
Masterarbeit

Evaluation of variant management
capabilities of automotive software

engineering tools

Nermin Kajtazović

————————————–

Institut für Technische Informatik
Technische Universität Graz

Vorstand: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Reinhold Weiß

Begutachter: Dipl.-Ing. Dr. techn. Christian Kreiner
Betreuer: Dipl.-Ing. Andrea Leitner

Graz, im März 2011

Kurzfassung

Durch die zunehmenden Wechselwirkungen zwischen der System- und Softwareentwick-
lung von eingebetteten Systemen in Hybridfahrzeugen werden die Systemfunktionen im-
mer mehr softwaretechnisch realisiert. Außerdem versuchen die Fahrzeughersteller und die
Zulieferer ihre Produkte möglichst flexibel zu gestalten, um aus ihren Enwicklungsumge-
bungen unterschiedliche Fahrzeugvarianten zusammenbauen zu können. Diese Varianten
wirken sich auch direkt auf die Software aus.
Die heutzutage angewandten Softwareentwicklungsansätze stellen sich als nicht ausre-
ichend heraus, weil durch die Neuimplementierung von Software für jede neue Variante
hohe Entwicklungskosten, sowie stark beschränkte Wiederverwendbarkeit der bereits ex-
istierenden Funktionalität entstehen.
Um diesen Problemen zu entgehen, wird im Rahmen des Projektes HybConS (Hybrid
Control System) eine generische Lösung, basierend auf strategischer Wiederverwendung
von Software, angeboten. Die Idee dahinter ist es, eine Basis für die systematische
Wiederverwendung und die Verwaltung von allgemeinen und produkt-spezifischen Soft-
wareartefakten aller Phasen des V-Models zu schaffen.
Das Ziel dieser Masterarbeit ist es, so eine Basis für die Softwarearchitektur zu realisieren.
Dabei wird die Umsetzung der Strategie von einem passenden Ansatz zum Variantenman-
agement (Software-Produktlinien (SPL)) unterstützt. Die Entwicklung der generischen
Architektur, sowie ihre Wiederverwendbarkeit, sind in SPL durch zwei getrennte Prozesse
realisiert. Die beiden Prozesse wurden für den praktischen Teil dieser Arbeit als ein
Prototyp entwickelt. Außerdem wurden einige Architekturbeschreibungssprachen (ADL)
analysiert und anschließend wurde eine Evaluierung von Werkzeugen durchgeführt. Das
Ziel dieser Evaluierung war, passende Werkzeuge zur Unterstützung von SPL-Prozessen
zu finden. Die Evaluierung resultierte in einer integrierten Werkzeug-Umgebung, zusam-
mengesetzt aus pure::variants und Papyrus. Besonders intensiv wurde auf die Spezifikation
von EAST-ADL eingegangen, welche zur Beschreibung der generischen Architektur ver-
wendet wurde. Diese Architektur dient zur Dokumentierung des integrierten Systems.
Das EAST-ADL Modell wird durch das Extrahieren struktureller Informationen aus der
Softwareimplementierung aufgebaut. Zur Beschreibung von Softwarekomponenten, wird
in diesem Projekt AUTOSAR eingesetzt. Der technische Hintergrund für diesen Gener-
ierungsprozess ist die Modelltransformation, die das Mapping zwischen AUTOSAR und
EAST-ADL Modellen unter Berücksichtigung einer vordefinierter Mapping-Strategie re-
alisiert. Zusätzlich wird die Variabilität basierend auf der Spezifikation von EAST-ADL
generiert. Zusammenfassend zeigt dieser Ansatz eine mögliche Integration von EAST-
ADL in einem Softwareentwicklungsprozess in der Fahrzeugtechnik. Die als Abschluß der
Arbeit durchgeführte Evaluierung stellt die erzielten Ergebnisse bzgl. der Erwartungen an
die Methodik zur Schau.

3

Abstract

The system development in the automotive domain nowadays is confronted with a high
increase of software functions. Moreover, OEMs (Original Equipment Manufacturer) as
well as suppliers are trying to offer highly flexible products by deriving different configu-
rations from their development infrastructure. These variants have a direct influence on
the software. Implementing each variant individually leads to an enormous increase of
development costs and low reusability of core assets (parts of the system).
The main idea proposed in the HybConS project (Hybrid Control System) to address
these issues is to provide a common base for strategic reuse of the control software and to
manage product-specific core assets (variabilities) in all phases of the V-Model.
The aim of this thesis is to provide such a reuse strategy for architectural core assets.
The approach of choice for variant management is a software product line (SPL). The
development and the reuse of the generic architecture in SPL are driven by separated
engineering processes. In the practical part of this thesis a prototypcial implementation
of these processes for the automotive context is provided. Moreover, the analysis of archi-
tecture description languages (ADL) for their applicability in the automotive domain and
a tool evaluation are performed. The aim of this tool evaluation was to find an adequate
tool or tool chain to support the SPL engineering processes. For this project, an integrated
tool environment consisting of pure::variants and Papyrus has been chosen.
Main focus concerning the implementation of the prototype is given to the EAST-ADL
specification, which is in this project used to describe the software architecture. The pur-
pose of this architecture is to document the integrated system.
The EAST-ADL model is created by extracting the structural information from the imple-
mentation of the control software, i.e. from software components. In this project, software
components are formally described with AUTOSAR. The technical background for this
generation process is the model transformation. It uses the predefined mapping strategy
to transform software components described with AUTOSAR into an EAST-ADL Func-
tional Design Architecture (FDA). In addition, the variability logic for handling of the
architectural development artefacts is generated. It follows the EAST-ADL specification
for variant management.
This approach, in summary, shows a possible integration of EAST-ADL in the automo-
tive software development process. Finally, the achievement of main expectations on this
methodology is evaluated.

5

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

7

Acknowledgment

This master thesis has been carried out at the Institute for Technical Informatics, Graz
University of Technology.

At this point, I would like to thank my supervisors Andrea Leitner and Christian Kreiner
for their great support and willingness to take time for many discussions that helped me
to stay on the right track all the time. Further, I would like to thank Mario Driussi and
Florian Pölzlbauer from the Virtual Vehicle Competence Center (ViF) for the provision
of evaluation use cases.
At last, I would like to thank my family and Belgin.

Graz, in March 2011 Nermin Kajtazović

9

Contents

1 Introduction . 21

1.1 Problem Description . 21

1.1.1 Project Description . 21

1.1.2 Project Goals . 22

1.2 Thesis Structure . 23

2 Related Work . 25

2.1 Systematic Reuse of Software . 25

2.1.1 Software Product Line Enginering 25

2.1.1.1 Principles and Motivation 25

2.1.1.2 Domain Engineering . 27

2.1.1.3 Application Engineering . 29

2.1.1.4 Documenting Variability 30

2.1.1.5 Terminology . 32

2.1.1.6 Application of SPLE in Software Engineering 33

2.1.2 Variant Management in the Automotive Domain 36

2.1.2.1 Introduction . 36

2.1.2.2 Application of Product Lines in the Automotive Domain . 37

2.1.2.3 OEM-Supplier Relation in context of Product Lines 38

2.1.2.4 Classification-based Approach for Variability Modeling . . 38

2.2 Software Architecture for Automotive Systems 39

2.2.1 Specification of Software Architecture 40

2.2.2 Architecture Description Languages and Standards 41

2.2.2.1 AADL . 42

2.2.2.2 SysML . 42

2.2.2.3 AUTOSAR . 43

2.2.2.4 Fibex . 53

2.2.2.5 EAST-ADL . 54

2.3 Model Transformation . 59

2.3.1 Model Transformation Approaches 60

2.3.1.1 Model-to-Text Transformation 60

2.3.1.2 Model-to-Model Transformation 60

2.4 Tool and Language Evaluation . 61

2.4.1 ADL Selection and Evaluation . 61

2.4.2 Tool Selection and Evaluation . 63

2.4.2.1 Selection Criteria and Prerequisites 63

11

2.4.2.2 Evaluation Methodology and Tools 64

2.4.2.3 Results of Tool Evaluation 76

2.5 Hypothesis . 77

3 Design of the HybConS Architecture . 81

3.1 Requirements . 83

3.2 Scope . 84

3.3 Domain Engineering . 84

3.3.1 Variability Documentation . 84

3.3.1.1 Variability in Design Assets 86

3.3.1.2 Binding Times . 86

3.3.2 Product Management . 86

3.3.3 Software Component Description . 87

3.3.4 Mapping Strategy . 90

3.3.4.1 Existing Approaches . 90

3.3.4.2 Concept . 92

3.3.5 Variability Model . 93

3.3.5.1 Analysis of Variant Management in EAST-ADL 94

3.3.5.2 Variant Management in HybConS 97

3.4 Application Engineering . 99

3.5 Final Architecture . 100

4 Implementation of the Prototype . 103

4.1 Domain Engineering . 104

4.1.1 Part I: Mapping Process . 104

4.1.1.1 Development View . 104

4.1.1.2 Process View . 106

4.1.2 Part II: Variability Extension Generator 110

4.1.2.1 Artifact Level Variability 110

4.1.2.2 Vehicle Level Variability 111

4.2 Application Engineering . 113

4.2.1 Part III: System Configuration . 113

4.2.1.1 VSL Expression Evaluator 114

4.3 Integration into the HybConS Tool Environment 115

4.4 Technology . 116

5 Evaluation . 117

5.1 Methodology . 117

5.2 Use-Cases . 118

5.2.1 Use-Case1: Simple Vehicle Hybrid System 118

5.2.2 Requirements on SPL . 119

5.2.3 Solution . 119

5.2.4 Use-Case2: Seat Adjustment in Vehicle System 120

5.2.5 Requirements on SPL . 120

5.2.6 Solution . 121

5.3 Results . 121

12

5.3.1 Reusability . 123
5.3.2 Scalability . 123
5.3.3 Prototype Evaluation . 124
5.3.4 Performance Analysis . 124

6 Conclusion . 127
6.1 General . 127
6.2 External vs. Internal Variability . 128
6.3 Plain Propagation . 129

7 Future Work . 131
7.1 Mapping Process . 131

7.1.1 Model Transformation . 131
7.1.2 Behavior Mapping . 131

7.2 Variability Extension . 132
7.2.1 External System Configuration . 132
7.2.2 Formula Expression . 132
7.2.3 Attributes, Associations and Property Sets 133

7.3 Diagram Information . 133

A Appendix . 135
A.1 Tool Evaluation Criteria . 135
A.2 Extension Guide . 138

A.2.1 Interfaces . 138
A.2.2 Feature Extension . 140

A.2.2.1 Adding Model Elements . 140
A.2.2.2 Adding Variants . 141
A.2.2.3 Adding AUTOSAR XML Schema 142
A.2.2.4 Adding EAST-ADL Metamodel 142

A.3 Mapping Details . 143
A.3.1 AUTOSAR . 143
A.3.2 EAST-ADL . 145
A.3.3 Mapping . 147
A.3.4 Implementation Status . 148

A.4 Evaluation Use Cases . 150

Bibliography . 152

13

List of Figures

1.1 HybConS concept: a generic software development process 22

2.1 Motivations for product line engineering: development costs (left) and time-
to-market (right), [PBvdL05] . 26

2.2 Software product lines framework, [PBvdL05] 28

2.3 Information flows between application and domain engineering with respect
to the stakeholder, [PBvdL05] . 29

2.4 Variability pyramid, [PBvdL05] . 30

2.5 Graphical notation for variability models, [PBvdL05] 31

2.6 Core process for system and software development in the automotive domain
(V-Model), [SZ10] . 36

2.7 Logical (left) and technical (right) abstraction levels of the vehicle architec-
ture, [Kol06] . 38

2.8 Development of the technical architecture: analysis of the control system,
[SZ10] . 40

2.9 Hardware/software interface: conventional (left) and AUTOSAR (right)
[tre09] . 43

2.10 AUTOSAR approach (left) and AUTOSAR ECU Software Architecture
(right) [KF09] . 44

2.11 Example: warn lights system realized in AUTOSAR, [KF09] 48

2.12 Development of ECU software based on AUTOSAR methodology, [KF09] . 49

2.13 AUTOSAR XSD generator, [AUT09a] . 51

2.14 FIBEX XML schema structure, [ZS07] . 53

2.15 EAST-ADL domain structure, [CFJ+10] . 54

2.16 Product decision model, [ea08] . 57

2.17 Bridge between two levels of variability in EAST-ADL 58

2.18 Concept of model transformation, [CH06] 59

2.19 EAST-ADL modeling workbench architecture, [SN10] 66

2.20 EAST-ADL package as a part of UML profile extension imported in Mag-
icDraw . 73

2.21 Interface connecting CVL and DSL models, [Cvl] 74

2.22 Fragment substitution in CVL, [Cvl] . 75

3.1 HybConS processes reflected in SPLE framework 81

3.2 EAST-ADL functions interaction on design level 88

3.3 Graphical notation of AUTOSAR software component, [AUT09b] 92

3.4 Information flow in AUTOSAR [AUT09b] 93

15

3.5 Example of the product line in EAST-ADL: merging and optionality approach 95
3.6 Transfer function of a single rule in HybConS variant management mechanism 99
3.7 Design flow of domain sub-process for HybConS architecture 101

4.1 Simplified processes for architecture generator in HybConS 103
4.2 HybConS architecture generator: development view 105
4.3 Mapping process . 106
4.4 Generation process for variability extension 111
4.5 Effect of multiple instances in feature models 112
4.6 System configuration process: configuration (left) and derivation (right) . . 113
4.7 Architecture plug-in: integration in a tool environment 115

5.1 Evaluation use case 1: read battery charge status in a simple hybrid vehicle
system . 118

5.2 Evaluation use case 2: seat adjustment, [AUT09c] 120
5.3 Evaluation results: development costs for SPL and single systems 122
5.4 Simple GUI for prototype evaluation . 123
5.5 Runtime . 125

6.1 Variability pyramid in HybConS architecture: ideal (left) and real (right)
amount of external and internal variability 128

7.1 External system configuration with the FeatureMapper plug-in 132

A.1 Evaluation use cases . 150
A.2 Evaluation use case 1: subsystems (soft real-time (blue) and hard real-time

requirements from Section 5.2.2) . 151

16

List of Tables

2.1 Different terminology for software product line, [Nor08] 33
2.2 Evaluation results for architecture description languages for the automotive

domain . 61
2.3 Papyrus advantages and drawbacks . 67
2.4 MetaEdit+ R© advantages and drawbacks 69
2.5 pure::variants advantages and drawbacks . 70
2.6 oAW advantages and drawbacks . 72
2.7 Results of tool evaluation . 78
2.8 Results of tool evaluation derived from Table 2.7 79

3.1 EAST-ADL2 elements used in FDA . 89
3.2 AUTOSAR VFB elements related to Table 3.1 91
3.3 Deviation set in HybCons . 100

4.1 Possible definitions of reference base . 109

5.1 Runtime . 124

6.1 Realized prototype features with respect to variant management 127

A.1 Criteria attributes for tool evaluation and selection 138
A.2 API documentation for the class FeatureDescription 139
A.3 Analysed AUTOSAR VFB metamodel elements 145
A.4 Analysed EAST-ADL metamodel elements 147
A.5 Detailed mapping between AUTOSAR VFB and EAST-ADL FDA (Source

ID - AUTOSAR model element id, Target ID - EAST-ADL model element
id) . 148

A.6 Implementation status for AUTOSAR part of the mapping process 149
A.7 Implementation status for EAST-ADL part of the mapping process 149

17

Abbrevations

3GL Third Generation Languages
AADL Architecture Analysis & Design Language
ANTLR Another Tool for Language Recognition
AOB Aspect-Oriented Programming
API Application Programming Interface
ATESST Advancing Traffic Efficiency and Safety through Software Technology
ATL Atlas Transformation Language
AUTOSAR . . Automotive Open System Architecture
BSW Basic Software
CAN Controller Area Network
CCL Context-Based Constraint Language
CVL Common Variablility Language
DSL Domain-Specific Language
DSM Domain Specific Modeling
E/E Electronic/Embedded
EAST-ADL . . Electronics Architecture and Software Technology Architecture Descrip-

tion Language
ECU Electronic Control Unit
EMF Eclipse Modeling Framework
FAA Funtional Analysis Architecture
FDA Functional Design Architecture
Fibex Field Bus Exchange
FIFO First-In-First-Out
FM Feature Model
FODA Feature Oriented Domain Analysis
GOPPRR Graph Object Property Port Role Relationship
GP Generative Programming
GUI Graphical User Interface
HDA Hardware Design Architecture
IA Implementation Architecture
LIN Local Interconnect Network
M2M Model to Model
MAENAD . . . Model-based Analysis & Engineering of Novel Architectures for Depend-

able Electric Vehicles
MARTE Modeling and Analysis of Real-Time and Embedded Systems
MDA Middleware Design Architecture
MDA Model Driven Architecture
MDD Model Driven Development
MDE Model Driven Engineering

19

MERL MetaEdit R© Reporting Language
MOF Meta-Object Facility
MOST Media Oriented Systems Transport
NVRAM Non-volatile Random Access Memory
OEM Original Equipment Manufacturer
OMG Object Management Group
OVM Orthogonal Variability Model
PFM Public Feature Model
PIM Platform Independent Model
PSM Platform Specific Model
QVT Query View Transformation
RAM Random Access Memory
RIF Requirements Interchange Format
RTE Run-Time Environment
SOAP Simple Object Access Protocol
SPL Software Product Lines
SPLE Software Product Line Engineering
SysML System Modeling Language
TTCAN Time Triggered Controller Area Network
UML Unified Modeling Language
VFB Virtual Function Bus
VFM Vehicle Feature Model
VSL Variability Specification Language
XMI XML Metadata Interchange
XML Extensible Markup Language
XSD XML Schema Definition

20

1. Introduction

This thesis describes an evaluation of variant management in architecture description lan-
guages (ADL) with the focus on the automotive domain and proposes a proof-of-concept
for systematic reuse and variant management of architectural core assets (structural el-
ements) for a control software applied in hybrid vehicles. In addition, it describes an
integration of the proof-of-concept into an existing tool environment.

1.1. Problem Description

The development of (hybrid) vehicle systems is aware of a high increase in complexity and
a subsequently increase of provided functionality. This has as a consequence a dominant
coverage of the software with respect to functions allocation (cf. [SZ10]: a number of
software components in a vehicle system nowadays is of a three-digit). Besides this, the
development of hybrid vehicle systems tends to provide high flexibility e.g. in order to
easily fabricate various topologies of the power-train. Moreover, each topology is further
configurable to meet individual needs through mass customization. However, similar prod-
ucts as a whole are not highly scalable for application of such a strategy (e.g. a single
vehicle type has just a few different realizations), but the more important aspect is to
share common functionality among various products. This claims to provide a way for
systematic reuse of an existing software as well as the ability to customize it for specific
needs. An appropriate approach to support this are software product lines (SPL). It de-
fines two engineering processes, i.e. domain and application engineering. In the scope of
the domain engineering process the platform containing reusable core assets is developed.
The reuse of this platform is part of the application engineering process.

Another challenge for the strategic reuse of the hybrid software is its applicability in
the currently used V-Model for system development. This process is shared between a
supplier and an OEM (Original Equipment Manufacturer - a customer in this context) in
such a way that development on the system level is conducted by the OEM whereby the
development of ECUs (Electronic Control Unit, i.e. a part of the system) is in responsibil-
ity of a supplier. Now, applying a methodology for strategic reuse would have an impact
on the whole development model and therefore on their relation too. The strength of de-
pendency between them is in this case directly influenced by the application of the product
line approach. This is a major difference to other domains and should be considered in
the technical realization of the reuse strategy.

1.1.1. Project Description

The contribution of this thesis is an excerpt of the HybConS project (Hybrid Control
System) whose development is in a cooperation between the Institute for Technical Infor-

21

1. Introduction

matics and two industrial partners, Virtual Vehicle Competence Center (ViF) and AVL
List GmbH. The aim of the project is the provision of the generic software development
process, which for a given product specification and an existing model repository gener-
ates the software product with all system artefacts, i.e. requirements, hardware/software
architecture, implementation, and a test and a cosimulation environment in a given scope
(see Figure 1.1).

Systematic
reuse and

variant
management of
hybrid control

software

Module

Design

Reusable core assets

Variant 1 Variant 2 Variant N

Products

Requirements
Architecture
Description
(HW/SW)

Implementation Tests
Cosimulation

(Results)

…

Product specification

Figure 1.1.: HybConS concept: a generic software development process

This implies the handling of variants and systematic reuse in each development phase.
Such an approach is provided by a software product line engineering framework (see Sec-
tion 2.1.1). In the scope of the application engineering process the platform having the
similar, but variant rich, structure is reused to generate a product (lower part of Figure
1.1).

Another challenge in this component-based development is the representation of the con-
trol software (reusable assets) in the platform. This requires an unique description of
reusable assets at least for the domain implementation, which is afterwards used as a ba-
sis for the derivation of further core assets (architectural, test, and other assets).

As stated before, just an excerpt of the HybConS project is the mission of this thesis,
namely, a part of the circle, shown in Figure 1.1, which provides the variant management
and systematic reuse for architectural core assets. It results in the variability-free soft-
ware architecture (highlighted block in Figure 1.1) which in addition may be used as a
documentation for the implemented system.

1.1.2. Project Goals

The most important expectations from the HybConS project are high reusability of exist-
ing core assets and the ability to easily extend the existing functions or to add new ones,

22

1.2. Thesis Structure

i.e. a high scalability of the control software. In addition, goals of the SPL are implicitly
covered: reduction of development costs, reduction of time-to-market and increase of soft-
ware quality (see Section 2.1.1.1).

Regarding the strategic use of architectural core assets (product line architecture) in this
project, the goals are the same as for the whole HybConS project. In addition, the con-
sistency between related core assets should be guaranteed.

1.2. Thesis Structure

Chapter 2 covers the literature research addressing various approaches, methodologies
and paradigm related to the topic of this thesis. It starts with the systematic reuse of
software with the focus on software product lines and its application in the automotive
domain. In Section 2.2 a short introduction to the system development in automotive
projects is given with the intent to show the essential development process phases towards
software architecture. Furthermore, this chapter introduces several approaches for model
transformation in Section 2.3. As a conclusion for related work, two evaluations are
presented in Section 2.4.1. The intent of the first evaluation is to find an adequate tool
supporting the well known engineering processes of software product lines (SPL), whereas
the other one should provide the formal description of the software architecture. Finally,
Section 2.5 concludes the related work.

Chapter 3 discusses the main design decisions for the realization of the product line
architecture (variability in the architecture). Section 3.1 defines the scope of the proof-
of-concept with respect to coarse-grained requirements given in Section 3.1. Further
content of this chapter describes the detailed analysis of SPL engineering processes with a
focus on the software architecture in the automotive domain. The aim of this analysis is a
definition of the strategy for generation of domain core assets and their reuse. The result
of the design phase is a logical view of the product line architecture given in Section 3.5.

In Chapter 4 the implementation of the product line architecture with respect to the
design described in the previous chapter is presented. Afterwards, the integration into the
existing tool environment is briefly discussed.

Chapter 5 contains the evaluation results.

Chapter 6 concludes the work.

In Chapter 7 the suggestions for further development of the proof-of-concept are given.
They are a guide for a transition from the prototype to the product.

23

2. Related Work

2.1. Systematic Reuse of Software

Demand on systematic reuse of a large series of products is growing rapidly. In the last
twenty years various methods and approaches addressing this domain have been developed
and they are nowadays state of the art in many sectors of technology. The main reasons for
such expansion are the reduction of production costs and better product quality. Actually,
the origin of this idea was a result of a competition of companies on the market. In the
late eighties Kodak has developed the first infrastructure for the production of cameras
in a more systematic way in order to win market share against Fuji. The development
process was based on a so called common platform combined from parts that are used
in all different variants of cameras. This resulted in faster development and lower costs.
Thus, in the nineties Kodak won the battle against Fuji and controlled about 70% of the
US market, [PBvdL05]. This was inspiration for other companies (not only for these kinds
of products) and the era of product lines begun.

Applying this strategy in the software led to a new transition in reuse history, [Nor08].
The software products are not handled in an opportunistic way anymore, but instead, they
are combined from already existing parts which are extracted from a so called software
platform. The platform in this context is a kind of repository from which a set of different
products can be derived. The combination of the platform and the mass customization, i.e.
production of different variants of products for individual needs, introduces a new software
development paradigm for systematic reuse of software, which is in [PBvdL05] known as
Software Product Line Engineering. However, some companies are still using opportunistic
approaches like configuration management (CM) to handle variants in their products. For
some kinds of projects this is a useful solution, but for others it is not. [DB07] discusses
issues when managing product variants by using Clone-and-Own, Independent Component
Teams and Platform Version approaches.

2.1.1. Software Product Line Enginering

Software product line engineering is in [PBvdL05] defined as follows:

... a paradigm to develop software applications (software-intensive systems
and software products) using platforms and mass customization.

2.1.1.1. Principles and Motivation

Two main principles of SPLE are mass customization and the platform. Mass customiza-
tion can be seen as a complement to the platform. Without mass customization the
platform would not be sufficient to handle software variants systematically, because it

25

2. Related Work

would not address individual customer needs. The first step in the creation of the plat-
form is actually the preparation for mass customization. Here, not only the scope of the
platform is defined, but also all characteristics of variants satisfying individual customer
needs within this scope. Then, in the next step the common and variable parts of the soft-
ware are defined. This has an impact on flexibility of the product line (range of products
sharing the same platform). For instance, to handle four different variants of the product,
only the parts specific to individual products may be defined as variable, i.e. they cor-
respond to differences between products within the scope. Furthermore, these differences
may be related to other common or variable parts of the product line (e.g. by hierarchical
or sequential relations). This constraints the flexibility in the platform, which means that
the platform for n variable parts does not produce 2n products.

Applying software product lines is not only a challenge for the software developers, but
also for the whole company. A company needs to adapt its organizational structure in
order to provide the platform. To handle variabilities and commonalities in a systematic
way, a company needs to provide strategies and technology to realize this. The products
are not independent anymore. Instead, they are a part of the main generator, i.e. the
platform.

Motivations for Software Product Line Engineering The main expectations on SPLE
are the reduction of development costs, reduction of time-to-market and the enhancement
of quality. Figure 2.1 shows these expectations graphically.

approx. 3 Systems (SE) # of Different Systems

Accumulated

Costs

Product Lines

Single Systems

of Different Systems

Time to

Market

Product Lines

Single Systems

Time for Building Common Artefacts

Up-Front Investment

(-)

(+)

Figure 2.1.: Motivations for product line engineering: development costs (left) and time-
to-market (right), [PBvdL05]

The left diagram shows the development costs for an increasing number of different prod-
ucts. Here, the conventional software development approach (a single-product approach)
is compared to SPLE. Its line is idealized, i.e. it is assumed that each new product requires
the same effort to be realized. From this idealization it follows that for the realization of
n products n ∗ ts time is required (ts - time invested for development of a single product,
if the time is assumed as a cost parameter).

26

2.1. Systematic Reuse of Software

Unlike a single-product approach, the SPLE starts with some up-front investment which
is necessary to develop the platform. Further product realization is faster, but the gener-
ation of a couple of products is required in order to reach the break-even point, i.e. pay-off
point. Therefore, it should first be decided if SPLE is an adequate approach for this cer-
tain project or not. The up-front investment depends on the transition to the product line.
[HKM06] proposed a transition strategy, which, for a large development company, achieves
the break-even point two orders of magnitude lower than typical incremental transitions
which requires about 2-3 products to reach the pay-off. For such cases where only 2-3
single products require an effort of dozens of development months, it is difficult to apply
the SPLE approach. Therefore, transition methods are the next research topic.

As shown in Figure 2.1 there is a slight increase of the SPLE line. This is due to an
additional effort required to satisfy all requirements. For a given set of requirements the
platform is used to build the product conforming to these requirements. But, it is not
always the case that all requirements are satisfied. In this case, the product is derived
according to the requirements, as far as possible. The remaining requirements have to be
realized by applying a conventional software development process. It further has to be
decided if the additional parts should become part of the platform.

The other diagram in Figure 2.1 compares the time-to-market for the SPLE and the
single-product development approach. At the beginning of the SPLE approach, much
more time is required, because the product line architecture needs to be built.

The higher quality in the SPLE is achieved through reuse. The parts need to be im-
plemented and tested only once, and every further reuse ensures their proper functioning.
Besides mentioned and most important motivation factors in SPLE, there are also other
expectations like benefits for customers, for example the configuration of products on
their needs, the improvement of cost estimation by using the platform, and the reduction
of complexity, etc.

Now it is time to clarify how the platform is realized technically and what is behind
the mass customization in this context. [PBvdL05] proposes the SPLE framework1 which
separates the platform and mass customization. These two principles are described by do-
main and application engineering processes (see Figure 2.2). Both processes are containers
for software artefacts that are strongly dependent on the underlying domain. Software
artefacts are distributed over various development phases forming the product line on the
upper part of Figure 2.2 and a product below. The transition from domain to application
engineering is the process of product derivation which collects necessary artefacts and
builds the product satisfying given requirements.

2.1.1.2. Domain Engineering

Domain engineering is the process for building the platform. It starts with the product
management which refers to economic aspects like defining the scope of the product line.

1derived from ITEA projects: ESAPS, CAFÉ and FAMILIES, [PBvdL05]

27

2. Related Work

Within this scope, common and variable features for the next product range are specified.
In [KCH+90] the feature is defined as follows:

A prominent or distinctive user-visible aspect, quality, or characteristic of a
software system or systems.

Since the whole process is iterative, later adaptions in this sub-process are allowed. The
result of the product management is a product roadmap, i.e. the major specification of
the product line. All other domain sub-processes are realized in correspondence to this
specification.

Application N – Artefacts incl. Variability Model

Domain
Requirements
Engineering

Domain
Design

Domain
Realization

Domain
Testing

Product
Management

Application
Requirements
Engineering

Application
Design

Application
Realization

Application
Testing

Domain Artefacts incl. Variability Model

Application 1 – Artefacts incl. Variability Model

D
o

m
ai

n
 E

n
gi

n
ee

ri
n

g
A

p
p

lic
at

io
n

 E
n

gi
n

ee
ri

n
g

Requirements Architecture Components Testing

Requirements Architecture Components Testing

Figure 2.2.: Software product lines framework, [PBvdL05]

The aim of the requirements sub-process is to handle common and variable requirements
expressed in various forms (e.g. textual, model-based, etc.). In correspondence to the
product roadmap this sub-process produces the variability model of the product line which
is then a main subject for product derivation (configuration).

In the next stage (domain design) the variability model is refined. Features (abstract char-
acteristics of a system, or abstract requirements) within this model are refined to express
variability in more detailed domain artefacts. In this case these artefacts are structural
parts of the product line that form a so called

”
reference architecture“. Variable parts of

the reference architecture are usually not visible to the customer or system developer who
uses the platform. Instead, they are defined as

”
internal variants“ in order to hide details

and to keep the variability model abstract enough. Moreover, these internal variants could
be further decomposed to express more detailed configuration. In [RKW09] this kind of
links between variants is known as configuration hiding. In this work, a method handling
hierarchical variant dependencies is presented. It is explicitly handled in Section 3.

28

2.1. Systematic Reuse of Software

The transition to the next stage in the process follows the same schema as before: the
reference architecture containing reusable common and variable architectural artefacts is
an input to the realization phase. This sub-process results in a detailed system design
and implementation. Similar to design, internal variability is further decomposed into a
more detailed representation. From now, all domain artefacts are ready for validation and
verification. This is perfomed by the testing sub-process. It is not able to test the whole
application, because test artefacts are also covering the whole product line. Instead, a sin-
gle implementation component as well as chunks of common artefacts can be tested. The
purpose of this sub-process is to check whether the implementation conforms to require-
ments, architecture and design. Additionally, there is no overhead when implementing the
tests for a single application.

2.1.1.3. Application Engineering

The main goal of application engineering is to achieve an as high as possible reuse of domain
artefacts and the binding of variability in dependence of application needs (requirements to
a single application). This is the location where the flexibility of the platform is reflected.
A compromise between available platform artefacts and application needs has to be found.
Furthermore, application needs may be extended by a stakeholder (e.g. customer), which
complicates the situation, because the list of needs may not be satisfied by the platform
(there is no product configuration which conforms to the specification by 100%). The
difference between optimal configuration in the platform and the application needs is in
[PBvdL05] termed as delta between domain and application requirements. The process of
product pre-configuration is depicted in Figure 2.3.

Variability model / common and variable requirements artefacts

Stakeholder requirements

Estimated delta realization effort

Trade-off decision

Application
Requirements
Engineering

Stakeholder

Figure 2.3.: Information flows between application and domain engineering with respect
to the stakeholder, [PBvdL05]

Before configuring the product an additional implementation effort for fulfilling all re-
quirements need to be estimated. This should ensure that costs caused by using SPLE are
not too high, i.e. they must not reach the single-product costs. Therefore, a stakeholder
should participate to pre-configuration activities. First, a stakeholder gets the variability
model with all requirements artefacts in order to be aware of capabilities of the platform.
These information help the stakeholder to adapt its needs which are in the next step deliv-
ered to the system (requirements) developer. In correspondence to stakeholder needs the
effort for configuring the application which fullfils all requirements is calculated. Finally, a
stakeholder decides if deltas should be realized or not. This is a reason for a slight increase
of the SPLE line from Figure 2.1 (left).

29

2. Related Work

2.1.1.4. Documenting Variability

Concept of Variability Variability corresponds to any varying characteristic from a spe-
cific domain. It is a base for reuse of variable development artefacts. In a common language
the variability is described by a variability subject and a variability object. To clarify this,
for documenting variability three main questions need to be answered: (1) what varies,
(2) why it varies and (3) how it varies. The first question refers to the subject (e.g. a lan-
guage) with different levels of granularity (fine grained variant handling allows to provide
detailed configuration, [KAK08]), whereas the answer to the third question corresponds
to an instance of the subject (e.g. german). The second question refers to a reason why
the subject language may have different realizations.

Classification In SPLE the variability subject is known as variation point extended by
domain specific information and the variability object is defined as a variant (a single
instance of the variation point). Variation points and variants may be classified by:

• Variant existence
Here it can be distinguished between variability in time and variability in space. The
first kind corresponds to the existence of different realizations of the same “thing”
(artefact) at different times. For instance, the variation point Identification mecha-
nism developed in 1960’s would not be able to aggregate the variant RFID identifica-
tion, but nowadays it would be possible. Unlike this, variability in space corresponds
to the existence of different realizations of the artefact at the same time.

• Customer visibility
To allow customers to realize their needs, a part of the platform need to be visible
for this group of stakeholders. As previously mentioned, variants (features) defined
in domain requirements are further decomposed down to the implementation and
testing. For a customer, just an abstract representation of the configurable pa-
rameters (features) is meaningful. Therefore, an excerpt of the variability model is
combined from external features (visible to the customer) and the remaining parts
are accessible to system developers only.

Requirements

Design

Components

Tests

Stakeholder Needs

External

Variability

Internal

Variability

Internal

Variability

R
e
fin

e
m

e
n
t

Figure 2.4.: Variability pyramid, [PBvdL05]

Variability Pyramid Distribution of variability in different abstraction levels is in SPLE
reflected by a so called variability pyramid. It descibes a typical amount of variability on
each abstraction level. This is illustrated in Figure 2.4. The amount of variability increases

30

2.1. Systematic Reuse of Software

unproportional to the abstraction (e.g. requirement affects various design artefacts). How-
ever, more interesting is the distribution of external variability. External variability exists
in implementation artefacts too, but in lower amount as in requirements. The reason is
that a customer is more confronted with an abstract representation, but anyway some
details from lower level artefacts may be visible.

Orthogonal Variability Model Variability of the product line is defined in a separated
model called orthogonal variability model (OVM). This separation reduces the complexity
of handling variants and keeps the artefact model as simple as possible. The graphical
notation of the OVM elements is depicted in Figure 2.5. As mentioned before, the number
of possible products is constrained by dependencies between variants. As shown in Figure
2.5, it is possible to “require” another variant if the current one is selected or to “exclude”
a certain variant. In addition, the hierarchical dependencies mandatory and optional may
be also defined. Optional dependencies may be further specialized to alternative (XOR),

Variant

VP V

Variation Point Variability Dependencies

Alternative Choice Artefact Dependencies

Constraint Dependencies

[name] [name]

optional

mandatory

[min..max] artefact dependency

VP artefact dependency

requires_V_V

excludes_V_V

requires_v_v

excludes_v_v

requires_V_VP

excludes_V_VP

requires_v_vp

excludes_v_vp

requires_VP_VP

excludes_VP_VP

requires_vp_vp

excludes_vp_vp

Figure 2.5.: Graphical notation for variability models, [PBvdL05]

i.e. only one variant may be bound.

Variability in Requirements Requirements may be described in various ways. For the
introduction of variability in requirements it is assumed that they are in form of models
or textual representation. The first describes requirements as optional and alternative
features in a so called feature model or feature tree. This is similar to the OVM and
typically is used as an abstraction to the OVM. The other form of artefacts would be a
flexible textual representation of requirements, i.e. parts of the text are variation points
providing several textual alternatives. The textual representation is more difficult to
handle than requirements represented as models.

Variability in Design Variability in design corresponds to variation points and variants of
the reference architecture. To handle this, three views of the architecture are considered:

31

2. Related Work

(1) development view, subdivided into subsystem and layers, components, interfaces and
configurations, (2) the process view and (3) the code view. Variability in these views is
discussed in Section 3.3.1.1. An example of the reference architecture from the component
view is depicted in Figure 3.5.

Orthogonal to these views, [BB01] describes the following sources for variability in the
architecture:

• Function - This variation point deals with the existence of a single function.

• Data - Variable data structure (e.g. attribute variation points in AUTOSAR, see
Section 2.2.2.3).

• Control flow - Various representations of the control flow. This can be handled in
the process view of the architecture.

• Technology - This includes variations of sensors, hardware, platform (not the product
line platform), etc.

• Quality goals - Variation in quality (e.g. performance) is directly affected by vari-
ations in previous sources (e.g. applied technology behind the variable control flow
may affect the performance).

• Environment - Variation in the interface exposed to the environment may also vary.

Variability in Realization The reference architecture is a basis for the variability in real-
ization (implementation). A rough architecture variability is further decomposed in order
to provide variability in detailed design first. Domain realization allows the following
locations to be potential variation points: (1) component interfaces, (2) algorithms, (3)
resources, (4) application configuration and (5) components and its parts.

Variability in Testing Systematic reuse of test artefacts means to handle test plans, test
cases, test case scenarios, scenario steps and the report in the OVM. A test plan is a con-
tainer for test cases. Each test case is further a container for scenarios describing different
ways for goal achievement. The goal, an input, an expected output and a condition are
parts of the same test case.

2.1.1.5. Terminology

In the previous sections terms like
”
software product lines“,

”
domain engineering“,

”
ap-

plication engineering“ etc. have been used. However, there is another series of synonyms
for these terms, because conferences of the underlying software paradigm have been inde-
pendently scheduled in Europe and America for a long time. Table 2.1 shows the different
terminologies. Both conferences are since 2004 merged into one and form the leading soft-
ware product line conference, [PBvdL05]. In comming sections a mixture of terms is used.

32

2.1. Systematic Reuse of Software

Terminology

SPL PLE

Product Line Product Family

Software Core Assets Platform

Business Unit Product Line

Product Customization

Core Asset Development Domain Engineering

Product Development Application Engineering

Table 2.1.: Different terminology for software product line, [Nor08]

2.1.1.6. Application of SPLE in Software Engineering

[EV05] gives a short overview about the most important software development method-
ologies and paradigm supporting software product lines. Afterwards, several methods for
product line architectures collected in [Mat04] are introduced.

The methods are principal addressed to either (1) architecture-centric or (2) component-
based approaches. A component-based approach of PL builds the platform (a reusable
component framework) in a bottom-up manner, i.e. development by composition. Com-
plementary to this an architecture-centric, top-down, approach. [OB02] tries to find a
balance between the mentioned two approaches in order to easily handle the PL in a
product population (large product range).

Domain Specific Language A DSL is a textual or a graphical language (in literature
known as micro-languge, [vDKV00]) developed to address a specific problem domain. Un-
like general purpose languages like C and Java, it is more powerful because a smaller range
of problems is handled. Examples of such languages are SQL, HTML, regular expressions,
etc. (other examples can be found in [vDKV00]).

The development of the DSL starts with the analysis of the problem domain (scope).
For all applications within the scope, a language grammar for their constructs and rela-
tions is specified. In the implementation phase a DSL is packaged as a library and the
language generator (compiler or interpreter) is implemented. From now, DSL programms
addressing domain can be implemented and compiled (or interpreted).

Realizing SPLE with a DSL implies the definition of the problem domain (analysis phase)
with respect to reuse of its constructs, i.e. the grammar of the language should provide
the configurable set of applications in contrast to the current, fixed set.

Generative Programming The principle of GP is the mapping between a problem space
and a solution space. The problem space contains the specification, which is represented

33

2. Related Work

in form of features. For a given specification the system can be automatically generated
(solution space). Furthermore, the problem space can be expressed by e.g. a textual DSL
to describe the specification. In this case the DSL acts as a way to select features in
the configuration process (feature selection, dependencies, construction rules, etc.). GP
uses the transformation to map the system configuration from the domain into the system
implementation from solution space, [Cza04].

Model Driven Engineering MDE is a discipline in software development with the pur-
pose to generate the system from models. These models (their structure and relations,
restrictions, etc.) conform to metamodels which are basically the same as a grammar in
DSL (but in form of model elements). An example of such model-metamodel relation is
UML 2.0 (Unified Modeling Language) and MOF 2.0 (Meta-Object Facility). In this case,
MOF is a language (metamodel) which is used to develop UML (model). Thus, UML
conforms to the MOF.

The difference to DSL is that the target model in MDE is more generic, i.e. it can
be constructed by serveral models in different levels of abstraction, different views, etc.
The concept of a domain knowledge is specified by formal meta-models and its specific
realization is generated by using model transformations, [EV05]. This process is further
handled in Section 2.3.

To realize SPLE with the MDE approach the problem and solution spaces have to be
formalized, i.e. the representation of common and variable domain artefacts as well as
features is essential. [EV05] demonstrates how a family-based approach (MÉLUSINE)
can be realized with the MDE.

Domain Specific Modeling DSM is similar to generative programming, but here the
analysis phase results in the model which describes the concept of the domain and not
features like in GP. This model is then used to define the DSL. The remaining steps in
the generation process are the same as in GP, [EV05].

The most expressive power of DSM is the specification of the solution space in an abstrac-
tion level beyond programming. This can be compared as a transition from assembler to
third generation languages (3GL) which enabled the developers to easily understand the
formalism and to solve more complex problems than before. In DSM on the first line,
a solution space is visually modeled by using domain concepts. This corresponds to a
high-level specification from which the system is generated. A generation is performed by
domain-specific code generators. For this purpose DSM uses a domain-specific modeling
language, a domain-specific code generator and a domain framework, [KT08].

Further information about code generation patterns can be found in [Pre10].

The statistics show that the productivity by using MDE in contrast to the general purpose
development is in range of 300%-1000% higher (Nokia has reported 1000% of productivity
increase, [KT08]).

34

2.1. Systematic Reuse of Software

COPA Component-oriented Platform Architecting Method for Families of Software In-
tensive Electronic Products - is a PLA (Product Line Architecture) method developed by
Philips in the scope of the Gaudi project. It aims to find the balance between architecture-
centric and component-based approaches in order to find an optimal calibration between
process, architecture, business and organization, [Mat04].

For product derivation (known as architecting in [Mat04]), the COPA requires an input
consisting of stakeholder needs (expectations), architecture and a intuition of an architec-
ture (one of the three sources of the architecture, [FBC06]). The output is a lightweight
architecture (def.: architecture with minimized weight performed by minimizing weight
of each architectural rule - scope, implementation details, level of details etc., [Mul10])
conforming to the specification.

The goal of COPA is the flexible management of complexity and platform size in a business
environment.

FAST The Family-oriented Abstraction, Specification and Translation process was in-
troduced by David Weiss in the 1990’s to handle multiple system versions by sharing their
common functionality in an organization. It relies on the SPLE principle of separating
the domain into domain engineering (investment), product engineering (payback) and do-
main qualification (similar to the product management in SPLE). The domain engineering
process defines common and variable features for family models (cf. artefacts in SPLE)
as well as a decision model which maps these two spaces. Product derivation is usually
perfomed by a compiler or composer for AML (Application Modeling Language), [WL99].

FORM The Feature-Oriented Reuse Method is an extension of FODA (Feature-Oriented
Domain Analysis) proposed by Pohang University of Science and Technology to support
the reuse of architectural and implementation domain artefacts. Parts realized by the
domain engineering process are the reference architecture (see Section 2.1.1.2), a feature
model and reusable components on implementation level, [Mat04].

This approach is similar to problem and solution spaces in pure::variants (see Section
2.4.2.2).

KobrA KobrA - Komponentenbasierte Anwendungsentwicklung (german expression for
component-based application development) is a component-based PL approach developed
by Fraunhofer IESE for modeling (reference) architectures by using a model-driven soft-
ware development paradigm. The software engineering process in KobrA is separated into
the framework (cf. domain engineering in SPLE) and application engineering, [Mat04].

QADA Quality-driven Architecture Design and Analysis is a quality-driven architecture
design method developed at the Technical Research Centre of Finland. In contrast to
previously introduced PL methods, QADA also includes quality requirements to build the
reference architecture. Actually, quality requirements are a deciding factor to build the
software structure. The QADA process results on one hand with conceptual and concrete

35

2. Related Work

architecture and on other hand with analysis results which act as a feedback indicating
whether the quality requirements are satisfyed, [Mat04].

2.1.2. Variant Management in the Automotive Domain

2.1.2.1. Introduction

Before starting with a domain specific variant management it is necessary to give a short
introduction into the system development in automotive. The whole development process
involves the vehicle, the software and the system development interacting with each other.
This results from the fact that the origin of about 90% of innovations in the automotive
domain is realized in software and vehicle electronics, [Kol06]. Therefore, an adequate sys-
tem development model covering all sub-processes and development phases from system
requirements to acceptance tests is required. This is achieved by the well-known V-Model
which on the one hand separates the system development phases from the software and
on the other hand provides quality testing activities. Thus, these are reasons for its wide
acceptance in the automotive domain, [SZ10]. This model is depicted in Figure 2.6.

Analysis of User
Requirements

Specification of Logical
Architecture

Analysis of Logical
Architecture

Specifiation of Tecnhnical
Architecture

Analysis of Software
Requirements

Specification of Software
Architecture

Specification of Software
Components

Design and Implementation
of Software Components

Software Components
Test

Integration of Software
Components

Software Integration Tests

Integration of System
Components

System Integration Test

Calibration

Acceptance Test
System Test

Logical System Architecture
(functions)

Technical System Architecture
(ECUs)System

Development

Software
Development

Software

Figure 2.6.: Core process for system and software development in the automotive domain
(V-Model), [SZ10]

The purpose of the first phase in the V-Model is to build the functional description of
the whole vehicle or of the sub-system in correspondence to user requirements. This func-
tional description (logical architecture) does not include any technical details, but just
communicating functions and their interfaces.

In the next development phase the technical system architecture is created. It corre-
sponds to the network of ECUs (Electronic Control Unit). Additionally, the functions
from the previous phase are already partitioned and hence it is known which of them need

36

2.1. Systematic Reuse of Software

to be realized in the software. These functions are software requirements for the next phase.

In the lower part of Figure 2.6 (Software Development) the implementation of the software
is provided. It starts with the analysis of the system functions allocated to the software
and in correspondence to this function sub-network, the software architecture, i.e. system
boundaries and interfaces, is created. In addition, software components may be concep-
tually specified. This concept is then in the design phase refined to details which are then
used for the implementation of components.

After the implementation phase, the software components are integrated into a single
software system. This integration is tested before the software is released. From now,
the software is ready to be bound on the hardware. This is done by integrating system
components into the whole vehicle system. Again, this integration is tested. Before the
validation against user requirements is performed, the system functions are calibrated, e.g.
for specific vehicle variants.

2.1.2.2. Application of Product Lines in the Automotive Domain

[Kol06] discusses different scenarios for the application of software product lines in the
automotive domain. These scenarios are reflected by the following parameters:

• Application goals

• Application scope

• Development methods

Application goals describe what should be realized with the product line. Three possible
options are proposed: (1) development, (2) configuration and (3) reconfiguration of vehi-
cles/ECUs. The first is related to reuse of domain artefacts in order to build a new system.
In the configuration, the product line is used just as a verification mechanism which checks
whether a given vehicle configuration is feasible with the platform, i.e. if such a product
(vehicle) can be derived. The last application goal is related to the replacement of existing
components. This implies handling variability in time (see Section 2.1.1.4).

The application scope (parameter) deals with scenarios related to a specific domain where
the product line may be applied (e.g. on ECU level only). These scenarios are related to
both vehicle architectures (see Figure 2.7).

The logical architecture consists of functions logically grouped into function groups. Sim-
ilar to this, the technical architecture is decomposed into three abstraction layers: the
technical architecture as composition of sub-systems, the sub-system itself and the ECU.
All these locations may be realized to represent the platform. However, it is very impor-
tant to decide where to apply it, i.e. a decision should be beneficial for the OEM as well
as for the supplier. The OEM’s responsibility in the system is typically the upper part of
the V-Model shown in Figure 2.6 (system development), whereas the supplier provides the
software and the hardware of the ECU (lower part of Figure 2.6). Handling variability in
technical artefacts (right side of Figure 2.7) introduces an additional overhead because of

37

2. Related Work

the presence of technical details on the one side and because of the hardware on the other
side. Unlike this, functions are more abstract and better applicable for product lines. An
issue is how to handle the OEM’s and supplier’s part from the abstract representation of
the system. Practical experiences show that an ECU product line is the most applicable
method. This comes from the fact that on the one hand the logic is fully decoupled from
the OEM and on the other hand the product line ECU is not shared among suppliers, i.e.
one ECU - one supplier.

Vehicle Logical

Function Group

Function

Vehicle Technical

Subsystem

ECU

Product Line

Product Line

Product Line

Product Line

Product Line

Product Line

Logical Architecture Technical Architecture

Figure 2.7.: Logical (left) and technical (right) abstraction levels of the vehicle architec-
ture, [Kol06]

The last parameter (development methods) deals with the applicability of the product
line methods with respect to the OEM-supplier relationship.

2.1.2.3. OEM-Supplier Relation in context of Product Lines

In [BK04] three different applications of product lines are analysed with respect to the
OEM-supplier relation in order to find the optimal solution for both parties: (1) product
line architecture handled by the OEM, (2) reuse of requirements and test-cases through
abstraction and (3) binding the OEM’s and supplier’s product lines by an unified interface.

The first option is not practical, especially for the supplier, because the OEM delegates
the process of the configuration. In addition, the supplier is more dependent on the whole
process. The next option is much better. In this way, the supplier may adapt its product
line with respect to given abstract requirements. This allows more independence between
OEM and supplier. The third option is probably the best solution. As mentioned before,
the OEM delegates the product line of the system description and the supplier the soft-
ware product line of the ECU. The suggestion is that both parties make an agreement on
specifying a common interface between these two product lines. This would be a single
coupling between both parties. Moreover, it would not be just an abstract specification,
but detailed.

2.1.2.4. Classification-based Approach for Variability Modeling

Nowadays OEMs are trying to reduce the complexity in development of E/E systems
by adapting their organization processes to the AUTOSAR standard, [MA09]. This has

38

2.2. Software Architecture for Automotive Systems

enabled to switch to the function-based variability modeling in contrast to previously ap-
plyed hardware-based feature modeling. The last describes the system in a feature model
with traces to the function network. This function network acts as a platform. It contains
all possible interconnections between hardware dependent functions and their traces to
the real hardware. In application engineering deselected model elements are just removed
from the function network and mapping to the hardware is done afterwards.

Another modeling approach allows to handle variants without the need to take care about
the underlying hardware. This implies that the interconnection overhead in the function
network is drastically reduced.

[Kae09] proposes a variability modeling approach by describing variants in three different
abstraction levels: (1) feature level, (2) function level and (3) architecture level. The func-
tion level describes the system as a composition of functions. Here it is not yet decided
which functions are realized in the software and which ones are realized in the hardware.
Since AUTOSAR provides hardware-independent software modeling, all technical details
from the function model are excluded. After partitioning, the platform is combined by
architectures describing the software and hardware separately. The variation points on the
third level are traced by configuration links to the feature models. Configuring automotive
systems in mentioned three phases reduces complexity of the configuration and of vari-
ability modeling. Moreover, the absence of technical details in the functional description
allows to easily implement changes in the product line.

The variant management introduced in [SZ10] as Configuration Management relies on
handling versions of components by providing variability and scalability mechanism in a
network-based component hierarchy (tree-based hierarchy where components may be as-
signed to several systems). However, configurations are orthogonal to this hierarchy and
such flat variant management does not seem to be really optimal solution (at least for au-
tomotive), because of the global system configuration (cf. AUTOSAR, see Section 2.2.2.3),
[RKW09]. An alternative to this mechanism is the compositional variability described in
Section 2.2.2.5.

2.2. Software Architecture for Automotive Systems

[BCK03] defines the software architecture as:

... the structure of structures of the system, which comprise software ele-
ments, the externally visible properties of those elements, and the relationships
among them.

As already elaborated in Section 2.1.2.1, the software architecture in the automotive do-
main describes the system on the one hand as a composition of functions forming the
logical system architecture and on the other hand as a network of interconnected ECUs.
The aim of this section is to introduce the technical architecture with the focus on software
functions.

39

2. Related Work

2.2.1. Specification of Software Architecture

The logical system architecture is built by realizing technical and non-technical system
requirements. It acts as a binding level between requirements and the technical system
architecture. Such an abstract system model defines what the system has and excludes
all technical details on how the functions are realized. In further development steps the
functions are allocated to concrete target subsystems and components inside the technical
architecture. This task requires advanced analysis and specification methods to provide
adequate realization with respect to existing system functions, because their realization
highly depends on decisions and details provided in the technical system architecture.
These methods may include analysis of control systems, real-time systems, distributed
systems, reliable systems and other systems. The results of analyis provides various alter-
natives to realize functions from the logical system architecture, [SZ10].

From now, a solution for the technical system architecture is found. The functions from
the logical architecture are allocated to either hardware components or software functions
known as software requirements. To realize the software architecture, software require-
ments need to be extracted into a new view, which in addition defines the boundary of
the software. Before going into detail in the development of the software architecture it is
advisable to show how the software requirements are realized inside the technical system
architecture. As previously mentioned, there are several analysis methods for function
realizations. In the following, the technical architecture of a control system is described.

Vehicle

SensorsSetpoints
R

Control Actuators Plant

Driver Environment

XY

Z

U

R

W

W*

(a) Model of the control system in the logical architecture

Plant 1 Plant 2

Controller 2 Controller 1

Controller 3 Plant 3

Z1

Z3

Z2

W1*W2*

Y3W3*

Y1

X3

X2X1

ECU

Microcontroller

Software

Function f1

Function f2

Function f3

ADCSensors

Setpoints

DAC Actuators

ADC
W*

X

W

R U Y

Technical System Architecture

Software Requirements

(b) Examplary control system in the logical architecture (left) and its realization in the technical architecture
(right)

Figure 2.8.: Development of the technical architecture: analysis of the control system,
[SZ10]

40

2.2. Software Architecture for Automotive Systems

Figure 2.8(a) shows the model of the control system used in the analysis phase for the
development of the technical system architecture. Many systems in a vehicle show the
controlling character and hence the realization of their control functions is typically a
part of the software. Therefore, these systems have a big influence on the system soft-
ware. The model above shows the interaction between the vehicle system, a driver and
an environment. The principle of such systems relies on controlling the plant by sensing
the value X, comparing it to a given value W and adjusting their difference (error) with
respect to a transfer function of the controlling block. The controlling process is finished
when the difference is equals to 0. Assuming that a plant model is an Otto engine, the
value W would be a fuel amount set by a driver (W ∗). The controlling process tries to
reduce the difference between X and W to 0 even the presence of the environment influ-
ence on the plant model (Z) disturbs the process (e.g. caused by diagnostics tests), [SZ10].

In Figure 2.8(b) the concrete usage of the mentioned model is presented. On the left
side two control systems controlling the plant (e.g. engine) are modeled as a part of the
logical system architecture. On the right side of the figure, their representation in the
technical system architecture is proposed. As shown in the figure, the control functions
(f1, f2 and f3) are realized in software2. This software block represents the software re-
quirements used in the next phase to build the software architecture.

The development of the software architecture relies on the analysis of software require-
ments and a specfication of:

• Software components and their interfaces
Specification of on-board and off-board interfaces.

• Software layers
Specification of software layers in correspondence to their abstraction level. In AU-
TOSAR there are three layers: application software, RTE (Run-Time Environment)
and the basic software.

• Operational states
Specification of system states and transitions between them (e.g. boot, shut down).
In AUTOSAR some important common operational states are standardized.

After the architecture specification is finished (for a single ECU) the specification of a sin-
gle software component need to be done. This includes the specification of a data model, a
behavior model and a real-time model which are subsequently implemented in the design
and implementation phase, [SZ10].

An examplary model describing the software implementation architecture is depicted (in
later sections) in Figure 3.4.

2.2.2. Architecture Description Languages and Standards

Due to the increasing complexity of software in automotive embedded systems (and the
transition to new software development paradigm like MDD), there is a need to formally

2This is not a single possible solution, i.e. logical functions may be assigned to e.g. sensors, ADC etc.

41

2. Related Work

describe the software architecture. For this purpose, architecture description languages
(ADL) are introduced, [vdBBFR03].

In the following sections several ADLs are introduced and compared for conformance
to the automotive domain. Moreover, a very expressive comparison and classification
methodology for ADLs can be found in [MT00].

2.2.2.1. AADL

The Architecture Analysis & Design Language is used for the formal description of hard-
ware and software architectures in component-based development of complex embedded
real-time systems. It is based on concepts of already existing ADLs (MetaH, Rapide,
Wright, etc.), [FLV06].

AADL was firstly intended for the use in the avionic domain (Airbus, ESA) to sup-
port the development of safety critical embedded systems. In this time it was known as
Avionics Architecture Description Language. From the user perspective, AADL specifica-
tion provides a textual and a graphical notation of the language. The textual notation is a
collection of declarations for components and their implementations, ports, packages and
propery sets. These constructs are used to accurately describe the application software
running on an execution platform (hardware). In addition, an XML-based represention of
the system is provided for model exchange purposes, [FGH06] and [FLV06].

In AADL three kinds of components are defined: (1) software components or application
software, (2) execution platform and (3) composite or system components. Each software
component has a predefined sub-program (executable code, e.g. libraries shared among
processes), static data used by e.g. ports, process, thread group and threads. For task
handling in a real-time environment AADL provides rate monotonic and earliest deadline
first scheduling algorithms, [FGH06].

Hardware components or executabe platforms contain a processor, a memory, a device
(component interacting with an external environment) and a bus. The system is built by
encapsulating bounded and instantiated components inside of composite.

In addition, AADL derives and extends the MDE concepts of the language MetaH. This
allows to perform the analysis of the architecture (schedulability, safety, latency analysis
etc.) and an automated integration such as runtime system configuration, application
composition etc., [FLV06].

AADL is also realized as an UML profile and hence supported by several commercial
and open source tools. For Topcased, an Eclipse plug-in Open Source AADL Tool Envi-
ronment (OSATE) supporting the AADL metamodel is provided, [FLV06].

2.2.2.2. SysML

SysML is a modeling language developed by OMG (Object Management Group) to provide
a more domain specific modeling than it is feasible with UML. It was built by reusing a part

42

2.2. Software Architecture for Automotive Systems

of an UML metamodel and extending it for domain specific constructs. These constructs
address principally the system engineering domain including specifications, analysis, de-
sign and verification of complex (embedded) systems. SysML stands for Systems Modeling
Language, [Hau06].

The specification of SysML describes the language in the following four basic diagrams,
i.e. pillars of SysML: (1) structure, (2) behavior, (3) requirements and (4) parametric
relationships.

The structure of SysML consists of block elements which are used for system composi-
tion. Elementary parts of the structure are encapsulated in internal block diagrams which
are in addition parts of the system hierarchy described by block definition diagrams. These
parts may further include blocks as parts, their ports (service-oriented and flow-oriented)
and connectors. The whole system structure is organized in package diagrams, [Hau06].

For behavior modeling SysML provides constructs such as state machines, activities, in-
teractions and use cases. They are modeled in separated behavioral diagrams, [OMG10].

Parametric diagrams in SysML are used to perform model analysis by describing con-
straints on system properties. These constraints may be mathematical expressions like
a = dv/dt performed on system parameters. They are encapsulated by the model element
ConstraintBlock, [Hau06].

For data exchange purpose, two options are available. First, a model can be represented
as XMI (XML Metadata Interchange) since the SysML profile is an extension of UML.
Unfortunately, this realization is limited to model information only, i.e. no diagram in-
formation is included. Another option is the use of the AP233 (Application Protocol 233
based on ISO 10303 - a standard for data exchange) data exchange protocol, which is
compatible to the SysML specification, [Hau06].

2.2.2.3. AUTOSAR

AUTomotive Open System ARchitecture - AUTOSAR represents an standardized and
open automotive software architecture developed by more than 150 companies of automo-
tive manufacturers and suppliers. The demand for such a standardization is caused by

Application Software

Hardware

Application Software

Hardware

AUTOSAR

Standardized

HW-specific

Figure 2.9.: Hardware/software interface: conventional (left) and AUTOSAR (right)
[tre09]

43

2. Related Work

the growth of complexity in the automotive software development through the continuous
increase of innovations in E/E systems. For instance, most of the automotive development
processes in the last time have been resulted in ECU software that was highly dependent
on the hardware. The reuse of such software would be a very time consuming task due
to relocation of functions between different electronic control units (ECU). The solution
provided by AUTOSAR to resolve these incompatibility issues is the introduction of an
standardized layer between the hardware and the ECU software. This is illustrated in
Figure 2.9. The purpose of this layer is to make the ECU software fully independent of
the microcontroller and OEM3. Furthermore, this separation allows the efficient reuse of
the application software and increases its flexibility [tre09].

Besides mentioned reasons for a standardized architecture, the automotive companies pro-
posed a list of areas describing the main points where the standard should be applied. This
includes implementation and standardization of basic functions, scalability across different
vehicle types, embedding modules from other manufacturers, maintenance, upgrades and
others [AUT08]. AUTOSAR response to this is a concept addressing the software archi-
tecture, the application interface and a methodology described in the following sections.
The main goals of AUTOSAR is the achievement of higher software quality and reduction
of costs for involved companies, i.e. OEM and suppliers. This should implicitly enable the
development of more complex software as it is possible nowadays [KF09].

ECU Software Architecture An essential design concept of AUTOSAR is the separation
between the ECU-specific and the ECU-independent software, i.e. basic software (BSW)
and application software (ASW), respectively. Figure 2.10 shows the software architecture
of the ECU in AUTOSAR. An intermediate layer called virtual functon bus (VFB) acts

AUTOSAR

Interface

Standardized

Interface

Std. AUTOSAR

Interface

Std. InterfaceStd. InterfaceStd. Interface

Std. Interface

Std. Interface

S
td

. I
n

te
rf

ac
e

AUTOSAR

Interface

AUTOSAR

Interface
AUTOSAR

Interface

AUTOSAR Runtime Environment (RTE)

ECU-Hardware

Virtual Function Bus (VFB)

AUTOSAR

Interface

App. Software

Component

App. Software

Component
App. Software

Component

Services
Operating

System
Communication

ECU

Abstraction

Microcontroller

Abstraction

Complex

Device

Drivers

...

AUTOSAR

Software

Basic

Software

SW-C 1 SW-C 2 SW-C N

...

Tool

Deployment of SW-C
ECU Descriptions

System Constraints Descr.

ECU 1

...

Gateway

Basic Software

RTE

ECU M

BSW

RTE

SW-C 1 SW-C 2 SW-C M

Figure 2.10.: AUTOSAR approach (left) and AUTOSAR ECU Software Architecture
(right) [KF09]

3Original-Equipment-Manufacturer

44

2.2. Software Architecture for Automotive Systems

as the abstract representation of the communication infrastructure for all software compo-
nents belonging to the mentioned software concepts. Since its realization is ECU-specific,
there is no information about the technology used. With such a virtual representation the
independence between software components and the hardware is achieved and additionaly
the parts of an integration process can be done in an earlier design phase as before. From
a VFB point of view that would the connection of Services, ECU Abstraction and Complex
Device Drivers. Since the communication construction is ECU independent, a high degree
of modularity, scalability, exchange and reuse is achieved [KF09]. All this is located at the
system level of the AUTOSAR methodology (see Figure 2.12). The implementation of the
VFB is provided by the runtime environment (RTE) which is the core of the AUTOSAR
architecture [AUT08].

Software Components In AUTOSAR software component represents a part of the func-
tionality contained in the application running on the AUTOSAR infrastructure from which
the component is fully independent. It consists of ports defined by (standardized) inter-
faces for communication purposes, a description forming the software component template
(which for instance includes operations and data structures provided and required by a
component) and the source code or ECU-specific object code. It is also important to
mention, that each instance of the component can be assigned to only one ECU (atomic
software components), but there is also a concept for composition, that allows to distribute
the software components which are part of the composition over several ECUs [AUT08].

The inner parts of software components, i.e. the source code, is represented as Runnable
Entities or Runnables. There can exist more than one Runnable inside a component. Each
Runnable represents a piece of functionality provided by a component. For instance, a
component containing two ports can be combined by two Runnables. The first one acts
as the listener of the input port implementing the functionality to process the incoming
data and saving it to some variable whose changes triggers4 the second Runnable which
further prepares the output on the provider port [KF09].

Ports are used for interaction between components. They implemement specific port
interfaces which defines a type of the port and a data pattern for information exchange.
It is also important to mention, that the same port types have different operational con-
ditions in application software, calibration and AUTOSAR services. For instance, ports
in application software are used for inter-application communication, whereas those for
calibration are used for providing and consuming calibration values [KF09].

The AUTOSAR infrastructure tries to hide the specifics related to the microcontroller
and the ECU electronics by using the abstractions of the microcontroller and the ECU
respectively. An exception is made for sensors and actuators. They are represented by
special software components that are independent from the ECU, but not from the sen-
sors and actuators that are physically connected to the ECU. The reason for running such
components on the ECU are performance issues [AUT08].

4they can be data or timer triggered

45

2. Related Work

Runtime Environment The RTE together with the basic software represents the techni-
cal realization of the VFB for a specific ECU acting as the middleware layer that handles
the communication among application software components and their interconnection with
the hardware over basic software by using the standardized interfaces [AUT08].

An essential prerequisite for the generation of the RTE is an XML based description
containing the detailed specification of interfaces for communication. These information
are embedded on ECU configuration description document, from which an extract specific
for the current ECU is used for the generation of C-code. This code is in the further
process finally linked with executables of software components [KF09].

Basic Software This is an standardized software layer providing the ECU functionality,
i.e. access to the hardware for the application software. It consists of standardized and
ECU-specific components. The first group includes Services, Communication, Operating
System and Microcontroller Abstraction in which the second one includes ECU Abstrac-
tion and Complex Device Drivers [AUT08].

Considering the layered software architecture of AUTOSAR (the right part of Figure 2.10)
the basic software forms the layered path to the hardware for system services, memory
management, communication infrastructure and hardware I/O. The first level corresponds
to the service layer, consisting of services for system, communication and memory. Com-
munication services are responsible for the vehicle network communication (e.g. CAN,
FlexRay), i.e. they provide an infrastructure for network management. Memory services
are responsible for uniform provision of non volatile data (e.g. NVRAM) to the applica-
tion as well as for a mechanism for their management. System services offer basic services
like a real-time operating system and library functions that can be used by all mentioned
modules [AUT08].

The next level in the layered architecture towards hardware is the ECU abstraction layer
describing abstractions for I/O, communication, memory and on-board devices. An es-
sential goal is to hide hardware details from software layers above. The first abstraction
describes signals of on-chip or on-board I/O devices connected to the ECU excluding sen-
sors and actuators. Communication hardware abstraction describes on-board and on-chip
communication controllers and provides an uniform communication mechanism for them.
In this way, it does not matter whether the controller is on-board or on-chip. The inter-
face is the same. An analogous situation is present in the abstraction of memory hardware
where the access to on-board and on-chip peripheral memory devices is provided with the
same mechanism. The last abstraction decribes on-board devices that are accessed by the
ECU by using a microcontroller abstraction layer that abstracts I/O drivers, communica-
tion drivers, memory drivers and microcontroller drivers [AUT08]. The ECU abstraction
layer with respect to the AUTOSAR methodology results in the configuration of the ECU
and the generation of executables from the source code of software components [KF09].

There is also a part of basic software which does not belong to any layer of architec-
ture named Complex Device Drivers. In this group the following modules are included
[KF09]:

46

2.2. Software Architecture for Automotive Systems

• modules that are not intended to be a part of the AUTOSAR architecture,

• modules with not realizable time constraints,

• modules from an existing project that are intended to migrate into the AUTOSAR
architecture iteratively.

Communication Mechanisms Regarding the AUTOSAR methodology, this part belongs
to the component layer, since it describes the communication patterns for software com-
ponents. The first prerequisite for the realization of communication relationships is their
modeling on the system layer (VFB). After modeling, the communication calls need to
be implemented on the component layer. Additionally, the RTE should be provided and
linked to the component implementation on the ECU layer [KF09].

Generally, there are two communication mechanisms used for component interaction:
sender/receiver (S/R) and client/server (C/S) communication. The S/R principle allows
to exchange data elements, i.e. primitive or complex data types, between sender and re-
ceiver. An important characteristic here is the transmission over separate communication
channels. That means that the sender doesn’t get an acknowledge on the same channel
after the transmission. Instead, an additional channel for acknowledges is required. This
allows the efficient use of multiplicity in communication design. It is possible to realize
communication in such a way, that the sender performs multicasting, i.e. sends its data to
more than one receiver and vice versa. Besides mentioned features an important charac-
teristic of S/R communication mechanism is the explicit and implicit communication. The
first form corresponds to the direct establishment of communication by using the appropri-
ate API. The receiver is equipped with a data buffer, i.e. queue with constant length. The
second form, i.e. implicit communication allows to exchange data between components by
using the RTE as an intermediate layer. A specific feature in this communication form
is the transmission start after sender termination. On the other side, the RTE transmits
data to the receiver at the time when he is ready (active). In this way, transmission
data will not be send immediately. Instead, they will be prepared for transmission during
the runtime of the sender. From the receiver point of view, the advantage is that he can
request data from the RTE at any time without having a copy of the data in his local space.

The C/S communication mechanism in contrast to the R/S provides bidirectional trans-
mission. Instead of the sender and receiver, here client and server are related in a 1:n
communication relationship. This means, the server port, i.e. the operation inside of this
port, can be used by more than one client. The reverse direction is not allowed [KF09].

The generation of the RTE results in different APIs for the mentioned (different) com-
munication principles. An essential feature is that the API definition does not contain
information about source or target components (e.g. sender or receiver), but only their
ports defined in earlier development phase on the system level (VFB). This allows to fullfill
one of the most important goals of AUTOSAR, namely, the exchange and movement of
software components [KF09].

Figure 2.11 shows an exemplary warning lights system described on system level in order

47

2. Related Work

to demonstrate various communication mechanisms alltogether. The main element here is
the Warn Light Application which is already a composition of two software components.
It has two inputs: Velocity Callibration from the callibration component and Warn Button
from the sensor software component. Here it is clear that the S/R communication princi-
ple is used, but it is also noticeable that it is used for different application areas, namely,
callibration and application software components. The Warn Light Application performs
the multicast to the actuator components Warn Light Left and Warn Light Right. Here
the S/R principle is used too, but only for application software components. Furthermore,
the actuators are connected with the light outputs of the ECU by using the C/S com-
munication principle, because they need to send commands only (turn off/on). Another
interaction of the Warn Light Application is realized with the basic software component
ECU State Manager over Mode Manager. Thus, for retrieval of current ECU status the
S/R principle is used and for the RunMode the C/S principle is used. Both communication
paths belong to the AUTOSAR-service area.

Read Sensor Data

Process Data

Send Data to Actuators

Main Component
Ajust

Frequency

Callibration

Warn Lights Application

Light

Button

Sensor

Status Information

Retrieval

Mode Manager

Rigth

Light

Actuator

Left

Light

Actuator

ECU State

Manager

Service

ECU Abstraction

Output Light Pins

ECU Abstraction

APPLICATION SOFTWARE

BASIC SOFTWARE

Legend

C/S Services

C/S ECU

S/R Callibration

S/R Application Software

Figure 2.11.: Example: warn lights system realized in AUTOSAR, [KF09]

Methodology The AUTOSAR methodology describes the steps, i.e. work flow for devel-
oping AUTOSAR products. In this set of activities three abstraction layers are considered:
system layer, ECU layer and component layer. They are also related to a conventional
system development process which is here partly automated. Figure 2.12 shows an basic
work flow describing the creation of an AUTOSAR project from the given system de-
scription. Since the output of each activity is a standardized XML file format, the whole
process can be supported by a tool. Additionally, the exchange of any part of the project
between different tools conforming to AUTOSAR is possible [KF09].

The main starting point of the work flow on the system level are the resources System Con-

48

2.2. Software Architecture for Automotive Systems

figuration and Collection of Sofware Component Implementations provided by the OEM.
The system configuration contains information about the allocation of software compo-
nents to ECUs. Additionally, it can be specified which software implementations are used.
Both documents are inputs for the Configure System activity which results in resources for
further finer grainer configuration activities (i.e. System Configuration Description and
System Communication Matrix). The first resource is required in the next lower layer
of the AUTOSAR methodology to extract relevant data from several ECU descriptions,
whereas the second one contains the information flow of the whole system [KF09].

Extraction of relevant data from the System Configuration Description is done by the
ECU supplier, because very broad knowledge about the target system is required in this
step. The ECU supplier is responsible for the configuration of the basic software, the
RTE and the operating system for his ECU. The product of this activity is a resource
called ECU Configuration Description, which in combination with the software compo-
nent implementation allows to generate an executable for a given ECU (see ECU layer in
Figure 2.12). Finally, the last abstraction layer of the AUTOSAR methodology includes

SYSTEM

CONFIGURATION

XML

XML

XML

SW-C

IMPLEMENTATIONS

SYSTEM

CONFIGURATION

DESCRIPTION

XMLXML XML OBJ

Configure

System

Activity

Extract

ECU-specific

Information

Activity

Configure

ECU

Activity

Generate

Executable

Activity

ECU-RELATED

TEMPLATES

ECU EXTRACT OF

SYSTEM

DESCRIPTION

ECU

CONFIGURATION

DESCRIPTION

ECU

EXECUTABLE

SYSTEM LAYER

ECU LAYER

XML

Implement

Component

Activity

COMPONENT

RELATED

TEMPLATE

IMPLEMENTED

COMPONENT

Source

Code

COMPONENT LAYER

Figure 2.12.: Development of ECU software based on AUTOSAR methodology, [KF09]

the component implementation flow. As mentioned in the previous sections, AUTOSAR
components can be developed without being aware of the target hardware. Therefore,
the activity Implement Component is equal to the software development process which
results in source code of the software component which is later compiled for a specific
ECU [KF09].

Application Interfaces Since the functionality of AUTOSAR software is encapsulated in
interacting software components, an essential feature towards better scalability, exchange
and integration of such functionality is the standardization of communication interfaces.

49

2. Related Work

In the AUTOSAR architecture, described in Figure 2.10, three standardization forms are
used: (1) AUTOSAR Interface, (2) Standardized AUTOSAR Interface and (3) Standard-
ized Interface. The last group of interfaces is standardized by an external party (e.g. C
programming language) [AUT08].

Exchange Data Format For application independent data exchange AUTOSAR pro-
vides an XML schema which conforms to its metamodel, extended by variability modeling
means. The XML schema is developed with respect to the ASAM FSX (Association
for Standardisation of Automation and Measuring Systems) - a function specification ex-
change format.

Variant Management in AUTOSAR Documenting variability in AUTOSAR is realized
by variation points, binding time and binding expressions. The last one corresponds to a
expression definition which is used to trace variable elements to configuration parameters,
i.e. to system constants. The AUTOSAR variant management mechanism covers the
following binding times:

• System design time

– Corresponds to the early phase in system development, e.g. designing the
VFB, specification of software component types, building connections between
prototypes, etc.

• Code generation time

– Writing or generating (or both) the source code.

• Pre-compile time

– At this time an object code is generated by combining the parts of the code
according to selected variants. This selection is performed by a preprocessor.

• Link time

– Corresponds to the configuration of the resulting object code by excluding/in-
cluding its parts (modules).

• Post-build time

– This is the latest binding time in AUTOSAR. It covers the binding of variants
between generated executables and operation time of the ECU. For instance,
this includes flashing different configurations into the RAM of the ECU before
its startup.

The first four binding times correspond to the pre-build time. Thus, function design time
and runtime are out of scope for this mechanism. In earlier versions (before version 4) of
AUTOSAR the variability is not explicitly defined. Instead, configuration steps from the
AUTOSAR methodology are typically used as possible candidates for handling different
variants externally.

The support for the variant management in AUTOSAR is not an integral part of the

50

2.2. Software Architecture for Automotive Systems

AUTOSAR core metamodel. Instead, an extended metamodel is generated to provide
the variant management. The XML schema is derived from this extended metamodel. In
following, the generation of the AUTOSAR XML schema is explained (see Figure 2.13).

The AUTOSAR XML schema is generated from the Pure Metamodel by applying meta-
model patterns to certain parameters. This strategy allows to keep the metamodel highly
flexible. The generation starts by annotating the Pure Metamodel with additional data.
Here it can be specified which elements of the metamodel are intended to be variable
by extending elements for attributes like the latest binding time. These annotations are
crucial input for the schema generator. Namely, it takes the Annotated Metamodel and
in correspondence to annotations and defined patterns it generates the Extended Meta-
model. There are now all elements to support the variant management. Another reason for

Pure Metamodel

Annotated Metamodel

Extended Metamodel Variant Rich M1 Model

Bound M1 Model

XSD

creates defines

adds variation points

generates

binding

conforms to

conforms to

M2 M1

Figure 2.13.: AUTOSAR XSD generator, [AUT09a]

this extension are model constraints. A model generated by resolving all system variants
is a variability-free model that should conform to a variability-free metamodel, because
constraints regarding e.g. multiplicity may be not the same. For instance, to allow client-
server communication where the client in variant 1 is connected to server 1 and in variant
2 to the server 2, the upper bound of multiplicity between requester and provider port
need to be changed from “1” to “*”. Thus, in a resolved model this multiplicity need to
be restored. From the Extended Metamodel the AUTOSAR XML schema is generated.

An excerpt of the extension from the Extended Metamodel are locations for variation
points. They are aggregations, associations, attribute values and propery sets. The XML
schema generator uses the predefined patterns to create this excerpt in the XML schema.
These patterns are:

• Aggregation pattern

• Association pattern

• Attribute pattern

51

2. Related Work

• Aroperty set pattern

A variation point inside an aggregation is used to determine if a part aggregated to a con-
tainer exists in the system and under which circumstances it exists. An example for such a
variation point is a port inside a software component. The binding time for this variation
point is explicitly provided, but also constrained by the latest binding time. This latest
binding time is introduced because some variation points are not allowed to be bound at
a specified binding time (cf. attribute value pattern).

The situation with the association pattern is almost the same. A variation point is ag-
gregated to the reference object building the conditional reference. This allows to make
references variable. However, this is not the case with all references (e.g. referencing
types).

A pattern applied to variable attributes differs from the other two mentioned before in
a way that the existence of an attribute is not configurable, but its value. Here, a set
of data types that can show a variable character is defined. It is enough to extend these
attributes with a binding time to make them configurable. The latest time to bind these
variants is the pre-compile time.

If a large number of attributes is required, the usage of the attribute pattern makes
the situation difficult, because for each attribute the variation point needs to be specified
individually. Moreover, the attribute pattern data type has restrictions. Finally, there is
no way to handle such attributes if they are dependent on each other, i.e. if value sets
are assigned to them. To solve this, a property set pattern is provided. It encapsulates
one set of values for all attributes in a varying container. In this way, a set of values for
a large number of attributes can be easily configured. Additionally, to provide variable
values of value sets the attribute pattern can be used.

Variation Point As previously mentioned, a variation point describes variable locations
in a model. But it is also important to know how it defines conditions under which such
locations exist. This excludes the attribute pattern, because for its realization another
kind of variation point is used, namely the attribute value variation point.

A variation point aggregates elements describing a condition by formula and a post build
condition. Both conditions are used to express a criterion that specifies the existence of
the underlying variant. The first is used for variants intended to be bound before post-
build time, whereas the another condition is related to post-build time. They can also be
combined into a single variation point. In this case there are 16 possible resolutions of
variants defined in [AUT09a].

The syntax of the formula condition is similar to the C programming language and its
grammar is realized in ANTLR5. A single variable inside of this expression is a system
constant. Its values are specified by value sets before any binding time. These value sets
are in the form of a table, which maps system constants with their values. Actually, this

5ANother Tool for Language Recognition - parser generator

52

2.2. Software Architecture for Automotive Systems

table represents the approved product line for the underlying model. If a formula condition
results in a 0 this variant needs to be removed from the model. Otherwise, it is included
until the next binding time defined by another condition, if any.

A condition for post-build variants is not defined by formula, but it works in a simi-
lar way. It contains a value that need to be matched with criterion. If more than one
conditions is specified, all of them need to return true in order to bind the variant.

From the VFB perspective, [AUT09d] defines three metamodel elements that may show
variable character: software components, ports and connectors.

Component Reuse AUTOSAR follows the UML strategy type - role to reuse model
elements. Actually, in AUTOSAR a role is defined as a prototype. In this way, types of
e.g. software components may be instanced multiple times. Moreover, this reduces the
redundancy in modeling, because prototypes are not-decomposable black-box elements
without any type-specific attributes (except of a reference to a type).

2.2.2.4. Fibex

Fibex is a XML-based, standardized exchange format describing the communication among
different bus systems in a vehicle. It is developed by ASAM as an alternative to CAN
(Controller Area Network) and LIN (Local Interconnect Network) files and stands for
Field Bus Exchange Format, [ZS07].

FIBEX

ElementsProject
Processing

Information
Requirements

Clusters

Channels

ECUs

Gateways

Frames

Signals

Functions

Unit-Specs.

Coding

Communication

Topology

Project description

Coding and units

Details about
bus systems, ECUs,
frames, signals

Figure 2.14.: FIBEX XML schema structure, [ZS07]

Bus systems in a vehicle can be categorized into systems for on-board and off-board
communication. The first group includes low speed, high speed and multimedia systems
exchanging data between ECUs, whereas the other systems are intended for the com-
munication to the external world (e.g. for diagnostics). Fibex is focused on on-board
communication systems. The structure of its specification is depicted in Figure 2.14.

The main block in the structure is called elements. It holds on the one hand the topology

53

2. Related Work

consisting of bus systems (clusters with one or more channels) and ECUs (incl. gateways)
and on the other hand the frames and their content (signals).

The currently supported bus technologies are FlexRay, MOST (Media Oriented Systems
Transport), CAN, TTCAN (time triggered) and LIN, [Bar09].

2.2.2.5. EAST-ADL

Electronics Architecture and Software Technology - Architecture Description Language is,
as the title says, a language for describing architectures in the automotive domain. It is de-
veloped in the scope of the following European research projects: the EAST-EEA (EAST -
Embedded Electronic Architecture) between 2001 and 2004, then ATESST and ATTEST2
(Advancing Traffic Efficiency and Safety through Software Technology) between 2006 and
2010 and finally its further development should be completed until 2013 in the scope of
the project MAENAD (Model-based Analysis & Engineering of Novel Architectures for
Dependable Electric Vehicles).

Its primary goal is to provide a detailed documentation of an integrated system and to
improve the communication in the development environment. This is first of all achieved
through a representation of a system in different layers of abstraction and additional
modeling aspects like variability, requirements modeling, feature modeling, environment
modeling, system level analysis, etc., [CFJ+10].

The EAST-ADL metamodel is provided as an UML profile (an extension of the UML
to provide domain specific modeling construct, i.e. a domain specific language) which is
like UML on M2 level in the MOF metamodel hierarchy [OMG07].

Structure As previously mentioned, EAST-ADL distributes the engineering information
over five abstraction layers. This is illustrated in Figure 2.15.

Operational Level

Vehicle
Level

Analysis
Level

Design Level

Implementation
Level

Vehicle Feature Model

Analysis Architecture

Design Architecture

Implementation Architecture

System Model

Functional Analysis Architecture

Functional
Design

Architecture

Hardware
Design

Architecture

R
eq

u
ir

e
m

en
ts

V
e

ri
fi

ca
ti

o
n

/V
al

id
at

io
n

V
ar

ia
b

ili
ty

Sa
fe

ty

En
vi

ro
n

m
e

n
t

M
o

d
el

Product FM / Technical FM

AUTOSAR System

Middleware
Abstraction

Operational Architecture

Figure 2.15.: EAST-ADL domain structure, [CFJ+10]

54

2.2. Software Architecture for Automotive Systems

The vehicle level is used to provide an abstract description of the whole system in form
of features. This allows to establish a communication to a stakeholder (e.g. customer) in
order to manage the underlying product line (configure the system, modify the PL mech-
anism, etc.). However, this level does not describe how the product line is built internally.
Instead, it just describes what the system has (for PL in EAST-ADL see the paragraph
Variant Management).

On the analysis level abstract functions are defined by decomposing requirements and
features. This abstract functional description corresponds to a domain concept i.e. the
environment model, devices interacting with an environment and functions, [CFJ+08].

In the next level devices are further decomposed to either hardware (e.g. sensors, ac-
tuators) or software elements (for signal transformation; they are not an application soft-
ware). Middleware is modeled additionally to connect device-specific functions to design
functions. These functions form the Functional Design Architecture (FDA). Parallel to
this, the Hardware Design Architecture (HDA) encapsulates an abstract description of the
hardware.

The implementation level is not explicitly defined in the EAST-ADL metamodel, but
instead, an AUTOSAR implementation architecture is used. The reason for this is an
extensive support for realizing the implementation architecture in AUTOSAR (e.g. basic
software, detailed software topology, etc., [CFJ+08]).

The operational level corresponds to the system installed into a vehicle.

Variant Management The vehicle level model is the main point for variant management
in EAST-ADL. It is combined from optional and mandatory features in such a way, that
very abstract description of the whole system can be captured. This allows to define what
the system has from a variability point of view, but not how it reacts on this variability.
The reaction is defined in lower levels of abstraction, where the variable parts, i.e artefacts,
are represented as variation points. In order to instantiate the variable-free product, the
relation between the artefact level variability and the feature model on the highest level
of abstraction must be specified. Finally, the product derivation is driven by the feature
model on the highest abstraction level. Basically, there are two aspects of variability in
EAST-ADL:

• Vehicle feature level variability

– Core technical feature model

– Feature model for end-customer configuration

– Feature model for non-customer configuration

• Artefact level variability

The first variant of variability representation belongs to the highest level of abstraction. It
results in a feature model combined from optional and mandatory features that are used

55

2. Related Work

on the one side for variant management activities and on the other side for a coarse-grained
specification of requirements. The distinction between mandatory and optional features
is expressed through cardinality, [ea08].

Except of the capability to express the features as optional and mandatory, i.e. [0..1]
and [1] respectively, it is also possible to clone those features, i.e. multiplicity > 1. As a
consequence, multiple instances of the same feature with different or the same configura-
tions may be created. For instance, a product derived from the product line has the front
and the rear wiper system with the rain control functionality including timing intervals for
the pause between the activation of the motor. In the product line architecture, there is no
need to specify the features explicitly for each wiper system, but only one with cardinality
2. Later in the configuration step, two instances of such systems are created. The effect
of this configuration is part of artefact level variability.

Vehicle Feature Level Variability The features from the vehicle feature model (in the
next VFM) address different feature groups as well as different models. Some features
describe more technical aspects than others (e.g. a brake system in contrast to the market)
and some of them are probably visible for the customer. Therefore, EAST-ADL separates
them on the one side in technical and non-technical feature models and on the other side
in customer visible and customer invisible feature models.

Core Technical Feature Model Features from this model reflect the pure configuration
of the system, i.e. no characteristics like market, customer-visible variants, etc. are present
here. Such categorization of feature models reduces complexity of the system configuration,
because this model is typically a product of some pre-configuration and hence contains
less variable domain artefacts.

Feature Model for End-Customer Configuration The core technical model is not visible
for the customer, only for the system engineer. However, a customer may require to choose
some variants by himself. In EAST-ADL this functionality is provided by configuring the
separated feature model, i.e. the product model. The mapping between both models is
done by the product decision model depicted in Figure 2.16.

Feature Model for Non-Customer Configuration This model in contrast to the previous
ones has internal features only. Thus, they are also not technical features. An example
of such feature models is a market containing different countries as features. Like in
customer-visible configuration this model is used to pre-configure the core technical model
in order to reduce the complexity of the product line.

Product Decision Model The core technical model serves as the basis for the configu-
ration of the whole system. It may be pre-configured by two other vehicle level feature
models. The relation in the pre-configuration process is known as configuration link or
decision model (see Figure 2.16).

The product decision model is a simple list of decisions which for a given source model

56

2.2. Software Architecture for Automotive Systems

and given rules configures a target feature model. This strategy is used to pre-configure
the core technical model. In the example above, the functions F1− F4 are a part of the
source model. Their exclusion and inclusion criterion defines the mapping, i.e. what is a
consequence to their presence or absence in the source model. In addition, more complex
expressions in the selection criterion may be defined. This expression corresponds to the
grammar of VSL (Variability Specification Language).

F3 and not F4 FC Competitors have itFB ; FD Max

FM1 FM2Inclusion Criterion

F2
F4F3

Fa

Fc Fd

Fb

F1
Included F. Excluded F. Rationale Person in Charge

Product Decision

Figure 2.16.: Product decision model, [ea08]

The way how EAST-ADL configures the system is defined as follows: on the highest
level of abstraction, the core technical model is configured. An effect on this configuration
is realized in decision models which can be assumed as traces to model artefacts. The
derivation process evaluates the selected features with respect to these decision models an
creates a new variability-free model.

Artifact Level Variability Variant management on artifact level relies on public feature
models and internal bindings. They are the most important metamodel elements for
fine grained system configuration. They trace the configuration from the vehicle level to
analysis, design and implementation variabilities. These variabilities are described in an
OVM provided as an extension in EAST-ADL.

Artifact Level Feature Models The essential characteristic of the artifact level variabil-
ity is the presence of feature models on lower levels of abstraction. In other words, there
are additional feature models describing domain artifacts more accurately than in vehicle
level. This is illustrated in Figure 2.17.

The composite design function F1 contains one elementary and one composite function,
Fa and Fb respectively. The function Fb is further decomposed in a similar way. Now, in
order to handle such architecture-centric variability (see Section 2.1.1.6), each composite
function gets its own feature model (public feature model - PFM). The purpose of this
model is to configure the content of the underlying function only. However, a composite
function may contain other composite functions which also have their own public feature
models. In this case the feature model of their parent function is used to configure these
public feature models instead of configuring the content only. In the example above, this
would mean that the PFM of F1 configures the PFM of Fb (but also the elementary
function Fa), which in addition configures the PFM of Fb2. Finally, this PFM has to
configure the content of the function Fb2, i.e. elementary functions Fb2a and Fb2b. This
configuration propagation allows to refine the variability in lower levels of the hierarchy.

57

2. Related Work

Fb2

Fb1

Fb

F1

Fa

Vehicle Level
Vehicle level feature model (root)

Fb1

artefact public interface

FDA

Fb2a

Fb2b

Fb2 (VP)

Fb2

Fa Fb

Fb2bFb2a

F1

Public feature model
Features related to contained domain artefacts

artefact public interface

A
rtefact leve

l FM

Internal binding
Consequence on feature model configuration, i.e. what
happens if some feature is selected or not?

Figure 2.17.: Bridge between two levels of variability in EAST-ADL

Compositional Variability As previously elaborated a particular public feature model in
combination with an internal binding may configure elementary and composite functions.
For the second group, a configuration is usually related to the PFM of contained functions.
This kind of variability managed in a hierarchical fashion is known as compositional vari-
ability, [RKW09]. It exploits issues on application of traditional product line techniques
applied in automotive (see Section 2.1.2.1) to provide a high flexible fine grained variant
management for component-based design. An example related to this topic is given later
(see Figure 3.5).

Figure 2.17 illustrates the compositional variability by structuring features in reference
- referred feature model relation. The reference model in this context is the one from
the upper level from which the referred model is derived. Its specialization inherits the
parent features with respect to predefined rules, i.e. a deviation set. The whole product
line feature model, i.e. VFM and all PFMs, forms a multi-level feature tree which enables
the independent development of parts of the system, i.e. product sublines. This is very
important for the OEM-supplier relation, because both parties can easily agree on the
interface between their product lines.

A high degree of flexibility is achieved by providing different realizations of a configu-
ration link. This is in [RKW09] documented by the following patterns:

• Plain propagation - one-to-one mapping (configuration is propagated to the parent
FM in upper level).

• Direct binding - configuration of certain variability is invariant, i.e. a constant value
constrained by its container.

• Orthogonal propagation - configuration propagation by additional feature models
(e.g. for limitation of possible values).

58

2.3. Model Transformation

• Top-level propagation - direct linking between lower level variability and top level
feature model (actually contradiction to compositional variability, but in some cases
it is required).

• Reverse propagation - configuration by using global features (cf. AUTOSAR variant
handling mechanism, Section 2.2.2.3).

The main benefits of compositional variability are the reduction of complexity while build-
ing the platform due to the high degree of flexibility and a provision on different views of
the system through interrelated multi-level feature models.

Binding Times EAST-ADL covers AUTOSAR binding times (system design, code gen-
eration, pre-compile, link and post-build) and in addition allows to configure the system
at runtime.

2.3. Model Transformation

The need for model transformation has its origin in the lack of a technology supporting
the synchronization and mapping between models, generation of lower-level models and
source code, reverse engineering of higher-level models, customizing model views, etc.,
[CH06]. Actually, the demand on such a technology was an attempt of the OMG (Object
Management Group) to provide a transformation between the PIM (Platform Independent
Model) and the PSM (Platform Specific Model) in MDA (Model Driven Architecture), an
model-based software development approach in MDE [CH03]. In 2005 the OMG has pub-
lished QVT (Query/View/Transformation), a specification which in three transformation
languages, i.e. relations, a core and an operational mapping, describes the transforma-
tion. The first two languages provide a declerative way to map the models (e.g. by using
Object Constraint Language - OCL queries to access the model), whereas the operational
mapping is an imperative language using an appropriate API in a transformation process
to access the model, [CH06].

Source Metamodel

Source Model

Transformation
Definition

Transformation
Engine

Target Metamodel

Target Model

Refers to Refers to

Reads Writes

Conforms to Conforms toExecutes

Figure 2.18.: Concept of model transformation, [CH06]

Figure 2.18 shows the concept of the model transformation. The transformation engine
generates the target model from the source model with respect to a predefined transfor-
mation definition containing the mapping rules. Both models have to conform to their
metamodels, which are not obligatory different to each other (to provide e.g. a mapping
between different abstraction layers of the architecture described by a single metamodel).

59

2. Related Work

Moreover, the transformation allows to include multiple source and target models, [CH06].

Transformation rules specify the detailed procedure of the mapping by providing vari-
ables, patterns and logic for involved models separately. Variables correspond to model
elements (meta-elements) being involved in a transformation. Patterns are a container for
variables in form of expressions, terms or a graph, whereby the logic, which can be declar-
ative or imperative, describes the computation and constraints between model elements,
[CH03].

2.3.1. Model Transformation Approaches

In [CH03] different transformation approaches are classified into two categories: model-to-
code (or text) and model-to-model transformations. Some of the approaches are essential
for the design decisions in the practical part of this thesis.

2.3.1.1. Model-to-Text Transformation

In model-to-text (or code) transformation, two basic approaches are present: a visitor-
based approach and a template-based approach. The strategy of the first transformation
is to traverse the model by using a visitor which generates the source code in correspon-
dence to the visited elements and a given transformation definition. Unlike this, the other
approach uses templates to generate the source code. The part for processing the source
model (known as lefthand side (LHS) in [CH03]) is considered to be an access point for the
source model (e.g. an API written in Java, or declarative XPath, etc.) which in combina-
tion with the string pattern containing a metacode (rules for selection of the code from a
source model) is used by the righthand side (RHS) part of the transformation to generate
the target source code. This solution is more flexible, because the rule specification does
not bind the transformation to a specific language.

2.3.1.2. Model-to-Model Transformation

Direct Manipulation Approach This model-to-model approach relies on a custom built
rule definition which uses an appropriate API as the transformation engine (see Figure
2.18). On the one side there is functionality to manipulate both models which is bridged
by a mapping API and on the other side there is an empty transformation definition which
must be realized for specific needs.

Relational Approach The relational approach is based on mathematical relations be-
tween a source and a target model by using constraints (e.g. QVT relations language,
[CH06]). Such transformation definitions are declarative and hence have no executable
character. They are typically driven by a transformation process. In such a way a high
flexibility is reached. Furthermore, such an approach supports the bi-directionality in
model transformation.

Graph-Transformation Approach This approach is based on the graph transformation
methodology. Its LHS part of the transformation is a graph pattern reflecting the source
model, whereas the RHS graph pattern describes the target model. These patterns are

60

2.4. Tool and Language Evaluation

specified either by a concrete or by a MOF based abstract syntax. The second is more
common, because it allows to express the transformation without being fixed to a specific
metamodel.

Structure-driven Approach The structure-driven approach requires the transformation
rules (definition) only, since it provides a framework for a model transformation. The
background of the process bases on building an internal hierarchical structure of the target
model and subsequently building references between involved models. In correspondence
to a rule definition (a function of source and target types in a predefined form) model
elements from the source can be simply copied to the target (cf. OptimaJ framework in
[CH03]).

Besides the mentioned approaches, some of the existing transformations are in [CH03]
assigned to a hybrid group, which is a mixture of different transformation definitions from
both categories (e.g. ATL - Atlas Transformation Language combines a declarative and
an imperative transformation strategy, [CH03]).

Further very helpful information concerning the implementation and the feature-based
customizing of the introduced approaches can be found in [CH03] as well as in [CH06].

2.4. Tool and Language Evaluation

2.4.1. ADL Selection and Evaluation

ADL evaluation

Supported Feature AADL EAST-ADL SysML UML

Function modeling

Components
√ √ √ √

Ports
√ √ √ √

Signals
√ √ √

Hardware modeling

ECU nodes
√ √ √

Buses
√ √ √

Sensors/Actuators
√ √ √

Environment modeling
√

Requirements modeling
√ √

Safety analysis
√ √

Variant management
√

Rich tool support
√ √ √

Automotive standard

Automotive domain summary [%] 66,67 83,33 66,67 25,00

Table 2.2.: Evaluation results for architecture description languages for the automotive
domain

61

2. Related Work

This section describes a short evaluation of architecture description languages (ADL) for
a given set of features that need to be supported. These features are collected by the Hy-
bConS team internally. Table 2.2 shows the results of the evaluation. The last parameter
“Autmotive domain summary” shows the summary information expressed in percents. It
corresponds to the coverage of supported features. The aim of this evaluation is to find
the best suited ADL for modeling embedded software and hardware in the automotive
domain. It is important to mention that AUTOSAR is excluded from the evaluation,
since it is more a methodology than a language. But anyway, it is also possible to use the
UML profile of AUTOSAR to describe the implementation architecture of the system.

The result shows, that EAST-ADL is suited best to describe the automotive domain.
Unfortunately, it has a very poor tool support and it is still not widely used in the auto-
motive industry, but this could change in the future. However, its detailed description of
the engineering information is satisfying for the purposes of the HybConS project.

SysML and AADL are not so different from EAST-ADL, but they are not “enough”
domain specific. For instance, SysML supports the definition of ports and components,
but it is a common description. In EAST-ADL this description is further specialized to
address the automotive domain more precisely. The situation with AADL is the same. In
addition, the system is focused on the implementation level only. Thus, one of the most
important structural characteristics of EAST-ADL is the distribution of the engineering
information over several abstraction levels and the ability to make traces between these
levels. Its aim is to document the whole integrated system.

62

2.4. Tool and Language Evaluation

2.4.2. Tool Selection and Evaluation

2.4.2.1. Selection Criteria and Prerequisites

The task of tool evaluation and selection for product line engineering is not trivial. Es-
pecially in case of additional prerequisites which need to be respected. Typically, the
task is performed through prioritization of selection criterion derived from best prac-
tices described in Section 2.4.2.2. This prioritization is domain specific and therefore
requires deeper analysis which doesn’t result without some risks related to the product
line [BCD+00].

The first evaluation phase resulted in EAST-ADL as appropriate architecture description
language for the representation of the product line architecture of automotive embedded
systems. This result has big impact on the tool evaluation and selection. It reduces
the range of PL, DSL or MDA tools to those supporting the EAST-ADL profile and its
structural constructs (e.g. variability, feature modeling, hardware modeling, requirements,
etc.) or at least to those tools having a high capability to create a meta-model forming
a convenient domain model and having high extensibility. In short, the target tool must
support the EAST-ADL domain model (meta-model) in any way.

To provide systematic reuse of core assets, their management and creation and on the
other side to provide a (partly-) automated process for product derivation, the essential
characteristic of a tool is the support for both, domain and application engineering (in
own as Application to Core Asset Development and Application to Product Development
respectively). This involves tools for configuration management, requirements discovery
and management, architecture modeling, reverse engineering, impact analysis, regression
testing, project management, economic modeling, design modeling and build management
[BCD+00]. It is also not enough to have a set of tools providing the above mentioned
features individually. Each value in criteria for tool selection includes a group of features
that must be satisfied by a tool (e.g. validation is applied in tool providing reverse en-
gineering, regression testing and impact analysis [BCD+00]). Therefore, as a result of
selection an integrated tool environment supporting the product line is imaginable. This
implies additional interoperability issues which are one of the most important challenges
in further development.

The essential characteristic of a tool for application engineering (or product engineer-
ing, see [ea08]) is product derivation. Typically, the product derivation process takes the
specification and a set of rules and generates a product. There are also differences between
tools regarding the degree of automation. Some of the tools support automated product
derivation, whereas others support it only partly. The main problem with partial product
derivation is the integration of a set of tools, which typically lack of interoperability. It
is also difficult to follow the way of derivation from the domain containing the product
line artifacts down to the generated product artifacts containg executable code, unit tests,
architecture documentation, etc. To satisfy the requirements of the project described in
this thesis, more priority has been given to tools supporting the longest derivation path or
ideally a tool supporting the whole path to completely avoid these interoperability issues.
Alternatively, it is also imaginable to choose a tool without automated product derivation,

63

2. Related Work

but with high extensibility.

The meta model of EAST-ADL contains constructs for feature and variability modeling.
For variability modeling, orthogonal variability models are used to describe variability on
lower levels of abstraction. They represent the fine grained structure. A feature model, in
contrast, describes the system in a more abstract way. Without these modeling aspects it
is neither possible to form the product line architecture nor to instantiate the products.
Therefore, tool support is mandatory.

Engineering information in EAST-ADL is distributed over five different abstraction lay-
ers. To keep information consistent and to react on changes in a model, information traces
between and inside the core assets are required. EAST-ADL includes these traceability
feature in its language definition. They should be supported by a tool as well. A critical
point regarding traceability is the binding between the feature model on the vehicle level
and the variability models on artifact level (FDA, HA and IA, see Report 2). This bind-
ing is a prerequisite for product derivation from the configuration instanced from the core
technical feature model on the vehicle level. If this binding is not supported by a tool, it
must be implemented if the extensibility capabilities allow it.

One of the most challenging tasks in this project is to find a way to transform the
Simulink R© models into a structured product line domain model. Ideally, this process
can be automated. There are some remaining issues, for example, how to resolve com-
monalities and variabilites from a repository with respect to some specification and how
to distribute them to form the product line architecture with traceability links to corre-
sponding requirements. In this area, model comparison is an essential feature that should
be supported by a tool. The next important step is validation checking to ensure that a
generated model corresponds to the metamodel. A positive validation is a prerequisite for
sucessful product derivation.

2.4.2.2. Evaluation Methodology and Tools

Allocating the appropriate tool for the product line support is done based on activities
described in [Sit]: identification of needs, measurement, evaluation and selection. The
first activity describes the requirements to be supported by a chosen tool or tool chain.
Such a list of requirements helps to reduce the number of tools which have to be actually
evaluated. The measurement represents the engagement of a tool in the practice in order
to compare it with previous experiences [Sit]. Evaluation activity is similar to measure-
ment. It acts as a basis for tool selection providing enough information to compare the
tools (see sections below). The last activity is the most important one. It is based on
a weighted list of criteria taken from the master thesis’ of Andrea Leitner [Lei09] and
Andreas Haselsberger [Has10] and is extended by some additional attributes based on
[BCD+00], [ODF07], [DDN07] and [Sit].

The tool environment of EAST-ADL is separated into a modeling workbench and an
analysis platform. The analysis platform corresponds to plugins needed for e.g. validation
check, product derivation, model tranformations, etc.. The modeling workbench is the

64

2.4. Tool and Language Evaluation

base modeling tool representing the EAST-ADL model graphically and semantically. For
successful tool evaluation and selection it is important to be aware of mentioned aspects,
since the resulting tool or a tool environment needs to be aligned with the concepts of the
analysis platform and a modeling workbench.

In the following sections the tools, included in the evaluation and selection process,
are described and the results of the evaluation are presented. These tools are: Pa-
pyrus, MetaEdit+, pure::variants, openArchitectureWare, Enterprise Architect, Magic-
Draw UML and a prototype of the Common Variability Language (CVL). First it is
important to mention, that the tools are belonging to different areas of software devel-
opment and methodologies. MetaEdit+ belongs to the category of DSL tools (Domain
Specific Languages), openArchitectureWare is a MDA-based (Model Driven Architecture)
tool, Enterprise Architect and MagicDraw UML are tools for general purpose modeling
and finally pure::variants and CVL are tools for Product Line Engineering (PLE).

Papyrus Papyrus is an open source modeling tool which has been developed in the scope
of the ATESST project by CEA LIST6 and acts as the modeling workbench for EAST-
ADL. Basically, it corresponds to a customized Eclipse modeling platform to satisfy and
provide modeling concepts addressing embedded systems (as well as those for the auto-
motive domain). Therefore, other UMLTMprofiles like SysML, MARTE and CCL can
be applied instead of EAST-ADL [Pap]. It is now a part of EMF (Eclipse Modeling
Framework). In the following text, Papyrus will be used as synonym for Papyrus exten-
sions for EAST-ADL.

Papyrus can be used as a plugin in the Eclipse modeling platform or alternatively as
a standalone distribution [Pap]. As it has been developed in the scope of the ATESST
project, the consistency between the EAST-ADL metamodel and supported metamodel is
always up to date. This avoids interoperability issues and the need for an explicit update
of the metamodel. In other words, a tool evaluates with a metamodel together.

Modeling Workbench The support for EAST-ADL in Papyrus is just a specific pur-
pose of a tool, i.e. it’s configuration. There are two important characteristics to assume:
modeling means (e.g. diagrams) and UMLTMprofile for EAST-ADL. The first one is re-
alized by the EAST-ADL customization plug-in based on EMF. It supports the creation
of stereotyped UMLTMconstructs corresponding to the EAST-ADL profile directly in the
model [SN10].

The transformation of the EAST-ADL design architecture to AUTOSAR software compo-
nents is illustrated in Figure 2.19. This plug-in together with a transformation and some
third-party plug-ins are forming the architecture of the EAST-ADL modeling workbench.
Since Papyrus is an open source tool, it is possible to attach any other transformation
path here (e.g. EAST-ADL to Simulink R©). With a generic transformation engine ATL
(A Model Transformation Language) the architecture is transformed into an AUTOSAR
model and finally deployed on to ARTOP (AUTOSAR Tool Platform) which understands

6http://www-list.cea.fr/

65

2. Related Work

the model with respect to the AUTOSAR metamodel based on EMF. It is also important

Papyrus

UML Modeling

Tool

EAST-ADL

Modeling

AUTOSAR

Gateway

Generic

Transformation

Component

ATL

AUTOSAR

Tool

Platform

ARTOP

Model Transformation Specific Component

Figure 2.19.: EAST-ADL modeling workbench architecture, [SN10]

to mention that variability modeling aspects related to artifact level variability are a part
of the core plug-in.

Regarding standardization, the UMLTMimplementation in Papyrus fully conforms to OMG
standards: XMI, UML and Diagram Interchange standard [SN10]. From the extensibility
point of view, the plug-in provides the capability to connect a model with external tools
(see Figure 2.19) in order to use the capabilitoies of various tools.

Analysis Platform This part of the tool environment in EAST-ADL is a combination of
a set of plug-ins that can be used inside the modeling workbench for analysis purposes. In
the following, the plug-ins are described shortly and sorted by severity based on project
requirements.

Simulink Simulink plug-in provides transformation of Simulink models into EAST-ADL
and vice versa. Generally, the conversion from Simulink to EAST-ADL model is performed
by transforming a Matlab model into the intermediate, Ecore-based model representation
which is in further step with usage of ATL transformation transformed into the EAST-
ADL model. On a similar way the inverse transformation is realized.

Requirements Exchange Requirements exchange in Papyrus is performed by the RIF
Plug-in. It allows the import of requirements into an EAST-ADL model and vice versa
using the RIF (Requirements Exchange Format) standard for requirements interchange.
The basic principles of requirements import in EAST-ADL can be described as follows:
an existing EAST-ADL model file (XMI) with an RIF model (XML) are deserialized into
models conforming to their metamodel specifications. These two models are now inputs
for a M2M transformation. The result is a modified, serialized EAST-ADL model refined
through new requirements. This works similar the other way round. The main problem
here are specific requirements, which are not supported by the RIF standard (e.g. timing
requirements). Therefore the EAST-ADL model has to be adjusted before perfoming the
M2M transformation [MORST09].

AUTOSAR Gateway As mentioned before, the AUTOSAR gateway maps the design
architecture described in EAST-ADL to the corresponding AUTOSAR component archi-

66

2.4. Tool and Language Evaluation

tecture. The plug-in has been developed by CEA LIST in the scope of the EDONA project.
It performs the mapping such that each EAST-ADL elementary function corresponds to
an AUTOSAR software component (Runnable). Functions containing the functions are
mapped to independent software components containing the Runnables [MORST09].

Safety Analysis The functionality of this plug-in is similar to that of the Simulink R©
plug-in. It transforms an EAST-ADL model into an HipHOPS Ecore model conforming
to an HipHOPS metamodel. The second M2M transformation converts this HipHOPS
Ecore model into the format which can be processed by HipHOPS, a tool performing
failure analysis like FMEA [MORST09].

Timing Analysis This plug-in has also been developed by CEA LIST in the scope of the
EDONA project. It enables the perfomance of schedulability analysis on existing EAST-
ADL models i.e. by adding MARTE-based annotations to the design architecture model.
The result is a specific format conforming to analysis tools which can then be used to
present the analysis results [MORST09].

Summary Papyrus is an integrated tool environment supporting domain and application
engineering in the scope of the EAST-ADL domain. It supports an EAST-ADL domain
model fully, since it’s development is synchronized with the ATESST project. Therefore,
the feature maturity criteria is satisfied here. Characteristics like extensibility and in-
teroperability are not yet on the highest level, because some of the tools are still under
development and available as prototypes only. On the other side, open source tools, which
are easily extendable, are integrated in the release version of the environment.

A list of essential features provided by the tool as well as its drawbacks are shown in
Table 2.3.

Selection criteria and (not-)supported features

A
d

va
n
ta

g
es

Support for domain and application engineering
Product derivation
Extensibility (workbench only)
Feature modeling and configuration propagation
Variability modeling
Feature metamodel maturity
Technical environment (workbench only)

D
ra

w
b

ac
k
s Model comparison

AOB (some of the tools are still under development)

Table 2.3.: Papyrus advantages and drawbacks

MetaEdit+ MetaEdit+ is a modeling and metamodeling tool developed in the scope of
the MetaPHOR project at the University of Jyväskylä in early 1990s. Now it is a com-

67

2. Related Work

mercially distributed tool by MetaCase. It allows a definition of a new domain specific
language with a very flexible tool chain. It further provides modeling means to use an
instance of a created metamodel. A language is specified using the MetaEdit+ R© Work-
bench and a model is created in the MetaEdit R© Modeler. The tool provides functionality
to create generators for automatic code generation, to generate various reports and it al-
lows a multi-user mode [Met] and [Has10].

As mentioned above, the MetaEdit+ R© Workbench is part of the MetaEdit+ R© tool envi-
ronment and allows to create a new DSL by specifying it’s concepts, properties, rules,
symbols and generators based on the GOPPRR (graph, object, property, port, role,
relationship) metamodeling language. The language concept defines the objects, i.e. el-
ements to be used in a model, their properties (e.g. data types), relationships (e.g. in-
heritance) and constraints. Constraints are rules defining how elements can be connected
[Met].

An essential feature of the MetaEdit+ R©Workbench is the possibility to define generators
for code and documentation generation based on MERL, an internal scripting language
(MetaEdit+ R© Reporting Language).

MetaEdit+ R© provides various ways to integrate an existing model into an external tool
environment:

• SOAP interface: This interface can be used to create and modify models with a
webservice client.

• XML import/export capability: Additionally to binary import/export capcabilities,
storing and opening of models in XML format is supported. This enhances exchange-
ability with external tools.

• Command line parameters allow to start a batch job, e.g. login, load a model,
generate the code and export the model in XML format.

These characteristics make the tool highly interoperable and extensible [Met].

A distribution of MetaEdit+ R© comes with some exemplary metamodels. One of them is a
EAST-ADL metamodel. The problem is that the EAST-ADL domain model is incomplete.
Just the basic structural parts like FAA, FDA, HA and VFM are available. Another prob-
lem is the metamodel maturity. The EAST-ADL metamodel is very complex and changes,
if necessary, are difficult to handle.

Summary MetaEdit+ R© is a leading tool for domain modeling and metamodeling with
high interoperability, extensibility and flexibility characteristics. Unfortunately, there is
lack of model comparison capabilities. Anyway, it could be used for domain engineering
in EAST-ADL. The integrated EAST-ADL metamodel is not up-to-date, but a new one
can be defined. It is also not easy to reflect all details of an EAST-ADL domain model,
but at least it would be possible to create a metamodel containing the basic constructs
required for the project or for special purposes of the first prototype. Additionally, the

68

2.4. Tool and Language Evaluation

metamodel can be extended at any time.

Another important characteristic is the use of a DSL for domain modeling instead of
the FODA style used by most of the other PLE tools. Application engineering is realized
by the use of modeling means (see [Has10]). Depending on the domain, this can be a
complicated and time-consuming task. To overcome this problem, the tool could be com-
plemented by e.g. pure::variants to satisfy the requirements of the whole system. This
combination would be imaginable.

Table 2.4 shows the most important features provided by the tool as well as those that
are desirable, but missing.

Selection criteria and (not-)supported features

A
d

va
n
ta

ge
s

Technical environment
Product derivation
Extensibility
Flexibility
Variability modeling
Constraints checking and propagation

D
ra

w
b

ac
k
s Feature metamodel maturity (by specification changes, it is possible but diffi-

cult to update the whole metamodel)
Feature modeling (no FODA style) and configuration propagation
Model comparison

Table 2.4.: MetaEdit+ R© advantages and drawbacks

pure::variants Pure:variants is a commercial tool developed by pure-systems and shipped
as an Eclipse plug-in. Generally, it supports domain and application engineering. Further
does it separate both into a problem and a solution space. The product line architecture
in this case would be a part of the solution space, i.e. it would be stored in form of a
family model (representation of solution space). A domain may consists of several family
models. Depending on the number of solutions (architecture, source code, tests, etc.).
The family model acts as a kind of repository containing the artifacts that can be used to
derive products with respect to a defined specification. The specification is described in
the problem space. The generic specification (containing commonalities and variabilities)
is represented in a feature model. Concrete variants are specified in a variant description
model (VDM) which will be derived from the feature model. The VDM in combination
with the family models result in a so called variant result model (VRM). In this model
all the variability is resolved. It serves as the input for the product instantiation [ODF07]
and [Lei09].

All models are stored in XML format and have the same structure. The basic construct is
the element. An element can represent e.g. an elementary function in design architecture
or the feature related to this function. To describe relations among the elements as well

69

2. Related Work

as restrictions defining the boundaries of some values, pure:variants provides restrictions,
relations and attributes that can be added to an element. In the solution space (in the
family models) there is a list of possible artifacts that an element can address, e.g. java
file, another feature model, etc. These artifacts define the granularity of variants that can
be provided by a family model [Pura].

There is also a connector for Simulink R© available. One part of the solution is real-
ized in Simulink R©. There a blocks, for example VAR Constant, defined to realize variant
management. The real connector is realized as a pure:variants extension (Eclipse plugin).
To use this plugin, a Matlab server instance has to be started to listen for requests from
pure:variants. These requests are signals for a direct product derivation. In other words,
these signals are sent to pure::variants blocks inside of a Simulink R© model to change their
parameters in order to derive a specific product. The result can be simulated at run-time.
In this way the systematic reuse of Simulink R© models and their constructs can be realized
[Purb].

The tool has a very rich set of features that on one side allow to access and to control the
models from external tools through high extension and data exchange capabilities and on
the another side provides essential functionality related to product lines, i.e. model com-
parison, constraints checking and propagation, feature modeling, etc. [Purb] and [Lei09].

Summary Table 2.5 shows the features provided by the tool as well as drawbacks de-
scribing features that are essential for the project, but are not supported by pure:variants.
To sum it up, pure::variants is a tool with a large arrangement of features related to
product lines, but for EAST-ADL it is suggestive to use it only for the application engi-
neering process. The support for domain engineering in EAST-ADL requires a model that
corresponds to a very complicated metamodel.

Selection criteria and (not-)supported features

A
d

va
n
ta

ge
s Feature modeling

Technical environment
Product derivation
Extensibility
Model comparison
Constraints checking and propagation

D
ra

w
b

ac
k
s Domain engineering support for EAST-ADL

Support for multi-level feature tree and configuration propagation

Table 2.5.: pure::variants advantages and drawbacks

openArchitectureWare openArchitectureWare (oAW) is an open source generator frame-
work addressing model driven software development (MDD). It’s currently developed in
the scope of the EMF project (Eclipse Modeling Framework). The core of the framework

70

2.4. Tool and Language Evaluation

is the workflow engine which allows the definition of generator workflows based on trans-
formations (e.g. M2M). It consists of three essential activities: definition of a metamodel,
definition of the template and definition of the workflow. A metamodel corresponds to
an Ecore metamodel based on EMOF (Essential Meta-Object Facility) and is strongly
coupled with EMF. Since modeling with the standard Ecore editor is not comfortable,
any other UML modeling tool, e.g. MagicDrawTM, can be used. The created UML meta-
model can be transformed into the Ecore format using the UML2Ecore Utility7 for further
processing (e.g. code generation). This is useful especially for more sophisticated meta-
models. A template is a generator-specific feature which defines the rules for the code
generation, whereas workflow is a kind of a batch job defining the sequence of executions
in the code generation process (e.g. there could be more than one instance of a meta-
model). Another way to define a metamodel is using the XText grammar language which
additionally specifies the syntax for a DSL. Thus, the code can be generated from this
textual representation with the template lanugage XPand [Oaw].

oAW supports product lines analogous to the way MetaEdit+ R© does. The idea is to
read the configuration containing a list of included and excluded features. The whole
feature management, i.e. constraints between features and complex expressions must be
managed by an external tool like for example pure::variants. To keep the consistency be-
tween the features after applying the new configuration, oAW provides a so called XVar
tool which is aware of relations within a model. It is also possible to define the whole
model as a single variant by using the oAW aspect weaver for models (XWave).

It is also important to mention that the Ecore format of an EAST-ADL domain model is
available in the distribution of a Papyrus tool. This allows to import a metamodel directly
into an oAW tool environment without any adaptions and without the definition of a new
metamodel. In this way, it would be possible to define the grammar using the language
capabilities to describe the model instantiation and to control it from an external tool. For
instance, a tool for feature modeling management generates the specification correspond-
ing to defined language which can be used by XPand to instantiate a model. This would
be some kind of product derivation from the side of a feature modeling tool, which also
must understand the syntax of that language. Thus, this solution would be imaginable.

Summary An oAW domain specific model conforms to the Ecore metamodel which is
used in a broad community and can be transformed easily into other formats. For in-
stance, the EMFText tool allows the textual representation of the Ecore models by using
the transformation in both directions. Additionally, the model comparison is supported
here.

The time effort to reflect an EAST-ADL domain model in oAW would be approximately
the same as in MetaEdit+ R© . Contrary to MetaEdit+ R© , oAW does not provide ad-
ditional functionality like a SOAP interface for model manipulation from outside, report
generators, etc. To solve these interoperability issues the tool could be extended. This
seems not to be a serious problem since the tool is open source. Similar to MetaEdit+ R©

7A part of an oAW tool environment

71

2. Related Work

feature modeling in FODA style is not possible. Table 2.6 shows the most important
characteristics regarding the selection criterias.

Selection criteria and (not-)supported features

A
d

va
n
ta

ge
s Technical environment

Extensibility
Flexibility
AOB (the tool is open source)
Feature metamodel maturity (exactly like in Papyrus)
Constraints checking and propagation

D
ra

w
b

a
ck

s

Feature modeling (in FODA style) and configuration propagation

Table 2.6.: oAW advantages and drawbacks

Enterprise Architect Enterprise ArchitectTM from Sparx Systems is an commercial UML
modeling tool addressing MDA, requirements and business process modeling as well as
other more general modeling areas [Eas]. With a sophisticated graphical editor it allows
to define a new DSL based on an UML profile or to use the existing one conforming to
various versions of XMI format. Furthermore, features like generation of reports, compar-
ing models and extensibility through add-ins are also provided by the tool. It is important
to mention that the model comparison doesn’t work for newer versions of XMI.

The multi-user mode is elaborated in a way that Enterprise ArchitectTM acts as a reposi-
tory providing the models to its clients. Clients can either be instances of the Eclipse or
Visual Studio modeling framework. For this purpose the plug-ins for Eclipse and Visual
Studio must be installed. Additionaly, the user working on Enterprise ArchitectTM can
trace information about connected clients [Eas].

During the evaluation process each of the tools is inspected on ability to support an
EAST-ADL domain model. Enterprise ArchitectTM provides functionality to import mod-
els described in various versions of XMI. But since there are various formats of the same
version (e.g. Eclipse XMI 2.1 for UML 2.0, EA XMI 2.1, XMI 2.1 for UML2.0 MOF, etc.)
there are incompatibility issues that result with the break-up of the import process. There
is no way to log the error and to locate the problem in order to fix it. To overcome the
problem, an alternative way would be the creation of a new metamodel with respect to
an EAST-ADL domain model.

Summary Enterprise ArchitectTM provides a powerful graphical support for modeling,
the ability for report generation, extension with DLL add-ins and interoperability through
model export/import functionality. The problem is support for EAST-ADL domain model
already available in XMI 2.1 version for UML2.0. The implementation of the metamodel

72

2.4. Tool and Language Evaluation

would be very time-consuming. Other tools support the EAST-ADL domain model di-
rectly (see 2.4.2.2).

MagicDraw UML MagicDraw is also a commercial UML modeling tool developed by
No Magic for MDD, requirements modeling and other areas which are also covered by
Enterprise Architect (EA). It supports M2M transformations, model validation, analy-
sis functionality like model comparison, consistency validation and rich report generation
[Mag].

The essential advantage to EA is the support of the Ecore format. It is not possible
to import the Ecore model directly, but a tool can export any other supported model
format to this one. A way to import a model directly is to perform the pre-conversion
in EMOF, which unfortunately leads to losses in the model. Thus, there is also an inte-
gration capability which allows to work with models within the most popular MDA tools
like oAW. This allows the conversions between UML and Ecore as well as transformations
and generations provided by oAW [Mag]. An excerpt of an EAST-ADL domain model
represented by MagicDraw is depicted on Figure 2.20. Concerning interoperability and

Figure 2.20.: EAST-ADL package as a part of UML profile extension imported in
MagicDraw

extensibility, the tool is able to export models in various formats. More important, it
allows the performance of model manipulations and transformations from external scripts
written in script languages like Groovy, JRubby, Javascript, etc. Furthermore, distributed
work like in EA is also supported here [Mag].

Summary Additionally to the features provided by EA, MagicDraw supports the ex-
change of Ecore (meta-) models and integration with oAW and other more generalized
modeling tools.

73

2. Related Work

Common Variability Language CVL from SINTEF and University of Oslo is an vari-
ability modeling tool developed in the scope of the MoSiS project. Its purpose is the
description of variability modeling means for frameworks, union of systems and domain
specific languages in a common way with respect to the OMG standard. For now, it is
available as a prototype only. The most important goals realized by CVL are:

• generic way to describe variability,

• intuitive way to configure products on a higher level of abstraction and

• automatic product derivation

CVL expresses the variability of any DSL conforming to the MOF or Ecore format as il-
lustrated in Figure 2.21. On the right side of the figure is a model (e.g. Ecore EAST-ADL

MOF

(Ecore)

M
et

am
o

d
el

s

CVL DSL

CVL

Model
Domain

Model

M
o

d
el

s

conforms to conforms to

conforms to conforms to

variant management

Figure 2.21.: Interface connecting CVL and DSL models, [Cvl]

domain model) which represents on one side a base model addressing the PL structure
(FAA, FDA, HA and IA) and on other side a library model containing the software arti-
facts to be reused or replaced inside of a base model. Variability modeling means including
feature models and artifact level variability are reflected in a CVL model conforming to
an Ecore CVL metamodel. This approach allows to integrate the variability modeling in
any model corresponding to Ecore or MOF without any dependency on an DSL tool [Cvl].

Generally, CVL distinguishes user-centric layer variability, which is similar to feature mod-
els on the VF level in EAST-ADL, and product-realization variability, which is analogous
to artifact variability in EAST-ADL. Both variability means are modeled in separated
editors provided by the plug-in. Modeling of user-centric layer variability is similar to the
cardinality based notation of feature modeling as provided by EAST-ADL analysis tools.
More interesting are technical aspects of product-realization variability. The main prim-
itive used in product-realization level is the fragment substitution. To better understand
the following explanation, it is advisable to see the Figure 2.22. The fragment substitution
can be compared to variation points in the orthogonal variability model. The main idea
is to replace a part of a model with another part. The degree of granularity may vary

74

2.4. Tool and Language Evaluation

from models to elementary parts of a model (e.g. variables, connectors, etc.). Base and
library models are parts of a domain model described in a DSL. The first step is to define
which parts of a base model are variation points or parts for replacement by adding the
replacement fragment. Afterwards, the replacement fragment from a library model should

e:E a1:A

c:C

b:B

d1:D

i1:I
FrP2

FrP1

ToP

Base Model

k:K g:G

d2:D

i2:I
FrR2

FrR1

ToR

Model Library

a2:A

f:F h:H

e:E g:G

d1:D

i1:I
FrR2

FrR1

ToR

Resolved Model

a2:A

f:F h:H

Fragment Substitution

Figure 2.22.: Fragment substitution in CVL, [Cvl]

be created. This is a part of a model from the library which should replace the placement
fragment. It is also important to be aware of the number, direction and types of connectors
between the model and the replacement fragment (see Figure 2.22). At the end, the fine
granular activities like variables replacement (for different variants) and fragment bindings
need to be performed.

Product derivation is an automated process in CVL performed using the model trans-
formation which additionally includes a resolution model which can be automatically gen-
erated by selecting the features from the user-centric layer. The result is a variability-free
Ecore model.

Summary As mentioned above, an approach realized by CVL allows to integrate the
variability modeling means in any DSL conforming to the Ecore format. Since an Ecore
domain model of EAST-ADL is also available, it is imaginable to realize variant manage-
ment in CVL. The remaining problem is that the whole variant management is already
reflected by the EAST-ADL metamodel and any tool which supports this model is also
able to model variability. The only missing feature is the product derivation, which is also
missing in this approach.

Tools Excluded from Evaluation Process The tools included in the evaluation process
and described above are just a subset of the tools addressing PL, MDA/MDD or DSL.

75

2. Related Work

This subset is pre-reduced based on the benefit analysis described in the two master
thesis of Andrea Leitner [Lei09] and Andreas Haselsberger [Has10]. Tools from [Lei09]
and [Has10] with a low weight distribution regarding domain and application engineering
are excluded from the evaluation process (e.g. XFeature, DSL tools for VisualStudio, etc.).

For some tools an evaluation is not possible. They are also excluded. These tools are, for
example, SystemWeaver and Vehicle System Architect. They are commercial and are not
available in demo version at least.

2.4.2.3. Results of Tool Evaluation

Table 2.7 shows the evaluation results for the tools described in Section 2.4.2.2. The best
matching tool is Papyrus followed by pure::variants, CVL and MetaEdit+ R© . This leads
to the conclusion that criteria with actual weight distribution are more specialized for
SPLE tools. Even the most weighted criteria are related to domain modeling, the features
belonging to technical criteria have a worse ranking in metamodeling tools and degrade
their results. Therefore, it is difficult to compare tools addressing different approaches.
Concerning product line engineering, Papyrus seems to be the most adequate candidate
since it provides the means for both, application and domain engineering management.
Assuming that the criteria addressing application engineering are excluded from the evalu-
ation process, or in other words, without the use of CVM Plug-in for Papyrus, the situation
would look different. Pure::variants matches best for most of the evaluated criteria. The
major drawback is that there is no direct support for the EAST-ADL metamodel. The
differences of the results of the best suited tools are minimal. The differences from Pa-
pyrus to the results of pure::variants, CVM and MetaEdit+ R© are approximately 0,13%,
13,76% and 14,16% respectively. Especially a difference of 0,13% requires a more detailed
evaluation of the two tools.

To still have the ability to compare the results with approaches described in [Lei09] and
[Has10] based on criteria from Table 2.7, the second stage of the evaluation is derived from
criteria described below. The idea is to perform the evaluation for criteria addressing the
application and domain engineering separately in such a way that in each evaluation step
only the tools corresponding to the proper engineering process are evaluated. The weights
are calculated based on existing weight distribution from Table 2.7. First of all, the list of
criteria is separated into three criteria groups: application engineering, domain engineer-
ing and criteria belonging to both engineering processes. Criteria addressing application
engineering are product derivation and application engineering management, whereby at-
tributes management, domain engineering management, model comparison, feature meta-
model maturity, repository and impact analysis are related to domain engineering. For
instance, to calculate the domain engineering weight value for Papyrus, all domain engi-
neering criteria are multiplied with the corresponding weight factor and summed up. The
results are shown in Table 2.8.

Now, the situation is much more better. Without adjusting the criteria and weight distri-
bution, the evaluation could be perfomed giving satisfying results. The best matching tool
for domain engineering is Papyrus followed by pure::variants and oAW. On the other side,

76

2.5. Hypothesis

pure::variants leads ahead of Papyrus CVM and CVL. To sum it up, the evaluation pro-
cess results with an integrated tool environment combined by Papyrus and pure::variants
complementing the functionality for application and domain engineering.

2.5. Hypothesis

From now, topics handled in the related work should give a clear direction towards design
and implementation of the proof-of-concept. The prototype described in the following
sections should provide a variant management and reuse strategy for architectural core
assets. As an approach for handling this, the SPLE has been chosen. This implies that
commonalities and variabilities in the platform are created in the scope of the domain en-
gineering process, which in addition could be (partly-) automated. The systematic reuse of
these core assets is part of the application engineering process which is partly8 supported
by an tool environment consisting of pure::variants and Papyrus. This combination is a
result of the tool evaluation (see Section 2.4.2). Papyrus is, in addition, used to support
the domain engineering process.

In Section 2.2 several ADLs are proposed and compared for their application in the au-
tomotive domain (see Table 2.2). The evaluation resulted with EAST-ADL which should
provide a formal description of the software architecture. That means that all domain arte-
facts are in principle instances of EAST-ADL meta-classes, i.e. they form the platform.
Since the UML profile of EAST-ADL already exists, a model of the software architecture
is fully supported by Papyrus.

The last open discussion issue is the generation process of the software architecture. At
this moment it is not defined how the control software is described, but somehow it should
be reflected by its architecture. Therefore, it is to expect that the domain engineering
process involves at least one model transformation. For this purpose, several approaches
are discussed in Section 2.3.

To sum it up, the main challenge in this proof-of-concept is to extract the structural
information from the control software and to build its architecture. To do this, a formal
description of the control software has to be defined. One option for this description is
AUTOSAR. Further, in correspondence to the captured variable parts of the control soft-
ware, variability has to be generated. In addition, concerning the tool environment the
possible alignment options between pure::variants and Papyrus have to be investigated.
The aim is to support the whole development process in an integrated tool environment.

8Support for Ecore-based domain is investigated in later sections.

77

2. Related Work

T
o
ol

s

P
ap

y
ru

s

M
et

a
E

d
it

+

p
u

re
::

va
ri

an
ts

op
en

A
rc

h
it

ec
tu

re
W

ar
e

E
n
te

rp
ri

se
A

rc
h

it
ec

t

M
ag

ic
D

ra
w

C
V

L

Criteria Weight Ranking

Attributes management 2 8 2 5 0 4 4 0

Feature / variability modeling 10 10 7 10 0 0 0 10

Domain engineering management 10 10 8 2 10 6 6 8

Application engineering management 7 10 6 10 4 3 3 10

Product derivation 8 9 5 10 4 1 1 10

Constraints checking and propagation 5 5 9 10 10 9 9 4

Model comparison 8 0 0 10 9 10 10 0

Feature metamodel maturity 7 10 4 2 10 8 10 10

Repository 3 6 6 6 6 4 4 4

Impact analysis 3 7 9 4 6 6 6 4

Reporting 4 4 9 8 1 10 10 1

Access mode 1 3 9 2 3 10 10 3

Technical environment 6 8 9 8 10 8 8 10

Usability 4 8 7 6 2 8 8 7

Automatic filters 1 0 6 5 0 5 5 0

Tool configuration 3 6 9 7 1 5 5 1

Extensibility 9 9 7 10 10 6 6 8

Flexibility 5 9 10 10 10 7 7 8

AOB 4 7 7 9 10 7 7 1

Summary

PLE 600 471 327 442 370 290 324 432

Management 70 37 63 44 22 58 58 16

Technology 330 255 265 276 254 227 227 210

Overall summary 1000 763 655 762 646 575 589 658

Table 2.7.: Results of tool evaluation

78

2.5. Hypothesis

T
o
ol

s

P
ap

y
ru

s
(i

n
cl

.
C

V
M

)

M
et

aE
d

it
+

p
u

re
::

va
ri

an
ts

op
en

A
rc

h
it

ec
tu

re
W

ar
e

E
n
te

rp
ri

se
A

rc
h

it
ec

t

M
ag

ic
D

ra
w

C
V

L

Process Max. Ranking

Domain engineering 850 621 573 612 586 546 560 508

Application engineering 700 559 525 620 386 359 359 496

Table 2.8.: Results of tool evaluation derived from Table 2.7

79

3. Design of the HybConS Architecture

This section deals with the technical realization of the HybConS architecture which is
conceptually described in Section 1.1.1. At this point, it is necessary to map the con-
cept to the target architecture. As mentioned before, software product lines are applied
here to support the systematic reuse and variant management of core assets. Thus, the
representation of the underlying domain reflected in SPLE framework (see Figure 2.2) is
depicted on Figure 3.1. Here it is important to mention, that not all parts of domain and

HybConS
Repository

Implementation
(AUTOSAR)

SW Architecture
(EAST-ADL)

Analysis
(EAST-ADL)

Core Asset
Splitter

Product specific artifacts (variabilities)
Common artifacts (commonalities)

D
o

m
ai

n
 e

n
gi

n
ee

ri
n

g Not classified artifacts from the product scope

Implementation
(AUTOSAR)

SW Architecture
(EAST-ADL)

Analysis
(EAST-ADL)

A
p

p
lic

at
io

n
 e

n
gi

n
ee

ri
n

g

Trace links Trace links Product
Configurator

Trace links Trace links

Generate

C
o

n
fi

gu
ra

ti
o

n

Vehicle Level Feature ModelTechnical Feature ModelTechnical Feature Model

A
rt

if
ac

ts

Different core assets

Figure 3.1.: HybConS processes reflected in SPLE framework

application scope are present (focus on architecture and implementation) in this picture.
For now, they don’t have a big influence on the architecture module. Another anomaly is
the reversed order of core assets generation. From the fact, that the input for the platform
(reusable core assets, see Section 2.1) generation process is a software or more precise the
implementation assets, the generation is reversed, i.e. from implementation towards re-
quirements.

The upper part of the framework is a domain engineering process which creates com-
mon and variable assets within separated sub-processes and provides everything required
for their systematic reuse (see Section 2.1.1). For instance, one sub-process is responsible
for maintenance of architectural assets only (upper red marked block in Figure 3.1).

81

3. Design of the HybConS Architecture

The source of these assets is the so called HybConS Repository. It is a collection of
the control software components for hybrid vehicles described in Simulink. There are
no commonalities and variabilites present, but just models with different realizations of
the same “thing”. The “thing” can be seen as any core asset in the system which can vary.

For a specified range of products the separation of assets into common and variable parts
is performed. This is one of the most important tasks for building the domain. This task
is perfomed by the Core Assets Splitter. Ideally, this process is (partly-) automated, but
it is still an open issue for future work. Furthermore, these variable and common parts are
forwarded to the implementation module. The responsibility of this process is to map the
incoming groups of core assets into the target model representation (formal description
of implementation core assets) with the ability to describe variable core assets within the
same model. Additionally, the functionality for variant handling and systematic reuse of
these assets is provided. From now, all relevant steps in the platform generation process
are completed.

In the next step of domain pipe (implementation, architecture and analysis), the structural
information is forwarded and the architecture is created. Like in implementation phase,
there is a target model representation conforming to the software architecture meta mod-
els. It should also be able to manage variants in the similar way as in the previous phase.
This is important for handling traces between different variability models.

The developer performing the system configuration ideally works with the abstract repre-
sentation of the system. This abstract representation identifies each variable asset within
the architecture by propagating the configuration down to the FDA abstraction level. The
next issue is to derive the abstract functional model from the architecture and to describe
it with assets in the analysis block. Currently, this information is not explicit in the Hy-
bConS project, but it is probably the only way to get the feature model on the vehicle
level. The importance of this feature model is reflected in the application engineering
process. To configure the system, the product specification as well as core assets from the
domain are required. The first corresponds to the vehicle feature model referring at least
to the abstract functional system representation, i.e. analysis block. “At least” because
features should describe what the system has, i.e. high level abstraction, and not design
or implementation details. They are typically derived from requirements, and not from
abstract functional model. But this feature model in combination with existing system
requirements allows to adapt the vehicle feature model enough to be easily understandable
for the system configuration. Here it is also important to mention that the existence of
a technical feature model is not obligatory. There must be at least one technical feature
model, referring to core assets in all abstraction layers which is configured by the vehicle
level feature model as described in Section 2.2.2.5. If there are many feature models, e.g.
one for each layer, the independence of models can be achieved and they can be developed
separately from the whole system. This option is rational if the system is expecting a big
amount of features (see Section 2.2.2.5).

The flow in the application engineering process is not reversed. Since domain artifacts

82

3.1. Requirements

are available, this process can be performed as described in [ODF07].

The main goal of the domain sub-process for the architecture module is the generation of
the product line architecture including the functionality for systematic reuse and variant
management of architectural core assets. This involves also the interoperability with the
implementation and analysis module. The following sections describe how this is realized.

3.1. Requirements

Regarding the process description given in the last section, it is now necessary to extract
the most crucial technical requirements addressed to the architecture module. They can
be defined by decomposing the project goals related to the HybConS architecture and
analysing dependencies to other modules within the framework. The following content is
related to Figure 3.1.

Development of domain sub-processes should have a predefined order, i.e. before starting
the implementation part it should be clear what the Core Assets Splitter has to provide.
It is difficult mainly in design phase of remaining modules in the pipe to decide how the
Core Assets Splitter provides its goods. It gets more difficult if the development of these
sub-processes is not synchronized. Namely, specifying the “how” in the “foreign” module
leads to obligatory appliance of this decision in later development of the module. This
may be a critical task, since the time investment in related topics is typically less than in
research heap addressing the target module. These considerations are important, because
the development of solution for systematic reuse and variant handling starts with the ar-
chitecture. Until now it is known that the control software provided by the project partner
is realized in Simulink and that the target architecture should be described in EAST-ADL.

Starting with the interoperability issues, the paths from and to the neighboring mod-
ules need to be considered. Namely, the responsibility of the implementation block from
the architectural point of view is to provide the implementation assets. These assets need
to be described somehow or at least the interface to the implementation block should be
specified by some (standardized) template for the control software. Since it is not yet
specified, one of the first steps in design is the definition of the software component de-
scription. The main characteristics of such a template are standardization and domain
specificity. The later means, the templates describing software in automotive domain have
a higher priority.

With the definition of the template for software component description the conflict with
the implementation block is solved. Afterwards, the system should provide the mapping,
i.e. detailed specification and realization which describes how to map the implementation
core assets to the architecture in EAST-ADL. This can be decomposed into the analysis
of both metamodels in order to extract candidate assets and finding the analogy between
different model representations.

The next, and most scientific part of the project is to provide the variant management

83

3. Design of the HybConS Architecture

and systematic reuse of generated architectural core assets by following the methodology
described in [ODF07]. The existing mechanism for variant handling in EAST-ADL should
be exploited and compared for conformance to SPLE. The language therefore has to be
evaluated for applicability in this project.

The last coarse grained requirement is provision of the interface to the analysis block
in order to allow it to realize the abstract functional model from the architecture. This
can be seen as an implicit task, but is also not unimportant, because this functional model
is a key for the system configuration.

3.2. Scope

Before starting with how to realize requirements, it is advisable to define the product
boundaries in means of product features. These boundaries define the product scope.

It is already known that the core assets of the implementation block are being mapped
to the architecture described by EAST-ADL, but not which part of EAST-ADL. Namely,
as elaborately described in Section 2.2.2.5, the engineering information is distributed over
five abstraction layers. One of these layers is the design layer which is composed of the
architectures describing the software (FDA), the middleware (MDA) and the hardware
(HDA). For this project, only the architecture of the control software is generated. Hence,
the elements of the FDA are used to build this architecture.

Another important aspect of the scope is to clarify what is supported by applied vari-
ant management with respect to granularity, binding times, feature models etc. Typically,
by documenting variability some questions like what varies, why it varies, how it varies,
for whom it is documented etc. are answered. This is especially essential if an already
existing variant management mechanism is used (e.g. EAST-ADL variability). Therefore,
this mechanism has to be inspected for these features. This leads to more detailed analysis
and therefore it is documented in the next sections.

3.3. Domain Engineering

Further decomposition of requirements into use cases, user stories, etc. is not necessary,
since the development is not team based for this project.

The purpose of the generator for the architectural block from Figure 3.1 is to build the ref-
erence architecture and the logic for the system configuration. In this section, the software
design for this generator is explained in detail.

3.3.1. Variability Documentation

Documenting variability (see [PBvdL05]) involves a short analysis of assets of the EAST-
ADL metamodel to answer the questions mentioned in the previous section. The first
point is to define what can vary from the range of core assets in FDA. In EAST-ADL one

84

3.3. Domain Engineering

has to distinguish between asset types and prototypes (cf. component reuse in Section
2.2.2.3). Principally it should be possible to define each kind of prototype as variable
element. Anyway, there is a predefined set of prototypes in FDA that can vary [Con10a]:

• FunctionPrototype

• FunctionPort

• FunctionConnector

• HardwareComponentPrototype

• HardwarePort

• ClampConnector

The combination of these prototypes allows to define variability on various levels of gran-
ularity. In the proof of concept the subsystems, software components and their specializa-
tions, i.e. ports and connectors, are included.

The input to the sub-process for the architecture module is an implementation model
containing common and variable assets. In other words, the information to build the ar-
chitecture is extracted from legacy code. How these variable assets are extracted from
the implementation depends on the product scope and the mechanism hidden behind the
Core Assets Splitter. So, for realization of this sub-process it is not important why these
prototypes are varying. They are all internal variants. Their abstract representation is the
result of the sub-process for creation of the analysis block. Typically, the whole process is
reversed.

In the literature [ODF07] the term “artefact dependencies” is used to answer the ques-
tion “how does it vary”. This is typically solved by creating traces between variants and
domain elements. In EAST-ADL, or more precisely in the variant management part of
the metamodel these traces are twofold. On the one hand domain assets are traced to
variation points on the artifact level. This is known as artifact level variability. Different
options of these variation points are realized by special metamodel elements named vari-
able elements with direct traces to domain assets. On the other hand, domain assets are
traced to the features and feature models. These feature models are also orthogonal to the
assets model and have just references to them. Feature models are hierarchically ordered.
The root feature model is called technical feature model. It is configured by the single
vehicle feature model which belongs to the group of variability on the vehicle level. The
combination of both levels of variability allows to define the product line and to configure
the system in EAST-ADL.

Since the assets are captured from the implementation block, there is no ownership in-
formation. Therefore, all variants are set to be internal, i.e. design artifact rationale in
EAST-ADL. This would mean, that the customer is not able to configure the red marked
feature model from Figure 3.1. There is a need for further abstraction of the model. The
benefit is that the abstracted feature model does not need any logic for configuration,
because all variability logic already exists in the architecture. Therefore, just the traces
to the architectural feature model are necessary.

85

3. Design of the HybConS Architecture

3.3.1.1. Variability in Design Assets

The architecture being generated here is in the literature [ODF07] known as reference ar-
chitecture. Variation points within this architecture can adopt various forms of structural
assets. As mentioned in Section 3.3.1 there are several granularity levels for structural
variants. They are in [ODF07] distribued over three views of the architecture: devel-
opment, process and code view. It is also important to see, which parts of these views
are supported in the proof of concept, even if the topic is not explicitly referred to the
automotive domain.

Development View This view on the reference architecture, as mentioned in Section
2.1.1.2, describes the variation points as sub-systems, components and configurations. For
subsystems, this would mean to describe the system as relationships among EAST-ADL
composite functions. Typically, most of the external features in the system are defined
exactly here. A similar logic is applied to the components with the difference that ele-
mentary functions instead of composites are used. Furthermore, elementary functions are
also not containers for connectors, i.e. relationships among components.

The situation with configurations is a little bit different. Namely, to provide variable
configurations for components the injection of various realizations of component plug-ins
is required. Since these plug-ins are in the target domain not required, there is no need
to detect such constructs.

Process View Internal behavior of application software is also supported by the meta-
model and various realisations of processes, i.e. different assignment options of threads
to components are possible. But, since only structural information is captured from the
implementation block, this feature is not necessarily part of the first prototype.

Code View This view deals with the distribution of the source code and executables over
ECUs (cf. deployment diagram). Like in the previous view it is possible to capture the
implementation of behavior. However, in the first prototype this feature is not indended
to be present, because the mapping of software components to ECUs is out of focus for
this work.

3.3.1.2. Binding Times

Binding times in EAST-ADL are introduced in Section 2.2.2.5. They cover the variants
in all abstraction levels. There is a need to define a subset of binding times being used in
the proof of concept, i.e. a binding time that address the architectural core assets only.
Because there are only subsystems and components planed in this prototype, the system
design time is required. On demand, other binding times can be supported in a similar
way.

3.3.2. Product Management

In the product management the scope of the product line is defined and stored into the
HybConS Repository. This is typically done manually by developers and project partners.

86

3.3. Domain Engineering

For other domain sub-processes there is no further work in this area, but it is important
to know that two groups of assets (commonalities and variabilities) are a part of already
predefined product scope.

3.3.3. Software Component Description

Before defining main design decisions for the domain engineering process, it is important
to find an adequate description for implementation core assets. They are a basis for the
software architecture in the HybConS. Moreover, an adequate mapping between this de-
scription and FDA has to be specified.

The first requirement related to domain engineering is the definition of the specification
for description of software components (see Section 3.1). Thus, there are two options to
solve this. On the one hand, the template can be defined in the scope of this project, on
the other hand an existing template for the software component description can be used.
Independent from the solution, at this point it is necessary to introduce domain assets
from the FDA to find out what should be provided by this template.

The application software on design level in FDA is described by concrete functions called
design function types. They capture the functionality provided by a particular software
component. Because the application software is not just a collection of device indepen-
dent components, there are some specializations of design function types: basic software
function type, local device manager and hardware function type. The first specialization
describes an abstraction of middleware, i.e. low level I/O API. The second, i.e. local
device manager is usually used for translation of e.g. electrical signals into logical, under-
standable signals for application software. For example, if the temperature captured by
the sensor is delivered to the microcontroller’s I/O as a voltage, the local device manager
is used to translate the voltage to the temperature and to deliver it to the application
software component. For value calculation it uses the characteristics of the underlying
hardware. The last specialization, i.e. hardware function type, can be seen as a transfer
function of the real hardware. For instance, if the temperature sensor is giving the mea-
sured temperature as a voltage on its output, the hardware function type would describe
the transfer function defining the transformation from the temperature to the voltage. All
design function types a possible interaction is shown in Figure 3.2. The example shows the
full path from the sensor to the actuator on design level interacting with the environment
on the left side. Assuming that the sensor is capturing the temperature, the hardware
function type SensorF1 has to describe the transformation of the temperature into the
voltage and to deliver the value to the basic software type BSWSensor1. It just forwards
the value to the local device manager LDMSensorF1. From this point, the temperature is
converted from the voltage to the real value and delivered to the application component
F1. In a similar way, the information is propagated to the actuator.

The instances of design function types are communicating to each other by using three
kinds of ports: function flow ports, client-server ports and function power ports. The
function flow port is intended for data-oriented transmission. It contains a buffer that
can be always overridden if new data arrives. The client-server port is used usually when

87

3. Design of the HybConS Architecture

sending control signals. It follows the client-server communication pattern, i.e. the client
port can be connected to one server port only. The last candidate of ports is used to
describe physical interactions between environment and the FDA. Therefore, it can be
excluded from the consideration in this project.

En
vi

ro
n

m
en

t

BSWActuatorF1ActuatorF1 LDMActuatorF1

BSWSensorF1SensorF1 LDMSensorF1

F1

SF1In SF1Out BSWF1In BSWF1Out LDMF1In LDMF1Out

LDMF1Out LDMF1In

F1In F1Out

BSWF1Out BSWF1InAF1Out AF1In

Functional Design Architecture

Figure 3.2.: EAST-ADL functions interaction on design level

Ports are transmitting data which is typed by either data types or interfaces. The first
group is used by function flow and power ports, while the interfaces are a part of the client-
server ports. They represent an abstract functionality behind the component by defining
a set of provided operations. Similar to this pattern, a data transmitted between the flow
and power ports is specified by a data type generalization named EADataType. It sup-
ports the data representation as primitive types (EAFloat, EAString, etc.) and complex,
i.e. composite data types. Additionally, a metamodel defines the contraints that must be
respected in order to participate in the communication, especially if communicating ports
are described by different interfaces or data types (see [Con10a]).

Furthermore, EAST-ADL provides different connector types for connecting ports. For
FDA only one type is used and therefore there is no additional overhead for the mapping
strategy to be implemented. Table 3.1 shows an excerpt of elements of the FDA captured
in this short analysis.

It is important to mention that the properties of elements are also a part of the map-
ping process and they should not be ignored. Thus, detailed results of analysis can be
found in Section A.

With this information it is now possible to create the template for describing the im-
plementation assets and define the mapping to the FDA in EAST-ADL. It would be also
imaginable to extract a part of the metamodel related to the FDA and take it as template
metamodel, but the implementation block shown in Figure 3.1 would be EAST-ADL de-
pendent. A better solution is to define an XML schema conforming to the elements from
Table 3.1 and to the assets from the implementation block. In this way, necessary adap-
tions can be easily performed.

Different ways for describing components are summarized in Section 2.2.2. Before mak-
ing a final decision existing techniques for component specification should be analysed.

88

3.3. Domain Engineering

Design function types

Name Description

Design function type Composite or elementary function of the appli-
cation software

Hardware function type Transfer function of the hardware

Basic software function type Middleware functionality

Local device manager Functional description of signal calibration be-
tween BSW and the application software com-
ponent

Ports

Function flow port Port for data-oriented flow

Function client server port Port for client-server communication

Interfaces

EA datatype Data type used by flow ports to represent trans-
mission data

Function client server interface Set of operations provided by the client-server
port

Connectors

Function connector Connector interconnecting two ports

Instances

Design function prototype Instance (prototype) of design function types

Table 3.1.: EAST-ADL2 elements used in FDA

Typically, the component description is loosely coupled with the architecture description.
According to [SAB09] the architecture can be described either by using object-oriented no-
tations (OBSA, Object-Based Software Architecture) or domain specific notations (CBSA,
Component-Based Software Architecture). The component description template here is
defined as an hybrid model (COSA, Component-Object-based Software Architecture) by
combining both techniques: components, connectors and configurations are represented
as classes (first and their instances can be used to build the model. Other constructs like
interfaces, ports and properties are also covered by the metamodel. The realization of this
metamodel is UML based. Thus, the consequences for applying this solution in HybConS
would be almost the same as an option where an excerpt of the EAST-ADL metamodel
addressing FDA is used as a template.

In [NXX10] and [LGLH08] a solution to describe software components by using an on-
tology based on a 3C1 model is proposed. The goal is to improve reusability of software
components. Typically, the usage of such semantic-based solutions in a domain with com-
plex relationships among participants is advisable. Its main advantage is the navigation
through the network in a domain with very simple queries. Instead, the functionality
for each navigation step need to be explicitly implemented. In [NXX10] the schema was

1Model for describing components for reuse with three attributes: context, concept and content [WR02]

89

3. Design of the HybConS Architecture

realized as a collection of generic components containing base information, interfaces,
functions, environments and quality. The use of this template in HybConS would require
adaptations in the domain model to support the automotive domain. Moreover, the com-
munication interface between blocks from Figure 3.1 would not be “enough” application
independent.

The standards from automotive domain, Fibex and AUTOSAR including their exchange
data formats are introduced in Section 2.2.2.4 and 2.2.2.3 respectively. The AUTOSAR
software components template would be more adequate since there are a lot of conformities
to the EAST-ADL metamodel, e.g. same type-prototype patterns, similar communication
pattern, similar types of component specializations etc. Moreover, EAST-ADL is seen
as an AUTOSAR compliant architecture description language [CFJ+08]. Besides domain
specifics, it is a widely used specification and closer to the standard as any other custom
made solution. Since the template is described by an XML schema, there is no explicit
dependence on a specific technology (e.g. in contrast to ontology-based solutions, [NXX10]
and [LGLH08]). As a candidate for software component description for the implementa-
tion block, shown in Figure 3.1, the AUTOSAR software components template is chosen.
Creating a new template similar to this one is not rational. One reason is the additional
overhead to implement the XML schema. Another reason is the advantage of a standard
solution compared to a custom-made solution. Table 3.2 shows the VFM elements from
the XML schema corresponding to EAST-ADL FDA elements listed in Table 3.1.

3.3.4. Mapping Strategy

The mapping strategy concept for this project defines a detailed specification of how the
elements from the AUTOSAR VFB are transformed into an EAST-ADL FDA. The FDA
does not describe the software architecture from an implementation point of view, but
rather the software from a design perspective. Since involved models are describing soft-
ware on different levels of abstraction, there is a need for analysis of mapping strategies
in order to generate a correct model (documentation) and to reduce losses in the trans-
formation process. Figure 3.3 shows the black-box based representation of the software
component and a possible alignment of various types of ports and corresponding port
interfaces. It acts as a basis for further analysis and definition of the mapping strategy.

3.3.4.1. Existing Approaches

EAST-ADL documentation suggests two kinds of mappings: detailed mapping and black-
box mapping. The first option should be used if behaviour of the target model is required.
In this case, the design function corresponds to AUTOSAR Runnables. The other option
is adequat if structural information is required only. Here, the design function is mapped
to atomic or composite software component in AUTOSAR.

Until now there is only one practical realization of the mapping between EAST-ADL and
AUTOSAR. In [OT10] and [AQST10] the project EDONA is introduced. The aim of this
project is the integration of heterogeneous tools into one platform in order to support the
cooperated development of automotive embedded systems. The essential part of EDONA

90

3.3. Domain Engineering

Software component types

Name Description

Application SW-C type Elementary application software component

Composition SW-C type Composite application software component

Complex device driver SW-C type Special software component with direct access
to hardware

ECU abstraction SW-C type Software abstraction of I/O hardware

Parameter SW-C type Software component acting as the container for
parameters shared among other components

Sensor actuator SW-C type Software representation of sensor/actuator

Service proxy SW-C type Proxy software component allowing inter-ECU
communication

Service SW-C type Software component used for configuration of
services on ECU (not a part of VFB)

Root SW-C type Reference to root software component (instance)

NV block Software component acting as the container for
non volatile data

Ports

Provider port Port providing data

Requester port Port requesting data

Interfaces

Sender receiver interface Interface representing the data-oriented trans-
mission

Client server interface Interface representing the control-oriented
transmission

Connectors

Assembly connector Connector interconnecting two inner ports (in-
side of the same composite)

Delegation connector Connector interconnecting inner port with the
port outside of the composite

Instances

Root SW composition prototype Prototype typed by a root software component

SW component prototype Prototype typed by any type of software com-
ponents above

Table 3.2.: AUTOSAR VFB elements related to Table 3.1

for this project (see Edona V-Model [OT10]) is a transformation block named ARGateway.
It transforms the software design described in EAST-ADL into an AUTOSAR software
component description. Since the target model is located on the implementation level the
use of a detailed mapping strategy is expected. The reason is, that not only structural in-
formation is important, but also behavioral information. However, two mapping strategies
are proposed for design to implementation transformation:

91

3. Design of the HybConS Architecture

• M1 strategy: 1 EAST-ADL elementary design function is mapped to 1 AUTOSAR
software component containing 1 runnable. Non-elementary EAST-ADL function is
mapped to AUTOSAR composite software component.

• M2 strategy: 1 EAST-ADL non-elementary design function is mapped to 1 AU-
TOSAR software component. Elementary EAST-ADL functions are mapped to
AUTOSAR runables.

3.3.4.2. Concept

Contrary to the mapping strategy proposed in the EDONA project, the implementation
should be mapped to the software design in FDA. The mapping proposal in [CFJ+08] de-
fines the FDA as the functionality of the application software architecture in AUTOSAR
(its abstract functions). It also gives very important and helpful suggestions on detailed
structure and behavior mapping. To begin with, one of the two mapping concepts pro-
posed by EAST-ADL should be chosen. Since the structural information captured in the
software architecture is of more importance than the behavior, the black-box solution is
chosen. This level of detail excludes the mapping of runable entities and reduces the over-
head for realization of the transformation process.

Application
Software

Component

attributes

PortPrototype characterized by PortInterface

Provided PortProttoype, ClientServerInterface

Required PortProttoype, ClientServerInterface

Provided PortProttoype, SenderReceiverInterface

Required PortProttoype, SenderReceiverInterface

Required Service PortProttoype, SenderReceiverInterface

Provided PortProttoype, SenderReceiverInterface

ConnectorPrototype

ConnectorPrototype

Figure 3.3.: Graphical notation of AUTOSAR software component, [AUT09b]

As previously mentioned, sources describing different mapping strategies do not provide
a solution for a detailed mapping between EAST-ADL and AUTOSAR. Instead, they
provide enough information about the similarity between models and possible mapping
solutions that can be used to define the mapping. From now, there is a need for a detailed
specification describing how elements and their properties are mapped. A candidate solu-
tion would be to find similarities between the two models describing the full information
flow from a hardware sensor to the software representation of this specific sensor. In this
flow, the most important (or all) groups of different software components may be included
and can be therefore identified in FDA. Figure 3.4 shows the information flow on the
example of capturing the velocity by application software components in AUTOSAR (see
[AUT09b]). The physical value of the velocity is captured by the sensor and converted to

92

3.3. Domain Engineering

e.g. electric current. Typically, this signal is converted to a microcontroller input type e.g.
voltage by ECU Electronics. From now, the signal can be captured by the standardized
HAL Driver and is available in software. The next steps describe the reverse conversion.
ECU Abstraction transforms the value from HAL Driver to “current” and delivers it to
the software representation of the sensor. The sensor software component transforms “cur-
rent” to the software representation of velocity [AUT09b].

µC PeripheralsECU ElectronicsSensorEnvironment

MAL
(HAL Driver)

ECU Abstraction
Sensor
SW-C

Application
SW-C

Physical Interface
(velocity)

Electrical Interface
(current)

Electrical Interface
(voltage)

getVelocity() getCurrent() getFromADC()

HARDWARE

SOFTWARE

EAST-ADL
Design Function Types Local Device Manager Basic Software

Function Type

Hardware
Function Type

Figure 3.4.: Information flow in AUTOSAR [AUT09b]

Documentation of metamodel elements in combination with use cases like this allow to
find analogies to EAST-ADL model elements. The corresponding classification of different
design function types is depicted on the lower part of Figure 3.4. The detailed mapping
specification based on material collected from [OT10], [AQST10], [CFJ+08] and [AUT09b]
is described in Section A.

3.3.5. Variability Model

As previously mentioned the most scientific part of this thesis is the introduction of the
variant management support for the architectural phase in domain engineering shown in
Figure 3.1. Two possible realizations are proposed: (1) to implement the functionality
corresponding to [ODF07] or (2) to implement the part of the EAST-ADL specification,
which deals with variant management. The first solution suggests the implementation
of such mechanisms outside of the EAST-ADL model whereas the second integrates this
mechanism into the EAST-ADL model. Both solutions have advantages and drawbacks.
The first solution is leading to model independence. For instance, if a new version of
the EAST-ADL metamodel is integrated into the HybConS infrastructure, there would
be no problems with this generic variant management mechanism. The problem with this
approach is, that adequate variant handling addressing the automotive domain must be
implemented from scratch. In other words, very intensive analysis and literature research
in this area should be perfomed. It is not just a trivial task which binds traces between
features and model assets. The solution (2) has already been implemented. Addition-
ally, any tool implementing the EAST-ADL specification would be feasible to understand
the product line mechanism and to configure the system without any built-in functional-

93

3. Design of the HybConS Architecture

ity. The only drawback is the model dependence. Each new version of the EAST-ADL
metamodel would require some adaptations on the underlying mechanism. A conceptual
description of this mechanism is given in Section 2.2.2.5.

3.3.5.1. Analysis of Variant Management in EAST-ADL

Following content is related to [Con10a] and [Con10b].

Before taking any decision, the variant management mechanism in EAST-ADL need to be
analysed. Figure 3.5 shows an examplary product line in the FDA and the corresponding
orthogonal variability model including all model elements from the variability package
(collection of metaclasses in the EAST-ADL metamodel for variant management). On
the left lower side of the picture the model including two variation points (Fb and Fb2)
is presented. The variability in this example is described in the development view (see
Section 3.3.1.1).

In EAST-ADL there are two approaches how to describe variability: (1) variation points
and (2) merging and optionality (see [Con10b]). The first approach describes different
variants of the same asset inside of the variation point (similar to OVM in [PBvdL05]).
Unfortunately, variation points have to be modeled inside the model. Another approach
solves this by merging all variants of assets into the model. In other words, all variants
are modeled without using variation points. There is a higher connectivity overhead, but
this solution describes the variability independent of the model. Therefore the merging
and optionality approach seems to be a more flexible solution for this project.

The right side of the figure shows a multi-level feature tree of the system. It is separated
into a vehicle level feature model placed on top and public feature models addressing do-
main assets below. The red marked traces between feature models are just one possible
configuration of decisions. They denote the effect of the feature selection in the source
(referred) feature model. Thus, there is a freedom when defining a decision, because one
feature on top can engage more than one decision when selected. For instance, selecting
a single feature from top would affect the selection of multiple features on the artifact level.

On the upper left side of the figure, modeling elements of the variability extension in
EAST-ADL are shown. They are also part of the generation process for variability exten-
sion. The following elements are used to build the variability logic in EAST-ADL.

Feature Model A feature model is a container for features. In EAST-ADL there are two
types of such models:

• Vehicle level feature model: highest level of abstraction. In other words, this is the
place for system configuration and the only place where customer visible features
are present. The vehicle level feature model configures at least one technical feature
model through the bridge called vehicle level configuration decision model. Features
inside of this model can refer to the features of the technical feature model only.

94

3.3. Domain Engineering

• Public feature model: corresponds to the technical feature model, i.e. can be config-
ured only by feature models from higher levels in the hierarchy (see Section 2.2.2.5).
It describes the content inside a single composition. Features of this model can refer
either to the features of referenced feature models or to model assets.

F1

Fb
Fb1

Fb2
Fa Fb

Fb2b

Fb2a

F1

Fa
Fb1

Fb2

Fb2a

Fb2b

Fb1 Fb2

Fb

Fb2a

Fb2

Fb2a

Fb2b

Fb2b

Configurable Container

Internal Binding

Public Feature Model

Configuration Decision

Fb1 Fb2

Fa Fb

Fb2a

F1

Fb2b

Vehicle Level Configuration Decision Model

Vehicle Level Feature Model

Variable Element

Selection Criteria

VEHICLE LEVEL

ARTIFACT LEVEL 1

ARTIFACT LEVEL 2

ARTIFACT LEVEL 3

Figure 3.5.: Example of the product line in EAST-ADL: merging and optionality approach

Configurable Container The configurable container includes the configuration decisions
for a particular composite. It holds the list of internal bindings, the public feature model
providing the content in form of features and the reference to the composite being con-
figured. In this way the independence between the variability extension and the model
is achieved. Such kind of grouping of configuration rules allows to configure parts of the
system without affecting others.

Internal Binding Internal binding describes the configuration inside a related composite
by encapsulating its configuration decisions.

95

3. Design of the HybConS Architecture

Configuration Decision This is one of the most important elements inside the vari-
ability package. It describes how the parts of the composite are configured dependent
on the selection of features in the source model. This single rule uses two attributes
to make decision: criterion and effect. A criterion corresponds to an expression de-
scribed in VSL (Variability Specification Language [Con10a]). It describes the config-
uration of the source model, e.g. (F1 & not F2) which means that an effect should
be applied only if the feature F1 is selected and feature F2 is not. Effect describes
the configuration of a composite in form of comma separated strings with the pattern
<Name of FeatureModel>#<Name of Feature>. To keep uniqueness this rule pro-
vides references to the real model assets present in both attributes.

Vehicle Level Configuration Decision Model Similar to internal binding this configu-
ration decision model encapsulates all configuration decisions related to the vehicle level
feature model. It acts as the bridge between vehicle level and artifact level in EAST-ADL.

Selection Criterion The selection criterion is a part of the configuration decision and it
holds the reference to the real model asset which is present in the mixed string expression
in the criterion attribute.

Variable Element This is a single reference to the model element. It plays a prominent
role especially in the merging and optionality approach. It makes it possible to distinguish
between mandatory and optional model elements without affecting those elements having
some additional attributes.

Container Configuration Container configuration is typically created as the input for
the derivation process. It holds the configured content of a particular composite design
function consisting of design assets and features describing this content. In other words,
it describes the already configured composite.

Feature Model Configuration Similar to container configuration, the configuration of
feature models is stored in the feature model configuration. The question is why to use
separate configurations for the same composite design function. In Figure 3.5 configuration
decisions (red marked traces) are used to connect features only. Therefore, they belong to
the feature model configuration. The other group of decisions, i.e. configuration decisions
related to variable elements, is not depicted in this Figure. They are responsible to bind
the features that are related to design assets only. In Figure 3.5 this would be decisions
for the features Fb1 on level 2 and Fb2a and Fb2b on level 3.

Private Content One of the most important inputs for the derivation process is the
knowledge about which design assets are a part of a new configured system. In EAST-
ADL elements being excluded from the model are marked by the private content. This
construct is similar to the variable element but it represents a different role. The deriva-
tion process filters the parts being referenced with the private content.

96

3.3. Domain Engineering

The model elements generated in the configuration process enable the creation of mul-
tiple system configurations. This is practical if more than one system specification is
given at once.

3.3.5.2. Variant Management in HybConS

Applied Mechanism for Variant Management Since the variability mechanism of EAST-
ADL is briefly introduced a decision has to be taken, if this mechanism should be used
in this project. The other option is to implement a new variant management from scratch.

The main advantage of the EAST-ADL mechanism is “the whole behind it”. Namely,
there are a couple of years of research in area of variant management in automotive do-
main. The project was started in 2001, but the variant management was introduced later.
However, it is not imaginable that such a solution compared to the implementation from
scratch provided in a couple of months, is not suitable for usage. But, there is also need
to compare the candidates. Further advantages of the EAST-ADL mechanism could be
summarized as follows:

• Independent development of sub-product lines (product sub-lines)

• Independency between variants in assets and feature models

• Model is fully independent from variability extension

• Tool independence for system configuration

The use of multi-level feature trees allows to develop variability logic for parts of the
system independent from the root feature model or from the rest of the system. In this
case, the feature models can be compared to interfaces defining the configurability of a
particular composite. Therefore, integration of parts at a later point would not require
any changes in the systems product line as long as the interfaces are not changed.

The next point relates to dependencies between variants in the product line. In EAST-
ADL it is possible to build dependencies between features (include, exclude and inclusion
criterion, see Section 2.2.2.5) and between variable model assets. This allows to handle in-
ternal variability which can be combined from dependent variable elements (e.g. optional
software component requires the optional port). For instance, one selected feature from
the vehicle feature model can affect at least one external variable element and null or more
internal variants that are not visible for the customer or the system engineer. Without the
ability to express dependency on artifact level, it would not be possible to handle internal
variants. Thus, in this case they had to be defined as external features. For instance,
assume that the software component Fb2b contains three variable parameters: p1, p2 and
p3. The first two parameters (p1 and p2) are part of the component if Fb2a is also present
in the system, otherwise, parameter p3 is included. This can be realized by extending the
feature model on level 3 for the three mentioned parameters and by building dependencies
to the software component Fb2a with inclusion criterion. The vehicle feature model is not
aware of these details. This is an important characteristic of this multi-level feature tree
approach. Now, the same with another kind of dependency, i.e. on artifact level would be

97

3. Design of the HybConS Architecture

to define more advanced VSL expressions inside the configuration decision connecting the
feature Fb2b on level 2 and level 3 to select attributes p1, p2 and p3 in correspondence
to the feature Fb2a. The criterion should be defined as follows: (Fb2b & not Fb2a)
with the effect: (PFM_Fb2#Fb2_b, PFM_Fb2#Fb2_b.p3). Similar to this, the second
configuration decision is created for criteria: (Fb2b & Fb2a). Attribute p3 is used in
the effect, because the pattern used in HybConS allows to express assets in this mixed
string, even it is not explicitly defined as a feature (see Figure 3.6).

Typically, when realizing a domain model in EAST-ADL the whole content of the vari-
ability logic (feature models, configuration decisions, etc.) is present in the model. This
implies that each tool implementing the EAST-ADL specification is able to understand
this variability logic, to read it and to configure the system without requiring any built-in
functionality. This would mean, that the complete product line can be delivered to the
customer which can accordingly configure the system or parts of it by himself. Another
use case is to deliver a part of the system to a supplier. The customer can extend or define
the variability logic which can be integrated into the system at a later point.

Another proposal for variant management in HybConS, i.e. implementing it outside of the
model, has as one advantage the independence from the model. It would be a generic so-
lution that would work for any EAST-ADL metamodel version. But as mentioned before,
there is a big effort for designing this solution for the automotive domain and therefore
the first options is chosen for this project.

Configuration Rules The distribution of configuration decisions from Figure 3.5 is not
the only possibility. There is a high freedom to trace decisions as long as their effect
results in a valid model. But for the generation process, a common way to generate
such decisions should be defined. Variable implementation assets are identified by the
AUTOSAR schema elements related to variant handling described in Section 2.2.2.3. For
each variant, one feature inside the composite’s feature model is generated. This feature
model is furthermore related to the feature model in the upper level of the hierarchy (see
Figure 3.5). That means that the feature model generation is based on the hierarchy of
sub-systems. To generate the variability logic for such a concept it is enough to have a
decision distribution like the one shown in Figure 3.5. Each feature from the reference
model (level L) configures only one feature or model asset in the referred model (level
L-1). This leads to the definition of a single rule as depicted in Figure 3.6. It can be
seen as a transfer function that for a given criterion r, including a single feature, results
in an effect y describing the selected feature or model asset. All configuration decisions
in HybConS are computed in this way. This kind of decision definition allows to model
variability like the one depicted in Figure 3.5. However, decision criteria can be modified
to provide more complex VSL expressions defining multiple dependencies. It is difficult to
provide a generic solution for such complex expressions and therefore further dependencies
should be manually modeled if required.

Deviation Set Another point where the freedom of choice for realization is present is
the derivation of the feature models. The multi-level feature model shown on the right
side of Figure 3.5 is just one possible solution for deriving referred feature models. For

98

3.4. Application Engineering

instance, the last feature model on level L3 can be further decomposed to deal with more
fine grained variability. Such 1 : 1 mapping between hierarchical feature models is known
as plain propagation pattern, [RKW09].

<<VSL>>

{T}
yr

r - criterion
y - effect

{T} - rule

r = <feature_name>

y = <feature_model_name>#<feature_name> | <asset_name>

Figure 3.6.: Transfer function of a single rule in HybConS variant management mechanism

The freedom of decomposition is bound by a so called deviation set containing nine deriva-
tion rules. This set of rules ensures that a later integration of independently developed
sub-feature models into the whole system can be done without problems. The rules are
described in Table 3.3 with the configuration values used in this project. With this config-
uration, the reference feature model is just cloned and configuration decisions are created
for each reference and referred feature. This can be later manually changed on demand.

3.4. Application Engineering

Application engineering deals with reuse of design assets in order to build the system
conforming to a given specification. Again, there are two possible realizations for this
process: (1) by using generated configuration decisions (EAST-ADL approach) and (2)
by exposing traces to the external tool for system configuration. In Section 2.4.2 (Tool
Selection and Evaluation) pure::variants has been chosen for system configuration, i.e. for
application engineering. Therefore there is an option to provide an API which can be used
by pure::variants to import the technical feature model and to build the family model. In
this case, there is no need to evaluate each configuration decision inside a model and also
there is no need to use the configuration mechanism of EAST-ADL.

Taking the first option in account, i.e. EAST-ADL variant management, each configu-
ration decision needs to be evaluated and corresponding to the evaluation results, domain
assets conforming to the specification can be extracted from the model in the next process
(in system derivation). Thus, this option does not require additional overhead for the
realization of the API, except of the provision of the vehicle feature model. Here, the
mission of pure::variants is to provide the feature model which can be used by the system
developer (or customer) to generate the variant description model. This model is then the
input for the configuration mechanism of EAST-ADL.

The ideal solution would be to keep both options available. The EAST-ADL configu-
ration mechanism can be used as “portable” functionality, since it is always present in the
model. As previously mentioned, it would be possible to use any tool implementing the

99

3. Design of the HybConS Architecture

EAST-ADL specification in order to read and configure the model. In this way the system
can be delivered to the customer without a tool environment. As long as this is not the
case, the common configuration functionality of the HybConS environment is used. To

Name Value Description

allowChangeAttribute yes Definition of attributes of the feature in re-
ferred feature model during derivation (yes = at-
tributes are derived from reference model, no =
attributes are not derived, append = attributes
are changed by appending value from the refer-
ence feature)

allowChangeCardinality yes -

allowChangeDescription yes -

allowChangeName yes -

allowMove no Movement of the feature in diagram. This is not
required for proposed solution

allowReduction no -

allowRefinement no Refinement can be performed later manually

allowRegrouping no -

allowRemoval no -

Table 3.3.: Deviation set in HybConS, [Con10a]

support both solutions, the system configuration process for the architecture block from
Figure 3.1 is realized by following the EAST-ADL specification.

3.5. Final Architecture

Figure 3.7 shows the logical view of design captured from analysis and decisions described
in the previous sections. To demonstrate the most important parts of the information
flow the implementation block (see Figure 3.1) is depicted on the left side. It holds the
whole implementation assets and provides them through the AUTOSAR software com-
ponent description template. There is a trace between the AUTOSAR schema file and
the EAST-ADL metamodel named partly conforms to, which is present due to analogies
between models described in Section 3.3.4.

On the right side, an integrated tool environment handling the architecture block is shown.
Actually, the implementation block is part of this environment too, but it is out of scope
for this thesis and therefore depicted outside. In short, the right side is responsible to pro-
duce various variable-free architectures of sytems (products) for a given implementation
model and product specifications.

The mapping process is a model transformation, which maps implementation assets de-
scribed in AUTOSAR into an EAST-ADL FDA. Typically, when generating products by
using approaches like software product lines, it is expected that the generated product
does not realize all requirements by 100%, except that each requirement is identifiable

100

3.5. Final Architecture

by existing features (see deltas in Section 2.1.1.3). But this is the ideal case. After the
generation process it is required to finish the implementation by using traditional software
development methods to satisfy remaining requirements. This is why the curve of the

HybCons RC

Reuse Component

Repository

Simulink Models

READ MODELS

PL Architecture

Tool Environment

Product Derivation

and Domain

Engineering

(Papyrus)

HybCons TE

Tool Environment

Application Engineering (pure::variants)

HybCons TE

FILE

Product

Config

CREATE PRODUCT SPECIFICATION

READ FEATURE TREE

PROPAGATE

CONFIGURATION

R
E

A
D

 E
A

S
T

-A
D

L X
M

I

PARTLY CONFORMS TO

XSD

AUTOSAR

SW-C

Description

4.0

XML

Software

Component

Description

SPECIFIED BY

G
E

N
E

R
A

T
E

 A
U

T
O

S
A

R
 S

O
F

T
W

A
R

E
 D

E
S

C
IR

P
T

IO
N

 X
M

L

HybCons ME

Mapping &

Generation of

PL Artifacts

R
E

A
D

G
E

N
E

R
A

T
E

 E
A

S
T

-A
D

L M
O

D
E

L

FDA

Product

FDA, HDA

FAA

FDA

Product

FDA, HDA

FAA

Architecture

FDA

HDA

FAA

FM

DERIVE

ARCHITECTURE

REPOSITORY AND IMPLEMENTATION MODULE ARCHITECTURE MODULE

Figure 3.7.: Design flow of domain sub-process for HybConS architecture

graph for software product lines in Figure 2.1 is not horizontal. The implementation of
deltas at a later point in time is supported by Papyrus. Hence, it is possible to refine and
extend the generated variability logic for functionality that was unable to be generated as
well as to adapt the configured system to satisfy all requirements. Papyrus is also intended
to be used to make trace links between implementation assets, their corresponding archi-
tectural assets and the like. It is able to read the generated EAST-ADL model directly.

After model transformation, pure::variants reads the vehicle level feature model from
EAST-ADL, which is placed inside a generated variability extension. This feature model
is then a part of the problem space in pure::variants and it is configured in the next step.
The configuration result is a variant description model which corresponds to the system
specification. Assuming that the EAST-ADL configuration process is used for the system
configuration, the specification is forwarded to this process without being aware of the
family model. For another solution, i.e. when the family model of pure::variants is used
instead of the EAST-ADL configuration decisions, the trace links to model assets need to
be extracted from FDA in order to build the family model. To allow this, an API inside
of the architecture block need to be provided.

101

4. Implementation of the Prototype

In this section the implementation of domain and application engineering is shown in form
of three processes: mapping, variability generation and system configuration. In order to
show the interaction of all processes, a simplified version of the design from Figure 3.7 in-
cluding the main steps of the processes is depicted in Figure 4.1. The Software Component

Software Component Manager Product Line Manager
(EAST-ADL E/E SW Architecture Generator)

Export System as
AUTOSAR

Import AUTOSAR SW-C
Description

Generate FDA

Generate Variability
Extension

Tool Environment

Load UML Model

Load Vehicle Feature Model

Configure Feature Model

Apply Configuration to EAST-
ADL PL Architecture

Derive EAST-ADL Model

P2: Product Configuration

P1: Building EAST-ADL PL

P1

P2

AUTOSAR interface

Eclipse Extension point interface for pure::variants

Eclipse plug-in interface

Figure 4.1.: Simplified processes for architecture generator in HybConS

Manager corresponds to the implementation block shown in Figure 3.1. It communicates
with the Product Line Manager (architecture block) through AUTOSAR SW-C template.
Both parts are actually inside a different tool environment. The interface Eclipse plug-in
interface is used to import the model into Papyrus. The Eclipse extension point interface
for pure::variants allows to communicate with pure::variants in order to read the vehicle
feature model as well as to provide a variant description model (see Section 2.4.2.2), which
is a basis for the system configuration process (see Section 4.2.1).

The mapping process (model transformation, see Section 4.1.1) P1 is engaged by import-
ing the AUTOSAR file. The first step is the generation of the FDA corresponding to the
mapping strategy described in Section 3.3.4. After performing the model transformation

103

4. Implementation of the Prototype

it is up to the developer to decide if the variability extension should be generated. If he
confirms, the variation points captured from AUTOSAR are evaluated to identify variable
assets. Accordingly, the variability logic is generated. The last activity in the process
is to provide the vehicle level feature model to pure::variants. This can be only done if
the variability extension is generated. In this way, the product line architecture can be
configured even if the feature model is technical, i.e. it consists of internal features only.
In EAST-ADL they are marked with the property isDesignVariabilityRationale to denote
that they are not intended to be a part of the vehicle level (see Section 3 for discussion
about this issue).

The configuraton process is engaged when the variant description model is created (if
pure::variants is used as configuration tool). According to this product specification, all
generated decisions are evaluated and only those conforming to the specification are can-
didates for the next stage, i.e. for the derivation process.

The derivation process here is a part of the configuration process because it is auto-
matically executed after all configuration decisions conforming the the specification are
identified. The aim of the derivation process is to read configurations generated in the
configuration process and to generate the variability-free system. Thus, there is no need
to separate these processes as long as there is no need to make different configurations
before deriving the architecture. In this process, the relations to the real model assets are
extracted from collected configuration decisions to identify excluded model assets. The
derived architecture is built by removing these assets from the product line architecture.

4.1. Domain Engineering

4.1.1. Part I: Mapping Process

In order to capture implementation details, this process is described from two different
perspectives. The development view typically shows the design of the system in the class
diagram, whereas in the process view the most important object interactions in form of
sequence diagrams are described. But here, only the major steps of the process as shown
in Figure 4.1 are described in more detail.

4.1.1.1. Development View

Figure 4.2 shows the simplified class diagram of the architecture block from Figure 3.1.
Each class, except of the AutosarSAXParser and the AutosarModelBuilder is instanced
within application scope and therefore is accessible by the client all the time the applica-
tion is running. This allows to work with the EAST-ADL model after its generation. The
class instantiation is controlled by the Spring Application Context in bottom-up order.
This application context allows to change implementation of classes (in the next: beans)
without big effort (see Section A). The beans are systematically designed for replacement.

On the lowest level of the tree (bottom part in Figure 4.2), there are three registry beans.
They are responsible for initialization of the system registry with the UML, the SysML

104

4.1. Domain Engineering

and the EAST-ADL metamodel. The system registry is an internal data structure for
holding a so called ResourceSet from EMF (Eclipse Modeling Framework) which is used
to manage a collection of resources, i.e. constructs of UML, SysML and EAST-ADL in this
case. The metamodel path may be speficied within the configuration and thus metamodels
can be switched without affecting the implementation. These registries are a part of the
container on the next level, i.e. ResourceManager. Its purpose is to initialize registries
and to provide primitives for model loading and export.

TransformationEngine

AutosarProcessor EastadlMappingManager

EastadlPersistenceManager UMLProfileAPI

ResourceManager

UMLRegistryContainer EastadlRegistryContainer SysMLRegistryContainer

<XML>
Spring
Application
Context

AutosarModelBuilderAutosarSAXParser

FDA

A
p

p
lic

at
io

n
 in

it
ia

liz
at

io
n

Client (Papyrus)
uses configures

Figure 4.2.: HybConS architecture generator: development view

Now from the top. The TransformationEngine is an interface provided to the client
(e.g. Papyrus) in order to execute the transformation or to provide access to the existing
EAST-ADL model. It has access to all other beans in the application context and thus it
can provide their functionality to the client. For instance, if it is required to export the
model manually, only this interface needs to be extended. For model transformation two
beans are used: AutosarProcessor and EastadlMappingManager.

The AutosarProcessor provides the generic representation of the AUTOSAR model cap-
tured by the AutosarSAXParser. This generic representation allows to attach different
versions of the AUTOSAR schema into the transformation process. The bean Autosar-
ModelBuilder is responsible for the creation of such a schema independent model.

The EastadlMappingManager is a collection of methods, implementing the concrete trans-
formation according to the mapping strategy described in Section 3.3.4. To make the
TransformationEngine independent from the EAST-ADL version, the mapping API works
with UUIDs (Universally Unique Identifier) generated by the EastadlPersistenceManager.
If the client really requires an EAST-ADL element, it can get it from the internal cache of

105

4. Implementation of the Prototype

the EastadlPersistenceManager by providing the generated UUID. Here is the only place
to modify or extend the mapping if required.

The EastadlPersistenceManager is one of the most important beans within the appli-
cation context. It provides all methods required to build model elements in the FDA as
well as model elements from the variability package of the metamodel. For the creation
of these elements the UMLProfileAPI is used. The process of creation is as follows: the
stereotype from the metamodel is requested from the ResourceManager by bypassing the
UMLProfileAPI. Then the primitive provided by the UMLProfileAPI is used to apply this
stereotype on the created class or package. In this way, there is no direct dependency on
the EAST-ADL version, except of hardcoded names of stereotypes within a metamodel.
The effort to attach a new version of EAST-ADL is therefore relatively low.

The UMLProfileAPI consists of several primitives for the creation of classes, properties,
packages and other metaclasses the EAST-ADL extends. Additionally, this path provides
access to the EAST-ADL model in the file system, whereas the other path, i.e. the left
side of the EastadlMappingManager holds the model in memory. Currently, this API uses
version 2.1 of Ecore based UML.

4.1.1.2. Process View

The transformation path from the AUTOSAR software component description to the
EAST-ADL FDA is depicted in Figure 4.3.

Schema x.0 SAX Parser AUTOSAR Model Builder

Parse *.arxml and
create element table

Generate intermediate
AUTOSAR model

P1
Map artifact types

(classes)

Map software component
instances and roots

Map port instances and
port interfaces

Map connector instances

Generate variability
extension

A
rtifact p

ro
to

typ
es

A
rtifact typ

es

Mapping API

Map prototype

EAST-ADL2 API

Build EAST-ADL2
prototype

UML2.1 API

Create element and
apply metaclass

Service call

Inheritance

Schema specific component Schema idependent component

Transformation Engine

Figure 4.3.: Mapping process

106

4.1. Domain Engineering

For the specified AUTOSAR schema version, the corresponding SAX parser implementa-
tion is internally selected and the model is parsed. The result of parsing is an element
table, which contains captured content. The purpose of this table is to estimate the AU-
TOSAR path for each element (see Section 4.1.1.2). Without this path, there is no chance
to find references between elements. Like in EAST-ADL, the AUTOAR schema elements
are of depth two. It is also important to mention, that the versions 2, 3 and 4 of AU-
TOSAR are supported. The versions 2 and 3 are intended just for test purposes and not
for use, because not all necessary parts are mapped and there is no calculation for relative
paths (see Section 4.1.1.2).

The next activity takes the element table and builds a version independent AUTOSAR
model based on the concept of the software component representation depicted in Figure
3.3. Assuming differences between the AUTOSAR schema version for software component
description, there is no change in the concept and very probably there will be no change in
the concept for upcoming versions. The changes are basically related to the representation
of metaclasses (e.g. different notation of delegation and assembly connector). Therefore
the functionality behind the source model is more flexible when following this way, even
there are inevitable but not significant losses in performance.

In the next step, the Transformation Engine uses the mapping API to build the EAST-
ADL model according to the mapping strategy defined in Section 3.3.4. First it maps types
(see types and prototypes in Section 2.2.2.3). A type may be e.g. a composite software
component. The instance of this type is the prototype. Therefore, mapping prototypes
require the existence of their types in EAST-ADL (cf. an object is not older than its
class). In the next step prototypes are mapped. Since AUTOSAR provides constructs
to express the reference to the root software components explicitly, these references are
mapped as root prototypes within the FDA, i.e. they are first-level functions in the FDA.

The next candidates for mapping are ports and port interfaces, because now all soft-
ware components already exist in EAST-ADL. The same applies to connectors. Since
they are referred to ports, they need to be mapped at the end.

Finally, the variability extension is mapped. This process is elaborately described in
Section 4.1.2.

Resolving Paths The reason for building an intermediate AUTOSAR model is twofold.
On the one hand it is better to provide more flexibility when attaching new schema ver-
sions in the system, on the other hand, the paths which are used to identify AUTOSAR
elements are not explicitly defined for each element in the model. Instead, they need to
be calculated. Therefore, referencing elements in the first iteration would not work, be-
cause some references are processed later as they are required. Thus, a second iteration is
necessary. Therefore, it is rational to use this chance for building the schema independent
model in the second iteration.

Elements in AUTOSAR are encapsulated inside so called AR-PACKAGE constructs (see
line 2 in Listing 4.1). On line 9 the package system is defined. Its purpose in this example

107

4. Implementation of the Prototype

is to hold the reference to the root software component. Listing 4.1 shows an excerpt of
an AUTOSAR model.

1 <AR:AUTOSAR S="String" T="0000-00-00" xsi:schemaLocation="http://autosar.org/schema/
r4.0 AUTOSAR_4-0-1.xsd" xmlns:AR="http://autosar.org/schema/r4.0" xmlns:xsi="
http://www.w3.org/2001/XMLSchema-instance">

2 <AR:AR-PACKAGES>
3 <!-- top level packages-->
4 <AR:AR-PACKAGE S="String" T="0000-00-00" UUID="String">
5 <AR:SHORT-NAME S="String" T="0000-00-00">autosar</AR:SHORT-NAME>
6 ...
7 <AR:AR-PACKAGES>
8 <!-- root of sw-c : the complete system-->
9 <AR:AR-PACKAGE>

10 <AR:SHORT-NAME>system</AR:SHORT-NAME>
11 <AR:ELEMENTS>
12 <AR:SYSTEM>
13 <AR:SHORT-NAME>HybConS_TE_UC1</AR:SHORT-NAME>
14 <AR:ROOT-SOFTWARE-COMPOSITIONS>
15 <AR:ROOT-SW-COMPOSITION-PROTOTYPE>
16

17 <AR:SHORT-NAME>CM2ARSystem_autosar1</AR:SHORT-NAME>
18 <AR:SOFTWARE-COMPOSITION-TREF DEST="COMPOSITION-SW-COMPONENT-

TYPE" BASE="swc">Pro22</AR:SOFTWARE-COMPOSITION-TREF>
19

20 </AR:ROOT-SW-COMPOSITION-PROTOTYPE>
21 </AR:ROOT-SOFTWARE-COMPOSITIONS>
22 </AR:SYSTEM>
23 </AR:ELEMENTS>
24 </AR:AR-PACKAGE>
25 ...

Listing 4.1: An excerpt of AUTOSAR software component description

This is done explicitly, because there may be several software components within the same
package and this is the only way to define what the system is. Defining the root in AU-
TOSAR is optional and it is also not crucial for the mapping process. But for variability
extension in this project (see in following sections) there is only one vehicle feature model.
Therefore, this should be provided. Instead, the generator in this implementation chooses
any of systems in the root level.

However, the essential point here is the estimation of the path. The absolute path in
AUTOSAR is build by concatenating all package names (identified by SHORT-NAME)
from the top to the corresponding element. For instance, the path for the prototype
CM2ARSystem autosar1 is /autosar/system/HybConS_TE_UC1. Its unique identi-
fier would be /autosar/system/HybConS_TE_UC1/CM2ARSystem_autosar1 (see
Listing 4.1). In this way model elements are stored in the element table.

Resolving References Another challenge in elements capturing is referencing. The ref-
erences in AUTOSAR can be expressed in two ways: (1) with absolute paths and (2) with
relative paths. Absolute paths always start with a slash followed by the root package.
They are used as a package unique identifier. The reference from the example above is
not expressed by the absolute path. Formulated as absolute path, the reference would
be: /autosar/system/compositions/Pro22. Unfortunately, the package contain-
ing composite software components is not visible in Listing 4.1.

108

4.1. Domain Engineering

Capturing absolute references does not require any post-processing effort. But, the situ-
ation with relative references is a little bit different. Like in the file system, the relative
references are the “right excerpt” of an absolute reference and they are related to the
containing package. An example for a relative reference is given in Listing 4.1 on line
18. To find the target element this path needs to be converted to the absolute path.
For the reference calculation the schema element ReferenceBase is used. It holds the left
part of the absolute path or in the worst case, it contains a reference to some other refer-
ence base. The four ways to express such paths (see [AUT09a]) are described in Table 4.1.

Reference base Default Base Description

absolute true - Default reference base in the package. Refer-
ences without explicit defined base attribute are
resolved by using this reference base.

absolute false - Reference base used to calculate the path for
elements with explicit specified base attribute.

relative false yes Reference base with relative path and explicit
specified base for another reference base. It is
used as an intermediate step for calculating the
absolute path.

relative false no Relative reference base which requires a default
reference base for path resolution.

Table 4.1.: Possible definitions of reference base, [AUT09a]

The first column shows the value of the reference, i.e. the left part of an absolute path.
Like any other reference, it can be absolute or relative. Default attribute marks a package
to be default within its container. That means, the default package is a central point for
references within the same sub-tree that do not have an explicitly defined base. There is
maximum one default package possible in each container (package). The next attribute is
a Base, which corresponds to the SHORT-NAME of the related package. If a reference of
the reference base is absolute, this attribute is ignored by the generator.

The essential issue in the implementation is to decide which reference base to choose.
Typically, when the generator captures a reference, it searches for a reference base by
traversing the upper-level packages, i.e. in bottom-up order. After all reference bases
have been collected, one of them is used. This depends on the definition of the reference.
If the base attribute is not specified, then the default reference base is used. Otherwise,
a package with the name equal to the base attribute “base” is used. The same strategy is
applied to nested reference bases (the last two from the table).

The relative reference to the software component type Pro22 on line 18 in Listing 4.1
would correspond to one of the last three reference bases from Table 4.1. The default
reference base is excluded, because of the explicitly defined base attribute. In order to
find the target reference base, all nested reference bases need to be resolved (if existing).
A matching reference is the one with the attribute LONG-LABEL equals to the “base” at-

109

4. Implementation of the Prototype

tribute of the software component Pro22 with the value “swc”. This attribute is a unique
identifier for the reference bases.

Resolving Model Elements The AUTOSAR XML schema specifies model elements of
all system layers. The elements of the VFB used in this project are just an excerpt of
the complete schema. Moreover, there are elements from the VFB that are not part of
the mapping like data types, behavior, etc (see mapping strategy in Section 3.3.4). To
identify candidate elements it is sufficient to capture their schema element names. These
identifiers are used by the AutosarProcessor (see Figure 3.6) in the first iteration to capture
the model. In the second iteration, references are resolved. For reference building, the
strategies from the previous section are applied.

4.1.2. Part II: Variability Extension Generator

Variable model assets are identified by capturing their properties corresponding to varia-
tion points. Different realizations of variation points in AUTOSAR are described in Section
2.2.2.3. Here, an aggregation pattern is sufficient to make variability in sub-systems and
components possible (see Section 3.3.1.1). The main challenge in this sub-process is the
generation of variability logic for captured common and variable model assets. Metamodel
elements from the EAST-ADL variability package are generated and interrelated to each
other by following the specification conceptually described in Section 3.3.5.1. Figure 4.4
shows a simplified representation of the generation process.

The process generates artifact level and vehicle level elements. The second group is used
to provide the system configuration to a developer, i.e. vehicle feature model. It is the
only interface to the system developer who configures the system.

4.1.2.1. Artifact Level Variability

After the model transformation is completed, a root software component is identified. This
is achieved by capturing the reference from the AUTOSAR model like in Listing 4.1 on
line 18 or by finding a candidate). The variability extension is created by traversing the
components tree in top-down order.

The first activity in the process, shown in Figure 4.4, takes an element, i.e. a software
component from the current composite. Then, it needs to be checked if this candidate is
an elementary or composite software component. For the first option there is nothing to
do except of proving if it varies. If it does, then a construct VariableElement is created
within a variability extension and referenced to this model asset. Thus, there is no at-
tribute in a model to define some model asset to be variable. Instead, such a referencing
manner is used and therefore the independence between model and variability is achived.

For each composite, the following is created: a public feature model containing features,
referencing the content of a composite, and internal binding, specifying the rules how a
variable content is affected by selecting features from the public feature model, i.e. config-
uration decisions. This public feature model is visible only for a composite container, i.e.

110

4.1. Domain Engineering

for the composite in the next upper level of the hierarchy. Its internal binding defines how
this public feature model is configured. In this way, a configuration is propagated over
the whole hierarchy as depicted in Figure 3.5. For each feature of a public feature model

Get next software
component

Create variable element
Is

elemen
tary?

Is
optional

?

Create public feature
model EOF

Create internal binding /
selection criteria

Process composite parts

Create vehicle feature
model

Create vehicle level
configuration decision

model

yes

no

no

yes

yes

no

Create configurable
container

Create public feature
model

Create internal binding /
selection criteria

Process composite parts

Create configurable
container

Captured software components

Figure 4.4.: Generation process for variability extension

one configuration decision, according to the concept of transfer function, is created (see
Figure 3.6) . The parameters effect and criterion are also estimated. A collection of these
configuration decisions, related to one public feature model, is accordingly packaged into
one internal binding. Internal binding and public feature model are the most important
constructs that hold the whole logic for the system configuration for a specific composite
software component.

If a composite contains other composite software components, they need to be processed
in the same way. This is done in the activity Process composite parts. The processing
of a composite software component is done when the variability extension for all its ele-
mentary and composite parts is generated. At the end, internal binding and the public
feature model need to be packaged into the configurable container. This construct, with
the reference to the corresponding composite software component, is created.

4.1.2.2. Vehicle Level Variability

The last two activities of the process are part of vehicle level variability. Here, the vehicle
level feature model and a bridge connecting the vehicle level and artifact level in EAST-

111

4. Implementation of the Prototype

ADL are generated. This is illustrated in the right part of Figure 3.5 (cf. vehicle level and
artifact level 1).

The vehicle level feature model is generated by cloning the root technical feature model.
The only difference is that features inside the vehicle level feature model are represented
by an element VehicleFeature which is a specialization of the metamodel element Feature.
It is extended with attributes like cardinality, isOptional, etc. The bridge to the artifact
level is created by mapping these vehicle features to the features of the root feature model.
In fact, they are identical, but the feature model on artifact level is not visible for the
configuration.

Multiple Asset Instances In EAST-ADL, a model is build by following the type-prototype
approach proposed in the AUTOSAR specification (see component reuse approach in Sec-
tion 2.2.2.3). Actually, its origin is coming from the type-role approach in UML. The parts
of the model are prototypes instantiated from their types. The situation where several
prototypes are instantiated from the same type is a case that is specially handled during
the generation of vehicle level variability. This is illustrated in Figure 4.5. As mentioned

SW-C Type 1 SW-C Type 2 SW-C Type N

SW-C Prototype 1.1

SW-C Prototype 1.2

SW-C Prototype 1.N

SW-C Prototype 2.1

SW-C Prototype 2.2

SW-C Prototype 2.N

SW-C Prototype N.1

SW-C Prototype N.2

SW-C Prototype N.N

is type of

is type of

is type of

is type of

is type of

is type of

is type of

is type of

is type of

SW-C Prototype 1 SW-C Prototype 2 SW-C Prototype N

Ty
p

es
M

o
d

e
l

C
o

n
fi

gu
ra

ti
o

n

SW-C Prottoype 1.1

SW-C Prototype 1

SW-C Prottoype 1.2

SW-C Prottoype 1.N SW-C Prottoype 1.1

SW-C Prototype 1

SW-C Prottoype 1.2

SW-C Prottoype 1.N SW-C Prottoype 2.1

SW-C Prototype N

SW-C Prottoype 2.2

SW-C Prottoype 2.N

is type ofis type ofis type of

Double configuration
decisions

Figure 4.5.: Effect of multiple instances in feature models

in the previous section, for each feature in the model one configuration decision is created.
Assuming the situation shown in Figure 4.5 where the prototypes SW-C Prototype 1 and
SW-C Prototype 2 are instantiated from the same type, i.e. from SW-C Type 1, multiple
configuration decisions are pointing to the same model assets. The consequence is that
a system developer is able to provide different configurations for the same composite, i.e.
SW-C Type 1 in this case. This would be the same as a race condition, and therefore must
be avoided. In the generation process for the variability extension the prototype parts are
resolved by resolving their types. Therefore, the public feature models of multiple instan-
tiated prototypes would be generated as depicted in Figure 4.5.

To avoid a race condition in the configuration process (see next section) the variabil-
ity extension is generated only for the first prototype captured by the generator. Thus,

112

4.2. Application Engineering

configuring the content of this prototype would affect all other prototypes instantiated
from the same type. Most important, the system developer has no ability to configure
each prototype individually.

4.2. Application Engineering

4.2.1. Part III: System Configuration

The system configuration can be divided into two sub-processes: (1) generation of system
configuration and (2) system derivation. The first process generates the necessary EAST-
ADL metamodel elements related to the configuration part of the variability package. The
system derivation, on the other hand, builds the system in correspondence to the first pro-
cess.

Get next configurable
container

Create container
configuration

EOF

Create feature
configuration for public

feature model

Create feature
configuration for vehicle

feature model

Configured root feature model

yesno

Get next container
configuration

Get feature configuration
and selection criteria

EOF

Sorted list of software components (top-down)

criteria
== TRUE

Remove core asset from
the model

Pass

yes

no

no

yes

Figure 4.6.: System configuration process: configuration (left) and derivation (right)

System configuration starts with collecting configurable containers generated in the map-
ping process (see previous section). From each configurable container the configuration
decisions are extracted and evaluated. The evaluation process takes the configured vehicle
feature model and decides for each configuration decision, which feature belongs to the
new generated feature configuration. Feature configuration elements (called FeatureCon-
figuration) denote, which features have passed the evaluation. In addition, the same is
proposed for model assets by using ContainerConfiguration.

In the derivation process the intersection of two ranges of configuration decisions is made.
One group consists of configuration decisions that have passed the evaluation and the
other group contains all decisions from the model. The intersection of these groups gives
a new group containing configuration decisions that are excluded from the configured sys-
tem. The related model assets are simply removed from the model. Here it is important
to mention that dependent parts of such assets are indirectly removed. For instance, con-
nectors and ports of a variable software component are automatically excluded from the

113

4. Implementation of the Prototype

model. This could be explicitly modeled by using one of the two mentioned dependency
strategies, but it is only necessary for a model validation, i.e. to ensure that concerned
ports are optional or at least implicit optional. This is further discussed in Section 7.

4.2.1.1. VSL Expression Evaluator

The crucial factor in the configuration process is the evaluation of collected configuration
decisions. As mentioned before, there are many possibilities to express dependencies be-
tween referenced and referred feature models. Thus, in order to provide some common
solution for these dependencies a decision definition as depicted in Figure 3.6, is followed.
For this purposes an interface VSLExpressionEvaluator has to be implemented. It is shown
in Listing 4.2.

1 /**
2 * This is a part of the HybConS project.
3 *
4 * @author T1000
5 *
6 * Mixed string expression evaluator for variability specification language.
7 *
8 * Evaluates criteria defined in configurable container
9 * (see EAST-ADL specification, section ConfigurableContainer).

10 *
11 * Container’s effect allows following forms of the value:
12 * 1 PFM_<public-feature-model-name>#<feature-name>
13 * 2 <artifact-name>
14 *
15 * In the case of multiple occurrences, elements are
16 * separated by comma.
17 */
18 public interface VSLExpressionEvaluator {
19

20 /**
21 * Evaluates mixed string expression referred to the source
22 * feature model, i.e. to selected features.
23 *
24 * @param configurationDecision container for criteria describing
25 * combination of features for which the
26 * condition returns true. E.g. for expression (F1 and not F2)
27 * the configured feature model must not contain the feature F2
28 * if the feature F1 is selected.
29 * @param SelectedFeatures selected features of the source feature
30 * model.
31 * @return true | false
32 */
33 public boolean evaluate(Object configurationDecision, Object selectedFeatures);
34 }

Listing 4.2: VSL expression evaluator for variability extension

It takes a single configuration decision and the whole feature model, i.e. selected features,
as an input and evaluates the criterion within this decision. Currently, there is a simple
implementation class of this interface which is able to evaluate only one variable element
in the criterion (cf. configuration decisions on the Figure 3.5). This interface is a possible
extension point for the variability mechanism in HybConS architecture (e.g. if a more
sophisticated criterion definition is required).

114

4.3. Integration into the HybConS Tool Environment

4.3. Integration into the HybConS Tool Environment

Integration into an existing tool environment means on the one hand to provide the gen-
erated vehicle level feature model to pure::variants for building corresponding feature and
familiy models and on the other hand to edit the EAST-ADL model with Papyrus. The
second does not require any implementation effort, but just provision of necessary Papyrus
plug-ins for EAST-ADL inside a tool environment. Both interfaces are conceptually de-
picted in Figure 4.1 (cf. Eclipse interfaces).

The process of generation is defined as follows: first, a pure::variants feature model corre-
sponding to the EAST-ADL vehicle feature model is generated. Additionally, the family
model is generated by cloning the pure::variants feature model. The idea is to express
the content of the family model in form of relations to the real EAST-ADL model assets.
Unfortunately, pure::variants is not able to access the parts of the EAST-ADL model, i.e.
there is no possibility to relate items of the family model to the model assets in FDA di-
rectly. For this purpose, the Technical University of Dresden has provided an approach to
support the mapping between features and an Ecore-based solution space (see [HKW08]).
The implementation of this mapping is available as an Eclipse plugin called FeatureMap-
per, which also includes the functionality for the integration in pure::variants. This would
be a solution for the system configuration directly from pure::variants. Unfortunately, the
lack of documentation makes it difficult to find out if and where the extension point of
this plug-in is and how it can be used by the architecture plug-in, implemented in this
work. Therefore, the connection of features and EAST-ADL model elements using the
FeatureMapper is future work. Alternatively, a solution for the system configuration by
using the configuration functionality described in Section 4.2.1 is proposed. This is de-
picted in Figure 4.7.

pure::variants

Papyrus

Problem
Space

Solution
Space

HybConS Architecture
Generator

EAST-ADL Metamodel

Model API EASTADL
Model

Built-in plug-in

Modify modelLoad model

Generate family
model

Generate feature model

Configure system

Architecture plug-in

Figure 4.7.: Architecture plug-in: integration in a tool environment

The architecture plug-in uses the API provided by the HybConS Architecture Generator to
get the vehicle feature model. In correspondence to this model it generates pure::variants
feature and family models. It is now up to the system developer to create a configuration,
i.e. a variant description model and to derivate the system. The result of a derivation is
the variant result model which is used as an input by the API for system configuration.

115

4. Implementation of the Prototype

This plug-in is just a proof of concept and need to be improved in further development.

4.4. Technology

The architecture block introduced in Figure 3.1 is implemented in Java. As development
environment Eclipse 3.6.0 (Helios) has been chosen. Concerning the implementation the
Spring Framework 3.0.4 for lifecycle management of application components (beans) is
used. It allows the replacement of important beans (see Figure 4.2) without much effort.
Besides the EAST-ADL metamodel, the EMF-based UML 2.1 (3.0.0) API and metamodel,
as well as the metamodel of SysML (SysML specification V1.0 (formal/2007-09-01)) are
used. They are also configurable by spring application context depicted in Figure 4.2.

The integration in the HybConS tool environment has been realized in form of an Eclipse
plug-in. The architecture plug-in is configured for Eclipse version 3.6.0.

116

5. Evaluation

Before going in the details with the evaluation, it is advisable to describe the main steps in
the process from the user perspective. Basically, an AUTOSAR file (*.arxml) describing
the software on the implementation level is the input to the transformation engine. To
engage the transformation, the user has to import the AUTOSAR file by providing its
path as the parameter to the main class TransformationEngineApp. An alternative to
this would be the use of the simple GUI depicted in Figure 5.4. In addition, the user
has to specify whether the variability extension should be generated or not. The result of
the transformation is the EAST-ADL model saved as east.uml. If the user requires the
variability extension, the transformation engine generates it with respect to the EAST-
ADL specification. In this case, the user has to configure the generated feature model.
To do this, the feature model has to be retrieved from the EAST-ADL model first. Thus,
the simple GUI can be used to read the feature model and to derive the variability-free
EAST-ADL model.

5.1. Methodology

High reusability and scalability of core assets are the main expectations on this project.
Moreover, development costs, quality and time-to-market as primary goals of the SPL
are also directly influenced. The aim of this evaluation is to see how the implemented
prototype performs depending on these expectations. To do this, several measurement
techniques need to be applied. However, because most of the attributes such as time-to-
market, quality, etc. are difficult to estimate, the scope of this experiment is focused on a
time measurement from which e.g. development costs may be derived. In dependence to
provided results, assumptions about remaining goals can be made.

The procedure of development costs estimation is decomposed into the following tasks:

1. Implementation of use-cases (application software in AUTOSAR)

2. Time measuring for single system development

3. Defining requirements for the HybConS architecture platform

4. System development with the prototoype (configured EAST-ADL system - FDA)

5. Time measuring for the SPL

After the time measuring for the single system development, the FDA platform of the
AUTOSAR model need to be created. The purpose of defining new requirements on the
platform is the configuration of different systems.

117

5. Evaluation

The inspiration for measuring development costs is the motivation curve of the SPL is
depicted in Figure 2.1 (left). To compare involved approaches following parameters are
required: time to develop the SPL engineering processes, time to develop the single system,
time to realize requirements that could not be satisfied by the platform and time to con-
figure the system. The sum of the last two variables gives a ∆ (delta) (see Section 2.1.1.3).

At this point the only known value is the time spent to develop the SPL engineering
processes which is rounded to 612 hours. Here it is also important to mention that no
additional effort is required for this initialization time, because the platform (FDA model)
is generated from the existing implementation.

In the following, the evaluation use-cases are introduced.

5.2. Use-Cases

5.2.1. Use-Case1: Simple Vehicle Hybrid System

Figure 5.1 shows the first use case which is provided by the Virtual Vehicle Competence
Center (ViF) for evaluation purposes. It is a simple hybrid system enabling the driver to
read the state of the battery pack on his display (e.g. on the board). The software system
is contained of the body, the hybrid controller and the environment subsystems.

Body: Body

Environment : EnvironmentHYBrid : HYbrid

HM1 : HMI

SOCIn : StateOfCharge

HYClutchStateOut: ClutchState

VehicleSpeedOut: VehicleSpeed

FuelInjectionActiveOut: FuelInjectionActive

EngineSpeedOut: EngineSpeed

ClutchPedalPositionOut: ClutchPedalPosition

BrakePedalPositionOut: BrakePedalPosition

ActualGearOut: Gear

HYClutchStateIn: ClutchState

VehicleSpeedIn: VehicleSpeed

FuelInjectionActiveIn: FuelInjectionActive

EngineSpeedIn: EngineSpeed

ClutchPedalPositionIn: ClutchPedalPosition

BrakePedalPositionIn: BrakePedalPosition

ActualGearIn: Gear

SOCOut : StateOfCharge

SOCIn : StateOfCharge

Concept

Display

Battery Pack

Hybrid Vehicle E/E System

Figure 5.1.: Evaluation use case 1: read battery charge status in a simple hybrid vehicle
system

The body subsystem is a main interface between the embedded system of a vehicle and
the user (driver, passenger). It includes all the sensing functionality delegated by an user
such as seat adjustment, lights system, horn control, etc. However, in this example it
provides an HMI (Human Machine Interface) only, which forwards the status value of the
battery charge to a display.

118

5.2. Use-Cases

HYBrid (hybrid controller in this example) acts as an intermediate layer to the environ-
ment. Typically, body and comfort systems do not have a direct access to the environment
abstraction layer, because some signals have to satisfy (hard) real-time requirements that
for the HMI are not really important (e.g. 1 second latency is no problem). The detailed
decomposition of the HYBrid is depicted in Figure A.2(a) in the appendix. Its main
component is the HybridControlUnit1, which controls (adjusts) the signals from the body
and the environment. To get the charge value from the environment it requests the BMS
(Battery Management System) which contains a single battery pack (BatteryPack1) and
several modul controllers. Typically, these battery packs are combined from several cells
each having its own model controller for state management (e.g. temperature, charge
value, etc.). As illustrated in Figure A.2(a), the overall charge value is estimated from all
six module controllers.

The environment subsystem contains the software representation of mechanical parts of
the vehicle. Here, the charge value is captured by the PowerTrainControllUnit1.

5.2.2. Requirements on SPL

The HybConS architecture platform shall provide the hybrid system as illustrated in Figure
5.1. Furthermore, in order to introduce variants, it shall offer the following optional
functions:

• (soft real-time): Ability to indicate a driver about remaining drive (e.g. in km) with
respect to the current battery charge value.

• (hard real-time): BMS should immediately switch-off the battery pack in the case
of a crash.

Furthermore, it is assumed that the platform already contains the system, because its
description in AUTOSAR can be easily transformed into EAST-ADL. The only effort
here is to extend the platform for the functionality above and to make it configurable.
The resulting platform is documented in Section A.4 (note that only the most important
parts of the system are shown).

5.2.3. Solution

Because both requirements have an impact on all subsystems, two options to realize the
platform are proposed: (1) model additional functions as optional and (2) put variation
points to affected subsystems. The last solution is feasible by the implemented prototype,
but since all subsystems are affected, the modeling would take more time than in the first
case. Namely, here the functions need to be added as optional to the composite types and
there is no need for variation points. This option is used.

Concerning technical realization, the first function is realized inside of HybridControl-
lUnit1 and the value is just forwarded to the HMI over DRVC1 (see Section A.4). The
crash detection, on other side, is realized as a part of the BMS (CrashC1) which in the

119

5. Evaluation

case of a crash delivered by the environment component CD1 sends the signal to the
PowerTrainControllUnit1 to switch the battery off.

5.2.4. Use-Case2: Seat Adjustment in Vehicle System

The purpose of use case 1 was to show how the handling of variations in elementary
software components and their ports is realized. In this example the focus is on the con-
figuration of seat topologies in a vehicle. The seat adjustment subsystem handled here is a
part of the body and comfort system on the VFB level taken from [AUT09c]. The purpose
of the seat adjustment in this example is to control 16 motors distributed over various axes
inside of a single seat. This is illustrated in Figure 5.2. Currently, the AUTOSAR model
contains three instances of the seat on the front, the middle and the rear line of a vehicle.

The application software of the seat subsystem in interaction with other vehicle sub-
systems is depicted in Figure A.1(b). The main function here is SeatAdjMgr which in
correspondence to captured (position) commands from the outside (e.g. by a driver over
HMI, Central Locking System or battery status over Inter-Domain Interfaces) controls the
seat axes. Note that the red marked attributes in the figure indicate multiple instances of
the corresponding type.

9

4

213

5

10
8

11

12

6

7

1413

15
16

100% position
(large person)

0% position
(small person)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Seat Height
Seat Front Height
Seat Rear Height
Seat Slide
Seat Back Inclination
Headrest Height
Lumbar Extend
Lumbar Height
Seat Cushion Extend
Seat Back Top Inclination
Headrest Fold
Headrest Tilt
Seat Back Right Bolster
Seat Back Left Bolster
Seat Cushion Right Bolster
Seat Cushion Left Bolster

Figure 5.2.: Evaluation use case 2: seat adjustment, [AUT09c]

5.2.5. Requirements on SPL

The HybConS architecture platform shall provide the configuration of the seat topology
in such a way that instead of nine seats just four (driver and passenger on front and two
other on rear) are present. Furthermore, for the basic class of vehicles the seat subsystem
shall provide seats with configuration 1, 2, 3, 4, 5, 9 and 10 depending on the axis types
from Figure 5.2. Unlike this, the extended version shall provide all 16 axes of the seat.

120

5.3. Results

5.2.6. Solution

In this use case the system does not need to be extended by a new functionality, but just
for variant management. To provide the configuration in a topology, several seat instances
are set to be optional. The same is done for axis instances to configure a single seat.
Furthermore, it is required to set affected ports of the seat subsystem and the external
interfaces as optional too. This has also consequences on the functionality outside of the
seat, but here, the seat adjustment subsystem is configured individually and therefore the
configuration of external functions is not necessary.

Concerning vehicle classes (basic, extended) such abstract features can not be generated
by the prototype, because the top level feature model is build from the system structure.
However, the configuration is possible, but in other abstraction, e.g. instead of the basic
class, the system engineer has to choose which seats and which axes are a part of the final
system.

5.3. Results

At this point all tasks from Section 5.1 are perfomed. Concerning the single system imple-
mentation of the first use-case the team including a single person spent approximately one
week for its realization (≈ 40 hours). Furthermore, the realization of the change request
given in Section 5.2.2 (task 3) together with the system configuration (task 4) took about
8 hours. These information are sufficient to construct the development curve of the SPL, if
it can be assumed that the implementation of each new product having the same complex-
ity (e.g. number of functions) requires the same time. This is illustrated in Figure 5.3(a).
Compared to the ideal curve, the break-even point is reached after 19 implementations. In
cases like this the applicability of the SPL should be precisely considered before starting
with the realization. But fortunately, the first use-case is a small system consisting of
about 100 functions only (types and instances) and therefore such results are expected.
The platform covers a larger domain and this shows the another use-case.

The seat adjustment subsystem (use-case 2) is a part of the body and comfort system
provided by AUTOSAR and therefore no information about the effort for realization are
provided. However, this may be approximated by using a data from the first use-case.
For this calculation a number of realized functions may be used. Thus, it follows that for
the realization of 611 functions of the seat adjustment model approximately 260 hours are
required. In addition, to satisfy requirements given in the Section 5.2.5 the model is ex-
tended to provide variants in seat and axis topology. For this extension about 8 additional
hours are invested. The results of development costs for the use case 2 are shown in Fig-
ure 5.3(b). Now, the break-even point is achieved at the third implementation and shows
satisfying results. However, this should not be a guarantee for a reliable curve progression.
Namely, except of the effort to realize the SPL and a single system the break-even point
depends also on delta which is the most unpredictable value in SPL. The platform, on
the other side, is not focused on a small domain, i.e. the contained software architectures
may show any form. The possible way to hold delta on minimum is to have a platform
with a large product scope. But this, unfortunately, introduces an additional effort in the

121

5. Evaluation

variability modeling and also an effort to handle such wide configurations.

The stability of the break-even point is typically increased proportionally to the learning
phase of the system, i.e. while developing applications, because the platform is extended
for a new functionality by request of delta (if possible). The platform in the introduced
use-cases is just a single system with few variation points and therefore the results from
Figure 5.3(b) can be expected. But however, compared to the single system development,
the applicability of the SPL for the software architecture seems to be optimistic.

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35

D
ev

el
o

p
m

en
t

ti
m

e
[h

]

Software Product Lines

Single system

Break-even point ~ 19

Number of different systems

(a) Use case 1

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6

D
e

ve
o

p
m

e
n

t
ti

m
e

[h
]

Software Product Lines

Single system

Break-even point ~ 2-3

Number of different systems

(b) Use case 2

Figure 5.3.: Evaluation results: development costs for SPL and single systems

Concerning the time-to-market no assumptions can be made, because the generated model
is just a part of the system used for documentation purposes. This can be probably docu-
mented by release of the HybConS. Anyway, the reduction of the development time shown
above improves the time-to-market.

122

5.3. Results

5.3.1. Reusability

Software core assets handled in this prototype are EAST-ADL architectural contructs
from the FDA. The implemented variant management mechanism follows the specifica-
tion of the EAST-ADL. Besides it is not fully implemented, this mechanism offers a system
configuration for prototypes of subsystems, software components (functions), ports and
connectors. These prototypes are artefacts used to allow differentiation in products.

The seat adjustment model in the use-case 2 is contained of about 600 software com-
ponents (prototypes). For variants basic and extended several subsystems, functions and
ports are made optional whereby the remaining functionality is reused in both generated
models. Without the ability to make ports and connectors optional, their containers would
have to be defined as variants and subsequently this would reduce the reusability. There-
fore, a degree of the reusability strongly depends on artifact granularity covered by the
implemented variant management. For instance, if not supported variant such as variation
in attributes is required, the whole container (e.g. port interface) of the affected attribute
needs to be switched in order to change the value.

In addition, reusing (evaluated and verified) core assets systematically increases the quality
of the software in contrast to the single system development.

5.3.2. Scalability

Scalability in this context denotes the ability to extend and add new functions to the
system (platform).

Figure 5.4.: Simple GUI for prototype evaluation

Related to the prototype, this affects the model transformation as well as the variability
extension. The architectural platform in this prototype is generated from the software

123

5. Evaluation

implementation and therefore all new functions are instantly defined in AUTOSAR. If a
new function is not supported by the mapping process, the extension guide in Section
A.2.2.1 has to be followed. A similar scenario is required to extend the variants (see
Section A.2.2.2). However, variant management in this prototype is not as flexible like as
the mapping process.

5.3.3. Prototype Evaluation

The two main parts of this prototype are the mapping process, implementing the model
transformation (AUTOSAR to EAST-ADL), and the variability extension. The first pro-
cess is evaluated by creating diagrams of the generated model in MagicDraw and comparing
them to the AUTOSAR model. Most of the models have been provided by the Virtual
Vehicle Competence Center. The another process is evaluated by configuring different
topologies of subsystems, elementary software components, ports and connectors. Again
here, the system is evaluated by using MagicDraw. For an easy use of the prototype, a
simple GUI is created.

5.3.4. Performance Analysis

The evaluation results described in Section 5 are a kind of proof that the system is working,
but another interesting aspect is how well it works. Especially for such model transfor-
mations it is interesting to show how the system responds in correspondence to different
distribution of elements inside an input model. The aim of this analysis is on the one hand
to provide information about efficiency and on the other hand to find bottleneck points
for further development.

Model size [# model elements]
Types 9 34 59 109 209 409 310

Prototypes 6 56 106 206 406 806 518
Ports 12 112 212 412 812 1612 5410

Connectors 14 114 214 414 814 1614 4806
File size [KB] 29 136 242 456 882 1736 12783

Process Runtime [s]

M
ap

p
in

g SAX Parser 0,143 0,219 0,271 0,404 0,671 1,291 3.950
Model Builder 0,039 0,039 0,064 0,066 0,078 0,108 0,874
Transformation 1,111 1,744 2,168 3,504 6,133 10,977 29,345
Summary 1,293 2,002 2,503 3,974 6,882 12,376 34,169

Variability 0,264 1,561 2,301 5,430 16,823 76,544 69,535
Configuration 0,072 1,318 3,371 12,657 50,899 216,827 115,367

Table 5.1.: Runtime

Measuring performance is performed by measuring the runtime of the mapping and con-
figuraton process. It is also important to define what is expected as an input for model
transformation, i.e. what is a typical number of contained software components. For this
experiment a model with 800 software components is assumed to be “the worst case model”

124

5.3. Results

(cf. to a typical number of software functions in the vehicle system nowadays, [SZ10]).
Tests are performed for 15, 90, 50, 165, 315, 615, 1215 and 828 software components and
the response time of the most important methods has been measured. Results are shown
in Table 5.1.
The response time for types and prototypes is estimated separately, because prototypes
are typically generated faster than types, especially in cases when types are defined as
composite software components. Figure 5.5 shows the data from Table 5.1 graphically.
The y-axis corresponds to the response time and the x-axis is a test number, i.e. in the
same order as defined in the table.

The first six test models are created by a simple generator which creates types and their
instances. Types are composite software components consisting of a sub-system hierar-
chy with a depth of three. The last model (last column) is a “real” one provided as an
examplary model by AUTOSAR. It consists of about 800 components, more than 4000
ports and more than 5000 connectors. The example describes the applicaton software of
the power train. This in combination with generated models should result in intererst-
ing information about the behavior of the system, because on the one hand there is a
linear grow up of types, prototypes, connectors and ports that should indicate efficiency
and on the other hand there is a transition between the first six test cases and the last
one that should show differences between several processes (mapping process is dependent
on more parameters than other processes). The bold marked line (y = 50s) indicates

0,000

50,000

100,000

150,000

200,000

250,000

R
u

n
ti

m
e

[s
]

Test number

Model Transformation Variability Configuration

1 2 3 4 5 6 7

Figure 5.5.: Runtime

the upper bound of the response time the process should not exceed (in this project) in
order to be usable compared to a typical prototype. As the figure indicates, this is not
the case with the configuration and variability process. They are potential candidates for
improvement and should be used for model ranges up to the fifth serie from Table 5.1 only,
i.e. containing not more than 600 software components. The reason for such growth is
the compositional variability which for each subsystem (composite software component)
requires one public feature model (time-critical method is createV ariability(...)). Thus,

125

5. Evaluation

the mapping process shows satisfying results, but there are also some bottleneck points
in the transformation process which could save at most 15-30% of the time, i.e. 6-10
additional seconds taking the last test case into account. Further reduction of response
time would not be possible (at least with this architecture), because the creation of UML
model elements takes in avarage 2 miliseconds and for 11044 elements (last test case) it
would be fixed 22,088 seconds.

Another interesting point is the difference in behavior of the considered processes. As
depicted in Figure 5.5 a transition between test case 6 and 7 shows different curve pro-
gression for the mapping and the two other processes. The mapping process captures
all AUTOSAR model elements, but just an excerpt of them are used for the mapping.
Therefore, independent of the fact that test case 6 is combined from 1215 components
(409 and 806 types and prototypes respectively) the response time of test case 7, is higher
because the whole content of 12883 KB need to be processed whereas the configuration
and variabiltiy extension generator works with software components only.

All processes are sequentially executed by a TransformationEngine bean (cf. Transforma-
tionEngineImpl if an improvement is required). For the estimation of response times the
following configuration is used: CPU Genuine Intel R© T2400, 1.83GHz, 2.00 GB RAM,
Windows 7 32-bit.

126

6. Conclusion

6.1. General

The engineering processes of the SPL are realized in the scope of the practical work of this
thesis. The results of the evaluation (see Section 5) show that the application of the SPL
for development of the application software from the architectural view is more efficient
than developing each variant individually, at least for supported features in the prototype
(see Table 6.1). However, it is still too early to make any assumptions about applicability
of such an approach for the whole system. As stated in Section 5 the size of deltas (effort

Artifact Level: granularity of variants in FDA Supported

Subsystems
√

Software components
√

Ports
√

Connectors
√

Vehicle Level: feature relations

Optional
√

Mandatory
√

Or (OR)

Alternative (XOR)

Inter-feature relations (exclude, include)

Configuration

Binding times
√

Table 6.1.: Realized prototype features with respect to variant management (granularity
is constrained by VariableElement, [Con10a])

for development with the SPL) is strongly dependent on the product scope behind the
platform and the efficiency of the variant management mechanism. In this prototype, the
platform is generated from the software implementation which subsequently together with
the variant management influences the development costs line from Figure 5.3. Therefore,
an evaluation with more reliable results may be expected in later development iterations
of the HybConS project.

The mapping process, which translates the implementation platform to the EAST-ADL
FDA, is realized as a model-to-model transformation that can be classified as a direct
manipulation approach as introduced in Section 2.3.1.2. Such imperative (contrary to
declarative) realisations are typically intended for a single domain (stable metamodels),
but they, on other side, lack in flexibility and have no direct support for bi-directionality.

127

6. Conclusion

However, this approach has been chosen, because of the nature of the AUTOSAR XML
schema. In addition, the implemented EAST-ADL API is intended for further use outside
the transformation (e.g. to build the traces between abstractions).

The variability extension is implemented with respect to the EAST-ADL specification
2.1, [Con10a]. Such compositional variability in contrast to the global variant manage-
ment is a more practicable approach concerning the OEM-supplier relation, i.e. for the
whole V-Model (see Section 2.1.2.2). In addition, the implementation of the configuration
logic within the model allows the system engineer to work with the platform by using
any EAST-ADL tool. Furthermore, this makes the product line portable. For instance,
the system model (e.g. XMI) may be exchanged between developers responsible for the
configuration of different ECUs. The prototype supports almost the whole variability ex-
tension, but there is still some work to do, especially in criteria evaluation (see Section A.7).

To sum it up, the implemented prototype provides the SPL engineering processes sup-
porting the variant management for the automotive software architectures. The platform
is built in the scope of the model mapping between AUTOSAR and EAST-ADL, whereby
the whole variant management is derived from the EAST-ADL specification. The variable
elements are captured with respect to the variant handling in AUTOSAR and mapped
to the compositional variability. The information about variants (AUTOSAR variabil-
ity matrix, system conditions, etc.) are stored in features and can be handled by the
client. The prototype supports differentiation in subsystems, software components, ports
and connectors (see Section 5). This allows to configure topologies, subsystems and indi-
vidual software components with respect to their ports and connectors (e.g. variation in
datatypes of port interfaces is not supported). From the HybConS project perspective,
this functionality can be used to configure the coarse grained variability.

6.2. External vs. Internal Variability

As stated in Section 2.1.1.2 the feature model on the top level can also provide external
variability which in addition may be present in lower levels of abstractions. Figure 6.1
shows the amount of external and internal variability in this project.

Requirements

Design

Components

Tests

Stakeholder Needs

Internal

Variability

Internal

Variability

Internal

Variability

R
e
fin

e
m

e
n
t

External

Variability

Internal

Variability

Internal

Variability

Figure 6.1.: Variability pyramid in HybConS architecture: ideal (left) and real (right)
amount of external and internal variability

The situation on the right side of the figure compared to the ideal variability pyramid

128

6.3. Plain Propagation

differs in absence of external (customer visible, abstract) variability. The reason for this
is a lack of information in the generation process of the variability extension. The only in-
formation used to build the configuration models with respect to compositional variability
is the generated architecture. However, the configuration of the system is still possible,
but confronted with too much technical details. To reduce the complexity of the top level
feature model, the analysis level as an abstraction of the architecture has to be built.

6.3. Plain Propagation

The generation of the compositional variability is performed with respect to the plain
propagation pattern (see Section 2.2.2.5). The current implementation of the prototoype
supports the evaluation of a single link between features in the FM in the configuration
decision. This is satisfying for the generated variability, but however, more advanced VSL
expressions would not be understandable by the evaluator. This handicaps the full support
for EAST-ADL variant management.

129

7. Future Work

7.1. Mapping Process

7.1.1. Model Transformation

The detailed mapping and the implementation status are given in Section A.3. They show
that the already implemented model specification covers just an excerpt of both meta-
models, i.e. 13,89% for AUTOSAR VFB and 64,10% for EAST-ADL FDA respectively.
For the proof-of-concept implementation, the most important metaclasses are mapped,
but in later development, the remaining metaclasses may be required. Very probably not
the whole specification of the AUTOSAR VFB will be used, but anyway it has to be com-
pleted. Thus, the current implementation allows to add new metamodel elements without
big effort. For this purpose, several extension guide examples are shown in Section A.2.

Another subject for improvement is the model consistency. Any changes in the archi-
tecture should affect all other related domain assets (implementation, tests, etc.) and vice
versa. Without the ability to perform the inverse transformation, i.e. towards AUTOSAR
VFB, this could be satisfied if changes occur in the implementation block only. Therefore,
a transformation from EAST-ADL FDA to AUTOSAR VFB is necessary.

Optionally, but not irrelevant, the model transformation should provide a detailed re-
port to the client, especially information on the warning and error level. This requires the
design and implementation of an adequate error model. For instance, it should distinguish
between failures caused by the system and failures caused by a user. This would help to
fix possible bugs in the system as well as to warn the user about performed malfunction
(e.g. an invalid model). The current implementation logs some possible failures in a file
(e.g. missing references between prototype and type). It is also important to provide
these information in some structured form. This makes it possible to present them in an
external external tool environment.

The last suggestion is the validation of the model against the AUTOSAR XML schema.
It should ensure that the transformation is working with a valid model. However, this
would have a meaningful penalty on performance, since the schema file is more than 2MB
and the size of a model could be in a range of several megabytes (see Section 5.3.4).

7.1.2. Behavior Mapping

Since the EAST-ADL extension provides the ability to describe the behavior of the struc-
ture, it would be meaningful to include AUTOSAR behavioral units, i.e. runnables in
the mapping process. However, the description of the behavioral semantics in AUTOSAR
may be complex and very probably not all parts of the internal behavior would have a

131

7. Future Work

corresponding candidate in the EAST-ADL model, but basic mapping would be possible.
More useful information on this suggestion are given in [CFJ+08].

7.2. Variability Extension

7.2.1. External System Configuration

The architecture plug-in depicted in Figure 4.7 uses an internal mechanism to configure
the system (cf. Figure 3.5). Inside this mechanism the features are traced to the model
assets. A more flexible solution would be to realize these traces in pure::variants. This
would allow the system developer to modify the reference architecture without changing
rules specified in EAST-ADL. As mentioned in Section 4.3 this could be realized by ex-
tending the existing architecture plug-in to use the FeatureMapper in order to trace the
features to model assets. This is illustrated in Figure 7.1.

pure::variants

Papyrus

Problem
Space

Solution
Space

HybConS Architecture
Generator

EAST-ADL Metamodel

Model API EASTADL
Model

Built-in plug-in

Modify modelLoad model

Generate family
model

Generate feature model
Configure system

Architecture plug-in

FeatureMapper plug-in

Figure 7.1.: External system configuration with the FeatureMapper plug-in

The difference to Figure 4.7 is the seperation of the path between pure::variants and
EAST-ADL. The architecture plug-in has to be used for the retrieval of vehicle feature
models and the generation of family models, but additionally it should map the content of
the family model with the model assets in EAST-ADL by using the FeatureMapper plug-
in. In this way, two mechanisms for system configuration would exist in parallel. The
EAST-ADL mechanism could be used to configure the system outside of the HybConS
tool environment (e.g. with some other tool conforming to the EAST-ADL specification).

7.2.2. Formula Expression

A single rule which describes a consequence on feature selection is defined by the criterion
parameter in the configuration decision. A formula expression of this rule conforms to the
variability specification language (VSL). In this way, a very flexible solution to express
rules is achieved. Currently, a simple form of such a rule is implemented (see Figure 3.6).
It is enough to bind a single feature with a single model element or a feature, but if more
sophisticated expressions are required the implementation of the VSLExpressionEvaluator
needs to be extended. To fully support this language, an adequate parser need to be

132

7.3. Diagram Information

implemented. A possible solution would be the implementation of the language grammar
(e.g. with ANTLR, like in AUTOSAR) and the generation of the parser and lexer.

7.2.3. Attributes, Associations and Property Sets

The aggregation pattern introduced in Section 2.2.2.3 allows to handle all three locations
that can vary from the VFB perspective [AUT09d]: (1) software components, (2) ports
and (3) connectors. In this project, the pattern is realized for software components only.
In a similar way, the other two elements should be handled. To allow full system con-
figuration for the HybConS architecture, all three patterns (see Section 2.2.2.3) have to
be implemented. Associations and property sets belong to the same kind of variability as
aggregation, i.e. variation point decides about existence of an element. Unlike these, the
attribute pattern defines the variation of the value. To allow such a configuration, these
variation points need to be captured in the vehicle level feature model and the config-
uration just needs to execute the expression inside the FormulaByCondition (expression
conforming AUTOSAR grammar).

7.3. Diagram Information

The AUTOSAR XML schema does not hold any diagram information about the underlying
model. This diagram information has to be generated in order to provide documentation
in a user-friendly form. Currently, the generated EAST-ADL model can be read with any
UML tool (supporting EAST-ADL 2.1), but unfortunately it is mainly represented in a
tree view. However, some UML tools like MagicDraw allow to generate a diagram for a
given UML model, but this generation should also be possible inside the HybConS tool
environment.

133

A. Appendix

A.1. Tool Evaluation Criteria

The criteria attributes for tool rating are taken from the master thesis of Andrea Leitner
[Lei09] and Andreas Haselsberger [Has10] and extended by some additional attributes
based on [BCD+00], [ODF07], [DDN07] and [Sit].

Nr. Criterion Definition

Product Line Engineering criteria

1 Attribute management
• Differentiate between SPL requirements and

product requirements

• Manage requirements attributes (identifier, de-
scription, justification, cost,...)

• Ability to capture future requirements

• Ability to capture new requirements during
derivation

• Autobuild with given specifications (mining)

1 Feature and variability
modeling

• Help to model FODA-like concepts (feature de-
composition, feature type, cardinalities, depen-
dency links,...)

• Support different abstraction levels

• Support global constraints

3 Feature model maturity

• Allow to define a PL metamodel

• The tool should be unambiguous

• Support product line evolution

135

A. Appendix

4 Constraint checking
and propagation

• Support validation checking for the PL model
and metamodel

• Check consistency of product model and PL
model

• Check consistency of model and artefact base

• Support constraint propagation

• Compare artefacts to a “standard”

• Rule-checking

5 Product derivation

• Help to derive specific products with guidance
and visualization

6 Domain engineering
management

• Support the creation of domain artefacts

• Support the management of domain artefacts

• Map domain artefacts to corresponding features

• Search functions, to find suitable artefacts

7 Application engineering
management

• Support the management of application arte-
facts

• Reuse of domain artefacts

8 Repository

• Version management of artefacts, documents or
possibility to integrate such a tool

• Re-create any version of a product

136

A.1. Tool Evaluation Criteria

9 Model comparison

• Compare different products

• Compare different versions of a product

Management Criteria

10 Impact analysis

• Perform impact analysis when changing require-
ments or models

• Perform impact analysis when changing interlink
requirements

11 Reporting

• Ability to generate reports

Technical criteria

12 Access mode

• Allow multi-user access

• Allow access with profiles (define the metamodel
/ use it)

13 Technical environment

• Support synchronization

• Interoperability: support import and export
from other tools (APIs, neutral format files, etc.)

•

14 Usability

• Intuitive usage

• Stability and efficient support

• Offer high accessibility of functions, zoom,
views, ...

• Ability to handle great amount of artefacts

137

A. Appendix

15 Automatic filters

• Automatic filters on requirements presentations
and report generation

16 Tool configuration

• The tool should be configurable for specific user
needs

• Adaption to current organisation

17 Extensibility

• Should be extensible to integrate existing plat-
forms into the PL

18 Flexibility

• Changes should be possible at each stage of de-
velopment (also in derived products)

19 AOB

• Tool costs and training costs /amortisation time

• Light charge of installation, maintenance and
migration cost

• Vendor stability

• Flexible licensing service

Table A.1.: Criteria attributes for tool evaluation and selection

A.2. Extension Guide

In this section some useful information about possible extensions of the existing architec-
ture are provided.

A.2.1. Interfaces

Related to the domain engineering process depicted in Figure 3.1 it is important to know
how the architecture block is interfacing with the implementation and the analysis block,
because these blocks are potentially sources for change requests in functionality.

138

A.2. Extension Guide

Typically the model transformation is engaged by the implementation block by using
the interface TransformationEngineService with a single method called transform. If this
is not satisfying, all beans from the application context are accessible to the caller. To ac-
cess the model directly, the class EastadlModelAPIImpl has to be used. It holds the model
in memory while the application is running. However, the interfaces implemented by this
class, EastadlMappingManager and EastadlVariantManager, provide mapping and vari-
ability functionality and not the primitives to modify (e.g. creation of trace links between
model elements) the model. But in a similar way, these primitives can be implemented if
required.

The following steps are required to extend the functionality of the interface exposed to
the implementation block:

1. Specify the interface describing the functionality to be added (e.g. make traces
between implementation and design model elements)

2. Implement low level functionality in the abstract class EastadlProfileAPI (e.g. read
model elements, add attributes, etc.)

3. Implement the interface from step 1 inside the class EastadlModelAPIImpl which
acts as a wrapper to the low level API.

4. Adapt the TransformationEngineService accordingly to use the new functionality

To extend the variability functionality it is not necessary to add new interfaces, instead
just the interface EastadlVariantManager needs to be extended. Currently, the class
FeatureDescription is used to expose the vehicle level to external tools. It provides the
feature information described in Table A.2. In the same way any other part of the EAST-
ADL model can be exposed.

Class FeatureDescription

Category Name Description

Field Summary name Feature name.
cardinality Multiplicity

[m..n], m>0, n>0, n>=m.
rawFeature Real feature object (optional).
isCustomerVisible External or internal feature.
isDesignVariabilityRationale Decision whether a feature is related

to design asset directly.
attributes Any external data in form of key/-

value pairs.
isRemoved Selection status.
bindingTime Binding time of a variant.

Table A.2.: API documentation for the class FeatureDescription

139

A. Appendix

An example for the usage of both interfaces (mapping and variability) is given in the
class TransformationEngineWrapper. It executes the transformation and afterwards re-
trieves the generated feature model. Finally, the configured feature model is sent to the
EastadlVariantManager in order to configure the system.

A.2.2. Feature Extension

As concluded in Section 6 just an excerpt of the AUTOSAR VFB specification is used for
mapping, i.e. the most important structural parts. Therefore, it is expected that most
of the extension activities are related to the implementation of the remaining metamodel
elements. This section shows the main steps to extend the implemented prototype features.

A.2.2.1. Adding Model Elements

The mapping process starts with capturing AUTOSAR model elements. For this purpose
the abstract class AutosarSAXParser is used. It uses the internal stack to build the
AUTOSAR paths and the model table (see Section 4.1.1.2). The following steps are
required to add a new metamodel element into the mapping process (steps 1-3 correspond
to the path from an AUTOSAR model element to the transformation, steps 4 and 5 are
the EAST-ADL part and steps 7 and 8 correspond to the mapping):

1. Define constant of an element in the static class Constants.

2. Use the class Autosar4SAXParser to capture the element by following schema:

• Element start and its attributes are captured in the method startElement(...)

• Element end is captured in the method endElement(...)

• The text content (text node) of an element is captured in the method charac-
ters(...)

Because an element may be a part of a software component, connector, port or
other element, the following containers are available when the method characters is
triggered: the current software component (member currentPart), the current port
(currentPort), the current connector (currentConnector), the current variation point
(currentVariationPoint) and the reference base (referenceBase). Thus, it is required
to check whether the captured model element is really part of the required container.
If no container is required an element can be simply added to the stack and to the
model table.

3. Extend the corresponding processor class to add an element to the intermediate
AUTOSAR model. Currently, processor classes for software components, ports,
connectors, relations, interfaces and primitives are available. If no adequate proces-
sor is present, a new one needs to be implemented by extending the abstract class
AutosarComponentProcessor. The purpose of these processor classes is to map a
schema specific element from the model table to the schema independent model el-
ement. Additionally, relations between decoupled elements are resolved (attributes,
connectors, parts, etc.).

140

A.2. Extension Guide

4. Extend the class EastadlProfileAPI to provide the creation of the target element in
EAST-ADL corresponding to the captured model element (e.g. create Hardware-
ComponentType).

5. Extend the mapping interface EastadlMappingManager to map elements.

6. Extend the method transform in the TransformationEngineService to forward cap-
tured model element to the EAST-ADL part of the mapping process.

A.2.2.2. Adding Variants

The current implementation of the EAST-ADL variant management mechanism captures
only variants corresponding to the aggregation pattern in AUTOSAR (see 2.2.2.3) only. In
a similar way, variants of property sets and associations can be realized. Note that a varia-
tion point in AUTOSAR is a function of the binding time, applied pattern and the target
element. Therefore, not all elements can be optional. In the intermediate AUTOSAR
model (generated after parsing) each generic AUTOSAR element AutosarNamedElement
has an attribute variationPoint, but it does not mean that it can vary. This is constrained
by the scope defined by the enumeration VariationPointScope. In order to add a new
variant the following steps need to be perfomed:

1. Define the target element in the enumeration VariationPointScope (metamodel ele-
ment that should vary).

2. Set the scope to the new captured variation point inside the method processVaria-
tionPoints in the class Autosar4SAXParser.

3. Create EAST-ADL element VariableElement in the class TransformationEngineImpl
and refer it to a new variant (model element that should vary).

4. In this step the variability logic is created. The feature from the lowest level feature
model in the multi-level feature tree should refer to a real EAST-ADL model element
to which the VariableElement was assigned (step 3). Other occurences of this feature
in upper levels of the tree need to refer to the features only (see Figure 3.5). First a
variant container (part that contains this variant) needs to be found. If a container is
not supported by this mechanism, it has to be previously implemented by following
these steps. Currently, possible containers are composite and elementary software
components. Their variability extension is created in the method buildPublicFeature-
Model of the class EastadlModelAPIImpl. Here, the target variable element need to
be retrieved as a part of the composite. Then metamodel elements Feature, Selec-
tionCriteria and ConfigurationDecision need to be created in the same way as it is
realized for other parts of the container. The feature is then a part of the container’s
feature model. To do this, follow the schema for defining variants realized in the
method buildPublicFeatureModel in the class EastadlModelAPIImpl.

5. Extend the method deriveSystem to capture the new variant.

The attribute pattern differs from the other three (property set, aggregation and as-
sociation). The variation point related to this pattern does not define the existence of

141

A. Appendix

the variant, but of its value. The steps for the generation of the variability extension are
the same as described above, but the derivation process needs to be extended. Instead of
removing a model asset it needs to update its value. This extension can be added to the
method deriveSystem.

A.2.2.3. Adding AUTOSAR XML Schema

The following steps are required to implement a new schema:

1. Add a new entry to the enumeration SupportedVersion.

2. Create a class extending the abstract class AutosarSAXParser.

3. Add an option to create the instance in method newSAXParser of the class Au-
tosarProcessorImpl.

4. In the parser class from the step 1 capture elements required for mapping and put
them into the field content of the extended class. It is used by the AutosarModel-
Builder to generate an intermediate model.

5. Add an option to create processor instances in the method initProcessors of the class
AutosarModelBuilder.

6. Create processor classes by implementing the interface AutosarComponentProcessor.

A.2.2.4. Adding EAST-ADL Metamodel

The following steps are required to add a new EAST-ADL metamodel to the system:

1. Update affected methods in the abstract class EastadlProfileAPI to support new
metamodel elements.

2. Update constants in the static class Constants.

3. Change a path of the new metamodel in the configuration file configuration.xml in
the bean eastadlRegistry.

142

A.3. Mapping Details

A.3. Mapping Details

A.3.1. AUTOSAR

ID Name Description

Software component types (* - SwComponentType)

A1 Application* Hardware independent software component.

A2 ComplexDeviceDriver* Hardware dependent software component (it has
direct access to the hardware).

A3 EcuAbstraction* The software component used as an access point
to the ECU periphery from the application soft-
ware.

A4 NvBlock* The software component used to provide non
volatile shared memory that can be accessed by
other software components.

A5 Parameter* The software component used to provide shared
parameter space that can be accessed by other
software components.

A6 SensorActuator* Access point to the hardware sensor/actuator
from the application software.

A7 ServiceProxy* The software component used to enable inter-
ECU communication.

A8 Service* The software component used to configure the
services on ECU.

A9 Composition* Composite software component.

Software component prototypes

A10 SwComponentPrototype The prototype which can be typed by any of the
software component types (A1-A9).

A11 RootSwCompositionPrototype Prototype typed by a root composition.

Port prototypes

A12 PPortPrototype Provider port prototype.

A13 RPortPrototype Requester port prototype.

Port interfaces

A14 ClientServerInterface The interface defining operations between the
client and the server.

A15 NvDataInterface The interface containing the data to be ex-
changed between software components and
shared memory provided by NvBlockSwCompo-
nentType.

A16 SenderReceiverInterface The interface for data-oriented transmission.

Connectors

A17 AssemblySwConnector The connector used to connect inner ports only.

A18 DelegationSwConnector The connector used to connect outer and inner
port.

Variability

143

A. Appendix

A19 BindingTime Time to bind the variant. AUTOSAR sup-
ports following binding times: SystemDesign-
Time, CodeGenerationTime, PreCompileTime,
LinkTime and PostBuild.

A20 PredefinedVariant A variant corresponding to the specific configu-
ration.

A21 SwSysCond System condition defining the conditions under
which the variants are bound.

A22 SwSysConstValue The values of the system constant.

A23 SwSystemConstantValueSet The container for system constant values.

A24 SwSystemConst The system constant used to select a particular
variant.

A25 VariationPoint This element enables the corresponding model
element to show a vaiable character.

References

A26 ContextComponentRef Reference to a port role.

A27 InnerPortRef Inner end of delegation connector (not visible
from outside).

A28 PackageRef Reference to a package (used by e.g. the refer-
ence base).

A29 OuterPortRef Outer end of delegation connector (port of the
composite exposing functionality to the out-
side).

A30 ProviderIRef Reference to provider port inside of a delegation
connector.

A31 ProvidedInterfaceTref Reference to provided interface.

A32 RequesterIRef Reference to requester port inside of a delegation
connector.

A33 RequiredInterfaceTref Reference to required interface.

A34 SoftwareCompositionRef Reference to software composition.

A35 SwSystemConstantValueSetRef Reference to the metaclass SwSystemConstant-
ValueSet.

A36 SysCRef Reference to the system constant used by the
variation point.

A37 SwSystemConstRef Reference to the system constant used by the
metaclass SwSystemConstantValueSet

A38 TargetPPortRef Reference to provider port.

A39 TargetRPortRef Reference to requester port.

A40 TypeTref Common reference (e.g. reference to software
component type).

Attributes

A41 ArPackage Schema element used for packaging model ele-
ments.

A42 Base Reference to base (absolute or relative path).

144

A.3. Mapping Details

A43 Components The container for components.

A44 Connectors The container for connectors inside of a partic-
ular composite software component.

A45 Desc A description of model elements.

A46 Dest Reference to a destination model element (abso-
lute or relative path).

A47 IsDefault A value that specifies if the reference base hold-
ing this attribute is default or not.

A48 L4 Long name of a model element.

A49 L2 Description of intent.

A50 Ports The container for ports.

A51 ReferenceBase A model element used to calculate an absolute
path.

A52 ShortLabel The element name that is used as an unique
identifier for some model elements (e.g. for ref-
erence base).

A53 ShortName The element name that is used as an unique
identifier for all model elements.

Table A.3.: Analysed AUTOSAR VFB metamodel elements

A.3.2. EAST-ADL

ID Name Description

E1 EAST-ADL2 Root package in EAST-ADL metamodel con-
taining the following sub-packages used in this
project: Structure including FunctionModeling,
SystemModeling, FeatureModeling, Hardware-
Modeling and VehicleFeatureModeling, Infras-
tructure including Datatypes, UserAttributes
and Elements, and Variability.

Design function types

E2 BasicSoftwareFunctionType Abstraction of middleware functionality.

E3 DesignFunctionType Common representation of a function in FDA.

E4 HardwareFunctionType A transfer function of the hardware component
in HDA.

E5 LocalDeviceManager Function used for calibration of values retrieved
from the BasicSoftwareFunctionType.

Design function prototypes

E6 DesignFunctionPrototype Instance of a metaclass DesignFunctionType.

Ports

145

A. Appendix

E7 FunctionClientServerPort The port for control-oriented communication.

E8 FunctionFlowPort The port for data-oriented communication.

Interfaces

E9 EADatatype The data type of ports in data-oriented commu-
nication.

E10 FunctionClientServerInterface The interface describing operations between
client-server ports.

Connectors

E11 FunctionConnector The connector used for data exchange between
communicating ports.

Variability

E12 BindingTime The time at which a variant is bound.

E13 ConfigurableContainer The container for a public feature model and an
internal binding.

E14 ConfigurationDecision A single decision describing a consequence on
feature selection.

E15 ContainerConfiguration The list of configuration decisions that have
evaluated to true.

E16 Feature System characteristic on high abstraction level.

E17 FeatureConfiguration The list of features included in the configured
system.

E18 FeatureModel The container for features.

E19 InternalBinding A collection of rules for the configuration of the
container the binding is related to.

E20 PrivateContent The reference to a content that needs to be invis-
ible (e.g. excluded from the model in the deriva-
tion process)

E21 SelectionCriterion The reference to model elements used in crite-
rion attribute of the metaclass ConfigurationDe-
cision.

E22 VariableElement Optional model element.

E23 VehicleLevelConfiguration
DecisionModel

A collection of configuration decisions which
bind the vehicle level feature model with the
technical feature model.

E24 VehicleFeature Features derived from the metaclass Feature to
provide functionality for variant management.

Attributes

E25 BindingTimeKind Enumeration containing the following bind-
ing times: systemDesignTime*, codeGenera-
tionTime*, precompileTime*, linkTime*, post-
Build, runtime.
* - binding times used in this project.

E26 ClientServerKind Specification for port roles: server or client.

146

A.3. Mapping Details

E27 EAString Common datatype used as a replacement to AU-
TOSAR data types.

E28 UserAttributeValue Extension point for EAST-ADL in form of key/-
value pairs. Currently, it is used to store descrip-
tion (A45) of AUTOSAR software components.

External elements

E29 FlowDirection SysML enumeration with the following direction
options for communicating ports: in, out and
inout.

E30 PortAndFlows SysML package used by EAST-ADL to special-
ize SysML ports for domain specific attributes.

Table A.4.: Analysed EAST-ADL metamodel elements

Note that members of EAST-ADL metaclasses are not included in Table A.4.

A.3.3. Mapping

Source ID Target ID Remarks

A1 E3 -

A2 E4 -

A3 E2 -

A4 E3 Mapped to the common function type, because there is no
special function type in EAST-ADL representing shared non
volatile data.

A5 E3 Mapped to the common function type (reasons are the same
as above).

A6 E5 -

A7 E3 Mapped to the common function type (reasons are the same
as above).

A8 E3 Mapped to the common function type. Actually, this com-
ponent is not indented to be used in the system design phase,
but it’s type may be present there.

A9 E3 DesignFunctionType can be configured to be an elementary
or composite function.

A10 E6 -

A11 E6 Additionally, root design function prototype is attached to
the FDA as a child element.

A12 E7 or E8 Target element depends on the port interface type. To dis-
tinguish between provider and requester port, a direction
(in, out, inout) is specified.

A13 E7 or E8 -

147

A. Appendix

A14 E10 -

A15 E9 Data exchanged between NvSwComponentType and other
software components can be specified by EADatatype.

A16 E9 -

A17 E11 Distinguishing between the assembly and delegation connec-
tor is automatically done by the mapping process. Thus, in
EAST-ADL it is not possible to specify a type of the con-
nector explicitly, but this information can be easily retrieved
from the structure by the following constraints on connec-
tors in Section FunctionConnector in [Con10a]. Thus, this
is only required for the inverse tranformation.

A18 E11 -

Table A.5.: Detailed mapping between elements of AUTOSAR VFB and EAST-ADL FDA
(Source ID - AUTOSAR model element id, Target ID - EAST-ADL model
element id)

The variability extension is not directly mapped. Instead, it uses the information from
A19 to A25 from Table A.3 to generate the corresponding EAST-ADL model elements.

A.3.4. Implementation Status

Tables A.6 and A.7 show the current implementation status expressed in percents. It is
calculated by counting implemented and remaining metamodel elements from the AU-
TOSAR software component description template and the EAST-ADL FDA.

Package name Implemented [%] [# metaclasses] Note

Software compo-
nents

100,00 9 -

Ports 100,00 2 -

Interfaces 100,00 6 -

Connectors 100,00 2 -

Data types 0,00 15 -

Internal behavior 0,00 37 -

Implementation 0,00 2 -

Variability 33,33 3 Calculated in corre-
spondence to supported
features in [AUT09d]

Communication
parameters

0,00 16 -

Blueprint 0,00 7 -

End-to-end-
protection

0,00 2 -

148

A.3. Mapping Details

Documentation 0,00 1 -

Measurement 0,00 5 -

Annotations 0,00 15 -

Interface map-
ping

0,00 22 -

Summary [%] 13,89

86%

14%

Remaining
Implemented

Table A.6.: Implementation status for AUTOSAR part of the mapping process

Package name Implemented [%] [# metaclasses] Note

Function model-
ing (FDA)

73,33 15 -

Feature modeling 50,00 8 -

Vehicle feature
modeling

33,33 3 -

Variability 69,23 13 -

Summary [%] 64,10

36%

64%

Remaining
Implemented

Table A.7.: Implementation status for EAST-ADL part of the mapping process

Note that attributes of meta classes are not considered in the calculation.

149

A. Appendix

A.4. Evaluation Use Cases

Body: Body Environment : EnvironmentHYBrid : HYbrid

HM1 : HMI

SOCIn : StateOfCharge

HYClutchStateOut: ClutchState

VehicleSpeedOut: VehicleSpeed

FuelInjectionActiveOut: FuelInjectionActive

EngineSpeedOut: EngineSpeed

ClutchPedalPositionOut: ClutchPedalPosition

BrakePedalPositionOut: BrakePedalPosition

ActualGearOut: Gear

HYClutchStateIn: ClutchState

VehicleSpeedIn: VehicleSpeed

FuelInjectionActiveIn: FuelInjectionActive

EngineSpeedIn: EngineSpeed

ClutchPedalPositionIn: ClutchPedalPosition

BrakePedalPositionIn: BrakePedalPosition

ActualGearIn: Gear

SOCOut : StateOfCharge

DRVC1: DriveCycle

CSOCIn : EDriveState

CSOCOut : EDriveState

CSOCIn : EDriveState

CrashOut: CrashCrashIn: Crash

CrashIn: CrashCrashOut: Crash

CSOCOut : EDriveState

CSOCIn : EDriveState

SOCIn : StateOfCharge

(a) Evaluation use case 1: HYBrid subsystem

<SeatName>Seat<SeatName>Seat<SeatName>Seat

Axis<SeatAxis>

SeatAxisActrAdpr SeatAxisActr

SeatAxisActr

SeatAdjMgr

MgrOfSeatAdjAut
ReqByUsr

SeatFixa

VlcAAct

OperMod

EgyMngt

VehSpdLgt

MassgAdj

MassgSts

PanAdjMan

MoveAut

MoveSts

MoveOf<SeatAxis>

StorePosnOf<SeatAxis>

PosnOf<SeatAxis>

Move

Posn

Acttr

Posn

Acttn

BattU

PosnStore

MemPosn

HMI
MassgAdjReq1

MassgAdjSts1

SeatAdjMan1

SeatAdjAut1

EntryReq1

ProfPenSts1

Central Locking
DoorSts1

LockgCenSts1

Passive Entry
TrsmPosnFrom
PaseMgr

Remote
Keyless Entry

LockgCenReq1

Inter-Domain
Interfaces

TrsmNrGearAct1

SeatPosnStore

SeatFixaSts1

AAct1

OperModSts1

EgyMngtSts1

VehSpdLgt1

BattU1

PanAdjMan

PanAdjAut

Entry

DrvrProf

TrsmPosnFromPaseMgr

<DOOR>Sts

LockgGen

KeyAcsRem

TrsmNrGearAct

MoveAut

MoveSts

SeatStorePonReq1

SeatMoveCmd1

SeatAxisPosnSts1

SeatMoveReq1

StorePosnCmd1

SeatStorePosnSts1
MemPosnOf

<SeatAxis>

SeatMoveSts1

SeatMoveAut1

SeatPosnStore

MassgAdjOf<Seat>

MassStsOf<Seat>

PanAdjManOf<Seat>

PanAdjAutOf<Seat>

EntryOf<Seat>

DrvrProof

<DOOR>Sts

LockgCen

SeatFixaStsOf<Seat>

VlcAAct

OperMod

EgyMnt

VehSpdLgt

BazzU

(b) Evaluation use case 2: Seat adjustment subsystem, [AUT09c]

Figure A.1.: Evaluation use cases

150

A.4. Evaluation Use Cases

HybridControllUnit1: HybridControllUnit

SOCIn: StateOfCharge

HYClutchStateIn: ClutchState

HVBatteryTempIn: HVBatteryTemp

FuelInjectionActiveIn: FuelInjectionActive

EDriveTorqueIn: EDriveTorque

EngineSpeedIn: EngineSpeed

EDriveStateIn: EDriveState

ClutchPedalStateIn: ClutchPedalPosition

Charging: Charging

BrakePedalPositionIn: BrakePedalPosition

ActualGearIn: Gear

VehicleSpeedIn: VehicleSpeed

EDrive1: EDrive

EDriveStateOut: EDriveState

EDriveTorqueOut: EDriveTorque

ModulController: ModulController

HYBatteryTempOut: HYBatteryTemp

Charging: Charging

SCOut: StateOfCharge

BatteryPack1: BatteryPack

HYBatterTempOut: HYBatteryTemp

SOCOut: StateOfCharge

ModulController041: ModulController

Charging: Charging

SOCOut: StateOfCharge

ModulController041: ModulController

Charging: Charging

SOCOut: StateOfCharge

ModulController041: ModulController

Charging: Charging

SOCOut: StateOfCharge

ModulController041: ModulController

Charging: Charging

SOCOut: StateOfCharge

ModulController041: ModulController

Charging: Charging

SOCOut: StateOfCharge

ModulController041: ModulController

Charging: Charging

SOCOut: StateOfCharge

HYBrid

SOCOut: StateOfCharge

BrakePedalPositionIn: BrakePedalPosition

EngineSpeedIn: EngineSpeed

ClutchPedalStateIn: ClutchPedalPosition

FuelInjectionActiveIn: FuelInjectionActive

VehicleSpeedIn: VehicleSpeed

ActualGearIn: Gear

HYClutchStateIn: HYClutchState

CrashIn: Crash

CrashOut: Crash

CSCOut : EDriveState

CrashOut: Crash

CrashIn: Crash

CSCOut : EDriveState

CrashC1: CrashController

CrashOut: Crash
CrashIn: Crash

(a) Evaluation use case 1: HYBrid subsystem

PowerTrain: PowerTrain
Environment

BrakePedalPositionOut: BrakePedalPosition

EngineSpeedOut: EngineSpeed

FuelInjectionActiveOut: FuelInjectionActive

ActualGearOut: Gear

HyClutchStateOut: ClutchState

VehicleSpeedOut: VehicleSpeed

CrashIn: Crash

CrashOut: Crash

Brake: Brake

BrakePedalPositionOut: BrakePedalPosition

BrakeTorqueOut: BrakeTorque
VehicleSpeed1: VehicleSpeed

VehicleSpeedOut: VehicleSpeed

TireSpeedIn: TireSpeed

Accelerator: Accelerator

PedalPosition: AcceleratorPosition

Gear: Gear

ActualGearOut: Gear

ActualGearIn: Gear

Tire: Tire

BrakeTorqueIn: BrakeTorque

TireSpeedOut: TireSpeed

Clutch: Clutch

ClutchPedalPositionIOut: BrakePedalPosition

OTTOO1: ClutchState

EMS: EMS

EngineSpeedOut: EngineSpeed

AcceleratorPositionIn: AcceleratorPosition

FuelInjectionActiveOut: FuelInjectionActive

VehicleSpeedIn: VehicleSpeedCD1: CrashDetector

CISS: CrashSensor

CrashIn: Crash
CrashOut: Crash

PowerTrainControllUnit1: PowerTrainControllUnit

HyBattCrashIn: Crash

ClutchPedalPositionIn: ClutchPedalPosition

HyClutchStateIn: ClutchState

ActualGearIn: ActualGear

HyBattCrashOut: Crash

ActualGearOut: ActualGear

ClutchPedalPositionOut: ClutchPedalPosition

HyClutchStateOut: ClutchStat

ClutchPedalPositionOut: ClutchPedalPosition

BodyDeformation: DeformationState

(b) Evaluation use case 1: Environment subsystem

Figure A.2.: Evaluation use case 1: subsystems (soft real-time (blue) and hard real-time
requirements from Section 5.2.2)

151

Bibliography

[AQST10] A. Albinet, L. Quran, B. Sanchez, and Y. Tanguy. Requirement Management
from System Modeling to AUTOSAR SW Components. Embedded Real Time
Software and Systems, 2010.

[AUT08] AUTOSAR. Technical overview. http://www.autosar.org/, 2008. Re-
lease 3.0, Document version 2.2.1.

[AUT09a] AUTOSAR. AUTOSAR Generic Structure Template, 2009.

[AUT09b] AUTOSAR. AUTOSAR Software Component Template, 2009.

[AUT09c] AUTOSAR. Explanation of Application Interfaces of the Body and Confort
Domain, 2009.

[AUT09d] AUTOSAR. Virtual Function Bus, 2009.

[Bar09] Thomas Barthel. Fibex - Datamodel for ECU Network Systems.
www.asam.net, 2009.

[BB01] Felix Bachmann and Len Bass. Managing variability in software archi-
tectures. In Proceedings of the 2001 Symposium on Software Reusability:
Putting Software Reuse in Context, SSR ’01, pages 126–132, New York, NY,
USA, 2001. ACM.

[BCD+00] Len Bass, Paul Clements, Patrick Donohoe, John McGregor, and Linda
Northrop. Fourth Product Line Practice Workshop Report. Software Engi-
neering Institute, February 2000.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Prac-
tice. SEI series in software engineering. Addison-Wesley, 2003.

[BK04] Kerstin Buhr and Ramin Tavakoli Kolagari. Softwarebasierte Produktlin-
ien - Szenarien für Automobilhersteller und Zulieferer. Technical report,
Gesellschaft für Informatik e.V. (GI), Bonn, 2004.

[CFJ+08] P. Cuenot, P. Frey, R. Johansson, H. Lönn, M-O Reiser, D. Servata,
R. Tavakoli Koligari, and D.J. Chen. Developing Automotive Products
Using the EAST-ADL2, and Autosar Compliant Architecture Description
Language. European Congress on Embedded Real-Time Software (ERTS).
Toulouse, France, 2008.

[CFJ+10] Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn, Yian-
nis Papadopoulos, Mark-Oliver Reiser, Anders Sandberg, David Servat,

153

http://www.autosar.org/

Bibliography

Ramin Tavakoli Kolagari, Martin Törngren, and Matthias Weber. The
EAST-ADL Architecture Description Language for Automotive Embedded
Software. In Proceedings of the 2007 International Dagstuhl Conference on
Model-based Engineering of Embedded Real-Time Systems, MBEERTS’07,
pages 297–307, Berlin, Heidelberg, 2010. Springer-Verlag.

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of model transforma-
tion approaches. In OOPSLA03 Workshop on Generative Techniques in the
Context of Model-Driven Architecture, 2003.

[CH06] K. Czarnecki and S. Helsen. Feature-based survey of model transformation
approaches. IBM Syst. J., 45:621–645, July 2006.

[Con10a] The ATESST2 Consortium. EAST-ADL Domain Model Specification, De-
liverable D4.1.1, Juni 2010. ATESST Deliverable D4.2.1 V1.0.

[Con10b] The ATESST2 Consortium. Evaluation Report of EAST-ADL2 Variability
and Reuse Support, Deliverable D2.1, May 2010. ATESST Deliverable D2.1.

[Cvl] CVL Homepage. User Guide. www.variabilitymodeling.org/, visited
in July 2010.

[Cza04] Krzysztof Czarnecki. Overview of generative software development. In In
Proceedings of Unconventional Programming Paradigms (UPP) 2004, 15-
17 September, Mont Saint-Michel, France, Revised Papers, pages 313–328.
Springer-Verlag, 2004.

[DB07] Mark Dalgarno and Dr. Danilo Beuche. Variant management. British Com-
puter Society, 2007.

[DDN07] Paul Grünbacher Deepak Dhungana, Rick Rabiser and Thomas Neumayer.
Integrated Tool Support for Software Product Line Engineering. ASE, pages
533–534, 2007.

[ea08] Hand Blom et al. Reuse Guide. ATESST Deliverable D4.2.2, January 2008.

[Eas] Enterprise Architect Homepage. Feature List. http://www.
sparxsystems.com/, visited in July 2010.

[EV05] Jacky Estublier and German Vega. Reuse and variability in large software
applications. In Proceedings of the 10th European Software Engineering Con-
ference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE-13, pages 316–325, New
York, NY, USA, 2005. ACM.

[FBC06] Davide Falessi, Martin Becker, and Giovanni Cantone. Design Decision Ra-
tionale: Experiences and Steps Ahead Towards Systematic Use. SIGSOFT
Softw. Eng. Notes, 31, September 2006.

154

www.variabilitymodeling.org/
http://www.sparxsystems.com/
http://www.sparxsystems.com/

Bibliography

[FGH06] Peter H. Feiler, David P. Gluch, and John J. Hudak. The architecture analy-
sis & design language (AADL): An introduction. Technical report, Software
Engineering Institute, 2006.

[FLV06] Peter H. Feiler, Bruce A. Lewis, and Steve Vestal. The SAE architecture
analysis design language (AADL) a standard for engineering performance
critical systems. In 2006 IEEE Conference on Computer Aided Control Sys-
tem Design, 2006 IEEE International Conference on Control Applications,
2006 IEEE International Symposium on Intelligent Control, pages 1206–
1211. IEEE, October 2006.

[GG06] C. J. Michael Geisterfer and Sudipto Ghosh. Software component specifica-
tion: A study in perspective of component selection and reuse. In Proceedings
of the Fifth International Conference on Commercial-off-the-Shelf (COTS)-
Based Software Systems, pages 100–, Washington, DC, USA, 2006. IEEE
Computer Society.

[Has10] Andreas Haselsberger. Design and Implementation of a Domain Specific
Architecture for Programmable Logic Controllers. Master’s thesis, Institute
for Technical Informatics, Graz University of Technology, 2010.

[Hau06] M. Hause. The SysML modelling language. In 5th European Systems Engi-
neering Conference, September 2006.

[HKM06] William A. Hetrick, Charles W. Krueger, and Joseph G. Moore. Incremental
return on incremental investment: Engenio’s transition to software product
line practice. In Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and Applications, OOP-
SLA ’06, pages 798–804, New York, NY, USA, 2006. ACM.

[HKW08] Florian Heidenreich, Jan Kopcsek, and Christian Wende. FeatureMapper:
Mapping Features to Models. In Companion Proceedings of the 30th Interna-
tional Conference on Software Engineering (ICSE’08), pages 943–944, New
York, NY, USA, May 2008. ACM.

[Hon09] Uwe Honekamp. The Autosar XML Schema and Its Relevance for Autosar
Tools. IEEE Softw., 26:73–76, July 2009.

[Kae09] Gerald Kaeding. Produktlinien im Automobilbereich. Technical report, Uni-
versität Koblenz-Landau, 2009.

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in soft-
ware product lines. In Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 311–320, New York, NY, USA, 2008.
ACM.

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA). Technical
report, Software Engineering Institute, 1990.

155

Bibliography

[KF09] Olaf Kindel and Mario Friedrich. Softwareentwicklung mit AUTOSAR:
Grundlagen, Engineering, Management in der Praxis. dpunkt, Heidelberg,
2009.

[Kol06] Ramin Tavakoli Kolagari. Requirements Engineering für Software-
Produktlinien Eingebetteter, Technischer Systeme. Fraunhofer IRB Verlag,
2006. Fraunhofer IESE, Kaiserslautern; Univ. of Kaiserslautern, Computer
Science Department, AG Software Engineering.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling
Full Code Generation. Wiley-IEEE Computer Society Pr, March 2008.

[Lei09] Andrea Leitner. A Software Product Line for a Business Process Oriented
IT Landscape. Master’s thesis, Institute for Technical Informatics, Graz
University of Technology, 2009.

[LGLH08] Wenjing Li, Yucheng Guo, Weizhi Liao, and Rongwei Hang. Research on on-
tology component description model based on the semantic web. In Proceed-
ings of the 2008 IEEE Asia-Pacific Services Computing Conference, pages
697–702, Washington, DC, USA, 2008. IEEE Computer Society.

[MA09] Cem Mengi and Ibrahim Arma. Ein Klassifikationsansatz zur Vari-
abilitätsmodellierung in E/E-Entwicklungsprozessen. In Software Engineer-
ing, pages 125–130, 2009.

[Mag] MagicDraw Homepage. Feature List. http://www.magicdraw.com/,
visited in July 2010.

[Mat04] Mari Matinlassi. Comparison of Software Product Line Architecture Design
Methods: COPA, FAST, FORM, KobrA and QADA. In Proceedings of
the 26th International Conference on Software Engineering, ICSE ’04, pages
127–136, Washington, DC, USA, 2004. IEEE Computer Society.

[Met] MetaCase Homepage. MetaEdit+ R© Workbench and Modeler. http://
www.metacase.com/, visited in July 2010.

[MORST09] Matthias Biehl Mark-Oliver Reiser, Helko Glathe, David Servat, and Yann
Tanguy. The EAST-ADL Analysis Platform, November 2009. ATESST
Deliverable D4.3.1 V1.0.

[MT00] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE Trans.
Softw. Eng., 26:70–93, January 2000.

[Mul10] Gerrit Muller. Light weight architecture: The way of the future?, 2010.

[Nor08] Linda Northrop. Software product lines essentials. Technical report,
Carnegie Mellon University, 2008.

156

http://www.magicdraw.com/
http://www.metacase.com/
http://www.metacase.com/

Bibliography

[NXX10] Xu Nianfang, Yang Xiaohui, and Li Xinke. Software components description
based on ontology. In Proceedings of the 2010 Second International Confer-
ence on Computer Modeling and Simulation - Volume 04, ICCMS ’10, pages
423–426, Washington, DC, USA, 2010. IEEE Computer Society.

[Oaw] oAW Homepage. Feature List. http://www.openarchitectureware.
org/, visited in July 2010.

[OB02] Rob C. van Ommering and Jan Bosch. Widening the scope of software
product lines - from variation to composition. In Proceedings of the Second
International Conference on Software Product Lines, SPLC 2, pages 328–
347, London, UK, UK, 2002. Springer-Verlag.

[ODF07] Camille Salinesi Olfa Djebbi and Gauthier Fanmuy. Industry Survey of
Product Lines Management Tools: Requirements, Qualities and Open Issues.
15th IEEE International Requirements Engineering Conference, pages 301–
306, 2007.

[OMG07] OMG. OMG Unified Modeling Language (OMG UML), 2007. Infrastructure,
V2.1.2.

[OMG10] OMG. OMG Systems Modeling Language, 2010. Specification Version 1.2.

[OT10] F. Ougier and F. Terrier. Eclipse Based Architecture of the EDONA Plat-
form for Automotive System Development. Embedded Real Time Software
and Systems, 2010.

[Pap] Papyrus Homepage. Papyrus for EAST-ADL. http://www.papyrusuml.
org/, visited in July 2010.

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product
Line Engineering: Foundations, Principles, and Techniques. Springer, 2005.

[Pre10] Christopher Preschern. Piscas - pisciculture automation system. Master’s
thesis, Institute for Technical Informatics, Graz University of Technology,
2010.

[Pura] pure::systems Homepage. Product Demonstration. http:
//www.pure-systems.com/fileadmin/downloads/
pv-presentation-de.pdf, visited in July 2010.

[Purb] pure::systems Homepage. Video Material. http://www.pure-systems.
com/, visited in July 2010.

[RKW09] Mark-Oliver Reiser, Ramin Tavakoli Kolagari, and Mathias Webber. Com-
positional variability - concepts and patterns. In Proceedings of the 42nd
Hawaii International Conference on System Sciences, pages 1–10, Washing-
ton, DC, USA, 2009. IEEE Computer Society.

157

http://www.openarchitectureware.org/
http://www.openarchitectureware.org/
http://www.papyrusuml.org/
http://www.papyrusuml.org/
http://www.pure-systems.com/fileadmin/downloads/pv-presentation-de.pdf
http://www.pure-systems.com/fileadmin/downloads/pv-presentation-de.pdf
http://www.pure-systems.com/fileadmin/downloads/pv-presentation-de.pdf
http://www.pure-systems.com/
http://www.pure-systems.com/

Bibliography

[SAB09] Adel Smeda, Adel Alti, and Abbdellah Boukerram. An environment for
describing software systems. W. Trans. on Comp., 8:1610–1619, September
2009.

[Sit] Software Product Lines. Technical Management. http://www.sei.cmu.
edu/productlines/frame_report/tool_support.htm, visited in
July 2010.

[SN10] Carl-Johan Sjöstedt and Tahir Naseer. The EAST-ADL Modeling Work-
bench., May 2010. ATESST Deliverable D4.2.1 V1.0.

[SZ10] Jörg Schäuffele and Thomas Zurawka. Automotive Software Engineering.
Vieweg + Teubner, Wiesbaden, 4. edition, 2010.

[tre09] EB tresos. Autosar at a glance. http://www.eb-tresos-blog.com/
technologies/autosar/, December 2009. visited 25.08.2010.

[vdBBFR03] Michael von der Beeck, Peter Braun, Ulrich Freund, and Martin Rappl.
Architecture Centric Modeling of Automotive Control Software. In SAE
Technical Paper Series 2003-01-0856, 2003.

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:
An annotated bibliography. SIGPLAN Not., 35:26–36, June 2000.

[WL99] D. M. Weiss and R. Lai, editors. Software Product Line Engineering: A
Family-Based Software Development Process. Addison-Wesley, 1999.

[WR02] B. Whittle and M. Ratcliffe. Software component interface description for
reuse. In Software Engineering Journal, pages 307 – 318. IEEE Computer
Society, 2002.

[ZS07] Werner Zimmermann and Ralf Schmidgall. Bussysteme in der Fahrzeugtech-
nik: Protokolle und Standards. Vieweg, Wiesbaden, 2. edition, 2007.

158

http://www.sei.cmu.edu/productlines/frame_report/tool_support.htm
http://www.sei.cmu.edu/productlines/frame_report/tool_support.htm
http://www.eb-tresos-blog.com/technologies/autosar/
http://www.eb-tresos-blog.com/technologies/autosar/

	Introduction
	Problem Description
	Project Description
	Project Goals

	Thesis Structure

	Related Work
	Systematic Reuse of Software
	Software Product Line Enginering
	Principles and Motivation
	Domain Engineering
	Application Engineering
	Documenting Variability
	Terminology
	Application of SPLE in Software Engineering

	Variant Management in the Automotive Domain
	Introduction
	Application of Product Lines in the Automotive Domain
	OEM-Supplier Relation in context of Product Lines
	Classification-based Approach for Variability Modeling

	Software Architecture for Automotive Systems
	Specification of Software Architecture
	Architecture Description Languages and Standards
	AADL
	SysML
	AUTOSAR
	Fibex
	EAST-ADL

	Model Transformation
	Model Transformation Approaches
	Model-to-Text Transformation
	Model-to-Model Transformation

	Tool and Language Evaluation
	ADL Selection and Evaluation
	Tool Selection and Evaluation
	Selection Criteria and Prerequisites
	Evaluation Methodology and Tools
	Results of Tool Evaluation

	Hypothesis

	Design of the HybConS Architecture
	Requirements
	Scope
	Domain Engineering
	Variability Documentation
	Variability in Design Assets
	Binding Times

	Product Management
	Software Component Description
	Mapping Strategy
	Existing Approaches
	Concept

	Variability Model
	Analysis of Variant Management in EAST-ADL
	Variant Management in HybConS

	Application Engineering
	Final Architecture

	Implementation of the Prototype
	Domain Engineering
	Part I: Mapping Process
	Development View
	Process View

	Part II: Variability Extension Generator
	Artifact Level Variability
	Vehicle Level Variability

	Application Engineering
	Part III: System Configuration
	VSL Expression Evaluator

	Integration into the HybConS Tool Environment
	Technology

	Evaluation
	Methodology
	Use-Cases
	Use-Case1: Simple Vehicle Hybrid System
	Requirements on SPL
	Solution
	Use-Case2: Seat Adjustment in Vehicle System
	Requirements on SPL
	Solution

	Results
	Reusability
	Scalability
	Prototype Evaluation
	Performance Analysis

	Conclusion
	General
	External vs. Internal Variability
	Plain Propagation

	Future Work
	Mapping Process
	Model Transformation
	Behavior Mapping

	Variability Extension
	External System Configuration
	Formula Expression
	Attributes, Associations and Property Sets

	Diagram Information

	Appendix
	Tool Evaluation Criteria
	Extension Guide
	Interfaces
	Feature Extension
	Adding Model Elements
	Adding Variants
	Adding AUTOSAR XML Schema
	Adding EAST-ADL Metamodel

	Mapping Details
	AUTOSAR
	EAST-ADL
	Mapping
	Implementation Status

	Evaluation Use Cases

	Bibliography

