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Abstract

In analogy to the reconstruct-evolve-average (REA) algorithm of finite volume meth-
ods, a novel discretization scheme for the pseudo-differential operator in the Wigner
transport equation (WTE) is developed. For this purpose, the Wigner function is
expressed in a local basis given by piecewise polynomials. Properly chosen grid cells
are defined to arrive at a cell-averaged formulation which ensures the conservation
of the particle density on arbitrary grids. As a result, the scheme allows for a non-
equidistant and highly flexible choice of the grid. The advection term of the WTE is
solved by making use of a well-approved weighted essentially non oscillatory (WENO)
scheme. To evaluate the performance of the developed algorithm, a resonant tunnel-
ing diode is considered as test case and the obtained current voltage characteristics
are compared with those of a non-equilibrium Green’s function (NEGF) reference
calculation. A remarkably good agreement of the results could be achieved. Further-
more, by making extensive use of the ability to apply non-equidistant grids, rapidly
varying and large-valued oscillation patterns in the stationary Wigner function were
discovered in the case of bias voltages where resonant tunneling processes occur. To
examine the dynamics of these oscillations and the whole Wigner function, a simple
time-dependent situation is considered in the last part of this work.

Key words: Quantum mechanics in phase space, Wigner transport equation, quan-
tum transport, resonant tunneling diode, finite volume methods, REA algorithm,
non-equilibrium Green’s function.
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Eine neue numerische Methode für die

Wignergleichung und deren Anwendung auf

resonante Tunneldioden

Kurzfassung

In Anlehnung an die Konzepte des REA (reconstruct-evolve-average) Algorithmus von
finiten Volumen Methoden wird in dieser Arbeit ein neuartiges Diskretisierungsver-
fahren für den pseudo-differentiellen Operator der Wignergleichung entwickelt. Im
Konkreten wird die Wignerfunktion in eine lokal definierte Basis, gegeben durch stück-
weise Polynome entwickelt. Durch Einführung geeigneter Gitterzellen und Mittelung
der Wignergleichung über diese Zellen ist es möglich, die Erhaltung der Teilchen-
dichte für beliebig gewählte Gitter sicherzustellen. Daraus ergibt sich der wesentliche
Vorteil der entwickelten Methode, nämlich die beliebig gute Auflösung von Teilgebi-
eten des Phasenraums sowie die Größe des Grundgebietes in einfacher Weise an das
konkrete physikalische Problem anpassen zu können. Zur Diskretisierung des Advek-
tionsoperators in der Wignergleichung kommt ein bewährtes WENO (weighted essen-
tially non oscillatory) Verfahren zur Anwendung. Der damit erhaltene Algorithmus
wurde dann auf das Beispiel der resonanten Tunneldiode angewendet und die berech-
nete Strom-Spannungs-Charakteristik mit Referenzwerten verglichen. Als Referenz
dienten Simulationen, die mit der Technik der Nichtgleichgewichts-Greenfunktionen
gewonnen wurden. Die Ergebnisse ließen eine sehr gute Übereinstimmung erken-
nen. Um alle Oszillationsmuster der berechneten Wignerfunktion hinreichend genau
aufzulösen, scheint ein nicht äquidistant gewähltes Gitter unabdingbar zu sein. Aus
physikalischer Sicht ist die Entdeckung markant ausgebildeter und überaus scharfer
Oszillationsmuster in den berechneten, stationären Wignerfunktionen in denjenigen
Fällen, in denen resonante Tunnelprozesse auftreten, besonders interessant. Im let-
zten Teil dieser Arbeit wurde ein einfaches zeitabhängiges Problem simuliert und die
detaillierte Dynamik der Wignerfunktion analysiert.

Schlagwörter: Quantenmechanik im Phasenraum, Wignergleichung, Quantentrans-
port, resonante Tunneldiode, finite Volumen Methoden, REA Algorithmus, Nichtgleich-
gewichts-Greenfunktionen.
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Introduction

Nowadays, the most common approaches for the simulation of charge transport in
semiconductor devices are drift-diffusion and hydrodynamic models. Such macro-
scopic descriptions of particle transport enable a rather quick computation and there-
fore, an industrial application. But, these models are only applicable as long as the
device dimensions are large enough to justify the definition of macroscopic quantities
like mobilities or diffusion coefficients. Depending on the particular application, such
macroscopic transport models are applicable to devices with characteristic lengths in
the range of micrometers or even several hundred nanometers. For smaller devices a
microscopic description is necessary, usually based on the semi-classical Boltzmann
transport equation (BTE). The BTE relies on the classical equations of motion stem-
ming from the Liouville equation, whose characteristic lines are given by Netwon’s
laws [1] [2] [3]. The quantum mechanical behaviour of the electrons in a crystal is
then incorporated by replacing the free-particle dispersion relation E = p2/2m by the
one obtained from band structure calculations and by adjusting the collision operator.
One the one hand, one has to account for the appropriate particle statistics in the
collision operator to arrive at the correct equilibrium distribution (Fermi-Dirac in the
case of electrons) and on the other hand, the scattering matrix elements have to be de-
termined by quantum mechanical calculations. Such a semi-classical description may
enable an accurate simulation of the charge transport through various small-scaled
devices. But, one has to bear in mind that the underlying equations of motion are
classical and the electrons are thus treated as localized particles without accounting
for their wave nature. Disregarding their wave-like propagation may cause on the one
hand, errors in the results as soon as the spatial variations in the device are compa-
rable to the wave length of electrons, causing for instance (quasi-bound) quantized
states or interference effects. On the other hand, qualitative wrong results may be ob-
tained as soon as tunneling effects become prominent, thus rendering a semi-classical
description useless. A prototypical example for a semiconductor device whose be-
haviour is dominated by quantum mechanical effects is the resonant tunneling diode
(RTD). This particular device type has been extensively used as a benchmark prob-
lem to evaluate the performance of different numerical methods for quantum transport
models, see e.g [4] [5] [6] [7] [8], and will serve as a test case in this work as well.

In order to arrive at a quantum transport model suited for the application in de-
vice simulations, two fundamental demands must be fulfilled: On the one hand, in
order to focus solely on the physics inside the device and to neglect the detailed time
evolution of the electrons inside the contacts, which is not of interest of course, one
has to devise a transport model describing an open quantum system. The considered
spatial domain is then cut off at a certain point and appropriate boundary conditions
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are imposed to model the inflow and outflow of charge carriers. On the other hand,
it must be possible to include elastic and inelastic scattering mechanisms, between
electrons and phonons, for instance, to enable an accurate description of the device
behaviour at room temperature. A direct application of Schrödinger’s equation for
the purpose of device simulations is of limited use since the inclusion of scattering
mechanisms is problematic. The problem arises due to the fact that inelastic scatter-
ing transitions require a more localized description of the electron states, constituted
out of a superposition of different eigenstates [4]. An appropriate framework for such
a description is the density operator and the corresponding von Neumann equation.
But, Frensley [4] pointed out that it is problematic to impose appropriate boundary
conditions for the density operator since only for the case of a sufficiently large damp-
ing inside the device a stable solution may be obtained. To circumvent this problem
one can make use of the Wigner approach [1] [2] [9] [10] by transforming the density
operator in the position space ρ(x′, x′′, t) = 〈x′|ρ̂(t)|x′′〉 into a quasi-distribution func-
tion f(p, x, t) in the phase space. The Wigner function f(p, x, t) enables an analogous
phase space description as in the case of the Boltzmann distribution function with
the same marginals n(x, t) and n(p, t) when integrating f(p, x, t) with respect to p
and x, respectively. However, f(p, x, t) does not share all properties of a probability
distribution since it can take on negative values and is thus termed quasi-distribution
function. Due to the analogy to the BTE one can make use of the same boundary
conditions and clearly distinguish the incoming part from the outgoing part of the
distribution f(p, x, t).

In Chap. 1 the Wigner transformation is introduced together with discussing central
properties of the Wigner function f(p, x, t) before deriving Moyal’s equation [9], the
governing equation for the time evolution of f(p, x, t) in the phase space. In addition,
the ?-genvalue equation [9] is listed which constitutes together with Moyal’s equation
an autonomous formulation of quantum mechanics in phase space. After discussing
the theory in general, Chap. 2 focuses on the derivation of the Wigner transport
equation (WTE) from Moyal’s equation for the case of a single, parabolic band and
one spatial dimension. As we will see, the time evolution equation for f(p, x, t) then
contains an advection term as in the case of the BTE, but the electrostatic poten-
tial V (x) enters in a complicated, non-local way represented by a pseudo-differential
operator. When discussing central properties of this pseudo-differential operator, the
connection of the WTE to the continuity equation is shown. Chapter 3 presents dif-
ferent numerical methods to treat the WTE. To begin with, the common approach
to evaluate the pseudo-differential operator, based on the application of the discrete
Fourier transformation is outlined. Its disadvantages are discussed in order to moti-
vate the development of the discretization methods of the pseudo-differential operator
built upon a piecewise polynomial approximation of the Wigner function. The first
such method is termed continuous approximation to highlight its central feature. The
description of the method is done in a fairly chronologic way, analogous to the orig-
inal development of the method in the course of this thesis. We believe that such a
description facilitates to understand the central points of the discretization approach.
Due to the fact that several disadvantages are associated with the constraint of a
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continuous approximation of the Wigner function, a second method without this re-
striction was developed. The method makes use of concepts known from finite volume
methods and constitutes in principle a direct application of the REA algorithm [11].
The analytical calculations are presented in detail and general aspects are discussed
to highlight the extensibility of the algorithm to higher-order approximations. All of
the numerical calculations in the following chapters are performed with this second
method. The chapter concludes with different numerical schemes for the advection
term together with time-stepping methods. In Chap. 4 the non-equilibrium Green’s
function (NEGF) technique, a different approach to treat open quantum systems, is
presented. The NEGF method has proven itself in the calculation of steady state
properties of semiconductor devices and serves in this work as a reference solution for
the Wigner function calculations. After stating the governing equations some numer-
ical results are presented to estimate the accuracy of the calculated reference case.
Finally, Chap. 5 presents numerical results obtained with the developed method for
the WTE. In all numerical calculations a RTD is considered as test case. Before com-
paring the WTE and NEGF results quantitatively, the time evolution of the Wigner
function to a steady state is analyzed in detail. In the case of under-resolved grids, a
peculiar non-smooth time evolution may be observed with a sudden buildup of errors.
The origin of this problems together with its manifestations are analyzed by com-
paring simulations with different grid spacings. After this preliminary considerations
the influence of the various grid parameters on the accuracy of the obtained steady
state I(V ) curves for the RTD are examined. A very good agreement between the
Wigner and NEGF calculations is demonstrated for large enough grids, as well as the
convergence of the results when refining the grid spacings. Finally, as an example for
a time-dependent problem, the large-signal transient response of a RTD is considered.
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1 Quantum mechanics in phase space

In Sec. 1.1 it is shown how to map the density operator onto the Wigner function.
After introducing the Wigner transformation, it is demonstrated that the quantities
of interest, the particle density, the momentum distribution and the current density
are given by the same expressions as in classical physics. The last part focuses on the
peculiarity of the Wigner function to be not positive-semidefinite in some cases. A
simple example is considered to illustrate that interferences can lead to negative values
of the Wigner function in certain regions of the phase space. In Sec. 1.2 the Moyal
equation, representing the equation of motion for the Wigner distribution is derived
by applying the Wigner mapping to the von Neumann equation. After mentioning
interesting aspects of a formulation of quantum mechanics in phase space, an integral
expression of the Moyal bracket is introduced for the later use in the Wigner transport
equation.

1.1 Density operator and the Wigner transformation

Before discussing the Wigner function we recap some basic properties of the density
operator. The wave function known from Schrödinger’s formulation of quantum me-
chanics enables to describe pure states. In order to describe a general, mixed ensemble
of states the density operator is the appropriate framework [12]. For a certain wave
function |ψ〉 the density operator is given by [10]

ρ̂ = |ψ〉〈ψ| , (1.1)

written as the outer product of the ket |ψ〉 and the bra vector 〈ψ|. If |ψ〉 is expanded
in a complete basis |m〉, such that

|ψ〉 =
∞∑
m=0

ψm|m〉 , (1.2)

the density operator can be rewritten as [10]

ρ̂ =
∞∑

m,n=0

ρm,n|m〉〈n| , (1.3)

where the coefficients ρm,n = ψmψ
∗
n determine the density matrix in the chosen basis

[10]. Here we introduced the density matrix starting from a certain, pure state |ψ〉
but in the case of a mixed state such a connection to a single wave function does
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1 Quantum mechanics in phase space

not exist. In general, the diagonal elements ρm,m of the density matrix determine
the probability Pm to find the quantum system in the particular state |m〉 and the
off-diagonal elements are sometimes termed coherences [10] [13]. Since the single
probabilities Pm must add up to one the trace of the density operator, i.e. the sum
of the diagonal elements of the density matrix is always equal to one

Tr (ρ̂) =
∞∑
n′=0

〈n′|ρ̂|n′〉

= 1 . (1.4)

For the square of the density operator the following equation holds true [13]

Tr
(
ρ̂2
)
≤ 1 , (1.5)

refered to as the degree of coherence. The equality sign holds only for pure states and
mixed states exhibit a degree of coherence smaller than one.

The expectation value of an operator Â is given in the framework of the density
operator by [10]

〈Â〉 = Tr
(
Âρ̂
)
. (1.6)

The time evolution of the density operator is determined by the von Neumann equa-
tion [10]

i~∂tρ̂ = [Ĥ, ρ̂] , (1.7)

where [Ĥ, ρ̂] = Ĥρ̂ − ρ̂Ĥ is the commutator with the Hamilton operator. The von
Neumann equation will serve as a starting point in the next section to derive the
equation of motion for the Wigner function.

Up to now we used a discrete basis to write down the density matrix, in coordinate
representation the density operator is given in an analogous way by [2]

ρ(r′, r′′, t) = 〈r′|ρ̂(t)|r′′〉 , r′, r′′ ∈ R3 , (1.8)

where we included the time dependence of ρ explicitly. Again, the diagonal elements
of ρ determine the probability to find the quantum system in the particular state.
Since r′, r′′ are continuous variables this corresponds to a probability density to be
specific and directly represents the particle density at position r [1]

n(r, t) = ρ(r, r, t) . (1.9)

The off-diagonal elements represent again the coherences and determine the spatial
correlations of the quantum system [4]. A second quantity of interest for device
simulations is the current density j(r, t) of electrons, given by [12] [1]

j(r, t) = − i~q
2m∗

(∇r′ −∇r′′) ρ(r′, r′′, t)
∣∣
r=r′=r′′

, (1.10)

with q = −e, where e > 0 represents the elementary charge, and m∗ the effective mass
of the considered particles.
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1.1 Density operator and the Wigner transformation

Now, to derive from the density matrix ρ(r′, r′′, t) a (quasi) distribution function
f(p, r, t) in phase space, we perform a change of variables as a first step and Fourier
transform then one of the spatial coordinates to the corresponding momentum co-
ordinate. For this purpose we introduce the central coordinate r and the difference
coordinate ξ [10]

r =
1

2
(r′ + r′′) ,

ξ = r′ − r′′ , (1.11)

for which the density matrix is then given by [10]

ρ̃(r, ξ, t) = ρ(r′, r′′, t)

= ρ

(
r +

1

2
ξ, r− 1

2
ξ, t

)
. (1.12)

Upon Fourier transformation with respect to the difference coordinate ξ we arrive at
the Wigner distribution f(p, r, t) [10]

f(p, r, t) =
1

(2π~)3

∫
R3

ρ̃(r, ξ, t) exp
(
−ip

~
· ξ
)
dξ . (1.13)

The Wigner transformation can also be written directly in terms of the density oper-
ator as [10]

f(p, r, t) =
1

(2π~)3

∫
R3

〈
r +

1

2
ξ

∣∣∣∣ ρ̂(t)

∣∣∣∣r− 1

2
ξ

〉
exp

(
−ip

~
· ξ
)
dξ . (1.14)

In general, the Wigner transformation maps an operator onto a c-number phase space
function. For the case of scalar, Hermitian operators the corresponding phase space
functions are real, as one can easily show:

f †(p, r, t) =
1

(2π~)3

∫
R3

[〈
r +

1

2
ξ

∣∣∣∣ ρ̂(t)

∣∣∣∣r− 1

2
ξ

〉
exp

(
−ip

~
· ξ
)]†

dξ

=
1

(2π~)3

∫
R3

〈
r− 1

2
ξ

∣∣∣∣ ρ̂†(t) ∣∣∣∣r +
1

2
ξ

〉
exp

(
i
p

~
· ξ
)
dξ

=
1

(2π~)3

∫
R3

〈
r +

1

2
ξ′
∣∣∣∣ ρ̂†(t) ∣∣∣∣r− 1

2
ξ′
〉

exp
(
−ip

~
· ξ′
)
dξ′

= f(p, r, t) , (1.15)

when substituting ξ′ = −ξ. For the situation that a Hermitian ρ̂ consists of a matrix
of operators ρ̂i,j, one can only deduce that the corresponding f(p, r, t) has the form of
a Hermitian matrix as well. This would be, for instance, the case when describing a
two-band transport where ρ̂0,0 and ρ̂1,1 describe the occupancy of the lower and upper
band, respectively, and ρ̂0,1 = (ρ̂1,0)∗ the coupling between the two bands. Then,
the diagonal elements fi,i(p, r, t) would be real as well but the off-diagonal elements
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1 Quantum mechanics in phase space

f0,1(p, r, t) = [f1,0(p, r, t)]∗ could take on complex values. Since we restrict ourselves
in this work to the single band case, f(p, r, t) is viewed to be a real-valued function.

The marginal distributions of f(p, r, t) are obtained upon integration with respect
to p and r. In the first case we arrive at [10]

f(r, t) =

∫
R3

f(p, r, t)dp

=
1

(2π~)3

∫
R3

〈
r +

1

2
ξ

∣∣∣∣ ρ̂(t)

∣∣∣∣r− 1

2
ξ

〉∫
R3

exp
(
−ip

~
· ξ
)
dpdξ

=

∫
R3

〈
r +

1

2
ξ

∣∣∣∣ ρ̂(t)

∣∣∣∣r− 1

2
ξ

〉
δ(ξ)dξ

= 〈r| ρ̂(t) |r〉
= n(r, t) , (1.16)

when making use of the relation

δ(x) =
1

(2π)N

∫
RN

exp(ik · x)dk , x, k ∈ RN . (1.17)

To calculate the second marginal we return to Eq. (1.11) to rewrite the integrals
as [10]

f(p, t) =

∫
R3

f(p, r, t)dr

=
1

(2π~)3

∫
R3

∫
R3

〈
r +

1

2
ξ

∣∣∣∣ ρ̂(t)

∣∣∣∣r− 1

2
ξ

〉
exp

(
−ip

~
· ξ
)
drdξ

=
1

(2π~)3

∫
R3

∫
R3

〈r′| ρ̂(t) |r′′〉 exp
[
−ip

~
· (r′ − r′′)

]
dr′dr′′ . (1.18)

With the knowledge of the expression for the momentum eigenstate |p〉 in position
space [12]

〈r | p〉 =
1

(2π~)3/2
exp

(
i
p

~
· r
)
, (1.19)

as well as the completeness relation

1 =

∫
R3

|r〉〈r|dr , (1.20)

equation (1.18) can be related to the momentum distribution [10]

f(p, t) =

∫
R3

∫
R3

〈p | r′〉 〈r′| ρ̂(t) |r′′〉 〈r′′ | p〉dr′dr′′

= 〈p| ρ̂(t) |p〉 . (1.21)

The two marginals f(r, t) and f(p, t) were just related to the two desired quantities,
the position distribution (i.e. particle density) and the momentum distribution, re-
spectively, in analogy to a classical distribution function fcl.(p, r, t). To arrive at an
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1.1 Density operator and the Wigner transformation

expression connecting the current density j(r, t) with f(p, r, t), we rewrite Eq. (1.10)
as a first step by making use of Eqs. (1.11) and (1.12) as

j(r, t) = −i~q
m∗
∇ξρ̃(r, ξ, t)

∣∣
ξ=0

. (1.22)

The inverse relation of Eq. (1.13) is given by

ρ̃(r, ξ, t) =

∫
R3

f(p, r, t) exp
(
i
p

~
· ξ
)
dp , (1.23)

so that Eq. (1.22) can be expressed as

j(r, t) = −i~q
m∗

[
∇ξ

∫
R3

f(p, r, t) exp
(
i
p

~
· ξ
)
dp

]∣∣∣∣
ξ=0

=
q

m∗

[∫
R3

pf(p, r, t) exp
(
i
p

~
· ξ
)
dp

]∣∣∣∣
ξ=0

=
q

m∗

∫
R3

pf(p, r, t)dp . (1.24)

This expression is as well in complete analogy to the case of the classical Boltzmann
phase space distribution.

As a final point, we inspect the peculiar property of the Wigner distribution function
to take on negative values, in some cases at least. For this we state without derivation
the trace product rule [10]

Tr (ρ̂1ρ̂2) = (2π~)3

∫
R3

∫
R3

fρ̂1(p, r, t)fρ̂2(p, r, t)dpdr . (1.25)

In the special case of two pure, orthogonal states ρ̂1 = |ψ1〉〈ψ1| and ρ̂2 = |ψ2〉〈ψ2| the
left-hand side of the equation above vanishes:

Tr (ρ̂1ρ̂2) = Tr (|ψ1〉〈ψ1|ψ2〉〈ψ2|)
= |〈ψ1|ψ2〉|2

= 0 . (1.26)

Such orthogonal states could be for instance the eigenfunctions of the harmonic os-
cillator or any other bound states. In order that the right-hand side of Eq. (1.25)
vanishes as well, it must be possible that the Wigner functions fρ̂1(p, r, t) and/or
fρ̂2(p, r, t) can take on negative values, leading to cancellations in the phase space
integral [10]. The possibility of a Wigner function which is positive everywhere is
therefore not excluded, but the occurrence of negative values in some cases hampers
to view the Wigner function as a true probability distribution.

To become more familiar with the negativity of the Wigner function we consider
two simple examples of a coherent and an incoherent mixture of two plane waves
traveling in opposite directions. The two plane waves are chosen to be given by

〈r | ±k〉 = exp(±ik · r) . (1.27)

9



1 Quantum mechanics in phase space

The density matrix for the incoherent case is labeled mixed and determined by

ρ̂mix. =
1

2

(
|k〉〈k|+ | − k〉〈−k|

)
. (1.28)

For the coherent case we choose the entangled state |ψ〉 = 1√
2

(|k〉+ | − k〉) and

evaluate the corresponding density matrix |ψ〉〈ψ| to arrive at

ρ̂coh. =
1

2

(
|k〉〈k|+ | − k〉〈−k|+ | − k〉〈k|+ |k〉〈−k|

)
. (1.29)

It is obvious to see that ρ̂mix. is diagonal when calculating the corresponding 2 × 2
density matrix with the states | ± k〉, whereas ρ̂coh. exhibits nonzero off-diagonal
elements, i.e. coherences. In coordinate representation the density matrices can be
written as

〈r′|ρ̂mix.|r′′〉 =
1

2

{
exp[ik · (r′ − r′′)] + exp[−ik · (r′ − r′′)]

}
,

ρ̃mix.(r, ξ) = cos(k · ξ) , (1.30)

as well as

〈r′|ρ̂coh.|r′′〉 =
1

2

{
exp[ik · (r′ − r′′)] + exp[−ik · (r′ − r′′)]

+ exp[ik · (r′ + r′′)] + exp[−ik · (r′ + r′′)]
}
,

ρ̃coh.(r, ξ) = cos(k · ξ) + cos(2k · r) . (1.31)

The corresponding Wigner functions can then by calculated by making use of Eq.
(1.13) and are given by

fmix.(p, r) =
1

2

[
δ(p− ~k) + δ(p + ~k)

]
(1.32)

and by

fcoh.(p, r) =
1

2

[
δ(p− ~k) + δ(p + ~k)

]
+ cos(2k · r)δ(p) . (1.33)

As one can see, the Wigner function for the mixed case is strictly positive and ex-
hibits two delta function peaks at the corresponding momenta of the two plane waves.
With respect to r the function is constant. In contrast, the Wigner function for the
coherent case displays another delta function at p = 0, modulated along r by a cosine
function. Clearly, fcoh.(p, r) can take on negative values. Upon integration of the
Wigner functions with respect to the momentum coordinate one obtains the following
particle densities:

nmix.(r) = 1 (1.34)

and

ncoh.(r) = 1 + cos(2k · r) . (1.35)

10



1.2 Equation of motion in phase space

Obviously, the particle density for the mixed state has a constant value of 1 since the
single plane waves do not interact with each other, whereas the particle density for
the coherent state oscillates and takes on values between 0 and 2. This stationary
oscillation pattern is caused by the interference of the two plane waves traveling
in opposite directions. The results enable to draw the preliminary conclusion that
interference effects manifest itself in phase space as oscillating regions, causing the
Wigner function to become negative-valued as well.

To sum up, the central results of this section are that it is possible to map the
density operator onto a phase space distribution f(p, r, t) by making use of the Wigner
transformation as defined in Eq. (1.14). The Wigner function f(p, r, t) obtained by
this is real-valued (single band case) and the marginals as well as the first moment
with respect to p result in the same quantities as in the case of the classical Boltzmann
probability distribution. A distinct feature of the Wigner function is the possibility to
take on negative values, hampering to view it as a real probability distribution. The
Wigner function is thus also termed quasi-distribution function. The quantities of
interest for device simulations are the particle density n(r, t) and the current density
j(r, t), determined by the zeroth and first moment of f(p, r, t) with respect to p:

n(r, t) =

∫
R3

f(p, r, t)dp ,

j(r, t) =
q

m∗

∫
R3

pf(p, r, t)dp . (1.36)

1.2 Equation of motion in phase space

In Eq. (1.14) it was shown how to transform the density operator ρ̂ to the Wigner
function f(p, r, t). This mapping can be extended to arbitrary operators Â by the
Weyl-Wigner correspondence [10]

A(p, r, t) =

∫
R3

〈
r +

1

2
ξ

∣∣∣∣ Â(t)

∣∣∣∣r− 1

2
ξ

〉
exp

(
−ip

~
· ξ
)
dξ . (1.37)

In this way Hilbert space operators can be mapped onto c-number phase space func-
tions A(p, r, t). As before, in the case of scalar, Hermitian operators the corresponding
phase space functions are real-valued. The expectation value of an operator,

〈Â〉 = Tr
(
Âρ̂
)
, (1.38)

can be expressed in terms of phase space functions as [10]

〈Â〉 =

∫
R3

∫
R3

A(p, r, t)f(p, r, t)drdp , (1.39)

when making use of the trace product rule Eq. (1.25). The equation is again formally
equivalent to classical statistical physics [10].

11



1 Quantum mechanics in phase space

A central component which has not been discussed yet is the equation of motion
for f(p, r, t). In the case of the density matrix, the von Neumann equation

i~∂tρ̂ = [Ĥ, ρ̂] (1.40)

determines the time evolution of ρ̂. To find the corresponding equation in phase space
we now apply a Wigner transformation to both sides of Eq. (1.40). The result of this
operation on the left-hand side is simply the time derivative of the Wigner function
i~∂tf(p, r, t). The result of the right-hand side is more complicated to evaluate. On
the one hand, we need to know the phase space function H(p, r, t) to the Hamilton
operator Ĥ(t). This can be calculated in general when making use of Eq. (1.37) and
for the special case of a Hamiltonian of the form Ĥ = T (p̂)+U(r̂, t), i.e. without prod-
ucts of non-commuting operators, the corresponding phase space function is simply
given by replacing the operators by their eigenvalues, H(p, r, t) = T (p) + U(r, t) [9].
On the other hand, we need to know the result of applying the Wigner transformation
to the product of two operators. This is calculated in the following.

We now consider the general case of an operator Ẑ given as the product of two other
operators, i.e. by Ẑ = X̂Ŷ , and calculate the corresponding phase space function
Z(p, r) in terms of X(p, r) and Y (p, r) by evaluating Eq. (1.37). The temporal
variable t is suppressed for the sake of clarity and the derivation listed below is in
close analogy to the one given in [13]. The coordinate representation of Ẑ can be
written as

〈r′|Ẑ|r′′〉 =

∫
R3

X(r′, s)Y (s, r′′)ds , (1.41)

which results upon inserting in Eq. (1.37) in

Z(p, r) =

∫
R3

∫
R3

X

(
r +

1

2
ξ, s

)
Y

(
s, r− 1

2
ξ

)
exp

(
−ip

~
· ξ
)
dξds . (1.42)

To express the operators X̂ and Ŷ in terms of one spatial and one momentum coor-
dinate as well, we make use of the inverse relation of Eq. (1.37)

A

(
r +

1

2
ξ, r− 1

2
ξ

)
=

1

(2π~)3

∫
R3

A(p, r) exp
(
i
p

~
· ξ
)
dp . (1.43)

This enables us to rewrite the two terms in Eq. (1.42) as

X

(
r +

1

2
ξ, s

)
=

1

(2π~)3

∫
R3

X

(
p′,

r + s

2
+
ξ

4

)
exp

[
i
p′

~
·
(
r− s +

ξ

2

)]
dp′ (1.44)

and

Y

(
s, r− 1

2
ξ

)
=

1

(2π~)3

∫
R3

Y

(
p′′,

r + s

2
− ξ

4

)
exp

[
−ip

′′

~
·
(
r− s− ξ

2

)]
dp′′ ,

(1.45)
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1.2 Equation of motion in phase space

when identifying the appropriate central and difference coordinates. Inserting this
into Eq. (1.42) results in

Z(p, r) =
1

(2π~)6

∫∫∫∫
X

[
p′, r− 1

2

(
r− s− ξ

2

)]
Y

[
p′′, r− 1

2

(
r− s +

ξ

2

)]
× exp

[
i
p′

~
·
(
r− s +

ξ

2

)]
exp

[
−ip

′′

~
·
(
r− s− ξ

2

)]
× exp

(
−ip

~
· ξ
)
dp′dp′′dξds . (1.46)

It is convenient to perform the following change of variables:

η′ = r− s− ξ

2
,

η′′ = −
(
r− s +

ξ

2

)
. (1.47)

Since the value of the corresponding Jacobian is given by one, we arrive at the ex-
pression

Z(p, r) =
1

(2π~)6

∫∫∫∫
X

(
p′, r− 1

2
η′
)
Y

(
p′′, r +

1

2
η′′
)

exp
[
i
p

~
· (η′ + η′′)

]
× exp

(
−ip

′

~
· η′′
)

exp

(
−ip

′′

~
· η′
)
dp′dp′′dη′dη′′ . (1.48)

As a next step we introduce the so called Bopp shifts [2] [9]

f(x + a) = exp(a · ∇x)f(x) , (1.49)

which can be seen as a Taylor series expansion to infinite order. In addition, we

introduce the directional nabla operators
←−
∇ and

−→
∇ which are meant to act to the left

and to the right, respectively. With this in hands it is possible to rewrite the terms
of the integrand in the first line of Eq. (1.48) as

Ia = X

(
p′, r− 1

2
η′
)
Y

(
p′′, r +

1

2
η′′
)

exp
[
i
p

~
· (η′ + η′′)

]
= X (p′, r) exp

(
−
←−
∇r ·

η′

2

)
exp

(
η′′

2
·
−→
∇r

)
Y (p′′, r) exp

[
i
p

~
· (η′ + η′′)

]
= X(p′, r) exp

(
i
p

~
· η′′
)

exp

(
−i~

2

←−
∇p ·

−→
∇r

)
exp

(
i
~
2

←−
∇r ·

−→
∇p

)
× exp

(
i
p

~
· η′
)
Y (p′′, r) , (1.50)

where we made use of the Bopp shifts in the second and in the third line. As one can
see, the first two terms depend solely on the integration variables p′ and η′′ but not
on p′′ and η′, and vice versa in the case of the last two terms. The exponentials in
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1 Quantum mechanics in phase space

the second line of Eq. (1.48) exhibit an analogous dependence, so that it is possible
to split up the quadruple integral into a product of two double integrals in such a way
that

Z(p, r) =
1

(2π~)3

∫∫
X(p′, r) exp

(
i
p− p′

~
· η′′
)
dp′dη′′ exp

[
i
~
2

(←−
∇r ·

−→
∇p −

←−
∇p ·

−→
∇r

)]
× 1

(2π~)3

∫∫
Y (p′′, r) exp

(
i
p− p′′

~
· η′
)
dp′′dη′ . (1.51)

When recalling the representation of the delta function listed in Eq. (1.17), it is
straightforward to identify the first integral expression as

1

(2π~)3

∫∫
X(p′, r) exp

(
i
p− p′

~
· η′′
)
dp′dη′′ =

∫
X(p′, r)δ(p− p′)dp′

= X(p, r) (1.52)

and in the same manner the second integral expression as Y (p, r). The exponential
operators in between X (p, r) and Y (p, r) are usually collected in the symbol [9]

? = exp

[
i
~
2

(←−
∇r ·

−→
∇p −

←−
∇p ·

−→
∇r

)]
, (1.53)

enabling to write the final result in the compact notation

Z(p, r) = X (p, r) ? Y (p, r) . (1.54)

With this in hands, we are now able to write down the phase space equivalent to the
von Neumann equation. When comparing the definition of the Wigner transformation
and the Wigner-Weyl correspondence, Eqs. (1.14) and (1.37), respectively, one notices
a difference of a factor of (2π~)3. But, since the inverse relation Eq. (1.43) is involved
in the derivation of the star product, the factors balance each other and one finds that
the product Ĥρ̂ is mapped onto

Ĥ(t)ρ̂(t) 7→ H (p, r, t) ? f (p, r, t) . (1.55)

Therefore, upon applying a Wigner transformation to the von Neumann equation,
(1.40), one finds the phase space analogue, Moyal’s equation [9],

∂tf (p, r, t) = {{H (p, r, t) , f (p, r, t)}} , (1.56)

with the Moyal bracket defined as [9]

{{H (p, r, t) , f (p, r, t)}} =
H (p, r, t) ? f (p, r, t)− f (p, r, t) ? H (p, r, t)

i~
. (1.57)

In addition to the time evolution equation (1.56) and in analogy to the eigenvalue
equations of Hilbert space quantum mechanics, one finds the following system of
equations for static Wigner functions [9]

H (p, r, t) ? f (p, r, t) = Ef (p, r, t) ,

f (p, r, t) ? H (p, r, t) = Ef (p, r, t) . (1.58)
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1.2 Equation of motion in phase space

Moyal’s equation (1.56) together with the ?-genvalue [9] equations (1.58) completely
determine possible Wigner functions and thus constitute an autonomous formulation
of quantum mechanics in phase space [9].

The star product ? is a central concept in this formulation and incorporates the
non-commutativity of Hilbert space operators. To evaluate the expressions explicitly,
various techniques are helpful. For instance, one can make use of the Bopp shifts as
defined in Eq. (1.49) to obtain [9]

H (p, r, t) ? f (p, r, t) = H

(
p− i~

2

−→
∇r, r + i

~
2

−→
∇p, t

)
f (p, r, t) . (1.59)

When inserting the particular expression for H (p, r, t) one may end up with a simple
differential equation. A prototypical example for an eigenvalue problem in phase
space is the harmonic oscillator, as in Hilbert space quantum mechanics. In this
case applying the Bopp shifts to the ?-genvalue equations (1.58) results in a system
of differential equations for f (p, r, t), whose solution involves Laguerre polynomials,
as outlined in detail in [10] or [9]. Another useful technique is to apply a Taylor
expansion or also called gradient expansion [14] to the star product:

? = 1 + i
~
2

(←−
∇r ·

−→
∇p −

←−
∇p ·

−→
∇r

)
− ~2

8

(←−
∇r ·

−→
∇p −

←−
∇p ·

−→
∇r

)2

+O(~3) . (1.60)

This is of particular use when considering the classical limit ~ → 0, or if one is in-
terested in calculating the leading order quantum corrections for transport equations.
The leading order terms with respect to ~ of the Moyal bracket are

{{H, f}} =
1

i~

[
Hf − fH + i

~
2
H
(←−
∇r ·

−→
∇p −

←−
∇p ·

−→
∇r

)
f

−i~
2
f
(←−
∇r ·

−→
∇p −

←−
∇p ·

−→
∇r

)
H +O(~2)

]
= H

←−
∇r ·

−→
∇pf −H

←−
∇p ·

−→
∇rf +O(~) , (1.61)

when viewing H and f again as scalars and not as matrices. As a result, the Moyal
bracket reduces in the classical limit to the Poisson bracket [9]

lim
~→0
{{H, f}} = {H, f}

= (∇rH) · (∇pf)− (∇pH) · (∇rf) . (1.62)

Quantum mechanics in phase space is the natural framework to calculate quantum
corrections to classical statistical physics due to the analogous descriptions. In both
cases a probabilistic description for an ensemble of particles is used (or also for a single
particle alone in the case of quantum mechanics) and the measurable quantities are
given by formally equivalent expressions [10].

Nevertheless, the aim of this work is not the consideration of the classical limit but
a full quantum mechanical description of the charge transport in tunneling devices.
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1 Quantum mechanics in phase space

Due to the fact that strong spatial variations of the potential U(r, t) are present in
such cases, a gradient expansion as outlined in Eq. (1.60) cannot be applied and the
full star product has to be considered. For this purpose it is convenient to introduce
an integral representation of the star product. For simplicity and the later use of
the expressions in the next chapter we restrict ourselves to the one-dimensional case
p, x ∈ R. For the part of Moyal’s equation (1.56) containing the potential U(x, t) we
need to consider

U(x, t) ? f(p, x, t) = U(x, t) exp

[
i~
2

(←−
∂ x

−→
∂ p −

←−
∂ p

−→
∂ x

)]
f(p, x, t)

= U(x, t) exp

(
i~
2

←−
∂ x

−→
∂ p

)
f(p, x, t) . (1.63)

We now replace f(p, x, t) by the equivalent expression

f(p, x, t) =

∫ ∞
−∞

f(p′, x, t)δ(p− p′)dp′

=
1

2π~

∫∫
f(p′, x, t) exp

(
i
p− p′

~
η′
)
dp′dη′ , (1.64)

so that we find for Eq. (1.63) when applying two times the Bopp shifts:

U(x, t) ? f(p, x, t) =
1

2π~

∫∫
U(x, t) exp

(
i~
2

←−
∂ x

−→
∂ p

)
×f(p′, x, t) exp

(
i
p− p′

~
η′
)
dp′dη′

=
1

2π~

∫∫
U(x, t) exp

(
i
p− p′

~
η′ − η′

2

←−
∂ x

)
f(p′, x, t)dp′dη′

=
1

2π~

∫∫
U

(
x− η′

2
, t

)
f(p′, x, t) exp

(
i
p− p′

~
η′
)
dp′dη′ .

(1.65)

As a result, the Moyal bracket for the potential term of the Hamiltonian can be written
in integral representation as

{{U(x, t), f(p, x, t)}} =
i

2π~2

∫∫ [
U

(
x+

η′

2
, t

)
− U

(
x− η′

2
, t

)]
f(p′, x, t)

× exp

(
i
p− p′

~
η′
)
dp′dη′ . (1.66)

We will return to this equation in the next chapter in the context of the pseudo-
differential operator.

As a side note: In Eq. (1.54) we derived in general how the product Ẑ = X̂Ŷ of two
operators is mapped onto the corresponding phase space function Z(p, x) = X(p, x) ?
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1.2 Equation of motion in phase space

Y (p, x). The star product ? is a central concept and enables a quick calculation of
the phase space representation of more general Hamiltonians. A common problem for
device physics is to incorporate a spatially dependent effective mass m∗(x). In this
case, the kinetic part of the Hamilton operator exhibits a dependence on the position
coordinate and is usually written in a symmetrically ordered form as [15] [16]

T (p̂, x̂) = p̂
1

2m∗(x̂)
p̂ . (1.67)

To arrive at the corresponding phase space function T (p, x), we can make direct use of
the previous result Z(p, x) = X(p, x) ? Y (p, x) by replacing the operators p̂ and x̂ by
their phase space functions, which are simply their eigenvalues p and x, respectively,
and by linking the single terms with the star product. This results in [16]

T (p, x) = p ?
1

2m∗(x)
? p

=
p2

2m∗(x)
+

~2

8
∂2
x

1

m∗(x)
. (1.68)

As one can see, the second term depends solely on x and can be seen as a correction
to the potential U(x, t). The evaluation of the Moyal bracket for the first term is
more involved due to the simultaneous dependence on p and x. The resulting integral
expressions can be found for instance in [17].
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2 Wigner transport equation

After the general considerations in the last chapter, we rewrite Moyal’s equation in
Sec. 2.1 for the special case of a single band in the parabolic band approximation to
arrive at the so-called Wigner transport equation (WTE). All calculations are done
for the one-dimensional case. After a brief discussion of the appropriate boundary
conditions, the pseudo-differential operator of the WTE is considered in more detail
in Sec. 2.2.

2.1 Single band, parabolic approximation

To derive the Wigner transport equation for an electron in a single band and in one
dimension, we start with the Moyal equation, see Eqs. (1.56), (1.57) and (1.53),

∂tf(p, x, t) = {{H(p, x, t), f(p, x, t)}}

=
H(p, x, t) ? f(p, x, t)− f(p, x, t) ? H(p, x, t)

i~
, x, p ∈ R . (2.1)

The Hamiltonian is chosen to be of the form H(p, x, t) = E(p) + qV (x, t), represented
as the sum of the kinetic energy E(p) and the product of the electrostatic potential
V (x, t) times the electron charge q = −e with e > 0. In principle, either E and V could
depend on both coordinates x and p. This would be the case in more complicated
situations as for instance when taking a spatially dependent effective mass or magnetic
fields into account. In this work we restrict ourselves to the simplest case and neglect
such effects.

In [2] it is shown that in the case of a single-band, such that H and f are simply
real functions and no matrices, one can rewrite the exponential functions of the star-
product in terms of a single sine function:

{{H, f}} =
1

i~

{
H exp

[
i~
2

(←−
∂x
−→
∂p −

←−
∂p
−→
∂x

)]
f − f exp

[
i~
2

(←−
∂x
−→
∂p −

←−
∂p
−→
∂x

)]
H

}
=

1

i~
H

{
exp

[
i~
2

(←−
∂x
−→
∂p −

←−
∂p
−→
∂x

)]
− exp

[
−i~

2

(←−
∂x
−→
∂p −

←−
∂p
−→
∂x

)]}
f

=
2

~
H sin

[
~
2

(←−
∂x
−→
∂p −

←−
∂p
−→
∂x

)]
f . (2.2)

From this equation it is evident that the action of the Moyal bracket on f(p, x, t) is
purely real. For the special choice of the Hamiltonian H(p, x, t) = E(p) + qV (x, t) the
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2 Wigner transport equation

equation can be simplified further to

{{H, f}} =
2

~

[
E(p) sin

(
−~

2

←−
∂p
−→
∂x

)
f + qV (x, t) sin

(
~
2

←−
∂x
−→
∂p

)
f

]
. (2.3)

The term containing the potential will be treated later. For the kinetic term we
perform a gradient expansion, i.e. use the Taylor-series of the sine function to examine
the leading-order terms in more detail

{{E, f}} = −∂E
∂p

∂f

∂x
+

~2

24

∂3E

∂p3

∂3f

∂x3
+O(~5) . (2.4)

The zeroth-order contribution in Eq. (2.4) with respect to ~ is −∂pE ∂xf , correspond-
ing to an advection of f(p, x, t) with propagation speed ∂pE(p). The higher-order
terms describe possible additional effects, e.g. dispersion in the case of the second-
order term with respect to ~, compare e.g. [18, Sec. 11.1.2]. In the case of a parabolic
dispersion relation E(p), as for instance for free electrons, all higher derivatives of
E(p) vanish such that the Moyal bracket reduces to the advection term only, with the
propagation speed given by ∂pE = p/m. But is this still valid if the band structure is
only approximated by a parabolic dispersion relation for states close to the conduc-
tion band edge? In the case of the semi-classical Boltzmann transport equation this
question is easy to be responded to since no non-local terms appear in the equation.
Only the slope of the dispersion relation at a certain momentum p in the phase space
contributes to the temporal evolution of the distribution f(p, x, t) at this momentum.
Due to the non-local nature of the Moyal equation it is not clear if it suffices to con-
sider only the advection term. In principle, the whole band structure influences the
time evolution of the distribution function at a certain phase space element.

To have a closer look at this, we consider the simple case of a cosine-shaped band
structure

E(p) = EC +
EBW

2

[
1− cos

(a
~
p
)]

(2.5)

with EC being the energy of the conduction band edge, EBW the band width and a
the lattice constant. For small values of p, such that a

~ p� 1, we retrieve the parabolic
band approximation and can consider the prefactors as an effective mass m∗:

E(p) ≈ EC +
1

2

[
EBW

2

(a
~

)2
]
p2 = EC +

p2

2m∗
(2.6)

Inserting the cosine-shaped band structure into Eq. (2.4) and considering the limit of
small p, we obtain for the zeroth-order term

∂pE(p) =
EBW

2

a

~
sin
(a
~
p
)

=
EBW

2

(a
~

)2

p

[
1− 1

3!

(a
~
p
)2

+O
((a

~
p
)4
)]

≈ p

m∗
. (2.7)
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2.1 Single band, parabolic approximation

One can see, that no additional assumptions must be made and as soon as the
parabolic approximation well describes the real band structure also the ordinary ad-
vection is a good approximation, at least for the zeroth-order term.

To see if the terms of higher order give any significant contribution, we consider the
second-order term of Eq. (2.4):

~2

24
∂pppE(p) = −a~

24

EBW
2

(a
~

)2

sin
(a
~
p
)

= −a
2

24

p

m∗

[
1− 1

3!

(a
~
p
)2

+O
((a

~
p
)4
)]

≈ −a
2

24

p

m∗
. (2.8)

The additional prefactor is in general very small, namely of O(10−20 m2). Only in the
case of a rapidly varying f(p, x, t) with respect to the x-variable one could expect a
significant contribution, since ∂xxxf(p, x, t) could take on very large values. But even
if f(p, x, t) would vary on the length scale of nanometers, the action of the second-
order term should be at least of O(100) smaller than that of the zeroth-order term.
Therefore, the higher-order terms can be ignored and the time evolution of electrons in
a cosine-shaped band structure around EC is well described by the ordinary advection
term. Since the dispersion relation E(p) is in general a very smooth function, so that
a Taylor expansion around the band minimum converges rapidly, considering solely
the advection term seems to be a valid procedure also for more complicated band
structures.

The potential term of the Hamiltonian is more complicated to handle and requires to
consider the full Moyal bracket {{qV (x, t), f(p, x, t)}} in order to model the quantum
transport in tunneling devices appropriately. For this purpose, we make use of the
integral expression of the Moyal bracket given in Eq. (1.66) and set U(x, t) = qV (x, t).
We follow the notation used in [1] and denote the integral expression

(Θ~[V ]f) (p, x, t) =
im∗

2π~

∫ ∞
−∞

∫ ∞
−∞

[
V
(
x+ η′

2
, t
)
− V

(
x− η′

2
, t
)]

~
f(p′, x, t)

× exp

(
i
p− p′

~
η′
)
dp′dη′ (2.9)

as pseudo-differential operator. With this the WTE for an arbitrary potential qV (x, t),
obtained from Eq. (2.1), can be written as

∂tf(p, x, t) = − p

m∗
∂xf(p, x, t) +

q

m∗
(Θ~[V ]f) (p, x, t) . (2.10)

In the following we will denote the first and the second term on the right-hand side as
advection and drift term, respectively. The advection term is completely analogous
to the semi-classical BTE but the drift term is more involved. In the classical case
the drift term is a local expression and constitutes solely of a force F (x, t) times the
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2 Wigner transport equation

p

x

device

p>0

p<0

xL xR

inflow

inflowoutflow

outflow

Figure 2.1: Phase space illustration of the inflow and outflow boundary conditions.
The red regions represent the arguments of the momentum distribution
inside the contacts which are then advected into the device. The lengths
of the arrows indicate the propagation speeds in the different phase space
regions.

momentum derivative of the distribution function ∂pf(p, x, t) [1]. In the case of the
WTE, the whole potential V (x′, t) with x′ ∈ R influences the time evolution of the
quasi-distribution function f(p, x, t) at a certain position x.

As mentioned in the introduction, an important aspect of using the Wigner func-
tion for describing quantum transport is the possibility to model contacts in a conve-
nient way. In the trivial case that the potential is constant everywhere the action of
the pseudo-differential operator vanishes and the time evolution of f(p, x, t) is com-
pletely determined by advection. The analytical solution of Eq. (2.10) for the case
(Θ~[V ]f) (p, x, t) = 0 is given by

f(p, x, t) = f
(
p, x− p

m∗
(t− t′), t′

)
. (2.11)

Therefore, the parts of f(p, x, t) in phase space with p > 0 travel from smaller to larger
values of x and for p < 0 the situation is vice versa. Suppose that one is interested
in reducing the considered x domain to a finite region by introducing contacts at the
positions xL and xR, with xL < xR. The appropriate boundary conditions are then to
specify the inflow from the contacts at xL for p > 0 and at xR for p < 0, see also Fig.
2.1. The phase space regions at xL for p < 0 and at xR for p > 0 correspond to the
outflow of f(p, x, t). It should be noted that scattering processes are not considered
in this work and the outflow is the only mechanism that enables a relaxation of the
solution in the course of time. Therefore, for fixed boundary conditions and given
an arbitrary initial condition, f(p, x, t) will converge to a stationary distribution for
t → ∞, completely determined by the particular boundary conditions. It is worth
noting that the specification of one boundary condition for each value of p is in
accordance with the order of the derivative with respect to x in Eq. (2.10) [4].

Now, to model the more interesting situation with (Θ~[V ]f) (p, x, t) 6= 0, one usually
applies the same boundary conditions, preferably in regions where the action of the
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2.2 Properties of the pseudo-differential operator

pseudo-differential operator becomes negligible. This treatment is not exact, of course,
and one introduces an error in the simulations when considering a too small x domain.
This point will be considered in more detail in Chap. 5 when examining the numerical
results. Despite of this source of error, it is important to note that the inflow and
outflow boundary conditions enable to clearly distinguish the incoming and outgoing
parts of the Wigner distribution and thus to appropriately model contacts.

2.2 Properties of the pseudo-differential operator

The pseudo-differential operator Θ~[V ] introduced in Eq. (2.9) can also be expressed
in the following form

(Θ~[V ]f) (p, x, t) =
im∗

2π~

∫ ∞
−∞

∫ ∞
−∞

[
V
(
x+ η′

2
, t
)
− V

(
x− η′

2
, t
)]

~
f(p′, x, t)

× exp

(
i
p− p′

~
η′
)
dp′dη′

= im∗
∫ ∞
−∞

[
V
(
x+ η′

2
, t
)
− V

(
x− η′

2
, t
)]

~
f̃(η′, x, t) exp

(
i
p

~
η′
)
dη′ ,

(2.12)

where f̃(η′, x, t) labels the Fourier transform of f(p′, x, t) and is given by

f̃(η′, x, t) =
1

2π~

∫ ∞
−∞

f(p′, x, t) exp

(
−ip

′

~
η′
)
dp′ . (2.13)

To illustrate the analogy with a purely differential operator we consider briefly the
classical operator Lp = −F∂p with a force F , for which we find

(Lpf) (p, x, t) = −F∂pf(p, x, t)

= −F∂p
∫ ∞
−∞

f̃(η, x, t) exp
(
i
p

~
η
)
dη

= −F
∫ ∞
−∞

i
η

~
f̃(η, x, t) exp

(
i
p

~
η
)
dη , (2.14)

when making use of the inverse expression of Eq. (2.13). Therefore, the differential
operator Lp acts in Fourier transformed space as a simple multiplication on f̃(η, x, t).
This is very similar to the result obtained in Eq. (2.12), making it reasonable to
introduce the notation pseudo-differential operator. The multiplicator

(δV )~(η
′, x, t) =

im∗

~

[
V

(
x+

η′

2
, t

)
− V

(
x− η′

2
, t

)]
(2.15)

is called the symbol of the pseudo-differential operator [1].
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2 Wigner transport equation

As can be seen from Eq. (2.12), the potential acts in a non-local way on the Wigner
function f(p, x, t). Since in general f̃(η′, x, t) → 0 for η′ → ±∞ (corresponding to
f(p, x, t) having a finite width with respect to the p-variable), the influence of the
potential on the Wigner function decays with increasing distance from the actual
position x. This is expected, of course, and is sometimes used in practical compu-
tations to introduce a finite correlation length rC corresponding to a cut-off in the
integrals [4]. The non-locality is typical for a quantum mechanical description and,
from a numerical point of view, makes actual computations much more complicated
than in the case of the semi-classical BTE. The question on how to treat the WTE
numerically is discussed in more detail in the following section.

In Sec. 1.1 it was shown how to arrive at measurable quantities like the particle
density n(x, t) and the current density j(x, t), see Eq. (1.36), by calculating the first
moments of f(p, x, t) with respect to p. One fundamental property of the WTE is
that the continuity equation can be retrieved by integrating it with respect to p. To
show this, we consider at first only the pseudo-differential operator Eq. (2.12):

∫ ∞
−∞

(Θ~[V ]f) (p, x, t)dp =
im∗

2π~

∫ ∞
−∞

∫ ∞
−∞

[
V
(
x+ η′

2
, t
)
− V

(
x− η′

2
, t
)]

~
f(p′, x, t)

× exp

(
−ip

′

~
η′
)(∫ ∞

−∞
exp

(
i
p

~
η′
)
dp

)
dp′dη′

=
im∗

2π~

∫ ∞
−∞

∫ ∞
−∞

[
V
(
x+ η′

2
, t
)
− V

(
x− η′

2
, t
)]

~
f(p′, x, t)

× exp

(
−ip

′

~
η′
)

2π~δ(η′)dp′dη′

=
im∗

~

[
lim
u′→x+

V (u′, t)− lim
u′→x−

V (u′, t)

] ∫ ∞
−∞

f(p′, x, t)dp′ .

(2.16)

In the case of a continuous potential V (x, t), it is obvious that the potential term
in Eq. (2.16) vanishes. But also if the potential has a finite number of steps the
contribution can be neglected. If we assume that V (x, t) has N discontinuities at the
positions xn and each of them having a finite difference between the left and right
limit, we can write Eq. (2.16) as a sum

∫ ∞
−∞

(Θ~[V ]f) (p, x, t)dp =
N∑
n=1

cnΘ(x = xn) , (2.17)

where each of the coefficients cn takes on finite values. The function Θ(x = xn) stands
for

Θ(x = xn) =

{
1 if x = xn

0 elsewhere
. (2.18)

24



2.2 Properties of the pseudo-differential operator

As a result, when integrating the whole WTE (2.10) with respect to p, we arrive at

∂tn(x, t) +
1

q
∂xj(x, t) =

q

m∗

N∑
n=1

cnΘ(x = xn) , (2.19)

with

n(x, t) =

∫ ∞
−∞

f(p, x, t)dp ,

j(x, t) = q

∫ ∞
−∞

p

m∗
f(p, x, t)dp .

Eq. (2.19) seems to contain an additional source term on the right-hand side but
in the sense of the Lebesgue measure it is obvious that this term does not give any
contribution as soon as one integrates the equation over an arbitrary interval Cj =
[xj−1/2, xj+1/2]. It is reasonable to deal with an integral representation since n(x, t)
represents the particle density at point x which is not directly accessible and one
can only measure the number of particles contained in a certain interval. When we
introduce

n̄(xj, t) =
1

∆xj

∫
Cj

n(x, t)dx , (2.20)

we can write the integral form of Eq. (2.19) as

q∂tn̄(xj, t) +
1

∆xj

[
j(xj+1/2, t)− j(xj−1/2, t)

]
= 0 , (2.21)

which is exactly the well-known continuity equation. It is, therefore, valid to say that
any solution of the WTE (2.10) inherently fulfills the continuity equation as well,
which may be written in differential form as

q∂tn(x, t) + ∂xj(x, t) = 0 . (2.22)

As an additional note, it is known from Schrödinger’s formulation of quantum
mechanics that even infinitely high steps or singularities in the potential V (x, t) can
be considered. To be consistent with the continuity equation one has to take into
account that the current is not well defined at such points because the wave function
is allowed to have kinks at singular points of V (x, t), see e.g. [12]. Since, in this work,
we will restrict ourselves to cases where V (x, t) stays finite, this question is not treated
in more detail.

For the later use in Chap. 3 we show that the outcome of the operator acting
on the distribution function, (Θ~[V ]f) (p, x, t), is real. At first, consider the Fourier
transform of the Wigner function, defined by Eq. (2.13). Since f(p, x, t) is real it is
obvious that

f̃(−η, x, t) =
(
f̃(η, x, t)

)∗
. (2.23)
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2 Wigner transport equation

The same holds true for the symbol of the pseudo-differential operator

(δV )~(−η, x, t) = ((δV )~(η, x, t))
∗ , (2.24)

as can be seen from Eq. (2.15). Combining these two equations yields

(δV )~(−η, x, t)f̃(−η, x, t) =
(

(δV )~(η, x, t)f̃(η, x, t)
)∗

, (2.25)

so that the pseudo-differential operator can be rewritten as

(Θ~[V ]f) (p, x, t) =

∫ ∞
−∞

(δV )~(η
′, x, t)f̃(η′, x, t) exp

(
i
p

~
η′
)
dη′

=

∫ ∞
0

(δV )~(η
′, x, t)f̃(η′, x, t) exp

(
i
p

~
η′
)
dη′

−
∫ 0

∞
(δV )~(−η′, x, t)f̃(−η′, x, t) exp

(
−i p

~
η′
)
dη′

= 2<
{∫ ∞

0

(δV )~(η
′, x, t)f̃(η′, x, t) exp

(
i
p

~
η′
)
dη′
}
. (2.26)
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3 Numerical methods for the Wigner
transport equation

Before focusing on the numerical schemes developed in this work, Sec. 3.1 gives
a quick overview of other methods used in literature. In the common approach,
a discrete Fourier transformation is applied to calculate the action of the pseudo-
differential operator and the most important aspects of one method of this kind are
listed as example. For this purpose and also for later use in this work, the concept
of operator splitting is introduced. The constraints associated with making use of a
discrete Fourier transformation are discussed to highlight the central problems and
to motivate the introduction of the new algorithms. The new schemes developed in
this thesis are presented in detail in Sec. 3.2. Section 3.3 deals with different nu-
merical schemes to treat the advection term in the Wigner transport equation. The
reconstruct-evolve-average (REA) algorithm is outlined and the simple upwind as well
as slope limiter methods are briefly discussed. The WENO5 scheme, a weighted essen-
tially non oscillatory scheme with an accuracy up to fifth order and which was used for
the actual simulations, is introduced thereafter. This scheme exhibits the peculiarity
to be unstable in combination with a forward Euler method and an appropriate time
stepper is therefore given as well. Finally, possible time steppers for the drift term,
i.e. the pseudo-differential operator, are discussed as well.

3.1 Methods based on the application of discrete
Fourier transformation

In his pioneering work [4], Frensley devised a descretization of the WTE based on
a discrete Fourier transformation to evaluate the potential term. Instead of Fourier
transforming the distribution function f(p′, x, t) as in Eq. (2.12), his approach consists
of calculating the Fourier transform (δṼ )~(p − p′, x, t) of the symbol of the pseudo-
differential operator. When introducing

(δṼ )~(p− p′, x, t) =

∫ ∞
−∞

(δV )~(η
′, x, t) exp

(
i
p− p′

~
η′
)
dη′ , (3.1)
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3 Numerical methods for the Wigner transport equation

the pseudo-differential operator, Eq. (2.12), may be rewritten as

(Θ~[V ]f) (p, x, t) =
1

2π~

∫ ∞
−∞

∫ ∞
−∞

(δV )~(η
′, x, t)f(p′, x, t) exp

(
i
p− p′

~
η′
)
dp′dη′

=
1

2π~

∫ ∞
−∞

(δṼ )~(p− p′, x, t)f(p′, x, t)dp′ , (3.2)

resulting in a convolution integral with respect to p′. Upon discretization, the integral
in Eq. (3.2) is replaced by a summation and one ends up with a matrix expression
for the action of the pseudo-differential operator. To evaluate Eq. (3.1) for different
values of (p−p′) a discrete Fourier transformation is used. To discretize the advection
term of the WTE, Frensley used a conventional upwind scheme.

With this scheme, Frensley demonstrated for the case of a resonant tunneling diode
(RTD) that the negative differential resistance region in the I(V ) curve could be
reproduced and not only stationary but fully time-dependent simulations could be
acchieved. Despite of this success, quantitative comparison of the obtained I(V ) curve
with reference solutions showed differences of several tens of percents. Subsequent
investigations by other groups could improve the results to some degree by using
higher-order approximations for the advection term, see e.g. [5], [19].

A recently developed scheme based on an adaptive spectral element method [20]
produces very accurate results for the case of a Gauss wave packed scattering at a
Gaussian potential barrier. The method uses a Gauss-Chebyshev interpolation for the
p-variable and Gauss-Lobatto collocation points for the x-variable combined with a
fast Fourier transform. Since the authors consider only smooth potential shapes and
rather short time evolutions (compared to what is needed to reach an approximately
stationary state), it is hard to assess how well the algorithm would perform when
simulating RTDs.

Another approach based on a combination of operator splitting and discrete Fourier
transformation was proposed by Frosali and Morandi (see e.g. [21], [22]). On the next
pages the method will be described in more detail after giving a general introduction to
operator splitting. Splitting methods are widely applicable and are also included in the
algorithms developed in the following sections. Furthermore, Morandi’s method was
actually used in this thesis to perform the first simulations and served as a reference
for the first results obtained with the new algorithms - for not too sharp potential
shapes at least.

3.1.1 Operator Splitting

The technique of operator splitting is applicable to various problems. Consider an
operator L acting on f(p, x, t) which may be separated into two parts, so that

∂tf = Lf
= L1f + L2f . (3.3)
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3.1 Methods based on the discrete Fourier transformation

In the following we consider only time-independent operators which do not act on the
t-variable, enabling it to write the formal solution to Eq. (3.3) as

f(t) = exp (Lt) f(t0)

= exp ((L1 + L2)t) f(t0)

= exp (L1t) exp (L2t) f(t0) +O ([L1t,L2t]) f(t0) . (3.4)

All the calculations outlined here can be extended in a straight-forward manner to
time-dependent operators by replacing each term Lit by

∫ t
t0
Li(τ)dτ , with the effect

that the single terms in the derivations grow in size but the principle results obtained
are the same. All exponentials of operators are defined via a series expansion and the
error term in the last line can be found when comparing the following two expansions:

exp ((L1 + L2)t) = 1 + (L1 + L2)t+
(L1 + L2)2

2
t2 +O(t3) (3.5)

and

exp (L1t) exp (L2t) =

[
1 + L1t+

L2
1

2
t2 +O(t3)

] [
1 + L2t+

L2
2

2
t2 +O(t3)

]
= 1 + (L1 + L2)t+

1

2

(
L2

1 + L2
2

)
t2 + L1L2t

2 +O(t3)

= 1 + (L1 + L2)t+
(L1 + L2)2

2
t2 +

1

2
(L1L2 − L2L1) t2 +O(t3)

(3.6)

This implies that if L1 and L2 commute, the two expansions give the same result
and no error is made when applying the operators in Eq. (3.4) sequentially, one
after the other on f(t0). Otherwise, one encounters an error proportional to the
commutator [L1,L2] and t2. This is an example of a first-order splitting, called Lie-
Trotter splitting [23].

Higher-order methods can be derived by splitting up the exponential in line two
of Eq. (3.4) in a different way. A commonly used method of second-order is Strang
splitting [23], [18], which can be written as

f(t) = exp ((L1 + L2)t) f(t0)

= exp

(
L1
t

2

)
exp (L2t) exp

(
L1
t

2

)
f(t0) +O

(
t3
)
f(t0) , (3.7)

when using the formal solution again.
In practice, a numerical or even analytical method is used, which is specialized on

the particular operator to calculate the time evolution of f(t). Let L1 and L2 stand
for the matrices obtained by discretization of the operators L1 and L2, respectively.
In the case of Lie-Trotter splitting and a simple forward Euler time stepping scheme,
f(tn) is advanced to f(tn+1) by two steps:

fn+1/2 = (1 + ∆tL1) fn ,

fn+1 = (1 + ∆tL2) fn+1/2 . (3.8)
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3 Numerical methods for the Wigner transport equation

In the case of Strang splitting three steps are needed to evolve the function in question
by ∆t. Of course, an overall second-order accuracy can only be achieved if all methods
for the sub-steps are at least second-order accurate in time. [18]

To see if a splitting error occurs for the advection operator

LAf(p, x, t) = − p

m∗
∂xf(p, x, t) (3.9)

and the drift operator

LDf(p, x, t) =
q

m∗
(Θ~[V ]f) (p, x, t) (3.10)

in the WTE, we evaluate their commutator

[LA,LD] f = − p q

(m∗)2
[∂x,Θ~[V ]] f

= − p q

(m∗)2
(Θ~[∂xV ]f + Θ~[V ]∂xf −Θ~[V ]∂xf)

= − p q

(m∗)2
Θ~[∂xV ]f . (3.11)

The action of the pseudo-differential operator Θ~[V ]f vanishes for the case V (x) =
const., compare Eq. (2.12). One thus finds that no splitting error is encountered in
the case of a constant electric field ∂xV (x) = const..

3.1.2 Discrete Fourier Transformation

As seen in the preceding section, the Fourier transformed operator F {Θ~[V ]f} (η, x, t)
acts as a simple multiplicator on f̃(η, x, t). This means that one is able to calculate the
action of the potential by Fourier transforming f(p, x, t), evaluating the multiplication
in the (η, x)-space and inverse Fourier transforming it to the (p, x)-space. Additionally,
one has to use an operator splitting scheme to decouple the drift and the advection
term, so that one has to consider instead of the full WTE

∂tf(p, x, t) = (LA + LD)f(p, x, t) (3.12)

only the pseudo-differential operator of the drift term in one sub-step tn → tn+1/2:

∂tf(p, x, t) =
q

m∗
(Θ~[V ]f) (p, x, t) . (3.13)
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3.1 Methods based on the discrete Fourier transformation

If we insert for the right hand side the expression found in Eq. (2.12) and apply a
Fourier transformation we arrive at

∂tf̃(η, x, t) =
iq

2π~

∫ ∞
−∞

∫ ∞
−∞

[
V
(
x+ η′

2
, t
)
− V

(
x− η′

2
, t
)]

~
f̃(η′, x, t)

× exp
[
i
p

~
(η′ − η)

]
dη′dp

=
iq

2π~

∫ ∞
−∞

[
V
(
x+ η′

2
, t
)
− V

(
x− η′

2
, t
)]

~
f̃(η′, x, t)2π~δ(η′ − η)dη′

=
iq

~

[
V
(
x+

η

2
, t
)
− V

(
x− η

2
, t
)]
f̃(η, x, t) . (3.14)

The multiplicator on the right-hand side of this equation is again, except for the
prefactor m∗/q, the symbol of the pseudo-differential operator, Eq. (2.15). One can
solve Eq. (3.14) by some standard ODE solver or also analytically, when the potential
is static or at least considered to be constant during each time step ∆t by

f̃(η, x, tn+1/2) = f̃(η, x, tn) exp

(
iq

~

[
V
(
x+

η

2
, tn

)
− V

(
x− η

2
, tn

)]
∆t

)
. (3.15)

After applying the inverse Fourier transformation the solution f(p, x, tn+1/2) is ob-
tained and one sub-step of the time evolution complete (advection being the other
one).

In practice one cannot calculate the continuous Fourier transform f̃(η, x, t) exactly.
Usually one restricts the calculations to a finite set of pi values and then applies a
discrete Fourier transformation on the pointwise given function f(pi, x, t) to arrive
at the discrete function f̃(ηk, x, t). Well developed algorithms exist to calculate the
discrete Fourier transformation, called fast Fourier transform (FFT). Details on FFT
can be found in various books, e.g. [24] and are not recapped here, only the following
fundamental connection between the pi and the ηk grid.

For the FFT routines to be applicable, one needs an equidistant grid of Np values
so that

pi = p1 + (i− 1)∆p , i = 1, . . . , Np, ∆p ∈ R , (3.16)

where the integer variable Np has to be a power of two (also other FFT variants exist
but each of them only for special values of Np). The values of ηk may then be written
as [24]

ηk =
2π~
Np∆p

k , k = −Np

2
+ 1, . . . ,

Np

2
. (3.17)

As we can see, the spacings of the two grids are inversely proportional:

∆p∆η =
2π~
Np

. (3.18)
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3 Numerical methods for the Wigner transport equation

Frensley [4] showed that with this choice of ∆η, ∆p and Np the particle density
conserving property of the pseudo-differential operator is preserved so that the action
of the potential vanishes when summing the discretized pseudo-differential operator
over all values of pi. As pointed out in Sec. 2.2, this property is needed to be consistent
with the continuity equation.

Practical simulations with this algorithm showed good results for not too sharp po-
tential shapes, enabling to resolve all features and interference patterns of the Wigner
function. But as soon as thinner potential barriers were considered, in order to sim-
ulate tunneling phenomena, serious problems were encountered. It seems to be a
highly demanding task to perform simulations of resonant tunneling diodes with this
method. This is particularly due to the constraints listed in the following.

• The grid for the p variable has to be chosen strictly equidistantly. One im-
mediately notices in practice that the Wigner function is by all means not as
smooth and well behaved as the Boltzmann probability distribution. As soon as
interesting quantum phenomena like interferences occur, f(p, x, t) forms heav-
ily oscillating patterns regarding the p variable, which may be in the case of
tunneling diodes or RTDs some orders of magnitude smaller than the extension
of f(p, x, t) with respect to p. The oscillations are especially located around
p = 0 (in the case of small bias voltages), whereas the distribution usually stays
smooth for larger values of p. Therefore, it would be desirable to use a non-
equidistant grid, enabling to choose the grid spacing around p = 0 fine enough
to resolve the oscillations at all but still maintainig a reasonable number of total
grid points (Np ≈ 1000) by increasing the spacing for larger p values.

• Sharp potentials are problematic to resolve. A perfect square potential would
always produce errors in the solution due to Gibb’s phenomenon [25] but even
if one argues that no perfect square potentials are present in nature as well and
one considers only smooth potential shapes, a very high η resolution would be
needed as soon as interesting cases, e.g. tunneling devices, are treated.

• The coupling of the x and p variables of the grid causes the following difficulties.
Since in practical computations one usually needs to choose ∆η = 2∆x, Eq.
(3.18) imposes constraints on the x and p variable. This results in a bad scaling
of the computation time as the resolution is increased. For instance, to double
the resolution in the position variable one needs, on the one hand, twice as many
x points, of course, but on the other hand, Eq. (3.18) requires to double Np∆p
as well. In order to maintain the chosen value of ∆p it is, therefore, needed to
choose Np twice as large, yielding a total factor of four for the grid points. [20]
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3.2 Discretization of the pseudo-differential operator based on a
piecewise polynomial approximation of the Wigner function

3.2 Discretization of the pseudo-differential operator
based on a piecewise polynomial approximation of
the Wigner function

In order to allow for a non-equidistant grid spacing in the p variable, numerical meth-
ods using a piecewise approximation of the Wigner function are developed in the
following. Therefore, f(p, x, t) is written as a sum of polynomials with each of them
defined locally on one grid cell and being zero elsewhere. This is very similar to what
is done in finite element methods or in the REA-algorithm for finite volume schemes,
as outlined in Sec. 3.2.3 in more detail. The approach results in a matrix expression
for the action of the pseudo-differential operator. Since the matrix elements involve
oscillatory integrals, a piecewise polynomial approximation is chosen for the potential
shape as well and the integrals are evaluated analytically - as far as possible at least.
In order to achieve the conservation of the particle density, i.e. to be consistent with
the continuity equation, the equations are averaged over each grid cell. This results
in more complicated expressions for the matrix elements but enables us to conserve
the particle density for arbitrarily chosen grid spacings for the p variable.

The outlined approach of a piecewise approximation of the Wigner function was
used in both of the developed algorithms. At the beginning it seamed reasonable to
demand a continuous approximation for f(p, x, t) but this constraint was dropped for
the second developed algorithm after considering the square barrier as a first bench-
mark problem. On the one hand, the analytical solution itself, see Sec. ??, revealed
that the Wigner function exhibits a discontinuity and singularity at p = 0, making it
obsolete to demand a continuous solution. On the other hand, a continuous approxi-
mation in combination with a cell averaged formulation seemed to be disadvantageous
from a numerical point of view, since, besides increasing the computational time due
to a matrix expression not only for the drift term but for the advection term as well,
the algorithm produced spurious oscillations in some cases. These oscillations were
especially present in the intermediate regime, between a well resolved solution and
a solution in which certain fine-scaled oscillations were averaged out. Therefore, a
second algorithm without a continuous approximation and direct use of cell averaged
values of f(p, x, t) was developed, in close analogy to the finite volume methods for
hyperbolic problems [11].

In Sec. 3.2.1 a brief description of the developed algorithm using a continuous
approximation is given, by outlining the basic concepts. The equations for the matrix
elements are not derived in detail since all of the final simulations of RTDs were
done with the second algorithm. In Sec. 3.2.2 a central part of the algorithms is
discussed, namely the evaluation of the sine and cosine integrals, appearing in all the
expressions for the matrix elements of the discretized pseudo-differential operator.
With this in hands, Sec. 3.2.3 focuses on the derivation of the expressions for the
second algorithm. Sec. 3.2.4 concludes with numerical tests examining the accuracy
of the Fourier transform of a piecewise polynomial function.
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3 Numerical methods for the Wigner transport equation

3.2.1 Continuous approximation

At first, we will calculate solely the action of the potential operator, Eq. (2.12), when
considering the following representation of the distribution function:

f(p′, x, t) =

Np∑
i=0

P i(p′, x, t) . (3.19)

The polynomials are defined by

P i(p′, x, t) :=

{
ai + bi(p

′ − pi) if pi ≤ p′ < pi+1 ,

0 elsewhere ,
(3.20)

with

ai = f(pi, x, t) ,

bi =
f(pi+1, x, t)− f(pi, x, t)

∆pi
. (3.21)

The discretization of the p variable due to the grid constants ∆pl > 0 is given by

pi = p0 +
i−1∑
l=0

∆pl , p0 ∈ R, i = 1, . . . , Np + 1 . (3.22)

For the values at the endpoints of the finite grid we demand

f(p0, x, t) = 0 ,

f(pNp+1, x, t) = 0 . (3.23)

Eq. (3.23) together with Eq. (3.21) ensures a continuous interpolation function
f(p′, x, t), which is defined for p′ ∈ R and completely determined by the values
f(pi, x, t), i = 1, . . . , Np. See also Fig. 3.1 for an illustration. The function clearly
has the necessary asymptotic behaviour, namely that f(p′, x, t) → 0 sufficiently fast
for p′ → ±∞. The x and t coordinates will be restricted to discrete values as well but
for the moment they enter just as parameters.

For evaluating the action of the potential we need the Fourier transform of Eq.
(3.19),

f̃(η′, x, t) =
1

2π~

∫ ∞
−∞

Np∑
i=0

P i(p′, x, t) exp

(
−ip

′

~
η′
)
dp′

=
1

2π~

Np∑
i=0

∫ pi+1

pi

[ai + bi(p
′ − pi)] exp

(
−ip

′

~
η′
)
dp′ , (3.24)

which can be split up into a sum of integrals over finite intervals. The individual
integrals are straightforward to calculate and after connecting the coefficients ai and
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3.2 Piecewise polynomial approximation of the Wigner function

f(p,x,t)

p0 p1 p2 pi pi+1 pN
p
+1pN

p

∆pi

p

Figure 3.1: Schematic representation of the continuous piecewise linear approximation
of f(p, x, t) as defined in Eqs. (3.19) - (3.23).

bi via Eq. (3.21) to the values f(pi, x, t) at the grid points and regrouping the terms,
one may write the result as

f̃(η′, x, t) =

Np∑
i=1

Ci(η
′)f(pi, x, t) , (3.25)

with the coefficients Ci(η
′) given by

Ci(η
′) =

1

2π~

(
~
η′

)2

exp
(
−ipi

~
η′
)

×
{

1

∆pi

[
1− exp

(
−i∆pi

~
η′
)]

+
1

∆pi−1

[
1− exp

(
i
∆pi−1

~
η′
)]}

.

(3.26)

Inserting Eq. (3.25) into the expression for the pseudo-differential operator, Eq.
(2.12), together with evaluating the expression for certain values p = pm, results
in the following matrix expression

q

m∗
(Θ~[V ]f) (pm, x, t) =

Np∑
i=1

D0
mi(x, t)f(pi, x, t) , (3.27)

with the matrix elements given by

D0
mi(x, t) =

iq

~

∫ ∞
−∞

[
V

(
x+

η′

2
, t

)
− V

(
x− η′

2
, t

)]
Ci(η

′) exp
(
i
pm
~
η′
)
dη′ . (3.28)

From Eq. (3.26) it is obvious that

Ci(−η′) = (Ci(η
′))
∗
, (3.29)

so that we can apply the same calculational steps as in Eq. (2.26) to obtain

D0
mi(x, t) = 2<

{
iq

~

∫ ∞
0

[
V

(
x+

η′

2
, t

)
− V

(
x− η′

2
, t

)]
Ci(η

′) exp
(
i
pm
~
η′
)
dη′
}
.

(3.30)
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3 Numerical methods for the Wigner transport equation

Using this fact we can finally write the matrix elements as

D0
mi(x, t) =

q

π~

∫ ∞
0

[
V

(
x+

η′

2
, t

)
− V

(
x− η′

2
, t

)](
1

η′

)2

[Am,i(η
′)− Am,i−1(η′)] dη′ ,

(3.31)
when defining

Am,i(η
′) =

~
∆pi

[
sin

(
pm − pi+1

~
η′
)
− sin

(
pm − pi

~
η′
)]

. (3.32)

In principle, one could already use Eq. (3.31) to calculate the action of an arbitrary
potential V (x, t) on the Wigner function and perform simulations with that. But prac-
tical tests showed that a numerical evaluation of the integrals is a highly demanding
task and seems to be unfeasible due to the poor convergence. The problem arises
because of the oscillating nature of the integrand. To circumvent this problem, also
the potential V (x, t) is approximated by a piecewise polynomial function enabling to
directly calculate the integrals. In the following we will consider only the simplest
case, a single box-like barrier. Further approximation variants will only be discussed
for the second algorithm in Sec. 3.2.3.

When considering a discontinuous potential, one needs to check the convergence of
the integral in Eq. (3.31). In principle, problems could arise due to the factor 1/η′2

in the integrand at discontinuous positions x, since

lim
η′→0

[
V

(
x+

η′

2
, t

)
− V

(
x− η′

2
, t

)]
(3.33)

takes on non-zero values. To have a closer look at this problem, we Taylor expand
Am,i(η

′) up to first order,

Am,i(η
′) =

~
∆pi

[
pm − pi+1

~
η′ − pm − pi

~
η′
]

+O(η′3)

= −η′ +O(η′3) , (3.34)

so that we find for the limit

lim
η′→0

(
1

η′

)2

[Am,i(η
′)− Am,i−1(η′)] = lim

η′→0

(
1

η′

)2 [
−η′ +O(η′3) + η′ +O(η′3)

]
= lim

η′→0
O(η′)

= 0 . (3.35)

This result tells us, that the integral Eq. (3.31) exists for any bounded potential
shape, independent of the particular values of the left and right sided limit of V (x) at
a certain point x (Eq. (3.33)). Using this fact and that Am,i(η

′) is an odd function,

Am,i(−η′) = −Am,i(η′) , (3.36)
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3.2 Piecewise polynomial approximation of the Wigner function

we can write the matrix elements also in the following form

D0
mi(x, t) =

q

π~

∫ ∞
−∞

V

(
x+

η′

2
, t

)(
1

η′

)2

[Am,i(η
′)− Am,i−1(η′)] dη′ . (3.37)

Eq. (3.37) is equivalent to Eq. (3.31) but may be easier to evaluate for potential
shapes with compact support. It is now straightforward to consider the case of a
single box-shaped barrier of height V0 and length x1 − x0 with x1 > x0, so that

V

(
x+

η′

2

)
= V0Θ [2(x0 − x) ≤ η′ ≤ 2(x1 − x)] . (3.38)

The Θ-function used here denotes an abbreviation for the product of two Heaviside
step functions H(x)

Θ(a ≤ x ≤ b) = H(x− a)H(b− x) . (3.39)

Eq. (3.37) then simplifies to

D0
mi(x, t) =

qV0

π~

∫ 2(x1−x)

2(x0−x)

(
1

η′

)2

[Am,i(η
′)− Am,i−1(η′)] dη′ . (3.40)

The integrals to be solved are of the form

I =

b∫
a

1

x2
sin (kx) dx

= −1

x
sin (kx)

∣∣∣b
a

+ k

b∫
a

1

x
cos (kx) dx . (3.41)

The last term is a so called cosine integral [26] [27] and cannot be solved analytically.
But, libraries are available with ready-made routines to evaluate the integral at wanted
values, which will be discussed in more detail in the next section.

Tests using the drift matrix of Eq. (3.40) showed promising results. For comparison,
a trapezoidal barrier was implemented as well and one could reproduce results achieved
with the previously presented approach based on operator splitting and FFT. Fur-
thermore, one could also simulate tunneling currents for very sharp potentials which
posed a problem for the FFT method. But, the algorithm at the present stage has
the downside that the number of particles is not exactly conserved. This is discussed
in the following in more detail and an approach is presented, based on integrating
the equations over grid cells, to arrive at a conservative scheme. Since the integrating
involves many calculational steps and the algorithm presented in this section was not
used anymore for the final simulations of the RTDs, the steps will only be described
schematically together with discussing crucial aspects and problems that arise.

For the moment, we only consider the drift term, i.e. the part of the WTE contain-
ing the pseudo-differential operator:

∂tf(p, x, t) =
q

m∗
(Θ~[V ]f) (p, x, t) . (3.42)
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3 Numerical methods for the Wigner transport equation

Figure 3.2: Schematic illustration of the pm grid together with the grid cells Cm and
the intermediate points pm+1/2 for the continuous piecewise linear approx-
imation of f(p, x, t).

Up to now we simply evaluated the equation pointwise

∂tf(pm, x, t) =
q

m∗
(Θ~[V ]f) (pm, x, t) , (3.43)

which directly enabled to update the discrete set of values of f(pm, x, t) when using
some time stepping method as for instance in the simplest case a forward Euler scheme:
∂tf(pm, x, tn) = 1

∆t
[f(pm, x, tn+1)− f(pm, x, tn)]. From Sec. 2.2 we know the result of

integrating Eq. (3.42) with respect to p, which is for the left-hand side the rate of
change of the particle density,∫ ∞

−∞
∂tf(p, x, t)dp = ∂tn(x, t) , (3.44)

and the integration of the right-hand side yields zero for any function f(p, x, t)∫ ∞
−∞

q

m∗
(Θ~[V ]f) (p, x, t)dp = 0 . (3.45)

For the discrete form Eq. (3.43) it is straightforward to approximate the particle
density by

n(x, t) ≈
Np∑
m=1

f(pm, x, t)
∆pm + ∆pm−1

2
, (3.46)

or some similar expression. But, the problem is that the pointwise evaluation of
(Θ~[V ]f) (p, x, t) results in general in a nonzero value for the summation of the right-
hand side of Eq. (3.43),

Np∑
m=1

q

m∗
(Θ~[V ]f) (pm, x, t)

∆pm + ∆pm−1

2
6= 0 . (3.47)

As a consequence of this, the temporal change of n(x, t) due to the pseudo-differential
operator alone is nonzero which in turn violates the conservation of the number of
particles.

Now, to arrive at a conservative scheme we use instead of the pointwise evaluation
an integration over grid cells to discretize Eq. (3.42). In order to make use of the
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3.2 Piecewise polynomial approximation of the Wigner function

property stated in Eq. (3.45), we need to define grid cells in such a way that the
whole range of p ∈ R is covered. One possible choice is to define grid cells by

Cm = (pm−1/2, pm+1/2) , m = 2, . . . , Np − 1 ,

C1 = (−∞, p3/2) ,

CNp = (pNp−1/2, ∞) , (3.48)

with

pm−1/2 =
pm−1 + pm

2
, m = 2, . . . , Np , (3.49)

see also Fig. 3.2. Integrating Eq. (3.42) over each of the Np intervals Cm yields a
system of equations:∫

Cm

∂tf(p, x, t)dp =

∫
Cm

q

m∗
(Θ~[V ]f) (p, x, t)dp , m = 1, . . . , Np . (3.50)

It is evident that a summation over all integration intervals Cm corresponds to an
integration over all p ∈ R:

Np∑
m=1

∫
Cm

q

m∗
(Θ~[V ]f) (p, x, t)dp =

∞∫
−∞

q

m∗
(Θ~[V ]f) (p, x, t)dp . (3.51)

If we now insert into Eq. (3.27) the derived expression for the drift matrix Eq. (3.37)
without the restriction of p to discrete values pm, we obtain

q

m∗
(Θ~[V ]f) (p, x, t) =

q

π~

Np∑
i=1

f(pi, x, t)

×
∫ ∞
−∞

V

(
x+

η′

2
, t

)(
1

η′

)2

[Ai(p, η
′)− Ai−1(p, η′)] dη′ ,

(3.52)

with

Ai(p, η
′) =

~
∆pi

[
sin

(
p− pi+1

~
η′
)
− sin

(
p− pi
~

η′
)]

. (3.53)

This allows us to rewrite Eq. (3.50) in the form∫
Cm

∂tf(p, x, t)dp =

Np∑
i=1

D′m,if(pi, x, t) , m = 1, . . . , Np , (3.54)

by defining new, cell-integrated drift matrix elements:

D′m,i(x, t) =
q

π~

∞∫
−∞

V

(
x+

η′

2
, t

)(
1

η′

)2 ∫
Cm

[Ai(p, η
′)− Ai−1(p, η′)] dpdη′ ,

m, i = 1, . . . , Np . (3.55)
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As can be seen from Eq. (3.51), a summation over m corresponds to integrating
the pseudo-differential operator over R, resulting in a value of zero as recaped in Eq.
(3.45). Therefore, the column sum of the drift matrix vanishes per construction

Np∑
m=1

D′mi(x, t) = 0 , ∀i , (3.56)

which in turn ensures the conservation of the particle density, given by the exact
relation

n(x, t) =

Np∑
m=1

∫
Cm

f(p, x, t)dp . (3.57)

Two crucial aspects need to be mentioned here, namely

• It is straightforward how to evaluate Eq. (3.55) for m = 2, . . . , Np − 1 but
integrating the equation over C1 and CNp is problematic due to the half-bounded
integration intervals.

• Eq. (3.54) is only an equation for the time-dependence of the cell integrals but
not for the point-wise given values f(pm, x, t), which we are interested in.

In the case of the bounded intervals Cm, m = 2, . . . , Np − 1, one can simply consider
one sine function of Ai(p, η

′) at a time and integrate over p, yielding a cosine function
and an additional factor 1/η′. After chosing some approximation for the potential,
the remaining integration with respect to η′ in Eq. (3.55) can be done by parts. It is
not possible to apply this strategy to the half-bounded intervals due to the indefinite
expressions, but performing the integration of the function Ai(p, η

′), i.e. two sine
functions at a time, is feasible, as demonstrated in the following for C1:

∫
C1

Ai(p, η
′)dp =

p3/2∫
−∞

~
∆pi

[
sin

(
p− pi+1

~
η′
)
− sin

(
p− pi
~

η′
)]

dp

=
~

∆pi

 p3/2−pi+1∫
−∞

sin

(
q′

~
η′
)
dq′ −

p3/2−pi∫
−∞

sin

(
q′′

~
η′
)
dq′′


=

~
∆pi

p3/2−pi+1∫
p3/2−pi

sin

(
q′

~
η′
)
dq′

=
~

∆pi

(
− ~
η′

)[
cos

(
p3/2 − pi+1

~
η′
)
− cos

(
p3/2 − pi

~
η′
)]

,(3.58)

where we used the substitutions q′ = p− pi+1 and q′′ = p− pi in the second line. As
can be seen, the half-bounded integrations cancel each other and only the value p3/2

of the cell boundary gives a contribution.
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3.2 Piecewise polynomial approximation of the Wigner function

In order to obtain from Eq. (3.54) the time dependence of the pointwise given
values f(pm, x, t), we also assume for f(p, x, t) on the left-hand side the same piecewise
polynomial approximation, Eqs. (3.19) to (3.21). Evaluating the integrations then
yields a system of equations for the Np values ∂tf(pm, x, t). In the case of an interior
interval Cm, m 6= {1, Np}, the integration may be done as follows:

∫
Cm

∂tf(p, x, t)dp =

pm+1/2∫
pm−1/2

∂t

Np∑
i=0

P i(p, x, t)dp

=

pm∫
pm−1/2

∂tP
m−1(p, x, t)dp+

pm+1/2∫
pm

∂tP
m(p, x, t)dp

=

pm∫
pm−1/2

[
ḟm−1 +

ḟm − ḟm−1

∆pm−1

(p− pm−1)

]
dp

+

pm+1/2∫
pm

[
ḟm +

ḟm+1 − ḟm
∆pm

(p− pm)

]
dp

=
∆pm−1

8
ḟm−1 +

3

8
(∆pm−1 + ∆pm)ḟm +

∆pm
8

ḟm+1 , (3.59)

where we used in the second and third line the definitions of the polynomials, Eqs.
(3.19) to (3.21), together with the abbreviation ḟm = ∂tf(pm, x, t). The calculation
for the first and last interval can be done in the same way, when noting that all of the
polynomials P i(p, x, t) are zero outside (p0, pNp+1) so that the half-bounded integrals
automatically reduce to bounded ones. The results are∫

C1

∂tf(p, x, t)dp =

(
∆p0

2
+

3

8
∆p1

)
ḟ1 +

∆p1

8
ḟ2 ,

∫
CNp

∂tf(p, x, t)dp =
∆pNp−1

8
ḟNp−1 +

(
∆pNp

2
+

3

8
∆pNp−1

)
ḟNp . (3.60)

Inserting this results into Eq. (3.54) enables us to write the equations for the time
evolution in matrix form

M0
p ḟ(x, t) = D′(x, t)f(x, t) , (3.61)

where f(x, t) stands for the column vector obtained by grouping all f(pi, x, t), i =
1, . . . , Np and D′(x, t) =

(
D′m,i(x, t)

)
stands for the matrix with its elements defined

by Eq. (3.55). The matrix elements of M0
p are given by the coefficients appearing

in Eqs. (3.59) and (3.60), obviously yielding a tridiagonal system of equations. The
matrix was labeled this way since M0

p allows us to calculate the zeroth moment of the
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3 Numerical methods for the Wigner transport equation

piecewise linear function f(p, x, t) by taking the column sum and multiplying it with
f(x, t), compare Eq. (3.57). An explicit expression determining the time evolution of
f(x, t) may now be obtained by inversion of M0

p , so that

ḟ(x, t) =
(
M0

p

)−1
D′(x, t)f(x, t)

= D(x, t)f(x, t) . (3.62)

The new drift matrix D(x, t) =
(
M0

p

)−1
D′(x, t) is not labeled with a prime anymore

since it is now in its final form which can be directly used for implementing the
algorithm. One may note that the matrix M0

p does not depend on x, so that the
inversion has to be carried out only once and is therefore not critical from a numerical
point of view. But, a different problem arises due to the inversion. As mentioned
before, the present algorithm has the tendency to create spurious oscillations when
the p grid is chosen in an intermediate regime, between a well resolved solution and
one in which short-scaled oscillations are averaged out. This can be understood when
noting that the Eqs. (3.59) and (3.60) directly correspond to the problem of fitting
values for the cell integrals to a piecewise polynomial function. The values of the
cell integrals on the left-hand side of Eqs. (3.59) and (3.60) are directly given via
the expression for the drift matrix (Eq. (3.54)), when considering a certain time t
and a certain set of functional values f(pi, x, t). The remaining problem is to find

the proper piecewise polynomial function ∂t
Np∑
i=0

P i(p, x, t) which has on each of the

intervals Cm the same cell integrals. Due to the choice of the polynomials given by
Eqs. (3.20), (3.21) and (3.23), the Np values for the cell integrals uniquely determine
the Np values of ḟ(pm, x, t), represented by the inversion of M0

p in Eq. (3.62). In
practice, the set of cell integrals shows an oscillating behaviour on different length
scales. A coupled interpolation scheme as represented above is therefore not a good
choice and one unavoidably encounters an overshooting of the interpolation function,
creating spurious oscillations. Furthermore, the cell integrals at the endpoints usually
take on very large values (note the half-bounded integration interval) which does not
influence solely the values of ḟ(pm, x, t) at p1 and pNp but on the whole domain. As
can be seen from Eq. (3.60), this influence may be reduced by choosing ∆p0 and
∆pNp large compared to the other values of ∆pm but one has to be careful in order
to introduce not too large numerical errors.

It was tried to circumvent these problems by making use of different integration
intervals Cm. Since the intervals are free to be chosen one may devise a set of Np−1
integration intervals, leaving one degree of freedom to find the Np values of ḟ(pm, x, t).
It is then possible to optimize in the remaining, one-dimensional subspace for the least
oscillating interpolation function. In [24] different variation principles like minimum
curvature or minimum total variation methods are described, which, upon optimiza-
tion using Lagrange multipliers for instance, may lead to a linear set of equations.
This set of equations can then by written in matrix form as well, replacing M0

p in
Eq. (3.61). Such a strategy using a minimum total variation method was tested in
practice but the problems described above could not be eliminated.
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3.2 Piecewise polynomial approximation of the Wigner function

It is therefore believed, that the problem of spurious oscillations arises in particular
due to the constraint of a continuous interpolation function. This and the fact that
even analytical solutions for the Wigner function may show discontinuities, see Sec.
6.1 in the appendix, motivated to redo the calculations for a piecewise polynomial
approximation of f(p, x, t) without the constraint of continuity. It is then possible to
directly apply the ideas of finite volume methods and work with a discrete set of values
f(pm, x, t) which already represent cell averages. The approach will be described in
detail in the following sections, after some general remarks on exponential integrals.

One point left to be addressed is how to include the advection term of the WTE. In
order to be consistent, the same approximation of f(p, x, t) as a continuous piecewise
polynomial function was inserted in the expression for the advection term as well.
One then replaces the averaging of Eq. (3.50) by integrating the whole WTE over the
intervals Cm,∫

Cm

∂tf(p, x, t)dp =

∫
Cm

(LA + LD) f(p, x, t)dp , m = 1, . . . , Np . (3.63)

The integration over LAf(p, x, t), as defined in Eq. (3.9), is replaced by an integration

over −1
m∗
∂x

Np∑
i=0

pP i(p, x, t) and can be done in a completely analogous way as described

above. The new matrix obtained by this takes on a tridiagonal form as well and may
be labeled M1

p since it corresponds to the first moment. This results in

M0
p∂tf(x, t) = − 1

m∗
M1

p∂xf(x, t) +D′(x, t)f(x, t) . (3.64)

After multiplying again with the inverse of M0
p one ends up with

∂tf(x, t) = − 1

m∗
A∂xf(x, t) +D(x, t)f(x, t) , (3.65)

by defining

A =
(
M0

p

)−1
M1

p . (3.66)

The advection matrix A is not sparse as a result of the inversion process. It therefore
couples different values of f(pm, x, t) when being advected along x, solely due to the
particular choice of the continuous, piecewise approximation. Having to deal with a
full matrix multiplication for the advection term as well is disadvantageous from a
numerical point of view, since it drastically slows down calculations for larger systems.

3.2.2 Implementation of sine and cosine integrals

The calculations in the previous section demonstrated the appearance of a cosine
integral, see Eq. (3.41), when calculating the drift matrix elements for the simplest
case, a square potential barrier without cell-averaging the equations. It is a general
feature of the piecewise polynomial approximation that one has to deal with cosine
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3 Numerical methods for the Wigner transport equation

and sine integrals. Since they will appear throughout the upcoming calculations we
have a closer look on the question, how one actually evaluates the expressions in
practice.

The usual strategy to tackle such integrals is to use a combination of a series
expansion and complex continued fraction, with a certain crossover point [24]. Library
routines are based on the standard definitions of the cosine, sine and exponential
integrals, which read

Ci(x) = −
∞∫
x

cos t

t
dt

= γ + lnx+

x∫
0

cos t− 1

t
dt , (3.67)

Si(x) =

x∫
0

sin t

t
dt (3.68)

and

E1(x) =

∞∫
x

exp(−t)
t

dt , x ≥ 0 . (3.69)

All of them are defined for complex arguments as well and γ is the Euler–Mascheroni
constant [24] [26]. In our case we use the built in Matlab functions, whereby Ci(x)
takes on complex values for x < 0. For this reason and in order to make use of an
interconnection between the sine, cosine and exponential integral listed at the end of
this section, all formulas are expressed in terms of Ci(|x|).

In the following different integral expressions are listed which will be encountered
in the calculations of the drift matrix elements and it is shown how to link them to
the standard definitions of the cosine and sine integrals. We will start with the two
basic forms of a cosine and a sine integral, labeled by Ic and Is. After that we consider
two more cosine integrals labeled by I ′c and I ′′c for which a careful evaluation requires
a number of steps due to the modulus involved in the integral. To present them at
this point should help in later calculations to keep track of the main steps. The first
expression we consider is the cosine integral

Ic =

kb∫
ka

1

t
cos(t)dt , (3.70)

wtih a and b representing two distances and k a particular wave number. The value
of Ic does only depend on the absolute values of ka and kb, but not on their sign.
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3.2 Piecewise polynomial approximation of the Wigner function

This can be seen from the following two expressions,

kb∫
ka

1

t
cos(t)dt =

−kb∫
−ka

1

t′
cos(t′)dt′ (3.71)

and

P.V.

|ka|∫
−|ka|

1

t
cos(t)dt = 0 , (3.72)

where the principal value integral vanishes since the integrand is odd. Using this fact,
one can relate Ic in the following way to Ci(x)

Ic =

|kb|∫
|ka|

1

t
cos(t)dt

=

∞∫
|ka|

1

t
cos(t)dt+

|kb|∫
∞

1

t
cos(t)dt

= Ci(|kb|)− Ci(|ka|) . (3.73)

The analogous situation for a sine integral is straightforward to evaluate and one finds

Is =

kb∫
ka

1

t
sin(t)dt

= Si(kb)− Si(ka) . (3.74)

When performing a cell averaging with respect to the x variable one needs to integrate
the sine and cosine integrals once more. We therefore need their primitive integrals,
given by [26] [28] ∫

Ci(z)dz = zCi(z)− sin(z) , (3.75)∫
Si(z)dz = zSi(z) + cos(z) . (3.76)

To formula for the sine integral can be applied again in a straightforward manner
but we need to have a closer look at the expression for the cosine integral due to the
modulus of the argument.

One of the expressions we will encounter is of the form

I ′c =

∫
Cj

−kCi [|2k(xb − x)|] dx , (3.77)
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where the integration interval Cj stands for (xj−1/2, xj+1/2) and we assume that
xj+1/2 > xj−1/2. To get rid of the modulus we make the following three case dif-
ferentiations. At first we consider (xb − xj+1/2) > 0 and (xb − xj−1/2) > 0:

I ′c,1 =

∫
Cj

−kCi [2|k|(xb − x)] dx

=

2|k|(xb−xj+1/2)∫
2|k|(xb−xj−1/2)

k

2|k|
Ci(u)du

=
1

2
sgn(k) [uCi(u)− sin(u)]

∣∣2|k|(xb−xj+1/2)

2|k|(xb−xj−1/2)

=
1

2
[uCi(|u|)− sin(u)]

∣∣2k(xb−xj+1/2)

2k(xb−xj−1/2)
, (3.78)

where we used the substitution u = 2|k|(xb − x) in the second line. For the case
(xb − xj+1/2) < 0 and (xb − xj−1/2) < 0 one finds in an analogous manner:

I ′c,2 =

∫
Cj

−kCi [2|k|(x− xb)] dx

=

−2|k|(xb−xj+1/2)∫
−2|k|(xb−xj−1/2)

− k

2|k|
Ci(u)du

= −1

2
sgn(k) [uCi(u)− sin(u)]

∣∣−2|k|(xb−xj+1/2)

−2|k|(xb−xj−1/2)

=
1

2
[uCi(|u|)− sin(u)]

∣∣2k(xb−xj+1/2)

2k(xb−xj−1/2)
. (3.79)

Finally we look at the case (xb − xj+1/2) < 0 and (xb − xj−1/2) > 0. Since Ci(z = 0)
is not defined we introduce an infinitesimal quantity ε:

I ′c,3 =

∫
Cj

−kCi [2|k(xb − x)|] dx

= lim
ε→0+

−k

 xb−ε∫
xj−1/2

Ci [2|k|(xb − x)] dx+

xj+1/2∫
xb+ε

Ci [2|k|(x− xb)] dx


=

1

2
[uCi(|u|)− sin(u)]

∣∣2k(xb−xj+1/2)

2k(xb−xj−1/2)

+ lim
ε→0+

1

2
[uCi(|u|)− sin(u)]

∣∣2k[xb−(xb−ε)]
2k[xb−(xb+ε)]

. (3.80)

When performing the limit ε→ 0+ it is clear that the sine term vanishes and for the
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other one we obtain

lim
ε→0+

2kεCi(|2kε|) = lim
ε→0+

2kε(γ + ln(|2k|ε)) + 2kε

|2k|ε∫
0

cos t− 1

t
dt


= 0 , (3.81)

since x lnx = 0 for x → 0+, as can be checked e.g. by using L’Hospital’s Rule, and
the other terms vanish trivially. Therefore, one can rewrite I ′c in general to

I ′c = −

xj+1/2∫
xj−1/2

kCi [|2k(xb − x)|] dx

=
1

2
[uCi(|u|)− sin(u)]

∣∣2k(xb−xj+1/2)

2k(xb−xj−1/2)
. (3.82)

The second, similar expression is of the form

I ′′c =

∫
Cj

−kxCi [|2k(xb − x)|] dx . (3.83)

At first we consider again (xb − xj+1/2) > 0 and (xb − xj−1/2) > 0:

I ′′c,1 =

∫
Cj

−kxCi [2|k|(xb − x)] dx

=
k

2|k|

2|k|(xb−xj+1/2)∫
2|k|(xb−xj−1/2)

(
xb −

u

2|k|

)
Ci(u)du

=
xb
2

[uCi(|u|)− sin(u)]
∣∣2k(xb−xj+1/2)

2k(xb−xj−1/2)

−sgn(k)

4|k|

1

2
u2Ci(u)

∣∣2|k|(xb−xj+1/2)

2|k|(xb−xj−1/2)
− 1

2

2|k|(xb−xj+1/2)∫
2|k|(xb−xj−1/2)

u cos(u)du


=

xb
2

[uCi(|u|)− sin(u)]
∣∣2k(xb−xj+1/2)

2k(xb−xj−1/2)

+
1

8k

[
−u2Ci(|u|) + u sin(u) + cos(u)

]∣∣2k(xb−xj+1/2)

2k(xb−xj−1/2)
, (3.84)

when substituting again in the second line u = 2|k|(xb − x), using Eq. (3.78) in the
third line and integrating by parts in line three and four. For the case (xb−xj+1/2) < 0
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and (xb − xj−1/2) < 0 we find:

I ′′c,2 =

∫
Cj

−kxCi [2|k|(x− xb)] dx

= − k

2|k|

−2|k|(xb−xj+1/2)∫
−2|k|(xb−xj−1/2)

(
xb +

u

2|k|

)
Ci(u)du

=
xb
2

[uCi(|u|)− sin(u)]
∣∣2k(xb−xj+1/2)

2k(xb−xj−1/2)

−sgn(k)

4|k|

1

2
u2Ci(u)

∣∣−2|k|(xb−xj+1/2)

−2|k|(xb−xj−1/2)
− 1

2

−2|k|(xb−xj+1/2)∫
−2|k|(xb−xj−1/2)

u cos(u)du


=

xb
2

[uCi(|u|)− sin(u)]
∣∣2k(xb−xj+1/2)

2k(xb−xj−1/2)

+
1

8k

[
−u2Ci(|u|) + u sin(u) + cos(u)

]∣∣2k(xb−xj+1/2)

2k(xb−xj−1/2)
, (3.85)

For the last case (xb − xj+1/2) < 0 and (xb − xj−1/2) > 0 we introduce once more an
infinitesimal quantity ε:

I ′′c,3 =

∫
Cj

−kxCi [2|k(xb − x)|] dx

= lim
ε→0+

−k

 xb−ε∫
xj−1/2

xCi [2|k|(xb − x)] dx+

xj+1/2∫
xb+ε

xCi [2|k|(x− xb)] dx


=

xb
2

[uCi(|u|)− sin(u)]
∣∣2k(xb−xj+1/2)

2k(xb−xj−1/2)

+
1

8k

[
−u2Ci(|u|) + u sin(u) + cos(u)

]∣∣2k(xb−xj+1/2)

2k(xb−xj−1/2)

+ lim
ε→0+

1

8k

[
−u2Ci(|u|) + u sin(u) + cos(u)

]∣∣2kε
−2kε

, (3.86)

where one can make use of Eq. (3.81) to see that the last term vanishes when taking
the limit ε→ 0+, so that one finds in general

I ′′c = −

xj+1/2∫
xj−1/2

kxCi [|2k(xb − x)|] dx

=
xb
2

[uCi(|u|)− sin(u)]
∣∣2k(xb−xj+1/2)

2k(xb−xj−1/2)

+
1

8k

[
−u2Ci(|u|) + u sin(u) + cos(u)

]∣∣2k(xb−xj+1/2)

2k(xb−xj−1/2)
. (3.87)
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As mentioned earlier, one is able to interconnect the cosine, sine and exponential
integrals. For purely imaginary arguments of the exponential integral they are related
by [24] [27]

E1(ix) = i
(

Si(x)− π

2

)
− Ci(x) , x > 0 . (3.88)

This enables us to express Ci(|x|) in terms of the real part of E1(i|x|) and by noting
that the sine integral is an odd function, as can be seen from the definition Eq. (3.68),
we are able to deduce

Si(x) = sgn(x)
(
={E1(i|x|)}+

π

2

)
,

Ci(|x|) = −<{E1(i|x|)} . (3.89)

The relations are useful for actual computations since on the one hand, tests showed
that the evaluation of the exponential integral routine is about one to two orders of
magnitude faster than that for the sine or cosine integral and on the other hand, in
the formulas that we will deal with in the later chapters sine and cosine integrals
have to be evaluated for the same arguments. Therefore, all formulas, even though
if written in terms of sine and cosine integrals to keep things clear are calculated in
actual computations via the connection to the exponential integral. Practical tests
showed that no significant error is encountered when doing so and the results agree
to machine precision.

3.2.3 Application of finite volume methods

In Sec. 3.2.1 we experienced that several problems were associated with the inversion
of the matrix M0

p , which came into play in order to obtain an explicit update formula
for the discrete values of the Wigner function. In this section we will develop a method
based on similar ideas but one in which the discrete values of the Wigner function
already represent cell averages, so that one directly arrives at an explicit update
formula without the need to solve a system of equations. In fact, this corresponds to
a direct application of the ideas of finite volume methods.

Usually, finite volume methods are applied to deal with conservation laws of hy-
perbolic type which may be cast into a flux conservative form [18] [11] [24]. Writing
the equations in a flux conservative form has the great advantage that every approx-
imate, numerical solution automatically fulfills the conservation law in question and
is thereby a valid physical solution. A higher precision of the numerical solution may
then be obtained by using some higher order approximation for the fluxes at the cell
boundaries. We will have a closer look at this in Sec. 3.3 when treating the advection
term of the Wigner transport equation. An example which may be cast into a flux
conservative form, relevant for device simulations, is the semi-classical Boltzmann
transport equation. In the case of the WTE a flux conservative form cannot be found
but one can still rewrite the equation as a conservation law by averaging it over grid
cells. When choosing the grid cells properly, such that the set of grid cells covers the
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whole real p axis, one can make sure that the number of particles is exactly conserved
independent of the specific choice of grid points.

In the following we will average the Wigner transport equation over grid cells Cm,j.
For this we define

Cm = (pm−1/2, pm+1/2) , m = 1, . . . , Np ,

Cj = (xj−1/2, xj+1/2) , j = 1, . . . , Nx ,

Cm,j = Cm × Cj . (3.90)

The Np ×Nx cells Cm,j define the compact domain on which the approximate quasi-
distribution function f(p, x, t) is allowed to take on non-zero values. In order to
construct a conservative method we need in addition the half-bounded intervals to
±∞, which we label by

C0 = (−∞, p1/2) ,

CNp+1 = (pNp+1/2,∞) ,

C0,j = C0 × Cj , j = 1, . . . , Nx ,

CNp+1,j = CNp+1 × Cj , j = 1, . . . , Nx . (3.91)

The grid for the x variable is chosen to be equidistant in our case but all derivations
of the drift matrix elements can be directly adopted to a non-equidistant x grid as
well. No constraints are assumed for the grid spacing of the p variable, enabling a
highly flexible and adaptable grid for different physical situations. In particular, the
cell boundaries for the x and p grid are defined by

xj−1/2 = x1/2 + (j − 1)∆x , ∆x ∈ R , j = 1, . . . , Nx + 1 (3.92)

and

pm−1/2 = p1/2 +
m−1∑
l=1

∆pl , p1/2 ∈ R , ∆pl ∈ R , m = 2, . . . , Np + 1 . (3.93)

The central points of the grid cells are labeled by integer indices and given by

xj =
xj−1/2 + xj+1/2

2
, j = 1, . . . , Nx (3.94)

and

pm =
pm−1/2 + pm+1/2

2
, m = 1, . . . , Np . (3.95)

For a schematic outline of the p grid see Fig. 3.3. The cell average of the Wigner
function over the grid cell Cm,j is given by

Fm,j(t) =
1

∆pm∆x

∫∫
Cm,j

f(p, x, t)dpdx , m = 1, . . . , Np , j = 1, . . . , Nx , (3.96)
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Figure 3.3: Schematic representation of the p grid and the grid cells Cm for the piece-
wise polynomial approximation of f(p, x, t) based on finite volume meth-
ods. Note that the spacing ∆pm = pm+1/2 − pm−1/2 is now defined as the
difference between two intermediate grid points.

where we used a capital letter for the cell average to distinguish it from the continuous
function f(p, x, t). To arrive at a conservative scheme we average now the whole
Wigner transport equation Eq. (2.10) over grid cells:

1

∆pm∆x

∫∫
Cm,j

∂tf(p, x, t)dpdx =
1

∆pm∆x

∫∫
Cm,j

[
− p

m∗
∂xf(p, x, t)

+
q

m∗
(Θ~[V ]f) (p, x, t)

]
dpdx . (3.97)

The left-sided term can be directly identified as the the time derivative of the cell
average, ∂tFm,j(t). For the moment, we rewrite the first term on the right-hand side,
the advection term, as

1

∆pm∆x

∫∫
Cm,j

− p

m∗
∂xf(p, x, t)dpdx =

1

∆pm∆x

∫
Cm

− p

m∗
[
f(p, xj+1/2, t)

−f(p, xj−1/2, t)
]
dp

= − 1

∆x

[
ĥm,j+1/2(t)− ĥm,j−1/2(t)

]
, (3.98)

with

ĥm,j+1/2(t) =
1

∆pm

∫
Cm

p

m∗
f(p, xj+1/2, t)dp . (3.99)

The quantity ĥm,j+1/2(t) herein labels the flux at the cell boundary xj+1/2, averaged
over all values of p within the interval Cm. Later on, in Sec. 3.3, we will see how to
express ĥm,j+1/2 in terms of the cell averages Fm,j(t) when discussing discretization
methods for flux conservative equations. For simplicity we leave out the advection
term in the following equations in this section and focus on the temporal change of
Fm,j(t) due to the pseudo-differential operator.

In order to express the last term in Eq. (3.97) in terms of the cell averages, we
approximate f(p, x, t) by a piecewise polynomial function whose coefficients depend
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linearly on the set of cell averages Fm,j(t). In the following, f(p, x, t) does not label the
exact solution of the WTE anymore but stands for a function defined for continuous
values of p and x, reconstructed out of the set of discrete values Fm,j(t). In principle,
this is a direct application of Godunov’s method or REA algorithm, known from the
finite volume methods developed for hyperbolic systems [11]. The abbreviation REA
stands for reconstruct - evolve - average. This is exactly what we will do in the
following: at first we reconstruct a function f(p, x, t) for continuous arguments out of
the set of cell averages, then, to evolve the function in time we calculate the action
of the pseudo-differential operator on f(p, x, t) exactly (for a given potential) and at
last, we average the result over grid cells to obtain the new cell averages. As a side
note: At the moment we obtain instead of the new value of Fm,j(t + ∆t) the rate of
temporal change, ∂tFm,j(t). Since we choose the reconstruction function f(p, x, t) in
such a way that it depends linearly on the set of Fm,j(t), all three steps of the REA
algorithm will finally condense into a single matrix expression

∂tFm,j(t) =

Np∑
i=1

Dm,i,j(t)Fi,j(t) , (3.100)

with D termed drift matrix in this work.

General considerations In this part of the present section we state the approach to a
piecewise polynomial approximation of f(p, x, t) in general, for the purpose of pointing
out that a polynomial approximation to any order is feasible. Two crucial aspects will
be discussed: Firstly, the existence of the integrals and secondly the problem of cell
averaging over half-bounded intervals. The first point is meant to elucidate that the
integrals determining the drift matrix elements exist for any bounded potential shape,
even though the single terms in the integrals show divergent behaviour. The order
of these singularities increases with the order of the polynomial approximation but
there is an easy way to show the existence of all of this integrals. The second point
is crucial for the calculation of the drift matrix elements for the boundaries, i.e. the
first and last row of D. In Sec. 3.2.1 we saw that one could evaluate the half-bounded
integrals by regrouping the terms and using a substitution but this approach cannot
be used in general. For instance the first-order approximation presented later poses a
problem. But again, an easy way exists to evaluate the half-bounded expressions in
general, closely related to the calculation for the first point.

To reconstruct a function f(p, x, t) defined for continuous arguments p and x, given
the set of cell averages Fm,j(t), we choose the following piecewise polynomial approx-
imation

f(p, x, t) =

Np∑
m=1

Nx∑
j=1

P n
m,j(p, x, t) , (3.101)
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3.2 Piecewise polynomial approximation of the Wigner function

with the polynomials of order n defined by

P n
m,j(p, x, t) :=

{∑n
ν=0 am,j,ν(t)(p− pm)ν if (p, x) ∈ Cm,j , m 6= {0, Np + 1} ,

0 elsewhere .

(3.102)
Herein the order of the polynomial refers only to the p variable, with respect to the x
variable we always use a piecewise constant approximation. The particular coefficients
am,j,ν(t) are not specified at this point and the accuracy of the algorithm depends on a
smart choice of the coefficients. The only necessary constraint is that the coefficients
have to be chosen in a way such that Eq. (3.96) is always fulfilled, i.e. that the
reconstructed function f(p, x, t) is consistent with the cell averages Fm,j(t). Plugging
Eqs. (3.101) and (3.102) into Eq. (3.96) results in the requirement

Fm,j(t) =
1

∆pm

∫ pm+1/2

pm−1/2

n∑
ν=0

am,j,ν(t)(p− pm)νdp , m = 1, . . . , Np , j = 1, . . . , Nx .

(3.103)
In addition, we demand that the coefficients am,j,ν(t) depend linearly on the set of
cell averages Fm,j(t) in order to finally arrive at a linear expression of the form of Eq.
(3.100) but this requirement is not essential, of course.

Choosing a piecewise constant approximation with respect to x greatly simplifies
the cell averaging over the x variable. Otherwise one could not obtain a drift matrix
expression of the form of Eq. (3.100) with a set of Nx two-dimensional matrices
but would have to deal with one four-dimensional tensor instead. This neglecting
of the coupling of Fm,j(t)’s with different values of j, i.e. along the x axis, seems
to be reasonable since one can see also from the definition of the pseudo-differential
operator, Eq. (2.12), that the potential couples different f(p, x, t) and f(p′, x, t) but
always at the same point x.

To calculate the action of the pseudo-differential operator on the piecewise polyno-
mial function f(p, x, t) we calculate the Fourier transformed function f̃(η, x, t) first.
Inserting the definition of the polynomials into Eq. (2.13) yields

f̃(η, x, t) =
1

2π~

∫ ∞
−∞

Np∑
m=1

Nx∑
j=1

P n
m,j(p, x, t) exp

(
−i p

~
η
)
dp

=
1

2π~

Np∑
m=1

Nx∑
j=1

n∑
ν=0

am,j,ν(t)Θ
(
xj−1/2 ≤ x < xj+1/2

)
×
∫ pm+1/2

pm−1/2

(p− pm)ν exp
(
−i p

~
η
)
dp , (3.104)

with the abbreviation

Θ
(
xj−1/2 ≤ x < xj+1/2

)
= H(x− xj−1/2)H(xj+1/2 − x) (3.105)

defined as the product of two Heaviside step functions. For calculating the action of
the pseudo-differential operator one has to insert the Fourier transform f̃(η, x, t) in
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3 Numerical methods for the Wigner transport equation

Eq. (2.12). To ensure the existence of all integrals its is important to know the limit
η → 0 of f̃(η, x, t), which can be readily evaluated from the general form Eq. (3.104)
to

f̃(η = 0, x, t) =
1

2π~

Np∑
m=1

Nx∑
j=1

n∑
ν=0

Θ
(
xj−1/2 ≤ x < xj+1/2

)
am,j,ν(t)

∫ pm+1/2

pm−1/2

(p− pm)νdp ,

(3.106)
which is a finite, real number.

Now, to calculate the action of the pseudo-differential operator we make use of the
fact that (Θ~[V ]f) (p, x, t) is always real and insert f̃(η, x, t) into Eq. (2.26)

(Θ~[V ]f) (p, x, t) = 2<
{∫ ∞

0

im∗

~

[
V

(
x+

η′

2
, t

)
−V

(
x−η

′

2
, t

)]
f̃(η′, x, t) exp

(
i
p

~
η′
)
dη′
}

= 2<
{∫ ∞

0

im∗

~
V

(
x+

η′

2
, t

)
f̃(η′, x, t) exp

(
i
p

~
η′
)
dη′
}

−2<
{∫ −∞

0

−im
∗

~
V

(
x+

η′′

2
, t

)
f̃(−η′′, x, t) exp

(
−i p

~
η′′
)
dη′′
}

= 2<
{∫ ∞

0

im∗

~
V

(
x+

η′

2
, t

)
f̃(η′, x, t) exp

(
i
p

~
η′
)
dη′
}

−2<
{∫ −∞

0

m∗

~
V

(
x+

η′′

2
, t

)[
if̃(η′′, x, t) exp

(
i
p

~
η′′
)]∗

dη′′
}

= 2<
{∫ ∞
−∞

im∗

~
V

(
x+

η′

2
, t

)
f̃(η′, x, t) exp

(
i
p

~
η′
)
dη′
}
, (3.107)

where we used in the second line a simple substitution η′′ = −η′, in the third line the

property f̃(−η, x, t) =
[
f̃(η, x, t)

]∗
and in the last line the fact, that the real part of

a complex number and the real part of its complex conjugate are the same. Here we
already made implicitly use of the fact that f̃(η, x, t) results in a finite, real number
for η → 0, since the splitting of the integral into two parts in the second line is only
allowed when both parts exist separately.

Equation (3.107) facilitates to calculate the action of a given potential. As men-
tioned in Sec. 3.2.1, a numerical evaluation of the integral for an arbitrary potential
is unfeasible due to the oscillatory integrand. We thus choose a piecewise polynomial
approximation for V (x, t) as well and calculate the integrals exactly. The cosine and
sine integrals appearing therein are evaluated by using some library routine. In this
work, we consider at the most a piecewise linear potential shape and write V (x, t)
therefore as

V (x, t) =

NV∑
k=0

pVk (x, t) , (3.108)

with

pVk (x, t) :=

{
v0
k(t) + v1

k(t)x if xVk ≤ x < xVk+1 ,

0 elsewhere .
(3.109)
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V(x)

x

x0
V x1

V xk
V xNV

V xNV+1
V

x1 x2 xj xNx
x1/2 x5/2x3/2 xj-1/2 xj+1/2 xN

x
-1/2xN

x
+1/2

device

Figure 3.4: Schematic drawing of the piecewise linear approximation of the potential
V (x, t) as defined in Eqs. (3.108) and (3.109), here for the special case of
a continuous approximation. As indicated in the figure, the nodes of the
potential xVk , k = 1, . . . , NV , are chosen as a subset of the grid points xj,
j = 1, . . . , Nx, for the Wigner function. The two points xV0 and xVNV +1 are
located outside of the considered x domain.

The grid points for the potential are chosen as a subset of the grid points for the
Wigner function, i.e. they are given by

{xVk |k = 1, . . . , NV } ⊆ {xj|j = 1, . . . , Nx} , (3.110)

with NV ≤ Nx. Furthermore, two additional grid points outside the device are in-
troduced, xV0 and xVNV +1, which we will let go to ±∞ in the final equations to model
the situation of semi-infinite leads under bias. An example for a continuous potential
approximated in this manner is given in Fig. 3.4. Inserting the potential as defined
in Eqs. (3.108) and (3.109) into Eq. (3.107), yields

(Θ~[V ]f) (p, x, t) = 2<

{
NV∑
k=0

∫ 2(xVk+1−x)

2(xVk −x)

im∗

~

[
v0
k(t) + v1

k(t)

(
x+

η′

2

)]

×f̃(η′, x, t) exp
(
i
p

~
η′
)
dη′

}
, (3.111)

which can be directly evaluated for a specific approximation of f(p′, x, t) and therefore
a given expression for f̃(η′, x, t). To explicitly calculate the integrals in the following
parts of this section, we consider the simpler case of a single, linear potential segment
which is nonzero only on one interval (xV1 , x

V
2 ). We introduce the abbreviations xa =

xV1 and xb = xV2 to label these two potential nodes, see also Fig. 3.5. Furthermore,
we consider a time-independent potential and drop the index k so that Eq. (3.111)
reduces to the more compact form

(Θ~[V ]f) (p, x, t) = 2<

{
im∗

~

∫ 2(xb−x)

2(xa−x)

[
v0 + v1

(
x+

η′

2

)]
f̃(η′, x, t) exp

(
i
p

~
η′
)
dη′

}
.

(3.112)
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x1 x2 xj xNx
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-1/2xN

x
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Figure 3.5: Analogous plot to Fig. 3.4 for the special case of a single, piecewise linear
potential segment, which has nonzero values only on the interval (xa, xb).

This reduction to a single potential element is introduced for the sake of clarity of the
upcoming calculations and it should be clear, that the knowledge of the action of the
pseudo-differential operator for this single potential segment suffices to construct any
other, more complicated piecewise linear potential shape as stated in Eqs. (3.108) -
(3.109).

We now focus on the cell averaging process to arrive at a conservative scheme.
Therefore, we return to Eq. (3.97) but with the advection term left out for simplicity.
For the case of the interior grid cells Cm,j, with interior referring to the p variable, we
can use exactly the same expression as stated in Eq. (3.97)

∂tFm,j(t) =
1

∆pm∆x

∫∫
Cm,j

q

m∗
(Θ~[V ]f) (p, x, t)dpdx , m = 2, . . . , Np−1 , j = 1, . . . , Nx .

(3.113)
For the boundary cells we need an additional step and start with the following integral
expressions, written as example at the lower boundary:∫∫

C1,j
⋃
C0,j

∂tf(p, x, t)dpdx =

∫∫
C1,j

⋃
C0,j

q

m∗
(Θ~[V ]f) (p, x, t)dpdx , j = 1, . . . , Nx ,

(3.114)
which result in half-bounded integrals with respect to p as can be seen from the
definition of the intervals in Eqs. (3.90) and (3.91). In order to evaluate the left-hand
side of Eq. (3.114) we use the piecewise polynomial approximation of f(p, x, t) and
recall that the Wigner function is assumed to be zero outside (p1/2, pNp+1/2), compare
Eqs. (3.101) and (3.102). Therefore, the left-hand side reduces to∫∫

C1,j
⋃
C0,j

∂tf(p, x, t)dpdx =

∫∫
C1,j

∂tf(p, x, t)dpdx

= ∆p1∆x∂tF1,j(t) . (3.115)

For the right-hand side of Eq. (3.114) we have to consider the full, half-bounded
interval C1,j

⋃
C0,j since the action of the pseudo-differential operator does not vanish
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3.2 Piecewise polynomial approximation of the Wigner function

outside the considered (p, x)-domain. One can see from the definition of the pseudo-
differential operator, Eq. (2.12), that as soon as f(p′, x, t) is nonzero in some part
of p′ ∈ R the pseudo-differential operator takes on nonzero values for any value of

p, in principle, only that the factor exp
(
i (p−p′)

~ η′
)

leads to a phase cancellation for

large differences of p− p′ and thus to a decay of the action of the pseudo-differential
operator. On the whole, we obtain the following expressions for the temporal change
of F1,j(t) and FNp,j(t):

∂tF1,j(t) =
1

∆p1∆x

∫ xj+1/2

xj−1/2

∫ p3/2

−∞

q

m∗
(Θ~[V ]f) (p, x, t)dpdx , j = 1, . . . , Nx ,

∂tFNp,j(t) =
1

∆pNp∆x

∫ xj+1/2

xj−1/2

∫ ∞
pNp−1/2

q

m∗
(Θ~[V ]f) (p, x, t)dpdx , j = 1, . . . , Nx .

(3.116)

When comparing Eqs. (3.113) and (3.116) one can notice that in the case of the inte-
rior grid cells the temporal change of Fm,j(t) is determined by averaging the pseudo-
differential operator over the corresponding interval Cm,j, but in contrast, in the case
of the exterior grid cells the temporal change of F1,j(t) and FNp,j(t) is determined by
an integration of the pseudo-differential operator over the semi-infinite intervals to
±∞. This is, of course, an approximation and furthermore a source of error for prac-
tical computations. In order to keep this error small one has to chose the p-domain on
which f(p, x, t) is allowed to take on nonzero values large enough. The advantage of
the present formulation is that all the action of the pseudo-differential operator out-
side the p-domain is captured by the rate of change of F1,j and FNp,j, without directly
affecting the other cell averages inside the domain as in the case of the continuous
approximation presented in Sec. 3.2.1. Therefore, one is able to adjust the domain
size required for a particular simulation by monitoring the values of the endpoints,
for instance by increasing the size of (p1/2, pNp+1/2) until the values of F1,j and FNp,j
stay below a certain value.

With the cell-averaged time evolution equations as stated in Eqs. (3.113) and
(3.116), the conservation of the particle density in each interval of position space,

n(xj, t) =

Np∑
m=1

Fm,j(t)∆pm , (3.117)

is always ensured independent of the particular polynomial approximation of f(p, x, t)
and the potential shape. We recall the result from Sec. 2.2 that the action of the
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pseudo-differential operator vanishes when integrating over all p, so that we find

∂t

Np∑
m=1

Fm,j(t)∆pm =

Np−1∑
m=2

1

∆x

∫∫
Cm,j

q

m∗
(Θ~[V ]f) (p, x, t)dpdx

+
1

∆x

∫ xj+1/2

xj−1/2

∫ p3/2

−∞

q

m∗
(Θ~[V ]f) (p, x, t)dpdx

+
1

∆x

∫ xj+1/2

xj−1/2

∫ ∞
pNp−1/2

q

m∗
(Θ~[V ]f) (p, x, t)dpdx

=
1

∆x

∫ xj+1/2

xj−1/2

∫ ∞
−∞

q

m∗
(Θ~[V ]f) (p, x, t)dpdx

= 0 . (3.118)

Due to the fact that the particle density n(xj, t) is unaffected by the action of the
pseudo-differential operator, the continuity equation for n(xj, t) is fulfilled.

By inserting Eq. (3.107) into Eq. (3.113) we find the following general, cell averaged
expression valid for any polynomial approximation as defined in Eqs. (3.101) and
(3.102)

∂tFm,j(t) =
1

∆pm∆x
<

{
2iq

~

∫ xj+1/2

xj−1/2

∫ pm+1/2

pm−1/2

∫ ∞
−∞

V

(
x+

η′

2
, t

)
f̃(η′, x, t)

× exp
(
i
p

~
η′
)
dη′dpdx

}

=
1

∆pm∆x
<

{
2iq

~

∫ xj+1/2

xj−1/2

∫ ∞
−∞

V

(
x+

η′

2
, t

)
f̃(η′, xj, t)

×
∫ pm+1/2

pm−1/2

exp
(
i
p

~
η′
)
dpdη′dx

}

=
1

∆pm∆x
<

{
2iq

~

∫ xj+1/2

xj−1/2

∫ ∞
−∞

V

(
x+

η′

2
, t

)
f̃(η′, xj, t)

×
(
−i ~
η′

)[
exp

(
i
pm+1/2

~
η′
)
− exp

(
i
pm−1/2

~
η′
)]
dη′dx

}
,

m = 2, . . . , Np − 1 , j = 1, . . . , Nx , (3.119)

where we used in the second line on the one hand, that the exponential function is
the only p-dependent quantity and on the other hand, that f̃(η′, x, t) = f̃(η′, xj, t)
for x ∈ (xj−1/2, xj+1/2) since f(p, x, t) is assumed to be a piecewise constant function
with respect to x. The critical point is now to evaluate the same expression for the
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boundary terms m = {1, Np}. In the case of m = 1 we need to calculate

∂tF1,j(t) =
1

∆p1∆x
<

{
2iq

~

∫ xj+1/2

xj−1/2

∫ ∞
−∞

V

(
x+

η′

2
, t

)
f̃(η′, xj, t)

×
∫ p3/2

−∞
exp

(
i
p

~
η′
)
dpdη′dx

}
, j = 1, . . . , Nx . (3.120)

The calculation of the integral over p cannot be done in a straightforward manner
anymore. But, one can make use of the theory of distributions, see [29] [30], to link
the integral to the Fourier transform of the Heaviside step function, given by [31]

H̃(ω) =
1√
2π

∫ ∞
−∞

H(t) exp (−iωt) dt

=
1√
2π

1

iω
+

√
π

2
δ(ω) . (3.121)

With this in hands we find for the integration with respect to p∫ p3/2

−∞
exp

(
i
p

~
η′
)
dp = ~ exp

(
i
p3/2

~
η′
)∫ ∞

0

exp (−ik′η′) dk′

= ~ exp
(
i
p3/2

~
η′
)[ 1

iη′
+ πδ(η′)

]
= −i ~

η′
exp

(
i
p3/2

~
η′
)

+ ~πδ(η′) , (3.122)

where we used the substitution k′ = −p
~ +

p3/2

~ in the first line. After insertion in Eq.
(3.120) we can write the result as

∂tF1,j(t) =
1

∆p1∆x
<

{
2iq

~

∫ xj+1/2

xj−1/2

∫ ∞
−∞

V

(
x+

η′

2
, t

)
f̃(η′, xj, t)

×
[
−i ~
η′

exp
(
i
p3/2

~
η′
)

+ ~πδ(η′)
]
dη′dx

}

=
1

∆p1∆x
<

{
2iq

~

∫ xj+1/2

xj−1/2

∫ ∞
−∞

V

(
x+

η′

2
, t

)
f̃(η′, xj, t)

×
(
−i ~
η′

)
exp

(
i
p3/2

~
η′
)
dη′dx

}

+
1

∆p1∆x
<

{
2iqπ

∫ xj+1/2

xj−1/2

V (x, t) f̃(0, xj, t)dx

}

=
1

∆p1∆x
<

{
2q

~

∫ xj+1/2

xj−1/2

∫ ∞
−∞

V

(
x+

η′

2
, t

)
f̃(η′, xj, t)

~
η′

exp

(
i
p3/2

~
η′

)
dη′dx

}
,

j = 1, . . . , Nx , (3.123)
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where we used the previous result, Eq. (3.106), that f̃(0, xj, t) is a finite, real number,
so that the last term in the second line vanishes. When repeating the calculation for
m = Np an analogous result is obtained, the only changes are that p3/2 is replaced by
pNp−1/2 in Eq. (3.123) and an overall minus sign occurs since the half-bounded interval
(pNp−1/2,∞) is now extended to ∞ and not −∞. As can be seen from Eq. (3.123)
the integration over the half-bounded interval results in a very similar expression
like that for the interior points, Eq. (3.119). The only difference is that just one of
the interval endpoints, namely the finite one, contributes and the term for the other
endpoint drops out of the equation. This result facilitates the calculation of the drift
matrix elements for a particular approximation remarkable. First of all, one does not
need to do the integration over the semi-infinite intervals for each, new polynomial
approximation order again, which may be tedious and complicated to do in some
cases, and in the second place, since Eqs. (3.119) and (3.123) contain terms of the
same form one effectively needs to carry out only one integration and the result can
be used for all of the matrix elements.

After this general considerations we will calculate the integrals for a certain approx-
imation of f(p, x, t) and V (x, t) explicitly. In both cases we choose a piecewise linear
approximation. We thus write the first-order polynomials determining f(p, x, t) by
Eq. (3.101),

f(p, x, t) =

Np∑
m=1

Nx∑
j=1

P 1
m,j(p, x, t) , (3.124)

as

P 1
m,j(p, x, t) :=

{
Fm,j(t) + σm,j(t)(p− pm) if (p, x) ∈ Cm,j , m 6= {0, Np + 1} ,
0 elsewhere .

(3.125)
It is obvious to see that an averaging of f(p, x, t) over the grid cells Cm,j results
in Fm,j(t), so that the constraint Eq. (3.103) is always fulfilled independent of the
particular choice of the slopes σm,j(t). In order to finally arrive at a linear set of
equations as stated earlier in Eq. (3.100), we choose σm,j(t) to depend linearly on the
cell averages Fm,j(t). In particular we determine σm,j(t) by central finite differences
at the interior grid points and by one-sided finite differences at the boundaries, such
that

σm,j(t) =
Fm+1,j(t)− Fm−1,j(t)

pm+1 − pm−1

, m = 2, . . . , Np − 1 , j = 1, . . . , Nx ,

σ1,j(t) =
F2,j(t)− F1,j(t)

p2 − p1

, j = 1, . . . , Nx ,

σNp,j(t) =
FNp,j(t)− FNp−1,j(t)

pNp − pNp−1

, j = 1, . . . , Nx , (3.126)

see also Fig. 3.6. A linear dependence is not obligatory at all, it just simplifies
computations in practice since a simple and quick time stepping scheme can be used
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p1 p2 pm pNp
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Fm

F1
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Figure 3.6: Illustration of the non-continuous, piecewise linear reconstruction of
f(p, x, t) out of the set of cell averages Fm,j and with slopes as defined
in Eq. (3.126). Indicated are the grid points pm as well as the cell bound-
aries pm+1/2.

and it furthermore reduces memory requirements because the linear set of equations
can be rewritten as one matrix acting on the set of cell averages Fm,j(t). But, one
could also use a non-linear, more sophisticated method to determine the slopes, for
instance with the purpose to suppress spurious oscillations. Various approaches exist
for flux conservative methods which rely for example on different slope limiters, as
can be found in [11] and is also briefly mentioned in Sec. 3.3. The slope limiters
pursue the strategy to use a high-order approximation of the slopes in regions where
the solution is well resolved and limit the slopes in badly resolved regions to avoid
an overshooting of the reconstructed function. This strategy may also help to reduce
spurious oscillations in the treatment of the WTE but was not examined in this work.
The problem is that no general criterion as for total variation diminishing methods
exists, see [18] [11], since the WTE inherently produces oscillations. Therefore, it is
hard to distinguish real, physical oscillations from numerical ones. Because of this
we think that applying such a strategy would require intensive investigations and is
beyond the scope of the present work. But, in order not to restrict the calculations of
the matrix elements to a special choice of σm,j(t) we will do the calculations for both
Fm,j(t) and σm,j(t) separately, yielding a different drift matrix for each of them. Only
then, in the final step we make use of Eq. (3.126) to combine the two matrices to a
single drift matrix and to arrive at a form as stated in Eq. (3.100).

The potential V (x, t) is approximated by a piecewise linear polynomial as well.
The general form was already stated in Eqs. (3.108) - (3.109). But, to increase
the readability of the upcoming calculations we consider the case of a single, linear
potential element for which the expression for the pseudo-differential operator was
written down explicitly in Eq. (3.112). It is straightforward to make use of this
expression for the cell-averaged formulas Eqs. (3.119) and (3.123).

Finally, to sum up the results of the last part of this section the cell averaged
equations for this specific choice of f(p, x, t) and V (x, t) are listed. The following
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3 Numerical methods for the Wigner transport equation

equations serve as the starting point for the detailed calculations in the next parts of
this section:

∂tFm,j(t) =
1

∆pm∆x

2q

~

∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

[
v0 + v1

(
x+

η′

2

)]
×<

{
f̃(η′, xj, t)

~
η′

[
exp

(
i
pm+1/2

~
η′
)
− exp

(
i
pm−1/2

~
η′
)]}

dη′dx ,

m = 2, . . . , Np − 1 , j = 1, . . . , Nx ,

∂tF1,j(t) =
1

∆p1∆x

2q

~

∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

[
v0 + v1

(
x+

η′

2

)]
×<

{
f̃(η′, xj, t)

~
η′

exp
(
i
p3/2

~
η′
)}

dη′dx , j = 1, . . . , Nx ,

∂tFNp,j(t) =
1

∆pNp∆x

2q

~

∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

[
v0 + v1

(
x+

η′

2

)]
×<

{
−f̃(η′, xj, t)

~
η′

exp
(
i
pNp−1/2

~
η′
)}

dη′dx , j = 1, . . . , Nx ,

(3.127)

with the Fourier transform f̃(η′, xj, t) on the interval (xj−1/2, xj+1/2) given by

f̃(η′, xj, t) =
1

2π~

Np∑
i=1

∫ pi+1/2

pi−1/2

[Fi,j(t) + σi,j(t)(p
′ − pi)] exp

(
−ip

′

~
η′
)
dp′ , (3.128)

according to Eq. (3.104). Both V (x, t) and f(p, xj, t) consist of a constant and a
linear part with respect to x and p, respectively. Each of the four combinations will
be treated separately in the next parts of this section to finally arrive at an expression
containing the four drift matrices

∂tFm,j(t) =

Np∑
i=1

[
DF,v0

m,i,j +DF,v1

m,i,j

]
Fi,j(t) +

Np∑
i=1

[
Dσ,v0

m,i,j +Dσ,v1

m,i,j

]
σi,j(t) ,

m = 1, . . . , Np , j = 1, . . . , Nx , (3.129)

with the matrix elements directly determined by the Eqs. (3.127) and (3.128). By
the use of Eq. (3.126), connecting the slopes with the cell averages, the four matrices
may then be merged into a single drift matrix

∂tFm,j(t) =

Np∑
i=1

Dm,i,jFi,j(t) , m = 1, . . . , Np , j = 1, . . . , Nx . (3.130)

The drift matrix, as do the four single matrices, obeys the property

Np∑
m=1

∆pmDm,i,j = 0 , i = 1, . . . , Np , j = 1, . . . , Nx , (3.131)
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3.2 Piecewise polynomial approximation of the Wigner function

which in turn ensures the conservation of the number of particles (comp. Eq. (3.117)).
This property can also be directly seen from Eq. (3.127) when looking at the factors
±1 in front of the exponential terms containing the cell boundaries pm+1/2.

Constant potential segment, constant part of the polynomial for the Wigner
function: We start with the simplest case, a piecewise constant approximation of
f(p, x, t) and V (x, t). The first step is to calculate the Fourier transform of f(p, x, t)
which is simply given by

f̃(η′, xj, t) =
1

2π~

Np∑
i=1

∫ pi+1/2

pi−1/2

Fi,j(t) exp

(
−ip

′

~
η′
)
dp′

=
1

2π~

Np∑
i=1

Fi,j(t)

(
i
~
η′

)[
exp

(
−i
pi+1/2

~
η′
)
− exp

(
−i
pi−1/2

~
η′
)]

.

(3.132)

Inserting this into Eq. (3.127) results in the following expression for the interior grid
points

∂tFm,j(t) =
~

∆pm∆x

qv0

π~

∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

<

{
Np∑
i=1

Fi,j(t)
i

η′2

[
exp

(
−i
pi+1/2

~
η′
)

− exp
(
−i
pi−1/2

~
η′
)] [

exp
(
i
pm+1/2

~
η′
)
− exp

(
i
pm−1/2

~
η′
)]}

dη′dx ,

m = 2, . . . , Np − 1 , j = 1, . . . , Nx .

(3.133)

For the boundary terms m = 1 and m = Np similar expressions are readily obtained.

It is convenient to define terms IF,v
0

m+1/2,i+1/2,j containing all the integrals

IF,v
0

m+1/2,i+1/2,j = −
∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

1

η′2
sin

(
pm+1/2 − pi+1/2

~
η′
)
dη′dx , (3.134)

which result from taking the real part of the product of two exponential functions
times i. This enables us to rewrite Eq. (3.133) in matrix form

∂tFm,j(t) =

Np∑
i=1

DF,v0

m,i,jFi,j(t) , m = 1, . . . , Np , j = 1, . . . , Nx , (3.135)
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3 Numerical methods for the Wigner transport equation

with the matrix elements given by

DF,v0

m,i,j =
~

∆pm∆x

qv0

π~

[
IF,v

0

m+1/2,i+1/2,j − I
F,v0

m+1/2,i−1/2,j −
(
IF,v

0

m−1/2,i+1/2,j − I
F,v0

m−1/2,i−1/2,j

)]
,

m = 2, . . . , Np − 1 ,

DF,v0

1,i,j =
~

∆pm∆x

qv0

π~

(
IF,v

0

3/2,i+1/2,j − I
F,v0

3/2,i−1/2,j

)
,

DF,v0

Np,i,j
= − ~

∆pm∆x

qv0

π~

(
IF,v

0

Np−1/2,i+1/2,j − I
F,v0

Np−1/2,i−1/2,j

)
, (3.136)

for i = 1, . . . , Np , j = 1, . . . , Nx. As we will see in the following, the structure of all

drift matrices in Eq. (3.129) is the same, only the terms IF,v
0

m+1/2,i+1/2,j change for a

different approximation of f(p, x, t) and V (x, t). Due to the particular structure, a
summation of the product of the matrix elements times ∆pm with respect to m, as
done in Eq. (3.131), results in a telescoping sum whereby the remaining terms m = 2
and m = Np − 1 cancel each other with the terms m = 1 and m = Np, respectively,
resulting on the whole in a value of zero.

Now, to explicitly calculate IF,v
0

m+1/2,i+1/2,j we use the abbreviation

km,i =
pm+1/2 − pi+1/2

~
(3.137)

and start with the integral over η′:

IF,v
0

m+1/2,i+1/2,j = −
∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

1

η′2
sin (km,iη

′) dη′dx

=

∫ xj+1/2

xj−1/2

[
1

η′
sin (km,iη

′)
∣∣2(xb−x)

2(xa−x)
− km,i

∫ 2(xb−x)

2(xa−x)

1

η′
cos (km,iη

′) dη′

]
dx

=

∫ xj+1/2

xj−1/2

1

η′
sin (km,iη

′)
∣∣2(xb−x)

2(xa−x)
dx

−
∫ xj+1/2

xj−1/2

km,i {Ci [|2km,i(xb − x)|]− Ci [|2km,i(xa − x)|]} dx ,

(3.138)

where we integrated by parts in the second line and used the result of Eqs. (3.70) -
(3.73) in the last line. To perform the integration with respect to x we begin with the
sine integral∫ xj+1/2

xj−1/2

1

η′
sin (km,iη

′)
∣∣2(xb−x)

2(xa−x)
dx = −1

2

∫ 2km,i(xb−xj+1/2)

2km,i(xb−xj−1/2)

1

u′
sin (u′) du′

+
1

2

∫ 2km,i(xa−xj+1/2)

2km,i(xa−xj−1/2)

1

u′′
sin (u′′) du′′

= −1

2

[
Si (u′)

∣∣2km,i(xb−xj+1/2)

2km,i(xb−xj−1/2)
− Si (u′′)

∣∣2km,i(xa−xj+1/2)

2km,i(xa−xj−1/2)

]
,

(3.139)
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3.2 Piecewise polynomial approximation of the Wigner function

where we used the substitutions u′ = 2km,i(xb − x) and u′′ = 2km,i(xa − x) and the
definition of the sine integral Eq. (3.74). The integration of the cosine integral with
respect to x is more involved due to the modulus of the argument. The calculation
was done in detail in Sec. 3.2.2 and we can directly make use of the result from Eq.
(3.82). When conflating the results from the sine and the cosine integral it is practical
to introduce the function

T F,v0

(u) =
1

2
[uCi (|u|)− Si (u)− sin(u)] , (3.140)

containing all the trigonometric integrals and functions, as well as the integration
intervals

Cxa
m,i,j = (2km,i(xa − xj−1/2), 2km,i(xa − xj+1/2)) ,

Cxb
m,i,j = (2km,i(xb − xj−1/2), 2km,i(xb − xj+1/2)) , (3.141)

to write the final result in compact notation as

IF,v
0

m+1/2,i+1/2,j = T F,v0

(u)
∣∣
C
xb
m,i,j
− T F,v0

(u)
∣∣
Cxam,i,j

. (3.142)

Constant potential segment, linear part of the polynomial for the Wigner func-
tion: We now consider again a constant potential segment but for f(p, x, t) solely the
part of Eq. (3.128) containing σi,j(t), i.e. the first-order correction. For the Fourier
transform f̃(η′, xj, t) we then find

f̃(η′, xj, t) =
1

2π~

Np∑
i=1

∫ pi+1/2

pi−1/2

σi,j(t)(p
′ − pi) exp

(
−ip

′

~
η′
)
dp′

=
1

2π~

Np∑
i=1

σi,j(t)

(
i
~
η′

){
(pi+1/2 − pi) exp

(
−i
pi+1/2

~
η′
)

−(pi−1/2 − pi) exp
(
−i
pi−1/2

~
η′
)

−
(
i
~
η′

)[
exp

(
−i
pi+1/2

~
η′
)
− exp

(
−i
pi−1/2

~
η′
)]}

=
1

2π~

Np∑
i=1

σi,j(t)

{
∆pi

2

(
i
~
η′

)[
exp

(
−i
pi+1/2

~
η′
)

+ exp
(
−i
pi−1/2

~
η′
)]

+

(
~
η′

)2 [
exp

(
−i
pi+1/2

~
η′
)
− exp

(
−i
pi−1/2

~
η′
)]}

, (3.143)
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when integrating by parts and making use of ∆pi = pi+1/2 − pi−1/2. After inserting

the expression for f̃(η′, xj, t) into Eq. (3.127) for the interior grid points we arrive at

∂tFm,j(t) =
~

∆pm∆x

qv0

π~

∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

Np∑
i=1

σi,j(t)

×<

{{
∆pi

2

i

η′2

[
exp

(
−i
pi+1/2

~
η′
)

+ exp
(
−i
pi−1/2

~
η′
)]

+
~
η′3

[
exp

(
−i
pi+1/2

~
η′
)
− exp

(
−i
pi−1/2

~
η′
)]}

×
[
exp

(
i
pm+1/2

~
η′
)
− exp

(
i
pm−1/2

~
η′
)]}

dη′dx ,

m = 2, . . . , Np − 1 , j = 1, . . . , Nx .

(3.144)

Again we evaluate the real part of the product of the exponential functions with pm±1/2

and pi±1/2 and summarize all the integrals in the two terms Iσ,v
0

m+1/2,i+,j and Iσ,v
0

m+1/2,i−,j,
given by

Iσ,v
0

m+1/2,i+,j =

∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

[
−∆pi

2

1

η′2
sin

(
pm+1/2 − pi+1/2

~
η′
)

+
~
η′3

cos

(
pm+1/2 − pi+1/2

~
η′
)]

dη′dx (3.145)

and

Iσ,v
0

m+1/2,i−,j = −
∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

[
−∆pi

2

1

η′2
sin

(
pm+1/2 − pi−1/2

~
η′
)

− ~
η′3

cos

(
pm+1/2 − pi−1/2

~
η′
)]

dη′dx . (3.146)

In the case of the zeroth-order approximation it suffices to introduce one term IF,v
0

m+1/2,i+1/2,j,
depending solely on the values of the cell boundaries but now we need two terms to
account for the explicit i dependence. This dependence on the particular grid cell
arises due to the factor (p′ − pi) in Eq. (3.143). When calculating the integrals in

Iσ,v
0

m+1/2,i+,j one can make use of the result obtained for IF,v
0

m+1/2,i+1/2,j due to the same

66



3.2 Piecewise polynomial approximation of the Wigner function

form of the integrals, so that one arrives at

Iσ,v
0

m+1/2,i+,j =

∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

[
−∆pi

2

1

η′2
sin (km,iη

′) +
~
η′3

cos (km,iη
′)

]
dη′dx

=
∆pi

2
IF,v

0

m+1/2,i+1/2,j −
~
2

∫ xj+1/2

xj−1/2

[
1

η′2
cos (km,iη

′)
∣∣2(xb−x)

2(xa−x)

+km,i

∫ 2(xb−x)

2(xa−x)

1

η′2
sin (km,iη

′) dη′

]
dx

=

(
∆pi

2
+

~
2
km,i

)
IF,v

0

m+1/2,i+1/2,j −
~
2

∫ xj+1/2

xj−1/2

1

η′2
cos (km,iη

′)
∣∣2(xb−x)

2(xa−x)
dx ,

(3.147)

with the abbreviation km,i as defined by Eq. (3.137). To integrate the last term we
apply the more compact notation with the intervals Cxa

m,i,j and Cxb
m,i,j, see Eq. (3.141):

−~
2

∫ xj+1/2

xj−1/2

1

η′2
cos (km,iη

′)
∣∣2(xb−x)

2(xa−x)
dx =

~km,i
4

[∫
C
xb
m,i,j

1

u′2
cos(u′)du′

−
∫
Cxam,i,j

1

u′′2
cos(u′′)du′′

]
, (3.148)

when substituting u′ = 2km,i(xb − x) and u′′ = 2km,i(xa − x). In the case of Cxb
m,i,j we

find by taking Eq. (3.74) into account

~km,i
4

∫
C
xb
m,i,j

1

u′2
cos(u′)du′ =

~km,i
4

[
− 1

u′
cos(u′)

∣∣
C
xb
m,i,j
−
∫
C
xb
m,i,j

1

u′
sin(u′)du′

]

= −~km,i
4

[
1

u′
cos(u′)

∣∣
C
xb
m,i,j

+ Si(u′)
∣∣
C
xb
m,i,j

]
, (3.149)

so that it is convenient to introduce the new function

T σ,v0

(u) =
1

4

[
1

u
cos(u) + Si(u)

]
. (3.150)

Before writing down the result for Iσ,v
0

m+1/2,i+,j we perform the following reshaping of

the prefactor of IF,v
0

m+1/2,i+1/2,j in Eq. (3.147)

∆pi
2

+
~
2
km,i = pi+1/2 − pi +

1

2
(pm+1/2 − pi+1/2)

=
pm+1/2 + pi+1/2

2
− pi , (3.151)
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to finally arrive at

Iσ,v
0

m+1/2,i+,j =

(
pm+1/2 + pi+1/2

2
− pi

)[
T F,v0

(u)
∣∣
C
xb
m,i,j
− T F,v0

(u)
∣∣
Cxam,i,j

]
−
(
pm+1/2 − pi+1/2

) [
T σ,v0

(u)
∣∣
C
xb
m,i,j
− T σ,v0

(u)
∣∣
Cxam,i,j

]
. (3.152)

In the case of Iσ,v
0

m+1/2,i−,j we find nearly the same terms as in Eq. (3.147), only that

a minus sign appears in front of ∆pi
2

and km,i is replaced by km,i−1. As done in Eq.
(3.151) we reshape the prefactors

−∆pi
2

+
~
2
km,i−1 = pi−1/2 − pi +

1

2
(pm+1/2 − pi−1/2)

=
pm+1/2 + pi−1/2

2
− pi (3.153)

and since the other calculational steps are identical we can directly write down the
result as

Iσ,v
0

m+1/2,i−,j =

(
pm+1/2 + pi−1/2

2
− pi

)[
T F,v0

(u)
∣∣
C
xb
m,i−1,j

− T F,v0

(u)
∣∣
Cxam,i−1,j

]
−
(
pm+1/2 − pi−1/2

) [
T σ,v0

(u)
∣∣
C
xb
m,i−1,j

− T σ,v0

(u)
∣∣
Cxam,i−1,j

]
. (3.154)

With this in hands we can use Eq. (3.144) and the analogous ones for m = 1 and
m = Np to express the matrix elements corresponding to Eq. (3.129) in terms of

Iσ,v
0

m+1/2,i+,j and Iσ,v
0

m+1/2,i−,j:

Dσ,v0

m,i,j =
~

∆pm∆x

qv0

π~

[
Iσ,v

0

m+1/2,i+,j − I
σ,v0

m+1/2,i−,j −
(
Iσ,v

0

m−1/2,i+,j − I
σ,v0

m−1/2,i−,j

)]
,

m = 2, . . . , Np − 1 ,

Dσ,v0

1,i,j =
~

∆pm∆x

qv0

π~

(
Iσ,v

0

3/2,i+,j − I
σ,v0

3/2,i−,j

)
,

Dσ,v0

Np,i,j
= − ~

∆pm∆x

qv0

π~

(
Iσ,v

0

Np−1/2,i+,j − I
σ,v0

Np−1/2,i−,j

)
, (3.155)

with (i, j) taking on the values i = 1, . . . , Np , j = 1, . . . , Nx.

Linear potential segment, constant part of the polynomial for the Wigner func-
tion: To include a linear potential element we start again with the simplest case,
a piecewise constant approximation of f(p, x, t), for which the Fourier transform is
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known from Eq. (3.132). We now consider the following part of Eq. (3.127)

∂tFm,j(t) =
~

∆pm∆x

qv1

π~

∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

(
x+

η′

2

)
<

{
Np∑
i=1

Fi,j(t)
i

η′2

[
exp

(
−i
pi+1/2

~
η′
)

− exp
(
−i
pi−1/2

~
η′
)] [

exp
(
i
pm+1/2

~
η′
)
− exp

(
i
pm−1/2

~
η′
)]}

dη′dx ,

m = 2, . . . , Np − 1 , j = 1, . . . , Nx .

(3.156)

Once more, we collect all the integrals in the expression

IF,v
1

m+1/2,i+1/2,j = −
∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

(
x+

η′

2

)
1

η′2
sin

(
pm+1/2 − pi+1/2

~
η′
)
dη′dx

(3.157)
and can make direct use of the results from the previous part of this section, Constant
potential segment, constant part of the polynomial for the Wigner function, to perform
the integration with respect to η′:

IF,v
1

m+1/2,i+1/2,j =

∫ xj+1/2

xj−1/2

x

{
1

η′
sin (km,iη

′)
∣∣2(xb−x)

2(xa−x)

−km,i
{

Ci [|2km,i(xb − x)|]− Ci [|2km,i(xa − x)|]
}}

dx

−1

2

∫ xj+1/2

xj−1/2

{Si [2km,i(xb − x)]− Si [2km,i(xa − x)]} dx , (3.158)

where we used for the term proportional to x the result of Eq. (3.138) and the other
term can be directly identified as a sine integral, Eq. (3.74). For the integration with
respect to x we split up the integral in the three distinct parts and consider in each
one only the terms containing xb, so that the first integral, which we need to solve, is

I1 =

∫ xj+1/2

xj−1/2

x
1

2(xb − x)
sin (2km,i(xb − x)) dx

= −1

2

∫
C
xb
m,i,j

(
xb −

u

2km,i

)
1

u
sin(u)du

= −xb
2

∫
C
xb
m,i,j

1

u
sin(u)du+

1

4km,i

∫
C
xb
m,i,j

sin(u)du

= −1

2

[
xb Si(u)

∣∣
C
xb
m,i,j

+
1

2km,i
cos(u)

∣∣
C
xb
m,i,j

]
, (3.159)

when substituting with u = 2km,i(xb − x). The second part with the cosine integral
as integrand was already evaluated in Sec. 3.2.2 in all detail and we recap here only
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the result from Eq. (3.87):

I2 = −

xj+1/2∫
xj−1/2

km,ixCi [|2km,i(xb − x)|] dx

=
xb
2

[uCi(|u|)− sin(u)]
∣∣
C
xb
m,i,j

+
1

8km,i

[
−u2Ci(|u|) + u sin(u) + cos(u)

]∣∣
C
xb
m,i,j

.

(3.160)

For the last part we find

I3 = −1

2

∫ xj+1/2

xj−1/2

Si [2km,i(xb − x)] dx

=
1

4km,i

∫
C
xb
m,i,j

Si(u)du

=
1

4km,i
[uSi(u) + cos(u)]

∣∣
C
xb
m,i,j

, (3.161)

when substituting again u = 2km,i(xb − x) and making use of the anti-derivative of
the sine integral, Eq. (3.76). Summing up all three parts yields

3∑
i=1

Ii =
xb
2

[uCi(|u|)− Si(u)− sin(u)]
∣∣
C
xb
m,i,j

+
1

8km,i

[
−u2Ci(|u|) + 2uSi(u) + u sin(u) + cos(u)

]∣∣
C
xb
m,i,j

, (3.162)

where the first terms with xb as prefactor correspond to T F,v0
(u), Eq. (3.140), and

the new trigonometric terms may be summarized in the function

T F,v1

(u) =
1

8

[
−u2Ci(|u|) + 2uSi(u) + u sin(u) + cos(u)

]
. (3.163)

With these definitions we finally arrive at

IF,v
1

m+1/2,i+1/2,j = xbT F,v
0

(u)
∣∣
C
xb
m,i,j
− xaT F,v

0

(u)
∣∣
Cxam,i,j

+
1

km,i

[
T F,v1

(u)
∣∣
C
xb
m,i,j
− T F,v1

(u)
∣∣
Cxam,i,j

]
, (3.164)

which determine the matrix elements corresponding to Eq. (3.129) via the relation

DF,v1

m,i,j =
~

∆pm∆x

qv1

π~

[
IF,v

1

m+1/2,i+1/2,j − I
F,v1

m+1/2,i−1/2,j −
(
IF,v

1

m−1/2,i+1/2,j − I
F,v1

m−1/2,i−1/2,j

)]
,

m = 2, . . . , Np − 1 ,

DF,v1

1,i,j =
~

∆pm∆x

qv1

π~

(
IF,v

1

3/2,i+1/2,j − I
F,v1

3/2,i−1/2,j

)
,

DF,v1

Np,i,j
= − ~

∆pm∆x

qv1

π~

(
IF,v

1

Np−1/2,i+1/2,j − I
F,v1

Np−1/2,i−1/2,j

)
, (3.165)

with (i, j) taking on the values i = 1, . . . , Np , j = 1, . . . , Nx.
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Linear potential segment, linear part of the polynomial for the Wigner function:
The Fourier transform f̃(η′, xj, t) is already know from Eq. (3.143) and we now
consider the following part of Eq. (3.127)

∂tFm,j(t) =
~

∆pm∆x

qv1

π~

∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

Np∑
i=1

σi,j(t)

(
x+

η′

2

)

×<

{{
∆pi

2

i

η′2

[
exp

(
−i
pi+1/2

~
η′
)

+ exp
(
−i
pi−1/2

~
η′
)]

+
~
η′3

[
exp

(
−i
pi+1/2

~
η′
)
− exp

(
−i
pi−1/2

~
η′
)]}

×
[
exp

(
i
pm+1/2

~
η′
)
− exp

(
i
pm−1/2

~
η′
)]}

dη′dx ,

m = 2, . . . , Np − 1 , j = 1, . . . , Nx ,

(3.166)

so that it is convenient to define

Iσ,v
1

m+1/2,i+,j =

∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

(
x+

η′

2

)[
−∆pi

2

1

η′2
sin

(
pm+1/2 − pi+1/2

~
η′
)

+
~
η′3

cos

(
pm+1/2 − pi+1/2

~
η′
)]

dη′dx (3.167)

and

Iσ,v
1

m+1/2,i−,j = −
∫ xj+1/2

xj−1/2

∫ 2(xb−x)

2(xa−x)

(
x+

η′

2

)[
−∆pi

2

1

η′2
sin

(
pm+1/2 − pi−1/2

~
η′
)

− ~
η′3

cos

(
pm+1/2 − pi−1/2

~
η′
)]

dη′dx . (3.168)

We perform the explicit calculation for Iσ,v
1

m+1/2,i+,j and start with the integration with

respect to η′. To make use of previous results it is advisable to integrate the cosine
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term by parts as a first step,

I0 =

∫ 2(xb−x)

2(xa−x)

(
x+

η′

2

)
~
η′3

cos (km,iη
′) dη′

= x
~
2

[
− 1

η′2
cos (km,iη

′)
∣∣2(xb−x)

2(xa−x)
− km,i

∫ 2(xb−x)

2(xa−x)

1

η′2
sin (km,iη

′) dη′

]

+
~
2

[
− 1

η′
cos (km,iη

′)
∣∣2(xb−x)

2(xa−x)
− km,i

∫ 2(xb−x)

2(xa−x)

1

η′
sin (km,iη

′) dη′

]

= −~
2
km,i

∫ 2(xb−x)

2(xa−x)

(
x+

η′

2

)
1

η′2
sin (km,iη

′) dη′

−~
2

[
x

1

η′2
cos (km,iη

′) +
1

η′
cos (km,iη

′) +
km,i

2
Si(km,iη

′)

]∣∣∣∣2(xb−x)

2(xa−x)

. (3.169)

The first term appears in Eq. (3.167) as well and the integrals with respect to η′ and

x were already solved before in Eq. (3.157) when calculating IF,v
1

m+1/2,i+1/2,j. The term

in Eq. (3.169) with the sine integral was integrated for I3 in Eq. (3.161), so that just
two integrals are left to be solved which we will do explicitly only for the upper bound
2(xb − x),

I4 = −~
2

∫ xj+1/2

xj−1/2

x
1

[2(xb − x)]2
cos [2km,i(xb − x)] dx

=
~
4

∫
C
xb
m,i,j

(
km,ixb −

u

2

) 1

u2
cos (u) du

=
~
4

{
km,ixb

[
−1

u
cos(u)− Si(u)

]∣∣∣∣
C
xb
m,i,j

− 1

2
Ci(|u|)

∣∣
C
xb
m,i,j

}
(3.170)

and

I5 = −~
2

∫ xj+1/2

xj−1/2

1

2(xb − x)
cos [2km,i(xb − x)] dx

=
~
4

Ci(|u|)
∣∣
C
xb
m,i,j

, (3.171)

where we substituted in both cases u = 2km,i(xb − x) and used the definitions of the
sine and cosine integrals from Sec. 3.2.2. Summing up the terms I3 with the proper
prefactor, I4 and I5 yields

~km,i
2

I3 + I4 + I5 = −~km,ixb
1

4

[
1

u
cos(u) + Si(u)

]∣∣∣∣
C
xb
m,i,j

+~
1

8
[Ci(|u|) + uSi(u) + cos(u)]

∣∣
C
xb
m,i,j

, (3.172)
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with the trigonometric functions in the first square bracket already defined as the
function T σ,v0

(u) and the new terms in the second bracket make it obvious to introduce

T σ,v1

(u) =
1

8
[Ci(|u|) + uSi(u) + cos(u)] . (3.173)

With this in hands we can now write the result for Iσ,v
1

m+1/2,i+,j in the following form

Iσ,v
1

m+1/2,i+,j =

(
∆pi

2
+

~
2
km,i

)
IF,v

1

m+1/2,i+1/2,j + ~
[
T σ,v1

(u)
∣∣
C
xb
m,i,j
− T σ,v1

(u)
∣∣
Cxam,i,j

]
−~km,i

[
xbT σ,v

0

(u)
∣∣
C
xb
m,i,j
− xaT σ,v

0

(u)
∣∣
Cxam,i,j

]
, (3.174)

and furthermore, when using Eq. (3.151) to reshape the prefactor as well as Eq.

(3.164) for IF,v
1

m+1/2,i+1/2,j, we arrive at

Iσ,v
1

m+1/2,i+,j =

(
pm+1/2 + pi+1/2

2
− pi

){
xbT F,v

0

(u)
∣∣
C
xb
m,i,j
− xaT F,v

0

(u)
∣∣
Cxam,i,j

+
1

km,i

[
T F,v1

(u)
∣∣
C
xb
m,i,j
− T F,v1

(u)
∣∣
Cxam,i,j

]}
−~km,i

[
xbT σ,v

0

(u)
∣∣
C
xb
m,i,j
− xaT σ,v

0

(u)
∣∣
Cxam,i,j

]
+~
[
T σ,v1

(u)
∣∣
C
xb
m,i,j
− T σ,v1

(u)
∣∣
Cxam,i,j

]
. (3.175)

In the case of Iσ,v
1

m+1/2,i−,j we have a change of sign in the prefactor ∆pi
2

, so that we have

to use Eq. (3.153) to reshape the prefactor and for the rest of the calculation we can
use the same results. Consequently we finally find

Iσ,v
1

m+1/2,i−,j =

(
pm+1/2 + pi−1/2

2
− pi

){
xbT F,v

0

(u)
∣∣
C
xb
m,i−1,j

− xaT F,v
0

(u)
∣∣
Cxam,i−1,j

+
1

km,i−1

[
T F,v1

(u)
∣∣
C
xb
m,i−1,j

− T F,v1

(u)
∣∣
Cxam,i−1,j

]}
−~km,i−1

[
xbT σ,v

0

(u)
∣∣
C
xb
m,i−1,j

− xaT σ,v
0

(u)
∣∣
Cxam,i−1,j

]
+~
[
T σ,v1

(u)
∣∣
C
xb
m,i−1,j

− T σ,v1

(u)
∣∣
Cxam,i−1,j

]
. (3.176)

The matrix elements of Eq. (3.129) and corresponding to Eq. (3.166) are determined
by the relation

Dσ,v1

m,i,j =
~

∆pm∆x

qv1

π~

[
Iσ,v

1

m+1/2,i+,j − I
σ,v1

m+1/2,i−,j −
(
Iσ,v

1

m−1/2,i+,j − I
σ,v1

m−1/2,i−,j

)]
,

m = 2, . . . , Np − 1 ,

Dσ,v1

1,i,j =
~

∆pm∆x

qv1

π~

(
Iσ,v

1

3/2,i+,j − I
σ,v1

3/2,i−,j

)
,

Dσ,v1

Np,i,j
= − ~

∆pm∆x

qv1

π~

(
Iσ,v

1

Np−1/2,i+,j − I
σ,v1

Np−1/2,i−,j

)
, (3.177)

with (i, j) taking on the values i = 1, . . . , Np , j = 1, . . . , Nx.
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Summary of the equations, diagonal elements and inclusion of particular po-
tential shapes: The following list gives an overview of the trigonometric functions
defined in the calculations on the last pages, with the labeling F/σ, v0/v1 referring to
their appearance in a certain approximation:

T F,v0

(u) =
1

2
[uCi (|u|)− Si (u)− sin(u)] ,

T σ,v0

(u) =
1

4

[
1

u
cos(u) + Si(u)

]
,

T F,v1

(u) =
1

8

[
−u2Ci(|u|) + 2uSi(u) + u sin(u) + cos(u)

]
,

T σ,v1

(u) =
1

8
[Ci(|u|) + uSi(u) + cos(u)] . (3.178)

These functions enable us to write the terms IF,v
0/1

m+1/2,i+1/2,j and Iσ,v
0/1

m+1/2,i+,j in compact
notation as

IF,v
0

m+1/2,i+1/2,j = T F,v0

(u)
∣∣
C
xb
m,i,j
− T F,v0

(u)
∣∣
Cxam,i,j

,

IF,v
1

m+1/2,i+1/2,j = xbT F,v
0

(u)
∣∣
C
xb
m,i,j
− xaT F,v

0

(u)
∣∣
Cxam,i,j

+
1

km,i

[
T F,v1

(u)
∣∣
C
xb
m,i,j
− T F,v1

(u)
∣∣
Cxam,i,j

]
,

Iσ,v
0

m+1/2,i+,j =

(
pm+1/2 + pi+1/2

2
− pi

)[
T F,v0

(u)
∣∣
C
xb
m,i,j
− T F,v0

(u)
∣∣
Cxam,i,j

]
−~km,i

[
T σ,v0

(u)
∣∣
C
xb
m,i,j
− T σ,v0

(u)
∣∣
Cxam,i,j

]
,

Iσ,v
1

m+1/2,i+,j =

(
pm+1/2 + pi+1/2

2
− pi

){
xbT F,v

0

(u)
∣∣
C
xb
m,i,j
− xaT F,v

0

(u)
∣∣
Cxam,i,j

+
1

km,i

[
T F,v1

(u)
∣∣
C
xb
m,i,j
− T F,v1

(u)
∣∣
Cxam,i,j

]}
−~km,i

[
xbT σ,v

0

(u)
∣∣
C
xb
m,i,j
− xaT σ,v

0

(u)
∣∣
Cxam,i,j

]
+~
[
T σ,v1

(u)
∣∣
C
xb
m,i,j
− T σ,v1

(u)
∣∣
Cxam,i,j

]
, (3.179)

with the intervals defined by

Cxa
m,i,j = (2km,i(xa − xj−1/2), 2km,i(xa − xj+1/2)) ,

Cxb
m,i,j = (2km,i(xb − xj−1/2), 2km,i(xb − xj+1/2)) , (3.180)

and the abbreviation

km,i =
pm+1/2 − pi+1/2

~
. (3.181)

The terms for i− are listed explicitly in the corresponding parts of this section and
are not recapped here, but can be readily obtained when replacing pi+1/2 by pi−1/2.
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When looking at Eq. (3.178) one may notice that the functions have a well defined
parity which depends only on the index v0/1. In the case of v0 all functions are

odd. This fact, together with the way the functions enter the terms IF,v
0

m+1/2,i+1/2,j

and Iσ,v
0

m+1/2,i+,j as a direct difference without any prefactors, make it obvious to see
that the action of a square potential barrier vanishes when the cell-point xj is placed
exactly in the middle of (xa, xb). When using the abbreviations d1 and d2 for the two
distances

d1 = (xa − xj−1/2) = −(xb − xj+1/2) ,

d2 = (xa − xj+1/2) = −(xb − xj−1/2) , (3.182)

it is apparent that any expression of the form

T F/σ,v0

(u)
∣∣d2

d1
− T F/σ,v0

(u)
∣∣−d1

−d2
= 0 (3.183)

vanishes for an odd function T F/σ,v0
(u). This fact can be used to check the consistency

of the derived equations since the property can be directly seen from the definition of
the pseudo-differential operator, Eq. (2.12). It is interesting to note that the action of
the pseudo-differential operator vanishes in general when x coincides with the center
of a symmetric potential shape.

For the implementation in practice it is important to analyze the behaviour of the
terms in Eq. (3.179) for small arguments since singular functions are present in some
cases. Earlier, for Eq. (3.107) we showed that all the integral expressions exist since
f̃(η, x, t) stays finite for η → 0 (see Eq. (3.106)). Due to this it is clear that the

matrix elements D
F/σ,v0/v1

m,i,j are well defined in all cases. But despite of this, one may
encounter very large values for the single terms in Eq. (3.179) which are subtracted
from each other. In particular we will examine the case km,m = 0 since a value
of zero does definitely occur in the present formalism. The nodes for the potential
defined in Eqs. (3.108) - (3.109) are chosen to coincide with grid points xj of the
Wigner function. Therefore, since the potential nodes xa and xb (or more general xVk )
are defined on grid points and the cell boundaries xj−1/2 on intermediate points, the
terms xa/b − xj±1/2 are never zero but take on a minimum value of ∆x/2. One could
assume that numerical problems due to subtractive cancellation are encountered for
small values of ∆x but actual simulations did not reveal any problems, not even in
the case of tests done with very small values of ∆x.

We begin with examining the behaviour of the functions T F/σ,v0/v1
(u) in the limit

u→ 0. From Eq. (3.81) we know that

lim
u→0

uCi(|u|) = 0 , (3.184)

so that we find

lim
u→0
T F,v0

(u) = 0 ,

lim
u→0
T F,v1

(u) =
1

8
(3.185)
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and the other two functions, T σ,v0
(u) and T σ,v1

(u) diverge for u→ 0. Therefore, the

expression for IF,v
0

m+1/2,i+1/2,j does not cause any problems but the other ones have to

be looked at in more detail. In the case of IF,v
1

m+1/2,i+1/2,j the term with 1/km,i needs to

be examined, see Eq. (3.179). When using k instead of km,i together with d1 and d2

labeling two distances, we find

lim
k→0

1

k
T F,v1

(u)
∣∣kd2

kd1
= lim

k→0

1

8k

[
−u2Ci(|u|) + 2uSi(u) + u sin(u) + cos(u)

]∣∣kd2

kd1

= lim
k→0

1

8k
[cos(kd2)− cos(kd1)]

= lim
k→0

1

8k

[
1− (kd2)2

2
− 1 +

(kd1)2

2
+O(k4)

]
= 0 . (3.186)

As a result, for both terms determining the matrix elements of D
F,v0/v1

m,i,j we find for
m = i:

IF,v
0

m+1/2,m+1/2,j = 0 ,

IF,v
1

m+1/2,m+1/2,j = 0 . (3.187)

Furthermore, since in the expression for the matrix elements D
F,v0/v1

m,i,j the terms

I
F,v0/v1

m+1/2,i−1/2,j and I
F,v0/v1

m−1/2,i+1/2,j, which are odd functions with respect to km,i, enter

with the same sign (comp. Eqs. (3.136) and (3.165)). They cancel each other for
m = i and one obtains for the diagonal elements of the drift matrices for Fm,j

DF,v0

m,m,j = 0 ,

DF,v1

m,m,j = 0 . (3.188)

As we will see shortly this is not true in the case of the drift matrices for σm,j, so that

Dσ,v0

m,m,j 6= 0 , xj 6=
xa + xb

2
,

Dσ,v0

m,m,j = 0 , xj =
xa + xb

2
,

Dσ,v1

m,m,j 6= 0 , (3.189)

where the dependence of Dσ,v0

m,m,j on xj is a consequence of Eq. (3.183). This property
was mentioned here since it is to some extent an analogy to classical physics described
by the Boltzmann transport equation. In the BTE the drift term consists of the
derivative

Lcl.D f(p, x, t) ∝ ∂xV (x, t)∂pf(p, x, t) , (3.190)
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3.2 Piecewise polynomial approximation of the Wigner function

so that solely the slope of f(p, x, t) at a certain point (p, x) is important for the action
of the potential but not the magnitude of f(p, x, t) itself.

In the case of the term Iσ,v
0

m+1/2,i+,j, the expression containing T F,v0
(u) is unproblem-

atic due to Eq. (3.185) and for the other part we examine the expression

lim
k→0

kT σ,v0

(u)
∣∣kd2

kd1
= lim

k→0

k

4

[
1

u
cos(u) + Si(u)

]∣∣∣∣kd2

kd1

= lim
k→0

k

4

[
1

kd2

cos(kd2)− 1

kd1

cos(kd1)

]
=

1

4

[
1

d2

− 1

d1

]
. (3.191)

Therefore, we obtain

Iσ,v
0

m+1/2,m+,j = Iσ,v
0

m−1/2,m−,j

= −~
8

[(
1

xb − xj+1/2

− 1

xb − xj−1/2

)
−
(

1

xa − xj+1/2

− 1

xa − xj−1/2

)]
.

(3.192)

From Eq. (3.155) one can see that the terms Iσ,v
0

m+1/2,i+,j and Iσ,v
0

m−1/2,i−,j enter with the

same sign, so that they add up in the case of Dσ,v0

m,m,j and yield a nonzero value for the
diagonal elements of the matrix.

Concerning Iσ,v
1

m+1/2,i+,j we can make use of the previous results for most of the terms.

As shown on the last pages T F,v0
(u) vanishes in the limit u → 0, 1

km,i
T F,v1

(u)
∣∣
C
xa/b
m,i,j

vanishes as well and the result for km,iT σ,v
0
(u)
∣∣
C
xa/b
m,i,j

is known from Eq. (3.191).

Therefore, only one term remains which may be evaluated by considering the following
expression

lim
k→0
T σ,v1

(u)
∣∣kd2

kd1
=

1

8
lim
k→0

[Ci(|u|) + uSi(u) + cos(u)]
∣∣kd2

kd1

=
1

8
lim
k→0

[Ci(|kd2|)− Ci(|kd2|)]

=
1

8
lim
k→0

∫ |kd2|

|kd1|

1

t
cos(t)dt

=
1

8
lim
k→0

∫ |d2|

|d1|

1

u
cos(|k|u)du

=
1

8
[ln |d2| − ln |d1|] , (3.193)
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when substituting t = |k|u. With this in hands we can write the result as

Iσ,v
1

m+1/2,m+,j = Iσ,v
1

m−1/2,m−,j

= −~
8

[
xb

(
1

xb − xj+1/2

− 1

xb − xj−1/2

)
− xa

(
1

xa − xj+1/2

− 1

xa − xj−1/2

)]
+
~
8

[
ln

(
|xb − xj+1/2|
|xb − xj−1/2|

)
− ln

(
|xa − xj+1/2|
|xa − xj−1/2|

)]
, (3.194)

yielding nonzero values for the diagonal elements of Dσ,v1

m,m,j. The results form Eqs.
(3.192) and (3.194) are important in practice when constructing the drift matrices
and have to be explicitly included for the cases km,m = 0.

Now, we derive the expressions for particular potential shapes. For the purpose of
simulating devices we need to know on the one hand, how to include a bias voltage
and on the other hand, how to implement more complicated, composite potential
shapes. This can be done in a simple way by combining different constant and linear
potential segments in an appropriate way, whereby we make direct use of the derived

expressions for IF,v
0/1

m+1/2,i+1/2,j and Iσ,v
0/1

m+1/2,i+/−,j
. For this purpose it is convenient to

slightly alter the definition of the drift matrices, comp. Eq. (3.179), by including the
factors v0 and v1 for the potential in the terms IFm+1/2,i+1/2,j and Iσ

m+1/2,i+/−,j
, so that

IFm+1/2,i+1/2,j =
qv0

π~
IF,v

0

m+1/2,i+1/2,j +
qv1

π~
IF,v

1

m+1/2,i+1/2,j ,

Iσm+1/2,i+,j =
qv0

π~
Iσ,v

0

m+1/2,i+,j +
qv1

π~
Iσ,v

1

m+1/2,i+,j (3.195)

and in an analogous way for Iσm+1/2,i−,j. The drift matrices for Fm,j and σm,j are then
given by

DF
m,i,j =

~
∆pm∆x

[
IFm+1/2,i+1/2,j − IFm+1/2,i−1/2,j −

(
IFm−1/2,i+1/2,j − IFm−1/2,i−1/2,j

)]
,

m = 2, . . . , Np − 1 ,

DF
1,i,j =

~
∆pm∆x

(
IF3/2,i+1/2,j − IF3/2,i−1/2,j

)
,

DF
Np,i,j = − ~

∆pm∆x

(
IFNp−1/2,i+1/2,j − IFNp−1/2,i−1/2,j

)
, (3.196)

and

Dσ
m,i,j =

~
∆pm∆x

[
Iσm+1/2,i+,j − Iσm+1/2,i−,j −

(
Iσm−1/2,i+,j − Iσm−1/2,i−,j

)]
,

m = 2, . . . , Np − 1 ,

Dσ
1,i,j =

~
∆pm∆x

(
Iσ3/2,i+,j − Iσ3/2,i−,j

)
,

Dσ
Np,i,j = − ~

∆pm∆x

(
Iσ,v

1

Np−1/2,i+,j − I
σ,v1

Np−1/2,i−,j

)
, (3.197)
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3.2 Piecewise polynomial approximation of the Wigner function

where in each of the equations (i, j) takes on the values i = 1, . . . , Np , j = 1, . . . , Nx.
To include a bias voltage, we consider the following potential shape

V (x) = VDSΘ(xc < x ≤ x0) + VDS
xL − x
xL − x0

Θ(x0 < x ≤ xL) , (3.198)

with the function Θ as defined in Eq. (3.39). The positions x0 and xL herein label the
device-endpoints, or at least the positions after which the potential is considered to
be constant and xc is some point inside the contact on the left-hand side which we let
go to −∞ in the final expressions. The symbol VDS stands for Drain-Source voltage
and corresponds to the difference in applied voltages at both ends of the device. As
one can see, we consider the simplest case of a strictly linear potential drop along the
device. Of course, this is only an approximation and is definitely not true anymore as
soon as one aims for a self-consistent solution of the equations by coupling the WTE
to Poisson’s equation. Still, one could use the algorithm presented here but would
have to use a more complicated, compound potential shape by including a series of
additional potential nodes. In this work we consider only the simpler, linear case.
With V (x) as chosen above, the factors v0 and v1 are

v0 = VDS ,

v1 = 0 (3.199)

in the region xc < x ≤ x0, and

v0 =
xL

xL − x0

VDS ,

v1 =
−1

xL − x0

VDS (3.200)

in the region x0 < x ≤ xL. In the case of the drift matrix for Fm,j we thus need to
evaluate the following expression

IFm+1/2,i+1/2,j =
qVDS
π~

{
T F,v0

(u)
∣∣
C
x0
m,i,j
− T F,v0

(u)
∣∣
Cxcm,i,j

+
xL

xL − x0

[
T F,v0

(u)
∣∣
C
xL
m,i,j
− T F,v0

(u)
∣∣
C
x0
m,i,j

]}
− 1

xL − x0

qVDS
π~

{
xLT F,v

0

(u)
∣∣
C
xL
m,i,j
− x0T F,v

0

(u)
∣∣
C
x0
m,i,j

+
1

km,i

[
T F,v1

(u)
∣∣
C
xL
m,i,j
− T F,v1

(u)
∣∣
C
x0
m,i,j

]}
, (3.201)

when combining Eqs. (3.195) and (3.179). As one can see, the three terms T F,v0
(u)
∣∣
C
x0
m,i,j

cancel each other, as well as the two terms T F,v0
(u)
∣∣
C
xL
m,i,j

. The latter vanish due to

the choice of the potential shape since V (xL) = 0. The former do because V (x) is
continuous and no step exists between the regions xc < x < x0 and x0 < x ≤ xL. This
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3 Numerical methods for the Wigner transport equation

is a general feature and one can observe for any continuous, piecewise linear potential
function that all terms T F/σ,v0

drop out of the equations and only those with v1 as
index remain. As a result, the expression reduces to

IFm+1/2,i+1/2,j =
qVDS
π~

{
−T F,v0

(u)
∣∣
Cxcm,i,j

− 1

xL − x0

1

km,i

[
T F,v1

(u)
∣∣
C
xL
m,i,j
− T F,v1

(u)|Cx0
m,i,j

]}
. (3.202)

To model the situation of semi-infinite leads we now focus on the limiting process
xc → −∞. From the definition of T F,v0

(u), comp. e.g. Eq. (3.178), it is not apparent
how to evaluate this limit, but when we go one step back to Eq. (3.138) and undo
the integration with respect to x, we can readily evaluate the limit to

lim
xc→−∞

T F,v0

(u)
∣∣
Cxcm,i,j

= lim
xc→−∞

{∫ xj+1/2

xj−1/2

1

2(xc − x)
sin (2km,i(xc − x)) dx

−
∫ xj+1/2

xj−1/2

km,iCi [|2km,i(xc − x)|] dx

}
= 0 , (3.203)

since the integrand vanishes in both terms. The asymptotic behaviour Ci(x) = 0 for
x→∞ can be seen directly from the definition of the cosine integral, as listed in Sec.
3.2.2. Finally, the expression for a bias voltage can be written in the compact form

IFm+1/2,i+1/2,j = −qVDS
π~

1

xL − x0

1

km,i

[
T F,v1

(u)
∣∣
C
xL
m,i,j
− T F,v1

(u)
∣∣
C
x0
m,i,j

]
. (3.204)

In the case of the drift matrix for σm,j we need to perform the analogous calculation
for Iσm+1/2,i+,j. One can see from Eq. (3.179) that the single trigonometric func-

tions T F/σ,v0
(u) enter in completely the same manner, namely that for each term in

Iσ,v
0

m+1/2,i+,j a corresponding term in Iσ,v
1

m+1/2,i+,j exists with the same prefactors except

for an additional xa/b. Therefore, all the terms with v0 as index cancel each other, as
it was the case for IFm+1/2,i+1/2,j, and one arrives at the similar expression

Iσm+1/2,i+,j =
qVDS
π~

{
−
(
pm+1/2 + pi+1/2

2
− pi

)
T F,v0

(u)
∣∣
Cxcm,i,j

+ ~km,iT σ,v
0

(u)
∣∣
Cxcm,i,j

}
−qVDS

π~
1

xL − x0

{
~
[
T σ,v1

(u)
∣∣
C
xL
m,i,j
− T σ,v1

(u)
∣∣
C
x0
m,i,j

]
+

(
pm+1/2 + pi+1/2

2
− pi

)
1

km,i

[
T F,v1

(u)
∣∣
C
xL
m,i,j
− T F,v1

(u)
∣∣
C
x0
m,i,j

]}
,

(3.205)
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where the limit xc → −∞ still has to be carried out. The limit for T F,v0
(u) is know

from Eq. (3.203) and the other one can be calculated as follows

lim
xc→−∞

T σ,v0

(u)
∣∣
Cxcm,i,j

= lim
xc→−∞

1

4

[
1

u
cos(u) + Si(u)

]∣∣∣∣
Cxcm,i,j

= −1

4

[π
2
− π

2

]
= 0 , (3.206)

because of the factor 1
u

in the case of the first term and for the sine integral it is
known that [28]

lim
x→∞

Si(x) =
π

2
. (3.207)

As a result, both terms for xc in Eq. (3.205) vanish and we finally arrive at

Iσm+1/2,i+,j = −qVDS
π~

1

xL − x0

{
~
[
T σ,v1

(u)
∣∣
C
xL
m,i,j
− T σ,v1

(u)
∣∣
C
x0
m,i,j

]
+

(
pm+1/2 + pi+1/2

2
− pi

)
1

km,i

[
T F,v1

(u)
∣∣
C
xL
m,i,j
− T F,v1

(u)
∣∣
C
x0
m,i,j

]}
.

(3.208)

The results of Eqs. (3.204) and (3.208) tell us how to include a bias voltage and the
derivation of the equations demonstrated that for every continuous potential shape
only trigonometric functions T F/σ,v1

(u) with v1 as index enter the expressions. When
replacing −VDS by VxL−Vx0 and using the linearity of the pseudo-differential operator,
it seems obvious that the terms IFm+1/2,i+1/2,j and Iσm+1/2,i+,j for a compound potential
shape, consisting of several terms, should be given by a simple sum of expressions like
those of Eqs. (3.204) and (3.208), each weighted with a prefactor Vk+1−Vk

xk+1−xk
and x0 and

xL replaced by the corresponding positions xk and xk+1. To illustrate this point, we
consider as an example for a simple compound shape a single barrier of height V0,

V (x) =


V0
x− x1

x2 − x1

if x1 < x ≤ x2 ,

V0 if x2 < x ≤ x3 ,

V0
x4 − x
x4 − x3

if x3 < x ≤ x4 ,

(3.209)

where we assume x1 < x2 < x3 < x4. To do the calculation for this potential one
could repeat the same steps as before, by identifying v0 and v1 in each region and
then adding up the different terms containing the functions T F/σ,v0/v1

(u), or, equally
well, one can make use of the results for the bias voltage and rewrite V (x) for the
single barrier as

V (x) = Vl(x) + Vr(x) , (3.210)

with

Vl(x) = V0
x− x1

x2 − x1

Θ (x1 < x ≤ x2) + V0H(x− x2) (3.211)
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and

Vr(x) = −V0
x− x3

x4 − x3

Θ (x3 < x ≤ x4)− V0H(x− x4) , (3.212)

where H(x) stands for the Heaviside step function and Θ is defined as in Eq. (3.39).
Using the previous results we directly find for the term IFm+1/2,i+1/2,j

IFm+1/2,i+1/2,j =
qV0

π~
1

km,i

{
1

x2 − x1

[
T F,v1

(u)
∣∣
C
x2
m,i,j
− T F,v1

(u)
∣∣
C
x1
m,i,j

]
− 1

x4 − x3

[
T F,v1

(u)
∣∣
C
x4
m,i,j
− T F,v1

(u)
∣∣
C
x3
m,i,j

]}
, (3.213)

and an analogous result for Iσm+1/2,i+,j. For the case of a general, piecewise linear

potential shape, consisting of NV potential nodes xVk with values Vk and for which we
assume the potential to be constant in the semi-infinite regions x < xV1 and x > xVNV ,
so that

V (x) =

NV −1∑
k=1

[
Vk +

Vk+1 − Vk
xVk+1 − xVk

(x− xVk )

]
Θ
(
xVk < x ≤ xVk+1

)
V1H(xV1 − x) + VNVH(x− xVNV ) , (3.214)

the previous results make it obvious to deduce the general expressions

IFm+1/2,i+1/2,j =
q

π~
1

km,i

NV −1∑
k=1

Vk+1 − Vk
xVk+1 − xVk

[
T F,v1

(u)
∣∣
C
xV
k+1
m,i,j

− T F,v1

(u)
∣∣
C
xV
k
m,i,j

]
,

Iσm+1/2,i+,j =
q

π~

NV −1∑
k=1

Vk+1 − Vk
xVk+1 − xVk

{
~
[
T σ,v1

(u)
∣∣
C
xV
k+1
m,i,j

− T σ,v1

(u)
∣∣
C
xV
k
m,i,j

]
+

(
pm+1/2 + pi+1/2

2
− pi

)
1

km,i

[
T F,v1

(u)
∣∣
C
xV
k+1
m,i,j

− T F,v1

(u)
∣∣
C
xV
k
m,i,j

]}
.

(3.215)

The corresponding one for Iσm+1/2,i−,j is readily obtained by replacing pi+1/2 by pi−1/2

and leaving pi the same. With this in hands it is possible to approximate any desired
potential shape by a piecewise linear function as defined in Eq. (3.214) and calculate
the drift matrices for the action of the pseudo-differential operator via Eqs. (3.215),
(3.196) and (3.197). To recap, the nodes of the potential are chosen as a subset of the
grid points for the Wigner function

{xVk |k = 1, . . . , NV } ⊆ {xj|j = 1, . . . , Nx} ,
and in order to keep the computation time for the drift matrices small it is advisable
to choose NV as small as possible, of course. In the simulations for the resonant
tunneling diodes, which consist of a double barrier structure under bias as discussed
in the upcoming chapters, it suffices to consider a rather small number of potential
nodes. Since we assume a strictly linear bias voltage and for each of the barriers a
shape as defined in Eq. (3.209), the total number of potential nodes necessary to be
included reduces to ten.
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3.2 Piecewise polynomial approximation of the Wigner function

3.2.4 Numerical study on the accuracy of the Fourier transform
of a piecewise polynomial approximation of a given function

In this section some preliminary numerical results for the Fourier transform of a
piecewise polynomial approximation of a given reference function are presented. The
results are supposed to give an insight into the limitations as well as the performance
of the approximation approach. To test the approximations we choose a modulated
Gaussian distribution as reference function,

fref.(p) =
1√
2πσ

exp

[
−(p− µ)2

2σ2

]
cos (λp) , (3.216)

for which the Fourier transform is given by

f̃ref.(η) =
1

4π

{
exp

[
−σ

2

2
(η − λ)2 − iµ(η − λ)

]
+ exp

[
−σ

2

2
(η + λ)2 − iµ(η + λ)

]}
.

(3.217)
In particular, the values are set to µ = 0.25, σ = 0.05 and λ = 8π. The p-grid is given
by the same definition as stated earlier,

pm−1/2 = p1/2 +
m−1∑
l=1

∆pl , p1/2 ∈ R , ∆pl ∈ R , m = 2, . . . , Np + 1 ,

whereby we choose ∆pl to be the same in certain regions, i.e. determine the grid by
∆p0 ∈ R, ∆p1 = 2∆p0, ∆p2 = 4∆p0, ∆p3 = 16∆p0 and

∆pl = ∆p0 pm−1/2 ∈
(
−0.1−∆p0, 0.1 + ∆p0

)
,

∆pl = ∆p1 |pm−1/2| ∈
(
0.1 + ∆p0, 0.2 + ∆p1

)
,

∆pl = ∆p2 |pm−1/2| ∈
(
0.2 + ∆p1, 0.7 + ∆p2

)
,

∆pl = ∆p3 |pm−1/2| ∈
(
0.7 + ∆p2, 2 + ∆p3

)
, (3.218)

so that the grid is symmetric with respect to p = 0 and has an extension to a value
of at least ±2. The grid spacings ∆pi are inversely proportional to the total number
of grid points Np and the calculations were performed for

Np = 102, 200, 400, 600, 798, 998, 1198, 1398, 1596, 1796, 1996 . (3.219)

To evaluate the piecewise constant and piecewise linear approximation, the cell aver-
ages are calculated from the reference function as defined in Eq. (3.216)

Fm =
1

∆pm

∫ pm+1/2

pm−1/2

fref.(p)dp , m = 1, . . . , Np . (3.220)

From the knowledge of these cell averages, a piecewise polynomial approximation
f(p), as defined in Eqs. (3.124) - (3.125), is used to reconstruct the function fref.(p).
For the case of the piecewise constant approximation the slopes σm are set to zero
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and for the piecewise linear approximation the σm are determined by Eq. (3.126), i.e.
by centered slopes for the interior grid points. The Fourier transformed function f̃(η)
is then calculated as defined in Eq. (3.128) and by making use of Eqs. (3.132) and
(3.143), together with setting ~ = 1.

Results of the tests for the cases Np = 102 and Np = 200 are depicted in the Figs.
(3.7) and (3.8), respectively. Figure 3.7 shows a good agreement of f̃(η) and f̃ref.(η)
only for values of η around zero and a significant deviation for larger values of η. This
behaviour is apparent for both approximations, whereas it is less pronounced in the
case of the piecewise linear approximation. With an increasing number of grid points
Np the deviation is drastically reduced and as one can see from Fig. 3.8, that already
for the case Np = 200, the spurious oscillations in the Fourier transform f̃(η) are
remarkably extenuated.

It is important to be aware of the creation of spurious oscillations in the Fourier
transform f̃(η) in the case of a too large spacing of the p-grid. In principle, due to
the reconstruction of a continuous function out of the cell averages, one is able to
compute the Fourier transform f̃(η) for arbitrarily large values of η even on coarse
p-grids. But, in order to arrive at reliable values one has to make sure that the spacing
of the pm is fine enough for possibly desired large values of η. As one can see from the
definition of the pseudo-differential operator Eq. (2.12), the variable η corresponds
to a length and more specifically, to the long-range interaction of the potential V (x)
with the Wigner function. Therefore, in practical simulations the choice of the grid
spacing for the p variable has to be adjusted to the device length. As we will see
later, in order not to introduce too large errors due to the inflow/outflow boundary
conditions originating from classical transport theory, one is required to include not
only the device but also some part of the contacts as well in the simulation domain.
Usually, one would expect the results to improve when increasing the simulated length
of the contacts. But this is only true, in general, if one adjusts the p grid as well when
changing the size of the x domain. A certain p spacing may suffice for a rather short
contact length but introduce spurious oscillations when increasing the contact length
without refining the p grid. This inverse proportionality of the p and the η variable
is typical for a Fourier transformation and is very obvious in the case of the discrete
Fourier transformation, compare e.g. [24] or Eq. (3.18).

In order to analyze the accuracy of the approximation method, the Fourier trans-
form of the approximated function is now compared with the Fourier transform of the
reference function for larger values of Np, as listed in (3.219). To estimate the error,
the 2-norm and max norm difference are used, defined by [11]

‖∆f‖2 =

(
∆η

Nη∑
i=1

∣∣f̃(ηi)− f̃ref.(ηi)
∣∣2) 1

2

(3.221)

and
‖∆f‖∞ = max

i=1,...,Nη

∣∣f̃(ηi)− f̃ref.(ηi)
∣∣ . (3.222)

The formulas were evaluated for an equidistant set of Nη = 6000 points in the interval
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ηi ∈ (−300, 300) and the results are depicted in Fig. 3.9. A log-log plot is chosen to
gain information about the order of convergence of each approximation. The curves
for both approximations exhibit a kink at low values of Np but can then be well
approximated by a straight line in this illustration. The kink is related to the creation
of strong spurious oscillations for the case Np = 102. It is apparent that the piecewise
linear approximation is superior for all considered values of Np and exhibits a higher
order of convergence. To quantify this, we calculate the order of convergence in
analogy to the definition stated in [15] by

ONp =

log

(∣∣∣∣∆f∣∣∣∣Np
2∣∣∣∣∆f∣∣∣∣N′p
2

)
log
(
N ′p
Np

) , (3.223)

whereby we choose for N ′p a value listed in Eq. (3.219) which is approximately two
times Np. The results of this calculation can be found in Tab. 3.1. As one can see,
the order of convergence of the piecewise constant approximation can be quantified to
be about two and the piecewise linear approximation displays an order of convergence
close to four. The results are not very intuitive and further analytic investigation
would be needed to explain the particular order of convergence. However, this aspect
was not analyzed in more detail due to the fact that the device simulations presented
in the later sections do not reveal this particular and apparent order of convergence
anymore but instead, the situation becomes more involved due to the dynamics of
the time evolution of f(p, x, t). More detailed convergence studies for the full WTE
are presented in Chap. 5 and the present section serves mainly as a supplement to
illustrate the performance and limitations associated with the piecewise polynomial
approximation, e.g. the problem of spurious oscillations, as well as the utility of
devising higher-order approximations.
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Figure 3.7: The plots in (a) and (b) illustrate f(p) for the piecewise constant and the
piecewise linear approximation, respectively, for Np = 102. In (c) <{f̃(η)}
and in (e) ={f̃(η)} are depicted for the piecewise constant approximation
in blue. For the case of the piecewise linear approximation, <{f̃(η)} is
shown in (d) and ={f̃(η)} is shown in (f) in blue. For comparison, f̃ref.(η)
is plotted in (c), (d), (e) and (f) in red colour.
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3.2 Piecewise polynomial approximation of the Wigner function

−2 −1 0 1 2

−1

0

1

2

3

4

5

6

7

8

p [a.u.]

f(
p
) 

[a
.u

.]

(a)

−2 −1 0 1 2

−1

0

1

2

3

4

5

6

7

8

p [a.u.]

f(
p
) 

[a
.u

.]

(b)

−300 −200 −100 0 100 200 300

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

η [a.u.]

ℜ

{

f̃
(η
)}

[a
.u
.]

(c)

−300 −200 −100 0 100 200 300

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

η [a.u.]

ℜ

{

f̃
(η
)}

[a
.u
.]

(d)

−300 −200 −100 0 100 200 300
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

η [a.u.]

ℑ

{

f̃
(η
)}

[a
.u
.]

(e)

−300 −200 −100 0 100 200 300
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

η [a.u.]

ℑ

{

f̃
(η
)}

[a
.u
.]

(f)

Figure 3.8: The plots in (a) and (b) illustrate f(p) for the piecewise constant and the
piecewise linear approximation, respectively, for Np = 200. In (c) <{f̃(η)}
and in (e) ={f̃(η)} are depicted for the piecewise constant approximation
in blue. For the case of the piecewise linear approximation, <{f̃(η)} is
shown in (d) and ={f̃(η)} is shown in (f) in blue. For comparison, f̃ref.(η)
is plotted in (c), (d), (e) and (f) in red colour.
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Figure 3.9: Double logarithmic plot of the 2-norm (a) and the the max norm (b)
difference of f̃(η) with respect to f̃ref.(η), see Eqs. (3.221) and (3.222), as
a function of the grid points Np. The results are shown for the piecewise
constant as well as for the piecewise linear approximation.

Table 3.1: Order of the convergence determined by Eq. (3.223) for the 2-norm dif-
ference as depicted in Fig. 3.9, listed for the piecewise constant and the
piecewise linear approximation.

Np const. approx. linear approx.
102 3.11 4.78
200 2.05 3.54
400 2.01 3.82
798 2.00 3.93
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3.3 Numerical schemes for the advection term and time-stepping
methods

3.3 Numerical schemes for the advection term and
time-stepping methods

In the present section we focus on the advection term and consider the following
sub-problem of the Wigner transport equation, Eq. (2.10):

∂tf(p, x, t) = − p

m∗
∂xf(p, x, t) . (3.224)

In Eqs. (3.97) and (3.98) we already averaged the WTE over grid cells to arrive at
the expression

∂tFm,j(t) = − 1

∆x

[
ĥm,j+1/2(t)− ĥm,j−1/2(t)

]
, m = 1, . . . , Np, j = 1, . . . , Nx ,

(3.225)
with the flux at the right-sided boundary of grid cell Cm,j given by Eq. (3.99):

ĥm,j+1/2(t) =
1

∆pm

∫ pm+1/2

pm−1/2

p

m∗
f(p, xj+1/2, t)dp . (3.226)

In the derivation of the expressions for the drift matrices we assumed a specific form
for f(p, x, t), namely to be piecewise constant with respect to x and the dependence
with respect to p to be given by some higher-order piecewise approximation. As
discussed earlier, this procedure seems to be appropriate since the pseudo-differential
operator itself acts solely on the momentum variable. Now we have completely the
opposite situation. The partial derivative in the advection term acts only on x, so that
it is convenient to assume that f(p, x, t) is piecewise constant with respect to p in this
case. With respect to the x variable we then use some higher order approximation to
determine the values of the flux at the cell boundaries xj±1/2. The assumption that
f(p, x, t) is constant on the interval (pm−1/2, pm+1/2) greatly simplifies Eq. (3.226) and
one arrives at

ĥm,j+1/2(t) =
pm
m∗

f(pm, xj+1/2, t) , (3.227)

with pm representing the cell center of (pm−1/2, pm+1/2). One can see that the momen-
tum index m enters only as a parameter in Eqs. (3.225) and (3.227). Consequently,
the equations (3.225) decouple with respect to m and the problem reduces to solving
a set of Np one-dimensional advection equations. In practice one knows the set of cell
averages Fm,j(t) at a certain time tn and wants to advance forward in time by a time
step ∆t to calculate the new cell averages at time tn+1. Integration of Eq. (3.225)
with respect to the temporal variable results in [11]

Fm,j(tn+1)− Fm,j(tn) = − 1

∆x

∫ tn+1

tn

[
ĥm,j+1/2(t)− ĥm,j−1/2(t)

]
dt . (3.228)

For the right-hand side of the equation we introduce the numerical flux at the cell
boundaries [11]

Ĥn
m,j+1/2 ≈

1

∆t

∫ tn+1

tn

pm
m∗

f(pm, xj+1/2, t)dt , (3.229)
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3 Numerical methods for the Wigner transport equation

so that we arrive at the following equation

F n+1
m,j = F n

m,j −
∆t

∆x

(
Ĥn
m,j+1/2 − Ĥn

m,j−1/2

)
, (3.230)

where we used the compact notation to label a certain time tn or tn+1. The form of
Eq. (3.230) expresses the important feature, namely that the temporal change of F n

m,j

is completely determined by the flux through the cell boundaries. This automatically
preserves the number of particles, when viewing F n

m,j as some particle density. For
the case of Nx cell values for a certain momentum pm, the total amount of particles
in this region can only change due to the flux at the domain boundaries, as can be
seen when calculating the sum over all j

Nx∑
j=1

F n+1
m,j =

Nx∑
j=1

F n
m,j −

∆t

∆x

(
Ĥn
m,Nx+1/2 − Ĥn

m,1/2

)
. (3.231)

For the case that the fluxes at the boundaries vanish, the sum of F n
m,j with respect to j

stays constant over time, independent of the particular approximation of the numerical
fluxes Ĥn

m,j+1/2. The equations stated so far do not enable a direct implementation

since Eq. (3.229) is only a formal expression and we have to rely on approximations
to arrive at an explicit scheme. The key point is to construct an appropriate method
to calculate the average flux through the cell boundaries xj±1/2 from the knowledge
of the cell averages F n

m,j. Various approaches exist and the accuracy of a numerical
result for a certain problem depends on the applicability of the particular approach
to the problem, but, for every approximation it is guaranteed that the underlying
conservation law is fulfilled. Extensive literature exists for the numerical treatment
of such hyperbolic equations, as described for instance in [18] or [11], and we will
present here only a brief overview of the subject. In the following we will outline the
REA-algorithm, start with its simplest variant to derive the upwind scheme and then
look at slope limiter methods. Finally, we discuss the very efficient WENO (weighted
essentially non oscillatory) methods, which rely on similar ideas as the slope limiter
schemes.

The abbreviation REA stands for reconstruct-evolve-average and describes a pro-
cedure to approximately calculate the numerical fluxes Ĥn

m,j+1/2 [11]:

• In the reconstruction step one chooses for f(pm, x, tn) a piecewise polynomial
approximation with respect to x. This makes it possible to retain a function
defined for a continuous argument x from the knowledge of the discrete set of
cell averages F n

m,j.

• This function may then be evolved exactly or approximately in time to obtain
after a time step ∆t the function f(pm, x, tn+1).

• Upon averaging f(pm, x, tn+1) over grid cells one obtains the new cell averages
F n+1
m,j .
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3.3 Numerical schemes for the advection term

In the case of the advection equation, one can use the exact solution for the second
step, given by

f(pm, x, tn+1) = f(pm, x−
pm
m∗

∆t, tn) , (3.232)

which can be readily checked when replacing tn+1 by t as well as ∆t by t − tn and
inserting it into Eq. (3.224). Typical for hyperbolic problems is the propagation along
characteristics, which are simply straight lines in our case of the the linear advection
equation with constant coefficients:

x− pm
m∗

t = const. (3.233)

One can see that for pm > 0 the solution propagates from smaller to larger values of x
and for pm < 0 vice versa. It is therefore natural to apply boundary conditions at x1

for pm > 0 and at xNx for pm < 0, when concerning Nx grid points with the ordering
x1 < x2 < · · · < xNx . This boundary conditions then completely determine the flux
into the device and the stationary solution one may attain.

The knowledge of the characteristics helps us to identify the domain of depen-
dence of the underlying PDE. In the case of pm > 0 for instance, we know that
f(pm, xj+1/2, t + τ), τ > 0, depends only on values of f(pm, x, t) with x ≤ xj+1/2. It
is crucial to know the domain of dependence of the PDE to construct the numeri-
cal domain of dependence properly. This is expressed by the famous CFL condition
(Courant, Friedrichs and Lewy, see [18], [24], [11]), which states that it is a necessary
condition for the stability of a numerical method that the numerical domain of de-
pendence contains the physical domain of dependence of the underlying PDE [11]. In
particular, when we want to express the flux Ĥn

m,j+1/2 solely in terms of the values of
cell averages at neighbouring cells F n

m,j+1 and F n
m,j, we need to limit the time step by

ν =
pm
m∗

∆t

∆x
≤ 1 , (3.234)

where ν is called the CFL- or Courant-number [11]. The limitation ν ≤ 1 ensures
that the solution cannot propagate over distances longer than one grid cell during
the time step ∆t. In the following we will always, except for the WENO schemes,
consider ν ≤ 1.

For the particular case of a piecewise constant reconstruction we thus find

f(pm, xj+1/2, tn + τ) = F n
m,j , for pm > 0 , 0 ≤ τ ≤ ∆t ,

f(pm, xj+1/2, tn + τ) = F n
m,j+1 , for pm < 0 , 0 ≤ τ ≤ ∆t . (3.235)

Upon insertion into Eq. (3.229) we arrive at

Ĥn
m,j+1/2 =

pm
m∗

F n
m,j , for pm > 0 ,

Ĥn
m,j+1/2 =

pm
m∗

F n
m,j+1 , for pm < 0 , (3.236)
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3 Numerical methods for the Wigner transport equation

which constitutes together with Eq. (3.230) an explicit update formula for the cell
averages Fm,j, known as the upwind method in literature [18], [24], [11]. The recon-
struction and evolution step of the REA-algorithm are hereby contained in Eq. (3.235)
and the averaging in Eq. (3.230) since we already averaged over x in the derivation.
Finite volume methods are often similar to finite difference methods. The exact same
expression for the upwind method could also be obtained when directly replacing the
partial derivatives in Eq. (3.224) by one-sided finite differences, which are first-order
accurate. The upwind method is conditionally stable for ν ≤ 1 and produces the best
results for ν close to one. Especially for lower values of ν a strong smearing of the
solution function can be observed since the leading-order error term is proportional to
∆x2 and one can show that this corresponds to a dissipative error [11]. In the present
case of the WTE this is an unfavorable situation since to fulfill the condition ν ≤ 1 for
all Np advection equations we have to adjust ∆t to the largest value pmax = max |pm|.
For the case of pmax, ν can be chosen fairly close to one but especially for the interior
equations with small values of pm, ν may be very small and one thus introduces sig-
nificant dissipation. This is a problem, of course, since especially at the lower values
of pm the quasi-distribution function f(p, x, t) takes on large values. Despite of this,
the upwind method was used as a first starting point for practical simulations done
in this work. The smearing might not produce very accurate results but it avoids to
some degree that short-scaled oscillations become too pronounced and definitely does
not introduce additional, unphysical oscillations. This aided in the development of
the polynomial approximation method for the pseudo-differential operator.

To develop higher-order methods one can use higher-order polynomial reconstruc-
tions for f(pm, x, t) and repeat the steps of the REA-algorithm. We now consider a
piecewise linear reconstruction of the form [11]

f(pm, x, tn) = F n
m,j+σ̂

n
m,j(x−xj) , for xj−1/2 < x ≤ xj+1/2 , j = 1, . . . , Nx . (3.237)

When restricting ourselves again to the case ν ≤ 1 and using the knowledge of the
propagation of the solution along the characteristics Eq. (3.233), one can make use
of geometrical considerations for instance to derive the following update formulas for
the cell averages [11]

F n+1
m,j = F n

m,j − ν
(
F n
m,j − F n

m,j−1

)
− 1

2
ν(1− ν)∆x

(
σ̂nm,j − σ̂nm,j−1

)
, for pm > 0 ,

(3.238)
and

F n+1
m,j = F n

m,j − ν
(
F n
m,j+1 − F n

m,j

)
+

1

2
ν(1 + ν)∆x

(
σ̂nm,j+1 − σ̂nm,j

)
, for pm < 0 ,

(3.239)
corresponding to the fluxes

Ĥn
m,j+1/2 =

pm
m∗

[
F n
m,j +

1

2

(
∆x− pm

m∗
∆t
)
σ̂nm,j

]
, for pm > 0 ,

Ĥn
m,j+1/2 =

pm
m∗

[
F n
m,j+1 −

1

2

(
∆x+

pm
m∗

∆t
)
σ̂nm,j+1

]
, for pm < 0 . (3.240)
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Now, the particular choice of the slopes strongly influences the performance of the
algorithm. A famous choice is to use downwind slopes (pm > 0)

σ̂nm,j =
F n
m,j+1 − F n

m,j

∆x
, (3.241)

resulting in the Lax-Wendroff method, which is known to be second-order accurate
[11]. One could also use upwind or centered slopes which may be better suited for
certain situations, but all of these approaches suffer from the drawback that the
methods are not total variation diminishing (TVD), meaning that spurious oscillations
may arise. The TVD concept was extensively used to derive various high-resolution
methods, based on flux or slope-limiter approaches, see [11]. In short, the total
variation serves as a measure of the degree of oscillations in the solution function. For
a discrete set of values it is defined by [11]

TV(F n
m) =

Nx∑
j=2

|F n
m,j − F n

m,j−1| . (3.242)

From the analytical solution of the advection equation, Eq. (3.232), it is known
that the true solution simply propagates along x without changing its shape. The
total variation thus stays constant. It is advisable to impose such a demand also for
the numerical methods. Therefore, one defines the TVD property by the following
requirement: “A two-level method is called total variation diminishing (TVD) if, for
any set of data F n

m, the values F n+1
m computed by the method satisfy” [11]

TV(F n+1
m ) ≤ TV(F n

m) . (3.243)

Having a numerical method for which it is guaranteed that the total variation of
the solution function cannot increase guarantees that no unphysical oscillations are
produced by the method. Various slope limiter approaches exist which fulfill this
property. Their common strategy is to choose the slope at a particular position
depending on the smoothness of the function. The slope may be chosen as one of the
values of the upwind-, downwind- and centered slopes or as a combination of those.
Two examples are the minmod-scheme and the MC limiter. The minmod-scheme
determines the slope via [11]

σ̂nm,j = minmod

(
F n
m,j+1 − F n

m,j

∆x
,
F n
m,j − F n

m,j−1

∆x

)
, (3.244)

with the minmod function defined by

minmod(a, b) =


a if |a| < |b| , ab > 0 ,

b if |a| > |b| , ab > 0 ,

0 if ab ≤ 0 .

(3.245)

Therefore, for the case that the upwind- and downwind slope have the same sign
the method always picks the one smaller in magnitude. For the case that the two
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slopes have opposite signs or one of them is zero the slope is simply set to zero
and a piecewise constant approximation is retained. This is particularly useful for
discontinuous solutions since choosing a slope at a discontinuous position, via Eq.
(3.241) for instance, results in a reconstruction function which overshoots the values
of the set of cell averages and thus results in spurious oscillations. In our case of the
simulations performed with the WTE no truly discontinuous solutions are present,
however, due to the strong spatial variations, when simulating RTDs, problems with
spurious oscillations arise when applying the Lax-Wendroff method or related ones.
A very similar scheme which makes use of all three slopes is the MC limiter, standing
for monotonized central-difference limiter and determining the slopes by [11]

σ̂nm,j = minmod

(
F n
m,j+1 − F n

m,j−1

2∆x
, 2
F n
m,j+1 − F n

m,j

∆x
, 2
F n
m,j − F n

m,j−1

∆x

)
, (3.246)

with the minmod function for three arguments defined in an analogous way. The
factor of two in front of the one-sided slopes might seem confusing but in literature
it is shown that the TVD property is still fulfilled [11]. In addition, the factor of two
favours the choice of centered slopes in regions where the solution function is smooth.
Again, a value of zero is assigned as soon as the single slopes differ in sign or one of
them is zero. A slope equal to zero corresponds, of course, to a piecewise constant
approximation of the function. This is a central feature of all high-resolution methods.
Whenever the solution is smooth and well resolved they apply a high-order method
for better accuracy but in badly resolved regions or regions with discontinuities they
switch to a lower order approximation to avoid the creation of oscillations. In this
work, the minmod-scheme and MC-limiter were tested in practice and the results
obtained seemed to be fairly accurate. The dissipation effects of the upwind scheme
were virtually eliminated, whereby the results produced with the MC-limiter appeared
to be more accurate than the results of the minmod-scheme. However, a considerable
change of the Wigner function could be observed when reducing the grid constant
∆x. Especially the computed charge density n(x) inside the double-barrier changed
quite significantly, affecting the whole behaviour of the device. This indicated that
the methods had problems with resolving the strong spatial variations of the Wigner
function close to the barriers on moderate grid sizes. In order to avoid extremely
fine grids which cause too long CPU times, a higher order method was sought for.
Since the problem of strong spatial variations of the distribution function is a common
problem in device simulations due to steep doping profiles, see e.g. [3], well developed
schemes exist that can cope with such cases, known as ENO or WENO methods.

Essentially non oscillatory (ENO) and weighted essentially non oscillatory (WENO)
methods are based on similar ideas as the high-resolution methods, namely to use a
high-order approximation in regions where the solution is smooth and to reduce the
order near discontinuities or badly resolved regions. ENO schemes make use of a set
of stencils to construct the flux at the cell boundaries. A smoothness indicator is
used to pick the one stencil with the smallest amount of oscillations. WENO schemes
work in a similar way, only that they do not pick a single stencil but use a convex
combination of all stencils. This enables one to increase the order of the method in
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3.3 Numerical schemes for the advection term

smooth regions whereas maintaining the property to handle discontinuities. The first
such methods were developed in [32] and further ones can be found in [33] or [34]. In
this work we will focus on the WENO5 scheme as presented in [33] or [3], where we
use in the following a notation based on the latter one. The method and especially
its stability properties were extensively analyzed in [35].

The WENO5 scheme directly approximates the flux at the cell boundaries with
three different stencils and we therefore return to the very beginning, to Eqs. (3.224)
- (3.227), and write the flux at time tn as

ĥnm,j+1/2 = ωn1h
n,(1)
m,j+1/2 + ωn2h

n,(2)
m,j+1/2 + ωn3h

n,(3)
m,j+1/2 . (3.247)

For the case pm > 0 the three single fluxes are determined by

h
n,(1)
m,j+1/2 =

pm
m∗

(
1

3
F n
m,j−2 −

7

6
F n
m,j−1 +

11

6
F n
m,j

)
,

h
n,(2)
m,j+1/2 =

pm
m∗

(
−1

6
F n
m,j−1 +

5

6
F n
m,j +

1

3
F n
m,j+1

)
,

h
n,(3)
m,j+1/2 =

pm
m∗

(
1

3
F n
m,j +

5

6
F n
m,j+1 −

1

6
F n
m,j+2

)
. (3.248)

The single weights ωni are normalized by the equation

ωni =
ω̃ni∑3
l=1 ω̃

n
l

, i = 1, 2, 3 , (3.249)

with

ω̃ni =
γi

(ε+ βni )2
, i = 1, 2, 3 , (3.250)

where the values of γi are fixed by γ1 = 1
10

, γ2 = 3
5

and γ3 = 3
10

, ε = 10−6 is a small
quantity to avoid that the denominator takes on a value of zero and the smoothness
indicators βni are determined by the following equations

βn1 =
(pm
m∗

)2
[

13

12

(
F n
m,j−2 − 2F n

m,j−1 + F n
m,j

)2
+

1

4

(
F n
m,j−2 − 4F n

m,j−1 + 3F n
m,j

)2
]
,

βn2 =
(pm
m∗

)2
[

13

12

(
F n
m,j−1 − 2F n

m,j + F n
m,j+1

)2
+

1

4

(
F n
m,j−1 − F n

m,j+1

)2
]
,

βn3 =
(pm
m∗

)2
[

13

12

(
F n
m,j − 2F n

m,j+1 + F n
m,j+2

)2
+

1

4

(
3F n

m,j − 4F n
m,j+1 + F n

m,j+2

)2
]
.

(3.251)

For completeness we also list here the expressions for h
n,(i)
m,j+1/2 and βni for the case
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pm < 0:

h
n,(1)
m,j+1/2 =

pm
m∗

(
1

3
F n
m,j+3 −

7

6
F n
m,j+2 +

11

6
F n
m,j+1

)
,

h
n,(2)
m,j+1/2 =

pm
m∗

(
−1

6
F n
m,j+2 +

5

6
F n
m,j+1 +

1

3
F n
m,j

)
,

h
n,(3)
m,j+1/2 =

pm
m∗

(
1

3
F n
m,j+1 +

5

6
F n
m,j −

1

6
F n
m,j−1

)
, (3.252)

and

βn1 =
(pm
m∗

)2
[

13

12

(
F n
m,j+3 − 2F n

m,j+2 + F n
m,j+1

)2
+

1

4

(
F n
m,j+3 − 4F n

m,j+2 + 3F n
m,j+1

)2
]
,

βn2 =
(pm
m∗

)2
[

13

12

(
F n
m,j+2 − 2F n

m,j+1 + F n
m,j

)2
+

1

4

(
F n
m,j+2 − F n

m,j

)2
]
,

βn3 =
(pm
m∗

)2
[

13

12

(
F n
m,j+1 − 2F n

m,j + F n
m,j−1

)2
+

1

4

(
3F n

m,j+1 − 4F n
m,j + F n

m,j−1

)2
]
.

(3.253)

The formulas can be directly used for the interior grid points but at the boundaries
we need to make use of ghost cells [11] to specify values for F n

m,j at the positions
j = −2,−1, 0 and j = Nx + 1, Nx + 2, Nx + 3. On the left contact at j = 1 we
know from the characteristics that in the phase space region with pm > 0 the quasi-
distribution function propagates to the right, i.e. into the device and in the region
pm < 0 it propagates to the left, i.e. leaves the device. To model the inflow from the
contacts into the device we set the exterior points for j < 1, pm > 0 to fixed values
according to a certain, desired distribution function in the contacts. In our case of
simulating quantum devices this is the Fermi-Dirac distribution. Since we consider
a one-dimensional problem we need to integrate the three-dimensional Fermi-Dirac
distribution over the transverse momenta to arrive at a distribution function for the
longitudinal momentum alone. The appropriate one-dimensional distribution may be
found in [4] or [36] and is given by

fl,r(p) =
m∗

2π2~2β
ln

{
1 + exp

[
−β
(
p2

2m∗
+ qVl,r − µl,r

)]}
, (3.254)

Vl,r and µl,r label the voltage and the chemical potential in the left or right contact,
respectively and β = 1

kBT
incorporates the thermal energy. An additional factor of

1
2π

is included in the equation above since our derivations are based on a slightly
different definition of the Wigner transformation than the one used in [4]. To assign a
value to a certain F n

m,j we average over the particular grid cell. To model the outflow
properly, without causing reflections at the contacts we apply the boundary conditions
for ohmic contacts as described in [3] and simply copy the last values of F n

m,1 to the
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exterior points, so that we have on the whole for the left-sided contact

F n
m,j =


1

∆pm

∫ pm+1/2

pm−1/2

fl(p)dp if pm > 0 ,

F n
m,1 if pm < 0 ,

(3.255)

for j = 0,−1,−2. The ghost cells for the contact on the right-hand side are given by
the analogous expression

F n
m,j =


F n
m,Nx if pm > 0 ,

1

∆pm

∫ pm+1/2

pm−1/2

fr(p)dp if pm < 0 ,
(3.256)

for j = Nx + 1, Nx + 2, Nx + 3. Having the equations stated to determine the fluxes at
the cell boundaries, we now return to Eq. (3.225) and to the problem of devising an
appropriate time stepping method. Before, in the case of the upwind and the high-
resolution methods we applied in principle a forward Euler scheme to calculate the
update from F n

m,j to F n+1
m,j . In the case of the WENO5 scheme this is not possible any-

more since the overall scheme is unstable. In practice it is not immediately apparent
that the method is unstable since no sudden exponential growth of the solution can
be observed, as a consequence of the nonlinear flux calculation, but a rather chaotic
behaviour with oscillations being created, smoothed out again or even amplified. One
can only notice that it is reduced with decreasing ∆t but never eliminated. Wang [35]
analyzed the stability properties of the WENO5 scheme coupled with different time-
stepping methods in great detail and due to his results we decided to use a third-order
Runge Kutta method, termed SSP(3,3) in his work and those of others, to perform
the time step. In the SSP(3,3) method three sub-steps are needed to advance one
complete time step and the abbreviation SSP stands for the strong stability preserv-
ing property [35]. The particular Runge Kutta coefficients for the SSP(3,3) algorithm
are given in [35] in terms of a Butcher tableaux [23]. For our purposes it suffices to
consider the differential equation

ẏ = L{y} (3.257)

with a time-independent operator L acting on a function y. For this case the three
sub-steps of the SSP(3,3) algorithm needed to advance y from time tn to tn+1 are

k1 = L{yn} ,
k2 = L{yn + ∆tk1} ,

k3 = L

{
yn +

∆t

4
(k1 + k2)

}
,

yn+1 = yn + ∆t

(
1

6
k1 +

1

6
k2 +

2

3
k3

)
. (3.258)

To combine this scheme with the WENO5 method it is convenient to introduce the
functions yn

′
and yn

′′
at the intermediate times tn′ and tn′′ and rewrite the individual
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steps as

yn
′

= yn + ∆tL{yn} ,

yn
′′

= yn +
∆t

4

(
L{yn}+ L{yn′}

)
=

1

4

(
3yn + yn

′
+ ∆tL{yn′}

)
,

yn+1 = yn + ∆t

(
1

6
L{yn}+

1

6
L{yn′}+

2

3
L{yn′′}

)
=

1

3

(
yn + 2yn

′′
+ 2∆tL{yn′′}

)
. (3.259)

To apply the SSP(3,3) stepper to the advection term of the WTE, one can rewrite
Eq. (3.225) in the following form

∂tFm,j(t) = Lm,j {Fm,1(t), . . . , Fm,Nx(t)} , (3.260)

when defining the operator

Lm,j {Fm,1(tn), . . . , Fm,Nx(tn)} = − 1

∆x

[
ĥnm,j+1/2 − ĥnm,j−1/2

]
. (3.261)

The three sub-steps of Eq. (3.259) can then be written in terms of the fluxes as

F n′

m,j = F n
m,j −

∆t

∆x

[
ĥnm,j+1/2 − ĥnm,j−1/2

]
,

F n′′

m,j =
1

4

(
3F n

m,j + F n′

m,j

)
− 1

4

∆t

∆x

[
ĥn
′

m,j+1/2 − ĥn
′

m,j−1/2

]
,

F n+1
m,j =

1

3

(
F n
m,j + 2F n′′

m,j

)
− 2

3

∆t

∆x

[
ĥn
′′

m,j+1/2 − ĥn
′′

m,j−1/2

]
, (3.262)

where the individual fluxes ĥnm,j+1/2, ĥn
′

m,j+1/2 and ĥn
′′

m,j+1/2 are determined by the

WENO5 scheme, Eqs. (3.247) - (3.253), out of the set of cell averages F n
m,j, F

n′
m,j and

F n′′
m,j, respectively.
In addition, one can identify the overall flux to advance from time tn to tn+1 to be

given by

Ĥn
m,j+1/2 =

1

6
ĥnm,j+1/2 +

1

6
ĥn
′

m,j+1/2 +
2

3
ĥn
′′

m,j+1/2 , (3.263)

when comparing Eq. (3.230) and the first expression for yn+1 in Eq. (3.259). The
numerical flux Ĥn

m,j+1/2 is in practical computations a better estimator for the current

density than to make use of a discretized expression of Eq. (1.36), i.e. to calculate
the current density by

j(xj, tn) = q

Np∑
m=1

pm
m∗

F n
m,j∆pm . (3.264)

The problem is that a current density calculated by Eq. (3.264) does not neces-
sarily fulfill the requirement that its divergence vanishes in the stationary case (see

98



3.3 Numerical schemes for the advection term

continuity equation Eq. (2.22)). Especially when strong spatial variations of the
quasi-distribution function are present, as for the case of tunneling devices, the cur-
rent density shows strong deviations from an even, stationary solution. Much better
results were achieved when calculating the current density on the cell boundaries
xj+1/2 by summing up the numerical fluxes Ĥn

m,j+1/2 since these fluxes truly deter-
mine the change of the cell averages from time tn to time tn+1. An additional point
has to be taken into account: One may notice from Eqs. (3.262) and (3.263) that the
numerical flux is not independent of the time step in the present case but contains
terms proportional to ∆t and ∆t2. To suppress this dependence to some degree it
is convenient to determine the current density at a certain time tn by averaging over
two adjacent time steps, i.e. by

j(xj+1/2, tn) = q

Np∑
m=1

∆pm
Ĥn
m,j+1/2 + Ĥn−1

m,j+1/2

2
. (3.265)

In general, when dealing with explicit time-stepping schemes one has to make sure to
use a small enough time step for the scheme to be stable. In [35] one can find that
the WENO5 scheme together with the SSP(3,3) stepper is stable for CFL numbers
of ν ≤ 1.43 for smooth solutions and in the case of discontinuities one has to restrict
the Courant number to ν ≤ 1. For the simulations of RTDs the latter condition is
the appropriate one and in the computations done in this work, the CFL number was
restricted to ν ≈ 0.9 because values too close to one caused problems and enhanced
oscillations to some degree.

Now, to use a dedicated time stepping method for both terms in the WTE we
apply an operator splitting scheme as described earlier in Sec. 3.1.1. In particular a
Strang-splitting scheme is reasonable to achieve an overall second-order accuracy. It
was found advisable to solve the advection term in the two ∆t

2
steps of the Strang-

splitting, i.e. in place of L1 in Eq. (3.7), in order to gain a factor of two for the CFL
condition. In addition, in a calculation of multiple time steps one ∆t drift step is
followed by two ∆t

2
advection steps, so that the two adjacent advection steps enable

us to calculate the current density by Eq. (3.265).
Time stepping methods for the drift term have not been discussed yet. The cal-

culations in the last section revealed that it is possible to rewrite the discretized
pseudo-differential operator in matrix form as (see Eq. 3.130)

∂tFm,j(t) =

Np∑
i=1

Dm,i,jFi,j(t) , m = 1, . . . , Np , j = 1, . . . , Nx . (3.266)

The formal solution to this equation is given by

F n+1
m,j =

Np∑
i=1

exp (∆tDm,i,j)F
n
i,j , m = 1, . . . , Np , j = 1, . . . , Nx . (3.267)

One could use for instance a series expansion of the exponential function or also apply a
Runge Kutta method directly to Eq. (3.266) to arrive at an update formula of desired
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order. The strategy chosen in this work was to use the built in Matlab function
expm which uses the scaling and squaring method [37] to calculate the exponential
of a matrix with high accuracy. Due to the convincing performance of the expm
routine our own routines based on series expansions were discarded and the expm
Matlab function used in all of the simulations. Since we were mainly interested in
reaching stationary solutions in order to validate the developed algorithm against a
NEGF reference solution, the expm routine had to be called only once in a particular
calculation. Therefore, the routine did not cause any severe extra computational
cost even on large grids. But, if one would be interested in simulating fully time-
dependent potentials V (x, t) other time stepping strategies may be better suited. A
comparison of the results achieved with expm and those by a series expansion of Eq.
(3.267) revealed, that a fourth-order expansion produced practically identical results,
a first-order expansion showed instabilities and a second-order expansion seemed to
work quite well in most test cases. The series expansion method was not tested
thoroughly against the expm routine but a second-order expansion or also a Runge
Kutta method of second order seems to be a good starting point to treat fully time-
dependent potentials. The extra cost in each time step can be estimated to be at
least about a factor of two for the case of a second-order method since two matrix
multiplications need to be carried out for each position xj instead of one multiplication
as in Eq. (3.267). The extra computational cost needed to update the matrix elements
of Dm,i,j is strongly dependent on the particular situation. The simple case of a time-
dependent bias voltage together with a fixed potential distribution inside the device
is directly manageable and one can make use of the linearity of the equations, i.e.
that in a matrix Dm,i,j for the bias voltage alone the particular value of VDS enters
solely as a prefactor. Time-dependent bias voltages may be of interest to analyze the
frequency-dependent behaviour of a device.
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4 Non-equilibrium Green’s function
technique

In the Keldysh formalism, the technique of Green’s functions known from equilibrium
many-body physics is extended to the non-equilibrium case [14]. The formulas for
expectation values bear close analogy to the equilibrium case but one has to deal
with a set of equations for four different Green’s functions. To apply the formalism
to the field of device simulations, the fully time-dependent treatment is unfeasible,
at the moment, and one usually restricts the calculations to the stationary case.
For steady state situations the set of equations can be simplified and two Green’s
functions suffice to describe all the physics and calculate all measurable quantities.
Extensive literature on the subject exists and an elementary introduction to the non-
equilibrium Green’s functions (NEGF) technique for the purpose of device simulations
can be found in the textbooks of Datta [36], [38]. In this chapter we will give only a
fairly brief introduction to the subject, since on the one hand, the NEGF-formalism
is not the main topic of this work and served primarily as a reference solution for
the Wigner function calculations and on the other hand, the case of fully coherent
transport through a RTD, as considered in the following, is treated in many textbooks
as a basic example and also has been examined in various publications in all detail,
see e.g. [15], [6].

4.1 Calculation of steady state properties

In the stationary case, the retarded and the lesser Green’s function GR and G<, re-
spectively, enable to calculate all quantities of interest. The retarded Green’s function
GR specifies the coherent propagation of electrons inside the device and furthermore,
is closely related to the local density of states ρ(x,E) inside the device [38]. The oc-
cupancy of these states, in particular, resulting from the balance of the incoming and
outgoing electrons from the left- and right-sided contacts in combination with scat-
tering events, can be quantified by the lesser Green’s function. Thus G< determines
the charge density n(x) and the current j(x) [8] [38].

In analogy to the theory of Green’s functions in the context of the solution of
differential equations, we introduce the retarded and advanced Green’s functions as
the solutions to the time-independent Schrödinger equation with a delta function as
source term

(E −H ′ ± iη)G(x, x′, E) = δ(x− x′) , x, x′ ∈ R . (4.1)
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Here, H ′ stands for the specific Hamilton operator and the infinitesimal quantity η
was added to uniquely determine the solution, whereby +iη and −iη correspond to
the retarded and advanced Green’s function, respectively. Only in the final solution
one considers the limit η → 0+. The problem with the definition of Green’s function
as in Eq. (4.1) is that one has to consider the infinite domain x, x′ ∈ R. Datta [38]
showed in detail how to truncate the domain by rewriting the equation in terms of
a Green’s function for the device alone, one for the exterior region and a coupling
function to finally arrive at an expression for an open quantum system[

E −H − ΣR(x, x′, E)
]
GR(x, x′, E) = δ(x− x′) , x, x′ ∈ (x1, xN) . (4.2)

Here we introduced a new quantity ΣR known as the retarded self-energy. For the
advanced functions the equation is completely analogous and every label R is replaced
by an A. Now, H represents the Hamiltonian of the isolated device and ΣR incor-
porates the interaction of the device region with the contacts. When assuming that
the single leads are independent of each other, one can split up the self-energy in the
single contributions

ΣR =
2∑

α=1

ΣR
α . (4.3)

The specific ΣR
α are then given by [38]

ΣR
α = τ †αg

R
α τα , (4.4)

with gRα representing Green’s function of lead α and τα the coupling between the par-
ticular lead and the device. Due to the fact that gRα is given by a simple analytical
expression for the case of non-interacting, semi-infinite leads and in addition, that τα
couples only adjacent points of gRα and GR, i.e. the surface terms, the ΣR

α can be cal-
culated exactly and are thus known functions. Therefore, Eq. (4.2) together with Eq.
(4.3) completely determines GR(x, x′, E) and the problem of finding Green’s function
on an infinite domain reduces to calculating GR(x, x′, E) on a compact domain, i.e.
for points x, x′ inside the device, whereby the original Hamiltonian is replaced by the
effective one, H + ΣR [38]. The reduction to a compact domain is essential since it
enables to approximate Eq. (4.2) by a matrix expression when introducing grid points

xj = x1 + (j − 1)∆x , x1, ∆x ∈ R , j = 1, . . . , N , (4.5)

and making use of a finite differences (FD) or finite element (FE) approximation [15] to
replace the operator H by a matrix. Datta [38] introduces a tight-binding Hamiltonian
to rewrite H in matrix form, which results in the same matrix elements as in the case
of the simplest FD-approximation, as presented in the next section. The matrices
obtained by discretizing Eq. (4.2) are of finite size N × N and thus directly enable
a numerical calculation of GR. Upon discretization, the delta function δ(x − x′)
is replaced by the identity matrix 1 such that GR can be calculated by a matrix
inversion [38]

GR =
(
E1−H − ΣR

)−1
. (4.6)
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The advanced Green’s function GA and self-energy ΣA may be obtained by calculating
the Hermitian conjugate

GA =
(
GR
)†
,

ΣA =
(
ΣR
)†
. (4.7)

It is convenient to introduce the functions

Γα = i
(
ΣR
α − ΣA

α

)
,

Γ =
2∑

α=1

Γα , (4.8)

representing the coupling of the device to the leads α = 1, 2 and the spectral function
A [38]

A = i
(
GR −GA

)
= GRΓGA

= GAΓGR . (4.9)

The spectral function enables to calculate the local density of states at point xj out
of the knowledge of the j-th diagonal element of A

ρ(xj, E) =
1

2π
Ajj(E) , (4.10)

as well as the total density of states inside the device when taking the trace of A, i.e.
the sum of the diagonal elements of A

D(E) =
1

2π
Tr [A(E)] . (4.11)

In equilibrium the local density of states together with the Fermi-Dirac distribu-
tion suffices to calculate the charge density n(x) at a certain position. In the non-
equilibrium case we need a second set of functions referred to as the lesser and greater
Green’s functions and self-energies, also known as correlation and scattering func-
tions, respectively [38]. For the case of equilibrium situations spatial correlations
are described in the framework of the density matrix [4] [38]. One can generalize
this concept to non-equilibrium situations when considering correlations in space and
time by introducing a function G<(x, x′, t, t′), depending on two spatial and two time
coordinates. For the steady state case no dependence on absolute time is present and
it suffices to consider only the time difference t − t′. Upon Fourier transformation
t− t′ may be replaced by a frequency or energy dependence. To calculate the particle
density n(x) out of G< we need to consider the limit x = x′, t = t′ which may be
written in terms of an integration with respect to E as [38] [39]

n(x) =
−i
2π

∫
G<(x, x, E)dE . (4.12)
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The second quantity of interest for device simulations, the current density j(x) is
given by [39]

j(x) = − ~q
2m∗

∫
1

2π
[(∇−∇′)G<(x, x′, E)]

∣∣
x′=x

dE . (4.13)

In the Keldysh formalism a kinetic equation is derived which puts the different Green’s
functions and self energies in relation. For the steady state case the kinetic equation
reduces to [38]

G< = GRΣ<GA ,

G> = GRΣ>GA . (4.14)

The functions Σ< and Σ> are termed lesser and greater self-energies, respectively, or
scattering functions [38] [39]. Datta [38] points out that in analogy to G< represent-
ing a correlation function for electrons, G> can be interpreted as a hole correlation
function.

Up to now we introduced self-energies only to account for the interaction of electrons
inside the device with the contacts. But the concept is far more general and allows one
to include particle-particle interactions such as electron-phonon, electron-electron or
electron-impurity scattering mechanisms in the same framework. The only difference
is that one cannot write down an analytic expression for the self-energies in the case of
particle-particle interactions anymore and one has to rely on a perturbative expansion
instead. The lowest-order approximations for electron-electron and electron-phonon
interactions may be found in the textbook of Datta [38]. In general, the self-energies
may be written as a sum of the different contributions

ΣR = ΣR
φ +

2∑
α=1

ΣR
α ,

Σ< = Σ<
φ +

2∑
α=1

Σ<
α ,

Σ> = Σ>
φ +

2∑
α=1

Σ>
α , (4.15)

where the index φ labels self-energies due to phase-breaking processes, i.e. due to
scattering events [38]. These self-energies depend in general on the occupancy of the
particular states and therefore on G< and G>, with the consequence that one needs
to solve the equations iteratively. The self-energies due to the contacts are related to
Green’s functions of the leads, which may be rewritten as(

ΣR
α

)
i,j

=
(
τ †αg

R
α τα
)
i,j

= t2
(
gRα
)
αi,αj

, (4.16)
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where the index αi, αj labels positions in the leads adjacent to the positions i, j inside
the device and t represents the particular matrix elements of the coupling matrix
τα. Furthermore, Datta [38] lists the following explicit expressions for the case of
semi-infinite, non-interacting leads(

ΣR
α

)
i,j

= −t
∑
m∈α

χm(αi) exp (ikm∆x)χm(αj) , (4.17)

with

t =
~2

2m∗∆x2
(4.18)

and χm and km labeling the transverse mode-profile and wave number in mode m of
contact α, respectively. The lesser and greater self-energies due to the contacts are
then given by [38]

Σ<
α (E) = ifα(E)Γα(E) ,

Σ>
α (E) = −i[1− fα(E)]Γα(E) , (4.19)

with fα(E) representing the Fermi-Dirac distribution in contact α.
Overall, the solution procedure consists of the following steps [38]:

1. Calculate the contributions to the self-energies as listed in Eq. (4.15). The
contact self-energies can be calculated directly with Eqs. (4.17) and (4.19) but
the self-energies due to scattering events depend on G< and G> and need to be
updated after every iteration step.

2. From the knowledge of the retarded self-energy, the retarded and advanced
Green’s function are obtained by Eqs. (4.6) and (4.7).

3. The kinetic equation Eq. (4.14) enables us to calculate the lesser and greater
Green’s functions. With these it is possible to update the scattering terms in the
self-energies and the steps 1 - 3 have to repeated until convergence is reached.

4. Finally, one can calculate the particle density n(x) and the current density j(x).

For more details we refer to the textbook of Datta [38, Sec. 8.5].
In place of the current density one can also calculate the terminal currents via the

expression [15] [38] [7]

Iα = −i q

2π~

∫
Tr [Σ<

α (E)A(E)− Γα(E)G<(E)] dE . (4.20)

4.1.1 Coherent transport regime

In the following we will state the governing equations to describe coherent transport
without scattering effects in detail. In this special case the equations simplify further
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since the self-energies are known exactly and an iterative calculation procedure is not
required. For the case of a single mode m in the leads, Eq. (4.17) reduces to [15] [6](

ΣR
1

)
i,j

= −t exp (ik1∆x) δi,1δj,1 ,(
ΣR

2

)
i,j

= −t exp (ik2∆x) δi,Nδj,N , (4.21)

for i, j = 1, . . . , N and with the wave number for each contact given by

kα =

√
2m∗(E − vα)

~
. (4.22)

Here we assumed that the potential in each of the contacts has a constant value vα.
Inserting Eq. (4.21) into Eq. (4.8) results in

(Γ1)i,j = 2t sin (k1∆x) δi,1δj,1 ,

(Γ2)i,j = 2t sin (k2∆x) δi,Nδj,N , (4.23)

which directly determines the lesser and greater self-energies for each contact by Eq.
(4.19). When neglecting scattering effects all phase-breaking terms ΣR

φ , Σ<
φ and Σ>

φ

in Eq. (4.15) are zero and the self-energies are thus completely known.

For the device Hamiltonian H we assume a constant effective mass m∗, so that it
may be written in the position space as

H = − ~2

2m∗
∂2
x + qV (x) . (4.24)

To discretize the operator we use the following finite differences approximation for the
kinetic term [15]

∂2
xf(x)

∣∣
x=xj
≈ f(xj−1)− 2f(xj) + f(xj+1)

∆x2
, (4.25)

and for the potential we simply evaluate V (x) at positions xj to arrive at the matrix
elements

(H)i,j = qV (xj)δi,j − t (δi,j−1 − 2δi,j + δi,j+1) , (4.26)

with t as defined in Eq. (4.18). The equations stated so far already enable us to
calculate the matrix GR for different energies, see Eq. (4.6). Due to the fact that all
self-energies are known from the start, one can make use of the kinetic equation to
express the quantities n(x) and Iα directly in terms of GR and Γα without the need to
explicitly calculate G<. This is useful, since as we will see below, only a small number
of matrix elements of GR is actually needed to calculate the quantities of interest and
one thus does not need to calculate the full inverse in Eq. (4.6).

To express the particle density n(x) in terms of GR and Γα, one can insert in Eq.
(4.12) the kinetic equation (4.14) and the definition of the lesser self-energy Eq. (4.19).
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For the discrete set of points xj the particle density is given by [7]

n(xj) =
1

2π∆x

∫ {
GR(E) [f1(E)Γ1(E) + f2(E)Γ2(E)]GA(E)

}
j,j
dE

=
1

2π∆x

∫ 2∑
α=1

{
GR(E)Γα(E)[GR(E)]†

}
j,j
fα(E)dE . (4.27)

When inserting the explicit expression for Γα as given in Eq. (4.23) one can find{
GR(E)Γ1(E)[GR(E)]†

}
j,j

= 2t sin [k1(E)∆x]
∣∣[GR(E)]j,1

∣∣2 ,{
GR(E)Γ2(E)[GR(E)]†

}
j,j

= 2t sin [k2(E)∆x]
∣∣[GR(E)]j,N

∣∣2 , (4.28)

so that it suffices to know the first and last column of GR to calculate the particle
density inside the device.

In the case of coherent transport it is possible to rewrite the expression for the
terminal current Eq. (4.20) in terms of a transmission function. We therefore make
use of the relation of the spectral function A to GR, GA and Γ, Eq. (4.9), as well as
Eqs. (4.14) and (4.19) to find for the case α = 1

Σ<
1 A− Γ1G

< = if1Γ1G
R(Γ1 + Γ2)GA − Γ1G

R(if1Γ1 + if2Γ2)GA

= i(f1 − f2)Γ1G
RΓ2G

A , (4.29)

where we suppressed the explicit energy dependency for the sake of clarity. Inserting
this into Eq. (4.20) makes it obvious to relate the following term to the so-called
transmission function

T (E) = Tr[Γ1(E)GR(E)Γ2(E)GA(E)] , (4.30)

so that the current is given by

I1 =
q

2π~

∫
T (E)[f1(E)− f2(E)]dE . (4.31)

For the particular Γα matrices stated above, the expression for the transmission func-
tion reduces to

T (E) = 4t2 sin [k1(E)∆x] sin [k2(E)∆x]
∣∣[GR(E)]1,N

∣∣2 . (4.32)

As can be seen, the knowledge of the single matrix element [GR(E)]1,N linking the
first and last position in the device is enough to determine the current.

As mentioned already in Sec. 3.3, when we discussed the boundary conditions for
the solution of the Wigner transport equation, one has to consider for fα(E) the one-
dimensional Fermi-Dirac distribution, see also Eq. (3.254). Written in terms of the
energy, the appropriate distribution is [36] [7] [40]

fα(E) =
m∗

π~2β
ln {1 + exp [−β (E − µα)]} , (4.33)
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4 Non-equilibrium Green’s function technique

with µα representing the chemical potential in the specific contact and β standing for
the thermal energy.

Two crucial numerical aspects still need to be discussed: On the one hand, how
to perform the matrix inversion in Eq. (4.6) effectively and on the other hand, how
to calculate the integrals with respect to E of Eqs. (4.27) and (4.31). In principle,
numerical routines exist to calculate the full inverse matrix as written down in Eq.
(4.6). But, due to the fact that in the special case of coherent transport only the first
and last row of GR contribute to the values of n(xj) and I1, more effective strategies
can be used. The problem of finding GR may be written in the form

N∑
k=1

(
E1−H − ΣR

)
i,k

(
GR
)
k,j

= δi,j , i, j = 1, . . . , N , (4.34)

representing a system of N2 equations. As one can see, the index j enters as an exter-
nal parameter such that it is possible to simply leave out the terms j = 2, . . . , N−1,
which are not of interest, and consider only the 2N equations

N∑
k=1

(
E1−H − ΣR

)
i,k

(
GR
)
k,j

= δi,j , i = 1, . . . , N , j = 1, N . (4.35)

The remaining problem can then by solved by some standard routine for linear systems
of equations to obtain the desired values of

(
GR
)
i,1/N

. This procedure has to be

performed for multiple values of E to numerically calculate the integrals in Eqs.
(4.27) and (4.31). Due to the fact that the integrands are not smooth in general
but may show sharp peaks, a sophisticated method preferably with an included error
estimation and control is required to obtain reliable values for n(xj) and I1. The
sharp features are very prominent in the case of resonant tunneling diodes and one
can see that the transmission function T (E) exhibits narrow peaks at the energy
of the resonant state inside the well. A good overview and comparison of different
numerical integrators can be found in [39] and the results encouraged us to make use
of a double adaptive quadrature routine. In particular the routine coteda developed by
Espelid [41] and available online as Matlab code was used for all NEGF simulations in
this work. The routine applies both a five point and a nine point closed Newton-Cote
rule in combination with a locally double adaptive strategy. Double adaptive means
in this context that on the one hand, for a given set of sampling points of the function
in question, different Newton-Cote rules are used to perform the integration, in which
the algorithm changes from lower-order to higher-order approximations together with
monitoring the error estimate and, on the other hand, if the estimated error did not
fulfill a required tolerance, new sampling points are added. The subdivision of the
integration interval is done in the case of the coteda-routine by bisection so that the
five point and nine point Newton-Cote rules can make use of the same set of sampling
points which increases the efficiency of the algorithm. [41]
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4.2 Simulation of Resonant Tunneling Diodes

In the following, simulations with the NEGF technique are presented for the same res-
onant tunneling diode, consisting of an AlxGa1−xAs/GaAs/AlxGa1−xAs heterostruc-
ture, as used in the next chapter for the WTE calculations. The heterostructure itself
is discussed in more detail in Sec. 5.2 and here we simply consider the corresponding
potential shape qV (x) as depicted in Fig. 4.1. Herein the height of the barriers is
fixed to a value of 0.27 eV, as well as the width by 5 a, the length of the slopes of
the barriers by a and the spacing of the barriers by 8 a, expressed in terms of the
lattice constant a = 0.565 nm [4] [6]. The source-drain voltage VDS across the device
is varied and for each situation the steady state is calculated, so that one is able to
determine a I(V ) curve for the particular device. Characteristic for a RTD is a region
with negative differential resistance.
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Figure 4.1: Illustration of the considered potential qV (x) of a resonant tunneling diode
for a barrier height of 0.27 eV (a). Depicted is qV (x) together with the
chemical potentials µ1 = 0.19 eV and µ2 = 0.08 eV at each contact for
the case of a bias voltage of VDS = 0.115 V. In (b) a detailed plot of the
double barriers is shown and the position coordinate is expressed in terms
of the lattice constant a = 0.565 nm.

Furthermore, we assume for the simulation a spatially constant effective mass given
by the value for GaAs, m∗ = 0.067me [6], a temperature of T = 300 K and a donor
density inside the contacts of ND = 2 × 1018 cm−3 [6]. From this one can calculate
the corresponding chemical potentials µα in each contact by finding the root of the
equation [4]

ND

NC

= F1/2 [β(µα − vα)] , (4.36)

with the potential energy vα at the contact α, β = 1
kBT

, F1/2 denoting the Fermi-Dirac
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Figure 4.2: Calculated I(V ) curves of a RTD as illustrated in Fig. 4.1 for various
grid spacings ∆x (a). The case ∆x = a/64 is considered to be a reference
solution for the simulation on coarser grids. In (b) a plot of the relative
error is shown.

integral of order 1
2

[4] [42] and NC given by [4]

NC = 2

(
m∗

2π~2β

) 3
2

. (4.37)

In Fig. 4.1 the calculated chemical potentials µ1 = 0.19 eV and µ2 = 0.08 eV for the
case VDS = 0.115 V are shown as well.

In Fig. 4.2 the calculated I(V ) curves for different grid spacings ∆x are shown,
where the current was calculated by making use of Eq. (4.31). The characteristic
feature of a RTD, the negative differential resistance is obvious to see. The peak
value is taken on at a voltage of about VDS = 0.115 V and the valley is located
at approximately VDS = 0.185 V. The peak corresponds to the situation, where the
incoming electron distribution from contact 1 shows the best possible energy alignment
with the quasi-bound well-state, so that resonant tunneling processes are enhanced. In
contrast, at the valley of the I(V ) curve the conduction band edge v1 = qVDS exceeds
the energy of the well-state. This causes that the incoming electrons from contact 1
cannot undergo a resonant tunneling process anymore and therefore, a reduction of
the current. A further increase of VDS results in an increase of the current due to the
enhanced tunneling probability and the stronger acceleration of electrons.

To understand the accessibility of the well-state to electrons from the contacts,
it is illustrative to compare the Fermi-distributions fα(E) of each contact and the
transmission function T (E), as depicted in Fig. 4.3. For the resonant case VDS =
0.115 V on can see that T (E) contains a sharp spike, corresponding to the resonant
tunneling process through the well-state and in addition that f1(E) exhibits large
values at the energy of that spike. In contrast, in the case of VDS = 0.185 V the sharp
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4.2 Simulation of Resonant Tunneling Diodes

spike in T (E) has vanished, i.e. the well-state has become inaccessible and the overlap
of T (E) and f1(E) is much smaller. In both cases T (E) shows an oscillating behaviour
at higher energies as well. Due to the width of these peaks one can assume that
they do not correspond to resonances with quasi-bound well-states but to interference
effects. But, this high-energy behaviour is not of concern for the range of bias voltages
discussed here and will not be looked at in more detail.

From the numerical point of view, the following parameters are crucial for accurate
results. The upper limit and the error tolerance for the energy integration must be
chosen appropriately, as well as the particular grid spacing and included length of
the contacts. To perform the energy integration it was decided after various tests to
choose an upper limit of Emax = 1 eV and a relative tolerance of 10−7 for the coteda-
routine. From Fig. 4.3 it should be apparent that the choice of Emax is sufficient since
the Fermi-distributions fα(E) exhibit significant values only at much lower energies
than Emax. The contact length Lc was varied in different simulations and the results
revealed only a minor dependence on the particular value of Lc, as a consequence
of the analytically evaluated self-energies for the contacts. The differences in the
corresponding I(V ) curves were orders of magnitude smaller than those obtained for
different values of ∆x. Therefore, the particular value of the contact length was fixed
to Lc = 50 a, for the purpose of calculating n(x) on a sufficiently large interval for the
later comparison with the WTE calculations, and kept the same for all simulations. To
estimate the accuracy of the results obtained with a particular grid spacing, the order
of convergence of the algorithm has been calculated. In Fig. 4.2 (a) the I(V ) curves
for three relatively coarse grid spacings and a fairly fine grid spacing of ∆x = a/64
are presented. The latter one serves as a reference solution. Figure 4.2 (b) displays a
plot of the relative difference ∆I/I for the three coarse grid spacings compared to the
case ∆x = a/64. It is apparent that the error declines rapidly. To quantify this, the
2-norm error and the order of convergence are listed in Tab. 4.1. From this test it is
obvious to ascribe the algorithm a convergence of second order with respect to ∆x.

Table 4.1: Estimation of the order of convergence O∆x out of the simulated I(V )
curves as shown in Fig. 4.2. Compared is the 2-norm error as defined in
Eq. (3.221) and the order of convergence determined by the logarithm to
the base of 2 of the quotient of two subsequent 2-norm errors, Eq. (3.223).

∆x ‖∆I‖2 O∆x

a 4334 2.20
a/2 945 2.05
a/4 228

Since we are not only interested in the current but also in the particle density,
analogous convergence tests were performed for n(x) for the cases VDS = 0.115 V and
VDS = 0.185 V and the results are presented in Fig. 4.4 and Tab. 4.2. Again, the
order of convergence can be very well estimated by two. In principle this is just a
verification of an expected result since the finite difference approximation, Eq. (4.25),
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4 Non-equilibrium Green’s function technique

used in discretizing the Hamiltonian is second-order accurate. We can assume that
the results obtained with ∆x = a/64 are well converged and can be viewed as an
exact solution for the purpose of evaluating the Wigner function calculations.

Table 4.2: Estimation of the order of convergence O∆x from the n(x)-calculations as
illustrated in Fig. 4.4. The 2-norm error and order of convergence are
determined in the same manner as described for Tab. 4.1.

VDS = 0.115 V VDS = 0.185 V
∆x ‖∆n(x)‖2 O∆x ‖∆n(x)‖2 O∆x

a 8.13E16 2.05 6.76E16 2.06
a/2 1.97E16 2.02 1.62E16 2.02
a/4 0.49E16 0.40E16
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Figure 4.3: Transmission function T (E) (a) and Fermi distributions f1/2(E) of the
left (b) and right (c) contact for the peak voltage VDS = 0.115 V and
the valley voltage VDS = 0.185 V. The single parameters are chosen as
described in the text and shown are the results for the calculation with
∆x = a/64. The particular values of the chemical potentials are for the
case VDS = 0.115 V: µ1 = 0.194 eV, µ2 = 0.079 eV and for VDS = 0.185 V:
µ1 = 0.264 eV and µ2 = 0.079 eV.
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Figure 4.4: Calculated particle density n(x) of a RTD for the cases VDS = 0.115 V
in (a) and VDS = 0.185 V in (c) for various grid spacings ∆x. The case
∆x = a/64 is considered to be a reference solution for the simulation on
coarser grids. The relative errors are shown in (b) for VDS = 0.115 V and
in (d) for VDS = 0.185 V.
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Diodes in phase space

5.1 Numerical tests on the time evolution to steady
states

The Wigner transport equation (WTE) is a time evolution equation for the quasi-
distribution function f(p, x, t). It can be used to simulate the carrier transport in
the steady state. One starts with an arbitrary initial distribution for f(p, x, t) and
proceeds until a stationary situation is reached. Of course, a smart choice of the
initial condition may reduce the time needed to reach the desired steady state. But,
the problem is not as easy as stated so far since an inappropriate choice of the (p, x)-
grid may cause large errors and lead to unphysical results, if a stationary situation is
reached at all. The problem arises due to the fact that f(p, x, t) may show heavily
oscillating regions for steady states where tunneling and coherence phenomena are
prominent. This is exactly the case for resonant tunneling diodes. One needs to care-
fully make sure that a chosen grid is appropriate for the simulated, physical situation.
If not, one encounters that in the progress of the time evolution to the stationary
state large errors build up as soon as the oscillations become too short scaled to be
resolved by the chosen grid. These errors are then not confined to the particular
region but may spread out in the phase space and influence the overall behaviour of
the device. To become familiar with this peculiar behaviour of the algorithm and to
understand its origin and manifestations, various time evolutions are analyzed in the
following. In addition, the piecewise constant and the piecewise linear approximation
of the Wigner function are compare to see to what degree a higher-order method may
improve the situation.

In all simulations performed on resonant tunneling diodes, the spacing of the p-grid
was the crucial factor deciding whether a smooth convergent or oscillating behaviour
was observed. The spacing of the x-grid was comparatively unproblematic. Therefore,
we will compare in the following different p-grid spacings for two different values of ∆x.
For simplicity, all physical constants are set to one and we make use of the same p-grid
(Eq. (3.218)) as applied before in Sec. 3.2.4 when studying the Fourier transform of a
piecewise polynomial approximation. The x grid is chosen to be equidistant and takes
on the values 0 and 300 at the contact on the left-hand side and the right-hand side,
respectively. The potential V (x) is assumed to be constant for values x < 100 and
x > 150 and exhibits a double barrier shape superimposed with a linear potential drop
in the region 100 ≤ x ≤ 150, as depicted in Fig. 5.5 (c). The linear potential drop is

115



5 Simulation of Resonant Tunneling Diodes in phase space

assumed to result from a bias voltage of magnitude VDS = 0.05 a.u. and the barriers
have a height of 0.15 a.u.. The barrier width and the well width have an equal value
of 3 a.u. and a finite slope over a distance of 1 a.u. is included for the barriers. For the
boundary condition, not the usual Fermi-Dirac distribution but a displaced Gaussian
distribution is chosen. The center of the Gaussian is set to µ = +(−)0.32 a.u. of the
left (right) contact and the width to σ = 0.05 a.u. (see e.g. Eq. (3.216) with λ = 0).
This has the advantage that the boundary distribution does not exhibit significant
values around p = 0 which in turn accelerates the time evolution to a steady state.
On the whole, the parameters of the potential V (x) and the boundary conditions are
chosen in a way such that resonant tunneling processes are prominent and f(p, x, t)
thus exhibits heavily oscillating regions in phase space.
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Figure 5.1: Time evolution of the current I(t) calculated with the piecewise constant
approximation of the Wigner function for the cases (a) Nx = 301 and
(c) Nx = 601, as well as with the piecewise linear approximation for (b)
Nx = 301 and (d) Nx = 601, each for different values of Np. The other
parameters are chosen as described in the text.
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Figure 5.2: Time-averaged current calculated form the simulations presented in Fig.
5.1. Depicted are the averages and the standard deviations of I(t) for the
time interval 0.1× 104 a.u. ≤ t ≤ 2× 104 a.u.. The piecewise constant and
linear approximations are compared with each other in (a) for Nx = 301
and (b) for Nx = 601.

In Fig. 5.1 the temporal change of the current I(t) is depicted for various p-
grid spacings. As initial condition f(p, x, t=0) the Gaussian distribution used as
boundary condition is continued from the contact on the left to the position x =
100 a.u. and from the right to x = 150 a.u.. With this choice the time needed to
arrive at an approximately stationary situation reduces to about t = 103 a.u., whereby
the simulations are performed to times up to t = 2 × 104 a.u.. This enables us to
examine if a stable stationary state is reached. As one can see in Fig. 5.1, in the
case of the lower values Np . 1000 no smooth convergent behaviour is observed but
the I(t) curves display a kink at certain times. For small times, i.e. 1000 a.u. .
t . 3000 a.u., all simulations show values for I close to the true stationary value,
but then, if the number of grid points Np is chosen too small a rapid change is
observed at a certain time followed by an oscillating behaviour in most cases. To
understand this behaviour it is elucidating to look at the time evolution of f(p, x, t)
in the phase space. During the simulations snapshots of f(p, x, t) were taken at the
times t = 1 k, 2 k, 5 k, 10 k, 15 k, 20 k, with k representing a factor of 103 a.u.. As one
can see from Fig. 5.1 (c), the two simulations for the piecewise constant approximation
with Nx = 601 and Np = 400 on the one hand and Np = 798 on the other hand exhibit
a jump in I(t) just before one of these times. Therefore, we examine the two cases as
examples in more detail. In Fig. 5.3 one can find illustrations of f(p, x, t), n(x) and
j(x) for the case Np = 400 and the two times t = 2 k, 5 k, and in Fig. 5.4 the same is
shown for the case Np = 798 and the two times t = 5 k, 10 k.

Before looking at the detailed numerical problems we shortly describe the physical
situation to be able to properly read the phase space plots of f(p, x, t) and take for
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5 Simulation of Resonant Tunneling Diodes in phase space

that purpose Fig. 5.3 (a) as an example. All regions in phase space with p > 0 a.u.
propagate from the left to the right, i.e. to larger x values and for p < 0 a.u. the
situation is the other way around. Therefore, on the contact on the left-hand side
the part of the phase space with p > 0 a.u. flows into the device and the part with
p < 0 a.u. flows out of the device. On the right-hand side the region p > 0 a.u.
corresponds to the outflow and p < 0 a.u. to the inflow. As mentioned before, Gaussian
distributions are used for the boundary conditions and as one can see, the Gaussian
shape is maintained in good approximation in the regions 0 a.u. < x < 50 a.u. for
p > 0 a.u. and 200 a.u. < x < 300 a.u. for p < 0 a.u.. After that the interaction with
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Figure 5.3: Illustrations of f(p, x, t), n(x) and j(x) for the two times t = 2 k, 5 k,
resulting from a simulation using the piecewise constant approximation
as well as Nx = 601 and Np = 400 grid points. A phase space plot of
f(p, x, t) is shown in (a) for t = 2 k and in (b) for t = 5 k. In (c) n(x) and
in (d) j(x) are displayed for the two times.
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5.1 Numerical tests on the time evolution to steady states

the potential becomes significant and strong deviations from the Gaussian shape can
be observed. The double barrier is centered at x ≈ 125 a.u. and one can see strong
interference patterns in this region. A part of the distribution tunnels through the
first barrier and occupies the quasi-bound well state, represented in this plot by the
vertical yellow stripe at x ≈ 125 a.u. with an approximate extension of −0.5 a.u. . p .
0.5 a.u.. The other part of the distribution is reflected off the barrier and propagates
back to the left-sided contact. As one can see, the reflected beam does not obey
a Gaussian shape anymore and seems to be split into two parts. This is because
the part of the incoming distribution with momenta p ≈ 0.32 a.u. is able to undergo
a resonant tunneling process and has therefore high probability to tunnel through
the double barrier. Therefore, the corresponding momenta are extenuated in the
reflected distribution. On the right-hand side of the barrier one can see the outgoing
beam after the resonant tunneling process, which is accelerated by the bias voltage
to higher momenta of approximately 0.4 a.u. . p . 0.5 a.u.. In addition to this
overall behaviour strong oscillating patterns can be observed. These correspond to
interference and coherence phenomena. On the one hand, rather slowly varying wave
patterns occur throughout the phase space and on the other hand, a narrow and
sharply peaked stripe of oscillations is formed in the region 0 a.u. . p . 0.1 a.u.,
starting out in the region of the double barrier and extending with time to larger values
of x. It is exactly those stripe of oscillations which causes the numerical problems.

In Fig. 5.5 the stationary solution obtained with a fine enough grid is presented. In
(a) the section of phase space with −0.6 a.u. < p < 0.6 a.u. and 0 a.u. < x < 300 a.u.
and in (b) a smaller section focusing on the stripe of oscillations is depicted. One can
see on the one hand, that the oscillations vary on very short scales and on the other
hand, that the amplitude of these oscillations is quite large and exceeds the values
of f(p, x, t) in the rest of the phase space. In addition to that, another problematic
feature for numerical simulations is that for larger values of x the variation of f(p, x, t)
with respect to p becomes faster. One reason for that is a sort of shear movement: As
one can see, the wave lines of the oscillations are roughly vertical in the region of the
double barrier but turn more and more in a horizontal direction with increasing values
of x and exhibit at x = 300 a.u. an angle of about 45◦. This observation is consistent
with the fact that those parts of f(p, x, t) with larger absolute values of p move faster
in phase space, which might serve as an explanation for the observed behaviour even
though the detailed dynamics are certainly more involved. Another reason is in this
case that the stripe of oscillations splits up in two parts for larger values of x which
are shifted along x relative to each other. On the whole, one can say that the stripe
of oscillations formed by f(p, x, t) at low values of p requires a very fine p-grid in this
region and in addition, the oscillation pattern is not confined to a region close to the
barriers but spreads out along x together with becoming more problematic to resolve
with increasing values of x.

We now return to the two badly-resolved cases illustrated in the Figs. 5.3 and 5.4.
In Fig. 5.3 (a), i.e. at the lower time t = 2 k, one can see that the smooth features of
f(p, x, t) are already nearly fully formed (comp. e.g. Fig. 5.5 (a)) but the stripe of
oscillations is just starting to build up. In the progress of this formation the oscillations
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5 Simulation of Resonant Tunneling Diodes in phase space

expand to larger x values and at a certain position, in this case at x ≈ 175 a.u., the
spacing of the p-grid does not suffice anymore to resolve the oscillating behaviour
properly, so that errors build up and the oscillations evolve in a very different manner
than in the case of a well-resolved simulation. Fig. 5.3 (b) displays f(p, x, t) at the
later time t = 5 k and one is able to observe that the propagation of the oscillation
pattern has reversed its direction and returned to the region of the double barrier.
As a consequence of this process the oscillating behaviour of the whole phase space
domain increases and one can see an effect in the values of the measurable quantities
n(x) and j(x). In the case of n(x) additional, spurious oscillations are formed and for
the case of j(x) one observes strong spatial variations and the current density begins
to rise, starting in the middle region of the barriers and then expanding to the rest
of the device. Clearly, the results obtained are erroneous. Not only because a well-
resolved solution displays qualitative different solutions for n(x) and j(x) but also
since unphysical results might be produced. This was very apparent for a simulated
test case in which the boundary condition on the right-hand side was set to zero such
that the only inflow was from the contact on the left-hand side. Also in this case
one could observe a growth of oscillations in n(x) on badly-resolved grids, similar to
what is shown in Fig. 5.3 (c), with oscillations extending far from the region of the
barriers to the left and to the right. Only that this situation is not physically correct.
The point is that an oscillating pattern in the region on the right-hand side of the
barriers is not allowed in this case due to the fact that in this region exists solely
a beam of f(p, x, t) moving to the right but none moving to the left. But viewed
from the point of Schrödinger’s formulation of quantum mechanics, a standing wave
pattern can only be formed when a wave moving to the left and one to the right
interfere. Therefore, the additional oscillations seen in Fig. 5.3 (c) for larger times
can be viewed as spurious and unphysical.

In Fig. 5.4 a simulation for a doubled number of Np = 798 grid points is illustrated.
Here, the later times t = 5 k and t = 10 k are compared. One can observe a qualitative
similar behaviour, only that the stripe of oscillations can be properly resolved for
longer times and the turning point is now located at a position of about x ≈ 275 a.u..
Again, once the oscillating pattern is not well-resolved anymore the oscillations expand
in an erroneous manner and spread out in phase space regions with p < 0 a.u.. As a
result, spurious oscillations are formed in n(x) and very different values for the current
are observed.

The results presented in Fig. 5.5 can be viewed as properly converged and should
come close to the real physical situation. As one can see from the plot shown in (c), the
particle density shows a strongly oscillating pattern with two minima at the positions
of the barriers and a maximum in between. Therefore, a strong occupation of the well
state can be deduced. Furthermore, the constant value of the particle density on the
right-hand side is larger than the one on the left-hand side, as a result of the net-flow of
particles from the left to the right due to the resonant tunneling together with fixed
boundary conditions. More realistic simulations would require a charge neutrality
condition at the contacts limiting the inflow of particles, see e.g. [3]. The result for
j(x) is a fairly even distribution such that the divergence of j(x) practically vanishes
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5.1 Numerical tests on the time evolution to steady states

as desired for the case ∂tn(x) = 0. It should be mentioned that the grid spacings
chosen for the simulation of Fig. 5.5 are well-suited for the particular domain but
might fail to produce convergent results on a larger x-domain.

After this qualitative discussion we finally turn to the point of assessing the benefit
of the piecewise linear approximation compared to the piecewise constant one. Figures
5.1 and 5.2 display the time evolution of I(t) and the time-averaged values of I(t)
for different numbers of grid points Np and two different x-grid spacings. In either
case for ∆x it is evident that the temporal evolution of I(t) for low values of Np

is improved when using the piecewise linear approximation. On the one hand, the
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Figure 5.4: Illustrations of f(p, x, t), n(x) and j(x) for the two times t = 5 k, 10 k,
resulting from a simulation using the piecewise constant approximation
as well as Nx = 601 and Np = 798 grid points. A phase space plot of
f(p, x, t) is shown in (a) for t = 2 k and in (b) for t = 5 k. In (c) n(x) and
in (d) j(x) are displayed for the two times.
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size of the jumps in I(t) is mitigated and on the other hand, for simulations in the
transient area between well-resolved and badly-resolved situations the application of
the piecewise linear approximation may improve the temporal evolution enough to
attribute a smooth convergent behaviour, see e.g. the cases Np = 798 in (a),(b)
and Np = 998 in (c),(d). Therefore, one can conclude that the approach of using a
piecewise polynomial approximation shows the desired tendency that a higher order
method enables to produce accurate results on coarser grids.

In principle, one could analyze the degree of improvement of the piecewise linear
approximation further by calculating the order of convergence for each of the two
methods. This was tried to do, based on the data plotted in Fig. 5.2 but without
success. The problem is that the asymptotic behaviour cannot be clearly determined
in a logarithmic plot. One can only notice a rapid convergence for under-resolved
grids but the results for the properly resolved grids, i.e. Np ≥ 998 for Nx = 301
and Np ≥ 1198 for Nx = 601 oscillate too strong to assign meaningful values. The
problem of oscillations in the calculated quantities j(x) and n(x) seems to be ever
present and their magnitude to depend greatly on the parameters of the (p, x)-grid.
The dependency of the results on the other parameters like the length of the x domain,
the extension of the p grid and the spacing ∆x is analyzed in more detail in the next
section. For this purpose a fine enough p grid is chosen and kept the same for most
of the simulations. This strategy is justified by the results presented here since in
first place it is important to resolve all oscillation patterns in f(p, x, t) properly and
a further increase of Np has only minor effect on the obtained results, compare Fig.
5.2.

Another point worth noting is that a finer grid spacing with respect to x apparently
requires a finer p-grid spacing as well, comp. Fig. 5.2. We believe that this is again a
consequence of the shear movement of the stripe of oscillations as illustrated in Fig.
5.5 (b). A finer spacing with respect to x may reveal oscillation patterns on smaller
scales which, upon advection along x, influence the variation of f(p, x, t) with respect
to p as well. It seems that this effect is only significant on coarse grids, as further test
simulations indicated and as can also be seen to some degree from the simulations
presented in the next section. As soon as ∆x has been chosen fine enough to resolve
all physical oscillation patterns a further decrease of ∆x does not require to adjust
the p-grid as well.
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Figure 5.5: Illustrations of f(p, x, t), n(x) and j(x) for the time t = 20 k, resulting from
a simulation using the piecewise linear approximation as well as Nx = 601
and Np = 1596 grid points. (a) and (b) display tow different sections
of the phase space for f(p, x, t), (c) illustrates the particle density n(x)
together with the potential V (x) and (d) shows a plot of j(x).
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5 Simulation of Resonant Tunneling Diodes in phase space

5.2 Numerical study on the accuracy and convergence
of the algorithm

As a particular application of the numerical method for the solution of the Wigner
transport equation we consider in the following a resonant tunneling diode consisting
of an AlxGa1−xAs/GaAs/AlxGa1−xAs heterostructure, as depicted schematically in
Fig. 5.6 (a). The accuracy of the numerical method for the WTE is evaluated by
comparing the steady state I(V ) curves obtained with the WTE calculations against
a NEGF reference solution. In particular, the NEGF calculation with ∆x = a/64 is
chosen, for which we know from Sec. 4.2 to produce very accurate results.
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Figure 5.6: Illustration of the considered RTD consisting of a
AlxGa1−xAs/GaAs/AlxGa1−xAs heterostructure in (a) and the cor-
responding potential qV (x) in (b). The distances marked in (a) are the
contact length Lc included in the x domain of the simulation, the barrier
length Lb = 5 a, the well width Lw = 8 a and the length of the slopes
Ls = 1 a, i.e. the length of the transition region at a AlGaAs/GaAs
interface, with the lattice constant a = 0.565 nm of GaAs. The plot of
qV (x) shown in (b) depicts the case of a rather short contact length of
Lc = 50 a and a bias voltage of VDS = 0.115 V. In addition, the chemical
potentials µ1 = 0.19 eV and µ2 = 0.08 eV of each contact are indicated.

The AlxGa1−xAs/GaAs/AlxGa1−xAs RTD is a standard problem to test numerical
methods for quantum transport calculations in the field of device simulations and has
been considered in various publications, as for instance in [4] [5] [6] [7]. We restrict
ourselves to the simplest case of a homogenous doping profile, without aiming for
a self-consistent solution by coupling the WTE to Poisson’s equation, so that the
heterostructure can be modeled by the static, effective potential qV (x) depicted in
Fig. 5.6 (b). The bias voltage VDS is assumed to cause a linear potential drop in
the region of the double barrier. Outside the heterostructure we assume a strictly
constant potential to model the contact region. The length of the contacts included

124



5.2 Accuracy and convergence of the algorithm

in the simulated x domain for the Wigner function is labeled by Lc. In the case
of the specific composition Al0.3Ga0.7As, the energy band offset has a magnitude of
0.27 eV [5]. Furthermore, expressed in terms of the lattice constant a = 0.565 nm of
GaAs, we choose for the width of the barriers Lb = 5 a, for the length of the well in
between Lw = 8 a and include for the barriers a finite slope over a length of Ls = 1 a,
similar to the situation considered in [4] [6]. A spatial dependence of the effective mass
is neglected and the value m∗ = 0.067me for GaAs is used on the whole x domain [6].

The Fermi-Dirac distribution for the boundary conditions is characterized by a
chemical potential µα for each contact, which in turn can be calculated from the
knowledge of the donor density ND and the temperature T by finding the root of the
equation [4]

ND

NC

= F1/2 [β(µα − vα)] . (5.1)

As stated already in Sec. (4.2), vα labels the potential energy in each contact, β = 1
kBT

,

F1/2 is the Fermi-Dirac integral of order 1
2

[4] [42] and NC is given by [4]

NC = 2

(
m∗

2π~2β

) 3
2

. (5.2)

For the simulations we choose a donor density of ND = 2× 1018 cm−3 and a tempera-
ture of T = 300 K [6]. In Fig. 5.6 (b) the calculated chemical potentials µ1 = 0.19 eV
and µ2 = 0.08 eV for the case VDS = 0.115 V are indicated as well. From the knowl-
edge of the chemical potentials for each contact, the cell averages of the ghost cells
Fm,j with j = −2,−1, 0, Nx + 1, Nx + 2, Nx + 3 are set according to Eqs. (3.255) and
(3.256).

To calculate the drift matrix we make use of the general expression for the terms
IFm+1/2,i+1/2,j and Iσ

m+1/2,i+/−,j
, Eq. (3.215), together with Eqs. (3.196) and (3.197).

Due to the simple piecewise linear potential shape as depicted in Fig. 5.6 (b), the
number of potential nodes NV is equal to eight. For all simulations presented in the
following the piecewise linear approximation of f(p, x, t) is used to calculate the drift
matrix. For the time stepping a Strang splitting is applied in order to calculate in each
sub-step the action of the drift term and that of the advection term separately. The
time stepping for the drift term is performed by making use of Eq. (3.267), whereby
the exponential of the drift matrix is calculated with the Matlab routine expm. In the
other sub-step, for the advection term, the WENO5-SSP(3,3) scheme, as presented
in Sec. (3.3), is applied with a Courant number of ν ≈ 0.9. Finally, the measurable
quantities n(x, t) and j(x, t) are calculated via Eqs. (3.117) and (3.265), respectively.
To obtain a value for the terminal current density I(t), it is convenient to average
j(x, t) (because of possible oscillations) with respect to the position variable.

The grid for the x variable is chosen to be equidistant, with ∆x expressed in terms
of some fraction of the lattice constant a. The contact length Lc is varied in different
simulations. In the case of the p grid it is necessary to make extensive use of the
possibility to implement non-equidistant grids, in order to resolve all the oscillation
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Figure 5.7: Illustration of the dependence of the grid spacing ∆pl on the particular
value of p and the applied bias VDS. The plots in (a) are for the case
VDS = 0.05 V, in (b) for VDS = 0.115 V, in (c) for VDS = 0.185 V and in
(d) for VDS = 0.3 V. The exact values can be obtained from Eq. (5.3) and
Tab. 5.1 when setting ∆pmax/~ = 0.1 nm−1 and pmax/~ = 3 nm−1.

patterns of f(p, x, t) well enough and to thus achieve a smooth convergent behaviour.
From the numerical point of view it is advisable to choose all grid spacings ∆pl as
multiples of a minimal spacing ∆p0. We specify a certain pmax which determines the
considered p domain by (−pmax, pmax), as well as a maximum spacing ∆pmax for the
outermost region of the p domain. All the other ∆pi of the interior subdivisions of
the p domain are then expressed as a fraction of ∆pmax. In order not to introduce too
large steps in the grid constants the spacings are divided by two in each refinement
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step, except for the outermost interval:

∆pN∆p−1 = ∆pmax ,

∆pN∆p−2 =
∆pN∆p−1

4
,

∆pi =
∆pi+1

2
, i = 0, . . . , N∆p − 3 . (5.3)

In addition, an asymmetric and adaptive grid is used with different subdivisions de-
pending on the applied bias voltage VDS. The particular grid parameters are listed in
Tab. 5.1 and an illustration of the chosen grid spacing can be found in Fig. 5.7.

Table 5.1: Subdivisions of the p grid with the corresponding grid spacings ∆pi depend-
ing on the considered bias voltage VDS. The maximum value pmax/~ >
1.8 nm−1 is varied in different simulations. The particular spacings ∆pi

are calculated by Eq. (5.3) for a specific value of ∆pmax. For low volt-
ages, VDS ≤ 0.15 V, the grid is further refined in the region of the oscil-
lations, for which the position is estimated by plosc = al + blVDS + clV 2

DS,

with al/~ = 0.006 nm−1, bl/~ = 0.8 (Vnm)−1 and cl/~ = 3.5 (V2nm)
−1

.
An adaptive grid is used for larger voltages VDS ≥ 0.2 V as well, where
the most oscillating region was estimated by phosc = ah + bhVDS with
ah/~ = 0.125 nm−1 and bh/~ = 0.5 (Vnm)−1. For the case that a value
pa or pb does not coincide with a cell boundary pm+1/2, the switching point
pa or pb is rounded to the next possible cell boundary in favour of a higher
resolution, i.e. the region with the smaller grid spacing is extended.

pa ≤ pm+1/2 < pb
VDS ≤ 0.15 V 0.15 V < VDS < 0.2 V VDS ≥ 0.2 V

∆pl pa/~ [nm−1] pb/~ [nm−1] pa/~ [nm−1] pb/~ [nm−1] pa/~ [nm−1] pb/~ [nm−1]
∆p7 -pmax/~ -1.8
∆p6 -1.8 -1.5 -pmax/~ -1.8 -pmax/~ -1.8
∆p5 -1.5 -1.0 -1.8 -1.5 -1.8 -1.5
∆p4 -1.0 -0.7 -1.5 -1.0 -1.5 -0.9
∆p3 -0.7 -0.1 -1.0 -0.7 -0.9 -0.7
∆p2 -0.1 -0.05 -0.7 -0.1 -0.7 0.05
∆p1 -0.05 plosc/~−0.02 -0.1 -0.05 0.05 phosc/~−0.125
∆p0 plosc/~−0.02 plosc/~+0.02 -0.05 0.25 phosc/~−0.125 phosc/~+0.125
∆p1 plosc/~+0.02 0.25 0.25 0.4 phosc/~+0.125 0.5
∆p2 0.25 0.4 0.4 0.7 0.5 1.1
∆p3 0.4 0.7 0.7 1.0 1.1 1.3
∆p4 0.7 1.0 1.0 1.5 1.3 1.5
∆p5 1.0 1.5 1.5 1.8 1.5 1.8
∆p6 1.5 1.8 1.8 pmax/~ 1.8 pmax/~
∆p7 1.8 pmax/~
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For the initial condition, f(p, x, t=0), the Fermi-Dirac distribution in the contacts
is extended into the region of constant qV (x) inside the simulated x domain, labeled
by Lc in Fig. 5.6 (a). In the region of the heterostructure and close to the barriers
f(p, x, t=0) is set to zero in order not to introduce too large momenta and long-lasting
interference patterns. To test if a steady state is reached in the course of the time
evolution, the terminal current is monitored and subsequent values are compared.
Since an oscillating behaviour is ever-present, it was decided to calculate a new value
of I(tn) after every ≈ 50 fs and furthermore, to average over ten subsequent values of
I(tn) to arrive at one value for the convergence test. Therefore, only current values
averaged over approximately 500 fs are compared. The averaging interval was found
to be large enough to enable an accurate convergence test with an relative tolerance
of εrel = 10−3, but still small enough to detect the advent of strong oscillations in
the case of a badly resolved solution f(p, x, t). In addition, an initial time of 2000 fs
is waited before the first convergence test to suppress the appearance of interference
patterns from the initial distribution in the final solution f(p, x, t).

For the first simulations and accuracy tests presented here, the spacing of the x grid
is set to ∆x = a, corresponding to the maximum possible spacing when choosing for
the barriers a slope of length Ls = 1 a. For the p grid we choose ∆pmax/~ = 0.1 nm−1

and the other grid parameters, except for pmax, follow from Eq. (5.3) and Tab.
5.1. Examples for the different grid spacings depending on the bias voltage VDS are
illustrated in Fig. 5.7. Test simulations revealed that this combination of the x and
p spacings is suited to properly resolve all of the oscillation patterns appearing in
f(p, x, t) and therefore, a relatively smooth convergence behaviour from the initial to
the stationary solution is achieved. Grid parameters still left open to be specified,
are the sizes of the x and p domain. A good starting point to choose the size of
the p domain is to look at the boundary conditions and set the maximum p value
in such a way that the major part of the Fermi-Dirac distributions of the contacts is
covered and the values of f(p, x, t) at the endpoints are small compared to the values of
f(p, x, t) in the interior region. From this one would choose a value of approximately
pmax/~ ≈ 1 nm−1 but test simulations revealed that it is advisable to use at least
pmax/~ = 2 nm−1. Otherwise f(±pmax, x, t) takes on quite large values, indicating
that the p domain has been chosen too small and therefore, that a large error in the
calculation of the action of the pseudo-differential operator on f(p, x, t) is encountered.
To analyze the impact of the size of the simulated x domain we consider simulations
with different values of Lc. The inflow/outflow boundary conditions for the WTE do
not stem from a quantum mechanical derivation, as in the case of the self-energies
in the NEGF technique, but are in principle adapted from classical transport theory.
The modeling of the inflow and outflow at the boundaries as presented in Sec. (3.3)
implicitly assumes that the momentum distribution of f(p, x, t) at the boundaries is
maintained in the contacts as well. This assumption is only appropriate if, in the
vicinity of the boundaries, the gradients of f(p, x, t) with respect to x are negligible.
This is only the case if the action of the pseudo-differential operator close to the
boundaries is not significant. To find a proper position for the boundaries of the
simulated x domain, results for different values of Lc are compared in the following.
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Figure 5.8: Comparison of the simulated I(V ) curves for different values of the contact
length Lc and different extensions of the p domain, specified by pmax/~ =
2 nm−1, pmax/~ = 3 nm−1 and pmax/~ = 4 nm−1. For all of the simulations
the grid spacings are chosen to ∆x = a and ∆pmax/~ = 0.1 nm−1, i.e.
Nx = 223, 423, 623 and Np ≈ 1000. The results depicted in (a),(b) are for
Lc = 100 a, those in (c),(d) are for Lc = 200 a and those in (e),(f) are for
Lc = 300 a. The relative differences of the currents with respect to the
NEGF reference currents are presented in the plots on the right-hand side.
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5 Simulation of Resonant Tunneling Diodes in phase space

In Fig. 5.8 one can find the calculated I(V ) curves for simulations with different
values of the contact length Lc, as well as different values of pmax. Clearly, the
difference of the results for the cases pmax/~ = 2 nm−1 and pmax/~ = 3 nm−1 are
comparatively small but the simulated contact length has great impact on the accuracy
of the results. One has to bear in mind that the considered heterostructure exhibits in
total a length of only 22 a, compare Fig. 5.6. Intuitively one could think that already
a distance of Lc = 100 a between the double barrier structure and a boundary should
suffice to cause only small errors. But, one can see from the results shown in Fig. 5.8
that the influence of the boundaries on the overall device behaviour is quite prominent
for the case Lc = 100 a and still present for Lc = 200 a. In the case of Lc = 300 a
the errors from the boundaries have nearly disappeared and one can see a fairly
good agreement between the Wigner and the NEGF calculations. For this case the
three different values pmax/~ = 2 nm−1, pmax/~ = 3 nm−1 and pmax/~ = 4 nm−1 are
considered. It is evident that the results for pmax/~ = 3 nm−1 and pmax/~ = 4 nm−1

show only minor differences, so that the extra cost in computation time for the larger
value of pmax is not justified. Therefore, a size of the (p, x) domain determined by the
values Lc = 300 a and pmax/~ = 3 nm−1 seems to be a good choice for the considered
physical problem.

When examining the errors of the single simulations in Fig. 5.8 in detail, it is evident
that the calculated current values in the upper region of the I(V ) curve, for values of
approximately VDS & 0.16 V do not exhibit a significant dependence on the particular
value of Lc. In contrast, for lower bias voltages of VDS . 0.16 V one can see the
advent of oscillations in the I(V ) curve when Lc is chosen too small. To understand
this behaviour, Fig. 5.9 depicts two phase space plots of f(p, x, t) for the bias voltages
VDS = 0.05 V and VDS = 0.3 V as examples. In the case of VDS = 0.05 V resonant
tunneling processes are possible and the Wigner function f(p, x, t) thus exhibits strong
oscillation patterns. On the one hand, a sharp, short-scaled stripe of oscillations is
present at low values of p and on the other hand, longer-scaled and more wave-like
oscillations are formed over large regions of phase space. The oscillations extend to
positions far away from the double barrier structure and the action of the pseudo-
differential operator is thus non-negligible even in large distance to the barriers. In
comparison, f(p, x, t) exhibits for the case VDS = 0.3 V only minor oscillation patterns.
Therefore, applying the boundaries at short distances Lc and thus extending f(p, x, t)
with constant shape with respect to p into the contacts is in this case clearly a much
better approximation than in the case VDS = 0.05 V. Interesting to note is that the
two bias voltages result in very similar current values, as can be seen from Fig. 5.8.
For VDS = 0.05 V a rather large part of the electron distribution can pass through
the double barrier by a resonant tunneling process but is accelerated only slightly. In
contrast, for VDS = 0.3 V comparatively few electrons tunnel through the barriers but
are therefore accelerated much more, as can be seen from the beam at p/~ ≈ 0.8 nm−1

on the right-hand side of the barriers in Fig. 5.9.
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(a) (b)

Figure 5.9: Illustrations of the steady state solutions of f(p, x, t) obtained with simula-
tions with Lc = 300 a, pmax/~ = 3 nm−1, ∆x = a and ∆pmax/~ = 0.1 nm−1

for two different bias voltages. Depicted in (a) is the Wigner function for
VDS = 0.05 V and in (b) the one for VDS = 0.3 V, where in each plot only
a part of the calculated phase space up to values p/~ = ±1 nm−1 is shown.
The number of grid points for the two cases are Nx = 623, Np = 1076 and
Nx = 623, Np = 1056 for VDS = 0.05 V and VDS = 0.3 V, respectively.
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Figure 5.10: Calculated particle density obtained for Lc = 100 a and compared with
the NEGF reference particle density. The plot shown in (a) depicts the
case VDS = 0.115 V and the one in (b) VDS = 0.185 V. The other pa-
rameters are ∆x = a, ∆pmax/~ = 0.1 nm−1 and thus Nx = 223 and
Np ≈ 1000. The individual simulations correspond to pmax/~ = 2 nm−1

and pmax/~ = 3 nm−1.
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Figure 5.11: Relative differences of the calculated particle densities compared to the
NEGF solution. The plots on the left-hand side show the results for
VDS = 0.115 V and the ones on the right-hand side the results for
VDS = 0.185 V. (a),(b) correspond to Lc = 100 a, (c),(d) to Lc = 200 a
and (e),(f) to Lc = 300 a. The other parameters are ∆x = a and
∆pmax/~ = 0.1 nm−1. The individual n(x) calculations correspond to
pmax/~ = 2 nm−1, pmax/~ = 3 nm−1 and pmax/~ = 4 nm−1.
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5.2 Accuracy and convergence of the algorithm

Besides the calculated current values I(V ) the particle density n(x) is a quantity
of interest. For the purpose of estimating the accuracy of the calculated n(x) values,
the results from the WTE calculations with Lc = 100 a, Lc = 200 a and Lc = 300 a
are compared with the NEGF solution in Figs. 5.10 and 5.11 for the two bias voltages
VDS = 0.115 V and VDS = 0.185 V as examples. One can obviously see from Fig. 5.10
a very good agreement between the NEGF and the WTE calculations already for the
case Lc = 100 a. Fig. 5.11 thus depicts solely the relative differences between the
results obtained with the WTE and those by means of the NEGF approach. Again,
the results for the higher bias voltage of VDS = 0.185 V are fairly insensitive to the
particular value of Lc and the results for the peak voltage VDS = 0.115 V show an
increase in the degree of oscillations in n(x) for smaller values of Lc. The peak voltage
VDS = 0.115 V was chosen since in this case resonant tunneling processes are most
prominent, causing far reaching oscillation patterns in f(p, x, t).

The previous results indicate that a size of the simulated (p, x) domain characterized
by the values Lc = 300 a and pmax/~ = 3 nm−1 suffices to enable accurate simulations
for the considered physical situation. We now focus on the question, how much
the accuracy of the results can be improved by reducing the grid spacings. As a
first step we reduce the x spacing to ∆x = a

2
and perform simulations for three

different values of ∆pmax. The results can be found in Fig. 5.12 and for all three
quantities I(V ), n(x) for VDS = 0.115 V and n(x) for VDS = 0.185 V an improvement
of the results can be seen, at least if ∆pmax is small enough. For the largest value
∆pmax/~ = 0.1 nm−1 an oscillating behaviour of the calculated quantities can be
observed. One can thus suppose that a value of ∆x = a does not suffice to resolve all
physical oscillations of f(p, x, t) and therefore, when reducing the spacing to ∆x = a

2

shorter-scaled oscillations are possible which ultimately also affect the requirements
on the p grid. It is apparent to see from the calculated I(V ) curve that the problems
occur especially for lower voltages of VDS . 0.1 V where resonant tunneling processes
are prominent. The I(V ) curves as well as n(x) for VDS = 0.185 V calculated with
the parameters ∆pmax/~ = 0.075 nm−1 and ∆pmax/~ = 0.05 nm−1 show only small
differences, solely n(x) for the case VDS = 0.115 V requires the finest resolution of
∆pmax/~ = 0.05 nm−1 to suppress the creation of spurious oscillations. Still, a value
of ∆pmax/~ = 0.075 nm−1 enables us to produce quite accurate results and is therefore
used for another convergence study, comparing different x spacings.

In Fig. 5.13 the results for three different spacings ∆x = a, ∆x = a
2

and ∆x = a
4

are compared. Only the region of negative differential resistance (NDR) of I(V ) is
plotted since the largest error in the previously calculated curves occurred in this
region and in addition, especially the NDR in the I(V ) curve is of interest for device
applications. One can see a monotone decrease of the relative errors with decreasing
values of ∆x and a very good agreement between the NEGF reference and the WTE
calculations for the case ∆x = a

4
, with a relative error |∆I/I| below one percent. This

results clearly demonstrate the ability of the developed algorithm to produce very
accurate results and furthermore, the convergence of the results when refining the
grid parameters. To achieve even more accurate results one would need to increase
the values of pmax and Lc as well. From Fig. 5.13 (b) it is obvious to see an oscillating
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5 Simulation of Resonant Tunneling Diodes in phase space

behaviour of ∆I/I in the region of the peak voltage VDS = 0.115 V, indicating again
the influence of the domain boundaries and thus a too small value for Lc (comp.
Fig. 5.8). To quantify the results, the 2-norm error and the order of convergence are
calculated by using the analogous expressions to Eqs. (3.221) and (3.223) and the
values for ‖∆I‖2 and ‖∆n(x)‖2 are listed in Tabs. 5.2 and 5.3, respectively. In the
case of ‖∆I‖2, the order of convergence was calculated for two different bias voltage
intervals, with and without including the region of the peak voltage. When examining
the results listed in Tabs. 5.2 and 5.3, one can estimate the order of convergence of
the algorithm roughly by O∆x ≈ 2, when keeping in mind that the limited values of
pmax and Lc are sources of error as well and in addition, that especially the region of
the peak voltage is affected by too small values of Lc.

Table 5.2: Estimation of the order of convergence from the simulated I(V ) curves
as shown in Fig. 5.13, for the region 0.11 V ≤ VDS ≤ 0.19 V and for
0.14 V ≤ VDS ≤ 0.19 V. Compared is the 2-norm error as defined in Eq.
(3.221) and the order of convergence O∆x is determined by the logarithm
to the base of 2 of the quotient of two subsequent 2-norm errors.

0.11 V ≤ VDS ≤ 0.19 V 0.14 V ≤ VDS ≤ 0.19 V
∆x ‖∆I‖2 O∆x ‖∆I‖2 O∆x

a 940 2.06 925 2.16
a/2 226 0.95 208 1.51
a/4 117 73

Table 5.3: Estimation of the order of convergence from the calculation of the particle
densities n(x) from the simulations shown in Fig. 5.13. The 2-norm error
and the order of convergence O∆x are determined in the same manner as
described in Tab. 5.2.

VDS = 0.115 V VDS = 0.185 V
∆x ‖∆n(x)‖2 O∆x ‖∆n(x)‖2 O∆x

a 4.82E16 1.57 2.22E16 2.01
a/2 1.62E16 0.82 0.55E16 1.51
a/4 0.92E16 0.19E16

Figure 5.14 depicts phase space plots of f(p, x, t) for the two cases of the peak
voltage VDS = 0.115 V and the valley voltage VDS = 0.185 V. Note that the colour
mapping for the plots has been chosen in such a way that the long-scaled oscillation
patterns in f(p, x, t) are clear to see, with the disadvantage that the magnitude of
the stripe of oscillations (dark red and dark blue, at p/~ ≈ 0.15 nm−1) in a (p, x)-plot
cannot be seen. Therefore, in Fig. 5.14 (c) a side view, a (f(p, x, t), x)-plot, is shown.
Apparent for the resonant case is the creation of strong oscillation patterns throughout
the whole phase space and also a sharp stripe of oscillations at p/~ ≈ 0.15 nm−1.
Figure 5.14 (b) focuses on the shape of f(p, x, t) in the central region, close to the
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5.2 Accuracy and convergence of the algorithm

barriers. The detailed dynamics are involved but one can see in the reflected part of the
distribution on the left-hand side that momenta of approximately p/~ ≈ −0.2 nm−1

are extenuated, corresponding to the part for which a resonant tunneling process is
accessible. On the right-hand side, one can see the outgoing, accelerated beam at
p/~ ≈ 0.5 nm−1. The resonant tunneling process itself is represented by the stripe
of oscillations at p/~ ≈ 0.15 nm−1, at least this is what we suppose after analyzing
various simulations. The occupation of the well state can be seen from the increased,
positive values of f(p, x, t) at x ≈ 175 nm. The enhanced negative region at x ≈
170 nm and −0.25 nm−1 . p/~ . 0 nm−1 could be interpreted as a manifestation of
the destructive interference of the backscattered part of the beam. In the case of
the valley voltage VDS = 0.185 V, the situation is very different and f(p, x, t) is a
rather smooth function with a much less pronounced oscillation pattern in the region
0.1 nm−1 . p/~ . 0.4 nm−1. Also in this case tunneling processes take place and the
outgoing beam is vaguely perceptible at p/~ & 0.5 nm−1 on the right-hand side of the
barriers.

To conclude, Fig. 5.15 (a) depicts the calculated particle densities n(x) for a set of
bias voltages. It can be clearly seen that a high particle density between the barriers
builds up only in the case of the lowest bias voltage, where resonant tunneling and
thus the occupation of the quasi-bound well state is possible. The particle densities
for VDS = 0.3 V and VDS = 0.4 V exhibit a pronounced minimum in the center of the
barriers. From Fig. 5.15 (b) it is obvious to see that the conduction band edge of
the left-sided contact exceeds the second barrier in the case of VDS = 0.4 V, such that
tunneling occurs solely at the first barrier and the second one causes solely interference
effects. The particular shape of n(x) in the central region for the case VDS = 0.4 V is
thus a result of interferences.
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Figure 5.12: Plot (a) depicts the obtained I(V ) curve, (b) the relative difference of the
I(V ) values to the NEGF solution and (c) and (d) the relative difference
of the particle density n(x) to the NEGF solution for VDS = 0.115 V and
VDS = 0.185 V, respectively. The results are obtained by using a reduced
x spacing of ∆x = a

2
and three different values of ∆pmax. The size of the

(p, x) domain is the same in all three simulations and determined by the
values Lc = 300 a and pmax/~ = 3 nm−1. The number of grid points is
Nx = 1245 and Np ≈ 1000, 1400, 2000.
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Figure 5.13: Plot (a) depicts the obtained I(V ) curve for the region of negative differ-
ential resistance (NDR), (b) the relative difference of the I(V ) values to
the NEGF solution and (c) and (d) the particle density for VDS = 0.115 V
and VDS = 0.185 V, respectively. The results are obtained by using
∆pmax/~ = 0.075 nm−1 and three different spacings ∆x = a, a

2
, a

4
. The

size of the (p, x) domain is the same in all three simulations and deter-
mined by Lc = 300 a and pmax/~ = 3 nm−1. The number of grid points
is Nx = 623, 1245, 2489 and Np ≈ 1400.
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(a) (b)

(c) (d)

Figure 5.14: Illustrations of the steady state solutions of f(p, x, t) obtained by using
the parameters ∆x = a

2
, ∆pmax/~ = 0.05 nm−1, Lc = 300 a and pmax/~ =

3 nm−1 for two different bias voltages. Depicted in (a),(b),(c) are the
solutions for VDS = 0.115 V and in (d) the one for VDS = 0.185 V. The
number of grid points for the two cases are Nx = 1245, Np = 2151
and Nx = 1245, Np = 2048 for VDS = 0.115 V and VDS = 0.185 V,
respectively.
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Figure 5.15: Logarithmic plot of the particle density n(x) in the region of the double
barrier in (a) and the corresponding shape of qV (x) in (b), each for bias
voltages of VDS = 0.1 V, 0.2 V, 0.3 V, 0.4 V. In (a) the double barrier
structure is indicated by dotted lines. The parameters of the simulations
are: ∆x = a

2
, ∆pmax/~ = 0.05 nm−1, Lc = 300 a and pmax/~ = 3 nm−1.
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5.3 Transient response simulation

The simulations presented in the last section revealed the ability of the developed
WTE algorithm to produce very accurate results. The comparison with steady states
obtained with the NEGF technique showed only minor differences when choosing the
(p, x) domain large enough. Now, we present as an application the simulation of a
time evolution. The NEGF technique has proven to be able to simulate accurately
steady states, see e.g. [15] [7], but fully time-dependent calculations in the field of
device simulations seem to be out of reach, at the moment at least. The great power
of the WTE is the ability to simulate time-dependent problems since it is inherently
an integro-differential equation describing the temporal evolution of f(p, x, t).

A simple, time-dependent problem is to simulate the large-signal transient response
of a RTD [4]. For this we consider the same heterostructure as in the previous section
5.2. To simulate a transient response, we start with the steady state obtained for
the peak voltage, VDS = 0.115 V, switch the bias voltage at t = 0 fs to the valley
voltage VDS = 0.185 V and simulate the time evolution. The same is done the other
way around as well, with the steady state for VDS = 0.185 V as initial condition and
switching at t = 0 fs to VDS = 0.115 V. In Fig. 5.16 the time evolution of the terminal
current I(t) is plotted for both cases. For the case of switching from the peak to the
valley voltage, one can see an initial rise of the current before it starts to decrease
towards the steady state value. For the case of switching from the valley to the peak
voltage an analogous behaviour is observed, namely that the current decreases at first
before starting to rise, only that it is less pronounced in this case. In addition, I(t)
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Figure 5.16: Time evolution of the terminal current density I(t) when switching from
the peak voltage VDS = 0.115 V to valley voltage VDS = 0.185 V and
vice versa (a). Plot (b) displays the temporal evolution during the first
400 fs in higher resolution. The switching is done in each of the two cases
at t= 0 fs. The parameters for the simulations are ∆x = a, ∆pmax/~ =
0.1 nm−1, Lc = 300 a and pmax/~ = 3 nm−1, i.e. Nx = 623 and Np =
1076. In both cases the same p grid is used, namely the one optimized
for the peak voltage.

140



5.3 Transient response simulation

exhibits oscillations when converging to the steady state current value of the peak
voltage.

This particular behaviour can be understood when looking at the time evolution
of the current density j(x, t), depicted in Fig. 5.17. The plot in (a) shows the time
evolution for the case of switching from peak to valley and one can see an increased
current density starting from the region of the double barrier and propagating to the
contact on the right-hand side. This represents the part of the electron distribution
which has occupied the well state at t = 0 fs and is now accelerated to higher momenta
by the increased bias voltage. The acceleration of this part of the Wigner distribution
causes the initial net rise of the current I(t). As time proceeds the well state is
emptied and j(x, t), on the right-hand side of the barriers, slowly decreases to the
stationary value. The change of j(x, t) on the left-hand side is much quicker. One
can see that, after initial oscillations, j(x, t) rapidly reduces to the stationary value
at positions close to the double barrier. This is due to the fact that the well state
suddenly becomes inaccessible to the electrons from the contact on the left-hand side
and the reflection of the incoming distribution increases from one moment to the next.

(a) (b)

Figure 5.17: Time evolution of the current density j(x, t) for the transient response
simulations. The plot in (a) depicts the switching from the peak to the
valley voltage and the one in (b) the switching from the valley to the
peak voltage.

In Fig. 5.17 (b) the time evolution of j(x, t) for the case of switching from the valley
to the peak voltage is depicted. Similar to the previous case, a beam of j(x, t) starting
in the central region and propagating to the right can be seen, only that this region
exhibits now lower current density values than the steady state at t = 0 fs. Again,
the electrons tunneling through the device are suddenly accelerated in a different way,
now less drastically due to the lower bias voltage. This effect is quickly covered by
an increased current density on the left-hand side of the double barrier, resulting in
a net rise of I(t) after short times. This increased current density results from the
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5 Simulation of Resonant Tunneling Diodes in phase space

extenuated momenta in the reflected part of the distribution on the left-hand side
since electrons with momenta exhibiting an energy alignment with the well state can
now tunnel through the barriers.

Figure 5.18 depicts the time evolution of the particle density n(x, t) in the region of
the double barrier structure. As one can see, the filling of the well state by resonant
tunneling, see the plot in (b), turns out to be a faster process than emptying the well
state by ordinary tunneling through the second barrier, see (a).

The full dynamics can be seen when looking at the Wigner distribution itself and it
is thus elucidating to examine the time evolution of f(p, x, t) in phase space. Figures
5.19 and 5.20 illustrate the time evolution of f(p, x, t) by depicting plots of the phase
space distribution for different times. In Fig. 5.19 the case of switching form the
peak to the valley voltage is shown. One can clearly see in the plots in (b),(c),(d) the
accelerated electrons from the well state at p/~ ≈ 0.5 nm−1, causing the initial rise of
the current. On the left-hand side of the barriers, the previously extenuated part of
f(p, x, t) at momenta of p/~ ≈ −0.2 nm−1 quickly rises again since the well state has
become inaccessible. This corresponds to the quick decrease of j(x, t) on the left-hand
side of the barriers seen in Fig. 5.17 (a). Figure 5.20 depicts the case of switching
from the valley to the peak voltage. It is obvious that electrons injected from the
left quickly tunnel into the well state since on the one hand, the corresponding part
in the reflected distribution is immediately extenuated, at p/~ ≈ −0.2 nm−1, and
on the other hand, since the values of f(p, x, t) in the central region at x ≈ 175 nm
show a rapid increase and already at t = 100 fs a significant occupation of the well
state can be seen. Characteristic for the resonant tunneling process is the formation
of a sharp oscillation pattern. One can see from Fig. 5.20 that the oscillations at
p/~ ≈ 0.15 nm−1 start out with a rather long-scaled pattern and then become sharper
together with spreading out over the phase space domain in the course of the time
evolution.
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Figure 5.18: Time evolution of the particle density n(x, t) for the transient response
simulations. The plot in (a) depicts the switching from the peak to the
valley voltage and the one in (b) the switching from the valley to the peak
voltage, each one for times from t = 0 fs to t = 400 fs. The positions of
the barriers are indicated with dotted lines.
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5.3 Transient response simulation

(a) (b)

(c) (d)

(e) (f)

Figure 5.19: Time evolution of f(p, x, t) in phase space when switching from the peak
voltage VDS = 0.115 V to the valley voltage VDS = 0.185 V at t= 0 fs.
Simulation for ∆x = a, ∆pmax/~ = 0.1 nm−1, Lc = 300 a and pmax/~ =
3 nm−1.
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5 Simulation of Resonant Tunneling Diodes in phase space

(a) (b)

(c) (d)

(e) (f)

Figure 5.20: Time evolution of f(p, x, t) in phase space when switching from the valley
voltage VDS = 0.185 V to the peak voltage VDS = 0.115 V at t = 0 fs.
Simulation for ∆x = a, ∆pmax/~ = 0.1 nm−1, Lc = 300 a and pmax/~ =
3 nm−1.
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Conclusion and outlook

In this work, a novel numerical method for the Wigner transport equation (WTE) was
developed. This method relies on similar ideas as used in finite element (FE) methods
or as in the case of the REA (reconstruct-evolve-average) algorithm of finite volume
(FV) methods. The central point is to make use of a local basis to approximate the
Wigner function. This enables us to apply a non-equidistant grid and thus to adapt
the numerical domain to the physical situation without the constraints known from
the common approach based on the application of a discrete Fourier transformation.
Before the development of the final, successful method, the first attempt was to ap-
proximate the Wigner function by a continuous, piecewise linear approximation. But,
the requirement of a continuous approximation was discarded thereafter due to the
following two reasons: On the one hand, several numerical disadvantages resulted
from demanding the continuity of the Wigner function and on the other hand, it was
experienced that the effect of steps in the Wigner function due to a non-continuous
approximation is negligible on fine enough grids. Therefore, the second and finally
developed method uses a more general, non necessarily continuous, piecewise poly-
nomial approximation of the Wigner function. To ensure the consistency with the
continuity equation and thus the conservation of the particle density for arbitrary
grids, properly chosen grid cells were defined and the WTE was averaged over this
cells. In particular, a first-order approximation of the Wigner function with respect
to the momentum variable was used to calculate the action of the pseudo-differential
operator. Upon averaging the WTE over grid cells, the advection term was rewritten
in terms of the difference of the fluxes at the cell boundaries. This fluxes were deter-
mined by a well approved scheme from FV methods, namely by a weighted essentially
non oscillatory scheme with an accuracy up to fifth order (WENO5).

Before examining the overall accuracy of the numerical method for the WTE, the
time evolution of an initial state towards the sought-for stationary Wigner function
was analyzed in detail. This preliminary tests were necessary to comprehend the origin
of the non-smooth convergence behaviour for certain grids. The algorithm revealed
the peculiar behaviour that a sudden buildup of errors may occur in the course of the
time evolution to a steady state. The various simulations performed enabled us to
link this sudden buildup of errors to a bad resolution of the sharp oscillating features
in phase space. As discovered in the course of this work, the stationary Wigner
function for tunneling barriers may show a stripe of rapidly varying and large-valued
oscillations. To resolve this sharp oscillations at all it seems to be inevitable to make
use of a non-equidistant grid spacing with respect to the momentum variable. When
examining the time evolution to a steady state this stripe of oscillations builds up
comparatively slowly as time progresses. If the grid resolution is not fine enough, the
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oscillations cannot be properly resolved anymore at a certain time and errors build
up. By making extensive use of the ability to adapt the spacings of the momentum
variable, it was possible to well resolve all of the oscillating features in the Wigner
function for the test case of a resonant tunneling diode (RTD). This enabled us to
achieve a smooth convergence behaviour and a stable stationary state.

Once it was understood how to suppress the creation of spurious oscillations and
how to ensure a smooth convergence behaviour to a truly stationary state, the obtained
steady state current voltage characteristic of the simulated RTD was compared with a
non-equilibrium Green’s function (NEGF) reference. The results revealed a very good
agreement of the NEGF and the Wigner calculations for large enough grids. As we
found out, it is not only important to consider a large enough momentum domain but
especially to apply the boundary conditions, i.e. to define the contacts, at rather large
distances from the region of the double barriers to not distort the device behaviour.
For the case of a sufficiently large computational domain, the spatial grid spacing
was reduced to examine the convergence of the results to the NEGF reference. The
convergence could be demonstrated and it was possible to achieve a relative difference
of the current values below one percent in the best case. This can be seen as a major
success of the developed algorithm when comparing the results with those of other
deterministic algorithms for the WTE presented so far. The high accuracy of the
developed algorithm is attributable to the high-order approximation of the fluxes by
the WENO5 method and particularly to the ability to adapt the grid to the severe
oscillations of the stationary Wigner functions. The sharp oscillating features of the
Wigner function discovered in the simulations are interesting from a physical point
of view and seem to be closely related to the resonant tunneling process itself and to
the coherence of the reflected and the transmitted parts in phase space.

In the last part of this work, a large-signal transient response simulation was per-
formed as an example for a simple time-dependent situation. Especially for the case
of RTDs, fully time-dependent potentials would be of interest, since possible applica-
tions of such devices include high frequency (THz) oscillators. For this purpose, one
could investigate the frequency dependence of relevant quantities of a RTD, such as
the impedance or capacity, by applying a modulated bias voltage. From a numerical
point of view, a time-dependent simulation in this manner is definitely feasible for
the present algorithm and comparatively simple to achieve. Other possible extensions
are to couple the WTE to Poisson’s equation in order to take charge variations into
account, to include scattering effects via a collision operator or to include a spatially
varying effective mass. In principle, these extensions have already been considered in
literature. But despite of this, it could be of great interest to include them in the
developed algorithm for the purpose of a more realistic device description, together
with the ability to achieve very accurate simulations. Especially the adaptable grid
seems to be a major advantage of the presented algorithm, which enables us to adjust
the computational domain to the particular physical situation without additional con-
straints. As discovered in this work, the Wigner function is in general by no means
as a smooth and slowly varying function as its classical analogue, the Boltzmann
distribution, but may vary over length scales differing in orders of magnitude.
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6 Appendix

6.1 Singularities in the Wigner function for the square
potential barrier

The square potential barrier was used in the course of this work as a first test case to
evaluate the performance and accuracy of the developed numerical method. The test
problem was chosen since a simple, analytical solution for the wave function is known.
The analytical solution served as a reference for the calculated steady states with the
Wigner transport equation and a fairly good agreement could be found for rather
short simulation times. But, no smooth convergent behaviour could be achieved and
the creation of spurious oscillations posed a problem. The problems manifested itself
in the time evolution of the current density and the particle density in a very similar
manner as in the case of the results for the under-resolved grids presented in Sec. 5.1.
In phase space one could observe the emergence of a very sharp stripe of oscillations
around p = 0, which was not confined to the central region but spread out along x in
the course of time. Exactly this behaviour increased the degree of oscillations of the
Wigner function on the whole considered domain and lead to wrong results. Since
it was not clear at this stage whether the oscillations resulted from an error in the
algorithm or were truly physical, the analytical solution was examined in more detail.
In principle one could calculate the whole Wigner function out of the knowledge of the
wave function but for our purpose it is sufficient to focus on the part around p = 0.

An important aspect can already be seen from a much simpler example. For this we
return to the calculations outlined in Sec. 1.1, in particular to the results for the two
examples of a coherent and an incoherent superposition of two plane waves traveling
in opposite directions. For the coherent case, with the density operator given by

ρ̂k =
1

2

(
|k〉〈k|+ | − k〉〈−k|+ | − k〉〈k|+ |k〉〈−k|

)
(6.1)

together with
〈x | ±k〉 = exp(±ikx) , (6.2)

we found the following Wigner function

fk(p, x) =
1

2

[
δ(p− ~k) + δ(p+ ~k)

]
+ cos(2kx)δ(p) , (6.3)

compare Eq. (1.33). For simplicity we restrict ourselves now to the one-dimensional
case p, x, k ∈ R. The two delta functions δ(p±~k) correspond to the two plane waves
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6 Appendix

with wave numbers ±k, whereas the delta function at p = 0 refers to the interference
among them. For an actual comparison with numerical results and to model the inflow
of a continuum of states from the contacts, it is convenient to consider the following
density operator

ρ̂ =

∫ ∞
−∞

ρ̂kN (k; k0, σ)dk , (6.4)

where N (k; k0, σ) denotes in this context the normal distribution

N (k; k0, σ) =
1√
2πσ

exp

[
−(k − k0)2

2σ2

]
. (6.5)

A normal distribution was chosen for simplicity and any other distribution could be
used equally well. In principle, to model the inflow from contacts one should limit
the integration in Eq. (6.4) to the interval (0,∞) rather than (−∞,∞), but for a
sufficiently small σ in combination with a large value of k0 the two expressions are
approximately equal. Due to the linearity of the Wigner transformation the corre-
sponding Wigner function is given by the analogous expression

f(p, x) =

∫ ∞
−∞

fk(p, x)N (k; k0, σ)dk

=
1

2~

[
N
(p
~

; k0, σ
)

+N
(
−p
~

; k0, σ
)]

+ δ(p)

∫ ∞
−∞

cos(2kx)N (k; k0, σ)dk

=
1

2~

[
N
(p
~

; k0, σ
)

+N
(
−p
~

; k0, σ
)]

+ δ(p) cos(2k0x) exp
(
−2x2σ2

)
,

(6.6)

where the first two terms are easily obtained and the last integral can be evaluated
with the formulas for Gauss integrals, compare e.g. [43]. As one can see, despite of
the continuum of plane wave states a singularity is still present at p = 0. In contrast
to Eq. (6.3), the oscillation pattern decays exponentially with |x| → ∞ but may still
be prominent in some regions. In this case the position x = 0 has a special role, since
no phase difference was included in Eq. (6.1) and as a consequence all of the single
plane waves are in phase at x = 0.

This simple example illustrates the possibility of singularities in the Wigner func-
tion even though boundary conditions with a smooth momentum dependence are
applied. It seems natural that the sharp stripe of oscillations at p = 0 observed in the
simulations on the square barrier can be explained in a similar way. To see if these
oscillations are truly physical, we make use of the analytical solution of the wave
function for the square barrier and write down the expression for the corresponding
Wigner function. Numerous integrals are involved and we will calculate solely those
that can result in singular expressions. As just observed, especially singular expres-
sions where the positions of the poles do not depend on the wave number k pose a
problem.
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6.1 Wigner function for the square barrier

The square potential barrier is chosen to exhibit a length L, a height U0 and to be
centered around x = 0. In particular the potential U(x) is then given by

U(x) =

{
U0 if |x| ≤ L

2
,

0 elsewhere .
(6.7)

Since the potential is piecewise constant, plane waves can be used as ansatz for the
wave function in the single regions, so that [44]

φk(x) =


exp(ikx) + Ak exp(−ikx) if x < −L

2
,

Bk exp(κx) +B′k exp(−κx) if |x| ≤ L
2
,

Ck exp(ikx) if x > L
2
,

(6.8)

where κ can be either real or complex, depending on the height U0 relative to the
energy E = ~2k2

2m
and is given by [44]

κ =

√
2m(U0 − E)

~2
. (6.9)

In the following we assume κ to be real, i.e. that E < U0. The single coefficients Ak,
Bk, B

′
k and Ck can be determined by demanding the continuity of φk(x) and of its first

derivative with respect to x at the boundaries x = ±L
2
. Details are not recapped here

and can be found for instance in [44] or [12]. In order to calculate the corresponding
Wigner function one could make direct use of the position space representation Eq.
(6.8), as done for instance in [45]. Due to the required, tedious case differentiation to
account for the different intervals in Eq. (6.8), it was deemed simpler to start from the
momentum space representation of |φk〉. This was found especially useful when one is
solely interested in identifying singular terms in the Wigner function. An equivalent
definition of the Wigner transformation is given by [2]

f(p, x) =
1

2π~

∫ ∞
−∞

〈
x+

1

2
ξ

∣∣∣∣ ρ̂ ∣∣∣∣x− 1

2
ξ

〉
exp

(
−i p

~
ξ
)
dξ

=
1

2π~

∫ ∞
−∞

〈
p+

1

2
q

∣∣∣∣ ρ̂ ∣∣∣∣p− 1

2
q

〉
exp

(
i
q

~
x
)
dq , (6.10)

which can be found when inserting two times the following expression for the identity
1 = 1

2

∫
|p± q′

2
〉〈p± q′

2
|dq′ and by making use of the relation

〈x | p〉 =
1√
2π~

exp
(
i
p

~
x
)
, (6.11)

as well as the representation of the delta function given in Eq. (1.17). The momentum
space representation of |φk〉 is obtained by a Fourier transformation

φ̃k(p) =
1√
2π~

∫ ∞
−∞

φk(x) exp
(
−i p

~
x
)
dx . (6.12)
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Now, unlike in the rest of this work, we use a slightly different definition of the
Fourier transformation by distributing the factor (2π~)−1 in a symmetric way on the
expressions for the ordinary and the inverse Fourier transformation, as can be seen
from Eq. (6.12). This was found to be necessary to be consistent with Eqs. (6.11)
and (6.10). To evaluate φ̃k(p) for the wave function given in Eq. (6.8), we need to
calculate the following integrals

φ̃k(p) =
1√
2π~

∫ −L
2

−∞
[exp(ikx) + Ak exp(−ikx)] exp

(
−i p

~
x
)
dx

+
1√
2π~

∫ L
2

−L
2

[Bk exp(κx) +B′k exp(−κx)] exp
(
−i p

~
x
)
dx

+
1√
2π~

∫ ∞
L
2

Ck exp(ikx) exp
(
−i p

~
x
)
dx . (6.13)

To calculate the semi-infinite integrals we make once more use of the expression for
the Fourier transform of the Heaviside step function, Eq. (3.121), in order to arrive
at

φ̃k(p) =
√

2π~
{[

1

2π

i

p− ~k
+

1

2
δ(p− ~k)

]
exp

[
i
(p
~
− k
) L

2

]
+Ak

[
1

2π

i

p+ ~k
+

1

2
δ(p+ ~k)

]
exp

[
i
(p
~

+ k
) L

2

]}
+

1√
2π~

{
Bk

1

κ− ip~

{
exp

[(
κ− i p

~

) L
2

]
− exp

[
−
(
κ− i p

~

) L
2

]}

+B′k
1

κ+ ip~

{
exp

[(
κ+ i

p

~

) L
2

]
− exp

[
−
(
κ+ i

p

~

) L
2

]}}

+Ck
√

2π~
[

1

2π

−i
p− ~k

+
1

2
δ(p− ~k)

]
exp

[
−i
(p
~
− k
) L

2

]
. (6.14)

One can see again the emergence of singular terms. In addition to the delta peaks
known from the previous example, singular functions of the form (p ± ~k)−1 are
present as well. The terms in the third and fourth line with Bk and B′k as coefficients
are considered to be smooth and well-behaved functions, since we assume that κ is
real and nonzero. It is convenient to regroup the different terms by their functional
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6.1 Wigner function for the square barrier

behaviour and we therefore introduce

φ̃δk(p) =

√
π~
2

[
(1 + Ck)δ(p− ~k) + Akδ(p+ ~k)

]
,

φ̃
1
z
k (p) =

√
~
2π

{
i

p− ~k
exp

[
i
(p
~
− k
) L

2

]
+ Ak

i

p+ ~k
exp

[
i
(p
~

+ k
) L

2

]
+Ck

−i
p− ~k

exp

[
−i
(p
~
− k
) L

2

]}
,

φ̃sm.
k (p) =

1√
2π~

{
Bk

1

κ− ip~

{
exp

[(
κ− i p

~

) L
2

]
− exp

[
−
(
κ− i p

~

) L
2

]}

+B′k
1

κ+ ip~

{
exp

[(
κ+ i

p

~

) L
2

]
− exp

[
−
(
κ+ i

p

~

) L
2

]}}
, (6.15)

so that the Fourier transformed wave function can be written as

φ̃k(p) = φ̃δk(p) + φ̃
1
z
k (p) + φ̃sm.

k (p) . (6.16)

According to Eq. (6.10), the corresponding Wigner function is then given by

fk(p, x) =
1

2π~

∫ ∞
−∞

φ̃k

(
p+

1

2
q

)[
φ̃k

(
p− 1

2
q

)]∗
exp

(
i
q

~
x
)
dq . (6.17)

To calculate the full Wigner function fk(p, x) one would need to solve several integrals.
But, for our purposes it suffices to consider the contributions from the two singular

functions φ̃δk(p) and φ̃
1
z
k (p). To analyze if a delta function peak is present at p = 0, we

calculate as a first step

fak (p, x) =
1

2π~

∫ ∞
−∞

φ̃δk

(
p+

1

2
q

)[
φ̃δk

(
p− 1

2
q

)]∗
exp

(
i
q

~
x
)
dq ,

=
1

4

[∫ ∞
−∞
|1 + Ck|2δ

(
p+

q

2
− ~k

)
δ
(
p− q

2
− ~k

)
exp

(
i
q

~
x
)
dq

+

∫ ∞
−∞
|Ak|2δ

(
p+

q

2
+ ~k

)
δ
(
p− q

2
+ ~k

)
exp

(
i
q

~
x
)
dq

+

∫ ∞
−∞

(1 + Ck)A
∗
kδ
(
p+

q

2
− ~k

)
δ
(
p− q

2
+ ~k

)
exp

(
i
q

~
x
)
dq

+

∫ ∞
−∞

(1 + C∗k)Akδ
(
p+

q

2
+ ~k

)
δ
(
p− q

2
− ~k

)
exp

(
i
q

~
x
)
dq

]
.

(6.18)

The integrals are easily evaluated when making use of the relation

δ(a+ b)δ(a− b) =
1

2
δ(a)δ(b) , (6.19)
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which can be found when using the specific representation of the delta function given
in Eq. (1.17) and performing a change of the integration variables. One thus finds

fak (p, x) =
1

4

[
|1 + Ck|2δ (p− ~k) + |Ak|2δ (p+ ~k)

]
+

1

2
<{(1 + Ck)A

∗
k exp (i2kx)} δ(p) . (6.20)

The obtained expression is in close analogy to the Wigner function for the previous
example, see Eq. (6.3). Again, a delta function is present at p = 0. The coefficient in
front depends on the product of (1 +Ck) and A∗k, i.e. on the amplitudes of the plane
waves moving to the right and to the left, respectively, compare Eq. (6.8).

Two other terms we look at in more detail are
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and
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1
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Since f b
′′

k (p, x) =
[
f b
′

k (p, x)
]∗

, the sum of the two terms is given by

f bk(p, x) = f b
′

k (p, x) + f b
′′

k (p, x)

= 2<{f b′′k (p, x)} . (6.23)

In particular, this expression can be evaluated to
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After regrouping the terms with respect to the singular functions one arrives at
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As a result, one can notice the occurrence of another singular term at p = 0. This
particular term can also be written as
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All expressions containing a sine function stay finite for p→ 0 and the only singularity
appears in the very last term. We introduce the abbreviation

c
1
z
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π
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, (6.27)

as well as for the coefficient of the delta function δ(p) in Eq. (6.20)

cδk(x) =
1

2
<{Ak(1 + C∗k) exp (−i2kx)} , (6.28)

to write the final result as

fk(p, x) = cδk(x)δ(p) + c
1
z
k (p, x)

1

p
+ f rest

k (p, x) . (6.29)
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The expression f rest
k (p, x) stands for all the other terms of the Wigner function, which

are assumed to probably result in a smooth function as soon as one performs an
integration over a continuum of k states, as done in Eq. (6.6). Of course, this is
not guaranteed and to be certain that f rest

k (p, x) does not contain any other singular
functions with poles at p = 0, one would need to examine further terms. Especially
the part

f ck(p, x) =
1
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exp
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q
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x
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dq (6.30)

could be of interest. However, this is not done here because we assume that already
the results of Eqs. (6.27) to (6.29) reveal the central, singular features of the Wigner
function for the case of the square potential barrier. To briefly discuss the coefficients

cδk(x) and c
1
z
k (p, x) we recap that the factor of 1 corresponds to the amplitude of

the incoming wave, the factor Ak to the amplitude of the reflected one and Ck to
the amplitude of the transmitted wave, compare Eq. (6.8). Consider the situation
|Ck| ≈ 0, which occurs for instance in the case of a very high barrier, U0 � E, or a

very wide one, L � 0. In this case the coefficient c
1
z
k (p, x) of the 1/p singularity

is approximately zero, but the coefficient cδk(x) of the delta function can still be
prominent. In particular it is then given by cδk(x) ≈ 1

2
<{Ak1 exp (−i2kx)} and can

be interpreted as a manifestation of the interference between the incoming and the
reflected plane wave. For the case that the amplitude of the transmitted wave takes
on significant values |Ck| 6= 0, i.e. that tunneling is enhanced, the coefficient of the
delta function changes on the one hand, and more important, the 1/p singularity
becomes prominent. This reveals the close relation between the sharp oscillation

pattern produced by the function c
1
z
k (p, x)1

p
and the tunneling processes. Due to the

factor AkC
∗
k in the expression for c

1
z
k (p, x), one can further relate the oscillation pattern

to the coherence between the reflected and the transmitted wave.
The occurrence of the peculiar, singular terms in Eq. (6.29) may be interesting from

a physical point of view, but causes severe problems for the numerical solution of the
Wigner transport equation. To account for the possibility of singularities at p = 0, the
second developed method with a discontinuous approximation of the Wigner function
was implemented on a grid including the point p0 = 0. The inclusion of a grid point
at p = 0 should allow for a proper formation of the delta peak. It is interesting to
note that for comparatively short time evolutions a fairly good (qualitative) agreement
between the factor cδk(x) and the numerical values f(p0, x, t)∆p0 could be found. Here,
∆p0 labels the width of the grid cell at p0 = 0. But on the whole, no smooth convergent
behaviour could be observed and problems with spurious oscillations remained. The
appearance of singular terms in the Wigner function poses a problem for the present
algorithm and one can expect the build-up of large errors in such situations. In
addition to the problem of resolving a singular function properly, the Fourier transform
of the term 1

p
is problematic. In Fourier transformed space it corresponds to a step

at η = 0, compare, e.g., Eq. (3.121). This step cannot be properly resolved in a
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6.1 Wigner function for the square barrier

numerical simulation and one encounters overshooting and oscillations in f̃(η, x, t) as
known from Gibb’s phenomenon [25]. To reduce the errors encountered one could, in
principle, increase the size of the p domain to reduce the length scale of the oscillations
in f̃(η, x, t) and then apply an averaging to obtain a smooth function f̃ ′(η, x, t) with a
decreased deviation from the true step. However, this strategy seems to be unfeasible
for an actual numerical simulation and the square barrier was therefore not considered
any further.

To avoid the occurrence of singular terms it is important to include a bias voltage
in the simulations. This breaks the symmetry of the potential shape and shifts the
oscillation patterns away from the point p = 0. This effect can be seen for instance
when redoing the simple example of a coherent superposition of two plane waves
given in Eq. (6.1), but now for the asymmetric case of two plane waves with wave
numbers k′ and k′′ with |k′| 6= |k′′|. Instead of the delta function δ(p) in Eq. (6.3)
one then obtains the delta function δ(p − ~k′+k′′

2
), i.e. shifted by the mean value of

the two wave numbers. In addition, practical simulations revealed that it seems to
be important that the bias voltage drops over a sufficiently large region. A single
potential step for instance could cause singularities in the Wigner function as well.
Also due to this a finite length for the slopes of the double barriers was included in
all of the simulations presented in Sec. 5.2. In general it seems to be a good advice
to avoid situations with a step in V (x). The results for the RTD presented in Sec.
5.2 reveal the occurrence of a very sharp stripe of oscillations in the Wigner function,
as soon as resonant tunneling is prominent. Since it was possible to resolve all of
the oscillations one can see that no singularities are present in this case, only heavily
oscillating regions in phase space. The higher the bias voltage, the more the stripe
of oscillations is shifted to larger values of p. For VDS → 0 also the position of the
oscillations moves to p = 0 together with becoming even shorter scaled. In addition,
when examining Fig. (5.14) (b) in more detail, one can see that the transmitted part
of f(p, x, t) has an approximate momentum of p′/~ ≈ 0.5 nm−1. The corresponding
reflected part on the left-hand side of the barriers can be identified as the region of
the extenuated momenta, at approximately p′′/~ ≈ −0.2 nm−1. If one calculates the
mean of p′ and p′′ one arrives at p′+p′′

2
/~ ≈ 0.15 nm−1, which is just the position of the

stripe of oscillations. This is in accordance to the example of the two plane waves with
k′ and k′′ outlined at the beginning of this paragraph. Therefore, one can conclude
that the observed stripe of oscillations in the Wigner function for the RTD can be
regarded to be truly physical and furthermore, to be closely related to the coherence
of the transmitted and the reflected part of the Wigner function.
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