Master’s Thesis

Apelles

A Library for GPU-Based
Real-Time Global lllumination

Alexander Moschig
Institute of ComputerGraphics and KnowledgeVisualisation, TU Graz

www.cgv.tugraz.at

Supervisor: Dr.-Ing. Sven Havemann

TU

Grazm

http://www.cgv.tugraz.at

TU

Grazm
Graz University of Technology

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission fur Bachelor-, Master- und Diplomstudien vom 10.11.2008

Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLARUNG

Ich erklare an Eides statt, dass ich die vorliegende Arbeit selbststandig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wértlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

(Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

| declare that | have authored this thesis independently, that | have not used other than the declared

sources / resources, and that | have explicity marked all material which has been quoted either

literally or by content from the used sources.

date (signature)

Kurzfassung

Fotorealistische Bildsynthese strebt danach ein digitales Bild einer kiinstlichen Szene so zu erzeugen, dass keine Unter-
schiede zu einem realen Bild feststellbar sind. Die komplexe Wechselwirkung zwischen Licht und Materie bringt unter-
schiedliche visuelle Effekte hervor. Diese Effekte tragen ganz wesentlich zur natiirlichen Wahrnehmung von synthetischen
Bildern bei. Realismus ist besonders wichtig, wenn Information adidquat veranschaulicht werden soll um in eine fiir Men-
schen natiirlich erfassbare Form gebracht zu werden. Schattierungen und die perspektivisch korrekte Anordnung von
Linien ermdglichen eine Wahrnehmung von Tiefe in einem zweidimensionalen Bild. Schatten liefern wichtige visuelle
Hinweise zu Details von Oberflichen und zur Abschitzung der relativen Position von Objekten zueinander. Schirfen-
tiefe lenkt die Wahrnehmung auf relevante Teile bestimmter Tiefe entlang der Blickrichtung. Bewegungsunschirfe driickt
gerichtete Bewegung in einem statischen Bild aus. Reflexion und Brechung von Licht ermoglichen die Unterscheidung
von blickdichten, spiegelnden und lichtdurchlidssigen Stoffen. Kaustiken bilden sich aufgrund von reflektiertem oder ge-
brochenem Licht, das auf lichtundurchldssigen Oberflichen fokussiert wird. Partielle Reflexion oder Brechung verleiht
der Oberfliche von glidnzenden Stoffen ihre typische Rauheit. Durch die direkte Reflexion von Licht zwischen unter-
schiedlich gefiarbten Objekten wird die wahre Farbe von benachbarten Objekten verfilscht. Lichtstrahlen und raumliche
Kaustiken werden sichtbar durch rdaumliche Streuung von Licht, wenn kleine Staubpartikel in der Luft fein suspendiert
sind. Eingedrungenes Licht, das innerhalb eines Stoffes gestreut wird und den Stoff an unterschiedlichen Stellen wieder
verlisst, bringt die gefillige Erscheinung bestimmter Stoffe in der Natur erst zur Geltung.

Die computergestiitzte Erzeugung synthetischer Bilder erfordert eine besonders rechenintensive Simulation der kom-
plexen Wechselwirkung zwischen Licht und Materie. Ein einzelner Punkt einer Oberfliche wird potentiell von seiner
gesamten Umgebung beleuchtet, weil Lichtstrahlen wéhrend ihrer Ausbreitung durch die Umgebung sich an Oberflichen
vermehren und abgelenkt werden, bis die Strahlen schlieBlich auf das Auge auftreffen oder absorbiert werden. Deshalb
erfordern die eingesetzten Algorithmen besonders viele Strahlen oder miissen besonders lange ausgefiihrt werden um
befriedigende Ergebnisse zu liefern. Ferner miissen die Algorithmen eine Auswertung von globalen Daten vornehmen,
die von einer Vielzahl von anderen Oberflichenpunkten abhingen um die Effekte globaler Beleuchtung an einem Ober-
flachenpunkt berechnen zu konnen. Unter Vernachldssigung von extrem komplexen Effekten globaler Beleuchtung kon-
nen heutzutage synthetische Bilder zur interaktiven Anzeige nur dann ausreichend schnell erzeugt werden, wenn die
Algorithmen auf hoch leistungsfahiger Hardware entfernt ausgefiihrt werden und die Ergebnisbilder zur lokalen Anzeige
zuriick iibertragen werden. Im Gegensatz dazu erreicht die Erzeugung von synthetischen Bildern auf Grafikhardware
fiir Endverbraucher eine Ndherung von Beleuchtungseffekten in Echtzeit. Dies wird durch den Einsatz von hardware-
beschleunigten Techniken zur effizienten Rasterisierung ermoglicht. Diese Vorgehensweise erfordert nur Daten, die an
jenem Oberflachenpunkt zur Verfiigung stehen, dessen Beleuchtung momentan berechnet wird.

Die Evolution der Grafikhardware mit programmierbaren Datenpfaden hat eine Vielzahl an Algorithmen hervorge-
bracht, die hardware-beschleunigte Techniken zur effizienten Rasterisierung einsetzen um einzelne Effekte globaler Be-
leuchtung in Echtzeit anzunidhern. Diese Arbeit beschiftigt sich mit dem Entwurf der Bibliothek Apelles um zu ergriinden,
welche Algorithmen sich so kombinieren lassen, dass Effekte globaler Beleuchtung in Echtzeit tiberzeugend angenihert
werden konnen. Aufgrund der enormen Vielfalt an verfiigbaren Algorithmen beschrinkt sich die vorliegende Arbeit
auf die Erzeugung von harten und weichen geometrischen Schatten, die von lichtundurchlédssigen Objekten geworfen
werden. Eine beliebige Anzahl von Lichtquellen kann in der Szene auf einfache Weise aufgestellt werden. Die ver-
fiigbaren Lichtquellen umfassen gerichtete Lichter, Punktlichter, Spotlichter und Flichenlichtquellen. Zwei Algorithmen
ermdglichen die Erzeugung weicher Schatten von Flichenlichtquellen. Optisch gefillige Schatten, deren Weichheit sich
mit der Distanz zwischen Objekten dndert, lassen sich in Echtzeit erzeugen. Physikalisch korrekte Schatten mit weichen
Kanten konnen erzeugt werden, wenn ein hoherer Aufwand akzeptabel ist. Zusitzlich bietet Apelles einen hardware-
beschleunigten parallelen Algorithmus an um die Effizienz der Einstellung aller Lichtquellen zu steigern. Die Sicht des
Lichtes kann auf jene Objekte beschrinkt werden, die fiir die Bestimmung von Schatten im Schein des Lichts ma3geblich
sind. Der prignante und offene Entwurf der Softwarearchitektur von Apelles ermdglicht auf einfache Weise fehlende
Effekte globaler Beleuchtung nachzuriisten, indem die implementierten Algorithmen mit vorhandenen Algorithmen kom-
biniert werden.

il

Abstract

Photorealistic image synthesis strives to create a digital image of an artificial scene indistinguishable from a real-world
photograph taken with a digital camera. The complex interaction of light and matter causes different visual effects.
These effects contribute considerably to the natural perception of synthetic images. Realism is particularly important for
presenting information appropriately to support human understanding. Shadings and the perspective-correct composition
of lines enable to perceive depth in a two-dimensional image. Shadows provide important visual cues for surface detail
and for estimating the relative positions of objects in space. Depth of field focuses perception on relevant things only
in everything being visible with a gradual blur along the depth of view. Motion blur expresses directional activity in a
static image. Reflection and refraction of light allows to identify opaque, specular and transmissive materials. Caustics
are formed by reflected or refracted light that is focused on opaque surfaces. Glossy reflection and refraction support to
identify shiny materials exhibiting surface roughness. Color bleeding caused by inter reflection of light between differently
coloured objects biases the true colour of nearby objects. Light shafts and volumetric caustics are introduced due to
volume scattering of light if small particles are finely suspended in the air. Subsurface scattering of light exposes the
pleasing appearance of distinctive natural materials.

Generating synthetic images requires to simulate the complex interaction of light and matter with a computer which is
a computationally intense process. A single surface point is potentially illuminated by everything else in the scene. While
travelling through the scene rays of light are spawned and redirected at multiple surfaces until, finally, impinging at the
eye or being absorbed. Therefore, algorithms are required to trace huge numbers of rays or to run sufficiently long to yield
convincing results. Furthermore, the algorithms need to evaluate data acquired globally from multiple other surface points
for computing global illumination effects at a single surface point. While disregarding extremely complex effects of global
illumination, today synthetic images can only be displayed at interactive rates by executing the algorithms remotely on
extensive hardware resources off-site and transmitting the results to displays on-site. In contrast, real-time generation of
synthetic images on consumer graphics hardware convincingly approximates visual effects with GPU-enabled rasterisation
techniques which only require data locally available at the surface point currently being shaded.

The evolution of the programmable graphics pipeline has given birth to numerous algorithms which utilise GPU-
enabled rasterisation techniques to approximate individual effects of global illumination in real-time. This thesis focuses
on a library named Apelles in order to discover which of these algorithms can be combined to generate convincing global
illumination effects in real-time. As a consequence of the huge variety of the available algorithms, this thesis concentrates
on the generation of both geometric hard and soft shadows cast by opaque objects only. An arbitrary number light sources
can be set-up in a scene naturally. The supported types of light sources include directional lights, point lights, spot lights
and area lights. According to area lights, two algorithms are supplied for generating soft shadows. Visually pleasing soft
shadows exhibiting contact hardening can be generated in real-time. Physically-correct soft shadows can be generated if a
considerably higher cost is acceptable. Additionally, a GPU-enabled parallel algorithm is supplied to optimise the set-up
of light sources with respect to those objects within the view of the light source that are relevant for resolving occlusion
efficiently. The concise and open design of Apelles inherently supports to include missing global illumination effects by
combining library algorithms with existing algorithms.

il

Acknowledgements

I am highly grateful for having the opportunity to graduate in the exciting field of computer graphics at the Institute of
Computer Graphics and Knowledge Visualization at Graz University of Technology. Several people have contributed
to the evolution of this thesis. I would like to thank my supervisors and reviewers for their invaluable assistance and

constructive suggestions.
In particular, I would like to thank my family for making my studies possible and for their encouragement over the time
as this thesis has evolved.

v

Table of Contents

Kurzfassung
Abstract
Acknowledgements
1 Introduction

2 Related Work

2.1 Hard Shadows e
2.1.1 Undersampling e e e e e
2.1.1.1 0 Reconstruction oo e e e e e

2.1.1.2 0 Fitting o oo e

2.1.1.3 0 Warping e e e e

2.1.1.4 Global Partitioning

2.1.1.5 Adaptive Partitioning e

2.1.1.6 Temporal Reprojection

2.1.2 Oversampling o e e e e e e e

2.1.3 Alias-Free Sampling
2.1.4 Incorrect Self-Shadowing

2.1.5 Omnidirectional Shadows L

2.1.6 Summary e e e e e e e e e e e

2.2 SoftShadows
2.2.1 Percentage-Closer Soft Shadows L

2.2.2 Soft Shadow Mapping e e e

2.2.3 Multi-Layered Shadow Maps e

224 Temporal Coherence 0 i it e e e e e e e e

2.2.5 Environmental Shadows e
22,6 SUMMATYo e e e e e e e e e

3 Theory

3.1 Global Nlumination e e e e
3.1.1 TheRendering Equation

3.1.2 The Bidirectional Reflectance Distribution Function

3.1.3 The Soft Shadow Equation e

3.2 Shadow Mapping o e
321 ALASING . . . o o e e

3.2.2 Incorrect Self-Shadowing

3.3 Hard Shadows oL e e
34 SoftShadows
3.4.1 Percentage-Closer Soft Shadows L L

3.4.2 Progressive Sampling of Area Light Sources,

3.5 Optimisation of Light View Volume Culling

ii

iii

iv

TABLE OF CONTENTS

4 Implementation

4.1 Apelles - A Library for GPU-Based Global [llumination
4.1.1 Light Manager oot e e e e

4.1.2 Render Manager e e e e

4.1.3 Shader Manager e e e e e
4.1.3.1 Lighting Computation of Single-Sample Lights

4.1.3.2 Lighting Computation of Multi-Sample Lights

4.1.3.3 Combining Existing Shaders

4.1.4 Optimisation of Light View Volume Culling

4.1.5 Auxiliary Libraries L e e e e e e

4.2 Examples and Tutorial L L e e e e
421 Simple Example e

4.2.2 Combining Existing Shaders

5 Results and Discussion

5.1 Results

5.2 Discussion: Strengths and Limitations L
5.2.1 Comparison of OpenSG and Apelles Shadow Generation
5.2.2 Comparison of Convolution-Based and Sampling-Based Soft Shadow Generation
523 ANASIng e e e e e
5.2.4 Percentage-Closer Soft Shadows o
5.2.5 Optimisation of Sampling-Based Soft Shadow Generation
5.2.6 Optimisation of Light View Volume Culling with OpenCL
5.2.77 Adaptive Rendering L
5.2.8 Effect of Depth Metric on Depth Biasing
6 Conclusion and Future Work
6.1 ConcClusion e
6.2 Future Work L L
6.2.1 Allasing e e
6.2.2 Convolution-Based Soft Shadow Generation
6.2.3 Environmental Shadows
6.2.4 Multi-Pass Rendering
6.2.5 GPU-Based Global Illumination
Bibliography
List of Tables

List of Figures

vi

56
56
57
60
66
67
75
77
77
80
81
81
84

87
87
89
89
91
93
94
97
99
100
101

103
103
103
103
104
104
104
105

113

114

116

Chapter 1

Introduction

Taking a picture with a camera generates a photorealistic image of the real world. Today, an image is acquired by mea-
suring focused radiation of light with a digital sensor instead of a light-sensitive film. Although photorealistic image
synthesis strives to achieve the same ambitious goal as photography, the used strategy is completely different and con-
trary. A synthetic camera is put up in a three-dimensional synthetic scene to generate an image without any perceivable
differences compared to the real world. The scene specifies a spatial set-up of objects, light sources and a camera. Objects
are described by shape, size, and material properties (e.g. colour, refractive index, etc.). Light sources are described by
emissive properties (e.g. colour, attenuation, etc.). The camera is described by mapping properties (e.g. orientation, focal
length, etc.). The image generation process (render process) requires to accurately simulate the complex nature of the
interaction of light and matter using a computer. Digital photography and photorealistic image synthesis exhibit similarity
in the final step of the image generation process. A colour must be assigned to the picture elements (pixels) comprising
the resulting raster image.

The vital importance of photorealistic image synthesis becomes apparent in the context of visualisation to present in-
formation supporting human understanding. Considerable applications can be found in architecture, simulation, medicine
and education. For example, in architecture a new office design can be evaluated under different lighting conditions (Fig-
ure 1.1). Furthermore, a virtual environment allows to evaluate the office design in different scenarios: reachability and
visibility of emergency exits in case of crowded corridors and fire (different atmospheric conditions due to smoke).

Figure 1.1: Using iray® an office design is evaluated under different lighting conditions according to the time of day. Left: Day view.
Middle: Evening view. Right: Night view (images courtesy of mental images GmbH, http://www.mentalimages.com, last
access 2012-05-07).

Of course, entertainment industry has always been promoting significant advances in visual realism for movies and
computer games. Pixar Animation Studios developed PhotoRealistic RenderMan®! for creating animated feature films
(e.g. Toy Story). In particular, RenderMan® is used for visual effects in nearly all award-winning movies. Another
example is the game Doom III?> developed by Id Software that showed hard shadows for dynamic objects to the larger
public for the first time.

"http://renderman.pixar.com/products/tools/rps.html (last access 2012-05-07).
2http://www.idsoftware.com/games/doom/doom3 (last access 2012-05-07).

http://www.mentalimages.com
http://renderman.pixar.com/products/tools/rps.html
http://www.idsoftware.com/games/doom/doom3

CHAPTER 1. INTRODUCTION 2

Visual Effects in Paintings and Pictures For creating an image indistinguishable from a photograph, it is important to
consider visual cues in paintings and pictures. In the antiquity painters used monochrome shadings (from bright to dark)
and coloured shadings (from warm to cold) to enhance the depth effect in paintings. For example, filling a circle with a
shade from bright to dark adds virtually a third dimension to a two-dimensional image as the circle turns into a sphere. In
the renaissance DURER and DAVINCI introduced the perspective-correct composition of lines to support depth perception
in flat paintings. Impressionist artists used warm and cold colours to increase the virtual distance between foreground and
background in a painting.

Occlusion and shadows, cast by opaque objects in a picture, support to estimate relative positions of objects in space.
In addition, if light shines on surfaces at a shallow angle, shadows unveil inconspicuous surface features (e.g. bulges
and dents or unique landscape topography in the morning or evening). Soft shadows exhibiting hardening on contact
convey further visually important information about the surface of objects, the spatial relation of objects and the size of
light sources (Figure 1.2, top left). Environmental shadows additionally enrich the natural appearance of objects if light
scatters uniformly in all directions due to diffuse inter reflection (indirect illumination) or diffuse light (e.g. overcast sky).

Depth of field aids in identifying only relevant things in everything we see in a picture. By altering aperture the visual
apparatus of a camera can be setup to focus in a limited range at a specific distance only. Objects closer or farther than
this range are out of focus and, therefore, appear gradually blurred in the taken picture.

Motion blur dramatically emphasises activity in a static picture and indicates the direction of movement. If an object
is moving when the shutter is open, the image of the object moves across the sensor or film while being exposed. Hence,
in the taken picture the object will have the appearance of being smeared in the direction of movement.

Reflection and refraction of light enables to distinguish between opaque, specular and transmissive objects. As a
consequence of refraction, light is focused and, therefore, caustics are formed on diffuse surfaces (Figure 1.2, top right).
For example, caustics appearing on the ground of a swimming pool contribute significantly to the natural perception
of vivid water as a liquid. Of course, caustics can additionally originate from reflected light being focused by concave
surfaces (e.g. light patterns inside a glazed mug).

Glossy reflections and refractions are a critical visual element for authentic reproduction of materials which exhibit
surface roughness (Figure 1.2, bottom left). For example, in architectural visualisations a shiny parquet floor mirrors the
blurry image of a white pillar due to glossy reflection. Glossy refraction causes objects appear to be translucent (e.g.
slightly frosted glass of a bathroom window).

Indirect illumination introduces color bleeding (Figure 1.2, bottom right). Particularly, color bleeding can be irritating
upon taking a picture of a person standing close to a coloured wall. Indirect illumination causes the wall to diffusely
reflect coloured light instead of white light onto the person. Hence, such biased light creates an unnatural appearance of
skin in the taken picture. As a consequence of color bleeding and colour adaption in the human brain, the colours in the
taken picture differ from the colours seen in the viewfinder. The human brain constantly strives to instantly adapt colour
perception such that objects appear always to be illuminated by white light regardless of color bleeding.

Different atmospheric conditions are observable as a result of volume scattering of light in participating media (e.g.
smoke and fog). The TYNDALL effect causes light shafts and god rays. For example, god rays cast by ships into seawater
are inevitable for realistic underwater scenes. Of course, transmissive materials introduce volumetric caustics depending
on their surface curvature and light absorption properties. Furthermore, subsurface scattering of light causes particular
translucent materials to uniquely expose their attractive texture (e.g. marble, jade or human skin).

Physically-Correct Photorealistic Image Synthesis Simulating the propagation of light rays as in geometrical optics
for rendering a photorealistic image of a virtual scene is a computationally intense process. Indirect illumination causes
a single point in a scene to be illuminated by everything else in the scene due to inter reflections. Light rays are spawned
either by reflection or refraction and propagate repeatedly until finally an object absorbs the according photon depending
on the wavelength of the photon. Physically-correct photorealistic image synthesis usually disregards physical optics
(polarisation, interference, dispersion, diffraction), fluorescence and phosphorescence.

Instead of tracing rays of light, rays are cast for each pixel of the synthetic image to determine through intersection
testing, first, what is visible and, then, which colour to assign. The colour is estimated by evaluating an illumination
model (shader) together with occlusion testing which involves casting shadow rays. A recursive ray tracer successively
traces a fan-out of rays at each intersection deeper into the scene in order to account for multiple specular reflections and
refractions.

By oversampling a single pixel with a bundle of rays in a non-deterministic way, stochastic ray tracers are capable of
rendering soft shadows, depth of field, motion blur, glossy reflections, glossy refractions and color bleeding due to diffuse
reflections. Despite the capability of a stochastic ray tracer to implement a rather unsimplified model of light, the number
of rays to be traced is severely increased by additional fan-outs of rays compared to recursive raytracing.

In contrast, a path tracer stems high numbers of rays by tracing only single rays for reflection or refraction. As a
consequence of reduced complexity, images rendered with a path tracer are typically noisy due to high variance.

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Shadows, specular effects and color bleeding.

Top left: Sunlight passes through a window with open blinds. The shadows caused by the blinds on the floor become softer from left
to right as the distance between a blind (occluder) and the floor (receiver) increases. Small scale shadows are inevitable to convey the
fluffiness of the fur of the cat.

Top right: Coloured caustics are formed by focusing sunlight through a transparent capsule filled with salmon oil. Note that a reflection
of the caustic appears on the lower backside of the capsule due to rotal reflection.

Bottom left: Glossy and specular reflections on a car with matt paint (image courtesy of carface). Glossy highlights of street lighting
appear on the roof of the car. Specular reflections of a passed by entrance appear on the black lid of the boot.

Bottom right: Color bleeding biases the colour of the left side of the dragon because the nearby book cover diffusely reflects red light
onto the white dragon (image courtesy of Jaroslav Kfivdnek).

CHAPTER 1. INTRODUCTION 4

A photon tracer approximates indirect illumination on diffuse surfaces using a two pass approach. In the first pass,
photons are emitted from light sources and traced through the scene until they are finally absorbed. When a photon hits a
diffuse surface, it is registered in a data structure (photon map). In the second pass direct illumination, specular reflections
and transmissions are computed using stochastic raytracing. Indirect illumination is computed by incorporating cached
data in the photon map. A photon tracer is very efficient in rendering caustics which a stochastic ray tracer can only render
at a very high cost. Remaining artefacts in the resulting image are removed by increasing the number of photons. On the
contrary, a stochastic ray tracer will only yield a satisfying result if the algorithm runs long enough.

Real-Time Approximation of Global Illumination As a consequence of the high complexity in simulating light trans-
port, real-time applications employ collections of convincing local shading tricks to efficiently approximate global illu-
mination effects such as shadows, reflection, refraction, caustics and indirect illumination including color bleeding. The
utilised approaches are optimised for particular scene setups, geometry and constrained viewports. Hence, in arbitrary
scenes with deformable objects, free camera and light control, visually disturbing defects become objectionable easily.

Obviously, for increasing efficiency when processing a pixel it would be reasonable to exploit coherency of neigh-
bouring pixels. Intermediate results could be cached in order to utilise them subsequently without requiring to recompute
them repeatedly. Unfortunately, an algorithm utilising coherency for speedup is unsuitable to be implemented in cheap
hardware efficiently. The implementation would require individual hardware elements that communicate with each other;
the most expensive hardware design possible.

According to visibility testing, a graphics processing unit (GPU) achieves real-time performance by inefficiently dis-
carding hidden pixels (z-buffer algorithm [Cat74]). Therefore, a GPU is designed to generate coloured pixels rapidly by
evaluating simple local lighting models. A local lighting model only relies on data available at the surface point (e.g.
surface normal, incident angle of light, texture colour, etc.). In contrast, global illumination algorithms need data from
multiple other surface points in the scene than the surface point currently being shaded.

Although recent advances in both graphics hardware and software show interactive physically-correct simulation of
light in complex scenes, real-time performance is still impossible to achieve on current systems. Global illumination
algorithms based on ray tracing require to trace at least 20-40 rays per pixel to yield satisfying results [WDB*06]. Suppose
that high definition content shall be rendered at 60 frames per second. Each frame is 1920 pixels wide and 1080 pixels
high. Tracing a minimum of 20 rays per pixel in a single frame would require hardware being capable of tracing two and
a half billion rays each second.

At the GPU Technology Conference in 2010 mental images iray® demonstrated push-button rendering of a physically-
correct illuminated complex architectural scene with three million polygons on a workstation running two high-end GPUs
[HualO]. The path traced image converged on the final frame in about ten seconds. Despite the very accurate shadow
detail, color bleeding computations were omitted. By moving computation into an off-site cloud running a cluster of 32
GPUs and streaming back the resulting images on a notebook showed almost interactivity. However, in movie production
scenes are much more complex. In 2006 a typical scene in a Pixar movie consisted of hundreds of light sources, thousands
of textures, ten-thousands of objects, hundred-thousands of polygons and shaders with ten-thousand lines of code [Chr06].
Hence, in such scenes shaders used to evaluate global illumination are much more expensive than visibility ray tracing.

Interactive photorealistic image synthesis was made possible at all by the GPGPU (general purpose GPU) revolution
which started in 2008. GPGPU allows to harness the immense floating-point power of the massive parallel graphics
processor for general purpose computations. Simulations in science and industry require an enormous amount of com-
putational resources which usually super computers can provide only. Replacing numerous multi-core CPUs with a few
many-core GPUs results in impressive speedups, more accuracy and less power consumption which makes computing
more economical and affordable. More importantly, the performance boost allows new applications which were impos-
sible before. For example, a polio virus infection can be interactively visualised by computing the movements of 100
million atoms which essentially turns a computer into a computational microscope. Of course, GPUs are incapable of
performing all types of computations. Therefore, a hybrid combination of CPUs and GPUs is inevitable in practice.

Apelles — A Library for GPU-based Real-Time Global Illumination In the last decade, the evolution of the pro-
grammable graphics pipeline has given birth to numerous GPU-enabled algorithms which approximate individual aspects
of global illumination in real-time utilising GPU-accelerated rasterisation techniques. This thesis focuses on Apelles, a
library for global illumination computation running entirely on a GPU in order to discover which of these GPU-friendly
algorithms can be combined to render convincing global illumination effects in real-time. As a consequence of the huge
variety of GPU-based approaches to approximate individual aspects of global illumination, this thesis concentrates on
shadow generation only. Accordingly, Apelles is capable of rendering both geometric hard and soft shadows caused by
opaque occluders.

This thesis is structured as follows. Image-based approaches are investigated in the large field of hard and soft shadow
generation to identify algorithms based upon Shadow Mapping [Wil78] which are capable of generating geometric shad-

CHAPTER 1. INTRODUCTION 5

ows for point lights, directional lights and area lights (see Chapter 2). Suitable algorithms avoid costly pre-computation
and optimisation of acceleration data structures. Furthermore, cached intermediate results are reused intelligently in mul-
tiple passes while maintaining high frame rates.

After providing the theoretical background of global illumination the properties and consequences of the identified al-
gorithms are discussed to detail how close the approximations can resemble the ground truth (see Chapter 3). Furthermore,
a GPU-enabled algorithm is suggested to optimise light view volume culling (see Section 3.5).

The implementation demonstrates how a stable, open and efficient OpenGL-based implementation of the proposed
concise architecture of Apelles is achieved (see Chapter 4). A local illumination model is extended with programmable
shaders, render-to-texture and multi-texturing. Furthermore, the implementation of the GPU-enabled algorithm for opti-
mising light view volume culling with an OpenCL-based Parallel Reduction is discussed (see Section 4.1.4).

In order to thoroughly expose the capabilities of the implementation of Apelles performance and visual results are
evaluated with a complex model of the Kélner Dom (see Chapter 5). Particularly, the differences between convolution-
based and sampling-based soft shadow generation are evaluated in more detail (see Section 5.2.2).

Several starting points are suggested for improving the limitations of Apelles concerning aliasing artefacts as well
as convolution-based and sampling-based soft shadow generation (see Section 6.2). Additionally, since Apelles supplies
shadow generation only, other capable approaches addressing global illumination effects are proposed to be integrated
into Apelles for including specular and glossy reflections, refractions and diffuse indirect illumination (see Section 6.2.5).

Chapter 2

Related Work

Real-time shadowing algorithms can be categorised into two types: geometry-based and image-based. Both have had their
practical application, however, image-based algorithms are the state of the art for real-time applications. These algorithms
became so popular because they are easy to implement and perform well while generating shadows of acceptable quality.
Furthermore, they are applicable to arbitrary geometry and scene configurations. Of course, all image-based algorithms
are prone to aliasing artefacts.

Geometry-based algorithms are based on Shadow Volumes [Cro77] which are capable of generating shadows with
precise boundaries. However, finding and forming of shadow volumes involves complex pre-processing steps (silhouette
detection and edge extrusion). As a consequence, pre-processing requires a high fillrate. Additionally, to facilitate pre-
processing, input is restricted to simple scenes with polygonal data only.

At the very heart of all image-based algorithms lies Shadow Mapping [Wil78]. The initially proposed algorithm
suffers from aliasing artefacts and incorrect self-shadowing. Aliasing artefacts arise from undersampling, oversampling
and reconstruction errors. These sampling errors manifest in visually disturbing jaggies at the boundaries of hard shadows.
Furthermore, undersampling and numerical imprecision aggravate incorrect self-shadowing.

Soft shadows are introduced by light sources which exhibit spatial extend. The shadows caused by extended light
sources contain partially and fully shadowed regions (penumbra and umbra). The different characteristics of soft shadows
considerably contribute to the visual richness of an image. In particular, soft shadows which harden on contact are
visually important to perceive spatial relations of objects in a two-dimensional image. Numerous approaches with different
consequences on robustness, performance and accuracy have been proposed for image-based generation of soft shadows.
Visually plausible soft shadows can be generated in real-time with convolution. Robust generation of physically plausible
soft shadows is achieved with reconstructing and back projecting occluders. Environmental shadows are convincingly
approximated with locally evaluating the visibility of nearby geometry to further enrich the final image.

As a consequence of the absence of a robust algorithm for generally computing shadows in real-time, decent overviews
have been written which suggest when to use which algorithm addressing particular limitations of shadow mapping
[EASW09, SWP10]. The following survey of approaches for hard and soft shadow generation is confined to the image-
based computation of geometric shadows from opaque occluders only.

2.1 Hard Shadows

This section discusses the following attempts that have been made for overcoming the limitations of shadow mapping. Im-
proved reconstruction filters lessen undersampling due to insufficient shadow map resolution. Fitting techniques maximise
the effectiveness of shadow map resolution to hide undersampling. Warping and global partitioning techniques strive to
reduce undersampling due to perspective aliasing. Adaptive partitioning analytically avoids undersampling due to pro-
jection aliasing. Temporal reprojection enables to incorporate previously taken samples for decreasing undersampling.
Oversampling is addressed by recent contributions which enable to pre-filter the shadow map and make it applicable to
standard texture minification techniques. Alias-free approaches avoid sampling errors completely through irregular sam-
pling which leads to pixel-accurate results. Depth biasing simply resolves some causes of incorrect self-shadowing due
to imprecisions with offsetting depth values slightly and adaptively. Omnidirectional shadows cast by point light sources
require shadow maps covering a spherical view which can efficiently be acquired with geometry shaders and cube shadow
maps.

CHAPTER 2. RELATED WORK 7

2.1.1 Undersampling

Undersampling occurs if the sampling rate used to sample the depth into the shadow map is lower than the sampling rate at
which the shadow map is sampled during shadow generation. Undersampling is caused by limited shadow map resolution,
projection aliasing and perspective aliasing.

Projection aliasing occurs locally if surfaces are almost parallel to the direction of light. Therefore, adaptive algorithms
analytically adjust the sampling rate locally depending on the orientation of surfaces. Perspective aliasing occurs if the
shadow map is enlarged close to the viewer due to perspective projection. The global distribution of shadow map samples
along the viewing direction is adjusted accordingly with a different parameterisation (warping). Therefore, the sampling
rate close to the viewer increases as the sampling rate for distant objects decreases. The sampling rate can be raised further
by splitting the view frustum into several sub-frusta and using a shadow map for each sub-frustum (partitioning).

2.1.1.1 Reconstruction

As a consequence of nearest neighbour reconstruction, undersampling causes reconstruction errors to appear as jagged
shadow boundaries if the shadow map is magnified due to projection aliasing and perspective aliasing. Of course, if
shadow maps were applicable to standard resampling techniques of texture mapping, undersampling could be significantly
reduced by blurring jagged shadow boundaries in real-time. Several capable ideas were suggested to make shadow maps
applicable to GPU-enabled filtering by linearising the occlusion test (Section 2.1.2).

Percentage-Closer Filtering (PCF) [RSC87] averages the results of several occlusion tests (samples) to introduce a
refined reconstruction filter. The intensity of the blur depends on the number of samples under the support of the filter.
Therefore, performance decreases dramatically with higher order filters and more blurriness, respectively. In addition,
large filter kernels deteriorate incorrect self-shadowing and cause incorrect soft shadows which appear to be unrelated to
the according shadow caster. It has to be noted, however, that current GPUs support bilinear PCF without any cost to hide
minor undersampling. In the context of visual plausible soft shadow computation, significant performance improvements
were achieved with stratified sampling (Section 2.2.1).

Shadow Silhouette Maps [SCHO3] reconstruct refined shadow boundaries from a piecewise linear approximation in-
stead from the piecewise constant approximation of naive shadow mapping. The algorithm can be interpreted to align
orthogonal lines enclosing cells of a regular grid of depth samples in order to match the silhouette of shadow boundaries
(Figure 2.1). In addition to a shadow map, the silhouette map stores the location of points on the geometric silhouette
of shadow casters as seen from the light source. Connecting these points enables to reconstruct piecewise linear edges
of shadow boundaries. Upon shading a fragment, first, querying the shadow map for four neighbouring texels identifies
if a fragment lies on a shadow boundary. This is the case if at least one query result differs from the others because
shadow boundaries separate shadowed and lit regions. Then, the area of the silhouette map texel containing the projected
fragment is intersected with the shadow edge approximated from the silhouette map. The intersection divides the area of
the silhouette map texel into four regions. In the corner of each region lies a shadow map texel because the shadow map
is offset by half a texel with respect to the silhouette map. The fragment is shaded based on the result of the depth test of
the shadow map texel which lies in the corner of the region containing the fragment.

TelelelARN o]¢
Folofo el o]
TeToloheletatfolol
Tolfletetetetols
Fofelefeerello o]
Tolelelele ooTo]]
ol o loto]

Figure 2.1: Shadow Silhouette Maps: Applying shadow silhouette maps corresponds to deforming a regular grid in order to yield the
grid lines be aligned with boundaries of geometry projected to light-space. Left: The dotted lines indicate the silhouette map. The large
circles indicate the depth values of the shadow map. The projected silhouette is superimposed to highlight its coarse representation
in the shadow map. Right: The grid lines of the shadow map are aligned to finely match the projected silhouette (image courtesy of
[SCHO3]).

CHAPTER 2. RELATED WORK 8

Of course, generating the silhouette map requires to efficiently detect silhouettes similar to shadow volumes. This
considerably limits performance and hinders using the algorithm for complex geometry in real-time applications. Fur-
thermore, artefacts are introduced if the resolution of the silhouette map is too low to represent silhouettes of surfaces
with high curvature. As a consequence of storing the location of one silhouette point per silhouette map texel only, recon-
struction fails if several silhouettes overlap. [Sen04] extends silhouette maps and proposes a simple filtering scheme for
improved texture magnification.

Deep Shadow Maps (DSM) [LVOO0] enable to apply filtering for reconstruction and resampling which allows for
anti-aliasing of undersampling artefacts. Each texel stores a piecewise linear representation of the visibility function
at all depths along a ray of light passing through the texel. The representation is constructed by filtering the weighted
transmittance functions of neighbouring texels at each depth which reduces aliasing. Subsequently, the representation is
compacted to reduce the number of data points. Each piecewise linear transmittance function is a combination of the
surface transmittance and the volume transmittance (Figure 2.2). Surface transmittance is approximated by tracing the
light ray passing through a texel. Whenever the ray hits a surface at a certain depth, the light intensity is reduced according
to the transparency of the intersected object. Therefore, semitransparent surfaces and partial coverage of opaque occluders
are included. The volume transmittance is approximated by interpolating the integrated and exponentiated extinction
function between vertices. The extinction function is approximated by uniformly sampling and linearly interpolating the
atmospheric density along the light ray. In essence, DSM enable to query the attenuation of light at all depth levels along
the ray through a given texel. Therefore, DSM are capable of generating geometric shadows for complex semitransparent
geometry such as hair or fur which require extensive self shadowing. Additionally, volumetric shadows can be generated
in participating media such as smoke or fog. In comparison to standard shadow mapping, generation of DSM is costly.
In contrast, for scenes with complex geometry DSM consume less memory than standard shadow maps while producing
shadows of superior quality. However, DSM were proposed as a software-based off-line rendering algorithm. This
complicates an implementation on the GPU for two reasons. First, the required amount of storage per texel varies because
each texel refers to a list of different length which is determined by the number of data points approximating the visibility
function. Second, constructing the visibility function from a large number of samples per texel requires to efficiently
process the input vertices in increasing depth order using an acceleration data structure which has to be amenable to a
practical implementation on the GPU. However, DSM were implemented on the GPU to extend direct volume rendering
with shadows at interactive rates [HKSBO06]. As a consequence of restrictions in GPU memory access, the algorithm is
incapable of rendering semitransparent geometry such as hair.

Figure 2.2: Deep Shadow Maps: Construction of a transmittance function. (a): First, the surface transmittance function T is obtained
by reducing the transmittance at each intersection point along a given ray according to the transparency of the hit object. (b): Second,
sampling the atmospheric density at regular intervals along the ray yields the extinction function . (c): Third, the volume transmittance
7 is obtained by integrating and exponentiating the extinction function. (d): Finally, the surface transmittance and volume transmittance
are multiplied to yield the transmittance function T (image courtesy of [LV00]).

CHAPTER 2. RELATED WORK 9

2.1.1.2 Fitting

Fitting or focusing improves undersampling issues by utilising inactive regions of the shadow map to increase the effective
resolution [BASO2a], [SD02]. If only a few objects are visible in large scenes, the view frustum of the light is large
compared to the view frustum of the camera. Therefore, the majority of available shadow map resolution is wasted on
invisible objects. Instead, the view frustum of the light should be fitted to only enclose visible objects and potential
occluders which cast shadows onto visible objects (Figure 2.3).

M = convex hull(1uU7) H=MNSNL
1 1

S Wry wv lwq/
i\ \\E“ Ll c \[c \\ ﬂ L

“n
“

Figure 2.3: Fitting or focusing of the view frustum of the light determines the volume # enclosing all objects that should be rendered
into the shadow map. Right: Exemplary setup of the view frustum of the light £ at position /, the view frustum of the camera v’ and
the bounding volume of the scene §. Middle: First, the convex hull 9 is calculated from / and 9. Left: Then, # results from the
intersection of A, S and £, respectively, (image courtesy of [SD02]).

The volume enclosing these objects is calculated by first determining the convex hull of the light position and the view
frustum of the camera. Then, the convex hull is intersected with the view frustum of the light and the volume enclosing
all objects in the scene. The resulting volume of objects which should be rendered into the shadow map, determines all
sides of the improved view frustum of the light. If a coarse bounding volume representation of all objects in the scene has
been used to accelerate intersection testing, a tighter fitting can be found by applying visibility algorithms subsequently.
Initially, fitting suggested to determine the four sides of the view frustum of the light by focusing on the visible pixels
in the unfitted view frustum of the light [BAS02a]. However, the approach is costly because it requires to read back the
frame buffer and to efficiently find the two-dimensional convex hull of the visible pixels. Of course, fitting introduces
temporal aliasing artefacts which manifest in shadow flickering, if the sampling rate of the shadow map changes abruptly
between consecutive frames. Temporal aliasing will potentially occur if the light moves, if the camera moves or rotates, if
objects move into or out of the view frustum of the camera and if objects are added or removed.

2.1.1.3 Warping

The shadow map of a point or spot light is magnified close to the view plane due to perspective projection. For some
configurations of light and eye, magnification is reducible by employing a reparameterisation which globally improves
undersampling due to perspective aliasing. In particular, the achievable improvement in shadow quality is limited to
configurations in which perspective aliasing appears. Therefore, the improvement reaches its maximum when the light
direction is orthogonal to the view direction and decreases as the light changes direction. Finally, the reparameterisation
becomes entirely ineffective if the direction of light becomes parallel to the view direction where no perspective aliasing
occurs. Accordingly, upon approaching this configuration the reparameterisation needs to successively turn into the
uniform parameterisation (standard shadow mapping).

Perspective Shadow Maps (PSM) [SD02] initially presents warping to reduce perspective aliasing. First, fitting is used
to determine the convex body of the scene that is relevant for shadow calculation. Hence, all potential shadow casters
and receivers are included upon applying the reparameterisation. Then, the shadow map is generated in post-perspective
space to reduce magnification of the shadow map due to perspective projection. Therefore, upon generating the shadow
map first the view transformation is applied to the transformation of the light source. Then, the scene is rendered from
the transformed view of the light to generate the shadow map. As a consequence of generating the shadow map in
post-perspective space, on the image plane the size of the projected shadow map texels remains constant along the view
direction (Figure 2.4).

CHAPTER 2. RELATED WORK 10

parallel light parallel light
shadow map
ot
s+
'a<>
Il Il %1
<
ET
camera B
)) | distance .)
t t t t
0 n f -1 1
world space post-perspective space

Figure 2.4: Perspective Shadow Maps. Generation of the shadow map in post-perspective space. Trees are illuminated by a directional
light directly from above. Right: As a consequence of the parallel projection in post-perspective space, the samples of the shadow map
are distributed evenly along the view direction. For comparison, the red arrows below the shadow map indicate how the shadow map
would have been sampled if the parameterisation had been uniform (image courtesy of [SD02]).

However, the initially proposed approach of PSM infers several limiting consequences [WSP04]. The reparameteri-
sation is most advantageous if the transformation yields a directional light in post-perspective space. This is only true for
two configurations. First, if the light is directional and the direction of light is parallel to the view plane. Second, for point
lights residing on the camera plane which is parallel to the view plane (miner’s head lamp). In the latter case, the reparam-
eterisation enables to move the point light on the camera plane further away from the camera. It should be noted, however,
that lights possibly change their type and direction when being transformed into post-perspective space. Therefore, a prac-
tical implementation of PSM needs to handle special cases appropriately for many configurations of both directional and
point lights. Furthermore, the effect of the reparameterisation highly depends on the viewing transformation. As a result,
the near plane of the camera should be moved as close as possible to the scene. While objects close to the near plane of
the viewer receive more samples, distant objects receive less which inevitably reintroduces undersampling. Moreover, a
singularity of the reparameterisation causes objects behind the camera to appear upside-down on the opposite side of the
infinity plane in post-perspective space of the light. Hence, these objects are missing in the shadow map. To circumvent
this problem, the camera should be moved back to include all potential shadow casters upon generating the shadow map.
However, this further reduces the achievable shadow quality considerably. Additionally, the reparameterisation aggravates
incorrect self-shadowing due to scaling objects non-uniformly. In conclusion, numerous issues preclude both a practical
implementation and an intuitive application of PSM.

Light-Space Perspective Shadow Maps (LiSPSM) [WSP04] avoid some of the limitations of PSM by separating the
perspective transformation of the reparameterisation from the viewer. Additionally, the reparameterisation preserves the
direction and type of lights, because the transformation into post-perspective space is setup to be always orthogonal to the
direction of light (Figure 2.5).

Figure 2.5: Light-Space Perspective Shadow Maps. Trees are illuminated by a directional light directly from above. P denotes the
perspective transformation of the reparameterisation which is always orthogonal to the direction of light. Right: In post-perspective
space, objects close to the near plane of V are magnified. Therefore, these objects are sampled finer than distant (image courtesy of
[WSPO04]).

CHAPTER 2. RELATED WORK 11

As a consequence, the image plane of the transformation of LiSPSM is always parallel to the direction of light which
prevents singularities in post-perspective space. Fitting is applied before determining the transformation to ensure that the
frustum of the parameterisation always encloses the view frustum of the eye and all potential occluders symmetrically.
The orientation of the transformation is determined by its three axes in light-space. The y-axis corresponds to the negative
light vector I. As a consequence of the requirement to always align the transformation orthogonal to the direction of
light, the z-axis is orthogonal to / and resides in the plane spanned by / and the view direction v. Finally, the x-axis is
orthogonal to the yz-plane. If the light source is a point light, its transformation is applied first. As a result, the point light
becomes directional in post-perspective space which allows to consistently apply the reparameterisation. In particular, the
reparameterisation provides a free parameter to control the intensity of warping. The parameter corresponds to the distance
between the centre of projection and the near plane of the LiSPSM transformation. Accordingly, a small distance results
in applying the parameterisation of PSM (strong warping). On the contrary, a large distance is equivalent to standard
shadow mapping (no warping). Therefore, warping is intuitively adjustable with respect to the spatial configuration of a
scene. For the ideal case of PSM, where the directions of light and view are orthogonal, the optimal setting for the free
parameter is n, + +/f.n, where n, and f, are the near and far distances of the view transformation. The optimal setting
keeps the error low and rising linearly but slightly while the depth of view increases. Therefore, changes in shadow quality
are hardly appearing compared to PSM. If the angle between the directions of light and view changes, the free parameter
has to be increased to compensate for extensive errors. In the limit, when the directions of light and view become parallel,
the free parameter goes to infinity. In this situation, perspective warping is ineffective and standard shadow mapping
is applied accordingly. Therefore, the free parameter should increase fast enough to diverge to infinity, otherwise the
error exceeds the error of standard shadow mapping. Indeed, the proposed falloff function of LiSPSM is incapable of
ensuring a sufficiently fast increase of the free parameter [LGQ*08]. However, this issue has profoundly been addressed
by suggesting a more involved falloff function [LGQ*08]. The optimal setting of the free parameter evenly distributes the
error between the two shadow map axes [LGQ*08]. In comparison, the error of PSM along the viewing direction becomes
worse as the distance between objects and the near plane increases. In contrast, the error along the orthogonal shadow
map axis remains constant.

Trapezoidal Shadow Maps (TSM) [MT04] is another attempt to moderate undersampling due to perspective aliasing.
The proposed reparameterisation is based on a trapezoidal approximation of the view frustum of the eye in post-perspective
space of the light. A trapezoid has the property of tightly approximating the view frustum of the eye in post-perspective
space of the light. As a consequence of applying the transformation to trapezoidal space upon generation of the shadow
map, the size of unused regions in the shadow map is minimised. Finding a suitable trapezoidal approximation is com-
pletely scene-independent because the two-dimensional convex hull of the view frustum of the eye in post-perspective
space of the light needs to be computed only. The trapezoidal transformation is determined by the eight corners of the
view frustum as well as the centres of the near and the far plane (Figure 2.6).

Figure 2.6: Trapezoidal Shadow Maps. Construction of the trapezoid (green) starts with the centre line / connecting the centres of the
near and far plane of the view frustum (purple) in post-perspective space of the light. The top line /; is orthogonal to / and touches the
two-dimensional convex hull of the view frustum E close to the intersection of / and the near plane. The base line /j, is parallel to /; and
touches E close to the intersection of / and the far plane. Finally, the side lines touch E and intersect in the centre of the perspective
transform ¢g. The distance 1 between ¢ and /; determines the intensity of the warping. The proposed heuristic enables to setup 1 by
intuitively adjusting the distance &’ which specifies the finely sampled region of the view frustum (image courtesy of [MT04]).

CHAPTER 2. RELATED WORK 12

However, if the view frustum of the eye is not completely inside the view frustum of the light, the intersection of the
two frusta needs to be considered instead. Additionally, this avoids situations in which vertices of the eye frustum are
mapped to infinity due to a singularity of perspective transformation. Similar to LiSPSM, the reparameterisation allows
to intuitively control the intensity of the trapezoidal warping. The proposed heuristic enables to dedicate the available
shadow map resolution to a specified region along the viewing direction. The free parameter influences the slope and the
position of the side edges of the trapezoid. Additionally, the reparameterisation addresses the continuity problem which
causes shadows to flicker between consecutive frames if the viewer or the light moves. The disturbing artefacts arise from
abrupt changes in size or orientation of the view frustum of the eye in shadow map space. In contrast, the approach to
construct the trapezoidal transformation ensures that the projection of the view frustum of the eye gently changes between
consecutive frames in trapezoidal space. This follows from aligning the top and base lines of the trapezoid orthogonal to
the centre line of the view frustum in post-perspective space of the light. It has to be noted, however, that the continuity
problem remains unsolved in several situations, especially if objects move into or out of the view frustum of the light. In
particular, TSM provides significant improvements for large scenes with an overhead light (sun) when the viewer is close
to the ground. In contrast, TSM is incapable of reducing perspective aliasing if objects cast stretched shadows towards the
viewer (duelling frusta). In comparison to PSM, TSM generally exhibits the same error when considering both shadow
map axes [LGQ*08]. According to fitting, TSM does not require to focus its reparameterisation because the approach to
determine the reparameterisation implicitly ensures minimal wastage of shadow map space.

Logarithmic Perspective Shadow Maps (LogPSM) [LGQ*08] suggest a combination of a perspective projection and a
logarithmic transformation to ensure a maximal reduction of undersampling due to perspective aliasing. The reparame-
terisation closely approaches the optimal distribution of error with respect to the accurate quantification of aliasing errors
in shadow mapping (Equation 3.18). Other warping algorithms achieve less error in some regions of the view frustum
but introduce higher error in other regions. The maximum error over all light directions of standard shadow mapping is
O((f/n)?*). A perspective reparameterisation (PSM, LiSPSM, TSM) reduces the error to O(f/n). Indeed, a logarithmic
parameterisation further reduces the error to O(log(f/n)). For an overhead light, standard shadow mapping uniformly
spaces samples along the view direction and the orthogonal direction of the view frustum of the eye. PSM improves the
distribution of samples along the orthogonal direction at the expense of worsen sampling along the view direction. In
contrast, LiISPSM improves sampling along the view direction at the expense of worsen sampling along the orthogonal
direction. According to the simplified quantification (Equation 3.17), the optimal parameterisation keeps the error %
constant = 1 as the depth of view increases. Ideally, when the directions of light and view are orthogonal, the optimal
parameterisation to make the perspective aliasing error Z% constant is logarithmic [WSP04]

d d “d
—Z:1@ds:£:>s:/ds:/£:lni @2.1)
zds Z 0 w 2 Zn

Therefore, LogPSM combines a logarithmic transformation along the view direction and a perspective projection
along the orthogonal direction to minimise the overall maximum error. The sampling rate decreases linearly along both
the view direction and the orthogonal direction. This leads to a balanced distribution of the size of projected shadow
map texels in both directions. As a consequence, errors between the two shadow map axes are distributed evenly. First,
the perspective projection of LiSPSM is applied which affects both directions. Then, the logarithmic transformation is
applied along the viewing direction only in post-perspective space of the perspective projection of LiSPSM. Therefore,
the LogPSM parameterisation maps from the two-dimensional post-perspective space of LiSPSM to the two-dimensional
space of the shadow map (Figure 3.12). Accordingly, the LogPSM parameterisation is defined by

s Fp.s(u,v) . -1 n—f
= Fp(u,v) = withco= ———— and¢; =) 2.2)
t colog(ciFpy (u,v)+1) log(f/n) f

In equation 2.2,

e s, ¢ are the shadow map coordinates

e u v parameterise the light image plane

F, s is the perspective transform along the direction which is orthogonal to the view direction

F,; is the perspective transform along the view direction

f,n are the far and near plane distances of the LiSPSM parameterisation F,.

CHAPTER 2. RELATED WORK 13

!

Figure 2.7: Comparison of standard and logarithmic perspective shadow maps. An alley of palm trees in a town is illuminated by a
directional light directly from above. The eye is located at the bottom and looking along the alley to the top. Left: Standard shadow
mapping uniformly spaces samples. Therefore, undersampling occurs close to the viewer (bottom). Right: As a consequence of the
warping of LogPSM, the first palm tree of the alley (bottom) occupies a considerable amount of shadow map space. Therefore, nearby
objects (bottom) receive more samples than distant. Note that due to logarithmic rasterisation planar primitives become curved (image
courtesy of [LGQ™*08]).

Analogous to LiSPSM, the proposed and more elaborated falloff function ensures to vary the free parameter of the
perspective projection fast enough with the position of light. However, if the directions of view and light approach be-
ing parallel, the logarithmic transformation requires a different falloff function which diverges to infinity faster than the
improved falloff function of LiSPSM. Otherwise, the error becomes worse than the error of uniform shadow mapping.
Additionally, shearing artefacts are reduced if the magnitude of the free parameter is as large as possible. In the ideal
case, when the view direction is orthogonal to the direction of light, the largest possible magnitude of the free parameter
corresponds to the optimal parameter of LiSPSM +/f,n.. However, it has to be noted that the logarithmic transforma-
tion depends upon logarithmic rasterisation (Figure 2.7). In order to support perspective mappings, current hardware
hyperbolically interpolates inputs only. Of course, a GPU-enabled simulation of logarithmic rasterisation is possible but
exhibits low performance. Hence, a logarithmic parameterisation is impractical, because hardwired logarithmic rasterisa-
tion would be required instead. Furthermore, logarithmic rasterisation necessitates a more general computation of polygon
offset to reduce self-shadowing artefacts. On current hardware a constant polygon offset is applied to a single primitive.
Concerning logarithmic rasterisation, polygon offset changes linearly in a definite direction over a primitive. Similar to
all warping algorithms except TSM, LogPSM requires to apply fitting to ensure that the view frustum of the light encloses
all objects relevant for shadow generation.

2.1.14 Global Partitioning

According to warping, the reparameterisation abruptly degenerates to standard shadow mapping if the directions of light
and view become parallel. Therefore, warping algorithms are subject to show visually disturbing changes in shadow qual-
ity, despite the proposition of fast falloff functions. Global partitioning algorithms exhibit greater robustness in reducing
perspective aliasing. Additionally, partitioning is capable of reducing perspective aliasing for cases in which warping is
inapplicable. If the light comes from behind and the direction of view and light are parallel, warping is ineffective. Further-
more, global partitioning adds flexibility to reparameterisation because the algorithms are self-contained and combinable.
Moreover, global partitioning is orthogonal to warping and fitting.

CHAPTER 2. RELATED WORK 14

0 je— Ti —je— Tis1 —> 1
YA I

|-

) T e T LI

Si-1 Si v ds Sis1 s
' '

: : 'E':B"'E_ :
dp B R Tt B VR
: Y

Co L(: C ldzl C Cm7y
n Vi Vis f

Figure 2.8: Parallel Split Shadow Maps partition the view frustum V into multiple sub-frusta V; at position C;. Each sub-frustum
maintains a separate shadow map 7; to raise the sampling density along the viewing direction (image courtesy of [ZSXL06]).

Parallel Split Shadow Maps (PSSM) [ZSXL06] divide the view frustum into sub-frusta (z-partitioning) and maintain
a single shadow map for each partition (Figure 2.8). As a result, objects in different partitions receive more samples
which enables to reduce undersampling due to perspective aliasing. The distribution of the parallel split planes along the
direction of view affects the distribution of aliasing error. An even distribution of error is achieved with a logarithmic

parameterisation s(z) € [0, 1] which theoretically ensures a constant perspective aliasing error p = zL{Tzs throughout the view
frustum (Equation 2.1)
1 /z In(z/n)
s@)==mn(%) = . 2.3)
=56 = n(/m)

The logarithmic split scheme discretely approximates the optimal logarithmic parameterisation. Accordingly, i split
planes are distributed at the distances Cf"g to partition the view frustum logarithmically. The number of partitions m
determines the accuracy of the approximation. The fraction of shadow map resolution allocated for each partition i is the
same. Therefore, with s(Cfog) = i/m in equation 2.3, the projected texel area is distributed evenly between the near and
far planes at the distances n and f, respectively.

logy __ ln(cfog/n) log I‘ ifm
s(C%) = TIn(f/n) & G =n . (24)
Gl ("
cios = (n> @

As a consequence of distributing the split planes to equalise the ratio of near to far distance for each partition, the
maximum error over all partitions is minimised [LGQ*08]. However, the optimal split scheme is often impractical.
Close to the near plane the logarithmic split scheme provides most of the overall resolution which often remains unused.
Therefore, a more practical split scheme combines the logarithmic split scheme and the uniform split scheme to reduce
oversampling. Other z-partitioning algorithms such as Cascaded Shadow Maps (CSM) [Eng07] only differ from PSSM
in how to distribute the split planes. CSM decrease the distance between the split planes along the direction of view. In
particular, it has to be noted that in the duelling frusta case, PSSM is superior to a single large shadow map if fitting
is applied to each partition individually. Of course, PSSM requires to render multiple shadow maps in several passes
efficiently. Additionally, artefacts appear close to the adjacencies of split planes if the sampling density changes abruptly.
[ZZB09] addresses several issues of PSSM such as effective split selection in the camera pass and reduction of flickering
artefacts when the camera is moving or rotating. Additionally, advanced strategies are suggested for shadow map storage
and filtering across splits is discussed. Sample Distribution Shadow Maps (SDSM) [LSL11] adaptively optimise the split
scheme every frame in order to considerably improve upon the static distribution of split planes of PSSM. The location and
size of a fixed number of splits is optimised with respect to the distribution of the shadow map samples that are required
to render the current view. As a consequence, SDSM achieve predictable performance and constant memory usage while
generating shadows of superior quality automatically compared to PSSM with hand-tuned splits. However, in order to
apply frustum culling in light-space for large scenes, the CPU must wait for the GPU to finish generating the partition
data. Furthermore, if the camera moves or rotates slowly temporal aliasing easily appears as a consequence of changing
the shadow map projection for each frame.

CHAPTER 2. RELATED WORK 15

Iy

3

Figure 2.9: Light-Space Cascaded Shadow Maps. Intersecting view frustum splits in light-space. Left: According to CSM, if the
direction of view and light are far from being orthogonal, two adjacent view frustum splits overlap in light-space. As a consequence
of the intersection of Wy and W,, O, is rendered redundantly into two shadow maps. In contrast, LSCSM splits the scene based on
light sub-frustums L and L, which do not intersect. Right: O, is clipped against the split plane between L; and L,. The resulting two
parts of O, are rendered once into the different shadow maps 77 and 73, respectively, to avoid redundant rendering (image adapted from
[LMCY11]).

Light-Space Cascaded Shadow Maps (LSCSM) [LMCY 11] improve the performance of PSSM in more general con-
figurations of light and view. If the directions of light and view are far from being orthogonal, repeated rendering of
objects arises from intersecting view frustum splits in light-space (Figure 2.9). LSCSM circumvents redundant rendering
by employing light-space scene splitting. The splitting in light-space ensures that the light frustum is partitioned into
non-intersecting sub-volumes. Objects which reside in two adjacent sub-volumes are clipped against the separating split
plane. The resulting sub-objects are rendered once into different shadow maps according to the unique partitions of the
light frustum. Of course, clipping requires to efficiently determine which objects intersect split planes in light-space. Ir-
regular frustum clipping creates multiple instances of objects and discards parts of clipped objects which were processed
previously. Hence, the remaining parts are rendered into the currently processed shadow map only. However, objects
which intersect several split planes remain to be rendered multiple times. In comparison to the suggested split selection of
[ZZB09], LSCSM avoids costly conditional branches completely. However, the occlusion test always needs to access the
shadow maps of all partitions. As a result, expensive conditional branching is relinquished in favour of increased texture
bandwidth. Therefore, the applicability of texture filtering is limited considerably. Furthermore, shadow boundaries are
susceptible to aliasing artefacts because the results of all depth tests are simply multiplied to determine occlusion without
expensive conditional branching. According to shadow flickering artefacts, [ZZB09] suggests to use the minimal enclos-
ing circle of a sub-frustum of the view of the camera to determine how to partition the view of the light. As a result,
the projected area of a shadow map texel remains constant if the camera rotates between two consecutive frames. How-
ever, effective usage of shadow map resolution is decreased. Additionally, the probability of intersecting view frustum
splits in light-space increases considerably which aggravates redundant rendering. Therefore, LSCSM proposes to use the
minimum bounding sphere instead.

Frustum face partitioning [Koz04] assigns a separate shadow map to each face of the view frustum of the camera. This
corresponds to wrapping a cube shadow map around the unit cube of the view in post-perspective space of the camera.
However, more involved and, therefore, costly intersection and clipping routines are required to compute the face partitions
robustly. Furthermore, frustum face partitioning is generally susceptible to shearing artefacts which need to be dealt with
appropriately [LGQ*08]. In order to significantly increase the sampling density across frustum faces, z-partitioning can
be applied to each cube map face additionally. A combination of frustum face partitioning and LogPSM further reduces
perspective aliasing considerably [LGQ*08]. The top and bottom faces of the view frustum are parameterised uniformly.
The side faces of the view frustum are parameterised logarithmically.

CHAPTER 2. RELATED WORK 16

2.1.1.5 Adaptive Partitioning

Despite that global partitioning algorithms are fast, they are incapable of reducing undersampling due to projection alias-
ing. Adaptive algorithms analyse the scene to analytically identify surfaces being almost parallel to the direction of light
and allocate more samples accordingly. Therefore, adaptive partitioning builds on a gradual refinement of the shadow
map which is aggregated in a hierarchical data structure for improved access. The algorithms mainly differ at which level
to stop the refinement. Of course, analysis and data structure management require additional resources. Furthermore,
adaptive partitioning exhibits low performance because hardware acceleration is hardly utilisable.

Adaptive Shadow Maps (ASM) [FFBGO1] are capable of robustly reducing both perspective and projection aliasing.
The adaptive sampling progressively refines shadow boundaries only. Starting from a coarse shadow map, a hierarchical
grid structure is iteratively updated to increase the sampling rate. In the limit, if the required resolution of the shadow map
matches accordingly to the eye pixels of the camera image, shadows are completely free of aliasing errors. The hierarchical
data structure is a quad-tree in which each node represents a shadow map of fixed size. Along shadow boundaries, the
shadow map is subdivided into a fixed number of cells which contain further nodes. New nodes are added only if shadow
quality is improved accordingly or a predefined memory limit is reached. The shadow quality is estimated by comparing
the size of the projected area of an eye pixel and a shadow map texel. Of course, the cost of such an estimation is
high. Therefore, MIP Mapping [Wil83] is used to approximate the projected area. However, the edge-finding algorithm
potentially misses some shadow boundaries and remains expensive. Additionally, due to its iterative nature ASM require
to efficiently manage the quad-tree without stalling the GPU. Therefore, ASM are impractical for real-time applications.
In particular, alias-free shadows will only be generated if two conditions are satisfied. First, the edge-finding algorithm
identifies all shadow map boundaries in the image of the current view of the camera. Second, the shadow map reaches the
required resolution before the quad-tree exceeds its predefined maximum depth.

Tiled Shadow Maps [Arv04] adaptively increase the sampling rate for objects close to the camera and for shadow
boundaries. First, a low resolution light view is analysed using a heuristic to subdivide the shadow map into equally-
sized tiles. Each tile is assigned a weight which is proportional to the necessary sampling rate to avoid aliasing. The
heuristic combines depth discontinuity, depth difference and surface distance to estimate a value for each texel of a tile.
The values of the texels comprising a tile are added to yield the weight of a tile. Depth discontinuity identifies texels
being part of shadow boundaries by applying an edge-detection filter to a low resolution light view. Depth difference
weights discontinuity texels by taking the distance between occluder and receiver into account. Surface distance measures
the distance between the eye and a surface point to increase the sampling rate close to the camera accordingly. Then,
the shadow map is subdivided with respect to the tile weights using a recursive binary cut algorithm which ensures no
wastage of available shadow map resolution. The subdivision scheme compares the weights of two adjacent tiles and
splits the shadow map along the shadow map axes alternately to yield rectangular tiles of different size. Finally, each tile
is rendered in a separate pass to generate the tile-based shadow map. However, the subdivision scheme causes aliasing if
the height of a tile is considerably larger than the width. This can be circumvented if the binary cut algorithm balances
the weights before comparing them. Furthermore, performance limitations mainly arise from the light view analysis and
excessive multi-pass rendering of individual tiles. As a consequence of a read back to estimate the weights, the resolution
for the light view analysis should be low in order to avoid further performance penalties. Moreover, a low resolution light
analysis hinders edge detection to accurately identify depth discontinuities of complex geometry.

Resolution Matched Shadow Maps (RMSM) [LSOO07] improve the efficiency of ASM by removing the costly edge-
finding algorithm. Instead, the quad-tree hierarchically aggregates exactly those shadow map texels which are needed to
perform the occlusion test for every eye pixel. Hence, the sampling rate of the shadow map is instantaneously adapted in
accord with the resolution of the current camera view. The optimisation results from exploiting coherency between eye and
shadow map image space. Neighbouring eye pixels of continuously visible surfaces map to contiguous regions in shadow
map space. As a consequence, the acceleration data structure can be constructed instantaneously instead of iteratively.
The adaptive shadow map maintains a mipmap hierarchy of shadow pages. Before generating the shadow map, page
requests for several eye pixels can be coalesced due to coherency. First, the number of page requests is reduced with a
GPU-enabled algorithm for connected-components analysis. The algorithm identifies continuously visible surfaces and
eliminates redundant page requests due to coherency accordingly. Then, the resulting page requests are further refined
by sieving out invalid page requests which were possibly missed in the previous step. The refined sets are sorted and
compacted to create a small set of unique page requests. Finally, the unique page requests are transferred to the CPU which
starts the shadow map generation pass. Of course, the optimisation is only applicable to scenes which exhibit coherency.
For example, if the direction of light and view are far from being orthogonal or depths are concentrated locally. RMSM
achieve higher performance than ASM while requiring significantly more memory. However, performance limitations
arise from two major costs. First, sorting page requests for efficient compaction is costly for scenes with simple geometry.
Originally, the sorting algorithm was implemented in OpenGL. Of course, an implementation in OpenCL will be more
efficient today. Second, upon generating the shadow map the positive effect of the optimisation on performance is limited
by coherency. Therefore, the number of unique shadow page requests depends on the complexity of shadow receivers.

CHAPTER 2. RELATED WORK 17

Queried Virtual Shadow Maps (QVSM) [GWO07b] simply partition a large shadow map into smaller equally-sized
quadratic tiles to increase the effective resolution virtually. Each tile represents a self-contained shadow map which
is queried during the occlusion test. Of course, brute-force generation of shadow maps for a huge amount of tiles infers
excessive multi-pass rendering. Therefore, QVSM employ deferred shadowing. First, the scene is rendered once to capture
lighting and eye-space depth values in offscreen buffers for repeated use. Then, for each tile the unprojection of fragments
from screen-space to world-space enables to perform the occlusion test with the previously stored depth values efficiently.
Finally, the according colour value is looked up from the lighting offscreen buffer and attenuated with respect to the result
of the occlusion test. In this simplified form QVSM is easy to implement. However, adaptive methods refine the shadow
map locally where aliasing occurs only. Therefore, QVSM stops repeated splitting of tiles if further refinement fails to
improve shadow quality. Between subsequent refinements, improvements in shadow quality are measured by detecting
how many texels have changed in a “shadow result texture” which contains the result of the occlusion test for every screen
pixel. In order to avoid costly read-backs of the “shadow result texture” from the GPU QVSM diverts occlusion query
from its intended use. The intent of occlusion query is to determine the number of fragments which passed the depth test
in order to accelerate approximate visibility tests in image space. Accordingly, the depth test criterion is modified to let
pass exactly those number of fragments which correspond to the number of texels which have changed in the “shadow
result texture” between two subsequent refinements. As a consequence, QVSM completely avoids costly read-backs
from the GPU to determine when to stop the refinement process. Furthermore, the number of fragments returned by
the occlusion query can be used as a threshold. This allows to tune the refinement according to a quality/performance
tradeoff being required for a particular application. In addition, it has to be noted that QVSM does not require a GPU-
enabled hierarchical data structure because splitting is organised entirely by the CPU. After partitioning the shadow map
with respect to the refinement measures, the CPU initiates shadow map generation for all tiles using deferred shadowing.
Several optimisations are suggested for splitting tiles non-uniformly and improving refinement measures. However, results
showed that applying these optimisations is too expensive and, therefore, the achievable benefit is easily undone.

Fitted Virtual Shadow Maps (FVSM) [GWO07a] perform a separate analysis pass to determine analytically in advance
which regions of the shadow map will be queried and how much resolution will be needed at each query location. In
contrast, QVSM efficiently measure differences in shadow quality between two refinements and stop the refinement once
a predefined threshold is reached. Compared to ASM the results of the analysis allow to derive the optimal structure of the
quad-tree on the CPU to shadow the scene with sub-pixel accuracy avoiding both perspective and projection aliasing. With
deferred shadowing the position of a query in the shadow map is calculated by, first, unprojecting a fragment from screen-
space to eye-space. Then, the position of the fragment in eye-space is transformed to light-space to locate its position in
the shadow map. The required resolution at the query location is calculated by first projecting the approximated area in
eye-space of a screen pixel into shadow map space. Then, the resulting area is enclosed with an axis-aligned bounding box
with respect to the two shadow map axes. The half length of each side of the box serves as the measure for the required
resolution along the corresponding shadow map axis. Query position and required resolution are packed into the “Shadow
Map Tile Mapping Map” (SMTMM) which inherently has the same resolution as the frame buffer (Figure 2.10).

§O~ ~
P
Eye-Space Depth Buffer (rg,bz,_) \\'\g\\"sg/

view’ float 2. -

SMTMM (x,, Y., X, dY,,) ‘

byte

I
| projection of 3D
I pixel approximation
' into lighspace

|

: ABB around
L~ $, L ‘
i S Y

lightspace

|

|

|

|

I

|

|

|

|

|

|

obd |
pixel in |
|

P

XY s XY

Figure 2.10: Fitted Virtual Shadow Maps. The Shadow Map Tile Mapping Map stores the query location and the required resolution
needed to perform the occlusion test with sub-pixel accuracy. The query location (xsps,ysy) is determined by deriving the position of
the fragment in eye-space from the Eye-Space Depth Buffer by unprojecting and transforming the eye-space position into light-space
subsequently. The sides of the axis-aligned bounding box dxgys, dxsys provide a measure for the required resolution. The bounding box
is calculated by projecting the approximated area a screen pixel covers in eye-space into light-space (image courtesy of [GW07a]).

CHAPTER 2. RELATED WORK 18

Of course, to read back the SMTMM to the CPU is costly. Therefore, only a coarse analysis is performed to compen-
sate for significant losses of performance. Once the SMTMM has been transferred to the CPU, a grid structure representing
the virtual shadow suggested by QVSM is derived from the SMTMM by utilising the random memory access ability of
the CPU. Then, a kd-tree is created to hierarchically organise the shadow map tiles to support efficient shadow generation
while achieving the required quality. Upon traversing the kd-tree, tiles are symmetrically split if their resolution along a
shadow map axis is below the required resolution. If a tile already matches the required resolution, the according shadow
map is rendered with deferred shadowing immediately and the result of the occlusion test is stored in the shadow result
texture. Once the kd-tree has been traversed, the shadow result texture is applied to the colour buffer of the lighting pass
to combine the shadow term and lighting similar to QVSM. In contrast to RMSM which refine the shadow map on the
GPU, FVSM determine the required partition of the shadow map from the SMTMM on the CPU. Similar to QVSM,
FVSM provide a parameter to smoothly trade the overall shadow quality for performance by sacrificing shadow map tiles.
However, results show that the complexity of FVSM hinders its usage with several light sources.

2.1.1.6 Temporal Reprojection

Aliasing due to perspective aliasing and projection aliasing can be reduced by increasing the sampling rate using samples
which are reused from previous frames with Temporal reprojection [STWO07]. The approach jitters the viewport of the
shadow map per frame and accumulates the occlusion test results of previous frames in a history buffer. Upon rendering
the view of the camera, the current shadow test result is combined with previous results which are queried from the history
buffer using reprojection. The combination is weighted according to more recent frames with exponential falloff in order
to let the result quickly converge to the current frame. As a consequence, temporal aliasing which manifests in shadow
flickering can be eliminated by increasing the number of accumulated frames sufficiently. Additionally, to improve the
accuracy of shadow edges, the history buffer is updated based on a confidence criterion which measures the correctness
of the shadow test according to the distance between the projected fragment and the closest shadow map sample:

confy, =1—max (|x — centery|, |y — center),|) x2 (2.6)

where conf,, is the confidence at the projected fragment position (x,y) and (centery,centery) is the centre of the
nearest shadow map texel. Accordingly, confidence is high if a fragment is projected close to the centre of a shadow map
texel. The probability to yield a more accurate result from the occlusion test increases. As a consequence of adjusting the
weights upon updating the history buffer with respect to the confidence, the iteration will converge to pixel perfect shadows
over time, if the rasterisation of the shadow map of the current frame differs from each consecutive frame. Therefore, the
viewport of the shadow map is jittered per frame in order to increase the probability of yielding occlusion test results
with high confidence. Accordingly, the weights are chosen to increase the influence of results with high confidence over
results with low confidence. In particular, it has to be noted that if reprojection is combined with warping the iteration
will converge faster to the exact shadow solution. However, the applicability of approaches based on reprojection is
considerably limited to mildly dynamic scenes. Several frames will never converge to a satisfying result if objects or light
sources move continuously and quickly. Additionally, shadow boundaries will be incorrectly blurred by temporal noise
which can only be reduced by balancing how quickly the history buffer adapts with respect to the speed of a moving
camera.

2.1.2 Oversampling

Oversampling occurs if the sampling rate used to sample the depth into the shadow map is higher than the sampling rate
at which the shadow map is sampled during shadow generation. Utilising filtering to reduce oversampling artefacts is
impossible due to the discrete nature of the shadow map. Instead, Percentage-Closer Filtering (PCF) [RSC87] applies
filtering after performing the depth tests. With sufficiently large kernels, PCF is capable of reducing oversampling artefacts
but exhibits poor performance due to sampling the shadow map excessively. Deep Shadow Maps (DSM) [LVO00] store
a distribution of depths encoded in piece-wise linear functions per texel which allow pre-filtering. As a consequence
of requiring variable storage per-texel, a GPU-enabled implementation of DSM is non-trivial. In addition, DSM are
inapplicable to texture filtering and antialiasing hardware units on the GPU. However, several linear representations for
depth distributions have been suggested to allow GPU-enabled pre-filtering of shadow maps. In addition, these techniques
further increase temporal coherence which results in less shadow flickering due to temporal aliasing.

CHAPTER 2. RELATED WORK 19

Variance Shadow Maps (VSM) [DL06] efficiently estimate the result of PCF over a region with a single depth sample
only. The approach approximates a distribution of depths with the first and second moments: the mean depth and the mean
squared depth. The moments are stored in the shadow map and can be interpolated to make the shadow map applicable to
filtering. From the moments M; and M>, the mean u and variance ¢ of the distribution of depths over a filter region are
defined by

M, :E(x):/oo xp(x)dx MzzE(xz):/oo x? p(x)dx (2.7)
u=Ex)=M; o=E)—Ex)?>=M,—M; (2.8)

where E(x) denotes the expected value of a continuous random variable x with probability density function p(x). The
variance G expresses the width of a distribution. The inequality of CHEBYCHEV supplies a bound for the proportion of a
distribution that is probably far away from the mean of the distribution. Therefore, VSM applies the one-sided inequality
of CHEBYCHEYV to estimate an upper bound on the probability that the surface at depth d is occluded. Accordingly, if x is
arandom variable drawn from a distribution of depths with mean u and variance o, then for d > u

(52

P(x>d) < ppar(d) = 1 (d—p)

2.9)

In equation 2.9, P(x > d) represents the fraction of pixels over a filter region that probably fail the depth test for a
given depth d. In the case of a single planar occluder and a single planar receiver, the inequality of CHEBYCHEYV is an
equality. Therefore, the approximation yields the exact result of PCF. Upon generating the variance shadow map, first, the
depth and the square of the depth are rendered into a two-channel depth texture. Then, the shadow map is optionally pre-
filtered. In the context of oversampling this corresponds to band-limiting the signal before resampling. Finally, mipmaps
are generated. As a result, the variance shadow map stores the two moments M| and M, in a linearised depth texture.
Upon rendering the view of the camera the depth test is performed with u = M;. If the current fragment is occluded
(d < p), first, © is computed from the two moments with 6 = M, — M % Then, pyqy is calculated from the inequality of
CHEBYCHEV (Equation 2.9). Finally, p,.. is used to scale the light intensity. In particular, it has to be noted that, if several
occluders are intersected consecutively along a ray of light, light bleeding artefacts are introduced easily (Figure 2.11). As
the depth complexity increases the variance over the filter region increases accordingly. This is a direct consequence of
the inequality of CHEBYCHEV which provides only an upper bound on the result of PCF using a single depth sample per
pixel. Therefore, the exact result could yield darker shadows. Increasing the number of samples reduces light bleeding
but intrinsically reverts VSM to PCF in the limit.

Depth

L]

Aa

Correct Penumbra

| — |

.|

| O — |
\Light Bleeding

Figure 2.11: Variance shadow mapping inherently suffers from light bleeding artefacts, if variance is high over the filter region. The
light shines from above onto three planar objects. The second object is partly occluded by the first object. The third object is fully
occluded by the second object. Over the filter region, the penumbra on the second object incorrectly shows through onto the third
object. In this setup, if the ratio Aa/Ab increases, light bleeding will be aggravated accordingly (image courtesy of [Lau07]).

CHAPTER 2. RELATED WORK 20

A simple solution to lessen light bleeding supplies a tuneable parameter to define a threshold below which all in-
tensities are directly mapped to black [Lau07]. Of course, the softness of shadows decreases accordingly and shadows
considerably loose detail for high settings. Moreover, in order to avoid numeric stability issues which introduce disturbing
artefacts, the depth texture should have a 32 bit floating-point format which is applicable to both GPU-enabled mipmap-
ping and anisotropic filtering. In comparison to standard shadow maps, VSM are inexpensive because mean and variance
are obtained efficiently from a linearised depth texture which infers little memory overhead. Furthermore, efficiency is
raised further if a separable filter is used in the optional pre-filtering step. In conclusion, VSM are considerably superior
in performance to PCF for large filter kernels.

Layered Variance Shadow Maps (LVSM) [LMO08] address the main disadvantage of VSM, light bleeding, by partition-
ing the depth range into multiple layers to efficiently apply a warping function to depth values. As a result, the accuracy of
the approximation to estimate the result of PCF is improved considerably. If depths strongly differ over the filter region,
variance is high. Therefore, the estimation yields incorrect results causing light bleeding. The approach is based on the
observation, that the result of PCF is independent of the magnitude of the current depth value. It suffices to be able to
determine if the current depth is smaller or larger. Therefore, a warping function can be applied to concentrate depth
values in a small interval for increasing the accuracy of the approximation. Accordingly, the scene is split into multiple
depth layers L; covering the interval [d;,d;; 1] and the warping function ¢; is defined with

0 if x < d;
q),-(x) = (X—d,')/(di+1 —dl‘) ifdi<x< di+1 (2.10)
1 ifdi 1 <x

As a result, the upper bound estimated with the inequality of CHEBYCHEV (Equation 2.9) becomes tighter, which
results in darker shadows. Of course, the splitting scheme influences the reduction of light bleeding significantly. Several
splits should be introduced near to surfaces suffering from light bleeding. In general, a considerable number of layers
is needed to eliminate light bleeding completely. However, LVSM are very efficient for two reasons. First, the depth
test needs to be performed only once for a given depth according to the interval covered by a single layer. Second, in
comparison to VSM, the depth texture format can be of low precision because LVSM inherently provides high numerical
precision. Therefore, high memory consumption caused by many layers can be reduced significantly. For best numeric
precision over the entire depth range splits should be distributed uniformly.

Convolution Shadow Maps (CSM) [AMB*07] reformulate the shadow test as a weighted summation of basis terms
in order to make the shadow map applicable to pre-filtering and hardware-accelerated anti-aliasing. Each texel stores a
linear representation of a binary visibility function which is approximated with a basis function expansion using FOURIER
series (Figure 2.12). The shadow test can be reformulated to linearise the shadow map by transforming z-values such that
the terms are factored into independent functions:

f(d,z) =) ai(d)Bi(z) (2.11)

™s=

0.87

0.67

0.4f

CSM Shadow Test

0.2f

or v

0.2 ‘
-0.5 0 0.5
(d-2)

Figure 2.12: Convolution Shadow Maps approximate the shadow test using FOURIER expansion. The approximation becomes more
accurate by increasing the number of FOURIER coefficients which reduces light bleeding. However, a large number of FOURIER
coefficients introduce high frequencies which manifest in ringing artefacts. Therefore, a conflict arises upon trading a reduction in light
bleeding for an increase of ringing artefacts (image courtesy of [AMB™*07]).

CHAPTER 2. RELATED WORK 21

In equation 2.11, B; are the basis functions with respect to z. Each basis is weighted with coefficients a; depending on
the distance d to the light source. According to the FOURIER expansion order M, the basis functions are used to convert
the depth map into a CSM comprising M basis images. As a result, the shadow function can be filtered by convolving the
individual basis images. Additionally, the basis images can be convolved before performing the shadow test which allows
for pre-filtering using separable filter kernels. After pre-filtering mipmapping can be applied to prevent aliasing due to
oversampling. Upon rendering the view of the camera for each screen pixel a weighted sum of the filtered basis functions
is evaluated to obtain a value for scaling the intensity of light. However, FOURIER representation introduces artefacts
for two main reasons. First, every FOURIER representation suffers from ringing (GIBB’s phenomenon), particularly
when the expansion is truncated to a small number of terms (Figure 2.12). Ringing is suppressed by attenuating each
term with an exponential. Second, FOURIER expansion smoothes the step function of reconstruction which results in
incorrectly shadowing fully lit regions at contact shadows. As a consequence of the shift-invariance property of the
FOURIER representation, a constant offset can be applied before reconstruction in order to avoid incorrect shadowing.
In comparison to VSM, CSM exhibit less light bleeding artefacts and are free from artefacts introduced by high depth
complexity. However, a high number of render passes is required to generate the basis textures because only a high
FOURIER expansion order infers a reliable shadow test. As a consequence, the basis textures require a considerable
amount of memory despite that the terms of the basis functions can be packed into four-channel colour textures with 8 bit
precision. Moreover, a high number of basis textures increases the cost of pre-filtering.

Exponential Shadow Maps (ESM) [AMS*08] approximate the shadow test by using an exponential function. This
allows to filter the shadow map for preventing aliasing due to oversampling with GPU-enabled filtering. In contrast to
CSM, ESM use a single-term approximation which is based on the assumption that the domain of the shadow test is
always positive. A texel in a shadow map always stores the depth z of the surface which is hit first along a ray of light
passing through the texel. Therefore, in theory z < d for any given distance d from the light source. The shadow function
f(d,z) can be linearised by factoring the terms into two functions, where the first depends on d and the second on z only.
Therefore, if z < d holds:

fld,z) m e 079 = gmed e (2.12)

In equation 2.12, ¢ is a positive constant which influences the accuracy of the approximation (Figure 2.13). If ¢ is
too small, light bleeding artefacts are introduced. The upper bound of ¢ is determined by the numerical precision of the
number format of the depth texture (e.g. ¢ = 80 is optimal for 32 bit floating-point numbers). However, the validity of
the assumption z < d is violated in two particular cases. First, limited numerical and spatial resolution cause imprecision
which infers f(d,z) > 1 for unshadowed regions. This is circumvented by simply clamping the exponential to 1. Second,
across slanted surfaces or at shadow boundaries assuming z < d is uncertain as a consequence of pre-filtering. In particular,
to reduce oversampling the filter kernel can be very large. This increases the probability that the z-values under the support
of the filter dissatisfy z < d. Therefore, once a screen pixel has been determined to violate z < d, the ESM results of the
four nearest neighbours are bilinearly interpolated. Hence, the approach essentially falls back to 2x2 PCF.

1.27

. shadow test -10.0(d-z)
> 1.0 invalid e

0.874 -80.0(d-z)
5 b= €
Y 0.6/E
T =
v 0418
=
0272
0*
0.2t

0 0.2 0.4 0.6 0.8 1

(d-z)
Figure 2.13: Exponential Shadow Maps approximate the shadow test using an exponential based on the assumption that the domain
of the shadow test is always positive [(d —z) > 0]. As a consequence of increasing the magnitude of ¢, the falloff becomes steeper
which makes the approximation more accurate. Note that the approximation yields invalid shadow test results if the assumption z < d
is violated because the new expansion increases exponentially above 1.0 (image courtesy of [AMS*08]).

CHAPTER 2. RELATED WORK 22

Two approaches are suggested to determine if the assumption z < d holds for a given screen pixel. First, Z-Max Clas-
sification uses an additional texture to estimate conservatively if the assumption holds. This texture stores the maximum
z-values in a given neighbourhood. Second, Threshold Classification simply evaluates ESM and checks if the result of the
shadow test is close to 1.0 according to a maximum distance defined by a specific threshold. While Z-Max Classification
requires an additional texture which needs pre-processing, Threshold Classification is faster but prone to misclassification
errors which introduce artefacts. In comparison to CSM, ESM require considerably less memory while achieving better
results particularly at contact shadows. For example, ESM with a ¢ = 80 is superior to CSM with a FOURIER expansion
order M = 16 which requires 16 textures storing the basis images. Accordingly, the cost of pre-filtering is decreased with
a low memory consumption. Furthermore, light bleeding is significantly reduced with ESM while achieving better per-
formance compared to VSM and CSM. The exponential warping function of ESM and the estimation of VSM using the
inequality of CHEBYCHEV can be combined to yield Exponential Variance Shadow Maps (EVSM) [LMO8]. As a result,
light bleeding is reduced considerably while decreasing artefacts for non-planar or multiple receivers if ¢ is large.

2.1.3 Alias-Free Sampling

Shadow map aliasing occurs due to limited resolution which results in a sampling mismatch between a regular grid of
screen pixels and another regular grid of shadow map texels. According to sampling theory, a shadow map with infinite
resolution would be required to eliminate aliasing. However, a shadow map with infinite resolution is not required. Alias-
free shadows can be generated for a camera image of fixed resolution if each screen pixel injectively maps to a shadow
map texel. Irregular sampling ensures to provide a unique sample location for each shadow map query which enables to
generate pixel-exact shadows (Figure 2.14). First, the pixel centres are projected into light-space to locate the necessary
sample points in the shadow map. Then, these sample points are used to generate the shadow map. As a result, shadows
remain exact upon zooming in because shadow detail is decoupled from resolution. As a consequence of distributing
samples irregularly in the shadow map, low coherency requires efficient rasterisation. Accordingly, severe performance
penalties are avoided with spatial acceleration data structures. In addition to the following algorithms, adaptive partitioning
(Page 16) and temporal reprojection (Page 18) are capable of generating exact shadows in the limit.

Alias-free shadow maps [AL04], first, compute a depth buffer from the view of the camera to yield the visible samples.
Second, the samples are transformed into light-space to obtain both the location of the sample points in the shadow map
and the light-space depth values. Finally, upon rendering the view of the light source, if a sample point is covered by
a geometric primitive, the depth value of the primitive is calculated at the sample location and compared to the light-
space depth value of the sampling point. If the occlusion test is positive, the shadow term is used to mark the according
screen-space pixel as shadowed which eliminates further shadow map queries. However, the irregular distribution of the
sample points in light-space infers a considerable inefficiency. The determination of which sampling points are covered
by a geometric primitive requires to test all sampling points for every primitive. In contrast, with standard rasterisation
it suffices to test the edges of the primitive against a regular grid of sampling points which is a constant-time operation.
Therefore, the sampling points are organised into an axis-aligned 2D BSP tree. The initial set of sampling points is
alternatingly divided in half after each split with respect to the two axes of the image plane of the light source. The
subdivision stops once the initial number of sampling points is reduced to a predetermined number.

Figure 2.14: Alias-free Shadow Maps. Alias-free sampling obtains the query location in the shadow map for each screen-space pixel.
The shadow map only needs to be sampled for these query locations in order to generate pixel-exact shadows. Right: Superimposed on
the view of the camera are the pixel centres. Left: The pixel centres correspond to the sampling points when the scene is rasterised from
the viewpoint of the light source. Accordingly, regions hidden in the view of the camera do not receive any sampling points. Note that
the samples concentrate irregularly towards the eye. The sampling rate is varied with respect to visually important regions to eliminate
aliasing (image courtesy of [AL04]).

CHAPTER 2. RELATED WORK 23

During rasterisation the BSP tree is traversed from top to bottom according to the partial coverage of a geometric
primitive until the sampling points of all visited leaf nodes have been tested. Additionally, hierarchical rasterisation is
combined with occlusion culling. This prevents already occluded sampling points from being tested redundantly. As a
consequence, irregular rasterisation becomes logarithmic in time complexity. However, the implementation is software-
based and, therefore, impractical for real-time rendering.

Irregular Z-Buffering proposes a set of hardwired extensions to the standard z-buffer hardware in order to accelerate
irregular rasterisation significantly [JMBO04, JLBMOS]. In essence, the irregular z-buffer is a standard z-buffer which stores
a list of reprojected view samples per element. According to shadow generation, the shadow test is performed by, first,
finding the elements which are covered by input primitives projected from the view of the light source. As a consequence
of aligning the elements in a regular grid, point-in-area testing reduces the cost of coverage determination considerably.
Then, the occlusion test is performed for each rasterised fragment of an input primitive. The depth of the view samples
in the list of the covered elements is compared to the depth of the fragment. If a view sample is occluded it is marked
to be in shadow. Finally, the scene is rendered from the view of the camera and fragments are shadowed accordingly
if the corresponding sample in the list of view samples is marked to be occluded. However, an implementation of the
irregular z-buffer is still missing on contemporary hardware platforms because the suggested extensions would infer a
costly hardware design.

Without requiring any hardware changes, irregular sampling for shadow mapping was mapped to graphics hardware
by using depth peeling [Arv07] and by using the NVIDIA CUDA framework [SEAO8]. In the latter implementation,
the construction of the list of reprojected view samples benefits from the scattering capabilities of CUDA. Furthermore,
storage of the list exhibits constant memory consumption. As a consequence of representing the shadow state of a view
sample with a bit-mask, the shadow state can be updated for each processed triangle with GPU-enabled bitwise blending.
Shader Model 4 floating-point capabilities enable to update the shadow state of 1024 view samples per list. Hence,
additional render passes are required if a list contains more samples. Furthermore, coverage determination is ameliorated
with a GPU-enabled conservative rasterisation. This approach includes the view samples of light-space pixels which are
only partly covered by the projection of a geometric primitive. Otherwise, no fragments would be generated for partly
covered pixels whose centre is outside the projected area. In particular, a performance comparison reveals that GPU-
enabled irregular shadow mapping is only three times slower than standard shadow mapping (8192x8192 shadow map,
512x512 viewport).

2.1.4 Incorrect Self-Shadowing

Incorrect self-shadowing is caused by two reasons. First, depth values have limited numerical precision. Second, upon
projecting shadow map texels into the scene adjacent surface points at different depths on curved or steep planar surfaces,
with respect to the direction of light, are compared to the same depth value. The first issue is addressed with constant-
biasing [Wil78, RSC87]. The latter issue is addressed with slope-based biasing [KilO1].

According to PCF, a large filter kernel requires a large magnitude of depth bias. As a consequence, objectionable
gaps are introduced at contact shadows. Several capable approaches were suggested to mitigate these artefacts. Instead
of taking PCF samples in a plane, samples can be taken in a cone shaped region where the tip of the cone resides on the
centre of the PCF filter kernel [VdB04, Bur06]. Another option is to apply a gradient-based bias along a tangent plane
estimated from the PCF samples using GPU-enabled partial derivative operators [Sch05, Isi06, Sch07].

A simple and efficient biasing approach displaces the position of a surface along the surface normal [Holl1]. As
a consequence, surfaces are moved out of regions where incorrect self-shadowing occurs. According to steep planar
surfaces, with respect to the direction of light, the magnitude of bias necessary to eliminate incorrect self-shadowing is
low compared to slope-based biasing. Accordingly, the size of shadow gaps is reduced significantly. However, displaced
surfaces are possibly disconnected. Therefore, discontinuity artefacts are potentially introduced along shadow boundaries.
Concerning soft shadows, the artefacts are effectively hidden in penumbrae and, therefore, are hardly objectionable. Of
course, surface displacement may cause shadow boundaries to be slightly moved.

Biasing issues of VSM are resolved elegantly by parameterically approximating a locally planar distribution of depth
to estimate the second moment more accurately [Lau07]. Furthermore, clamping the variance to a sufficiently small value
and using a 32 bit floating-point number format for the variance shadow map increases numerical stability which improves
biasing issues. In general, approaches which allow to filter the shadow map such as VSM, CSM, ESM, LVSM and EVSM
inherently exhibit less incorrect self-shadowing because the outcome of PCF is estimated with a single depth sample. In
particular, LVSM and EVSM weaken the requirement for a high precision number format while improving numerical
stability issues.

Fitting reduces the magnitude of bias necessary to eliminate incorrect self-shadowing. If fitting yields a sufficiently
smaller distance between the near and far planes of the view frustum of the light depth precision increases significantly.
However, fitting generally aggravates temporal aliasing.

CHAPTER 2. RELATED WORK 24

According to spot lights, point lights and warping techniques, another source of incorrect self-shadowing originates
from perspective division. Depth samples are distributed non-uniformly along the direction of light. For point and spot
lights this is avoidable by utilising a linear depth metric [Hei99, BAS02a]. According to TSM, occlusion testing simply
compares world-space depth values because the perspective transformation is not applied to the z-coordinate [MTO04].
According to PSM, slope-based depth biasing is applied, first, in world-space, then, the resulting world-space bias is
transformed into post-perspective space and, finally, scaled with respect to the texel size in world-space [Koz04]. In
contrast, slope-based biasing is applicable to LiSPSM directly. In general, it is preferable to use a linear depth metric
because the additional cost is negligible with contemporary hardware.

Midpoint Shadow Maps [Wo092] store depth values of intermediate surfaces. The depth values are obtained by
averaging the two depths of the nearest and second-nearest depth layers along a ray of light with respect to the position of
the light source. The method requires two passes because the depths of the second-nearest surfaces are computed using
depth peeling [Eve02]. Therefore, the depths of the nearest surfaces need to be acquired in advance. As a consequence of
discrete midpoint depth values, incorrect self-shadowing problems persist if the depths of the nearest and second-nearest
depth layers differ insufficiently (low depth disparity).

Second-Depth Shadow Maps [WM94] simply store the depth of the second-nearest surfaces. These surfaces remain
after peeling off all front-facing surfaces with respect to the direction of light. As a consequence, the robustness of the
occlusion test increases because the depth of surfaces is biased adaptively depending on the thickness of occluders. Of
course, incorrect self-shadowing potentially appears on back-facing surfaces analogously which causes light bleeding.
This is avoided by shading back-facing surfaces to be in shadow always. However, imprecisions remain where occluders
are sufficiently thin or thick. Accordingly, imprecision caused by very thick occluders is avoided by limiting the magnitude
of bias with a predefined threshold [WE03]. However, depth biasing needs to be reintroduced at occluder silhouettes where
imprecisions remain because depth values differ insufficiently (low depth disparity).

A robust real-time solution which automatically resolves incorrect self-shadowing is still unavailable. All depth bias-
ing approaches fail if the disparity of depth between samples is low. This is particularly true if surfaces exhibit concavities
or high curvature in general. Furthermore, the magnitude of bias necessary to eliminate incorrect self-shadowing needs
to be increased if the shadow map is magnified due to projection aliasing and perspective aliasing. Moreover, incorrect
self-shadowing appears with adaptive partitioning and irregular sampling.

The need for depth biasing can be alleviated if each polygon is identified with a unique id [HN85]. Hence, visibility
testing compares exact indices instead of depth values discretised defectively. However, the idea is impractical to be
mapped to the GPU. If several triangles are projected to a single pixel maintaining several indices per pixel is non-trivial.

2.1.5 Omnidirectional Shadows

Shadow mapping is inherently limited to generating shadows cast by spot and directional light sources. These light
sources require a single depth image only to cover their view. In contrast, a point light source emanates light equally in all
directions. As a consequence, which a point light source has a spherical view. Accordingly, six depth images are acquired
by rasterising six view frustums into a cube shadow map to cover the spherical view [Ger04]. Each frustum has a field
of view of 90 degrees. Since hardware capable of Shader Model 4, a geometry shader allows to generate a cube shadow
map in a single pass. First, the geometry is duplicated for six layers. Then, each layer is rasterised to the depth texture
of the according cube map face using multiple render targets. However, generating a cube shadow map infers rasterising
geometry repeatedly and redundantly because generally decomposing geometry into six disjoint subsets with respect to
the cube map faces is non-trivial. Furthermore, artefacts possibly become objectionable along lines of junction formed by
joining individual depth images to cover the spherical view.

Several non-trivial solutions have been proposed to reduce the number of depth images necessary to cover a spherical
view adequately and efficiently. Dual-Paraboloid Shadow Mapping is capable of generating a shadow map for a point
light source in two passes only [BAS02b]. The spherical view is decomposed into two hemispheres being parameterisable
in 2D. Therefore, the shadow map lookup can be performed regularly. However, the technique is particularly impractical
for two reasons. First, the sampling rate possibly varies by a factor of four over a hemisphere only. Second, implementing
paraboloid mapping in a standard graphics pipeline is non-trivial. As a consequence of lines becoming curved, artefacts
are introduced during rasterisation if the scene is not tessellated finely enough. Despite the proposal of a GPU-enabled
approach, efficient rasterisation of non-linear projections remains expensive [GHFPOS].

Another environmental mapping technique suggests to use a tetrahedron [LialO]. Accordingly, only four passes are
required to cover an omnidirectional view for shadow mapping. Upon generating the tetrahedron shadow map an equilat-
erally triangular region of the common rectangular view is captured four times using matrix transformations accordingly.
However, a tetrahedron map wastes a considerable amount of memory. Until being supported natively by upcoming hard-
ware a tetrahedron map must be simulated with a square texture. The depth images of four equilateral triangles are stored
in the square texture while a considerable amount of texels remains uncovered.

CHAPTER 2. RELATED WORK 25

2.1.6 Summary

Shadow mapping is a fast technique to generate hard shadows including self-shadowing in real-time because the algo-
rithm can be implemented efficiently on contemporary hardware. However, the algorithm is image-based and, therefore,
suffers from aliasing artefacts. The sampling locations upon rasterising the view of the camera and the light hardly
coincide in practice. Therefore, undersampling (Section 2.1.1), oversampling (Section 2.1.2) and reconstruction errors
(Section 2.1.1.1) cause aliasing artefacts which manifest in jagged shadow boundaries. Furthermore, if the sampling
rate of the shadow map changes abruptly between consecutive frames, temporal aliasing introduces flickering artefacts
at shadow boundaries due to insufficient reconstruction and undersampling. Additionally, incorrect self-shadowing (Sec-
tion 2.1.4) arises from numerical imprecision and undersampling which necessitates depth biasing. An efficient algo-
rithm, which provides enough robustness to address all of the aforementioned issues in every situation, is still missing.
However, suggestions have been made which algorithms to apply for mitigating aliasing artefacts in particular situations
[EASW09, SWP10].

Undersampling, oversampling and reconstruction errors can be addressed effectively and efficiently with algorithms
which allow to filter the shadow map [DL06, AMB*07, AMS*08] (Section 2.1.2). These algorithms inherently support
separable filtering and utilise hardware filtering units on contemporary GPUs to provide an improved reconstruction filter.
Therefore, shadow maps can be of lower resolution because aliasing artefacts are hidden with filtering. In particular, it
has to be noted that replacing PCF with VSM-based algorithms sacrifices precision in favour of significantly improved
performance. This is a direct consequence of the fact that VSM estimates the outcome of PCF with a single depth sample.
Light bleeding typically appearing with VSM is significantly reduced by applying exponential warping with EVSM. This
approach is simple to implement, exhibits a low memory footprint and is less susceptible to incorrect self-shadowing.
Remaining artefacts can be further reduced with z-partitioning (Section 2.1.1.4). However, VSM-based approaches are
preferable for scenes which are free from multiple occluders and, therefore, exhibit low depth complexity (e.g. shadows
from terrain).

In general, fitting considerably enhances shadow quality for outdoor scenes (Section 2.1.1.2). Additionally, fitting
decreases the distance between the near and the far plane of the view frustum of the light. This is beneficial to warping
(Section 2.1.1.3), global partitioning and mitigating incorrect self-shadowing. However, it has to be noted that fitting
causes temporal aliasing.

LiSPSM [WSP04] have proven to be the most practical warping technique for all types of light sources. However, the
improved falloff function suggested by [LGQ*08] must be used in order to ensure that the quality of LiSPSM remains at
least as good as the quality of uniform shadow mapping. Both performance and memory consumption of LiSPSM are
comparable to uniform shadow mapping. A tuneable parameter allows to adjust the strength of the warping with respect
to the configuration of the scene. LiSPSM are mainly applicable in outdoor scenes where the light comes directly from
above. Despite being applicable to directional lights, LiSPSM should be replaced with z-partitioning to yield better results
if more than one shadow map per light source can be allocated [LGQ*08]. Of course, LogPSM are superior to LiSPSM.
However, as long as logarithmic rasterisation is missing from GPUs, LogPSM are highly impractical to use.

In the limit z-partitioning approximates LogPSM which closely approaches the optimal distribution of error along the
direction of light. However, due to multi-pass rendering of several shadow maps, memory consumption is increased and
performance is decreased while shadow quality is increased. The partition scheme can be chosen flexibly with respect to
the requirements of the application. For example, more resolution can be allocated for separate regions with high surface
detail along the direction of light. According to covering the spherical view of a point light with a cube shadow map
to generate omnidirectional shadows [Ger04] (Section 2.1.5), z-partitioning is impractical. As a consequence of several
partitions for each face of the cube shadow map, memory consumption and memory bandwidth increase considerably. In
this particular case face partitioning [Koz04] is preferable. Although z-partitioning can be combined with face partitioning,
shearing artefacts require being handled appropriately [LGQ*08]. If the ratio far/near is large, z-partitioning with a few
partitions is superior to face partitioning. Z-partitioning can be combined with warping. A uniquely chosen warping
function is applied to each layer depending on the required accuracy for a given depth. However, combining z-partitioning
and warping mainly results in increased temporal aliasing while quality improvements remain negligible.

Warping and z-partitioning improve undersampling due to perspective aliasing only. Projection aliasing can only be
addressed with adaptive partitioning techniques (Section 2.1.1.5), alias-free sampling (Section 2.1.3) or temporal repro-
jection (Section 2.1.1.6). Despite providing shadows of high quality, adaptive partitioning infers both costly multi-pass
rendering and read-backs. The read-backs are required to decide when to stop the iterative refinement of the shadow map.
Alias-free sampling is capable of generating pixel-exact shadows with irregular sampling. However, the approaches are
unsuitable for real-time applications. In the future alias-free sampling may become feasible with GPU-enabled irregular
z-buffering or advanced capabilities of the parallel computing architecture exposed by upcoming GPUs. Temporal repro-
jection is completely unsuitable for generating shadows for dynamic scenes in real-time. Results of reasonable quality
can only be achieved if objects and light sources are static.

Incorrect self-shadowing can be significantly reduced by storing the depth of back-facing geometry in the shadow map.

CHAPTER 2. RELATED WORK 26

In essence, this corresponds to adaptively biasing depth values proportionally to the thickness of occluders. However, this
is only applicable if geometry is closed (i.e. occluders exhibit thickness). Furthermore, additional depth biasing may be
required where depth disparity is low (e.g. for exceptionally thin objects and close to object silhouettes). According to
open geometry, constant- and slope-based biasing suffices for most configurations in practice. Although PCF is more
precise in reducing reconstruction errors than VSM-based approaches, incorrect self-shadowing is seriously aggravated.
This issue can only be addressed with more involved biasing methods. If depth complexity is low, LVSM or EVSM are
an alternative. These approaches necessitate almost no depth biasing inherently.

According to point lights, standard shadow mapping needs to be extended to account for casting shadows into all
directions of light. On contemporary hardware this is efficiently achievable with a cube shadow map. If geometry shaders
are supported by the hardware a cube map can be created in a single pass. However, for geometry-intense scenes more
involved culling techniques need to be employed in order to circumvent rasterising geometry redundantly.

2.2 Soft Shadows

Soft shadows are caused by light sources which exhibit spatial extend. The amount of light a surface point receives is
proportional to the fraction of the area of the light source that is visible from that surface point. Partially occluded surface
points introduce a smooth transition (penumbra) from fully lit points to fully occluded points (umbra). For accurate
soft shadow generation visibility must be evaluated for an infinite number of samples on the light source which is a
computationally intense process. Visibility calculation for real-time soft shadow generation builds on shadow mapping to
represent occluder information. This is efficient and scales well but is prone to both aliasing and incorrect self-shadowing
artefacts.

As a consequence of the numerous approaches to generate soft shadows, decent overviews have been written [HLHSO03,
EASWO09]. Visually plausible algorithms are based on filtering the boundaries of hard shadows such that the generated
shadows exhibit contact hardening. Of course, these algorithms are only applicable for small light sizes and are con-
siderably limited. Physically plausible algorithms build on a more accurate representation of occluding geometry and
evaluate light occlusion more precisely with back-projection. However, soft shadow mapping algorithms which utilise a
single shadow map suffer from artefacts due to overlapping penumbrae, light bleeding and performance bottlenecks. Ap-
proaches utilising multiple shadow maps can only compute soft shadows for dynamic scenes at interactive rates because
updating the extended shadow map is costly. However, real-time performance is reachable while preserving high shadow
quality if occlusion is estimated more effectively with back-projection. These approaches only utilise a reduced number of
shadow maps. Another fast variant sacrifices accuracy in favour of performance to yield visually plausible shadows with
occlusion textures. Exploiting temporal coherence allows to sample the area of a light source efficiently over time. In the
limit this results in accurate real-time soft shadows. In addition, soft shadows are caused by environmental lighting. At
each surface point light impinges uniformly from all directions due to diffuse inter reflections. The light is partly blocked
by nearby geometry. Ambient occlusion techniques effectively approximate environmental shadows in real-time based on
the observation that a surface point appears darker the less it is exposed to the rest of the scene. Of course, geometry-based
approaches generate soft shadows of superior quality but are inherently too costly for real-time applications.

An overview of image-based approaches identifies several techniques which are no longer of practical interest due
to severe limitations, low shadow quality and clearly objectionable artefacts [EASWO09]. Outer penumbra regions can
be introduced by enlarging the boundaries of hard shadows which are generated from the centre of an area light source
[PSS98]. Outer and inner penumbrae can be introduced by radially searching the neighbourhood of a depth sample to
find an appropriate occluder [BS02]. The position of a pixel within the soft shadow of the found occluder is estimated
with respect to the distance between occluder and receiver. A variant of the previous approach has been mapped to the
GPU [KDO03]. However, inner penumbrae can be introduced only. A different approach introduces both inner and outer
penumbra [AHTO4]. First, an edge detection filter is applied to find the boundaries of hard shadows. Then, the boundaries
are successively enlarged by a single pixel on both the interior and the exterior, respectively, with a modified flood-fill
algorithm. However, the approach remains expensive regardless of the optimisation of jump flooding [RT06].

2.2.1 Percentage-Closer Soft Shadows

Assuming a setup of an extended light source, a blocker and a receiver where all objects are planar and parallel, accurate
soft shadows can be obtained with convolution [SS98]. General configurations require to vary the size of the filter in order
to generate visually plausible soft shadows which harden on contact. Percentage-Closer Soft Shadows (PCSS) [Fer05]
create visually plausible soft shadows exhibiting contact hardening by varying the size of a PCF filter kernel at each
surface point of a receiver. Varying the filter size is based on a penumbra width estimation which involves the distances
between light source, occluder and receiver (Figure 2.15).

CHAPTER 2. RELATED WORK 27

Wiight

N

| Planar/light source

w
= |/

|/ Planar occluder

|
|
/ | Cast penumbra
| on planar receiver

[—m—

Wpenumbra

Figure 2.15: Percentage-Closer Soft Shadows, penumbra width estimation. Assuming a parallel and planar light source, occluder
and receiver, the width of the penumbra w,¢ymprq ON a receiver at distance z» from the light source is estimated based on the blocker
distance z;, from the light source and the size of the light source wy;gp,, (image adapted from [EASW09]).

The blocker search step processes the neighbourhood of the corresponding depth sample of a receiver point to obtain
the average blocker depth. Only depths being closer to the light source than the depth of the receiver point are averaged.
Then, PCF is applied with a kernel size proportional to the estimated width of the penumbra. The penumbra width is
estimated based on the size of the light source wy;g,, the average blocker depth z;, and the depth of the receiver z, by

Zr—2p
Wpenumbra = Twlight (2.13)

Despite the inapplicable assumption of a single parallel and planar occluder in general scene configurations, the results
obtained with PCSS have proven to be sufficiently visually pleasing. Therefore, PCSS became widely used in real-time
applications such as games. However, PCSS are inherently susceptible to yield incorrect results easily. This is a direct
consequence of approximating an occluder representation, which generally consists of multiple occluders at different
depths, by simply averaging depths being sampled from the centre of an extended light source. As a result, shadows
generated with PCSS are considerably underestimated.

Furthermore, PCSS are only applicable to small lights for three reasons. First, achieving a smooth transition within
large penumbrae infers a costly PCF stage and considerably limits performance. Second, a direct consequence of using
PCF is that large filter widths dramatically aggravate incorrect self-shadowing which requires large biasing values. There-
fore, objectionable gaps are introduced at contact shadows. Third, determining occlusion on the basis of a single average
depth value across a large filter support results in incorrectly classifying umbrae fragments to be lit which causes light
bleeding.

The performance of PCSS can simply be improved by adaptively limiting the number of shadow map accesses in both
blocker search and PCF [Ura05]. Another option is to employ image processing techniques to identify visually important
regions where PCF shall be applied [Isi06]. Confining costly PCF to penumbrae regions easily outweighs the additional
overhead to identify those regions. However, reducing the number of samples introduces banding artefacts. If the number
of samples in the PCF kernel does not increase accordingly while increasing the width of the filter window objectionable
artefacts are introduced in penumbrae. These artefacts can efficiently be dealt with by utilising stratified sampling [VdB04,
Ura05, Isi06]. The last approach randomly rotates a POISSON disk kernel in screen-space to hide banding artefacts in
favour of less objectionable noise. As a consequence, stratified sampling improves quality and performance of PCSS. A
considerably lower number of samples in the PCF window is necessary to achieve visually smooth penumbrae.

Without introducing banding or noise artefacts, PCSS has recently been accelerated considerably by utilising non-
stationary and dynamic weight matrices to obtain unique per-sample filter weights [Grul0]. The dynamic weights are
derived from evaluating a cubic BEZIER function with four matrices. Blocker search and calculation of the filter weights
are efficiently accelerated with the advanced capabilities of Shader Model 5. However, the approach is limited to rather
small light sources to yield penumbrae of sufficient quality.

Screen-Space Percentage-Closer Soft Shadows (SSPCSS) [MKHS10] adopt edge-aware filtering to move the compu-
tational space for visibility computation of PCSS from light-space to screen-space which improves performance consider-
ably. As a consequence of the fact that edge information is unavailable in screen-space, blocker search and convolution of
the shadow map require to utilise edge-aware filtering. Accordingly, SSPCSS utilise cross-bilateral filters [TM98]. These

CHAPTER 2. RELATED WORK 28

filters allow to smooth an image with respect to edges in a different image while preventing to convolve across edges.
With a cross-bilateral POISSON filter SSPCSS is superior in performance and quality to PCSS with PCF utilising a ran-
domly rotating POISSON disk for stratified sampling. With a separable cross-bilateral GAUSSIAN filter the performance
becomes almost independent from the filter radius but the results are less accurate. In general, performance becomes
almost independent of the shadow map resolution and only depends linearly on the number of screen pixels.

Utilising approaches which allow to pre-filter the shadow map (Page 19), the performance and robustness of the
filtering stage of PCSS is considerably improved if costly PCF is replaced with VSM [Lau07]. Of course, PCSS requires
filtering to support adaptively varying the size of the filter window for each screen pixel. Despite being easy to use
and fast, mipmapping inherently needs to interpolate between several discrete levels with decreasing spatial resolution
which are created with fixed-size filter kernels. Therefore, artefacts are easily objectionable in penumbrae. Summed-
Area Variance Shadow Maps (SAVSM) [Lau07] utilise summed-area tables (SAT) for efficient and accurate adaptive
box filtering which causes filtering of PCSS to become a constant-time operation. Despite being superior in quality to
mipmapping, SAT are more expensive to create and consume significantly more memory. However, the cost of creation can
considerably be improved [HSC*05]. Furthermore, SAT require high precision texture formats to avoid related artefacts.
In particular, concerning SAVSM the creation of SAT infers extensively accumulating numbers which exhibit minor errors
due to quantification. Therefore, the numerical stability of the CHEBYCHEV inequality (Equation 2.9) is considerably
aggravated which needs to be compensated with higher precision [EASWO09]. N-Buffers [Déc05] achieve a reasonable
balance between cost of creation and quality if implemented efficiently on contemporary hardware utilising a hierarchical
approach [ED06]. As a consequence of avoiding the resolution reduction of mipmapping, results remain inaccurate
but exhibit higher quality. However, the performance of VSM-based approaches inherently suffers from a costly blocker
search stage. Averaging of depths is inefficiently achieved with point sampling which results in numerous expensive depth
texture accesses [Lau07]. Furthermore, a VSM-based filtering stage (SAVSM, LVSM, EVSM) easily leads to incorrect
classification of occlusion with large penumbra widths and large lights [YDF*10].

Convolution Soft Shadow Maps (CSSM) [ADM*08] considerably accelerate the blocker search stage of PCSS. Aver-
aging of depths can be expressed as a convolution by

ZqERS Oavg(q) - (]?(erzq) ‘Zq) - 1 ifz<z,
- 7 h f(zr,2) = . 2.14
* Yyer, Oavg(q) - f(2r,24) with /(zr.2) 0 ifz>z ()

In equation 2.14,

e 7, is the average blocker depth

e g denotes a sample within the region R of the shadow map that is being processed to average the depths of potential
occluders

gy 1s the averaging kernel

f(zr,z4) defines the “complementary” depth test which ensures selectively averaging the depths z, within R, which
are closer to the light source only.

As a consequence, the blocker search becomes a constant-time operation. The convolution of a low and fixed number
of basis images yields the average blocker depth within a region of the shadow map. The size of the region can be varied
by pre-filtering the basis images at a constant cost (e.g. summed-area tables). The denominator is evaluated by reusing
the basis images created for performing CSM-based filtering [AMB*07]. However, additional basis images are necessary
to evaluate the numerator. This basis images need to be created and stored additionally which decreases performance and
increases memory consumption. Another option to accelerate the averaging of depths is to exploit temporal coherence
[SSMWO09] (Section 2.2.4).

Variance Soft Shadow Maps (VSSM) [YDF*10] address two major limitations of VSM-based PCSS. First, instead of
utilising point sampling, the average blocker depth is efficiently estimated with a VSM-enabled formula. Second, incorrect
classification of occlusion due to large light sizes is improved with an efficient filter kernel subdivision scheme. For a given
depth d, the depth values of all samples d; within the blocker search region of the shadow map can be categorised into
values d; > d and d; < d with the averages z,,0cc and z;, respectively. Then, the average blocker depth z; can be estimated
with

g —P(>d)

= mzunocc (2.15)

b

CHAPTER 2. RELATED WORK 29

In equation 2.15,

® Z. is the average of all depth samples within the blocker search region of the shadow map and corresponds to the
first moment of the depth distribution stored in the VSM

e P(x > d) is the proportion of depth samples being unoccluded within the blocker search region and is obtained by
evaluating the inequality of CHEBYCHEV (Equation 2.9)

® Zunocc 1S the average depth of samples being unoccluded within the blocker search region. As a consequence of
yielding high quality soft shadows for general cases, Znocc = d is simply assumed.

The inequality of CHEBYCHEYV is only applicable if z,,, < d. Therefore, VSM assumes that a fragment is lit if z4,, > d.
However, the assumption is easily violated if the filter window is large. The probability of enclosing depth values smaller
than z,,, under the support of the filter increases considerably. Therefore, VSSM subdivides large kernels into a set of
sub-kernels. According to sub-kernels for which z,,, < d holds, VSM-based average blocker depth estimation and PCF
estimation can be performed straightforwardly. The precondition of the inequality of CHEBYCHEV holds. According to
sub-kernels for which z,4,, > d holds, blocker depth samples are summed. The results of sub-kernels are accumulated
to finally obtain the average blocker depth of the kernel. Then, soft shadow computation is performed by utilising the
kernel subdivision scheme for sub-kernels for which z,,, > d holds. PCF with a 2 x 2 kernel is applied to efficiently
evaluate soft shadows. The subdivision scheme is considerably accelerated based upon the observation that fragments
in a sub-kernel are entirely lit if z4,, > d holds and 62 is smaller than a certain threshold. This allows to fine-tune
the tradeoff between quality and performance depending on the application requirements. In contrast, adaptive kernel
subdivision is preferable if the number of sub-kernels is large. The adaptive scheme constructs a quad-tree of varying-
sized sub-kernels in the two-dimensional domain of the filter. The sub-kernels are efficiently traversed with a GPU-based
approach which allows a linear forward traversal. Furthermore, efficient classification of lit and umbra regions in the
scene is achieved by comparing the depth of a fragment to the depth range within a search region. The depth range of
a search region is efficiently determined from a hierarchical shadow map. As a result, VSSM is effectively confined to
penumbrae regions in the scene only. Contact noise arising from imprecisions due to pre-filtering the shadow map with
summed-area tables (SAT) is mitigated with filtering. PCF with a 3 x 3 kernel is applied if the difference between z4,¢
and d is smaller than a certain threshold. In comparison to previous PCSS approaches, VSSM considerably improves
overestimation of penumbrae while achieving real-time performance. However, maintaining a SAT for pre-filtering the
shadow map significantly limits performance at high shadow map resolutions.

2.2.2 Soft Shadow Mapping

Physically plausible soft shadows can be generated with soft shadow mapping or back-projection. A more accurate oc-
cluder representation is reconstructed from a shadow map which is sampled from the centre of the extended light source.
The visible fraction of the extended light source with respect to a single receiver point is estimated by back-projecting the
approximated occluding geometry onto the plane of the extended light source. Soft Shadow Maps [AHL*06] unproject
shadow map texels into world-space to represent occluding geometry with micro-occluders. The contribution of these
micro-occluders to the overall occlusion is scattered into a soft shadow map which is projected onto the scene. As a
consequence of performing visibility computation in light-space, occluders and receivers need to be dealt with separately
(no self-shadowing). Furthermore only small shadow map resolutions are usable practically. Therefore, subsequent ap-
proaches operate directly in screen-space and iterate over all relevant micro-occluders to gather the blocking contribution
for each receiving point using a single shadow map only [GBP06, BS06, ASKO06]. If micropatches are used to represent
micro-occluders, a micropatch is generated by unprojecting the texels of the shadow map into world-space (Figure 2.16).
The shadow map is sampled from the centre of the extended light source. If a micropatch is determined to partially oc-
clude the light source, the micropatch is back-projected from the receiving point onto the light plane to obtain the occluded
proportion of the area of the light source. The total occlusion of the extended light source results from accumulating the in-
dividual occlusions of all back-projected micropatches. Finally, the ratio of the occluded light area and the total light area
corresponds to the attenuation of light at a receiver point. However, individual occlusions of back-projected micropatches
overlap in general. Therefore, incorrect occluder fusion easily occurs which results in overestimating light occlusion.

Bitmask Soft Shadows [SS07] avoid overlapping back-projections with a robust visibility determination utilising strat-
ified sampling. The area of the light source is approximated with randomly distributed sample points representing binary
visibilities. The visibilities are efficiently encoded in a bit field. While back-projecting micropatches the bitfields are
uniquely updated with bitwise operations. As a consequence, overlapping of areas of back-projected micropatches is
circumvented and, therefore, occluder fusion is correctly handled. Furthermore, discretely sampling the area of the light
source enables to determine which parts of the area of the extended light source are occluded. However, artefacts are
introduced if the discretisation of the area of the light source is too coarse.

CHAPTER 2. RELATED WORK 30

3 ‘,"Ba\ckprojection

Shadow map of micropatch

~ Micropatch

Figure 2.16: Soft Shadow Mapping. Left: Basically, soft shadow mapping, first, generates micro-occluders by unprojecting shadow
map texels into world-space. Then, the resulting micropatches are projected onto the area of the light source. Finally, the resulting
areas are accumulated to yield an estimate of the total occluded area of the extended light source. Right: The covered proportion of
the area of the extended light source is determined by projecting micropatches onto the area of the extended light source individually.
Of course, overlapping of the projected areas inevitably occurs. As a consequence, light occlusion is overestimated if the individual
occluded areas are simply accumulated (image adapted from [EASWO09]).

Occluding geometry is approximated with three different types of micro-occluders each having its particular advan-
tages and disadvantages (Figure 2.17). Micropatches [AHL*06] are a simple piecewise-constant approximation which
facilitates back-projection and coverage determination. However, occluders are easily overestimated and gaps potentially
occur between neighbouring micropatches which introduces light bleeding. Of course, gaps can be roughly closed by
accordingly extending micropatches with respect to neighbouring micropatches [GBP06, Bav08]. Instead of gap fill-
ing, which easily leads to overestimation, a multi-layer shadow map created with depth peeling [Eve02] can be used
for improved but costly micropatch construction [BCS08, NJH10]. Furthermore, micropatches easily cause incorrect
self-shadowing which can be costly alleviated with midpoint shadow maps [BCS08]. Microquads [SSO7] are a piecewise-
(bi)linear approximation which more accurately represents occluding geometry with a regular mesh of micro-occluders.
Therefore, incorrect self-shadowing and light leaking due to gaps is inherently avoided. Furthermore, the occurrence of
overlapping back-projections is considerably reduced. However, coverage determination becomes generally complicated
and occluders are possibly underestimated. Therefore, the probability to ignore finely structured occluder geometry is
increased considerably. Occluder underestimation can be improved with microtris [SS08a]. Visual quality is improved
hardly but performance is increased significantly. Occluder contours [GBPO7] are silhouettes enclosing aggregates of
adjacent occluding samples within a region in the shadow map. The construction process of occluder contours ensures
smoothness upon extracting contour edges connecting two adjacent sample borders which reduces aliasing. As a conse-
quence of back-projecting contour edges only, efficiency is improved because the number of micropatches being enclosed
by the contour is typically higher than the number of edges. Furthermore, the construction process of occluder contours
inherently allows to accelerate visibility determination by exploiting coherence [YFGL09]. However, potential occluders
are easily ignored because the edge extraction process is performed in two-dimensional space. Therefore, approaches
using occluder contours are susceptible to popping artefacts if the light source smoothly moves relative to the occluder.

Multiscale representations of the shadow map accelerate soft shadow mapping considerably. The set of micro-
occluders is refined to those which truly contribute to the result. An initial estimate for the region of the shadow map
to search within for occluding geometry is obtained by intersecting the near plane of the shadow map with the pyramid
formed by the receiving point and the extended light source. Starting from this conservative estimate, the region can be
iteratively refined if the minimum and maximum depth values within the search region are known [GBPO06]. Furthermore,
with the known depth range entirely lit or umbrae fragments can be identified in advance. Therefore, processing of fur-
ther irrelevant micro-occluders can be skipped [GBP06]. A conservative bound for the depth range within a shadow map
region can be efficiently determined with a Hierarchical Shadow Map (HSM) [GBP06]. A significantly improved classifi-
cation of fragments can be achieved with a Multi-Scale Shadow Map (MSSM) [SS07]. MSSM reduce cost of soft shadow
mapping considerably. However, the high creational and storage costs of MSSM limit the practically usable shadow map
resolution. In contrast, a HSM exhibits considerably lower costs due to decreasing spatial resolution across levels of
hierarchy. Therefore, to unify the strengths of HSM and MSSM, both approaches are combined into a Y Shadow Map
[SS08b]. Relevant occluding geometry is identified without iterating over samples within a search region. Micropatches
are directly extracted from a HSM by hierarchically traversing a quad-tree derived from the HSM [DUO7]. Occluder

CHAPTER 2. RELATED WORK 31

m\l\/\issed
toccluder

\ /ﬁ Micropatch

| },“’/extension

4 J

Microquad

Figure 2.17: Soft Shadow Mapping. Three types of micro-occluders are commonly derived from shadow map samples. Left: Mi-
cropatches are individual rectangles parallel to the plane of the extended light source. The patches are constructed by unprojecting the
extends of shadow map texels into world-space. Therefore, gaps easily occur which causes light bleeding. Middle: Microquads span a
regular quad mesh. Each vertex of the mesh results from unprojecting the centre of a shadow map texel. As a consequence, gaps are
implicitly avoided. Right: Occluder contours represent smoothly extracted silhouettes which enclose aggregates of adjacent occluding
samples within the shadow map region. Despite avoiding gaps implicitly, occluders are easily missed while extracting occluder contours
(image courtesy of [EASWO09]).

contours are directly extracted from a MSSM in a similar way [YFGLO09].

Performance of soft shadow mapping is further improved towards real-time by employing sampling strategies. These
strategies enable to reduce the sampling rate while maintaining sufficiently accurate sampling of occluding geometry.
Simply limiting the number of processed micro-occluders for a single receiver point causes inaccuracies. This is com-
pensated by accordingly sub-sampling the relevant search area utilising a Gaussian Poisson distribution [BS06] or regular
sub-sampling [BCSO08]. Another efficient option to approximate occluding geometry coarsely is to construct a reduced
number of micro-occluders from coarser levels of a HSM or a MSSM, respectively. In general, the consequences of
choosing micropatches, microquads or occluder contours to represent micro-occluders remain largely valid. However,
incorrect self-shadowing is easily aggravated while determining an appropriate depth bias for coarser levels is hardly
achievable. Moreover, transition artefacts within penumbrae are introduced if levels differ for adjacent screen pixels.
This is solved by combining the results of both levels utilising alpha blending [GBP07, SSO8b]. The quality of coarser
approximations significantly benefits from using a more flexible type of micro-occluder. However, Microrects [SSO8b]
are more costly to generate and represent. Finally, performance is considerably increased by applying a sparse sampling
scheme in screen-space. This essentially confines costly accurate sampling to penumbrae regions identified previously in
screen-space [GBP07]. However, regular sparse sampling patterns infer related artefacts which become objectionable in
dynamic scenes particularly.

2.2.3 Multi-Layered Shadow Maps

More accurate soft shadows can be generated if several samples are taken along a ray which is cast from a surface point
to an area light source. These samples are aggregated in an extended shadow map which is considered to be located at the
centre of the light source. While rendering the view of the camera the extended shadow map is queried to determine the
number of sampling points on the light source which are visible from a given surface point.

Layered Attenuation Maps [ARHMO0] employ Layered Depth Images (LDI) [SGHS98] for creating the extended
shadow map. The LDI is generated by rendering a shadow map for each sample point on the light source. The resulting
depth samples are warped to the view of the LDI which resides on the centre of the light source. A new depth layer is
added to the LDI for every warped depth sample which is missing from the LDI. If a warped depth sample maps to an
existing depth sample in the LDI a counter is incremented for that depth sample. As a result, each pixel in the LDI stores
a list of depth values associated with the number of visible sample points on the light source. From the LDI an attenuation
map is derived by dividing the recorded number of light samples visible for a depth sample in the LDI by the total number
of sample points on the light source. While rendering the attenuation map is queried to retrieve a measure for the fraction
of light that is visible from a surface point. Accordingly, if no entry is found in the attenuation map the surface point
is considered to be completely in shadow. Despite being capable of generating rather accurate soft shadows with a high
number of samples, the generation of the LDI and the attenuation map particularly remains expensive. Therefore, the
performance of this approach is rather limited.

CHAPTER 2. RELATED WORK 32

near plane far plane

SM

g blockﬁt\‘ -

1
1 1
1 1
| |
| |
1 1

J
1 |
1

NEEREERN S
1A T AN

Figure 2.18: Penumbra Deep Shadow Maps. For each texel of the penumbra deep shadow map a three-dimensional ray is projected
into a shadow map taken from a sample point on the light source. The ray gathers a fraction of the overall attenuation information from
a single shadow map according to the changes in visibility (events) occurring along the ray (image courtesy of [SAPP0S5]).

Penumbra Deep Shadow Maps [SAPPOS] base the extended shadow map on Deep Shadow Maps (DSM) [LV00]
(Page 8). Each texel of a DSM stores the attenuation of light as a function of depth along a ray of light passing through
the texel. The attenuation of light results from integrating visibility along the ray. Construction of the visibility function
for each texel of a DSM requires to take a larger number of samples. First, a shadow map is generated for each sample
on the light source. Then, for each shadow map a fraction of the overall attenuation information is gathered into the
extended shadow map to capture the view of the light source from the centre of the area (Figure 2.18). For each texel
of the extended shadow map a three-dimensional ray is projected into every shadow map to gather the attenuation in
light-space. The attenuation contributed by one shadow map is computed by identifying changes in visibility along the
projected ray for all covered shadow map texels. Accordingly, the resulting visibility function is integrated to yield the
attenuation and compressed for optimised storage. While rendering the view of the camera the extended shadow map
is queried to retrieve the according attenuation factor for a given surface point. Of course, if the extended shadow map
needs to be updated repeatedly in dynamic scenes, performance considerably degrades below interactivity. Furthermore,
memory consumption is high because a considerable amount of samples and, therefore, a large number of shadow maps
are required to yield nearly accurate soft shadows.

Occlusion Textures [ED06, EDOS8] are based on the generation of approximate soft shadows with convolution [SS98].
First, the view frustum of the light is partitioned uniformly into several sub-frusta. Then, for each sub-frustum a binary
occlusion texture is created by projecting geometry inside the sub-frustum onto the far plane of the sub-frustum. As
a result, the occlusion texture represents the coverage of the light source inside a sub-frustum. Finally, shadows are
generated by adaptively filtering the occlusion textures. In particular, if light source £ and occluder O are planar and
parallel, the visibility integral in the soft shadow equation (Equation 3.12) becomes a convolution which simply needs to
be scaled proportionally to the size of the light source. According to equation 2.16, given a binary function 8 which
describes the occlusion of the light source for a certain planar occluder in the plane I1p, the visible fraction of the light V
at a surface point p can be calculated by integrating 1-8p over the rectangular region K that results from intersecting the
plane Iy with the pyramid formed by the area of the light and the surface point p (Figure 2.19).

1

V=—
|IC| xeX

(1 =80 (x))dx (2.16)

Accordingly, the visible fraction of the light can be calculated by filtering the occlusion texture with a box filter whose
size is obtained by scaling the size of the light source with respect to the ratio of the distances d(p,I1»)/d(p, £). Multiple
planar occluders are dealt with by partitioning the view frustum of the light and generating an occlusion texture for each
sub-frustum. Each occlusion texture is filtered accordingly with an appropriately sized box filter. The resulting visibility
fractions are accumulated multiplicatively to yield the total visibility of the light source. Of course, shadowing within a
sub-frustum is disregarded. Furthermore, the quality and the performance of the approach mainly depends on the chosen
filtering algorithm for arbitrary filter sizes. Mipmapping is fast due to hardware support but introduces objectionable
artefacts. Summed-area tables sacrifice performance in favour of more accurate results. N-buffers [Déc05] provide the

best performance quality tradeoff because an efficient implementation is achievable on contemporary hardware [ED06].
In particular, it has to be noted that the performance of the algorithm is independent from the size of the light and the size

CHAPTER 2. RELATED WORK 33

Light £

Figure 2.19: Occlusion Textures. Left: Occlusion textures represent occlusion of the light source with a binary function describing a
planar occluder in the plane I1p. This representation is filtered with a box filter over the region K to yield an approximate measure for
the visibility of the light source for a surface point p. Right: To account for multiple planar occluders the view frustum of the light is
partitioned into several sub-frusta. The geometry inside each sub-frustum is projected onto the far plane of the sub-frustum to generate
the according occlusion texture (image adapted from [EASW09]).

of the penumbra. However, occlusion textures scale poorly for large scenes and only generate visually plausible shadows.
As a consequence of the discretisation of the view frustum of the light, occlusion textures are incapable of dealing with
occluder fusion correctly. Furthermore, the approximation can cause light bleeding; particularly for fine geometry.

Layered Occlusion Maps (LOM) [NJH10] adopt LDI to overcome the limitations of soft shadow mapping [AHL*06].
First, an LDI is sampled from the centre of the extended light source. Then, a layered occlusion map is constructed by
estimating an occlusion degree for each sample in the LDI using back-projection of micropatches. Finally, the attenuation
of light for a receiver point is determined by filtering the LOM accordingly. The LOM is constructed from the LDI which
is created by discretising the scene with depth peeling [Eve02]. For each sample in the LDI a micropatch is constructed.
Potential occludees are identified based on the observation that the shadow volume of a micropatch is included in the
shadow volume of another micropatch being closer to the light source. For each potential occludee the occlusion degree
is estimated by back-projecting the micropatch being closest to the potential occludee. Upon filtering the LOM each
fragment is transformed into light-space and four neighbouring samples are determined. The proportion of occlusion is
obtained by trilinearly filtering the occlusion degrees of the samples with respect to the distances between the samples. Of
course, LOM filtering is susceptible to incorrectly yield partial occlusion. Particularly, if an obviously fully lit fragment
resides in a concavity and neighbouring samples are closer to the light source. This can be circumvented by increasing
the resolution of the LDI. As a consequence of utilising depth peeling, the performance of LOM is mainly dependent on
the number of layers in the LDI. The necessary number of layers depends on both scene configuration and surface detail.
However, the contribution of deeper layers to partial occlusion is practically negligible. Therefore, creation and storage
cost of the LDI remains reasonable. Light bleeding commonly occurring with micropatches is avoided by using back-faces
for calculating occlusion degrees. For reducing the cost of occlusion degree computation, the set of potential occludees
can be refined with a conservative estimate of the depth range within the kernel region that is obtained from a HSM.
In summary, LOM are capable of rendering plausible soft shadows in real-time exhibiting noticeable underestimation of
penumbrae.

2.2.4 Temporal Coherence

Temporal coherence can be exploited to calculate soft shadows in real-time by accumulating the single-sampled visibility
of the light source randomly over time [SSMW09, SSM11]. An area light source is randomly sampled with several shadow
maps. Instead of sampling all shadow maps within a frame, only a single shadow map is sampled per frame. The resulting
hard shadows of previous frames are combined with a “shadow buffer” to obtain a soft shadow for each screen pixel. The
convergence of the iterative refinement is considerably increased with exploiting temporal coherence. This approach is
based on two observations. First, the majority of fragments remains unchanged between consecutive frames. Second,
data of fragments of previous frames can be reused with temporal reprojection (Page 18). Accordingly, two fragments of
adjacent frames are considered to be equal if their depth values hardly differ which allows to reuse previously computed
data. As a consequence of sufficiently randomly sampling the area of the extended light source, an estimator for the
fraction of the visibility of the light source can be derived from the variance of the Binomial distribution of the shadowed
samples.

CHAPTER 2. RELATED WORK 34

Therefore, the soft shadowing result ¥ can be estimated with the proportion s, (x,y) which is computed iteratively
over time with the data reused from previous frames.

Tcur(xay) +Pn (xv)))
n(x,y)+1

qfcur(x;y) = (2.17)

In equation 2.17 for a fragment at position (x,y) in screen-space,

e Y., (x,y) is the approximation of the soft shadowing result of the current frame
e T.r(x,y) is the result of the depth test of the current frame
e p,(x,y) is the sum of the results of the previous depth tests

e n(x,y) is the number of depth tests which have been performed for this fragment. Note that n varies for each
fragment because previous data is unavailable if a fragment was occluded in the previous frame.

The data required to efficiently evaluate ., (x,y) is aggregated in the “shadow buffer”. For each fragment this
buffer stores the depth, the results of all tests <, + p, and the number of all depth tests n+ 1. However, issues arise
for two reasons. First, using temporal coherence to improve the convergence of the estimation of y with \, requires
fragments to stay visible for many frames. Second, the estimation exhibits large and abruptly changing errors if new
fragments suddenly disocclude. Initially, the data for exploiting temporal coherence is unavailable and, therefore, needs
to be recorded over subsequent frames. Accordingly, a fast variant of PCSS is used for initialisation which is subsequently
refined with \,,. However, additional smoothing with a special neighbourhood filter is necessary to reduce noise and
flickering artefacts. Furthermore, to improve the performance of the blocker search step of PCSS, temporal coherence is
exploited by storing the average blocker depth over several frames in the fourth channel of the shadow buffer. Of course,
moving objects aggravate temporal coherence because disocclusions become very frequent. As a consequence of applying
PCSS repeatedly to shadow maps sampled from different points on the light source between consecutive frames, shadows
irritatingly fidget. This is circumvented by applying the smoothing neighbourhood filter which removes objectionable
differences between moving and static shadows. In general, generating soft shadows with temporal coherence is superior
to PCSS in both quality and performance. However, objectionable artefacts remain in highly dynamic scenes due to low
temporal coherence.

2.2.5 Environmental Shadows

In general, a surface point non-uniformly receives light from all directions as a consequence of indirect illumination.
Therefore, additional soft shadows appear which considerably contribute to the visual richness of an image. Real-time
generation of environmental shadows is achieved with convincingly approximate solutions because evaluating global
illumination is still too costly. Finally, environmental shadows and shadows due to direct illumination are combined to
yield convincing results.

Similar to covering the spherical view of a point light with several shadow maps, environmental lighting can be sim-
ulated with several point lights distributed non-uniformly on a surrounding hemisphere [Pha04]. Another approach uses
several area lights to decompose an environment map [ADM*08]. Despite the availability of fast shadowing techniques,
a separate pass is required for each light which considerably limits the performance of these approaches.

Multi-pass rendering is avoidable if large low-frequency light sources are assumed. Accordingly, incident radiance
and light visibility become expressible as weighted basis functions using spherical harmonics. Utilising a hierarchical
sphere approximation for each object, visibility can be efficiently determined with generic pre-tabulated spherical har-
monics projection in real-time [RWS*06]. Despite being capable of handling occluder fusion correctly, the approach
yields inaccurate results as a consequence of coarse sphere approximations and the low-frequency spherical harmonics
representation. In particular, inaccuracies are noticeable at contact shadows which hinders plausible appearance.

Environmental shadows can be convincingly and efficiently approximated with ambient occlusion. The approximation
provides important visual cues of depth, curvature and spatial proximity. Based on the assumption that a surface point
receives light from all directions uniformly, the amount of incident light is attenuated with respect to an accessibility value
[Mil94]. Accordingly, a surface point appears darker the more light is blocked by nearby geometry. A decent overview
on ambient occlusion techniques has identified only a few techniques being capable of computing GPU-based ambient
occlusion in real-time for dynamic scenes [MFS09].

Pre-computed ambient occlusion gathers occlusion information in advance. An approximation of occlusion is stored
in an environment map for efficient storage and access. Ambient Occlusion Fields [KLO5] use a quadratic rational function
of distance to represent occlusion information. The components of the function are pre-computed and stored in a cube map

CHAPTER 2. RELATED WORK 35

for every object. This allows to compute a spherical cap approximation of ambient occlusion in real-time. However, the
approach is inapplicable to self-shadowing and deformable objects. Ambient occlusion information can be interpreted as
the solid angle projected to every texel in a three-dimensional texture surrounding an object [MMAHO7]. This technique
supports self-shadowing and solid moving objects. Pre-computed ambient occlusion approaches are fast and exhibit high
temporal coherence. However, shadows possibly appear artificial due to high smoothness.

Real-time ambient occlusion for deformable objects can be computed by constructing surface elements at each ver-
tex and determining accessibility between the surface elements [Bun05, HJ07]. Each surface element is projected to all
other surface elements to obtain the proportion of occlusion. Therefore, the complexity of this approach is O(n?). This
limitation can be improved to O(nlogn) by hierarchically grouping surface elements. Hence, groups of surface elements
irrelevant to local occlusion can be efficiently skipped. These surface elements insignificantly contribute to the occlusion
of the currently processed surface element due to large distances. However, artefacts arise from computing ambient occlu-
sion on a per-vertex basis and per-fragment interpolation if objects are insufficiently tessellated. Furthermore, temporal
incoherences easily occur which results in abruptly changing shadows.

Screen-Space Ambient Occlusion (SSAO) [SA07, Mit07] is based on the observation that ambient occlusion is caused
in large part by nearby blockers if geometry exhibits high surface detail. The amount of locally blocked light can be
effectively derived from an offscreen buffer storing the depth and normal at each screen pixel. This is possible because
neighbouring points in world-space remain neighbouring in screen-space. The occlusion at each pixel is obtained by
averaging partial occlusion [BSDO08]. The approach estimates partial occlusion with the horizon and tangent angles being
sampled in multiple two-dimensional directions within the neighbourhood of the pixel. The horizon angle is obtained by
marching along the nearby height field in a certain direction to find the steepest angle. The tangent angle is obtained from
the normal. The number of samples necessary to yield plausible results is significantly reduced by randomly sampling in
varying directions per pixel. However, noise is introduced and needs to be suppressed with edge-aware filtering to yield
visually pleasing results. The performance of SSAO is mainly dependent on the number of samples taken per pixel and
independent of the scene complexity. As a consequence of the low frequency nature of ambient occlusion, the resolution
of the offscreen buffer can be half the resolution of the frame buffer. Therefore, SSAO is capable of computing ambient
occlusion in real-time for deforming objects and became widely used in games. However, artefacts are introduced if
occluders are nearly parallel to the direction of view. In particular, false occlusion halos appear around thin geometry
(e.g. fences, grids). Furthermore, distant occluders are easily undersampled in screen-space. Moreover, SSAO requires
sufficiently tessellated and high detail geometry in order to yield convincing results.

2.2.6 Summary

Generating soft shadows is a computationally intense process. The fraction of the visible area of an extended light source
must be determined for each surface point. Image-based approaches provide real-time performance while hardly exhibit-
ing aliasing artefacts. Visually plausible soft shadows can be generated at acceptable performance with convolution-based
approaches. Physically plausible soft shadows are derived with evaluating the contribution of back-projected micro-
occluders to light occlusion. In general, approaches utilising a single shadow map deliver convincing soft shadows for
small light sources only. In contrast, larger lights require additional depth layers whose creation and storage cost decreases
performance considerably.

PCSS [Fer05] and occlusion textures [ED06] are convolution-based approaches. Performance is independent of the
size of the light and the size of the penumbra. As a consequence of its wide application in games, PCSS received
considerable attention and has undergone several improvements to finally become a constant-time algorithm. The average
blocker depth can be determined with a CSM-based convolution [ADM*08] or with a VSM-based formula [YDF*10].
Adaptively varying the size of the filter window for each screen pixel is efficiently and accurately achieved with SAT
and a linear representation of the shadow map [LauO7]. Incorrect classification of occlusion of VSM-based PCSS with
large lights has been addressed with an efficient filter kernel subdivision scheme [YDF*10]. However, PCSS generally
underestimate shadows and are only applicable if lights are small. In particular, it has to be noted that PCSS deliver
convincing shadows caused by the sun in large scenes. According to smaller indoor scenes illuminated by large lights,
occlusion textures are more practical and exhibit higher performance [ED08]. Both PCSS and occlusion textures assume
parallel and planar occluders, receivers and light sources. This assumption is violated in general scene configurations
which, therefore, leads to incorrect occluder fusion.

Soft shadow mapping (Section 2.2.2) and multi-layered shadow maps (Section 2.2.3) provide higher precision and
more robustness for a considerably higher cost. Back-projection of microquads and determining light source coverage
with occlusion bitmasks achieve the most accurate results if a single shadow map shall be used only [SS07]. As a
consequence of utilising occlusion bitmasks, overlapping of the projections of the micro-occluders on the area of the
extended light source is avoided and, therefore, occluder fusion is correctly evaluated. Representing micro-occluders with
occluder contours improves shadow quality of large lights [GBP07]. However, performance is aggravated considerably

CHAPTER 2. RELATED WORK 36

and shadow flickering is easily introduced in dynamic scenes due to missing occluders. In contrast, maintaining shadow
quality while improving performance can be achieved with hierarchical extraction of occluder approximations [YFGLO09].
However, the practically usable shadow map resolution is limited considerably. If more than one shadow map is allowed,
the highest reachable shadow quality at reasonable cost is delivered by replacing the single shadow map with a shallow
LDI [NJH10]. As a consequence the accuracy of representing and back-projecting occluders is improved significantly.

Exploiting temporal coherence and reusing data of previous frames with temporal reprojection enables to compute
accurate soft shadows iteratively [SSMWO09] (Section 2.2.4). The extended light source is randomly sampled with a
single shadow map each frame. The data necessary to estimate the visible fraction of the light source is stored in a four
channel screen-sized offscreen buffer. Despite exhibiting superior shadow quality and performance compared to PCSS,
objectionable artefacts appear in highly dynamic scenes due to low temporal coherence. As a consequence of converging
to the accurate solution in the limit, the algorithm deals with occluder fusion correctly.

Environmental shadows (Section 2.2.5) can be approximated efficiently and convincingly with ambient occlusion.
The light uniformly reaching a surface point is attenuated accordingly with respect to the occlusion of nearby geometry.
Pre-computed ambient occlusion techniques store occlusion information in environment maps for efficient storage and
fast access [RWS*06, MMAHO7]. The resulting shadows are easily perceived as being artificially attached due to high
smoothness. Abruptly changing shadows are hardly appearing with moving objects. However, only moving objects are
supported. SSAO techniques obtain occlusion information by sampling the heightfield within the neighbourhood of a pixel
in multiple directions [SA07, BSDOS]. According to geometry exhibiting high surface detail, SSAO provides convincing
results while being particularly efficient. Furthermore, SSAO remains applicable if objects are continuously deformed
due to animation. The performance of SSAO is independent from the scene complexity. However, shadow flickering is
easily introduced with dynamic objects. Furthermore, shadows caused by fine geometry are generally overestimated. In
conclusion, SSAO is only a quality-improving supplement to explicitly generated soft shadows. Important visual cues are
missing due to coarse approximations in screen-space.

Chapter 3

Theory

3.1 Global Illumination

Rendering a photorealistic image of a virtual scene requires to evaluate light transport. The simulation of the complex
interaction of light and matter obtains the proportion of radiance reaching each pixel in the resulting image. While propa-
gating in a scene, rays of light are reflected, refracted and scattered until they reach the eye or are absorbed. Therefore, a
surface point possibly receives light coming from all other surface points. Global illumination computation incorporates
all various paths the light travels from the light source to the eye for estimating the radiance reaching each surface point.
The contents and notation of this section mainly follows [DBB06].

Despite being computationally intense, global illumination computation delivers important visual clues that would
be missing with local illumination (Figure 3.1). Indirect illumination causes surface points, which are not directly lit,
to receive light impinging from other surface points. As a consequence of indirect illumination, the colour of a surface
point appears to be biased with the colour of light impinging from other surface points which manifests in color bleeding.
Depending on the curvature of specular or transmissive surfaces, reflected or refracted light is focused and forms caustics
on diffuse surfaces. At the surface of objects made of translucent materials, light enters the object, scatters below the
surface and leaves the object at a different surface point. As a consequence of subsurface scattering, objects exhibit a
distinct natural appearance according to a certain material (e.g. marble, human skin, etc.). The light directly reaching a
surface point is attenuated accordingly to the fraction of the area of extended light sources that is visible from the surface
point which introduces soft shadows. Of course, additional effects appear with the presence of participating media (e.g.
light shafts, volumetric caustics).

Figure 3.1: Comparison of local illumination and global illumination. A specular (left) and a transmissive sphere (right) are illuminated
by an area light source directly from above. Left: Local illumination only evaluates illumination based on information available locally
at a surface point. Note that the ceiling receives no light and important visual clues are missing (soft shadows, caustics). Right: Global
illumination computation simulates light transport to incorporate all possible interactions of light and matter. Note that shadows are
soft and the presence of caustics under the right sphere and on the blue wall. Furthermore, note that the ceiling and the shadowed
regions receive additional light due to indirect illumination. Therefore, the neutrally coloured ceiling and the shadows appear to be
slightly tinted with the colour of nearby coloured walls (images courtesy of Henrik Wann Jensen, http://graphics.ucsd.edu/
~henrik/images/global.html, last access 2012-05-07).

37

http://graphics.ucsd.edu/~henrik/images/global.html
http://graphics.ucsd.edu/~henrik/images/global.html

CHAPTER 3. THEORY 38

3.1.1 The Rendering Equation

Global illumination computation has been generalised as solving the rendering equation [Kaj86] (Figure 3.2). The ren-
dering equation expresses the equilibrium distribution of light energy in a scene (hemispherical formulation). At a surface
point x, the exitant radiance L(x — ®) into direction ® is the sum of the self emitted radiance L,(x — ®) and the reflected
radiance L,(x — @) into direction ©. The reflected radiance L,(x — ®) is obtained by accumulating the incident radiance
L(x < ¥) over all incident directions ¥ on the hemisphere Q,. The proportion of reflected radiance of each radiance
incident through a differential solid angle dmy is obtained with respect to the irradiance distribution over the hemisphere
Q, defined by the bidirectional reflectance distribution function (BRDF) f.(x, — @) and the angle 6y between the
incoming direction ¥ and the surface normal N,. Accordingly, the rendering equation is expressed as

Lix—=0)=L,(x—0)+L,(x— 0)
:Le(x—>®)—0—/Q fr(x, ¥ — O)L(x + ¥) cos Oy dwy. (3.1)

N,

dUJ\I/

Figure 3.2: The rendering equation, hemispherical formulation. The total amount of light reflected from point x into direction ®
is obtained by summing the radiances arriving at point x over all incoming directions W on the hemisphere Q. For each incoming
direction the radiance arriving at x is multiplied by the BRDF and the cosine term, respectively. Finally, the self emitted light at x is
added only if x resides on a light source.

Of course, the unknown radiance L appears on both sides of the rendering equation. Therefore, it is particularly
challenging to numerically evaluate the rendering equation for global illumination computation. In order to approximate a
solution to the rendering equation for global illumination computation, the integration over directions can be reformulated
as an integration over a sphere onto which all surfaces being visible at the surface point x are projected (Figure 3.3).
Accordingly, integration over all surfaces A in the scene instead of integration over directions yields the area formulation
of the rendering equation defined by

L(x = ®) = Lo(x — ®)+ /A £ ¥ = @)Ly — —)V(x,y) G(x,y) dA,. (3.2)

In equation 3.2,

e L(y — —WY) is the exitant radiance at surface point y which is equal to the radiance incident through a differential
solid angle dwy at surface point x if ignoring participating media and absorption. Hence, L(x <+ ¥) = L(y — —¥).

e V(x,y) is the visibility function that specifies the visibility between two points x and y as

Vx,y €A:V(x,y) 0 ifxand y are mutually visible
x’ : -x’ - 1 . .
y y 1 if x and y are not mutually visible

e G(x,y) is the geometry term which depends on the relative orientation and distance ry, of the surfaces at points x
and y

cos(Ny, ¥) cos(Ny, —¥)

2
rxy

G(x,y) = (3.3)

CHAPTER 3. THEORY 39

Figure 3.3: The rendering equation, area formulation. If participating media and absorption are ignored the radiance incident through a
differential solid angle doy at surface point x corresponds to the exitant radiance at surface point y. Hence, L(x + ¥) = L(y —» —\¥) =
L(y — ¥%).

The illumination a surface point in the scene receives can be separated into direct and indirect illumination. This allows
to split the rendering equation into two components. The reflected radiance L,(x — @) is the sum of reflected radiance due
to direct illumination Lg;,.., and indirect illumination L;,g;..;- The contribution of direct illumination is sampled using
the area formulation of the rendering equation (Equation 3.2). The direct term includes the exitant radiance L, (y — ﬁ) at
surface point y that is visible at surface point x along direction)7 = —W for all surfaces A in the scene. The contribution
of indirect illumination is sampled using the hemispherical formulation of the rendering equation (Equation 3.1). The
indirect term includes the reflected radiance L;(x + ¥) visible from all points over the hemisphere Q., leading to

L(x = ©) = Lc(x = ©) + L.(x = ©)
Lr(x — ®) = Lairect + Lindirect

Laireet = /A £ = ©) Le(y —)V (%,y) Gx,y) dA, (3.4)

Lindirees = /Q £, W — @) Li(x W) cos Oy doy 3.5)

3.1.2 The Bidirectional Reflectance Distribution Function

In the rendering equation the appearance of an object is modelled with the Bidirectional Reflectance Distribution Function
(BRDF) [Nic70]. The BRDF describes the irradiance distribution over the entire sphere of directions around a surface
point. Refraction at transmissive objects is described with the Bidirectional Transmittance Distribution Function (BTDF).
In general, the description of reflection and refraction is unified with the Bidirectional Scattering Distribution Function
(BSDF). Subsurface scattering is described with the Bidirectional Surface Scattering Reflectance Distribution Function
(BSSRDF) where light enters surfaces at a point and leaves surfaces at another point.

The BRDF is defined at a surface point x by the ratio of the differential radiance L reflected in an exitant direction @
and the differential irradiance E incident through a differential solid angle dwy. With the angle Oy between the surface
normal N, and the incident direction ¥, the BRDF f,(x,'¥ — @) is defined over the entire sphere of directions around
surface point x by

dL(x — @)
dE(x + ¥)
dL(x — ©)
~ L(x <) cos Oy doy

frx, ¥ —0)=

(3.6)

The BRDF exhibits several important properties. First, the BRDF is a four-dimensional positive function whose value
can vary with wavelength. Second, the BRDF is anisotropic such that the value of the BRDF changes if the surface is
rotated about the surface normal. Third, the BRDF exhibits HELMHOLTZ reciprocity such that the value of the BRDF
remains unchanged upon swapping the incident and exitant directions. Fourth, the value of the BRDF for a specific
incident direction is independent from irradiance along other incident directions. Finally, as a consequence of energy
conservation the total amount of power reflected over all directions is always less than or equal to the total amount of
power incident at a surface point.

CHAPTER 3. THEORY 40

Figure 3.4: BRDF Examples. Left: Diffuse surfaces reflect light uniformly over the entire reflecting surface. Middle: Pure specular
surfaces reflect light in one specific direction only. Right: Glossy surfaces exhibit a non-uniform combination of diffuse and specular
reflection.

Three types of surfaces are commonly modelled with BRDFs (Figure 3.4). At diffuse surfaces the reflected radiance is
independent of the exitant direction for a given irradiance distribution. Therefore, the value of the BRDF remains constant
for all directions and only depends on the fraction of incident energy being reflected. At specular surfaces the BRDF is
positive for one exitant direction only and zero otherwise. At transmissive surfaces the direction of specular refraction is
calculated using the law of SNELL. Rays of light bend towards the surface normal upon entering a dense medium from a
less dense medium. Therefore, reciprocity of the BRDF does not hold for the BSDF in general. Of course, fotal internal
reflection occurs at the critical angle if light travels from a dense into a less dense medium. The equations of FRESNEL
estimate the proportion of light that is being reflected and refracted at a purely specular and smooth surfaces. These
equations are particularly costly to evaluate because of including the wavelength of the light, the geometry at the surface
and the incident direction of light. According to glossy surfaces, modelling the nature of BRDFs with analytical formulae
is hardly achievable because these surface exhibit a non-uniform combination of diffuse and specular reflection.

Several local lighting models have been suggested to simplify the evaluation of complex BRDFs. Local lighting
models ignore secondary reflections and only deliver effects of direct light from direction W being reflected to the eye into
direction @ at a surface point x (Figure 3.5). Additionally, the BRDF of local lighting models is isotropic in general. The
models can be categorised into physically-based and empirically-based.

Physically-based models strive to model realistic BRDFs, despite the complex nature of physics of reflection. The
COOK-TORRANCE model [CT81] proposes a microfacet model which incorporates shadowing effects at micro surface
detail and FRESNEL terms. Additionally, the model is capable of delivering the visual effects of anisotropic surfaces (e.g.
brushed metals). A more comprehensive and more expensive physically-based model has been developed [HTSGO91].
The model is applicable to metallic, nonmetallic and plastic materials with smooth and rough surfaces. Furthermore, the
model incorporates the wavelength, the incident angle, two surface roughness parameters and the surface refractive index
to provide a smooth transition from specular to diffuse effects.

Empirically-based models attempt to visually plausibly capture a general class of surfaces efficiently for real-time
rendering. Purely diffuse surfaces are modelled with the LAMBERT model [Lam60]. The BRDF of the LAMBERT model
is a constant whose value only depends on the fraction of incident energy being reflected p, (diffuse reflectance),

Fr(n W 0) =ky = %d 3.7)

Figure 3.5: Geometry of local lighting models. Vector ¥ denotes the direction of incident light coming directly from a point light
source. The angle Oy is enclosed by W and the normal N, at surface point x. Vector ® denotes the viewing direction. Vector R denotes
the reflection direction which lies in the plane spanned by W and Nx. Vector H denotes the halfway vector between the light direction
¥ and the viewing direction ®. Note that H lies in the plane spanned by ¥ and ©.

CHAPTER 3. THEORY 41

The PHONG model [Pho75] allows for diffuse and specular reflection. As a result, specular highlights are introduced
on curved surfaces where intense specular reflection occurs. Specularly reflected light leaves a surface into direction R
with an angle of reflection between R and the normal N, at the surface point x. This angle is approximately equal to
the angle Oy between N, and the direction W of incident light. The size of specular highlights decreases as the specular
exponent n increases which expresses the shininess of surfaces. Accordingly, the BRDF of the PHONG model is

_ (R-O)
frle ¥ & 0) =k

+ky WwithR=2(Ny-¥)N, — ¥ (3.8)

The BLINN-PHONG model [Bli77] uses the half vector H between the direction of incident light ¥ and the viewing
direction ©®,

(W @) =kl 4k, withH=——
ol) N-w [¥+0

(3.9)

The BLINN-PHONG model has several advantages due to using the half vector H instead of the reflection vector R.
First, the half vector H is cheaper to compute than the reflection vector R. Second, surfaces exhibiting narrow specular
highlights if viewed at glancing angles are more appropriately and convincingly captured. Third, real materials are more
closely resembled with half-vector-based BRDFs. However, the BRDF yields too bright intensities at glancing angles.
As the angle 8y between ¥ and N, approaches 90° the reflection term goes to infinity. Furthermore, the BRDF violates
reciprocity and introduces visually disturbing artefacts due to an objectionable cutoff if Oy = 90 [AMHHOS].

Several limitations of the BLINN-PHONG model are alleviated with the modified BLINN-PHONG model,

[r(x, ¥ ¢ ©) = ky(Ny - H)" + kg (3.10)

In comparison to the BRDF of the BLINN-PHONG model (Equation 3.9), the reflectance term of the BRDF of the
modified BLINN-PHONG model remains bounded. Furthermore, the BRDF satisfies reciprocity. Finally, the artefacts at
glancing angles between ¥ and N, are inherently avoided. However, the BRDF is not energy conserving [AMHHOS].

3.1.3 The Soft Shadow Equation

Soft shadow computation determines for each surface point the fraction of the area of an extended light source that is
visible from a surface point (Figure 3.6). Depending on the visibility of the light source a surface point is lit or shadowed.
In shadowed regions surface points are considered to be in the umbra or penumbra according to the degree of occlusion
of the light source. If the light source is fully occluded the surface point receives no light and is in the umbra. If the light
source is partially occluded the surface point is in the penumbra. A reduced amount of light proportionally to the visible
fraction of the area of the light source arrives at the surface point. Objects blocking the light are denoted as occluders (or
blockers or shadow casters). Objects onto which shadows are cast are denoted as receivers. If an object is both occluder
and receiver self-shadowing occurs. Although the contents of this section follows [EASWO09], the notation of [DBB06] is
used to maintain consistency with previous sections.

For evaluating partial illumination soft shadow computation involves direct illumination only. With the direct term of
the rendering equation (Equation 3.4), the dependency of the rendering equation on itself is removed while integrating over
the surface of the light source £. Given a radiance distribution over the surface of the light source, L, (y — y?) corresponds
to the radiance emitted into the direction of a surface point x on a receiver from a point y on the surface of the light source.
For simplification the self emitted radiance L.(x — ®) is omitted which causes the light source to be missing in the final
image. If several light sources are involved their contributions can be computed individually and simply accumulated due
to the additivity of the integral. Accordingly, the soft shadow equation is obtained from the rendering equation with

L(x—0) = /Lf,(x,x_>y — @) Lo(y — ¥%) V(x,y) G(x,y) dA, (3.11)

Solving the soft shadow equation is particularly challenging because in general sampling must be used if complex
BRDFs or complex visibility configurations are involved.

CHAPTER 3. THEORY 42

Light source

Occluder

. Receiver

1) 3
lit penumbra umbra

Figure 3.6: The soft shadow equation. Given a light source, an occluder and a receiver, a surface point receives direct light proportion-
ally to the fraction of the area of an extended light source £ that is visible from the surface point. Depending on the visibility of the
light source, a surface point is lit or shadowed. Accordingly, surface point x; is totally lit because it is unoccluded. Surface point x; is
partially occluded and, therefore, resides in the penumbra region. Surface point x3 is fully occluded and, therefore, resides in the umbra
region.

However, the soft shadow equation can be simplified while achieving reasonable results close to the reference. First,
if all surfaces are perfectly diffuse, the BRDF becomes independent of directions such that f;(x,X§ — ©) = py(x)/
(Equation 3.7). Second, if the distance between the light source and the receiver is relatively large with respect to the solid
angle of the light source and the surface of the light source is sufficiently well-behaved, then, the geometric term G(x,y)
varies little. Based on the aforementioned assumptions, the soft shadow equation becomes independent of directions and
can be decomposed into a shading and a shadow term, leading to

L(x) = Pa(x) /ﬁG(x,y)dAy % /LLe(y—>y—x>)V(x,y)dAy (3.12)

shading shadow

The error of the approximation (Equation 3.12) depends on the correlation between the functions of the shading and
shadow term which is implicitly assumed to be low [SS98]. Furthermore, the approximation ignores that due to G(x,y) the
influence of the light source on the surface point x is non-uniform and, therefore, falls off with distance and orientation.

In practice, the shading term is efficiently evaluated with a local shading model to achieve real-time performance. Over
the receiver the shading term is attenuated by the shadow term which is represented by the visibility integral. For real-time
evaluation the visibility integral can be further simplified, if the light source radiates homogeneously and directionally
over its surface. As a result, L,(y — y£) simplifies to a function of position L (y) which reduces to a constant L, if the
light source emits uniformly coloured light. Accordingly, the visibility integral simplifies to

L. /£ V(x,y)dA, (3.13)

Of course, computing partial illumination in real-time by efficiently estimating the visibility integral (Equation 3.13)
only leads to visually plausible soft shadows. Only the proportion of visibility is evaluated and not which regions on the
surface of the light source are occluded. In contrast, physically plausible shadows require to correctly sample visibility for
a considerable number of points on the light source which is slow. In conclusion, the results obtained with the visibility
integral (Equation 3.13) are convincing, while exhibiting objectionable differences to the physically-based results obtained
with the soft shadow equation (Equation 3.11).

In addition to being computationally-intense, estimating the visibility integral for soft shadow computation is non-
trivial for two further reasons. First, a simple and general solution to combine the contribution of individual occluders
is unavailable. This results in inaccurate occluder fusion (Figure 3.7). As a consequence, objectionable artefacts are
introduced which manifest in overestimation of umbrae. Second, only considering objects being visible from a single point
on the light source leads to incomplete shadows (Figure 3.8). Furthermore, temporal artefacts are possibly introduced due
to temporal incoherence if shadows change abruptly between incomplete and complete.

CHAPTER 3. THEORY 43

Figure 3.7: Occluder fusion. The figure shows three different cases of the fusion of two planar and parallel occluders. The scene is
illuminated by a planar and parallel area light source from above. The small images indicate the fraction of the unoccluded area of the
light source that is visible from a surface point under the centre of the light source. Left: The individual contribution of the occluders
should be summed because the occluders do not overlap. Middle: The individual contributions of the occluders should be multiplied
because the occluders partially overlap. Right: The maximum of both shadow contributions should be taken because one occluder is
completely obscured by the other (image courtesy of [EASW09]).

ala

Complete
geometry

One layer

Figure 3.8: Single-sample soft shadows. The small image in the middle illustrates the scene setup consisting of a light source, a cubical
occluder, a spherical occluder and a large planar receiver. Left: Incomplete shadows are computed upon using the depth of front-facing
geometry only that is visible from a single point in the centre of the light source. The shadow cast by the cube incorrectly exhibits large
penumbrae because the top face of the cube is incorporated only. As a result, the shadow cast by the cube onto the right hemisphere
of the sphere is hardly objectionable. The shadow cast by the cube onto the plane incorrectly appears too soft. Furthermore, only the
left hemisphere of the sphere is incorporated. The right hemisphere is invisible from the centre of light source. Therefore, the shadow
cast by the sphere artificially appears to be cut off. This is amplified by the large penumbrae of the shadow cast by the cube. Right:
The accurate shadow solution samples more layers of depth to completely capture the occluding geometry. The right hemisphere of the
sphere is correctly occluded. The shadows on the plane correctly unify (image courtesy of [EASWO09]).

CHAPTER 3. THEORY 44

An accurate but costly method to obtain an estimate of the visibility integral is sampling. The surface of an area
or volumetric light source is covered with a distribution of numerous point lights at position y; and the resulting hard
shadows are accumulated accordingly [HH97]. With a sufficiently large number of point lights k the visibility integral is
well approximated by

1 k
Vix,y)dAy, = ——) V(x,y; 3.14
/£ (x,)dA, k+1,§g)(y) (3.14)

An efficient but generally only approximate approach to estimate the visibility integral is based on convolution. If
the area light source, occluder and receiver are planar and parallel, the visibility integral can be exactly calculated by
projecting the occluder onto the surface of the light source and measuring the remaining unoccluded area of the light
[SS98]. As a consequence of the fact that the projection of the occluder only translates as the surface point x moves on
the receiver, the unoccluded area of the light source can be expressed as a convolution between the light source and the
occluder images. With the distance d; between the light source and the occluder, the distance d» between the occluder and
the receiver and the characteristic function P(x), the visibility integral is expressible as a convolution by

dix+doy . 0 if x is on the occluder
Vix, dA:/PidA th P(x) = 3.15
/z: (e,3) dAy c (di+dy y With Px) 1 elsewhere ()

3.2 Shadow Mapping

An efficient technique to generate hard shadows cast by spot lights is Shadow Mapping [Wil78]. Shadowed geometry is
invisible to the light source. A light visibility test over the view volume of the light source can be efficiently generated
and stored in a depth texture. This texture is used to evaluate light visibility upon rendering the view of the eye to generate
shadows. Therefore, the complexity of shadow mapping is comparable to standard scene rendering. As a consequence of
its ease of use and low complexity, shadow mapping scales well with scene complexity. Furthermore, shadow mapping
is orthogonal to many existing image-based techniques. Moreover, shadow mapping is widely supported on different
hardware platforms. This facilitates to implement the algorithm highly efficiently. In particular, shadow mapping does
not have to treat occluders and receivers separately. As a consequence, arbitrary configurations of occluders and receivers
are supported; including self-shadowing. In addition, arbitrary input data can be processed as long as depth values can be
derived from the data.

Shadow mapping requires two passes to perform the shadow computation (Figure 3.9). First, the shadow map is
acquired from the view of the light source £. The shadow map is a depth image essentially. Each pixel stores the distance
between the light source and the closest surface point that is hit along a ray of light passing through the centre of the
pixel. Second, upon rendering the view of the eye £ the shadow map is queried with GPU-enabled texturing techniques to
efficiently resolve visibility. For each rasterised fragment, its eye-space coordinates (x¢,y°,z¢) are reprojected into light-
space (x°,y*,z*). The position (x*,y*) on the image plane of the light source identifies the corresponding depth entry in
the shadow map. After performing the occlusion test, a fragment is in shadow if the light-space depth of the fragment z°
is larger than the depth stored in the shadow map. Otherwise the fragment is lit. The linear transformation M required to
reproject eye-space fragments to light-space is defined by

M (x,Y,2) > (&°,y°,2) with M = BP V V! (3.16)
In equation 3.16,
° Vg_1 is the inverse viewing transformation matrix of the eye which transforms from eye-space into world-space
e V. is the viewing transformation matrix of the light source which transforms from world-space into light-view-space

e P is the projection transformation matrix of the light source which transforms from light-view space into light-
clip-space

e B is a bias matrix to remap from normalised device coordinates [—1,-+1] after perspective division to texture coor-
dinates [0, 1] in light-space.

CHAPTER 3. THEORY 45

Light source joRs

Shadow (depth) map

]
!
!
1
i
1
I
1
1

Receiver (¢, y¢, 2¢)

Figure 3.9: Shadow mapping. Shadows cast by a spot light source can be computed by considering geometry invisible to the light
source in shadow. First, a depth image is generated from the view of the light source £. Second, upon rendering the view of the eye
each eye-space fragment (x°,y°, z°) is reprojected into light-space to locate the corresponding depth entry in the shadow map at position
(x*,»") on the image plane of the light source. Accordingly, the fragment is determined to be in shadow if the light-space depth of the
fragment z* is greater than the depth in the shadow map. Otherwise the fragment is lit (image adapted from [EASW09]).

Several issues are inherent to shadow mapping. First, imprecisions arise from the image-based nature of shadow
mapping. In general, a sampling mismatch occurs between the sampling of the shadow map and the sampling of fragments
projected into the shadow map which introduces aliasing artefacts (Section 3.2.1). Accordingly, if the view volumes of
the light and the eye have similar location and orientation the sampling rates almost match. In contrast, in the case
of duelling frusta, where the light and the eye are looking toward each other from opposite locations, the sampling
rates mostly differ close to the image plane of the eye. Second, incorrect self-shadowing is caused as a consequence of
imprecisions (Section 3.2.2). Third, point lights require to cover a spherical view with several shadow maps to generate
omnidirectional shadows (Section 3.3). Fourth, the reprojection from eye-space to light-space with matrix M causes a
dual projection (Equation 3.16). Therefore, secondary shadow images are introduced along the negative view direction of
the light (Section 3.3).

3.2.1 Aliasing

Aliasing appearing with shadow mapping can be categorised into spatial and temporal aliasing. Spatial aliasing manifests
in blocky shadows. These artefacts result from jagged shadow boundaries due to undersampling, oversampling and
reconstruction errors. Temporal aliasing manifests in flickering shadows if the rasterisation of shadows changes abruptly
between consecutive frames.

Undersampling occurs if depth has been sampled coarsely with respect to the screen resolution. This occurs when the
sampling rate used to create the shadow map is lower than the rate at which the shadow map is sampled upon generating the
shadows. In this context, a single shadow map texel is projected to several screen pixels. According to signal processing,
alias-free reconstruction of a signal requires to sample the initial signal with a rate sufficiently high (NYQUIST rate). If
the sampling rate is lower than the NYQUIST rate undersampling leads to inadequate reconstruction of the initial signal.
Shadow mapping inherently applies a box filter to reconstruct a function from previously sampled depth values to resolve
visibility (nearest neighbour reconstruction). As a result, shadows have jagged boundaries because the reconstructed
function is a noncontinuous stair case. However, improved reconstruction filters are inapplicable. The shadow map stores
a discrete representation of depth values which is inapplicable to filtering. Accordingly, the occlusion test returns invalid
results if neighbouring depth values are simply averaged. Additionally, undersampling is caused if the shadow map is
magnified due to two types of aliasing: projection aliasing and perspective aliasing (Figure 3.10).

Projection aliasing is a local artefact. As a consequence of oblique light, shadows are strongly expanded along sur-
faces. Therefore, a surface which is almost parallel to the direction of light requires very fine sampling, otherwise un-
dersampling occurs. In order to reduce projection aliasing the sampling rate must be varied depending on local surface
orientations. Adaptive algorithms employ hierarchical acceleration data structures to analytically adjust the sampling rate
(Section 2.1.1.5).

Perspective aliasing is a global artefact. As a consequence of perspective projection, the shadow map is enlarged
close to the viewer which causes undersampling. However, setting up a different parameterisation for the shadow map
allows to adjust the distribution of samples with warping (Section 2.1.1.3). Hence, geometry close to the viewer receives
more samples than distant. Additionally, subdividing the view frustum and maintaining a dedicated shadow map for each
subdivision enables to further increase the number of samples with global partitioning (Section 2.1.1.4).

CHAPTER 3. THEORY 46

aliased not aliased aliased

Figure 3.10: Shadow map aliasing due to undersampling. A directional light illuminates trees directly from above. Left: The steep
slope of the surface of the tree causes projection aliasing. Therefore, a small region of the shadow map is projected to a large region on
the view plane. Right: The shadow map has a constant resolution along the viewing direction. As a consequence, perspective aliasing
occurs if the shadow map is enlarged while being projected on the view plane (image courtesy of [SWP10]).

A simplified quantification of aliasing errors in shadow mapping for a directional light source [WSP04] (Figure 3.11)
is expressible as

dp _ zpdzcoso
ds 7z dscosPp

(3.17)

where aliasing occurs if dp/ds is larger than the ratio of shadow map and screen resolutions or if dp is larger than the
width of a screen pixel. In equation 3.17,

e dp is the width of a shadow map texel projected to the view plane

e ds is the length of a side of a square representing a shadow map texel

e dp/ds is the shadow map aliasing error

e 7, is the distance from the eye to the view plane

e zis the distance from the eye to the surface

e dzis the length of a bundle of parallel light rays being comprised by a shadow map texel

e (. is the angle between an eye ray and the surface normal

B is the angle between a light ray and the surface normal.

view plane object
eye d
z e dz
z .
. far|plane

Figure 3.11: Simplified analysis of shadow map aliasing errors for a directional light source. A shadow map texel of size ds X ds
comprises a bundle of parallel rays of light. The bundle has the length dz = (z — zx) ds in world-space. The rays impinge on the object
on a small edge along a length of dz/cosP. In eye-space, dy = dz(coso./cos) projects to dp = z,/zdy on the view plane (image
courtesy of [WSP04]).

CHAPTER 3. THEORY 47

The resolution of the shadow map is limited locally and globally. Projection aliasing occurs if the term cos ./ cosf is
large. This occurs at surfaces whose normal is almost orthogonal to the direction of light. Therefore, adaptive methods
increase the sampling rate for surfaces at which cos o/ cos B is large to reduce the shadow map aliasing error d p/ds locally.
Perspective aliasing occurs if the term dz/(zds) is large. Upon approaching the view plane from afar 1/z increases and,
finally, becomes very large. As a consequence, the shadow map aliasing error dp/ds becomes large close to the near
plane because dz/ds is constant throughout the entire view frustum if the shadow map has a uniform parameterisation.
Therefore, warping algorithms select a non-uniform shadow map parameterisation. The ratio dz/ds is varied such that
more samples are taken where 1/z is large (i.e. near the view plane) to reduce the aliasing error dp/ds globally.

A more accurate and more general quantification [LGQ*08] (Figure 3.12) expresses the aliasing errors in shadow
mapping as

re dt W, n; d, cos @, cos\y;

(3.18)

where aliasing occurs if m > 1. In equation 3.18,

rj/r: is the ratio of the screen and shadow map resolutions
e dG/dt is the derivative of the shadow map parameterisation; corresponds to dz/ds in the simplified quantification
e W;/W, is the ratio of the widths of the light and eye viewports in world-space

e 1n,/ny is the ratio of the distances from the light to the view plane of the light and from the eye to the view plane of
the eye

e d;/d, is the ratio of the distances from the light to the surface and from the eye to the surface
e () is the angle between the normal of the light view plane and the light direction
e ¢, is the angle between the normal of the eye view plane and the viewing direction

e ; is the angle between the light direction and the normal of the surface; corresponds to o in the simplified quan-
tification

e V, is the angle between the viewing direction and the normal of the surface; corresponds to B in the simplified
quantification.

The accurate quantification describes aliasing errors with respect to more general configurations of eye and light. The
addition of the terms W;/W,, n./n; and d;/d, allows to treat lights with arbitrary positions and directions. In comparison,
the simplified quantification assumes that the surface element resides in the centre of the view frustums of the light and
the eye. This requirement is dispensable with the introduction of the angles ¢; and ¢,.

t:0 1 2 1 O
shadowmap | o | l
G L
Tre ¥y v:0 F 1
¢ T —e ——
) p P Vi
L g,

Figure 3.12: Accurate analysis of shadow map aliasing errors. The function j(z) maps a point z € [0, 1] in the shadow map to a point
pe on the image plane of the eye .. F and G are the two-dimensional shadow map parameterisation and its inverse. The point p; on
the image plane of the light 7; is projected through the light to p on a planar surface 7 in the scene. The point p is projected through
the eye to a point p. on the image plane of the eye .. Accordingly, the spacing between the light and eye sample locations is related to
the derivatives of the function j(¢). This enables to accurately quantify the aliasing error (image courtesy of [LGQ*08]).

CHAPTER 3. THEORY 48

Therefore, the accurate quantification is applicable to directional and point light sources. Furthermore, varying widths
of light and eye rays become addressable by using a function of ¢; and ¢.. It is important to emphasise that both aliasing
error quantifications are based on two-dimensional formulations. Hence, they treat sampling errors along a single shadow
map axis only. The sampling error along the orthogonal shadow map axis needs to be included for completeness.

Oversampling occurs when the shadow map has a higher resolution than the screen. In this case several shadow map
texels map to a single screen pixel. According to (Equation 3.18), shadow map oversampling occurs if m < 1. Artefacts
arise from aliasing which appears in a similar context upon sampling high frequency colour textures to improve the
appearance of distant objects (e.g. tiled floor patterns). According to signal processing, aliasing due to oversampling is
avoided by, first, band-limiting the signal and, then, resampling the resulting signal at larger intervals. This corresponds to
blurring a colour texture before sampling the texture at lower resolution for minification. Band-limiting before resampling
is impossible because filtering is inapplicable to shadow maps due to their discrete nature. However, shadow maps have
been made applicable to filtering with linear functions for resolving visibility (Section 2.1.2).

Temporal aliasing occurs if the sampling rate of the shadow map changes abruptly between consecutive frames. This
causes the discrete shadow boundaries of hard shadows to flicker. The change of the sampling rate is proportionally to the
change of the transformation matrix M which reprojects from eye-space to light-space (Equation 3.16). Accordingly, the
change of the reprojection matrix M depends on the change of

o the position of the light
e the orientation of the view frustum of the light

o the size of the view frustum of the light

the position of the eye

e the orientation of the view frustum of the eye.

In addition, the sampling rate of the shadow map changes if the reparameterisation to mitigate perspective aliasing
changes. In conclusion, temporal aliasing is generally aggravated in dynamic scenes with fitting (Section 2.1.1.2), warping
(Section 2.1.1.3) and global partitioning (Section 2.1.1.4).

3.2.2 Incorrect Self-Shadowing

Incorrect self-shadowing arises from a resampling problem whose origin is twofold. First, limited numerical precision
causes quantified numbers to exhibit minor deviations from their exact value. Second, limited shadow map resolution
infers capturing a single depth value for the entire region a shadow map texel covers in the scene. Furthermore, sample
locations between the view of the eye and the view of the light hardly coincide. As a consequence, the occlusion test is
susceptible to incorrectly fail upon comparing depth values if the depth value of a lit view sample is lower than the depth
value of the corresponding shadow map sample. This introduces self-shadowing artefacts in lit regions which manifest in
moiré patterns (shadow acne, surface acne and z-fighting).

Incorrect self-shadowing is addressed with depth biasing which offsets depth values before comparison. Numerical
precision issues are circumvented by uniformly adding a small value to all depth values in the shadow map (constant
biasing). Geometrically dependent resampling issues are circumvented by slightly increasing depth values proportionally
to the slope of the sampled polygon (slope-based biasing) (Figure 3.13). The depth slope of a sampled polygon is esti-
mated efficiently with GPU-enabled partial derivative operators. However, depth biasing is heavily scene dependent and,
therefore, needs to be adjusted manually and thoroughly. In general, depth biasing is incapable of alleviating incorrect-self
shadowing if surfaces exhibit concavities or high curvature.

Incorrect self-shadowing seriously aggravates if the reprojection matrix M involves a perspective transformation P,
(Equation 3.16). As a consequence of perspective division, the majority of depth samples concentrates close to the near
plane of the view frustum of the light source [BASO2a]. This results in a seriously non-uniform sampling distribution
along the direction of light. In general, the majority of the scene maps to the first half of the range of depth. Therefore,
oversampling occurs close to the near plane of the light while distant geometry is sampled coarsely. Accordingly, un-
dersampling reaches a maximum in the case of duelling frusta if light and the camera are looking toward each other. In
contrast, a uniform sampling distribution is achieved with a linear depth metric. Instead of the post-perspective depth,
the distance to the light source is sampled. Furthermore, light clip-space depth values do not vary across surfaces being
planar and parallel to the near plane of the view frustum of the light. In contrast, the distance to the light source increases
upon moving over surfaces without depth slope towards the edge of the view frustum of the light source. As a result,
the depth disparity between neighbouring surface points is considerably increased which, therefore, reduces incorrect
self-shadowing.

CHAPTER 3. THEORY 49

Figure 3.13: Incorrect self-shadowing arises from sampling geometry at different locations into the frame buffer and the shadow map.
This necessitates to vary the magnitude of depth bias locally. Left: Alternatingly the depth test incorrectly fails for the totally lit polygon
which results in disturbing moiré patterns. Right: Geometry rasterised into the shadow map is pushed away from the light source to
slightly increase depth values which solves incorrect self-shadowing. Note that the depth offset of the long polygon is larger than the
depth offset of the short polygon due to slope-based depth biasing (image adapted from [SWP10]).

Incorrect self-shadowing is considerably improved with Second-Depth Shadow Maps (SDSM) [WM94] which store
the depth of back-facing surfaces with respect to the direction of light. Therefore, the method is only applicable to closed
occluders which exhibit a manifold face topology where each triangle edge has one and only one neighbouring triangle.
During shadow map generation the faces on the frontside of objects are culled to capture the depth of the second-nearest
surfaces. Accordingly, on front-facing surfaces the reliability of the occlusion test increases if depth values of front-
and back-facing surfaces differ sufficiently upon being compared. Of course, incorrect self-shadowing reappears on back-
facing surfaces. This is circumvented by selectively applying the occlusion test to front-facing polygons only. Back-facing
polygons are simply shaded to be shadowed accordingly. Additionally, SDSM significantly reduce the creational cost of
the shadow map if sufficiently less geometry is rasterised into the depth image. However, the reliability of the depth test
depends on the thickness of occluders. Depth values of front-facing surfaces are essentially biased proportionally to the
thickness of occluders. This can cause imprecisions if occluders are exceptionally thin or thick.

Incorrect self-shadowing is considerably aggravated locally and globally if the shadow map is magnified due to pro-
jection aliasing, perspective aliasing or Percentage-Closer Filtering (PCF) [RSC87] with large filter kernels. Therefore, a
large magnitude of depth bias may be necessary to eliminate incorrect self-shadowing on polygons spanning large depth
ranges. As a result, contact shadows exhibit large gaps between occluders and receivers. This causes occluders to incor-
rectly appear to be floating and detached from receivers (peter panning). If occluders are closed, the necessary magnitude
of depth bias and, therefore, peter panning is effectively reduced with SDSM. In particular, it has to be noted that, PCF
requires the magnitude of depth bias to be proportional to the depth range over the entire filter window. However, con-
cerning PCSS, if the size of the PCF window varies for each screen pixel, choosing an appropriate magnitude of depth
bias for all window sizes is impossible (Section 2.2.1).

In order to enable effective reduction of incorrect self-shadowing with depth biasing, objects should exhibit a suf-
ficiently high depth disparity. Furthermore, objects should be correctly oriented with respect to the direction of light.
Hard edges easily introduce artefacts because the depth disparity is exceptionally small nearby the tip of the edge. As a
consequence, even small magnitudes of depth bias cause objectionable shadow gaps. Accordingly, thin objects should be
closed even if the back-facing geometry is invisible to the viewer. According to the direction of light, the outside of an
object should be turned away from the light and the inside of an object should be turned towards the light.

3.3 Hard Shadows

Hard shadows appear with three types of light sources: directional lights, point lights and spot lights. The visibility integral
simplifies to a binary visibility query V (x,y) between a surface point x and the light source at position y (Equation 3.13).
The visibility query is efficiently performed with shadow mapping to allow for real-time performance. The type of the
light source determines which type of projection transformation is being applied upon reprojecting from eye-space to
light-space (Equation 3.16). A directional light requires an orthographic projection. The rays of light are parallel because
a directional light source is considered to be infinitely far away from a surface point. A point light requires a perspective
transformation because the rays of light converge at a single point (Figure 3.14). A spot light is essentially a point light
whose rays of light are confined to emanate within a cone only. Of course, point lights turn into directional lights in the
limit if point lights are moved sufficiently far away from a surface.

CHAPTER 3. THEORY 50

Point light source Directional light source

Occluder . Occluder

M e
Hard shadow

Receiver Receiver

Figure 3.14: Hard shadows. Left: A hard shadow caused by a point light source. The rays of light converge at a single point being
located at the position of the light source. Accordingly, as the distances between light source, occluder and receiver change, the size
of the hard shadow on the receiver changes. Furthermore, planar surfaces exhibit a non-uniform distribution of light intensity across
the surface because the direction of incident light varies across the surface. Right: A hard shadow caused by a directional light source
being infinitely far away which causes rays of light to be parallel. Accordingly, as the distances between occluder and receiver change,
the size of the hard shadow on the receiver remains unchanged. Additionally, the direction of incident light remains unchanged between
different surface points. Therefore, planar surfaces exhibit a uniform distribution of light intensity across the surface.

A point light emanates light equally in all directions and, therefore, casts omnidirectional shadows. However, shadow
mapping is inherently applicable to directional lights and spot lights only whose view can be captured with a single depth
image. Therefore, the spherical view of a point light is covered by using six depth images to form a cube shadow map
[Ger04]. This is efficiently supported by contemporary GPUs. Each depth image is acquired with a perspective projection
having a field of view of 90°. The viewing transformation is setup such that the apex of each view frustum resides at the
position of the light source. The viewing direction of each view frustum is oriented towards the centre of the according
cube map face. Of course, multiple passes are required to generate a cube shadow map. This infers to rasterise geometry
repeatedly and redundantly. However, decomposing geometry into six unique subsets with respect to the six cube map
faces is non-trivial and, therefore, impractical for real-time rendering.

Hard shadows are introduced as sharp transitions between shadowed and lit regions while the shadow term V (x,y)
is binarily modulating the shading term over receivers (Equation 3.12). The shading term is efficiently and visually
plausibly evaluated in real-time with the modified BLINN-PHONG illumination model (Equation 3.10). The PHONG
illumination model applies to point lights and involves diffuse and specular reflection. Diffusely reflected light is reflected
uniformly in all directions and models the appearance of non-shiny surfaces. Specularly reflected light is reflected into
a single direction only and models the appearance of polished or glossy surfaces with specular highlights. Accordingly,
the PHONG illumination model distinguishes light incident from a point light source as being diffusely reflected I; and
specularly reflected I;. In addition, light impinging uniformly from all directions due to indirect illumination is treated
as ambient light 7,. The PHONG illumination model describes the interaction of light and matter with material properties
for each surface point x. The diffuse reflectivity coefficient p; determines the proportion of diffusely reflected light.
The specular reflectivity coefficient p; determines the proportion of specularly reflected light. The specular exponent
n determines the narrowness of the spread of specularly reflected light which conveys the shininess of the surface with
highlights of according size and smoothness. The ambient reflectivity coefficient p, determines the proportion of reflected
ambient light. Finally, the emissivity of a surface determines the amount of light /, that is emitted at a surface point upon
disregarding any other illumination. Of course, the PHONG illumination model is a local illumination model and captures
indirect illumination with an ambient term only. Therefore, the emitted light I, only biases the illumination locally at a
surface point without affecting the illumination at other surface points.

With the superposition principle, the PHONG illumination model becomes applicable to multiple light sources and
multiple colours of light, respectively. As a consequence of the linear nature of light transport, the light intensities are
calculated independently and accumulated for each light source and for each of the three colour components of light
(red, green, blue). Therefore, light intensities I and material properties p have three components with respect to the
three wavelengths of light. Accordingly, with ® denoting component-wise vector multiplication, the total illumination I
including occlusion at a surface point x with respect to k point lights at positions y; is defined by

k k
I=p, 0L +p;® Z V(x,yi)1ai (Nx-¥i) +p, ® Z V(x,yi) X (Ne - Hi)" + 1, (3.19)
i=0 i=0

CHAPTER 3. THEORY 51

where W; = x3;/||%}|| and H; = (¥; + ®)/||¥; + ©)|| for a given viewing direction ® (Figure 3.5). In equation 3.19,
I; is the incident intensity of light being diffusely reflected and measured as energy flux through the unit area being
perpendicular to the direction of light W. Therefore, the energy flux incident along direction ¥ through the unit area being
perpendicular to the surface normal N is I (N, - ¥). Furthermore, the incident light intensities I; and I, are taken to be
zero if the light is not shining from above the surface, that is if Ny -¥ < 0.

According to a spot light, the incident light intensities I; and I, are taken to be zero if the surface point is outside the
cone of illumination, that is if Wpe - ¥ < co8(Olewro ff). The cone is defined by the spot direction W;,,; and the spot cutoff
angle Olcz0 1 between W, and an edge of the lateral surface of the cone. In addition, the light intensities I, I; and I at
a surface point x inside the cone of illumination are moderated with the spot attenuation factor (W -W)¢ where c is the
spot light exponent. Therefore, the spot attenuation increases towards the perimeter of the base of the cone of illumination.

According to a positional light (point light and spot light), the light intensities I, I; and I; are moderated with the
distance attenuation factor 1/ (k. + kid + k,d*) where d = |x$|| is the distance to the light and k., k; and k, are the
constant, the linear and the quadratic attenuation factors of the light, respectively. The geometric term G(x,y) involves
the squared distance to the surface point x to the light at position y (Equation 3.3). At sufficiently large distances of
the light source from the surface, the attenuation changes in a quadratic way. In contrast, upon decreasing the distance
the attenuation decreases in a linear way. This changing behaviour is more generally reflected by the polynomial in the
distance attenuation factor.

According to a directional light, the computation of I considerably simplifies for two reasons. First, the halfway
vector H can be pre-computed because the rays of light are parallel. Therefore, the direction of light ¥ does not vary
between different surface points. As a consequence, planar surfaces exhibit a uniform distribution of intensity because the
diffuse and specular terms do not vary across the surface. Furthermore, the attenuation of light with respect to the distance
between the light source and the surface point is disregarded. A directional light is assumed to be infinitely far away.

According to projection aliasing, the PHONG illumination model implicitly reduces related artefacts. The intensity of
diffusely reflected light I; (N, - W) is very small if the surface normal N, is almost parallel to the direction of light ¥. The
intensity of specularly reflected light I, (N, - H)" is only large if projection aliasing is hardly appearing. Therefore, regions
which are susceptible to projection aliasing are sufficiently darkened to hide related artefacts.

Shadow mapping is confined to the view volume of the light for two reasons. First, secondary shadow images are
eliminated. As a consequence of a dual projection upon reprojecting from eye-space to light-space, inverted shadow
images appear along the negative view direction of the light (Equation 3.16). Second, performance improves considerably,
if the view volume is setup tightly (Section 3.5). Upon generating the shadow map less geometry needs to be rasterised.
Irrelevant shadow map queries for testing occlusion of fragments outside the view volume of the light are avoided.

3.4 Soft Shadows

Soft shadows appear with light sources which exhibit spatial extent. A surface point only receives a proportion of illu-
mination according to the partial view of the surface of the extended light source. The light source is totally occluded in
umbra regions. The light source is partially occluded in penumbra regions which introduce smooth transitions of partial
illumination between totally lit and umbra regions (Figure 3.15). As the size of a light source increases the size of the
penumbra of a shadow increases. Accordingly the size of the umbra decreases. If the light is sufficiently large the umbra
disappears. Furthermore, decreasing the distance between occluder and receiver while keeping the light fixed decreases
the size of the penumbra. If the distance between occluder and receiver is sufficiently small the penumbra almost dis-
appears. As a consequence, soft shadows exhibit contact hardening if the occluder touches the receiver. The size of the
penumbra decreases towards the junction of occluder and receiver. Accordingly, the size of the umbra increases. The
penumbra finally disappears in the limit upon approaching the junction. Contact hardening is indispensable for realistic
appearance of soft shadows. Important information is expressed about the spatial relation of objects, the size of lights, the
curvature of the surface of receivers and the silhouette of occluders.

Soft shadow computation obtains an estimate of the visibility integral by determining the fraction of the surface of an
extended light source that is visible from a surface point. The obtained visibility factor is used to modulate the shading
term accordingly (Equation 3.13). Visually plausible soft shadows including contact hardening are efficiently generated
in real-time by estimating the visibility integral based upon convolution (Equation 3.15). Percentage-Closer Soft Shadows
(PCSS) [Fer05] vary the size of a PCF kernel per screen pixel based on the distance between occluder and receiver.
Visually plausible soft shadows exhibiting contact hardening are generated. Only a single shadow map sampled from the
centre of the extended light source is required. Physically plausible soft shadows are generated by sampling the visibility
integral which is computationally intense (Equation 3.14). Several spot lights are placed non-uniformly on the surface of
the extended light source. At each surface point the visibility of each spot light is combined to obtain an estimate of the
partial view of the light source. In conclusion, offering two approaches for soft shadow computation enables to choose the
appropriate approach depending on different requirements and constraints (quality, performance, geometry detail, etc.).

CHAPTER 3. THEORY 52

Area light source Area light source Area light source

5

% Occluder > Occluder
3
% Occluder
; : Receiver " Receiver Receiver ; : :
Penumbra Umbra Penumbra Penumbra Penumbra Umbra Penumbra

Figure 3.15: Soft shadows. Soft shadows are introduced due to the partial view of an extended light source. The size of the penumbra
depends on the size of the light source and on the distance between the light source, the occluder and the receiver. Left: The area
light source introduces regions of penumbra which are smooth transitions between lit and umbra regions (fully occluded). Middle: As
the size of the light increases, the size of the penumbra increases and the umbra disappears. Right: Moving the occluder closer to the
receiver while keeping the light source fixed decreases the size of the penumbra and reintroduces the umbra.

3.4.1 Percentage-Closer Soft Shadows

Percentage-Closer Soft Shadows (PCSS) [Fer05] provide an estimate of the proportion of shadowing at a surface point
which is used to modulate the shading term. The visibility factor is obtained by filtering a shadow map being sampled
from the centre of an extended light source. The filter size is varied with respect to an estimate of the penumbra width
involving the distances between light source, occluder and receiver. The approach is based on the observation that accurate
soft shadows are obtained with convolution if light source, occluder and receiver are assumed to be planar and parallel
(Equation 3.15). In general, upon deviating from this assumption, acceptable results are often achieved if the size of
the filter is varied accordingly to generate penumbrae of varying widths and, therefore, shadows which exhibit contact
hardening. However, occluder fusion is handled incorrectly and shadows are considerably underestimated due to utilising
a single shadow map for sampling the occluder representation from the centre of an extended light source. In addition,
the performance of PCSS is limited by the cost of the filter stage necessary to achieve smooth transitions of penumbrae.
Therefore, PCSS is only applicable to small lights or scene configurations which avoid excessively stretched penumbrae
along steep receivers with respect to the direction of light.

PCSS estimate the width of a PCF window for each screen sample using a blocker search to mimic varying penumbra
widths in real-time. Accordingly, PCSS involves three steps: blocker search, penumbra width estimation and PCF (Fig-
ure 3.16). First, a blocker search obtains the average depth of potential blockers. The region of the shadow map to search
within R results from intersecting the shadow map near plane with the pyramid formed by the receiver point p (apex)
and the area light source (bottom). Accordingly, with the depth z, of the near plane of the view volume of the light source
and the assumption of a single planar receiver at the depth z, being parallel to a planar light source of width wy;gp,, the
width of the shadow map region R to search for potential occluders is obtained using the intercept theorem by
g (3.20)

r

Rs,widlh =

Within the search region, the depths of all samples which are closer to the light source than the receiver point p are
averaged to obtain the blocker depth z;,. Accordingly, if all depths within the search region are larger than or equal to the
depth z, of the receiver point p, the receiver point p is assumed to be totally lit and the subsequent stages of PCSS are
skipped (early out). Otherwise, with the assumption of a single planar occluder at the average depth z;, and a single planar
receiver at depth z, both being parallel to a planar light source of width wy;,,, the width of the penumbra wpenumbra 1S
estimated using the intercept theorem by

Zr—2p
Wpenumbra = Twlight (3.21)

CHAPTER 3. THEORY 53

Planar light source o Wight
Blocker \
|
search \ /

region

W/

; |
Shadow map 2 | /
o |/ Planar occluder o= Sample with
Q; “b | . z < Zr
|
| |
/ Sample | Cast penumbra
with z < 2, ‘ .
| | on planar receiver P
Sample with z > 2, wpenumbrﬁ

Sample withz > z;

Figure 3.16: Percentage-Closer Soft Shadows. The three stages of PCSS: blocker search, penumbra width estimation and filtering the
shadow map. Left: First, the shadow map is processed within the region R to average depths which are closer to the light than the
receiver point p. Middle: Then, assuming a single planar occluder at the average depth z;, and a single planar receiver at depth z, both
being parallel to a planar light source of width wy;qp,, the penumbra width W pepmprq is estimated using the intercept theorem. Right:
Finally, PCF is applied over a filter region whose width is derived from the penumbra width (image adapted from [EASW09]).

The penumbra width estimation ensures that the size of the penumbra changes accordingly as the distance between
light source, occluder and receiver changes. Therefore, shadows exhibit contact hardening. Finally, the shadow map is
filtered with PCF using a window width w ., which is determined from the estimated penumbra width wpenumbra, the
depth z, of the receiver point and the depth z,, of the near plane of the view volume of the light source by

W penumbra

Wilter = TZn (3.22)

Wrong shadows easily appear with PCSS because shadows obtained with PCF are physically incorrect. In order to
correctly calculate shadows, rays are cast from the surface to different locations on the extended light source to determine
the fraction of the area of the light source that is visible. In contrast, PCF evaluates visibility sampled with rays which are
cast from the light source through the texels of the shadow map. Therefore, PCF averages shadow contributions which
are physically dissociated. Furthermore, comparing a single reference depth value to depths across a totally lit and steep
surface easily leads to incorrect self-shadowing if some depth samples on the surface are considered to be closer to the
light than the reference depth. As a result, a large magnitude of depth bias is required. This introduces objectionable
peter panning at contact shadows. According to completely avoiding incorrect self-shadowing, the magnitude of bias
must be proportional to the depth range over the entire filter window. As a consequence of dynamically estimating the
filter window size at each receiver point, choosing a single magnitude of depth bias which applies for all filter sizes is
impossible [Lau07]. The magnitude of depth bias necessary is reduced with a Second-Depth Shadow Map [WM94] if the
geometry is closed. However, depth biasing is still required at surfaces which exhibit insufficient depth disparity.

Two noticeable consequences stem from using the distance to the light source as a linear depth metric in order to
reduce incorrect self-shadowing. First, on planar surfaces parallel to the light source the blocker search region increases
towards the edge of the view frustum of the light. In the limit, the search region is bounded by the size of the light source.
Second, assuming a single planar blocker and a single planar receiver both being parallel to the light source, the penumbra
width remains constant towards the edge of the view frustum of the light due to similar triangles.

As a consequence of approximating an occluder representation, which generally comprises multiple occluders at
different depths, by simply averaging depths, PCSS easily includes depth samples which do not contribute to occlusion
(Figure 3.17). Occluders are identified based on if their depth is closer to the light source than a single reference depth
while ignoring their true blocking contribution of the area of the light source. Therefore, occluders are easily identified
incorrectly if shadow map samples are included which are outside the light-point pyramid. This possibly leads to incorrect
estimates of the average blocker depth. As a result, penumbrae are too large due to overestimated PCF window sizes.

The applicability of PCSS is considerably limited to lights of small size for three reasons. First, for generating smooth
penumbrae the number of samples of the PCF kernel must be increased accordingly while increasing the size of the filter
window to avoid banding artefacts caused by abruptly varying degrees of shadowing. Furthermore, in the blocker search
stage taking too few samples within a large search region yields largely varying average blocker depths at neighbouring
receiver points. This introduces similar artefacts due to largely differing PCF window sizes. As a consequence, many

CHAPTER 3. THEORY 54

Planar light source

Blocker \ Blocker
search search
region region

Zb

o b

Figure 3.17: Errors of Percentage-Closer Soft Shadows. Left: In the blocker search step, the depths of the samples on the spheres are
averaged to incorrectly identify an occluder at depth z;,. In the filtering step, PCF of the three non-blocking red samples on the receiver
and one blocking black sample on the right sphere incorrectly yields partial illumination at the totally lit receiver point p. Right: PCF
of the two blocking black samples on the occluder and the two non-blocking red samples on the receiver incorrectly yields partial
illumination at the fully occluded receiver point p (image adapted from [EASW09]).

shadow map accesses may be required which considerably limits performance. Second, to avoid incorrect self-shadowing
with large PCF window sizes, a large magnitude of depth bias is necessary which considerably exacerbates peter pan-
ning. Third, light bleeding is introduced and penumbrae are overestimated. Errors that inherently appear with PCSS are
aggravated with large blocker search regions and large filter window sizes, respectively (Figure 3.17).

The performance and shadow quality of PCSS is considerably improved with stratified sampling [Ura05, Isi06]. The
performance of PCSS depends on the number of shadow map accesses in both the blocker search stage and the PCF stage.
Of course, sub-sampling introduces banding artefacts. Monte Carlo methods place samples randomly to obtain an estimate
of the expected result of a function over a complicated domain. Accordingly, the shadow map is sampled randomly. The
sample locations are varied between neighbouring surface points in order to vary the error over subsequent computations
of the visibility factor. This is achieved by randomly rotating a POISSON disk kernel to generate randomised PCF offsets
for each computation of the visibility factor. According to different kernel sizes, the sample locations for each kernel size
are pre-computed [DHO6] and transformed from the unit square to the unit disk [SC97] for preserving distances between
the samples. As a result, banding is replaced with less objectionable noise. The error is still present but unstructured
and visually pleasingly hidden. The beneficial unstructuring effect is considerably amplified if receivers are covered
with high-frequency textures. In summary, with stratified sampling, the number of samples can be reduced to increase
performance in favour of slowly degrading shadow quality. Furthermore, aliasing is considerably improved if penumbrae
are excessively stretched along receivers due to oblique light.

Of course, in comparison to a combination of PCSS with a linearised shadow map (Section 2.1.2), PCF-based PCSS
is considerably limited due to incorrect-self shadowing and costly filtering which infers poor performance. However, if
multiple occluders overlap with respect to the direction of light, a high depth complexity introduces objectionable light
bleeding in general with linearised shadow maps. This is a direct consequence of estimating the outcome of PCF with
a single depth sample using the CHEBYCHEV inequality (Equation 2.9). Increasing the number of samples reduces light
bleeding but reverts performance to the performance of PCF in the limit. Therefore, PCSS with pre-filterable shadow
maps are mainly applicable for large scenes which exhibit low depth complexity (i.e. sunlight shadows on terrain). In
summary, PCF-based PCSS are the generally more precise solution for complex and dynamic scenes which exhibit a small
range of depth (i.e. indoor scenes).

3.4.2 Progressive Sampling of Area Light Sources

Accurate soft shadows are obtained by estimating the visibility integral with sampling the area of the extended light source
(Equation 3.14). On the area of the extended light source a spot light is setup at every sample location. The individual hard
shadows are accumulated to yield a visibility factor for modulating the shading term at each surface point. The spot lights
exhibit the same properties concerning direction of light and view volume, respectively. Using a POISSON disk sampling
pattern, the spot lights are distributed randomly on the area to achieve a smooth transition of penumbrae. Of course, a
sufficiently large number of spot lights is required to yield smooth penumbrae. Given k spot lights, penumbrae exhibit

CHAPTER 3. THEORY 55

k — 1 levels of attenuation. Visually pleasing penumbrae require 256 or more levels if the light is large or penumbrae
are stretched across steep surfaces with respect to the direction of light. Accordingly, the area must be sampled densely
enough to yield accurate soft shadows. As a consequence, real-time performance is hardly achievable upon generating and
evaluating a large number of shadow maps. Furthermore, all shadow maps must be accessible during evaluation which
infers high memory consumption and high memory bandwidth.

In order to achieve real-time performance, the shadow maps are generated and evaluated progressively and the indi-
vidual results are accumulated over time. If the frame rate falls below interactivity (15 frames per second), a sampled area
light is replaced with a single spot light. Hence, the frame rate increases and allows for instantaneous interaction upon
changing the camera, the light source or geometry. If the scene remains unchanged between two frames, the soft shadow
of the area light source is progressively refined until all samples have been evaluated. Of course, if the camera, the light
source or geometry is changed between two upcoming frames, the refinement needs to be repeated.

3.5 Optimisation of Light View Volume Culling

The set-up of a light source involves to specify the extent of the view volume of the light with near and far. As a
consequence, light view volume culling confines costly shadow map accesses to fragments which are potentially lit (Fig-
ure 3.18). Furthermore, PCSS requires to move the near plane as close as possible to the geometry in order to maximise
efficiency of early out (Figure 5.11). The optimal distances are derived from a depth image storing light clip-space depth
values which were acquired with a very small near and a very large far. The minimum and maximum among these depth
values corresponds to the optimal near and far distances, respectively. According to a point light, the minimum and
maximum is derived from six depth images comprising the spherical view.

Ly Ly

Figure 3.18: Optimisation of light view frustum culling. A desk lamp with two spot lights illuminates a small office in a large building.
The optimal view volumes of the lights mostly confine illumination to potentially lit regions if the camera resides inside the room. Light
L emanates light beyond the lid of the desk into a corner of the room. Light £, only emanates light onto the lid of the desk. Hence,
upon rendering the view of the camera, performing occlusion tests for fragments beyond the lid is highly inefficient.

Of course, the optimisation is beneficial only if the performance gain outweighs the additional overhead. That is, if
a local light only illuminates a small part of a complex scene (e.g. desk lamp in an office of a power plant). Of course,
the optimisation must be repeated in two cases. First, if a dynamic view volume changes position, orientation or size.
Second, if dynamic objects enter or leave the view volume. Therefore, the optimisation is mostly beneficial to static
lights if dynamic objects are predetermined to never partly leave or enter the view volume which requires to reapply the
optimisation. As a consequence of using the distance to the light source as a linear depth metric, exactly deriving the
optimal distances directly from the shadow map is unfeasible. Given a spot light with a cutoff angle ¢ and a maximum
distance value d derived from its shadow map, the optimal far plane distance f would be in the interval dcos(¢) < f <d
which depends on the unknown angle between the direction of the spot light and the ray of light passing through the texel
storing d. Therefore, the exact determination is achieved with a different depth metric using light clip-space depth. Of
course, the shadow map needs to be recreated with the optimal near and far distances using the linear depth metric before
subsequent occlusion testing. In summary, the optimisation is a convenience tool to optimally set-up a light source without
the need for explicitly specifying near and far at the cost of additional overhead.

Chapter 4

Implementation

4.1 Apelles - A Library for GPU-Based Global Illumination

Apelles is an open library to serve as a base for real-time approximation of a solution of The Rendering Equation (Sec-
tion 3.1.1). Light sources are simply placed in a scene to compute convincing images exhibiting approximated global
illumination effects. These effects are generated by extending the common local illumination model with a combination
of GPU-friendly rasterisation techniques (programmable shaders, render-to-texture and multi-texturing). Rendering an
image involves a scatter pass, if necessary, and a gather pass. Apelles is easily usable in real-time applications which run
on consumer graphics hardware.

According to direct illumination, Apelles generates geometric shadows from opaque occluders by utilising Shadow
Mapping [Wil78]. The algorithm is well supported on contemporary hardware platforms. Therefore, shadow mapping
is state of the art for real-time applications. Furthermore, shadow mapping is applicable to arbitrary geometry and scene
configurations. However, the generated shadows are susceptible to aliasing artefacts.

Despite extensive research, a universal and robust algorithm for real-time shadow generation is still unavailable (Sec-
tion 2). As a consequence, Apelles supplies two different algorithms for soft shadow generation of area light sources. First,
Percentage-Closer Soft Shadows (PCSS) [Fer05] with randomly rotated POISSON disk kernels is utilised for real-time gen-
eration of visually pleasing soft shadows (Section 3.4.1). Of course, considerably faster approaches exist which allow to
pre-filter the shadow map such as Variance Shadow Mapping (VSM) [DL06] (Section 2.1.2). However, in small complex
scenes PCSS provide higher precision and more robustness for a considerably higher cost. Second, physically-correct soft
shadows are generated by randomly sampling the surface of an area light with several spot lights (Section 3.4.2). Despite
yielding the exact solution in the limit, sampling is computationally intense. Therefore, Apelles supplies a progressive
render mode which successively refines the resulting soft shadows for real-time applications.

Apelles is implemented in C++ and is built on the open standard and multi-platform OpenGL ecosystem. No additional
third-party libraries are required. All necessary auxiliary libraries are developed closely in accord with Apelles. The
auxiliary libraries supply side-effect free functionality without introducing any unnecessary ballast. Of course, other
well developed libraries exist which provide similar functionality. However, the auxiliary libraries can be independently
adapted, extended and, even more importantly, instantaneously be corrected in case of a recently identified defect. Hence,
an efficient and independent implementation for a wide range of different platforms is achievable.

At least Apelles requires graphics hardware being capable of OpenGL version 3.0 and OpenCL version 1.1. No
vendor specific OpenGL extensions are utilised. The guts of Apelles are mainly implemented against the OpenGL version
2.1 and the OpenGL Shading Language (GLSL) version 1.20. However, despite deprecating old and outdated features,
upcoming specifications and recent implementations of the OpenGL ecosystem strive to support existing applications via
compatibility profiles. Therefore, the risk of having to port Apelles to upcoming software and hardware platforms is
minimal.

The interface of Apelles is simple, concise and stable. As a consequence of applying abstraction precisely, the ar-
chitecture of Apelles exposes small sub-interfaces only. Each sub-interface aims to accomplish a single specific purpose
only. For example, given a light source and some geometry, images can be rendered instantly without requiring any fur-
ther customisation. Scatter data is implicitly updated if necessary only. In contrast, the update of specific scatter data is
controllable finely if a known part of the scene changed only. Several options are exposed to allow for fine-tuning the
tradeoff between performance and image quality. Light sources are specifiable using either a reduced set or the full set
of available parameters. A simple render callback mechanism ensures not to force the application to render the scene in
a particular way. Of course, providing universally applicable rendering semantics which optimally suit all applications is
non-trivial.

56

CHAPTER 4. IMPLEMENTATION 57

Application

R ender

Manager

Shader

Apelles

OpenCL

Figure 4.1: Apelles Overview. Apelles is situated in between the application and the OpenGL. The LightManager creates, destroys and
maintains the light sources. The RenderManager exposes the main interface of Apelles and houses the rendering logic. Additionally,
the RenderManager allocates and updates scatter data if necessary (shadow maps). The ShaderManager provides all library shaders and
offers to combine existing shaders with the library shaders.

Creating new applications with Apelles and integrating Apelles into existing applications is uncomplicated. The
modular architecture of Apelles strives for uniformity with OpenGL to minimise extra overhead upon learning and using
Apelles. Furthermore, Apelles is open for supplementary extension. The algorithms utilised by Apelles are easily combin-
able with existing algorithms (e.g. Displacement Mapping [SKUO8], Caustics Mapping [SKPO07], etc.). No optimisations
are applied which constrain the utilised algorithms to a reduced set of input data. Apelles inherently supports to combine
the utilised algorithms with existing algorithms. The semantics of the supplied light sources are closely related to the
semantics of the standard light sources of OpenGL. Several different render modes are supported: single image rendering,
offscreen rendering, progressive rendering and adaptive rendering. According to sampled area light sources, with pro-
gressive rendering the result image is progressively refined over consecutive frames to maintain real-time performance.
Adaptive rendering continuously monitors performance and reduces image quality once the performance dropped below
real-time.

Apelles comprises three main modules (Figure 4.1). First, the LightManager creates, destroys and maintains the
different types of light sources: directional lights, point lights, spot lights and area lights (Section 4.1.1). Second, the
RenderManager exposes the main interface and houses the rendering logic (Section 4.1.2). Additionally, the RenderMan-
ager allocates and updates scatter data (shadow maps) if necessary. Third, the ShaderManager maintains both library
and user shaders (Section 4.1.3). User shaders can be created by combining the library shaders with existing shaders
(Section 4.1.3.3).

4.1.1 Light Manager

The OpenGL inherently supports a maximum of eight light sources only which are of type directional, point or spot light.
No shadows are generated for any of these lights. Apelles supports an unlimited number of lights and generates both hard
and soft shadows depending on the type of the light source. The types of light sources supported by the LightManager
include

Global directional light Rays of light are parallel because the light is assumed to be infinitely far away.
Therefore, the amount of light reaching a surface point varies with respect to the direction of the surface
normal only. Shadows are hard.

Directional light Similar to global directional light but the light is confined to emanate within a specified
cuboidal volume. The cuboid is defined by a position, a square field of view and near and far plane
distances, respectively. The orientation of the cuboid is defined by an up vector. As a consequence, only
a part of the scene is illuminated. For example, if parallel light shines through a window into a room.

Point light Rays of light converge at the position of the light source. Light emanates equally in all directions
and is attenuated with increasing distance. Shadows are hard.

CHAPTER 4. IMPLEMENTATION 58

Spot light While being similar to point light, the light is confined to emanate within a conical volume. The
cutoff angle specifies the angle between the direction of light and the lateral surface of the cone of
illumination. The exponent specifies the attenuation of light towards the perimeter of the base of the
cone.

Area light While being similar to spot light, shadows are soft depending on the size of the light. PCSS is
utilised to quickly generate soft shadows which harden on contact convincingly. A POISSON disk kernel
is randomly rotated to generate randomised PCF offsets. The spot attenuation factor (spot exponent) is
varied implicitly depending on the distance to the light source to simulate a soft spot iris which exhibits
a varying penumbra depending on the distance to the light source.

Sampled area light The planar surface of the light source is randomly sampled with several spot lights.
While being computationally intense, dense sampling yields accurate soft shadows in the limit. The
spot lights are distributed randomly on the surface of the light source utilising a POISSON disk sampling
pattern. As a consequence of a sufficiently large number of spot lights, accurate soft shadows are
generated by accumulating the individual shadows of the spot lights. The softness of the shadows
depends on the size of the planar surface of the light which is spanned by the samples and orthogonal to
the direction of light.

The light sources are implemented by applying the Interface Segregation Principle (ISP) [Mar96] (Figure 4.2). Despite
sharing several properties, light sources are considerably different. All light sources can be enabled and emit coloured light
(ambient, diffuse, specular). SpotLight, PointLight, Arealight and SampledArealight have attenuation (constant, linear,
quadratic). PointLight lacks a direction because light is emanated in all directions equally. Arealight and SampledAre-
aLight lack an exponent (spot attenuation factor) because the soft spot iris is generated implicitly. GlobaDirectionalLight
has a direction only because light shines throughout the entire scene. Directionallight confines emanation of light to a
cuboid with a square cross section. The cuboid is specified by position, field of view, and near and far plane distances. The
orientation of the the cuboid with respect to the direction of light can be specified explicitly with an up vector. In contrast,
the up vector of other light sources is computed implicitly upon creation (SpotLight, AreaLight, SampledAreaLight and
GlobalDirectionalLight). SampledArealight has samples which specify the positions of spot lights. The spot lights are
randomly distributed on a planar surface which is centred at the position of SampledAreal.ight. The surface is orthogonal
to the direction of light. The samples have equal direction, cutoff, near and far plane distances, respectively. The size
specifies the distance between the samples and the position of SampledAreaLight. As a consequence of applying the ISP,
the implementation is centralised in one single class LightImpl which eases reusing common code. Clutter of code over
several classes and duplication of code is avoided. Furthermore, supplementary changes need to be done to a single class
only.

Similar to the implementation of light sources, the ISP is applied to unify the implementation of the shadow maps in
ShadowMapImpl. A ShadowMap is essentially a DepthTexture of squared size with an internal format of GL_R32F. The
DepthTexture stores the distance to the light source along a ray of light passing through a texel (linear depth metric). The
32 bit floating-point format of the DepthTexture considerably improves the accuracy of the occlusion test and numerical
stability; particularly for PCSS. Each light source is associated with the according shadow map. The associated shadow
map is invalidated and implicitly updated afterwards, once the properties of a light change (except colour, Attenuation,
exponent and size of AreaLight). For occlusion testing during gathering, the ShadowMap needs to be bound to a texture
addressing unit (TAU). Therefore, the number of available TAUs constrains the number of light sources that can be
rendered in a single pass. In contrast, the depth update of a ShadowMap does not require the ShadowMap to be bound to
a TAU.

Shadow generation of multi-sample lights such as SampledArealight require a shadow map for each sample. The
SampledArealight is associated with a ShadowMapArray which aggregates several equally sized depth textures (layers)
in a texture array. As a consequence, all types of light sources only require a single TAU to address the associated shadow
map for occlusion testing during gathering. If the number of layers is smaller than the number of samples, multi-pass
rendering is necessary. In contrast, single-sample lights only require a single shadow map. Although the omnidirectional
CubeShadowMap of a PointLight is formed by six depth textures, occlusion testing requires a single depth sample only.

According to AreaLight, the PCSS quality setting determines the visual quality of the penumbrae. Large penumbrae
require higher order filters with more samples to effectively hide banding artefacts. As a consequence of excessively
accessing the shadow map, performance decreases dramatically with higher quality settings.

Creation of light sources is simple. All light sources are creatable by specifying either the full or a reduced parameter
set. As a consequence of closely relating the design and creation of light sources to OpenGL, the usability and integrata-
bility of Apelles is considerably enhanced. For example, parameters, which are omitted at the creation of a light source,
are implicitly initialised with OpenGL defaults.

CHAPTER 4. IMPLEMENTATION 59

Attenuation Light L g Color
constant enabled ambient
linear diffuse
quadratic A specular
] |
SpotLight / \ PointLight\‘ ArealLight SampledArealLight
position position position samples GlobalDirectionalLight
direction near direction position - -
up vector far up vector direction direction
cutoff cutoff up vector
exponent N size cutoff ZF N
near near size
far far near DirectionalLight
far
A A position
direction
up vector
field of view
near
far
Lightimpl
ShadowMapimpl
PCSS quality
v p/ \4 Vv
faces | CubeShadowMap layers | ShadowMapArray
faces 7 layers
6 1. 4 /
DepthTexture ShadowMap
width size
height texture unit
GL_R32F depth texture
bool islnvalidated()
Light getLight()

Figure 4.2: Apelles architecture. Light sources. Despite sharing several properties, light sources are considerably different. The
Interface Segregation Principle (ISP) [Mar96] is applied to unify the implementation of different light sources in LightImpl. Following
the same intent, the ISP is applied to implement the associated shadow maps of the light sources in ShadowMapImpl. As a consequence,
clutter of code over several classes is avoided which considerably facilitates reusing common code.

CHAPTER 4. IMPLEMENTATION 60

The LampLighter aids in creating and modifying light sources instantly. The creation of GlobalDirectionalLight
requires the specification of the bounding sphere of the scene. The LampLighter provides methods to setup GlobalDirec-
tionalLight by specifying the bounding sphere, the bounding box or a list of vertices. According to light sources having
direction, a new direction of light is settable by specifying pitch and yaw. According to SampledArealight, the Lamp-
Lighter allows to generate the positions of the randomly distributed spot lights on both circularly or rectangularly shaped
and planar surfaces. The positions can be generated from two-dimensional POISSON disk distributions of different sizes.
The distributions are pre-computed [DHO6] and are statically added to the code base of Apelles for avoiding costly on
demand generation while initialising or executing Apelles. As a consequence, the individual hard shadows of the spot
lights unify naturally to generate accurate soft shadows with smooth transitions of umbrae and penumbrae. According to
progressive rendering, the positions of the spot lights are sorted with respect to the increasing distance to the centre of the
surface of the extended light source. As a consequence, penumbrae grow naturally from inner to outer penumbra while
progressively refining soft shadows over consecutive frames. Finally the LampLighter enables to efficiently optimise the
view volume culling of all types of light sources using an OpenCL-enabled algorithm (Section 4.1.4).

4.1.2 Render Manager

The RenderManager is at the heart of Apelles (Figure 4.3). Each time a light source is created or destroyed the Render-
Manager is notified by the LightManager. The according ShadowMap of the Light is allocated or deleted, respectively.
For decoupling subject and observer, all notifications are implemented utilising the Observer Pattern [GHIV94]. After
creating light sources, rendering is initiated by calling render(DrawCallback). The callback function is called multiple
times, if necessary, during both scattering and gathering.

ShadowMap

size
texture unit
depth bias

lights

— bool isinvalidated()
invalidates /’/ Light getLight()
g N

-
// gather 1

scatter

1
1
RenderManager |-~ i
1

render(DrawCallback)
geometryChanged()
geometryChanged(Light)
getShadowMap(Light)
setRenderMode()
setColorMode()

ShadowMapRenderer

notifies if light is S~
created, modified \\gather
or destroyed >~

render(ShadowMap)

scatter

<

LightManager

Light

Light create()
destroy(Light)

bool isEnabled()
setEnabled()

getLights()

ShaderManager

Shader getScatterShader()
Shader getGatherShader()
use(Shader)

unuse()

gather scatter

Figure 4.3: Apelles Architecture. Overview. The LightManager notifies to the RenderManager if a Light is created or destroyed. The
RenderManager allocates or deletes the ShadowMap being associated with the Light. Calling render(DrawCallback) initiates rendering
which is divided into scattering and gathering. During scattering invalidated ShadowMaps are updated by the ShadowMapRenderer.
ShadowMap is implicitly invalidated if the according state of ShadowMap or Light changes. In contrast, ShadowMap is explicitly
invalidated if the geometry has changed completely or partly. During gathering the result of the occlusion test modulates the result of
direct illumination computations. The ShaderManager provides the shaders for both scattering and gathering.

CHAPTER 4. IMPLEMENTATION 61

The callback function must not compromise the state of the GL set by Apelles. First, the TAUs used to address scatter
data must be unchanged. Therefore, Apelles provides a TextureUnitAcquirer to mark TAUs as occupied by textures of the
application before rendering is initiated. Of course, at least one unoccupied TAU must be available for initiating rendering.
Second, positional invariance must be ensured for the vertex shader output over both several scatter and gather passes. As
a consequence of multi-pass rendering, viewing, projection and viewport transformations must be computational invariant.
The current frame buffer object must be unchanged for both scattering and gathering. Third, culling must be disabled in
scattering, otherwise depth information with respect to the direction of light for subsequent occlusion testing in gathering
is lost. In particular, if Second-Depth Shadow Mapping (SDSM) [WM94] is enabled, front-faces of closed surfaces are
culled in scattering. Accordingly, culling of front-faces must always be disabled in gathering for both depth biasing and
SDSM. Finally, Apelles only saves and restores the necessary states of the GL before and after of scattering to minimise
possible losses in performance due to obsolete state savings.

Rendering is divided into scattering and gathering. During scattering the invalidated ShadowMap of each Light is
updated using the ShadowMapRenderer. The ShadowMap is implicitly invalidated if an according state change of Light
or ShadowMap requires to update the ShadowMap. Additionally, all shadow maps can be explicitly invalidated by calling
geometryChanged() if geometry has changed. If the geometry within the view volume of a specific Light has changed
only, the affected ShadowMap is explicitly invalidated by specifying the according Light with geometryChanged(Light).
During gathering the ShadowMap of each Light is queried to perform the occlusion test for modulating the result of the
direct lighting computations. Of course, rendering ignores lights which are disabled. The ShaderManager provides the
necessary shaders for both scattering and gathering.

For broadening the range of applications in which Apelles can be used, the RenderManager provides different render
and colour modes. With non-progressive rendering for each call to render() a single frame is rendered which shows shad-
ows for all enabled light sources. In progressive rendering mode, soft shadows are successively refined over consecutive
frames. The first frame only shows hard shadows for all light sources. Subsequent frames add soft shadows iteratively
until the final frame which equals the frame being rendered with non-progressive rendering. Therefore, non-progressive
rendering requires the application to call render() repeatedly until rendering has finished. Accordingly, RenderManger al-
lows to query the render progress and to register an observer being notified once rendering finished. Progressive rendering
is combinable with adaptive rendering to maintain real-time performance. The frame rate is monitored and image quality
is reduced accordingly. On demand adaptive rendering reduces the size of shadow maps, the size of PCF kernels and the
number of samples of a SampledAreaLight being rendered in a single pass. The size of PCF kernels is changed in three
steps which define the quality of the soft shadows of ArealLight generated with PCSS (high, medium and low quality).

The colour mode of Apelles enables to render separate specular colour. Single colour mode computes colour as a
combination of ambient, diffuse, specular and emissive terms. In separate specular colour mode, first, a primary colour
is rendered which combines the ambient, diffuse and emissive terms. Then, the secondary colour is rendered which
contains the specular term only. As a consequence of the increased flexibility in separately outputting specular colour,
specular highlights are applyable after texturing. Hence, specular highlights exhibit the colour of the light source instead
of the colour of the texture. Of course, separate specular colour mode infers to render additional passes. Therefore, the
RenderManager additionally supports to generate a light map using offscreen rendering.

In scattering the RenderManager updates invalidated ShadowMaps by using the ShadowMapRenderer (Figure 4.4).
ShadowMap is invalidated if ShadowMap, Light or geometry inside the view volume of Light has changed. The Shad-
owMapRenderer uses a frame buffer object to efficiently write the distance to the light source into DepthTexture which has
the internal format GL_R32F (linear depth metric). As a consequence of using GL_R32F, the accuracy of the occlusion
test and numerical stability is considerably improved; particularly for PCSS. Therefore, Apelles requires at least OpenGL
version 3.0. The necessary viewing and projection transformation is established from the associated Light. Therefore,
ShadowMap is invalidated if properties of Light have changed which affect the viewing and projection transformation
(position, direction, up vector, cutoff and near and far plane distances). The viewport transformation is established from
the ShadowMap. Therefore, ShadowMap is invalidated if the dimensions of the DepthTexture have changed (size).

If depth biasing is enabled, depth values are biased with respect to the local depth slope and a constant bias. Therefore,
ShadowMap is invalidated if depth biasing values have changed (slope and const bias). If second-depth shadow mapping
is enabled the depth of back-facing surfaces with respect to the direction of light is written to the ShadowMap only.
Therefore, ShadowMap is invalidated upon enabling or disabling second-depth shadow mapping. As a consequence of
back-face culling, the workload of the geometry stage during scattering is considerably decreased. However, it has to
be emphasised that second-depth shadow mapping is applicable if and only if geometry is closed. Otherwise, occluders,
which do not exhibit thickness, do not cast any shadows.

CubeShadowMap of PointLight is rendered in six scatter passes. One pass is rendered for each face of the cube forming
the omnidirectional shadow map. Of course, if geometry shaders are utilised, a cube shadow map can be rendered more
efficiently in a single pass only. However, significant performance boosts are inhibited on most hardware platforms due to
feeble geometry processing units; particularly on Shader Model 4 hardware. ShadowMapAurray is rendered as many times

CHAPTER 4. IMPLEMENTATION 62

invalidates if light modified ShadowMap
or geometry changed
RenderManager - size
fapes | texture unit DepthTexture
render(DrawCallback) 190t | depth slope b!as - width
geometryChanged() depth const bias height
geometryChanged(Light) N GL R32F
- setlnvalidated(bool) =
getShadowMap(Light) :“““““' b———===>> hool islnvalidated() .
\l/ ! Light getLight() 6 1.
ShadowMapRenderer ﬁ R

render(ShadowMap)
render(CubeShadowMap)
render(ShadowMapArray) CubeShadowMap ShadowMapArray
useDepthBiasing()
useSecondDepthShadowMapping() faces _ faces layers layers

i i i i setlnvalidated(bool) setInvalidated(bool)

i i i L————->! bool isInvalidated() ——> bool isInvalidated(

! ! ! Light getLight() : Light getLight()

Lo ,

A —

[

i i

' :

I

e TR PointLight | L_>fsampledAreaLight

gl Light

Figure 4.4: Apelles Architecture. Scatter. ShadowMapRenderer updates ShadowMaps being invalidated due to a change of geom-
etry, a ShadowMap or the associated Light. For rendering eye-space depth values to ShadowMap, ShadowMapRenderer establishes
the viewing and projection transformation from the associated Light. The viewport transformation is established from ShadowMap.
With depth biasing enabled, depth is biased depending on local depth slope and constant bias. With second-depth shadow mapping
enabled, depth of back-facing surfaces is written to ShadowMap only. The CubeShadowMap of a PointLight is rendered six times. The
ShadowMapArray of a SampledAreaLight is rendered as many times required to render all layers of the texture array.

required to render all layers of the texture array of DepthTexture. Therefore, ShadowMapArtray is invalidated if the number
of layers is changed. If the number of layers is smaller than the number of samples of the associated SampledArealight,
in the subsequent gather pass the occlusion test can be performed for a subset of samples only. As a consequence,
the number of layers constrains the number of passes of both scattering and gathering required to completely render
SampledArealight. Furthermore, if the number of layers is unequal to the number of samples, the ShadowMapArray
remains invalidated always.

Using the distance to the light source as a linear depth metric for all light sources infers considerable improvements
for shadow mapping. First, depth disparity is introduced across polygons without depth slope which supports to lessen
incorrect self-shadowing. Second, shadow mapping remains applicable if the view volume of the camera is skewed. Third,
distribution of depth along the depth range becomes uniform if the reprojection from eye-space to light-space involves a
perspective projection (spot light, point light, area light). Finally, depth is not mapped to [0, 1] with respect to the near
plane and the far plane. Therefore, both depth biasing and the accuracy of the occlusion test become independent of the
near and far plane distances. Hence, the depth biasing setting no loner must be readjusted if the distance between the near
plane and the far plane has changed. Furthermore, the near and far planes no longer have to be moved as close as possible
to the geometry. However, PCSS still requires to move the near plane as close as possible in order to enable an efficient
early out. Of course, computing the distance to the light source per fragment is more expensive. However, the loss in per-
formance is negligible; particularly on Shader Model 4 hardware platforms and beyond. Furthermore, the evaluation of the
attenuation of light already requires to compute the distance to the light source in gathering (spot light, point light and area
light). According to AreaLight, PCSS requires to compute the distance to the light source as well (penumbra width estima-
tion). As a consequence of using GL_R32F as internal format of DepthTexture, a noticeable but negligible inconsistency
arises concerning depth testing during scattering. The z-buffer has the internal format GL_DEPTH_COMPONENT32F.
Therefore, depth values of the z-buffer are not converted to fixed-point but are clamped to the range [0,1]. As a conse-
quence, the accuracy of depth in the z-buffer differs from the accuracy of depth in the DepthTexture. The inconsistency
is only avoidable if the DepthTexture uses the internal format GL_DEPTH_COMPONENT32F_NV. However, this would
confine Apelles to run on NVIDIA hardware only.

CHAPTER 4. IMPLEMENTATION 63

RenderManager RenderCore RenderQueue
render(DrawCallback) render(DrawCallback) prepare()
getRenderProgress() renderProgressively(DrawCallback)
geometryChanged() getRenderProgress()
geometryChanged(Light) setColorMode() lights
getShadowMap(Light) notifies if enableOffscreenRendering() 9
setRenderMode() rendering finished
setColorMode() ping, pong, pang RenderJob
enableOffscreenRendering() 3
getLightMap() render(DrawCallback)

OffscreenBuffer | | OffscreenBuffer bocﬁsDone() K

framebuffer object
texture

. It
texture unit ﬂﬁ HeavyRenderJob| | LightRenderjob |
bindFBO() \
SampledAreaLight

bindTEX()
unbind()

ShadowMap

texture unit

bool isInvalidated() <

Figure 4.5: Apelles Architecture. Gather. RenderCore prepares and processes a queue of RenderJobs. A LightRenderJob comprises
single-sample Lights and, therefore, is done after one call to render(). A HeavyRenderJob comprises a single SampledArealight which
requires several calls to render() if the number of samples is larger than the number of layers of the associated ShadowMapAurray.
The offscreen buffers ping and pong are used to accumulate the result of done RenderJobs in ping to the final frame. According to
progressive rendering, OffscreenBuffer pang is necessary to accumulate intermediate results of SampledArealights in pong.

In gathering RenderCore processes RenderJobs on a RenderQueue to render a frame exhibiting shadows for all enabled
Lights (Figure 4.5). The concept of aggregating RenderJobs in a RenderQueue is a direct consequence of applying the
Command Pattern [GHIV94]. Upon the preparation of the RenderQueue, a RenderJob is created for each enabled Light.
After calling render(DrawCallback), a RenderJob is removed from the RenderQueue if the job is done. A LightRenderJob
comprises several Lights whose shadow generation only requires a single pass (single-sample lights). Hence, LightRen-
derJob is a lightweight job in the sense that the job is done after a one call to render(). The number of single-sample lights
for which shadows can be generated in a one pass is constrained by the number of free TAUs to address the according
shadow maps. All types of shadow maps only require a single TAU for being bound. As a consequence, each Light
requires a TAU to address the associated ShadowMap. If more single-sample lights shall be rendered than free TAUs are
available, several render jobs are created (multi-pass rendering). In contrast, a HeavyRenderJob comprises only a single
SampledArealight (multi-sample light). Heavyweight render jobs require several calls to render() until the job is done.
The number of necessary calls depends on the number of layers of the ShadowMapArray. Therefore, HeavyRenderJob
accumulates the result of each pass in an OffscreenBuffer. Accordingly, the results of done RenderJobs are accumulated
to the final frame by utilising ping-pong offscreen rendering.

Suppose, for example, that a SpotLight SL, a DirectionalLight DL, a PointLight PL and an Arealight AL with PCSS
shall be rendered. Additionally, a SampledAreaLight SAL%% with 32 samples and a ShadowMapArray with 32 layers
shall be rendered. Only two free TAUs are available which implies only two single-sample Lights are renderable in a
pass (scatter and gather). Therefore, the RenderQueue aggregates two LightRenderJobs (LRJ) and one HeavyRenderJob
(HRYJ). Processing of the RenderQueue LRJ(SL,DL) LRJ(PL,AL) HRJ(SAL%%) with ping-pong offscreen rendering runs as
follows

RENDERNONPROGRESSIVELY (SL, DL, PL,AL,SAL33,2 TAU)
SCATTER(SL,DL)

ping < GATHER(SL,DL)

SCATTER(PL,AL)

pong < ping + GATHER(PL,AL)

SWAP(ping, pong)

SCATTER(SAL33)

pong < GATHER(SAL33)

SWAP(ping, pong)

framey < ping

O 000 N AW~

Line 2, the result of the gather pass is rendered into the offscreen buffer ping. Line 5 and 8, swapping ping and pong
ensures that the final result accumulates in ping always. Of course, a redraw is initiated if the viewing, projection or
viewport transformation of gather has changed between two frames. If ShadowMaps are not invalidated, scattering is
skipped and only gather passes are rendered. Note that ShadowMapArray remains invalidated always if the number of
layers is smaller than the number of samples of the associated SampledAreaLight.

CHAPTER 4. IMPLEMENTATION 64

Progressive rendering distributes the high computational cost of sampling of a SampledArealight over consecutive
frames evenly. The first frame exhibits hard shadows for all Lights only. For Arealights PCSS is skipped and a hard
shadow is rendered as if the Arealight would have been a SpotLight. For SampledAreaLight the closest sample with
respect to the position of the light source is rendered. Then, only subsets of samples are being rendered to successively
refine soft shadows until all samples were rendered. The samples are sorted with respect to the increasing distance to
the position of SampledArealight. Hence, penumbrae grow naturally from inner to outer penumbra while rendering
progressively.

With progressive rendering, an AreaLight requires two passes because PCSS is rendered in the second pass. Hence, as
a consequence of utilising the command pattern for RenderJobs, AreaLight is wrapped in a HeavyRenderJob to implement
the progressive rendering behaviour. In contrast, Arealight is wrapped in a LightRenderJob to implement non-progressive
rendering behaviour. Similar to non-progressive rendering, a redraw is initiated if the viewing, projection or viewport
transformation of gathering has changed between two frames. Unfinished HeavyRenderJobs are discarded and a new
RenderQueue is prepared.

Suppose, for example, that a SpotLight SL, a DirectionalLight DL and a PointLight PL shall be rendered. Addition-
ally, a SampledAreaLight SAL%2 with 32 samples and a ShadowMapArray with 8 layers shall be rendered. Therefore,
to be completely rendered the SAL%2 requires four passes (scatter and gather). Only two free TAUs are available which
implies only two single-sample Lights are renderable in a pass (scatter and gather). Therefore, the RenderQueue aggre-
gates two LightRenderJobs (LRJ) and one HeavyRenderJob (HRJ). Processing of the RenderQueue LRJ(SL,DL) LRI(PL)
HRIJ (SALgZ) with ping-pong offscreen rendering runs as follows

RENDERPROGRESSIVELY (SL, DL, PL, SALS,,2 TAU)
1 SCATTER(SL,DL)
2 ping < GATHER(SL,DL)
3 SCATTER(PL)
4 pong < ping + GATHER(PL)
5 SWAP(ping, pong)
6 SCATTER(SALL,)
7 framey < ping + GATHER(SAL},)
8 SCATTER(SAL]))
9 pong < GATHER(SALS,)
10 frame; < ping + pong
11 SCATTER(SALS,)
12 pang + %pong + %GATHER(SAL%Z)
13 SWAP(pong, pang)
14 frame, < ping + pong
15 SCATTER(SALS,)
16 pang < %pong + %GATHER(SAL%Z)
17 SWAP(pong, pang)
18 frames < ping + pong
19 SCATTER(SALS)
20 pang < %pong + %GATHER(SAL%Z)
21 SwAP(pong, pang)
22 pang < ping + pong
23 SWAP(ping, pang)
24 framey < ping

Line 6 and 7, as a consequence of rendering hard shadows to the first frame, one scatter pass and one gather pass of
the first sample suffices. Line 8, if the viewing, projection and viewport transformation of gathering remain unchanged,
progressive rendering continues by scattering the seven remaining samples. Line 9, eight samples are gathered to pong.
Line 10, all hard shadows (ping) and a soft shadow sampled with eight samples (pong) are rendered to the second frame.
Line 12, 16 and 20, previous intermediate results and the current result of sampling are accumulated in equal parts (pang)
to be displayed in intermediate frames. Line 7, 10, 14, 18 and 24, if the viewing, projection or viewport transformation of
gathering has changed, a redraw is initiated.

CHAPTER 4. IMPLEMENTATION 65

RenderManager RenderCore
render(DrawCallback) render(DrawCallback)
getRenderProgress() renderProgressively(DrawCallback)
geometryChanged() getRenderProgress()
geometryChanged(Light) ez ____________ | setColorMode()
getShadowMap(Light) notifies if enableOffscreenRendering()
setRenderMode() rendering finished T
setColorMode() I .
:notlﬂes if frame finished
resetAdaptiveRendering() '

AdaptiveRenderController CounterAction

measurePerformance() P effectiveness

applyCounterAction()

undoCounterAction() apply()
undo()

reset()

decreases lincreases

Y |
CubeShadowMap ShadowMap ShadowMapArray

size > size <FH—size
PCSS quality layers

Figure 4.6: Apelles Architecture. Adaptive rendering. The AdaptiveRenderController is notified by the RenderCore if rendering a
frame finished to measure the frame rate. If the frame rate drops below real-time, CounterActions are applied. The size of ShadowMaps,
the PCSS quality and the number of layers of ShadowMapArray are decreased. If the frame rate raises sufficiently high due to a
significant reduction of workload between two calls of render(), CounterActions are undone. Resetting the AdaptiveRenderController
undos all previously applied CounterActions.

Adaptive rendering measures the frame rate and applies CounterActions once the frame rate dropped below real-time
(Figure 4.6). The concept of CounterAction stems from the requirement of undoing the CounterAction if the frame rate
again raises sufficiently high. Therefore, the implementation of CounterAction utilises the Command Pattern [GHIV94].
The AdaptiveRenderController is notified by the RenderCore every time a frame finished to measure the time between two
calls of render(). Another option is to only measure the time the RenderCore needs to render a frame. However, the latter
option ignores time consumed by user processes between two calls of render(). Therefore, the first option is implemented.

As a consequence, adaptive rendering is additionally sensitive to workload in-between calls of render() instead of
workload inside render() only. Measuring the frame rate is considerably improved by reducing spikes in the signal with
a Weighted Moving Average (convolution with a lowpass filter). A greater weight is assigned to more recent frames with
linearly decreasing weights. As a consequence, the filtered signal exhibits an improved balance between sufficient signal
response sensitivity and reduction of spikes which are introduced due to GPU command queue caching.

Undoing of CounterActions carries the risk of a feedback loop where the same CounterAction is applied and undone
repeatedly. As a consequence, the CounterAction remains applied after the sequence apply, undo, apply has been detected.
Furthermore, if the last three CounterActions were ineffective, no further CounterActions are applied. The effectiveness
of CounterAction records the difference in frame rate after the CounterAction has been applied. Therefore, after applying
a CounterAction the frame rate is given a setting time to reflect the effect of the CounterAction before continuing to
measure the frame rate.

In essence, applying CounterActions reduces image quality. The workload of scattering is considerably reduced by
decreasing the size of ShadowMaps. The workload of gathering of Arealights is considerably reduced by decreasing
the size of PCF kernels (PCSS quality). Hence, image quality is traded for less texture accesses. The workload of
both scattering and gathering of SampledAreaLlight is reduced by decreasing the number of layers of the associated
ShadowMapArray. Of course, after CounterActions have been applied, the application is responsible for keeping freed
VRAM free to allow for undoing the CounterActions once the frame rate raised sufficiently high again. Other options to
raise the frame rate were examined but not implemented due to considerable visual defects. First, postponing scattering
for every second frame already causes shadows to fidget which visually disconnects occluders and receivers. Second,
replacing a SampledAreaLight with an Arealight requires to setup an appropriate magnitude of depth bias. The magnitude
depends on the area size and the current scene configuration. Finally, frequent optimisation of view volume culling with
an OpenCL-enabled algorithm easily outweighs achievable gains in performance.

L T

CHAPTER 4. IMPLEMENTATION 66

4.1.3 Shader Manager

The ShaderManager creates and compiles the shaders necessary for scattering and gathering. The source of all shaders
is written against the OpenGL Shading Language version 1.20. If a shader is modified after creation, notifications are
fired utilising the Observer Pattern [GHIV94]. Additionally, the ShaderManager enables to combine the shaders of
Apelles with existing shaders to yield customised user shaders. For facilitating the management of user shaders, the
ShaderManager aggregates user shaders.

In scattering, the distance to the light source is computed and optionally biased. Using a frame buffer object the
distance is directly written to the according texture with the internal format GL_R32F.

Listing 4.1: Code of the scattering shader program for writing depth into ShadowMap.

/
// Vertex Shader
varying vecé4 vpos_ec_;
void main ()

{

vpos_ec_ = gl_ModelViewMatrix * gl_Vertex;
gl_Position = ftransform ();
}
/
// Fragment Shader
uniform float DEPTH_SLOPE_BIAS;
uniform float DEPTH_CONST_BIAS;
varying vec4 vpos_ec_;
void main ()

{

float depth = length(vpos_ec_.xyz);
depth += DEPTH_SLOPE_BIAS * (abs(dFdx(depth)) + abs(dFdy(depth)));
gl_FragColor = vec4(depth + DEPTH_CONST_BIAS);

Line 17 and 18, if depth biasing is disabled, DEPTH_SLOPE_BIAS and DEPTH_CONST_BIAS are set to zero.
Accordingly, on specific hardware platforms line 17 is potentially optimised away due to constant propagation and constant
folding (e.g. NVIDIA).

In gathering lighting computations are performed depending on the type of RenderJob. According to LightRender-
Jobs, lighting computations are performed for directional lights, point lights, spot lights and area lights. According to
HeavyRenderJobs, lighting computations are performed for sampled area lights. Hence, the main program of the gath-
ering shader declares a function computeLighting(). Different implementations of the function are achieved flexibly by
attaching the according fragment shader. Each fragment shader defines a particular implementation of the function.

Listing 4.2: Code of the main gathering shader program.

/
// Vertex Shader
varying vec4 vpos_ec_;
varying vec3 N_;

void main(void)

{

vpos_ec_ = ¢gl_ModelViewMatrix x gl_Vertex;
N_ = normalize(gl_NormalMatrix * gl_Normal);
gl_Position = ftransform ();

b

/

// Fragment Shader

const int FIRST PASS = 1;

const int INTERMEDIATE_PASS = 2;

const int LAST PASS = 3;

uniform int WHICH_PASS;

varying vec4 vpos_ec_;

varying vec3 N_;

/

void computelLighting(in vec3 N, in vec4 vpos_ec,

in vec4 material_ambient,

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

1

2

3

4

5

6

7

8

9

10

CHAPTER 4. IMPLEMENTATION 67

in vec4 material_diffuse ,
in vec4 material_specular,
in float material_shininess,
out vecd color);
/
void main(void)
{
vecd color = vec4(0.0);
computelLighting(N_, vpos_ec_,
gl_FrontMaterial . ambient,
gl_FrontMaterial . diffuse ,
gl_FrontMaterial . specular,
gl_FrontMaterial . shininess,
color);
if (WHICH_PASS == LAST_PASS)
color += gl_FrontLightModelProduct.sceneColor;
gl_FragColor = color;

Line 20, computeLighting() is defined in an additionally attached fragment shader to allow for a flexible exchange
of the implementation of computeLighting() between the two implementations for LightRenderJob and HeavyRenderJob.
Line 36 and 37, g1_FrontLightModelProduct.sceneColor shall only be added to the surface colour in the
last pass. This is a direct consequence of rendering multiple passes due to ping-pong offscreen rendering of several
RenderJobs. With progressive rendering upon displaying the final frame a sudden change in intensity will be noticeable.
However, this at first undesirable effect helps in identifying visually when progressive rendering finished.

4.1.3.1 Lighting Computation of Single-Sample Lights

LightRenderJob computes lighting for several single-sample Lights. In order to declare an array of Lights, attributes of
Light are aggregated in one structure Light for all types of light sources. Depending on the type of Light, some attributes
are active and some of the attributes are inactive. For example, if the type of Light is DIRECTIONAL_LIGHT, then
attenuation is unused and, therefore, inactive. Of course, excessive wastage of unused uniform variables needs to
be considered. The number of available uniform variables varies between different hardware platforms. In particular,
note that the GLSL specification allows for hardware-specific optimisations that remove inactive uniforms implicitly (e.g.
NVIDIA).

Listing 4.3: Code of the structure Light aggregating the attributes of Light.

/
const int SPOT LIGHT = 1;
const int POINT_LIGHT = 2;
const int DIRECTIONAL_LIGHT = 3;
const int AREA LIGHT = 4;
/
struct Light
{
int type; // SPOT_LIGHT, POINT_LIGHT, DIRECTIONAL_LIGHT, AREA_LIGHT
// common attributes
vec4 ambient, diffuse, specular; // color
vec3d attenuation; // constant, linear, quadratic
// transformed by the modelview matrix
vec3 position_ec3;
// specific attributes
// transformed by the upper 3x3 of the modelview matrix
// and normalised
vec3 direction_ec3; // SPOT_LIGHT, DIRECTIONAL_LIGHT, AREA_LIGHT
float spot_cos_cutoff; // SPOT_LIGHT, AREA LIGHT
float spot_exponent; // SPOT_LIGHT
float area_size; // AREA_LIGHT
float near; // AREA_LIGHT, POINT_LIGHT
float far; // POINT_LIGHT

1
2
3
4
5
6
7
8

9

CHAPTER 4. IMPLEMENTATION 68

LightRenderJob computes lighting for different types of several single-sample Lights. A single shader is implemented
to be used for all single-sample Lights. Hence, lighting computations of several different types of Lights are performable
in a single gather pass. The overhead introduced if one type of Light is rendered only is negligible if the hardware-specific
implementation of the GLSL optimises away most of the unused code. However, the GLSL allows to declare arrays
of Light of fixed size only. Therefore, the ShaderManager creates and compiles several copies of the gathering shader.
In each copy the array of Lights has a different size. Of course, modifying and compiling shaders repeatedly is costly
and, therefore, easily stalls rendering. Therefore, the ShaderManager allows to either compile the shaders in advance or
on demand while keeping already compiled shaders cached. Hence, several LightRenderJobs, whose number of Lights
varies, are renderable efficiently by quickly switching between already compiled shaders. The RenderManager allows
to specify the maximum number of single-sample Lights comprised by a LightRenderJob. Additionally, the maximum
number of Lights being comprised by a LightRenderJob is constrained by the number of free TAUs. Both bounds infer
the partition of single-sample Lights into LightRenderJobs. Experiments showed that computing the lighting in one pass
for eight Lights is optimal (Section 5.2.5).

Listing 4.4: Code of the gathering shader for surface colour computation of LightRenderJob.

/
const int LIGHT COUNT = 1;
uniform mat4 CAMERA VIEW_INVERSE _MAT4;
uniform Light LIGHTS[LIGHT_COUNT];
uniform sampler2D SHADOW_MAPS[LIGHT_COUNT];
uniform mat4 SHADOW_MATRICES[LIGHT_COUNT];
uniform samplerCube CUBE_SHADOW_MAPS[LIGHT_COUNT];
/
void computelLighting(in vec3 N, in vec4 vpos_ec,
in vec4 material_ambient,
in vec4 material_diffuse ,
in vec4 material_specular,
in float material_shininess ,
out vec4 color)

vec3 shadow_coords [LIGHT_COUNT];
for (int i = 0; i < LIGHT_COUNT; i++)
{
vec4 shadow_coords_ = SHADOW_MATRICES[i] x CAMERA_VIEW_INVERSE MAT4 x vpos_ec;
shadow_coords[i] = vec3(shadow_coords_) / shadow_coords_.w;
}
vec3 vpos_ec3 = vec3(vpos_ec) / vpos_ec.w;
vecd4 amb, diff, spec = vecd4d(0.0);
for (int i = 0; i < LIGHT_COUNT; i++)
{
if (LIGHTS[i].type == SPOT_LIGHT)
SpotLight(i, N, vpos_ec3, shadow_coords[i], material_shininess, amb, diff, spec);
else if (LIGHTS[i].type == POINT_LIGHT)
PointLight(i, N, vpos_ec3, material_shininess, amb, diff, spec);
else if (LIGHTS[i].type == DIRECTIONAL_LIGHT)

DirectionalLight (i, N, vpos_ec3, shadow_coords[i], material_shininess, amb, diff, spec);
else if (LIGHTS[i].type == AREA_LIGHT)
Arealight (i, N, vpos_ec3, shadow_coords[i], material_shininess, amb, diff, spec);

}

color = amb * material_ambient + diff = material_diffuse + spec * material_specular;

Line 2, the ShaderManager increases LIGHT_COUNT for each copy of the gathering shader to enable rendering
LightRenderJobs with a varying number of single-sample Lights. Line 5-7, SHADOW_MAPS and SHADOW_MATRICES
are unnecessary to perform the occlusion test for PointLight. The direction for querying the cube shadow map is computed
implicitly. Line 17-21, concerning SpotLight, DirectionalLight and AreaLight, shadow coordinates are computed to
reproject from eye-space to light-space (Equation 3.16). In essence, the shadow matrix transforms from three-dimensional
world-space to the two-dimensional texture-coordinate-space of a shadow map. Note that depending on hardware-specific
optimisations the computation of shadow coordinates is optimised away by the GLSL if PointLights are rendered only
(Line 29). Line 24-34, loop over all Lights of the LightRenderJob and compute the ambient, diffuse and specular terms
with respect to the type of Light.

CHAPTER 4. IMPLEMENTATION 69

GlobalDirectionalLight and Directionallight are rendered using the same shader code. Lighting computation and
occlusion testing are confined to potentially lit fragments only to efficiently skip costly and unnecessary parts of the shader
for three reasons. First, as a consequence of using projective texturing for occlusion testing, the projection transformation
causes a dual shadow projection along the negative direction of light. Second, fragments, which are on the backside of
surfaces with respect to the direction of light, are unlit. Third, if second-depth shadow mapping is used, occlusion testing
shall be confined to front-facing fragments only. Otherwise incorrect self-shadowing artefacts reappear on back-facing
surfaces which are illuminated by another light source.

Listing 4.5: Code of the gathering shader for rendering GlobalDirectionalLight and DirectionalLight.

/
bool isOccluded(const in sampler2D shadow_map,
in vec3 shadow_coords)

{
float blocker_depth = texture2D (shadow_map, vec2(shadow_coords)).r;
float receiver_depth = shadow_coords.z;
if (blocker_depth < receiver_depth)
return true;
return false;
1
/
void DirectionalLight(in int i, in vee3 N, in vec3 vpos_ec3,
in vec3 shadow_coords,
in float material_shininess ,
inout vec4 ambient, inout vecd4 diffuse,
inout vec4 specular)

if (shadow_coords.z < 0.0 || shadow_coords.z > 1.0)
return;
vec3 L = LIGHTS[i]. position_ec3 — vpos_ec3;
vec3d L_wc = vec3(CAMERA VIEW_INVERSE_MAT4 x vec4(L, 0));
L = —LIGHTS[i]. direction_ec3;
ambient += LIGHTS[i].ambient;
float lambert_term = max(dot(N, L), 0.0);
if (lambert_term == 0.0)
return;
float phong_term =
pow(clamp(dot (N, normalize(L — normalize(vpos_ec3))), 0.0, 1.0), material_shininess);
float d = length(L_wc);
shadow_coords.z = d;
float shadow_attenuation = 1.0 — float(isOccluded (SHADOW _MAPS[i], shadow_coords));
diffuse += LIGHTS[i].diffuse *x lambert_term x shadow_attenuation;
specular += LIGHTS[i].specular * phong_term * shadow_attenuation;

Line 5 and 6, the depth being closest to the light source is stored in the red component because the depth texture has
the internal format GL_R32F. Line 18 and 19, early out which confines the shader input to fragments inside the view
volume of the light source. Line 20-22, in order to compute the distance to the light source correctly, the vector L is
transformed into world-space because the length of vector L depends on the viewing and projection transformation of the
camera (eye-space). Line 24, computation of the LAMBERT term implicitly hides projection aliasing. The intensity of
light decreases dramatically close to where the surface normal N and the direction of light L become orthogonal. Line 25
and 26, early out which further confines the shader input to fragments which are on the frontside of surfaces with respect
to the direction of light. Line 30, use the distance to the light source as a linear depth metric. Line 31-33, perform the
occlusion test and modulate the diffuse and specular term.

The shader for rendering SpotLight differs from DirectionalLight in three ways. First, the direction of light varies over
fragments if the SpotLight is sufficiently close to the surface point. Second, the input of the shader is confined to a cone of
illumination. Finally, the ambient, diffuse and specular terms are modulated with the attenuation of light which involves
spot, constant, linear and quadratic attenuation factors.

CHAPTER 4. IMPLEMENTATION 70

Listing 4.6: Code of the gathering shader for rendering SpotLight.

1 void SpotLight(in int i, in vec3 N, in vec3 vpos_ec3,

S

22
23
24
25
26
27
28

29

30 }

in vec3 shadow_coords,

in float material _shininess,

inout vec4d ambient, inout vecd4 diffuse ,
inout vecd4 specular)

if (shadow_coords.z < 0.0 || shadow_coords.z > 1.0)
return;
vec3 L = LIGHTS[i]. position_ec3 — vpos_ec3;
vec3d L_wc = vec3 (CAMERA VIEW_INVERSE_MAT4 x vec4(L, 0));
L = normalize(L);
float spot_dot = dot(—L, LIGHTS[i].direction_ec3);
if (spot_dot <= LIGHTS[i].spot_cos_cutoff)
return;
float spot_attenuation = pow(spot_dot, LIGHTS[i].spot_exponent);
float d = length(L_wc);
float attenuation = spot_attenuation / (LIGHTS[i]. attenuation[0] +
LIGHTS[i]. attenuation[1] = d +
LIGHTS[i]. attenuation[2] *= d x d);

ambient += LIGHTS[i].ambient * attenuation;
float lambert_term = max(dot(N, L), 0.0);
if (lambert_term == 0.0)

return;

float phong_term =

pow(clamp (dot (N, normalize(L — normalize(vpos_ec3))), 0.0, 1.0), material_shininess);
shadow_coords.z = d;
float shadow_attenuation = 1.0 — float (isOccluded (SHADOW _MAPS[i], shadow_coords));
diffuse += LIGHTS[i].diffuse * lambert_term x attenuation % shadow_attenuation;
specular += LIGHTS[i].specular * phong_term x attenuation * shadow_attenuation;

Line 9-11, direction of light varies for all fragments if the light source is sufficiently close to the surface point. Line

13 and 14, early out which confines the shader input to fragments inside the cone of illumination defined by the cosine of
the cutoff angle. Line 15-19, computation of the attenuation of light with respect to the distance to the light source. Line
26, use the distance to the light source as a linear depth metric instead of the non-linear post-perspective depth. Line 20,
28 and 29, the ambient, diffuse and specular terms are modulated with the spatial attenuation of light.

In contrast to SpotLight, PointLight emanates light equally in all directions. Using a cube map for omnidirectional

occlusion testing infers two consequences. First, shadow coordinates which transform from eye-space to clip-space of
the light are unnecessary. The cube map is simply queried with the negative direction of light for a given surface point.
Second, as a consequence of missing shadow coordinates, confining the shader input to fragments only inside the view
volume requires additional computations and two additional uniform variables (near and far distances).

1/

Listing 4.7: Code of the gathering shader for rendering PointLight.

> bool isOccluded(const in samplerCube shadow_map,

+ {

0}
un /

in vec4 shadow_coords)

float blocker_depth = textureCube (shadow_map, vec3(shadow_coords)).r;
float receiver_depth = shadow_coords.w;
if (blocker_depth < receiver_depth)
return true;
return false;

12 void PointLight(in int i, in vec3 N, in vec3 vpos_ec3,

in float material_shininess ,
inout vec4 ambient, inout vec4 diffuse ,
inout vec4 specular)

vec3 L = LIGHTSJ[i]. position_ec3 — vpos_ec3;
vec3 L_wc = vec3(CAMERA_VIEW_INVERSE_MAT4 x vec4(L, 0));

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

26

27

28

29

CHAPTER 4. IMPLEMENTATION 71

if (any(bvec3(all(greaterThan(abs(L_wc).xxx, vec3(LIGHTS[i].far, abs(L_wc).y
all (greaterThan (abs(L_wc).yyy, vec3(LIGHTS[i].far, abs(L_wc).x
all (greaterThan (abs(L_wc).zzz, vec3(LIGHTS[i].far, abs(L_wc).x

< N N

return;
float d = length(L_wc);
if (d < LIGHTS[i].near)
return;
L = normalize(L);
float attenuation = 1.0 / (LIGHTS[i]. attenuation[0] +
LIGHTS[i]. attenuation[1] * d +
LIGHTS[i]. attenuation[2] * d * d);
ambient += LIGHTS[i].ambient x attenuation;
float lambert_term = max(dot(N, L), 0.0);
if (lambert_term == 0.0)
return;
float phong_term =
pow(clamp (dot (N, normalize(L — normalize(vpos_ec3))), 0.0, 1.0), material_shininess);
vec4 shadow_coords = vec4(—L_wc, d);
float shadow_attenuation = 1.0 — float (isOccluded (CUBE_SHADOW MAPS[i], shadow_coords));
diffuse += LIGHTS[i].diffuse * lambert_term * attenuation * shadow_attenuation;
specular += LIGHTS[i].specular * phong_term x attenuation x shadow_attenuation;

Line 19-25, early out which confines the shader input to fragments inside the view volume determined by the near
and far planes. Due to optimising far plane testing to efficiently utilise the vector units of stream processors, performance
degradations are minimised. Line 36 and 37, the cube map is queried with the inverted direction of light in world-space.

Despite being mainly equivalent, the shader for rendering AreaLight differs from SpotLight in three considerable ways
in order to generate visually pleasing soft shadows with contact hardening. First, the spot light iris exhibits a penumbra
whose size is varied with respect to the distance to the light source. Second, harsh transitions between specular and diffuse
intensities are avoided where the direction of light L becomes orthogonal to the surface normal N. Third, soft shadows are
generated by computing a shadow attenuation factor utilising PCSS.

Listing 4.8: Code of the gathering shader for rendering AreaLight.

/
float calcArealLightShadowAttenuation(in float area_size,
in float light_near,
const in sampler2D shadow_map,
in vec3 shadow_coords);

/
void Arealight(in int i, in vee3 N, in vec3 vpos_ec3,
in vec3 shadow_coords, in float material_shininess ,
inout vec4 ambient, inout vecd4 diffuse, inout vec4 specular)
{
if ((shadow_coords.z < 0.0) || (shadow_coords.z > 1.0))

return;
vec3 L = LIGHTSJ[i]. position_ec3 — vpos_ec3;
vec3d L_wc = vec3(CAMERA VIEW_INVERSE_MAT4 x vec4(L, 0));
L = normalize(L);
float spot_dot = dot(—L, LIGHTS[i].direction_ec3);
if (spot_dot <= LIGHTS[i].spot_cos_cutoff)
return;
float d = length(L_wc);
float spot_attenuation = clamp((spot_dot — LIGHTS[i].spot_cos_cutoff) /
(LIGHTS[i].area_size * d * 0.2), 0.0, 1.0);
float attenuation = spot_attenuation / (LIGHTS[i]. attenuation[0] +
LIGHTS[i]. attenuation[1] *x d +
LIGHTS[i]. attenuation[2] = d x d);

ambient += LIGHTS[i].ambient * attenuation;

float lambert_term = max(dot(N, L), 0.0);

if (material_shininess == 0.0 && lambert_term == 0.0)
return;

float phong_term_attenuation = 1.0;

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

CHAPTER 4. IMPLEMENTATION 72

if (material_shininess > 0.0)

{
float lambert_cutoff = min(LIGHTS[i].area_size = d x 0.2, 0.15);

if (dot(N, L) < —lambert_cutoff)
return;
phong_term_attenuation = smoothstep(—lambert_cutoff, lambert_cutoff, dot(N, L));

}

float phong_term =

pow(clamp (dot (N, normalize(L — normalize(vpos_ec3))), 0.0, 1.0), material_shininess);
phong_term x= phong_term_attenuation;
shadow_coords.z = d;
float shadow_attenuation =

calcArealLightShadowAttenuation(LIGHTS[i]. area_size, LIGHTS[i].nnear,

SHADOW_MAPS[i], shadow_coords);

diffuse += LIGHTS[i].diffuse * lambert_term x attenuation x shadow_attenuation;
specular += LIGHTS[i].specular * phong_term % attenuation *x shadow_attenuation;

}

Line 20 and 21, a penumbra of the spot light iris is simulated by scaling the spot attenuation with respect to the area
size and the distance to the light source. Therefore, the Arealight has two cones of illumination (inner and outer). The
intensity of light decreases from the inner cone towards the outer cone to create an area of penumbra. Line 27-39, the
PHONG term is smoothly attenuated to simulate symmetric penumbrae along lines where the LAMBERT term abruptly
falls off to zero. Accordingly, penumbrae are scaled with respect to the area size and the distance to the light source. Line
27 and 28, the early out ensures that the according computation is only applied for surfaces which exhibit shininess. Line
41-43, compute a smooth shadow attenuation from querying a single shadow map multiple times.

Visually pleasing and perceptually-correct soft shadows are rendered for AreaLight utilising PCSS which samples a
single shadow map multiple times. For efficiently hiding banding artefacts in penumbrae with noise, PCF is extended
with non-uniform POISSON disk sampling (Section 3.4.1). A POISSON disk sampling pattern is randomly rotated per
fragment to implement stratified sampling [Isi06]. Several differently sized sampling patterns are pre-computed [DHO6].
The generated sampling patterns are mapped to the unit circle [SC97] for preserving distances between the samples while
rotating the kernel. Finally, the patterns are added statically to the code base of Apelles. Therefore, costly generation of
sampling patterns during initialisation or execution of Apelles is circumvented.

The PCSS shader computes the shadow attenuation factor in three steps. First, a blocker search averages neighbouring
depths which are closer to the light (blocker depth) than the depth of the point currently being shaded (receiver depth).
Second, using a planar planes approximation the penumbra width is estimated based on the area size and the distance
between occluder and receiver. Finally, the penumbra width is used to scale the filter width of a PCF kernel per fragment.
For both blocker search and PCF non-uniform PO1SSON disk sampling is applied. The shader is parameterised concerning
different PCSS quality settings which specify the number of samples for both blocker search and PCF. Accordingly, the
ShaderManager creates three different PCSS shaders to provide three PCSS qualities (low, medium and high, Table 4.1).
The filter kernel sizes of the settings were chosen in accord with experiments. These experiments evaluated if practical
results are achieved concerning both performance and quality (Table 5.1).

As a consequence of non-uniform POISSON sampling, low quality settings easily introduce noise. However, noise
is less objectionable and, therefore, effectively hides banding artefacts which are caused by a low number of samples.
Furthermore, with higher quality settings banding artefacts are effectively hidden if penumbrae are stretched along surfaces
due to oblique light.

For computing the shadow attenuation factor, the PCSS shader requires the specification of the POISSON disk kernel
offsets for both blocker search and PCF, the shadow coordinates of the fragment, the area size and the distance of the near
plane.

PCSS quality Blocker search PCF kernel

Low 4x4 4x4
Medium 6x6 8x8
High 8x8 16 x 16

Table 4.1: Arealight PCSS quality settings. Arealight supports to define three different PCSS quality settings. While soft shadow
quality is increasing from low to high, performance decreases dramatically due to the increased number of shadow map accesses (PCF
samples).

R S T

CHAPTER 4. IMPLEMENTATION 73

Listing 4.9: Code of the PCSS shader for rendering AreaLight.

/
const int BS_KERNEL_SIZE = 6;
const int PCF_KERNEL_SIZE = 8;
const int BS_POISSON_DISK_SIZE = BS_KERNEL_SIZE x BS_KERNEL_SIZE;
const int PCF_POISSON_DISK_SIZE = PCF_KERNEL_SIZE * PCF_KERNEL_SIZE;
uniform vec2 BS_POISSON_DISK[BS_POISSON_DISK_SIZE];
uniform vec2 PCF_POISSON_DISK[PCF_POISSON_DISK_SIZE];
/
float PCSS(in sampler2D shadow_map, in vec3 shadow_coords,
in int blocker_search_kernel_size, in int pcf_kernel_size,
in float light_size, in float light_near)

{
// Step 1: blocker search

float avg_blocker_depth = 0.0; int num_blockers = 0;

findBlockerRandomly (shadow_map, shadow_coords, blocker_search_kernel_size,
light_size , light_near, BS_POISSON_DISK,
avg_blocker_depth, num_blockers);

if (num_blockers == 0)

return 0.0;

// Step 2: penumbra width estimation

float receiver_depth shadow_coords.z;

float penumbra_width ((receiver_depth — avg_blocker_depth) / avg_blocker_depth) % light_size;

// Step 3: PCF

return pcfShadowPoissonRotated (shadow_map, shadow_coords, penumbra_width,

pcf_kernel_size , PCF_POISSON_DISK);

}
/

float calcArealLightShadowAttenuation(in float area_size, in float light_near,
in sampler2D shadow_map, in vec3 shadow_coords)

{
return 1.0 — PCSS(shadow_map, shadow_coords, BS_KERNEL_SIZE, PCF_KERNEL_SIZE,

area_size, light_near);

Line 2 and 3, the number of samples of both blocker search and PCF is modified by the ShaderManager to create
three shaders with respect to three PCSS quality settings (low, medium and high). Line 4-7, specifies the two-dimensional
positions of the samples being distributed with respect to a POISSON disk sampling pattern across the filter window. The
samples reside on the unit circle. Line 18 and 19, early out to skip penumbra width estimation and costly PCF if no blocker
has been found. Line 22, in order to ensure numerical stability, the receiver depth must be the distance to the light.

The blocker search averages depths which are closer to the light than the depth of the fragment currently being shaded
(receiver). The average depth is assumed to be the depth of a planar occluder along the line from the receiver to the centre
of the planar and parallel light source. For each fragment a POISSON disk kernel is randomly rotated upon sampling several
depths from the shadow map. Despite being specified since version 1.0 of the GLSL, noise functions to instantly generate
per-fragment random numbers are still missing on current hardware platforms. As a workaround to establish a random
rotation transformation to rotate the POISSON kernel, random numbers are pre-computed and stored in an offscreen buffer
for efficient access during shader execution [Isi06]. As a consequence, two TAUs are required to render the gather pass
of an AreaLight. This is an unattractive property for LightRenderJobs where each Light shall occupy a single TAU only.
However, pseudorandom numbers are generated instantly in the PCSS shader without losing performance compared to
fetching pre-computed random numbers from a texture. Therefore, rendering a LightRenderJob only requires as many
free TAUs as Lights are rendered. The number of available TAUSs constrains the partition of several single-sample Lights
into LightRenderJobs.

Listing 4.10: Code of the non-uniform blocker search of the PCSS shader.

/
// Generates pseudorandom numbers
float rand(vec2 v)

{

return fract(sin(dot(v, vec2(12.9898, 78.233))) x 43758.5453);

}
/

8

9

CHAPTER 4. IMPLEMENTATION 74

// Blocker search

void findBlockerRandomly(in sampler2D shadow_map, in vec3 shadow_coords,
in int kernel_size, in float light_size, in float light_near,
in vec2 poisson_disk [BS_POISSON_DISK_SIZE],
out float avg_blocker_depth, out int num_blockers)

avg_blocker_depth = 0.0;
num_blockers = 0;
float receiver_depth = shadow_coords.z;
float search_width = light_size x ((receiver_depth — light_near) / receiver_depth);
float step_size = 2.0 % search_width / float(kernel_size);
float phi = 2.0 * 3.14159265 * rand(vec2(gl_FragCoord));
mat2 rotation_mat2 = mat2(cos(phi), —sin(phi), sin(phi), cos(phi));
float blocker_sum = 0.0;
for (int i = 0; i < kernel_size; i++)

for (int j = 0; | < kernel_size; j++)
{

vec2 offset = (search_width + step_size / 2.0) =*

vec2(rotation_mat2 x poisson_disk[i * kernel_size + j]);

float blocker_depth = texture2D (shadow_map, vec2(shadow_coords) + offset).r;

if (blocker_depth < receiver_depth)

{

blocker_sum += blocker_depth;
num_blockers ++;

1

1

avg_blocker_depth = blocker_sum / float(num_blockers);

}

Line 5, compute pseudorandom numbers in the interval [0,1]'. Line 17, the size of the area of the shadow map
around the current fragment being searched for blockers is computed using similar triangles. Line 19 and 20, compute a
rotation matrix for randomly rotating samples on the unit circle. Line 21-33, sample depths from the shadow map using
a randomly rotating POISSON disk sampling pattern. Line 34, compute the blocker depth by only averaging depths which
are closer to the light than the depth of the receiver.

Similar to the non-uniform blocker search, a randomly rotating POISSON disk sampling pattern is used upon sampling
the shadow map to perform PCF. The filter width is varied with respect to the previous penumbra width estimation to
compute a varying shadow attenuation factor for rendering soft shadows which exhibit contact hardening.

Listing 4.11: Code of non-uniform PCF of the PCSS shader.

float pcfShadowPoissonRotated(in sampler2D shadow_map, in vec3 shadow_coords,
in float filter_width , in int kernel_size,
in vec2 poisson_disk [PCF_POISSON_DISK_SIZE])

float step_size = 2.0 x filter_width / float(kernel_size);
float phi = 2.0 * 3.14159265 x rand(vec2(gl_FragCoord));

mat2 rotation_mat2 = mat2(cos(phi), —sin(phi), sin(phi), cos(phi));
float shadow_att = 0.0;
for (int i = 0; i < kernel_size; i++)
for (int j = 0; | < kernel_size; j++)
{
vec3 offset = (filter_width + step_size / 2.0) =*
vec3 (rotation_mat2 * poisson_disk[i * kernel_size + j], 0.0);

shadow_att += float (isOccluded (shadow_map, shadow_coords + offset));

}

return shadow_att / float(kernel_size x kernel_size);

Line 6 and 7, establish the rotation transformation for randomly rotating the POISSON disk kernel upon sampling the
shadow map (Line 13). Line 8—16, compute the shadow attenuation factor by averaging the result of multiple occlusion
tests (PCF) instead of incorrectly averaging depths.

Source: unknown. For further information on texture-free noise in GLSL, refer to https://github.com/ashima/webgl-noise (last
access 2012-05-07).

https://github.com/ashima/webgl-noise

IS}

>
G

41

42

44

45

CHAPTER 4. IMPLEMENTATION 75

4.1.3.2 Lighting Computation of Multi-Sample Lights

HeavyRenderJob computes lighting for one multi-sample Light being sampled with several spot lights (SampledAre-
aLight). The ShaderManager creates several copies of the gathering shader with respect to the number of samples for
efficiently switching between shaders for HeavyRenderJobs with a varying number of samples. The number of samples
being renderable in a single pass is constrained by three bounds: the number of unoccupied TAUs, the size of free tex-
ture memory and the capabilities of the programmable fragment processor. As a consequence of using a texture array to
aggregate the shadow maps of the spot lights, the gather pass of a HeavyRenderJob is rendered while occupying a single
TAU only. Hence, the number of occlusion tests performable in a single gather pass is independent from the number of
unoccupied TAUs. Of course, generating accurate soft shadows demands a high number of samples. The shadow map
array easily consumes more video memory than available. Furthermore, the compiler of the GLSL potentially fails upon
assembling the fragment program for a large number of samples. Therefore, ping-pong offscreen rendering is utilised
to accumulate the result of several gather passes each rendering a subset of samples only. In order to keep the memory
footprint of the shadow map array at a reasonable size, scattering is divided into several passes too. Experiments showed
that rendering eight samples per pass achieves peak performance for both scattering and gathering (Section 5.2.5).

Listing 4.12: Code of the gathering shader for surface colour computation of HeavyRenderJob (SampledAreaLight).

/
#extension GL_EXT_texture_array : enable
const int AREA LIGHT _SAMPLE COUNT = f1;
uniform mat4 CAMERA _VIEW_INVERSE_MAT4;
/
struct SampledArealLight
{
vec4d ambient, diffuse, specular; // color
vec3 attenuation; // constant, linear, quadratic
// transformed by the upper 3x3 of the modelview matrix
// and normalised
vec3 direction_ec3;
float spot_cos_cutoff;
b
uniform SampledArealight AREA_LIGHT;
uniform vec3 AREA _LIGHT_SAMPLES POS _EC3[AREA_LIGHT_SAMPLE_COUNT];
uniform mat4 AREA_LIGHT_SHADOW_MATRICES[AREA_LIGHT_SAMPLE_COUNT];
uniform sampler2DArray AREA LIGHT_SHADOW_MAP;
uniform float PASS;
uniform sampler2D PREVIOUS_PASS TEX;
uniform int SCREEN WIDTH;
uniform int SCREEN_HEIGHT;
uniform bool RENDER MODE_IS PROGRESSIVE;
/
void combineResults (sampler2D previous_pass, inout vec4 this_pass)
{
vec2 frag_coord = vec2(gl_FragCoord.x / float(SCREEN_WIDTH),
gl_FragCoord.y / float (SCREEN_HEIGHT));
if (PASS == 1.0 && RENDER_MODE_IS_PROGRESSIVE)
this_pass = float (AREA_LIGHT_SAMPLE_COUNT) / float (AREA _LIGHT _SAMPLE_COUNT+1) = this_pass +
(1.0 / float (AREA_LIGHT_SAMPLE _COUNT+1)) = texture2D (previous_pass, frag_coord);

else
this_pass (1.0 / (PASS + 1.0)) % this_pass +

(PASS / (PASS + 1.0)) = texture2D (previous_pass, frag_coord);

}
/

void computelLighting(in vec3 N, in vec4 vpos_ec, in vec4 material_ambient,
in vec4 material_diffuse, in vec4 material_specular,
in float material_shininess, out vec4 color)

vec3 shadow_coords [AREA_LIGHT_SAMPLE_COUNT];
for (int sample = 0; sample < AREA_LIGHT_SAMPLE_COUNT; sample++)
it
vec4 shadow_coords_ = AREA _LIGHT_SHADOW_MATRICES[sample] * CAMERA_VIEW_INVERSE_MAT4 x vpos_ec;
shadow_coords[sample] = vec3(shadow_coords_ /shadow_coords_.w);

46

47

48

49

50

51

52

53

54

1

CHAPTER 4. IMPLEMENTATION 76

1
vec3d vpos_ec3 = vec3(vpos_ec) / vpos_ec.w;
vec4 amb, diff , spec = vec4(0.0);
for (int sample = 0; sample < AREA_LIGHT_SAMPLE_COUNT; sample++)

ArealLightSample(sample, N, vpos_ec3, shadow_coords[sample],

material_shininess , amb, diff, spec);

color = amb * material_ambient + diff * material_diffuse + spec * material_specular;
combineResults (PREVIOUS_PASS _TEX, color);

}

Line 2, enable to use texture arrays in a shader written against the GLSL version 1.20. This is supported on all
Shader Model 4 hardware platforms and beyond. Line 3, the ShaderManager increases AREA_LIGHT_SAMPLE_COUNT
for each copy of the gathering shader to enable rendering HeavyRenderJobs with a varying number of samples. Line
6-15, declare a struct and a uniform, respectively, for aggregating properties of SampledArealight which are equal for
all samples. Line 16, declare the uniform array storing the positions of the spot lights on the planar surface of the
SampledAreaLight. Line 17 and 18, declare the array aggregating the shadow matrices of the samples and the array of
shadow maps. Line 19-35, combine the result of the previous gather pass and the current gather pass using ping-pong
offscreen rendering. The combination ensures that previously rendered and current results sum up to one always. This is
important for displaying intermediate results if progressive rendering is used. Line 29, branch is necessary because pass
0 renders a single hard shadow only (progressive rendering). For example, if a maximum of eight samples are rendered
per pass, pass 0 renders and displays a single sample. Pass 1 renders seven samples but displays the result of eight
samples. Pass 2 renders eight samples but displays the result of sixteen samples, etc. Line 41-46 compute the shadow
coordinates for performing the occlusion tests of the samples (Equation 3.16). Line 49-51, loop over all samples of the
HeavyRenderJob and compute the ambient, diffuse and specular terms. Line 53, finally combine the previous and current
surface colour such that the contributions sum up to one. This allows to display intermediate results if multiple passes are
rendered (progressive rendering).

The shader for rendering a sample of a SampledAreaLight differs from the shader for rendering a SpotLight in two
ways only. First, the computed shadow attenuation factor is only a fraction of the overall attenuation. Second, spot
attenuation is not evaluated because SampledArealight lacks an exponent property.

Listing 4.13: Code of rendering a sample of SampledArealight.

void ArealightSample(in int sample, in vec3 N, in vec3 vpos_ec3,
in vec3 shadow_coords, float material_shininess,
inout vec4 ambient, inout vec4 diffuse,
inout vecd4 specular)

vec4 shadow_coords_;

shadow_coords_.x = shadow_coords.x;

shadow_coords_ .y shadow_coords.y;

shadow_coords_.z = float(sample);

shadow_coords_.w = d;

float shadow_attenuation = (1.0 — float (isOccluded (AREA _LIGHT_SHADOW_MAP, shadow_coords_))) /
float (AREA_LIGHT_SAMPLE_COUNT);

diffuse += AREA_LIGHT.diffuse *x lambert_term x attenuation x* shadow_attenuation;

specular += AREA_LIGHT.specular = phong_term x attenuation * shadow_attenuation;

Line 7-11, the z coordinate of the shadow coordinates corresponds to the layer index in the shadow map array. Line 12
and 13, occlusion testing uses texture2DArray() accordingly to query the shadow map array. The result of the occlusion
test only contributes a fraction to the overall occlusion with respect to the number of samples evaluated in a gather pass.

CHAPTER 4. IMPLEMENTATION 77

4.1.3.3 Combining Existing Shaders

Combining the shaders of Apelles with existing shaders is based on the observation that two shader objects of the same
type are combined by merging the source strings. The source of the shaders used by Apelles is merged with the source
of user shaders to yield a new shader program with a single main() routine (extended shader). The merging process
essentially consists of two steps. First, code of the user shader before and after main() is extracted and inserted before
main() of the library shader. Second, the body of main() of the user shader is extracted and appended to the body of main()
of the library shader. In particular, the merging process is considerably facilitated by having only a single implementation
of the main shaders for all Lights (Listing 4.2). In particular, it has to be noted that user shaders must not declare any
varying variables which conflict with variable declarations of the library shaders. Of course, several user shaders are
combinable in lockstep with a single library shader. However, only shaders which are written against the GLSL version
1.20 are combinable with library shaders. For an example of how to combine existing shaders with library shaders see
Examples and Tutorial (Section 4.2.2).

According to vertex shaders, appending the body of main() of a user shader to the body of main() of the library vertex
shader always yields valid vertex shader source. This is a direct consequence of the fact that g1_Position must be
assigned to at least once but can be assigned to multiple times; the last assignment statement is effective. Of course, the
user shader must ensure to output modified vertex positions and normalised normals to the varying variables of Apelles:
vpos_ec_ and N_, respectively.

According to fragment shaders, the colour computed by the library fragment shader and the colour computed by
the user fragment shader shall be combined accordingly. The library shader essentially computes a surface colour for
light mapping. Therefore, the colour computed by a user shader is modulated with the surface colour computed by the
library shader. If several user shaders are combined in lockstep with a library shader, the merging process modulates the
colour contributions in lockstep as well. Of course, for increased flexibility several user fragment shaders shall sometimes
be combined differently before modulating the resulting colour with the colour computed by Apelles. Therefore, the
auxiliary library libGLSL exposes a SourceMerger. Upon merging fragment shaders the SourceMerger allows to specify
four different combination functions: replace, modulate, decal and add (Section 4.1.5).

Once created, the extended shaders are enabled explicitly by the user at the appropriate points in the code of the render
callback. Therefore, extended shaders must be created for gather as well as scatter passes, if necessary. Furthermore,
extended shaders must be created for a different number of single-sample Lights and for a different number of samples
for multi-sample Lights. Additionally, the values of the uniform variables of the library shaders need to be transferred
to the extended shaders before using them. Therefore, the auxiliary library libGLSL exposes a UniformSnapshot. For
transferring values of uniform variables the UniformSnapshot allows to pull values from a library shader and push the
values to an extended shader. In order to initiate value transfer of uniform variables, the ShaderManager notifies an
observer if the uniforms of a library shader changed by utilising the Observer Pattern [GHIV94].

4.1.4 Optimisation of Light View Volume Culling

The setup of the view volume of a light source requires to specify the distances of the near plane and the far plane. If
the associated shadow map contains light-clip-space depth values, the minimum and maximum depth values correspond
to the optimal near and far plane distances. As a consequence, the view volume of the light tightly encloses geometry
as seen from the viewpoint of the light (Section 3.5). Accordingly, the LampLighter allows to optimise the near and far
plane distances for all types of light sources. After creation of a light source, the distance of the near plane equals 0.1 and
the distance of the far plane equals 10000. A subsequent optimisation of the near and far plane distances with simplified
geometry considerably improves the efficiency of upcoming light view volume culling. However, the optimisation involves
to render light-clip-space depth into the shadow map. Therefore, after tightening the near and far plane distances, the
shadow map is updated implicitly with depth being equal to the distance of the light source as required by occlusion
testing in gathering. Of course, the optimisation is mostly beneficial if the light is static and dynamic objects are ensured
to entirely remain within the view volume of light always.

The minimum and maximum is efficiently computed utilising an OpenCL-enabled Parallel Reduction (Section 5.2.6).
First, using the current near and far plane distances of the light source, light-clip-space depth is rendered to the shadow
map. The implementation of shadow mapping in Apelles utilises the distance to the light source. This restrains deriving
the optimal near and far plane distances directly from the minimum and maximum depth values in the shadow map.
Second, the shadow map is directly served as input to the OpenCL kernel to avoid costly data transfers between CPU
and GPU. Accordingly, the extension CL_KHR_gl_sharing is utilised to establish the necessary association of an
OpenGL context and an OpenCL context as specified by OpenCL version 1.1 [OCL10]. The two-dimensional problem
domain (square 2D texture) is partitioned into numerous square blocks of equal size. Accordingly, for each of the square
blocks the minimum and maximum is determined in parallel. The maximum size of a square block is constrained by
the limits of the OpenCL implementation (underlying hardware platform). As a consequence of a limited block size, the

CHAPTER 4. IMPLEMENTATION 78

parallel reduction requires several passes depending on the size of the shadow map. Third, subsequent passes reduce
an array. After the first pass the problem domain becomes one-dimensional. Finally, once the parallel reduction has
terminated after several passes, only the minimum and maximum is transferred to host memory.

For example, assuming a maximum block size of 512, the reduction of a texture 2048 x2048 texels large, which are
partitioned into square blocks of 16x 16 elements, yields 16384 minima and maxima, respectively. In particular, it has
to be noted that the maximum block size is unusable in the first pass because mapping 512 elements to a square block is
impossible. However, after the first pass of the reduction (texture) the problem domain becomes one-dimensional (array).
Therefore, the maximum block size of 512 is fully usable in subsequent passes. Hence, the reduction requires three passes
to terminate: 4194304 — 16384 — 32 — 1. In the last pass, a single multiprocessor reduces the remaining elements to
yield the minimum and maximum.

The computation of minimum and maximum using an OpenCL-enabled parallel reduction turns down complexity from
O(n) to O(logn) (Figure 4.7). The algorithm reduces numerous values to a single value in parallel to yield the minimum
and the maximum, respectively. The values are partitioned into multiple work-groups which are assigned to the available
multiprocessors of the underlying hardware platform. The large number of work-groups ensures a high occupancy of the
multiprocessors which effectively hides memory latency. The minimum and maximum of a work-group is computed in a
tree-based approach iteratively. Accordingly, in each work-group work-items are executed in parallel in groups of warps.
Each warp executes work-items in lockstep (SIMD). Synchronisation barriers are utilised to avoid data anti-dependencies
between warps (read-before-write). For improved performance the input values of a work-group are loaded into local
memory. In order to take advantage of coalescing, adjacent work-items read and write adjacent memory addresses.

[Banks] 0 1 (2 (3456|789 1011|1213 |14|15

[Indices] 0 1 2 3 4 5 6 7 8 9 |10 (111213 (14| 15

[Values] 2 -51 8
4 4

) GGG

[Values] -1 1 =51 8
' Y

Efoelf

[Values] o3 (-5)18 114 |-1|1 (7|3]|-5|28

=3 ®

[Values] o3 (-5(8 (114 (|-1(1 (7|3 ([-5]S8

Threads &) @

[Values] 511 0 3 (-5]18 114 |-1]1 7 3 (-5]8

Figure 4.7: Parallel reduction. An example of a tree-based reduction to yield the minimum within a work-group of 16 elements in four
iterations. In each iteration the number of elements is reduced by a factor of two to finally yield the minimum. Within the work-group,
16 work-items are executed in lockstep (threads). In iteration one, adjacent work-items 0...7 use sequential addressing of 16 elements
to take advantage of coalescing while avoiding divergence. The work-items 8...15 are idle to avoid memory bank conflicts if several
work-items access the same bank.

1

2

3

4

5

6

7

8

CHAPTER 4. IMPLEMENTATION 79

However, accesses to local memory are serialised if several work-items within a warp access the same memory bank
(bank conflict). A warp consists of two half-warps. A half-warp executes as many work-items in lockstep as memory banks
are available. However, a single work-item needs to access two memory banks which infers conflicts. As a consequence
of sequential addressing, memory access of work-items within a half-warp is ensured to be conflict-free.

Listing 4.14: Code of the OpenCL kernel which determines the minimum and maximum from a two-dimensional float texture with a

parallel reduction.

/

const sampler_t sampler = CLK NORMALIZED COORDS FALSE | CLK ADDRESS CLAMP TO EDGE |
CLK_FILTER_NEAREST;

/
__kernel void minmaxTexture2D(read_only image2d_t texture,
__global float xod_min, __ global float xod _max,
__local float xImin, __local float xImax)

{
int gid_x = get_global_id(0);
int gid_y = get_global_id(1);
int lid_x = get_local_id(0);
int lid_y = get_local_id (1);
int Isize = get_local_size(0) * get_local_size(1);
int grpid = get_group_id(0) + get_num_groups(1) * get_group_id(1);
int2 tex_coords = (int2)(gid_x, gid_y);

int lid = lid_x + lid_y x get_local_size(1);

float4 texel = read_imagef(texture, sampler, tex_coords);
Imin[lid] = texel.x;

Imax[lid] = texel.x;

barrier (CLK_ LOCAL MEM_FENCE) ;

for (int stride = Isize/2; stride > 0; stride >>= 1)

i
if (lid < stride)
{
Imin[lid]
Imax[lid]
}
barrier (CLK LOCAL MEM FENCE) ;
}
if (lid == 0)
i
od_min[grpid] Imin[0];
od_max[grpid] = Imax[0];
}

min(Imin[lid], Imin[lid + stride]);
max(Imax[lid], Imax[lid + stride]);

Line 2 and 3, specify the state of the TAU for fetching floating-point values (depths) from the DepthTexture. Line 15—
19, load depth from texture memory into local memory. The hardware detects that adjacent device memory is read through
an image object (texture) and, therefore, automatically coalesces the reads for optimal performance. Line 20, wait until all
work-items of this work-group have finished writing to local memory for circumventing read-before-write data hazards.
Line 21-29, do reduction in local memory using sequential addressing which coalesces consecutive reads and writes of
adjacent work-items for optimal performance. Hence, divergence of work-items and bank conflicts are prevented. Line
21, according to sequential addressing, stride computation utilising the bitwise operator avoids costly operations (integer
division or modulo). Line 28, wait until all work-items finished the current iteration. As a consequence, work-items which
are already done in the current iteration are prevented to read from local memory that has not been written to by other
work-items being in the current iteration (read-before-write). Line 30-34, the first work-item of this workgroup writes the
result of this workgroup to global memory.

[Y S O

CHAPTER 4. IMPLEMENTATION 80

4.1.5 Auxiliary Libraries

The auxiliary libraries necessary to use Apelles are closely implemented in accord with Apelles. No additional third-
party libraries are required for both developing new applications or integrating Apelles into existing applications. As
a consequence, applications using Apelles are independent from additional libraries. Of course, other well developed
libraries exist which provide similar functionality. However, at the time Apelles was developed, some libraries were
unavailable (libGLMath). Furthermore, the auxiliary libraries can independently be changed. Newly required features can
be added instantly. Existing features can be corrected instantly in case of recently identified defects.

libGLSL An object-oriented framework for handling shader and program objects of the GLSL. Shader objects can be
created from strings or files, respectively. UniformBroker supports in conveniently querying and setting active uniform
variables of a shader. UniformSnapshot enables to save and restore the values of all active uniform variables of a shader
program. Furthermore, UniformSnapshot facilitates managing the values of active uniform variables of different shader
programs which share sets of active uniforms. Of course, OpenGL version 3.1 introduced Uniform Buffers which follow
the same intent. The SourceModifier enables to modify the source of a shader. For example, change the size of arrays or
replace the right hand side of an assignment statement. The SourceMerger allows to merge the sources of two shaders of
the same type. According to increasing the flexibility upon combining two fragment shaders, how to combine the colours
of the two shaders is explicitly specifyable: replace, add, decal and modulate (Listing 4.15).

Listing 4.15: Example code of the options upon combining the colours of two fragment shaders.
vec4 color1, color2;
vecd color_replace = color2;
vec4 color_add.rgb = color1.rgb + color2.rgb;
color_add.a *x= color2.a;
vecd4 color_decal = vecd4d(mix(colori.rgb, color2.rgb, color2.a), colortl.a);
vec4 color_modulate = color1 *x color2;

libGLMath A header only collection of mathematical classes and operations whose semantics are closely tied to the
GLSL version 1.20 which specifies vector and matrix mathematics concisely. As a consequence, uniformity of code in
Apelles and in applications integrating Apelles is considerably improved. The library encompasses vector and matrix
types, operators and built-in functions except swizzling. Additionally, existing API calls of the GL are extended to accept
vector and matrix types naturally. Of course, other well developed alternatives exist>. However, an alternative which is
closely tied to the GLSL was not available at the time of the implementation of Apelles.

libGLUtil An object-oriented C++ framework that provides facilities for addressing common issues in developing
OpenGL applications. TextureFactory aids in the creation of both colour and depth textures. FramebufferObject enables
to efficiently render to different types of textures including cube map textures and texture arrays. TextureUnitAcquirer
facilitates the management of free TAUs by tracking which TAUs are occupied. FPSCounter captures the frame rate and
allows to attenuate undesirable spikes in the acquired data using a Weighted Moving Average.

libUtil A framework which supports in developing applications in C++. One of its invaluable components facilitates
the memory management of dynamically-allocated shared objects in C++ utilising the Counted Pointer Idiom [BMR™*96].
Of course, the new C++ standard [C++11] inherently supports reference counting via unique_ptr, shared_ptr and
weak_ptr.

20penGL Mathematics (GLM), http://glm.g-truc.net. Imath which is part of Ilmbase of OpenEXR, http://www.openexr.com/
downloads.html (last access 2012-05-07).

http://glm.g-truc.net
http://www.openexr.com/downloads.html
http://www.openexr.com/downloads.html

1

2

3

4

5

6

7

8

9

10

11

CHAPTER 4. IMPLEMENTATION 81

4.2 Examples and Tutorial
4.2.1 Simple Example

This example demonstrates how easily Apelles is setup for rendering an image exhibiting shadows given some geometry
and some light sources (Figure 4.8). The scene consists of a plane which serves as a shadow receiver. An object hovers
above the plane to serve as a shadow caster (occluder). Note how important shadows are to generate the correct visual
impression of a hovering object. In the scene are three light sources: a global directional light, a point light and an area
light sampled with 512 spot lights.

A

Figure 4.8: Apelles example simple. An object consisting of three tori is illuminated by three light sources: a global directional light, a
point light and an area light. The point light casts an omnidirectional shadow from inside the object which introduces a circular-shaped
hard shadow with a cross in the middle. The area light is sampled with 512 spot lights being randomly distributed on the area of the
light source with respect to a POISSON disk distribution. Note that the object exhibits self-shadowing.

The first step is to initialise Apelles. Of course, Apelles requires a render context with a depth buffer to allow depth
testing. Then, the light sources are created. Finally, rendering is initiated by calling the function display() which is
assumed to render a single frame. The function draw() is assumed to issue the drawing commands (rendering callback).
Of course, since Apelles uses shadow mapping, shadows are rendered for all geometric primitives for which depth values
are generated by the rasteriser in both scattering and gathering (triangles, quads, lines and points). As a consequence of
using progressive rendering, display() needs to be called repeatedly until the final frame has been rendered. For example, if
GLUT is used, glutDisplayFunc() is only called if the window requires to be painted. Therefore, GLUT needs additionally
to be setup for calling display() repeatedly using glutldleFunc(). Once ping-pong rendering finished, only a screen-sized
quad is rendered to display the contents of the ping offscreen buffer.

Listing 4.16: Pseudocode of the simple example using Apelles.

/
#include "Apelles/render_manager.h"
#include "Apelles/internal/lamp_lighter.h"
using namespace Apelles_;

using namespace Apelles_::Internal_;
RenderManager xrender_manager;
LightManager xlight_manager;

LampLighter xlamp_lighter;

/
void init ()

{

glClearDepth (1.0);

glEnable (GL_DEPTH_TEST);

render_manager = &RenderManager:: getlnstance ();
render_manager—setRenderMode (RENDER_MODE_PROGRESSIVE) ;
render_manager—setDepthBiasingEnabled (GL_FALSE);
render_manager—setSecondDepthShadowMappingEnabled (GL_TRUE) ;
light_manager = &render_manager—getLightManager ();

20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

1
2
3
4
5
6
7
8
9

10

11

CHAPTER 4. IMPLEMENTATION 82

lamp_lighter = &Lamplighter:: getlnstance ();

createGlobalLight ();

createPointLight ();

createSampledLight ();
}
/
void draw() {...}
/
void display ()
{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER BIT);
establishViewingTransformation ();
establishProjectionTransformation ();
establishViewportTransformation ();
render_manager—render(&draw);

Line 2-8, the public interface of Apelles is exposed by the RenderManager and the LightManager. The namespace
Internal_ exposes those guts of Apelles which might be useful to the user additionally. However, while the guts
are susceptible to change over time, the public interface is assumed to be a published contract between the user and
Apelles (stable interface). Line 8, the LampLighter aids in setting up light sources (Listing 4.17). Line 12 and 13, enable
depth testing because it is inevitable for Apelles. Line 14-17 enable progressive rendering and second-depth shadow
mapping (closed geometry). As a consequence, front-facing geometry is culled with respect to the direction of light
during scattering which speeds up rendering additionally. Note that depth biasing should remain enabled to mitigate
incorrect self-shadowing where the geometry exhibits insufficient thickness (low depth disparity). Line 18-22 create the
light sources. Line 25, draw() issues drawing commands without compromising the state of the GL setup by Apelles in
both scattering and gathering. Line 30-32 essentially puts-up a camera in the scene. Apelles computes the inverse viewing
matrix implicitly for reprojecting from eye-space to light-space (Equation 3.16). Line 33, initiate rendering which calls
the function draw() multiple times for both scattering and gathering. In scattering draw() is called 519 times; once for the
global directional light, six times for the point light and 512 times for the area light. In gathering draw() is called 65 times;
once for the global directional light and the point light as well as 64 times for the area light (eight samples per pass).

Listing 4.17: Pseudocode of creating the global directional light of the simple example of Apelles.
void createGlobalLight ()
{

GlobalDirectionalLight xglobal_light;

GlLvec3d global_light_dir = normalize (GLvec3d(...));

GLvec4d scene_bounding_sphere = GlLvec4d(GLvec3d(center), radius);
GlLvec4f global_light_diffuse = GlLvec4f(GLvec3f(...), 1.0);
light_manager—createGlobalDirectionalLight(global_light_dir);
lamp_lighter—setupLight(global_light , scene_bounding_sphere);
global_light—setDiffuse(global_light_diffuse);
render_manager—getShadowMap (global_light) —setSize (8192);

Line 7-9, create the global directional light with the specified direction. However, a global light shines throughout
the entire scene. Therefore, the LampLighter is used to setup the view volume of the global light (cube) to encompass
the bounding sphere of the scene (Line 8). As a consequence, changing the direction of light essentially rotates the view
volume around the scene. Line 10, increase the size of the shadow map to 8192 x8192 for reducing aliasing artefacts.

Listing 4.18: Pseudocode of creating the point light of the simple example of Apelles.

void createPointLight ()

{
PointLight xpoint_light;
GlLvec3d point_light_pos = GLvec3d(...);
GLfloat point_light_near = ...;
GLfloat point_light_far = ...;
GLvec4f point_light_diffuse = GLvec4f(GLvec3f(...), 1.0));
point_light = light_manager—createPointLight(point_light_pos);
lamp_lighter—tightenNearAndFar(point_light, &draw);
point_light—setDiffuse (point_light_diffuse);

}

1
2
3
4
5
6
7
8
9

CHAPTER 4. IMPLEMENTATION 83

Line 3-8, create the point light with the specified position. Line 9, in order to optimise light view volume culling,
the LampLighter is used to make the near and far planes of the view volume tightly enclose the geometry seen from the
viewpoint of the light source. First, light-clip-space depth is rendered into the cube shadow map of the point light. Then,
for each face of the cube map an OpenCL-enabled algorithm determines the minimum and maximum depth. Finally, the
optimal near and far plane distances are determined from the six per face minima and maxima, respectively. The optimal
near and far plane distances are assigned to the point light. Of course, the shadow map remains invalidated. For occlusion
testing in gathering the shadow map is assumed to store the distance to the light (linear depth metric). Hence, the shadow
map is implicitly updated with a different depth metric before occlusion testing is applicable.

Listing 4.19: Pseudocode of creating the sampled area light of the simple example of Apelles.

void createSampledLight ()
{

SampledArealight xsampled_light;

GLvec3d sampled_light_pos = GLvec3d(...);

GLvec3d sampled_light_lookat = GLvec3d(...)

GlLvec3d sampled_light_dir = normalize(sampled_light_lookat — sampled_light_pos);

GLfloat sampled_light_cutoff = ...;

GLfloat sampled_light_near = ...;

GLfloat sampled_light_far = ...;

GLfloat sampled_light_size = ...;

GLvec4f sampled_light_diffuse = GLvec4f(GLvec3f(...), 1.0));

GLint sample_count = 512;

GLvec3d xsamples_pos[sample_count];

lamp_lighter—createSquareArealLightSamples(sampled_light_pos, sampled_light_dir,

samples_pos, sample_count);
sampled_light =
light_manager—createSampledArealLight(sampled_light_dir, samples_pos, sample_count,

sampled_light_cutoff, sampled_light_near,
sampled_light_far, sampled_light_size);

sampled_light—+setDiffuse (sampled_light_diffuse);

Line 4-6, derive the normalised direction of light from the position of the light and the look-at position. Line 12-15,
using the LampLighter, create the positions of the 512 samples on the planar and square-shaped area of the light source.
The samples are randomly distributed with respect to a POISSON disk distribution. As a consequence, the individual hard
shadows of the samples unify accordingly to create smooth transitions of penumbrae. Furthermore, the samples are sorted
with respect to the increasing distance to the centre of the light source. As a consequence, penumbrae grow naturally from
inner to outer penumbra if progressive rendering is enabled. Line 16-19, create the area light being sampled with 512
spot lights. The spot lights have equal direction of light, spot cutoff, near and far plane distances. The area size essentially
scales the distance of the samples to the centre of the area of the light source.

CHAPTER 4. IMPLEMENTATION 84

4.2.2 Combining Existing Shaders

This example demonstrates how easily Apelles is setup for combining existing shaders (Figure 4.9). The scene consists
of an object and a plane (shadow receiver). The object hovers above the plane to serve as a shadow caster (occluder).
The vertices of the plane are displaced along the y axis using an existing vertex shader which applies a sinusoidal surface
deformation. Additionally, the plane is textured with a grid to enhance the visual impression of surface deformation. In
the scene are two light sources: a spot light and an area light. Soft shadows are approximated utilising PCSS to allow for
real-time performance. Note how important shadows are to create the correct visual impression of a hovering object.

Figure 4.9: Apelles example combining existing shaders. A teapot hovering above a deformed surface is illuminated by two light
sources: a spot light and an area light. The deformed surface is generated by displacing the vertices of a plane along the y axis with
a sinusoidal deformation function. In order to enhance the visual impression of surface deformation, the deformed surface is covered
with a grid texture. The soft shadow of the area light is generated with PCSS utilising a randomly rotating POISSON disk kernel for
PCF (quality setting low).

The existing displacement vertex shader is combined with both scattering and gathering vertex shaders of Apelles to
create user shaders. First, however, in order to yield valid shader source, the existing shader source needs to be adapted
to ensure compatibility with the shaders of Apelles. The existing shader must ensure to output modified vertex positions
and normalised normals to the varying variables of Apelles. Second, the library shaders are copied in order to allow for
selectively rendering objects with or without vertex displacement. The according gathering vertex shader is copied with
respect to the number of light sources and the utilised PCSS quality setting. Finally, using the ShaderManager the adapted
vertex shader source is combined with vertex shaders of both scattering and gathering to yield user shaders. Of course, in
order to apply the grid texture a simple texturing shader is combined additionally.

Listing 4.20: Pseudocode of creating user shaders by combining existing shaders with the shaders of Apelles.

1 void createVDShaders(int light_count, PCSSQuality pcss_quality ,
ShaderProgramPtr &vd_depth_prog, ShaderProgramPtr &vd_main_prog)

2

3

4 string vd_vert_src = existing_vertex_displacement_vert—getSource ();
5 SourceModifier &m = SourceModifier:: getlnstance ();

6 findReplace (vd_vert_src, "vec3 vpos_ec3_", "vec4 vpos_ec_");

7 findReplace(vd_vert_src,

8 "vpos_ec3_ = vec3(gl_ModelViewMatrix x displaced_vertex)",
9 "vpos_ec_ = gl_ModelViewMatrix * displaced_vertex");

1o sm.deleteVaryingDecl(vd_vert_src, "vpos_ec_");

1 findReplace (vd_vert_src, "n_", "N_");

12 findReplace(vd_vert_src,

13 "N_ = gl_NormalMatrix * displaced_normal",

14 "N_ = normalize (gl_NormalMatrix * displaced_normal)");

15 sm.deleteVaryingDecl(vd_vert_src, "N_");

16 vd_depth_prog = shader_manager—getDepthProg () —copy ();

17 vd_main_prog = shader_manager—getMainProg(light_count, pcss_quality)—copy();
18 vd_depth_prog—link ();

19 vd_main_prog—link ();

1

2

3

4

5

6

7

8

9

10

11

12

CHAPTER 4. IMPLEMENTATION 85

string tex_vert_src = "void main() {"
"gl_TexCoord[0] = gl_MultiTexCoord0; gl_Position = ftransform; }";
string tex_frag_src = "uniform sampler2D TEX;"

"void main() { gl_FragColor = texture2D (TEX, gl_TexCoord[0].st); }";
shader_manager—use (vd_depth_prog);
shader_manager—combine (GL_VERTEX_SHADER, vd_vert_src);
shader_manager—use (vd_main_prog);
shader_manager—combine (GL_VERTEX_SHADER, tex_vert_src);
shader_mamager— combine (GL_FRAGMENT_SHADER, tex_frag_src);
shader_manager—combine (GL_VERTEX_SHADER, vd_vert_src);
shader_manager—unuse ();

Line 415, adapt the source of the existing displacement vertex shader to make it compatible with the vertex shaders of
Apelles. In the gathering fragment shader Apelles generates texture coordinates for accessing the shadow maps. Therefore,
the displaced vertex position must be input as a vector with four components to the fragment shaders of Apelles (Line
6-9). The displaced normal must be input as a normalised vector (Line 11-14). Line 10 and 15, remove conflicting
varying declarations because the shaders of Apelles declare position and normal shader inputs already. Line 16-19, copy
and link the library shader programs of both scattering and gathering. The gathering program is copied with respect to the
utilised PCSS quality setting and the number of light sources being rendered (Line 17). Line 20-23, defines the source
of a simple shader for texturing the displaced surface. Line 24 and 25, create the user shader for scattering. Line 26-30,
create the user shader for gathering. Note that the adapted vertex shader source is reused for creating the user shaders of
both scattering and gathering (Line 25 and 29). According to the scattering user shader, the declaration of the varying
variable N__ is ignored because the scattering shader only declares the vertex position as input (Listing 4.1). Line 28, by
default the merging of fragment shaders ensures that the colour of the texture is modulated with the result of the lighting
computation of Apelles.

The steps to render an image using Apelles mainly correspond to the steps of the simple example (Section 4.2.1). First,
Apelles is initialised. Non progressive rendering is enabled by default. The example uses regular depth biasing instead
of second-depth shadow mapping. Second, the user shaders are created. Third, two light sources are created: spot light
and area light. Accordingly, specific depth biasing settings are applied to the shadow map of the area light with respect to
the size of the light and the spatial configuration of the scene. Fourth, the texture is initialised for covering the deformed
surface with a grid. Finally, rendering is initiated by calling the function display(). In function draw() the user shaders are
enabled accordingly with respect to both scattering and gathering. The user shaders are only enabled upon drawing the
plane. In particular, it has to be noted that the values of the uniform variables of the library shaders must be transferred
to the uniform variables of the user shaders (not shown). To do so, an observer is registered on the ShaderManager to get
notified if uniforms of library shaders change. Then, at the beginning of draw(), a UniformSnapshot is used to transfer the
values from the library shaders to the according user shaders (Section 4.1.5). Of course, uniform transfer must be done
always if the uniforms of library shaders change continuously due to animation.

Listing 4.21: Pseudocode of the example demonstrating how to combine existing shaders with the shaders of Apelles.

/
#include "Apelles/render_manager.h"
using namespace Apelles_;
RenderManager *xrender_manager;
LightManager =xlight_manager;
ShaderManager xshader_manager;
ShaderProgramPtr vd_depth_prog;
ShaderProgramPtr vd_main_prog;
TexturePtr grid_tex;

/
void init ()

{

glClearDepth (1.0);

glEnable (GL_DEPTH_TEST);

render_manager = &RenderManager:: getinstance ();

light_manager = &render_manager—getLightManager ();

shader_manager = &render_manager—getShaderManager ();
createVDShaders (2, PCSS_QUALITY_LOW, vd_depth_prog, vd_main_prog);
light_manager—createSpotLight ();

Arealight xarea_light = light_manager—createArealLight (...);
ShadowMap sm = render_manager—getShadowMap(area_light);

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

CHAPTER 4. IMPLEMENTATION 86

sm—setSlopeBias (...);
sm—setConstBias (...);
render_manager—getTextureUnitAcquirer (). acquire (GL_TEXTUREO);
initTexture (grid_tex, GL_TEXTUREO);
}
/
void draw ()
{
// if necessary, transfer uniforms of library shaders to user shaders
if (shader_manager—get() == shader_manager—getDepthProg())
shader_manager—use (vd_depth_prog);
else shader_manager—use(vd_main_prog);
drawMeshPlane () ;
if (shader_manager—get() == vd_depth_prog)
shader_manager—use (shader_manager—getDepthProg ());
else shader_manager—use (shader_manager—getMainProg (2, PCSS_QUALITY_LOW));
drawHoveringObject ();
}
/
void display ()
{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
establishViewingTransformation ();
establishProjectionTransformation ();
establishViewportTransformation ();
render_manager—render(&draw);

Line 15, initialise Apelles. Depth biasing and non-progressive rendering is enabled by default. Line 18, create the user
shaders for applying vertex displacement in both scattering and gathering (Listing 4.20). The number of light sources and
the PCSS quality settings must be specified to create the user shader for gathering. Line 19 and 20, create the spot light
and the area light. Line 21-23, increase the slope and constant depth bias of the shadow map of the area light for hiding
incorrect self-shadowing. Note that the magnitude of depth bias necessary to hide incorrect self-shadowing sufficiently
well depends on the size of the area light (filter size) and the current spatial configuration of the scene. Line 24, reserve the
first texture addressing unit (TAU) for the grid texture. Hence, Apelles does not use the first TAU for addressing scatter
data. Line 25, initialise the grid texture and bind the texture to the first TAU. Line 31-37, enable the user shaders for
drawing the plane only and use the library shaders for drawing the hovering object. Line 30, the uniforms of the library
shaders must be transferred to the user shaders at least once (not shown). Line 34, note that if a gather pass is rendered,
the grid texture is applied to the deformed plane because the user shader performs texturing (Listing 4.20, line 27 and 28).
Line 37, if a gather pass is rendered, use the according library shader to render two light sources with a low PCSS quality.

Chapter 5

Results and Discussion

All of the pictures and performance numbers in this section were generated on a dual-core AMD Athlon 6000 X2 machine
with a single NVIDIA GeForce 250 GTS running openSUSE 10.2-AMD64 and OpenGL v3.0. Pictures were rendered at
a resolution of 640x480 pixels. The performance numbers were recorded while rendering both scattering and gathering.

5.1 Results

Visual Results To demonstrate the shadow generation capabilities of Apelles a detailed model of the Kolner Dom is
illuminated with different types of light sources. Figure 5.1 shows the exterior of the model being illuminated by a distant
SampledAreaLight. Figure 5.2 shows the interior of the model being illuminated by an indoor PointLight and an outdoor
SampledAreaLight. Figure 5.3 shows the interior of the model being illuminated by an indoor PointLight and an outdoor
AreaLight. Figure 5.4 shows the exterior and interior of the model being illuminated by an indoor PointLight, an outdoor
AreaLight and a GlobalDirectionalLight.

Performance Results Figure 5.1 and Figure 5.2 were rendered at 0.16 frames per second (SampledArealight). Figure
5.3 was rendered at 11.04 frames per second. Figure 5.4 was rendered at 10.45 (left) and 8.20 (right) frames per second.
With the GlobalDirectionalLight enabled only, the model was rendered at 77 frames per second. When Second-Depth
Shadow Mapping [WM94] was enabled, performance increased by 30% on average. While decreasing the size of shadow
maps, performance increased linearly. While increasing the number of samples or single-sample light sources, perfor-
mance decreased exponentially. While increasing the complexity of geometry, performance decreased exponentially.
The 512 samples of the SampledAreaLight were rendered with eight samples per pass. The ArealLight was ren-
dered with PCSS quality high (8 x8 blocker search, 16x 16 PCF). The shadow maps of local light sources were of size
4096 x4096. The shadow map of the GlobalDirectionalLight was of size 8192x8192. The mesh of the model of the Kol-
ner Dom consisted of 100k vertices and 200k triangles. Vertex buffer objects were utilised to accelerate vertex processing.

Figure 5.1: Visual Results One. The exterior of a model of the K6lner Dom is illuminated by a distant SampledAreaLight with 512
samples.

87

CHAPTER 5. RESULTS AND DISCUSSION 88

Figure 5.2: Visual Results Two. The interior of a model of the Kélner Dom is illuminated by an indoor PointLight and an outdoor
SampledAreaLlight with 512 samples.

Figure 5.3: Visual Results Three. The interior of a model of the Kolner Dom is illuminated by an indoor PointLight and an outdoor
Arealight.

Figure 5.4: Visual Results Four. The interior and exterior of a model of the K&lner Dom is illuminated by an indoor PointLight, an
outdoor Arealight and a GlobalDirectionalLight.

CHAPTER 5. RESULTS AND DISCUSSION 89

5.2 Discussion: Strengths and Limitations

OpenSG and Apelles were compared concerning differences in shadow generation. While OpenSG uses a single technique
for all types of supported light sources, Apelles infers the technique to be utilised from the type of the supported light
sources. Apelles improves convolution-based soft shadow generation with non-uniform sampling. Additionally, depth
biasing is improved with a linear depth metric. Furthermore, Apelles supplies sampling-based soft shadow generation and
adaptive rendering.

A comparison of convolution-based and sampling-based soft shadow generation revealed considerable visual limita-
tions of convolution-based soft shadows. Results generally exhibited overestimated umbrae. Additionally, the overlapping
shadows of separate occluders were combined incorrectly. Both limitations are a consequence of resolving visibility from
a single point on the surface of the extended light source. Furthermore, peter panning arose from large magnitudes of
depth bias necessary to hide incorrect-self shadowing. Of course, convolution-based soft shadow generation was consid-
erably faster than sampling-based soft shadow generation. Visually pleasing results of acceptable quality were achieved
with convolution-based soft shadow generation.

As a consequence of the image-based nature of Shadow Mapping [Wil78], shadows suffered from aliasing artefacts
inevitably. Aliasing stems from undersampling, oversampling and reconstruction errors. Undersampling was caused by
limited shadow map resolution, projection aliasing and perspective aliasing. However, projection aliasing was implicitly
reduced. The implemented lighting computations ensured that the diffuse term decreased significantly where the surface
normal and the direction of light became close to being orthogonal. In particular, if lights and objects moved vividly, tem-
poral aliasing aggravated artefacts additionally. Of course, aliasing was hardly appearing with soft shadows if penumbrae
exhibited sufficiently smooth transitions of partial illumination.

According to Percentage-Closer Soft Shadows (PCSS) [Fer(05], non-uniform sampling was superior to uniform sam-
pling in both quality and performance. However, performance significantly depended on the distance of the near plane
of the view volume of the light source. Furthermore, performance decreased exponentially with increasing light sizes.
In particular, the magnitude of depth bias necessary to eliminate incorrect self-shadowing had to be increased exponen-
tially with linearly increasing light sizes. As a consequence, peter panning was amplified significantly. Additionally, light
bleeding easily occurred for large light sizes.

Sampling-based soft shadow generation required multi-pass rendering because the number of samples which can be
evaluated in a single pass is considerably limited. However, experiments showed that evaluating eight samples per pass
achieved high performance.

The near and far distances for optimal light view volume culling were efficiently determined from an OpenGL floating-
point texture instantaneously using an OpenCL-enabled Parallel Reduction. Several optimisation strategies were applied
to improve performance significantly.

Adaptive rendering continuously measures performance and decreases shadow quality accordingly once the perfor-
mance dropped below real-time. Measuring the frame rate was considerably improved by reducing spikes with a Weighted
Moving Average. However, if the scene was highly dynamic, a highly unstable frame rate hindered to correctly determine
when to decrease or increase shadow quality.

The magnitude of depth bias necessary to eliminate incorrect self-shadowing was significantly reduced by utilising a
linear depth metric. As a consequence of sampling the distance to the light source, depth was sampled uniformly along the
direction of light, if the reprojection from eye-space to light-space involved a perspective projection. Additionally, depth
disparity of neighbouring fragments increased significantly. According to PCSS, peter panning was considerably reduced
due to a reduced magnitude of depth bias.

For generating performance numbers of rendering simple geometry, a scene with three planar surfaces was rendered
(Figure 5.5). For generating performance numbers of rendering complex geometry, the Utah Teapot of the GLUT! hover-
ing above a single planar receiver was rendered.

5.2.1 Comparison of OpenSG and Apelles Shadow Generation

The real-time scenegraph system OpenSG supplies experimental shadow generation”. Both hard and soft shadows are
generated for an arbitrary number of light sources. Three types of light sources are supported: directional, point and spot
lights. All implemented algorithms are based upon Shadow Mapping [Wil78]. Incorrect self-shadowing is avoided by
applying depth biasing (slope and constant).

Shadow generation is seamlessly integrated into OpenSG and enabled involving two steps only. First, a shadow map
viewport is created and light sources are attached to the root node of the viewport. Second, the viewport is attached to
a rendering context. The shadow map viewport specifies the algorithm to be used for shadow generation (shadow mode)

The OpenGL Utility Toolkit, http: //www.opengl.org/resources/libraries/glut (last access 2012-05-07).
2http://www.opensg.org/wiki/Gallery/Shadows (last access 2012-05-07)

http://www.opengl.org/resources/libraries/glut
http://www.opensg.org/wiki/Gallery/Shadows

CHAPTER 5. RESULTS AND DISCUSSION 90

and the parameter for trading quality for performance (smoothing parameter). The smoothing parameter specifies the
filter size for soft shadow generation. In conclusion, a single algorithm and a single parameter setting is used to generate
shadows cast by all lights of different types being attached to the root node of the shadow map viewport.

The supported shadow modes for hard shadow generation include

Standard shadow mapping Implements the initially proposed algorithm [Wil78]. Incorrect self-shadowing is avoided
by applying depth biasing (slope and constant).

Perspective shadow mapping Warping is applied to reduce perspective aliasing of shadow boundaries close to the
viewer. A robust reparameterisation of the shadow map is achieved by utilising Light-Space Perspective Shadow
Maps [WSP04]. However, standard shadow mapping is applied in two cases. First, if the view volume of the light
encompasses the entire scene (global light). Second, if the camera is located behind the light source. In particular, it
has to be noted that the free parameter of the reparameterisation is chosen while ignoring an improved falloff func-
tion [LGQ*08]. Therefore, the error potentially exceeds the error of standard shadow mapping if the free parameter
fails to increase fast enough where the directions of light and view become almost parallel. Furthermore, warping
involves fitting which considerably aggravates temporal aliasing if the sampling rate changes between consecutive
frames abruptly.

The supported shadow modes for soft shadow generation include

Dither shadow mapping Smoothes shadow boundaries by averaging four occlusion tests non-uniformly. The sampling
pattern of the four depth samples is varied per fragment. The smoothing parameter is ignored.

PCF shadow mapping Smoothes shadow boundaries by averaging the results of several occlusion tests with Percentage-
Closer Filtering (PCF) [RSC87]. The following PCF kernel sizes are used with respect to the specified smoothing
parameter: 2x2, 3x3, 4x4, 5x5 and 6x6.

PCSS shadow mapping The size of a PCF kernel is varied per fragment with respect to both the smoothing parameter
and the distance between occluder and receiver [FerO5]. The smoothing parameter specifies the size of the area of
the extended light source. The sampling pattern is uniform for both blocker search and PCF. The blocker search
averages 6x6 depth samples. The PCF kernel averages the outcome of 8x8 occlusion tests. Therefore, penum-
brae considerably suffer from banding artefacts where insufficient intensity levels are available to yield smooth
transitions.

Variance shadow mapping The result of PCF over a filter region is efficiently approximated from the first and second
moments of a distribution of depths with Variance Shadow Mapping (VSM) [DL06]. The inequality of CHEBY-
CHEV is highly susceptible to numerical instability which is mitigated by two improvements. First, the distance
to the light source is computed and mapped to [—1,41] to gain extra precision from the sign bit and to achieve
a linear distribution of depth. However, if the light is directional, the linear clip-space depth being mapped to
[0,1] is used instead. Second, for adequately storing the two moments, the shadow map utilises the internal for-
mat GL_RGBAL6F. As consequence, compared to a standard shadow map with a single 24 bit fixed-point depth
component, the memory footprint of the shadow map increases considerably. However, the moments should be
stored as 32 bit floating-point numbers instead to further improve numerical stability [DL06]. Additionally, if depth
complexity is high, light bleeding easily appears. Approaches to mitigate light bleeding are ignored [Lau07, LMOS].

According to soft shadow generation, PCSS is the only algorithm which generates visually pleasing soft shadows
exhibiting contact hardening. In contrast, dithering, PCF and VSM only uniformly smooth shadow boundaries. Hence,
soft shadows visually disconnect from occluders with large filter widths easily if shadows do not harden on contact.

In particular, it has to be noted that a non-linear depth metric is used; except for VSM. Therefore, precision of depth
along the direction of light is highly non-uniform which aggravates depth biasing (Section 5.2.8). Furthermore, concerning
PCSS, using the distance to the light source is highly recommended to avoid numerical instability upon estimating the
varying width of penumbrae.

In contrast, Apelles infers the technique utilised for shadow generation from the type of the light source

Standard shadow mapping Hard shadows are generated for global directional light, directional light, spot light and
point light. Incorrect self-shadowing is avoided with depth biasing (slope and constant). In order to increase the
accuracy of occlusion testing and improve depth biasing, a linear depth metric is used (distance to light) and depth
is stored as 32 bit floating-point numbers; for all types of light sources. Accordingly, shadow maps utilise the
internal format GL_R32F. Furthermore, if the scene geometry is closed Second-Depth Shadow Mapping [WM94]
is utilisable. Costly occlusion tests are confined to fragments which are potentially lit only. Of course, aliasing
artefacts easily appear with standard shadow mapping in large environments (Section 5.2.3).

CHAPTER 5. RESULTS AND DISCUSSION 91

Convolution-based shadow mapping Visually pleasing soft shadows which exhibit contact hardening are generated for
AreaLight. PCSS is extended with non-uniform sampling to hide banding artefacts while increasing both quality
and performance [Isi06]. The kernels of both blocker search and PCF are randomly rotated per fragment. The
sampling positions inside the filter window are located with respect to a POISSON disk distribution. Three shadow
quality settings are supported (low, medium and high). The size of both blocker search and PCF kernels is freely
specifyable for all quality settings to allow trading quality for performance with respect to the detail of the rendered
geometry and the underlying hardware platform. Of course, large filter widths require large magnitudes of depth
bias. As a consequence of gaps between receivers and occluders, which are attached to receivers, occluders easily
appear to incorrectly hover (Section 5.2.4).

Sampling-based shadow mapping Physically accurate soft shadows are generated for SampledArealLight. The planar
surface of the extended light source is randomly sampled with spot lights using a POISSON disk distribution. If
the number of spot lights is sufficiently high, the individual hard shadows unify accordingly while introducing
smooth transitions of partial illumination (penumbrae). Apelles supplies several POISSON sampling patterns with
a different number of samples. Furthermore, the planar surface of the extended light source is specifyable as being
circular-shaped or square-shaped. Of course, sampling is costly which hinders real-time performance. Therefore, a
progressive render mode is provided which successively refines soft shadows over consecutive frames.

In addition, Apelles provides an adaptive render mode. The frame rate is continuously measured and shadow quality
is reduced accordingly once performance dropped below real-time (Section 5.2.7).

5.2.2 Comparison of Convolution-Based and Sampling-Based Soft Shadow Generation

Convolution-based shadows considerably suffered from overestimated umbrae, incorrect occluder fusion and incomplete
shadows. This is a direct consequence of resolving visibility of objects being visible from a single point on the surface
of the extended light source only. In addition, peter panning caused occluders to incorrectly appear as being detached
from receivers due to large magnitudes of depth bias necessary to eliminate incorrect self-shadowing. In contrast, more
accurate results were achieved if the surface of the extended light source was sampled with multiple spot lights. The
samples were located with respect to a POISSON disk distribution on the planar surface of the extended light source.
Accordingly, penumbrae were generated accumulatively while exhibiting smooth transitions of partial illumination if the
number of samples was sufficiently high. All figures of this section showing soft shadows generated with ArealLight used
the PCSS quality setting high (8x8 blocker search, 16x16 PCF).

The soft shadows of AreaLight exhibited overestimated umbrae in general (Figure 5.5). This is a direct consequence
of resolving visibility of objects being visible from a single point on the surface of the extended light source only. In
comparison, if visibility was sampled accurately (SampledAreaLight), the size of penumbrae varied more intensively with
respect to the distance between light source, occluders and receivers. Shadows cast by occluders being closer to the
extended light source exhibited larger penumbrae than distant (Figure 5.5, shadow on the middle plane).

Shadow generation of Arealight suffered from both inaccurate occluder fusion and incomplete shadows (Figure 5.6).
The individual contribution of occluders was combined incorrectly where shadows cast by separate occluders overlapped
on receivers. Furthermore, shadows exhibited considerable defects for two reasons. First, only sampling depth of objects
being visible from a single point on the surface of the extended light source restrains to resolve visibility correctly. Second,
only sampling depth of front-facing or back-facing geometry with respect to the direction of light confines occlusion test-
ing to a single layer of depth. However, PCSS estimates the size of penumbrae by averaging several depths of occluders in
a neighbourhood of the fragment currently being shaded (blocker search). As a consequence, shadows remained complete
while, however, exhibiting considerable defects (Figure 5.6, left, shadows on the plane), if compared to incomplete shad-
ows (Figure 3.8, left, shadows on the plane). In particular, it has to be noted that utilising Second-Depth Shadow Mapping
[WMO94] significantly reduced shadow defects in this context. The overestimation of the penumbra of the shadow cast by
the cube onto the sphere was considerably reduced because the depth of the bottom face of the cube was rendered into the
shadow map. As a consequence of identifying a closer blocker (bottom face), the width of the penumbra is estimated to
be considerably smaller. However, the computation of light reaching the surface of the sphere ignores that light is partly
blocked by the cube if the light source exhibits spatial extend. Therefore, the surface of the sphere receives too much light
incorrectly (Figure 5.6, left).

As a consequence of peter panning, Arealight was considerably limited to small light sizes (Figure 5.7). The mag-
nitude of depth bias necessary to eliminate incorrect self-shadowing depends on the size of the light. Large PCF kernel
sizes inferred large magnitudes of depth bias to eliminate incorrect self-shadowing. As a consequence, shadows started
too far behind which introduced gaps between receivers and occluders being attached to each other. Hence, occluders
appeared to incorrectly hover above receivers. Peter panning was considerably reduced by utilising a linear depth metric

CHAPTER 5. RESULTS AND DISCUSSION 92

)

Figure 5.5: Comparison of AreaLight and SampledArealight. Umbrae overestimation. Three planar surfaces are illuminated from
above. The surfaces increase in size from top to bottom with respect to the distance from the light source. Left: The umbra of the
shadow cast by the top plane onto the middle plane is considerably overestimated. The umbra of the shadow cast by the middle plane
onto the bottom plane is considerably less overestimated than the umbra on the middle plane. Right: Visibility is sampled accurately
with 512 spot lights. The spot lights are located randomly, with respect to a POISSON disk distribution, on the square-shaped surface
of the extended light source (SampledArealight). As a consequence, the umbra of the shadow on the middle plane is considerably
smaller. The umbra of the shadow on the bottom plane is only slightly but noticeably smaller if compared to the ArealLight (left).

- N

Figure 5.6: Comparison of Arealight and SampledAreaLight. Incorrect occluder fusion. The small image in the middle illustrates the
vertical laying out of the scene which consists of a light source, a cubical occluder, a spherical occluder and a large planar receiver.
The shadow map stores depth of front-facing geometry with respect to the direction of light. Left: Incorrect occluder fusion appears
on the plane because visibility is resolved from a single point on the surface of the extended light source only. Note that the frazzled
and harsh shadow boundary on the plane stems from non-uniform PCSS with early out acceleration. Furthermore, the shadow cast by
the cube onto the sphere exhibits overestimated penumbrae because depths of the bottom face of the cube are ignored due to rendering
front-facing geometry into the shadow map only. Right: The circular-shaped surface of the extended light source is sampled randomly
with 512 spot lights. On the plane the shadow of the sphere correctly combines with the shadow of the cube. The shadow cast by the
cube onto the right hemisphere only exhibits a narrow penumbra. The intensity of light on the left hemisphere is noticeably attenuated
because the light of several samples on the circular-shaped surface of the extended light source is blocked by the cube.

CHAPTER 5. RESULTS AND DISCUSSION 93

Figure 5.7: Comparison of Arealight and SampledAreaLight. Peter panning causes gaps at contact shadows. The magnitude of depth
bias necessary to eliminate incorrect self-shadowing depends on the size of the Arealight. PCF infers large magnitudes of depth bias
necessary to eliminate incorrect self-shadowing which introduces peter panning. Three black panels have been attached rectangularly to
a large horizontal plane to expose peter panning. Left: As a consequence of depth biasing, the three black panels incorrectly appear to
hover above the large horizontal plane (depth biasing: slope 20.0, const 0.05, light size: 0.5). Right: The square-shaped surface of the
extended light source is sampled with 512 spot lights. The three black polygons correctly appear to be attached to the large horizontal
panel regardless of the size of the SampledAreaLight (depth biasing: slope 0.5, const 0.0001). Note that peter panning disappears if
SDSM is used because the black planes are back-facing with respect to the direction of light. However, the top and middle plane would
no longer cast shadows because the planes only consist of front-facing geometry with respect to the direction of light.

because a smaller magnitude of depth bias was necessary to eliminate incorrect self-shadowing (Section 5.2.8). Further-
more, peter panning was avoided by utilising Second-Depth Shadow Mapping (SDSM) [WM94]. However, SDSM is only
applicable if geometry is closed. Furthermore, geometry is required to exhibit sufficient thickness to ensure sufficient
depth disparity for effectively eliminating incorrect self-shadowing. Otherwise, depth biasing is necessary additionally
which reintroduces peter panning.

5.2.3 Aliasing

As a consequence of utilising shadow mapping, shadows generated with Apelles suffered from aliasing (Figure 5.8).
Aliasing artefacts manifest in jaggies at the boundaries of shadows which stem from undersampling, oversampling and
reconstruction errors. Undersampling is caused by limited shadow map resolution, projection aliasing and perspective
aliasing. Both projection aliasing and perspective aliasing enlarge the shadow map locally and globally. Reconstruction
errors are introduced due to nearest neighbour reconstruction. Oversampling occurs where the shadow map must be
minified to reconstruct a depth value from multiple depth samples.

Projection aliasing was implicitly reduced because the lighting computations of Apelles ensured that the diffuse term
decreased dramatically where the surface normal and the direction of light come close to being orthogonal. Both ambient
term and specular term do not expose projection aliasing. The ambient term contributes uniformly to shadowed and
unshadowed regions. The specular term significantly contributes to regions only where projection aliasing is negligible.
As a consequence, surfaces exhibiting aliasing artefacts due to projection aliasing received a small amount of light only.
However, with oblique light objectionable artefacts were eliminated only by increasing the sampling rate of the shadow
map globally (Figure 5.8, dark regions, shadows of detailed decorations of transverse gables). Of course, the sampling
rate must be adjusted locally with respect to the surface normal and the direction of light to eliminate projection aliasing
completely which is hardly achievable in real-time [GWO07a, GWO07b].

In particular, if lights and objects moved vividly, movements of jagged shadow boundaries created the highly visual
disturbing impression of shadows moving across receivers with frequent and abrupt stops. In addition, if the sampling rate
of shadow maps changed abruptly between consecutive frames, temporal aliasing further aggravated artefacts.

Aliasing was hardly appearing with soft shadows. According to AreaLight, by averaging several occlusion tests, PCF
introduces a refined reconstruction filter. The jagged boundaries of shadows are blurred with respect to the size of the
filter window. Therefore, aliasing due to both undersampling and oversampling is effectively camouflaged in penumbrae.
As a consequence, the resolution of shadow maps can be considerably smaller without introducing aliasing. Additionally,
the memory footprint of shadow maps is considerably decreased; particularly for SampledArealight which allocates as
many shadow maps as samples are evaluated in a single gather pass.

CHAPTER 5. RESULTS AND DISCUSSION 94

Figure 5.8: Shadow map aliasing in large environments. The scene is illuminated with a GlobalDirectionalLight having a shadow map
of size 8192 8192. The intensity of light was increased additionally to expose aliasing artefacts in dark regions. Left: Shadows exhibit
noticeable aliasing artefacts. As a consequence of oblique light, shadows in the darker regions are incapable of accurately reflecting
the detailed decorations on the edges of traverse gables (projection aliasing). Right: Aliasing artefacts are decreased considerably by
increasing the sampling rate of the shadow map globally. The GlobalDirectionaLight is replaced with a local DirectionalLight. The
field of view is reduced to only encompass the model of the Kélner Dom instead of the large environment.

5.2.4 Percentage-Closer Soft Shadows

Percentage-Closer Soft Shadows (PCSS) [Fer05] varies the size of a PCF kernel based on the occluder-receiver distance
to create visually pleasing soft shadows with contact hardening. In order to achieve acceptable results for large light sizes
and large penumbrae, respectively, the PCF stage requires large kernel sizes. Therefore, numerous shadow map accesses
limit performance considerably. As a consequence of inadequate PCF kernel sizes, large penumbrae suffer from banding
where insufficient intensity levels are available to yield smooth transitions. Accordingly, I tested various combinations
of uniform and non-uniform sampling for the blocker search and for the PCF at different kernel sizes. The influence on
performance and inhibition of penumbra banding of the combinations was examined. The results showed that non-uniform
sampling is capable of hiding penumbra banding effectively while enabling higher frame rates (Table 5.1). However, noise
was introduced due to sampling the shadow map irregularly (Figure 5.9). The noise was significantly less noticeable than
banding.

In addition to inhibiting penumbra banding, non-uniform sampling increased the accuracy of the blocker search heuris-
tic significantly. The boundaries of penumbrae became more accurate but frazzled as well (Figure 5.9, bottom row).
Moreover, the improved accuracy of the blocker search heuristic was beneficial to the efficiency of early out (Figure 5.10).
Performance was raised because more fragments were correctly determined to be unoccluded and, therefore, missed the
costly PCF stage. Accordingly, non-uniform sampling performed better than uniform sampling; despite the cost of in-
stantly generating pseudorandom numbers to randomly rotate the POISSON disk kernel per fragment. As a consequence of
the improved accuracy of the blocker search heuristic, non-uniform sampling allowed to take less samples for the blocker
search compared to uniform sampling (Table 5.1, first column). Experiments showed that if less than 25 samples were
taken for a uniform blocker search, salt and pepper noise was introduced due to incorrect early outs.

Simple Complex

Blocker search PCF fps fps
4x4 non-uniform 4 x4 non-uniform 270 150
8 x 8 uniform 12x 12 uniform 120 95
4x4 non-uniform 1212 uniform 180 130
4x4 non-uniform 8 X8 non-uniform 200 150
4 x4 non-uniform 16 16 non-uniform 110 70

Table 5.1: Percentage-closer soft shadows. Comparison of uniform and non-uniform sampling for simple and complex geometry.
Visual quality increases from top to bottom. Note that non-uniform sampling is superior to uniform sampling in both quality and
performance.

CHAPTER 5. RESULTS AND DISCUSSION 95

Figure 5.9: Percentage-closer soft shadows. Comparison of uniform and non-uniform sampling (8 x 8 blocker search and 8§ x8 PCF).
Left: Uniform sampling. Shadow boundaries are nonnatural due to uniform sampling in blocker search. Penumbra suffers from banding.
Right: Non-uniform sampling. Shadows are more visually pleasing especially if regions with banding are compared. However, banding
is traded for noise. Top row: Note that the three black polygons are attached to the ground plane but due to a large magnitude of depth
bias they appear to be not. Note that the large umbra on the ground plane shows light bleeding as a consequence of a large light size
(large filter width). Bottom row: A sphere is lit directly from above to expose the artefacts of uniform sampling.

On the contrary, if non-uniform sampling was used, 16 samples sufficed. Finally, the accuracy of the blocker search
heuristic highly depended on the distance between the fragment (receiver) and the near plane of the view frustum of the
light (Figure 5.11). The accuracy decreased dramatically as the distance between the near plane and the receiver increased.
Therefore, the near plane should be moved as close as possible towards occluding geometry.

According to large light sizes, large filter widths had a negative effect on the blocker search and the PCF. The ef-
ficiency of early out was dramatically decreased because more fragments were incorrectly determined to be occluded
(Figure 5.12). Moreover, light bleeding was introduced because PCF incorrectly computed penumbra intensity levels for
umbrae fragments (Figure 5.9, top row, the large umbra on the ground plane is incorrectly brightened). Furthermore, a
large filter width required a large PCF kernel, otherwise banding was introduced. As a result of a large PCF kernel, a
huge magnitude of depth bias was necessary to eliminate incorrect self-shadowing (Figure 5.9, top row, the three black
polygons appear to hover incorrectly). In conclusion, for large filter widths non-uniform sampling allowed to use smaller
PCF kernels which required less biasing. Smaller PCF kernels can be used because banding is traded for noise which
is less noticeable. Of course, if geometry is closed, Second-Depth Shadow Mapping [WM94] is utilisable to eliminate
incorrect self-shadowing without biasing if geometry exhibits sufficient thickness. However, light bleeding still occurred
for large PCF kernels.

CHAPTER 5. RESULTS AND DISCUSSION 96

Figure 5.10: Percentage-closer soft shadows. Effect of non-uniform sampling on efficiency of blocker search. Non-uniform sampling
considerably improves the efficiency of early out. Red fragments are determined to be occluded (blocker search) and sent to the PCF
stage. Left: Uniform sampling is used for the blocker search only. Non-uniform sampling is used for PCF. As a consequence of using
the unclamped distance from light as a linear depth metric together with slope-based depth biasing, the region of early out fragments
on the ground plane is pillow-shaped. Right: Non-uniform sampling is used for both, blocker search and PCF. Less fragments are
incorrectly determined to be occluded which yields a higher frame rate.

Figure 5.11: Percentage-closer soft shadows. Effect of near plane distance on efficiency. Efficiency of early out depends highly on the
distance between the fragment (receiver) and the near plane. Red fragments are determined to be occluded (blocker search) and sent
to the PCF stage. Left: PCF is performed unnecessarily for fragments on the sphere which are unoccluded. Right: On the sphere no
fragments are incorrectly determined to be occluded. Therefore, moving the near plane closer to the sphere results in a higher frame
rate.

CHAPTER 5. RESULTS AND DISCUSSION 97

Figure 5.12: Percentage-closer soft shadows. Effect of light size on efficiency. Efficiency of early out depends highly on the size of
the light. Red fragments are determined to be occluded (blocker search) and sent to the PCF stage. Left: On the sphere and the ground
plane PCF is performed unnecessarily for more fragments which are unoccluded. If the size of the light is increased, the width of the
blocker search is increased as well. Right: As a consequence of a smaller light size (smaller penumbra), less fragments are incorrectly
determined to be occluded which increases performance significantly.

5.2.5 Optimisation of Sampling-Based Soft Shadow Generation

The area of the extended light source is irregularly sampled with multiple spot lights. The number of shadow maps, which
can be evaluated for occlusion testing within a single pass, is constrained by three limits.

First, the number of available texture addressing units (TAU) limits the number of shadow maps being accessible. Each
sample requires a shadow map for occlusion testing. Therefore, only as much samples can be evaluated within a single
pass as unoccupied TAUSs are available. However, only a single TAU was required by aggregating individual shadow maps
of equal size in a single texture array which is addressable with a single TAU. As a consequence, the shadow map of the
according sample was simply accessed through an index (layer).

Second, the capabilities of the underlying hardware platform limit the size of uniform arrays. Using the GeForce 250
GTS, a maximum of 98 samples were evaluated within a single pass. The compiler of the OpenGL Shading Language
(GLSL) failed upon assembling the fragment program for 99 samples. According to aggregating the positions of the spot
lights in a uniform array, the GLSL assembler emitted an array out of bounds error.

Third, the size of available texture memory limits the number of resident shadow maps (Figure 5.13). A single shadow
map with 2048 %2048 texels, which represent 32 bit floating-point depth values, is 16.78 MByte large. Hence, an area
light with 32 samples consumes 537 MByte of GPU memory (VRAM). Accordingly, a shadow map array with 61 layers
consumed the entire VRAM of the GeForce 250 GTS. However, 94 samples could be evaluated in a single pass because
the shadow map array was allocated in RAM by the GL driver implicitly. Of course, performance decreased dramatically
due to costly DMA transfers over PCI-express between the CPU and the GPU.

Soft shadows of sampled area light sources were generated by utilising ping-pong offscreen rendering. First, the
samples were divided into smaller batches of equal size. In each pass a single batch of samples is evaluated only. Using
ping-pong offscreen rendering the results of passes were successively accumulated to yield the final result. For example,
512 samples are broken down into 16 batches with 32 samples each. A significant gain in performance was identified
upon evaluating eight samples per pass (Figure 5.14). Accordingly, rendering eight single-sample light sources in one
pass achieved high performance as well.

CHAPTER 5. RESULTS AND DISCUSSION 98

Performance Memory Consumption
30.0 100 2000
22,5 75 T 1500
- 3 Throughput 8 ‘O Memory Consumption
3 o Framerate 3 g ° @ Shadow Map Size
ey E N © ;
2 =150 50 & & @ 1000
2o g &
a §
75 25 T 500
0 0 0
1 2 4 8 16 32 44 6061626364 93 94 1 2 4 8 163244 6061626364939
Number of Samples Number of Samples

Figure 5.13: Comparison of rendering a varying number of area light samples in a single pass. Each sample has a shadow map
2048 %2048 texels large (16.8 MByte). Geometry is kept simple to minimise the influence of vertex processing. Left: Frame rate and
throughput is measured while increasing the number of samples being rendered in a single pass. Note that, first, throughput slightly
rises but, then, considerably decreases beyond 8 samples. Despite the simple geometry, the frame rate drops below real-time at 16
samples already. Right: Memory consumption of RAM is measured while increasing the number of samples. With 62 samples, the
shadow map array becomes too large to fit into VRAM and, therefore, is allocated in RAM by the GL driver implicitly. Hence, the
memory consumption corresponds to the size of the shadow map array. Note that, accordingly, throughput decreases significantly due
to costly DMA transfers over PCI-express between the CPU and the GPU (left, 61 and 62 samples).

Framerate Throughput
25 30.0
4 Simple, 32 Samples per Pass 25.1
20 # Complex, 32 Samples per Pass
° ‘O Simple, 8 Samples per Pass 225 4
§ Complex, 8 Samples per Pass
$ 15 1 g
g £ 150 -
Q
& 10 - &
g 10.1
o 77 85
w 75 4
5 -
0 o
32 64 128 256 512 32 8 32 8
Number of Samples Samples per Pass

Figure 5.14: Comparison of rendering a sampled area light with 32 and 8 samples per pass. Each sample has a shadow map 2048 x2048
texels large. The shadow maps are aggregated in a texture array with 32 and 8 layers, respectively. Therefore, each pass renders both
scattering and gathering. In order to illustrate the influence of repeated vertex processing during multi-pass rendering, simple and
complex geometry is rendered. Left: Frame rate is measured while increasing the number of samples. Right: Throughput is averaged
over the increasing number of samples with respect to rendering 32 and 8 samples per pass. Note that even with complex geometry
throughput is significantly higher if 8 samples per pass are rendered (right, second and fourth bar).

CHAPTER 5. RESULTS AND DISCUSSION 99

5.2.6 Optimisation of Light View Volume Culling with OpenCL

The optimal magnitude of the near and far distances of the view volume of the light corresponds to the minimum and
maximum of the light clip-space depth values in the shadow map (Section 3.5). Accordingly, experiments were con-
ducted using an OpenCL-enabled implementation of a Parallel Reduction to retrieve the minimum and maximum from
an OpenGL floating-point texture instantaneously. The results showed that the GPU performed the computation approx-
imately 15 times faster than a dual-core desktop CPU. Even a mobile GPU, which is rather feeble and optimised to save
battery, outperformed the CPU (Figure 5.15).

The OpenCL-enabled computation of minimum and maximum of a shadow map 2048 x2048 texels large using a par-
allel reduction required three passes and took 2.65 ms (throughput 12.3 GByte/s, Figure 5.16, third bar). For comparison,
rendering the Utah Teapot of the GLUT once into that shadow map took 3.58 ms (throughput 9.37 GByte/s, Figure 5.16,
open bar). As a consequence of the limits of the OpenCL implementation of the underlying hardware platform, the two-
dimensional problem domain (2D texture) was partitioned into 16384 square blocks 16x 16 elements large. Therefore, the
first pass of the reduction yielded 16384 minima and maxima respectively. After the first pass the problem domain became
one-dimensional (array). This enabled to take advantage of the maximum block size of 512 elements. Accordingly, the
array was partitioned into 32 blocks 512 elements long. Therefore, the second pass of the reduction yielded 32 minima
and maxima, respectively. Finally, in the last pass a single multiprocessor reduced the remaining 32 elements to yield the
minimum and maximum. In particular, it has to be noted that the partition of the shadow map into square blocks inhibited
to use the maximum block size supported by the OpenCL implementation of the underlying hardware platform. In addi-
tion, the shadow map served as a direct input to the algorithm (OpenGL and OpenCL context sharing). As a consequence,
both costly on-chip and off-chip data transfers between the CPU and GPU were circumvented.

The OpenCL-enabled implementation of the parallel reduction applied several optimisation strategies to improve ef-
ficiency (Figure 5.16). For increased throughput input data was loaded into fast local memory of a work-group. Hence,
warps of work-items, which are executed in lockstep within a work-group (SIMD), had faster access to the data they
worked on. The initial implementation used the modulo operator to interleave active work-items. In particular, mod-
ulo is a costly operation on a GPU and, therefore, limits throughput significantly. As a consequence of eliminating the
modulo operation, the addressing of local memory resulted in many local memory bank conflicts. These local memory
bank conflicts were avoided by ensuring that adjacent work-items accessed different local memory banks which increased
throughput even further. However, sequential addressing required an integer division. This particularly expensive instruc-
tion was replaced with an efficient bitwise operation.

Throughput
14.0
12.27
10.5 A
o
[J)
5 7.0 A
i3
(O]
3.5 1
[l Athlon 6000 X2
0.79 0.86 GeForce 9400M
0 I GeForce 250 GTS

CPU GPU GPU

Compute Device

Type Name Memory Clock speed Compute Work-group
MByte MHz units size

CPU AMD Athlon X2 6000 1568 2970 2 2

GPU NVIDIA GeForce 9400M 268 1100 2 512

GPU NVIDIA GeForce 250 GTS 1027 1836 16 512

Figure 5.15: Comparison of different compute devices for the determination of the minimum and maximum from an OpenGL floating-
point texture. Top: Throughput of a texture 2048 <2048 texels large. Note that the mobile GPU (middle bar), which is feeble and
optimised to save battery, is faster than a desktop CPU (left bar). Of course, the desktop GPU easily outperforms the other devices due
to a larger number of parallel compute units (right bar). Bottom: Properties of the compute devices. Note that the compute unit of a
GPU comprises eight processing elements.

CHAPTER 5. RESULTS AND DISCUSSION 100

Execution Time Throughput
12.00 14.0
10.49 12.3
9.60 A 112 A
9.4
3B
s 720 A ° 8.4 A 71
3 =3
2 480 - 4.67 G 56 A
g - 3.58)
2.65 3.2
240 A 28 A
o - o -
1 2 3 Teapot 1 2 3 Teapot

Figure 5.16: Comparison of two optimisations for the determination of the minimum and maximum from an OpenGL floating-point
texture. Efficiency increases significantly after applying two optimisations to the computation of the minimum and maximum from
a texture 2048x2048 texels large. The change in execution time (left) and throughput (right) was measured after eliminating an
expensive modulo operation (second bar) and after resolving local memory bank conflicts (third bar). For comparison, the performance
of rendering the Utah Teapot of the GLUT into that shadow map has been added (open bar).

5.2.7 Adaptive Rendering

Adaptive rendering continuously measures the frame rate and reduces shadow quality once the performance dropped below
real-time. Experiments showed that adaptive rendering was capable of recovering real-time performance (Figure 5.17).
After the setting time had elapsed (frame 0-12), the average frame rate was continuously measured (frame 12-30). Then,
the frame rate dropped below real-time due to switching to fullscreen rendering (frame 30). Three counter actions were
applied to raise the frame rate (frame 31-48, upward arrows). As a consequence, the size of shadow maps was decreased
from 2048 %2048 to 1024 x 1024 and, finally, to 512512, respectively. After applying each counter action, a setting time
of five frames had elapsed before the effect of the counter action was measured. As a consequence of taking counter
actions, the frame rate raised and real-time was recovered (frame 49-54). Particularly, the last counter action was undone
because the frame rate had raised sufficiently high (frame 67). As a consequence, the size of shadow maps was increased
from 512512 to 1024 x 1024 respectively. Finally, the frame rate stabilised close to real-time (frame 70 and beyond).

Measuring the frame rate was improved considerably by averaging the raw frame rate with a Weighted Moving Average.
As a consequence, spikes were reduced while maintaining sufficient signal response sensitivity. Of course, if the frame
rate is highly unstable due to abruptly changing workloads, adaptive rendering is inapplicable. Furthermore, after applying
a counter action, the frame rate was given a setting time to reflect the effect of the counter action. If the frame rate changes
due to additional causes during the setting time, the effect of the counter action is measured incorrectly.

40
5 30
c R
8 25 A
8 >
(%]
g 20
%]
[0}
1S
9 "
10 H
i ---- Framerate
—— Framerate averaged
0 H
6 12 18 24 30 36 42 48 54 60 66 72
Frame

Figure 5.17: Effect of adaptively changing render quality to maintain real-time performance. The measured frame rate (dashed line) is
averaged over five consecutive frames using a Weighted Moving Average (solid line). As a consequence, spikes are reduced significantly
while maintaining sufficient signal response sensitivity. Once the measured frame rate drops below real-time (frame 30), three counter
actions are applied to raise performance (upward arrows). Note that after applying each counter action, a setting time elapsed before
measuring the effect of the counter action. The last counter action is undone because the frame rate raised sufficiently high (downward
arrow). Finally, the frame rate stabilises close to real-time.

CHAPTER 5. RESULTS AND DISCUSSION 101

Hence, adaptive rendering fails at both undoing previous counter actions and applying new counter actions correctly.
No further counter actions were applied if three subsequent counter actions had been identified to be ineffective. In
particular, it has to be noted that undoing of counter actions carries the risk of a feedback loop where the same counter
action is applied and subsequently undone repeatedly. The feedback loop was avoided by disabling the undoing of counter
actions once detecting the sequence apply undo apply of the same counter action.

5.2.8 Effect of Depth Metric on Depth Biasing

Shadow mapping is prone to incorrect self-shadowing artefacts due to a resampling problem. This problem was cir-
cumvented with depth biasing (slope and constant). Filtering the shadow map with PCF to create visually pleasing soft
shadows using PCSS induced a greater magnitude of slope bias. As a consequence of large offsets, shadows started too
far behind giving the wrong impression of hovering objects which were attached to each other (peter panning). However,
the necessary magnitude of slope bias was reduced by using the distance to the light as a depth metric (Figure 5.18).

Although a uniform distribution of depth values had insignificant impact on biasing (Figure 5.18, first and second bars),
a linear depth metric is preferable [BAS02a]. If the transformation into light-space involves a perspective projection, depth
is sampled highly non-uniform along the direction of light. Objects close to the near plane of the view frustum of the light
are oversampled while objects situated in the farther half of the view frustum of the light are being sampled extremely
coarsely. In contrast, a linear depth metric distributes depth values uniformly between the near plane and the far plane.
According to directional lights, light-space depth values are already distributed uniformly due to orthographic projection.

If PCF was used to generate soft shadows more slope bias was needed. The softness of the shadows is determined
by the size of the PCF kernel. The larger the PCF kernel, the more slope bias was necessary to eliminate incorrect self-
shadowing. In addition, the larger the shadow map, the more slope bias was needed. In this context, a uniform distribution
of depth values had little effect on biasing (Figure 5.18, second bar). Moreover, upon changing the size of an unfiltered
shadow map (hard shadows), no influence on biasing was observable.

According to PCF, a linear depth metric which computes the distance to the light proved to be capable of reducing the
necessary magnitude of slope bias significantly (Figure 5.18, third bar). Furthermore, the accuracy of the occlusion test
was improved because the depth disparity of neighbouring fragments increased significantly. Hence, the distance from
light is preferable to a uniform distribution of depth values; even for a directional light. Of course, computing the distance
involved a higher computational cost. Additionally, slope-based biasing required to evaluate the partial derivative of z with
respect to x as well as y. Experiments showed that the performance degradation in the scatter pass was negligible (data
not shown). In the gather pass no additional computations were necessary. The distance to the light source was already
computed for evaluating the spatial attenuation of light.

18 40
15 4
32 A
12 4
3 g2 7
a 0 a
b [0
qé M non-uniform z 2
%) M uniform z 3 16 -
6 distance from light
8 -
3 -
0 o A
1x1 4x4 8x8 16x16 32x32 256x256 512x512 1024x1024 2048x2048
PCF kernel size Shadow map size

Figure 5.18: Effect of depth metric on depth biasing. Comparison of three different depth metrics: non-uniform z, uniform z and
distance from light. Left: For a fixed shadow map size of 512x512 the PCF kernel size is increased. Note that a PCF kernel size of
1x1 corresponds to hard shadowing. A larger PCF kernel requires more slope bias. Right: For a fixed PCF kernel size of 16x16 the
shadow map size is increased. A larger shadow map requires more slope bias. Note that using the distance from light as a linear depth
metric (third bar) reduces the necessary magnitude of slope bias significantly.

CHAPTER 5. RESULTS AND DISCUSSION 102

Biasing was influenced by the accuracy of the occlusion test which is affected by the numerical representation of depth
values considerably. According to storing depth values in a depth buffer, a floating-point representation was preferable
to a fixed-point representation. In the range [0, 1] a 32 bit fixed-point representation provides less accuracy than a 32
bit floating-point representation. Concerning the IEEE 754 standard format [IEEOS], the units of last precision vary in
size. Therefore, representable values are distributed unequally in the number range. Distances between small numbers
are very small. With the magnitude of numbers the distance increases expeditiously. For example, the distance between
two numbers in the range [0, 1] is approximately 10~ and starts to increase beyond 1. Instead, the constant distance
between two numbers in fixed-point representation is approximately 10~°. Therefore, a 32 bit floating-point representation
identifies 10* numbers in the range [0, 1]. In contrast, a 32 bit fixed-point representation identifies 10° numbers within the
same range only. In short, to maximise the accuracy of the occlusion test, depth values should be represented with floating-
point numbers and the depth metric should map depth values to the range [0, 1]. Since depth values are always positive,
mapping depth values to [—1,+1] utilises the idle sign bit for extra precision. However, negative depth values were
inapplicable for PCSS. In addition, experiments with a depth metric in the range [0, 1] showed that numerical instability
problems arose upon estimating the blocker search width and penumbra width. As a consequence, PCSS required to use
the unmapped distance from light as depth metric. In conclusion, the accuracy of the depth metric decreases dramatically
with large distances from the light because the floating-point representation infers large gaps between large numbers.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Apelles is capable of rendering both geometric hard and soft shadows cast by opaque occluders. An arbitrary number
of light sources can be setup in a scene naturally. The supported types of light sources include directional lights, point
lights, spot lights and area lights. Apelles exposes a simple and concise interface to facilitate both integration into existing
applications and development of new applications. Visual quality is decreased adaptively to ensure interactivity if neces-
sary. Of course, Apelles is open for supplementary extension to easily combine additional GPU-accelerated rasterisation
techniques which add missing global illumination effects (see Section 6.2.5).

Although significant advances have been made in real-time shadow generation in the last few years, a universally
applicable algorithm is still unavailable. Therefore, Apelles offers two different strategies for rendering soft shadows. The
first strategy allows to render visually-pleasing but unreal soft shadows in real-time (convolution-based soft shadows).
The second strategy achieves a more physically-correct result but comes at a higher cost (sampling-based soft shadows).
Hence, a strategy can be selected depending on the context of the application appropriately.

Shadows convey inevitable visual information in three-dimensional virtual environments with both static and dynamic
objects. The mere presence of objectionably coarse approximations of shadows is preferable to disregarding shadows
totally. Shadows cast by objects on other surfaces provide critical visual cues about both the shape of the casting objects
and the shape of the receiving surfaces. For example, the curvature of the surface of a convex object of interest can
be evaluated by inspecting the shadow silhouette casted by oblique light on a nearby planar surface being rectangular
to the direction of light. Furthermore, shadows enable to correctly perceive the spatial arrangement of both static and
dynamic objects. If soft shadows harden on contact the proximity of objects can be perceived more finely than with stereo
viewing; particularly if objects are moving. For example, upon visualising a polio virus infection with the computational
microscope, the relative movements of long chain molecules with 100 million atoms are hardly traceable visually without
dynamic cues for spatial layout.

6.2 Future Work
6.2.1 Aliasing

Despite the large texture resolutions being supported on contemporary hardware, uniform Shadow Mapping [Wil78] is
hardly practicable in large environments.

Undersampling due to perspective aliasing is considerably reduced with warping and z-partitioning. Light-Space
Perspective Shadow Maps (LiSPSM) [WSP04] provide a robust reparameterisation for all types of light sources. If the
improved falloff function suggested by [LGQ™*08] is utilised, the shadow quality of LiSPSM is ensured to never decrease
below the shadow quality of uniform shadow mapping. However, if memory constraints allow to allocate more than one
shadow map per single-sample light source, [LGQ™*08] suggests to replace LiSPSM with z-partitioning [ZSXL06, ZZB09].
Explicitly tuneable split schemes allow to achieve a reasonable tradeoff between shadow quality and performance; partic-
ularly if geometry exhibits varying detail along the direction of light. In contrast, automatically optimising the splitting
scheme every frame adaptively is achievable with Sample Distribution Shadow Maps (SDSM) [LSL11].

However, warping and z-partitioning inherently aggravate temporal aliasing in highly dynamic scenes. In order to max-
imise effectiveness warping requires fitting which aggravates temporal aliasing additionally. According to z-partitioning,
artefacts easily appear close to the adjacencies of split planes. A combination of warping and z-partitioning mainly results
in increased temporal aliasing while quality improvements remain negligible.

103

CHAPTER 6. CONCLUSION AND FUTURE WORK 104

Projection aliasing is avoidable only with adaptive partitioning. The sampling rate of the shadow map is varied
analytically with respect to the direction of the surface normal and the direction of light. This is hardly achievable in
real-time due to excessive multi-pass rendering and costly read-backs to decide when to stop the iterative refinement of
the shadow map [GW07a, GWO07b]. However, the aforementioned approaches supply a parameter to fine-tune the tradeoff
between quality and performance depending on the application requirements.

Oversampling is efficiently addressable with approaches which linearise the shadow map and, therefore, allow to
utilise GPU-enabled filtering for the minification of shadow maps [DL06, LM0S, AMB*07, AMS*08]. As a consequence,
shadow maps become applicable to trilinear and anisotropic texture filtering. Furthermore, these approaches increase
temporal coherence which reduces temporal aliasing significantly.

6.2.2 Convolution-Based Soft Shadow Generation

Despite improving Percentage-Closer Soft Shadows (PCSS) [Fer05] with stratified sampling [Isi06], performance is lim-
ited due to excessively accessing the shadow map for both blocker search and PCF. Furthermore, PCSS is susceptible to
peter panning due to large magnitudes of depth bias necessary for eliminating incorrect self-shadowing. Peter panning is
addressable with gradient-based depth biasing [Sch05, Isi06, Sch07] or normal-offset-based depth biasing [Hol11].

The performance of the filtering stage of PCSS is considerably improved with Summed-Area Variance Shadow Maps
(SAVSM) [LauO7]. Adaptively varying the size of the filter window for each screen pixel is achieved accurately with
summed-area tables which, however, infer a high cost of creation. In contrast, N-Buffers [Déc05] achieve a reasonable
balance between cost of creation and quality if implemented efficiently on contemporary hardware utilising a hierarchical
approach [ED06].

However, light bleeding due to high depth complexity in small scenes necessitates to partition the depth range into
multiple layers [LMOS8]. For small lights Layered Variance Shadow Maps (LVSM) or Exponential Variance Shadow Maps
(EVSM) [LMOS] are a robust and fast alternative to PCF-based PCSS. In contrast, if lights are large, a VSM-based filtering
stage easily leads to incorrect classification of occlusion.

Variance Soft Shadow Maps (VSSM) [YDF*10] address incorrect classification of occlusion with an efficient filter
kernel subdivision scheme. Additionally, blocker search is performed efficiently by estimating the average blocker depth
with a VSM-enabled formula. As a consequence, PCSS becomes a constant-time algorithm.

Furthermore, VSM-based approaches are inherently less susceptible to incorrect self-shadowing and, therefore, peter
panning is mitigated implicitly. However, VSM-based PCSS is less precise than PCF-based PCSS because the outcome
of PCF is estimated with a single depth sample only. Therefore, instead of replacing PCF-based PCSS with VSM-
based PCSS in Apelles, both algorithms should be supplied side by side for increased flexibility upon using Arealight.
Occlusion Textures [ED06, ED08] is another real-time algorithm worth considering for convolution-based soft shadow
generation. The performance is independent of the size of the light and the size of penumbrae. However, reasonable
results are achieved for small scenes with low geometry detail only.

6.2.3 Environmental Shadows

Accurate environmental shadows can be generated by sampling the surrounding hemisphere non-uniformly [Pha04]. This
is similar to SampledArealight where the planar surface of the light source is sampled non-uniformly using multiple spot
lights having equal directions. In contrast, the direction of light of each sample on the hemisphere points towards the
centre of the hemisphere surrounding the scene. Accordingly, the shader of SampledArealight only needs to be modified
to support a varying direction of light per sample. Of course, the shadows of numerous spot lights need to be accumulated
to sample environmental shadows densely enough in large environments.

As a consequence of the high computational cost of sampling-based environmental shadows, Apelles should include
a real-time ambient occlusion algorithm for deformable objects additionally. Screen-Space Ambient Occlusion (SSAO)
[SA07, Mit07, BSDO08] is independent from scene complexity and exhibits low memory consumption while considerably
enhancing the details of a scene. However, several issues need to be considered to achieve convincing results. First,
thin geometry easily exhibits false occlusion halos. Second, distant occluders are easily undersampled in screen-space.
Third, geometry must be tessellated sufficiently high. Finally, artefacts easily appear if occluders are nearly parallel to the
direction of view.

6.2.4 Multi-Pass Rendering

According to scattering, in figure 5.2 rendering the spherical view of PointLight to the CubeShadowMap required six
passes. Since the introduction of geometry shaders, cube maps can be rendered in a single pass. However, first, geometry
is simply duplicated by the geometry processor for six layers. Then, each layer is rasterised to the depth texture of the

CHAPTER 6. CONCLUSION AND FUTURE WORK 105

according cube map face using multiple render targets. Therefore, geometry is duplicated and rasterised repeatedly and
redundantly in practice. Decomposing geometry into six disjoint subsets with respect to the cube map faces is non-trivial.
As a consequence, significant gains in performance are potentially outweighed by excessive geometry processing and
redundant rasterisation; particularly due to feeble geometry processing units on GPUs supporting Shader Model 4 only.

According to gather, in figure 5.1 the 512 samples of the SampledArealight were rendered with eight samples per
pass. Accordingly, 64 passes were necessary to accumulatively evaluate partial illumination of the single area light
source with sampling. In essence, multi-pass rendering infers to submit scene geometry repeatedly which scales poorly.
Furthermore, lighting computations and occlusion testing is applied for a considerable amount of fragments which are
potentially discarded due to visibility determination with z-buffering.

In contrast, Deferred Shading [HHO04] decouples lighting from surface shading to allow for blending individual con-
tributions of numerous lights in screen-space. First, while rendering geometry, depth, surface normal, diffuse colour,
specular colour and specular exponent are aggregated in a screen-sized offscreen buffer (G-buffer). This requires to utilise
multiple render targets because the G-buffer consists of several two-dimensional textures. Second, while looping over all
lights the view volume of each light is rendered only. Lighting computations and occlusion testing are performed with
data read from the G-buffer and shadow maps, respectively. As a consequence, computations are confined to pixels being
affected by the currently processed light only. Finally, the individual contributions of lights are accumulated with additive
blending. However, the G-buffer has a high storage cost and infers high bandwidth usage; particularly if lights overlap.
Furthermore, G-buffer data must be stored with sufficient precision, otherwise artefacts are introduced.

Deferred Lighting [Hof09] minimises data stored in the G-buffer. First, while rendering geometry, the surface normal
and the specular exponent are stored in a single offscreen buffer with four components only. Second, while looping over
all lights the view volume of each light is rendered only. The results of lighting computations and occlusion testing are
accumulated in separate offscreen buffers. Finally, while rendering geometry again, the diffuse and specular colours are
modulated with lighting and shadowing terms read from offscreen buffers. As a consequence, less input data must be
resident and the cost of computation for each light is considerably reduced.

6.2.5 GPU-Based Global Illumination

Missing global illumination effects in Apelles such as reflections, refractions, caustics and indirect illumination can be
included with extended environment mapping while achieving convincing results efficiently.

Initially cubic environment mapping has been suggested for approximately tracing secondary rays while rendering
objects which are perfect mirrors [Gre86]. The reflected view vector is used to look up the incoming radiance from one
direction in a colour cube map that has been generated from the centre of the reflecting object (reference point). For
including the increase in reflectance if light impinges at shallow angles the irradiance is multiplied by the FRESNEL term
F which can be approximated well and efficiently [Sch94].

Recursive reflections are achievable by using a dedicated cube map per reflector [NCO2]. First, all cube maps are
initialised with the irradiance of the global environment. Then, while rendering a single reflector, cube maps of other
reflectors are updated successively. Efficient but approximate recursive reflections are achievable, if only one cube map is
updated per frame or if updating is postponed for several frames.

If the surface of objects exhibits roughness, glossy and diffuse reflections can be computed by filtering the cube
map [Gre86]. In order to achieve more physically realistic results the cube map is filtered using BRDF lobes [KMOO].
If surface roughness varies spatially, several cube maps filtered with BRDF lobes of varying sizes are aggregated in a
MIP chain [GKDO07]. While achieving reasonable performance, the quality of mipmapping is significantly improved
with N-Buffers [Déc05], if implemented efficiently on contemporary hardware utilising a hierarchical approach [ED06].
However, if BRDF lobes are uniform and radially symmetric only, objectionable errors appear on flat surfaces. Using
multiple cube maps aggregated in an array, arbitrary BRDFs can be approximated by accumulating filtering with multiple
lobes [KMOO]. In contrast, high quality results are obtained at a considerably higher computational cost by utilising Monte
Carlo quadrature with importance sampling [CKO07].

At the surface of transparent objects, the refracted view direction is computed with the SNELLIUS law of refraction
which involves the refractive indices of the participating materials n; and n,. The proportion of irradiance that is being
transmitted depends on the FRESNEL term 1 — F and the ratio of the refractive indices ny/n;. Of course, for yielding
more accurate results, the refracted view vector is bent a second time upon leaving the transmitter before looking up the
irradiance from the cube map. Furthermore, if the index of refraction varies with the wavelength of light, dispersion
occurs. Depending on the surface curvature of objects, both reflections and refractions introduce caustics where light is
focused on diffuse surfaces.

Cubic environment mapping suffers from several limitations which hinders to yield convincing results [AMHHOS].
First, both viewing vector and normal vector must vary sufficiently across surfaces. Otherwise, only a small region of
the cube map is being sampled while shading the surface of the object. Second, self occlusion is ignored because the

CHAPTER 6. CONCLUSION AND FUTURE WORK 106

environment is assumed to be fully visible from the reference point. Third, environment mapping produces only accurate
results if distant objects have been rendered into the cube map only. As a consequence, the distance between the reference
point and the surface point currently being shaded is negligible. Therefore, the cube map can simply be looked up with
directional vectors at the reference point.

However, environment mapping can be extended with a sampled representation of local geometry (localisation). Con-
vincing results are achievable efficiently by utilising approximate ray-tracing with distance impostors [SKALPO5]. The
cube map additionally includes the distance of surrounding geometry from the reference point (distance impostor). An
iterative ray intersection method is applied to approximate a localised direction for looking up the cube map at the refer-
ence point. In essence, the approximated direction identifies the point on the environment surface that is hit by a given
ray shot from a given surface point instead of the reference point. As a consequence, the quality of both reflections and
refractions increase considerably; particularly with a few iterations. If an additional cube map stores the surface normal
per texel (refractor map), secondary refractions can be approximated similarly. Furthermore, caustics can be computed
using a two pass approach which is based on Photon Mapping [Jen96]. First, light paths are followed to obtain a texture
that stores where a photon hits the closest diffuse surface. Additionally, the texture stores the power of the photon which
passes through the texel along the path of light. Then, a caustic map is rendered by splatting the photons onto diffuse
surfaces. Visually pleasing caustic patterns require two final steps. First, the contribution of individual photon hits must
be combined appropriately with filtering. Second, the reflected proportion of caustic illumination must be computed with
respect to the local BRDF. Caustics Mapping [SKP07] improves the efficiency of approximately tracing light paths and
details how caustic generation can be combined with Shadow Mapping [Wil78].

Similar to approximating specular effects, indirect diffuse and moderately glossy illumination can be approximated
efficiently with localised cubic environment mapping [SKL06]. The texels of the cubic environment map essentially
correspond to small virtual lights whose radiance impinges at a surface point. Accordingly, the radiance and distance of
numerous small virtual lights is sampled in a cube map. Then, the cube map is down-sampled while averaging radiance
and distance of the small virtual lights. As a consequence, numerous small virtual lights are clustered into a few large area
light sources. Hence, the last bounce irradiance of the area lights at a surface point can be determined efficiently with a
few localised cube map lookups only. Of course, self-shadowing caused by indirect light is ignored.

Cascaded Light Propagation Volumes [KD10] supply a volume-based approach for approximating diffuse indirect
illumination including occlusion efficiently and convincingly while achieving high temporal coherence. In particular, it
has to be noted that the approach has been implemented into the deferred rendering pipeline of the CryENGINE® 3.
Therefore, the algorithm is applicable to fully dynamic scenes even on feeble hardware. Furthermore, the approach is
extensible to support multiple bounces of indirect light, glossy reflections and volumetric effects of participating media.
First, in order to create a coarse volumetric representation of the spatial and angular distribution of light in the scene, a
light propagation volume (LPV) is created by uniformly sampling a point cloud of secondary light sources into Reflective
Shadow Maps (RSM) [DS05]. Multiple layers of depth are captured by utilising depth peeling [Eve02]. The resulting
LPV is a volumetric texture which compactly approximates a three dimensional radiance field using low-order spherical
harmonics coefficients [RHO1] distributed in a grid. Additionally, a coarse representation of blocker geometry is created
in a second volumetric texture (GV) to account for fuzzy occlusion. Then, light transport is propagated between voxels
in the LPV using an iterative scheme while including blocking contributions of the GV. In large scenes the number
of iterations necessary to propagate medium and long distance light transport is considerably reduced with a cascaded
approach. Instead of using very large grids, LPV and GV grids are partitioned into multiple cascaded grids of small size
to adaptively increase the sampling density for visually important regions (close to the viewer). Light transport at short
distances is approximated with screen-space techniques. Finally, the distribution of light is obtained by accumulating
the results of all iterations. The approach is mainly applicable for computing low-frequency indirect lighting due to the
limitations of spatial discretisation, low-order spherical harmonics and the proposed propagation scheme. Particularly, as
a consequence of a coarse volumetric representation and low-frequency approximations of the lighting, the approach is
susceptible to light bleeding and incomplete self-illumination.

References

[ADM*08]

[AHL*06]

[AHTO4]

[ALO4]

[AMB*07]

[AMHHOS8]

[AMS*08]

[ARHMO0]

[Arv04]

[ArvO7]

[ASKO06]

[BASO2a]

[BAS02b]

[Bav08]

[BCSO08]

[Bli77]

ANNEN T., DONG Z., MERTENS T., BEKAERT P., SEIDEL H.-P., KAUTZ J.: Real-time, all-frequency
shadows in dynamic scenes. ACM Trans. Graph. 27, 3 (2008), 1-8. 28, 34, 35

ATTY L., HOLZSCHUCH N., LAPIERRE M., HASENFRATZ J.-M., HANSEN C., SILLION F.: Soft shadow
maps: Efficient sampling of light source visibility. Computer Graphics Forum 25, 4 (December 2006),
725-741. 29, 30, 33

ARVO J., HIRVIKORPI M., TYYSTJARVI J.: Approximate soft shadows with an image-space flood-fill
algorithm. Computer Graphics Forum 23, 3 (2004), 271-279. 26

ATLA T., LAINE S.: Alias-free shadow maps. In Proceedings of Eurographics Symposium on Rendering
2004 (2004), Eurographics Association, pp. 161-166. 22

ANNEN T., MERTENS T., BEKAERT P., SEIDEL H.-P., KAUTZ J.: Convolution shadow maps. In Rendering
Techniques 2007: Eurographics Symposium on Rendering (2007), Eurographics, pp. 51-60. 20, 25, 28, 104

AKENINE-MOLLER T., HAINES E., HOFFMAN N.: Real-Time Rendering, 3 ed. A. K. Peters, Ltd., 2008.
41, 105

ANNEN T., MERTENS T., SEIDEL H.-P., FLERACKERS E., KAUTZ J.: Exponential shadow maps. In G/
"08: Proceedings of Graphics Interface 2008 (2008), Canadian Information Processing Society, pp. 155—
161. 21, 25, 104

AGRAWALA M., RAMAMOORTHI R., HEIRICH A., MOLL L.: Efficient image-based methods for render-
ing soft shadows. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques (2000), SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing Co., pp. 375-384. 31

ARvO J.: Tiled shadow maps. In Proceedings of the Computer Graphics International (2004), IEEE
Computer Society, pp. 240-247. 16

ARVO J.: Alias-free shadow maps using graphics hardware. Journal of Graphics, GPU, and Game Tools
12,1 (2007), 47-59. 23

AsSzODI B., SZIRMAY-KALOS L.: Real-time soft shadows with shadow accumulation. In Eurographics
2006 Short Papers (September 2006), pp. 53-56. 29

BRABEC S., ANNEN T., SEIDEL H.-P.: Practical shadow mapping. Journal of Graphics Tools 7 (December
2002), 9-18. 9, 24, 48, 101

BRABEC S., ANNEN T., SEIDEL H.-P.: Shadow mapping for hemispherical and omnidirectional light

sources. In Advances in Modelling, Animation and Rendering (Proceedings of Computer Graphics Interna-
tional 2002) (2002), Springer, pp. 397-408. 24

BAVOIL L.: Advanced soft shadow mapping techniques. Presentation, Game Developers Conference, 2008.
30

BavoiL L., CALLAHAN S. P, SiLvA C. T.: Robust soft shadow mapping with backprojection and depth
peeling. Journal of Graphics Tools 13, 1 (2008), 19-30. 30, 31

BLINN J. F.: Models of light reflection for computer synthesized pictures. SIGGRAPH Computer Graphics
11 (July 1977), 192-198. 41

107

REFERENCES 108

[BMR*96]

[BS02]

[BS06]

[BSDOS]

[BunO5]

[Bur06]

[C++11]

[Cat74]

[Chr06]

[CKO7]

[Cro77]

[CT81]

[DBBO6]
[Déc05]

[DHO6]

[DLO6]

[DS05]

[DUO7]

[EASW09]

[EDO6]

[EDOS]

BUSCHMANN F., MEUNIER R., ROHNERT H., SOMMERLAD P., STAL M.: Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns. John Wiley & Sons, 1996. 80

BRABEC S., SEIDEL H.-P.: Single sample soft shadows using depth maps. In Proceedings of Graphics
Interface 2002 (May 2002), pp. 219-228. 26

BavoiL L., SiLvA C. T.: Real-time soft shadows with cone culling. In ACM SIGGRAPH 2006 Sketches
(July 2006), SIGGRAPH ’06, ACM. 29, 31

BAvoIL L., SAINZ M., DIMITROV R.: Image-space horizon-based ambient occlusion. In ACM SIGGRAPH
2008 talks (2008), SIGGRAPH °08, ACM, pp. 22:1-22:1. 35, 36, 104

BUNNELL M.: Dynamic ambient occlusion and indirect lighting. In GPU Gems 2 — Techniques for Graph-
ics and Compute-Intensive Programming, Pharr M., (Ed.), vol. 2 of GPU Gems. Addison-Wesley, 2005,
pp. 223-234. 35

BURLEY B.: Shadow map bias cone and improved soft shadows: Disney bonus section. In ACM SIGGRAPH
2006 Courses (2006), SIGGRAPH 06, ACM. 23

ISO/IEC 14882:2011 Information Technology — Programming Languages — C++. 1SO International Orga-
nization for Standardization, September 2011. 80

CATMULL E. E.: A subdivision algorithm for computer display of curved surfaces. PhD thesis, University
of Utah, 1974. 4

CHRISTENSEN P.: Ray tracing for the movie ’cars’. Presentation, Ray Tracing Symposium, 2006. 4

COLBERT M., KRIVANEK J.: Gpu-based importance sampling. In GPU Gems 3 — Programming Techniques
for High-Performance Graphics and General-Purpose Computation, Nguyen H., (Ed.), vol. 3 of GPU Gems.
Addison-Wesley, 2007, pp. 459-476. 105

CrOW F. C.: Shadow algorithms for computer graphics. In Proceedings of the 4th Annual Conference on
Computer Graphics and Interactive Techniques (1977), SIGGRAPH *77, ACM, pp. 242-248. 6

Cook R. L., TORRANCE K. E.: A reflectance model for computer graphics. SIGGRAPH Computer
Graphics 15 (August 1981), 307-316. 40

DUTRE P., BALA K., BEKAERT P.: Advanced Global Illumination, 2nd ed. A. K. Peters, Ltd., 2006. 37, 41

DECORET X.: N-buffers for efficient depth map query. Computer Graphics Forum 24, 3 (2005), 393—400.
28, 32, 104, 105

DUNBAR D., HUMPHREYS G.: A spatial data structure for fast poisson-disk sample generation. In ACM
SIGGRAPH 2006 Papers (2006), SIGGRAPH 06, ACM, pp. 503-508. 54, 60, 72

DONNELLY W., LAURITZEN A.: Variance shadow maps. In Proceedings of the 2006 Symposium on
Interactive 3D Graphics and Games (2006), I3D *06, ACM, pp. 161-165. 19, 25, 56, 90, 104

DACHSBACHER C., STAMMINGER M.: Reflective shadow maps. In Proceedings of the 2005 Symposium
on Interactive 3D Graphics and Games (2005), I3D 05, ACM, pp. 203-231. 106

DMITRIEV K., URALSKY Y.: Soft shadows using hierarchical min-max shadow maps. Presentation, Game
Developers Conference, 2007. 30

EISEMANN E., ASSARSSON U., SCHWARZ M., WIMMER M.: Casting shadows in real time. In ACM
SIGGRAPH ASIA 2009 Courses (2009), SIGGRAPH ASIA *09, ACM. 6, 25, 26, 27, 28, 30, 31, 33, 41, 43,
45, 53, 54

EISEMANN E., DECORET X.: Plausible image based soft shadows using occlusion textures. In Proceedings
of the 19th Brazilian Symposium on Computer Graphics and Image Processing (October 2006), SIBGRAPI,
pp. 155-162. 28, 32, 35, 104, 105

EISEMANN E., DECORET X.: Occlusion textures for plausible soft shadows. Computer Graphics Forum
27,1 (March 2008), 13-23. 32, 35, 104

REFERENCES 109

[Eng07]

[Eve02]

[Fer05]

[FFBGO1]

[GBPO06]

[GBPO7]

[Ger04]

[GHFPOS]

[GHIV94]

[GKDO07]

[Gre86]

[GrulO]

[GWO07a]

[GWO7b]

[Hei99]

[HH97]

[HHO4]

[HJO7]

[HKSBO6]

[HLHS03]

ENGEL W.: Cascaded shadow maps. In ShaderX> — Advanced Rendering Techniques, Engel W., (Ed.), vol. 5
of ShaderX. Charles River Media, 2007. 14

EVERITT C.: Interactive order-independent transparency. Tech. rep., NVIDIA Corporation, 2002. 24, 30,
33, 106

FERNANDO R.: Percentage-closer soft shadows. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Sketches
(2005), ACM, p. 35. 26, 35, 51, 52, 56, 89, 90, 94, 104

FERNANDO R., FERNANDEZ S., BALA K., GREENBERG D. P.: Adaptive shadow maps. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques (2001), SIGGRAPH ’01,
ACM, pp. 387-390. 16

GUENNEBAUD G., BARTHE L., PAULIN M.: Realtime soft shadow mapping by backprojection. In In
Proceedings of Eurographics Symposium on Rendering (June 2006), pp. 227-234. 29, 30

GUENNEBAUD G., BARTHE L., PAULIN M.: High-quality adaptive soft shadow mapping. Computer
Graphics Forum (Proceedings of Eurographics 2007) 26, 3 (September 2007), 525-533. 30, 31, 35

GERASIMOV P. S.: Omnidirectional shadow mapping. In GPU Gems — Programming Techniques, Tips and
Tricks for Real-Time Graphics, Fernando R., (Ed.), vol. 1 of GPU Gems. Addison-Wesley, 2004. 24, 25, 50

GASCUEL J.-D., HOLZSCHUCH N., FOURNIER G., PEROCHE B.: Fast non-linear projections using graph-
ics hardware. In Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games (2008), 13D
"08, ACM, pp. 107-114. 24

GAMMA E., HELM R., JOHNSON R., VLISSIDES J.: Design Patterns: Elements of Reusable Object-
Oriented Software, 1 ed. Addison-Wesley Professional, 1994. 60, 63, 65, 66, 77

GREEN P., KAUTZ J., DURAND F.: Efficient reflectance and visibility approximations for environment map
rendering. Computer Graphics Forum (Proceedings of Eurographics 2007) 26, 3 (2007), 495-502. 105

GREENE N.: Environment mapping and other applications of world projections. Computer Graphics and
Applications, IEEE 6, 11 (Nov 1986), 21 -29. 105

GRUEN H.: Fast conventional shadow filtering. In GPU Pro — Advanced Rendering Techniques, Engel W.,
(Ed.), vol. 1 of GPU Pro. A. K. Peters, Ltd., 2010. 27

GIEGL M., WIMMER M.: Fitted virtual shadow maps. In Proceedings of Graphics Interface 2007 (2007),
GI’07, ACM, pp. 159-168. 17,93, 104

GIEGL M., WIMMER M.: Queried virtual shadow maps. In Proceedings of ACM SIGGRAPH 2007 Sympo-
sium on Interactive 3D Graphics and Games. ACM Press, April 2007, pp. 65-72. 17,93, 104

HEIDRICH W.: High-quality shading and lighting for hardware-accelerated rendering. PhD thesis, Univer-
sitdt Erlangen, 1999. 24

HECKBERT P. S., HERF M.: Simulating soft shadows with graphics hardware. Tech. rep., Carnegie Mellon
University, 1997. 44

HARGREAVES S., HARRIS M.: 6800 leagues under the sea: Deferred shading. Presentation, 6800 Leagues
Under the Sea Event, 2004. 105

HOBEROCK J., JIA Y.: High-quality ambient occlusion. In GPU Gems 3 — Programming Techniques for
High-Performance Graphics and General-Purpose Computation, Nguyen H., (Ed.), vol. 3 of GPU Gems.
Addison-Wesley, 2007, pp. 257-274. 35

HADWIGER M., KRATZ A., SIGG C., BUHLER K.: Gpu-accelerated deep shadow maps for direct vol-
ume rendering. In Proceedings of the 21st ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics
Hardware (2006), ACM, pp. 49-52. 8

HASENFRATZ J.-M., LAPIERRE M., HOLZSCHUCH N., SILLION F.: A survey of real-time soft shadows
algorithms. Computer Graphics Forum 22, 4 (Dec 2003), 753-774. 26

REFERENCES 110

[HNS85]

[Hof09]

[Holl1]
[HSC*05]

[HTSGI1]

[HualO]

[IEEO8]
[Isi06]

[Jen96]

[JLBMOS]

[JMBO04]

[Kaj86]

[KDO03]

[KD10]

[Kil01]

[KLO5]

[KMOO]

[Koz04]

[Lam60]

[Lau07]

[LGQ*08]

HOURCADE J., NICOLAS A.: Algorithms for antialiased cast shadows. Computers Graphics 9, 3 (1985),
259 -265. 24

HOFFMAN N.: Deferred lighting approaches. Webpage, http://www.realtimerendering.com/
blog/deferred-lighting—approaches/, June 2009. Last access 2012-03-21. 105

HOLBERT D.: Saying goodbye to shadow acne. Presentation, Game Developers Conference, 2011. 23, 104

HENSLEY J., SCHEUERMANN T., COOMBE G., SINGH M., LASTRA A.: Fast summed-area table genera-
tion and its applications. Computer Graphics Forum 24, 3 (2005), 547-555. 28

HE X. D., TORRANCE K. E., SILLION F. X., GREENBERG D. P.: A comprehensive physical model
for light reflection. In Proceedings of the 18th Annual Conference on Computer Graphics and Interactive
Techniques (1991), SIGGRAPH 91, ACM, pp. 175-186. 40

HUANG J.-H.: Opening keynote. Presentation, GPU Technology Conference, 2010. 4
IEEE Standard for Floating-Point Arithmetic. IEEE Std. 754-2008, August 2008. 102

ISIDORO J. R.: Shadow mapping: Gpu-based tips and techniques. Presentation, Game Developers Confer-
ence, 20006. 23, 27, 54, 72,73, 91, 104

JENSEN H. W.: Global illumination using photon maps. In Rendering Techniques '96 (Proceedings of
the Seventh Eurographics Workshop on Rendering) (1996), Pueyo X., Schroder P., (Eds.), Springer-Verlag,
pp- 21-30. 106

JOHNSON G. S., LEE J., BURNS C. A., MARK W. R.: The irregular z-buffer: Hardware acceleration for
irregular data structures. ACM Transactions on Graphics 24 (October 2005), 1462-1482. 23

JOHNSON G. S., MARK W. R., BURNS C. A.: The irregular z-buffer and its application to shadow mapping.
Research paper, The University of Texas at Austin, 2004. 23

KAJIYA J. T.: The rendering equation. In Proceedings of the 13th Annual Conference on Computer Graphics
and Interactive Techniques (1986), SIGGRAPH *86, ACM, pp. 143-150. 38

KIRSCH F., DOLLNER J.: Real-time soft shadows using a single light sample. Journal of WSCG 11, 2
(February 2003), 255-262. 26

KAPLANYAN A., DACHSBACHER C.: Cascaded light propagation volumes for real-time indirect illumi-
nation. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
(2010), I3D °10, ACM, pp. 99-107. 106

KILGARD M.: Shadow mapping with today’s opengl hardware. Presentation, Computer Entertainment
Developers Conference, 2001. 23

KONTKANEN J., LAINE S.: Ambient occlusion fields. In Proceedings of the 2005 Symposium on Interactive
3D Graphics and Games (2005), 13D *05, ACM, pp. 41-48. 34

KAuTz J., McCooL M. D.: Approximation of glossy reflection with prefiltered environment maps. In
Proceedings of Graphics Interface 2000 (2000), pp. 119-126. 105

Kozrov S.: Perspective shadow maps - care and feeding. In GPU Gems — Programming Techniques,
Tips and Tricks for Real-Time Graphics, Fernando R., (Ed.), vol. 1 of GPU Gems. Addison-Wesley, 2004,
pp.- 217-244. 15, 24,25

LAMBERT J. H.: Photometria sive de mensure de gratibus luminis, colorum umbrae. Eberhard Klett, 1760.
40

LAURITZEN A.: Summed-area variance shadow maps. In GPU Gems 3 — Programming Techniques for
High-Performance Graphics and General-Purpose Computation, Nguyen H., (Ed.), vol. 3 of GPU Gems.
Addison-Wesley, 2007, pp. 157-182. 19, 20, 23, 28, 35, 53, 90, 104

LLoyDp D. B., GOVINDARAJU N. K., QUAMMEN C., MOLNAR S. E., MANOCHA D.: Logarithmic
perspective shadow maps. ACM Transactions on Graphics 27 (October 2008), 1-32. 11, 12, 13, 14, 15, 25,
47,90, 103

http://www.realtimerendering.com/blog/deferred-lighting-approaches/
http://www.realtimerendering.com/blog/deferred-lighting-approaches/

REFERENCES 111

[Lial0]

[LMO8]

[LMCY11]

[LSL11]

[LSO07]

[LVO0O]

[Mar96]

[MFS09]

[Mil94]

[Mit07]

[MKHS10]

[MMAHO07]

[MTO04]

[NCO02]

[Nic70]

[NJH10]

[OCL10]

[Pha04]

[Pho75]

[PSS98]

[RHO1]

L1ao H.-C.: Shadow mapping for omnidirectional lights using tetrahedron mapping. In GPU Pro — Ad-
vanced Rendering Techniques, Engel W., (Ed.), vol. 1 of GPU Pro. A. K. Peters, Ltd., 2010. 24

LAURITZEN A., McCooOL M.: Layered variance shadow maps. In Proceedings of Graphics Interface 2008
(2008), GI °08, Canadian Information Processing Society, pp. 139-146. 20, 22, 90, 104

LIANG X.-H., MA S., CEN L.-X., YU Z.: Light space cascaded shadow maps algorithm for real time
rendering. Journal of Computer Science and Technology 26 (January 2011), 176-186. 15

LAURITZEN A., SALVI M., LEFOHN A.: Sample distribution shadow maps. In Symposium on Interactive
3D Graphics and Games (2011), 13D 11, ACM, pp. 97-102. 14, 103

LEFOHN A. E., SENGUPTA S., OWENS J. D.: Resolution-matched shadow maps. ACM Transactions on
Graphics 26, 4 (October 2007), 20:1-20:17. 16

Loxkovic T., VEACH E.: Deep shadow maps. In Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques (2000), SIGGRAPH 00, ACM Press/Addison-Wesley Publishing Co.,
pp- 385-392. 8§, 18, 32

MARTIN R. C.: The Interface Segregation Principle. Object Mentor, 1996. 58, 59

MENDEZ-FELIU A., SBERT M.: From obscurances to ambient occlusion: A survey. The Visual Computer
25, 2 (February 2009), 181-196. 34

MILLER G.: Efficient algorithms for local and global accessibility shading. In Proceedings of the 21st An-
nual Conference on Computer Graphics and Interactive Techniques (1994), SIGGRAPH ’94, ACM, pp. 319-
326. 34

MITTRING M.: Finding next gen: Cryengine 2. In ACM SIGGRAPH 2007 Courses (2007), SIGGRAPH
07, ACM, pp. 97-121. 35, 104

MOHAMMADBAGHER M., KAUTZ J., HOLZSCHUCH N., SOLER C.: Screen-space percentage-closer soft
shadows. In SIGGRAPH ’10: ACM SIGGRAPH 2010 Posters (2010), ACM, pp. 1-1. 27

MALMER M., MALMER F.; ASSARSSON U., HOLZSCHUCH N.: Fast precomputed ambient occlusion for
proximity shadows. Journal of Graphics Tools 12,2 (2007), 59-71. 35, 36

MARTIN T., TAN T.-S.: Anti-aliasing and continuity with trapezoidal shadow maps. In Proceedings of
Eurographics Symposium on Rendering (2004), pp. 153-160. 11, 24

NIELSEN K. H., CHRISTENSEN N. J.: Real-time recursive specular reflections on planar and curved sur-
faces using graphics hardware. In WSCG (Short Papers) (2002), pp. 91-98. 105

NicobEMUS F. E.: Reflectance nomenclature and directional reflectance and emissivity. Applied Optics 9,
6 (Jun 1970), 1474-1475. 39

NGUYEN K., JANG H., HAN J.: Layered occlusion map for soft shadow generation. The Visual Computer
26 (2010), 1497-1512. 30, 33, 36

The OpenCL Specification. Version 1.1. Khronos OpenCL Working Group, September 2010. 77

PHARR M.: Dynamic ambient occlusion and indirect lighting. In GPU Gems — Programming Techniques,
Tips and Tricks for Real-Time Graphics, Fernando R., (Ed.), vol. 1 of GPU Gems. Addison-Wesley, 2004,
pp. 279-292. 34, 104

PHONG B. T.: Illumination for computer generated pictures. Communications of the ACM 18 (June 1975),
311-317. 41

PARKER S., SHIRLEY P., SMITS B.: Single sample soft shadows. Tech. rep., University of Utah, October
1998. 26

RAMAMOORTHI R., HANRAHAN P.: An efficient representation for irradiance environment maps. In

Proceedings of the 28th annual conference on Computer graphics and interactive techniques (New York,
NY, USA, 2001), SIGGRAPH 01, ACM, pp. 497-500. 106

REFERENCES 112

[RSC87]

[RTO6]

[RWS*06]

[SAO7]

[SAPPO5]

[SCI7]

[Sch94]

[SCHO3]

[Sch05]

[Sch07]

[SD02]

[SEA0S]

[Sen04]

[SGHS98]

[SITWO07]

[SKALPO5]

[SKLO06]

[SKPO7]

[SKUO08]

[SS98]

REEVES W. T., SALESIN D. H., Cook R. L.: Rendering antialiased shadows with depth maps. In
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (July 1987),
SIGGRAPH 87, pp. 283-291. 7, 18, 23, 49, 90

RONG G., TAN T.-S.: Utilizing jump flooding in image-based soft shadows. In Proceedings of the ACM
Symposium on Virtual Reality Software and Technology (2006), VRST 06, ACM, pp. 173-180. 26

REN Z., WANG R., SNYDER J., ZHOU K., L1U X., SUN B., SLOAN P.-P., BAO H., PENG Q., GUO B.:
Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation. In ACM SIGGRAPH
2006 Papers (2006), SIGGRAPH *06, ACM, pp. 977-986. 34, 36

SHANMUGAM P., ARIKAN O.: Hardware accelerated ambient occlusion techniques on gpus. In Proceedings
of the 2007 Symposium on Interactive 3D Graphics and Games (2007), 13D 07, pp. 73-80. 35, 36, 104

ST-AMOUR J.-F., PAQUETTE E., POULIN P.: Soft shadows from extended light sources with penumbra
deep shadow maps. In Proceedings of Graphics Interface 2005 (2005), GI *05, Canadian Human-Computer
Communications Society, pp. 105-112. 32

SHIRLEY P., CHIU K.: A low distortion map between disk and square. Journal of Graphics Tools 2
(December 1997), 45-52. 54,72

ScHLICK C.: An inexpensive brdf model for physically-based rendering. Computer Graphics Forum 13,3
(Sept 1994), 149-162. 105

SEN P., CAMMARANO M., HANRAHAN P.: Shadow silhouette maps. In ACM SIGGRAPH 2003 Papers
(2003), SIGGRAPH 03, ACM, pp. 521-526. 7

SCHULER C.: Eliminating surface acne with gradient shadow mapping. In ShaderX* — Advanced Rendering
Techniques, Engel W., (Ed.), vol. 4 of ShaderX. Charles River Media, 2005. 23, 104

SCHULER C.: Multisampling extension for gradient shadow maps. In ShaderX> — Advanced Rendering
Techniques, Engel W., (Ed.), vol. 5 of ShaderX. Charles River Media, 2007. 23, 104

STAMMINGER M., DRETTAKIS G.: Perspective shadow maps. In Proceedings of the 29th Annual Confer-
ence on Computer Graphics and Interactive Techniques (2002), SIGGRAPH 02, pp. 557-562. 9, 10

SINTORN E., EISEMANN E., ASSARSSON U.: Sample-based visibility for soft shadows using alias-free
shadow maps. Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering 2008)
27,4 (June 2008), 1285-1292. 23

SEN P.: Silhouette maps for improved texture magnification. In Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS Conference on Graphics Hardware (2004), HWWS 04, ACM, pp. 65-73. 8

SHADE J., GORTLER S., HE L.-W., SZELISKI R.: Layered depth images. In Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Techniques (1998), SIGGRAPH 98, pp. 231-242. 31

SCHERZER D., JESCHKE S., WIMMER M.: Pixel-correct shadow maps with temporal reprojection and
shadow test confidence. In Rendering Techniques 2007 (Proceedings Eurographics Symposium on Render-
ing) (June 2007), Kautz J., Pattanaik S., (Eds.), Eurographics, Eurographics Association, pp. 45-50. 18

SZIRMAY-KALOS L., AszODI B., LAZANYI 1., PREMECZ M.: Approximate ray-tracing on the gpu with
distance impostors. Computer Graphics Forum 24, 3 (2005), 695-704. 106

SZIRMAY-KALOS L., LAZANYI L.: Indirect diffuse and glossy illumination on the gpu. In Proceedings of
the 22nd Spring Conference on Computer Graphics (April 2006), pp. 29-35. 106

SHAH M. A., KONTTINEN J., PATTANAIK S.: Caustics mapping: An image-space technique for real-time
caustics. IEEE Transactions on Visualization and Computer Graphics 13 (March 2007), 272-280. 57, 106

SZIRMAY-KALOS L., UMENHOFFER T.: Displacement mapping on the gpu — state of the art. Computer
Graphics Forum 27, 6 (2008), 1567-1592. 57

SOLER C., SILLION F. X.: Fast calculation of soft shadow textures using convolution. In Proceedings of the
25th Annual Conference on Computer Graphics and Interactive Techniques (1998), SIGGRAPH 98, ACM,
pp. 321-332. 26, 32, 42, 44

REFERENCES 113

[SS07]

[SS08a]

[SSO8b]

[SSM11]

[SSMW09]

[SWP10]

[TM98]

[Ura05]

[VdBO4]

[WDB™*06]

[WEO03]

[Wil78]

[Wil83]
[WM94]

[Wo0092]
[WSP04]

[YDF*10]

[YFGLO09]

[ZSXLO06]

[ZZB09]

SCHWARZ M., STAMMINGER M.: Bitmask soft shadows. Computer Graphics Forum (Proceedings of
Eurographics 2007) 26, 3 (September 2007), 515-524. 29, 30, 35

SCHWARZ M., STAMMINGER M.: Microquad soft shadow mapping revisited. Eurographics 2008 Annex to
the Conference Proceedings (Short Papers) (April 2008), 295-298. 30

SCHWARZ M., STAMMINGER M.: Quality scalability of soft shadow mapping. In Proceedings of Graphics
Interface 2008 (May 2008), GI *08, Canadian Information Processing Society, pp. 147-154. 30, 31

SCHERZER D., SCHWARZLER M., MATTAUSCH O.: Fast soft shadows with temporal coherence. In GPU
Pro 2 — Advanced Rendering Techniques, Engel W., (Ed.), vol. 2 of GPU Pro. A. K. Peters, Ltd., 2011. 33

SCHERZER D., SCHWARZLER M., MATTAUSCH O., WIMMER M.: Real-time soft shadows using temporal
coherence. In Proceedings of the 5th International Symposium on Advances in Visual Computing: Part I1
(2009), ISVC °09, Springer-Verlag, pp. 13-24. 28, 33, 36

SCHERZER D., WIMMER M., PURGATHOFER W.: A survey of real-time hard shadow mapping methods.
In State of the Art Reports Eurographics (May 2010), Eurographics. 6, 25, 46, 49

TomASI C., MANDUCHI R.: Bilateral filtering for gray and color images. In Proceedings of the Sixth
International Conference on Computer Vision (1998), ICCV 98, IEEE Computer Society, p. 839. 27

URALSKY Y.: Efficient soft-edged shadows using pixel shader branching. In GPU Gems 2 — Techniques
for Graphics and Compute-Intensive Programming, Pharr M., (Ed.), vol. 2 of GPU Gems. Addison-Wesley,
2005. 27, 54

VALIENT M., DE BOER W. H.: Fractional-disk soft shadows. In ShaderX® — Advanced Rendering Tech-
niques with DirectX and OpenGL. Wordware Publishing, 2004. 23, 27

WALD 1., DIETRICH A., BENTHIN C., EFREMOV A., DAHMEN T., GUNTHER J., HAVRAN V., SEIDEL
H., SLUSALLEK P.: A ray tracing based framework for high-quality virtual reality in industrial design
applications. In Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing. IEEE Press, 20006,
pp- 177-185. 4

WEISKOPF D., ERTL T.: Shadow mapping based on dual depth layers. In Proceedings of Eurographics '03
Short Papers (2003), pp. 53-60. 24

WILLIAMS L.: Casting curved shadows on curved surfaces. In SIGGRAPH ’78: Proceedings of the 5th
Annual Conference on Computer Graphics and Interactive Techniques (1978), ACM, pp. 270-274. 4, 6, 23,
44, 56, 89, 90, 103, 106

WILLIAMS L.: Pyramidal parametrics. SIGGRAPH Comput. Graph. 17 (July 1983), 1-11. 16

WANG Y., MOLNAR S.: Second-Depth Shadow Mapping. Tech. rep., University of North Carolina at
Chapel Hill, 1994. 24, 49, 53, 61, 87, 90, 91, 93, 95

Woo0 A.: The Shadow Depth Map Revisited. Academic Press Professional, Inc., 1992, pp. 338-342. 24

WIMMER M., SCHERZER D., PURGATHOFER W.: Light space perspective shadow maps. In Rendering
Techniques 2004 (Proceedings of the Eurographics Symposium on Rendering) (June 2004), Keller A., Jensen
H. W, (Eds.), Eurographics, Eurographics Association, pp. 143—-151. 10, 12, 25, 46, 90, 103

YANG B., DONG Z., FENG J., SEIDEL H.-P., KAUTZ J.: Variance soft shadow mapping. Computer
Graphics Forum 29,7 (2010), 2127-2134. 28, 35, 104

YANG B., FENG J., GUENNEBAUD G., L1U X.: Packet-based hierarchal soft shadow mapping. Computer
Graphics Forum (Proceedings of the Eurographics Symposium on Rendering 2009) 28, 4 (June 2009), 1121-
1130. 30, 31, 36

ZHANG F., SUN H., XU L., LUN L. K.: Parallel-split shadow maps for large-scale virtual environments. In
Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and its Applications
(2006), ACM, pp. 311-318. 14, 103

ZHANG F., ZAPRIJAGAEV A., BENTHAM A.: Practical cascaded shadow maps. In ShaderX” — Advanced
Rendering Techniques, Engel W., (Ed.), vol. 7 of ShaderX. Charles River Media, March 2009. 14, 15, 103

List of Tables

4.1 AreaLight PCSS Quality Settings

5.1 Percentage-Closer Soft Shadows. Comparison of Uniform and Non-Uniform Sampling

114

List of Figures

1.1
1.2

2.1
22
23
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

3.1
32
33
34
35
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

4.1
42
43
4.4

Virtually Evaluating an Office Design with iray® 1
Shadows, Specular Effects and Color Bleeding,

Shadow Silhouette Maps L e e e 7
Deep Shadow Maps. Construction of a Transmittance Function 8
Fitting of the View Frustum of the Light 9
Perspective Shadow Maps. Generation of the Shadow Map in Post-Perspective Space 10
Light-Space Perspective Shadow Maps e 10
Trapezoidal Shadow Maps. Construction of the Trapezoid 11
Comparison of Standard and Logarithmic Perspective Shadow Maps 13
Parallel Split Shadow Maps. Partitioning the View Frustum of the Light 14
Light-Space Cascaded Shadow Maps. Intersecting View Frustum Splits in Light-Space 15
Fitted Virtual Shadow Maps. Construction of the Shadow Map Tile MappingMap 17
Variance Shadow Maps. Light Bleeding Artefacts 19
Convolution Shadow Maps 20
Exponential Shadow Maps e 21
Alias-Free Shadow Maps e 22
Percentage-Closer Soft Shadows e 27
Soft Shadow Mapping e e e e 30
Soft Shadow Mapping. Three Types of Micro-Occluders 31
Penumbra Deep Shadow Maps 32
Occlusion Textures o o o i i e e e e 33
Comparison of Local Illumination and Global Illumination. 37
The Rendering Equation. Hemispherical Formulation 38
The Rendering Equation. Area Formulation 39
BRDF Examples e e e e e e e 40
Geometry of Local Lighting Models 40
The Soft Shadow Equation 42
Occluder Fusion L e 43
Single-Sample Soft Shadows L 43
Shadow Mapping o o e e e e e e e e 45
Shadow Map Aliasing due to Undersampling 46
Simplified Analysis of Shadow Map Aliasing Errors, 46
Accurate Analysis of Shadow Map Aliasing Errors L. 47
Incorrect Self-Shadowing L 49
Hard Shadows e 50
Soft Shadows 52
Percentage-Closer Soft Shadows L 53
Errors of Percentage-Closer Soft Shadows 54
Optimisation of Light View Frustum Culling 55
Apelles OVEIVIEW o L i e e e e e e e e e e 57
Apelles Architecture. Light Sources L 59
Apelles Architecture. OVEIVIEW e e e e e e e e 60
Apelles Architecture. Scatter L e e e e 62

LIST OF FIGURES 116

4.5
4.6
4.7
4.8
4.9

5.1
52
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

Apelles Architecture. Gather 63
Apelles Architecture. Adaptive Rendering 65
Parallel Reduction e e 78
Apelles Example. Simple oo 81
Apelles Example. Combining Existing Shaders 84
Visual Results Oneo o e e 87
Visual Results TWo o o e 88
Visual Results Three 0 0 e 88
Visual Results Four 0 e 88
Comparison of AreaLight and SampledArealight. Umbrae Overestimation 92
Comparison of AreaLight and SampledAreaLight. Incorrect Occluder Fusion 92
Comparison of ArealLight and SampledAreaLight. Peter Panning 93
Shadow Map ALIASIiNg o ot e e e e e e e e e e e e 94
Percentage-Closer Soft Shadows. Comparison of Uniform and Non-Uniform Sampling 95
Percentage-Closer Soft Shadows. Effect of Non-Uniform Sampling on Efficiency 96
Percentage-Closer Soft Shadows. Effect of Near Plane Distance on Efficiency 96
Percentage-Closer Soft Shadows. Effect of Light Size on Efficiency 97
Comparison of Rendering a Varying Number of Area Light Samples in a Single Pass 98
Comparison of Rendering a Fixed Number of Area Light Samples perPass 98
OpenCL-Enabled Optimisation of Light View Volume Culling. Comparison of Compute Devices 99
OpenCL-Enabled Optimisation of Light View Volume Culling. Comparison of Optimisations 100
Effect of Adaptively Changing Render Quality to Maintain Real-Time Performance 100

Effect of Depth Metricon Depth Biasing 101

	Kurzfassung
	Abstract
	Acknowledgements
	Introduction
	Related Work
	Hard Shadows
	Undersampling
	Reconstruction
	Fitting
	Warping
	Global Partitioning
	Adaptive Partitioning
	Temporal Reprojection

	Oversampling
	Alias-Free Sampling
	Incorrect Self-Shadowing
	Omnidirectional Shadows
	Summary

	Soft Shadows
	Percentage-Closer Soft Shadows
	Soft Shadow Mapping
	Multi-Layered Shadow Maps
	Temporal Coherence
	Environmental Shadows
	Summary

	Theory
	Global Illumination
	The Rendering Equation
	The Bidirectional Reflectance Distribution Function
	The Soft Shadow Equation

	Shadow Mapping
	Aliasing
	Incorrect Self-Shadowing

	Hard Shadows
	Soft Shadows
	Percentage-Closer Soft Shadows
	Progressive Sampling of Area Light Sources

	Optimisation of Light View Volume Culling

	Implementation
	Apelles - A Library for GPU-Based Global Illumination
	Light Manager
	Render Manager
	Shader Manager
	Lighting Computation of Single-Sample Lights
	Lighting Computation of Multi-Sample Lights
	Combining Existing Shaders

	Optimisation of Light View Volume Culling
	Auxiliary Libraries

	Examples and Tutorial
	Simple Example
	Combining Existing Shaders

	Results and Discussion
	Results
	Discussion: Strengths and Limitations
	Comparison of OpenSG and Apelles Shadow Generation
	Comparison of Convolution-Based and Sampling-Based Soft Shadow Generation
	Aliasing
	Percentage-Closer Soft Shadows
	Optimisation of Sampling-Based Soft Shadow Generation
	Optimisation of Light View Volume Culling with OpenCL
	Adaptive Rendering
	Effect of Depth Metric on Depth Biasing

	Conclusion and Future Work
	Conclusion
	Future Work
	Aliasing
	Convolution-Based Soft Shadow Generation
	Environmental Shadows
	Multi-Pass Rendering
	GPU-Based Global Illumination

	Bibliography
	List of Tables
	List of Figures

