17

TIME

High

Medium

Low

Main Simulation Concurrent Simulation
(„Transition to Hot Standby“)Minimum/No Simulation

(„Warm/Cold Standby“)

Internal View

External View

TIME

Model
Behaviour

High Medium Low

Model
Accuracy

Model
Accuracy

Figure 3.3: Run-Time Co-Simulation Model Switching Synchronisation

• Arithmetic mean of the signal values within the sliding window

• Average frequency of signal value changes within the sliding window

• Average value change between two consecutive signal values within the sliding window

• Standard deviation within the sliding window

Another way for adaptive switching is to use an external analysis logic as a trigger source.
This may be required for triggers caused by very complex and system-speci�c conditions
which cannot be mapped to the criteria supported by the standard adaptive RCMS.
More information about adaptive RCMS can be found in Section 6.1 (Run-Time Co-
Simulation Model Switching for E�cient Analysis of Embedded Systems).

In order to assure correct continuous service delivery of a module during switching,
RCMS requires synchronisation between the di�erent simulation models of a module.
There are several ways of how the synchronisation of the upcoming model can be per-
formed. Typically, it is performed via concurrent simulation upon which the upcoming
simulation model is fed with the current data but without actually using its calculated
results (see Fig. 3.3, concurrent simulation time). This allows for a synchronisation of the
upcoming model so that switching can take place seamlessly. During this synchronisation
process, no data is exchanged between the current and the upcoming model. A trade-o�
exists between, on the one hand, setting the concurrent simulation time long enough in
order to allow for a proper model initialisation, and on the other hand, minimising concur-
rent simulation in order to reduce simulation time. To make the process of synchronisation
more clearly, a comparison to the area of redundancy can be made. The currently active
model is the main model. If, due to a switching request, the concurrent simulation phase
is about to start, the upcoming model is equal to cold standby (or in some cases warm

3. Novel Methodology for Co-Simulation of Cross-Domain Automotive Systems 18

Sim. Model N-C:
Language Z

Sim. Model N-B:
Language Y

Sim. Model N-A:
Language XSwitch

(Split)

Switch
(Merge)

Data IN

Data OUT

Model
Selection

Module N

Online Signal
Analysis & Switch

Control

Criteria

Figure 3.4: Run-Time Co-Simulation Model Switching

standby). The synchronisation process ensures that the upcoming simulation model gets
into hot standby by supplying it with the simulation data �ow for a certain amount of
time (concurrent simulation time). By doing so, seamless switching between current and
upcoming model can be performed. More in-depth information about the synchronisation
process during RCMS can be found in Section 6.2.

The actual execution of RCMS is performed by using SystemC-based switches. These
switches are responsible for splitting and merging the data �ow during RCMS. Fig. 3.4
demonstrates the switching principle for RCMS. The switches are controlled by a switch
control unit. The switch control unit is responsible for reacting to trigger sources ac-
cordingly and to perform the online signal analysis. Additionally, the switch control unit
handles the required actions for switching like start of synchronisation or con�guration of
the switches. More information about the RCMS implementation and execution can be
found in Sections 6.1 and 6.2.

A comprehensive overview of all aspects of RCMS can be found in Sections 6.1 - 6.4
(Verfahren zum Umschalten von heterogenen Simulationsmodellen zur Laufzeit).

Speci�cation of Automotive Cross-Domain System Analysis Goals

The speci�cation of the automotive cross-domain system analysis goals is essential to make
sure that the following steps develop in the right direction. For this step, there are no
parameters on how to perform it. It can be done by producing a simple text, but also by
using special description languages and tools. However, it is of great importance that at
least the following information is speci�ed exactly.

• What is the system to be analysed?

• What are the goals of the analysis?

• Are there special operations that have to be examined in detail?

• What are the requirements on the simulation process itself (e.g. high simulation
performance because of the long time interval of interest)?

3. Novel Methodology for Co-Simulation of Cross-Domain Automotive Systems 19

After these questions will have been answered in detail, the following steps will be much
easier to complete and the results of the methodology are greatly improved. Examples for
system analysis goals speci�cation are shown in Section 6.1.

Design and Implementation of Simulation Models

Based on the speci�ed system analysis goals, the initial design of simulation models is
performed. The simulation model developer speci�es how the simulation models should
look like, what their properties are and so on. For this, well-known standard tools and
methodologies can be used. This step can be seen as functionally linked to the step of de-
signing a RCMS con�guration (see later on) as there is a feedback-loop connecting them.
After �nishing the design of simulation models and RCMS con�guration, it is required
to perform the implementation of the simulation models according to the created design.
This is quite a straight-forward process as there are lots of well-known guidelines for this.
Hence, no special directions are given and it is up to the simulation model developer to
use any suitable technique for implementation.

Within Sections 6.5-6.7, the design and implementation of simulation models for a cross-
domain automotive system is shown by the example of the TEODACS project.

Design of a RCMS Con�guration

When using RCMS, there are several challenges to be met. One of the most important
challenges is the de�nition of a suitable RCMS con�guration for a given system analysis goal
with respect to the available simulation models. Especially in complex systems structured
in several subsystems, it is not an easy task to de�ne an adequate con�guration: There are
di�erent switching strategies possible (standard static co-simulation, time-triggered RCMS
and adaptive RCMS). The strategies can be mixed and have to be parameterised correctly
to produce the desired result quality. Additionally, it has to be assured that the simulation
models are able to ful�l the speci�ed system analysis goals and requirements.

To overcome these problems, a new methodology for the design of run-time co-simulation
model switching con�gurations with respect to given system analysis goals and require-
ments is proposed. Additionally, this methodology provides feedback for the design of
simulation models to enhance their capabilities if required (see Fig. 3.1). The main idea is
to apply adapted safety-analysis techniques like failure mode and e�ects analysis (FMEA),
subsystem hazard analysis (SSHA) and system hazard analysis (SHA) to the available sim-
ulation models and analysis requirements. Further on, these adapted techniques are called
switching-adapted FMEA (swFMEA), switching-adapted SSHA (swSSHA) and switching-
adapted SHA (swSHA). As the methodologies of FMEA, SSHA and SHA are adapted for
the design of a RCMS con�guration, also the according terms may have di�erent meanings.
A failure mode is a `risk' caused by a simulation model. A possible failure mode would
be for example `missing of disruptive e�ects compared to reality'. A hazard is de�ned as
the potential for harm, hence a switching con�guration not suitable for the desired system
analysis purpose. An example for such a hazard is a simulation performance way below the
required level or that important e�ects are not covered by the current simulation model(s)
in use.

3. Novel Methodology for Co-Simulation of Cross-Domain Automotive Systems 20

Automotive Cross-
Domain System
Analysis Goals

Run-Time
Co-Simulation

Model Switching
Configuration

RCMS Adapted SSHARCMS Adapted FMEA

Simulation Model
Feedback

OK Abort

RCMS Adapted SHA

Figure 3.5: Design of a Suitable RCMS Con�guration

The methodology supports the developer in �nding the most suitable RCMS con�gu-
ration for the speci�ed system analysis goals. If no suitable switching con�guration can
be found, information is given why the current analysis goals cannot be ful�lled. This
information can be used to adapt the simulation models. The main advantage of this new
methodology is that it provides a structured procedure to design the RCMS con�guration
based on well-known techniques. Additionally, the developer is able to reuse information
gathered during product FMEA for the swFMEA (e.g. clustering in subsystems and mod-
ules, system information, possible failure modes, use cases...).

Fig. 3.5 shows the proposed methodology for the design of RCMS con�gurations with
respect to given system analysis goals and requirements. It is structured into three main
steps. The �rst step is to execute the swFMEA. In this step, all simulation models are
analysed for the failure modes that they may introduce into the system if they are used
(e.g. `faulty simulation results compared to reality in case of using incorrect topology') and
how it can be dealt with these failure modes. This step is rather generic and if performed
once, the data can be reused for other system analysis goals. Additionally, data gathered
during a standard product FMEA can also be reused during the swFMEA, hence reducing
workload for the developer.

For each subsystem, the swSSHA has to be performed. The goal of the swSSHA is
to create an RCMS con�guration within the subsystem by identifying hazards caused by
simulation models and the possible model switching con�guration which would avoid the
achievement of the system analysis goals. If there are irresolvable hazards, feedback for
the design of simulation models is created.

The last important step is to execute the swSHA. It is applied to the overall system
and identi�es hazards that apply to more than a single subsystem and cannot be identi�ed
during the swSSHA. The main focus of the swSHA is, according to the possible hazards
at system level, to adapt the run-time switching con�guration derived during the swSSHA
and generate the �nal RCMS con�guration. Upon successful completion, a suitable RCMS

3. Novel Methodology for Co-Simulation of Cross-Domain Automotive Systems 21

con�guration for the speci�ed system analysis goals is created. If this step cannot be
completed, detailed feedback for the design of simulation models is provided by the list of
unresolved hazards. For performing swFMEA, swSSHA and swSHA, typical work sheets
as used in the industry have been adapted and extended. They are now tailored to the
speci�c requirements of the adapted techniques.

In-depth information about the methodology of designing a RCMS con�guration for given
system analysis goals, especially about the individual steps of swFMEA, swSSHA and
swSHA, is included in Section 6.1.

Cross-Domain Automotive Co-Simulation Integration

This step deals with the integration of the simulation models, simulation tools and the
developed co-simulation con�guration into a common co-simulation. Several co-simulation
environments are available in academia and industry. However, by default, none of them
supports RCMS. We decided to use the commercial co-simulation environment SyAD R© by
CISC Semiconductor and enhanced it to support RCMS. The co-simulation integration is
a tool-speci�c task; hence, no general guidelines are given. However, the developed RCMS
con�guration basically can be used within every co-simulation environment supporting
RCMS. As shown in Fig. 3.1, in case of detected problems, it is possible to go back within
the methodology and modify the co-simulation con�guration accordingly.

Sections 6.2, 6.5 and 6.6 contain information about how the cross-domain automotive
co-simulation integration is performed (RCMS, multiple domains). As example, the in-
tegration of a car simulator (focus mechanics) into the existing co-simulation framework
(focus microelectronics) is demonstrated.

Execution of Run-Time Co-Simulation Model Switching

Here, after the desired RCMS con�guration has been set up, the simulation models are
executed. The actual RCMS takes place within this step. In case the behaviour of the
simulation models and/or the overall co-simulation does not ful�l the expectations (be-
cause e.g. the developer made some mistakes during the previous steps or the simulation
performance has been overestimated), it is necessary to go back to the phase of design of
simulation models, perform the required adaptations and repeat the following steps.

Automotive Cross-Domain Co-Simulation Results

Within this step, the results gained during the execution of the co-simulation are analysed.
For this, again, there is no special direction on how to do it. It mainly depends on the out-
put and the result �les produced by the simulation models. In case of results not ful�lling
the speci�ed system analysis goals (e.g. important e�ects are missing), it is required to go
back to the �rst step of the methodology (see Fig. 3.1). There, the system analysis goals
have to be speci�ed more precisely. During the following steps, the data has to be changed
to �t the adapted system analysis goals.

In Sections 6.1 - 6.3, 6.5 and 6.6, the analysis of results gathered during a co-simulation of
cross-domain automotive systems is shown in detail.

Chapter 4

Methodology Evaluation and Case

Studies

To demonstrate the proposed RCMS-based methodology, it is applied within a co-simulation
of a FlexRay-based cross-domain automotive system (see Sections 6.5-6.7). This co-
simulation has been developed during the TEODACS project (see Section 1.2.1 for more
information). FlexRay is a time-triggered automotive communications protocol operating
at data rates up to 10 Mbit/s. Its reliability is highly dependent on the signal integrity.
The accurate modelling of the causative e�ects leads to extensive physical level simulation
times even for very short simulated times (e.g. several days or weeks of simulation time
for a simulated time of just a few milliseconds). The time window of interest at system
level can cover several minutes (typical automotive control applications), however accu-
rate physical models are required to analyse low-level e�ects and interferences. Because of
the wide range of requirements and the enormous complexity, co-simulation and especially
RCMS are required to handle this topic.

After presenting two examples, the accuracy of the simulation results achieved by using
RCMS is compared to the accuracy of the simulation without using RCMS. Finally, the
accuracy of the FlexRay simulation models compared to the reality is analysed.

4.1 Co-Simulation of FlexRay-based Cross-Domain Automo-
tive Systems

Two examples will demonstrate the RCMS-based methodology for the co-simulation of
cross-domain automotive systems. In the �rst example, a distributed application running
within a car is to be analysed for delays because of the placement of functionality on
di�erent ECUs. In the second example, the e�ects of FlexRay signal integrity are under
observation.

4.1.1 Example 1: Distributed Application Delay Analysis

Supported by standardised methodologies like AUTOSAR, distributed applications are
gaining more and more importance within cars. The functionality of the distributed ap-
plication is placed on di�erent ECUs according to factors like computational power, data

22

4. Methodology Evaluation and Case Studies 23

availability and even costs. However, due to this distribution, the impact of the communi-
cations architecture is not negligible anymore. For example, the resulting delay within the
distributed application is largely in�uenced by the architecture and con�guration of the
underlying communications network.

Speci�cation of System Analysis Goals Fig. 4.1 shows an example of a distributed
control application which is to be analysed by the RCMS-based methodology shown in
Fig. 3.1. The application uses AUTOSAR concepts and FlexRay as communication system.
It is embedded within a powertrain-focused simulation model of a complete car. For this
system, the following system analysis goals and requirements are speci�ed.

• Goal: analysis of the delay within an automotive distributed application (cause/e�ect,
placement of functionality within the network, sender/receiver) during critical situ-
ations (e.g. rapid change of application input data).

• Goal: analysis of the e�ects of di�erent FlexRay communication con�gurations on
the data transmission within the distributed application.

• Requirement: best possible simulation performance should be achieved as it will
be required to perform several simulations (time interval under observation: up to
several minutes of simulated time).

• Requirement: data transmission delay & quantisation within the distributed appli-
cation have to be modelled correctly during critical situations to allow for a realistic
analysis of the application behaviour.

Electronic
Control Unit 0

Central
Electronic

Control Unit

Application

Car

Aggregated
Sensor Data

Control Data

Sensor 1 Sensor x

Actuator

Application

Electronic
Control Unit 1

Application

Figure 4.1: Case Study: Automotive Data Transmission for Analysis of Delays within a
Distributed Application

After gathering information about the possible simulation models (e.g. several SystemC
and VHDL-AMS-based models for the components of a FlexRay network, SystemC-based
simulation of AUTOSAR concepts) and de�ning possible simulation tools (e.g. for the
realistic simulation of the car), the next step is to design the RCMS con�guration according
to the system analysis goals.

Design of RCMS Con�guration The design of the RCMS con�guration is executed as
shown in Fig. 3.5. As the system analysis goals have been already speci�ed, the swFMEA

4. Methodology Evaluation and Case Studies 24

is executed. For a module like the FlexRay cable, the resulting swFMEA for one simulation
model looks as follows:

• ID, Module: 3, FlexRay cable

• Simulation model : SystemC

• Simulation performance: very high

• Use case: transmission of a digitised representation of an analogue signal within a
correct topology

• Failure mode: faulty simulation results in comparison to reality in case of using
incorrect topology

• Cause of failure: only length-based delay and attenuation taken into account

• Low level e�ects: signal transmitted performed correctly even if it should be faulty

• Subsystem level e�ects: data transfer correct within a �awed FlexRay system

• Compensating actions: do not use within a network having a faulty topology

• Value range limitations: none

Next, for each subsystem, the swSSHA is performed to determine possible hazards
within the subsystem and to create a preliminary RCMS con�guration. Within this exam-
ple, the result for the module FlexRay communication controller is shown:

• Use case: execution of the logical FlexRay protocol for data transmission

• Requirements: high simulation performance, correct protocol execution, support of
di�erent communication con�gurations

• Hazards for subsystem: simulation performance too low

• Cause for hazard : internal high-frequency clock of the communication controller in
the SystemC model

• E�ects caused by hazard : only medium simulation performance

• Simulation model : SystemC

• Switching parameters: SystemC model for critical data (as de�ned by the applica-
tion), parameters: concurrent simulation, 30.0 ms concurrent simulation time, hys-
teresis 200.0 ms;

• Possible subsystem hazards: missing of any delay information for non-critical data can
make the distributed application work unexpected; internal clock of communication
controller always running even if no data is transmitted

• Recommended switching strategy : use SystemC only if critical data (as de�ned by
the application) is to be transmitted, otherwise switch to a simple �xed-delay model
for data transmission (not FlexRay-based)

4. Methodology Evaluation and Case Studies 25

• Open Hazards: none, if simple �xed-delay model is implemented and internal clock
of the communication controller can be halted

• Feedback to simulation model design: temporarily support halt of the high-frequency
clock of the controller (SystemC); create a simple �xed-delay transmission model for
data transmission of non-critical data

It can be seen that also feedback for the design of simulation models is created in this
example. A simple �xed-delay model for transmission would be required to ful�l the system
analysis speci�cation, but this model does not yet exist. Hence, it has to be implemented
so that the methodology can continue. This has been done during a second iteration, so
the methodology can continue for this example.

After there will be no more open hazards, the next step is the execution of the swSHA to
generate the �nal RCMS con�guration. For example, an entry within the swSHA database
looks as follows:

• Use case: data transfer between a distributed application within a car using AU-
TOSAR concepts and FlexRay

• Requirements: high simulation performance, accurate delay modelling

• Hazards for system: critical data transmitted via simple transmission model instead
of FlexRay model

• Cause for hazard : no classi�cation of critical data done yet

• E�ects caused by hazards: analysis of the behaviour of the distributed application
delivers wrong results

• Recommended adaptation to switching strategy : Implement analysis for critical ap-
plication data (engine torque). If engine torque changes rapidly (= critical data,
|∆torque| > 0.3 Nm per millisecond), switch to FlexRay model. During intervals of
low data variability (= non-critical data), switch to the simple �xed-delay transmis-
sion model.

• Open hazards: none

• Feedback to simulation model design: none

In the end, the following RCMS con�guration has been designed: The application is
simulated using a SystemC-based model implementing AUTOSAR concepts. The car is
simulated using a suitable car simulator integrated into the co-simulation environment.
For the transmission of data within the distributed application, adaptive RCMS is used. If
critical data is to be transmitted (rapid change in engine torque, |∆torque| > 0.3 Nm per
millisecond), a complete SystemC FlexRay model is used (controller, transceivers, cables).
For non-critical data (low variability in engine torque), a simple �xed-delay transmission
model is enough. The window size for the run-time signal analysis is of size 15 and updated
by a sample clock every millisecond. This RCMS con�guration allows for precise simulation
of delay and con�guration e�ects during critical areas of the simulation while at the same
time having a relatively good simulation performance. The de�nition of critical data is
done in a way to allow for a correct synchronisation of the upcoming model in time (slightly
lower thresholds as would be required by the application).

4. Methodology Evaluation and Case Studies 26

RCMS Integration and Execution After integration into a common co-simulation
and execution of the RCMS the results can be analysed. Compared to the standard static
approach, the RCMS simulation performance is about 4 times faster. This factor, however,
depends on the amount of critical data transmitted as adaptive RCMS is used. In Fig. 4.2,
the detected areas of critical data are shown during the �rst 15 seconds of simulation. The
`high-detail' signal set to 1 indicates that the FlexRay simulation models are used instead
of the simple delay-based simulation model. It can be clearly seen that no critical data is
detected during areas of low engine torque variability.

-50

 0

 50

 100

 150

 200

 250

 6 7 8 9 10 11 12 13 14 15

 0

 1

N
m

A
c
ti
v
e

Time (sec)

Engine Torque/High-Detail Areas

Torque
High-Detail

Figure 4.2: Adaptive Switching Criterion (Engine Torque) Mapped to Detected Critical
Areas

RCMS Results Analysis Based on the designed RCMS con�guration, it is now possible
to analyse the delay behaviour of the distributed application, ful�lling the speci�ed system
analysis goals. As the functionality of the application is placed on di�erent ECUs, it is
interesting what the resulting delay is compared to a non-distributed application placed on
a single ECU. The overall delay is mainly a�ected by the number of ECUs the application
is distributed over and the FlexRay communication con�guration used. As FlexRay is a
time-triggered communication system, its con�guration speci�es the transmission slots that
can be used by each FlexRay controller. By varying the number of slots used per FlexRay
controller and the position of the slots within a FlexRay cycle, the update behaviour of
the data transmitted can change drastically. This, of course, also massively impacts the
resulting overall delay of the distributed application. It is not a good solution to just
enlarge the number of slots used by a certain controller (and, in fact the ECU connected
to the controller) as the total number of available slots is limited. Hence, the possible
slots for other controllers connected to the network would be reduced, resulting in delay
penalties for the applications running on the according ECUs. In fact, a good compromise
for the FlexRay con�guration has to be found.

Within the developed RCMS setup, this analysis can be easily done during a reasonable
amount of time. As an example, Fig. 4.3 shows the resulting delay for a control signal sent
within the distributed application. The sensor data is collected by ECU0, aggregated and
sent via the FlexRay network to another part of the distributed application running on the

4. Methodology Evaluation and Case Studies 27

 0

 1

 2

 3

 4

 5

 7.525 7.53 7.535 7.54 7.545 7.55 7.555

F
u
n
c
ti
o
n

Control Signal: Delay Variations Area 1

Ideal
CFG1
CFG2
CFG3
CFG4

 0

 1

 2

 3

 4

 5

 11.725 11.73 11.735 11.74 11.745 11.75 11.755

F
u
n
c
ti
o
n

Control Signal: Delay Variations Area 2

Ideal
CFG1
CFG2
CFG3
CFG4

 0

 1

 2

 3

 4

 5

 12.72 12.725 12.73 12.735 12.74 12.745 12.75

F
u
n
c
ti
o
n

Time (sec)

Control Signal: Delay Variations Area 3

Ideal
CFG1
CFG2
CFG3
CFG4

Figure 4.3: Control Signal Delay for Di�erent FlexRay Con�gurations

central ECU. There, the incoming data is analysed, and for certain conditions, a control
signal is generated and sent to ECU1 via FlexRay. The ideal control signal shown in Fig. 4.3
is created by a non-distributed application running completely on ECU0. It is compared to
the control signal generated by the distributed application where data is transmitted using
FlexRay with di�erent communication con�gurations. This is done for three di�erent areas
during the simulation. All of these areas are within the speci�ed critical regions (rapid
change in engine torque), as the control signal is only triggered during these areas. It can
be seen that, generally spoken, with FlexRay con�guration 4, the application shows the
best delay behaviour. It can also be seen that the absolute value of the delay between the
ideal signal and the di�erent FlexRay con�gurations is not constant. While in area 2, the
delay of FlexRay con�guration 4 is by far shorter than the delay of the other con�gurations,
the delay di�erence is not that extreme in areas 1 and 3. This is because of the di�erent
update behaviour and slot allocations within the FlexRay cycle of the four con�gurations.
Hence, in certain situations, a speci�c FlexRay con�guration may lead to low delay, while
in other situations (data available only some moments later), the same con�guration may
cause a much larger delay within the distributed application.

4. Methodology Evaluation and Case Studies 28

Cycle Duration
VHDL-AMS SystemC

Frame n

......

Frame n+1

VHDL-AMS SystemC

Figure 4.4: Time-Triggered Switching within a FlexRay Frame

4.1.2 Example 2: Analysis of FlexRay Signal Integrity E�ects

The second example deals with application behaviour for a borderline FlexRay topology.
The reliability of FlexRay is highly dependent on the signal integrity during data transmis-
sion. Hence, it would be interesting to have a closer look at the in�uence of signal integrity
e�ects on the behaviour of a distributed application, for example, the investigation of ef-
fects occurring at EPL on higher layers like data link layer (e.g. shortening/lengthening
of bits, misinterpretations because of low signal integrity) and application (e.g. missing
data because of frame corruption, problems due to start-up/synchronisation errors etc.).
As stated during the �rst experiment, several simulation models for the di�erent FlexRay
components are available, featuring di�erent levels of accuracy and implemented using dif-
ferent modelling languages like SystemC and VHDL-AMS. Again, by applying the RCMS
analysis and design methodology, a suitable RCMS con�guration should be created to allow
for an analysis with respect to the speci�ed system analysis goals and requirements.

Speci�cation of System Analysis Goals For this example, the following system anal-
ysis goals and requirements are speci�ed.

• Goal: analysis of the behaviour of a distributed application for a borderline FlexRay
topology

• Goal: analysis of the e�ects of signal integrity problems (e.g. re�ections) on the
application and the network behaviour

• Requirement: simulation performance has to be acceptable (no extremely low simu-
lation performance) because the time interval of interest can be up to several seconds

RCMS Con�guration Design, Integration and Execution Again, the methodology
shown in Fig. 3.1 is used. For this example, adaptive RCMS would lead to nearly no
improvement of the co-simulation performance. However, as FlexRay is a time-triggered
communication system, time-triggered RCMS can be used. There are pre-de�ned points
for which the state of the system is completely known. Hence, it is the most advantageous
solution to select the switching points accordingly with the concurrent simulation time
large enough to allow proper initialisation of the simulation model to be switched to.

It was derived that most of the time, the fast but less detailed SystemC model for
topology and transceivers should be used. However, in every frame, the header (6µs)
should be transmitted via the more detailed but slow VHDL-AMS simulation models for
cable and transceivers (concurrent simulation time = 2µs). This is shown in Fig. 4.4. The
signal integrity is extremely unlikely to change within the duration of a FlexRay frame

4. Methodology Evaluation and Case Studies 29

SW ITCH
0

SW ITCH
2

Communication
Controller 2
(SystemC)

Application

Communication
Controller 1
(SystemC)

Application

SW ITCH
1

SW ITCH
4

Transceiver
(VHDL-AMS)

Transceiver
(VHDL-AMS)

Transceiver
(VHDL-AMS)

1: VHDL-AMS
Topology Model

2.0m
0.4m

1.0m2.0mCommunication
Controller 0
(SystemC)

Application

Communication
Controller 4
(SystemC)

Application

Communication
Controller 3
(SystemC)

Application

SW ITCH
3

Transceiver
(VHDL-AMS)

0.5m
7.0m

T

T … FlexRay Termination

Transceiver
(SystemC)

Transceiver
(SystemC)

Transceiver
(SystemC)

2.0m
0.4m

1.0m2.0m

Transceiver
(SystemC)

0.5m
7.0m

2.0m

Transceiver
(SystemC)

2.0m
T

Transceiver
(VHDL-AMS)

1.0m … Cable Segment Length

2: SystemC
Topology Model

T T

ECU 0

ECU 2

ECU 4

ECU 1 ECU 3

Figure 4.5: Co-Simulation Setup for FlexRay Signal Integrity E�ects Analysis

VHDL-AMS Switched SystemC

Seconds 88012 31757 307

Factor 287 104 1

Table 4.1: Example Simulation Time Comparison for one FlexRay Cycle with 12 Frames

(26µs). For the analysis of signal integrity e�ects, mainly the header of a FlexRay frame
is relevant, as all protocol-relevant is contained within the header. All other parts of the
network (FlexRay controller, AUTOSAR-based distributed application...) are simulated
using SystemC without switching. Hence, the con�guration is able to ful�l the speci�ed
system analysis goals.

The �nal experimental setup is shown in Fig. 4.5. The network consists of 5 ECUs
connected via a FlexRay network. A distributed application runs on these ECUs using
AUTOSAR concepts. Within this network, ECU3 uses a long cable which is, against
the FlexRay speci�cation, not equipped with the required termination. This may lead to
disruptive re�ections which in�uence the signal integrity.

To get the simulation performance improvement by using RCMS instead of standard co-
simulation, experiments with using the high-detailed VHDL-AMS models throughout the
complete simulation were performed additionally. Another simulation run included only

4. Methodology Evaluation and Case Studies 30

Node 3 - codec: BSS_ERROR!
Time: 285747500 ns

Node 2 - WARNING CODEC CHANNEL A: HEADER CRC FAILED!
Time: 285751650 ns

Node 1 - WARNING CODEC CHANNEL A: HEADER CRC FAILED!
Time: 285751662500 ps

Node 0 - WARNING CODEC CHANNEL A: HEADER CRC FAILED!
Time: 285751675 ns

Figure 4.6: Communication Controller Error Detection Output Excerpt

SystemC models, without switching to the VHDL-AMS models for the FlexRay header.
Table 4.1 shows a comparison of the results. While SystemC-only simulation is clearly the
fastest, it features no details required for the analysis of the signal integrity e�ects on the
distributed application. Hence, it is fast but does not attain the speci�ed system analysis
goals. By contrast, the VHDL-AMS only con�guration has all the required details but at
the cost of an extremely low simulation performance. Compared to the VHDL-AMS only
con�guration, the RCMS con�guration simulating only the header by using VHDL-AMS
is about three times faster. The e�ects on the behaviour of the FlexRay network and the
distributed application are the same. Hence, the designed RCMS con�guration presents
an acceptable solution for the speci�ed system analysis goals and requirements.

RCMS Results Analysis The executed RCMS demonstrated that, depending on the
transmitting ECU, di�erent ECUs have problems in receiving correct frames. For example,
the data sent by ECU 2 can be received without any problems by ECUs 0, 1 and 4, while
ECU 3 reports a header error check failure. However, if ECU 1 transmits, the ECUs 0,
2 and 3 receive the data correctly, ECU 4 reports an error in the frame header. These
e�ects lead to reception asymmetry that can transfer the system into inconsistent states
and should thus be avoided.

In Fig. 4.7, it can be seen that for a frame transmitted by ECU 4 (TxD4), ECU 3
using the VHDL-AMS model is not able to receive any meaningful data on RxD3 because
of re�ections etc. Hence, the communication controller very early reports an error that it
is not able to �nd a byte start sequence (BSS), see Fig. 4.6. The problems can easily be
detected by looking at the resulting di�erential voltage waveform at ECU 3. It is far from
any meaningful state. In Fig. 4.7, the SystemC topology model starts concurrent simulation
at around 285.749ms before switching at 285.751ms. During concurrent simulation, the
output of the SystemC model is not used. It can be seen that the SystemC model does not
show any distortion (because it only includes length-based delay and attenuation). Hence,
no error would be detected by using the SystemC model all the time. The situation is a
bit di�erent for ECUs 0, 1 and 2. In fact, using the VHDL-AMS model, they are able to
receive the header data (transmitted by ECU 4) correctly most of the time. But at around
285.750ms, one bit-sequence becomes altered by a re�ection. The high bit-sequence is
shortened, and the following low bit-sequence is stretched, leading to a header checksum
error detected by the controllers, see Fig. 4.6. By looking at the SystemC data, it is obvious
that this error does not happen there. These errors de�nitely in�uence the application as,

4. Methodology Evaluation and Case Studies 31

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o

lt
a

g
e
 N

o
d

e
 4

 (
V

)

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o
lt
a

g
e

 N
o
d

e
 0

 (
V

)
-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o
lt
a

g
e

 N
o
d

e
 1

 (
V

)

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o
lt
a
g
e
 N

o
d
e
 2

 (
V

)

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o
lt
a
g
e
 N

o
d
e
 3

 (
V

)

Time (ms)

 285.747 285.748 285.749 285.75 285.751

T
x
D

4

 285.747 285.748 285.749 285.75 285.751

R
x
D

0

VHDL-AMS
SystemC

 285.747 285.748 285.749 285.75 285.751

R
x
D

1

VHDL-AMS
SystemC

 285.747 285.748 285.749 285.75 285.751

R
x
D

2

VHDL-AMS
SystemC

 285.747 285.748 285.749 285.75 285.751

R
x
D

3

Time (ms)

VHDL-AMS
SystemC

Figure 4.7: TxD/RxD Excerpt of a Switched FlexRay Frame

depending on the sender ECU, an ECU may or may not receive frames correctly. At the
worst, the FlexRay network may lose its synchronization and be split apart in di�erent
clusters of ECUs that are not able to communicate with each other (cliques). The RCMS
detected all of the higher-level errors as shown in Fig. 4.6 which were also detected during
the full VHDL-AMS only simulation run. The proposed RCMS con�guration was correct,
achieving the system analysis goals while improving simulation performance in comparison
to the non-switched approach.

4.2 Validation of RCMS Accuracy

An important topic when using the RCMS methodology is the accuracy of the results.
In Fig. 4.8, some bits of a FlexRay frame are shown. The frame was transmitted over
the line by using the low level VHDL-AMS model during the whole co-simulation. It is
compared to the same bits of the same frame but now, only this frame was transmitted via
the VHDL-AMS models. For the rest of the simulated time, the high-level SystemC model

4. Methodology Evaluation and Case Studies 32

was used for frame transmission. It can be seen that both results are nearly identical, only
showing some minor di�erences. Since the same models were used, the good correlation
shows that the simulation model initialisation during RCMS was performed correctly. The
di�erences have no e�ect on the higher levels of the FlexRay system as they are negligibly
small. However, the use of the more accurate model is justi�ed since its behaviour a�ects
the higher levels (e.g. deformed and shortened bits) and cannot be simulated by using
SystemC.

0.22041 0.2204102 0.2204104 0.2204106 0.2204108 0.220411

−1

−0.5

0

0.5

1

Time [sec]

V
ol

ta
ge

 [V
]

Switched SystemC/VHDL−AMS Signal
Pure VHDL−AMS Signal

Figure 4.8: VHDL-AMS Simulation vs. Synchronised SystemC/VHDL-AMS RCMS

The following calculations were done by exporting the simulated waveforms from the
VHDL-AMS simulator (Mentor AdvanceMS) as comma-separated-value �les (n samples
with a sample time of 0.5ns) and importing them into MATLAB. The arithmetic mean x
of a number of samples is calculated as

x =
1

n

n∑

i=1

xi

and the standard deviation sx is

sx =

√√√√ 1

n− 1

n∑

i=1

(xi − x)2

For the di�erence (zi = xi − yi) between the pure (x) and the switched (y) waveform, the
arithmetic mean and the standard deviation during the switched frame are

z = −1.528 ∗ 10−4V, sz = 3.08 ∗ 10−2V

4. Methodology Evaluation and Case Studies 33

The Pearson product-moment correlation coe�cient (also sample correlation coe�cient)
between the pure VHDL-AMS waveform and the switched VHDL-AMS waveform is cal-
culated as

rxy =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2

The sample correlation coe�cient is

rxy = 0.9992

during the switched FlexRay frame (a factor of 1.0 means perfect correlation). It can be
seen that the pure and the switched waveform do �t in a very good way.

4.3 Validation of FlexRay Simulation Model Accuracy

To determine the accuracy of the developed FlexRay simulation models compared to the
reality, simulation results produced within the TEODACS FlexRayXpert.Sim framework
were compared with measurements performed within the FlexRayXpert.Lab environment.
Within several test campaigns based on a two-level space exploration, di�erent FlexRay
topologies were evaluated with respect to termination-related issues and re�ections in both
reality and simulation.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0.2866 0.2868 0.287 0.2872 0.2874 0.2876 0.2878

V
o
lt
a
g
e
 [
V

]

Time (ms)

Topology 4 simulation and hardware output

Measurement
Simulation

Figure 4.9: Comparison of Measurement and Simulation Waveforms

In Fig. 4.9, a sample result for the comparison of measurement and simulation is shown.
Throughout the experiments, a good correlation between simulated and measured wave-
forms was achieved. The sample correlation coe�cient was usually above 0.98, thus showing
a good �tting between simulation and hardware measurement.

Section 6.7 presents the performed validation of the FlexRay simulation model accuracy
in detail.

4. Methodology Evaluation and Case Studies 34

4.4 Summary

The RCMS-based methodology was applied to two automotive cross-domain examples:
delay analysis within a distributed application and the analysis of FlexRay signal integrity
e�ects on higher levels of the network. For speci�ed system analysis goals, a suitable
RCMS con�guration ful�lling these goals was designed and executed, and the results were
analysed. It was demonstrated that RCMS can be used for the e�cient co-simulation of
cross-domain automotive systems. By allowing the system developer to de�ne a compro-
mise between results accuracy and co-simulation performance, it is a useful methodology
to bring together the di�erent requirements of the various domains involved within the
co-simulation. Additionally, the accuracy of the RCMS-based methodology in compari-
son to standard simulation was validated, showing nearly identical results, while at the
same time, the simulation performance was strongly enhanced. Furthermore, the results
gained during the simulation were compared with to according measurements within a real
hardware setup, showing very good correlation between simulation and reality.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Driven by the strong demand for holistic simulation of automotive systems, this work
focuses on the co-simulation of cross-domain automotive systems. For this, standard co-
simulation is enhanced by the new methodology of RCMS. In RCMS, the simulation models
used for a module can be changed during the execution of the co-simulation. The change
of a simulation model can be triggered either by time (time-triggered RCMS) or by an
online signal behaviour analysis according to de�ned criteria (adaptive RCMS). RCMS
introduces dynamic into co-simulation, allowing to e�ciently introducing di�erent domains
and simulation models with very di�erent time constants into a single co-simulation. This
enhanced co-simulation methodology provides the system developer with a new degree of
freedom in simulating automotive systems. By using RCMS, the system developer gains
an enormous amount of �exibility compared to standard static co-simulation, while at the
same time improving co-simulation performance, cross-domain interaction and analysis
possibilities.

Based on RCMS, this work presents a new methodology for the co-simulation of cross-
domain automotive systems. The goal of this methodology is to attain simulation results
according to speci�ed system analysis goals in an e�cient way. For this, system analysis
goals are speci�ed and simulation models are designed. During the next step, a suitable
RCMS con�guration for ful�lling the speci�ed system analysis goals is created. For this,
techniques from the area of safety analysis (FMEA, SSHA, SHA) were adapted to suit
the purpose of RCMS con�guration design. In this step, a trade-o� between co-simulation
performance and required simulation accuracy is developed. Additionally, detailed feed-
back for the design of simulation models is created if the speci�ed system analysis goals
cannot be ful�lled by using the existing simulation models. After the implementation of
the simulation models, cross-domain co-simulation integration is performed. Within this
step, the designed RCMS con�guration is created within the RCMS-enabled co-simulation
framework by using the simulation models. After the execution of the integrated RCMS
con�guration, the results can be analysed.

The bene�ts of this work are as follows. A �exible co-simulation methodology for the
e�cient co-simulation of cross-domain automotive systems is developed. It is based on

35

5. Conclusion and Future Work 36

the idea of run-time co-simulation model switching. By exchanging the simulation mod-
els used during run-time of the co-simulation, it is possible to achieve high co-simulation
performance, while at the same time having the necessary result details when required.
For this, time-triggered and adaptive RCMS are speci�ed in detail. RCMS allows for the
e�cient integration of multiple domains with very di�erent time constants into a single
co-simulation. By using the RCMS-based co-simulation methodology, based on speci�ed
system analysis goals, suitable simulation models and a suitable RCMS con�guration al-
lowing to ful�l the speci�ed goals can be designed.

The developed methodology was evaluated within a comprehensive case study. In this
case study, a cross-domain automotive co-simulation for the analysis of dependable au-
tomotive communication networks was created (TEODACS FlexRayXpert.Sim). By two
di�erent examples, it was demonstrated that by using the RCMS-based methodology for
the co-simulation of cross-domain automotive systems, the required level of detail of the
co-simulation results could be achieved, while at the same time the co-simulation per-
formance compared to standard co-simulation was strongly enhanced. Additionally, the
results gained by using RCMS were compared to results gained by using standard co-
simulation. Both results were nearly identical, hence showing the e�ectiveness of RCMS.
Furthermore, a comparison between simulation results and measurements within a real
hardware setup demonstrated the high accuracy of the developed FlexRayXpert.Sim frame-
work for the co-simulation of cross-domain automotive systems.

5.2 Future Work

Currently, the number of useful (and sometimes also useless) new functionalities, new driver
assistance systems and more that are introduced into a new car generation are enormous.
As these systems are often seen as unique selling points by the car manufacturers, this
trend will continue in the future. A special issue with such high numbers of interacting
systems is their compatibility. How can be guaranteed that the systems do not in�uence
each other in an undesired way? Due to the nearly endless number of possible system
combinations, simple testing cannot be the answer. This is a question that also cannot
be answered by simulation only. While there are already e�orts to handle this problem,
still a lot of work will be required to receive a feasible answer for this problem. An ad-
ditional challenge is the introduction of more and more safety critical systems into cars,
for example due to the progressive trend to perform functionality by wire instead of the
traditional way but also due to the integration of driver assistance systems as mentioned
before. This requires to use more formal methods for the development of automotive sys-
tems, which, however, means an additional layer of complexity in the development process.

Middleware for distributed automotive software like AUTOSAR and dependable commu-
nication networks like FlexRay are key components for future cars. However, for example,
the AUTOSAR development process is extremely complex to handle. While there are al-
ready lots of supporting AUTOSAR tools and simulation solutions, still huge e�ort will be
required to make the development of distributed applications by using AUTOSAR more
intuitive. And the same amounts for FlexRay with its enormous number of possible con-

5. Conclusion and Future Work 37

�gurations. Additionally, also fast, dependable communication networks like FlexRay will
sooner or later reach their limits as the amount of data to be transferred grows by the
number of ECUs and functionalities distributed throughout the car. As a result, already
the application of dependable networks with more bandwidth, like time-triggered Ethernet
with a data rate of up to 1Gbit/s, is investigated. However, with the rising data rate, again
the complexity of the deployment and con�guration grows. As a result, new techniques for
handling this challenge will be required.

Within this work, run-time co-simulation model switching is especially used for the co-
simulation of cross-domain automotive systems. However, system complexity and cross-
domain interaction are rising not only in the automotive area, but also throughout a various
number of other areas (e.g. development of embedded systems in general, System-on-Chips
(SoCs)...). As a result, within these areas a strong demand for holistic co-simulation of
the complete system exists as well. By applying the developed RCMS-based methodology,
it could be possible to ful�l these demands. Due to an enhanced possibility of �rst-time-
right by providing an e�cient co-simulation of the complete system at the required level
of detail, this could lead to cost reduction during development and faster time to market,
which is crucial for systems of all kinds to be competitive.

A promising approach for future development of RCMS is the integration of hard-
ware into the RCMS-based co-simulation. Within the TEODACS project, it was barely
scratched on the surface of what is possible by the combination of RCMS and hardware. For
example, the development of test strategies for various kinds of systems could be massively
enhanced with the integration of hardware-simulation-interaction based on RCMS.

Chapter 6

Publications

This chapter contains publications by the author of this thesis which explain the approach
presented in Chapter 3 and the case studies presented in Chapter 4 in greater detail. The
following publications are included within this chapter:

Publication 1: Run-Time Co-Simulation Model Switching for E�cient Analysis of Em-
bedded Systems, International Journal of Embedded Systems, submitted for publication

Publication 2: Optimizing HW/SW Co-Simulation based on Run-Time Model Switching,
2009 Forum on Speci�cation and Design Languages, FDL '09, Sophia Antipolis, France,
22�24 September 2009

Publication 3: Holistic Simulation of FlexRay Networks by Using Run-Time Model
Switching, 2010 Design, Automation & Test in Europe Conference & Exhibition, DATE
'10, Dresden, Germany, 8�12 March 2010

Publication 4: Verfahren zum Umschalten von heterogenen Simulationsmodellen zur
Laufzeit, Patent Application AT 1479/2009, EP 2 299 376, Austrian Patent O�ce, 2009,
European Patent O�ce, 2010

Publication 5: A Cross-Domain Co-Simulation Platform for the E�cient Analysis of
Mechatronic Systems, SAE World Congress 2010, SAE '10, Detroit, USA, 12�15 April 2010

Publication 6: Heterogeneous Co-Simulation Platform for the E�cient Analysis of FlexRay-
based Automotive Distributed Embedded Systems, 8th IEEE International Workshop on
Factory Communication Systems, WFCS '10, Nancy, France, 18�21 May 2010

Publication 7: Exploration of the FlexRay Signal Integrity using a Combined Prototyping
and Simulation Approach, 13th IEEE International Symposium on Design and Diagnostics
of Electronic Circuits and Systems, DDECS '10, Vienna, Austria, 14�16 April 2010

38

6. Publications 39

In Fig. 6.1, the mapping between the individual publications and the proposed RCMS-
based methodology for the co-simulation of cross-domain automotive systems is shown.
For speci�ed system analysis goals, this RCMS-based methodology allows the design and
implementation of suitable simulation models for obtaining the required accuracy of the
results, while at the same time optimising co-simulation performance by using RCMS.

Specification of
Automotive

Cross-Domain
System Analysis Goals

Design of
Simulation Models

Design of
Run-Time Co-Simulation

Model Switching
Configuration

Execution of Run-Time
Co-Simulation Model

Switching

Automotive
Cross-Domain

Co-Simulation Results

Implementation of
Simulation Models

Cross-Domain
Automotive

Co-Simulation
Integration

Publication
1

Publication
1

Publications
5 – 7

Publication
1

Publications
5 - 7

Publications
2, 3, 5, 6

Publications
2 - 4

Publications
2, 5, 6

Figure 6.1: Co-Simulation of Cross-Domain Automotive Systems

The methodology as shown in Fig. 6.1 consists of several steps. A comprehensive overview
is given in Publication 1. In the �rst step, the automotive cross-domain system analysis
goals have to be speci�ed. This is required to make sure that within the following steps,
suitable simulation models and RCMS con�guration are developed. Examples for this are
included in Publication 1. Next, the initial design of simulation models based on the spec-
i�ed system analysis goals has to take place. This is shown in Publications 5 to 7. This
step is closely linked to the design of a suitable RCMS con�guration, which is described in
Publication 1. Both steps are connected via a feedback loop, hence, simulation model de-
�ciencies can be corrected. The next step is the implementation of the simulation models.
For a cross-domain automotive system, this is shown in Publications 5 to 7. The integra-
tion of simulation models, RCMS con�guration and simulation tools into a cross-domain
automotive co-simulation is done during the following step. Details are provided in Publi-
cations 2, 5 and 6. The actual RCMS takes place within the next step, when the developed
automotive cross-domain co-simulation is executed. More information about the RCMS
fundamentals and the cross-domain co-simulation execution is included in Publications 2
to 4. Last but not least, the obtained automotive cross-domain co-simulation results ac-
cording to the initially speci�ed system analysis goals can be analysed. This is shown in
Publications 2, 3, 5 and 6.

Run-Time Co-Simulation Model Switching
for Efficient Analysis of Embedded Systems

Michael Karner, Christian Steger, Reinhold Weiss
Institute for Technical Informatics

Graz University of Technology
Graz, Austria

{michael.karner,steger,rweiss}@tugraz.at

Eric Armengaud
The Virtual Vehicle Competence Center

Graz, Austria
eric.armengaud@v2c2.at

Abstract

Simulation is widely used for the early validation and evaluation of embedded systems. In case of complex systems
consisting of highly heterogeneous components, a trade-off occurs between the simulation accuracy and time interval
under observation. In this work, we propose a new approach for run-time co-simulation model switching in order to
enable the test engineer to define the simulation intervals of high accuracy and the intervals of high performance. We
further propose a framework for the systematic decision of the component models to be used according to the goals
and current status of the simulation. The proposed approach is illustrated by the simulation of automotive distributed
embedded systems.

Keywords
Co-simulation; run-time switching; co-design; failure mode and effects analysis; FlexRay; automotive; adaptive

switching; time-triggered systems.

1 Introduction

Simulation enables the execution of the system being developed in a simplified (fully controllable and observable)
environment. It enables developers to integrate and validate their development before the entire system is available,
thus finding and correcting potential errors earlier in the development process and consequently saving costs. This early
execution further enables the evaluation of the system and supports early design decisions before the system exists, thus
saving costly re-design (first time right).

In the case of embedded systems, the system consists of different, heterogeneous components such as analog and digital
hardware (sensors, microcontrollers) and software (middleware, application). The simulation of such heterogeneous
systems presents a strong challenge in order to combine all the components in a single environment. The challenges result
from the different simulation languages and tools required to model the different components, as well as from the different
simulation scopes of the components. Hence, low-level components (e.g. analog sensors) have high dynamics and require
simulation resolution below the picoseconds. High level components such as application software, on the contrary, require
a long execution time (several seconds, minutes, hours) for efficient validation. It is evident that simulating complex
systems for several seconds with a simulation accuracy below the picoseconds is not practicable.

Co-simulation (Yoo and Jerraya (2005)) is an approach to combine different simulation tools within a single frame-
work, thus enabling the concurrent simulation of heterogeneous components within the same environment. However,
the overall simulation performance depends on the slowest simulator involved, slowing down the other simulators to
guarantee synchronization. The challenge here is to reduce the simulation time (thus increasing computation speed of
the simulation) while extending the simulated time (time interval under observation within the simulation). To that aim,
methods for trading the accuracy against the computation speed for a given component within a given modelling language
exist (e.g. Hines and Borriello (1997a), Claes and Holvoet (2009)).

The aim of this paper is to present a framework enabling the exchange of a component model during simulation
execution. The motivation is to provide the test engineer the possibility to switch between different models of the same
component (e.g. high-speed and low accuracy against low-speed and highly accurate) in order to reduce the simulation

Publication 1: International Journal of Embedded Systems (submitted for publication) 40

time while keeping the required simulation accuracy for the time interval of interests. This paper presents two main
contributions. First, the approach of run-time co-simulation model switching (RCMS) is presented. The proposed method
enables switching of the simulation models during run-time without limitation regarding the simulation language. Second,
a framework for systematic analysis of simulation models and generation of an adequate RCMS configuration is provided.
With this methodology, the task of getting the most suitable co-simulation configuration for a given system analysis goal
is solved by applying safety-analysis based strategies.

The document is structured as follows. In Section 2 an overview about the related work is provided. The generic
approach for run-time co-simulation model switching is described in Section 3. Section 4 describes the framework for
RCMS analysis and configuration. The application of this methodology within case studies is illustrated in Section 5.
Finally, Section 6 concludes this document.

2 Related Work

For the design and simulation of embedded systems, co-simulation is a common methodology used throughout the
community. Several co-simulation frameworks have been proposed to allow the coupling of different development lan-
guages and abstraction levels. Bouchhima et al. (2006) propose a co-simulation framework that enables the coupling of
SystemC and Simulink models, thus connecting the worlds of continuous and discrete-event simulation. In another work
(Birrer and Hartong (2005)) the authors deal with the integration of SystemC models into a Verilog-A simulation to bridge
the gap between system level description and hardware implementation. An example for a commercially available co-
simulation framework is CISC SyAD (CISC Semiconductor Design+Consulting GmbH (2011)). This framework features
the coupling of several simulators from both discrete-event and continuous time simulation.

Also the idea of run-time simulation model switching has been topic of some research. Existing work mainly deals
with the dynamic switching within models developed in the same modelling language and not with run-time co-simulation
model switching as discussed in this paper. In Hines and Borriello (1997b) and Hines and Borriello (1997a), the authors
present their approach for the usage of dynamic communication models by presenting a tool named Pia. It allows the
designer to specify communication between components at multiple levels of detail. The designer has to use the Pia
language proposed by the authors to describe the necessary interfaces and components for the various abstraction levels.
Run-time simulation model switching is also proposed by Yoo and Jerraya (2005). They suggest to dynamically switch
between several abstraction levels of a processor simulation. However, no results are available and the authors only suggest
dynamic simulation model switching as a possible way to improve co-simulation performance. Other authors deal with
run-time simulation model switching of different transaction level models (TLM). In Salimi Khaligh and Radetzki (2010)
and Salimi Khaligh and Radetzki (2009), the authors present a SystemC based solution for switching between different
TLM abstraction layers during simulation. The approach adapts the simulation accuracy automatically depending on the
state of the model. A similar approach is presented in Beltrame et al. (2007). They extend SystemC TLM to support multi-
accuracy models with the possibility to switch between different model accuracies at run-time. Additional works deal with
accuracy adaptive model switching, see for example Claes and Holvoet (2009), Rao and Wilsey (2006). However, within
these papers adaptive switching is based on simple criteria (e.g. model is producing no more results) and focused to a
very special use case. Additionally, it is only switched within the same modelling language or tool.

The topic of run-time co-simulation model switching has been previously demonstrated in Karner et al. (2009), Karner
et al. (2010a). However, there the core issue is the approach of time-triggered run-time co-simulation model switching.
The more general adaptive run-time co-simulation model switching and the extension for the design of a suitable run-time
co-simulation model switching configuration presented within this paper are not dealt with.

Within the area of co-simulation, the topic of getting a suitable co-simulation configuration for a given system analysis
goal is often neglected. This is the case because if no run-time co-simulation model switching is used, the possible
number of configurations reduces drastically. However, this comes with the price of reducing co-simulation efficiency.
There are selected papers dealing with this problem. For example, in Claes and Holvoet (2009) the authors describe
how they selected the parameters for the run-time simulation model switching. Their approach is very specific for the
selected example and it cannot be applied in a generic way. Fummi et al. (2004) gives another example of deriving
a possible configuration for co-simulation. There, the authors describe a two-phase partitioning process followed by
several refinement steps to find a suitable setup for the simulation of a networked embedded system. For the individual
components of the simulation model, it is decided if they should be modelled using SystemC, NS/2 or an instruction set
simulator. However, this approach is relatively tailored to networked embedded systems.

It can be seen that there exist several stand-alone solution for specific problems. However, no holistic methodology
is available covering all relevant aspects regarding the efficient application of run-time co-simulation model switching.
Especially missing are (1) a generic approach for run-time co-simulation model switching and (2) a framework for the
identification and design of run-time co-simulation model switching.

Publication 1: International Journal of Embedded Systems (submitted for publication) 41

3 A Generic Approach for Run-Time
Co-Simulation Model Switching

Co-simulation is a well known step during the development of embedded systems. The simulation of a system by
using different hardware description languages (HDL) and multiple abstraction levels within a single co-simulation is of
great help for system designers and developers. However, standard co-simulation is defined statically. The simulation
models used are fixed throughout the co-simulation. This leads to the problem that, especially when performing a co-
simulation with simulation models having very different typical simulated times and simulation performance, the overall
co-simulation performance can get really poor or the results are missing required details. As possible answer to this
problem, run-time co-simulation model switching (RCMS) can be used. In the following section a generic approach for
RCMS is presented.

3.1 Run-Time Co-Simulation Model Switching Overview
The idea behind RCMS is to change at run-time the simulation models that are used for a specific part of the co-

simulation. This allows to speed up the co-simulation while at the same time providing high accuracy when required. It
provides the developer with a new degree of freedom for defining for each module the intervals for which a computational
expensive high-detail simulation model is required and when a simpler and faster model suffices (”shifting of complexity”,
see Fig. 1). This method can be compared with an oscilloscope having the capability to zoom into significant parts of the
simulation, while performing a fast (less accurate) run for the less interesting part of the simulation.

Figure 1. Shifting of Complexity

M odel
Accuracy Low:

Selected
Effects

Sim ulation
Speed

100%
High Level

100%
Low Level

Run-Tim e
Switched

High:
Multitude of

Effects

Slow FastDynam ically
Adaptable

...

...
Z %Y %

Co-Sim ulation
M odel

Dynam ically
Adaptable

Sim ulated Tim e

To have a common vocabulary, it is required to introduce some terms. The overall system is composed of different
subsystems (”clustering”). Subsystems are composed of one or more modules and/or other subsystems. Subsystems
are only a composition and do not directly implement e.g. an algorithm. Modules within subsystems do not have a
”visible structure” to the outside any more, they are forming the lowest level of structuring (e.g. hardware or software
components). Modules are implemented by simulation models. A Simulation model is implemented using one specific
modelling language. There can be one or more different simulation models for one module. These different simulation
models for one module can be implemented using different modelling languages, different abstraction levels and executed
using different simulators. However, they are basically representing the same functionality and hence representing the
same module. Run-time model switching takes place between the different simulation models of one module.

3.2 Concept for Generic Run-Time Co-Simulation Model Switching
To perform effective run-time co-simulation model switching the decision about the switching point and which model

to switch to is essential. However, in existing works this decision is done solely based on the time (time-triggered RCMS).
Within complex systems showing very dynamic behaviour time-triggered RCMS easily reaches its limits. In the following
an extension into a more generic RCMS approach is described, comprising not only time-triggered but also criteria-based
adaptive RCMS.

The possibilities of RCMS can be compared with an oscilloscope, having the capability to zoom into significant parts
of the simulation, while performing a fast (less accurate) run for the less interesting part of the simulation. And like an
oscilloscope has a trigger condition, a trigger condition is also required for a generic RCMS. The following criteria are
able to act as a possible trigger source for the generic RCMS approach presented within this document.

• Time (time-triggered RCMS like until now)

• Events generated by an online signal analysis performed by the provided RCMS implementation (adaptive RCMS)

• Events generated by an external analysis logic (complex system specific criteria, adaptive RCMS)

The actual process of RCMS is performed by using switches. These switches are responsible for splitting and merging
the data flow during the co-simulation. Fig. 2 demonstrates the switching principle for RCMS. The switches are controlled

Publication 1: International Journal of Embedded Systems (submitted for publication) 42

by a switch control unit. The switch control unit is responsible for reacting to trigger sources accordingly and to perform
the online signal analysis. Additionally, the switch control unit handles the required actions for switching like start of
synchronisation or configuration of the switches.

Figure 2. Run-Time Co-Simulation Model Switching

Sim. Model N-C:
Language Z

Sim. Model N-B:
Language Y

Sim. Model N-A:
Language XSwitch

(Split)

Switch
(Merge)

Data IN

Data OUT

Model
Selection

Module N

Online Signal
Analysis & Switch

Control

Criteria

Time-triggered RCMS uses a-priori defined switching points, with time acting as trigger source. Hence, it may not
be applicable to all types of systems or simulation models. However, it has one big advantage: based on the principle of
shifting of complexity (see Fig. 1), the developer has the possibility to simply adjust the trade-off between the simulation
performance and the model accuracy achieved. This is of great advantage, as in fact the developer can specify the simu-
lation performance in advance, hence adjusting the simulation time needed. By specifying the simulated time (including
concurrent simulation time) for each simulation model of the module the developer can select the relation between simu-
lation performance and accuracy according to the requested needs. Thus, the simulation performance improvement factor
in comparison with standard static co-simulation methodologies is more or less freely selectable by the developer. This is
of great advantage when simulating complex systems. As demonstrated in Karner et al. (2010a), it is possible to estimate
the resulting overall co-simulation performance for time-triggered RCMS in advance. More details about time-triggered
RCMS can be found in Karner et al. (2009).

While time-triggered RCMS is rather simple to handle, it has some important drawbacks. For example, it is a relatively
inflexible approach as it has to be defined before simulation start. It is not able to react to spontaneous events and also
requires a predictable system behaviour for efficient switching. It also introduces additional overhead as switching takes
place according to the current time - and not if the current situation would really require it.

In adaptive RCMS, the current system behaviour acts as trigger source for switching. The idea behind it is to perform a
run-time analysis of the behaviour of defined signals within the co-simulation. Depending on the analysis results, a switch
to the most suitable simulation model for a module is initiated. The run-time signal analysis is performed by comparing
the current signal behaviour to a set of criteria defined by the developer. If a criterion matches during the analysis, a switch
to the according simulation model and the required synchronisation are initiated. This principle is shown in Fig. 2.

The actual process of run-time signal analysis is performed by using a sliding window. Hence, not only the current
value but also values from the past can be included within the analysis process. It is possible to specify the size of the
window (e.g. 10 entries) and also its update behaviour. It can be selected between event-triggered (window content
changes only after change of input signal) or time-triggered window update (the input signal is sampled with a specific
frequency).

Within the current implementation, the following signal analysis criteria are supported for adaptive RCMS.

• Arithmetic mean of the signal values within the sliding window (current signal value)

• Average frequency of signal value changes within the sliding window (only useful for event-triggered window
update behaviour; current signal frequency value)

• Average value change between two consecutive signal values within the sliding window (signal dynamics)

• Standard deviation within the sliding window (signal dynamics)

For each criterion it is possible to specify several value intervals for matching. If the calculated criterion value is within the
defined interval, a switch to the associated simulation model is initiated. To avoid a fluttering behaviour of the analysis, a
hysteresis time can be specified. After a criterion match, all additional matches within the hysteresis time will be ignored.
A typical criterion definition contains the following entries: the type of criterion (e.g. standard deviation), lower and upper
limit for criterion match, window size, window update behaviour, simulation model to be used in case of criterion match,
synchronisation type for upcoming model, concurrent simulation time and hysteresis time. An example for this is shown
in section 5.

By using a sliding window for analysis, it is obvious that there is some reaction time until a criterion matches. By
reducing the window size the reaction time can be reduced, but at the cost of losing information about past signal be-
haviour. Additionally, the reaction time is extended by the concurrent simulation time required for synchronisation of the

Publication 1: International Journal of Embedded Systems (submitted for publication) 43

upcoming simulation model. For most systems this short reaction time does not present a problem. However, in case it
is a problem there are several possibilities to deal with it. One would be to use a co-simulation environment supporting
simulation roll-back. However, the options in this case would be very limited. Another possibility is to adjust the criteria
definitions to match more early. But this causes additional overhead and reduces the efficiency of the RCMS. Another
possible solution is to introduce artificial delay into the data flow within the co-simulation by including data buffers. In
case of a criterion match the buffer contents of the current model are duplicated into the buffer of the upcoming model
and further on, new values are inserted into both buffers. If the buffer size is chosen accordingly, the upcoming model can
synchronise itself by using the buffer contents. When the value that triggered the criterion match is the one to be sent out
of the buffer, a switch between the synchronised models can take place. By doing so, the reaction time can be reduced
to zero but at the cost of inserting an additional permanent artificial delay. Hence, the idea of using buffers to reduce the
criterion reaction time is not suitable for all systems or analysis goals.

Another way for adaptive switching is to use an external analysis logic as a trigger source. This may be required for
triggers caused by very complex and system specific conditions which cannot be mapped to the criteria supported by the
standard adaptive RCMS. While this external analysis logic is very system specific, on the other hand it can be exactly
tailored to the requested needs, allowing for most efficient generation of the trigger signal.

3.3 RCMS Synchronisation
RCMS requires synchronisation between the different simulation models of a module in order to assure correct contin-

uous service delivery of this module during switching. There are several ways of how the synchronisation of the upcoming
model can be performed. Typically it is performed via concurrent simulation where the upcoming simulation model is fed
with the current data but without actually using its calculated results (see Fig. 3). This allows for a synchronisation of the
upcoming model so that switching can take place seamlessly. During this synchronisation process, no data is exchanged
between the current and the upcoming model. Notice here that a trade-off exists between on one hand setting the concur-
rent simulation time large enough in order to allow for a proper model initialisation, and on the other hand minimising
concurrent simulation in order to reduce simulation time.

Figure 3. Typical Synchronization Process during Run-Time Co-Simulation Model Switching

TIME

High

Medium

Low

Main Simulation Concurrent Simulation
(„Transition to Hot Standby“)Minimum/No Simulation

(„Warm/Cold Standby“)

Internal View

External View

TIME

Model
Behaviour

High Medium Low

Model
Accuracy

Model
Accuracy

To make the process of synchronisation more clearly, a comparison to the area of redundancy can be done. The
currently active model is the main model. If, due to a switching request, the concurrent simulation phase is about to start,
the upcoming model is equal to cold standby (or in some cases warm standby). The synchronisation process ensures that
the upcoming simulation model gets into hot standby by supplying it with the simulation data flow for a certain amount
of time (concurrent simulation time). By doing so, seamless switching between current and upcoming model can be
performed.

More in-depth information about the synchronisation process during RCMS can be found in Karner et al. (2009).

4 Run-Time Co-Simulation Model Switching Framework for Efficient Analysis of Embedded
Systems

In the following section a guidance for the efficient configuration and use of run-time co-simulation model switching
(RCMS) is presented.

4.1 RCMS-based Analysis of Embedded Systems
If a system is to be analysed by using co-simulation there is a certain set of questions that have to be solved in order to

produce suitable analysis results.

Publication 1: International Journal of Embedded Systems (submitted for publication) 44

• What simulation models are required?

• What is the most suitable modelling language and abstraction level for each simulation model?

• What is the best co-simulation setup to fulfil the analysis goals?

The proposed run-time co-simulation model switching based methodology tries to answer these questions in a system-
atic way. An overview is shown in Fig. 4.

Figure 4. Run-Time Co-Simulation Model Switching for Efficient Analysis of Embedded Systems

Specification of
System Analysis Goals

Design of
Simulation Models

Design of
Run-Time Co-Simulation

Model Switching
Configuration

Execution of Run-Time
Co-Simulation Model

Switching

Analysis of
Co-Simulation Results

Implementation of
Simulation Models

Co-Simulation
Integration

First it is required to specify the system analysis goals and requirements. This step is essential to make sure that the
following steps work into the right direction. Hence, the specification should be performed with special care. For this
step there are no parameters on how to perform it. It can be done by producing a simple text, but also by using special
description languages and tools. However, it is of great importance that at least the following information is specified
exactly.

• What is the system to be analysed?

• What are the goals of the analysis?

• Are there special operations that have to be examined in detail?

• What are the requirements on the simulation process itself (e.g. high simulation performance because of the long
time interval of interest)?

If these questions are answered in detail, the following steps will be much more easier to complete and the results of the
methodology are greatly improved. Examples for such a system analysis goals specification are shown within the case
studies in Section 5.

The next two steps in Fig. 4 can be seen as functionally linked as there is a feedback-loop connecting them. Based
on the system analysis goals, the initial design of simulation models is performed. The simulation model developer
specifies how the simulation models should look like, what their properties are and so on. For this, well-known standard
tools and methodologies can be used. The second of these two linked steps is the design of a run-time co-simulation
model switching configuration that fulfils the specified system analysis goals and requirements. In this step the basic
idea is to apply adapted well-known safety-analysis techniques like failure mode and effects analysis (FMEA), subsystem
hazard analysis (SSHA) and system hazard analysis (SHA) (see e.g. Hillenbrand et al. (2010), Goel and Graves (2007),
Suganthi and Kumar (2010), Federal Aviation Administration (2010) and Ericson (2005) for details on these techniques)
to the available simulation models and analysis requirements. By using these techniques, it is possible to get a valid
RCMS configuration for the specified analysis goals while at the same time providing valuable feedback for the design
of the simulation models. This allows for an iterative refinement process resulting in optimised simulation models and
co-simulation configuration. The design of the RCMS configuration is explained in detail in section 4.2.

After finishing design of simulation models and RCMS configuration it is required to perform the implementation of
the simulation models according to the created design. This is quite a straight-forward process as there exist lots of well-
known guidelines for this. Hence, no special directions are given and it is up to the simulation model developer to use any
suitable technique for implementation.

The following step deals with the integration of the simulation models and the developed co-simulation configuration
into a common co-simulation. Several co-simulation environments are available in academia and industry. However, by

Publication 1: International Journal of Embedded Systems (submitted for publication) 45

default none of them supports RCMS. We decided to use the commercial co-simulation environment SyAD by CISC
Semiconductor (CISC Semiconductor Design+Consulting GmbH (2011)) and enhanced it to support RCMS. The co-
simulation integration is a tool-specific task, hence, no general guidelines can be given. However, the co-simulation
configuration developed during the previous step basically can be used within every co-simulation environment featuring
run-time co-simulation model switching. As shown in Fig. 4, in case of detected problems it is possible to go back and
modify the co-simulation configuration.

Execution of run-time co-simulation model switching follows as next step. Here, after the desired RCMS configuration
has been set up, the simulation models are executed. The actual act of run-time model switching takes place within
this step. In case that the actual behaviour of the simulation models and/or the overall co-simulation does not fulfil the
expectations (because e.g. the developer made some mistakes during the previous steps, or the simulation performance
has been overestimated) it is required to go back to the design of simulation models and perform the required adaptations.

Last but not least is the analysis of the co-simulation results. The results gained during the execution of the co-
simulation are analysed. For this, again there is no special direction on how to do it. It mainly depends on the output
and the result files produced by the simulation models. In case of results not fulfilling the specified analysis goals and
requirements it is possible to go back to the first step of the methodology (see Fig. 4). Then, specify the requested system
analysis goals and requirements more precisely and perform the required adaptations during the following steps.

After this general overview about the proposed methodology, within the following section the design of a suitable
RCMS configuration is described in detail to give the reader a greater knowledge on how these steps work and how they
can be applied.

4.2 Design of Run-Time Co-Simulation Model Switching Configuration
When using run-time co-simulation model switching (and co-simulation in general) there are several challenges to be

solved. One of the most important is the definition of a suitable RCMS configuration for a given system analysis goal
with respect to the available simulation models. Especially in complex systems structured into several subsystems, it is
not an easy task to define an adequate configuration: There are different switching strategies possible (standard static co-
simulation, time-triggered RCMS and adaptive RCMS). The strategies can be mixed and have to be parametrised correctly
to produce the desired result quality. Additionally, it has to be assured that the simulation models are able to fulfil the
specified system analysis goals and requirements.

4.2.1 Overview

To overcome these problems, we propose a new methodology for the design of run-time co-simulation model switching
configurations with respect to given system analysis goals and requirements. Additionally, this methodology provides
feedback for the design of simulation models to enhance their capabilities if required (see Fig. 4). The main idea is
to apply adapted safety-analysis techniques like failure mode and effects analysis (FMEA), subsystem hazard analysis
(SSHA) and system hazard analysis (SHA) to the available simulation models and analysis requirements. Further on,
they are called switching-adapted FMEA (swFMEA), switching-adapted SSHA (swSSHA) and switching-adapted SHA
(swSHA). This methodology supports the developer in finding the most suitable RCMS configuration for the specified
system analysis goals. If no suitable switching configuration can be found, information is given why the current analysis
goals cannot be fulfilled. This information can be used to adapt the simulation models. The main advantage of this new
methodology is that it provides a structured procedure to design the RCMS configuration based on well-known techniques.
Additionally, the developer is able to reuse information gathered during product FMEA for the swFMEA (e.g. clustering
into subsystems and modules, system information, possible failure modes, use cases,...). The terms like defined in the
following vocabulary are used throughout the next sections. As the methodologies of FMEA, SSHA and SHA are adapted
for the design of a RCMS configuration, also the according terms may have different meanings. A failure mode is a ”risk”
caused by a simulation model. A possible failure mode would be for example ”missing of disruptive effects compared
to reality”. A hazard is defined as the potential for harm, hence, a switching configuration not suitable for the desired
system analysis purpose. An example for such a hazard is a simulation performance way below of the required level or
that important effects are not covered by the current simulation model(s) in use.

Fig. 5 shows the proposed methodology for the design of RCMS configurations with respect to given system analysis
goals and requirements. It is structured into four activities and has defined work-products. The first step is to define
the system analysis requirements and goals. If executed within the overall RCMS methodology as shown in Fig. 4, the
according specification can be reused. After this step, activity 1 is completed and the work-product ”system analysis
requirements and goals” is produced.
Following step is to execute the swFMEA like detailed in section 4.2.2. In this step, all simulation models are analysed
for the failure modes that they may introduce into the system if they are used (e.g. ”faulty simulation results compared
to reality in case of using incorrect topology”) and how it can be coped with these failure modes. This step is rather

Publication 1: International Journal of Embedded Systems (submitted for publication) 46

Figure 5. Design of a Suitable Run-Time Co-Simulation Model Switching Configuration

Design of run-time
co-simulation model

switching configuration

WP: Suitable run-
time model
switching

configuration

Switching-Adapted
Failure Mode and
Effects Analysis

(swFMEA)

Per subsystem:
Switching-Adapted
Subsystem Hazard
Analysis (swSSHA)

Switching-Adapted
System Hazard

Analysis (swSHA)

Define system
analysis

requirements and
goals

Activity 2

Activity 3

Activity 4

Activity 1

Finish

WP: System
analysis

requirements/
goals

Abort

Deficiencies in
simulation models

Abort

Abort

generic and if performed once, the data can be reused for other system analysis goals. Additionally, data gathered during
a standard product FMEA can also be reused during the swFMEA, hence reducing workload for the developer. By the
end of this step, activity 2 is completed.
Now for each subsystem, the swSSHA like described in section 4.2.3 has to be performed. The goal of the swSSHA is to
create a RCMS configuration within the subsystem by identifying hazards caused by simulation models and the possible
model switching configuration which would avoid the achievement of the system analysis goals. If there are unresolvable
hazards, feedback for the design of simulation models is created. After successful completion of this step, activity 3 is
completed.
The last important step is to execute the swSHA (see section 4.2.4 for details). It is applied to the overall system and iden-
tifies hazards that apply to more than a single subsystem and cannot be identified during the swSSHA. The main focus
of the swSHA is, according to the possible hazards at system level, to adapt the run-time switching configuration derived
during the swSSHA and generate the final RCMS configuration. By successful completion, the work-product ”suitable
RCMS configuration” is created. If this step cannot be completed, by the list of unresolved hazards detailed feedback for
the design of simulation models is provided.
For performing swFMEA, swSSHA and swSHA typical work sheets like used in the industry (see e.g. Arabian-Hoseynabadi
et al. (2010), Ookalkar (2009)) have been adapted and extended. They are now tailored to the specific requirements of the
adapted techniques.

4.2.2 Switching-Adapted Failure Mode and Effects Analysis

FMEA is a bottom up approach used to identify how systems fail and to identify the effects of failure. Based on a
failure in one module, the effects of this failure are tracked on local and higher levels (Leveson (1995)). Due to the
limitations of the standard FMEA approach (especially the interactions within the system are not sufficiently considered)
it has been adapted for the special requirements of RCMS analysis to the switching-adapted FMEA (swFMEA) and is
supported by swSSHA and swSHA. Several evaluation numbers have been removed (e.g. occurrence rating, detection

Publication 1: International Journal of Embedded Systems (submitted for publication) 47

Table 1. Switching-Adapted Failure Mode and Effects Analysis Work Sheet Structure
1st step 2nd step 3rd step 4th step 5th step
ID, Module Simulation Model Simulation Performance

Use Case Failure Mode Cause of Failure
Local Level Effects
Subsystem Level Effects
Compensating Action
Value Range Limitation

Failure Mode ...
Simulation Model ...

ID, Module ...

Table 2. Switching-Adapted Subsystem Hazard Analysis Table Structure
1st step 2nd step 3rd step
ID, Module Use Case

Requirements
Hazard for Subsystem Cause for Hazard

Effects caused by Hazard
Simulation Model Switching Parameters

Possible Subsystem Hazards
Recommended Switching Strategy
Open Hazards
Feedback to Simulation Model Design

rating, risk priority number,...) while other criteria have been added, e.g. simulation performance, value range limitations
and simulation model information. All simulation models are analysed for the failure modes that they may introduce into
the system if they are used (e.g. ”faulty simulation results compared to reality in case of using incorrect topology”) and
how it can be coped with these failures. The complete structure of the swFMEA work sheet is shown in Table 1. According
to Table 1, for each module identified by an ID, there exist one or more simulation models. For each simulation model,
there is an entry for the simulation performance. Additionally, each simulation model has one or more specific use cases.
Each use case has one or more failure modes. Each failure mode has a specific cause of failure, local level effects etc.

The swFMEA is quite a straight-forward process. First, the swFMEA work sheet has to be filled by using already
existing FMEA data and simulation model information, but without defining possible compensating actions. During the
next steps, for each specified failure mode it has to be defined if there are possible compensating actions (e.g. ”do not
use for high transmission rates”) and if there is a value range limitation by the compensating action (e.g. ”max. signal
frequency 5 MHz”). If there is no compensating action possible for a failure mode, this has also to be noted. All data
generated during this step is stored into the swFMEA work sheet for further use. It has to be noted that this step is rather
generic and independent of the system analysis goals. Hence, if performed with care, the results produced here can be
reused during future applications of the methodology.

4.2.3 Switching-Adapted Sub-System Hazard Analysis

After the swFMEA, for each subsystem the switching-adapted subsystem hazard analysis (swSSHA) has to be done (see
Table 2). Generally spoken, subsystem hazard analysis is a top-down approach that identifies hazards and their effects
on subsystem level. Contrary to the swFMEA, this step makes direct references to the specified system analysis goals
and requirements. If the system analysis goals change, most likely it will be required to perform the swSSHA (and the
following swSHA) again because of the change in focus.

The swSSHA can be split in two main parts: the actual swSSHA and the creation of a recommended RCMS config-
uration for this module as subtask of the swSSHA. The swSSHA (Table 2) has to be done for each subsystem. For each
module of the subsystem, the general use case is defined (e.g. ”transmit data via a cable from one point to another”). Next,
the general system analysis goals and requirements have to be tailored for the subsystem under evaluation. Based on these
requirements, possible hazards for the subsystem are defined (e.g. simulation performance too low, required accuracy
not achieved). Possible hazards also include dependencies between modules within the subsystem (e.g. if module A is
implemented using HDL X, then module B also has to use HDL X). The cause for the hazard (e.g. SystemC model fast
but lacking accuracy, VHDL-AMS model very slow but producing highly accurate results) and also the effects caused by

Publication 1: International Journal of Embedded Systems (submitted for publication) 48

Table 3. Switching-Adapted System Hazard Analysis Table Structure
1st step 2nd step 3rd step
ID, Use Case Requirements

Hazard for System Cause for Hazard
Effects caused by Hazard
Recommended Adaptations to SSHA Switching Strategy

Open Hazards
Feedback to Simulation Model Design

the hazard (e.g. results either very detailed but with extremely low simulation performance or with too less detail but high
simulation performance) are determined.

Based on the information gathered until now during the swSSHA, the definition of a suitable RCMS configuration for
the module is started. Here, the data of the swSSHA and the swFMEA is used to create a preliminary RCMS configuration
for the module. For every simulation model of the module, supported by the swFMEA data it is decided if adaptive RCMS
can be used (and what the according parameters are). If adaptive RCMS is not required or cannot be used, it is defined
if time-triggered RCMS should be used (and its according parameters), if no RCMS is required (there is no need to use
it if a single simulation model is perfect for the specified system analysis goals!) or if the simulation model should even
not be used at all. Based on this decision, possible hazards for the subsystem created by using this simulation model with
the derived configuration are defined. After this has been done for all simulation models of the module, the actual RCMS
configuration for this module is created. By the RCMS data for each simulation model, the module RCMS configuration
is developed in a way to solve the hazards found during the previous step. The preliminary module RCMS configuration
is stored into the run-time model switching work sheet holding the overall system RCMS configuration. In case that
after creation of the most suitable module RCMS configuration there are still open hazards, the RCMS configuration
methodology has to be aborted. However, it is no final stop. By the data gathered until now, especially the exact list
of open hazards, it is possible to create feedback for the simulation model design process. With this information, the
simulation models can be modified to deal with the open hazards. Afterwards the methodology can be restarted.

4.2.4 Switching-Adapted System Hazard Analysis

The last step during the design of the RCMS configuration is the switching-adapted system hazard analysis (swSHA).
The standard SHA is basically performed like SSHA but on system level and not within subsystems. It analyses the
interactions and hazards between different subsystems of the system. It identifies hazards that apply to more than a single
subsystem and that are not identified during the SSHA (Ericson (2005)). Within the swSHA, the RCMS configuration
derived during the individual swSSHAs is analysed for possible hazards at system level due to subsystem interaction, and,
if required, adapted accordingly to overcome these hazards. Like in the swSSHA, if in the end there are still open hazards
the methodology is aborted and extensive feedback for the simulation model design is created.

Like the swSSHA also the swSHA can be split into two main parts. The actual swSHA and the creation of adaptations
to the RCMS configuration (see Table 3). After the general use case of the system is defined, possible hazards for the
system due to subsystem interactions are identified (e.g. level of detail of results delivered by a subsystem to another
subsystem is too low for the receiving subsystem to work correctly). Then, the cause of each hazard (e.g. level-of-detail
mismatch between subsystem A1 and subsystem B3) and the effects the hazard creates (e.g. ESP algorithm not working
correctly any more, hence it cannot be acceptably analysed) are determined.

After the hazards for the overall system are defined, the preliminary RCMS configuration derived during the previous
steps has to be adapted to eliminate the hazards. If there are hazards for the overall system, for each of the hazards it
is tried to eliminate it by adapting the preliminary RCMS configuration. If this is successful for all hazards, the final
RCMS configuration for fulfilling the specified system analysis goals and requirements is created. Otherwise, like before,
the methodology is aborted and according feedback based on the unresolved hazards for the system is given back to the
design of simulation models. After modifying the simulation models, the design of the RCMS configuration can be started
again.

5 Case Study & Experimental Results

To demonstrate the proposed run-time co-simulation model switching based approach a co-simulation of a FlexRay
communications network was developed (see Karner et al. (2010b)). FlexRay (FlexRay Consortium (2005)) is a time-
triggered automotive communications protocol operating at data rates up to 10 MBit/s. Its reliability is highly depending
on the signal integrity. The accurate modelling of the causative effects leads to extensive physical level simulation times

Publication 1: International Journal of Embedded Systems (submitted for publication) 49

even for very short simulated times (e.g. several days or weeks of simulation time for a simulated time of just a few
milliseconds). The time window of interest at system level can cover several minutes (typical automotive control appli-
cations), however accurate physical models are required to analyse low level effects and interferences. Because of the
wide range of requirements and the enormous complexity, co-simulation and especially run-time co-simulation model
switching are required to handle this topic.

Two examples are demonstrating the RCMS based system analysis and development methodology. In the first example,
a distributed application running within a car is to be analysed for delays because of the placement of functionality
within different electronic control units (ECU). In the second example, the effects of FlexRay signal integrity are under
observation.

5.1 Example 1: Distributed Application Delay Analysis
Supported by standardised methodologies like AUTOSAR (AUTOSAR GbR (2008)), distributed applications are gain-

ing more and more importance within cars. The functionality of the distributed application is placed on different ECUs,
according to factors like computational power, data availability and even costs. However, due to this distribution the im-
pact of the communications architecture is not negligible any more. For example, the resulting delay within the distributed
application is largely influenced by the architecture and configuration of the underlying communications network.

Fig. 6 shows an example of a distributed control application which is to be analysed by the RCMS based methodology
shown in Fig. 4. The application is using AUTOSAR concepts and FlexRay as communication system. It is embedded
within a powertrain-focused simulation model of a complete car. For this system, the following system analysis goals and
requirements are specified.

• Goal: analysis of the delay within an automotive distributed application (cause/effect, placement of functionality
within the network, sender/receiver) during critical situations (e.g. rapid change of application input data).

• Goal: analysis of the effects of different FlexRay communication configurations on the data transmission within the
distributed application.

• Requirement: best possible simulation performance should be achieved as it will be required to perform several
simulations (time interval under observation: up to several minutes of simulated time).

• Requirement: data transmission delay & quantisation within the distributed application have to be modelled cor-
rectly during critical situations to allow for a realistic analysis of the application behaviour.

Figure 6. Case Study: Automotive Data Transmission for Analysis of Delays Within a Distributed
Application

Electronic
Control Unit 0

Central
Electronic

Control Unit

Application

Car

Aggregated
Sensor Data

Control Data

Sensor 1 Sensor x

Actuator

Application

Electronic
Control Unit 1

Application

After gathering information about the possible simulation models (e.g. several SystemC and VHDL-AMS based
models for the components of a FlexRay network, SystemC based simulation of AUTOSAR concepts) and defining
possible simulation tools (e.g. for the realistic simulation of the car) the next step is to design the RCMS configuration
according to the system analysis goals.

The design of the RCMS configuration is executed as shown in Fig. 5. As the system analysis goals have been already
specified the swFMEA is executed. For a module like the FlexRay cable the resulting swFMEA for one simulation model
looks as follows (according to Table 1):

• ID, Module: 3, FlexRay cable

• Simulation model: SystemC

• Simulation performance: very high

Publication 1: International Journal of Embedded Systems (submitted for publication) 50

• Use case: transmission of a digitised representation of an analog signal within a correct topology

• Failure mode: faulty simulation results against reality in case of using incorrect topology

• Cause of failure: only length-based delay and attenuation taken into account

• Low level effects: signal transmitted performed correctly even if it should be faulty

• Subsystem level effects: data transfer correct within a flawed FlexRay system

• Compensating actions: do not use within a network having a faulty topology

• Value range limitations: none

Next, for each subsystem the swSSHA is performed to determine possible hazards within the subsystem and to create
a preliminary RCMS configuration. Within this example, the result for the module FlexRay communication controller is
shown according to Table 2:

• Use case: execution of the logical FlexRay protocol for data transmission

• Requirements: high simulation performance, correct protocol execution, support of different communication con-
figurations

• Hazards for subsystem: simulation performance too low

• Cause for hazard: internal high frequency clock of the communication controller in the SystemC model

• Effects caused by hazard: only medium simulation performance

• Simulation model: SystemC

• Switching parameters: SystemC model for critical data (as defined by the application), parameters: concurrent
simulation, 30.0 ms concurrent simulation time, hysteresis 200.0 ms;

• Possible subsystem hazards: missing of any delay information for non-critical data can make the distributed appli-
cation behave unexpected; internal clock of communication controller always running even if no data is transmitted

• Recommended switching strategy: use SystemC only if critical data (as defined by the application) is to be trans-
mitted, otherwise switch to a simple fixed-delay model for data transmission (not FlexRay based)

• Open Hazards: none, if simple fixed-delay model is implemented and internal clock of the communication con-
troller can be halted

• Feedback to simulation model design: support temporarily halt of the high frequency clock of the controller (Sys-
temC); create a simple fixed-delay transmission model for data transmission of non-critical data

It can be seen that also feedback for the design of simulation models is created in this example. A simple fixed-delay
model for transmission would be required to fulfil the system analysis specification, but this model does not yet exist.
Hence, it has to be implemented so that the methodology can continue. This has been done during a second iteration, so
the methodology can continue for this example.

After there are no more open hazards the next step is the execution of the swSHA to generate the final RCMS configu-
ration. For example, an entry within the swSHA database looks as follows (according to Table 3):

• Use case: data transfer between a distributed application within a car using AUTOSAR concepts and FlexRay

• Requirements: high simulation performance, accurate delay modelling

• Hazards for system: critical data transmitted via simple transmission model instead of FlexRay model

• Cause for hazard: no classification of critical data done yet

• Effects caused by hazards: analysis of the behaviour of the distributed application delivers wrong results

• Recommended adaptation to switching strategy: Implement analysis for critical application data (engine torque).
If engine torque changes rapidly (= critical data, |∆torque| > 0.3 Nm per millisecond) switch to FlexRay model.
During intervals of low data variability (= non-critical data) switch to the simple fixed-delay transmission model.

Publication 1: International Journal of Embedded Systems (submitted for publication) 51

• Open hazards: none

• Feedback to simulation model design: none

In the end, the following RCMS configuration has been designed: The application is simulated using a SystemC
based model implementing AUTOSAR concepts. The car is simulated using a suitable car simulator integrated into the
co-simulation environment. For the transmission of data between the distributed application, adaptive RCMS is used.
If critical data is to be transmitted (rapid change in engine torque, |∆torque| > 0.3 Nm per millisecond), a complete
SystemC FlexRay model is used (controller, transceivers, cables). For non-critical data (low variability in engine torque),
a simple fixed-delay transmission model is enough. The window size for the run-time signal analysis is of size 15 and
updated by a sample clock every millisecond. This RCMS configuration allows for precise simulation of delay and
configuration effects during critical areas of the simulation while at the same time having a relatively good simulation
performance. The definition of critical data is done in a way to allow for a correct synchronisation of the upcoming model
in time (slightly lower thresholds as would be required by the application).

After integration into a common co-simulation (we used the co-simulation tool CISC SyAD) and execution of the
RCMS the results can be analysed. Compared to the standard static approach, the RCMS simulation performance is about
4 times faster. This factor however depends on the amount of critical data transmitted as adaptive RCMS is used. In
Fig. 7, the detected areas of critical data are shown during the first 15 seconds of simulation. The ”high-detail” signal set
to 1 indicates that the FlexRay simulation models are used instead of the simple delay-based simulation model. It can be
clearly seen that no critical data is detected during areas of low engine torque variability.

Figure 7. Adaptive Switching Criterion (Engine Torque) Mapped to Detected Critical Areas

-50

 0

 50

 100

 150

 200

 250

 6 7 8 9 10 11 12 13 14 15

 0

 1

N
m

A
c
ti
v
e

Time (sec)

Engine Torque/High-Detail Areas

Torque
High-Detail

Based on the designed RCMS configuration, it is now possible to analyse the delay behaviour of the distributed appli-
cation, fulfilling the specified system analysis goals. As the functionality of the application is placed on different ECUs,
it is interesting what the resulting delay is compared to a non-distributed application placed on a single ECU. The over-
all delay is mainly affected by the number of ECUs the application is distributed over and the FlexRay communication
configuration used. As FlexRay is a time-triggered communication system, its configuration specifies the transmission
slots that can be used by each FlexRay controller. By varying the number of slots used per FlexRay controller and the
position of the slots within a FlexRay cycle the update behaviour of the data transmitted can change drastically. This, of
course, also massively impacts the resulting overall delay of the distributed application. It is not a good solution to just
enlarge the number of slots used by a certain controller (and, in fact the ECU connected to the controller) as the total
number of available slots is limited. Hence, the possible slots for other controllers connected to the network would be
reduced, resulting in delay penalties for the applications running on the according ECUs. In fact, a good compromise for
the FlexRay configuration has to be found. Within the developed RCMS setup this analysis can be easily done during a
reasonable amount of time. As an example, Fig. 8 shows the resulting delay for a control signal sent within the distributed
application. The sensor data is collected by ECU0, aggregated and sent via the FlexRay network to another part of the
distributed application running on the central ECU. There, the incoming data is analysed, and for certain conditions a
control signal is generated and sent to ECU1 via FlexRay. The ideal control signal shown in Fig. 8 would be created
by a non-distributed application running completely on ECU0. It is compared with the control signal generated by the
distributed application where is data is transmitted using FlexRay with different communication configurations. This is
done for three different areas during the simulation. All of these areas are within the specified critical regions (rapid
change in engine torque) as the control signal is only triggered during these areas. It can be seen that, generally spoken,
with FlexRay configuration 4 the application shows the best delay behaviour. It can also be seen that the absolute value
of the delay between the ideal signal and the different FlexRay configurations is not constant. While in area 2 the delay
of FlexRay configuration 4 is way shorter than the delay of the other configurations, this is not that extreme in areas 1

Publication 1: International Journal of Embedded Systems (submitted for publication) 52

Figure 8. Control Signal Delay for Different FlexRay Configurations

 0

 1

 2

 3

 4

 5

 7.525 7.53 7.535 7.54 7.545 7.55 7.555

F
u
n
c
ti
o
n

Control Signal: Delay Variations Area 1

Ideal
CFG1
CFG2
CFG3
CFG4

 0

 1

 2

 3

 4

 5

 11.725 11.73 11.735 11.74 11.745 11.75 11.755

F
u
n
c
ti
o
n

Control Signal: Delay Variations Area 2

Ideal
CFG1
CFG2
CFG3
CFG4

 0

 1

 2

 3

 4

 5

 12.72 12.725 12.73 12.735 12.74 12.745 12.75

F
u
n
c
ti
o
n

Time (sec)

Control Signal: Delay Variations Area 3

Ideal
CFG1
CFG2
CFG3
CFG4

and 3. This is because of the different update behaviour and slot allocations within the FlexRay cycle of the four con-
figurations. Hence, in certain situations a specific FlexRay configuration may lead to low delay, while in other situations
(data available only some moments later) the same configuration may cause a much larger delay within the distributed
application.

5.2 Example 2: Analysis of FlexRay Signal Integrity
The second example deals with application behaviour for a borderline FlexRay topology. The reliability of FlexRay

is highly depending on the signal integrity during data transmission. Hence, it would be interesting to have a closer look
at the influence of signal integrity effects on the behaviour of a distributed application. For example, the investigation
of effects occurring at physical layer on higher layers like data link layer (e.g. shortening/lengthening of bits, misinter-
pretations because of low signal integrity) and application (e.g. missing data because of frame corruption, problems due
to start-up/synchronization errors etc.). As stated during the first experiment, several simulation models for the differ-
ent FlexRay components are available, featuring different levels of accuracy and implemented using different modelling
languages like SystemC and VHDL-AMS. Again, by applying the RCMS analysis and design methodology a suitable
RCMS configuration should be created to allow for an analysis with respect to the specified system analysis goals and
requirements.

For this example, the following system analysis goals and requirements are specified.

• Goal: analysis of the behaviour of a distributed application for a borderline FlexRay topology

• Goal: analysis of the effects of signal integrity problems (e.g. reflections) on the application and the network
behaviour

• Requirement: simulation performance has to be acceptable (no extremely low simulation performance) because the
time interval of interest can be up to several seconds

Again, the methodology shown in Fig. 4 is used. For this example, adaptive RCMS would lead to nearly no improve-
ment of the co-simulation performance. However, as FlexRay is a time-triggered communication system the more simple
time-triggered RCMS can be used. There exist pre-defined points where the state of the system is completely known.
Hence, it is the most advantageous solution to select the switching points there with the according concurrent simulation
time large enough to allow proper initialisation of the simulation model to be switched to.

It was derived that most of the time the fast but less-detailed SystemC model for topology and transceivers should
be used. However, in every frame the header (6µs) should be transmitted via the more-detailed but slow VHDL-AMS

Publication 1: International Journal of Embedded Systems (submitted for publication) 53

Table 4. Example Simulation Time Comparison for one FlexRay Cycle with 12 Frames
VHDL-AMS Switched SystemC

Seconds 88012 31757 307
Factor 287 104 1

simulation models for cable and transceivers (concurrent simulation time = 2µs). This is shown in Fig. 9. The signal

Figure 9. Time-Triggered Switching within a FlexRay Frame

Cycle Duration
VHDL-AMS SystemC

Frame n

......

Frame n+1

VHDL-AMS SystemC

integrity is extremely unlikely to change within the duration of a FlexRay frame (26µs). For the analysis of signal
integrity effects, mainly the header of a FlexRay frame is relevant as all protocol-relevant is contained within the header.
All other parts of the network (FlexRay controller, AUTOSAR based distributed application,...) are simulated using
SystemC without switching. Hence, the configuration is able to fulfil the specified system analysis goals.

The final experimental setup is shown in Fig. 10. The network is consisting of 5 ECUs connected via a FlexRay

Figure 10. Co-Simulation Setup for FlexRay Signal Integrity Effects Analysis

SW ITCH
0

SW ITCH
2

Communication
Controller 2
(SystemC)

Application

Communication
Controller 1
(SystemC)

Application

SW ITCH
1

SW ITCH
4

Transceiver
(VHDL-AMS)

Transceiver
(VHDL-AMS)

Transceiver
(VHDL-AMS)

1: VHDL-AMS
Topology Model

2.0m
0.4m

1.0m2.0mCommunication
Controller 0
(SystemC)

Application

Communication
Controller 4
(SystemC)

Application

Communication
Controller 3
(SystemC)

Application

SW ITCH
3

Transceiver
(VHDL-AMS)

0.5m
7.0m

T

T … FlexRay Termination

Transceiver
(SystemC)

Transceiver
(SystemC)

Transceiver
(SystemC)

2.0m
0.4m

1.0m2.0m

Transceiver
(SystemC)

0.5m
7.0m

2.0m

Transceiver
(SystemC)

2.0m
T

Transceiver
(VHDL-AMS)

1.0m … Cable Segment Length

2: SystemC
Topology Model

T T

ECU 0

ECU 2

ECU 4

ECU 1 ECU 3

network. A distributed application is running on these ECUs using AUTOSAR concepts. Within this network, ECU3 is
using a long cable which is, against the FlexRay specification, not equipped with the required termination. This may lead
to disruptive reflection which influence the signal integrity.

To get the simulation performance improvement by using RCMS instead of standard co-simulation additionally exper-
iments with using the high-detailed VHDL-AMS models throughout the complete simulation were performed. Another
simulation run included only SystemC models, without switching to the VHDL-AMS models for the FlexRay header.
Table 4 shows a comparison of the results. While SystemC-only simulation is clearly the fastest, it features no details
required for the analysis of the signal integrity effects on the distributed application. Hence, it is fast, but does not fulfil
the specified system analysis goals. On the other hand, the VHDL-AMS only configuration has all the required details
but at the cost of an extremely low simulation performance. Compared to the VHDL-AMS only configuration, the RCMS
configuration simulating only the header by using VHDL-AMS is about three times faster. The effects on the behaviour
of the FlexRay network and the distributed application were the same. Hence, the designed RCMS configuration presents
an acceptable solution for the specified system analysis goals and requirements.

The executed RCMS demonstrated that, depending on the transmitting ECU, different ECUs have problems in receiv-
ing correct frames. For example, the data ECU 2 is sending can be received without any problems by ECUs 0, 1 and 4,
while ECU 3 reports a header error check failure. However, if ECU 1 is transmitting the ECUs 0, 2 and 3 receive the data
correctly, while ECU 4 reports an error in the frame header. These effects lead to reception asymmetry that can move the
system into inconsistent states and thus should be avoided.

In Fig. 12 it can be seen that for a frame transmitted by ECU 4 (TxD4), ECU 3 using the VHDL-AMS model is not

Publication 1: International Journal of Embedded Systems (submitted for publication) 54

Figure 11. Communication Controller Error Detection Output Excerpt

Node 3 - codec: BSS_ERROR!
Time: 285747500 ns

Node 2 - WARNING CODEC CHANNEL A: HEADER CRC FAILED!
Time: 285751650 ns

Node 1 - WARNING CODEC CHANNEL A: HEADER CRC FAILED!
Time: 285751662500 ps

Node 0 - WARNING CODEC CHANNEL A: HEADER CRC FAILED!
Time: 285751675 ns

Figure 12. TxD/RxD Excerpt of a Switched FlexRay Frame

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o
lt
a
g
e

 N
o
d

e
 4

 (
V

)

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o

lt
a

g
e
 N

o
d
e

 0
 (

V
)

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o

lt
a

g
e
 N

o
d
e

 1
 (

V
)

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o
lt
a
g

e
 N

o
d

e
 2

 (
V

)

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o

lt
a

g
e

 N
o
d

e
 3

 (
V

)

Time (ms)

 285.747 285.748 285.749 285.75 285.751

T
x
D

4

 285.747 285.748 285.749 285.75 285.751

R
x
D

0

VHDL-AMS
SystemC

 285.747 285.748 285.749 285.75 285.751

R
x
D

1

VHDL-AMS
SystemC

 285.747 285.748 285.749 285.75 285.751

R
x
D

2

VHDL-AMS
SystemC

 285.747 285.748 285.749 285.75 285.751

R
x
D

3

Time (ms)

VHDL-AMS
SystemC

able to receive any meaningful data on RxD3 because of reflections etc. Hence, the communication controller very early
reports an error that it is not able to find a byte start sequence (BSS), see Fig.11. The problems can be easily detected
by looking at the resulting differential voltage waveform at ECU 3. It is far away from any meaningful state. In Fig. 12,
the SystemC topology model starts concurrent simulation at around 285.749ms before switching at 285.751ms. During
concurrent simulation the output of the SystemC model is not used. It can be seen that the SystemC model does not show
any distortion (because it only includes length-based delay and attenuation). Hence, no error would be detected by using
the SystemC model all the time. The situation is a bit different for ECUs 0, 1 and 2. In fact, using the VHDL-AMS model
they are able to receive the header data (transmitted by ECU 4) correctly most of the time. But at around 285.750ms,
one bit sequence gets altered by a reflection. The high bit sequence is shortened and the following low bit sequence is
stretched, leading to a header checksum error detected by the controllers, see Fig.11. By looking at the SystemC data it is
obvious that this error does not happen there. These errors definitely influence the application as, depending on the sender
ECU, an ECU may or may not receive frames correctly. At the worst, the FlexRay network may lose its synchronization
and get split apart in different clusters of ECUs that are not able to communicate with each other (cliques). The RCMS
detected all of the higher level errors like shown in Fig.11 that were also detected during the full VHDL-AMS only
simulation run. The proposed RCMS configuration was correct, achieving the system analysis goals while improving
simulation performance in comparison to the non-switched approach.

Publication 1: International Journal of Embedded Systems (submitted for publication) 55

6 Conclusion

The proposed run-time co-simulation model switching (RCMS) approach enhances co-simulation in providing the
possibility for the test engineer to define simulation intervals of high speed and other intervals of high accuracy within
the same co-simulation run. This approach is relevant to reduce computing resources while keeping simulation accuracy
for the intervals into consideration. The configuration of the RCMS (when to switch from a model to another for a given
component) is a complex task due to the number and complexity of components involved. For that, we have proposed a
framework based on switching-adapted FMEA and hazard and risk analysis in order to systematically identify the purpose
of the simulation as well as the risks of using an inappropriate simulation model. This guidance leads to the definition of
a suitable configuration for run-time co-simulation model switching for minimizing computation resources while using
adequate simulation models to fulfil the specified analysis goals. Two uses cases with focus on automotive distributed
applications have been discussed to illustrate the benefits of the approach. In comparison to the non-switched approach,
the experimental results are equal while at the same time the simulation performance could be improved.

Acknowledgement

The authors wish to thank the ”COMET K2 Forschungsförderungs-Programm” of the Austrian Federal Ministry for
Transport, Innovation and Technology (BMVIT), the Austrian Federal Ministry of Economics and Labour (BMWA),
Österreichische Forschungsförderungsgesellschaft mbH (FFG), Das Land Steiermark and Steirische Wirtschaftsförderung
(SFG) for their financial support.

Additionally we would like to thank the supporting companies and project partners austriamicrosystems, AVL List and
CISC Semiconductor as well as Graz University of Technology and the University of Applied Sciences FH Joanneum.

References

S. Yoo and A. Jerraya, “Hardware/software cosimulation from interface perspective,” Computers and Digital Techniques,
IEE Proceedings -, vol. 152, no. 3, pp. 369–379, 2005.

K. Hines and G. Borriello, “Dynamic communication models in embedded system Co-Simulation,” in Design Automation
Conference, 1997. Proceedings of the 34th, 1997, pp. 395–400.

R. Claes and T. Holvoet, “Multi-model traffic microsimulations,” in Winter Simulation Conference (WSC), Proceedings
of the 2009, 2009, pp. 1113 –1123.

F. Bouchhima, M. Briere, G. Nicolescu, M. Abid, and E. Aboulhamid, “A SystemC/Simulink Co-Simulation framework
for Continuous/Discrete-Events simulation,” in Behavioral Modeling and Simulation Workshop, Proceedings of the
2006 IEEE International, 2006, pp. 1–6.

P. Birrer and W. Hartong, “Incorporating SystemC in Analog/Mixed-Signal Design Flow,” in Forum on Specification and
Design Languages, Proceedings of the 8th International, 2005, pp. 173–178.

CISC Semiconductor Design+Consulting GmbH, SyAD Online Documentation, Klagenfurt, Austria, February 2011.
[Online]. Available: http://www.cisc.at/syad

K. Hines and G. Borriello, “Selective focus as a means of improving geographically distributed embedded system co-
simulation,” in Rapid System Prototyping, 1997. ’ Shortening the Path from Specification to Prototype’. Proceedings.,
8th IEEE International Workshop on, 1997, pp. 58–62.

R. Salimi Khaligh and M. Radetzki, “Modeling constructs and kernel for parallel simulation of accuracy adaptive tlms,”
in Design, Automation Test in Europe Conference Exhibition (DATE), 2010, 2010, pp. 1183 –1188.

——, “Adaptive interconnect models for transaction-level simulation,” in Languages for Embedded Systems and their
Applications, ser. Lecture Notes in Electrical Engineering, M. Radetzki, Ed. Springer Netherlands, 2009, vol. 36, pp.
149–165.

G. Beltrame, D. Sciuto, and C. Silvano, “Multi-Accuracy power and performance Transaction-Level modeling,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 10, pp. 1830–1842,
2007.

D. Rao and P. Wilsey, “Applying parallel, dynamic-resolution simulations to accelerate vlsi power estimation,” in Simu-
lation Conference, 2006. WSC 06. Proceedings of the Winter, 2006, pp. 694 –702.

Publication 1: International Journal of Embedded Systems (submitted for publication) 56

M. Karner, C. Steger, R. Weiss, and E. Armengaud, “Optimizing hw/sw co-simulation based on run-time model switch-
ing,” in Specification Design Languages, 2009. FDL 2009. Forum on, 2009, pp. 1 –6.

M. Karner, E. Armengaud, C. Steger, and R. Weiss, “Holistic simulation of flexray networks by using run-time model
switching,” in Design, Automation Test in Europe Conference Exhibition (DATE), 2010, 2010, pp. 544 –549.

F. Fummi, M. Poncino, S. Martini, F. Ricciato, G. Perbellini, and M. Turolla, “Heterogeneous co-simulation of networked
embedded systems,” in Design, Automation and Test in Europe Conference and Exhibition, 2004. Proceedings, vol. 3,
2004, pp. 168 – 173 Vol.3.

M. Hillenbrand, M. Heinz, N. Adler, J. Matheis, and K. Muller-Glaser, “Failure mode and effect analysis based on electric
and electronic architectures of vehicles to support the safety lifecycle iso/dis 26262,” in Rapid System Prototyping
(RSP), 2010 21st IEEE International Symposium on, 2010, pp. 1 –7.

A. Goel and R. Graves, “Using failure mode effect analysis to increase electronic systems reliability,” in Electronics
Technology, 30th International Spring Seminar on, May 2007, pp. 128 –133.

S. Suganthi and D. Kumar, “Fmea without fear and tear,” in Management of Innovation and Technology (ICMIT), 2010
IEEE International Conference on, 2010, pp. 1118 –1123.

Federal Aviation Administration, System Safety Handbook. Washington D.C., United States: Federal Aviation Admin-
istration, 2010.

C. A. Ericson, Hazard analysis techniques for system safety. Wiley, Hoboken, NJ, 2005.

H. Arabian-Hoseynabadi, H. Oraee, and P. Tavner, “Failure modes and effects analysis (fmea) for wind turbines,” Inter-
national Journal of Electrical Power and Energy Systems, vol. 32, no. 7, pp. 817 – 824, 2010.

A. Ookalkar, “Quality improvement in haemodialysis process using fmea,” International Journal of Quality and Reliabil-
ity Management, vol. 26, pp. 817–830(14), 2009.

N. G. Leveson, Safeware: system safety and computers. New York, NY, USA: ACM, 1995.

M. Karner, M. Krammer, S. Krug, E. Armengaud, C. Steger, and R. Weiss, “Heterogeneous co-simulation platform for
the efficient analysis of flexray-based automotive distributed embedded systems,” in Factory Communication Systems
(WFCS), 2010 8th IEEE International Workshop on, May 2010, pp. 231 –240.

FlexRay Consortium, FlexRay Communications Systems – Protocol Specification Version 2.1, 2005. [Online]. Available:
http://www.flexray.com

AUTOSAR GbR, AUTOSAR: Specification of the Virtual Functional Bus, AUTOSAR GbR, February 2008. [Online].
Available: http://www.autosar.org

Publication 1: International Journal of Embedded Systems (submitted for publication) 57

Optimizing HW/SW Co-Simulation based on Run-Time Model Switching

Michael Karner, Christian Steger, Reinhold Weiss

Institute for Technical Informatics

Graz University of Technology, Austria

{michael.karner,steger,rweiss}@tugraz.at

Eric Armengaud

The Virtual Vehicle Competence Center (ViF)

Graz, Austria

eric.armengaud@v2c2.at

Abstract—The development of embedded systems nowadays
is strongly supported by simulation in order to reduce devel-
opment time and improve product quality. However, effects
occurring e.g. on the physical level may impact the whole
system and cannot be captured by using only high abstracted
models. Co-simulation is a possible solution for this problem.
It enables the combination of an abstracted, system level view
with highly accurate models of different components, and thus
supports the analysis and validation of the embedded system. In
this work we present an approach based on the inter-language
run-time switching of simulation models during co-simulation.
This new method enables long-time system level simulation
with dynamic (user defined) switches to more accurate models
for the punctual analysis of low level effects. The approach
is applied for the co-simulation of an automotive distributed
network and enables the analysis of the system at application
level with a dynamically selectable accuracy down to the signal
integrity within the physical cables.

I. INTRODUCTION

Modelling at system level is required for the validation

and analysis of the entire embedded system and especially

for the analysis of the interactions between the different

components. However, providing a view that can be sim-

ulated for typical system operations in a reasonable amount

of time usually requires models that abstract away lots of

details. These abstracted behaviours hide low level effects

that might propagate and influence the system, thus making

the modelled system not realistic enough for validation.

To solve this problem hardware/software co-simulation

can be used, allowing the developer to simulate different

parts of a system by using different languages and/or dif-

ferent abstraction levels in one common co-simulation. This

allows considering e.g. physical level effects also in system

level models. However, the overall simulation performance

depends on the slowest simulator involved, slowing down

the other simulators to guarantee synchronization. This is a

problem when mixing accurate models (e.g. physical level)

with system level simulation in a common environment. At

system level, the focus is set to short simulation time (com-

putation speed of the simulation) in order to obtain longer

simulated time (time interval under observation). At physical

level the simulation times are typically much higher because

of the simulation of complex analogue components. Hence,

relatively short simulated times are explored here (µs,ms).

The problem is quite obvious: A simulated time of several

seconds at system level leads to huge simulation times at

physical level. On the other way, during the simulated times

manageable for physical level simulation not much may

happen at system level, rendering system level simulation

futile.

In the following we present an approach that combines

the advantages of both worlds: (1) the possibility to have

the long simulated time with high simulation speed of

system level models and (2) the high accuracy of low phys-

ical/analogue level models. The approach is based on the

modelling of a single component by using different hardware

description languages (HDL) and abstraction levels. Here,

dynamic switching between the abstraction levels during co-

simulation is proposed, thus reducing simulation time. This

enables the system to be simulated using a fast high level

model under normal circumstances and to switch to high-

detailed models for accurate simulation of the component

for the time intervals of particular interest (e.g. simulation

of EMI/ESD).

II. RELATED WORK

Several co-simulation frameworks have been proposed

to allow the coupling of different development languages

and abstraction levels. Bouchhima et al. propose in [1]

a co-simulation framework that enables the coupling of

SystemC and Simulink models, thus connecting the worlds

of continuous and discrete-event simulation. In [2] Birrer

et al. deal with the integration of SystemC models into a

Verilog-A/AMS simulation to bridge the gap between system

level description and hardware implementation. An example

for a commercially available co-simulation framework is

CISC SyAD [3]. This framework features the coupling of

several simulators from both discrete-event and continuous

time simulation.

The idea of run-time simulation model switching has been

topic of some research. Existing works mainly deal with the

dynamic switching within models developed in the same

(discrete-event) hardware description language and not with

cross-language (continuous/discrete-event) simulation model

switching as proposed in this paper. In [4] and [5], Hines and

Borriello present their approach for the usage of dynamic

communication models by presenting a tool named Pia.

It allows the designer to specify communication between

components at multiple levels of detail. The designer has to

use the Pia language proposed by the authors to describe

the necessary interfaces and components for the various

Publication 2: FDL 2009 58

c©2009 IEEE. Reprinted, with permission, from Proceedings of 2009 Forum on
Speci�cation and Design Languages

abstraction levels. During experiments, a speed-up in the

area of 10-100 is achieved. Run-time simulation model

switching is also proposed by Yoo and Jerraya [6]. They

suggest to dynamically switch between several abstraction

levels of a processor simulation. However, no results are

available and the authors only suggest dynamic simulation

model switching as a possible way to improve co-simulation

performance.

Other authors deal with dynamic simulation model switch-

ing of different transaction level models (TLM). Radetzki

et al. [7] present a SystemC based solution for switching

between different TLM abstraction layers during simulation.

The approach adapts the simulation accuracy automatically

depending on the state of the model. A similar approach

is presented by Beltrame et al. [8]. They extend SystemC

TLM to support multi-accuracy models with the possibility

to switch between different model accuracies at run-time.

III. RUN-TIME MODEL SWITCHING IN HW/SW

CO-SIMULATION

The existing works typically perform within a specific

HDL and a discrete-event based simulation. Hence, achiev-

able enhancements are limited to the capabilities of one

specific HDL. In this paper we propose an approach to allow

switching between different simulation models for the same

component in a dynamic and inter-language (different HDLs,

continuous and discrete-event based simulators) way. This

greatly enhances the simulation speed by using computa-

tional expensive simulation models only in a (by model and

time) clearly defined area.

A. Methodology

The approach is described as follows: On the time axis,

the duration of time T is split into (virtual) non-uniform

time stamps ti with ti ∈ T |i = 1..m and t0 = 0. At every

time stamp ti it is possible to switch between which model

abstraction level should be used. A multiple-abstraction-

level model M consists of several different models built

at different abstraction levels (realizing basically the same

functionality). If L denotes the space of implemented ab-

straction levels for a model M a single abstraction level is

written as lx with lx ∈ L|x = 1..n. So the model for a

specific abstraction level is expressed as M(lx). Following

this, the model space M of implemented abstraction levels

for a specific model is summarized as M = M(l1)∪M(l2)∪
M(l3) ∪ ... ∪M(ln).

In order to synchronize the models and enhance the

accuracy before switching both models involved should be

running in parallel for a certain amount of time. Only the

output of the primary model is used during this phase. The

principle is shown in Figure 1. The internal view at the

top of the figure is depicting how the parallel simulation

is working. If one abstraction level model currently is not

required (“minimum/no simulation”), depending on the type

of model it can be either completely disabled or it is set to

a level of minimal operation required to allow continuation

of the simulation in the future (e.g. for some types of

continuous-time simulation). This will be explained later on

in this section in more detail. The external view at the bottom

displays what the other parts of the simulation see as output

of the model. To describe the operation of parallel simulation

before switching the factor pi is introduced. It describes the

fraction of an interval of time τ after which the parallel

computation starts. For this, τ is defined as τi = ti − ti−1,

the difference between two virtual time stamps. Hence, the

interval of time where both models simulate in parallel is

calculated as τpi
where τpi

= τi − τi · pi = τi · (1 − pi).
The simulated time for one abstraction level for a specific

amount of time including parallel processing is

τRi
= τi + τpi−1

= τi + τi−1 · (1− pi−1)

and

τRA
=

m∑

i=1

τRi

is the overall simulated time for one model abstraction level.

The total amount of simulated time TS for all abstraction

levels of a model including parallel processing is written as

TS =

n∑

A=1

τRA

The total simulation time TR is TR =
1

C
· CALC(TS)

where C is the achievable speedup in the system during

parallel computation possibilities and CALC(TS) determines

the simulation time needed for the simulated time TS .

TIME

High Level

Medium
Level

Low Level

Pure Simulation Parallel Simulation

Minimum/No Simulation

Internal View

External View

TIME

Model
Behaviour

High Level Medium Level Low Level

Abstraction
Level

Abstraction
Level

Figure 1. Internal and external view of the behaviour of a switched model
built by several models at different abstraction levels

Depending on the model M additional properties have

to be considered. For example in models realizing a com-

munication protocol the model is typically consisting of

several internal states. The states S of M are written as

S = S1, S2, S3, ..., Sk. Before switching to another ab-

straction level lx occurs it may be required that M(lx)
is in a condition of states SD with SD ⊆ S to work

properly. For example, SD can be the condition of states

a controller model requires to show a specific behaviour.

These required states SD can be the same for all abstraction

Publication 2: FDL 2009 59

levels, SD = SD(L), or may be specific for a certain

level, SD = SD(lx). Depending on M(lx), one way for

synchronization of SD(lx) is to set the phase of parallel

computation to a value that the following model is able to get

into the correct internal condition of states SD until the end

of parallel computation. Choosing the duration of parallel

computation is not an easy task. However, a quick estimation

can be done by performing simple switching experiments

to approximate to a suitable duration. Another way for

synchronization is to provide the possibility to access the

states SD of M(lx) from the outside to initialize them

with the correct values. Here, the correct state initialization

values have to be provided by the developer. Another way

would be to always provide the models M with the required

information that they are able to get into SD at the right

time but do not have to do the main simulation effort. So

e.g. M(lx) does get the necessary state information SD all

the time, but computational intensive data is only provided

during τR. For systems with periodic behaviour the state

synchronization is rather simple: In these models, the history

is by default limited in time. There exist synchronization

points where the system is in a defined/well-known state and

switching of the simulation models can take place without

problems by selecting an appropriate parallel processing

duration. Of course there exist systems where the run-

time switching approach may not be easily applicable. For

example, a very complex VHDL-AMS system containing

state information and history in both digital and analogue

domain. In this case in-depth knowledge is required to define

(1) the time durations where which abstraction level model

should be used and (2) the parameters to properly initialize

the model before switching. For the following analysis we

presume that either (a) the model does not have dependent

internal states or (b) is able to be initialized during parallel

processing, or (c) it allows to externally set the internal

model states.

All factors mentioned before influence several system

properties. We focus on the simulation speed ω and on

the external accuracy α of the encapsulated model. The

external accuracy α at a given simulated time depends on

the abstraction level simulation model M(lx) used as output.

The external accuracy also depends on the factor pi before

the model is switched on the output. Hence, the external

accuracy is defined as

α = α(M(lx), pi)

There is an interconnection between simulation speed ω and

α, so ω = ω(α). If two models at different abstraction levels

run in parallel this has a noticeable effect on the simulation

speed as more computational power is required. Hence, the

overall simulation speed ω is written as

ω = ω(TR) = ω

(
1

C
· CALC

(
n∑

A=1

τRA

))

The simulation speed during the simulation of a single

abstraction level lx is

ωp = ωp(α(M(lx)))

During parallel processing of models at different levels of

abstraction lx and ly the simulation speed is

ωs = ωs(α(M(lx),M(ly)), pi)

and hence ω = ω(ωs, ωp). For further evaluation of the

effects the factor p is stated as p =
∑m

i=1 pi. As pi describes

the fraction of an interval of time after which the parallel

computation of different abstraction levels starts it is appar-

ent that if p is minimized the following relations are valid:

p = min ⇒ [α = max, ωs = min] ⇒ p ∝ α−1, p ∝ ωs.

And typically an abstraction level with a high accuracy

leads to low simulation speeds. These effects are shown in

Figure 2. The simulation speed depends on both abstraction

level and parallel simulation done before switching. During

parallel processing the lower of the two abstraction levels

dominates the simulation speed. The simulation speed drops

even a bit below the speed that could be achieved by simulat-

ing only the lower of the two abstraction levels. This drop is

depending on the system speedup factor C (multiprocessor

usage, distributed simulation environment,...).

TIME

Abstraction Level

High

Low

Medium

TIME

High

Low

Medium

TIME

High

Low

Medium

Speed

External Accuracy

Figure 2. Relation between abstraction level, simulation speed and
achieved accuracy in a run-time switched co-simulation

B. Implementation

The proposed run-time inter-language simulation model

switching approach relies on existing co-simulation tech-

niques. Hence it is required to use a co-simulation frame-

work that supports the implementation of simulation models

at different abstraction levels and by using different HDLs.

We decided to use the commercially available co-simulation

framework CISC SyAD [3]. It supports the co-simulation

of simulation models at different abstraction levels and of

simulation models implemented by using different HDLs

like SystemC, VHDL-AMS, etc. The framework fulfils all

the requirements to implement the proposed simulation

model switching approach.

The main idea of our approach is to have implementa-

tions of a given model at different abstraction levels (see

Publication 2: FDL 2009 60

Figure 3), ideally by using different suitable HDLs. As the

switched multiple abstraction level model should appear to

the outside as one consistent model we have to take care

of assigning the simulation input to the correct abstraction

level implementation. And only the output of the currently

active abstraction level simulation model should be used as

output of the switched model (see Figure 1, external view).

Abstraction Level Selection

Split/

MergeSimulation

Model B

(e.g.
System

Level

Language)

Simulation Model A1

High Abstraction

Level – Low Details

(e.g. SystemC)

Simulation Model A3

Low Abstraction

Level - High Details

(e.g. VHDL-AMS)

Simulation Model A2

Medium Abstraction

Level – Med. Details
(e.g. SystemC-AMS)

Split/

Merge Simulation

Model D

(e.g.
System

Level

Language)

Internal

View

External

View

Figure 3. Run-time simulation model switching during co-simulation

For this, SystemC blocks for data splitting and merg-

ing have been implemented. The splitters/mergers decide

through which abstraction level model the main simulation

data flow is directed. They feature multiple ports to connect

the switched models and one or more ports as interface to

the non-switched simulation part. The principle is shown in

Figure 3. These SystemC ‘switches’ can be parameterized

to define for which simulated time which abstraction level

model should be used. Additionally, the parallel computation

time can be specified. It is possible to connect a simulation

model to the splitter that acts as ’idle data’ generator. Its

output is provided to the different abstraction level models

that are currently not involved in the main co-simulation

and keeps them in the correct internal states so that no

initialization problems may occur. However, this idle data

generation is only required for certain kinds of models (e.g.

communication protocol models).
The splitters/mergers are available in SyAD as ready-

made blocks and can be drag-and-dropped into the co-

simulation workspace. They can be connected in a graph-

ical user interface to the other co-simulation models (e.g.

SystemC models, Simulink models,...) and to the different

abstraction level models the run-time switched model should

consist of. Between some types of ports it is necessary

to perform a digital to analogue (DAC) or analogue to

digital conversion (ADC). If one of the abstraction levels

of the switched simulation model has VHDL-AMS terminal

as interface port there needs to be a AD/DA convertor

between the splitter/merger and the VHDL-AMS model.

The splitters/mergers can control the ADC/DAC so that the

conversion only operates at full speed if the abstraction

level model connected to the convertors is really active. This

reduces the simulation time overhead that arises due to the

integration of the AD/DA convertors.

IV. EXPERIMENTAL RESULTS

To demonstrate the proposed co-simulation based run-

time model switching approach a co-simulation of a FlexRay

communications network was developed. FlexRay [9] is a

time-triggered automotive communications protocol operat-

ing at data rates up to 10 MBit/s. Its reliability is highly

depending on the signal integrity. The accurate modelling

of the causative effects leads to extensive physical level

simulation times even for very short simulated times (e.g.

several days or weeks of simulation time for a simulated time

of just a few milliseconds). The time window of interest at

system level can cover several minutes (typical automotive

control applications), however accurate physical models are

required to analyze low level effects and interferences (e.g.

EMI/ESD).

A. Use Case: FlexRay Network

The developed FlexRay co-simulation [10] consists of

several simulation models implemented at different abstrac-

tion levels and by using different HDL. The car simulator

CarMaker is used to generate the data transported via

the FlexRay network. The FlexRay communication con-

troller (SystemC) is responsible for the logical FlexRay

protocol. The FlexRay transceiver (VHDL-AMS) converts

between bits and electrical signals. The signals are re-

ceived/transmitted via FlexRay cable and topology models

implemented in VHDL-AMS. The co-simulation is realized

by using CISC SyAD as co-simulation framework.

For our experiment we used a simplified version of

this network: instead of the communication controllers we

used FlexRay tester nodes developed in SystemC. A tester

node is able to produce a FlexRay bit stream out of a

frame description and can store and analyze a bit stream

it receives via the network. The model of the physical

level (transceivers, topology plus cables) is the model to

be switched within: M = M(l1) ∪ M(l2). Hence we

implemented two different abstraction levels l1 and l2 for it.

The first one is a high level SystemC model M(l1) which

basically just adds length-based delay and attenuation to

the signals transferred between the FlexRay tester nodes.

The second one is a high detail low level VHDL-AMS

model M(l2) of both FlexRay transceiver and topology

including cables. This experimental setup is shown in Figure

4, including the length of the different cables (from 0.2m to

3.5m in this example). The low level analogue model enables

the analysis of effects such as EMI/ESD, reflections, wrong

cable termination etc.

We transmitted a short data sequence consisting of two

FlexRay communication cycles via the network. A cycle

consists of 8 frames of FlexRay data. Each communication

cycle is 5ms of simulated time and a FlexRay frame is about

40µs long. We performed three different tests. The first was

the co-simulation without the proposed run-time switching

approach. Here the low level physical VHDL-AMS model

M(l2) was used all the time to transfer the data between

Publication 2: FDL 2009 61

the SystemC tester nodes. The second test included run-

time switching. Most of the time the high abstraction level

SystemC model M(l1) was used to transfer the data between

the nodes. For the fifth frame of the first cycle we transmitted

the data stream via the realistic VHDL-AMS model M(l2)
of FlexRay transceiver, topology and cables. In the third test

the simple SystemC based topology model M(l1) was used

throughout the simulation.

SWITCH

1

SWITCH

2

Simple Topology Effects (SystemC)

FlexRay

Tester Node 2

(SystemC)

FlexRay

Tester Node 3

(SystemC)

SWITCH

3

SWITCH

4

Transceiver

(VHDL-AMS)

Transceiver

(VHDL-AMS)

Transceiver

(VHDL-AMS)

Transceiver

(VHDL-AMS)

VHDL-AMS Topology Model

0.3m
1.0m 3.5m

0.2m3.0m

0.3m 1.0m
3.0m

3.5m 0.2m

FlexRay

Tester Node 1

(SystemC)

FlexRay

Tester Node 4

(SystemC)

Figure 4. FlexRay switched co-simulation example

B. Results

In Table I the simulation results are summarized. As

expected the pure SystemC simulation is the fastest but at

the price of losing nearly all details and effects generated

by the transmission. On the other hand, the pure VHDL-

AMS model is several magnitudes slower than the SystemC

model, but providing all the required details for the system

analysis. It can be observed that the run-time switched co-

simulation approach is over a magnitude faster than the pure

VHDL-AMS model. For the selected time interval, both pure

and switched VHDL-AMS models feature the same high

accuracy, thus allowing to explore the influence of the signal

integrity on the reliability of the FlexRay system.

Table I
SIMULATION TIME COMPARISON FOR PURE/SWITCHED FLEXRAY

TOPOLOGY AND TRANSCEIVER CO-SIMULATION

Pure VHDL-AMS Switched Pure SystemC

Seconds 51453 3835 0.152

Factor 338506 25230 1

One of the main advantages of the run-time switching ap-

proach is the designer’s possibility to easily adjust the trade-

off between simulation time and model accuracy. Figure 5

demonstrates this for the test setup used. The designer is able

to specify how long the simulation time TR should be by

defining the simulated time τRA
for which each abstraction

level model M(lx) should be used. Hence, the simulation

time improvement factor compared to standard static co-

simulation can be influenced by the designer according to

the requested needs. For this example, we used a rather

small improvement factor: out of a total number of 16

FlexRay frames, 1 frame was transmitted via the high

accuracy VHDL-AMS model. This led to a simulation time

improvement through the run-time switching approach by a

factor of over 13. By the relation of 15:1 of transmitted

frames, a larger improvement factor could be expected.

However, due to the parallel processing overhead there are

practical limits in improvement potential. For more complex

simulations or for other configurations, larger improvements

can be expected. Especially if the difference between total

simulation time and switched simulation time is high the

overhead due to switching gets negligible small.

Model

Accuracy
HIGH:

Delays, Attenuation,

Reflections, EMI/ESD,

Bus load, Capacity,
...

Simulation

Time

Pure

VHDL-AMS

Pure

SystemC

Run-Time

Switched

LOW:
Delays

Attenuation

(line length
based only)

Low HighAdaptable

...

...

1 FlexRay Frame15 Frames

FlexRay Physical
Layer Model

Figure 5. Shifting of simulation time and model accuracy by using run-
time switching

An important topic when using the run-time switched

co-simulation approach is the accuracy of the results. In

Figure 6 a zoom to some bits of a FlexRay frame is shown.

The frame was transmitted over the line by using the low

level VHDL-AMS model during the whole co-simulation.

It is compared to the same bits of the same frame but now

only this frame was transmitted via the VHDL-AMS models.

The rest of the simulated time the high level SystemC

model has been used for frame transmission. It can be seen

that both results are nearly identical, only showing some

minor differences. Since we are using the same models,

the good correlation shows that the model initialization was

performed correctly. The differences have no effect on the

higher levels of the FlexRay system as they are negligible

small. However, the use of the more accurate model is

justified since its behaviour affects the higher levels (e.g.

deformed and shortened bits), and cannot be simulated by

using SystemC.

The following calculations have been done by exporting

the simulated waveforms from the VHDL-AMS simulator

(Mentor AdvanceMS) as comma-separated-value files (n
samples with a sample time of 0.5ns) and importing them

into MATLAB. The arithmetic mean x of a number of

samples is calculated as

x =
1

n

n∑

i=1

xi

and the standard deviation sx is

sx =

√√√√ 1

n− 1

n∑

i=1

(xi − x)2

Publication 2: FDL 2009 62

0.22041 0.2204102 0.2204104 0.2204106 0.2204108 0.220411

−1

−0.5

0

0.5

1

Time [sec]

V
o

lt
a

g
e

 [
V

]

Switched SystemC/VHDL−AMS Signal
Pure VHDL−AMS Signal

Figure 6. Simulation results of some bits of one frame (pure VHDL-AMS
compared with switched SystemC/VHDL-AMS co-simulation)

For the difference (zi = xi−yi) between the pure (x) and the

switched (y) waveform the arithmetic mean and the standard

deviation during the switched frame are

z = −1.528 ∗ 10−4V, sz = 3.08 ∗ 10−2V.

The pearson product-moment correlation coefficient (also

sample correlation coefficient) between the pure VHDL-

AMS waveform and the switched VHDL-AMS waveform

is calculated as

rxy =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2

The sample correlation coefficient is

rxy = 0.9992

during the switched FlexRay frame (a factor of 1.0 means

perfect correlation). It can be seen that the pure and the

switched waveform do fit in a very good way.

V. CONCLUSION AND OUTLOOK

Inter-language co-simulation is a well known approach in

order to provide selectable accuracy for the different com-

ponents, thus increasing simulation accuracy while reducing

validation efforts and computation resources. We go a step

further and propose a run-time switching approach in order

to modify the accuracy level of selected components during

the co-simulation. This approach is especially interesting

for the analysis of short time intervals during long total

simulated times. A typical application for this approach is

the analysis of distributed automotive embedded systems:

The application runs for several seconds or minutes and

the effects of interests (e.g. EMI/ESD) require detailed

simulation models at the analogue level. For an example

of an embedded automotive system, the proposed method

reduced the simulation time by more than a magnitude while

providing simulation accuracy nearly identical compared to

standard static co-simulation. The improvement potential in

simulation time mainly depends on the relation between total

and switched simulated time. Hence, the simulation time

improvements can be much higher than just a magnitude.
Future steps will include the fully automated integration

of the run-time co-simulation switching approach into the

design as well as the optimization of the switching param-

eters (trigger conditions, parallel processing time).

ACKNOWLEDGMENT

The authors wish to thank the ”COMET K2 Forschungsförderungs-
Programm” of the Austrian Federal Ministry for Transport, Innovation and
Technology (BMVIT), the Austrian Federal Ministry of Economics and
Labour (BMWA), Österreichische Forschungsförderungsgesellschaft mbH
(FFG), Das Land Steiermark and Steirische Wirtschaftsförderung (SFG)
for their financial support.

Additionally we would like to thank the supporting companies and
project partners austriamicrosystems, AVL List and CISC Semiconductor
as well as Graz University of Technology and the University of Applied
Sciences FH Joanneum.

REFERENCES

[1] F. Bouchhima, M. Briere, G. Nicolescu, M. Abid, and
E. Aboulhamid, “A SystemC/Simulink Co-Simulation Frame-
work for Continuous/Discrete-Events Simulation,” in Behav-
ioral Modeling and Simulation Workshop, Proceedings of the
2006 IEEE International, 2006, pp. 1–6.

[2] P. Birrer and W. Hartong, “Incorporating SystemC in
Analog/Mixed-Signal Design Flow,” in Forum on Specifica-
tion and Design Languages, Proceedings of the 8th Interna-
tional, 2005, pp. 173–178.

[3] S. Kajtazovic, C. Steger, A. Schuhai, and M. Pistauer, “Au-
tomatic generation of a coverification platform,” Applications
of Specification and Design Languages for SoCs: Selected
papers from FDL 2005, pp. 187–203, 2006.

[4] K. Hines and G. Borriello, “Selective Focus as a Means of
Improving Geographically Distributed Embedded System Co-
Simulation,” in Rapid System Prototyping, 1997. Proceed-
ings., 8th IEEE International Workshop on, 1997, pp. 58–62.

[5] ——, “Dynamic Communication Models in Embedded Sys-
tem Co-Simulation,” in Design Automation Conference,
1997., 1997, pp. 395–400.

[6] S. Yoo and A. Jerraya, “Hardware/Software Cosimulation
from Interface Perspective,” Computers and Digital Tech-
niques, IEE Proceedings -, vol. 152, no. 3, pp. 369–379, 2005.

[7] M. Radetzki and R. Khaligh, “Accuracy-Adaptive Simulation
of Transaction Level Models,” in Design, Automation and Test
in Europe, 2008. DATE ’08, 2008, pp. 788–791.

[8] G. Beltrame, D. Sciuto, and C. Silvano, “Multi-Accuracy
Power and Performance Transaction-Level Modeling,”
Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 26, no. 10, pp. 1830–1842, 2007.

[9] “Flexray Communications Systems – Protocol Specification
Version 2.1 Rev A, available at http://www.flexray.com,”
FlexRay Consortium, 2005.

[10] M. Karner, C. Steger, R. Weiss, E. Armengaud, D. Watzenig,
and G. Knoll, “Verification and Analysis of Dependable
Automotive Communication Systems Based on HW/SW Co-
Simulation,” in IEEE International Conference on Emerging
Technologies and Factory Automation. ETFA ’08, 2008, pp.
444–447.

Publication 2: FDL 2009 63

Holistic Simulation of FlexRay Networks by Using
Run-Time Model Switching

Michael Karner∗, Eric Armengaud†, Christian Steger∗ and Reinhold Weiss∗
∗Institute for Technical Informatics, Graz University of Technology, Austria

†Virtual Vehicle Competence Center, Austria

{michael.karner,steger,rweiss}@tugraz.at, eric.armengaud@v2c2.at

Abstract—Automotive network technologies such as FlexRay
present a cost-optimized structure in order to tailor the system
to the required functionalities and to the environment. The
space exploration for optimization of single components (cable,
transceiver, communication controller, middleware, application)
as well as the integration of these components (e.g. selection
of the topology) are complex activities that can be efficiently
supported by means of simulation. The main challenge while
simulating communication architectures is to efficiently integrate
the heterogeneous models in order to obtain accurate results
for a relevant operation time of the system. In this work, a
run-time model switching method is introduced for the holistic
simulation of FlexRay networks. Based on a complete modeling
of the main network components, the simulation performance
increase is analyzed and the new test and diagnosis possibilities
resulting from this holistic approach are discussed.

I. INTRODUCTION

The FlexRay technology [1] is being introduced as a new

wired network for automotive high-speed control applications.

This communication protocol provides features like increased

data rates (a factor of 10 faster than the CAN protocol) and the

simultaneously support of time-triggered and event-triggered

communication schemes for both deterministic network be-

havior and the efficient transmission of single events. This

protocol, in comparison to predecessors (e.g. CAN), presents

a very large flexibility that results in a huge number of

implementation variants. Parameters such as topology (passive

line, active star, hybrid topologies), bus schedule (e.g. slot /

cycle length) and communication matrix (mapping between

ECUs, slots and frames) are as much variables that can

influence the quality of the communication.

One important aim of the TEODACS project is to under-

stand the interactions between the layers building a dependable

network and to evaluate the different effects influencing the

communication (e.g. topology, EMC). The approach is based

on the development of a heterogeneous co-simulation model

of a FlexRay network tightly interfaced to a realistic FlexRay

prototype. This combines the good observability and diag-

nosability provided by the simulation environment with the

realistic system behavior provided by the hardware prototype.

The holistic simulation of a FlexRay network represents

a challenge due to the heterogeneous nature of the system.

Hence, a typical network consists of analog components

(physical layer, transceivers), digital components (data link

layer, communication controllers), basic software components

(middleware, AUTOSAR) and software components (applica-

tion). An important problem is to obtain a long simulated time

(time interval under observation) for the analysis of the entire

system, while at the same time keeping a reasonable simulation

time (computation speed of the simulation) and a reasonable

simulation accuracy for each component. This is especially

difficult for lower layers that require more performance for

the simulation of complex analog components.

Within this work, the run-time model switching method in-

troduced in [2] is integrated within our FlexRay co-simulation

environment. The main concept is to provide different simula-

tion models of the same component (e.g. one for high speed,

another one for high accuracy) that can be switched during

the simulation run. This approach provides the test designer

with a new degree of freedom for defining for each component

the time intervals for which a computational expensive high-

detail simulation model is required and when a simpler and

faster model suffices. This method can be compared with an

oscilloscope having the capability to zoom into significant

parts of the simulation, while performing a fast (less accurate)

run for the less interesting part of the simulation.

This document presents two main contributions. First,

the performance increase resulting from the run-time model

switching method is analyzed (both theoretically and experi-

mentally). Second, the resulting heterogeneous co-simulation

model of the FlexRay network is presented, and the resulting

cross-layer analysis possibilities (e.g. analysis of the influence

between the physical and data link layer) are discussed. The

document is organized as follows: Section II provides an

overview of the state of the art regarding simulation methods

of automotive networks. In Section III, the concepts of the

run-time model switching method are illustrated and the

rationale for the performance analysis presented. The focus of

Section IV is set to the experimental validation of our approach

and finally Section V concludes this work.

II. SIMULATION OF FLEXRAY COMMUNICATION

NETWORKS: STATE OF THE ART

For the simulation of different parts of a (FlexRay) commu-

nication network several solutions and simulation models have

been developed. For example, in [3] a SystemC-based FlexRay

communication controller is presented for the timing analysis

of interconnected AUTOSAR components. Furthermore, a

communication controller model developed using Verilog is

proposed in [4] for the assessment of message missing failures.

In [5], another implementation of a communication controller

Publication 3: DATE 2010 64

c©2010 IEEE. Reprinted, with permission, from Proceedings of 2010 Design, Automation
and Test in Europe Conference & Exhibition

using SystemC is described. Yet another simulation model of

a FlexRay communication controller is demonstrated in [6].

Here, the controller is implemented using standard C language

and simulated on a PC used to interact with real hardware

components like engines.
Moreover, different FlexRay transceiver models are avail-

able: A generic model implemented using VHDL-AMS and

including physical effects like thermal power is presented

in [7], while the model presented in [8] is a specific behavioral

Saber model of an NXP transceiver. The simulation setup

described in [9] incorporates several simulation models for

the FlexRay physical layer including cable, passive star and

transceiver simulation models using Synopsis Saber. All of

these approaches are focused on one single component or

layer, thus the interactions with the other components and pro-

tocol layers involved are difficult to analyze (e.g. interaction

between physical layer and data link layer).
In [10], the simulation of large heterogeneous systems

including several ECUs communicating via a network is

implemented by using transaction based modeling. The authors

use a hardware abstraction layer for high level access to the

hardware components and simulate at a very high abstraction

layer, hence achieving a high simulation speed but losing many

important details about the communication.
A further approach for analyzing dependable communica-

tion networks is residual bus simulation which enables the

emulation of an entire sub-network. Industrial solutions from

e.g. Elektrobit, dSPACE and Vector are available. All of

these examples are a combination of hardware and software

components: The software emulates the functionalities of the

missing ECUs and the application messages are transmitted to

a real network using dedicated hardware components. Hence,

the advantages of simulation (observability, traceability, flexi-

bility,...) are lost for many parts of the system.
It can be seen that there exist several solutions for the sim-

ulation of dependable communication networks, especially of

FlexRay networks. However, these simulations usually cover

only a specific part of the network and/or are working in a very

abstract way. No holistic approach covering all parts of the

network (from physical layer up to the application layer) with

sufficient accuracy is available, making a comprehensive in-

depth analysis nearly impossible to achieve by using existing

setups.

III. RUN-TIME CO-SIMULATION MODEL SWITCHING

A. Run-time switching

Co-simulation is a well known approach for the integral

simulation and analysis of different simulation models imple-

mented at different abstraction levels and/or by using differ-

ent hardware description languages (HDL). However, when

combining highly heterogeneous simulation models, standard

co-simulation presents limitations: the overall simulation per-

formance depends on the slowest simulator involved, slowing

down the other simulators to guarantee synchronization and

data exchange. The drop in simulation performance is espe-

cially a problem when mixing accurate models (e.g. physi-

cal/analog level) with system level simulation in a common co-

simulation. At system level, the focus is set to short simulation

time (computation speed of the simulation) in order to obtain

longer simulated time (time interval under observation). At

physical level the simulation times are typically much higher

because of the simulation of complex analog components.

Hence, relatively short simulated times are explored here

(µs,ms). The guidelines of the different abstraction level

models are quite opposite: For system level models, the

simulated time of several seconds can not be handled by

the low level physical simulation model. This would lead to

enormous simulation times for the low level model that may

not be acceptable or even accomplishable within a reasonable

amount of time. On the other hand, the very short simulated

times for the low level physical simulation model are too short

for the abstracted system level model. During this very short

time interval, nothing of interest may happen at system level,

thus rendering the system level simulation futile.

To overcome this problem, the methodology of dynamically

switching the co-simulation models used is proposed in [2].

The basic idea is to change at run-time the simulation models

that are used for a specific part of the co-simulation and for

given components. For example, while most of the time a fast

less-detailed SystemC simulation model is used for the cable,

for special intervals a more-detailed low level VHDL-AMS

model is utilized. This speeds up the co-simulation (compared

to low level simulation for the whole simulation) while at the

same time providing the high accuracy when required. The

principle is shown in Figure 1. Splitters and mergers (switches)

are used to perform the co-simulation model switching and to

ensure a correct data flow within the system. For more details

about the basic methodology and the implementation, see [2].

Model N-C:
Language C

Model N-B:
Language B

Model N-A:
Language ASwitch

(Split)

Switch
(Merge)

Data IN

Data OUT

Model

Selection

Component N

Fig. 1. Methodology of Run-Time Co-Simulation Model Switching

The run-time switching approach requires the synchroniza-

tion between the different simulation models of a given com-

ponent in order to assure correct continuous service delivery

of this component. This is performed via parallel processing

where the upcoming simulation model for the component is

fed with the current data. This allows for an initialization of the

model so that switching can take place seamlessly. Notice here

that a trade-off exists between on one hand setting the parallel

processing time large enough in order to allow for a proper

model initialization, and on the other hand minimizing parallel

processing in order to reduce simulation time. The appropriate

parallel processing time has to be determined either by in-

depth system knowledge or by experiments.

A further challenge is to set the point in time where the

Publication 3: DATE 2010 65

switching occurs. In the case of FlexRay, its periodic and a-

priori known behavior can be used to find synchronization

points where the system is in a known state (e.g. at cycle,

frame or even bit borders). Hence, switching can take place

at such points without problems. The definition of switching

points is a rather system specific task with the basic goal of

determining either periodic or beneficial points during system

execution.

B. Performance analysis

In the run-time simulation model switching approach, the

developer has the possibility to simply adjust the trade-off

between the simulation performance and the model accuracy

achieved. This is of great advantage, as in fact the developer

can specify the simulation performance in advance, hence

adjusting the simulation time needed. By specifying the simu-

lated time (including parallel processing) for each abstraction

level of the switched component the developer can select the

relation between simulation performance and accuracy accord-

ing to the requested needs. This is shown in Figure 2. Thus,

the simulation performance improvement factor in comparison

with standard co-simulation methodologies is more or less

freely selectable by the developer. This is of great advantage

when simulating complex networks.

Model

Accuracy
Low:

Selected
Effects

Simulation
Speed

100%

High Level

100%

Low Level

Run-Time

Switched

High:

Multitude of
Effects

Slow Fast
Dynamically
Adaptable

...

...

Z %Y %

Co-Simulation

Model

Dynamically

Adaptable

Simulated Time

Fig. 2. Shifting the Complexity of Co-Simulation Models

To estimate the achieved simulation performance by apply-

ing the run-time co-simulation model switching to our FlexRay

network simulation we extended the theory presented in [2].

The total simulated time T in seconds (s) for each switched co-

simulation model consisting of M different abstraction levels

is written as T [s] =
∑M

n=1 Tn[s]. This time already includes

the defined amount of parallel processing. The total simulated

time spent on parallel processing per model abstraction level

n is

TPn
[s] =

X∑

i=1

tPni
(1)

with tPni
[s] as the parallel processing time for this abstraction

level n before switch number i is activated. Following this, the

simulated time where the abstraction level n is running stand-

alone because of switch i is stated as tSni
[s] and the total

simulated time where the simulation model for abstraction

level n is running stand-alone is

TSn
[s] =

X∑

i=1

tSni
(2)

with X as the total number of switches including this ab-

straction level. Summing up, the total simulated time for all

abstraction models including parallel processing is

T [s] =

M∑

n=1

Tn =

M∑

n=1

(TPn
+ TSn

) (3)

Out of this, a factor w for the estimated simulation perfor-

mance achieved by applying the run-time co-simulation model

switching approach can be derived.

w =
1

M∑
n=1

Tn · Cn

(4)

Here, Cn[
1
s] are the implementation dependent simulation

costs compared to real-time. This factor has to be derived

out of experiments or experience. Typical factors for Cn are

e.g. 106 − 109 for VHDL-AMS models or 102 − 104 for

SystemC models. Following this, the simulation performance

depending on the switching configuration and the abstraction

levels involved can be estimated as

w =
1

M∑
n=1

[
X∑
i=1

(tPni
+ tSni

)

]
· Cn

(5)

This allows the designer to compare the estimated performance

of different switching configurations. This factor is no absolute

value; it only shows the relation between different switching

configurations. For example, it can be calculated how a length-

ening of the parallel processing time or of the simulated time

for one abstraction level affects the total simulation perfor-

mance of the run-time switched co-simulation. An example

calculation will be shown in the next section.

IV. ADVANCED CO-SIMULATION OF DEPENDABLE

COMMUNICATION ARCHITECTURES:

THE FLEXRAY EXAMPLE

A. FlexRay co-simulation environment

The co-simulation environment developed within the TEO-

DACS project implements a co-simulation of a FlexRay

communication network from the physical layer up to the

application, see Figure 3. As co-simulation framework we use

the commercially available co-design tool CISC SyAD [11].

Additionally, we use the car simulator CarMaker / AVL

InMotionTM [12] to generate realistic data to be transferred

via the FlexRay network.

Regarding the simulation models of the network com-

ponents, we combine models at different abstraction levels

and implemented using different HDLs. The physical layer

(cables, active/passive star, transceiver) is implemented both

in more-detailed VHDL-AMS models and also using fast but

less-detailed SystemC simulation models. This provides us

with the ability to apply the run-time co-simulation model

switching approach to the most computational intensive layer:

the physical layer. The FlexRay communication controller

(data link layer) is implemented using SystemC.

The middleware (selected AUTOSAR [13] concepts) and

the software application are also implemented using SystemC

Publication 3: DATE 2010 66

Transceiver

(VHDL-AMS,

SystemC)

Transceiver

(VHDL-AMS,

SystemC)

Transceiver

(VHDL-AMS,

SystemC)

Transceiver

(VHDL-AMS,

SystemC)

Co-Simulation

Framework CISC SyAD®

CarMaker

Interface

FlexRay Channel
FlexRay Topology

(VHDL-AMS, SystemC)

Further

FlexRay Nodes

Communication

Controller

(SystemC)

Host (SystemC)

Communication

Controller

(SystemC)

FlexRay

Node

Host (SystemC)

Transceiver

(VHDL-AMS,

SystemC)

Car Simulator

CarMaker /

AVL InMotionTM

AUTOSAR
Functionality

Application

Communication

Controller

(SystemC)

FlexRay

Node

Host (SystemC)

Application

Communication

Controller

(SystemC)

FlexRay

Node

Host (SystemC)

Application

AUTOSAR
Functionality

AUTOSAR
Functionality

AUTOSAR
Functionality

Transceiver

(VHDL-AMS,

SystemC)

Transceiver

(VHDL-AMS,

SystemC)

Transceiver

(VHDL-AMS,

SystemC)

Further

FlexRay Nodes

Fig. 3. FlexRay Communication Network Simulation

and C/C++. Hence, the same application code can be re-used

for real hardware FlexRay controllers. By using the run-time

co-simulation switching this setup allows us to analyze the

complete network behavior and especially all the interactions

between the different layers of the network – from the physical

layer up to the application – within a reasonable amount of

time.

B. Experimental setup

For our experiments we created the sample FlexRay setup

shown in Figure 4. The network is consisting of 5 FlexRay

nodes including transceivers, communication controllers and

software. The topology with different cable lengths and the

FlexRay specific line termination is also shown in Figure 4.

We applied the run-time co-simulation model switching by

inserting SystemC-based splitters/mergers (switches; see Sec-

tion III) in the co-simulation to handle the switching pro-

cess. We switched between fast but less-detailed SystemC

simulation models for transceivers and cables (only including

length-based delay and attenuation) and very slow but more-

detailed VHDL-AMS models (including all cable effects like

reflections, termination etc.) for these components. The signals

to be switched are at the interface between the communication

controller and the transceiver: receive data (RxD) and transmit

data (TxD). This allows the investigation of effects occurring

at physical layer on higher layers like data link layer (e.g.

shortening/lengthening of bits, misinterpretations because of

low signal integrity) and application (e.g. missing data because

of frame corruption, problems due to startup/synchronization

errors etc). Also the other way is possible: effects of the

protocol configuration or the bit structure on the physical

waveforms can be analyzed.

An important topic when applying the run-time co-

simulation model switching is the choice of switching point

and parallel processing duration. As FlexRay is a time-

triggered communication protocol there exist pre-defined

points where the state of the system is completely known.

SWITCH
0

SWITCH
2

Communication

Controller 2
(SystemC)

Application

Communication

Controller 1

(SystemC)

Application

SWITCH
1

SWITCH
4

Transceiver

(VHDL-AMS)

Transceiver

(VHDL-AMS)

Transceiver

(VHDL-AMS)

1: VHDL-AMS

Topology Model

2.0m
0.4m

1.0m2.0mCommunication

Controller 0
(SystemC)

Application

Communication

Controller 4
(SystemC)

Application

Communication

Controller 3

(SystemC)

Application

SWITCH
3

Transceiver
(VHDL-AMS)

0.5m
0.8m (7.0m)

T

T … FlexRay Termination

Transceiver

(SystemC)

Transceiver

(SystemC)

Transceiver

(SystemC)

2.0m

0.4m

1.0m2.0m

Transceiver
(SystemC)

0.5m
0.8m (7.0m)

2.0m

Transceiver

(SystemC)

2.0m
T

Transceiver

(VHDL-AMS)

1.0m … Cable Segment Length

2: SystemC

Topology Model

T T

FlexRay

Node 0

FlexRay
Node 2

FlexRay

Node 4

FlexRay
Node 1

FlexRay
Node 3

Fig. 4. Run-Time Switched FlexRay Co-Simulation Example

Hence, it is the most advantageous solution to select the

switching points there with a parallel processing time large

enough to allow proper initialization of the co-simulation

model to be switched to. In our experiments, we defined

that most of the time the fast SystemC model for topology

and transceivers is used. However, in every frame the header

is transmitted via the more-detailed but slow VHDL-AMS

models.

In the experiments the following FlexRay-related configu-

ration is used: A total of 16 FlexRay communication cycles is

simulated, including startup and integration of the nodes. Each

cycle lasts 5ms and, if all nodes are integrated, contains 12

FlexRay frames. Each frame is 26µs long and transmitted at

10MBit/s. In each frame, the first 6µs (tS1i
) are transmitted via

the more-detailed VHDL-AMS (n = 1) models of topology

and transceiver. The remaining part (tS2i
= 20µs) of the frame

is transmitted using the fast SystemC (n = 2) models, see

Figure 4. We assume that the attributes of the signal integrity

will not change within one frame and therefore the detailed

analysis of the first 6µs will provide relevant results for the

entire frame. In this experiment, up to 12 switches occur per

cycle. Based on the FlexRay schedule and experiments, the

parallel processing time is set to tP1i
= tP2i

= 2µs.

C. Results

Four different experiments have been performed based on

the setup described in Section IV-B. Experiment one was

the setup shown in Figure 4 but using SystemC simulation

models only, hence, without switching. The second experiment

was performed using VHDL-AMS only for the models of

transceiver and cables. Here, also no switching was used.

The third experiment applied the run-time simulation model

switching approach to the co-simulation. The switching con-

figuration as described in Section IV-B was used and switching

Publication 3: DATE 2010 67

TABLE I
EXAMPLE SIMULATION TIME COMPARISON FOR ONE FLEXRAY CYCLE

WITH 12 FRAMES

100% VHDL-AMS Switched 100% SystemC

Seconds 88012 31757 307

Factor 287 104 1

occurred after the FlexRay header (6µs) has been transmitted.

For these first three experiments, a valid FlexRay network was

simulated (correct cable length and termination). In the fourth

experiment, the network topology was modified. The line from

the bus to node 3 has been altered from 0.8m to 7.0m. The

faulty termination concept led to several physical effects (e.g.

reflections) that have degraded the signal integrity within the

FlexRay network. For this experiment, the same switching

setup as in experiment three was used.

In the first three experiments, the switching within the

frames worked as expected and the simulation performance

was improved compared to pure VHDL-AMS simulation. A

comparison is shown in Table I. As the network topology

was designed according to the FlexRay specification, the

frames were transmitted correctly and the upper layers worked

without problems.

However, the situation is a bit different for the fourth

example: here, the setup can definitely be regarded as bor-

derline case because of the 7.0m long, unterminated line to

node 3, leading to reflections. The simulation demonstrated

that, depending on the transmitting node, different nodes have

problems in receiving correct frames. For example, the data

node 2 is sending can be received without any problems by

nodes 0, 1 and 4, while node 3 reports a header error check

failure. However, if node 1 is transmitting the nodes 0, 2 and 3

receive the data correctly, while node 4 reports an error in the

frame header. These effects lead to reception asymmetry that

can move the system into inconsistent states and thus should

be avoided.

In Figure 6 it can be seen that for a frame transmitted

by node 4 (TxD4), node 3 using the VHDL-AMS model is

not able to receive any meaningful data on RxD3 because of

reflections etc. Hence, the communication controller very early

reports an error that it is not able to find a byte start sequence

(BSS), see Figure 5. The problems can be easily detected by

looking at the resulting differential voltage waveform at node

3. It is far away from any meaningful state. In Figure 6, the

SystemC topology model starts parallel processing at around

285.749ms before switching at 285.751ms. During parallel

processing the output of the SystemC model is not used. It can

be seen that the SystemC model does not show any distortion

(because it only includes length-based delay and attenuation);

hence, no error would be detected during the whole simulation

if the SystemC model would be the primary model all the

time. The situation is a bit different for nodes 0, 1 and 2. In

fact, using the VHDL-AMS model they are able to receive

the header data (transmitted by node 4) correctly most of the

time. But at around 285.750ms, one bit sequence gets altered

by a reflection. The high bit sequence is shortened and the

following low bit sequence is stretched, leading to a header

checksum error detected by the controllers, see Figure 5. By

looking at the SystemC data it is obvious that this error

does not happen there. These errors definitely influence the

application as, depending on the sender node, a node may or

may not receive frames correctly. At the worst, the FlexRay

network may lose its synchronization and get split apart in

different clusters of nodes that are not able to communicate

with each other (cliques). The switched simulation detected

all of the higher level errors like shown in Figure 5 that were

also detected during the full VHDL-AMS only simulation run.

Node 3 - codec: BSS_ERROR!

Time: 285747500 ns

Node 2 - WARNING CODEC CHANNEL A: HEADER CRC FAILED!

Time: 285751650 ns

Node 1 - WARNING CODEC CHANNEL A: HEADER CRC FAILED!

Time: 285751662500 ps

Node 0 - WARNING CODEC CHANNEL A: HEADER CRC FAILED!

Time: 285751675 ns

Fig. 5. Communication Controller Error Detection Output Excerpt (Exp. 4)

With these experimental results we are able to verify the

simulation performance estimation proposed in Section III.

We disregard the negligible simulated times with no frame

transmission (for easier determination of CAMS and CSY SC)
and use the switching configuration described in Section IV-B.

Based on experiments we determine CAMS = C1 =
106, CSY SC = C2 = 3 · 103 and i = 12 (as 12 frames

are transmitted in one cycle). By using Formula 5 it is

calculated that the simulation performance difference between

pure VHDL-AMS simulation and the switched simulation

should be about 3.22. Via Table I it is ascertainable that

the actual difference is 2.79, a discrepancy of about 15%

to the estimation. Considering that the values of CAMS and

CSY SC are basic approximations to the reality this is a rather

good result. The simulation performance of the switched

co-simulation compared to the SystemC only simulation is

estimated by Formula 5 as 103 while the results of Table I

show a simulation performance difference of 104, hence nearly

identical results.

V. CONCLUSION

Holistic simulation of automotive communication architec-

tures is strongly required for an early system integration as

well as for an efficient cross-domain design exploration and

optimization. The highly heterogeneous nature of the system

under consideration strongly limits the simulation (and there-

fore the analysis) capabilities. In this work, we have integrated

a run-time model switching method within our heterogeneous

co-simulation model of a FlexRay network. The rationale for

the expected performance increase has been presented and

further experimentally validated. Another important result of

this work is the fault propagation analysis within the com-

munication architecture. Hence, we have pointed out that the

same faulty topology might present very different symptoms

and lead to different reactions of the system.

Publication 3: DATE 2010 68

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o
lt
a
g
e
 N

o
d
e
 4

 (
V

)

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o
lt
a
g
e
 N

o
d
e
 0

 (
V

)

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o
lt
a
g
e
 N

o
d
e
 1

 (
V

)

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o
lt
a
g
e
 N

o
d
e
 2

 (
V

)

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o
lt
a
g
e
 N

o
d
e
 3

 (
V

)

Time (ms)

 285.747 285.748 285.749 285.75 285.751

T
x
D

4

 285.747 285.748 285.749 285.75 285.751

R
x
D

0

VHDL-AMS
SystemC

 285.747 285.748 285.749 285.75 285.751

R
x
D

1

VHDL-AMS
SystemC

 285.747 285.748 285.749 285.75 285.751

R
x
D

2

VHDL-AMS
SystemC

 285.747 285.748 285.749 285.75 285.751

R
x
D

3

Time (ms)

VHDL-AMS
SystemC

Fig. 6. TxD/RxD Excerpt of a Switched FlexRay Frame

ACKNOWLEDGMENT

The authors wish to thank the ”COMET K2 Forschungsförderungs-
Programm” of the Austrian Federal Ministry for Transport, Innovation
and Technology (BMVIT), the Austrian Federal Ministry of Economics
and Labour (BMWA), Österreichische Forschungsförderungsgesellschaft mbH
(FFG), Das Land Steiermark and Steirische Wirtschaftsförderung (SFG) for
their financial support. Additionally we would like to thank the supporting
companies and project partners austriamicrosystems, AVL List and CISC
Semiconductor as well as Graz University of Technology and the University
of Applied Sciences FH Joanneum. Further information about the TEODACS
project can be found on www.teodacs.com.

REFERENCES

[1] FlexRay Communications System – Protocol Specification Version
2.1 A, FlexRay Consortium, December 2005. [Online]. Available:
http://www.flexray.com

[2] M. Karner, C. Steger, R. Weiss, and E. Armengaud, “Optimizing
HW/SW Co-Simulation based on Run-Time Model Switching,” in
FDL2009, Forum on specification & Design Languages, September
2009, pp. 1–6.

[3] M. Krause, O. Bringmann, A. Hergenhan, G. Tabanoglu, and W. Rosen-
stiel, “Timing Simulation of Interconnected AUTOSAR Software-
Components,” in Design, Automation & Test in Europe Conference &
Exhibition, 2007. DATE ’07, 2007, pp. 1–6.

[4] V. Lari, M. Dehbashi, S. G. Miremadi, and N. Farazmand, “Assessment
of Message Missing Failures in FlexRay-Based Networks,” in Depend-
able Computing, 2007. PRDC 2007. 13th Pacific Rim International
Symposium on, 2007, pp. 191–194.

[5] W. S. Kim, H. A. Kim, J.-H. Ahn, and B. Moon, “System-Level
Development and Verification of the FlexRay Communication Controller
Model Based on SystemC,” Future Generation Communication and
Networking, vol. 2, pp. 124–127, 2008.

[6] C. Xu and Y. Zhang, “Simulation of FlexRay Communication Using C
Language,” Computer Science and Computational Technology, Interna-
tional Symposium on, vol. 2, pp. 272–276, 2008.

[7] FlexRay Transceiver Model, CISC Semiconductor Design+Consulting
GmbH, Klagenfurt, Austria, Feb. 2007. [Online]. Available:
http://www.cisc.at/flexray

[8] NXP FlexRay network simulations: Safeguard the operation
of your FlexRay network architectures, NXP Semicon-
ductors, The Netherlands, Nov. 2007. [Online]. Available:
http://www.nxp.com/acrobat download/literature/9397/75016200.pdf

[9] T. Gerke and D. Bollati, “Development of the Physical Layer and
Signal Integrity Analysis of FlexRay Design Systems,” in Simulation
& Modelling Mechatronics (SP-2111), 2007.

[10] R. Buchmann, M. Cartron, and Y. Bonhomme, “Transaction-based
Modeling for Large Scale Simulations of Heterogeneous Systems,” in
Simutools ’09: Proceedings of the 2nd International Conference on
Simulation Tools and Techniques. ICST, Brussels, Belgium, Belgium:
ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), 2009, pp. 1–2.

[11] SyAD Online Documentation, CISC Semiconductor Design+Consulting
GmbH, Klagenfurt, Austria, September 2009. [Online]. Available:
http://www.cisc.at/syad

[12] AVL Hybrid Development PlatformTM, AVL List GmbH, May 2007.
[Online]. Available: http://www.avl.com

[13] AUTOSAR: Specification of the Virtual Functional Bus, AUTOSAR
GbR, February 2008. [Online]. Available: http://www.autosar.org

Publication 3: DATE 2010 69

Publication 4: Patent Application (AT/EP) 70

Printed by Jouve, 75001 PARIS (FR)

(19)

E
P

2
29

9
37

6
A

1

��&����������
(11) EP 2 299 376 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
23.03.2011 Patentblatt 2011/12

(21) Anmeldenummer: 10177698.7

(22) Anmeldetag: 20.09.2010

(51) Int Cl.:
G06F 17/50 (2006.01)

(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME RS

(30) Priorität: 18.09.2009 AT 14792009

(71) Anmelder:
• Kompetenzzentrum- das Virtuelle Fahrzeug

Forschungsgesellschaft mbH (VIF)
8010 Graz (AT)

• Technische Universität Graz
8010 Graz (AT)

• Cisc Semiconductor Design+Consulting Gmbh
9020 Klagenfurt (AT)

(72) Erfinder:
• Steger, Christian

A-8045, Graz (AT)
• Karner, Michael

A-8200, Hofstätten/Raab (AT)
• Armengaud, Eric

A-8045, Graz (AT)

(74) Vertreter: Margotti, Herwig Franz
Schwarz & Partner
Patentanwälte
Wipplingerstrasse 30
1010 Wien (AT)

(54) Verfahren zum Umschalten von heterogenen Simulationsmodellen zur Laufzeit

(57) Diese Erfindung beschreibt ein Verfahren, um
zur Laufzeit zwischen verschiedenen Simulationsebe-
nen für dieselbe Komponente umzuschalten und da-
durch die Simulationseffizienz der Co-Simulationsumge-
bung zu steigern. Die Beschreibung der jeweiligen Kom-
ponente erfolgt in mehreren Simulationsebenen, welche
in einer geeigneten Hardwarebeschreibungssprache
und auf einer geeigneten Abstraktionsebene modelliert
sind. Eine für die Simulation verwendete Komponente
kann dabei in verschiedenen Hardwarebeschreibungs-

sprachen und auf verschiedenen Abstraktionsebenen
implementiert werden. Diese Erfindung kombiniert damit
die Möglichkeit, auf hoher Abstraktionsebene (z.B. Sy-
stemebene) lange simulierbare Zeiten zu erzielen mit der
Möglichkeit, für einen definierten Abschnitt der simulier-
ten Zeit die hohe Genauigkeit eines auf tiefer Ebene (z.B.
physikalische Ebene) realisierten Simulationsmodells
erzielen zu können. Der Hauptvorteil dieser Erfindung ist
die Möglichkeit, die Simulation in Intervalle hoher Ge-
nauigkeit und Intervalle mit niedriger Genauigkeit einzu-
teilen.

Publication 4: Patent Application (AT/EP) 71

EP 2 299 376 A1

2

5

10

15

20

25

30

35

40

45

50

55

Beschreibung

[0001] Für Embedded Systems (Eingebettete Syste-
me) ist die Verhaltenssimulation auf Systemebene (d.h.
auf Ebene des gesamten Systems inkl. Informationsver-
arbeitung und Umwelt des Systems) ein wichtiger Schritt,
um sowohl die interne funktionale Architektur des Sy-
stems als auch die Schnittstellen zwischen den Kompo-
nenten des Systems (d.h. SubSysteme des Gesamtsy-
stems, in der Literatur auch Modul genannt) zu validieren.
Dafür werden typischerweise abstrakte Modelle der ein-
zelnen Komponenten verwendet. Diese high-level Mo-
delle abstrahieren allerdings unter Umständen ein be-
stimmtes Modellverhalten, welches das komplette Sy-
stem beeinflussen kann und die Realität nur schlecht ab-
bildet. Eine besondere Herausforderung ist es, bereits in
einem frühen Stadium der Entwicklung ausgewählte
Komponenten durch besonders detaillierte Verhaltens-
modelle (d.h. ein Modell, welches wesentliche Aspekte
des Verhaltens einer Komponente abbildet) darzustel-
len, um damit schon früh mit ausreichender Genauigkeit
die gesamte Systemarchitektur validieren zu können.
Unter Verhaltensmodellierungssprachen ist in diesem
Zusammenhang allgemein eine Beschreibungssprache
(z.B. Hardwarebeschreibungssprache wie SystemC, Sy-
stemC-AMS, VHDL-AMS aber auch Softwarebeschrei-
bungssprache wie C/C++) des Verhaltens von Kompo-
nentenmodellen zu verstehen. Verhaltensmodellie-
rungssprachen ermöglichen die Dokumentation, die Mo-
dellierung, die Simulation, den Entwurf und die Herstel-
lung von Systemen.
[0002] Auf Systemebene liegt das Hauptaugenmerk
auf einer kurzen Simulationszeit (hohe Simulationsge-
schwindigkeit) um eine lange simulierte Zeit (Zeitintervall
unter Beobachtung) zu erzielen. Auf physikalischer Ebe-
ne, auf der die elektrischen und mechanischen Eigen-
schaften des Systems modelliert werden (z.B. Signalpe-
gel, Kontakte) mit diversen komplexen analogen Kom-
ponenten dagegen sind die Simulationszeiten wesentlich
länger. Die Anforderungen der verschiedenen Ebenen
an die Simulationsmodelle widersprechen sich also: Eine
simulierte Zeit von mehreren Sekunden oder Minuten auf
Systemebene kann nicht mittels low-level physikalischen
Modellen erreicht werden. In diesem Fall würden sich
enorme Simulationszeiten ergeben und die Simulation
könnte nicht bzw. nicht in einer vernünftigen Zeit abge-
schlossen werden. Auf der anderen Seite sind die simu-
lierten Zeiten, die mit Modellen auf physikalischer Ebene
erreichbar sind (z.B. einige Millisekunden), deutlich zu
kurz für das abstrakte Modell auf Systemebene. In diesen
kurzen Zeiträumen geschieht auf Systemebene mögli-
cherweise überhaupt nichts, was die Simulation auf Sy-
stemebene nutzlos machen würde.
[0003] Ein möglicher Lösungsansatz für diese Proble-
matik ist Hardware/Software Co-Simulation. Bei der Co-
Simulation kann der Entwickler unterschiedliche Teile
des Systems mit unterschiedlichen Verhaltensmodellie-
rungssprachen bzw. auf unterschiedlichen Abstraktions-

ebenen modellieren und in einer gemeinsamen Co-Si-
mulation simulieren. Die Festlegung des Simulationsmo-
dells für eine Komponente geschieht statisch vor der Si-
mulation, und das Modell kann nicht während der Simu-
lation geändert werden.
[0004] Diese Erfindung beschreibt ein Verfahren, um
zur Laufzeit zwischen verschiedenen Simulationsebe-
nen für dieselbe Komponente umzuschalten und da-
durch die Simulationseffizienz der Co-Simulationsumge-
bung zu steigern. Die Beschreibung der jeweiligen Kom-
ponente erfolgt in mehreren Simulationsebenen, welche
in einer geeigneten Verhaltensmodellierungssprache
und auf einer geeigneten Abstraktionsebene modelliert
sind. Eine für die Simulation verwendete Komponente
kann dabei in verschiedenen Verhaltensmodellierungs-
sprachen und auf verschiedenen Abstraktionsebenen
implementiert werden. Die Idee ist nun, dass der Ent-
wickler durch die Erfindung die Möglichkeit besitzt zu de-
finieren, in welchen Zeitabschnitten der simulierten Zeit
welche Simulationsebene für die Komponente zum Ein-
satz kommen soll, wann also z.B. eine langsame, detail-
lierte Simulationsebene benötigt wird und wann eine ein-
fache, aber schnelle Simulationsebene für die Kompo-
nente ausreicht. Diese Erfindung kombiniert damit die
Möglichkeit, auf hoher Abstraktionsebene (z.B. Syste-
mebene) lange simulierte Zeiten zu erzielen mit der Mög-
lichkeit, für einen definierten Abschnitt der simulierten
Zeit die hohe Genauigkeit eines auf tiefer Ebene (z.B.
physikalische Ebene) realisierten Simulationsmodells
erzielen zu können.
[0005] Einige Forschungsgruppen beschäftigen sich
mit Co-Simulation im Allgemeinen. Dabei sind diverse
Co-Simulationsumgebungen entstanden, die es durch
verschiedenste Methoden erlauben, unterschiedliche
Abstraktionsebenen, Entwicklungssprachen und Simu-
latoren miteinander zu verbinden. So schlagen z.B.
Bouchhima et al. ("A SystemC/Simulink Co-Simulation
Framework for Continuous/Discrete-Events Simulation",
Behavioral Modeling and Simulation Workshop, Pro-
ceedings of the 2006 IEEE International, pages 1-6,
2006) eine Co-Simulationsumgebung vor, die es erlaubt,
SystemC- und Simulink-Modelle miteinander zu koppeln.
Damit wird auch eine Verbindung zwischen zeitkontinu-
ierlicher und zeitdiskreter Simulation geschaffen. Birrer
et al. ("Incorporating SystemC in Analog/Mixed-Signal
Design Flow. In Forum on Specification and Design Lan-
guages", Proceedings of the 8th International, pages
173-178, 2005) beschäftigen sich mit der Integrierung
von SystemC Modellen in eine Verilog-A/AMS Simula-
tion. Damit versuchen sie die Lücke zwischen Besch-
reibung des Systems auf Systemebene und seiner Hard-
wareimplementierung zu schließen. Ein anderer Ansatz
für eine Co-Simulationsumgebung ist das HW/SW Co-
Design Tool CISC SyAD ("System Architect Designer")
(CISC Semiconductor. SyAD. CISC Semiconductor, Kla-
genfurt, Austria, Online Documentation, http:
//www.cisc.at/syad, 2009). Diese Umgebung ermöglicht
es diverse Simulatoren sowohl aus der zeitdiskreten als

1 2

Publication 4: Patent Application (AT/EP) 72

EP 2 299 376 A1

3

5

10

15

20

25

30

35

40

45

50

55

auch der zeitkontinuierlichen Domäne miteinander zu
verbinden. Eine ähnliche Umgebung ist CosiMate der
Firma ChiasTek (ChiasTek Inc. CosiMate. ChiasTek Inc,
Chicago, USA, Online Documentation, http://www.chi-
astek.com, 2009). Die vorliegende Erfindung erweitert
den Stand der Technik dahingehend, dass eine Um-
schaltung zur Laufzeit auch für Komponentenmodelle in
unterschiedlichen Verhaltensbeschreibungssprachen
erfolgen kann.
[0006] Es existieren bereits Forschungsprojekte im
Gebiet des Umschaltens zwischen verschiedenen Sim-
ulationsebenen. Die existierenden Projekte beschäftigen
sich allerdings mit dem Umschalten zwischen Simula-
tionsebenen implementiert in derselben zeitdiskreten
Hardwarebeschreibungssprache und nicht mit
sprachübergreifendem Umschalten (verschiedenen
Hardwarebeschreibungssprachen und Abstraktionse-
benen, zeitdiskret und auch zeitkontinuierlich) und den
sich daraus ergebenden Problemen. Hines und Boriello
demonstrieren in ihren Arbeiten ("Selective Focus as a
Means of Improving Geographically Distributed Embed-
ded System Co-Simulation", Proceedings of the 8th IEEE
International Workshop on Rapid System Prototyping,
pages 58-62, 1997) und ("Dynamic Communication Mod-
els in Embedded System Co-Simulation" Proceedings of
the 34th Design Automation Conference, pages
395-400, 1997) einen Ansatz zur Verwendung von dy-
namischen Kommunikationsmodellen mittels des Tools
"Pia". Dieses Tool erlaubt es dem Entwickler die Kom-
munikation zwischen einzelnen Komponenten mit unter-
schiedlichem Detailgrad zu spezifizieren. Dies ermögli-
cht es, für verschiedene Teile des Kommunikationssys-
tems den verwendeten Detailgrad anzupassen. Es muss
allerdings zwingend die von Hines/Boriello entworfene
Designsprache "Pia" verwendet werden um die notwen-
digen Schnittstellen und Komponenten auf den unter-
schiedlichen Abstraktionsebenen zu beschreiben. Bei
diesem Ansatz lassen sich nur die Abstraktionsebenen
der Hardwareschnittstellen ändern und nicht komplette
Modelle. Ein ähnlicher Ansatz wird auch von Yoo/Jerraya
vorgeschlagen ("Hardware/Software Cosimulation from
Interface Perspective", IEE Proceedings, Computers
and Digital Techniques, 152(3):369-379, 2005) wo
zwischen verschiedenen Abstraktionsebenen (in
derselben Implementierungssprache) für eine Prozes-
sorsimulation umgeschaltet werden soll. Die Autoren ge-
ben allerdings keine konkrete Lösung dafür, sondern
definieren das Problem lediglich als mögliches Forsc-
hungsgebiet. Andere Autoren beschäftigen sich mit dem
Umschalten zwischen verschiedenen Simulationsmod-
ellen implementiert auf Transaktionsebene (TLM) in
derselben Hardwarebeschreibungssprache. Radetzki et
al. ("Accuracy-Adaptive Simulation of Transaction Level
Models", Design, Automation and Test in Europe, 2008.
DATE ’08, pages 788-791, 2008.) zeigen eine SystemC
basierte Lösung zum Umschalten zwischen ver-
schiedenen SystemC-TLM Modellen zur Laufzeit. In Ab-
hängigkeit vom momentanen Modellzustand wird ein

Simulationsmodell gewählt. Ein ähnlicher Ansatz wird
von Beltrame et al. ("Multi-Accuracy Power and Perform-
ance Transaction-Level Modeling. Computer-Aided De-
sign of Integrated Circuits and Systems", IEEE Transac-
tions on, 26(10):1830-1842, 2007.) verfolgt. Hier wird
SystemC-TLM erweitert um SystemC-TLM Modelle ver-
schiedener Genauigkeit zur Laufzeit verwenden zu kön-
nen.
[0007] Das Patent DE 69631278 T2 beschreibt eine
allgemeine Co-Simulationsmethodik. Es beinhaltet kei-
nerlei Umschalten zwischen verschiedenen Simulations-
modellen zur Laufzeit. Im Patent US 7,191,111 B2 wird
ein Weg beschrieben, einen Simulator zur Laufzeit zu
deaktivieren. In der Zwischenzeit wird allerdings kein an-
derer Simulator für die jeweilige Komponente verwendet,
sondern sie ist komplett deaktiviert. Das Patent US
7,146,300 beschreibt eine allgemeine Co-Simulations-
methodik und beinhaltet keinerlei Umschalten zwischen
verschiedenen Simulationsmodellen zur Laufzeit. Das
Patent US 7,069,204 beschreibt eine Methodik in Hin-
sicht auf Performance Hardware und Software zu mo-
dellieren. Es beinhaltet keinerlei Umschalten zwischen
verschiedenen Simulationsmodellen zur Laufzeit. Das
Patent US 5,870,588 umfasst eine allgemeine Co-Simu-
lationsmethodik. Es beinhaltet keinerlei Umschalten zwi-
schen verschiedenen Simulationsmodellen zur Laufzeit.
In der internationalen Patentanmeldung WO
2007/025491 A1 wird eine Möglichkeit beschrieben, die
Synchronisation zwischen verschiedenen Modellen ei-
ner Co-Simulation zu optimieren. Hier werden allerdings
keine unterschiedlichen Simulationsmodelle für dieselbe
Komponente verwendet, und es kann daher auch nicht
zur Laufzeit das Simulationsmodell gewechselt werden.
Die Patentanmeldung US 2007/0192079 A1 beschreibt
eine zweistufige CPU Simulation. Jede Instruktion wird
zuerst offline mit hoher Genauigkeit simuliert und das
Ergebnis gespeichert. Während der gesamten Simulati-
on wird anschließend ein abstraktes CPU-Verhalten mo-
delliert, das auf die vorher berechneten Ergebnisse zu-
rückgreift mit einer Art von Lookup-Table: effektiv gibt es
also nur ein Simulationsmodell für die Komponente und
das wird im Vorhinein vollständig "offline" berechnet.
Dies ist allerdings nur möglich, weil es eine sehr begrenz-
te Anzahl verschiedener Instruktionen gibt. Es unter-
scheidet sich also wesentlich von der vorliegenden Er-
findung.
[0008] Die Patentanmeldung US 2009/0063120 A1
beschreibt eine allgemeine Co-Simulationsmethodik
bzw. Emulationsmethodik für die Kopplung von echter
Hardware und Software. Dabei wird beschrieben, wie die
Interaktion zwischen Hardware und Software durchge-
führt wird. Weiters wird beschrieben, wie die Hardware
zur Unterstützung der Simulation genutzt wird. Es be-
inhaltet keinerlei Umschalten zwischen verschiedenen
Simulationsmodellen zur Laufzeit.
[0009] Das Dokument "SystemC-VHDL co-simulation
and synthesis in the HW domain" (Bombana, M. et al.)
beschreibt eine allgemeine Co-Simulationsmethodik zur

3 4

Publication 4: Patent Application (AT/EP) 73

EP 2 299 376 A1

4

5

10

15

20

25

30

35

40

45

50

55

Co-Simulation zwischen SystemC und VHDL. Es be-
inhaltet keinerlei Umschalten zwischen verschiedenen
Simulationsmodellen zur Laufzeit.
[0010] Die Patentanmeldung EP 0 772 140 A1 be-
schreibt eine allgemeine HW/SW Co-Design Methodik
unter Verwendung von Co-Simulation. Dabei wird ein
Entwurfsprozess für ein System unter Verwendung von
HW/SW Co-Design und Co-Simulation beschrieben. Es
beinhaltet keinerlei Umschalten zwischen verschiede-
nen Simulationsmodellen zur Laufzeit.
[0011] Die vorliegende Erfindung überwindet die ge-
schilderten Nachteile des Standes der Technik durch Be-
reitstellen eines Verfahrens zur Simulation von Kompo-
nenten unter Nutzung von Co-Simulation mit den Merk-
malen des Anspruchs 1. Vorteilhafte Ausgestaltungen
der Erfindung sind in den Unteransprüchen dargelegt.
[0012] Der Hauptvorteil dieser Erfindung ist die Mög-
lichkeit, die Simulation in Intervalle hoher Genauigkeit
und Intervalle mit niedriger Genauigkeit einzuteilen.
Während Intervallen mit hoher Genauigkeit kommen re-
chenintensive und hochdetaillierte Simulationsmodelle
zum Einsatz, während in Intervallen niedriger Genauig-
keit einfachere, aber dafür schnellere Modelle verwendet
werden. Die Performance der Co-Simulation wird durch
die Möglichkeit des Umschaltens zur Laufzeit zwischen
verschiedenen Simulationsmodellen für dieselbe Kom-
ponente enorm verbessert. Dadurch wird für komplexe
Systeme überhaupt erst die Simulation eines ausrei-
chend großen simulierten Zeitraumes mit vertretbarer Si-
mulationszeit möglich. In dieser Erfindung wird daher
vorgeschlagen, dynamisch zur Laufzeit der Co-Simula-
tion zwischen verschiedenen Simulationsmodellen und
Abstraktionsebenen für eine Komponente umzuschal-
ten. Durch die dadurch wesentlich verkürzte Simulations-
zeit wird der Entwickler in die Lage versetzt, das gesamte
System über eine lange simulierte Zeit zu beobachten
und gleichzeitig aber einen Zeitraum zu definieren, in
dem die erzielte Simulationsgenauigkeit massiv erhöht
wird. Das System kann also mit einem schnellen und
ungenauen Simulationsmodell unter normalen Umstän-
den simuliert werden, während zum Zeitpunkt des Auf-
tretens besonderer Effekte (z.B. hinsichtlich elektroma-
gnetischer Verträglichkeit) auf ein hochdetailliertes Si-
mulationsmodell der Komponente umgeschaltet wird,
um eine bessere Genauigkeit der Ergebnisse zu erzielen.
[0013] Ein weiterer Punkt der Erfindung umfasst das
automatisierte Umschalten zwischen verschiedenen Si-
mulationsmodellen für dieselbe Komponente. Durch Vor-
gabe bestimmter, einstellbarer Kriterien wie Verwen-
dungsgrad des Komponentenmodells (d.h. wird eine
Komponente derzeit überhaupt angewendet) oder vor-
ausberechnete Abweichung der Genauigkeiten der Mo-
delle für eine gegebene Komponente wird automatisiert
zwischen den verschiedenen Simulationsmodellen zur
Laufzeit gewechselt. Wird also beispielsweise anhand
der Parameter erkannt, dass nun eine besonders kriti-
sche Phase erreicht wird, wird automatisch auf das dafür
geeignete hochdetaillierte Simulationsmodell umge-

schaltet. Ein Verlassen des kritischen Bereichs wird
ebenso erkannt und damit automatisiert wieder auf ein
schnelleres, aber ungenaueres Simulationsmodell ge-
wechselt, um so die Gesamtsimulationszeit so kurz wie
möglich zu halten, aber gleichzeitig in besonders inter-
essanten Simulationsintervallen eine möglichst hohe Si-
mulationsgenauigkeit zu erzielen.
[0014] Eine detaillierte Beschreibung der Erfindung
wird beispielhaft anhand von Zeichnungsfiguren durch-
geführt. In diesen Figuren zeigen:

Fig. 1 eine Darstellung des erfindungsgemäßen
Prinzips des Umschaltens zwischen verschiedenen
Simulationsmodellen für eine Komponente zur Lauf-
zeit in einer heterogenen Co-Simulationsumgebung;

Fig. 2 die interne und externe Ansicht auf die Kom-
ponente gemäß Fig. 1 mit verschiedenen Simulati-
onsmodellen, zwischen denen zur Laufzeit umge-
schaltet wird;

Fig. 3 ein Zeitdiagramm, das den Zusammenhang
für die Komponente mit verschiedenen Simulations-
modellen zwischen Abstraktionsebene, Simulati-
onsgeschwindigkeit und erzielbarer Simulationsge-
nauigkeit nach außen hin darstellt; und

Fig. 4 ein Beispiel für eine Co-Simulation eines Flex-
Ray Netzwerks unter Anwendung der vorliegenden
Erfindung.

[0015] In Fig. 1 ist beispielhaft das erfindungsgemäße
Prinzip des Umschaltens zwischen verschiedenen Simu-
lationsmodellen (sowohl Hardware, Software, oder ge-
mische Ausführungsform) für eine Komponente A (z.B.
physikalische Ebene eines Netzwerks, wie in Fig. 4 dar-
gestellt) zur Laufzeit in einer heterogenen Co-Simulati-
onsumgebung dargestellt. Die drei Blöcke in der Mitte
repräsentieren dabei die verschiedenen Simulationsmo-
delle A1 bis A3 für die Komponente A, zwischen denen
zur Laufzeit umgeschaltet werden kann. Die Simulations-
modelle A1 bis A3 repräsentieren unterschiedliche Si-
mulationsebenen. Die Komponenten B und D stehen da-
bei auszugsweise für die restlichen Komponenten (z.B.
Softwareapplikation und Umwelt, wie in Fig. 4 verdeut-
licht) des zu simulierenden Systems. Die beiden Blöcke
S1 und S2 sind dafür zuständig, dass für die Komponente
A jeweils auf das richtige Simulationsmodell A1 - A3 um-
geschaltet wird und dienen in weiterer Folge als Schnitt-
stelle zur restlichen Co-Simulation (Funktionsprinzip ei-
nes Multiplexers bzw. DeMultiplexers). Darüber hinaus
sind sie für die Synchronisierung der verwendeten Simu-
lationsmodelle A1-A3 zuständig (rechtzeitige Aktivierung
eines Simulationsmodells einer Komponente vor der
Umschaltung auf ein anderes Simulationsmodell zur
Synchronisierung des internen Modellzustandes). Sie
führen auch die automatisierte Auswahl der jeweils ge-
eigneten Modellabstraktionsstufe, basierend auf defi-

5 6

Publication 4: Patent Application (AT/EP) 74

EP 2 299 376 A1

5

5

10

15

20

25

30

35

40

45

50

55

nierbaren Kriterien Pi, wie Verwendungsgrad des Kom-
ponentenmodells (d.h. wird eine Komponente derzeit
überhaupt angewendet) oder vorausberechnete Abwei-
chung der Genauigkeiten der Modelle für eine gegebene
Komponente durch. Damit stellen sie einen wesentlichen
Punkt der Erfindung dar.
[0016] Die Simulationsmodelle einer gegebenen Kom-
ponente A1 bis A3 können unterschiedliche Komplexität
aufweisen und sind unabhängig von der Verhaltensmo-
dellierungssprache. Im Fall von unterschiedlicher Ver-
haltensmodellierungssprache wird das Prinzip der Co-
Simulation angewendet (d.h. Einbindung von mehreren
Simulationssprachen in ein Simulationsframework für die
gesamtheitliche Simulation eines Systems mit heteroge-
nen Komponenten).
[0017] Fig. 2 zeigt die interne und externe Ansicht auf
die Komponente A, die die verschiedenen Simulations-
modelle A1, A2, A3 umfasst, zwischen denen zur Laufzeit
umgeschaltet wird. Der obere Teil von Fig. 2 zeigt die
internen Abläufe während der Simulation, die das Um-
schalten betreffen. Es wird gezeigt, wie zwischen den
verschiedenen Simulationsebenen (Hoch, Mittel, Tief),
in den Figuren als Abstraktionsebenen bezeichnet, ge-
wechselt wird. Dabei ist jeweils eine kurze Phase nötig,
in der das als nächstes zu verwendende Simulationsmo-
dell A1, A2, A3 parallel zum momentan laufenden Simu-
lationsmodell A1, A2, A3 ausgeführt wird, bevor ein Um-
schaltvorgang zwischen den beiden Simulationsmodel-
len stattfindet. Dies ist notwendig, um die beiden Modelle
miteinander zu synchronisieren. Eine andere Synchro-
nisierungsmöglichkeit ist, dass dem nachfolgenden Si-
mulationsmodell der für ein nahtloses Umschalten not-
wendige interne Zustand von extern eingeprägt wird, be-
vor das Umschalten zwischen den Simulationsmodellen
stattfindet. Dies muss aber durch das Simulationsmodell
unterstützt werden. Der untere Teil von Fig. 2 zeigt die
externe Ansicht auf die Komponente A, wenn als Syn-
chronisierungsvariante Parallelsimulation eingesetzt
wird. Dabei ist ersichtlich, dass der Übergang zwischen
den verschiedenen Simulationsmodellen von außen be-
trachtet nahtlos geschieht, die Parallelberechnung also
außerhalb der Komponente A nicht erkennbar ist.
[0018] Fig. 3 stellt ein Zeitdiagramm dar, in dem für die
verschiedenen Simulationsmodelle A1, A2, A3 der Kom-
ponente A der Zusammenhang zwischen Abstraktions-
ebene, Simulationsgeschwindigkeit und erzielbarer Si-
mulationsgenauigkeit nach außen hin dargestellt ist. Da-
bei ist ersichtlich, dass eine niedrige (tiefe) Abstraktions-
ebene der Komponente A (d.h. es läuft das Simulations-
modell A3 der Komponente A) eine geringe Simulations-
geschwindigkeit und hohe Simulationsgenauigkeit der
Komponente bewirkt. Dasselbe gilt auch umgekehrt: ei-
ne hohe Abstraktionsebene (d.h. es läuft das Simulati-
onsmodell A1 der Komponente A) führt zu hoher Simu-
lationsgeschwindigkeit, aber niedriger Simulationsge-
nauigkeit der Komponente. Weiter ist zu sehen, dass
durch die Phase der Parallelberechnung (siehe Figur 2)
die Simulationsgeschwindigkeit während der Parallelbe-

rechnung absinkt.
[0019] Fig. 4 zeigt ein Beispiel für eine Co-Simulation
eines FlexRay Netzwerks (Komponente: Netzwerk) un-
ter Einsatz der Erfindung. Dabei wird das Modell M2 für
die Komponenten Netzwerktopologie (VHDL-AMS To-
pologiemodell, inklusive Kabel) und Transceiver (Tran-
sceiver VHDL-AMS) je nach Bedarf zur Laufzeit zwi-
schen hochdetaillierten, aber langsamen VHDL-AMS Si-
mulationsmodellen und einem schnellen, aber ungenau-
en SystemC Simulationsmodell M1 (Einfache Topologie-
effekte (SystemC)) umgeschaltet.
[0020] Die FlexRay Testerknoten K1 bis K4 in Sy-
stemC liefern dabei die Stimuli für das Netzwerk und ana-
lysieren das Ausgabeverhalten des Netzwerkes. Die
Schalter S1 bis S4 sind für ein 2-zu-1 Multiplexing zwi-
schen Netzwerk und entsprechende FlexRay Testerkno-
ten K1 bis K4 zuständig und gewährleisten zusätzlich die
Synchronisierung der verwendeten Simulationsmodelle
M1 und M2 während des Umschaltprozesses.

Patentansprüche

1. Verfahren zur Simulation von Komponenten unter
Nutzung von Co-Simulation, dadurch gekenn-
zeichnet, dass zumindest eine Komponente (A) in
unterschiedlichen Simulationsebenen, die unter-
schiedliche Detailtiefen aufweisen, modelliert wird,
die Modellierung der zumindest einen Komponente
(A) durch zumindest zwei verschiedene Verhaltens-
modellierungssprachen erfolgt, und die Umschal-
tung der Simulationsebenen für zumindest eine
Komponente (A) zur Laufzeit der Simulation erfolgt.

2. Verfahren nach Anspruch 1, dadurch gekenn-
zeichnet, dass eine Zuordnung der zu verwenden-
den Simulationsebene für zumindest eine Kompo-
nente (A) für einen vorgegebenen Zeitabschnitt der
zu simulierenden Zeit vom Benutzer definiert wird.

3. Verfahren nach Anspruch 1, dadurch gekenn-
zeichnet, dass eine Umschaltung der zu verwen-
denden Simulationsebene zumindest einer Kompo-
nente (A) ereignisgesteuert durch definierte Kriteri-
en, wie z.B. ob eine Komponente derzeit überhaupt
angewendet wird bzw. der Verwendungsgrad des
Komponentenmodells, oder vorausberechnete Ab-
weichung der Genauigkeiten der Modelle für eine
gegebene Komponente, erfolgt.

4. Verfahren nach Anspruch 3, dadurch gekenn-
zeichnet, dass der Wechsel zwischen den Simula-
tionsebenen mit Hilfe während der Laufzeit automa-
tisiert ausgewerteter Kriterien erfolgt.

5. Verfahren nach einem der vorangegangenen An-
sprüche, dadurch gekennzeichnet, dass beim
Wechsel zwischen verschiedenen Simulationsebe-

7 8

Publication 4: Patent Application (AT/EP) 75

EP 2 299 376 A1

6

5

10

15

20

25

30

35

40

45

50

55

nen vorübergehend das als nächstes zu verwenden-
de Simulationsmodell (A1, A2, A3) parallel zum mo-
mentan laufenden Simulationsmodell (A1, A2, A3)
betrieben wird.

6. Verfahren nach einem der Ansprüche 1 bis 4, da-
durch gekennzeichnet, dass beim Wechsel zwi-
schen verschiedenen Simulationsebenen dem
nachfolgenden Simulationsmodell (A1, A2, A3) der
für ein nahtloses Umschalten notwendige interne
Zustand von extern eingeprägt wird, bevor das Um-
schalten zwischen den Simulationsmodellen statt-
findet.

9 10

Publication 4: Patent Application (AT/EP) 76

EP 2 299 376 A1

7

Publication 4: Patent Application (AT/EP) 77

EP 2 299 376 A1

8

Publication 4: Patent Application (AT/EP) 78

EP 2 299 376 A1

9

Publication 4: Patent Application (AT/EP) 79

EP 2 299 376 A1

10

Publication 4: Patent Application (AT/EP) 80

EP 2 299 376 A1

11

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen
und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das
EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 69631278 T2 [0007]
• US 7191111 B2 [0007]
• US 7146300 B [0007]
• US 7069204 B [0007]
• US 5870588 A [0007]

• WO 2007025491 A1 [0007]
• US 20070192079 A1 [0007]
• US 20090063120 A1 [0008]
• EP 0772140 A1 [0010]

In der Beschreibung aufgeführte Nicht-Patentliteratur

• Bouchhima et al. A SystemC/Simulink Co-Simula-
tion Framework for Continuous/Discrete-Events Sim-
ulation. Behavioral Modeling and Simulation Work-
shop, Proceedings of the 2006 IEEE International,
2006, 1-6 [0005]

• Birrer et al. Incorporating SystemC in Ana-
log/Mixed-Signal Design Flow. In Forum on Specifi-
cation and Design Languages. Proceedings of the
8th International, 2005, 173-178 [0005]

• Selective Focus as a Means of Improving Geograph-
ically Distributed Embedded System Co-Simulation.
Proceedings of the 8th IEEE International Workshop
on Rapid System Prototyping, 1997, 58-62 [0006]

• Dynamic Communication Models in Embedded Sys-
tem Co-Simulation. Proceedings of the 34th Design
Automation Conference, 1997, 395-400 [0006]

• Hardware/Software Cosimulation from Interface Per-
spective. IEE Proceedings, Computers and Digital
Techniques, 2005, vol. 152 (3), 369-379 [0006]

• Radetzki et al. Accuracy-Adaptive Simulation of
Transaction Level Models. Design, Automation and
Test in Europe, 2008. DATE ’08, 2008, 788-791
[0006]

• Beltrame et al. Multi-Accuracy Power and Perform-
ance Transaction-Level Modeling. Computer-Aided
Design of Integrated Circuits and Systems. IEEE
Transactions on, 2007, vol. 26 (10), 1830-1842
[0006]

Publication 4: Patent Application (AT/EP) 81

Page 1 of 14

2010-01-0239

A Cross Domain Co-Simulation Platform

for the Efficient Analysis of Mechatronic Systems

Michael Karner, Christian Steger, Reinhold Weiß
Graz University of Technology - Institute for Technical Informatics

Eric Armengaud
Virtual Vehicle Competence Center

Markus Pistauer
 CISC Semiconductor Design + Consulting GmbH

Felix Pfister
 AVL List GmbH

Copyright © 2010 SAE International

ABSTRACT

Efficient integration of mechanics and microelectronics components is nowadays a must within the automotive

industry in order to minimize integration risks and support optimization of the entire system. We propose in this

work a cross domain co-simulation platform for the efficient analysis of mechatronic systems. The interfacing

of two state-of-the-art simulation platforms provides a direct link between the two domains at an early

development stage, thus enabling the validation and optimization of the system already during modeling phase.

The proposed cross-domain co-simulation is used within our TEODACS project for the analysis of the FlexRay

technology. We illustrate using a drive-by-wire use case how the different architecture choices may influence

the system.

INTRODUCTION

The current world market for automotive embedded electronics represents about 3 billion units delivered per

year for a budget encompassing approximately 160 billion Euros with an annual growth of about 9 percent [1].

Already representing an important part of the car budget, this is still expected to grow fast. Hence, experts

estimate that more than 80% from the innovation potential in car comes from electronics [2]. This concerns, for

example, the introduction of new functionalities (e.g. radars and distance sensors for active safety) as well as the

enhancement of mechanics solutions by electronics components (e.g. engine management or car dynamics –

ESP), and also the replacement of mechanics components by electronics counterparts (e.g. drive-by-wire).

Contrary to other products such as consumer electronics that are focused to a single domain, an automotive

system combines electronics and mechanics components. In this context, new methods are required to support

the efficient co-design and co-integration of multidisciplinary systems. Until now, the development of

mechanics and microelectronics used to be clearly separated (different design flows, different teams) and the

integration work was performed at the end of the development process. This late integration presents two main

problems: First the risks of expensive re-design due to incompatible interfaces (e.g. side effects due to the

Publication 5: SAE World Congress 2010 82

c©2010 SAE International. Reprinted, with permission.

Page 2 of 14

complex interactions between the two domains), and second the difficulties to perform system wide

optimization.

We present in this work a cross-domain simulation platform which interfaces CISC SyAD® [3] and

CarMaker/AVL InMotion [5] tools. The System Architect Designer SyAD®, on one hand, provides a co-

simulation framework for the system design and simulation of highly heterogeneous microelectronic systems.

On the other hand, CarMaker/AVL InMotion targets the simulation, test and calibration of hybrid powertrain

systems. The proposed co-simulation framework supports the early integration of both mechanics and

microelectronics components, thus (a) minimizing the integration risks and (b) supporting the efficient cross-

domain system optimization. Hence, the different models can directly interact within the co-simulation

environment, thus providing realistic data from a domain to another. These attributes largely support system

integration and optimization.

This cross-domain simulation platform is used within our TEODACS project (Test, Evaluation and

Optimization of Dependable Automotive Communication Systems, see www.teodacs.com [6, 7, 8]). The focus

of this research project is set to the analysis of the communication architecture and the influence of this

component to the distributed system. To that aim, we propose a co-simulation platform tightly interfaced to a

realistic prototype for the in-depth analysis of FlexRay networks. CarMaker/AVL InMotion simulates a

powertrain system (road, driver, control loops for vehicle dynamics) and generates a realistic bus traffic for the

network. SyAD® provides a co-simulation framework for the seamless modeling and integration of the

different microelectronics components (e.g. cable model, bus drivers, middleware, software functions). Based

on a Drive-by-Wire use case, we evaluate the benefits of the proposed cross-domain co-simulation approach for

the early analysis and verification of the assembled system.

SIMULATION OF MECHATRONICS SYSTEMS

Mechatronics means the combination of the worlds of mechanics and (micro-)electronics. In the real world, this

is a combination with often very diverse requirements. However, when talking about simulation of mechatronic

systems the contrast gets even more obvious. In this section we will analyze the characteristics of the simulation

of microelectronics, mechanics and mechatronics.

MICROELECTRONICS SIMULATION

When talking about the simulation of microelectronic systems it has to be distinguished between at least three

different types of simulations: (1) simulation of analogue components or often called circuit simulation, (2)

simulation of digital components and (3) the simulation of the software components that are running on a

certain microelectronic system. Every type of microelectronic simulation has its special requirements,

advantages and disadvantages which will now be looked at in more detail.

The analogue part of microelectronic systems is typically simulated by using circuit simulation. A circuit

simulation is built by using several different components like capacitors, coils, resistors or diodes which are

connected as a circuit, see [9] for more details. In practice, usually an enormous number of components are

building the circuit simulation. For example, in complex microelectronic systems the number of components for

the circuit simulation model can easily reach the area of several million components. Typical for circuit

simulation is that the observed variables are in continuous form, for example currents and voltages. Due to the

structure of the system and the components used the simulator has to solve differential-algebraic equation

(DAE) systems for the simulation to take place. Regarding time representation, it is obvious that the time has to

be accounted as continuous as analogue systems with variables in continuous form are under observation.

Typical time ranges in circuit simulation are in the area of microseconds to milliseconds, in complex systems

Publication 5: SAE World Congress 2010 83

Page 3 of 14

only this short time interval can be simulated within a reasonable amount of time. Because of the high

computation requirements in circuit simulations, the achievable simulation performance typically is very low.

Examples for hardware description languages (HDL) supporting the simulation of analogue microelectronic

systems are e.g. MAST [15], VHDL-AMS (Very High Speed Integrated Circuit Hardware Description

Language – Analog and Mixed Signal) [10] or SystemC-AMS [18].

The simulation of the digital part of microelectronic systems (like e.g. for complex state machines) is another

basic type of microelectronic simulation. Here, instead of continuous values like currents or voltages logic

values are used. The simulation of digital microelectronics is described in detail in [9]. By making the shift from

analogue values to digital values there are already lots of details abstracted and lost. Hence, when developing

simulation models for digital components it has to be assured that at the analogue level everything is working as

expected. In digital simulation, in difference to circuit simulation, time is seen as discrete or event-oriented.

Hence, if a value changes, this means a transition of the according signal with a specific time delay. In discrete

time simulation there are specified time stamps where the signals and values are updated. These simulation time

steps are typically in the order of picoseconds or nanoseconds. However, in event oriented simulation the signal

values are only updated if a value changes. This can be seen as kind of chain reaction. Typical time ranges for

the simulation of digital parts of microelectronic systems are in the area of microseconds to milliseconds.

Hardware description languages supporting digital modeling are for example VHDL or Verilog.

Another important part in microelectronic simulation is the simulation of the software components that are

running on a certain microelectronic system. Here, very complex program behavior of software running on an

also very complex CPU architecture has to be evaluated. For this, often so called cycle-accurate instruction set

simulators (ISS) are used that allow the timing of the software to be determined in terms of processor cycles.

This allows for the optimization of the software for different platforms as both the behavior of the software and

the infrastructure on which the program is run is taken into account. The typical simulation focus for software is

in the area of milliseconds up to several seconds or even minutes. To achieve the required flexibility for the

exchange of the hardware platforms there is a strong need for standardized software architectures (like

AUTOSAR in the automotive area). In simulation of software typically development languages like C/C++ or

SystemC (www.systemc.org) are used. In SystemC, it is possible to model both worlds of software and

hardware by using one common modeling language.

MECHANICS SIMULATION

Following microelectronic systems, the other part in mechatronics simulation is the simulation of mechanics

systems. Here, opposite to microelectronics, several different reference systems have to be taken into account

which complicates the task of simulation. However, typically only up to some hundred components are

involved in the simulation of mechanics systems, which is way below the number of components in

microelectronic simulation. Like in microelectronics, there are several different types of simulations of

mechanics components. In [9], it is distinguished between (1) multi-body simulation, (2) block diagram

simulation and (3) finite element simulation. Typical modeling languages or simulators for mechanics are for

example VHDL-AMS [10, 16, 9], MAST or Simulink. For the simulation of the mechanics of cars tools like

e.g. CarMaker/AVL InMotion [5] are used. In mechanics simulation, a typical simulation step size is in the

order of milliseconds and the time interval under observation can easily reach the area of several seconds or

even minutes.

The first type of mechanical simulation is multi-body simulation. According to [9], in multi-body simulation the

elements considered are bodies with mass and inertia moments, joints, springs, dampers, actuators, sensors and

more. Basically, it can be distinguished between two different types of mechanical simulators supporting multi-

Publication 5: SAE World Congress 2010 84

Page 4 of 14

body simulation. In the first type, the mechanics are represented as symbol equations systems that can be

handled by applying typical numerical standard solution procedures. In the second type of multi-body

simulation, the simulators are interpreting the mechanics as a system of several matrices for e.g. mass, stiffness

and damping. These matrices are afterwards processed. An example for a modeling language allowing multi-

body simulation is Modelica [17].

Another type of mechanical simulation is block diagram simulation. According to [9], a block diagram of a

control flow is created that describes the structure of a system of mathematical equations in graphical form. To

perform the simulation process, the simulation derives equations of the structuring of the blocks and the

connections between them. A typical example for block diagram simulation is Simulink.

The third commonly used type of mechanical simulation is finite element simulation. Here, finite elements are

used for the description of a mechanical continuum [9]. Mass, damping and elasticity matrices are

characterizing each finite element and numerical techniques are used for solving the resulting equations.

MECHATRONICS SIMULATION

Bringing together both mechanics and microelectronics simulation results in mechatronics system simulation. In

principle, here the different domains are simulated in one simulation; hence, data exchange is possible between

the two worlds. The same modeling language is used to model both mechanics and microelectronics. Main

focus here is the interaction between the domains. Following [9], the system behavior is considerable

determined by the interaction between mechanics and microelectronics domain. However, a problem here is

that, as already mentioned before, the time intervals under observation differ between mechanics and

microelectronics domain. This has to be taken into account when modeling and simulating mechatronics. An

example for a mechatronics simulation of a car, respectively its components, is shown in [11, 12, 13, 14].

Modeling languages typically used for mechatronics simulation are e.g. VHDL-AMS or MAST.

 A special enhancement of mechatronics simulation is cross-domain co-simulation. Here, the principle of co-

simulation by using different modeling languages and simulators in one common co-simulation [3] is applied to

the simulation of mechatronic systems.

As stated before, in standard mechatronics simulation the same description language is used to model both

worlds of microelectronics and mechanics, for example VHDL-AMS (see [16, 9, 10] for details) or MAST. This

limits the simulation to the possibilities and features of one simulator. Also simulators and languages designed

for only one of the domains cannot be used, even if they would produce more accurate results or support

modeling techniques that would enhance the mechatronic simulation. For example, CarMaker/AVL InMotion is

a good simulator for car dynamics and mechanics, but it lacks support for large parts of the microelectronic

domain.

Cross-domain co-simulation is a possible solution to lift the boundaries between the different simulation and

model domains. By putting together specialized simulators for both mechanics and microelectronics domain in

one common co-simulation it is possible to combine the advantages of the different simulators and modeling

languages. This massively improves the simulation and analysis procedure in terms of accuracy, observability,

real-world behavior and much more. However, there are specific challenges that arise when dealing with cross-

domain co-simulation, such as the integration of the different sub-models within one co-simulation system and

especially of the correct configuration of the sub-models involved. Additionally, the data interface and the time

synchronization between the simulators have to be handled. Another challenge is the difference in typical time

constants of the different domains as they typically differ between mechanics and microelectronics in the order

of several magnitudes.

Publication 5: SAE World Congress 2010 85

Page 5 of 14

SYAD - CO-SIMULATION PLATFORM FOR MICROELECTRONICS SYSTEMS

The CISC System Architect Designer (SyAD, [4])

 is a tool for the design and verification of microelectronic

systems. In the area of system design, it allows for an easy creation of heterogeneous multi-modeling-language

designs covering several different microelectronic modeling languages like VHDL, VHDL-AMS, SystemC,

Matlab/Simulink etc. Also homogenous simulations can be created. SyAD supports a modular and evolutional

design approach, hence making different abstraction levels easy to handle.

One advantage of SyAD is the possibility to easily create co-simulations between models implemented in the

different supported modeling languages [3]. For this, SyAD implements the design methodology shown in

Figure 1.

Figure 1: SyAD Design Methodology & Example

The developer creates the heterogeneous system model at system design level: the blocks are put into the

workspace and connected according to the specification, representing simulation models of different

components modeled by using the same or different modeling languages and abstraction levels. Nevertheless, a

connection between them can be established by just connection them.

The following two levels are created by SyAD automatically to set up the co-simulation. In the language level,

the system design is divided into groups of simulation models developed within the same language. At the

language boundaries, so called co-simulation blocks are automatically inserted into the simulation. These co-

simulation blocks represent the interfaces to the other modeling languages used in the co-simulation. The co-

simulation blocks act as kind of translation blocks between the different modeling languages.

Publication 5: SAE World Congress 2010 86

Page 6 of 14

On the simulator level the connections between the different simulators involved in the co-simulation are

established. Here, the co-simulation blocks of the language level are connected to co-simulation interfaces

specific for each simulator. These co-simulation interfaces exchange data with their corresponding co-

simulation blocks and are responsible for the necessary low-level tasks to establish a co-simulation between

several different simulators, for example data exchange and simulator synchronization. In a co-simulation it is

required that all the simulators are synchronized to guarantee simulation determinism. Hence, the slowest

simulator determines the performance of the complete co-simulation. For synchronization, SyAD uses a

decentralized approach where the co-simulation interfaces directly control the time continuation without any

central control unit. More details about the technical background of the co-simulation environment can be found

in [3].

An example co-simulation model developed using SyAD is also shown in Figure 1. It is a co-simulation of an

automotive application. Both analog (like transceiver) and digital (micro-)electronic components (like

controller, memory, timers etc.) are modeled within the co-simulation. The modeling languages used are

SystemC and VHDL-AMS. With this co-simulation a realistic microelectronic environment can be simulated

including effects and models of both analog and digital type. This allows for a system-wide optimization

including consideration of effects that cross the boundary between digital and analog microelectronic world.

The developer is able to optimize the assembled system much earlier than in standard development flows, thus

saving time and money.

SyAD is a very suitable tool for the simulation and analysis of microelectronic systems and designs. In the

context of automotive development, however, a link to a mechanics simulator is required for performing cross-

domain effects analysis and system-wide optimization of e.g. an ECU controlling car dynamics.

CARMAKER / AVL INMOTION: MANEUVER AND EVENT-BASED TESTING

The automotive agenda strikes an intricate balance between requirements for fuel efficiency, emissions,

driveability, reliability and cost-efficiency. CarMaker / AVL InMotion helps to solve this complex issue. This

real-time simulation platform is a solution for maneuver and event based testing at the test bed. It supports key

business objectives such as hybridization and electrification of powertrain engineering. The key of CarMaker /

AVL InMotion is its high-performance virtual vehicle-driver-road-traffic-environment, into which the unit

under test (engine, transmission, powertrain, etc.) and the control units are embedded. CarMaker / AVL

InMotion enables to evaluate real-world driving behavior at the test bed.

CarMaker/AVL InMotion provides a truly integrated development process. Road-rig-lab-math simulation

environments are integrated under one platform with identical GUIs. This is critically important to enable

collaborative and close development among distributed teams all along the development process. The model

manager integrates Cruise RT or legacy Simulink/Modelica models. Further, CarMaker/AVL InMotion

provides an open and powerful real-time development environment, such that new components or interfaces can

be efficiently integrated without large efforts. This simulation platform is targeted to maneuver based testing. It

helps bringing new powertrain designs to market faster, manage increased regulatory pressures, and maintain

cost efficiencies through versatile and reliable maneuver based testing. The simulation results are made

available through a powerful online “vehicle-road-environment” visualization, see Figure 2. Typical

applications for this simulation platform include:

 Hybrid testing: Electrification is changing automotive industry. CarMaker / AVL InMotion makes sure that

three premises remain priority: quality, cost reduction and time-to-market.

Publication 5: SAE World Congress 2010 87

Page 7 of 14

 Real World Fuel Economy Testing: Reducing CO2 emissions is now the most important issue of OEMs and

TIER1s. CarMaker / AVL InMotion brings the real world to the test bed. The concepts can now be

evaluated and turned into tangible products.

 Virtual Proving Ground Testing: The test engineer has the capability of performing corporate test

procedures in a reliable simulated environment in lieu of or prior to more expensive experimentation on the

proving ground.

 ECU Software Quality Testing: The means of innovation and competitive differentiation is today mainly

being created through software. OEMs and TIER1s are infusing more and more control functions into their

products. Complexity increases dramatically. Testing with CarMaker / AVL InMotion is a key enabler for

quality and efficiency.

 Powertrain Misuse Testing; Handbrake U-turns, bootleg turns, left-foot braking maneuvers, drifting, clutch-

kicking, bumping and jumping. Key components to these tests are leading-edge real-time tire-road models,

such as Michelin’s TaMeTire.

Figure 2: Carmaker / AVL InMotion: Screenshots

This simulation platform enables the efficient analysis of the vehicle from a global and integrated point of view.

A current limitation is the efficient co-analysis of microelectronics components required to implement the

complex control functions. Hence, subtle effects coming from e.g. intelligent sensors, network technology or

software architecture can strongly influence the system. A typical example for a brake-by-wire application

based on a CAN network is the influence of end-to-end delays between the brake pedals and the actuators for

the overall brake distance. Hence, depending on the current bus utilization and priority assignment, the brake

message could be delayed thus leading to a less efficient system reaction. Considering the strong increase of

microelectronics in cars, the cross-domain evaluation of the system is strongly required.

EFFICIENT CROSS DOMAIN COUPLING BETWEEN THE SIMULATION

PLATFORMS

Cross-domain co-simulation means the co-simulation of component models and simulators implemented in

different HDLs and coming from different domains, e.g. microelectronics and mechanics. There are lots of

challenges that have to be solved to allow for an efficient cross-domain coupling. For example, one of the

biggest problems is the different time bases involved. In the mechanics domain, the simulation step size is

typically one millisecond and the time under observation is several seconds or even minutes. In the

microelectronics domain we have time steps of down to picoseconds and the observed time interval is in the

area of milliseconds. To overcome this problem we use the methodology described in [19]: run-time switched

co-simulation. Here, the complexity of the co-simulation models used is changed during the co-simulation. This

Publication 5: SAE World Congress 2010 88

Page 8 of 14

allows getting the time base of the microelectronics world much closer to the time base of the mechanics world

during normal simulation. Only for the simulation of relevant effects in the microelectronics world it is

switched to a complex model for a short, defined amount of time.

A further problem is the difference between the types of models and data formats, and therefore the resulting

strongly differing simulator structures between microelectronics and multi-body based mechanics simulators.

Hence, an interface is required for the moderation between microelectronics and mechanics simulators in order

to allow for a seamless data exchange and synchronization between them. In this section with present how the

coupling between CarMaker / AVL InMotion (mechanics domain) and SyAD (microelectronics domain) has

been performed based on the existing interfaces of both platforms.

In the case of the car simulator CarMaker / AVL InMotion, there already exists a network-based interface called

APO (Application Online, [21]). By using APO, a developer can connect a C/C++ application with the

simulator using UDP network communication. For this, CarMaker / AVL InMotion acts as APO server and the

application has to implement an APO client. Afterwards it is possible for the client to receive simulation data

over the network and send control commands and data to CarMaker. From the SyAD side, which already

provides dedicated interfaces to different simulators, the complete development of a further dedicated interface

targeted to CarMaker / AVL InMotion was required.

On the CarMaker / AVL InMotion side the simulation kernel was extended in order to support for pausing the

simulation process via APO. The simulator now accepts a command via APO that defines how many of

CarMaker / AVL InMotion internal time steps (each of 1ms) should be computed until waiting for the next

control command and data via APO. This allows the synchronization of the CarMaker /AVL InMotion

simulation with the microelectronics simulations of SyAD. On the SyAD side, we decided for a non-traditional

way to couple the two platforms. SyAD is already able to integrate SystemC models into the co-simulation.

Principally, a SystemC model is a C++ application with an additional library linked to support the modeling of

hardware components. Hence, the idea is to implement a SystemC-based APO client that is responsible for both

synchronization and data exchange between microelectronics and mechanics domains.

Figure 3: CarMaker/AVL InMotion - SyAD Interface Concept

This principle is shown in Figure 3. The SystemC-based CarMaker / AVL InMotion control block on the SyAD

side implements an APO client. It sends the required commands to CarMaker / AVL InMotion for simulation

parameterization and to keep mechanics and microelectronics in synchronization. For the data exchange, the

SystemC-based control block converts the data between microelectronics and mechanics domain. It maps the

mechanics data received via the APO interface to SystemC ports to which all components in the microelectronic

domain simply can be connected, even if they are modeled in other languages than SystemC. On the other way,

data management from the microelectronics to the mechanics domain is taken via SystemC ports from the

control block and sent to CarMaker / AVL InMotion as mechanics data via the APO interface. Hence, both

problems of data exchange and synchronization between microelectronics and mechanics domains are handled.

Publication 5: SAE World Congress 2010 89

Page 9 of 14

MECHATRONICS DEVELOPMENT WITHIN THE TEODACS PROJECT

THE TEODACS PROJECT

The approach chosen within the TEODACS project is based on the development of a co-simulation framework

(FlexRayXpert.Sim) as well as a realistic prototype (FlexRayXpert.Lab) which covers the entire communication

architecture and describes the system operation at different levels of abstraction, see Figure 4. The motivation

for these two platforms is to combine the advantages of the two environments. This regroups, for the simulation

environment, (a) the improved observability of the system, (b) the high flexibility for testing new

configurations, and (c) the possibility to validate the system during earlier phases of the development process.

Parallel to that, a hardware prototype provides real results both in the value and in the time domain. Moreover,

the execution of test cases is usually faster in hardware than in a simulation environment when the system

includes microelectronics components. Evidently, these advantages can only be cumulated when a close

interfacing between the environments is available, see [20].

Figure 4: TEODACS approach with Drive-by-Wire use case

FlexRayXpert.Lab

The main aims of the prototype environment FlexRayXpert.Lab are to provide a realistic network reflecting the

current car architecture and to understand the typical design, integration and validation challenges a car supplier

is confronted to. Our prototype implements different topologies (active star, bus topology with different cable

length) and regroups different suppliers: FlexRay transceivers from NXP (TJA1080) and austriamicrosystems

(AS8221 and AS8224) as well as standalone FlexRay controllers from Fujitsu (MB88121B) and Infineon

(CIC310), and integrated solutions from Freescale (S12XF512 MCU with embedded FlexRay controller).

Publication 5: SAE World Congress 2010 90

Page 10 of 14

FlexRayXpert.Sim

The FlexRayXpert.Sim co-simulation platform combines simulation models of the different FlexRay

components (cables, transceiver, active/passive star, communication controller and AUTOSAR concepts) in

order to simulate and analyze the entire communication architecture from the physical level up to application

level. The co-simulation framework creates the possibility to combine different levels of accuracy according to

the requested needs (e.g. physical layer modeling using high detailed VHDL-AMS, data link layer modeling

using fast and high level SystemC). This largely reduces the processing resources and makes the analysis of

such complex systems possible. The co-simulation framework used in FlexRayXpert.Sim is the System

Architect Designer tool from CISC. The simulation of the entire architecture supports the analysis of the

interactions between the single components and thus the design exploration of the assembled system. The two

platforms are stimulated by the CarMaker / AVL InMotion simulator, which simulates the dynamics of a car

driving on a road and thus provides a realistic workload for the network.

FLEXRAY-IN-THE-LOOP: DRIVE-BY-WIRE APPLICATION

The use case chosen in the TEODACS project consists of a Drive-by-Wire application, see Figure 4. In this

example, a FlexRay node in FlexRayXpert.Lab is continuously sensing steering, gas and brake information

(node 2). The raw sensor data is filtered in order to remove the outliers and after that both the raw data and the

filtered data are sent over the FlexRay network to control the CarMaker / AVL InMotion simulator (node 1).

The FlexRay traffic is traced in parallel into a file using a dedicated tester node (node 3). Parallel to the

hardware setup, a similar architecture is provided in FlexRayXpert.Sim: The steering and braking information

are replayed by a tester node (node 3) according to the trace performed from the hardware prototype, thus

guaranteeing that the system under test is stimulated by the same input (driver information). The component

under test in this case is the network infrastructure. Hence, architecture changes such as software component

mapping (which function is assigned to which node), FlexRay configuration (e.g. length of the communication

cycle) and network configuration (which slots are assigned to which nodes) can be performed in order to

observe the changes within the system.

In our case, the sensor node in FlexRayXpert.Lab environment implements a filtering function in order to

smooth the sensor results and remove the outliers. In this test campaign, different variants have been

implemented in the FlexRayXpert.Sim simulation environment and the following architectures have been

compared:

1. Filtering function is implemented directly at the sensor node and the results are sent using the FlexRay

network (intelligent sensor).

2. The sensor is sending the raw data to the FlexRay network and another node (node 4) is performing the

filtering

3. Different filtering algorithms are used at the remote node (node 4) to smooth the data

We expect naturally the first architecture to perform better since the averaging is performed directly with the

sensor inputs (yielding to a higher sampling rate and better smoothing) and processed immediately (without

communication delays). The other variants are required when the filtering operation cannot be performed at the

sensor node (no processing unit or not enough memory available to process complex filters).

Publication 5: SAE World Congress 2010 91

Page 11 of 14

Figure 5: Test case results: (1): influence of function mapping for a given algorithm, (2) influence of the filter

model w.r.t. signal quality (outliers) and (3) influence of the filter model w.r.t. signal quality (delay)

Figure 5 illustrates three test cases. The aim of the first test (first graph) is to show the influence of function

mapping within the system. The same filtering function was placed once at the sensor node and once at a remote

node. For this last architecture, the raw data has been sent to the network before processing. Because of the

limited bandwidth, a down-sampling was performed before filtering (only one out of fifty samples was sent).

This down-sampling led to an excessive smoothing and made the output not useful for the vehicle. The second

test campaign (Figure 5: middle graph) illustrates the influence of the component model for the system. In this

example an architecture with local filtering (IIR filter) is compared with an architecture with remote filtering

(FIR, mean with 8 samples). The second architecture presents a very bad signal quality (the outliers are not

properly removed) because of the poorly adapted filter model. The third test campaign (Figure 5: bottom)

illustrates the influence of the filter modeling for the signal quality (delay). During this example, different

remote filtering approaches (mean computation with number of samples considered varying between 50 and

100) have been compared. While they all present a good signal quality (low number of outliers), the result

availability is delayed up to 100ms. In case of Steer-by-Wire application that presents strong real-time

constraints, this delay might not be acceptable.

Publication 5: SAE World Congress 2010 92

Page 12 of 14

This test campaign illustrates the influence of the mapping between software functions and Electronic Control

Units (ECUs) within the system as well as an evaluation between different filter implementation strategies. The

benefit of using a cross-domain co-simulation platform for this analysis is to enable architecture decisions

before the implementation of the system, thus saving re-design efforts (verification front-loading). The

proposed cross-domain simulation framework provides (1) the flexibility for state exploration (modeling

different architecture or filter concepts) and (2) the evaluation of the results within the assembled system (how

the car react to the different stimulus).

SUMMARY/CONCLUSIONS

Electronics in cars are strongly integrated within the mechanics components. New approaches are thus required

to support the efficient vehicle development and the cross-domain component integration at the very beginning

of the design phase. We have proposed such a cross-domain simulation platform that in fact combines two state-

of-the-art simulation platforms. Using an exemplary Drive-by-Wire application, we have shown that this

approach enables the early verification of the assembled system and efficiently supports design decision and

system evaluation at the beginning of the development process. The proposed platform further enables cross-

domain system optimization in providing information about the best strategy for a given system and a given

application.

REFERENCES

1. Ebert, C. and Jones, C., “Embedded software: Facts, figures, and future”, IEEE Computer, 42(4): 42–52,

2009.

2. Leen, G. and Hefferman, D., "Expanding Automotive Electronic Systems". In IEEE Transaction on

Computers: 88–93, January 2002.

3. Kajtazovic, S., Steger, C., Schuhai, A. and Pistauer, M., "Automatic Generation of a Verification Platform

for Heterogeneous System Designs", Advances in Design and Specification Languages for SoCs, Kluwer

Academic Publishers Boston/Dordrecht/London, 2005.

4. CISC Semiconductor Design+Consulting GmbH, "System Architect Designer (SyAD®)",

http://www.cisc.at/syad, September 2009.

5. Schyr, C., Schaden, T. and Schantl, R., "New Frontloading Potentials through Coupling of HiL-Simulation

and Engine Test Bed", FISITA 2008 World Automotive Congress, Munich, Germany, September 2008,

F2008-12-317. See www.avl.com or www.ipg.de

6. Armengaud, E., Watzenig, D., Steger, C., Berger, H., Gall, H., Pfister, F. and Pistauer, M., "TEODACS: A

new Vision for Testing Dependable Automotive Communication Systems", Third International Symposium

on Industrial Embedded Systems (SIES 2008), Montpellier, France, June 2008, pages 289 – 292

7. Karner, M., Steger, C., Weiß, R., Armengaud, E., Watzenig, D. and Knoll, G., "Verification and Analysis of

Dependable Automotive Communication Systems". Thirteenth International Conference on Emerging

Technologies and Factory Automation (ETFA 2008), Germany, September 2008, pages 444 – 447

8. Armengaud, E., Watzenig, D., Karner, M., Steger, C., Weiß, R., Netzberger, C., Kohl, M., Pistauer, M.,

Pfister, F. and Gall, H., "Combining the Advantages of Simulation and Prototyping for the Validation of

Dependable Communication Architectures: The TEODACS Approach", SAE Int. J. Passeng. Cars -

Electron. Electr. Syst., 2(1): 309-318, 2009

9. Pelz, G., Mechatronic Systems: Modelling and Simulation with HDLs, Jon Wiley & Sons Ltd., Chisester,

England, ISBN 0-470-84979-7, 2003

10. Ashenden, P.J., Petersion, G.D. and Teegarden, D.A., The System Designer’s Guide to VHDL-AMS,

Morgan Kaufmann Publishers, San Francisco, CA, USA, ISBN 1-55860-749-8, 2003

Publication 5: SAE World Congress 2010 93

Page 13 of 14

11. Gerke, T. and DeMeis, R., "The Virtual Vehicle: Part 1 – In-Vehicle Network Simulation and Analysis",

Automotive DesignLine [Online]: http://www.automotivedesignline.com/

United Business Media, London, United Kingdom, January 2009

12. Gerke, T. and DeMeis, R., "The Virtual Vehicle: Part 2 – Early Validation of Vehicle Electrical Systems

and Power Management",

Automotive DesignLine: http://www.automotivedesignline.com/

United Business Media, London, United Kingdom, February 2009

13. Gerke, T., Lagerqvist, S. and DeMeis, R., "The Virtual Vehicle: Part 3 – Developing Robust Wiring

Harnesses",

Automotive Design Line[Online]: http://www.automotivedesignline.com/

United Business Media, London, United Kingdom, March 2009

14. Gerke, T. and Lehmann, F., "The Virtual Vehicle: Part 4 – Automotive Design and Optimization of

Electrical Fuel Injection Systems",

Automotive DesignLine [Online]: http://www.automotivedesignline.com/

United Business Media, London, United Kingdom, April 2009

15. Synopsis, Inc., "MAST: The Analog, Mixed-Technology and Mixed-Signal HDL for Saber",

http://www.synopsys.com/tools/sld/mechatronics/saber/pages/mast.aspx

Synopsis, Inc., Mountain View, CA, USA, 2009

16. Ausejo, S., Suescun, A., Celigüeta, J.T., Moser, E. and Charlot, J.J., "A Methodology for Model Interchange

and Simulation of Mechatronic Systems", Proceedings of the 9th Mediterranean Conference on Control and

Automation, Dubrovnik, Croatia, ISBN 953-6037-34-3, 2001

17. Modelica Association, "Modelica® - A Unified Object-Oriented Language for Physical Systems Modeling

Language Specification", Version 3.1, Sweden, 2009

18. Grimm, C., Barnasconi, M., Vachoux, A. and Einwich, K., "An Introduction to Modeling Embedded

Analog/Mixed-Signal Systems using SystemC AMS Extensions", Open SystemC Initiative (OSCI), June

2008

19. Karner, M., Steger, C., Weiß, R. and Armengaud, E., "Optimizing HW/SW Co-Simulation based on Run-

Time Model Switching", Forum on specification and Design Languages (FDL 2009), 6 pages, September

2009

20. Armengaud, E., Tengg, A., Karner, M., Steger, C., Weiß, R. and Kohl, M., "Moving Beyond the Component

Boundaries for Efficient Test and Diagnosis of Automotive Communication Architectures", Conference on

Emerging Technologies and Factory Automation (ETFA 2009), 8 pages, September 2009

21. IPG Automotive GmbH, "APO Library Reference Manual", Karlsruhe, Germany, December 2004

Publication 5: SAE World Congress 2010 94

Page 14 of 14

CONTACT INFORMATION

Michael Karner, Christian Steger, Reinhold Weiß
Graz University of Technology - Institute for Technical Informatics

Inffeldgasse 16, 8010 Graz, Austria

Email: michael.karner@tugraz.at, steger@tugraz.at, rweiss@tugraz.at

Eric Armengaud
Virtual Vehicle Competence Center

Inffeldgasse 21a, 8010 Graz, Austria

Email: eric.armengaud@v2c2.at

Markus Pistauer
CISC Semiconductor Design + Consulting GmbH

Lakeside B07, 9020 Klagenfurt, Austria

Email: m.pistauer@cisc.at

Felix Pfister
AVL List GmbH

Hans-List-Platz 1, 8020 Graz, Austria

Email: felix.pfister@avl.com

Further information about the TEODACS project is available at www.teodacs.com

ACKNOWLEDGMENTS

The authors wish to thank the ”COMET K2 Forschungsförderungs-Programm” of the Austrian Federal Ministry

for Transport, Innovation and Technology (BMVIT), the Austrian Federal Ministry of Economics and Labour

(BMWA), Österreichische Forschungsförderungsgesellschaft mbH (FFG), Das Land Steiermark and Steirische

Wirtschaftsförderung (SFG) for their financial support.

Additionally we would like to thank the supporting companies and project partners austriamicrosystems, AVL

List and CISC Semiconductor as well as Graz University of Technology and the University of Applied Sciences

FH Joanneum.

Publication 5: SAE World Congress 2010 95

Heterogeneous Co-Simulation Platform for the Efficient Analysis of

FlexRay-based Automotive Distributed Embedded Systems

Michael Karner1, Martin Krammer1, Stefan Krug1

Eric Armengaud2, Christian Steger1, Reinhold Weiss1

1 Graz University of Technology, Institute for Technical Informatics, Austria
2 The Virtual Vehicle Competence Center, Austria

{michael.karner, steger, rweiss}@tugraz.at
eric.armengaud@v2c2.at

Abstract

Validation front-loading using simulation is required to

save efforts and support decision making during the de-

velopment process. For automotive distributed embedded

systems, the fast increasing system complexity usually pre-

vents the use of simulation encompassing the entire com-

munication architecture. The simulation is then focused to

single domain and/or components. We present in this work

a heterogeneous co-simulation model of a FlexRay based

system comprising simulation models from the software

components down to the waveforms within the FlexRay

electrical cables. This platform enables the efficient anal-

ysis of the assembled system and more especially of the

interactions between the components. The description of

the models is supported by three test campaigns in order

to highlight the importance of holistic simulation as well

as the potential of the proposed approach.

1 Introduction

The FlexRay technology [1] is being introduced as new

wired network for automotive high-speed control applica-

tions. This protocol, in comparison to predecessors (e.g.

CAN), presents a very large flexibility that results in a

huge number of implementation variants. Parameters such

as topology (passive line, active star, hybrid topologies),

bus schedule (e.g. slot / cycle length), communication

matrix (mapping between ECUs, slots and frames) are as

much variables that can influence the quality of the com-

munication.

One important aim of the TEODACS1 project (“Test,

Evaluation and Optimization of Dependable Automotive

Communication Systems”) is to understand the interac-

tions between the layers building a dependable network

and to evaluate the different effects influencing the com-

munication (e.g. topology, EMC) [2]. The approach

is based on the development of a heterogeneous co-

simulation model of a FlexRay network tightly interfaced

to a realistic FlexRay prototype. This aims at combining

1www.teodacs.com

the good observability and diagnosability provided by the

simulation environment with the realistic system behavior

provided by the hardware prototype.

The focus of this document is set to the co-simulation

platform. The holistic simulation of a FlexRay network

represents a challenge due to the heterogeneous nature of

the system. A typical network consists of analog com-

ponents (physical layer, transceivers), digital components

(data link layer, communication controllers), basic soft-

ware components (middleware, AUTOSAR) and software

components (application). An important problem is to ob-

tain a long simulated time (time interval under observa-

tion) for the analysis of the entire system, while at the

same time keeping a reasonable simulation time (compu-

tation speed of the simulation) and a reasonable simula-

tion accuracy for each component. This is especially dif-

ficult for lower layers that require more performance for

the simulation of complex analog components.

The proposed approach relies on the development of

different simulation models in different simulation lan-

guages and environments. The models are interconnected

within a co-simulation environment that enables the con-

current simulation of the assembled system. However, the

overall simulation performance is limited by the slowest

simulator. Hence, the co-simulation approach has been

enhanced by a runtime switching method [3] in order to

make the simulation of the entire communication archi-

tecture feasible within a reasonable amount of time.

The contributions of this work regroup (1) the design

of a heterogeneous co-simulation model for the efficient

simulation of automotive distributed embedded systems,

and (2) the illustration of the analysis potential with se-

lected use cases. The document is organized as fol-

lows: Section 2 reviews the existing simulation models for

FlexRay systems. Section 3 describes the heterogeneous

co-simulation platform developed within the TEODACS

project and Section 4 illustrates the potential of this plat-

form by using three test campaigns. Finally, Section 5

concludes this work.

Publication 6: WFCS 2010 96

c©2010 IEEE. Reprinted, with permission, from Proceedings of the 8th IEEE
International Workshop on Factory Communication Systems

2 Simulating automotive communication

networks: FlexRay

The simulation of large heterogeneous systems includ-

ing several ECUs communicating via a network is de-

scribed in [4]. The implementation is done by using trans-

action based modeling. The authors use a hardware ab-

straction layer for high level access to the hardware com-

ponents and simulate at a very high abstraction layer.

Another transaction level modeling approach for com-

munication networks is presented in [5]. Here, the au-

thors describe the creation of a transaction level model

for a FlexRay network. The model is used for an eval-

uation of time performances according to several differ-

ent protocol parameters. The FlexRay interface is de-

scribed in a time-behavioral way using transaction level

modeling techniques where selected components of the

FlexRay protocol are modeled. A significant drawback of

both approaches and typically of all transaction level ap-

proaches is the loss of details. Even minor changes within

the FlexRay configuration parameters may lead to a no-

tably different network behavior. By using only high level

transaction level modeling, lots of these subtle details may

be abstracted away, making the FlexRay system simula-

tion not realistic enough for trustworthy in-detail verifica-

tion of the complete network. However, such simulation

approaches can be useful for the analysis of e.g. schedul-

ing at application level.

A further approach for analyzing complete communi-

cation network systems is residual bus simulation, which

enables the emulation of an entire sub-network. Indus-

trial solutions from e.g. Elektrobit2, dSPACE3 and Vector4

are available. All of these examples are a combination of

hardware and software components: The software emu-

lates the functionalities of the missing ECUs and the ap-

plication messages are transmitted to a real network using

dedicated hardware components. Hence, the advantages

of simulation (observability, traceability, flexibility,...) are

lost for many parts of the system. This makes residual

bus simulation feasible only for very specific and clearly

defined requirements.

A strong standardization focus has been set to the mid-

dleware (low level software) with the AUTOSAR initia-

tive (AUTomotive Open System ARchitecture) [6]. A

methodology for mapping the AUTOSAR design process

with SystemC for efficient simulation of AUTOSAR com-

ponents is presented in [7]. It principally relies on the

mapping of AUTOSAR software components to SystemC

modules and AUTOSAR ports with SystemC ports. A dif-

ferent approach has been chosen in [8]. An implementa-

tion of a RTOS with SystemC is provided and the model

is integrated into the AUTOSAR toolchain. SystemDesk3

is used as offline simulation tool. The integration of the

RTOS enables to perform detailed analysis of the timings,

performance and the influence of the operating system on

the application. Also the approach of simulating the whole

2www.elektrobit.com
3www.dspace.com
4www.vector-worldwide.com

AUTOSAR core on an instruction set simulator is possi-

ble. The high degree of details of this method comes at

the cost of long simulation durations. Also combinations

of using instruction set simulation and abstract functional

simulation are possible [9].

Several simulation models for the FlexRay communi-

cation controller are available. For example, a SystemC-

based communication controller is presented in [7]. The

authors use the model for the timing analysis of selected

interconnected AUTOSAR components. However, they

do not provide any in-depth details about the implemen-

tation of the controller. A simulation model of a FlexRay

communication controller using the Verilog hardware de-

scription language (HDL) is proposed in [10]. With

this model the authors evaluate the effects of so called

message-missing-failures on the FlexRay network. An-

other implementation of the controller using SystemC

is described in [11]. The authors are using the simu-

lation model for verification purposes before building a

correspondent RTL model. Another simulation model

of a FlexRay communication controller is demonstrated

in [12]. Here, the controller is implemented using stan-

dard C language and simulated on a PC used to interact

with real hardware components like engines.

Another FlexRay component with several existing sim-

ulation models is the FlexRay transceiver (bus driver).

In [13] a generic transceiver model implemented using

VHDL-AMS is presented by the company CISC. This

model is fully compliant to the FlexRay specification (in-

cluding all optional interfaces) and also models physi-

cal effects like thermal power. Another implementation

of a transceiver model using VHDL-AMS is presented

in [14]. It is a mixed-mode behavioral model and the au-

thors performed several tests to demonstrate effectiveness

and specification conformance of the developed model. A

specific behavioral Saber model of a NXP transceiver is

presented in [15]. However, no in-depth details are avail-

able about this implementation. A simulation setup that

incorporates several simulation models for the FlexRay

physical layer like transceiver, passive star and cables us-

ing Synopsis Saber is described in [16]. They demonstrate

the capabilities of their implementation by analyzing the

signal integrity of a FlexRay network topology.

There also has been some previous work in the area

of cable harness and topology modeling. Nearly all

work relies on the famous “telegrapher’s equations”, also

known as the “RLGC-model”. The implementation repre-

sents a pure structural model, made up of chained discrete

elements [17]. This model primarily consists of cascaded

line elements. Each element represents a corresponding

section of the cable. One element is made up of four dis-

crete parts: An inductance L, a resistor R, a capacitance

C and a conductance G. Another cable model is pro-

posed in [18] that demonstrates an optimized version of

the RLGC-model implemented in a behavioral style. Both

models consider losses across the given cable length and

take the same set of parameters, which have to be deter-

mined prior to simulation in order to get adequate results.

The main limitation while simulating single compo-

Publication 6: WFCS 2010 97

nents is the missing of inter-layer effects for the holistic

analysis of the network. However, the interactions are re-

quired to create a realistic workload for the components.

3 FlexRayXpert.Sim co-simulation environ-

ment

3.1 Overview of the platform

Obviously, there exist several solutions for the simu-

lation of dependable communication networks and espe-

cially of FlexRay networks. However, these simulations

usually only cover a specific part of the FlexRay network

and/or are implemented in a very abstract way. No holistic

approach covering all parts of the network (from physical

layer up to the application layer) with sufficient accuracy

is available. This fact makes a comprehensive in-depth

analysis of the network very hard or even impossible to

achieve by using existing simulation setups.

The proposed work provides an accurate heteroge-

neous co-simulation model of the entire communication

architecture that enables in-depth analysis of the network.

One main challenge is to find a trade-off between accu-

racy of the simulation models and processing time. The

FlexRayXpert.Sim environment includes simulation mod-

els from the physical layer up to the application layer and

mechanics data. However, it can be clearly seen that us-

ing the same hardware description language (HDL) for all

models is an impossible task. This would either lead to a

loss in information for the lower layers or extremely com-

plex and slow simulation models for the higher layers.

A possible solution for this challenge is co-simulation:

simultaneous simulation of two or more parts of a system,

described using different HDLs and/or different levels of

abstraction, and/or by using several different simulators

concurrently [19]. This creates the possibility to imple-

ment selectable levels of detail according to the requested

needs within one common co-simulation. The simulation

of different layers (e.g. physical up to application) within

one common co-simulation is fundamental to the TEO-

DACS approach.

The developed FlexRay co-simulation platform

FlexRayXpert.Sim is consisting of several tools and

simulation models. The tool CISC SyAD [20] is used as

co-simulation framework for the FlexRay network. SyAD

automatically generates the required co-simulation inter-

faces to allow for a synchronized communication between

models developed by using different hardware description

languages and simulators (e.g. OSCI for SystemC,

Mentor AdvanceMS for VHDL-AMS). The FlexRayX-

pert.Sim co-simulation platform also supports mechanics

simulation with the integration of the CarMaker/AVL

InMotion [21] simulator. The capability of simulating

concurrently microelectronics and mechanics further

supports cross-domain mechatronics co-simulation and

massively enhances the applicability of the TEODACS

approach. The mechanics data is transferred via the

FlexRay network as realistic payload and any effects

resulting from this transfer (e.g. delay, jitter, loss of

data, instability of control loops) can be easily analyzed.

Furthermore, a tester node allowing to interface with a

real hardware prototype is available. This tester node

enables an efficient validation of the simulation models

against the hardware, see [22] for further information

regarding the test concept. Details about the performed

validation of the simulation models against the hardware

prototype can be found in [23]. The complete TEODACS

FlexRayXpert.Sim platform is shown in Figure 1.

Transceiver
(VHDL-AMS)

Communication

Controller

(SystemC)

Co-Simulation
framework

SyAD®

CarMaker

interface

FlexRay Channel

FlexRay Topology

(VHDL-AMS)

FlexRay

node

FlexRay

node n - i

FlexRay
node n + m

Host (SystemC)

Communication

Controller

(SystemC)

Host (SystemC)

Transceiver
(VHDL-AMS)

Communication

Controller

(SystemC)

FlexRay

node

Host (SystemC)

Transceiver
(VHDL-AMS)

Transceiver
(VHDL-AMS)Transceiver

(VHDL-AMS)

Tester node

Transceiver
(VHDL-AMS)Transceiver

(VHDL-AMS)

LogFileGenerator

LogFileAnalyzer

Test library

Transceiver
(VHDL-AMS)

FibexExporter

Middleware

Car simulator
CarMaker /

AVL InMotionTM

Middleware
Application

Middleware
Application

Figure 1. TEODACS FlexRayXpert.Sim co-
simulation platform

3.2 Run-time model switching approach

Due to the heterogeneous nature of the simulated

FlexRay system (analog components, digital components,

software components, mechanics) a special problem rises

that can not be handled by using standard co-simulation:

Obtaining a long simulated time (time interval under ob-

servation) for the analysis of the entire system, while at

the same time keeping a reasonable simulation time (com-

putation speed of the simulation) and a reasonable simula-

tion accuracy for each component. This is especially dif-

ficult for lower layers that require more performance for

the simulation of complex analog components. For exam-

ple, at system level a simulated time in the order of several

seconds is required and can be easily achieved. However,

for low level physical models of analog components (e.g.

cables) typical simulated times are only in the area of mil-

liseconds. This discrepancy has to be handled to allow for

a holistic simulation of the FlexRay network.

To overcome this problem the run-time simulation

model switching approach presented in [3] is applied

within the FlexRayXpert.Sim platform. The basic idea be-

hind run-time simulation model switching is to move from

standard static co-simulation to a more advanced dynamic

co-simulation approach. Here, for a specific part of the co-

simulation the simulated models used are changed at run-

time. For example, while most of the time a fast high-level

Publication 6: WFCS 2010 98

SystemC simulation model is used for cable and topology,

for defined intervals a high-detailed analog VHDL-AMS

model is used. This approach is somehow similar to an os-

cilloscope: it is possible to have a high detailed closer look

at selected time intervals while the remainder of the simu-

lation is computed in a more abstract, but noticeable faster

way. More technical details about the run-time simulation

model switching approach are described in [3], [24].

An important feature of the run-time simulation model

switching approach is the possibility for the designer to

dynamically shift between model accuracy and simulation

performance, according to the requested needs. This is

shown in Figure 2. By selecting the time intervals when

Model

Accuracy
Low:

Selected
Effects

Simulation
Speed

100%

High Level

100%

Low Level

Run-Time

Switched

High:

Multitude of
Effects

Slow Fast
Dynamically
Adaptable

...

...

X %100-X %

Co-Simulation

Model

Dynamically

Adaptable

Figure 2. Shifting of complexity by using
run-time model switching

a high detailed simulation model should be used the de-

signer is able to specify the resulting simulation perfor-

mance in advance. For example, for the analysis of the

effects of reflections within the FlexRay cables on the me-

chanics data transferred by the top-level software appli-

cation the designer may specify that only the first few

bits of the FlexRay frame (e.g. the header) should be

transmitted via the high detailed VHDL-AMS model of

transceiver and topology. The remaining time the fast but

low-detailed SystemC model of transceiver and cable har-

ness should be used.

3.3 Simulation models: software & environment

The following two sections present in detail the sim-

ulation models developed within the TEODACS project.

Basically, all components that are specified within the

FlexRay specification (except bus guardians) are available

as simulation models within the FlexRayXpert.Sim co-

simulation environment. Additionally, there exist models

that are implementing concepts of the AUTOSAR specifi-

cation to support the modeling of software components

and models of the complete car with focus to the me-

chanics. All these models can be used to create com-

plete FlexRay communication networks - from the physi-

cal layer up to the application working within a car.

Looking at Figure 1 it can be seen that on top of the

FlexRay co-simulation the simulator CarMaker/AVL In-

Motion [21] is placed. This simulator (and its models)

provides realistic mechanics data to be transferred via the

FlexRay network, hence, bringing additional authenticity

into the co-simulation. It includes component models nec-

essary for the detailed simulation of hybrid vehicles (like

power train, driver, track, control unit functions, brakes

etc.). Interconnections between CarMaker/AVL InMotion

components are either internal, assuming an ideal com-

munication backbone, or external, using the developed

FlexRay communication network simulation. To bring

together the worlds of mechanics (CarMaker/AVL InMo-

tion) and microelectronics (CISC SyAD) a bridge has to

be built between both domains. A strong challenge is the

difference between the types of models and data formats,

and therefore the resulting strongly differing simulator

structures between microelectronics and multi-body based

mechanics simulators like CarMaker/AVL InMotion. The

interface has to support a smooth interaction between both

domains by providing the required functionality for data

exchange and synchronization between the domains. For

this, the developed interface is split into two parts, one

part for the mechanics and one for the microelectronics

domain. This is shown in Figure 3.

CarMaker/
AVL InMotion

Modified CarMaker/
AVL InMotion

Simulation Kernel
(APO Server)

A

P
O

SyAD

SystemC-
based

CarMaker/
AVL InMotion

Control Block
(APO Client)

SystemC Port

SystemC Port

SystemC Port

 Model 1

(HDL A)

UDP Communication
 Model 2

(HDL B)

 Model 3
(HDL C)

Figure 3. Interfacing concept between CISC
SyAD and CarMaker/AVL InMotion

Within the mechanics simulator, the already exist-

ing network interface APO (Application Online) was ex-

tended to support suspending the next simulation step

until the “continue” command arrives via the network

interface. The mechanics simulator is acting as APO

server and sending its data via the network to the APO

client. The APO client is implemented as a SystemC mod-

ule within the microelectronics co-simulation framework

CISC SyAD. This client module controls the APO server

running within the mechanics simulator and performs data

exchange between the two simulation platforms. Addi-

tional information about the interfacing between CISC

SyAD and CarMaker/AVL InMotion can be found in [25].

For easier development and simulation of applications

(software components, SW-C) using the FlexRay infras-

tructure, an additional abstraction layer based on AU-

TOSAR on top of the communication system is intro-

duced. This abstraction layer provides an interface to the

SW-C similar to the Runtime Environment (RTE) [26].

Basically, it is a realization of the Virtual Function Bus

(VFB) [27] that abstracts the communication between the

software components (performing the routing either ECU

internal or through a network) and performed by calling

RTE API methods. The functionality also supports the ex-

ecution of remote operations according to the AUTOSAR

client-server communication.

An object oriented approach is used for the realiza-

tion of the VFB abstraction layer within our FlexRay co-

simulation. In the proposed approach, the entire code for a

software component is encapsulated into a SystemC mod-

ule in order to have a namespace for each software compo-

Publication 6: WFCS 2010 99

nent and thus avoids naming conflicts. An additional ben-

efit is that multiple instances of the same software compo-

nent do not make any problem. The challenge of keeping

track of instances by using RTE Instance references as de-

fined in the AUTOSAR specification is solved by simply

instantiating multiple objects of the same class.

The configuration of the proposed middleware consists

of two parts: The first part concerns the configuration of

the FlexRay cluster. Within TEODACS this configuration

is extracted from a FIBEX [28] file. In addition to the

FlexRay protocol parameters, it provides a mapping be-

tween the signals (application variables), the frames (data

containers) and the frame triggering (condition for which

the frames are sent on the bus; slot identifier in the case

of FlexRay). The second part concerns the configuration

of the VFB. It consists of a mapping between (a) the data

elements, (b) the operations defined in a software compo-

nent, and (c) the signals defined in the FlexRay configu-

ration. In the proposed implementation this configuration

is specific to the software component and therefore speci-

fied directly in the class description of the software com-

ponent. Whenever a defined data element or operation is

mapped to a signal name defined within the FlexRay con-

figuration, the data is considered as remote and shall be

transmitted via the FlexRay network. In addition to the

transmission via the communication system, the data must

also be distributed locally to software components running

on the same ECU.

The communication on the VFB is done by calls of

RTE API methods. In the performed implementation,

generic versions of the methods are included in a class

SimulationSoftwareComponent that is used as a

base class for all other (user defined) software compo-

nents. Based on the VFB configuration, specific RTE API

methods are available in the user defined software compo-

nents following the AUTOSAR naming convention. They

are essentially aliases to the generic methods provided by

the base class, which contain the actual functionality. The

class diagram in Figure 4 displays the relation between

the basic class and the user defined software components

with respect to the RTE API for the communication on the

VFB.

Figure 4. Relationship between basic class
and user defined software components

To enable multiple software components to use a sin-

gle communication controller, an additional Connector

module is used within the simulation. This module acts as

connection point between the communication controller

and the software components allowing setups like de-

picted in Figure 5. It is responsible for handling the com-

munication — local communication between software

components on the same ECU as well as remote commu-

nication between distributed software components. Re-

mote communication is realized by assembling and trans-

mitting FlexRay frames according to the configuration, lo-

cal communication is realized using shared memory.

Figure 5. Local and remote communication
between software components

3.4 Simulation models: hardware

Another important component within a FlexRay net-

work is the FlexRay communication controller. It is

responsible for the logical FlexRay protocol as defined

within the FlexRay protocol specification [1]. Its main

tasks are sending and receiving data via the FlexRay

bus and error detection/reporting. Furthermore it is re-

sponsible for network wake-up and start-up as well as

node re-integration. The controller implements also clock

synchronization and further autonomously generates the

schedule on which data transmission is triggered. In the

TEODACS FlexRayXpert.Sim implementation, the com-

munication controller is modeled by using SystemC, a

C++ extension adding hardware modeling support. To

gain additional simulation performance, the internals of

the controller are modeled in a transaction level way.

Hence, the data transfer within the communication con-

troller is interface-method-call based instead of single

point-to-point connections, thus speeding up the simula-

tion. The complete communication controller is compli-

ant to the FlexRay protocol specification 2.1 Rev A [1].

The implementation is based on the textual and SDL-

based description of the controller within the FlexRay pro-

tocol specification. The internal structuring of the con-

troller model can be seen in Figure 6. The SystemC

modules are named in correspondence to the specifica-

tion. For every module there exists a SystemC interface

implementing the required functionality for the data ex-

change with the other modules. Every SDL signal within

the specification is substituted by a corresponding inter-

face call to the according module, hence speeding up

the simulation. For communication with other compo-

nents within the FlexRay networks, the controller imple-

ments two different types of connections. The interface

to the transceiver is consisting of in total six SystemC

ports for sending and receiving data. To the application,

Publication 6: WFCS 2010 100

Controller-Host Interface (CHI)

Protocol
Operation

Control (POC)
[POC_IF]Makrotick

Generation
(MTG)

[MTG_IF]

Clock
Synchronization

Processing (CSP)
[CSP_IF]

2x Clock
Synchronization
Startup Channel

(CSS_A/B)
[CSS_IF]

Media Access Control
(MAC_A/B)
[MAC_IF]

2x Frame and Symbol
Processing (FSP_A/B)

[FSP_IF]

2x Coding/Decoding Processes (CODEC_A/B)
[CODEC_IF]

CHI External Interface [CHI_EXT_IF]

CHI Internal Interface [CHI_IF]

Communication Controller
(CC), [CHI_EXT_IF]

(XYZ) … SystemC Module Name
[XYZ_IF] … SystemC Interface Name

… Interface Call

Tx
D

Tx
EN

Rx
D

Rx
D

Tx
EN

Tx
D

Channel A Channel B

Figure 6. SystemC FlexRay communication
controller model

the communication controller features a SystemC inter-

face CHI EXT IF which allows the application to call the

according interface-methods provided by the controller.

Hence, there is no need for the application to care about

e.g. hardware details of a memory access to some transmit

buffer. The application is able to access the controller like

it would be some normal piece of software, hence simpli-

fying the application development.

The FlexRay transceiver model within FlexRayX-

pert.Sim was developed by CISC Semiconductor and

is entirely written in VHDL-AMS. Its design follows

closely the suggestions given in FlexRay’s electrical phys-

ical layer specification [29]. It is a functional model,

with emphasis on adequate output levels. Basically, the

transceiver behaves as a signal converter, which operates

in a bi-directional way: It converts binary signals to a

trivalent differential signal, which is used to drive the two

available bus wires BP (bus plus) and BM (bus minus).

Possible logical levels therefore include high (Data 1),

low (Data 0) and idle (Idle). The other way round, the

transceiver converts this trivalent differential signal back

to a binary signal. Furthermore, it is capable of additional

functions, some being optional, like stand-by and sleep

states or the bus guardian interface.

Concerning the overall input/output behavior, the

transceiver model is fully compliant to FlexRay’s electri-

cal physical layer specification [29]. All in all, there are

51 parameters distributed among eight internal modules,

ensuring simple adaptation to emulate a vendor specific

hardware circuit. The transceiver’s internal logic module

is modeled in an all-digital style. An IO-Interface pro-

vides the necessary analog to digital conversion, with re-

spect to the given parameters. All levels and thresholds

are fully configurable, using the specified parameters. In

order to achieve good simulation behavior and signal in-

tegrity, two modules are quite important: The first being

the receiver module, responsible for converting analog bus

signals to digital data. Due to its threshold levels, the re-

ceiver is important for digital signal recovery. Second,

the sender module has shown to be most critical when it

comes to signal integrity. The waveforms delivered by the

sender can be seen as stimulus for the entire communica-

tion system, so this input variable should be generated as

close-to-reality as possible.

The transceiver implicitly models an open circuit ter-

mination for bus cables. Therefore, an additional termi-

nating element might be required. Depending on the net-

work’s topology, transceivers may be terminated in dif-

ferent ways. FlexRay’s electrical physical layer applica-

tion notes suggests the use of a so-called split termina-

tion, made up of three resistors and one capacitor, placed

between both bus lines directly at the transceiver. This

should prevent physical effects like ringing and reflections

that decrease signal integrity, see [30]. Different styles of

termination are modeled within the FlexRayXpert.Sim en-

vironment by using VHDL-AMS.

In addition to the high-detailed VHDL-AMS model

there also exists a SystemC FlexRay transceiver simu-

lation model. This is required to support the run-time

simulation model switching approach within TEODACS

FlexRayXpert.Sim. The SystemC model is also imple-

mented according to the FlexRay physical layer specifi-

cation [29]. However, the external interface to the host

and communication controller consists of digital SystemC

ports. The analog bus interface is emulated by generating

corresponding floating point values instead of real volt-

ages. Here, also rise and fall times are modeled. The

SystemC transceiver model features a good trade-off be-

tween model accuracy and simulation performance, being

suitable for scenarios where there is no in-depth interest

on the FlexRay physical layer or the run-time simulation

model switching approach is used.

FlexRay also introduces active and passive stars for

topology structuring. A passive star is built implicitly by

connecting all nodes on a linear passive bus to a single

point. This structure can be useful, but doesn’t extend the

reach of a topology that much. This is also implemented

within our FlexRay simulation. Additionally, an active

star is specified which contains one bus driver per con-

nected branch. Its primary purpose is to split the network

into different branches in order to improve signal qual-

ity. It might further implement fault detection and con-

tainment. An active star has a digital central logic unit,

a power supply interface, and an optional bus guardian

interface. In our simulation environment, an active star

model is available. Based on the work of [31], its digital

logic is written in pure VHDL and was ported to SyAD,

retaining its multi-level block design. It supports low

Publication 6: WFCS 2010 101

power modes on each individual branch and the central

logic unit, respectively. The final active star model is ca-

pable of connecting with up to four branches.

In chapter 2 two different cable harness models were

introduced. Both of them are implemented using VHDL-

AMS within the FlexRayXpert.Sim environment. The re-

quired values for R, L, G and C were determined using an

oscilloscope by measuring the lines delay per unit length,

stimulated with a step function. Afterwards, the simu-

lation models were verified against real FlexRay hard-

ware measurements, showing very good correlation. The

parameterization using the RLCG parameters further en-

ables the analysis of different cable types (e.g. dedicated

CAN or FlexRay cables) as well as the simulation of en-

vironment variations (e.g. temperature). Additional mod-

els of cable harness related components are available as

well. A common mode choke model comprising of two

coupled inductances as suggested by [30] is written in

VHDL-AMS. An electrostatic discharge protection, mod-

eling NXP’s PESD1FLEX integrated circuit, is available

in the same language as well.

Like with the transceiver, there also exists a SystemC

cable harness implementation to support the run-time

simulation model switching approach. This SystemC sim-

ulation model is rather simple compared to its VHDL-

AMS based counterpart. It only features two length-based

effects: attenuation and delay. Instead of real voltages,

floating point values are transmitted and modified consis-

tently to the parameters based on the cable length. How-

ever, this model complexity is more than enough for doing

e.g. high-level or timing analysis of the FlexRay network

and to be used within the simulation model switching.

4 Use case: FlexRay architecture analysis

The aim of this section is to illustrate the potential

of the proposed heterogeneous co-simulation platform for

the efficient analysis of the system. One main advantage is

the availability of the different abstraction levels and con-

sequently the possibility to analyze the interactions within

the assembled system. In the following, we focus on three

use-cases: (1) influence of software allocation, (2) influ-

ence of FlexRay schedule and (3) influence of the topol-

ogy for the system.

4.1 Influence of software allocation

This first test campaign illustrates the influence of the

mapping between software functions and Electronic Con-

trol Units (ECUs) as well as the influence of the im-

plementation choice of a filter algorithm for the system.

The system under test consists of a sensor node produc-

ing a noisy output that requires to be smoothed in or-

der to remove the outliers. Because of the desired high-

level analysis, only the SystemC based FlexRay simu-

lation models (CarMaker/AVL InMotion interface, AU-

TOSAR/application, controller, transceiver and topology)

described in Section 3 are used here. In this test campaign,

different variants have been implemented and the follow-

ing architectures have been compared:

• Filtering function is implemented directly at the sen-

sor node and the results are sent using the FlexRay

network (intelligent sensor)

• The sensor is sending the raw data to the FlexRay

network and another node is performing the filtering

• Different filtering algorithms are used at the remote

node to smooth the data

We expect naturally the first architecture to perform

better since the averaging is performed directly with the

sensor inputs (yielding to a higher sampling rate and bet-

ter smoothing) and processed immediately (without com-

munication delays). The other variants are required when

the filtering operation can not be performed at the sensor

node (no processing unit or not enough memory available

to process complex filters).

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50

S
te

e
ri
n
g
 a

n
g
le

Time (sec)

Influence of function mapping for a given filter model

Local filtering
Remote filtering

 300

 350

 400

 450

 500

 550

 25 26 27 28 29 30

S
te

e
ri
n
g
 a

n
g
le

Time (sec)

Influence of the filter implementation w.r.t signal quality (outliers)

Local filtering
Remote, mean8

 300

 350

 400

 450

 500

 550

 25 26 27 28 29 30

S
te

e
ri
n
g
 a

n
g
le

Time (sec)

Influence of the filter implementation w.r.t signal quality (delays)

Figure 7. Effects of filter strategies per-
formed within a FlexRay network

Figure 7 illustrates three test cases. The aim of the first

test (first graph) is to show the influence of function al-

location within the system. The same filtering function

was placed once at the sensor node and once at a remote

node. For this last architecture, the raw data has been sent

to the network before processing. Because of the limited

bandwidth, a down-sampling was performed before filter-

ing (only one out of fifty samples was sent). This down-

Publication 6: WFCS 2010 102

sampling led to an excessive smoothing and made the out-

put not useful for the vehicle.

The second test case (Figure 7: middle graph) illus-

trates the influence between component (filter) model and

architecture for the system. In this example a local fil-

tering (IIR filter) is compared with remote filtering (FIR,

mean with 8 samples). The second architecture presents

a very bad signal quality (the outliers are not properly re-

moved) because of the poorly adapted filter model.

The third test case (Figure 7: bottom) illustrates the

influence of the filter algorithm for the signal quality

(delay). During this example, different remote filtering

approaches (mean computation with number of samples

varying between 50 and 100) have been compared. While

they all present a good signal quality (low number of

outliers), the result availability is delayed up to 100ms.

In case of Steer-by-Wire application that presents strong

real-time constraints, this delay might not be acceptable.

4.2 Influence of the FlexRay schedule

This second test campaign illustrates the influence be-

tween communication schedule, task execution and sig-

nal dynamics. For that, three functions (sinus, pulse,

gas pedal) generated using CarMaker/AVL InMotion have

been taken as inputs for transmission (Frame F1). After

F1 is received from an application it triggers a runnable

within the software component to send the data back using

frame F2. The quality of the resulting outputs depends on

the refresh period between two successive transmissions,

and on the delay between F1, execution of the software

task and F2. Due to the high-level analysis, like in the

previous test campaign only the SystemC based FlexRay

simulation models described in Section 3 are used. For

this test campaign eight different schedules with different

periods and delays have been defined, see Figure 8 for an

overview.

cfg1

cfg2

cfg3

cfg4

cfg5

cfg6

cfg7

time

cfg8

F2 F1

F1 F2 F1 F2

F1 F2

F1 F2

F1 F2

F1 F2 F1 F2 F1 F2 F1 F2 F1 F2F1 F2

F1 F2 F1 F2 F1 F2 F1 F2

F1 F2 F1 F2F1 F2

F1 F2 F1 F2 F1 F2 F1 F2 F1 F2F1 F2F1 F2 F1 F2

One communication cycle: 5 ms

Period: 5ms,
Delay: 5ms

Period: 5ms,
Delay: 3ms

Period: 5ms,
Delay: 40µs

Period: 600µs / 2.5 ms,
Delay: 40µs

Period: 600µs / 2.5 ms,
Delay: 40µs

Period: 600µs,
Delay: 40µs

Period: 1300µs,
Delay: 40µs

Period: 300µs,
Delay: 40µs

Figure 8. FlexRay configuration under test

Figure 9 illustrates the results for the three test stim-

uli. It can be observed that the sinus and pulse signals

are differently altered depending on the communication

schedule. The sinus signal presents a distortion both for

the time and for the value components (some values such

as extremum are not reached). Regarding the pulse, the

distortion is limited to the time component. In general, a

higher refresh rate leads to a better correlation between the

input signal transmitted in frame F1 and the output signal

-1

-0.5

 0

 0.5

 1

 3.8 3.82 3.84 3.86 3.88 3.9

F
u
n
c
ti
o
n

Influence of FlexRay configuration on transmission of a high frequency signal

Original
cfg7
cfg3
cfg8

 0

 0.2

 0.4

 0.6

 0.8

 1

 3.96 3.98 4 4.02 4.04 4.06 4.08 4.1

F
u
n
c
ti
o
n

Influence of FlexRay configuration on transmission of a Dirac pulse

Original
cfg7
cfg3
cfg8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15 3.2

G
a
s
 p

e
d
a
l

Time (sec)

Influence of FlexRay configuration on transmission of a low frequency signal

Original
cfg7
cfg3
cfg8

Figure 9. Input stimulus and system reac-
tion

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8

Configuration

Correlation

Figure 10. Correlation results

transmitted in F2, see Figure 10. There are however some

limitations (e.g. configuration 5, 6, 7) where the sending

of additional messages does not lead to a better output sig-

nal. In this case, the corresponding software component is

executed at the beginning of the cycle and the additional

frames are not taken into account. It can be moreover no-

ticed that the different schedules have no visible effects on

the gas pedal signal (third waveform). This third stimulus

signal does not present a high dynamic and therefore the

delays and distortion are quite minimal.

4.3 Signal integrity analysis

This third test campaign illustrates the strong local in-

teractions for the analysis of the integrity of the electrical

signal as well as the necessity to analyze the assembled

system and not only single components (such as physi-

cal layer). In this experiment, a FlexRay network topol-

ogy slightly out of specification has been defined. This

leads to reflections that alter the signal integrity within

the cables. To permit the simulation of such effects, for

topology (cable harness etc.) and transceiver the VHDL-

AMS based simulation models described in Section 3 are

used. The higher levels of the FlexRay system are sim-

Publication 6: WFCS 2010 103

ulated using SystemC models (communication controller,

AUTOSAR/application).

 285.747 285.748 285.749 285.75 285.751

T
x
D

 (
d
ig

it
a
l)

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o
lt
a
g
e
 t
ra

n
s
m

it
te

r
(V

)

-3

-2

-1

 0

 1

 2

 3

 285.747 285.748 285.749 285.75 285.751

V
o
lt
a
g
e
 r

e
c
e
iv

e
r

(V
)

 285.747 285.748 285.749 285.75 285.751

R
x
D

 (
d
ig

it
a
l)

Time (ms)

VHDL-AMS
SystemC

Figure 11. FlexRay run-time switching for
cross-layer effects analysis

Figure 11 illustrates part of the FlexRay frame (1)

at sample level (digital interface of the transceiver) at

transmitter, (2) at analog level (analog interface of the

transceiver) at transmitter, (3) at analog level at receiver,

and (4) at sample level at the receiver. This exemplary

data transfer illustrates the capacity to analyze the inter-

actions between the network topology, the digitalized sig-

nal and the FlexRay frames. The analysis was enabled

by applying the run-time model switching approach de-

scribed within Section 3.2, leading to reasonable simula-

tion performance for the effects analysis between physi-

cal and data link level. Within this test campaign, after

40 bits (= header) of each FlexRay frame it was switched

from the highly accurate VHDL-AMS models of topol-

ogy and transceivers to the respective fast but low de-

tailed SystemC-based models. This is shown in Figure 11

by the SystemC RxD signal which starts initializing it-

self before switching takes place. Here, also the different

model accuracies of VHDL-AMS and SystemC topology

and transceiver models for this slightly out of specification

topology can be seen. Using run-time switching lead to an

increase in simulation performance compared to VHDL-

AMS only simulation by a factor of about 3 while still

having the same high accuracy within the selected time

interval. More details about the specific run-time model

switching setup used can be found in [24].

Two major findings have been performed during this

analysis: First, for a given topology and a given trans-

mitter, the data transmitted have an influence on the syn-

tactic correctness of the frame. Hence, the bitstreams

b00000000 and b01010101 for example will generate dif-

ferent kind of reflections on the bus that might lead to

different appreciation of the frame correctness. Second,

within a given topology a frame might be interpreted dif-

ferently by the different nodes within the system (some

nodes see the frame as correct while the same frame is re-

jected as faulty by other nodes). This effect comes from

the relative placement between the sender and receivers

and the different effects of the reflections for each sin-

gle point-to-point connection. This effect might lead to

asymmetric behaviors that can be a threat for the system

stability.

5 Conclusion

Simulation is an important step that enables architec-

ture decisions before the implementation of the system,

thus saving re-design efforts (verification front-loading).

In the case of automotive distributed embedded systems,

the concurrent co-simulation of complex heterogeneous

models is required to model the entire system. The pro-

posed FlexRayXpert.Sim platform developed within the

TEODACS project provides (1) the flexibility for efficient

state exploration (with quantification of the effects on the

system) and (2) the evaluation of the results within the

assembled system (interaction between the components).

The presented evaluation campaigns have illustrated the

different analysis possibilities at different abstraction lev-

els as well as the local interactions between the compo-

nents within the system.

Acknowledgement

The authors wish to thank the ”COMET K2

Forschungsförderungs-Programm” of the Austrian

Federal Ministry for Transport, Innovation and Tech-

nology (BMVIT), the Austrian Federal Ministry of

Economics and Labour (BMWA), Österreichische

Forschungsförderungsgesellschaft mbH (FFG), Das Land

Steiermark and Steirische Wirtschaftsförderung (SFG)

for their financial support.

Additionally we would like to thank the supporting

companies and project partners austriamicrosystems, AVL

List and CISC Semiconductor as well as Graz University

of Technology and the University of Applied Sciences FH

Joanneum.

Publication 6: WFCS 2010 104

References

[1] FlexRay Consortium, FlexRay Communications System –

Protocol Specification V2.1 Rev A, December 2005.

[2] E. Armengaud, D. Watzenig, M. Karner, C. Steger,

R. Weiß, C. Netzberger, M. Kohl, M. Pistauer, F. Pfister,

and H. Gall, “Combining the Advantages of Simulation

and Prototyping for the Validation of Dependable Com-

munication Architectures: the TEODACS Approach”, in

SAE World Congress, 2009-01-0763, April 2009.

[3] M. Karner, C. Steger, R. Weiss, and E. Armengaud,

“Optimizing HW/SW Co-Simulation based on Run-Time

Model Switching”, in Proceedings of the 12th Forum on

specification & Design Languages, September 2009, p. 6.

[4] R. Buchmann, M. Cartron, and Y. Bonhomme,

“Transaction-based Modeling for Large Scale Simu-

lations of Heterogeneous Systems”, in Simutools ’09:

Proceedings of the 2nd International Conference on

Simulation Tools and Techniques, 2009, p. 2, ICST, Brus-

sels, Belgium, Belgium. ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications

Engineering).

[5] M. Cheikhwafa, S. Le Nours, O. Pasquier, and J. Calvez,

“Transaction Level Modeling of a FlexRay Communica-

tion Network”, in Proceedings of the 12th Forum on spec-

ification and Design Languages, Sept. 2009, p. 4.

[6] “AUTOSAR - Technical Overview, v2.2.2”, Technical re-

port, AUTOSAR GbR, August 2008.

[7] M. Krause, O. Bringmann, A. Hergenhan, G. Tabanoglu,

and W. Rosenstiel, “Timing Simulation of Interconnected

AUTOSAR Software-Components”, in Design, Automa-

tion & Test in Europe Conference & Exhibition, 2007.

DATE ’07, 2007, pp. 1–6.

[8] M. Becker, H. Zabel, W. Müller, and U. Kiffmeier, “Inte-

gration abstrakter RTOS-Simulation in den Entwurf einge-

betteter automobiler E/E-Systeme”, in Proc. MBMV 2009,

March 2009.

[9] M. Krause, D. Englert, O. Bringmann, and W. Rosenstiel,

“Combination of Instruction Set Simulation and Abstract

RTOS Model Execution for Fast and Accurate Target Soft-

ware Evaluation”, in Proc. CODES/ISSS 2008, 2008, pp.

143–148, New York, NY, USA. ACM.

[10] V. Lari, M. Dehbashi, S. G. Miremadi, and N. Faraz-

mand, “Assessment of Message Missing Failures in

FlexRay-Based Networks”, in Dependable Computing,

2007. PRDC 2007. 13th Pacific Rim International Sym-

posium on, 2007, pp. 191–194.

[11] W. S. Kim, H. A. Kim, J.-H. Ahn, and B. Moon, “System-

Level Development and Verification of the FlexRay Com-

munication Controller Model Based on SystemC”, Future

Generation Communication and Networking, vol. 2, pp.

124–127, 2008.

[12] C. Xu and Y. Zhang, “Simulation of FlexRay Communica-

tion Using C Language”, Computer Science and Compu-

tational Technology, International Symposium on, vol. 2,

pp. 272–276, 2008.

[13] CISC Semiconductor Design+Consulting

GmbH, (Feb. 2007), Product Information:

FlexRay Transceiver Model [Online]. Available:

http://www.cisc.at/automotive/flexray.html

[14] C. Muller, M. Valle, R. Buzas, and A. Skoupy, “Mixed-

Mode Behavioral Model of a FlexRay Physical Layer

Transceiver”, in Proceedings of the 19th European Con-

ference on Circuit Theory and Design, Aug. 2009, p. 4.

[15] NXP Semiconductors, (Nov. 2007), NXP FlexRay

network simulations: Safeguard the operation of

your FlexRay network architectures [Online]. Available:

http://www.nxp.com/acrobat download/

literature/9397/75016200.pdf
[16] T. Gerke and D. Bollati, “Development of the Physical

Layer and Signal Integrity Analysis of FlexRay Design

Systems”, in Simulation & Modelling Mechatronics (SP-

2111). 2007.
[17] H. Johnson and M. Graham, High-speed signal propaga-

tion: advanced black magic, Prentice Hall Press, Upper

Saddle River, NJ, USA, 2003.
[18] M. Schlegel, G. Herrmann, and D. Mueller, “Entwick-

lung eines effizienten VHDL-AMS-Modells der verlustbe-

hafteten Leitung”, Technical report, TU Chemnitz, Fakul-

taet fuer Elektrotechnik und Informationstechnik, 2001.
[19] S. Kajtazovic, C. Steger, A. Schuhai, and M. Pistauer,

“Automatic Generation of a Coverification Platform”, Ap-

plications of Specification and Design Languages for

SoCs: Selected papers from FDL 2005, , pp. 187–203,

2006.
[20] CISC Semiconductor Design+Consulting GmbH, (Nov.

2009), SyAD Online Documentation [Online]. Available:

http://www.cisc.at/syad/
[21] AVL List GmbH, (May 2007), AVL Hybrid Development

PlatformTM[Online]. Available: http://www.avl.com
[22] E. Armengaud, A. Tengg, M. Karner, C. Steger, R. Weiss,

and M. Kohl, “Moving Beyond the Component Bound-

aries for Efficient Test and Diagnosis of Automotive Com-

munication Architectures”, in Fourteenth IEEE Interna-

tional Conference on Emerging Technologies and Factory

Automation (ETFA 2009), 8 pages, Sept. 2009.
[23] M. Krammer, F. Clazzer, E. Armengaud, M. Karner,

C. Steger, and R. Weiss, “Exploration of the FlexRay

Signal Integrity using a Combined Prototyping and Sim-

ulation Approach”, in Proceedings of the 13th IEEE

International Symposium on Design and Diagnostics of

Electronic Circuits and Systems, 2010. DDECS ’10, April

2010, p. 6.
[24] M. Karner, C. Steger, R. Weiss, and E. Armengaud,

“Holistic Simulation of FlexRay Networks by Using Run-

Time Model Switching”, in Proceedings of the Design,

Automation & Test in Europe Conference & Exhibition,

2010. DATE ’10, March 2010, pp. 544–549.
[25] M. Karner, E. Armengaud, C. Steger, R. Weiss, M. Pis-

tauer, and F. Pfister, “A Cross Domain Co-Simulation Plat-

form for the Efficient Analysis of Mechatronic Systems”,

in SAE World Congress, 2010-01-0239, April 2010, pp.

1–14.
[26] “AUTOSAR - Specification of the RTE, v2.0.1”, Techni-

cal report, AUTOSAR GbR, June 2008.
[27] AUTOSAR GbR, AUTOSAR: Specification of the Virtual

Functional Bus, February 2008.
[28] “ASAM MCD-2 NET, Fibex V3.0 - Data Model for ECU

Network Systems, available at http://www.asam.net”,

ASAM – Association for Standardization of Automation

and Measuring Systems, January 2008.
[29] FlexRay Consortium, FlexRay Communications Systems

– Electrical Physical Layer Specification V2.1 Rev B, De-

cember 2005.
[30] The FlexRay Consortium, FlexRay Electrical Physical

Layer Application Notes, 2006, Version 2.1, Revision B.
[31] C. Netzberger, Design Document for the Active Star

VHDL Model, 2008.

Publication 6: WFCS 2010 105

Exploration of the FlexRay Signal Integrity using a

Combined Prototyping and Simulation Approach

Martin Krammer∗†, Federico Clazzer∗, Eric Armengaud∗, Michael Karner†, Christian Steger† and Reinhold Weiss†
∗The Virtual Vehicle Competence Center, Austria

{martin.krammer, federico.clazzer, eric.armengaud}@v2c2.at
†Graz University of Technology, Institute for Technical Informatics, Austria

{michael.karner, steger, rweiss}@tugraz.at

Abstract—Ensuring a correct signal integrity within the entire
FlexRay network and for all the possible environmental situations
is mandatory for reliable operation of the distributed application.
However, this is a goal difficult to reach due to the large
number of parameters that influence the signal integrity. The
use of simulation is a natural answer to efficiently support
space exploration. We discuss in this work how the TEODACS
test approach supports the validation process of the simulation
models for FlexRay topologies and provides trustfulness for the
simulation results even if hardware reference is not available.
Further, we introduce a new method for the advanced analysis
and evaluation of signal integrity in FlexRay networks.

I. INTRODUCTION

Automotive electronics are organized as complex distributed

systems. The availability of the information among the Elec-

tronic Control Units (ECUs) leads to a better apprehension

of the vehicle environment and therefore is an enabler for

new services. Advanced functions such as electronic stability

control (ESC), parking support or battery management have

been introduced or strongly enhanced thanks to the efficient

distribution of the information within the vehicle. In parallel,

the introduction of new, complex functions leads to higher

bandwidth requirements as well as increased complexity for

an efficient deployment and validation of the communication

architecture.

The FlexRay technology [1] based on the Time-Triggered

concept [2] has been introduced in that context. This net-

work presents a data rate of 10Mbits/s (factor 10 faster than

CAN) and supports different topologies such as bus line,

stars or hybrid in order to improve the system flexibility

and robustness. The challenge, while designing a FlexRay

physical network, is to ensure a correct signal integrity (quality

of the electrical signal within the cable) within the entire

network and for all the possible environmental situations.

Different aspects, coming from the topology (e.g. cable length

and type, termination, presence of passive or active stars) as

well as environmental (e.g. EMC, parameter variation due to

temperature, humidity or ageing effects), might influence the

signal integrity.

Within the TEODACS1 project (“Test, Evaluation and Op-

timization of Dependable Automotive Communication Sys-

tems” [3]) a heterogeneous co-simulation platform tightly

1www.teodacs.com

interfaced to a realistic hardware prototype has been devel-

oped. Both development platforms support the analysis of the

communication architecture based on the FlexRay technology.

Interfacing the two platforms permits to combine the benefits

of the two worlds: good observability, diagnosability as well

as efficient space exploration provided by the simulation

environment with the realistic system behavior provided by

the hardware prototype.

The motivation of this work is to describe the approach cho-

sen in TEODACS for validating the simulation models for the

FlexRay topology and further for ensuring trustfulness of the

simulation results without requiring a reference hardware. The

contributions are (1) a combined measurement / simulation test

method for fast and trustful space exploration, as well as (2)

a 10-bits eye diagram method that enables a better analysis of

the signal integrity and furthermore can be used as metrics to

compare different topologies.

The paper is divided as follows: Section II provides a state

of the art concerning the simulation and analysis of FlexRay

topologies. After that, Section III describes the test and anal-

ysis methods developed within the TEODACS project. The

validation of the simulation models is illustrated in Section IV,

and finally Section V concludes this work.

II. SIMULATION AND ANALYSIS OF FLEXRAY

TOPOLOGIES

The FlexRay communication medium [4] is defined as

differential bus implemented on twisted cable pairs (similar

to CAN technology). Good signal quality is required during

the entire product life cycle from system design to normal

operation. However, signal integrity strongly depends on dif-

ferent parameters such as network topology, cable length,

bus driver types as well as manufacturing tolerances and

environmental impacts [5]. Unadapted parameters might lead

to circuit ringing, reflections, and other parasitic effects that

lead in turn to communication failures. It is evident that the

exhaustive test in hardware of all parameter combinations is

not feasible. Simulation, due to the good controllability of the

different model parameters, efficiently supports design space

exploration.

Regarding the FlexRay physical layer, different models

of transceivers exists. The models proposed in [6], [7] are

implemented in VHDL-AMS while the one proposed in [8] is

Publication 7: DDECS 2010 106

c©2010 IEEE. Reprinted, with permission, from Proceedings of the 13th IEEE
International Symposium on Design and Diagnostics of Electronic Circuits and Systems

a specific behavioral Saber model. The focus of these models

is the validation of single components (e.g. conformance test).

Regarding the cable harness and topology modeling, nearly

all work relies on the “telegrapher’s equations” or “RLGC-

model” [9]. An optimization (computation speed) is proposed

in [10].

The efficient analysis of the signal integrity must include

the interactions between the different components building the

network and consequently requires the capability to regroup

the different models within one (co-)simulation environment.

A simulation setup that incorporates several simulation models

for the FlexRay physical layer like transceiver, passive star

and cables using Synopsis Saber is described in [11]. The

authors demonstrate the capabilities of this implementation by

analyzing the signal integrity of a FlexRay network topology.

The approach chosen in the TEODACS project [12] relies on a

co-simulation platform that combines models of the different

FlexRay components (cables, transceiver, active/passive star,

communication controller, AUTOSAR2 concepts). It allows

the simulation and analysis of the entire communication ar-

chitecture from the physical level up to application level. The

co-simulation framework creates the possibility to combine

different levels of accuracy according to the requested needs

(e.g. physical layer modeling using high detailed VHDL-AMS,

data link layer modeling using fast and high level SystemC).

The authors of [13] discuss the difficulties arising by

deploying multiple automotive bus systems (e.g. MOST, D2B,

CAN, FlexRay, LIN) in one single vehicle. They identify

various effects that may endanger the communication systems

such as ground shift, battery drop, electrostatic discharge, or

electromagnetic interference (EMC) and that may lead to in-

correctly sampled bits or even disturbed communication links.

Furthermore, ringing and line reflection are identified as main

problems concerning the physical layer and signal integrity.

The focus of [14] is set to the analysis of CAN physical

layers. The models used for simulation include numerous CAN

nodes, EMC protection circuitry, a transceiver and a CAN

controller model (all in a Saber environment). The nodes are

interconnected using a twisted pair transmission line model.

The wire model was validated against measurements. The

verification process of the network is based on worst case

parameters and tolerances. Besides basic signal properties like

rise and fall times, the correct sampling of bits is thoroughly

investigated.

The works described in [11], [15] focuses on the devel-

opment of physical layers and signal integrity analysis for

FlexRay networks. The authors paid particular attention to the

following components: signal filters, active stars, transceiver,

transmission line, ESD protection elements, topology type,

and termination. They further identify the following aspects

of signal integrity as critical: signal propagation delay, asym-

metric delay [4, p.13], bit deformation, truncation of TSS, and

frame stretching. The signal integrity analysis is based on eye

diagrams. To assure proper bit strobing during transmission of

data streams, the asymmetric delay is monitored. No signif-

2www.autosar.org

icant variances were detected during simulation of a sample

six-node passive star.

The works discussed before present two main limitations.

First, the trustfulness of the simulation results is difficult to

assess (how to be sure that the different models with a new

parameter set will react as its hardware counterpart would do).

Second, the signal integrity analysis consists of very different

aspects and is difficult to automate. This automation is es-

pecially required for the efficient analysis of entire systems

(not only sub-systems generating standard stimuli) with real

communication content, as well as for objective comparison

between different topology concepts.

III. TEODACS APPROACH

A. TEODACS overview

The approach chosen within the TEODACS project is based

on the development of a co-simulation framework (FlexRayX-

pert.Sim) as well as a realistic prototype (FlexRayXpert.Lab)

which covers the entire communication architecture and de-

scribes the system operation at different levels of abstraction,

see Figure 1. The FlexRayXpert.Sim co-simulation platform

(Figure 1, left part) combines simulation models of the dif-

ferent network components (cables, transceiver, active/passive

star, communication controller, AUTOSAR concepts) in order

to simulate the entire communication architecture. The co-

simulation framework [16] creates the possibility to implement

selectable levels of accuracy according to the requested needs,

thus largely reducing the processing resources and making the

analysis of such complex systems possible. In our case we are

using the System Architect Designer [17] (SyAD R©) tool from

CISC. Both platforms are stimulated by the CarMaker / AVL

InMotion [18], which simulates the car’s power train as well

as its environment (road, driver) and thus provides a realistic

workload for the network. Further information concerning

FlexRayXpert.Sim is available in [12].

The focus of the prototype environment FlexRayXpert.Lab

is to provide a realistic network reflecting the current car

architecture and to understand the typical design, integration

and validation challenges a car supplier is confronted with.

Figure 1 (right part) illustrates our prototype. It implements

different topologies (active star, bus topology with different

cable length) and regroups different suppliers such as austri-

amicrosystems [19], NXP, Fujitsu, Freescale or Infineon. This

prototype is also stimulated by the CarMaker / AVL InMotion

simulator, which is executed in this case on a real-time

platform. Further information regarding FlexRayXpert.Lab is

available in [3].

The test method relies on the description and storage of

the network behavior at different abstraction levels. Therefore,

logfiles storing traces of the bus traffic and describing the

network behavior with different degrees of accuracy are intro-

duced, and exporters are available for interfacing to the .Lab

and .Sim platforms (e.g. for data comparison or replay from

a recorded scenario). These methods support both efficient

monitoring and replay of network scenarios. Further, methods

to generate and / or modify logfiles are available to support

efficient generation of complex stimuli. Finally, methods are

Publication 7: DDECS 2010 107

0

0,2

0,4

0,6

0,8

1

1,2

1 6 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1 6
1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
6

9
1

9
6

1
0
6

1
1
1

1
1
6

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

2
0
1

2
0
6

2
1
1

2
1
6

2
2
1

2
2
6

2
3
1

2
3
6

2
4
1

2
4
6

2
5
1

2
5
6

2
6
1

2
6
6

2
7
1

2
7
6

2
8
1

2
8
6

2
9
1

2
9
6

Car Simulator
CarMaker /

AVL InMotion
TM

Car Simulator
CarMaker /

AVL InMotionTM
(real-time)

FlexRay network:
realistic hardware prototype

Hardware prototype platform

FlexRayXpert.Lab

Co-simulation platform

FlexRayXpert.Sim

Interface testcase definition
(car environment, stimuli)

Stimulation
and analysis

Transceiver

Comm.
Controller

FlexRay network:

Co-Simulation framework CISC SyAD®

CarMaker
Interface

FlexRay Channel
FlexRay Topology

FlexRay
Node

FlexRay
node n - i

FlexRay
node n + m

Host (SystemC)

Comm.
Controller

Host

Transceiver

Comm.
Controller

FlexRay
Node

Host (SystemC)

Middleware

Transceiver

Transceiver

Transceiver

Tester Node

Transceiver

TransceiverTransceiver

Middleware
Application Application

Middleware

analog level

sample level

frame level

signal level

Fig. 1. TEODACS approach

available for the off-line analysis of bus traffic logfiles at

different abstraction levels. Additional information regarding

the test approach is available in [20].

B. The matrix based test approach

A main challenge for the simulation is the trustfulness of

the results: How can it be assured that the real system would

present the same reaction. While simulation can be efficiently

used for space exploration, the validation of each single model

against a hardware counterpart for all possible variants is

a tedious task. It means that most of the time a hardware

reference of the assembled system for a topology variant under

investigation is not available.

We use in this work the tight interfacing between hardware

prototype and simulation platform developed during the TEO-

DACS project. Comparison between the two development plat-

forms FlexRayXpert.Sim and .Lab (and therefore validation of

the simulation models) is made easy thanks the capability (1)

to generate and apply the same stimulus to the system in both

platforms, as well as (2) to export a trace of the network’s

reaction from the two development platforms into a file for

further analysis.

The main idea is to use this dual platform concept to

perform space exploration. Using the hardware prototype, a

coarse space exploration can be performed (e.g. new node ar-

rangement or cable length modification with large steps). The

simulation platform is then used as complement to perform

fine-grained exploration (e.g. cable length modification with

smaller steps). This combined hardware / simulation space

exploration supports validation of the simulated system for

different variants (how close are the simulated and the real

results) and provides information about the trustfulness of the

simulation results (since hardware measurements have been

performed on a topology close to the fine-grained simulation).

C. The 10-bit eye diagram

Analyzing signal integrity of serial transmission using eye-

diagrams is a well known method implemented in most of

high-end oscilloscopes. A classical eye diagram for FlexRay

is shown in [15]. Usually, the sender clock is required for trig-

gering bit acquisition. When not available, the zero crossing of

each occuring rising edge is detected and triggers the capturing

process of the received bit. This way, all bits are drawn into a

single diagram, allowing to detect signal integrity violations.

The minimum signal requirements are also drawn into the

diagram. This enables a fast comparison whether the electrical

signal transgresses the specification (too low voltage levels,

too slow edges) or not. The main limitation of this approach,

however, is to take only one bit into account. Complex bit

patterns (series of zeros or ones) and accumulated delays can

not be taken into account.

We propose a 10-bit eye diagram tailored for the FlexRay

protocol in order to tackle these problems. The idea is to

follow the FlexRay bit synchronization which is performed

at the beginning of the byte using the rising edge of the

“byte start sequence” (BSS), a defined sequence of two bits

(zero following a one). In the proposed approach, the FlexRay

frame is divided into bytes (ten bits which regroups the BSS

and the current byte) that are tested against a series of 10

single eye-diagrams, see Figure 2-a. The single eye-diagrams

are centered inside the consecutive bit cells. The other parts of

the frame (frame beginning including Transmit Start Sequence

Publication 7: DDECS 2010 108

and Frame Start Sequence, as well as end of frame including

Frame End Sequence and return to idle) are tested separately.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 200 400 600 800 1000

V
o
lt
a
g
e
(V

)

Time (ns)

(a)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 20 40 60 80 100

V
o

lt
a

g
e

(V
)

Time (ns)

(b)

Fig. 2. (a) 10-bit eye diagram, (b) eye-diagram based

The advantage of this approach is its ability to take com-

plex multi-bit patterns into account. Hence, all possible bit

combinations can be tested (also consecutive zeros or ones)

and cumulated timing problems (leading to bit strobing errors)

can be taken into account. This includes the capability to

measure symmetric and asymmetric delays leading to variation

of the bit cell or byte duration (and thus sampling point).

Another important benefit of this approach is the frame syntax

interpretation for detecting the beginning and end of the

frame, which allows to perform additional tests regarding the

transition to idle. Our implementation generates both textual

and visual reports. Therefore, results can be automatically

analyzed and at the same time can be easily interpreted by

a test engineer.

An enhancement of this method is to use it as metrics

for signal integrity assessment and topology comparison. For

that different eye-diagrams references (with different edges

and different voltage levels) are defined, see Figure 2-b. For

example, one topology variant will satisfy only three out of

eight eye diagrams while another topology variant will satisfy

five out of eight eye diagrams. It signifies that both topologies

are specification conform (since the minimal requirements are

satisfied). However, the second variant is more robust (due to

the larger distance to the minimal requirements). This method

enables automated and objective comparison between topology

variants. Further information is available in [21].

IV. MODEL VALIDATION & ANALYSIS OF THE TOPOLOGY

A. System under test

Our approach for model validation was a hierarchical one.

The first step was to restrict the verification and validation

process to single models, ensuring their proper parameteri-

zation and desired behavior. After that, the validated basic

blocks were used to build larger composite models that were in

turn validated. Finally, complete FlexRay compliant network

topologies were built, in order to simulate waveforms within

the network.

During early experiments, the electrical bus driver was iden-

tified as critical component. Especially the inner resistances

of transmitter and receiver modules have a strong impact

on the resulting waveforms and digital signal recovery. The

transmitter’s inner resistance influences the parallel DC load

value and characterizes the resulting output voltage levels.

The receiver’s inner resistance should be as high as possible,

in order to avoid any retroactive effects. Further parameters

have severe impact on signal integrity validation. It includes

signal rise and fall times, size of filter capacitors at BP and

BM ports, and voltage multiplication factors, which reduce

supply voltage to a given level. We should mention that

the overall bus driver has over 50 parameters, so during the

model validation process it is very important to select a subset

of relevant parameters, where adaptations are necessary or

which have the strongest impact on system behavior. For

extensive network analysis, an active star composite model

was created. It features four branches, where each branch uses

the previously introduced bus driver. Its core logic is written

in VHDL [22].

The electrical bus cables turned out to be important as

well. Two different cable model types that both rely on the

RLGC model [9] have been chosen. The first type represents

the classical lumped element model. One capacitance, one

inductance, one admittance and one resistance are used to

describe an arbitrary cable length section (in our case all values

are normalized to 1cm per section) and to characterize the

line’s timing and overall frequency behavior. The second type

is a mathematically optimized variant of the RLGC model

[10]. However, it does not make use of lumped elements, but of

the ’delayed attribute of VHDL-AMS. The simulation step

size is adjustable using a dedicated parameter. The precision

and simulation time depend on the number of lumped elements

or step size, respectively. As expected, both types deliver

similar simulation results while the second model in general

computes faster the the first one. The speedup of the optimized

model is approximately up to factor 10, and depends heavily

on the line’s length and step size configuration.

Network termination protects the injected signals from

getting reflected at the end of the cable. For this reason, proper

termination is necessary and needs to be chosen in accor-

dance with cables and bus drivers. All cables in the FlexRay

Xpert.Lab environment were manufactured by Kromberg &

Schubert [23]. Their characteristic impedance is given with

100Ω. For proper termination, we relied on the specification’s

recommendation [24, p.10] and used a split-termination. In our

setup, every node received a termination: Either 2 × 47Ω or

2×24850Ω, where the latter basically represents an open end.

Together with the split termination, a common mode choke

consisting of two coupled inductances was applied to every

node, as recommended in the application notes.

B. Test approach

Once various network topologies were set up using the

previously described components, we utilized a so called

testernode, available in both hardware and software [25], for

network stimulation. By using our unique TEODACS sample

level log-file format it is possible to stimulate the same

network topology in hardware and software with the same

input data. The TEODACS concept includes a multi-layer

approach, allowing to analyze various aspects and interactions

of different levels of abstraction within distributed communi-

Publication 7: DDECS 2010 109

cation systems [26]. For this reason, the testernode concept

includes all relevant layers of FlexRay communication, from

sample layer up to application. By capturing the resulting

signals at various interesting points on the network utilizing an

export-enabled oscilloscope, and transferring those data right

back into our simulation environment, it becomes possible to

directly compare the system response from the hardware and

simulation platforms.

During the course of the following test campaign, we sought

for a common and fast simulating network architecture, suit-

able for targeted modifications. Our choice fell on a four-node

bus line topology, containing various cable lengths. The strat-

egy implied the successive modification of this initial topology

while observing the resulting signal integrity at various points

on the network. The topology was successively modified

above the FlexRay specification in order to intentionally obtain

disturbed bits. In this approach, the analysis was performed

with the 10-bit eye diagram proposed in Section III-C.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0.2866 0.2868 0.287 0.2872 0.2874 0.2876 0.2878

V
o
lt
a
g
e
 [
V

]

Time (ms)

Topology 4 simulation and hardware output

Measurement
Simulation

Fig. 3. Measurement and simulation waveform detail

We experienced good correlation between simulated and

measured waveforms throughout the experiments. The sample

correlation coefficient was usually above 0.98, thus showing a

good fitting between simulation and hardware measurement.

The test campaign included the two following parts:

• Termination related issues: An additionally added, re-

dundant split-termination caused the bus voltage to drop

significantly in hardware and simulation. The voltage

levels were not reached by all transmitters for all bit

sequences.

• Reflections: By modification of an open circuit stub line’s

length, reflection effects were introduced. Depending on

the resulting delay of the occurring reflection, the original

signal is overlaid to a certain degree with its own copy

at receiving nodes. This may lead to unacceptable signal

integrity.

The main outcome of this test campaign is the optimization

potential behind the FlexRay specification. Hence, the limits

are dimensioned for complex worst cases and usually include

additional safety margins. When some assumptions can be

done (e.g. about the environment, or about the tolerance from

specific components), then different topology concepts (faster,

lower costs) can be deployed.

C. Matrix-based test campaign

cable length [m]

te
rm

in
a
ti
o

n
 [
O

h
m

]
47

94

31

0.2 1 3.5 10 11

point of validation: hardware measurements & simulation

point of simulation only

0.3

TEODACS

Active Star

TEODACS

Active Star

Fujitsu

Node
11.0 1.0 T2

0.2

X

H

X

T1

X

H

2x47 Ohm Termination

2x24.85kOhm Termination

M
easurem

ent

Network

modification

short stub line (A) long stub line (B)

T1: A) 1.0m / B) 10.0m

T2: A) 10.0m / B) 1.0m

A B

Fig. 4. Sample validation matrix

The matrix-based approach discussed in Section III-B has

been use to deal with the resulting model complexity. Figure 4

illustrates our approach, which shows the space exploration

for two characteristic parameters, in this case cable length

and network termination. During this test campaign, a coarse

validation was performed using the hardware platform (plus

sign), and enhanced with simulation (circle) for fine-grained

analysis. Figure 4 illustrates the distribution between hardware

measurements and simulations. The advantage of simulation

is the automation capability as well as the fine modification

range of the parameters. Hence, modifying a cable length

in the simulation takes one click, while on the hardware is

requires the assembly of a new cable. The advantage of the

hardware measurements is to provide a trustful background

for the simulation.

Assuming 30 minutes per simulation run versus one hour

to assemble a new cable and perform a new measurement, a

test campaign comprising 10 measurements and 30 simulations

will take 25 hours instead of 40 hours when performing only

hardware measurements. Considering further the automation

possibility (simulation campaigns can run over nights or

week ends) and the test reproducibility, the advantages of the

proposed methods are evident.

The trustfulness of the simulation results are increased, too.

Although there is no dedicated hardware validation available

for each specific topology variant, we still do expect the

simulation to be credible to a certain degree because a given

Publication 7: DDECS 2010 110

variant lies around of already validated topology variants.

Regarding the evaluation, the eye-diagram based metrics was

used to automatically and objectively compare the topology

variants and select the best ones.

V. CONCLUSION

Simulation is a powerful mean for space exploration and

thus for supporting design decision at early stage. However,

a strong challenge remains the validation of the simulation

models and how trustful the simulation results will be (even

if a reference hardware is not available yet). We have seen

in this work that the efficient interfacing between hardware

and co-simulation platform strongly supports the validation

process. The two-level space exploration proposed in this work

improved results trustfulness while minimizing the exploration

efforts. Hence, the simulation models are validated against

the hardware for few main topology variants, and the fine-

grained space exploration is performed with simulation only.

Regarding the result analysis, a 10-bit eye diagram has been

introduced. This approach enables the analysis of complex

bit patterns (series of zero or ones) as well as the analysis

of cumulated timing problems. Further, a method for signal

integrity measurement based on the 10-bit eye diagram has

been presented. This approach enables the comparison be-

tween different topologies and also supports the comparison

between different transmission paths within one topology.

Future work will be concerned in defining a method to

quantify analytically the lost of trustfulness in the simulation

results depending on the modification range of the parameters

(e.g. cable length, termination).

ACKNOWLEDGEMENT

The authors wish to thank the ”COMET K2

Forschungsförderungs-Programm” of the Austrian Federal

Ministry for Transport, Innovation and Technology (BMVIT),

the Austrian Federal Ministry of Economics and Labour

(BMWA), Österreichische Forschungsförderungsgesellschaft

mbH (FFG), Das Land Steiermark and Steirische

Wirtschaftsförderung (SFG) for their financial support.

Additionally we would like to thank the supporting compa-

nies and project partners austriamicrosystems, AVL List and

CISC Semiconductor as well as Graz University of Technology

and the University of Applied Sciences FH Joanneum.

REFERENCES

[1] FlexRay Communications System – Protocol Specification Version
2.1 A, FlexRay Consortium, December 2005. [Online]. Available:
http://www.flexray.com

[2] H. Kopetz and G. Bauer, “The Time-Triggered Architecture,” Proceed-
ings of the IEEE, vol. 91, no. 1, pp. 112 – 126, Jan. 2003.

[3] E. Armengaud, D. Watzenig, M. Karner, C. Steger, R. Weiß, C. Net-
zberger, M. Kohl, M. Pistauer, F. Pfister, and H. Gall, “Combining
the Advantages of Simulation and Prototyping for the Validation of
Dependable Communication Architectures: the TEODACS Approach,”
in SAE World Congress, 2009-01-0763, April 2009.

[4] “Flexray Communications Systems – Electrical Physical Layer Spec-
ification V2.1 Rev B, available at http://www.flexray.com,” FlexRay
Consortium, 2005.

[5] T. Gerke and D. Bollati, “An Automated Model Based Design
Flow for the Design of Robust FlexRay Networks,” SAE
International Journal of Passenger Cars - Electronic and Electrical
Systems, vol. 1, no. 1, pp. 457–466, 2009. [Online]. Available:
http://saepcelec.saejournals.org/content/1/1/457.abstract

[6] FlexRay Transceiver Model, CISC Semiconductor Design+Consulting
GmbH, Klagenfurt, Austria, Feb. 2007. [Online]. Available:
http://www.cisc.at/flexray

[7] C. Muller, M. Valle, R. Buzas, and A. Skoupy, “Mixed-Mode Behavioral
Model of a FlexRay Physical Layer Transceiver,” in Proceedings of the
19th European Conference on Circuit Theory and Design, Aug. 2009,
p. 4.

[8] NXP FlexRay Network Simulations: Safeguard the Operation
of Your FlexRay Network Architectures, NXP Semicon-
ductors, The Netherlands, Nov. 2007. [Online]. Available:
http://www.nxp.com/acrobat download/literature/9397/75016200.pdf

[9] H. Johnson and M. Graham, High-speed Signal Propagation: Advanced
Black Magic. Upper Saddle River, NJ, USA: Prentice Hall Press, 2003.

[10] M. Schlegel, G. Herrmann, and D. Mueller, “Entwicklung eines effizien-
ten VHDL-AMS-Modells der verlustbehafteten Leitung,” 2001, 5 pages.

[11] T. Gerke and D. Bollati, “Development of the Physical Layer and
Signal Integrity Analysis of FlexRay Design Systems,” in Simulation
& Modelling Mechatronics (SP-2111), 2007, pp. 665–675.

[12] M. Karner, M. Krammer, S. Krug, E. Armengaud, C. Steger, and
R. Weiss, “Heterogeneous co-simulation platform for the efficient analy-
sis of flexray-based automotive distributed embedded systems,” in IEEE
International Workshop on Factory Communication Systems (WFCS’10),
Apr. 2010, accepted for publication, 10 pages.

[13] W. Lawrenz and D. Bollati, “Validation of In-Vehicle-Protocol Network
Topologies,” in Second International Conference on Systems 2007
(ICONS ’07), April 2007, pp. 24–24.

[14] T. Gerke and C. Schanze, “Development and Verification of In-Vehicle
Networks in a Virtual Environment,” in In-Vehicle Networks and Soft-
ware, 2005, 12 pages.

[15] D. Bollati, “FlexRay - Simulation of Physical Layer Topologies,” in
Synopsis User Group Europe 2006, 2006, 22 pages.

[16] S. Kajtazovic, C. Steger, and M. Pistauer, “A HDL-Independent Mod-
eling Methodology for Heterogeneous System Designs,” in Proceedings
of the 2005 IEEE International Behavioral Modeling and Simulation
Workshop, 2005 (BMAS 2005), 2005, pp. 88–93.

[17] SyAD Online Documentation, CISC Semiconductor Design+Consulting
GmbH, Klagenfurt, Austria, September 2009. [Online]. Available:
http://www.cisc.at/syad

[18] C. Schyr, T. Schaden, and R. Schantl, “New Frontloading Potentials
through Coupling of HiL-Simulation and Engine Test Bed,” in FISITA
2008 World Automotive Congress, F2008-12-317, September 2008.

[19] F. Baronti, P. D’Abramo, M. Knaipp, R. Minixhofer, R. Roncella,
R. Saletti, M. Schrems, R. Serventi, and V. Vescoli, “FlexRay
Transceiver in a 0.35 µm CMOS High-Voltage Technology,” in DATE
’06: Proceedings of the conference on Design, automation and test
in Europe. 3001 Leuven, Belgium, Belgium: European Design and
Automation Association, 2006, pp. 201–205.

[20] E. Armengaud, A. Tengg, M. Karner, C. Steger, R. Weiss, and M. Kohl,
“Moving Beyond the Component Boundaries for Efficient Test and
Diagnosis of Automotive Communication Architectures,” in Fourteenth
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA 2009), 8 pages, Sept. 2009.

[21] F. Clazzer, “Design of a Dedicated Software Tool for the Automatic
Analog Layer Signal Integrity Analysis of the FlexRay Communication
Bus,” The Virtual Vehicle Competence Center, Tech. Rep., 2009.

[22] C. Netzberger, “Design document for the active star VHDL model,” FH
Joanneum Kapfenberg, Tech. Rep., 2008.

[23] Datenblatt FlexRay Datenleitung, Anwendung im Kabelbaum, Typ
FLR09YS-YW, Kromberg & Schubert, 2007.

[24] “Flexray Communication System - Electrical Physical Layer Applica-
tion Notes V2.1 Rev B, available at http://www.flexray.com,” FlexRay
Consortium, 2005.

[25] S. Krug, “Multi-Level Replay and Hardware Interfacing in a FLEXRAY

Network Simulation,” Institute of Technical Informatics, Graz University
of Technology, Tech. Rep., 2008.

[26] E. Armengaud, A. Steininger, M. Horauer, and R. Pallierer, “A Layer
Model for the Systematic Test of Time-Triggered Automotive Com-
munication Systems,” in Proceedings of the 2004 IEEE International
Workshop on Factory Communication Systems 2004 (WFCS 2004), Sept.
2004, pp. 275–283.

Publication 7: DDECS 2010 111

Bibliography

[1] M. Geimer, T. Krueger, and P. Linsel, �Co-Simulation, gekoppelte Simulation oder
Simulatorkopplung,� O + P Zeitschrift für Fluidtechnik, vol. 50, no. 11-12, pp. 572 �
576, 2006.

[2] G. Leen and D. He�ernan, �Expanding automotive electronic systems,� Computer,
vol. 35, pp. 88 �93, Jan. 2002.

[3] C. Ebert and C. Jones, �Embedded software: Facts, �gures, and future,� Computer,
vol. 42, pp. 42�52, 2009.

[4] J. Mossinger, �Software in automotive systems,� Software, IEEE, vol. 27, no. 2, pp. 92
�94, 2010.

[5] P. Hansen, �New S-Class Mercedes: Pioneering Electronics,� The Hansen Report on
Automotive Electronics, vol. 18, pp. 1�2, Oct. 2005.

[6] Volkswagen Aktiengesellschaft, �Distribution of embedded electronic communication
systems inside the Volkswagen Phaeton.� By courtesy of Volkswagen AG, Multimedi-
aCentrum Fotoservice, 2009.

[7] FlexRay Consortium, FlexRay Communications System � Protocol Speci�cation Ver-
sion 2.1 A, December 2005.

[8] AUTOSAR GbR, AUTOSAR: Speci�cation of the Virtual Functional Bus, February
2008.

[9] G. Pelz, Mechatronic Systems: Modelling and Simulation with HDLs. Chisester, Eng-
land: Jon Wiley & Sons Ltd., 2003.

[10] NXP Semiconductors, The Netherlands, NXP FlexRay network simulations: Safe-
guard the operation of your FlexRay network architectures, Nov. 2007.

[11] W. S. Kim, H. A. Kim, J.-H. Ahn, and B. Moon, �System-Level Development and
Veri�cation of the FlexRay Communication Controller Model Based on SystemC,�
Future Generation Communication and Networking, vol. 2, pp. 124�127, 2008.

[12] M. Krause, O. Bringmann, A. Hergenhan, G. Tabanoglu, and W. Rosenstiel, �Timing
Simulation of Interconnected AUTOSAR Software-Components,� in Design, Automa-
tion & Test in Europe Conference & Exhibition, 2007. DATE '07, pp. 1�6, 2007.

112

[13] A. Hanzlik, �SIDERA - a Simulation Model for Time-Triggered Distributed Real-
Time Systems,� International Review on Computers and Software (IRECOS), vol. 1,
pp. 181�193, Nov. 2006.

[14] Open SystemC Initiative (OSCI), �SystemC.� http://www.systemc.org/, 2011.
last visited: 06.03.2011.

[15] P. Ashenden, G. Petersion, and D. Teegarden, The System Designer's Guide to VHDL-
AMS. San Francisco, CA, USA: Morgan Kaufmann Publishers, 2003.

[16] S. Ausejo, A. Suescun, J. Celigueta, E. Moser, and J. Charlot, �A Methodology for
Model Interchange and Simulation of Mechatronic Systems,� in Proceedings of the
9th Mediterranean Conference on Control and Automation, IEEE Control Systems
Society, 2001.

[17] Synopsis Inc., �MAST: The Analog, Mixed-Technology and Mixed-Signal HDL for
Saber.� Synopsis, Inc., Mountain View, CA, USA, http://www.synopsys.com/tools/
sld/mechatronics/saber/pages/mast.aspx, 2011.

[18] Modelica Association, �Modelica - A Uni�ed Object-Oriented Language for Physi-
cal Systems Modeling Language Speci�cation (Version 3.1).� Modelica Association,
Sweden, 2009.

[19] C. Grimm, M. Barnasconi, A. Vachoux, and K. Einwich, �An Introduction to Model-
ing Embedded Analog/Mixed-Signal Systems using SystemC AMS Extensions.� Open
SystemC Initiative (OSCI), San Francisco, CA, USA, June 2008.

[20] T. Gerke and R. DeMeis, �The Virtual Vehicle: Part 1: In-Vehicle Network Simula-
tion and Analysis.� Automotive DesignLine, United Business Media, London, United
Kingdom, http://www.automotivedesignline.com/, January 2009.

[21] T. Gerke and R. DeMeis, �The Virtual Vehicle: Part 2: Early Validation of Vehicle
Electrical Systems and Power Management.� Automotive DesignLine, United Business
Media, London, United Kingdom, http://www.automotivedesignline.com/, Febru-
ary 2009.

[22] T. Gerke, S. Lagerqvist, and R. DeMeis, �The Virtual Vehicle: Part 3: Developing
Robust Wiring Harnesses.� Automotive DesignLine, United Business Media, London,
United Kingdom, http://www.automotivedesignline.com/, March 2009.

[23] T. Gerke and F. Lehmann, �The Virtual Vehicle: Part 4: Automotive Design and Opti-
mization of Electrical Fuel Injection Systems.� Automotive DesignLine, United Busi-
ness Media, London, United Kingdom, http://www.automotivedesignline.com/,
April 2009.

[24] F. Bouchhima, M. Briere, G. Nicolescu, M. Abid, and E. Aboulhamid, �A sys-
temc/simulink co-simulation framework for continuous/discrete-events simulation,� in
Behavioral Modeling and Simulation Workshop, Proceedings of the 2006 IEEE Inter-
national, pp. 1 �6, 2006.

http://www.systemc.org/
http://www.synopsys.com/tools/sld/mechatronics/saber/pages/mast.aspx
http://www.synopsys.com/tools/sld/mechatronics/saber/pages/mast.aspx
http://www.automotivedesignline.com/
http://www.automotivedesignline.com/
http://www.automotivedesignline.com/
http://www.automotivedesignline.com/

[25] S. Kajtazovic, C. Steger, and M. Pistauer, �A HDL-independent modeling methodol-
ogy for heterogeneous system designs,� in Behavioral Modeling and Simulation Work-
shop, 2005. BMAS 2005. Proceedings of the 2005 IEEE International, pp. 88�93, 2005.

[26] M. Benedikt, H. Stippel, and D. Watzenig, �An adaptive coupling methodology for
fast time-domain distributed heterogeneous co-simulation,� in Reliability and Robust
Design in Automotive Engineering 2010 (SP-2272), 2010.

[27] M. Karner, C. Steger, R. Weiss, E. Armengaud, D. Watzenig, and G. Knoll, �Veri�ca-
tion and analysis of dependable automotive communication systems based on hw/sw
co-simulation,� in Emerging Technologies and Factory Automation, 2008. ETFA 2008.
IEEE International Conference on, pp. 444 �447, 2008.

[28] M. Karner, E. Armengaud, C. Steger, and R. Weiss, �Run-Time Co-Simulation Model
Switching for E�cient Analysis of Embedded Systems,� International Journal of Em-
bedded Systems (submitted for publication), 2011.

[29] M. Karner, C. Steger, R. Weiss, and E. Armengaud, �Optimizing hw/sw co-simulation
based on run-time model switching,� in Speci�cation Design Languages, 2009. FDL
2009. Forum on, pp. 1 �6, 2009.

[30] M. Karner, E. Armengaud, C. Steger, and R. Weiss, �Holistic simulation of �exray
networks by using run-time model switching,� in Proceedings of the Conference on
Design, Automation and Test in Europe, DATE '10, (3001 Leuven, Belgium, Belgium),
pp. 544�549, European Design and Automation Association, 2010.

[31] M. Karner, E. Armengaud, and C. Steger, �Verfahren zum Umschalten von heteroge-
nen Simulationsmodellen zur Laufzeit.� EP 2299376, published 2011-03-23.

[32] M. Karner, E. Armengaud, C. Steger, R. Weiss, M. Pistauer, and F. P�ster, �A Cross-
Domain Co-Simulation Platform for the E�cient Analysis of Mechatronic Systems,�
in SAE World Congress & Exhibition, 2010. SAE '10, p. 14, April 2010.

[33] M. Karner, M. Krammer, S. Krug, E. Armengaud, C. Steger, and R. Weiss, �Hetero-
geneous co-simulation platform for the e�cient analysis of �exray-based automotive
distributed embedded systems,� in Factory Communication Systems (WFCS), 2010
8th IEEE International Workshop on, pp. 231 �240, May 2010.

[34] M. Krammer, F. Clazzer, E. Armengaud, M. Karner, C. Steger, and R. Weiss, �Ex-
ploration of the �exray signal integrity using a combined prototyping and simulation
approach,� in Design and Diagnostics of Electronic Circuits and Systems (DDECS),
2010 IEEE 13th International Symposium on, pp. 111 �116, 2010.

[35] M. Rausch, FlexRay � Grundlagen Funktionsweise Anwendung. Carl Hanser Verlag
München Wien, 2008.

[36] O. Kindel and M. Friedrich, Softwareentwicklung mit AUTOSAR: Grundlagen, Engi-
neering, Management in der Praxis. Heidelberg: dpunkt, 2009.

[37] E. Armengaud, A. Steininger, and M. Horauer, �Automatic parameter identi�cation
in �exray based automotive communication networks,� in Emerging Technologies and
Factory Automation, 2006. ETFA '06. IEEE Conference on, pp. 897 �904, 2006.

[38] V. Lari, M. Dehbashi, S. G. Miremadi, and N. Farazmand, �Assessment of Message
Missing Failures in FlexRay-Based Networks,� in Dependable Computing, 2007. PRDC
2007. 13th Paci�c Rim International Symposium on, pp. 191�194, 2007.

[39] CISC Semiconductor Design+Consulting GmbH, Klagenfurt, Austria, FlexRay
Transceiver Model, Feb. 2007.

[40] C. Muller, M. Valle, W. Prodanov, and R. Buzas, �A systematic development method-
ology for mixed-mode behavioral models of in-vehicle embedded electronic systems,�
EURASIP J. Embedded Syst., vol. 2010, pp. 4:2�4:2, January 2010.

[41] R. Buchmann, M. Cartron, and B. Yannick, �Transaction-based modeling for large
scale simulations of heterogeneous systems,� in Proceedings of the 2nd International
Conference on Simulation Tools and Techniques, Simutools '09, (ICST, Brussels,
Belgium, Belgium), pp. 33:1�33:2, ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2009.

[42] M. Cheikhwafa, S. Le Nours, O. Pasquier, and J. Calvez, �Transaction level modeling
of a �exray communication network,� in Speci�cation Design Languages, 2009. FDL
2009. Forum on, pp. 1 �4, 2009.

[43] A. Albert, B. Pietsch, and F. Voetz, �Simulation Environment for Investigating the Im-
pacts of Time-Triggered Communication on a Distributed Vehicle Dynamics Control
System,� in ECRTS Workshop on Real-Time and Control, 2005. RTC 2005. Proceed-
ings of the 1st International, pp. 1�6, 2005.

[44] R. Obermaisser and M. Schlager, �A simulation framework for virtual integration of
integrated systems,� in EUROCON, 2007. The International Conference on Computer
as a Tool, pp. 2208 �2216, 2007.

[45] T. Gerke and D. Bollati, �Development of the Physical Layer and Signal Integrity
Analysis of FlexRay Design Systems,� in Simulation & Modelling Mechatronics (SP-
2111), 2007.

[46] Elektrobit Corporation, Oulunsalo, Finland, FlexRay Rest Bus Simulation Solution:
EB tresos Busmirror, 2011.

[47] dSPACE GmbH, Paderborn, Germany, dSPACE FlexRay Con�guration Package, Feb.
2011.

[48] CANoe.FlexRay, url = http://www.vector.com, publisher = Vector Informatik GmbH,
organization = Vector Informatik GmbH, month = March, year = 2011.

[49] S. Yoo and A. Jerraya, �Hardware/software cosimulation from interface perspective,�
Computers and Digital Techniques, IEE Proceedings -, vol. 152, no. 3, pp. 369�379,
2005.

[50] P. Le Marrec, C. Valderrama, F. Hessel, A. Jerraya, M. Attia, and O. Cayrol,
�Hardware, software and mechanical cosimulation for automotive applications,� in
Rapid System Prototyping, 1998. Proceedings. 1998 Ninth International Workshop on,
pp. 202 �206, June 1998.

[51] P. Birrer and W. Hartong, �Incorporating SystemC in Analog/Mixed-Signal Design
Flow,� in Forum on speci�cation and Design Languages, FDL 2005, September 27-30,
2005, Lausanne, Switzerland, Proceedings, pp. 173�178, 2005.

[52] CISC Semiconductor Design+Consulting GmbH, SyAD Online Documentation.
February 2011.

[53] J. Harkin, T. M. McGinnity, and L. P. Maguire, �Genetic algorithm driven hardware-
software partitioning for dynamically recon�gurable embedded systems,� Micropro-
cessors and Microsystems, vol. 25, no. 5, pp. 263 � 274, 2001.

[54] M. Purnaprajna, M. Reformat, and W. Pedrycz, �Genetic algorithms for hardware-
software partitioning and optimal resource allocation,� J. Syst. Archit., vol. 53,
pp. 339�354, July 2007.

[55] A. Bragagnini, F. Fummi, A. Huebner, G. Perbellini, and D. Quaglia, �Co-simulation
framework for the angel platform,� in Electronics, Circuits and Systems, 2007. ICECS
2007. 14th IEEE International Conference on, pp. 629 �632, 2007.

[56] N. Bombieri, F. Fummi, and D. Quaglia, �System/network design-space exploration
based on tlm for networked embedded systems,� ACM Trans. Embed. Comput. Syst.,
vol. 9, pp. 37:1�37:32, April 2010.

[57] F. Fummi, M. Poncino, S. Martini, F. Ricciato, G. Perbellini, and M. Turolla, �Het-
erogeneous co-simulation of networked embedded systems,� in Design, Automation
and Test in Europe Conference and Exhibition, 2004. Proceedings, vol. 3, pp. 168 �
173 Vol.3, 2004.

[58] G. Beltrame, D. Sciuto, and C. Silvano, �Multi-Accuracy power and performance
Transaction-Level modeling,� Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, vol. 26, no. 10, pp. 1830�1842, 2007.

[59] R. Claes and T. Holvoet, �Multi-model tra�c microsimulations,� inWinter Simulation
Conference (WSC), Proceedings of the 2009, pp. 1113 �1123, 2009.

[60] D. Rao and P. Wilsey, �Applying parallel, dynamic-resolution simulations to accelerate
vlsi power estimation,� in Simulation Conference, 2006. WSC 06. Proceedings of the
Winter, pp. 694 �702, 2006.

[61] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg, �Models@ run.time
to support dynamic adaptation,� Computer, vol. 42, no. 10, pp. 44 �51, 2009.

[62] R. Khaligh and M. Radetzki, �A Dynamic Load Balancing Method for Parallel Simu-
lation of Accuracy Adaptive TLMs,� in Forum on Speci�cation and Design Languages.
FDL '10, 2010.

[63] R. Salimi Khaligh and M. Radetzki, �Adaptive interconnect models for transaction-
level simulation,� in Languages for Embedded Systems and their Applications
(M. Radetzki, ed.), vol. 36 of Lecture Notes in Electrical Engineering, pp. 149�165,
Springer Netherlands, 2009.

[64] R. Salimi-Khaligh and M. Radetzki, �A latency, preemption and data transfer accu-
rate adaptive transaction level model for e�cient simulation of pipelined buses,� in
Speci�cation, Veri�cation and Design Languages, 2008. FDL 2008. Forum on, pp. 37
�42, 2008.

[65] R. Salimi Khaligh and M. Radetzki, �Modeling constructs and kernel for parallel sim-
ulation of accuracy adaptive tlms,� in Design, Automation Test in Europe Conference
Exhibition (DATE), 2010, pp. 1183 �1188, 2010.

[66] M. Radetzki and R. Khaligh, �Accuracy-Adaptive simulation of transaction level mod-
els,� in Design, Automation and Test in Europe, 2008. DATE '08, pp. 788�791, 2008.

[67] K. Hines and G. Borriello, �Selective focus as a means of improving geographically
distributed embedded system co-simulation,� in Rapid System Prototyping, 1997. '
Shortening the Path from Speci�cation to Prototype'. Proceedings., 8th IEEE Interna-
tional Workshop on, pp. 58�62, 1997.

[68] K. Hines and G. Borriello, �Dynamic communication models in embedded system
Co-Simulation,� in Design Automation Conference, 1997. Proceedings of the 34th,
pp. 395�400, 1997.

	Table of contents
	1 Introduction to Co-Simulation of Cross-Domain Automotive Systems
	1.1 Motivation
	1.1.1 Simulation of Automotive Systems
	1.1.2 Automotive Cross-Domain Simulation

	1.2 Co-Simulation of Cross-Domain Automotive Systems
	1.2.1 The TEODACS Project
	1.2.2 Problem Description
	1.2.3 Contribution and Significance
	1.2.4 Organisation of the Thesis

	2 Related Work
	2.1 Simulation of Automotive Systems
	2.1.1 Simulation of Single Automotive Components
	2.1.2 Simulation of Automotive Multi-ECU Networks

	2.2 Co-Simulation
	2.2.1 Co-Simulation Features & Frameworks
	2.2.2 Design of Co-Simulation Configurations

	2.3 Run-Time Simulation Model Switching
	2.3.1 Run-Time Simulation Model Switching in Homogeneous and Heterogeneous Environments
	2.3.2 Adaptive Run-Time Simulation Model Switching

	2.4 Summary

	3 Novel Methodology for Co-Simulation of Cross-Domain Automotive Systems
	4 Methodology Evaluation and Case Studies
	4.1 Co-Simulation of FlexRay-based Cross-Domain Automotive Systems
	4.1.1 Example 1: Distributed Application Delay Analysis
	4.1.2 Example 2: Analysis of FlexRay Signal Integrity Effects

	4.2 Validation of RCMS Accuracy
	4.3 Validation of FlexRay Simulation Model Accuracy
	4.4 Summary

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	6 Publications
	6.1 Run-Time Co-Simulation Model Switching for Efficient Analysis of Embedded Systems
	6.2 Optimizing HW/SW Co-Simulation based on Run-Time Model Switching
	6.3 Holistic Simulation of FlexRay Networks by Using Run-Time Model Switching
	6.4 Verfahren zum Umschalten von heterogenen Simulationsmodellen zur Laufzeit
	6.5 A Cross-Domain Co-Simulation Platform for the Efficient Analysis of Mechatronic Systems
	6.6 Heterogeneous Co-Simulation Platform for the Efficient Analysis of FlexRay-based Automotive Distributed Embedded Systems
	6.7 Exploration of the FlexRay Signal Integrity using a Combined Prototyping and Simulation Approach

	References

