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Abstract

Simulation is a well-known approach to supporting the development of complex systems
at an early stage in the development process. The increased interrelationship between
engineering disciplines leads to the demand for the integration of subsystems from various
domains. Co-simulation accommodates this demand by enabling the coupling of subsys-
tems, which are simulated in their domain-specific simulation tools. The independent
co-simulation platform ICOS, developed at the Virtual Vehicle Competence Center, aims
to couple subsystems from different areas of expertise of the automotive domain.

Variability has an inherent nature in the automotive industry. Vehicle manufacturers
supply customers with a tremendous number of variants. Customer needs and differing
legal constraints are just two reasons for the need of vehicle variability. This drives the
need for managing variability across all processes in automotive engineering, including
co-simulation.

This thesis aims to investigate the sources of variability that affect co-simulation
environments. Items or properties that are commonly variable in co-simulations, so called
variation points, are identified. Based on the common variation points, the requirements of
a tool that introduces variability management to co-simulation environments are analysed.

As part of the work a tool to describe and manage variability in ICOS was implemented.
The main goal is to make variability in ICOS co-simulation projects explicit. This is done
by describing the variation points of a co-simulation project in a variability model, which
is decoupled from the co-simulation. At a later point in time, the introduced variation
points are bound to specific values, resulting in concrete co-simulations. Having an explicit,
decoupled description of a co-simulation project’s variability improves communication and
traceability of variability. It further enables the integration of this variability model into
higher level models or approaches, which span over the entire development process of the
system.

The tool was applied in a case study of a hybrid electric vehicle co-simulation. Several
variation points were described for the co-simulation, resulting in a variability model
of the co-simulation. This variability model was then used to automatically simulate
different vehicle variants as well as to optimise parameter values. The main benefits
that were observed were (1) efficient development and maintenance of a large number of
product variants and (2) having a single point of control and a dedicated description of
the co-simulation’s variability.

Keywords: co-simulation, cosimulation, independent co-simulation, automotive co-
simulation, ICOS, variability management, variant management, product line engineering,
software product lines, SPL

3



4



Kurzfassung

Simulation ist ein vielversprechendes Werkzeug bei der Entwicklung komplexer Sys-
teme. Die zunehmende Verflechtung unterschiedlicher Ingenieurdisziplinen macht eine
gemeinsame Simulation von Teilsystemen dieser Disziplinen erforderlich. Co-Simulation
ermöglicht die Zusammenführung domänenspezifischer Teilsysteme in einer gemeinsamen
Simulation. Die Co-Simulationsplattform ICOS, welche am Kompetenzzentrum - Das
virtuelle Fahrzeug entwickelt wurde, ermöglicht die Kopplung von Teilsystemen aus unter-
schiedlichen Fachgebieten. Dabei werden bereits etablierte Simulationsprogramme für die
Modellierung und Simulation der Teilsysteme verwendet.

Variantenvielfalt ist seit Jahren ein fester Bestandteil der Automobilindustrie. Nahezu
alle Hersteller bieten eine große Anzahl von Produktvarianten an. Die Gründe dafür
sind unter anderem unterschiedliche Kundenwünsche und gesetzliche Bestimmungen in
den Absatzmärkten. Diese Entwicklung macht es erforderlich, dass Varianten über den
gesamten Entwicklungsprozess hinweg verwaltet werden. Dies umfasst auch die Co-
Simulation.

Die vorliegende Arbeit untersucht die Auswirkungen von Variabilität auf Co-Simulation.
Dabei werden Anforderungen an das Variantenmanagement im Bereich der Co-Simulation
analysiert. Teile und Eigenschaften einer Co-Simulation, die in unterschiedlichen Vari-
anten voneinander abweichen, sogenannte Variationspunkte, werden identifiziert. Teil
dieser Arbeit ist die Implementierung eines Variantenmanagementtools für die ICOS
Co-Simulationsplattform. Hauptziel der Implementierung ist die explizite Beschreibung
von Variabilität in einem, vom Co-Simulationsprojekt getrennten, Variantenmodell. Das
Variantenmodell beschreibt die Variabilität der Co-Simulation mit Hilfe der Definition von
Variationspunkten. Zu einem späteren Zeitpunkt können Produkte erstellt und simuliert
werden, indem konkrete Werte für die Variationspunkte gewählt werden. Die explizite
Repräsentation der Variabilität ermöglicht unter anderem eine verbesserte Kommunika-
tion und Dokumentation von Variabilität in einer Co-Simulationsumgebung. Außerdem
ermöglicht es die Integration des Co-Simulation-Variantenmodells in das Variantenman-
agement einer höheren Ebene, unter anderem des Gesamtsystems.

Das implementierte Tool wurde daraufhin verwendet, um konkrete Beispielsimula-
tionen aus dem Bereich der Hybridfahrzeugtechnik durchzuführen. Die Variabilität der
Co-Simulation wurde in einem Variantenmodell beschrieben, welches im Anschluss zur
automatisierten Simulation von Fahrzeugvarianten und zur Optimierung von Simulationspa-
rametern verwendet wurde. Dabei wurden mehrere Vorteile der expliziten Repräsentation
der Variabilität beobachtet, unter anderem die effiziente Entwicklung einer großen An-
zahl von Produktvarianten und die Möglichkeit, Variabilität von einem zentralen Punkt
verwalten zu können.

Stichwörter: Co-Simulation, unabhängige Co-Simulation, ICOS, Variantenmanage-
ment, Variabilitätsmanagement, Software Product Lines, Produktlinienentwicklung
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Chapter 1

Introduction

1.1 Problem Description and Scope

Simulation is a well-known approach to support the development of complex systems. Time
and money can be saved if a model of the system is simulated before the real system is
actually built. The increased interdependence of engineering disciplines led to the demand
for the integration of several domain-specific models into a single simulation. This demand
can be satisfied by the application of co-simulation [GKL06].

The main task of co-simulation is the holistic simulation of a system to determine
its global characteristics. The overall system consists of several subsystems, which are
simulated in their domain-specific simulation tools. The co-simulation platform ensures
the interaction of the subsystems and thus enables the simulation of the overall system.

Particularly in automotive engineering the overall system consists of several subsystems
from various engineering disciplines, such as mechanical engineering, electrical engineering
and many others. Figure 1.1 shows an example of an automotive co-simulation environment.
ICOS (independent co-simulation) is a co-simulation platform developed at the Virtual
Vehicle Competence Center1. It enables cross-domain co-simulation for a wide range of
engineering disciplines in the field of automotive engineering. The main goal of ICOS is to
establish a universal co-simulation environment to integrate different subsystems into the
overall system called vehicle [Pun07].

1.2 Motivation

Variability is the ability of a system to support the production of a set of artefacts that
differ from each other in a preplanned fashion [BC05]. Variability has an inherent nature
in the automotive industry. The main reasons for variability in automotive engineering
are [NSL09]:

• Different customer needs

• Differences in regulations and legal constraints

• Different required functionality between body variants and drivetrain-variants

1http://www.v2c2.at
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Figure 1.1: Example of an automotive co-simulation environment

• New customer expectations and standards

This drives the need for managing the variability across all processes in automotive
engineering, including co-simulation. As automotive co-simulation unites subsystems
from various engineering disciplines, the variability that comes from these disciplines
must be handled in co-simulation too. Therefore, three different scopes of variability in
co-simulation need to be considered:

• Variability of the overall system

• Variability of subsystems that are part of a co-simulation

• Variability of the co-simulation environment

1.3 Goals

The main goal of variability management is to make variability explicit and to handle its
impact on all artefacts for their entire lifecycle. Thus, co-simulation variability management
aims to make the variability of its included subsystems and the co-simulation platform
explicit. Furthermore, it is required to handle the impact of this variability on all artefacts
that are related to co-simulation.

So far reflecting the presence of several alternative representations of a subsystem could
be handled implicitly, e.g. using approaches such as copy and change: A co-simulation
project including a particular subsystem is copied and the reference to the subsystem is
changed to one of its alternatives.

The goal of this thesis is to create a concept of how to make variability in co-simulation
explicit. Furthermore, it aims to integrate this explicit description of co-simulation variants
into a global (vehicle wide) variant management approach.

The concept of variability in co-simulation environments serves as a base for the
implementation of a variability management tool for the ICOS independent co-simulation
platform. The implementation is a proof of concept. It aims to enable explicit variability
management in ICOS. Moreover, it supports the generation of product variants based on a
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variable co-simulation project and the explicit description of the variability (variability
model).

This thesis has been funded by the Virtual Vehicle Competence Center and has been
performed at the Inititute for Technical Informatics, Graz University of Technology.

1.4 Outline

Chapter 2 gives an overview of the related work. It first defines variability and describes
concepts of variability management. Moreover, it explores how to manage variability
within a software product line. Section 2.2 presents the basic concept of co-simulation in
the automotive domain. Finally the chapter is completed with a description of the ICOS
independent co-simulation platform in Section 2.3.

Chapter 3 investigates variability management in co-simulation environments in
general. The results of these investigations will further be used to define the requirements
for the introduction of variability management to the ICOS independent co-simulation
platform. Chapter 4 describes details of the implementation of the ICOS variability
management tool. The implementation is evaluated in Chapter 5 using an automotive
co-simulation case study. An overview of the lessons learned and an outlook of future work
is presented in Chapter 6.
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Chapter 2

Related Work

2.1 Managing Variability

2.1.1 Design for Reuse

The concept of reuse is not at all new in the software industry. Software developers have
reused existing code using copy-and-paste for decades. Subsequently more systematic
approaches such as architectures, patterns, components, libraries and frameworks were
established. As reuse is greatly more cost effective than development, this is a promising
way to reduce development time and cost, improve software quality and leverage existing
effort [Sch06, LSR07]. Some positive examples of systematic reuse are the C++ standard
template library, framework-based middleware technologies (such as CORBA and J2EE)
and object oriented techniques (such as design patterns).

However, component reuse is often reduced to the integration of third-party libraries
and is far too often ‘‘not an integral part of an organisation’s software development pro-
cesses’’ [Sch06].

One systematic reuse strategy that has been established is software product line engi-
neering (SPL). In contrast to the approaches mentioned earlier, software product lines use
a predictive reuse strategy, i.e. software artefacts1 are only built if their future use in the
product line is predicted [Kru12a].

The overall goal of all the presented approaches is the reuse of existing artefacts in
some way or the other. In order to make use of these existing artefacts, they might need
to support some kind of variability. However, the degree of variability, which is possible to
achieve, depends on the specific artefact. For instance, using a third-party library supports
little variability in the artefact itself (the library). On the other hand, templates are highly
variable.

Software product lines try to handle variability in a way that maximises return on
investment for building and maintaining specific products. Thus, it attempts to find a
good trade-off between variability on the one hand and the costs for introducing and
maintaining variability on the other hand [BC05].

1In software development artefacts are, but are not limited to, code, tests, requirements. . .
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Many concepts that will be presented in this chapter are not only applicable to software
engineering. Other engineering disciplines or techniques can benefit from approaches such
as variability management and product line management. In fact, Chapter 3 attempts to
determine an approach to introduce and manage variability in co-simulation. Moreover,
the possibility of systematic reuse in co-simulation will be studied.

2.1.2 Terminology

Until 1996 two independent groups worked on software product line engineering. Therefore
each of the groups established their own terminology. Table 2.1 gives the most important
terms from both groups [Lei09]. Note that for the course of this work the terms in the first
column will be used. However, citations may contain terms from the second column too.

Used terminology Alternative terminology

product line system family, product family

software product line software family

core assets, core artefacts software artefacts

domain engineering core asset development

application engineering product development

product, product assets application

Table 2.1: Software Product Line Terminology [Lei09]

2.1.3 Variability

In common language, variability refers to the ability or tendency to change [PBL05]. This
is a rather wide ranging definition and therefore not enough to support the arguments
made later.

Bachmann and Clements [BC05] define variability as ‘‘the ability of a system, an asset,
or a development environment to support the production of a set of artefacts that differ
from each other in a preplanned fashion’’.

The definition requires variability to be supported in a preplanned fashion. This de-
scribes variation as something that does not occur by chance, but is anticipated. Developers
of core assets think about the consequences of different variations. They explicitly define
and constrain variations in a way that takes into account limited development time and
budget [BC05].
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2.1.4 Variability Management

‘‘Variability Management (VM) encompasses the activities of explicitly representing variabil-
ity in software artefacts throughout the lifecycle, managing dependencies among different
variabilities, and supporting the instantiations of those variabilities’’ [SJ04]. In other words
the main goal of variability management is to make variability explicit and handle its
impact on all artefacts for their entire lifecycle.

Variability management supports the development and reuse of variable artefacts. In
order to plan for variability, four issues have to be addressed [PBL05]:

1. Defining variability : identify and document variability.

2. Managing variable artefacts: manage the variability of code, requirements. . .

3. Resolving variability : support the resolution of variability at particular points in
time (binding time, Section 2.1.5)

4. Support traceability : Collect, store and manage trace information between artefacts.

2.1.5 Making Variability Explicit

As stated above it is of major importance to make variability explicit. When the variability
of artefacts is defined, it is important to ask oneself three questions [PBL05]:

1. What varies?

2. Why does it vary?

3. How does it vary?

As an example, consider a car. Only the colour of a certain type of car is defined
variable, while every other part or property of the car is constant. Thus, the first question
is already answered. The reason for cars of different colours might be the different tastes
of people. How can it vary? Obviously, it can be red, green, blue or any other colour.

Explicit documentation of variability improves decision making. It forces an engineer
to document the motivations for the introduction of variability. Furthermore, explicitly
documented variability helps other engineers in binding2 a variable part. Moreover, explicit
documentation improves communication about and the traceability of variability [PBL05].

The remainder of this section describes concepts that help to explicitly define variability.

Variability Objects and Subjects

The first question to be asked when variability is made explicit is ‘‘What varies?’’. This
question can be answered by precisely identifying the item or property which is variable.
Such a variable item is called a variability subject. Hence, a variability subject can
be defined as ‘‘a variable item of the real world or a variable property of such an item’’
[PBL05].

2Binding can be explained as deciding about something that is variable or choosing a particular variant.
Binding is described in more detail later in this section.
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The question ‘‘How does it vary?’’ deals with the different kind of shapes or values a
variability subject can have. This is referred to as variability object and can be defined
as ‘‘a particular instance of a variability subject’’ [PBL05].

For example the colour can be a variability subject of a real world item. Thus blue, red,
green or any other possible colour can be a variability object connected to the variability
subject ‘‘colour’’.

Variation Points and Variants

While variability objects and subjects are defined for real world items and properties,
variation points and variants are terms in the context of software product lines and are
therefore related to a specific domain.

A variation point (VP) can be defined as ‘‘a variability subject within domain
artefacts enriched by contextual information’’ [PBL05]. ‘‘The variation point describes
where differences exist in the final application’’ [LSR07].

Respectively, a variant is defined as ‘‘a representation of a variability object within
domain artefacts’’.

In correspondence with the explanation of variability objects and subjects, it can be
concluded that variation points answer the question ‘‘What varies?’’, while variants give an
answer to ‘‘How does it vary?’’. However, both questions are bound to a certain context.

Taking the example from above, the colour of a car can be identified as a variation
point in the automotive domain. The colours red and green can be defined as variants for
this variation point and therefore no other colour is allowed in this context.

Some authors use the term variable parts instead of variation point. The explanation
is, that a variable part is more than just a point or a location within the core assets that
needs adaptations or configuration, but it is an organising container for artefacts that are
used for product-specific adaptations [BC05].

Resolution/Binding

Binding is the process of selecting from the options available for each variation point
[Kru12b]. When binding is completed the behaviour of the variation point is fully specified.

‘‘The binding time describes the point in time, when the decision upon selection of a
variant must be made’’ [LSR07].

Variation points can be seen as delayed design decisions [BFG+02]. Delaying a decision
to a later point in time enables a certain degree of flexibility. The choice of the appropriate
binding time is crucial: If a variation point is bound too early, the flexibility that was
achieved by introducing the variation point in the first place, is lost. However, binding
variation points at a late stage in development is expensive [JB02].

Obviously there are a lot of different binding times in the software development cycle,
such as compile time or after-build-time. It is possible to have multiple binding times for
variation in a single software product line. Table 2.2 gives a non-exhaustive list of binding
times and mechanisms that support those binding times [Kru04].
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Binding Time Examples

Source reuse time Specialisation, glue, frameworks, binary com-
ponents

Development time Clone-and-own, independent development

Build time Preprocessors, script variants, application
generators, templates, aspects

Package time Assembling collections of binaries/executa-
bles/resources

Customer customisations Code modifications, glue code, frameworks

Install time Install config file, wizard choices, licensing

Startup time Config files, database settings, licensing

Runtime Dynamic settings, user preferences

Table 2.2: Binding time examples [Kru04]

Variants/Variation Point Relationships

Until now, variation point and variant relationships have been ignored. Nevertheless, the
introduction of relationships may be useful or relationships may also be implicitly present
between variants. Pohl et al. [PBL05] distinguish between variability dependencies and
constraints. A dependency is a relationship between a variation point and its associated
variants. It states whether a variant has to be selected (mandatory variant) or it can
be selected or not (optional variant). If variants are optional, alternative choices can be
specified. This is done by specifying a minimum and maximum number of variations that
need to be selected from a group of optional variants.

Variability constraints encompass two different types of relationships: exclusion and
requirement. If a variant V1 requires another variant V2, every product that selects variant
V1 needs to select V2. In contrast, if a variant V1 excludes another variant V2, every
application that selects variant V1 must not select V2. [PBL05, NSL09, BC05]

Figure 2.2 shows a graphical notation of variation points and variants and its relation-
ships. The details of the graphical notation are presented in the next section.

Relationships can originate from various sources [NSL09]:

• Logical facts: e.g. a car without a rear window does not need an ECU that controls
the rear wiper

• Design and implementation: e.g. choosing a particular framework has far-reaching
consequences to the functionality offered
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• Management decisions

Graphical Notation

Pohl et al. [PBL05] created a graphical notation for variability models. Figure 2.1 shows
the basic elements of the graphical notation. The authors distinguish between variation
point relationships and variant relationships. This aspect was ignored when relationships
were presented in the previous section, because there is no semantic difference between
these relationships.

Figure 2.2 shows an example variability model using the graphical notation.

optional

mandatory
VP

[name]
[name]

V

Variability Dependencies

Constraint Dependencies

Variation Point Variant

requires_V_VP requires_v_vprequires_V_V requires_VP_VPrequires_v_v requires_vp_vp

excludes_V_VP excludes_v_vpexcludes_V_V excludes_VP_VPexcludes_v_v excludes_vp_vp

Alternative Choice

[min..max]

Artefact Dependencies

artefact dependency

VP artefact dependency

Figure 2.1: Graphical notation of variation points, variants and their relationships [PBL05]
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Security
Package

Advanced
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Basic

V

VP

Intrusion
Detection

Cullet
Detection

V

Camera
Surveillance

V

Motion
Sensors

V

VP
Door
Locks

Keypad

V

Fingerprint
Scanner

V

requires_v_v
requires_v_v

Figure 2.2: Example of a variability model using a graphical notation [PBL05]
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Internal vs. External Variability

A way to classify variation points is by its visibility to the customer. External variability
is present, if the variability is visible to the customer, while internal variability is hidden
from the customer [PBL05].

The colour of a car, for instance, is definitely customer-visible and therefore an external
variation point. On the other hand the communication protocol between two electronic
control units (ECUs) in a car is not visible to the customer and can be classified as an
internal variation point.

To determine if a variation point is customer-visible or not is rather important for the
support of different views on variability [NSL09]. While external variability might be of
interest to customers, sales or marketing-people, internal variability in many cases is only
relevant to developers.

Variability Dimensions

Variability can be separated into two dimensions: space and time. These dimensions are
interrelated.

‘‘Variability in time is the existence of different versions of an artefact that are valid
at different times’’ [PBL05]. This dimension is sometimes referred to as software evolution
and is targeted by configuration management. Contrarily ‘‘variability in space is the
existence of an artefact in different shapes at the same time’’ [PBL05].

Variability management in conventional software engineering only deals with software
variation over time. On the other hand variability management in software product line
engineering is multi-dimensional. It deals with variation in both time and space. This
makes variability management the key discriminator, which distinguishes product line
engineering from conventional software engineering [Kru02].

Handling Complexity

One issue that arises when variability is modelled using variation points and variants is
how to model complex systems. For instance, a variability model of a vehicle can easily
consist of several hundred variants. One approach to tackle this problem is the introduction
of abstract variation points. Abstract VPs combine concrete VPs and predefine the
bindings of its variation points. Figure 2.2 shows an abstract variation point, the security
package. If the basic security package is chosen from the security package VP, for instance,
the variants motion sensor and keypad are selected due to the requirement constraints.

At first glance it might seem that the additional abstract VPs add complexity to the
variability model. However, it enables the creation of different views of the variability
[PBL05]. For example it is possible to provide a view that only contains the security
package and its variants for customers, managers or other stakeholders. The complex
relationship between the security package and the other variants is hidden in such a view.

2.1.6 Software Product Line Essentials

Navet and Simonot-Lion [NSL09] define a software product line as a

• set of software products, that
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• share a certain degree of commonality,

• while sharing substantial differences and

• are derived from a single, variable product definition in a well-defined, prescribed
way.

Software product line engineering aims to embody mass customisation of software
products. Mass customisation is the ability to efficiently create many variations of a
product. The process of product creation is called production and is depicted in Figure 2.3.
Production uses a set of existing core assets to derive the products. Core assets3 are
assets that can be configured and composed in different ways to create products [Kru12c].
The process of production can be fully automated, partially automated or completely
manual [Kru12d].

Core Assets

Production

Product D
Product C

Product B

Product A

Figure 2.3: Production in a software product line

In order to build a software product line in an organisation, different approaches can be
used [BC05]: The SPL can be built proactively. This means that core assets are created first
and products are derived from these assets. Another way to build an SPL is reactively. In
contrast to the former approach, products are built first and the core assets are created by
analysing the variabilities and commonalities of the products. Of course any combination
of these two approaches could be suitable in some situations.

2.1.7 Software Product Line Processes

Software product line engineering can be separated into two main processes [LSR07]:
domain engineering and application engineering . The main goal of domain engineering is
the definition of the variability and commonality of the SPL.

The process of application engineering is responsible for deriving products from the
variable product definition that was established in the domain engineering process.

The split into these two processes leads to a separation of concerns in SPL engineering:

• Building a robust platform

• To be able to generate customer-specific products in short time

3Core assets are sometimes referred to as common assets or software artefacts
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In order to benefit from this separation, the two processes have to interact with each other.

Figure 2.4 shows an SPL engineering framework that is built around the processes of
domain and application engineering.

22 2.  A Framework for Software Product Line Engineering 

sation. We briefly describe the domain engineering process and its sub-
processes in Section 2.4. 

The application engineering process (depicted in the lower part of Fig. 2-1) 
is composed of the sub-processes application requirements engineering, 
application design, application realisation, and application testing. We 
briefly describe the application engineering process and its sub-processes in 
Section 2.6. 

The framework differentiates between different kinds of development arte-
facts (Definition 2-3): domain artefacts and applications artefacts. The 
domain artefacts (Definition 2-4) subsume the platform of the software 
product line. We briefly characterise the various artefacts in Section 2.5. The 
application artefacts (Definition 2-5) represent all kinds of development 
artefacts of specific applications. We briefly characterise these artefacts in 
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Fig. 2-1: The software product line engineering framework
Figure 2.4: SPL engineering framework [LSR07]

Domain Engineering

‘‘Domain engineering is the life-cycle that results in the core assets that together form the
product line’s platform’’ [LSR07]. Recalling the definition of SPLs (. . . derived from a single,
variable product definition. . . ), it can be stated that domain engineering is responsible for
establishing this variable product definition. In other words, it is responsible for building
the core assets.

The main task of the domain engineering process is the definition and realisation of
the variability and the commonality in an SPL [PBL05]. The questions ‘‘What varies?’’
and ‘‘Why/how does it vary?’’ (Section 2.1.5) have to be answered during the domain
engineering process. Hence, in domain engineering the variation points and variants are
defined. This is done using five subprocesses, depicted in Figure 2.4: product management,
domain requirements engineering, domain design, domain realisation and domain testing.
All of these subprocesses result in core assets.
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It can now be concluded that the key goals of domain engineering are to [PBL05]:

• Define the commonality and variability of the SPL.

• Define the set of products, the SPL is planned for (define the SPL’s scope).

• Define and construct reusable core assets that attain the desired variability.

Application Engineering

Application engineering uses the core assets of the SPL to derive products [LSR07]. During
the process of application engineering the variabilities of core assets are bound. This results
in concrete product assets that are fit for the products being developed. These derived
product assets can be combined with product-specific assets that are developed in the
course of application engineering.

Similar to domain engineering, application engineering consists of subprocesses (Fig-
ure 2.4). In contrast to the domain engineering processes, these subprocesses result in
concrete product assets, which are combined to a specific product [PBL05].

Therefore, the main goals of application engineering are to [PBL05]:

• Achieve an as high as possible reuse of the core assets.

• Exploit the commonality and variability of the software product line

• Document the product assets and relate them to the core assets.

• Bind the variability according to the application’s needs.

• Analyse the impact of the differences between application and domain requirements.

2.1.8 Problem vs. Solution Space

In software product line engineering the different activities of development (such as
requirements engineering, implementation and testing) are divided into two distinct groups
[BBM05]:

• Problem Space: In problem space, domain analysis and requirements engineering are
done and results in a specification for the system to build. The resulting specifica-
tion is independent from any technical realisation. The development activities that
are part of the problem space are requirements engineering and domain analysis.

• Solution Space: In solution space, concrete systems are built according to the
(problem space) specifications. The development activities that are part of the
solution space are system architecture/design, implementation and testing.

Problem and solution spaces can be described in a number of ways. The problem space
can, for instance, be described in a feature model (Section 2.1.10) or with a domain specific
language (DSL) [BPSP04].

It can be seen that by the separation of software activities into problem and solution
spaces, application as well as domain engineering each have an impact on both problem
and solution space. Therefore the essential software product line activities can be divided
into four quadrants, as shown in Figure 2.5.
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Figure 2.5: Combining process and development space [BPSP04]

2.1.9 Variation Mechanisms

At some time in the lifecycle of an SPL, variants of core assets are generated. In other
words variation points are bound. A variation mechanism is the mechanism that is
used to produce variants (product assets) of core assets in a controlled way [BC05]. Product
assets are produced by either selection and modification, or creation.

With selection and modification a core asset is selected and then modified or configured
in a preplanned way. Templates are a good example for this kind of mechanism.

With creation, on the other hand, a core asset is used to produce a new product asset.
After the creation there is no more connection between the core and the product asset. A
generator is a good example for this kind of mechanisms.

Examples of variation mechanisms include, but are not limited to, plug-ins, inheritance,
component substitution, parameters, aspects, configurators, templates and generators.

Choosing the appropriate variation mechanism is crucial for the success of an SPL.
Therefore it is necessary to take into account some of the properties of the variation
mechanisms when choosing properties for particular product assets [BC05]:

• The skills and costs required to implement the mechanism (e.g. using inheritance
requires a programmer).

• The skills, cost and time to exercise the mechanism (by exercise the actual application
of the mechanism is meant).

• The impact of the variation mechanism on quality (e.g. performance penalties because
of parameters that are read at runtime)

• The impact on the mechanisms maintainability



36 CHAPTER 2. RELATED WORK

• For which of the core assets is the mechanism appropriate.

Additionally, a core asset developer needs to have product information to choose the
right variability mechanism. Product information contain details about the products
that will be produced using the core assets. With respect to variability it is particularly
important to know about how the products vary from each other. In other words, the
three questions to make variability explicit (Section 2.1.5) need to be answered.

2.1.10 Feature Models

In general, variability modelling aims to present an overview of a product line’s variability.
Feature models are simple, hierarchical models that capture the commonality and variability
on a rather high level. A feature is a system characteristic that is relevant to a particular
stakeholder. Features are organised in a tree structure. Many graphical notations for
feature models have been introduced, but no standard notation has been established
yet. Relationships between features can be introduced explicitly or are defined by the
child-parent relationship in the tree structure [NSL09, BPSP04]. If a parent feature is
contained in a variant [BPSP04]

• all its mandatory child features must be also contained (n from n)

• any number of optional features can be included (m from n, 0 < = m<=n)

• exactly one feature must be selected from a group of alternative features (1 from n)

• at least one feature must be selected from a group of or features (m from n, m<1)

2.1.11 Variability Management in Automotive Engineering

The main motivation to introduce a product line to automotive engineering is the inherent
nature of variability in the automotive industry. Automotive software has to support
variability for a number of reasons, such as customer expectations and differing legal
constraints. Software product line engineering tries to manage the huge impact of variability
on the company and its processes [NSL09].

The main sources of variation in the automotive industry are [NSL09]:

1. Different customer needs (different target groups)

2. Differences in regulations and legal constraints (U.S. law vs. EU regulations. . . )

3. Different required functionality between body variants (limousine, station wagon,
. . . ) and drive-train-variants (e.g. automatic vs. manual transmission)

4. New customer expectations and new standards (e.g. innovation in telematics and
entertainment systems)

Software product line engineering in the automotive domain has a number of charac-
teristics compared to conventional SPLs. Some of these characteristics can make it quite
hard to introduce and maintain SPLs in this field [NSL09]:
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Complex dependencies between artefacts
In the automotive domain it is particularly important to support dependencies, such as
”requires” and ”excludes” between variants. Dependencies orginate either from management
decisions (e.g. cars sold in Austria are either red or white), or from logical facts (e.g. a car
without a rear window does not need a rear wiper). These dependencies have to be defined
and managed and possible conflicts (e.g. A requires B requires C, C excludes A) have to
be resolved as early as possible.

Cooperation of heterogeneous systems
In the automotive domain there is a need for various parties (such as developers, manage-
ment) to view or manage variability. Therefore it is important that all systems and tools
in an organisation (from developer tools to after-sales systems) support variability.

Different view on variability
As stated before, variability has an impact on various stakeholders, such as developers,
marketing people, management or sales people. Obviously not all stakeholders have the
same requirements when it comes to viewing the SPL. Developers might need a much more
fine-grained view than e.g. sales people, who might only be interested in customer-visible
variants.

Complex configurations
Product configuration does not only occur for the final solution of a product, but also
at intermediate steps, such as prototypes. The configuration of the product is of course
subject to change during development.

No clean separation of domain and application engineering
Due to many reasons, such as hard deadlines and often used stopgap solutions, there is no
clean separation of domain and application engineering in automotive engineering. This
can be a show stopper when SPLs are introduced in an organisation.

Synchronisation with supplier strategies
OEM (original equipment manufacturers) must integrate their strategy with a number
of suppliers. On the other hand a supplier who cooperates with more than one OEM or
other suppliers might have to integrate several SPL strategies. Tischer et al. [TMKG07]
introduce a product line approach in the development of engine control units. They defined
the synchronisation of the product line with customer needs as one of the major challenges
of the introduction.

Difficult incremental introduction
A step-by-step introduction is of great importance in the automotive domain. The long
product life cycle of cars is an obvious reason for this. Therefore, a bottom-up approach to
the introduction of an SPL is more realistic. A small, local SPL for a subsystem can be
introduced initially and expanded to the whole organisation.
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2.2 Co-Simulation

Simulation is a well-known approach to support the development of complex systems.
Time and money can be saved if a model of the system is simulated before the real system
is actually built. Sometimes it is even infeasible to build a system before simulating it. In
that case, simulation ‘‘enables the study, analysis and evaluation of situations that would
not be otherwise possible’’ [Sha98].

The increased interdependence of engineering disciplines led to the demand for the
integration of several domain-specific models into a single simulation [GKL06]. This
demand can be satisfied by the application of co-simulation.

The main task of co-simulation is the holistic simulation of an overall system to deter-
mine the global characteristics of the system [BZWB11]. The overall system consists of
several subsystems, which are simulated in their domain-specific simulation tools. Thus,
the co-simulation platform is responsible for assembling the subsystems by connecting their
inputs and outputs [BZWB11]. This ensures the interaction of the subsystems and thus
constitutes the simulation of the overall system.

Section 2.2.2 provides a definition of co-simulation. Section 2.2.2 presents the main tasks
of a co-simulation platform. One of these tasks is the data exchange between connected
subsystems. This task is called coupling. Section 2.2.3 analyses the challanges of coupling.
Section 2.2.4 and 2.2.5 present some applications of co-simulation. Finally, Section 2.2.6
shows the importance of a co-simulation platform’s support for distributed environments.

2.2.1 Terminology

The Co-Simulation

Sometimes the phrase ‘‘the co-simulation’’ is used. ‘‘A co-simulation’’ is a synonym for ’’a
co-simulation project’’ or ’’a co-simulation setup’’. In other words ‘‘a co-simulation’’ is a
concrete application which is executed on a co-simulation platform.

Models

The American Heritage Dictionary defines a model as ‘‘a schematic description of a system
(. . . ) that accounts for its known or inferred properties and may be used for further study
of its characteristics’’ [Lan03].

In the course of this work it is sometimes stated that a ‘‘system or subsystem is
simulated’’. These kinds of phrases appear regularly in current research. Testing or
simulating a system, in the case of co-simulation, is equivalent to testing/simulating a
model of the system.

2.2.2 Towards a Definition of Co-Simulation

Simulation can be defined as ‘‘the process of designing a model of a real system and
conducting experiments with this model for the purpose of understanding the behaviour of
the system and/or evaluating various strategies for the operation of the system’’ [Sha98].
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It is often not possible to design a single, holistic model of a real system. Therefore a
system is divided into several subsystems which can be modelled and simulated in their
domain-specific tools. Hence, the ‘‘main task of co-simulation is the holistic simulation of
an overall system to determine the global characteristics of the system’’ [BZWB11].

For instance, it is not feasible to create a holistic model of a vehicle. However the
system ‘‘vehicle’’ can be divided into several subsystems, which can be modelled and
simulated separately. Co-simulation can be used to couple simulation tools, in order to
simulate the system ‘‘vehicle’’ as a whole.

The reasons for a split-up process like this are manifold. Some of them are listed below
[Pun07, LPPFK06]:

• Different modelling depths of the subsystems: sometimes it is not applicable to have
the same degree of detail for all subsystems.

• Short simulation times can be ensured by dividing the overall system into subsystems
in a way that results in a short simulation time.

• Use of existing simulation tools is the most obvious reason in cross-domain co-
simulation.

• Logical decomposition: sometimes a single, comprehensive model exists, which is
actually composed of several partial models. The model can be decomposed into
several loosely coupled partial models. These partial models can then be co-simulated.
For instance Lang et. at. [LPPFK06] split-up a heat model into the two partial
models, the ‘‘cabin model‘‘ and the ‘‘energy flow model’’.

A lot of approaches to coupling simulation tools have been developed in current research.
Some of them will be described in Section 2.2.3. This led to the use of various terms for
the same approach as well as the use of the same term for various approaches.

Geimer et al. [GKL06] try to define co-simulation by two criteria:

• The number of integrators and

• the number of modelling tools

Approaches that only use one tool to create a model of the whole system are called closed
modelling. Those which use two or more tools to create models of subsystems, are called
distributed modelling.

The same applies to the number of integrators that are used to couple subsystems.
While the usage of a single integrator is called a closed simulation, using multiple integrators
refers to distributed simulation [GKL06].
Amory et al. [AMO+02] also distinguish co-simulation platforms using a similar criterion,
the number of simulators. However, their terminology differs as they define single simulator
co-simulation as homogeneous and multiple simulator co-simulation as heterogeneous co-
simulation.

Combining the two criteria from above obviously results in four different approaches.
Two of these approaches have been shown to be particularly useful for the simulation
of interdisciplinary systems [Dro04]: distributed modelling with closed simulation and
distributed modelling with distributed simulation.
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Geier et al. [GKL06] define the latter of the two to be co-simulation. Hence, co-
simulation is the coupling of models, which were created in more than one modelling tool,
using more than one integrator for simulation.

The Co-Simulation Platform

Co-simulation platform

Simulation Tool 1

Model A

Simulation Tool 2

Model B

Simulation Tool 3

Model C

Figure 2.6: The co-simulation platform

The term co-simulation platform is not defined consistently. Therefore, the main tasks
of a co-simulation platform will be defined, which should be sufficient for the course of this
work.

Benedikt et al. [BZWB11] state that the task of a co-simulation platform ‘‘is to take
the complex interactions of the various simulation models in a suitable and correct way
into account’’. Further they state that ‘‘the platform has to enable the precise co-working
of different simulation tools’’. The co-simulation platform is responsible for defining an
effective scheduling for the simulation tools and handling the two-way communication
between the simulation tools at specific points in time (Section 2.2.3) [AHLAO+07]. In
other words, the co-simulation platform is responsible for the initialisation, scheduling, and
communication of the various simulation tools and the subsystems, which are simulated in
these tools.

2.2.3 Simulation Tool Coupling

Coupling is the process of simulation tool integration. ‘‘The main tasks of a coupling
methodology is on the one hand to handle the input and output data of subsystems and on
the other hand to define an efficient schedule’’ [BSW10]. In other words coupling handles
the data exchange between simulation tools, or more precisely between the subsystems
that are simulated in these tools. Apparently this is not a trivial task, especially if little or
no knowledge of the subsystems, which are coupled, is present.

One step at a time

One of the main tasks of a co-simulation platform is the coupling of data between simulation
tools at specific points in time [BZWB11]. Each simulation tool involved in a co-simulation
project uses a specific numerical solver to solve a subsystem. The step-size which they
use to advance the simulation in order to solve the subsystem is called a micro time step
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Figure 2.7: The difference between staggered and parallel time synchronisation

(δT ). In addition to the micro time steps, the co-simulation platform uses macro time
steps (∆T ). The macro time step defines the interval in which data exchange between the
interconnected subsystems is performed.

The use of several different time steps is called multi-rate co-simulation [GNLG11,
OV04]. This kind of co-simulation reduces simulation time by an order of magnitude
without an increased error.

In order to couple the simulation of several subsystems, two approaches of synchronisa-
tion can be used: staggered and parallel time synchronisation.

In staggered time synchronisation each subsystem is simulated step by step in an
alternating manner. So after step 1 of subsystem A is done, step 1 of subsystem B is
performed and so on.

In contrast, a parallel time synchronisation approach handles each step of all subsystems
at the same time [Pun07]. So, step 1 of subsystem A and B are performed at the same
time. When the simulation of both subsystems has finished, synchronisation (coupling) is
performed and the co-simulation proceeds to step 2 of both subsystems. Figure 2.7 shows
the difference between the two synchronisation schemes.
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Internal loops

When two or more subsystems are present in a co-simulation system it is likely that an
internal loop exists. In the simplest form an internal loop is present if the input of a
subsystem depends on another subsystem’s output and vice versa. This scenario is shown
in Figure 2.8. It seems obvious that the co-simulation platform has to be able to deal with
this situation, by providing a way of letting the simulation of both subsystems proceed
[BZWB11].
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Coupling time instants where coupling data is exchanged between the simulation tools (by the co-
simulation platform) are chosen regarding a defined “macro time step” ΔT (see Fig. 4). 
 

 
Fig. 4: Exchange of data at coupling time instants and definition of time-steps 

 
The use of several different step sizes lead to a so called multi-rate simulation. It is possible to 
account slow and fast dynamic subsystems with appropriate micro time steps and thus reduce overall 
simulation time as well as improve the accuracy of the simulation results. In addition, if any subsystem 
is solved by a tailored different numerical solver the simulation is called multi-method. Therefore, 
assembling different domain specific simulation tools to a holistic co-simulation leads to a multi-rate 
multi-method simulation in general [2, 4]. 
 

3.1 The problem of internal loops 

Regarding the resulting network of the composed global system describing the co-simulation, internal 
loops can cause difficulties. This is because subsystems typically depend on the results of other 
subsystems (“closed loop”) as shown on a simple example in Fig. 5. 
 

 
Fig. 5: Simple loop consisting of two subsystems 

 
The depicted co-simulation consists of two single-input single-output (SISO) subsystems whereas 
additionally the coupling time instants ΔT are illustrated. At the coupling points ΔT data is exchanged 
between the interconnected subsystems. In this simple example the involved subsystems depend 
strongly on each other and cannot be solved standalone. To solve an eventually existing network 
internal loop, a co-simulation platform typically uses one of two possibilities: 
 
- Non-iterative or weak coupling: past results of the coupling quantities are utilized to extrapolate 

coupling signals over the actual macro-time-step. This initial extrapolation step enables a 
consecutive solvability of the involved subsystems. Using this approach each subsystem is solved 
once over the macro-time-step and an error is introduced due to the necessary extrapolation 
technique [2, 3, 6]. 

- Iterative or strong coupling: the subsystems are solved several times for a certain macro time step. 
For every iteration the coupling data are exchanged. An initial guess has to be calculated by 
extrapolation if no input sequence is available. Typically iterations are performed until a desired 
threshold is reached [2, 4, 5]. 

 
Comparing the non-iterative and the iterative approach, the main disadvantage of the iterative 
approach is recognizable. To perform multiple iterations for the actual macro-time-step, the states of 
the involved submodels have to be initialized for each iteration. Unfortunately, this feature only is 
supported by a very limited number of simulation tools, which leads to a very restricted applicability. 
Thus, for a general applicable co-simulation methodology the non-iterative approach is well suited and 
therefore we focus on it in the further sections. 
 

Figure 2.8: A simple internal loop in a co-simulation [BZWB11]

To solve the problem of internal loops, co-simulation platforms use extrapolation to
predict the output of a subsystem [BSW10]. The following actions can be done to solve an
internal loop like the one in Figure 2.8 [BZWB11]:

1. Extrapolate the output of subsystem 1: The extrapolated value is then used as input
for subsystem 2.

2. Extrapolate the output of subsystem 2: The extrapolated value is then used as input
for subsystem 1.

3. Extrapolate the output of both subsystem 1 and subsystem 2: The extrapolated output
of subsystem 1 is used as input for subsystem 2 and vice versa.

Obviously when parallel time synchronisation is used, only the third approach (extrap-
olating both output values) works.

Additionally, the extrapolation techniques can be divided into iterative and non-
iterative approaches. In non-iterative coupling (or weak coupling) past results are used to
extrapolate coupling values for the current macro time step ∆T . Each subsystem is solved
exactly once for each macro time step.

In iterative coupling (or strong coupling) the subsystems are solved several times for
each macro time step. Usually the iteration is performed until a certain error threshold is
reached.

As the subsystem is solved several times for a particular time step, the states of the
subsystem have to be reinitialised for each iteration. Many simulation tools do not support
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this [BZWB11]. Thus, if a co-simulation tool is required to be independent from the
simulation tools it uses, the non-iterative approach is better suited.

Extrapolation techniques

‘‘Extrapolation is the prediction of simulation results (output of the subsystems) over the
subsequent macro time steps ∆T at defined coupling time instances’’ [BZWB11]. Several
extrapolation techniques exist for both iterative and non-iterative coupling. The most
often used non-iterative extrapolation techniques are polynomial approaches of different
degrees: Zero-Order-Hold (ZOH), Frist-Order-Hold (FOH) and Second-Order-Hold (SOH).
While ZOH uses only the result from the macro time step ∆T -1 to predict a value at time
step ∆T , FOH and SOH use two and three previous values respectively.

All of these approaches only use values at macro time steps. To further improve the
results of extrapolation, values at intermediate time steps have to be used.

Extrapolation predicts values, thus an extrapolation error is introduced. The order
of the extrapolation error depends on the coupling approach, the homogeneity of the
time scales in the subsystems and of course on the extrapolation technique that is used
[GNLG11, BSW10].

The perfect step size

Until now constant macro time steps ∆T were assumed, hence the size of the macro time
step could not change over simulation time. Nevertheless, the macro time step is an
important factor of influence for [BSW10]

• simulation time: A small macro time step size, leads to a high simulation time. This
is due to the synchronisation overhead for each macro time step.

• error: If a co-simulation system contains internal loops, extrapolation has to be used
to solve them. The overall error that is introduced by the extrapolation is heavily
dependent on the macro time step size.

Therefore it is crucial to find a macro step size that is suitable for a specific co-simulation
[BSW10]. Suitable means a good trade-off between simulation time and simulation error.
More often than not, such a macro time step is defined by a domain expert or determined
by a trial and error approach.

Another approach to finding a well-suited macro step size is called adaptive macro time
step. Benedikt et al. [BSW10] presented adaptive time step approaches for iterative and
non-iterative coupling.

2.2.4 Automotive Cross-Domain Co-Simulation

As the name suggests cross-domain co-simulation is the integration of subsystems from
different domains/disciplines into an overall system which is simulated as a whole. Every
subsystem is modelled by a domain expert and the resulting subsystems are connected and
simulated using a cross-domain co-simulation platform [GKL06].
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The involvement of several domains is inherent to modern automotive engineering.
Neither a mechanical nor an electrical engineer can build a modern vehicle on his own.
Further to that, the modelling and simulation of dynamic systems is crucial at an early
stage of the vehicle development process [Cen12a]. Cross-domain co-simulation supports
the simulation of the overall system or several parts of the system at an early stage. This
leads to early concept decisions for the end product.

2.2.5 Hardware/Software Co-Simulation

‘‘Hardware/software co-simulation refers to verifying that hardware and software function
correctly together’’ [Row94].

Hardware/software (HW/SW) co-simulation approaches can be classified into three
different groups [ASB99]:

1. Sequential approach: is the coupling of two simulators without support for feedback.

2. Standalone approach: uses one complex program that handles all types of models.

3. Paired approach: This approach is also called the backplane approach. The backplane
is a part of the HW/SW co-simulation platform similar to the co-simulation platform
introduced in Section 2.2.2. Atef et al. [ASB99] describe the backplane as the
backbone that connects different simulators. It is responsible for the data exchange
between simulation tools.

Not all approaches above conform to the definition of co-simulation, given in Sec-
tion 2.2.2. The definition requires that several tools are used to model subsystems (hardware
and software components) and several simulation tools are used to perform the simulation
of these subsystems. Obviously, the second approach (standalone) does not satisfy the
requirements of the definition. The sequential as well as the paired approach use more
than one simulation tool. Hence, they satisfy the second requirement of the definition.
However, they do neither prohibit nor encourage the use of more than one modelling tool.

2.2.6 Distributed (Co-)Simulation

Please note that distributed co-simulation refers to simulation on geographically distributed
computers. The term has been used in Section 2.2.2 in another context to be able to define
co-simulation.

‘‘Distributed simulation is concerned with the execution of simulations on geographically
distributed computers interconnected via a local area and/or wide area network’’ [Fuj99].
The reasons why co-simulation is sometimes executed in a distributed environment are
manifold [Fuj99, AMO+02]:

1. Reduced execution time

2. Geographic distribution of simulation tools. For instance, Faruque et al. [FSSD09]
implement a ‘‘combined electrical and thermal simulation carried out using two
real-time digital simulators located approximately 3500 km from each other’’.
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3. Integrating a great number of simulators that execute on machines from different
manufacturers or exclusively on different platforms. This is especially true for co-
simulation environments: cross-domain co-simulation systems usually consist of
subsystems that are simulated in several different simulation tools.

4. Simulator’s license management: Simulators can be installed only on a core set of
machines.

5. Fault tolerance can be achieved by the replication of hosts.

6. Resource sharing

7. Intellectual property management: a core provider may allow the simulation of a
component without giving out its description (e.g. source code).

8. Project decentralisation

2.2.7 Reusing Existing Models

Section 2.1.1 states the importance of reuse. ‘‘Co-simulation enables the reuse and
combination of already existing and validated subsystem models without re-entering model
data’’ [BHR+07].

The reuse of existing models can be supported by using a model database within an
organisation. The model database is a collection of existing models including a description
of the model and instructions how to use the model within a co-simulation. Wang et
al. [WWLZ09] describe the implementation of a model database for vehicle components.
Models can be store and categorise and later retrieved from the database. This enables
systematic reuse of the models within an organisation.
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2.3 ICOS - Independent Co-Simulation

ICOS (Independent CO-Simulation) is an independent co-simulation platform, developed
at the Virtual Vehicle Competence Center4. It enables cross-domain co-simulation for a
wide range of engineering disciplines in the field of automotive engineering [Cen12a].

This section gives an overview of the ICOS - Independent Co-Simulation environment
and a motivation for the development of this tool. Furthermore some basic concepts of
ICOS are explained. Finally, some elements of ICOS, such as the project file format, will
be studied in detail. The degree of detail which is used to describe certain parts of ICOS
corresponds to the importance of these parts for the concept and implementation presented
in the subsequent chapters.

2.3.1 Motivation and Objectives

In the automotive industry many specific simulation tools have been used in the past. Most
of these tools specialise on a single area or discipline of automotive engineering. Hence,
there is very little support for a heterogeneous simulation environment which is inherent
to the automotive industry.

Typical co-simulation platforms try to overcome this limitation by supporting coupling
of various simulation tools. Nevertheless, most of them focus on a single, specific area of
expertise. One example is a co-simulation tool for the ‘‘design of a thermal management
system with a heterogeneous tool landscape’’ [BZWB11].

‘‘The development of modern, mechatronic systems requires a much broader approach.
The interactions between sub-systems from different areas have to be taken into account’’
[BZWB11].

ICOS supports the coupling of existing domain/area-specific simulation tools and
models that were developed using these tools. The coupling of models from different areas
of expertise represents a promising way to ‘‘establish a universal independent coupling
approach to integrate different subsystem to the overall system called vehicle’’ [Pun07].

2.3.2 Models and Wrappers

As stated in Section 2.2, the main task of co-simulation is the holistic simulation of an
overall system consisting of several subsystems. However, not the system itself but a model
of the system is simulated. ICOS supports cross-domain co-simulation and, therefore, the
interaction of simulation tools of various engineering disciplines [Cen12a]. Currently, ICOS
supports the simulation tools listed in Table 2.3.

One of ICOS’ main design goals was to separate the co-simulation platform and its
coupling algorithm from the simulation tools that are part of the co-simulation environment.
In other words, the co-simulation platform must be independent from the simulation
tools it uses. One of the advantages resulting from this design is the minimised effort to
support new simulation tools [Pun07].

4http://www.v2c2.at

http://www.v2c2.at
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Abaqus: finite element analysis tool

Adams: multibody dynamics and motion analysis software

AVL Boost: advanced and fully integrated ‘‘Virtual Engine Simulation Tool’’

AVL Cruise: adaptable tool for vehicle system and driveline analysis

Dymola: modelling and simulation environment based on the open Mod-
elica modelling language

Flowmaster: tool to simulate thermo-fluid systems

Kuli: tool for simulating and optimizing the thermal management
system for automotive applications

Labview: visual programming system

LSDyna: general-purpose finite element program

Matlab/Simulink: tool for modelling, simulating and analysing multidomain dy-
namic systems

Simpack: multi-body simulation tool to aid engineers in the analysis and
design of mechanical and mechatronic systems

User-Defined: ICOS enables developers to include custom C + +−programs
into a co-simulation project

Table 2.3: Simulation tools currently support by ICOS [Cen12b]

In order to separate the concerns of the co-simulation platform and the simulation
tools, ICOS is built using a three-tier architecture [Pun07]:

• Application layer: This layer consists of all simulation tools that are used in the
co-simulation environment (e.g. Adams, KULI, Matlab/Simulink).

• Wrapper layer: This is the intermediate layer which hides the application specific
details from the co-simulation layer. It consists of application-specific (simulation
tool- specific) interfaces and a global interface. Any changes in an API (Application
Programming Interface) in the application layer lead only to changes in an application-
specific interface. Hence, changes in the application layer are hidden from the
co-simulation layer.

• Co-simulation layer: The co-simulation layer is an independent control unit that
handles the coupling process.

Figure 2.9 shows the three-tier architecture of ICOS.

2.3.3 Parameters

The provision of input and output parameters of subsystem models is supported by many
simulation tools. This way the ICOS platform is able to exchange data between subsystem
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Figure 2.9: The ICOS co-simulation environment’s layered architecture [Pun07]

models. In the case of Matlab/Simulink, for instance, there are two ways to connect
Simulink component models to ICOS. Either the standard in- and outport components of
Simulink can be used or special ‘‘ICOS InPort’’ and ‘‘ICOS OutPort’’ components can be
imported into a Simulink model [Cen12b].

For every model in the co-simulation, its parameters have to be specified in the co-
simulation project. In order for ICOS to be able to use a parameter, the following properties
have to be provided [Cen12b]:

• In/out: tells ICOS whether the parameter is an input parameter or an output
parameter of the model.

• Name in simulation tool: Most simulation tools use names or numbers for its input
and output parameters/ports. Giving the name of the parameter in the simulation
tool enables ICOS to connect to the model parameter with the given name.

• Name in ICOS: is an ICOS-internal name of the parameter.

• Unit: ICOS enables the specification of the unit (such as meter, ms, Fahrenheit. . . )
to protect from connecting parameters with different units.

• Data type and dimensions: Currently ICOS supports parameters of type integer,
string and double. Values can be scalars as well as vectors.

The distinction between parameter names in the model and the name in ICOS is in
accordance with the layered architecture of ICOS. Figure 2.10 shows the mapping from
parameter names in the model to the according names in ICOS. This separation enables
one to refer to the parameter in ICOS independently from the parameter’s name in the
simulation tool. Therefore, changing the name in a model requires only a minor change in
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the co-simulation project. Among other tasks, the parameter name in ICOS is used for the
linking of parameters (Section 2.3.6) and for subscribing to parameter results.

In addition to parameters that are provided by the subsystem models, parameters can
be provided by a boundary condition server, which is described in the subsequent section.
In order to distinguish the different types of parameters the term ‘‘model parameter’’
will be used to explicitly refer to a parameter of a subsystem model, and the term ‘‘BCS
parameter’’ to refer to boundary condition server parameters. Thus, the term ‘‘parameter’’
will refer to both model and BCS parameters.

2.3.4 The Boundary Condition Server

The boundary condition server (BCS) is a component of the ICOS co-simulation platform
that provides boundary conditions and initialisation values for other subsystem models
[Cen11]. For example a temperature model in KULI5 might require the ambient temperature
as input. The initial temperature as well as the change of the temperature in time can be
provided using the BCS. Figure 2.11 shows a BCS example configuration in the ICOS user
interface.

In general a boundary condition server is just another component of an ICOS co-
simulation, just like a Matlab/Simulink or KULI model. The only difference is that a BCS
only has output parameters. Thus, BCS parameter values have to be configured before
the co-simulation is started and the BCS cannot react on the output of any other model.
Per definition, every ICOS project contains exactly one boundary condition server [Cen11].
This does not imply any constraints as the number of output parameters for this unique
instance is unlimited.

5http://www.kuli.at/

http://www.kuli.at/


50 CHAPTER 2. RELATED WORK

Figure 2.11: ICOS GUI - Configuration of a linear boundary condition server

As stated above, BCS parameters differ from model parameters (Section 2.3.3) in two
ways. First, BCS parameters are always output parameters. Second, the values of BCS
parameters must be configured in the ICOS co-simulation project before the co-simulation
is started. There are two different types of BCS parameter values [Cen12b]:

• Constant values don’t change over time. Only one value needs to be specified
which will be the output value of the BCS parameter during the whole run of the
co-simulation.

• Linear values can change over time. Values can be specified for any point in time of
the co-simulation. The values for simulation steps between any two specified points
in time will be linearly interpolated. This can be seen in the plot in the bottom right
of Figure 2.11.

2.3.5 Coupling Strategies in ICOS

ICOS lets the user choose between parallel and sequential coupling and to optinally use an
adaptive time step algorithm. Further, ICOS provides a coupling approach called NEPCE
(Nearly Energy-Preserving Coupling Element) [Cen12b]. This is a novel, non-iterative
coupling approach that is to significantly reduce the introduced extrapolation error.

2.3.6 Parameter Linking

In order to exchange data between models, ICOS needs linking information. This in-
formation has to be provided by the user. In other words, the user connects input and
output parameters. Obviously two connected parameters need to have the same data type.
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Further it is possible to connect one and the same output parameter to more than one
input parameter [Cen12b].

2.3.7 Distributed Co-Simulation in ICOS

Section 2.2.6 provides reasons for the distribution of a (co-)simulation environment. ICOS
allows simulation tools to be distributed [BZWB11]. This means that the simulation tools,
which are used during co-simulation, may run on a number of different physically dis-
tributed hosts and different platforms. The ICOS co-simulation framework communicates
via TCP/IP with the ICOS remote servers, which are running on the same hosts as the
simulation tools. The remote server uses the wrapper interface (Section 2.3.2) to communi-
cate with the simulation tool. Figure 2.12 shows the setup and different components of
the distributed co-simulation.

In practice, the co-simulation project file (Section 2.3.9), along with some other files,
is sent from the host that is running the ICOS framework to the hosts that are running
the simulation tools. The remote server examines the project file and starts the specific
simulation tool. During the course of the co-simulation the remote server reacts on the
simulation tool’s input and output.

2.3.8 ICOS Co-Simulation Work Flow

The ICOS co-simulation workflow consists of three steps in the given order [Cen12b]:

1. Configure co-simulation settings and define all models and its parameters.

2. Link input and output parameters.

3. Simulate the ICOS co-simulation.

Obviously, after step 3 a user evaluates the results and then reconsiders his co-simulation
settings, thus going back to step 1. Further, it should be mentioned that these steps only
cover the process of setting up and running a co-simulation. Before this can be done, the
subsystem models that are used in the co-simulation have to be developed.

2.3.9 ICOS Co-Simulation Project Files

All information about the ICOS co-simulation project is stored in a project file, represented
in XML. The file stores several kinds of information:

• General information about the co-simulation project. For instance, the name,
description and version of the project file.

• Co-simulation settings define important properties of the co-simulation. Examples
include the physical simulation duration, the coupling mode and the time step mode.

• Wrappers/models: Every model and its wrapper (Section 2.3.2) is defined in an XML
tag with the name ‘‘wrapper’’. Among other things, the location of the model file on
the remote host, the simulation tool to be used, the macro step size and the location
of the init file (Section 2.3.10) are specified.
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Figure 2.12: Distributed co-simulation in the ICOS co-simulation environment

• Parameters are defined as parts of the models. This means that the input and output
parameters of a model are defined within the wrapper’s XML tag. The name of the
parameter in ICOS and in the simulation tools as well as its data type and unit is
defined in the parameter’s XML tag.

• Links between input and output parameters are stored in the input parameter’s
XML tag. This tag simply has a child tag with the name ‘‘inputAssociatedWith’’.
For instance, if the parameter XML tag with the name‘‘MyInputParameter’’ has an
XML child tag with the name ‘‘inputAssociatedWith’’ and the value ‘‘MyOutputPa-
rameter’’, these parameters are linked together.

• Boundary Condition Server describes general settings of the BCS, such as the network
location and port of the host that runs the BCS. Furthermore, all BCS parameters
are defined. This definition includes their name, data type, unit and their constant
or linear values (Section 2.3.4).

• GUI Data: The name of this section is confusing. On the one hand, it actually
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defines GUI-related data, such as a list of output parameters that should be plotted
on the GUI after the co-simulation is executed. On the other hand, it also defines the
‘‘subscribed parameters’’. These are the parameters of which the ICOS framework
collects data during a co-simulation execution. This data is used in the ICOS GUI,
but is also available to the user as .dat file.

2.3.10 Initialisation Files

An initialisation file can be used to initialise a subsystem model [Cen12b]. It can be
configured separately for each model. However, not all simulation tools support the use of
init files.

2.4 Hypothesis

This chapter presents two different fields of research: variability management and co-
simulation. Variability management, its importance and its relationship to software product
lines were described. Additionally, the main goal of variability management, to make
variability explicit, was defined.

On the other hand the concept of co-simulation, the details of a co-simulation platform
and its importance in automotive engineering were presented.

The remainder of this work aims to introduce variability management to automotive co-
simulation. First, variability in co-simulation environments in general is investigated. The
results of this investigation will be used to implement an approach to manage variability
in ICOS co-simulation projects. The concept and implementation that will be presented
aim to prove two assumptions:

• introducing explicit variability management to co-simulation enables systematic
reuse.

• making variability explicit enables the integration into a global (system-wide) vari-
ability management approach.
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Chapter 3

Variability Management in
Co-Simulation

This chapter describes variability management in independent co-simulation. First, the
key motivation for identifying and managing variability in co-simulation environments
is investigated. Further, the common variation points in many co-simulation scenarios
are studied. Based on this study the requirements for an implementation of a variability
management tool for the ICOS co-simulation platform are derived and a basic architecture
is presented.

3.1 Application Scenarios

During the course of the project two different application scenarios are identified:

1. Standalone variability management in co-simulation environments

2. Integration in a (software) product line

The first scenario (standalone) is particularly useful if no product line is established
in an organisation. Variability management makes existing variability explicit (variants
exist, but are hidden in artefacts) or can be used to support optimisation or calibration
tasks (finding optimal co-simulation settings).

In the second scenario (SPL integration) an existing product line is used or a new one
is established, in which the process of co-simulation is integrated. The pure::variants1

variability management tool is used to integrate ICOS variability managment into a
product line.

The remainder of this work focuses on the first scenario. It presents the basic architecture
of a standalone variability management tool for ICOS. Nevertheless, Section 3.5 gives an
outlook on the integration of co-simulation variability management into an SPL using the
pure::variants variant management tool.

1http://www.pure-systems.com
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3.2 Motivation

One of the main goals of introducing variability management in co-simulation environments
is to elevate systematic reuse of existing models and co-simulations. Another goal is to
make variability explicit.

Co-simulation is a powerful approach to verifying a system design early in the devel-
opment process. Existing models of subsystems can be coupled and different setups can
be evaluated. New models of subsystems can be simulated within a holistic model of the
system. Furthermore co-simulation can be used throughout the whole development cycle
of a vehicle to support other development steps.

Dealing with variants is an integral part of the automotive development process. Many
of these variants lead to multiple models of subsystems. For instance, if a hybrid electrical
vehicle is sold with two different types of electric engines, two different models of the
engine have to be developed and simulated. At best only one variable model of the engine
exists. This model can be bound to the different variants of the engine.

Variability management (VM) in co-simulation environments enables the simulation
of these variable models within a holistic simulation of the resulting vehicle variants.
This allows early detection of errors and the evaluation of consequences that are caused
by different variants. For instance, a vehicle’s thermo dynamical energy flow heavily
depends on the engine [Pun07]. Consequences of different engines can be evaluated using
co-simulation.

But VM in co-simulation environments does not only enable the support for variability
in subsystem models. Sometimes variability does not affect the subsystems of vehicles
directly, but through their environment. For instance, the simulation of the heat flow
of a car that is sold on the Russian market might need to be simulated with completely
different ambient temperatures than one that is only sold in Australia. This can be solved
by varying inputs from the vehicle’s environment (such as the ambient temperature).

Another task that is supported by the explicit description of variability in co-simulations
is optimisation. This is done by defining variation points for co-simulation parameters,
such as the macro time step ∆T , or boundary condition parameters. These parameters
can then be bound to a range of values and optimised by evaluating simulation results.

A main goal of variability management is to make variability explicit. Therefore, instead
of hiding variants inside subsystem models and co-simulation projects, VM in co-simulation
needs to provide a distinct view of the variability model of the co-simulation.

3.3 Variability Management in Co-Simulation

The setup of a co-simulation environment and the essentials of a co-simulation platform
were discussed in Section 2.2. Now the kind of variability to be introduced to co-simulation
and how this is done is explored. Recalling the three questions from Section 2.1.5, variability
management should give an answer to:

• What varies?
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• How does it vary?

• Why does it vary?

These questions need to be answered for concrete co-simulation projects. However,
in order to investigate co-simulation variability management in general, more generic
questions have to be answered:

• What is commonly expected to be variable in various co-simulations? In other words,
what are the possible types of variation points?

• How is it expected to vary? In other words, what kinds of variants are possible?

• What is the motivation for the support of the given variability?

The remainder of this section presents an answer to these questions. Items and
properties of a co-simulation project are presented, which are expected to be variable -
variation points of a co-simulation. Furthermore, possible variants that result from
this variability will be discussed. Finally, examples for all different kinds of variation
points are given.

To allow a better overview, variation points of co-simulation are separated into four
groups:

• Model-Related Variation Points

• Linking Variation Points

• Environment Variation Points

• Coupling Variation Points

For the remainder of this chapter the presence of an independent co-simulation envi-
ronment is assumed. Therefore, no simulation tool-specific properties or information can
be used. In other words the models of the subsystems are treated as black boxes. The only
available information are the models’ interfaces (the names and data types of the input
and output parameters).

3.3.1 Model-Related Variation Points

Model-related variation points define the variability of a subsystem model’s implementation
or the model itself. As these kinds of variation points handle the variability of subsystems
(e.g. of a vehicle), they are probably the most obvious variation points in co-simulation.

For instance, let’s assume two variants of an electric engine (engine A and B). Both
are part of some distinct variants of a hybrid electric vehicle. At this point introducing
variability enables one to simulate every variant of the hybrid electrical vehicle with the
appropriate model of the electric engine.

This example shows one of the main motivations for model-realted variability, which
is variability of the overall system (vehicle). Another motivation is the use of different
modelling depths depending on the co-simulation scenario. For some co-simulation scenarios
it might be sufficient to have a rather high level model of a subsystem, while others need a
more detailed (but slower to simulate) model of the same subsystem.

How can this kind of variability be established in a co-simulation:
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Figure 3.1: Model substitution in co-simulation environments; two models A and B of the
same subsystem exist and can be used in different product variants of the co-simulation

• Substitute models: If both engines are represented in two distinct models, these
models can be substituted. This means that the co-simulation project is configured
to allow both models as an alternative. This scenario is depicted in Figure 3.1.
Obviously, in order for two or more models to be substitutable, their interfaces need
to be compatible, i.e. the number of input and output parameter and their data
types must match.

• Substitute models and simulation tools: When two models of a subsystem
need to be simulated in different simulation tools, the simulation tool has to be
substitutable too. This scenario is depicted in Figure 3.2. Independent co-simulation
abstracts the use of different co-simulation tools. Therefore, substituting models
including their simulation tool is similar to substituting models in the same tool.
Section 3.4 describes how this is done using the ICOS independent co-simulation
environment.

• Exploit model variability: Models might provide some kind of variability. This
variability can be used to change the behaviour of a model in the co-simulation.
As stated before, the models are black boxes, i.e. only their input and output
parameters are known. Thus, it is only possible to exploit the variability provided
by a subsystem model through an input parameter. To give an example, Figure 3.3
shows a Simulink component model which contains a variant switch. The variant
switch chooses a subcomponent for a calculation (add or multiply) according to the
input of a configuration port. The input of the configuration port can be provided
by an input parameter.

3.3.2 Linking Variation Points

In addition to model-realted variability, it might be desirable to change links between model
input and output parameters. This is particularly true in the case of model substitution
(see previous section). It was stated that two substitutable models must provide compatible
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interfaces (the same number of parameters and compatible data types). However, if a
co-simulation’s linking is variable, the different interfaces can be handled. Figure 3.4 shows
an example of how changing the linking can solve the problem of incompatible interfaces.

Variable links in a co-simulation can make sense even if no models are substituted. Take
for example a single-input single-output subsystem (SISO), which does some calculation or
conversion of the input and provides the converted data as output. There might be product
variants, where the conversion is not desired. In this case the linking can be changed to
skip this conversion/calculation.

3.3.3 Environment Variation Points

Section 3.3.1 explained how models can exploit variability by providing input parameters
that change the model. Instead, input parameters can be used for initialisation values or
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boundary conditions. In this case the input does not change the model itself. An example
that has already been used above is the ambient temperature which can vary for different
co-simulation scenarios.

3.3.4 Coupling Variation Points

Section 2.2.3 described the process of coupling and properties of different coupling strategies.
When introducing variability to co-simulation, it might be desirable to make settings, such
as the macro time step or the coupling mode, variable. Two motivations for this are:

1. variability in coupling settings can be used to adapt the resulting co-simulation
(the product). For instance, some simulation tools might require sequential simula-
tion. Therefore, all resulting co-simulations that include models for these simulation
tools, need to run sequentially.

2. variability of coupling settings can be used to optimise these settings or to find
an appropriate value. This scenario is actually not associated with variability
management as such, but with optimisation. In Section 2.2.3 it was stated that
finding a step size that is a good trade-off between accuracy and simulation time
is crucial for the success of co-simulation. If no appropriate step size is known by
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experience, trial and error or optimisation can be done by varying the step size and
evaluating the results.

3.3.5 Summary of Variation Point Groups

The four different groups of variation points (model-related, linking, environment and
coupling) are classified by their consequences for the co-simulation environment. Thus,
variation points from two different groups might be implemented in the same way, but
their purpose for the co-simulation differs. Take for instance the variation points (1)
changing the ambient temperature (environment VP) and (2) choosing an engine model’s
internal implementation (model-related VP). Both variation points are implemented using
a model input parameter and connecting it to a boundary condition parameter. However,
the latter VP (2) actually changes a model. Contrarily VP (1) provides a parameter from
the system’s environment to a model.

3.3.6 Separation of Concerns - Domain vs. Application Engineering

Software product line engineering distinguishes between two subprocesses (Section 2.1.7).
The same separation can be used here: While domain engineering is responsible for
establishing a variable co-simulation definition, application engineering is responsible
for deriving concrete co-simulations (products) from the variable definition. Figure 3.5
shows the separation into domain and application engineering and its implications on
co-simulation.

Domain Engineering

Domain engineering is the process responsible for the creation of a variable co-simulation
environment. A variable co-simulation environment consists of a co-simulation project
with explicitly defined variabilities and a set of subsystem models. In other words in domain
engineering the core assets are developed, which together form a variable co-simulation.
Therefore the core assets are:

• Static/invariable subsystem models that can be selected for resulting products.

• Variable subsystem models, which are bound during application engineering .

• A variable definition of the co-simulation consisting of links, coupling properties
(coupling mode, step size. . . ), and boundary conditions.

Application Engineering

During application engineering the variability that was introduced before is bound and
concrete products are derived. A concrete product in this context is a co-simulation project.
The variability of the subsystem models that are included in the co-simulation project is
bound.
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Figure 3.5: Domain and application engineering in co-simulation variability management

3.4 Requirements for Variability Management in ICOS

So far variability in co-simulation in general and how to manage the variability has been
discussed. These observations are now applied to identify requirements for the support of
variability in the ICOS co-simulation platform. Later on these requirements are used to
design a variability management tool for ICOS.

3.4.1 Independent Co-Simulation

ICOS is an independent co-simulation tool. Hence, the co-simulation platform is inde-
pendent from the simulation tools it uses. Therefore, variability management in ICOS is
required to be independent too.

Requirement 1 (Independence): The variability model of an ICOS co-simulation has to
be independent from the simulation tools that are used within the co-simulation.
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3.4.2 Decoupled Variability Model

The variability model describes the variability of a co-simulation. Obviously, this descrip-
tion depends on the co-simulation and its models. Contrarily, the co-simulation and its
subsystem models are required to be decoupled from the variability model. Therefore,
references from the co-simulation project to the variability model must not exist. Further-
more, the co-simulation and its models may exist on their own without the presence of the
variability model.

Requirement 2 (Decoupled Variability Model): The co-simulation project and all its
affiliated models are independent from the co-simulation variability model.

3.4.3 Core Assets

It was stated that a co-simulation project is one of the core assets. In the case of ICOS
variability management this co-simulation project is a complete, executable co-simulation.
Therefore, an abstract model as a placeholder cannot be used, but a concrete model for the
variable co-simulation project has to be specified. For the example of model substitution
this means: instead of having an abstract variable model (Model X, Figure 3.1) which is a
placeholder for concrete existing models, a particular concrete model (Model A, Figure 3.7)
is substituted with another concrete model (Model B, Figure 3.7).

Requirement 3 (Executable Co-Simulation): The co-simulation project that is used in
domain engineering has to be a complete, executable co-simulation project.

3.4.4 Variation Points and Modifiers

Section 3.3 introduces four groups of variation points (model-related, linking, environment,
coupling). The fact that some of these types are interrelated was ignored. This means
that a variation point does not make sense without the existence of another one. Take, for
instance, a variation point A that defines two models to be substitutable. The interfaces
of the models are not compatible. Thus, they require a variation point B that changes the
linking in an acceptable way.

One way to solve this is to define an abstract variation point and add constraints
between variants of variation point VP 1 and VP 2 (Figure 3.6a). However, looking at this
scenario from a higher level, substituting a model and changing its links can be seen as
one single variation point . None of these two variation points makes sense on its own.

To resolve this issue, another level of abstraction was introduced: modifiers. A single
variant consists of one or more modifiers (Figure 3.6b). In the example above there would
be one variation point, which consists of two variants Variant A and Variant B. Each of the
variants consists of two modifiers; one for substituting the model and one for adapting the
links. Figure 3.6 shows the realisation using an abstract VP and the require-relationship
on the one side (a) and the introduction of modifiers on the other side (b).

Both approaches are possible in the proposed variability model. What are the advan-
tages of modifiers and when is the use of modifiers preferable?

• Modifiers should be used if a product must not exist, in which these modifiers are
separated from each other. Referring to the example in Figure 3.6b, one should use
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modifiers if Modifier Model A cannot exist without Modifier Linking A in a product
and vice versa.

• An obvious advantage of the use of modifiers is the creation of a simpler variability
model.

• Looking at the variability model with modifiers (Figure 3.6b), a domain engineer
immediately sees the dependency between Modifier Model A and Modifier Linking A.
This is not the case for Figure 3.6a.

In the subsequent sections all modifiers that will be available in the ICOS variability
management tool are described. Furthermore, their relationship to the variation point
groups of Section 3.3 (model-related, linking, coupling and environment variation points)
will be explored.

Model Substitution Modifier

Models that are part of a variable co-simulation should be substitutable. Thus, a model
can be replaced by another compatible model, as described in Section 3.3.1. The approach
was separated into the substitution of models that use the same tool and those which
use different tools for simulation. Due to implementation details, covered in Chapter 4,
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model substitution in ICOS VM is restricted to models that are simulated in the same tool.
Exchanging models simulated using various tools is accomplished by model alternatives.

Figure 3.7 depicts model substitution of two models A and B that are simulated using
the same simulation tool.

Requirement 4 (Model Substitution): A model that is part of the variable co-simulation
project can be substituted by another model that is simulated in the same simulation tool.

Model Alternatives Modifier

As stated in the previous section, due to implementation details, the substitution of models
from various simulation tools is accomplished by introducing model alternatives. Several
models can be declared as alternatives and at binding time, one model is chosen. This
scenario can be seen in Figure 3.8.

Requirement 5 (Model Alternatives): Several models that are part of the variable co-
simulation project can be made substitutable by specifying model alternatives.

Linking Modifiers

The linking variation points described in Section 3.3.2 are transferable to our requirements
for ICOS VM. One constraint has to be considered: an ICOS co-simulation project is only
valid, if all input parameters are connected to a single output parameter. However, output
parameters can be connected to several input parameters. Therefore, it has to be ensured
that this constraint is fulfilled for every generated product.
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Requirement 6 (Variable Linking): Links between input and output parameters can
be variable. Their variability has to be bound in a way that in every product each input
parameter is linked to exactly one output parameter.

Parameter Modifiers

Section 2.3.3 explained the use of two distinct names for a parameter. On the one hand,
the name of the parameter in the simulation tool and on the other hand, the name of the
parameter in ICOS. In the case of model substitution, it is required to adapt differing
model internal parameter names to a single parameter name in ICOS. This is depicted in
Figure 3.9.

Requirement 7 (Adopting Parameter Names): Internal model parameter names need to
be variable in order to adapt to differences in substitutable models.

Boundary Condition Modifiers

The boundary condition server (BCS, Section 2.3.4) acts like any other model in an ICOS
co-simulation. The only difference is that it is configured within the ICOS user interface.

The BCS offers boundary conditions (e.g. the ambient temperature) over output
parameters. One way to make boundary conditions variable is to provide different values
on several different output parameters and change the linking of those output parameters.

However, this way the different values of the BCS parameter are specified in the
co-simulation project. A more convenient solution is the specification of different BCS
values in the variability model. Therefore, boundary condition modifiers are introduced.
With the help of boundary condition modifiers the value of a boundary condition can vary
in several ways:

• Single value: The boundary condition parameter takes a single, constant value.
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• Multiple values: The boundary condition parameter takes multiple, variable values.

• Range of values: This is a special case of multiple values, where a start and an end
value as well as a step size is defined. E.g. from 1 to 3 (step 0.5) results in 1, 1.5, 2,
2.5 and 3.

Requirement 8 (Variable boundary conditions): Boundary conditions can be variable by
changing their value to a single or multiple values without changing the parameter linking.

The boundary condition modifier is connected to the model-related as well as the
environment variation points.

3.4.5 Extensibility

There is a huge amount of possible parameters, properties or items that one might want to
make variable. Any group of variation points might include some scenarios that are not
covered by the requirements stated so far. Some examples:

• Different model initialisation files for different variants (model-related variation
point)

• Variable step sizes (coupling variation points)

• Varying coupling mechanism (coupling variation points)

Therefore the set of available modifiers is required to be extensible.
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Requirement 9 (Extensibility): The effort to implement new types of modifiers has to
be relatively small and the skills needed should not require extensive training.

3.4.6 Domain and Application Engineering

In accordance to the separation of concerns that were described in Section 3.3.6, the same
separation for ICOS variability management is required. While domain engineering encom-
passes the development of core assets, application engineering concerns the development
of particular products. The processes of domain and application engineering, as well as the
models that result from these activities, are described in more detail in Chapter 4.

Domain Engineering

The main task of domain engineering is the development of core assets, in this case
(1) the ICOS co-simulation project, including domain-specific subsystem models, and (2)
the co-simulation variability model. The ICOS co-simulation variability model describes
the variability of a co-simulation project. It contains the variation points, variants and
modifiers of a variable co-simulation project.

Application Engineering

The application engineer configures a particular product by selecting a set of variants from
the co-simulation variability model, called the application model. The application model
describes products (product variants) that are derived from the core assets. Commonly
application engineering refers to building one particular product. However, certain ICOS
VM tasks, such as optimisation, require the production of several product variants at the
same time. Therefore, the ICOS VM application model can consist of several configurations.
Each configuration describes exactly one product variant.

3.4.7 Constraints

Dependencies between variants and variation points are an integral part of variability
models as described in Section 2.1.5. The require- and exclude-constraints as well as
optional and mandatory variants were described. Those constraints are a core feature
of variability and therefore required for ICOS variability management. However, due to
the introduction of modifiers in the previous section, there is no need for dependencies
between variation points. Hence the introduction of dependencies between variants in the
co-simulation variability model seems sufficient.

Requirement 10 (Constraints): A variant can require or exclude another variant. More-
over the selection of variants can be optional or mandatory.

3.4.8 Generating Application Models

An application model consists of several product configurations. Sometimes it is desirable
to have an application model that contains all valid configurations. A valid configuration
is a selection of variants, that does not violate any constraint (require, exclude).
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Figure 3.10: Example of a co-simulation variability model consisting of two variation
points, four variants and several constraints between the variants; modifiers have been
omitted for clarity

Take the rather simple variability model in Figure 3.10 as an example. Any combination
of variants, containing Var B, as well as Var C is not valid, as this violates the exclusion
constraint. Furthermore, according to the limit constraints, each valid configuration needs
to select one variant from variation point VP 1, and either one or two variants from VP 2.
Hence, all valid combinations of variants consist of the sets {Var A, Var C}, {Var A,
Var D}, {Var A, Var C, Var D} and {Var B, Var D}.

Requirement 11 (Application Model Generation): Fully automated generation of an
application model, consisting of all valid configurations of products, must be supported.
Some means of restricting the generated configurations has to be provided.

3.4.9 Automated Production / Variant Generation

The transformation of variable core assets to products (product variants) is called pro-
duction. Production can be achieved fully automated, partially automated or completely
manual. For the ICOS VM tool, the production is required to be fully automated. Thereby,
the consistency of the resulting products has to be ensured. A consistent product is a
co-simulation project with valid linking (every input parameter is connected).

Requirement 12 (Automated Production): The process of production is fully automated.
The product variants that are derived from the core assets need to be consistent, executable
co-simulation projects.

3.5 Software Product Line Integration

So far a standalone tool implementation for variability management in ICOS co-simulation
projects has been described. Even though this makes variability explicit and is a first step
for systematic reuse, the integration of this variability management tool into an automotive
(software) product line is desirable.
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A possible scenario that emphasises this, is the presence of variants in automotive
embedded software components, for example Simulink models. In this case each variant of a
Simulink component can be simulated with the appropriate models of other subsystems in a
co-simulation. Thus, co-simulation becomes an integral activity of product line engineering.

The SPL integration is described in more detail in Section 4.5 Additionally, the complete
concept and description of the implementation is described in another document with
the title ‘‘Integration of ICOS Co-Simulation Variability Management in Pure::Variants’’
[Toe12].



Chapter 4

Variability Management in ICOS

4.1 General Design

This chapter presents the design and implementation of the ICOS Variability Management
Tool (ICOS VM). The design is derived from the general concept and requirements given
in Chapter 3.

4.1.1 Independence

Requirement 2 states that the co-simulation has to be decoupled from the variability model.
Thus, ICOS co-simulation projects cannot be extended to support variability. Additionally,
ICOS is required to be independent from the ICOS VM tool. This means that the ICOS
VM tool must be implemented as a standalone tool and the presence or absence of this
tool does not affect ICOS’ core features.

On the other hand, it was stated that the co-simulation variability model depends on
the co-simulation. Therefore, ICOS VM depends on ICOS core functions. Thus, ICOS
VM is able to use ICOS tools such as the ICOS GUI, batch mode or the remote server.

4.1.2 Standalone Tool vs. Product Line Integration

The goal of the implementation is to provide a way to define and manage variability in
the ICOS co-simulation environment. As stated in the previous chapter two different
application scenarios are identified:

1. Standalone variability management

2. VM integrated into a software product line

The remainder of this chapter mainly describes the standalone ICOS variability man-
agement tool. However, Section 4.5 briefly presents the integration into an SPL using the
pure::variants variant management tool. How the implementation was tested is described
in Appendix A.

71
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4.2 The ICOS VM Tool Chain

The ICOS Variability Management Tool is a standalone tool which is integrated into
the ICOS workflow. Figure 4.1 shows how a conventional ICOS co-simulation (without
VM) is created and simulated and which tools are part of this workflow. First, subsystem
models are created in modelling tools from various domains. Obviously, existing models
can be reused instead of creating new models. These models are then connected in a
co-simulation project using the ICOS graphical user interface. The resulting co-simulation
is then simulated using ICOS and domain-specific simulation tools. As stated in Section 2.3,
each domain-specific subsystem model is thereby simulated in a particular tool and ICOS
handles the coupling between these tools.

Note that the terms ‘‘simulation tool’’ and ‘‘modelling tool’’ are used. These terms
separate the process of model development from model simulation. Nevertheless, often the
same tool is used to create and simulate a particular model.

System Model 
Development

Run simulation

Subsystem 
Model(s)

ICOS 
Simulation Projects

(.icos)

Simulation 
Results (.dat)

Subsystem Model 
Development

Domain-Specific 
Modelling Tools

ICOS & Domain-Specific 
Simulation Tools

ICOS-GUI

Process DocumentLegend: Tool

Figure 4.1: Co-simulation workflow in ICOS without variability management support

Figure 4.2 shows the ICOS variability management workflow. As in the conventional
co-simulation process described above, the ICOS VM workflow starts with the development
of domain-specific subsystem models and an ICOS co-simulation project. Subsequently,
the domain engineer describes the variabiliy of the co-simulation project. This is done by
defining variation points and variants in a co-simulation variability model. Developing
the co-simulation (Figure 4.2, step 1) and defining the variability of the co-simulation
(Figure 4.2, step 2) are both part of domain engineering.

The variability that was introduced during domain engineering, is bound during
application engineering. Therefore, the user defines product variants in an application
model file (Figure 4.2, step 3). Alternatively, the application model can be automatically
generated (Section 4.4.4). The product variants are automatically generated (Figure 4.2,
step 4), based on their description in the application model. These resulting product
variants are ICOS co-simulation projects. Finally, each of these product variants can be
simulated either (1) one by one using the ICOS GUI, or (2) all together using the ICOS
batch mode (Section 4.2.2).

4.2.1 User Roles

Figure 4.2 describes the different tasks in the ICOS VM workflow. In order to complete
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Figure 4.2: ICOS VM workflow, separated into domain and application engineering

each of these tasks, users may need to have different skills and knowledge. Therefore, roles
are assigned to users that perform certain tasks. Obviously one and the same person can
have more than one role in the workflow.

• A subsystem domain-expert is responsible for the development of a particular
domain-specific model. He needs to have all the knowledge and skills necessary to
create and maintain this model. For instance, this could be a mechanical engineer,
who creates the model of the engine or power train.

• The domain modeller takes existing subsystem models (or delegates the task of
model development to a subsystem domain-expert) and combines them in a co-
simulation project. Further, he defines the variability of the co-simulation. Most
often this is done by investigating the commonalities and variabilities of the resulting
product variants.

• The application engineer is responsible for the configuration and generation of
the resulting products. Furthermore, he executes the simulation and handles the
evaluation of the products.

• A manager is a person that does not need to know about the internals of the system
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to be simulated, neither is he aware of any internal variant. The manager’s role might
be more important in the SPL integrated ICOS VM, which is covered in Section 4.5.
However, even when variability management is introduced to ICOS in absence of an
SPL there might be a person in this role. Thus, the variability model should provide
high level views for people with little or no knowledge of the system’s internals.

4.2.2 Key Interfaces to ICOS

In the ICOS VM workflow several components or artefacts of the ICOS co-simulation
environment are used:

• ICOS GUI (tool)

• ICOS co-simulation project file (artefact)

• ICOS batch mode (tool)

• ICOS batch file (artefact)

ICOS GUI

ICOS provides a graphical user interface (GUI) to create and edit ICOS co-simulation
projects. In the ICOS VM workflow the GUI is only used to configure the core co-simulation
project.

Figure 4.3 shows the GUI displaying a simple co-simulation project consisting of two
KULI models. The user interface is separated into three parts:

• Model, parameter, BCS and co-simulation configuration

• Parameter linking

• Simulation

ICOS Co-Simulation Project File

An ICOS co-simulation project is saved in XML format. The details of the file format were
discussed in Section 2.3.9.

The ICOS project file format plays a major role in the ICOS VM workflow. On the
one hand, the core project file serves as a base for the variability model and is used as
an input to the ICOS VM tool. Thereby the variability model references models, links or
parameters from the ICOS project.

Additionally, the file format is used as an output format too. Each product that is
generated is basically a new ICOS project file.

The investigation of the file format revealed some peculiarities. These peculiarities
have to be taken into account for the ICOS VM tool implementation:

1. XML Schema: There is no public XML Schema, which describes the XML format in
detail. Therefore the specification has to be reverse engineered. Hence, there might
be parts of the XML file format that were not yet explored.
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Figure 4.3: ICOS graphical user interface

2. Frequent changes: The file format is frequently changed when new features are
implemented. Therefore, the ICOS VM tool needs to support changes in the file
format to a certain extent.

3. Ambiguous parameter names: Parameter names in a co-simulation project are not
unique. However, the parameter name and its type (input/output parameter) together
serve as a compound key that uniquely identifies a parameter.

4. Linking table: As stated in Section 2.3.9, there is no separate table which stores
information about the links between input and output parameter. Instead each input
parameter references an output parameter by name. Therefore changing the links
between parameters is not inconsequential.

The first and second aspect lead to yet another requirement for the implementation.
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Requirement 13 (Co-Simulation Project File Format): Changes in the co-simulation
project file format need to be supported by the ICOS VM tool to some extent. Beyond that
extent, the effort to adapt the tool to these changes needs to be minimised.

ICOS Batch Mode

The ICOS batch mode can be used to simulate several co-simulations sequentially. The
ICOS batch mode is a console application which takes the path to an ICOS batch file as
input. The batch file simply lists all co-simulation project files that ought to be simulated.
Additional information, such as remote server addresses and passwords, are also part of the
batch file. All co-simulation projects that are referenced in the batch file will be simulated
sequentially and the output is written into a log file. A sample batch file can be found in
Appendix B.4.

One major drawback of the ICOS batch mode application is the absence of feedback
after the execution; i.e. the exit code of the application is the same, no matter if the
simulation fails or succeeds. Therefore, it’s hard to react to the simulation results after
completion.

4.2.3 Integration in ICOS VM Tool Chain

The ICOS VM tool chain (Figure 4.2) shows that the ICOS VM tool has two different
tasks:

• generation of an application model and

• generation of product variants.

In order to generate an application model, ICOS VM takes a co-simulation project and a
co-simulation variability model as input. Product variants are produced from an ICOS
co-simulation project, a co-simulation variability model, and an application model as input.

Note that the ICOS co-simulation project can be created using the ICOS GUI, while
the other two models cannot. The implementation of a graphical user interface would be
beyond the scope of this work. Therefore these models are represented in XML format.
Thus, the domain and application modeller need to create these XML files manually. The
implementation of a GUI to support this task can be seen as future work.

The ICOS VM tool is a console application implemented in Java. This platform was
chosen due to several reasons:

• OS-independence

• The integration into an SPL, described in Section 4.5, is done with a tool called
pure::variants. This tool is an Eclipse plugin which provides extension points
(interfaces) for other Eclipse plugins in Java.

• Java is an object oriented programming language, which is in widespread use
and therefore the maintenance of the tool after the completion of this thesis can be
ensured more easily.



4.3. ICOS VM TOOL ARCHITECTURE 77

Co-Simulation Project Co-Simulation Variability Model

Application Model User Interface

Console
Application

Predefined
Modifications

Custom 
Modifications

Variability 
Handling

(VP, Variants)
ConstraintsModel Handling

Parameters and  
Links Handling

General Purpose 
Modifications

Application Model 
Generator

Product Variants 
Generator

Sub-ComponentComponent Uses

Pure:Variants
Integration

Consistency 
Check

Figure 4.4: ICOS VM standalone - component model

4.3 ICOS VM Tool Architecture

4.3.1 Components

The ICOS VM tool is composed of four distinct components, which are depicted in
Figure 4.4. Each component covers a certain aspect of the variability management tool.
The components are loosely coupled and communicate via defined interfaces:

• The user interface component represents the console application and wrappers of
this application which are visible to the user.

• The simulation project component handles reading, modifying and storing of
co-simulation projects. Furthermore, it provides an object oriented representation of
the co-simulation’s subsystem models, parameters and links.

• The co-simulation variability model component covers all aspects that are related
to the variability model. Variation points, variants, modifiers, and constraints are
defined in this model.

• The application model component handles the generation of the application model
itself and the generation of product variants.
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4.3.2 Layered Architecture

The separation of the tool into four components distinguishes the components by purpose.
This means that every component is responsible for handling one part of the functionality
that the tool provides.

However, another abstraction of the tools architecture results in three horizontal layers:

• The data layer (or persistence layer) handles the representation, reading and writing
of co-simulation project, variability domain and application model files.

• The logic layer is responsible for the modification of each of the three models/pro-
jects. It must ensure that the models are consistent and that any modifications do
not change their consistency.

• The interface layer provides the interface to the user and to other tools in the
SPL.

4.3.3 Sequential Workflow

Before the four components are covered in detail, an example execution of the tool is
given. As this example aims to give an overview of how the tool works, it is somewhat
simplified. Thus, the focus is on the overall workflow, not on the details of steps taken
during execution.
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Example 1: Generating an application model

This example shows the workflow of the ICOS VM tool for the generation of an application
model. It should be remembered that generating an application model means to produce
product configurations for all valid combinations of variants. Variants are described
in the co-simulation variability model, which is given to the ICOS VM tool as input.
The co-simulation project (for which the variability is described) is not required for the
generation of the application model. However, it is required as input in order to check the
validity of the co-simulation variability model.

Taking the co-simulation project and the variability model as input, the following steps
need to be executed:

1. Read the ICOS co-simulation project (.icos file).

2. Check the validity of the ICOS co-simulation project.

3. Read the co-simulation variability model file (.icosdm file).

4. Check the validity of the co-simulation variability model.

5. Create an empty instance of the application model.

6. Generate all valid combinations of variants from the co-simulation variability model.

7. Save the generated combinations to the new instance of the application model.

Step 6 states that all valid combinations are generated. The term ‘‘valid’’ is used,
because some possible combinations are not valid because of a constraint (require, exclude).

Example 2: Generating product variants

This example shows the workflow of the ICOS VM tool to generate all product variants that
are specified in an application model. It should be remembered that generating product
variants means to produce co-simulation projects which differ from each other in the way
described in the co-simulation variability model.

Taking a co-simulation project, a variability model, and an application model as input,
the following steps need to be executed:

1. Read the ICOS co-simulation project (.icos file).

2. Check the validity of the ICOS co-simulation project.

3. Read the co-simulation variability model file (.icosdm file).

4. Check the validity of the co-simulation variability model.

5. Read the application model file (.icosam file).

6. Check the validity of the application model.

7. Take a product configuration A from the application model.

8. Check the validity of configuration A according to the co-simulation variability model
(constraints, references).

9. Take all modifiers M from all the variants part of configuration A.
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10. Apply the modifiers M to a fake co-simulation project in order to check the validity
of configuration A.

11. Create a clone C of the input ICOS co-simulation project.

12. Apply the modifiers to co-simulation project C.

13. Save co-simulation project C.

14. Repeat step 7-13 for all configurations from the app model.

Both step 10 and step 12 apply modifiers to a simulation project. Why this is necessary
and how the design of the implementation supports this is covered in more detail in
Section 4.4.2.

4.4 Main Components

Figure 4.4 showed the separation of the ICOS VM tool into four components. In this
section these components are described in detail.

4.4.1 User Interface

ICOS VM Console Interface

The implementation of a graphical user interface is out of scope for this prototypical
implementation. Therefore a console application serves as the main user interface. As
stated before, the ICOS VM tool is responsible for

• the generation of an application model and

• the generation of the co-simulation variants (product variants).

Different command line arguments let the user choose to either generate the applica-
tion model or provide an application model that is used for product variant generation
(production). The console interface is a JAVA application that can be executed in the
command line.

The Wrapper Batch File

The ICOS VM tool chain ranges from the development of subsystem models over several
other activities to the simulation of the resulting product variants. The ICOS VM Console
(JAVA) Application only handles the generation of an application model and the resulting
co-simulation product variants. In addition, the wrapper batch file combines these activities
with the actual execution of the simulations. In other words, the wrapper batch file

• calls the ICOS VM JAVA console application in order to generate co-simulation
project variants (.icos files) and then

• simulates these output co-simulation projects using the ICOS batch mode.

In order to be able to open the ICOS batch mode, the wrapper batch file needs to know
the file location of the ICOS executable and the licence file of the ICOS user. These locations
can either be provided as command line arguments or set as environment variables.
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Installer

Several steps have to be performed to setup the environment of the ICOS VM tool. To
support the user, ICOS VM provides an installer for Microsoft Windows Systems that
performs the following tasks:

• Create environment variables to point ICOS VM to the ICOS executable and licence
file.

• Install the custom modification description files (see Section 4.4.3).

• Install the console application and the wrapper batch file properly.

• Check if the JAVA runtime environment is installed.

4.4.2 Co-Simulation Project

The co-simulation project component (sometimes referred to as simulation project com-
ponent) is the component responsible for loading, verifying, modifying and saving ICOS
co-simulation project files. Loading and saving the project file is rather trivial. However,
modifying a project and at the same time perceiving the consistency and completeness of
the project file is more challenging. First, it is described how the project file is loaded
and stored. Further, the modifications the interface to the co-simulation project offers are
presented. Finally, it is described how to ensure that there is consistency throughout the
project.

Persistence

The details of the ICOS file format are described in Section 2.3.9. Additionally, Section 4.2.2
describes some particularities of the file format.

As the file format is XML, the use of an existing marshalling software between XML and
JAVA objects would have been desirable. However, most of the marshalling frameworks,
such as JAXB (Java Architecture for XML Binding) require the XML file to be described
by a schema. Furthermore, frequent changes in the XML schema would create the need to
frequently regenerate the JAVA classes.

As stated in Requirement 13, it has to be possible to support frequent changes of
the ICOS project file format. At best, these changes are supported without the need for
rebuilding the ICOS VM tool. Hence, the use of XML to object marshalling software is
not an option for the co-simulation project component.

Therefore, the standard JAVA XML DOM1 implementation is used to load, save and
modify the co-simulation project. The modification is done by retrieving parts of the XML
using XPATH2 expressions and changing the values of the retrieved object.

Modifying a co-simulation project

The co-simulation project component needs to provide an interface for modification.
Other components, such as the co-simulation variability model component, use this

1DOM: Domain Object Model
2XML Path Language
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interface to modify the simulation project in a desired way. The interface is called
ISimulationProjectModify and offers methods for

• deleting subsystem models,

• changing subsystem model properties (e.g. the model source file),

• changing parameter mappings/connections,

• changing parameter properties (e.g. their simulation tool-internal name), and

• applying any kind of modification using an XPATH expression (general purpose
modifications, see Section 4.4.3).

Model deletion in a co-simulation project is implemented using a two-way deletion
procedure: a model can be registered for deletion, but the model is not deleted before
either the method applyDeletions is called, or the project is saved to memory. This
implementation makes it possible to modify models that are already deleted without failing.
One could argue, that it does not make sense to modify deleted models. In any case
the outcome of a series of modifications has to be the same, no matter which order they
are applied in. For instance if Model A is changed and later the same model is deleted,
Model A would be modified and later deleted. However, if these modifications are applied
in reverse order, changing Model A would fail, because Model A does not exist anymore.
Delaying the actual deletion can solve this problem.

Section 4.4.3 shows why this behaviour is desired by the co-simulation variability model
component.

The co-simulation project component offers another interface called ISimulationProjec-
tReferenceCheck. This interface offers methods to check the existence of models, parameters,
and properties of the simulation project. As the co-simulation variability model references
models and parameters from the simulation project, this interface provides a way to check
these references and query properties of models and parameters.

Figure 4.6 shows a class diagram including the most important classes of the co-
simulation project component. The two interfaces at the top of the diagram have already
been described. The XMLProject class implements XML related functionality that is used
by the SimulationProject class. The SimulationProjectHandler class itself implements the
two interfaces previously presented. It actually applies the modifications to the simulation
project. The other classes will be presented in the remainder of this section.

Simulation Project Consistency Check

As stated before, ISimulationProjectModify provides an interface that enables to modify
co-simulation projects. Among other things the interface offers methods of deleting models
as well as changing parameter connections. When a model is deleted all its parameters are
deleted as well.

Requirement 12 stated that the production of consistent co-simulation projects has to
be supported. An ICOS co-simulation project is only consistent, if all input parameters
are connected to a single output parameter. Therefore, the project consistency needs to be
checked when modifying the co-simulation project.
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Figure 4.6: Class diagram of the most important classes of the co-simulation project
component

This is done by the SimulationProjectConsistencyCheck class. It implements the
ISimulationProjectModify interface, but it does not actually modify the simulation project.
Instead it records the applied modifications. The recorded modifications can then be
checked and an error message is issued if these modifications result in an inconsistent
co-simulation project.

The only real inconsistency occurs if input parameters are not connected. However,
warnings are issued if applied modifications, do not have any effects on the simulation
project. For instance, if properties of Model A are modified and the same Model A is
deleted, the modification of Model A does obviously not have any effects. This is not an
error, as the co-simulation project is still consistent. Nevertheless, a warning message is
issued for the user to recognise the effectless modification.

Parameter Connection Handler

The ParameterConnectionHandler class is responsible for handling the connections be-
tween input and output parameters. It is initialised with the connections that exist in the
simulation project file. The SimulationProjectHandler class uses it to apply modifications
to the parameter connections. Similarly, the consistency check uses the ParameterConnec-
tionHandler to check if deleting a model parameter leaves the co-simulation project in an
inconsistent state.
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4.4.3 Co-Simulation Variability Model Component

Section 3.3.6 describes the concept of the co-simulation variability model. The variability
model stores information about the variability of a co-simulation project. The co-simulation
variability model component encompasses all classes and interfaces that are responsible for

• loading the co-simulation variability model from and saving it to memory,

• checking the model for validity,

• applying modifiers to the co-simulation project, and

• handling constraints (require, exclude...) specified in the co-simulation variability
model.

Persistence

Co-simulation variability model files are represented in XML format. The format is
specified by a strict XSD (XML Schema Definition) schema. This XSD schema has also
been used to generate Java classes that correspond to the XML-element and attribute
types specified in the schema. The generation of Java classes from the XSD schema and
the marshalling and unmarshalling between JAVA object and XML is done using JAXB
(JAVA Xml Binding [Ort12]).

An example co-simulation variability model file can be found in Appendix B.1. The
example XML shows the tree structure of the co-simulation variability model. A co-
simulation variability model contains variation points, which in turn consist of variants,
which consist of modifiers.

Figure 4.7 shows some of the most important classes of the co-simulation variability
model component. The VariabilityModelHandler class is initialised with the location of the
variability model file. It loads the file (unmarshalls the XML file) creates the co-simulation
variability model, consisting of variation points, variants and modifiers. It further initiates
the validation of the co-simulation variability model.

Checking the Co-Simulation Variability Model

When a variability model was loaded from memory, its validity has to be checked. This
requires several steps:

1. Checking the XML validity (XML schema check)

2. Checking modifier properties

3. Checking references to the simulation project

4. Checking the constraints for validity (e.g. ‘‘Variant A excludes Variant A’’ is not a
valid constraint)

While step 1 can be done using Java built-in functionality, step 2 to 4 will be described
in the subsequent sections.
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Figure 4.7: Class diagram of the most important classes of the co-simulation variability
model component

Variants and Variation Points

As can be seen in Figure 4.7 a co-simulation variability model is composed of variation
points which are composed of variants. Variation points and variants are important
elements used to structure the variability of a co-simulation project. For instance, a
variation point ‘‘electrical engine’’ with its variants ‘‘simple engine model’’ and ‘‘complex
engine model 2’’ express the meaning of this variation point for the simulation project.
The lower level modifiers then describe in detail how these variants are applied.

Apart from the purpose of structuring the model, variants and variation points have
additional uses. Constraints can be set at variant level (variant A excludes/requires variant
B) or variation point level (at least 1, at most 2 variants of variation point A have to be
selected).

Modifiers

Modifiers are elements at the lowest level in the variability model. A modifier describes
exactly one modification to the simulation project.

For instance: A variant ‘‘substitute model A’’ might be composed of the following
modifiers:

• Substitute the model file of model A,

• change the simulation tool-internal parameter names, and

• change a boundary condition value, because the new model expects a different range
of values.

All of these modifiers belong together in the sense that neither of them on their own
produces a meaningful, or even valid, co-simulation.
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MultipleVariantModifier
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ChooseModelAlternativeModifier
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CustomModifier
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Parameter*Modifier

Figure 4.8: Class diagram of modifiers in the co-simulation variability model

Each modifier that is described in a co-simulation variability model file is implemented
as a subclass of the abstract Modifier class. All modifiers can be seen in Figure 4.8.

Checking Modifiers
Each modifier implements a check -method, which is called when the co-simulation vari-
ability model is loaded. The check -method is responsible for

• checking the configuration of the modifier (e.g. required attributes) and

• validating references to simulation project elements, such as models or parameters.

The method takes an implementation of the interface ISimulationProjectReferenceCheck
as parameter. As described in the previous section, this interface provides methods for
querying the simulation project for subsystem models and parameters.

Take for example the SubstituteModelModifier. This modifier has two attributes: the
name of the subsystem model to be substituted and the path to the new model file. Using
the ISimulationProjectReferenceCheck interface, the modifier can check the given model
name’s existence. Further, it checks that the given file path is a valid path string.

Applying Modifiers

The main purpose of a modifier is to modify the simulation project. The way in which
the simulation project is modified depends on the type of modifier. Each modifier imple-
ments a method apply, which takes an implementation of the ISimulationProjectModify
interface as parameter. This interface provides ways to modify a simulation project. The
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modifier itself does not need to be concerned about any simulation project-specific details.

It was stated above that the consistency of a simulation project must be ensured.
This is done with the help of the SimulationProjectConsistencyCheck class. This class
implements the ISimulationProjectModify interface. Thus, a modifier can be applied to
the actual simulation project which performs the modifications. On the other hand, it can
be applied to the consistency check class which does not modify the simulation project,
but verifies that a series of modifiers do not produce an inconsistent simulation project.

Take for instance a modifier that deletes a model. The modifier is first applied to the
consistency check. If the deletion does not jeopardise simulation project consistency, the
modifier is applied to the project itself. This step actually deletes the model from the
simulation project.

Predefined Modifiers
According to the requirement analysis presented in Chapter 3, several modifiers are
implemented that can be used in the co-simulation variability model.

• Substitute Model Modifier:
Substitute the file that stores the domain-specific model of a subsystem.

• Choose Model Alternative Modifier:
Choose a model (e.g. Model A) out of a defined set of model alternatives (e.g.
Model A, Model B and Model C). This is done by deleting all subsystem models from
the simulation project that are not chosen (Model B and Model C).

• BCS Value Modifier:
Change the output value of a boundary condition parameter. The modifier allows
multiple values in form of a list of values (e.g. 1, 3, 4, 6, 9) as well as value ranges
(e.g. from 1 to 15 in steps of size 0.6).

• Input Parameter Mapping Modifiers:
Changes the connection of an input parameter to another output parameter. For
instance, remapping an input paramter InA to an output parameter OutB, means
that InA is now connected to OutB.

• Output Parameter Mapping Modifiers:
Changes all connections from an output parameter to another output parameter. For
instance, remapping an output paramter OutA to another output parameter OutB,
means that all input parameters that were connected to OutA, are now connected to
OutB.

• Parameter Name In Simulation Tool Modifiers:
Changes the simulation tool-internal name of a parameter.

Custom Modifiers

Requirement 9 states that the effort used to implement new modifiers has to be minimised.
This is done by the introduction of custom modifiers. From an abstract point of view a
custom modifier is just like all the predefined modifiers described above. The difference
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is their implementation. While all the predefined modifiers are implemented in JAVA,
custom modifications are described in an XML file called custom modification description
file. An example for such a file can be found in Appendix B.2. It is suggested to investigate
this example before continuing with this section.

The benefit of this design is the quick implementation of simple modifiers without
writing or changing any source code. Another benefit is the fact that the introduction of
new custom modifiers does not require recompilation and redistribution of the ICOS VM
tool. In fact new custom modification description files can be added at runtime by copying
those files to a predefined directory.

A custom modification description file is an XML file, which contains the description
of several custom modifications. The files have to be stored in a particular directory (the
custom modification directory) or their path can be supplied as command line parameters.
Each custom modification description consists of

• a unique name identifying the modification (the user, who wants to apply a custom
modification references this unique name),

• arguments provided by the user,

• a list of modified models and parameters,

• boolean expressions or rules that need to be checked before the modification is
applied, and

• the actual modifications as XML/XPATH selectors.

A custom modification description can be compared to a function in general program-
ming. It defines a name and arguments (of a particular data type). It further specifies
what has to be done with the given arguments.

In analogy using a custom modifier in the variability model can be compared with a
function call in programming. The function (custom modification) is referenced by its
name and values for defined arguments are supplied.

Arguments
Arguments are data items that can be supplied by the user, who wants to apply a custom
modification. Each argument that is defined in the custom modification description has
a name and a data type. The user references the modification by its unique name and
provides a key-value list of arguments. Listing 4.1 shows an example application called
ChangeIniFile. The user provides two arguments. The XML shown in the listing is part of
a co-simulation variability model file.

The argument values provided by the user can be referenced at various places within a
custom modification description. In other words, the custom modification description is a
template with placeholders for argument values.

<Modi f i ca t i on Type=” ChangeIn iFi l e ”>
<Argument Name=”ModelName” Value=”Model1” />
<Argument Name=” Fi lePath ” Value=”C:\Temp\MyIniFi le1 . exe ” />

</ Mod i f i ca t i on>

Listing 4.1: Example custom modification application in a co-simulation variability model
file
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List of Modified Parameters and Models
The creator of a custom modification description has to specify which subsystem models
and parameters will be modified. This information is required to check if the custom
modifier might jeopardise the consistency of a simulation project.

Obviously, the names of the models to be modified need not to be hard coded, but can
reference argument values.

Boolean Expressions / Rules
Before a custom modification is applied to a simulation project, the creator might want
to evaluate some conditions. The schema for custom modification descriptions provides
an extended set of boolean expressions that can be combined. The boolean expression is
evaluated before the modification is applied. In case the expression evaluates to false, the
modification can either

• fail,

• warn the user, or

• skip the modification.

Obviously, argument values can be used for the creation of such expressions. Listing 4.2
shows an example of a boolean expression. The expression lets the modification fail in case
the argument maxTimeStep is not greater than the argument minTimeStep or if any of
the two values is strictly greater than zero.

<Express ion
Action=” F a i l ”
Message=”The maximum time step ({maxTimeStep}) can not be

l e s s than the minimum time step ({minTimeStep }) . Both
va lue s have to be s t r i c t l y g r e a t e r than zero . ”>

<And>
< !−− l e q = l e s s or equa l −−>
<Leq>

<ArgumentValue ArgumentName=”minTimeStep” />
<ArgumentValue ArgumentName=”maxTimeStep” />

</Leq>
< !−− g t = g r ea t e r than −−>
<Gt>

<ArgumentValue ArgumentName=”minTimeStep” />
<Value Value=”0” DataType=” double ” />

</Gt>
</And>

</ Express ion>

Listing 4.2: Example custom modification boolean expression

The XML expression is parsed, the argument placeholders are replaced with the
according values and the expression is evaluated. Parsing the expression results in a tree
structure. All the available types of nodes in the tree are depicted in Figure 4.9. The class
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Figure 4.9: Class diagram of a custom modification expression validation

RootExpression obviously is the root of the expression tree and corresponds to the root
element in the XML expression. Every boolean operator implements the method isCorrect.
Calling this method for the RootExpression will bubble down the request to the leaves of
the tree and returns whether the expression is correct or not.

For instance the isCorrect method of the AndOperator calls the isCorrect method of
its two child operators. If both child operators return true, the AndOperator will return
true, otherwise it will return false.

XML/XPath Modifications
So far it has been described how the custom modification is identified (unique name), how
arguments are provided and how these arguments or other conditions are validated. After
those steps an actual modification of the simulation project is performed. This is done with
the help of an XPath (XML Path Language) expression. An XPath expression addresses
parts of an XML document [JC99].

In this case an XPath expression can address one or more elements or attributes of the
co-simulation project XML file. The addressed element or attribute will then be set to a
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given value. Listing 4.3 shows an example of two modifications. The first modification
selects a model with a name that is given by a user argument and sets the attribute
timeStamp to a given value. The second modification selects all models and sets their
working directory to a given value.

< !−− note t ha t {argumentName} are p l a c e ho l d e r s f o r argument
va l u e s −−>

< !−− the @−s i gn s e l e c t s an a t t r i b u t e −−>
<Modification

S e l e c t o r=”// wrapper [ @name=’{modelName } ’ ] / @timeStep”
Value=”{ t imeStep }”
Create I fNotEx i s t s=” true ” />

<Modification
S e l e c t o r=”// wrapper/workDir”
Value=”{newWorkDir}”
Create I fNotEx i s t s=” f a l s e ” />

Listing 4.3: Example custom modification xpath expression

It can be concluded that custom modifications offer a flexible way to extend the core
ICOS VM functionality. New modifiers can be implemented with a relatively small set of
skills. The only knowledge the creator of a custom modification description needs to have
is how XPATH works and how a simulation project file is represented in XML.

Built-In Custom Modifiers
It was stated that several predefined modifiers exist, which were implemented in JAVA.
Additionally, several predefined/built-in custom modifiers exist:

• ChangeIniFile: substitute the ini file.

• ChangeModelTimeStep: change the minimum and maximum time step of a particular
model.

• ChangeAllTimeSteps: change the minimum and maximum time steps of a model.

Multiple Variant Modifiers

Usually, a single modifier changes a certain property of a co-simulation project in one way.
For instance, the SubstituteModelModifier substitutes the underlying model file. Thus,
one input simulation project results in a single output simulation project (one product
variant).

However, Figure 4.8 shows that the BCSValueModifier is derived from a class called
MultipleVariantModifier. This means that one input simulation project results in one or
more output simulation projects (one or more product variants).

This is caused by the nature of the BCSValueModifier. It is possible to specify more
than one value for a single BCS parameter. For instance, a BCSValueModifier can specify
the boundary condition parameter called BCS123 to take values in the range of 5 to 10
(inclusive) with a step width of 1. Obviously, the parameter value cannot be set to all of
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these values at the same time. Therefore, the input co-simulation project will result in
6 output simulation projects. In the first project BCS123 has the value 5, in the second
project 6 and so on.

In case several multiple variant modifiers are applied to the same co-simulation project,
the number of output projects is the algebraic product of the number of output variants
per modifier. For instance, take a BCSValueModifier A that sets parameter BCS1 to 3
different values (3 output variants) and a BCSValueModifier B that sets the parameter
BCS2 to 4 different values. Obviously, combining those two modifiers results in the
production of 12 output simulation projects.

Constraints

The co-simulation variability model allows the creator to specify three different kinds of
constraints:

1. Require constraints specify that a variant requires another variant. Take for instance
a variant A, which requires variant B. There must not exist a configuration of a
product variant, in which A is selected but B is not.

2. Exclude constraints specify that two variants exclude each other. Take for instance
a variant A and variant B that exclude each other. No product variant containing A
and B can exist.

3. Limit constraints (cardinality) specify the number of variants that have to be selected
from a specific variation point. A limit constraint specifies an upper and lower bound
of the number of selected variants. For instance, a limit constraint can state that for
a particular Variation Point A, at least 1 and at most 2 variants are selected. The
upper bound can be unbound, meaning that all variants can be selected. The default
limit for all variation points is exactly one variant (min. 1, max. 1).

4.4.4 Application Model

In Section 3.3.6 the concept of the application model was described. The application model
stores information about the resulting product variants. The application model component
encompasses all classes and interfaces that are responsible for

• loading the application model from and saving it to memory,

• checking the model for validity,

• generating product variants, and

• generating an application model from a given co-simulation variability model.

Persistence

Just like the co-simulation variability model, the application model file is an XML file that
is described by an XSD schema. JAXB is used for marshalling and unmarshalling.
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Figure 4.10: Class diagram of the most important classes in the application model compo-
nent

An example application model file can be found in Appendix B.3. The application
model consists of several configurations. Each configuration results in a single product
variant (output co-simulation project). Note that this is not true if multiple variant
modifiers (Section 4.4.3) are present. Each configuration consists of a collection of variants,
so called selected variants. All modifiers that are part of those selected variants will be
applied to produce one output co-simulation project.

Generating Product Variants

Generating product variants is one of the two major tasks of the ICOS VM tool. In this step
for every configuration in the application model a product is generated. The configuration
consists of references to a collection of selected variants from the co-simulation variability
model. In other words, an input simulation project is transformed to an output simulation
project. The output differs from the input project in the way that is described by the
selected variants.

The ApplicationModelHandler (depicted in Figure 4.10) generates the product variants.
In order to do this, it needs

• an input simulation project (ISimulationProjectModify),

• a reference to the variants defined in the co-simulation variability model (provided
by the interface IVariabilityModel), and

• a reference to the constraints of the co-simulation variability model (provided by the
interface IVariabilityModel).

The details of this process are shown in an activity diagram in Figure 4.11. For the
purpose of clarity the presence of multiple variant modifiers (Section 4.4.3) is not taken
into account.



94 CHAPTER 4. VARIABILITY MANAGEMENT IN ICOS
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clone input simulation project
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log error

generate batch file

apply modifiers of selected variants

Figure 4.11: Activity diagram showing the process of product variant generation

Generating the Application Model

As stated before, the application model consists of several configurations that contain
references to variants in the co-simulation variability model. This model can be manually
created by a user. On the other hand, an application model containing all valid combinations
of variants can be generated automatically.

The main problem when generating all combinations of variants is the number of
resulting combinations. Assume a co-simulation variability model with n variants without
constraints. The number of configurations that would be generated is 2n. This is due to
the fact, that every variant can be either present or not present in a configuration.

Take for example the co-simulation variability model in Figure 4.12. The model consists
of 6 variants. Thus 26 = 64 configurations would be generated, if no constraints existed.

One way to reduce the number of configurations is the introduction of constraints in
the co-simulation variability model. If limit constraints are introduced (as can be seen in
Figure 4.12), the number of generated configurations can be reduced to 18. From variation
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Figure 4.12: Example co-simulation variability model containing 3 variation points, 6
variants and require, exclude, and limit constraints

point VP A exactly one variant has to be selected. Thus, either variant Var 1 or Var 2
needs to be selected resulting in 2 possible configurations. One or two variants need to be
selected from variation point VP B resulting in 3 possibilities (Var 3, Var 4, Var 3 and
Var 4). Variation point VP C has 3 possible configurations as well (Var 5, Var 6, none).
Therefore, the number of configurations is 2 ∗ 3 ∗ 3 = 18.

Furthermore, requires- and exclude-relationships are introduced (as can be seen in
Figure 4.12). This further reduces the number of configurations resulting in 6 configurations.
All valid configurations are shown in Table 4.1.

1. 1 3

2. 1 3 5

3. 1 3 6

4. 1 3 4 5

5. 1 4 5

6. 2 4 5

Table 4.1: Resulting configurations of an example application model generation based on
the co-simulation variability model depicted in 4.12

Application Model Generation Constraints
The constraints presented so far (require, exclude and limit) are part of the co-simulation
variability model. In addition to co-simulation variability model constraints, generation
constraints can be defined. These constraints aim to further reduce the number of generated
configurations. They give the user the possibility of only generating specific configurations.
A user might only be interested in all configurations that contain variant Var 1. Similarly
he could only be interested in those that do not include variant Var 1.

Therefore, two kinds of generating constraints are introduced:

• Fixed variant constraints: All configurations that will be generated include all
variants that are said to be fixed.
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• Omitted variant constraints: All configurations that will be generated do not include
any variant that is said to be omitted.

Note that generating constraints are only taken into account during application model
generation. Contrarily, co-simulation variability model constraints are also taken into
account when product variants are generated.

Application Model Generation Strategies

Generating all configurations of selected variants is implemented with the help of the
strategy pattern [GHJV95]. The abstract class ApplicationModelGenerator is the interface
to the generator, shown in Figure 4.10. Currently, two concrete implementations for the
generating strategy exist. The main reason for the dual implementation of the strategy
is testing, as described in Appendix A. While the first implementation is rather simple
and straight forward the second implementation is more complex and tries to optimise the
number of steps taken to generate all valid configurations.

As stated above, the application model generation strategy takes all variants from
a co-simulation variability model and generates all valid configurations of variants. A
valid configuration is a combination of variants that does not violate any variability model
constraints or generating constraints.

Strategy 1: Generate and Check
A simple, kind of brute force approach to generate all possible configurations consists of
the following steps:

1. Initialise a set of selectable variants. Selectable variants are all variants that are
neither fixed nor omitted.

2. Generate all possible combinations of selectable variants.

3. Check each combination for whether it violates any constraint.

4. If it does not violate any constraint, add the configuration to the result set.

5. Add all fixed variants to all configurations in the result sets.

The main step (step 2) is a well-known problem referred to as ‘‘generating all combina-
tions’’. Many generic algorithms that solve this problem exist. Knuth [Knu05] presents
several algorithms and compares their performance and order in which combinations
are generated. Ruskey and Williams [RW09] describe another approach to generate all
combinations.

The implementation in the ApplicationModelGeneratorBruteForce class implements
an algorithm described in [Knu05]. The algorithm generates combinations in lexographical
order3. Here, the lexographical order refers to the position of a variant in the co-simulation
variability model. Table 4.1 gives an example of lexographical order where variant A
occurs before variant B in the variability model and so on.

3lexicographic order, also known as lexical order, dictionary order, alphabetical order
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In order to improve the performance of this algorithm, only combinations of all non-
fixed or omitted variants are generated. This is possible because fixed variants are part
of all resulting combinations, while omitted variants must not occur in any resulting
configuration. Hence, omitted variants are ignored and fixed variants are added to all
resulting configurations.

Strategy 2: Check While Generating

Strategy 1 has a major drawback: all combinations of variants that result from step 1-2
have to be checked for constraint (require, exclude, limit) violation (step 3). Often, this is
not necessary, as one constraint eliminates a series of combinations. Take for instance the
example from Figure 4.12. By looking at the variability model, all combinations that include
both variants Var 1 and Var 3 can immediately be eliminated, because they exclude each
other. The same is true for combinations which include variant Var 4, but do not include
variant Var 5, because of the require constraint. But even the limit constraints can be used
to omit combinations. For instance, as variation point VP B requires at least 1 variant to be
selected, it is known that as soon as variant Var 2 is selected, Var 4 must be selected as well.

Strategy 2 tries to make use of some of this information in order to eliminate invalid
combinations as early as possible. The algorithm works based on bit operations and is
therefore called ApplicationModelGeneratorBitSet. It works as follows:

1. Create a bit set (the Selected bit set) of n bits, where n is the number of variants in
the co-simulation variability model.

2. Reserve the first nf bits for the fixed variants, where nf is the number of fixed
variants.

3. Set the first nf bits in the Selected bit set to 1 (1 means selected, fixed variants are
always selected).

4. Reserve nvp bits for each variation point, where nvp is the number of variants in
variation point vp.

5. Prepare the constraint bit sets (explained in detail later).

6. For each variation point vp:

7. For each combination of variants of vp (each possible combination according to the
limit constraints):

8. Set at least limitmin and at most limitmax bits in the bit vector from the bits that
were previously reserved for variation point vp, where limitmin and limitmax are the
limit constraints for vp.

9. Check if the combination violates constraints (using the constraint bit sets).

10. If constraints are violated, go to the next combination.
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11. If no constraint is violated and vp is not the last variation point, go to the next
variation point.

12. If no constraint is violated and vp is the last variation point → a valid combination
has been found. Add all selected variants to the result set. Selected variants are
recognised by a 1 in the Selected bit set.

13. If all combinations of variants in vp are processed, reset vp and go to the previous
variation point. Reset means, if vp is visited again, all combinations of selected
variants in vp are processed again.

14. If vp is the last variation point and there is no more combinations in any other
variation point → terminate.

The main difference compared to Strategy 1 is the time and way how constraint checks
are performed. After the variants of a variation point are added to the Selected bit
set (according to the limit constraint for the variation point), the exclude and require
constraints are checked. If any constraint is violated, the current combination is ignored.
Along with this combination any other combination that has the same variants selected is
ignored too.

So, how does the bit-wise constraint check work? The key is the preparation of
a number of constraint bit sets (step 5). For each variant, two bit sets of length n are
created. One contains bits that represent a variant’s require constraints, the other one
contains the exclude constraints. Take for instance the require bit set of variant 1 Req1. If
bit 4 in Req1 is set, this means that variant 1 requires variant 4. The same applies to the
exclude bit set.

Using these bit sets for each variant constraint violations can easily be detected at any
time. In order to check if any combination of variants violates constraints, three global
bit sets are required. These bit sets are built for a particular combination (selection of
variants):

• The Selected-bit set (created in step 1): 0 in the bit set means that a variant is
not part of a particular selection. Contrarily, 1 means that a variant is part of a
configuration.

• The Required-bit set: this bit set is an aggregation of the required bit sets Reqn
for all variants that are selected. This bit set can be built by combining the required
bit sets Reqn of all selected variants with a bitwise OR.

• The Excluded-bit set: this bit set is an aggregation of the excluded bit sets Excn
for all variants that are selected. This bit set can be built by combining the excluded
bit sets Excn of all selected variants with a bitwise OR.

In the end, the Selected bit set has a 1 for variants that are part of the current config-
uration, Required has a 1 for all variants that must be part of the configuration and
Excluded has a 1 for all variants that must not be part of the configuration.

Using this information one can create the truth table depicted in Table 4.2. The third
column is 1 if a constraint is violated. The bold rows indicate the cases where constraints
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Require Exclude

Selected Required (!Sel&Reg)⇒ fail Selected Excluded (Sel&Exc)⇒ fail

0 0 0 0 0 0

0 1 1 0 1 0

1 0 0 1 0 0

1 1 0 1 1 1

Table 4.2: Truth table for exclude and require bit operations

are violated. By evaluating the two expressions from Table 4.2, constraint violations can
easily be detected. Evaluating the expression (!Selected&Required), using the bit vectors
described above, a constraint is violated if any bit in the bit set that results from this for-
mula is set. The same applies to the expression for excluded variants (Selected&Excluded).

The main advantage of this approach is the lower number of combinations that has to
be considered. Table 4.3 shows the beginning of a sample execution of the algorithm. The
first constraint violation is detected in line 2. In this line many combinations that include
variant B and C are eliminated at once.

Note that bit operations are only performed for the first np bits, where np is the number
of variants of all the variation points that have already been processed. All other bits are
marked with an x in the Selected bit set in Table 4.3. This is done in order to prevent the
detection of constraint violations, even though there are none present. Take for example
line 3 in Table 4.3. The Require bit set has a 1 at the 5th bit. Thus, variant Var 5 must
be present in a valid configuration. However, this is not a constraint violation, as the
variation point containing variant Var 5 has not yet been processed.

4.5 SPL Integration of ICOS Variability Management

Section 2.1.8 describes the separation of development activities into problem and solution
space. Furthermore, it was stated that domain as well as application engineering span
over both problem and solution space.

All the activities, models and artefacts that have been described for the standalone
ICOS VM tool, only impact the solution space. Therefore, the tool chain in Section 4.2 did
not take into account the separation of the tools and processes into these dimensions. As
the tool should be integrated in an SPL, the activities need to be distinguished between
problem and solution space.

Figure 4.13 shows the basic concept of the ICOS VM product line integration. The
activities that are performed in various tools are separated horizontally in application
and domain engineering and vertically in problem and solution space. For modelling the
problem space as well as the relationships between problem and solution space, a tool
called pure::variants is used. Pure::variants provides several different types of models that
span over all four quadrants.
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Step Selected Require Exclude Note

1 select variant 2
from VP 1

01xxxx 000000 001000 Var 2 is selected (selected
bit), which excludes Var 3 (ex-
cluded bit)

2 select variant 3
from VP 2

0110xx 000000 001000 the exclude expression
(Sel&Exc) evaluates to true,
skip this combination.

3 select variant 4
from VP 2

0101xx 000010 001000

4 select no vari-
ant from VP 3

010100 000010 001000 the require expression
(!Sel&Req) evaluates to true,
skip this combination

5 select variant 5
from VP 3

010110 000010 001000 all VPs processed, no con-
straint violated → first valid
configuration found

6 select variant 6
from VP 3

010101 000010 001000 the require expression
(!Sel&Req) evaluates to true,
skip this combination

7 . . .

Table 4.3: Sample execution of application model generation strategy 2

4.5.1 Pure::Variants Interface

Pure::variants has to be extended to integrate ICOS VM. At this point, only the implications
of the extension to the ICOS VM tool are covered.

The ICOS VM pure::variants extensions communicates with the standalone ICOS VM
tool over a defined interface called IPureVariantsInterface. This interface offers basic
functionality that is required by the extension. Examples for the offered functionality
include the creation of modifiers, loading simulation projects and so on. Additionally to
the IPureVariantsInterface the ICOS VM pure::variants extensions uses the interfaces
ISimulationProject and IVariabilityModel.

Details about the implementation are described in another document with the title
‘‘Integration of ICOS Co-Simulation Variability Management in Pure::Variants’’ [Toe12].
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Figure 4.13: Basic concept of the ICOS VM tool chain integrated in pure::variants
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Chapter 5

Evaluation

In order to evaluate the concept and implementation, it has been applied in a case study.
A co-simulation scenario consisting of a partial model of a hybrid electric vehicle (HEV),
based on Zehetner et al. [ZLWB12], was created. Several variation points were identified in
the co-simulation environment, which were described in an ICOS co-simulation variability
model. Based on the co-simulation variability model, an application model was generated
by the ICOS VM tool. At the same time, an application model was created by hand, as
only several product variants had to be simulated in order to interpret results.

5.1 Co-Simulation Environment

Independent Co-Simulation Platform

Cruise

Vehicle 
Dynamics 

Model

Matlab/Simscape

Power Net

Matlab/Simscape

Battery

Boundary Condition 
Server

Boundary
Conditions

Matlab/Simulink

Energy 
Management 

System

Figure 5.1: Co-simulation environment of the case study (partial hybrid electric vehicle
model)

Figure 5.1 shows the co-simulation environment for this case study. The system
is composed of several subsystems, which are subsequently described in detail. The
co-simulation environment aims to study the power net of a hybrid electric vehicle.

Therefore, the co-simulation was developed and simulated in ICOS.
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Battery
Currently two different models of the battery exist:

• a simple model, with a low degree of detail, developed in Simulink1 and

• a more detailed, physical model, developed in Simscape2.

For the co-simulation scenarios of this case study, the Simscape model was used.
However, as the models have compatible interfaces, both models can be substituted
easily.

Among others, the battery model provides an input parameter to set the initial state
of charge (SOC). Other properties of the battery, such as the capacity, are set in an
initialisation script file.

Power Net
The on-board power net was modelled using Simscape. It consists of several electrical
components of a vehicle. Among other components, an electric double-layer capacitor
(EDLC, also known as supercap or supercapacitor) is part of this model. EDLCs are
electrical storage devices, which have relatively high power densities, long lifetime,
as well as a great cycle number (number of times it can be recharged) [SG00]. In
hybrid electric vehicles, EDLCs are often used as energy storage in combination with
a conventional chemical battery.

For the co-simulation scenario presented below, two different models of the on-board
power net exist: one including an EDLC and one without an EDLC.

Energy Management System (EMS)
This model simulates a control sequence of electrical loads of the vehicle. In other
words, it provides a sequence of signals, which state whether an electrical load is
turned on or off at a specific point in time. This information is used by the power
net model. Even though the model is a simple Simulink model, it has been proven to
be accurate enough in a number of co-simulation scenarios.

Vehicle Dynamics Model
A model of the vehicle’s dynamics was developed using AVL Cruise3, a powertrain and
vehicle dynamics simulation software. It simulates the powertrain in a standardised
drive cycle, known as UDC (urban driving cycle). A drive cycle is a set of data points,
which represent a vehicle’s speed at specific points in time. The urban driving cycle
(UDC) was defined to represent city driving conditions. One of the output parameters
the vehicle dynamics model provides is the engine’s revolutions per minute. This
parameter is used by the power net.

5.2 Defining Variability

By introducing variability to the co-simulation, several variants of the system (vehicle) can
be modelled. Furthermore, several scenarios of the vehicle’s environment can be simulated.

1http://www.mathworks.de/products/simulink/
2http://www.mathworks.de/products/simscape/
3https://www.avl.com/cruise1

http://www.mathworks.de/products/simulink/
http://www.mathworks.de/products/simscape/
https://www.avl.com/cruise1
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Figure 5.2: Co-simulation variability model of the case study

Therefore, an ICOS co-simulation variability model (depicted in Figure 5.2) containing
the following variation points was developed:

Power Net
As stated before, two alternative models of the power net exist. One of the models
includes a supercapacitor (EDLC), while the other does not. Using this variation
point allows the investigation of the impact of a supercapacitor on the overall system.

Battery Capacity
Several vehicle variants might contain batteries with different capacities. The bat-
tery’s capacity is set in an initialisation file. The initialisation file can be substituted
using a custom modifier, as described in Section 4.4.3.

Battery - Initial State of Charge
The initial state of charge of the battery is provided by a constant BCS parameter.
Making this parameter variable, allows the investigation of the impact of different
initial states of charge to the system.

Ambient Temperature
This variation point was introduced to investigate the vehicle, given varying ambient
temperatures. Among other things, the ambient temperature has an impact on the
generator, which is part of the power net model.
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Section 3.3 introduces four groups of variation points (model-related, parameter connec-
tions, environment and coupling). In regard to these groups, the first variation point (power
net) is a model-related variation point, as it represents the variability of the subsystem
‘‘power net’’. The second variation point (battery capacity) can be seen as model-related
too. Even though the subsystem itself is not substituted, two battery models with different
capacities, in fact, represent two different variants of the subsystem ’’battery’’. The third
variation point (battery SOC) describes variability of the co-simulation’s environment. In
other words, it allows the simulation of the system under changing boundary conditions.
The last variation point (ambient temperature) describes variability of the system’s envi-
ronment.

The co-simulation and co-simulation variability model enable the evaluation of two
user-visible vehicle variants:

1. Conventional mild hybrid electric vehicle: This kind of hybrid electric vehicle cannot
be powered solely by its electric motor.

2. Plug-in hybrid electric vehicle (PHEV): This kind of vehicle contains an energy
storage that allows recharging by connecting a plug to an external power source.

These variants have a huge impact on the co-simulation scenario. For instance, the
capacity of the battery should be much larger for a plug-in hybrid electric vehicle. One
way of modelling these variants, is by introducing an abstract variation point to the
co-simulation variability model. This can be seen in Figure 5.2, where an abstract variation
point ‘‘Hybrid Type’’ is present.

Another way is to describe the hybrid types in a higher-level model, like a feature
model. The co-simulation variability model then needs to refer to the feature model. This
use-case scenario was also modelled in pure::variants, using a feature model to describe the
hybrid type. This is described in another work [Toe12], which is based on ICOS VM.

5.3 Application Model

An application model was automatically generated, consisting of all possible combinations
of variants. Some of the product variants only showed minor differences from others.
Therefore, four configurations were chosen and used for simulation:

• Mild hybrid with supercapacitor, a battery capacity of 30 Ah (Ampere hours), an
initial state of charge of 70%, and a medium ambient temperature of 25◦c

• Mild hybrid without supercapacitor, a battery capacity of 30 Ah, an initial state of
charge of 70%, and a medium ambient temperature of 25◦c

• Plug-in hybrid with supercapacitor, a battery capacity of 100 Ah, an initial state of
charge of 90%, and a medium ambient temperature of 25◦c

• Plug-in hybrid without supercapacitor, a battery capacity of 100 Ah, an initial state
of charge of 90%, and a medium ambient temperature of 25◦c
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5.4 Lessons Learned

The case study showed that ICOS VM can be used to explicitly define variability in an
ICOS co-simulation. It was shown that a co-simulation environment can be adapted
to the system’s variability (e.g. the battery’s capacity varied, according to the type of
hybrid electric vehicle). Additionally, the co-simulation’s environment was varied (e.g.
the ambient temperature), to allow the investigation of the system’s behaviour in various
environments.

During the development of this case study, several benefits of the ICOS VM tool were
observed:

• Single point of change: when changes had to be applied to all product variants,
this could be done once in the core co-simulation project. The next time, the product
variants were generated and simulated, these changes took effect.

Without ICOS VM, many similar co-simulation projects exist. Common changes
have to be applied to all co-simulation projects manually. Obviously, this is more
time consuming and error prone.

• Automatic generation of application model: After the co-simulation variability
model was developed, an application model was automatically generated. Using
application model generation constraints (fix and omit, see Section 4.4.4), it is easily
possible to generate a special subset of all product variants (e.g. all product variants
including a supercapacitor).

• Optimisation: In order to optimise a simulation parameter (e.g. battery capacity),
the parameter value can be changed manually. Subsequently the simulation is
started and the simulation results are evaluated. This manual process has to be
repeated for a range of values, until a desired result is reached. Using ICOS VM, the
parameter can be made variable and the simulation can automatically be executed
for a range of parameter values. After the execution, the results can be evaluated
and an appropriate parameter value can be determined.

Contrarily, some possible drawbacks of using ICOS VM were identified as well. These
issues should be considered before ICOS VM is used within a project:

• Return of investment: creating a co-simulation variability model takes a consid-
erable amount of time. For co-simulation projects with a large number of variation
points and resulting product variants, this initial investment will be returned. How-
ever, for small co-simulation projects, a small number of variation points or product
variants, this might not be the case.

• Frequent changes of the core co-simulation project: The co-simulation vari-
ability model describes the variability of a co-simulation project. Thereby models,
parameters, or any other part of the co-simulation project need to be referenced.
Therefore, changes in the co-simulation project have to be reflected in the co-
simulation variability model. If the co-simulation project is subject to frequent
changes, applying those changes to the co-simulation variability model takes a
considerable amount of additional time.



108 CHAPTER 5. EVALUATION



Chapter 6

Conclusion and Future Work

This thesis aims to introduce variability management in co-simulation environments. At
first variability management in general and its role in software product line engineering
were studied. Terminology and basic concepts from these areas were presented. Moreover,
their role in automotive engineering was investigated. Subsequently, co-simulation and its
affiliation to the automotive industry were investigated.

Based on these investigations, the variability of co-simulation environments was de-
scribed. Thereby different scopes of variability in the co-simulation of a particular system
were defined:

• Variability of the overall system

• Variability of subsystems that are part of a co-simulation

• Variability of the co-simulation environment

Furthermore, the common variation points of a co-simulation environment were studied
and distinguished into four groups:

• Model-related variation points

• Linking variation points

• Environment variation points

• Coupling variation points

Using this classification, several requirements to variability modelling and management
in a co-simulation environment were identified. Among others, it was stated that each of
the aforementioned types of variation points has to be taken into account when introducing
variability management to co-simulation.

On the basis of the identified requirements a prototypical implementation of a variability
management tool for the ICOS co-simulation platform was implemented. So far, the ICOS
VM tool allows the introduction of variability into a co-simulation project by

• substituting models,

• choosing between alternative models,

• changing boundary condition values,
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• changing parameter linking, and

• the use of custom modifiers, which easily allow a developer to make any part of the
co-simulation project variable, using XML/XPATH.

The ICOS VM tool was then evaluated in a case study, using the simulation of a partial
hybrid electric vehicle model. Using this model, it was shown how variability management
in co-simulation can be used to (1) reflect user visible vehicle variants in co-simulation
(plugin vs. non-plugin hybrid electric vehicle) and (2) vary the system’s environment.

One of the benefits that come with the use of ICOS VM is the explicit definition of
variability. This clearly improves communication, and traceability of variability. Further-
more, it enables the integration of the co-simulation variability model into a higher level
model, such as a feature model. Another benefit is that changes to all product variants can
be done at one single place and are automatically reflected in all product variants. This
does not only save time and effort, when faced with a large number of product variants. It
further prevents errors that might arise from applying changes to several products.

6.1 Future Work

6.1.1 Graphical User Interface

As stated before, there is no graphical user interface to create a domain or application
model. The implementation of a GUI would have been out of scope for the prototypical
implementation of the ICOS VM tool.

The integration of ICOS VM in pure::variants, described in [Toe12], provides a graphical
user interface to be able to create and manage a family model. The content of the family
model is in some way comparable to the co-simulation variability model.

However, a dedicated graphical user interface is desirable to support users with the
creation of domain and application models. The GUI could be implemented as a standalone
tool or as an IDE (Integrated Development Environment) plugin, e.g. for the Visual Studio
or Eclipse platform.

6.1.2 Result Evaluation and Optimisation

When a co-simulation was performed successfully, the user evaluates the results of the
simulation. Based on this evaluation the user might change parameters and restart the
co-simulation.

The process of evaluation can be automated or partially automated. This can be done
using approaches such as simulation-based optimisation, as described in [Den07].

6.1.3 Hierarchical Co-Simulation Projects

According to the release plans of the ICOS developer team, the support for hierarchical
co-simulation projects is anticipated. Thus, an ICOS co-simulation project can be included
in another co-simulation project, just like any subsystem model. This has various reasons,
e.g. the support for different coupling strategies for different sub-projects and to decompose
large systems.
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As long as only the parent co-simulation project is variable, there is no need for changes
in the ICOS VM tool. This is due to the fact that the child co-simulation project can be
treated just like any other model in the co-simulation.

However, if child co-simulation projects (co-simulations that are referenced as models by
other co-simulations) are subject to variability, the ICOS VM tool is affected. Variability
in the child co-simulation projects has to be taken into account in the parent project. This
is due to the fact that for each variant of the child co-simulation a single co-simulation
project file exists. The reference to this file needs to be updated in the parent co-simulation.

6.1.4 Model Databases

A model database stores subsystem models along with metadata about the models. The
latest version of ICOS supports retrieving subsystem models directly from an existing
model database. However, the support for model databases is not yet part of the ICOS
VM tool. Referring to subsystem model from a central database in the variability model
can be seen as a future extension of ICOS VM.

6.1.5 Concurrency

Currently the ICOS VM tool executes sequentially. Thereby most of the execution time is
taken to generate the application model as well as to generate the product variants. Both
of these processes can be parallelised. For product variant generation, for instance, worker
threads can generate one product variant at a time.

6.1.6 Non-Constant Boundary Condition Parameters

So far all boundary condition modifiers have only been available for constant boundary
condition parameters. However often ICOS co-simulations contain boundary condition
values that change over simulation time. Therefore supporting the variability of such
boundary conditions is desirable.

A constant BCS parameter value provides a single value as output. Thus, it is possible
to provide a range of values (e.g. 1 to 5, step size 1) to make the single value variable.
Parameter values that change over simulation time are specified by multiple values (e.g. 1
at time step 0, 42 at time step 20,. . . ). Therefore providing a range of values for each of
these time steps has to be implemented.
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Appendix A

Testing

This section describes how the ICOS VM tool implementation was tested. The purpose of
the tests is to execute the program to find as many errors as possible [MBTS04]. How this
is done and what measures and strategies were used will be presented.

A.1 Details

Basically, the developed tests can be split into two groups:

• Unit tests for the JAVA implementation of the ICOS VM tool.

• Integration tests in the form of test scripts, which test the integration of the JAVA
implementation within the ICOS VM tool chain.

While this section mainly deals with unit test, integration tests are explained in Section A.3.

A.1.1 Fixtures

Test fixtures are data that is being used among several test cases [BG00]. In other words,
fixtures are objects that are created during the setup phase of testing and are shared during
execution and verification by multiple test cases.

Fixtures can be separated into shared and fresh fixtures [Mes09a, Mes09b]. Shared
fixtures are objects that are created once (during setup phase). One and the same instance
is used for the execution of several test cases. The object is destroyed in the tear down
phase of testing.

Fresh fixtures, on the other hand are recreated for every test case. But the way they
are built and the data they hold is the same among all test cases.

Fixtures were used to reduce the complexity of our test cases. For instance: in order
to load and check a co-simulation variability model, a simulation project must be present.
In the co-simulation variability model test cases, a simulation project was used as fixture.

In most of the cases it was possible to use shared fixtures. However, for test cases in
which fixture objects are modified, fresh fixtures are required. For instance: when modifiers
are tested to modify a simulation project, the simulation project can be seen as a fresh
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fixture. As the modifiers changed properties of the simulation project it obviously had to
be instantiated for each test case.

A.1.2 Code coverage

Code coverage tools measure how thoroughly tests exercise programs. In other words they
give an answer to the question about the percentage of code that was executed during
testing. Code coverage has to be used with care. A code coverage of 100% means that
all parts of the code have been executed at least once. However, this does not prove the
program to be correct at all [Mar99, MBTS04].

It was not tried to verify our program by using code coverage. On the contrary, code
coverage analysis was used to identify parts of the source code that were not covered well
or at all by test cases.

In order to perform code coverage analysis, two JAVA tools were used: EclEmma1

and Cobertura 2. Both tools reported similar results for the code coverage for almost all
components of our tool. With the help of those tools two subcomponents were identified
that were not tested at all. Finally a code coverage of 80.4% for the entire program was
achieved. Big parts of the remaining uncovered code are the POJOs (Plain Old Java
Object) that were generated by JAXB.

A.2 Test Scope

ICOS VM unit tests were developed with different scopes. The most detailed test cases
were developed for a single class. As a next step, test cases for functionality spanning
several classes in a single component were written. Moreover, component tests were written
that aimed to test the functionality of a whole component. Finally several test cases were
developed that aimed to test communication between components and tried to test the
whole program’s behaviour.

The remainder of this section describes the tests of several program components.

A.2.1 User Interface

The main user interface of the ICOS VM tool is a command line application, represented
by the class ConsoleInterface. The class parses the command line arguments and initiates
the actions intended by the user.

The test cases of this component cover the parsing of correct and incorrect arguments
and other command line specific behaviour, as well as the communication and correct
initialisation of other components.

A.2.2 Simulation Project

After the interfaces of the simulation project were defined, the SimulationProjectHandler,
the most important part of this component, was developed using test-driven (test first)

1http://www.eclemma.org/
2http://cobertura.sourceforge.net/

http://www.eclemma.org/
http://cobertura.sourceforge.net/
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development.
The tests cover loading and saving correct, as well as dealing with corrupted simulation

project files. Further, the correct behaviour of all modifications (model deletion, parameter
renaming...) was tested. This was done by calling the appropriate modifying method and
then verifying the changes in the underlying XML file.

A.2.3 Co-Simulation Variability Model Component

The co-simulation variability model as a whole was tested (1) using sample XML variability
model files, and (2) by building variability models in code. Generally the resulting test
cases can be separated into three categories:

• Modifiers: All modifiers implement behaviour to check and apply a certain modifi-
cation. The check and apply behaviour of each modifier was tested. This was done
using correct and corrupted input.

• Custom Modifiers: In addition to the general test for all modifiers, several dedi-
cated tests for custom modifications were performed. In particular there was thorough
testing of the loading and parsing custom modification description files as well as
their boolean expressions.

• Constraints: Co-simulation variability model constraints were tested by observing
the behaviour of the model in the presence of correct, corrupted and conflicting
constraints.

A.2.4 Application Model Component

A great part of the application model tests addressed two of the components main func-
tionalities:

• Application Model Generation: As stated above, the application model genera-
tion is implemented using two distinct strategies. These strategies were used to test
one another. Therefore, a range of test data was created, which is used to generate
application models using both strategies. Afterwards their results are compared.

• Product variant generation: In order to reduce the complexity of testing product
variant generation, different methods to evaluate results were used. For some simple
co-simulation variability models, all of the resulting product variants were checked
in detail. Hence, it was checked if all modifications were carried out successfully for
each variant and so on. On the other hand, for complex co-simulation variability
models only the number of generated variants and some particular modifications
were checked.

A.3 Integration Testing

The purpose of the integration test scripts is to test the integration of the JAVA console
application in the ICOS tool chain. Thus, the test scripts do not only test the JAVA
console application but the wrapper script. This includes the execution of the output
co-simulations. Therefore in order to run the integration test scripts, ICOS must be
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installed on the host that runs the integration tests. Moreover the remote hosts that run
the simulation tools required for the tested projects must be accessible from the test host.

So far all test cases only include Matlab/Simulink models. Thus, only a host running
Simulink and the ICOS remote server must be available.
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Examples

B.1 Example Co-Simulation Variability Model File

<?xml version=” 1 .0 ” encoding=” utf−8”?>
<DomainModel>

<VariationPoint ID=” var i a t i onPo in t1 ” Name=”Heat Model” >
<Variant ID=” var iant 1 A ” Name=”Heat Model Variant 1”>
<ExchangeModel ModelName=”Model1”

Fi lePath=” . . \ models\ Simple1 Part1 var2 . mdl” />
<ChangeParameterNameInSimTool

CurrentParameterNameInIcos=” Part1 InputB ”
NewName=” Part1 Input var2 ” />

</Variant>
<Variant ID=” var iant 1 B ” Name=”Heat Variant 2”>
<ExchangeModel ModelName=”Model1”

Fi lePath=” . . \ models\ Simple1 Part1 var3 . mdl” />
</Variant>

</VariationPoint>

<VariationPoint ID=” var i a t i onPo in t2 ” Name=”Heat Model Engine”
>

<ModelAlternative ID=” a l t e r n a t i v e 1 ”/>

<Variant ID=” var iant 2 A ” Name=” Abstract Engine 1”>
<ChooseModel ModelAlternative=” a l t e r n a t i v e 1 ”

ModelName=”Model2” />
</Variant>
<Variant ID=” var iant 2 B ” Name=” Deta i l ed Engine 2”>
<ChooseModel ModelAlternative=” a l t e r n a t i v e 1 ”

ModelName=” Model2 var2 ” />
<ChangeOutputParameterMapping
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CurrentParameterNameInIcos=”Part2 OutputA”
NewName=” Part2 OutputA var2 ” />

</Variant>
<Variant ID=” var iant 2 C ” Name=”No Engine”>
< !−− model works wi thout the engine model −−>
<ChooseModel ModelAlternative=” a l t e r n a t i v e 1 ” None=” true ”/>

</Variant>

</VariationPoint>

<VariationPoint ID=” var i a t i onPo in t3 ” Name=”Boundary
Condit ions f o r model1” >

<Variant ID=” var iant 3 A ” Name=”BCS Values 1”>
<BCSValue ParameterName=”BCS Output1”>
<Range StartValue=”5” EndValue=”10” Step=” 0 .5 ” />

</BCSValue>
</Variant>
<Variant ID=” var iant 3 B ” Name=”BCS Values 2”>
<BCSValue ParameterName=”BCS Output1”>
<Entry Value=”4” />
<Entry Value=”6” />
<Entry Value=”11” />

</BCSValue>
</Variant>

</VariationPoint>

< !−− change time s t ep us ing custom mod i f i c a t i on s −−>
<VariationPoint ID=” var i a t i onPo in t4 ” Name=”Change time step ” >

<Variant ID=” var iant 4 A ” Name=”AdapeTime Step ” >
<Modi f i ca t i on Type=”changeTimeStep”>
<Argument Name=”minTimeStep” Value=”1” />
<Argument Name=”maxTimeStep” Value=”10” />

</ Mod i f i ca t i on>
</Variant>

</VariationPoint>

< !−− c on s t r a i n t s are checked during genera t ion o f app model
as w e l l as genera t ion o f prodcuts −−>

<Constraints>
<Exclude VariantA=” var iant 1 A ” VariantB=” var iant 2 C ” />
<Exclude VariantA=” var iant 2 B ” VariantB=” var iant 3 B ” />
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<Require VariantA=” var iant 1 B ” VariantB=” var iant 3 A ” />

< !−− The default l im i t i s [ 1 , 1 ] , we s e t i t anyways−−>
<Limit MinVariants=”1” MaxVariants=”1”

VariationPoint=” var i a t i onPo in t1 ” />
<Limit MinVariants=”1” MaxVariants=”1”

VariationPoint=” var i a t i onPo in t2 ” />
<Limit MinVariants=”0” MaxVariants=”1”

VariationPoint=” var i a t i onPo in t3 ” />
<Limit MinVariants=”0” MaxVariants=”unbounded”

VariationPoint=” var i a t i onPo in t4 ” />
</Constraints>

< !−− c on s t r a i n t s are used f o r genera t ion o f app model , but do
not e f f e c t the product genera t ion−−>

<GeneratingConstraints>
< !−− only genera te va r i an t s i n c l u d i n g var iant 1 A −−>
<Fix VariationPoint=” var i a t i onPo in t1 ” Variant=” var iant 1 A ”

/>

< !−− don ’ t generate v a r i a n t s i n c l u d i n g var iant 2 C −−>
<Omit Var ia t ionPo int=”var i a t i onPo in t2 ”

Variant=”var iant 2 C ” />
</Generat ingConstra ints>

</DomainModel>

Listing B.1: Example co-simulation variability model file

B.2 Example Custom Modification Description File

<?xml version=” 1 .0 ” encoding=”ISO−8859−1” standalone=”no” ?>

<CustomModif icat ions>

<CustomModification Name=”ChangeModelTimeStep”>
< !−− arguments t ha t have to be prov ided by the user −−>
<Argument

Name=” timeStep ”
DataType=” double ” />

<Argument
Name=”maxTimeStep”
DataType=” double ” />

<Argument
Name=”modelName”
DataType=” s t r i n g ” />
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< !−− a l i s t o f models and parameters t ha t are going to be
modi f ied −−>

<ModifiedModel Name=”{modelName}” />

< !−− the mod i f i c a t i on s t ha t are ca r r i ed out ( xpath
expre s s i on ) −−>

<Modification
S e l e c t o r=”// wrapper [ @name=’{modelName } ’ ] / @timeStep”
Value=”{ t imeStep }”
Create I fNotEx i s t s=” true ” />

<Modification
S e l e c t o r=”// wrapper [ @name=’{modelName } ’ ] / @maxTimeStep”
Value=”{maxTimeStep}”
Create I fNotEx i s t s=” true ” />

< !−− e xp r e s s i on s to be checked b e f o r e the mod i f i c a t i on s
are ca r r i ed out −−>

<Rules>
<Expression

Action=” F a i l ”
Message=”The maximum time step ({maxTimeStep}) can not

be l e s s than the time step ({ t imeStep }) . ”>
<And>
<Leq>
<ArgumentValue ArgumentName=” timeStep ” />
<ArgumentValue ArgumentName=”maxTimeStep” />

</Leq>
<Gt>
<ArgumentValue ArgumentName=” timeStep ” />
<Value Value=”0” DataType=” double ” />

</Gt>
</And>

</Expression>
</ Rules>

</CustomModification>

</ CustomModif icat ions>

Listing B.2: Example custom modification description file

B.3 Example Application Model File

<?xml version=” 1 .0 ” encoding=” utf−8”?>
<ApplicationModel>

<Configuration Name=” Simulat ion Product 1”>
<Se l e c tVar i an t VariantID=” variantA ”/>
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<Se l e c tVar i an t VariantID=” variantC ”/>
<Se l e c tVar i an t VariantID=” variantD ”/>

</Configuration>
<Configuration Name=” Simulat ion Product 2”>

<Se l e c tVar i an t VariantID=” variantB ”/>
<Se l e c tVar i an t VariantID=” variantD ”/>
<Se l e c tVar i an t VariantID=” variantE ”/>

</Configuration>
</ApplicationModel>

Listing B.3: Example application model file

B.4 Example ICOS Batch File

1 ”C:\Temp\ S imp le1 0001 con f i g 0001 . i c o s ”
”C:\ l i c e n c e f i l e p a t h \Val idL icence . l i c ” 1 2 7 . 0 . 0 . 1 : 1 2 3 4
” superSecreteRemotePassword ”

2 ”C:\Temp\ S imp le1 0001 con f i g 0002 . i c o s ”
”C:\ l i c e n c e f i l e p a t h \Val idL icence . l i c ” 1 2 7 . 0 . 0 . 1 : 1 2 3 4
” superSecreteRemotePassword ”

3 ”C:\Temp\ S imp le1 0001 con f i g 0003 . i c o s ”
”C:\ l i c e n c e f i l e p a t h \Val idL icence . l i c ” 1 2 7 . 0 . 0 . 1 : 1 2 3 4
” superSecreteRemotePassword ”

Listing B.4: Example ICOS batch file
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