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wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am 12.8.2012

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

Graz, 12th August 2012

ii



Abstract

iScope is a mobile application running on devices with at least iPhone OS (iOS®)

4.0 enabling online visualization of biosignals. During brain-computer interface (BCI)

experiments or more generally biosignal measurements, it is challenging to automatically

remove noise from biosignals like muscle activity contained in an electroencephalogram

(EEG). For this purpose, iScope provides quality monitoring to allow trained persons

to take appropriate measures if artifact contamination is observed. Thereby, samples

are provided by SignalServer and collected from wireless network using TiA library. The

application implements a graphical user interface operated by extended well-known iOS®

gestures and the following: managing connections to SignalServer, channel selection,

displaying metadata, switching between two types of visualization for time- and spectral

domain with different levels of detail, zooming of time dimension, two scaling modes for

value dimension, flexibly arranging layout, screen capturing, a custom settings screen

and integration into Settings App. iScope has been released as an ad-hoc distribution

and can already assist during measurements. Finally, the application performs at an

performance level that is able to visualize sampling rates which exploit the device’s

maximum resolution. In the future, iScope’s channel selection feature can be combined

with the upcoming selective channel transmission function of SignalServer.
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Kurzfassung

iScope ist eine mobile Applikation zur online Visualisierung von Biosignalen für Geräte

mit iOS® ab der Version 4.0. Während eines Brain-Computer Interface (BCI) Experi-

mentes oder generell, einer Biosignalmessung ist es schwierig automatisch Störsignale aus

den Biosignalen zu entfernen, wie z.B. Muskelaktiviät aus dem Elektroenzephalogramm

(EEG). Hier kann iScope zur Überwachung der Qualität der Biosignale genutzt werden.

Werden Artefakte im Biosignal entdeckt, kann dadurch geschultes Personal noch rechtzei-

tig angemessene Maßnahmen ergreifen. SignalServer stellt die Messwerte über drahtloses

Netzwerk bereit, welche mit Hilfe der TiA Bibliothek empfangen werden. Eine graphi-

sche Benuteroberfläche wurde implementiert, welche mit bekannten, teils modifzierten

Fingerbewegungen kontrolliert wird und folgende Funktionalität anbietet: Verwalten der

Verbindung zu SignalServer, Selektion von Kanälen, Anzeige von Metadaten, Wechsel

zwischen zwei Visualisierungarten von Zeit- und Spektraldomäne in unterschiedlichen

Detailstufen, Zoom der Zeitdimension, zwei Skalierungsmodi der Wertedimension, flexible

Anordnung der Graphen, Bildschirmaufnahme, einen internen Konfigurationsbildschirm

und Integration in Settings App. iScope ist als Ad-hoc Distribution verfügbar und kann

bei Messungen bereits eingesetzt werden. Schliesslich ist es auch möglich, Abtastfrequen-

zen zu visualisieren, welche die maximale Bildschirmauflösung des Gerätes ausnutzen.

Im nächsten Schritt soll iScopes Kanalselektion mit der bald verfügbaren selektiven

Kanalübetragung von SignalServer gekoppelt werden.
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1. Introduction

1.1. Background

The non-invasive and portable Electroencephalogram (EEG) is an especially interesting

method for measuring brain activity. Thereby, very small electric potentials (µV)

have to be recorded which are the sum of Excitatory Postsynaptic Potentials (EPSPs)

and Inhibitory Postsynaptic Potentials (IPSPs) of synchronized and similarly spatially

adjusted neurons near the surface. Over a time period, amplifiers are used to record

potential changes with a number of electrodes on the scalp. [1, 2, 3] Generally, EEG

features a very low signal-to-noise-ratio and poor spatial resolution with a measurment

accuracy given in cm. On the other hand, good resolution in time (ms) is possible. [4, 5]

Typically, the spontaneous EEG shows rhythmic osciallations with various frequencies

depending on the constitution of the subject (e.g., alpha waves are present if the

subject is relaxed and awake). [6] Furthermore, other specific patterns with lower

amplitudes could be detected such as Event-related Potentials (ERPs) that emerge in

response to external stimuli or Event-related Desynchronizations (ERDs)/Event-related

Synchronizations (ERSs) mainly induced by internal processes (e.g., motor imagery).

However, signal processing is required to reveal these phenomena. [7]

Tools for Brain-Computer Interaction (TOBI)[8] is an European Seventh Framework

Programme (FP7) project. One aim of this project is to develop prototypes in the area

of brain-computer interaction based on biosignals (e.g., EEG) and assistive devices (e.g.,

buttons and joysticks). [8, 9]

TOBI interface A (TiA) [10] originated from TOBI and intends a standardization of raw

biosignals transmission. It specifies a general interface to transmit and receive data from

various types of biosignals - such as EEG, Electrocardiogram (ECG), Electromyogram

(EMG) or Electrooculogram (EOG) - over seperate control- and data connections by

Transmission Control Protocol (TCP) and/or User Datagram Protocol (UDP). The

interface is designed as a single-server/multiple-client model whereas the server acquires

data from hardware devices (e.g., EEG amplifier) and clients can connect to the server
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at runtime to collect data online for further processing during a measurement. In

this manner, underlying data acquisition implementation is entirely encapsulated by

the server component and clients no longer require knowledge about specific hardware

devices. Instead, it is sufficient to communicate through TiA interfaces. [8, 11, 12]

Although TiA can be used for any biosignal processing application, it is specifically

intended to unify different Brain-Computer Interface (BCI)- and hybrid BCI (hBCI)

systems. [11] Usually, these systems enable one person to control a computer by exploiting

electrophysiological phenomena without the necessity of involving peripheral nerves and

muscles. BCIs primary extract these phenomena (e.g., ERD/ERS) or features from EEGs.

In general, fundamental components of a BCI comprise signal acquisition (e.g., recording

EEG), feature extraction (e.g., spatial and/or temporal filtering), feature translation

(i.e. features are mapped to device commands) and the output device that gives the

user feedback. Feedback educates the user and improves the efficiency and effectiveness

of handling the BCI. [13] More flexible systems that incorporate other BCIs or use

additional types of biosignals are called hBCIs. [14, 15, 16]

The TiA interface specifically abstracts the stage between signal acquisition and feature

extraction. A server implementing the TiA interface might provide data from biosignals

to the feature extraction unit for further processing. [11]

1.2. Motivation

During a biosignal measurement, undesired signals or noise (artifacts) are also recorded

which interferes with or precludes the detection of desired phenomena. Basically, two

categories of artifacts can be distinguished. The first one are non-physiological artifacts

which can be avoided by appropriate precautions. For instance, 50/60 Hz noise of the

power line or changes of electrodes impedance could affect the EEG. In contrast, the

second category addresses physiological artifacts that are often inevitable because they

are caused by respiration or ECG (e.g., heart activity), both resulting in rhythmic noise.

In the field of BCIs, EOG (e.g., eye blinking) and EMG (e.g., jaw clenching) related

artifacts are significantly important because they can mistakenly control the output

device instead of intended phenomena. [12, 17, 18]

One possible solution could be implemented by automatically detecting and removing

artifacts by dedicated algorithms (e.g., linear filtering). This method has the disadvantage

that the EEG would be also suppressed as it is a stochastic signal as well. Nevertheless,
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good results are archived for eliminating specific artifacts like ECG as opposed to EMG.

It has a larger disturbance impact on the EEG and could not be entirely automatically

handled by filtering. For this reason, quality monitoring is important to identify heavy

artifact contamination at an early stage of an ongoing measurement, thus preventing

rejection and repetition. Often, a mobile monitoring tool is desired because measurements

are performed outside of the laboratory where space is limited, no desktop environment

could be taken or set up. [12, 17, 18]

1.3. Aim

The aim of this master’s thesis is the development of an application (named iScope) that

receives biosignal samples via TiA server for subsequent online visualization to monitor

respective time- and frequency domain. Then, iScope could be used as a monitoring tool

for biosignal measurements. The focus does not concentrate on the exact analysis of

biosignals that could rather be done by means of other tools (e.g., SigViewer [19]).

iPhone® OS (iOS®) developed by Apple® was selected as the target platform due to

its popularity and intuitive user interface facilitating also less computer skilled people.

iPhone® 3GS with iOS® 4.0 is defined as the minimum requirement. However, other

iOS® devices (e.g., iPad® 1G, iPod touch® 3G) should be also able to run iScope if

at least iOS® 4.0 is installed. Maintenance and further developement have to be also

considered as when developing usual desktop applications.

1.4. Overview

Chapter 2 introduces basic knowledge about algorithms, frameworks and concepts required

to understand the development and functionality of iScope. Internal design decisions,

features of every implemented module and how all modules merge together to build up

the final iOS® appplication is covered by Chapter 3. Chapter 4 explains the context

and methods of how to deploy iScope as well as demonstrating alternative deployment

solutions in respect to legal aspects. Finally, Chapter 5 summarizes and concludes the

current development state whereas Chapter 6 provides an outlook about potential future

tasks.
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2. Related Work

2.1. Fourier Analysis/Synthesis

Basically, the Fourier Analysis/Synthesis deals with decomposition of different kind of

signals into corresponding sine and cosine oszillations (Fourier components). This enables

the transformation of signals from the time domain to the spectral domain and vice versa.

According to the nature of the domains (continuous or discrete), a specific method such

as Discrete Fourier Transform (DFT) is applicable. [20]

2.1.1. Discrete Fourier Transform

In practice, signals are not present as continuous functions that are defined for every

point in time, rather discretized in the time domain by sampling. Because computers are

not able to process continuous data, also the frequency spectrum has to be discrete to

enable automatic processing. For this purpose, the DFT addresses both, a discrete time

signal and a discrete spectrum. [20]

The complex Fourier components Xm (or bins) are calculated from time samples (xn)

with Formula 2.1. In doing so, N corresponds to the number of discrete values. Inversely,

these time samples are recovered from the complex spectrum with Formula 2.2. Thereby,

every bin represents information about a specific frequency. Depending on utilizing the

magnitude, the squared magnitude or the argument of Xm, different kind of spectra will

be computed. In this manner, |Xm| results in the amplitude-, |Xm|
2 in the power- and

arg(Xm) in the phase spectrum. [20, 21]

The set of bins could be considered as a grid, where every mesh refers to a frequency

fm+1 = fm +∆f starting with f0 = 0 Hz. Further, the grid size would be ∆f = fs/N,

where fs is the sampling frequency. Then, the Nyquist frequency fs/2 would be located

at the m-th bin where m = N/2. If N is an odd number, the Nyquist frequency will not

correspond to a single mesh. [20, 21]

The DFT implies that the time function as well as the spectrum are periodic. Furthermore,
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the spectrum of the real DFT is also symmetric. Hence, only N
2
+ 1 unique outputs

are generated and required to represent the whole spectrum. In this manner, Direct

Current (DC)- and Nyquist components have no phase information. During discretization,

the adherence of the sampling theorem is fundamental to ensure the correctness of the

spectra. If the sampled time signal includes frequencies greater than the Nyquist frequency,

aliasing will appear. [20, 21]

The DFT is applied only on one desirable periodic finite time window of the discrete time

signal. Mathematically, a window function is used that equals the multiplication of the

time signal with the rectangular function. The window function is defined as 1 within

and 0 outside the window. Practically, it is often impossible to select a perfect periodic

window because contained frequencies often are not entirely predictable. If the length of

the window does not match the period (or a multiply) of all oscillations within the time

signal, the results will be a mere approximation. In this case, if the window would be

arranged in a series repeatedly, a discontinuity could be observed between the end of

one instance and the beginning of the next one. As a consequence, frequencies would

be included that do not equal any of the discrete frequencies. Neighbouring bins would

approximate these frequencies instead which leads to blured spectra. This phenomenom

is also called leakage effect. Other window functions exist to suppress the leakage effect

by fading in/out the signal at the boundaries of the window to facilitate a more periodic

character. [20, 21]

Xm =
∑N−1

n=0 xn · e

[

−i2π
N

nm

]

m,n = [0, N − 1]

Formula 2.1: Discrete Fourier Transform

xn = 1/N ·
∑N−1

m=0 Xm · e

[

i2π
N

nm

]

n,m = [0, N − 1]

Formula 2.2: Inverse Discrete Fourier Transform
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2.1.2. Short-Time Fourier Transform

The DFT itself does not reflect the changes of spectra over a period of time. For

this particular purpose, the DFT has to be applied in periodic intervals on different

time windows of the same length. This process is also known as Short-Time Fourier

Transform (STFT). The output of the STFT is a spectogram and often presented

as a color-coded graph. The selected windows is either sliding (overlapping) or non-

overlapping. In this manner, always a tradeoff between time resolution and granularity

of the frequency spectrum exists. If the chosen window length is too large, it will not be

possible to track changes over time accurately. Nevertheless, this will lead to increased

spectra resolution. In reverse, a too short window length would enhance time resolution

but also degrade frequency resolution. [20, 21]

2.1.3. Fast Fourier Transform

A naive implementation of the DFT will have an asymptotic runtime complexity of

O(N2) that is not adequate for real time applications involving huge time windows.

Cooley and Tukey introduced a class of more efficient algorithms known as Fast Fourier

Transform (FFT) for computing the DFT with a complexity of O(N · logN). These

algorithms exploit several characteristics of the DFT such as periodicity and symmetry.

Basically, the DFT of N samples is computed recursivly as a result of smaller DFTs

until no further splits are possible. This fundamental principle is also called divide

and conquer. Many varitions exist that apply different radixes, require specific number

of samples and perform either decimation-in-time or decimation-in-frequency. In this

context, algorithmns relying on N being a power of two (called power-of-two algorithmn)

are especially efficient. Of course, sometimes N cannot be a power of two for specific

time windows. In order to put things right, the missing samples have to be padded with

zeros. In this process, no new information is generated because the sampling frequeny

has not changed at all. Nevertheless, zero padding impacts the resolution of the spectrum

by decreasing ∆f . It is important to apply explicit window functions before zeros are

padded. [20, 21]

However, other algorithm classes (e.g., based on prime factorization) also implement the

DFT fast and refer to the term FFT but those are not relevant for this thesis. [20, 21]
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2.2. iOS® 4.x

Generally, iOS® is an UNIX®-based operating system that runs on any iPhone®, iPod

touch® or iPad®. iOS® is built on a variation of the same March kernel as OS X® and

uses similar Berkeley Software Distribution (BSD) interfaces. It also provides individual

technologies to support native applications. [22, 23]

The iOS® Standard Development Kit (SDK) contains tools, libraries and header files

that are required to develop applications for iOS®. In this thesis, the term app is used as

a synonym for applications and iOS® will always refer to iOS® versions 4.x. Figure 2.1

gives an overview over all iOS® technology layers. Furthermore, it shows all those

frameworks that are especially important in this thesis. [22, 23, 24, 25]

Figure 2.1.: Hierarchic overview of iOS® technology layers referred by this thesis

2.2.1. Characteristics of iOS® Devices and Apps

Although conventional desktop applications and iOS® apps have a lot in common, many

aspects differ:
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• iOS® applications do not rely on a mouse to manipulate or interact with the

graphical user interface. Instead, control elements are operated by touching

the screen of the device which creates so called multi-touch sequences (see Sec-

tion 2.4.4). [23, 24, 25]

• In place of a traditional hardware keyboard, a simulated keyboard automatically

becomes visible whenever the user is prompted to enter some text. Compared to

a usual desktop, additional hardware is also embedded, depending on the actual

device. Amongst others, an accelerometer is integrated that recognizes physical

movements to determine the position of the device. [23, 25]

• At the same time, only one application is active and visible to the user. Since

iOS® 4, it is possible to run an app in a restricted background mode after the user

hits the home button. But this is restrained to a couple of specific tasks and should

not be confused with true multitasking which are supposed by modern desktop

operating systems. [22, 25]

• Every iOS® app has exactly one window and is not allowed to spawn other ones.

The dimensions of the window are statically fitted to the screen size. [25]

• Only a specific part of the filesystem is accessible which was specifically created

for the app, called the application’s sandbox. Access to other system resources is

also restricted, such as low-number network ports. This limitation also indirectly

suspends the use of custom dynamic libraries or frameworks. [22, 25]

• Above all other hardware system components (e.g., processor), particularly the

physical Random-Access Memory (RAM) is constrained in comparison to state-

of-the-art computers. iOS® devices do not perform disk swaps when running out

of phsysical memory due to the fact that virtual memory is directly linked to

physical memory. Consequently, iOS® apps have to particularly focus on memory

awareness. [22, 25, 26]

• Launching, suspending and terminating an app has to take minimum response time.

If an app is not able to finish all initializing- or cleanup efforts within five seconds

after the user started or closed the app, iOS® will kill the corresponding process

immediately. [22, 25]

• When this thesis was written, every available iOS® device offered less screen

resolution than a modern computer. Further, the cheapest MacBook® featured
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a display of 1280× 800 pixels, latest iOS® devices only provided a resolution of

1024× 768 pixels. [25]

• There are also several restrictions and differences in deploying an app but this is

covered separately in Chapter 4.

2.2.2. Technical Specifications of iOS® Devices

Apple Inc. does not expose many details about processors which are integrated in their

devices. However, by default the official Integrated Development Environment (IDE) of

the iOS® SDK provides builts for ARM®v6- and ARM®v7 architectures. Also the iOS®

SDK documentation distincts between developing for these two architectures in some

sections. Due to the outstanding popularity of Apple Inc.’s smartphones, many inofficial

websites also reveal information about assembled hardware components gained through

hardware teardowns. Table 2.1, Table 2.2 and Table 2.3 list some technical specifications

about various iOS® devices that were taken into account when the practical part of this

thesis was developed. [22, 25, 26, 27, 28, 29]

iPod touch® iPod touch® iPod touch® ∗) iPod touch®

1G 2G 3G 4G

RAM (MB): 128 128 256 256

Processor: ARM®11 ARM®11
ARM®

Cortex™-A8
ARM
Cortex™-A8

Architecture: ARM®v6 ARM®v6 ARM®v7 ARM®v7

Underclocked
412 533 600 800

to (MHz):

Wi-Fi: 802.11 b/g 802.11 b/g 802.11 b/g 802.11 b/g/n

Resolution (pixel): 320× 480 320× 480 320× 480 960× 640

Table 2.1.: Hardware specifications (iPod touch® devices) - ∗) only(!) 32GB and
64GB versions; 8GB version shows technical details of iPod touch®

devices 2G [28, 29, 30, 31, 32, 33]

2.2.3. Floating Point Operations on iOS® Platforms

iOS® devices according to ARM®v6- or ARM®v7 instruction sets support double- as well

as single-precision floating point operations on the hardware. All iOS® ARM®v6 devices

utilize the sequential Vector Floating-point Architecture (VFP) at same speed for single-

9



iPhone® iPhone® iPhone® iPhone®

1G 3G 3GS 4G

RAM (MB): 128 128 256 512

Processor: ARM®11 ARM®11
ARM®

Cortex™-A8
ARM
Cortex™-A8

Architecture: ARM®v6 ARM®v6 ARM®v7 ARM®v7

Underclocked
412 412 600 800

to (MHz):

Wi-Fi: 802.11 b/g 802.11 b/g 802.11 b/g 802.11 b/g/n

Resolution (pixel): 320× 480 320× 480 320× 480 960× 640

Table 2.2.: Hardware specification (iPhone® devices) [28, 34, 35, 36, 37]

iPad® iPad® 2

RAM (MB): 256 512

Processor:
ARM® Cortex™-
A8

ARM® Cortex™-
A9

Architecture: ARM®v7 ARM®v7

Underclocked to: 1GHz 1GHz Dual Core

Wi-Fi: 802.11 b/g/n 802.11 b/g/n

Resolution (pixel): 1024× 768 px 1024× 768 px

Table 2.3.: Hardware specifications (iPad® devices) [28, 38, 39]
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and double-precision floating point arithmetic. In contrast, iOS® devices with an ARM®

Cortex™A8/A9 implementing the ARM®v7 architecture integrate a reduced version of the

VFP but have an Advanced Single Instruction Multiple Data (SIMD) co-processor called

NEON® in addition. Unfortunately, NEON® is only able to process single-precision

data. Thus, double-precision arithmetic on ARM®v7 devices is performed almost as fast

as on ARM®v6 devices, whereas single-precision operations are substantially performed

faster due to assigning NEON® instead of VFP. ARM Limited claims a large possible

performance boost (4 − 8×) on for instance simple Digital Signal Processing (DSP)

algorithmns, but at least an increase by a factor of two compared to ARM®v6 processors

in combination with VFP. Beside framework functions that explictly make use of intrinsic

hardware accelerated functions, the compiler also tries to optimize code for specific

architectures (e.g., NEON®). [27, 28, 40, 41, 42, 43]

Thumb® instructions are a subset of ARM® instructions and are 16 bit in size instead

of 32 bit. This factor reduces code size, saves memory and cache. However, it is

recommended to guide the compiler to use Thumb® instructions only when deploying for

ARM®v7 enabled devices. Thumb® on ARM®v6 processors omits access to VFP that

in turn results in every floating point operation being executed by a significant slower

system function. In contrast, Thumb® on ARM®v7 architectures does not have this

limitation and is able to interact with VFP as well as with NEON®. [22, 28, 40, 41]

2.3. iOS® SDK Toolchain

2.3.1. XCode® 3.2

XCode® is the native IDE which comes with the official iOS® SDK. It is used to manage

iOS® projects (.xcodeproj) for apps or static libraries targeting different architectures.

Similar to most other modern IDEs, XCode® provides support for source code editing,

building and debugging projects as well as automatic handling of cross-project-references

and -dependencies. When building a project, XCode® is able to generate an universal

binary containing optimized code for different specified architectures (e.g., ARM®v6

and ARM®v7). XCode® is directly linked with other tools like Interface Builder and

Instruments®. [44]

iOS® apps can be started directly from XCode® and run either in iOS® Simulator or on

a connected iOS® device. Thereby, iOS® Simulator simulates an execution environment

for all iOS® devices. [44]
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Three possible compiler options are shipped with iOS® SDK 4.3 to generate code

for iOS® Simulator and iOS® devices. GNU Compiler Collection (GCC) 4.2 was

the standard compiler until the release of XCode® 4. However, Low Level Virtual

Machine (LLVM) [45] GCC 4.2 was already supported in XCode® 3 which uses the

LLVM code generator that potentially increases performance. Also the most recent

version of XCode® uses that option by default. On the other hand, it is possible to use

the Clang 1.7 [46] compiler frontend in combination with the LLVM compiler backend,

especially focusing on reduction of compile time and consumed memory. [44, 45, 46, 47]

2.3.2. Interface Builder

Interface Builder is a What You See Is What You Get (WYSIWYG) based design tool

to organize user interfaces for iOS® apps. It allows to create, configure and arrange

various kind of widget- and control objects. In this manner, it is also possible to connect

particular events that are triggered by objects to event handling routines of other objects.

The result is stored in the NextStep® Interface Builder format (.nib/.xib) to enable

instancing actual objects at runtime. Basically, every iOS® project has at least one main

nib file that contains the window- and application object. Further nib files could be also

used to manage the appearance of specific elements of the user interface. [44]

2.3.3. Instruments®

Instruments® provides various tools to inspect the runtime behaviour and performance

metrics of iOS® apps while running in iOS® Simulator or on real iOS® devices. In

doing so, information about memory usage/leaks, Central Processing Unit (CPU) load,

display update rates (frames per second) and many more could be gathered. [44]

2.4. Related iOS® Frameworks

”A framework is a directory that contains a dynamic shared library and the resources [. . . ]

needed to support that library” [23]. Frameworks are linked with an application in the

same way as traditional shared libraries. Currently, apps may only link with frameworks

of the native iOS® SDK.

This section will not discuss every single aspect of any mentioned framework but will

explain selected core paradigms and aspects required to understand the development of

the practical part of this thesis.
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2.4.1. Objective-C® 2.0

Objective-C® 2.0 was introduced by Apple Inc. as an extension to Objective-C®.

Basically, Objective-C® is a SmallTalk-80 derivation layered on top of the C programming

language. Hence, Objective-C® code can be combined with plain C. All (object oriented)

language features are implemented by the runtime environment which especially focus

on dynamic typing and (very) late binding. In this manner, often messages are sent to

objects where both are resolved at runtime. Amongst others, Objective-C® introduces a

feature called categories to add new methods to existing classes without modifying these

classes directly. Thereby, it is not necessary to have access to the original source code. It

is also possible to mix C and C++ but this has several restrictions regarding amongst

others, exception handling, class inheritance and -membership. Moreover, most of the

iOS® top level frameworks require the use of Objective-C® 2.0. [48, 49]

2.4.2. Common Design Patterns

Several iOS® frameworks make intensive use of design patterns such as Model View

Controller (MVC)-, delegate- and target/action pattern. [44, 50]

The delegate pattern involves a complex class that delegates certain active as well as

passive tasks. Furthermore, a delegate that is an instance of a class that implements

a particular interface. The delegating class uses the interface to communicate with

the delegate. Usually the name of the interface is a combination of the term delegate

and the name of the corresponding delegating class (e.g., BCiSignalServerClient

and BCiSignalServerClientDelegate). Delegation is a method of customizing the

behaviour of a class without creating an explicit subclass of that class. [44, 50]

Classes and methods may feature the target/action pattern to enable the execution of an

action on a specific target in order to implement asynchronous program behaviour. In

this manner, the action acts as a callback if a concurrent task has been accomplished

or a certain event was observed. The action is represented by a selector (i.e. function

pointer) and the associated target by an Objective-C® object that should recognize and

execute the selector. [44, 50]

Some of the characteristics and applications of the MVC pattern are discussed in

Section 2.4.4.2.
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2.4.3. Foundation Framework

The Foundation framework introduces various basic functionality and paradigmas that are

not covered by the Objective-C® language by itself like collections, string manipulation,

date- and time manipulation, threads, run loops and many more. It also defines the

root class NSObject which implements fundamental features like reference counting

and Runtime-Time Type Information (RTTI). All Objective-C® classes related to the

development part of this thesis derive from NSObject. Furthermore, the framework

distincts between two types of objects that have either mutable or immutable contents.

For example, NSNumber is a generic wrapper around any number whose objects cannot

be changed once they have been created. Every class that offers the capability to modify

the contents explicitly contains the term Mutable such as NSMutableArray as opposed

to NSArray. In general, every class that shares the NS-prefix is part of the Foundation

framework. [22, 23, 49, 51]

2.4.4. UIKit Framework

The UIKit framework constitutes the fundamental functionalities for every iOS® app. It

has to take care of several key responsibilities including accomplishing the bulk of tasks in

conjunction with initializing and managing the lifecycle of an application, interacting with

and constructing the user interface, supporting ”multitasking”, accelerometer handling

and much more. All classes in this thesis sharing the UI-prefix are contained in the UIKit

framework. [23, 52]

2.4.4.1. Widgets

An iOS® app has at least one window (or UIWindow) and several views (or UIViews)

in order to display content. In this manner, UIKit provides different kind of standard

views like buttons, tables, scroll views and so on that may be altered in different ways

(subclassing, changing drawing code, event handling). Every view can also have addi-

tional subviews managed by a view hierarchy and is responsible for arranging the layout

adequately. Further, views are backed by a CALayer that referes to a Core Animation

layer which is discussed in Section 2.4.7.1. Every view draws its contents to the backing

layer. Directly manipulating the backing layer is more efficient and enables further

options especially in respect to animations. [25, 26, 52, 53]

At a glance, UIKit renders widgets when the view is made visible the first time. Then,

only a cached snapshot of the contents is drawn whenever the view has to be visualized
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again (e.g., moving to a different position, switching visibility). Even if the bounds of

the view have changed, the view would not always automatically be redrawn depending

on the content mode property. In order to redraw the contents of a view extrinsicly, it is

necessary to tell UIKit that the contents of the entire view or parts of it became invalid

by calling the view’s setNeedsDisplay: or setNeedsDisplayInRect: method. This

might be useful if the data source has been updated. Then UIKit will invoke the drawing

code in the next event loop cycle which is executed in drawInRect: that is implemented

by means of the Core Graphics Framework (see Section 2.4.7). [25, 26, 52, 53]

Basically, two ways of applying a proper layout to a view and all of its subviews exist.

Sometimes it is sufficient to set the auto-resizing behaviour property of a view that allows

very simple automatic layout arrangements if the size of the view has changed. For

example, specifying ”flexible width” would resize the view by expanding or shrinking the

width. This technique is not powerful enough to manage more complex layouts. For this

purpose, if the visible area (or bounds) of a view has changed, UIKit will also ask that

view to set its layout autonomously by calling layoutSubviews. A container view may

override this method to set the size and origin of the bounds of the view and all contained

subviews manually. The practical part of this thesis uses a mix of both variants and also

a slightly different approach. [25, 26, 52, 53]

UIKit also has built-in support to animate view-related properties based on Core Anima-

tion like the center, alpha value, transformation matrix or background color. [25, 26, 52,

53, 54]

2.4.4.2. View Controllers

In simplified terms, at least one view controller (or UIViewController) is active that

manages the current visible view hierarchy. Thereby, in the majority of cases, this

view controller is initialized by a nib file. View controllers serve as the controller part

in the MVC pattern. In doing so, they are also in charge of linking the application’s

data, the visual appearance and other controller objects. Additionally, every view

controller is responsible to respond to low memory warnings by freeing unnecessary

resources, or arranging the user interface if the physical orientation of the device has

changed. [25, 26, 55, 52, 53]
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2.4.4.3. Application Lifecycle

iOS® devices are intended for new and unconventional application areas that yield a

different application lifecycle compared to traditional desktop applications. An app is

able to move to five distinct states during the whole lifecycle. If an app has not been

launched or was terminated by iOS®, the app is simply in state not running. The active

state signals that the app runs in foreground and is receiving events. An app in inactive

state still runs in foreground but does not receive any events. This can happen at any

time, when an active app is transitioning to the background state, the user locks the

device or if a phone call interrupts the execution of the app. Since iOS® 4.0, applications

are enabled to perform limited tasks in background after the window of the app already

has been dismissed by pressing the home button. An application is in suspended state

and may be preferable purged by iOS® on low memory warnings after it moved to

background and stopped executing any code. [22]

Assuming an app is not running and the user tapes the associated icon on the home

screen, the system launches the corresponding app by calling the app’s main function.

Then UIKit loads the application’s main nib file and initializes the main event loop

by carrying out the UIApplicationMain function. While an app is in an appropriate

state, particular events (touch events, motion events etc.) from the operating system

are delivered to the main event loop and processed on every loop cycle. ”An event loop

is simply a run loop: an event-processing loop for scheduling work and coordinating the

receipt of events from various input sources attached to the run loop” [56]. In this manner,

various recipients respectivly views, view controllers and other class objects interact with

the multi-touch display, accelerometer and others. [22, 56, 57]

The main nib file contains the application’s main window and amongst others, a se-

rialized concrete object of UIApplication and an object of a class conforming to the

UIApplicationDelegate interface. The latter class is commonly application specific

and provides the entry point of the first effectivly called custom code within an iOS®

app. Before the main event loop is entered the first time, UIKit initiates this code by

calling the proper method of the application delegate in order to perform individual

initializing tasks, add specific views to the main window and show the main window

including all of its subviews. In the same way, the delegate is also consulted to respond

to other transitions of the application state. [22, 52, 56, 57]
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2.4.4.4. Recognizing Multi-Touches and Gestures

Principally, user interaction on iOS® is based on a multi-touch model. Simplified, iOS®

keeps track of touches of one up to five fingers on the screen and encapsulates a multi-

touch sequence in several event objects according to the spatial and temporal alternation

of each involved touch. A multi-touch sequence starts when the first finger touches

the screen and ends when the last finger is lifted. In many cases, certain multi-touch

sequences or touches are interpreted together as gestures to initiate specific program

behaviour, such as zooming by tracing a continuous pinch gesture. Also dragging a widget

requires to evaluate the meaning of touches. In practice, smooth gestures should not rely

on more than two fingers to guarantee seamless tracking. Event objects are sent to the

active application’s event queue for further processing within the next event loop cycle.

When a touch event object is enqueued, UIKit typically dispatches the event handling

to the main window. Every event object contains information about the position of the

touch. This enables the main window to detect the top-most view or associated view

controller in the view hierarchy that is hit by the touch. Then, this object is responsible of

treating the event in the first instance. If the event was not handled, the event is handed

over to the next responder in the responder chain along a particular path until the event

is finally handled or discarded. These responders are especially views or view controllers.

Every responder could analyze these multi-touches through dedicated methods. Some

views like UIScrollView already evaluate these methods and capture gestures. In this

manner, scroll views utilize swipe gestures to scroll inside a content area. In order to

detect custom gestures or change the default touch event handling of responders, it is

necessary to implement those touch event handling methods individually. [24, 52, 58]

Tracking and recognizing of very common gestures is already encapsulated by a couple

of classes extending UIGestureRecognizer (see Table 2.4). In this context, it is also

significant that gestures are classified as either discrete or continuous. Further, all gesture

recognizers implement the target/action pattern. The action is executed if a discrete

gesture is finally recognized which occures only once within a multi-touch sequence. In

contrast, continuous gestures trigger the action multiple times on each state transition.

Depending on discrete- or continuous gesture, the associated gesture recognizer follows

one of the well defined state machines in Figure 2.2. [24, 52, 58]
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Gesture recognizer Gesture Number of touches

UITapGestureRecognizer Discrete touches 1 to n
UIPinchGestureRecognizer Continuous pinching 2

UIRotationGestureRecognizer Continuous circular motion 2
UISwipeGestureRecognizer Discrete flicking 1 to n
UIPanGestureRecognizer Continuous dragging 1 to n

UILongPressGestureRecognizer Long continuous touches 1 to n

Table 2.4.: Gesture recognizers for common gestures

Recognized

Possible

Failed

(a) Discrete gesture

bbb

Possible

Began Cancelled

Changed Ended

Failed

(b) Continuous gesture

Figure 2.2.: State machines: gesture recognizer
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2.4.5. Message UI Framework

The Message UI framework offers view controllers for composing/queuing emails in

the native iOS® email outbox. Similar view controllers are provided for writing Short

Message Service (SMS). In both cases, the user has not to leave the app. [23]

2.4.6. Accelerate Framework

The Accelerate framework is intended for high performance applications. Since iOS® 4.0,

this framework is also available for iOS® devices. It provides hardware accelerated

functions including vector operations and complex algorithmns that are automatically

optimized for every targeted iOS® architecture. The framework primarly consists of the

vecLib which in turn contains a couple of header files for mathematical purposes. Mostly

relevant is the vDSP library that is utilized by the practical part of this thesis. It provides

implementations of various DSP tools like FFT, several window functions (Blackman-,

Hamming-, von Hann windows), decimation and more. All functions are implemented in

two ways, using vector instructions (i.e. NEON® etc.) and as scalar code. vDSP decides

which version is appropriate depending on the present architecture. [23, 59]

The vDSP FFT Application Programming Interface (API) covers single- and double-

precision 1D/2D-FFT algorithms but this thesis copes only with the real single-precision

1D-API that offers a derivation of a power-of-two algorithmn with different radixes.

Before processing any data in the frequency domain, an array of twiddle factors has to

be calculated that is required for later FFT API calls. Two parameters are expected.

The first one is a radix option (radix 2, 3 and 5 are supported) and the second one is a

base-two exponent that determines the largest number of elements that subsequential

FFTs could process. Hence, FFTs with different transformation lengths that are equal

or less than 2log2 n (radix 2), 3 · 2log2 n (radix 3) and 5 · 2log2 n (radix 5) may share and

reuse the same twiddle factors data structure for economical reasons. Anyhow, it is not

recommanded to use a large sized twiddle factors array for FFTs that process a small

number of data points to avoid performance loss. The 1D-API is able to calculate the

forward as well as the inverse DFT on a given set of real input values. However, the

actual results will be slightly different than calculated results by means of Formula 2.1

and Formula 2.2 to increase execution speed. Nevertheless, regaining the correct results

only requires unapplying appropriate scaling factors from Formula 2.3 or Formula 2.4.

Exploiting the symmetry property of the DFT enables the storage of the output in-place,

using the same data structure for the output and input, thus requiring no additional
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memory. The data structure has two members which represent the imaginary- and real

components. Before processing real input data, data has to be packed into a special

even-odd representation. In doing so, a given input vector A = A[0], . . . , A[n] has to

be transformed to AEvenOdd = A[0], A[2], . . . , A[n− 1], A[1], A[3], . . . , A[n] which leads

to further optimization. The even elements of the input vector are stored in the real

vector attribute and the odd elements in the vector attribute containing the imaginary

parts. [59, 60]

Xm = DFT (Xm) · 2

m = [0, N − 1]

Formula 2.3: vDSP DFT scaling factor

xn = IDFT (xn) ·N

n = [0, N − 1]

Formula 2.4: vDSP inverse DFT scaling factor

2.4.7. Core Graphics Framework

2.4.7.1. Core Animation

Core Animation provides an Objective-C® API for rendering and animating graphical

contents. These contents are displayed in Core Animation layers (or CALayers) that are

organized in a hierarchy similar to UIKit’s views (see Section 2.4.4.1). Layers are also

using an on demand drawing engine. After the contents have been invalidated using

setNeedsDisplayInRect: or setNeedsDisplay, drawing code is invoked on the next

event loop cycle. Different ways exist of injecting custom drawing code. The development

part of this thesis only uses overriding the layer’s drawInContext: method. [54]

In contrast to views, layers are more light-weight and allow extended control over

additional properties such as the corner radius of the frame. Furthermore, an implicit

animation is applied whenever one of the layer’s properties is manipulated. In this case,

the property will be gradually interpolated for the configured global animation duration.

Implicit animations could also be disabled and used only explicitly. [54]

The iOS® SDK documentation mistakenly claims the existence of a layout manager for

arranging multiple layers. Unfortunately, that layout manager is only available in the OS
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X® SDK. Hence, more sophisticated layouts have to be applied manually by overriding

layoutSublayers. [54]

2.4.7.2. Drawing Graphics

Basically, contents of UIKit views and Core Animation layers are drawn by means of

the C-based drawing API that Core Graphic provides. Thereby, a coordinate system is

applied that does not refer to pixels rather to points in order to achieve an abstraction of

the underlying device. This also leads to address coordinates with floating-point values.

For example, although the display resolution of the iPhone® 4 amounts twice as much

of the resolution of the iPhone® 3GS, both virtual coordinate systems will reflect an

equal number of abstract points. The conversion from points to pixels is handled by the

system when the graphical contents are rendered to the screen. [25, 26, 52, 53, 61]

The drawing API implements a painter model where a CGContext stores information

about the destination device. It also allows to configure drawing parameters such as

stroke- or fill color of the current drawing operation. In order to draw primitive shapes

like lines, circles, rectangles, dedicated methods are already supported. When it comes

down to more complex shapes, a path (or CGMutablePath) has to be considered. A path

is constructed by combining a number of various shapes or path elements. [61]

Core Graphics also offers CGLayer, a graphic data structure, that is optimized for offscreen

rendering. Thereby, iOS® tries to keep the corresponding contents in the fast video

cache as long as possible. In this way, pre-computed graphical contents could be plotted

to any destination at different positions very fast and numerous of times. [61]

2.5. Other related Tools, Frameworks and Libraries

2.5.1. Boost Libraries

Boost [62] provides free C++-libraries based on the C++ Standard Library for different

purposes and runs on almost any modern operating system. All libraries are licensed

under the Boost license. These libraries are either header-only (all functionality is visible

to the compiler) or have to be explicitly linked with an application. In order to link these

libraries, it is necessary to build them for a particular operating system first. Table 2.5

shows an overview about the most important Boost libraries related to this thesis. [62]
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Library Description Header-only Linked library

Boost.System Error handling No Yes
Boost.Asio Networking Yes No
Boost.Date Time Date and time operations Yes Optional

Table 2.5.: Related boost libraries

2.5.2. TinyXML++ Library

TinyXML++ [63] offers a free C++-interface to TinyXML that is a lightweight Extensible

Markup Language (XML) parser. The parser incorporates few source- and header files

and can be easily embedded into any application. It uses the Massachusetts Institute of

Technology (MIT) license for distribution. [63, 64]

2.5.3. TiA Library

TiA [10] library offers an open source implementation of TiA written in C++ based on

TinyXML++ and a couple of Boost libraries (see Table 2.5). From this thesis’s point of

view, only the client side interface that communicates with a specific server using various

commands is interesting. According to the command versions that is supported by the

server, these commands may vary a little. The client implementation (dated 17th of

March 2011) understands version 0.2 and 1.0 command messages. [10, 65, 66, 67]

The control connection is established via TCP and operates according to a well-defined

protocol. A client uses the control connection to send different types of commands to the

server. Generally, the client is allowed to request the current server configuration and lists

meta information about available biosignals. In addition, initiating/starting/stopping

a data transmission request by using either an UDP- or TCP data connection is done

by an adequate command. Then, data packets aggregate different types of biosignals

that are delivered in specific intervals depending on the meta information of the present

signals. Due to the unreliability of UDP, some data packets could get lost. However, in

this case, it is possible to calculate potential data loss by tracking data packet sequence

numbers at client side. [10, 65, 66, 67]

Every biosignal is described by a set of meta information which consists of the signal

type, sampling rate, block size and a list of channel ids. The signal type is limited to

a finite number of values (e.g., EEG, EMG, EOG, ECG, heart rate, blood pressure,

button). Each data sample does not relate to one signal rather to one specific channel

which is identified by the channel id. The source of the signal is sampled with the
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sampling rate. Nevertheless, data is acquired in blocks. Hence, sampling rate and block

size determine the virtual sampling rate fs virtual =
Sampling Rate

Block Size
. In other words, every

1
fs virtual

seconds, a number of data samples equal to the block size can be acquired at

once for a specific channel. If the sampling rate equals zero, data cannot be acquired in

periodic cycles, rather aperiodicly and only when the value of the channel has changed

(e.g., buttons). [10, 65, 66, 67]

The server configuration dictates the virtual master sampling rate that typically cor-

responds to at least one signal. All other signals are treated as slaves. Once a data

connection has been established, in every master cycle, latest data is acquired in blocks

from the master and all slaves (including aperiodic signals) if possible. Then, these data

samples are packed into a data packet and sent to connected TCP clients or broadcasted

by UDP (see Figure 2.3). [10, 65, 66, 67]

All relevant classes of the library are included in the tobiss namespace. The library

provides tobiss::TiAClient, a client implementation which allows to connect to a TiA

server, speaking any command message dialect. After a connection has been established,

all mentioned commands may be sent to the server by calling appropriate methods of the

API. Amongst others, the client blocks until the server answers the available signal types

and meta information. The API also offers a convenient blocking method to receive the

next data packet during an active data transmission. [10, 65, 66, 67]

2.5.4. SignalServer

SignalServer is an application implementing the server side of TiA. It is able to acquire

raw biosignals from various hardware devices (e.g., g.USBamp, g.Mobilab, g.BSamp,

BrainProducts Brainamp series, generic joysticks, LifeTool IntegraMouse, generic mouses)

and redistributes obtained data over the network using TiA library. Version 0.2 as

well as version 1.0 TiA command messages are supported. Further, the server restricts

some master/slave configurations that would lead to aliasing by ensuring the property

fs virtual (master) >= fs virtual (slave). The practical part of this thesis uses SignalServer to

test against TiA server interface. For this purpose, SignalServer provides a configurable

sine generator and EEG simulator. Nevertheless, the deployment scenario could also

be a real BCI measurment. This document refers to a version of SignalServer that was

updated on the 17th of March 2011. [12, 67]
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Figure 2.3.: TiA server: master/slave timing diagram - shows 12 data packets;
assumes every master and slave has one channel, a sampling rate (SR)
and a block size (BS) - #1 with samples of Master, Slave1 and Slave3, #2
with samples of Master, Slave1 and Slave3, #3 with samples of Master,
Slave1, Slave2 and Slave3 . . . #12 with samples of Master, Slave1, Slave2,
Slave3 and Slave4
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2.5.5. Three 20 Library

Three 20 is an open source and widely used Objective-C® library under the Apache Li-

cense that provides amongst others, general purpose views and view controllers. One very

popular example imitates the behaviour of the native iOS® app launcher application. [68]

2.5.6. CorePlot Library

CorePlot is a popular library available under the new BSD license that provides an

Objective-C® 2D visualisation API. It contains implementations of fancy and easy to

use graph views (e.g., line chart) and more. [69]

2.6. Software Licensing

Figure 2.4.: Software license categories [70]

Figure 2.4 gives an overview about different license categories and how they are overlapping

each other but those mentioned below are most relevant in this thesis [70].
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Free software refers to freedom and not to price. In other words, every recipient of the

software has the ”permission to use, copy, and/or distribute, either verbatim or

with modifications, either gratis or for a fee” [70]. Therefore, the availability of the

source code is mandatory.

Open source software describes a class of software that is similar but more restrictive

and less idealogical driven than free software [70]. Essentially, the software dis-

tribution terms have to comply with a couple of criteria. Free redistribution is

also required as the disclosure of the source code, the authorization of derived

works, the maintenance of the author’s integrity, the prohibition of discrimination

against persons/groups and fields of endeavor and the direct distribution of the

license. Furthermore, the license must not be specific to a product, nor restrict

other software and has to be technology-neutral [71].

Public domain software is derived from the legal term not copyrighted. Copyrights have

to be explicitly disclaimed to move a software in the public domain [70].

Software under lax permissive license virtually allows any usage of the source code

(e.g., distribution of proprietary binaries). Amongst others, the X11 license (some-

times mistakable mentioned as MIT license) and the two BSD licenses fall in this

category [70, 72].

Copylefted software is protected by a copyleft clause. Copyleft is a general concept to

ensure that all copies of all versions of the software are licensed under almost equal

distribution terms. Consequently, two distinct copylefted licenses are typically

mutually exclusive. Software covered by the GNU General Public License (GPL) is

just one single case of copylefted software [70].

Proprietary software is the opposite of free software in general. One of the main

differences is that the copy right holder of the software may categorical dismiss

the distribution of the source code together with the binary. Even in the case of

semi-proprietary software, where the source code is also delivered, the original copy

right holder will always dictate the terms and conditions under which all subsequent

license recipients are allowed to use, modify or redistribute the software [70, 73].
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3. Implementation Aspects

3.1. Requirements

3.1.1. Non-functional Requirements

As already introduced in Section 1.3, an application (or app) named iScope has to be

developed that acts as a client for SignalServer in order to allow mobile, live quality

monitoring during biosignal measurements. Deployment platforms shall be iOS® with

version 4.0 and higher. Primarily, iScope has to run on at least iPhone® 3GS due

to device availability reasons. Nevertheless, iPod touch® 3G compatibility should be

considered. Furthermore, it is a requisite that iScope also runs on successors of iPhone®

3GS as well as on iPad® devices of the first generation and higher. No minimum

biosignal data transmission rate was agreed but limitations of iScope have to be tested.

Downsampling of received biosignals was explicitly ignored because it will be implemented

in SignalServer natively in the near future.

3.1.2. Functional Requirements

First of all, the user shall be able to manually enter the address of a SignalServer or

select a SignalServer from a list of previous server sessions and then initiate a connection

attempt. If connection has been successfully established, the user is presented an overview

of all available biosignal channels hosted by the SignalServer. Then, the user (un)selects

an arbitrary number of biosignal channels one after another or (un)selects all channels of

a particular type at once. After the selection has been confirmed, live visualization of the

selected channels starts. Basically, every channel is visualized by means of a line graph

and a spectrogram. The optical appearance of the line graph should be similar to the

native iOS® stock market app. The spectrogram utilizes FFT to calculate spectra with

a fixed size time window of one second. In contrast, the window function and number

of FFT cycles per second should be configurable. No minimum amount of cycles per

second was agreed but limits have to be tested. A color coded representation of spectra
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shall be used to observe spectra changes over a period of time. Both, line graph as well

as spectrogram shall be able to operate in two modes. Data is either visualized at the

right edge of the graph and the content area is continuously scrolling, or data is drawn

similar to various medical devices at the position of a thin vertical bar that runs from

the left to the right edge of the screen cyclically. The number of simultanously visible

graphs shall vary on the orientation of the device and the type of device. If the device

is held in portrait orientation, more graphs could be placed among each other than in

landscape orientation. Furthermore, graphs may be arranged in two columns on iPad®

devices whereas only one column is reasonable for iPhone® or iPod touch® devices.

Additionally, line graphs and spectrograms shall be placed on two different pages but the

user may decide to change the position of graphs in a similar way to the native iOS®

app launcher application on the iOS® home screen. This includes reordering of graphs

on the same page as well as on different pages. Scrolling between pages and within one

page has to stop at integral graph positions in order to prevent partially hidden graphs.

It shall be possible to magnify graphs to fit the entire screen size that reveals additional

explanation or information (e.g., minimum/maximum values). The observation period is

linked to a specific number of seconds. However, the user shall be able to continuously

zoom the time window but the zoom should snap in when integral seconds are reached.

In addition, the value domain (minimum/maximum represented value) shall be scalable

as well. While graphs are visualized, the user shall be able to stop and restart data

transmission in order to (un)freeze graphs at any time. The content of the screen shall be

captured by a screenshot on demand. Then, the user can decide whether the screenshot is

stored on the device or sent by email. iScope shall add a seperate entry in iOS® Settings

app to allow configuration of parameters that are applied when the app is started:

• Layout of graphs by specifying the number of visible columns and rows for portrait-

and landscape orientation.

• Maximum observation period in seconds.

• General flag to disable spectrograms.

• Window function used by the STFT (rectangular, Hamming, Hann normalized/de-

normalized, Blackman, Bartlett).

• Flag that indicates if the output of the FFT is given in dB.

• Maximum amount of FFT cycles per second.
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• Flag enabling a simulation mode that allows to demonstrate iScope’s capabilities

without connecting to a real SignalServer.

On the other hand, iScope shall also feature a dedicated settings screen to configure

parameters that are applied immediately if they are changed. These are the visualization

mode for all graphs which can either be cyclic or scrolling as already mentioned, or the

scaling mode of line graphs and spectrograms separately. Thereby, scaling shall either be

fixed by configuring boundaries manually or automatically by detecting maximum- and

minimum values online and adjust the visualization accordingly. Finally, every use case

shall be controlled by common or extended iOS® gestures (e.g., pinch gesture for scaling

or zooming, double tap for magnification, shaking the device for starting/stopping data

transmission).

3.2. General Design Decisions

iScope especially sticks to the following performance related principles:

• Locking and synchronization of threads is reduced to a minimum and preferable

replaced by other techniques like run loops. For instance, all classes implementing

the singleton design pattern have to be initialized explicitly to avoid synchronization

overhead [74].

• Blocking the main thread makes the application less responsive and is avoided if it

is possible.

• Graphical contents are redrawn only if they have effectivly changed.

• Implicit Core Animation animations are generally disabled.

• According to Section 2.2.3, single-precision data types and functions are used over

their double-precision counterparts if the loss of precision is arguable in order to

gain a possible performance boost. In this manner, also frequently used results of

floating-point operations are cached if a huge amount of redundant computations

can be saved.

Various design patterns from Section 2.4.2 are also adopted in all (sub) projects.

C++ classes are wrapped with Objective-C® classes if it was necessary to fully utilize

iOS® SDK framework features (e.g., dispatching a selector with an object parameter to

29



the main run loop).

Finally, all classes implemented in the course of iScope share the BCi-prefix and are

derived from NSObject. However, class diagrams will omit the NSObject inheritence

relation due to shortage of space.

3.3. System Architecture

3.3.1. System Overview

Common

<<static library>> Layout Manager

<<static library>>

Signal Server Client

<<static library>>

iScope

<<app>>

Graphs

<<static library>>

<<links with>>

<<links with>>

<<links with>>

<<links with>>

<<depends on>>

<<depends on>>

<<depends on>>

Figure 3.1.: Main system modules overview

Four main modules established as seperate buildable Objective-C static libraries compose

the basis for the final app. Static libraries are facilitated due to the lack of iOS® to

support individual frameworks. Other external dynamic linked libraries have to be

avoided as well. Figure 3.1 illustrates how these modules depend on and interact with

each other. Decoupling functionality in independent modules faciliates several aspects:

• Resuability of specific modules in new or existing projects that also improves

the chance of discovering possible problems by potentially keeping the codebase

permanently alive.

• Flexibility and interchangeability of modules by another version or different imple-

mentation of the module.

• Sole development and testing of every module reduces the time to detect problems,

failures and bottlnecks which also increases the maintainability.
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• Encapsulation of algorithmns and data structures hides the internals of a module

and enforces clear and easy to use module interfaces that are less error-prone and

raising the testability.

Basically, every module uses functionality from the Common module. Although all

required header files have to be already present when the module compiles, the Common

module library is not actually linked with any other produced module library. Doing so

would end up in various ”duplicate symbols” linker errors when linking different module

libraries (e.g., libbcigraphs.a and libbcilayoutmanager.a) against the same binary.

This forces iScope or any other app (e.g., unit test apps) using one of the four main

modules to explictly link the Common module library with the binary, even though no

functionality of that module is referenced directly. The corresponding XCode® projects

already take care of that aspect by adding cross-project references for all necessary

modules and associating the library files to executable targets. In the same way, every

module is managed by an individual XCode® project and may use additional sub modules

as well. Table 3.1 shows the mapping between main modules, related XCode® projects

and resulting static libraries.

Module XCode® project (.xcodeproj) Static library (.a)

Common LibBCiCommon libbcicommon

Graphs LibBCiGraphs libbcigraphs

Layout Manager LibBCiLayoutManager libbcilayoutmanager

Signal Server Client LibBCiSignalServerClient libbcisignalserverclient

iScope BCiScope

Table 3.1.: Main system modules: XCode® projects and binaries

3.3.2. Automatic Testing

Every main module is responsible of managing its own unit test target(s). Therby,

whitebox- as well as blackbox tests are implemented. For this purpose, GHUnit frame-

work is utilized because it offers more readable/formatted output, a custom GUI-based

runner and more test macros than OCUnit/SenTestingKit framework. In conjunction

with XCode® 3.2 and below, the main benefit of GHUnit is the ability to debug test

methods directly on the device. However, as XCode® 4 has been released and some

advantages became obsolete, the test framework should be exchanged in the future. In

doing so, GHUnit test classes can be easily integrated in OCUnit test classes. [75, 76]
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3.4. Environment

3.4.1. Platform

At the time iScope was initiated, the preferred IDE for iOS® platforms was XCode® 3.2.

For this reason, iScope was developed with this particular version of XCode®. Hence,

the term XCode® always refers to version 3.2. Nevertheless, all (sub) projects in the

context of iScope can be built with XCode® 4 due its downward compatibility with

XCode® 3 projects.

iScope will only run on iOS® versions 4 and above resulting from the dependency on

the vDSP library which was introduced with iOS® SDK 4.0 (see Section 2.4.6). This

limitation is acceptable compared to the availability of a fast signal processing API that

is highly optimized for iOS® devices. Unfortunately, iPhone® 1G/2G devices and iPod

touch® 1G devices do not support iOS® 4. However, iPhone® 3GS devices which are

also the minimum iOS® devices that should be supported is capable of installing iOS® 4.

The proejct is built as an univesal app targeting ARM®v6- as well as ARM®v7 archi-

tectures. Furthermore, the app can run on any iOS® device, disregarding if it features a

retina display or has the dimensions of a phone or pad.

3.4.2. Compiler and Linker

In general, iScope uses LLVM GCC 4.3 to generate all of its binaries. This is a consequence

of Section 2.3.1 that explains several potential advantages.

In order to ensure that Thumb compiler flag is only specified for ARM®v7 architectures,

conditional build settings have to be created inside the build settings section in every

XCode® project. Avoiding Thumb for ARM®v6 architectures should prevent all negative

impacts discussed in Section 2.2.3.

In this context, it is also indispensable to explicitly pass a couple of specific flags to the

linker in order to avoid linker errors and abnormal program behaviour:

• ObjC causes the linker to load all object files containing Objective-C classes

or categories. Enabling this flag is crucial in conjunction with static libraries

(e.g., libbcicommon.a, libbcigraphs.a etc.) that define categories of preexisting

classes. The crux is that the Objective-C compiler generates unresolved linker

symbols only for each utilized class and not for every single adopted method.

Consequently, the linker will not include object files or code of categories in the
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executable if associated classes have already been resolved. Although compiling

and linking will finish successfully because of the dynamic nature of Objective-C,

without setting this flag, the program will very likely be terminated by an ”selector

not recognized” exception thrown by the runtime system. Specifically, this will

happen if a particular method defined in any of those categories was called during

program execution.

• all load or force load are addressing a bug in the Objective-C linker that prevents the

above mentioned linker flag from loading object files containing categories in static

libraries under specific circumstances (compiler versions and target architectures).

Accordingly, passing only ObjC would also lead to the same runtime exception as

if it was never specified. all load simply solves this issue by loading all object files

from all static libraries disregarding if these libraries effectivly contain Objective-C

code. force load is more flexible by allowing to specify only those static libraries

that should be considered by this practice. In this case, the output file will grow

by comprising code that will never be used. Alternativly, adding a dummy class in

the context of every of these categories would also be effective without having to

accept the mentioned downside. Of course, the latter method would even make the

need of ObjC obsolete, but should be considered as a workaround rather than a

real solution. Apple recommends one of the former ways which are also applied to

iScope as long as the bug remains.

• lstdc++ links the binary against the GNU’s Not UNIX (GNU) C++ Standard

Library (libstdc++). This flag is fundamental since libstdc++ is not automatically

linked if only other involved static libraries but the project itself does not cover

any Objective-C++ files. Consequently, skipping lstdc++ would induce many

”undefined symbols” linker errors when building iScope.

These individual linker flags are appended to other linker flags parameter of specific (sub)

projects or single targets.

3.5. Common Module

This module provides generic functionality used in most modules and sub modules of

iScope and depends on no additional library or (sub) module. The corresponding XCode

project file is located in trunk/src/LibBCiCommon. Table 3.2 shows a list of all contained

buildable targets.
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Target Description

LibBCiCommon Static library

Tests Unit Tests

BCiCommonBenchmarks Ring buffer benchmark

BCiCommonDemo Common examples

Table 3.2.: Deployment targets: Common module

3.5.1. Managing and Passing Data Samples

In order to process data generated by different kind of modules transparently, a unified

data access interface for data containers is aspired. BCiReadableDataBuffer represents

this kind of interface. Section 3.5.1.1 will discuss different types of data providing classes

used in iScope that implement this interface directly.

In many cases, a generic interface for random data access like BCiReadableDataBuffer

may be sufficient, but sometimes it is also required to impose the internal structure of

traversing a data container. For this purpose, an additional interface according to the

iterator design pattern is designed that is explained in Section 3.5.1.2 [74]. Figure 3.2

shows how BCiReadableDataBuffer, and BCiDataIterator work together and also gives

an overview over all classes implementing these interfaces.

<<protocol>>

BCiReadableDataBuffer

dataAtIndex:()

<<property>> usedCapacity()

<<property>> capacity()

<<protocol>>

BCiDataIterator

currentValue()

nextData()

isEndOfData()

invalidate()

restart()

BCiDataBufferIterator

BCiDataBufferBCiVectorDataBuffer BCiSpectrumDataBuffer BCiValueDataIterator

1

Figure 3.2.: Class diagram: fundamental data containers

3.5.1.1. Readable Data Buffers

Each module might have a data representation that is optimized for a certain use case

(e.g., storing power spectra requires a different memory layout than keeping a vector of

continuous data samples in the memory). When passing data to another module, explicit

and possible expensive data conversion is no longer necessary if the data class already
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implements BCiReadableDataBuffer. Moreover, changing the underlying data structure

of a module will no more effect other modules as well. Amongst other positive effects,

this increases the testability by demanding the called API to be tested only against the

public interface rather than all implementing classes.

This technique is heavily used to communicate between Graphs module (Section 3.8)

and Signal Server Client module (Section 3.6) but also between other (sub) modules,

thus being a fundamental part of decoupling modules from each other and the modular

architecture of iScope.

Ring Buffer

When envisioning core tasks of iScope, it is important to have access to a data structure

that stores data samples from various signals and ensure the following qualities at the

same time:

• Fast insert operations at the end of a sequential data collection.

• Fast random access to any element and traversal of the collection.

• Efficient use of memory constraint to a fixed number of simultanously buffered

data samples. At any time, only data within a given interval has to be available

while the number of data per interval remains constant.

• Fast single-precision floating-point C-array conversion or representation of arbitrary

data sequences to tollfreely utilize vDSP function calls.

All mentioned objectives are met by a ring buffer (also sometimes referred as circular

buffer). Inserting data at the beginning or at the end has an asymptotic runtime

complexity of O(1) as well as accessing elements at random. Copying elements to a

specific destination induces a complexity of O(n) that also describes its memory costs,

although memory might be allocated only once the ring buffer was initially created.

Then, subsequent insert operations would benefit from reusing an existing memory slot.

A ring buffer is not optimized for inserting elements at random positions but this is no

prerequisite. It is sufficient to use a fixed capacity and override elements prioritized by

the first-in, first-out method if the maximium number of elements has been reached. [77]

When looking for a base container class for a ring buffer implementation, Foundation

framework provides NSMutableArray as the only reasonable native Objective-C collection

that affords adding, deleting and accessing data while preserving the original order of
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contained data elements. While promoting a comprehensive interface, sufficient to design

a ring buffer, would commend the application of NSMutableArray, there is also one aspect

that disqualifies this approach. NSMutableArray is not designed to manage elements

of primitive data types like float. Instead, in order to enable NSMutableArray as a

container for basic data samples, each value has to be wrapped by an Objective-C object

first. This characteristic has some significant impacts:

• Utilizing vDSP API of the Accelerate framework to process data samples requires

expensive C-array conversation.

• Memory overhead of keeping an extra Objective-C wrapper object for every data

sample.

• Necessity of implementing an additional wrapper class. Unfortunately, NSNumber

is immutable which would lead to allocate an object every time a data sample is

put into the array.

Making use of the std::deque class (double ended queue) that is shipped with libstd++

represents another way of constructing a ring buffer without relying on any other external

framework or library. In contrast to NSMutableArray, std::deque does not have the

drawback of demanding on a wrapper class for storing primitive data values. Anyway,

it has still one major disadvantage in common, the need of copying each element in a

C-array before data samples can be passed to one of the vDSP functions.

Of course, there are other C++ libraries offering ring buffer implementations like the

popular Boost library (referred as circular buffer). Unfortunately, Boost ring buffer does

not already handle direct C-array conversion of arbitrary buffer index ranges automati-

cally. Consequently, this behaviour has to be done by a seperate wrapper or controller

class and will lead to an additional implementation effort anyway. On the other hand,

fundamental concepts should not be relient on an external library if possible. These are

the reasons why Boost library is not considered for this purpose.

Concluding, BCiDataBuffer implements a simple custom ring buffer to fit the require-

ments and avoid all negative aspects that were discussed above. Internally, a fixed size

C-array is used to represent the data and store elements up to a maximum capacity

simultaneously. As long as the used capacity does not exceed the maximum capacity,

the n-th element of the buffer corresponds to the n-th element of the C-array. Once

an element is inserted into an already full buffer, the first element in the buffer will be
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overwritten. Consequently, a mapping from the external buffer index to the internal

C-array index is necessary whenever an element is accessed. Then, the last element of the

buffer differs from the last element of the C-array and corresponds to the first element in

the C-array instead. In this way, no further memory has to be allocated on any insert

operation. Figure 3.3 demonstrates a buffer in all possible states: empty state, a state

that does not require index mapping and a full buffer.

BCiCommonBenchmarks compares BCiDataBuffer with rudimentary Objective-C(++)
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Figure 3.3.: Ring buffer with a maximum capacity of 16 elements

ring buffer implementations based on NSMutableArray and std::deque by means of

three expected core tasks. See Section A.1 for more information about the tasks and

benchmark results. Although all compared techniques have similar asymptotic time

complexities for adding, traversing and copying data to a C-array, only the latter task

is significantly performed exclusivly faster in the case of BCiDataBuffer. This results

from the internal C-array representation of the data. Thereby, copying is permitted by

performing memcpy at worst twice instead of accessing and copying every element of the

array individually. memcpy is a standard C-function that copies blocks of memory to

a destination memory address typically very fast. Performing the traversing task with

NSMutableArray in combination with fast enumeration and std::deque with Standard

Template Library (STL) iterator equals the performance of stepping through all elements

with BCiDataBuffer. NSMutableArray seems also to be distinctly behind all other

competitors in running the adding task due to the wrapper class overhead.
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Spectrum Buffer

BCiSpectrumDataBuffer provides an abstraction of vDSP in-place real FFT results

which also conforms to BCiReadableDataBuffer. Every instance may be configured

as returning either amplitudes or power values. Then, subsequent calls of the random

access API of BCiReadableDataBuffer will compute the associated method implicitly.

In addition, another flag specifies whether or not the logarithm should be applied on

spectra values. The logarithm is useful to suppress statistical outlier in the biosignal (e.g.,

as a result of noise) and is calculated with 10 · log10(Magic Number + Spectral V alue)

where Magic Number is a constant and set to 1 in order to prevent passing zero as

an argument to the logarithm which would lead to undefined results. However, adding

Magic Number will not alleviate the desired effect. Due to the special data packing of

the vDSP API, the external indices have to be mapped to internal indices every time an

element is accessed.

3.5.1.2. Data Iterators

The BCiDataIterator interface provides methods for traversing a subset of a data

collection including sequential forward data access, testing if the current element is already

the last element of the subset, invalidating and restarting the current traversal. Displaying

data samples was originally initiated by passing BCiReadableDataBuffer conforming

objects to different views from view controllers in the Graphs module. BCiDataIterator

replaced this approach by exposing only a subset of all data samples while not changing

the underlying data container. This makes the direct index driven data access obsolete

and facilitates looser coupling between different modules and/or submodules. In this

context, the most valuable benefit is the easy realization of polymorphic traversal.

3.5.2. Generic User Interface Elements

In the course of iScope it was also necessary to create custom user interface elements for

generic purposes:

• BCiTableSectionHeaderView, a multi-clickable table header view with a color

gradient background and a blue arrow button. The background also acts as a

button. If the arrow button is tapped, it will rotate by 90◦. Every further tap will

alternate the sign of the rotation. Taps on both buttons could be customized by

the target/action pattern.
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• BCiNavBarTextField, a textfield especially designed for the use in the navigation

bar because native textfields could not be used in this case.

• BCiSlider, a slider that will directly reflect its value in a linked textfield.

3.5.3. Detecting extended Pinch Gestures

UIPinchGestureRecognizer from Table 2.4 represents the starting point in the course

of permitting simple pinch gesture recognition. While up to two fingers are touching an

associated hit-test view, the gesture recognizer remains in Possible state and tracks all

related touches. As finger movement exceeds a threshold, pinching is detected. Then,

the gesture recognizer turns from Possible state to Began state and sends the action to

the configured target for the first time. Optionally, but repeatedly if one of the fingers

moves while the other finger remains still pressed, the gesture recognizer will change to

Changed state and sends an additional action. Once the last finger is lifted, Ended state

is adopted and the action is delivered for the last time. This perfectly fits the needs

of iScope but in order to determine if the current pinch was performed in horizontal

or vertical direction and inwardly or rather outwardly, UIPinchGestureRecognizer has

to be extended by the custom BCiPinchGestureRecognizer class. On any transition

to Began- and Changed state, BCiPinchGestureRecognizer determines the category of

the current pinch by calculating the angle (α) between the current coordinates of the two

touches. The gesture is classified either as a horizontal inward pinch, horizontal outward

pinch, vertical inward pinch or vertical outward pinch. If α is less than a given border

angle, the pinch is horizontal justified. Values of α that are beyond the border angle will

be considered as vertical. If not specified, the border angle is set to 45◦. Inward pinches

involve touches moving toward each other, as opposed to outward pinches requiring

touches that move apart. Figure 3.4 illustrates all possible pinching categories as well as

an extra blind area which is the result of the blind angle property that spans an area

where no valid categorization is possible. Further, every pinch gesture has a current

scale property that reflects the alternation of the most recent touches relative to the

original position. This value starts with a value of 1.0. Consequently, during the gesture,

more distant original touches will lead to a finer grained control of the scale factor than

touches that were not far apart initially. The scale factor is resetted every time the

category of the gesture has changed or a valid mapping to one of the categories has

become impossible. [52]
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Figure 3.4.: Detecting extended pinch gestures with BCiPinchGestureRecognizer

3.5.4. Spectrum Computation

The spectra of a given real input vector (representing a discrete time signal) are com-

puted with an instance of BCiSpectrumController that is based on the vDSP API.

Encapsulating the transformation to the spectral domain makes it easy to tune or fully

replace the interanlly used FFT implementation or behaviour without changing code

in any other source file. As a consequence, the usage of the vDSP API is not visible

outside BCiSpectrumController. Currently, the FFT is calculated with a real in-place

power-of-two algorithmn and the radix 2 option. Because iScope processes signals with

different sample rates but calculates the STFT in constant intervals, also twiddle factor

arrays with distinct sizes are involved. For the first time an instance of BCiSpectrum-

Controller is forced to compute a complex spectrum and no suitable array of twiddle

factors is present, it will be generated. Then, it remains accessible for all instances if an

equal sized spectral domain transform is requested.

Basically, the number of samples, an input vector containing these samples and the

type of the window function have to be specified in order to compute the spectra. BCi-

SpectrumController will automatically take care, if the size of the given input vector

is not a power of two by padding up to the next power of two with zeros. Rectangular-,

Blackman-, Hamming-, von Hann- and Bartlett windows are available and cached for

subsequent applications. The spectral results are packed into an instance of BCiSpectrum-
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DataBuffer which already cut off the redundant half of the output due to the symmetry

of the spectrum.

3.5.5. Device Categorization

At certain times, it is significant to have knowledge about the underlying iOS® device.

For example, if an algorithmn should be optimized for the computational power or the

screen resolution/dimension of a particular device. This is handled by a custom category

of UIKit’s UIDevice which is BCiUIDevice Utiliy.

3.6. Signal Server Client Module

The Signal Server Client module handles communication with TiA server interface by

including parts of TiA library as an independent sub module (see Section 3.6.2). That sub

module in turn depends on TinyXML++ library and two Boost libraries (Boost.System,

Boost.Date Time) which requires to have all of these libaries compiled for iOS®. For

this purpose, TinyXML++ is built as a static library managed by a seperate XCode®

project (see Section 3.6.1). The Boost libraries are built as described in Section A.2.

3.6.1. Building TinyXML++ Library for iOS®

Building TinyXML++ for iOS® is done by LibTicpp.xcodeproj which is an individual

XCode® project located in trunk/src/external/LibTicpp. It produces the static

library file libticpp.a. A seperate XCode® project is required due to the fact that

the shipped Makefile does not consider builds with the iOS® SDK. When building the

project, also the TIXML USE TICPP preprocessor macro is defined that guids to use the

C++ version of the library. LibTicpp is the only XCode® target that finally outputs

the static library.

3.6.2. Building TiA Library for iOS®

Basically, the TiA library contains a Qt [78] project file TOBI SignalServer tialib.pro

that generates Makefiles by using qmake [79] to build the library after all. Unfor-

tunately, the configuration file is not designed to build an iOS® compatible binary.

Furthermore, it introduces additional external dependencies (e.g., Lpt tools) that are

not required in the case of iScope. The direct conversion from .pro-file to XCode®
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project by means of qmake will not fix the problem and requires manual adaptation of

several project settings anyhow. Hence, LibTOBISignalServerClient.xcodeproj, an

individual XCode® project is created in trunk/src/extern/LibTOBISignalServer-

Client that only comprises sources and headers utilized by iScope. In this way,

unused server functionality is discarded. The project defines two buildable targets,

LibTOBISignalServerClient and TOBISignalServerClientDemo. The former one pro-

duces the static library libtobisignalserverclient.a and the latter one builds an

app that demonstrates only fundamental capabilities.

When linking against libtobissignalserverclient.a, also libticpp.a, libboost -

system.a and libboost date time.a have to be linked. Although amongst others,

Boost.Asio is referenced by TiA client implementation, there is no need to link an

additional binary for a header-only library. In the future, an approach without an explicit

XCode® project should be considered similar to treating Boost libraries.

3.6.3. Signal Server Client Library

In fact only the interface of this library is used when iScope internally interacts with

Signal Server Client module. The library is managed by an XCode® project located in

trunk/src/LibBCiSignalServerClient. Various buildable targets are maintained by

the project which are listed in Table 3.3. The core of the libray makes use of TiA library

client implementation that also contains C++ code. Due to the dynamic development

character of TiA library (e.g., changes of the communication protocol, client) when

iScope was initiated, the library was encapsulated by the adapter design pattern [74].

This was the main reason of designing an individual library. Another main intention

was to be able to communicate with TiA server interface while providing model- and

controller classes to obtain received data based on interfaces that rely on Objective-C.

This approach should facilitate Cocoa Touch and Foundation framework features.

From iScope’s point of view, no additional libraries have to be regarded because

libtobisignalserverclient.a already links with libticpp.a, libboost system.a

and libboost date time.a.

The implementation of the Signal Server Client library is based on extra properties of

SignalServer which are derived from several observations. Once these properties change

(or are fixed) in the future, then the library has to be adapted adequately. First of all,

the virtual sampling rate of signals have to be greater or equal 1 Hz (fs virtual < 1),

otherwise the server would not have been started succesfully. Phase shifting between
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Target Description

LibBCiSignalServerClient Static library

Tests Unit tests

BCiSignalServerClientDemo GUI driven demo client illustrating basic data
transmission capabilities

Table 3.3.: Deployment targets: Signal Server Client module

master and slaves never ever occurs with the exception of pseudo phase shifting that

results from different block sizes. Data packets are serially numbered starting with 1.

The block size and sampling rate are supposed to be static attributes of a signal that

do not change during a server session. Latest slave data is fetched in periodic master

cycles disregarding if data has been ready in a prior master cycle that potentially leads to

undersampling and aliasing. For example, assuming a configuration that includes a master

with Sampling Rate = 12 Hz, Block Size = 2 and a slave with Sampling Rate = 9 Hz,

Block Size = 4. Then, the server calculates the Ratio of virtual master sampling rate

and virtual slave sampling rate to determine the interval which is used to send slave data

blocks. It appears, this interval is always an integral number. This can be observed at the

server after starting with the mentioned configuration by noting the printed Ratio which

amounts 3. The Ratio is calculated by rounding up
fs virtual (master)

fs virtual (slave)
= 6

2.25
= 2.67 ∼ 3.

Consequently, only every third data packet will contain a block of slave data which would

not be sufficient. If 6 master data packets are received per second by the client, this

results in mere
fs virtual (master)

Ratio
= 6

3
= 2 slave data blocks per second instead of correct

2.25 data blocks per second. The sampling rate of the slave would be effectively 8 Hz in

place of 9 Hz which causes omitted data samples at the client.

Figure 3.5 gives a rough overview about the structure of the Signal Server Client library.

Basically, the public API provides two main interfaces, BCiSignalServerClient and

BCiSignalDataModel to communicate with the server and retrieve transmitted data.

Both always represent a pair that belongs together where BCiSignalServerClient con-

trols the server by sending appropriate commands and BCiSignalDataModel reflects

the server results (e.g., data, meta information) in response of these commands. In

this manner, instances of BCiChannelBuffer which contain the actual data samples are

retrieved through BCiSignalDataModel but cannot be added or removed with the public

interface. Even though the library is multi-threaded internally, no explicit and expensive

thread synchronization has to be taken into account when accessing data samples through

the data model.
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<<protocol>>

BCiSignalDataModel

channelBufferWithChannelInfo:()

addAllChannelBuffersToArray:()

channelBuffersWithSignalType:()

addAllSignalInfosToArray:()

addAllChannelInfosWithSignalType:toArray:()

clearAllChannelBuffers()

<<property>> bufferedPeriod()

<<property>> allChannelInfos()

<<property>> allSignalTypes()

BCiBasicSignalDataModel

BCiSignalContainerBCiChannelBuffer

<<protocol>>

BCiSignalInfo

<<property>> signalType()

<<property>> samplingRate()

<<property>> blockSize()

<<property>> unit()

<<property>> flag()

<<property>> periodic()

BCiChannelInfo

<<protocol>>

BCiSignalServerClient

<<property>> delegate()

<<property>> dataModel()

<<property>> hostname()

<<property>> port()

<<property>> timeoutInterval()

connectWithTarget:andAction:()

disconnectWithTarget:andAction:()

startReadingDataWithTarget:andAction:()

stopReadingDataWithTarget:andAction:()

selectChannel:()

selectChannels:()

unselectAllChannels()

unselectChannel:()

applyChannelSelectionWithTarget:andAction:()

connected()

readingData()

<<protocol>>

BCiSignalServerClientDelegate

didRecognizeUnrecoverableError:()

<<singleton, factory>>

BCiSignalServerClientFactory

BCiTiASignalDataModel

BCiTiASignalServerClient

NSObject

BCiDataBuffer

<<category>>

BCiNSObject_SortByChannel

BCiSimulationSignalServerClient

BCiSimulationSignalDataModel

<<protocol>>

BCiSignalServerClientResult

<<property>> result()

<<property>> client()

BCiBasicSignalServerClient

1
*

1

1

*

1 1

1

1

Figure 3.5.: Class diagram: Signal Server Client overview
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Additionally, the library implements the factory method design pattern [74] to mask

the implementing class of the BCiSignalServerClient interface (i.e. TiA client) be-

yond the scope of the library. In this course, BCiSignalServerClientFactory is the

only way to instantiate a concrete client. This behaviour allows to exchange the client

implementation without effecting any other source file other than the file containing

the factory method. For example, in this way a client implementation that does not

depend on TiA-, Boost- and TinyXML++ libraries could be easily introduced in the

future. Two types of clients can be created, a client for a real SignalServer and a client

that only simulates a server. Although two distinct factory methods exist, both clients

implement the same BCiSignalServerClient interface that makes it simple to write an

application which interchanges these two clients. Currently, the factory method referring

to a real server transparently returns an instance of BCiTiASignalServerClient that

utilizes the existing TiA library client. On the other hand, the factory method for server

simulation returns an instance of BCiSimulationSignalServerClient which emulates

a fully-fledged server with a specific configuration.

BCiChannelBuffer acquires the already discussed ring buffer BCiDataBuffer to store

data samples within a defined period. Currently, the last 10 seconds are recorded for every

periodic signal channel which may be adjusted by changing the corresponding property of

BCiBasicSignalDataModel. In constrast, only the current value of an aperiodic signal is

revealed. It was a project requirement to use UDP instead of TCP when communicating

with the TiA server. When loosing data packets, dedicated sentinel values are added to

the underlying ring buffer to preserve the possibility to determine if a specific sample

was either received or interpolated. This constant value is defined as FLT MAX which

lies off the expected value range of biosignals. In this case, comparing two float values

for equality is feasible because the values were initialized one with another. Alternativly,

every data sample could be represented by a custom structure or class with an attribute

that signals whether or not the sample was interpolated. However, the sentinel value

strategy faciliates performance, has no memory overhead and requires no additional

implementation effort. When starting a new data transmission, the data model is cleared

and all data samples from prior transmissions are considered as data loss.

Every BCiSignalServerClient implements the delegate pattern to report abnormal

behaviour. In this case, the current client should be discarded and replaced by a new

one.

Some of the methods of the public API involve sending commands to the server. How-
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ever, using the client should not block the calling (main) thread until the task specific

communication has been finished in order to keep the application responsive. For this

reason, all of these methods will return right away after the communication has been

initiated and make use of the target/action pattern. Then, the given target is notified

about completion by calling the associated action on the main thread. Only one method

at once could be handled this way.

Until now, whenever SignalServer transmits data, data samples of every signal and

channel are sent to the client, even if only one particular channel is desired. According

to [67], it is planned that the client/server protocol will be extended by a mechanism to

select those channels that should be included in data transmissions. Utilizing this feature

would significantly reduce the data packet size (i.e. the amount of network traffic) and

thus, the time to receive and parse all interesting samples. The public API of the Signal

Server Client library already provides this feature which in turn is used by iScope.

Due to the stated extra properties relating rational virtual sampling rates, handling

data loss will only correlate with SignalServer in conjunction with pure integral virtual

sampling rates.

3.6.3.1. Real SignalServer Client

Figure 3.6 demonstrates the interaction of the most important classes by the Real

SignalServer Client.

It is important to explicitly set the UDP receive buffer size of the underlying socket for

BCiTiASignalServerClientBCiTiASignalDataModel

tobiss::SSConfig

tobiss::TiAClient

tobiss::DataPacket

BCiTiADataPacketContainer

BCiTiASignalTypeMapper

BCiTiADataPacketBCiTiAChannelBuffer

BCiBasicSignalServerClientResult

1

1

wraps

1

1

*

Figure 3.6.: Class diagram: TiA client adapter

Mac OS X® and iOS® to an adequate value (300.000 bytes). The default value of TiA
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library client would be to high and causes a program crash or at least unpredictable

behaviour.

All blocking TiA library client methods (e.g., connecting, disconnecting) have to be

performed in background threads, otherwise the main thread would be locked until the

execution of all incorporated methods has finished. This is indispensible because TiA

library client does not support a configurable timout. All API calls would not break

before an undefined time has expired. A proper synchronization technique is demanded

to ensure only one of these methods is performed in a separate thread at the same time.

This is done by means of locks and condition variables.

When connecting to a server, primary TiA library client is configured to use 0.2 commands.

If the server does not speak the 0.2 dialect, the client fails to connect. Only under these

circumstances a connection relying on 1.0 commands is attempted to be established. Of

course, this also implies a longer time until the connection is finally set up by having to

await the timeout of connecting with 0.2 commands in the first place. At the time, TiA

library clients using 0.2 commands are preferred because they seem to be more reliable

and stable than their 1.0 counterparts that tend to show odd behaviour.

Starting a data transmission spawns a new long term thread that is assigned to receive

new data packets through TiA library API repeatedly until the data transmission is

explicitly stopped or the client breaks unintentionally. Synchronizing the reader thread

with the main thread when calling the Signal Server Client API is also done with

appropriate locks and condition variables. This necessity results from upholding the

consistency of TiA library client by prohibiting changes of the client state while the

client is not finished with an assigned task (e.g., reading a data packet). In this context,

also a keep alive timer is implemented that checks in regular intervals if the read data

packet loop is still frequently iterated or is blocked for any reason. This occurs if the

connection to SignalServer is aborted while TiA library client is already waiting for the

next data packet. In this case, the delegate is notified about an unrecoverable error

because TiA library client can be neither recycled nor released. Basically, this involves

testing if a number of data packets has been read since the last time the timer fired.

Further, these checks will have no significant impact on performance due to a reasonable

T imer Interval = Master Block Size + Constant (seconds). This process also takes

care of thread synchronization.

As anticipated, iOS® is not able to adopt any suggested thread priorities which supersedes

improving the performance of the client by tuning the scheduling priority of the reader
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thread.

Finding an efficient way to pass data samples received by the reader thread to the data

model and access these samples through the data model from the main thread was one

of the key challenges when designing BCiTiASignalServerClient. Instead of explictly

protecting the data model with a mutex whenever adding or accessing data, better

performance is attained by performing both operations in the same thread exclusivly.

After the reader thread received a data packet, a selector is dispatched to the main event

loop that is in charge of extracting data samples from the data packet, handling possible

data loss and filling the data model. Finally, the selector is executed in the next main

event loop cycle. Due to the fact that only instances of NSObject may be passed to

selectors, data packets have to be wrapped by an appropriate class which is constituted

by BCiDataPacket. In order to prevent excessive selector dispatching in conjunction with

high virtual master sampling rates, BCiDataPacketContainers are dispatched instead

that aggregate an amount of BCiDataPacket objects. This amount is directly linked to

the expected number of data packets per second which limits the number of dispatched

selectors to a configurable maximum.

After all, a mechanism to detect and compensate data loss is also implemented in Signal

Server Client library. Data loss may occur due to overwriting unread data packets in

the socket receive buffer if the reader thread cannot handle the virtual master sampling

rate. On the other hand, data packets could simply get lost on the way to the client

on the network during an UDP data transmission. The data model keeps track of the

data packet sequence number of the most recent received data packet and sample per

channel. If the difference of the data packet number of an incoming data packet and the

most recent data packet number exceeds 1, then packet loss was detected. This might

effect one or more channels. Then, all possibly affected channels are marked indicating

further handling is required. The effective amount of lost data samples is discovered the

next time a sample is added to one of these channels. For this purpose, for every marked

channel, the ratio between virtual master sampling rate and virtual sampling rate of the

channel (slave) is used to calculate the effective lost amount. In doing so, the current

data sequence number of the channel is compared with the former data sequence number

(see Formular 3.1). In this process, a optionally phase shifiting would have also been

considered.
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Ratio =
fs virtual (master)

fs virtual (slave)

Amount =
(

⌊
Data Packet Numberincoming

Ratio
⌋ − 1

)

· Block Sizeslave − Sequence Numberslave

Formula 3.1: Calculating the amount of lost data samples at the client

BCiSimulationSignalServerClient

BCiSimulationChannelBuffer

<<protocol>>

BCiSignalServerClientResultBCiBasicSignalServerClientResult

1

BCiSimulationSignalDataModel

Figure 3.7.: Class diagram: simulated server client

3.6.3.2. Simulated Server Client

Figure 3.7 gives an overview about the Simulated Server Client class environment.

At present, periodic EEG signals (see Table 3.4) up to 10 channels and one aperiodic signal

of type button with a single channel are generated. In spite of the aperiodic character of

the button, it will randomly change its value every 1/3 seconds. In this context, a virtual

sampling rate constitutes rather an upper boundary than an effective guideline for the

data generation interval of a simulated signal. In fact, the interval is directed by the

accuracy of a timer that is configured to fire according to the virtual sampling rate of an

associated signal which does not have to correspond to the virtual sampling rate of a

master. Additionally, after a specific number (= Sampling Rate ·Block Size+1) of data

samples was generated, the following ten data blocks will be discarded and considered as

data loss. Unfortunately, the timer does not necessarily achieve the configured frequency

depending on the current system load. Moreover, iOS® is no real time system.

Sampling rate Block size Virtual sampling rate

32 Hz 1 32 Hz

64 Hz 2 32 Hz

128 Hz 4 32 Hz

512 Hz 8 32 Hz

Table 3.4.: Available simulated periodic signals
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Performance Limits

In an ad-hoc Institute of Electrical and Electronics Engineers (IEEE) 802.11n network

environment, Real SignalServer Client was able to receive data packets at a maximum

sampling rate of 700 Hz over UDP and using 0.2 command messages, if only one signal

channel was transmitted and data samples were not extracted. Furthermore, if data

samples were additionally parsed from data packets, a maximum sampling rate of 650 Hz

was observed. Transmitting ten and selecting one up to three channels showed that a

sampling rate of 512 Hz could be achieved no matter if data samples were extracted. In

every case, an increase of the sampling rate ended up in a loss of data packets of 80%

and higher. See Section A.3 for more detailed results.

3.7. Layout Manager Module

Generally, this module defines a common reusable interface (BCiLayoutManager) to

manage the layout of a set of layout items whereas existing methods of arranging layouts

are not sufficient. The layout manager decides to show only a subset of all items at the

same time. Thus, an interface to notify about changes of the currently visible items

through the delegate pattern (BCiLayoutManagerDelegate) is also provided. Items

could be instances of any class that conforms to the BCiLayoutItem interface. Hence,

layout managers do not rely on views directly, rather on custom controller classes that

administer dedicated content views. If requested, particular items can be magnified to fit

the maximum available screen space. Further, every layout manager also features an edit

mode that enables the user to change the layout manually. In the majority of cases, user

interaction is handled outside of this module. However, as the layout manager installs

itself as the delegate (BCiLayoutItemDelegate) of all added items, it is asked to allow

and respond to specific user interactions (e.g., dragging, magnification).

Of course, the Layout Manager module also hosts a reference implementation of a grid

layout manager (or BCiGridPageLayoutManager) that fulfills the needs of iScope. In

this context, items are placed on a configurable amount of pages. In turn, every page is

divided into columns and rows where the number of simultanously visible items per screen

remains alterable during program execution. Thereby, the number of possible items per

page is virtually unlimited. Navigating through/within pages in order to change the set

of visible items is also supported as well as reordering and (de-)magnification of items.

In this process, also discreet and familiar animations are applied by means of UIKit to

increase usability. All animation durations are configured with seperate constant values
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that may be easily modified.

Basically, some aspects of the described behaviour are similar to the well-known native

app launcher application of iOS® devices. The Three 20 library already contains an

implementation of a view (TTLauncherView) adopting that characteristic. Anyhow, it

is limited in keeping page dimensions constraint to the screen size which results in an

upper bound for the number of items per page and disqualifies this approach. In order to

guarantee a virtual inifite number of items per page and items with an adequate size at the

same time, a method to switch the visible items on a page like scrolling is required. A table

view (UITableView) or a similar view would have been reasonable to represent a column

on a page because they already have this feature. Nevertheless, this would also complicate

the exchange of items in different columns and/or on different pages. Consequently,

a new approach is implemented in the course of BCiGridPageLayoutManager that is

illustrated in Figure 3.8.

The XCode® project file is located in trunk/src/LibBCiLayoutManager. It contains

BCiScrollView

<<UIView>>

UIScrollView

<<protocol>>

BCiLayoutItem

layoutItemDelegate()

iconLayoutItem()

contentView()

didMagnifyLayoutItem()

didDemagnifyLayoutItem()

tag()

<<protocol>>

BCiLayoutItemDelegate

shouldDragLayoutItem:()

layoutItemWillBeginDragging:()

layoutItemDidDrag:()

layoutItemDidEndDragging:()

shouldMagnifyLayoutItem:()

shouldDemagnifyLayoutItem:()

layoutItemNeedsMagnification:()

layoutItemNeedsDemagnification:()

<<protocol>>

BCiLayoutManager

<<property>> editMode()

<<property>> layoutManagerDelegate()

<<property>> lockVisibleItems()

layoutSubviews()

addLayoutItem:()

removeLayoutItem:()

fetchVisibleLayoutItems:()

magnifyLayoutItem:animated:()

demagnifyLayoutItem:animated:()

BCiGridPage<<protocol>>

BCiGridPageDelegate

BCiGridPageProxyLayoutItem

<<protocol>>

BCiGridPageLayoutManagerDelegate

numberOfColumnsPerPage:()

numberOfRowsPerScreen()

<<protocol>>

BCiLayoutManagerDelegate

willBeginChaneVisibleLayoutItems()

didChangeVisibleLayoutItems()

didEndChangeVisibleLayoutItems()

BCiGridPageLayoutManager

BCiGridPageSlot

<<protocol>>

UIScrollViewDelegate

1

*

magnifiedLayoutItem 0..1

lastVisibleLayoutItems *

*

lastHitPageSlot 0..1

1

draggedLayoutItem 0..1

1

layoutItem 0..1

proxyLayoutItem 0..1

1

1

1

Figure 3.8.: Class diagram: Layout Manager overview

various buildable targets that are listed in Table 3.5.
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Target Description

LibBCiLayoutManager Static library

Tests Unit tests

BCiLayoutManagerDemo GUI driven demo app showing the use of a grid page
layout manager

Table 3.5.: Deployment targets: Layout Manager module

3.7.1. Adding Items

When an item is added to a grid layout manager, it is assigned to the next empty slot

that belongs to a particular page. If no empty slot was found, new slots will be created.

These slots are special cells of a table which is virtually formed by the grid page layout.

Only cells with a corresponding slot are actually visible. A slot can be either empty or

occupied by a layout item. Anyhow, also empty slots maintain a proxy item that acts as

a place holder for a concrete layout item. Proxy items also implement BCiLayoutItem

and are displayed as empty boxes with a thick round frame. For practical reasons, it is

invariant that each page hosts at least one row that could contain occupied as well as

empty slots. Further, the layout manager appends new slots line-by-line to ensure that

only entire rows are visible. Initially, one row containing empty slots is added to every

page. At any time, a totally empty trailing row is detected which does not exist solely

on its page, the row is trimmed to avoid a continuing increase of redundant rows. These

rows could be a product of explictly removed items or changes of the current layout

which also effects the number of items per page.

BCiLayoutManagerDemo uses very simple layout items which have different background

colors and display a label containing a unique name for each item (see Figure 3.9(a),

Figure 3.11(a)).

3.7.2. Applying Layout

In this matter, utilizing Interface Builder would demand the creation of static layouts (i.e.

nib files) for every combination of various layout parameters. First of all, this includes the

number of rows and columns per page. Furthermore, landscape- and portrait perspectives

have to be treated differently. After all, iOS® devices vary in screen resolution that

forces to handle the layout separately as well. Therefore, the layout is computed at

runtime because a static approach would not be practical.
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A slightly modified customized scroll view serves as a container for all items added to

a grid layout manager affording a theoretical infinite content area. The scroll view is

transparently installed as a subview of a view that is specified at the time the layout

manager is created. This view is directly provided by an app and embedded in a layout

that is defined outside of this module. Therefore, it also defines the maximum content area

for the layout manager and all of its layout items. In this process, also the autoresizing

mask of the container view is configured (using ”flexible width” and ”flexible height”) to

guarantee that all allocated space is automatically exploited if the bounds of the specified

superview change. This might occur if the app switches from portrait- to landscape

perspective. At this point, according to Section 2.4.4.1, custom layout code would have

been implemented in layoutSubviews but scroll views have to be treated in a different

way. layoutSubviews gets called whenever the bounds of the view have changed. This

is also the case, even if the scroll view scrolls content. Consequently, applying the

layout in layoutSubviews would end in an unacceptable overhead of redundant layout

arrangements. Fortunately, also the frame property is automatically adjusted by UIKit

that calls setFrame: at the time when the autoresizing behaviour is applied. After all,

overriding setFrame: of a custom scroll view that invokes the layout manager satisfies

the requirements.

The grid layout manager implements an on demand layout service that is applied only if

the size of the content area has actually changed. In this case, an additional delegate

(BCiGridPageLayoutManagerDelegate) is asked to answer the maximum number of

visible columns and rows per page. Based on the gained parameters the bounding box of

every page slot is calculated. After all, the layout of corresponding items is arranged by

setting the frames of all associated content views. Then, the content mode of the content

view decides how to respond to changes of the bounding box (e.g., redraw contents) but

this does not belong to the scope of this module.

The appliance of layouts is also mastered while scroll view is still scrolling or edit mode

is activated. For this reason, it is necessary to track and harmonize all incorporated

animations with the layout manager.

Changing the content area is implemented in BCiLayoutManagerDemo and illustrated in

Figure 3.9 and Figure 3.11. In this demo, the delegate of the layout manager returns

different values for the number of columns and rows per page depending on the present

user interface perspective. In portrait mode, two columns and three rows will be returned

by the delegate. On the other hand, the layout manager will obtain two rows and three
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columns in landscape mode.

3.7.3. Changing visible Items

Basic scroll views already offer the capability to continuously scroll a content area in

all directions by means of gestures. In addition, a paging property can be specified to

allow the content being scrolled only by an offset that is equal to the width (horizontal

paging) or height (vertical paging) of one page. The visible area of one page is determined

by the frame of the scroll view. iScope requires discrete paging in horizontal direction

and vertical continuous scrolling within a page. Unfortunately, paging cannot be set

for different directions independently. Also switching the property after the direction

of the current gesture has been detected would no more effect the current scrolling

activity. Hence, paging of the scroll view is deactivated and implemented manually.

In this manner, BCiGridPageLayoutManager conforms to UIScrollViewDelegate and

responds to changes of the current offset of the scroll view. After the scroll view stops

scrolling and the resulting visible screen area does not show entire pages and items, the

offset of the next integral page and item is calculated. In this case, the scroll view starts

to scroll again until the offset finally fits.

In general, changing visible items is achieved by scrolling or paging as well as (de-)-

magnification or reordering of items. Pages are turned by horizontal swipe- or pan gestures.

Scrolling within a page requires similar but vertical finger movements. Although diagonal

scrolling cannot be programmatically avoided, the grid layout manager will adjust the

visible content area to show always integral pages and items after all animations have

been stopped. It is also mentionable that (de-)magnifying and reordering items could

influence the set of visible items as well.

Changing the set of visible items could also occur at any time, even if a prior scrolling

activity has not completed requiring further synchronization effort.

3.7.4. (De-)magnifying Items

Implementing the trigger (i.e. user interaction) to start (de-)magnification of items is left

to the concrete BCiLayoutItem classes. However, the layout manager is asked through

the BCiLayoutItemDelegate protocol to allow (de-)magnification and is responsible of

how to (de-)magnify items. Only if the layout manager is not in edit mode, the content

area does not scroll, no item has already been magnified and no pending other actions
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exist, magnification will be possible. Then, magnification involves the animated gradient

of the scaling property of the item’s content view to fit the maximum available space.

After the animation has completed, the item exploits the entire bounds of the content

area but still has not been redrawn. Then, simultanously the scaling property is resetted

and the content view’s frame is adjusted. Finally, changing the frame of the item’s

content view will trigger the behaviour according to the content mode that typically

implies a redraw of the represented contents. On the other hand, demagnification requires

the presence of a magnified item and is accomplished in reverse. Both aspects are also

shown in BCiLayoutManagerDemo. Magnification of an item is illustrated in Figure 3.9.

Although an animation has several interpolation stages, the content view would only be

drawn once at most. This method has much better performance than changing the frame

at every interpolation stage that would lead to multiple calls of the cost intensive content

view’s drawing code.

(a) Portrait layout shows five con-
crete items initially.

(b) After double taping ”Item 3”,
the scaling property is being ani-
mated.

(c) The scaling property is reset-
ted and the frame fits the bounds
of the content area. Only ”Item 3”
remains visible.

Figure 3.9.: Screenshot: magnifying layout items

3.7.5. Dragging and Reordering Items

Before any layout manager accepts reordering items or more generally dragging items, it

is required to enable the edit mode which is triggered outside of this module. In order
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to visualize the edit mode, the transformation matrix of every item’s content view is

continuously altered by carrying out a wobbling animation. This behaviour is similar to

the native app launcher application. In doing so, the frame property will not be effected,

thus no drawing code is called at this point. Then, if neither scrolling nor other activities

are being performed, items are permitted to change their position within the content

area. The corresponding gesture is also implemented beyond the scope of this module.

Items notify the layout manager about dragging to a different position has started, has

been performed or has already been finished. In these cases, no layout parameters are

influenced. Hence, the layout will not change at all and the bounds of all content views

remain the same. Nevertheless, the grid layout manager arranges particularly the center

property of all affected content views according to the current layout. Altering the center

instead of the frame property saves potential expensive drawing code. If dragging has

started, the opacity of the dragged item is reduced to 70%. This is reasonable in order

to keep all other items in the content area visible, even if the dragged item overlaps

another item. Then, whenever the item is dragged again and changes its position, the

grid layout manager tests if a specific drag action is applicable which will be executed. If

no notification has been received for 0.1 seconds and dragging still has not ended, grid

layout manager will intrinsicly test if a drag action became suitable. Thereby, more

than one drag action can be performed until dragging has finished. After all, grid layout

manager resets the opacity and moves the dragged item according to its page slot.

Currently, the grid layout manager is capable of distinguishing three drag actions that are

all utilized in the context of reordering items (see Figure 3.11). Nevertheless, it is trivial

to add additional drag actions to BCiGridPageLayoutManager for different purposes in

the future. Basically, the grid layout manager keeps track of a couple of information

about the last slot that was hit by the center of the dragged item. This includes one of

the hit zones illustrated in Figure 3.10 and the time that zone was continuously hit so

far.

Testing if a drag action should be executed is performed in a particular order:

1. Changing the visible page occurs if the dragged item has moved to the right or left

border of the content area (page) and more than the sixth part of the item’s width

lays outside of the page. Additionally, the last hit page slot has to be hit for at

least 1.5 seconds. Then, the scroll view will change the content offset to show the

next or previous page if possible.

2. Scrolling within a page is performed if the dragged item overlaps the top- or bottom
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Figure 3.10.: Page slot hit zones - all zones have the same width but height of
A,B,C,G,H and I equals the sixth part of the slot’s content frame.

bounds of the visible content area by at least the sixth part of the item’s height.

Then, depending on the affected bound, the visible content area is attempted to

be moved by at least half the height of the area either upwards or downwards. If

this would lead to slots that are not entirely visible, the offset is rounded to show

only entire slots. After the offset was determined, the scroll view begins to scroll.

Also this drag action requires to hit the same page slot for more than 1.5 seconds

continuously.

3. Reordering items is applied if the last hit page slot was occupied and hit one of the

exterior zones, but also if it was empty and the slot at the center was hit. In both

cases, the same zone has to be hit by at least 0.7 seconds.

• If the hit slot is empty, the enclosed proxy item will be replaced with the

dragged item. Then, the slot previously associated with the dragged item will

contain a proxy item instead.

• Else if the hit slot is occupied and resides on the same page, all items between

the hit slot and the dragged item’s slot will shift by one position towards the

slot of the dragged item. Shifting is illustrated by animating the center of all

item’s content views. After all, the dragged item will be assigned to the hit

slot.

• In constrast, if the hit slot is hosted by a different page, all items will shift

by one position to the closest empty slot of the hit slot. If no empty slot was

found, first, slots for an entire row will be created and appended to the page
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of the hit slot. Then, the previously associated slot will be emptied. The rest

is similar to the previous case.

All time limits to trigger specific drag actions could be altered by modifying a single

particular constant.

In order to save computing time, animations (e.g., wobbling) are applied only on visible

items and turned off while the set of visible items is changing (e.g., the content area

scrolls).
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(a) Landscape layout shows five concrete items
and one empty slot initially.

(b) Edit mode has been enabled.

(c) Dragging ”Item 1” has started and reordering

items was performed by moving ”Item 1” over
”Item 2”. Hence, ”Item 2” moved to the initial
position of ”Item 1”. Changing the visible page

could be executed if ”Item 1” stays in that position
for 1.5 seconds.

(d) After the time has expired, the visible page
has been changed. The current page shows only
one visible item and two empty slots. The dragged
item still has not been released.

(e) Reordering items was performed that replaced
the dragged item with the proxy item of one empty
slot. Subsequent drag actions would have been
possible but the dragged item has been already
released. Finally, the item was arranged according
to the slot that was just associated.

(f) The original page now contains two empty slots
as a result of reordering items. Also the edit mode
was disabled again.

Figure 3.11.: Reordering layout items
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3.8. Graphs Module

Primarily, the Graphs module encapsulates an infrastructure to visualize any live updated

set of periodic- or aperiodic data. iScope does not directly use specific views for displaying

sampled signals rather special purpose view controllers described in Section 3.8.3.

The XCode® project is located in trunk/src/LibBCiGraphs that contains all targets

from Table 3.6. These targets could be also built individually.

Target Description

LibBCiGraphs Static library

Tests Unit tests

BCiGraphsDemo GUI driven demo app showing all available
graphs visualizing simulated demo data.

Table 3.6.: Deployment targets: Graphs module

3.8.1. Drawing continuous Content

Most of the visualizations iScope uses to show live graphs enable the tracking of measured

(sampled) and processed (spectral) data over time. Consequently, it is essential that

every time new data is displayed, also parts of the past content should remain visible.

In this manner, every data point is drawn on an equal sized allocated space on a

predefined content area, and the amount of added data points determines the spare

space that is left to plot previous content. Additionally, it is a project requirement to

support two specific content visualization modes. According to medical device monitors

(e.g., ECG monitoring), the first mode plots data points at the position of a vertical

bar that runs from the left to the right border of the content area over and over as

illustrated in Figure 3.12(b). The second mode results in a scrolling graph demonstrated

in Figure 3.12(a) similar to the live graph of the native iOS® stock market app. The

drawing routine has to meet the following objectives for both content visualization modes:

• Fast drawing of new data points to ensure very high data update rates.

• Fast rendering of a potential high number of previously plotted data points at

arbitrary positions.
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(b) Vertical bar visualization mode

Figure 3.12.: Continuous content visualization modes - both content areas could
exactly plot a maximum of five visible data points.

Almost always, the content will be embedded in a more complex graph except for testing

purposes. For this reason, it is more economic to implement the behaviour in an individ-

ual light-weight CALayer. Customizing a heavy UIView would just lead to unnecessary

hierarchical view levels in the superview. Figure 3.13 gives an overview about BCi-

ContinuousContentLayer that represents a CALayer, and is capable of plotting abstract

data points consisting of one or more values according to both visualization modes.

Drawing code is injected by overriding drawInContext: as explained in Section 2.4.7.1.

Nevertheless, BCiContinuousContentLayer will hand a set of data points over to the

concrete subclass that knows how to draw these data points starting from a specific

horizontal position.

A naive approach would redraw the entire visible content whenever data is updated,

even though only one data point was added. This leads to bad performance if the total

number of visible data points is high, and/or multiple BCiContinuousContentLayers

operate in parallel. Better performance could be attained by drawing only new data

points and reusing already rendered content. Unfortunately, if the layer’s drawing routine

was invoked and no drawing operations have been applied, only arbitrary data that will

not correspond to the previous content would be visible. Of course, using setNeeds-

DisplayInRect: instead of setNeedsDisplay would only clear the specified subarea of

the layer and conserve the rest but would not permit placing past contents on a different

position anyway. Hence, no adequate method exists to avoid loosing previously rendered

61



BCiMinMaxAggregateValue

BCiContinuousSpectrumLayer

BCiBasicAggregateValue

<<category>>

BCiContinuousContentLayer_Subclass

BCiContinuousLineLayer
<<CALayer>>

BCiContinuousContentLayer

BCiAverageAggregateValue

<<protocol>>

BCiLayerDelegate

didDisplayData()

<<protocol>>

BCiAggregateValue

<<protocol>>

BCiGraphViewDataSource

1
1

1

1

Figure 3.13.: Class diagram: continuous content layer

content which leads to the necessity of explicit caching.

In some cases (e.g., scope), a CGMutablePath could be used to store information of

rendered data points as path elements or shapes, but several problems disqualify this

approach. Above all, this method does not really cache the rendered graphical state and

makes it necessary to prompt Core Graphics to render every single shape to the screen

anyway, which is still expensive. At a particular point in time, extending the path when-

ever a data point has been added will probably cause iOS® to run out of memory. For

this reason, a solution would be reusing path elements due to the lack of CGMutablePath

to provide a way to remove elements. Further, at least the scrolling visualization mode

involves rendering the past content on a different position that would imply correcting

the coordinate offsets of all affected shapes. Both issues would force iterating through

the entire path and adjusting every element which has no benefit compared to creating a

complete new path, except avoiding the heap overhead of instancing new path elements.

Additionally, this approach could not be applied if data points involve more complex

drawings that do not rely on primitive shapes (e.g., spectra).

After all, BCiContinuousContentLayer implements an approach utilizing two instances

of CGLayer to truly cache and reuse rendered data points, both matching the dimension

of the total content area. The knack is to draw data points in the first layer beginning at

the left border until the right border has been crossed. Then, in the same way, drawing

is done in the second layer. In this connection, first of all, it is crucial to render the last

drawn data point also in the second layer at an appropriate position to ensure a consistent

transition to the next layer. Thereby, every concrete BCiContinuousContentLayer is
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responsible of caching the last drawn data point to enable fast follow-up rendering. If

no space is left in the second layer after further data points have been drawn, the first

layer will be cleared and recycled. In this manner, drawing on a layer, switching between

layers and clearing the previous layer is a reiterative process. Finally, all pre-rendered

contents from both layers are drawn on the screen according to the visualization mode.

In the case of vertical bar mode, the layers are simply drawn on the top of each other (see

Figure 3.14(b)). Thereby, the top layer has to be clipped in order to keep the required

contents of the other layer visible. If scrolling mode is designated, the layers are placed

side by side as illustrated in Figure 3.14(a). In this regard, it is important to paste each

layer at an integral point offset to avoid a visible gap between the two layers which could

be the possible result of interpolation. Basically, this is done by rounding the offset to

the next integral point in the floating-point coordinate system. This fits perfectly on

devices that share a screen scale factor which maps logical points to natural pixels almost

1 : 1. Although this does not apply to devices with Retina® displays, this method is

suitable though. Nevertheless, in the future, an optimization for Retina® displays (and

other displays) could round the offset to the next point value that matches an integral

pixel based on the screen scale factor.

Furthermore, every BCiContinuousContentLayer is extended by an optional outline

area on the left and right cap. This is necessary if rendered data points do not fit entirely

in the designated area and therefore, partially overlap. In this case, the scrolling mode

would show incomplete data points at the beginning and ending of every layer if the

outline was not set correctly which can be observed in Figure 3.16. If an outline is used

in scrolling mode, the outline area of one layer will overlap the other layer.

Similar to common CALayers, drawing is triggered by calling setNeedsDisplay. Never-

theless, BCiContinuousContentLayer overrides this method to have more control over

this process. Thereby, a flag indicating data should be redrawn is set and evaluated in

the next drawing cycle. Analogously, in order to clear the contents of the layer before

any content is drawn, setNeedsClearData has to be called in addition. It does not

matter, which method was called earlier if both have been applied. In this case, always

the contents will be cleared first.

Optionally, rendering can be performed offscreen in a separate background thread. With-

out the application of CGLayer this would not be possible. This feature is adjuvant to

keep the app responsive if the expected number of simultanously rendered data points is

very high. Then, while rendering contents, all subsequent calls to setNeedsDisplay and
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Figure 3.14.: Offscreen layers in continuous content layer

setNeedsClearData will be ignored. After rendering has finished, the drawing routine

is scheduled automatically again. In this way, the contents are finally made visible in the

next drawing cycle. However, most of the time, this feature is deactivated in iScope.

Regardless of using a background thread, a delegate is informed by the main thread

through BCiLayerDelegate protocol as soon as data has been displayed again. This

allows thread synchronization without locking and a finer grained control over the entire

rendering cycle.

Within a drawing cycle, data is provided data set by data set through BCiGraphViewData-

Source. Every data set is represented as a BCiDataIterator facilitating transparency

of the actual class that could manage any type of data (e.g., data samples, spectra). This

method enables the general implementation of fetching data and continuously drawing

data points in the base class, and also leads to less implementation- and testing effort.

When executing the drawing routine, the data source is asked multiple times for a data

set until no further data set could be gained. Additionally, for each data set, a number of

omitted data points exists. Omitted data points do not comprise real information rather

information about the absence of data points. Substitutional, the last drawn real data

point will be reused accordingly. If no data point has been drawn yet, the data source
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is optionally asked to provide a hint. In order to avoid redrawing a huge number of

omitted data points that cannot be displayed in the content area, normalization is applied

to draw only the maximum visible amount. In this context, it is important that data

point offsets are preserved and show the same results as all omitted data points would

have been drawn. This is especially relevant in conjunction with several synchronous

layers that represent the same total amount of data points which could be composited

differently, respectivly with a varying number of omitted data points. Furthermore, the

data source is also responsible of providing meta data for the current drawing cycle which

indirectly determines the size of the allocated drawing area per data point. In this way,

amongst others, also the minimum- and maximum data point values are specified. It

is also mentionable that if background rendering is activated, the data source has to

guarantee thread-safetyness during the whole rendering process.

At this stage, no data decimation will be performed. For this reason, in spite of the

limited screen resolution of iOS® devices, it should be possible to plot any number of

data points to the content area, even though the number is a multiple of the content area

width. This is feasible due to the floating-point coordinate system that Core Graphics

provides. Nevertheless, aggregation could be enabled to render a reduced amount of

data points optimized for the current screen dimensions for performance reasons. In this

manner, either data points and/or data point values are combined together that leads

to less drawing operations. The concrete BCiContinuousContentLayer decides how

aggregation is performed based on factors (data point/value aggregate weight) provided

by the data source. For further optimization, the rendering quality of a BCiContinuous-

ContentLayer could also be reduced. In doing so, rendering a huge amount of data

points at the same time could also be distinctly accelerated. Although subclasses of

BCiContinuousContentLayer are suggested to render with less quality if requested, they

do not have to adopt this advice. Both techniques are useful if speed (or response time)

outranks visual precision.

3.8.1.1. Data Aggregation

Aggregation is used to combine a set of values to generate a reduced amount of correspond-

ing values (aggregates) by means of different aggregate functions. Values are added to

an aggregate which in turn applies the aggregate function. Every aggregate has a weight

which indicates how many values are accepted until the aggregate is complete. This

weight could also be a floating-point number. After the aggregate has been completed, a

possible produced overflow will be added as a carry to the next aggregate. Thereby, the
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aggregate weight could be switched at any time. Table 3.7 demonstrates an example of

the fundamental technique.

Annotation Current weight Overflow Carry Total weight

0 0 0 0

Added value 1 0 0 1

Added value 2 0.5 0 2 (complete)

0 0 0 0

Added carry 0 0 0.5 0.5

Added value 1 0 0.5 1.5 (complete)

. . .

Table 3.7.: Aggregation example: shows two complete aggregates using a weight of
1.5 which is applicable if for example 6 values should be mapped to 4
aggregates. Current weight reflects the amount of added values, whereas
total weight sums up all components.

This concept is abstracted by BCiBasicAggregateValue. Two aggregate functions are im-

plemented, either calculating the minimum and maximum (BCiMinMaxAggregateValue),

or the average (BCiAverageAggregateValue) of all given values. The first method maps

each complete aggregate to two values in a chronological order whereas the second one

produces only one unique output.

3.8.1.2. Drawing Scope

Before reinventing the wheel, Core Plot was evaluated if it could be utilized to implement

the scope by drawing live updated line charts. Although the library provides CPTXYGraph

that is basically capable of drawing these kind of charts, it is not intended to plot a large

amount (≥ 1000) of frequently updated (at 60 FPS) data. Using Core Plot would result

in unadequate visualization update rates due to the fact that all data points have to be

redrawn on each drawing cycle. [69]

For this purpose, BCiContinuousLineLayer is a concrete BCiContinuousContentLayer

interpreting elements of a given data set as single data points visualized by connected line

shapes. These lines are drawn in light-grey color starting from the last drawn data point

or the vertical center if no data point has been drawn so far. Then, linear projection

is used to map data points to the vertical dimension of the layer where the line ends.

Thereby, the layer’s top edge refers to the maximum presentable value and the bottom
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edge to the minimum value. In this context, it is necessary to keep track of the previously

and penultimatly drawn data points. An omitted data point is drawn as a horizontal line

from the last data point to the next data point offset at the same vertical position with

a different line color (red). Multiple omitted data points are combined into one single

horizontal line in order to avoid redundant drawing operations and increase performance.

Figure 3.15 illustrates two layers displaying an equal amount of data points which vary

in composition.

When drawing any diagonal line shape starting from the left bottom corner of a given

(a) Without omitted data points (b) With 30 omitted data points

Figure 3.15.: Screenshot: scope layer example - shows the first second of a linear
chirp signal with 256 Hz, starting with 1 Hz and crossing 100 Hz after
3 seconds.

virtual area, some parts of the line will be drawn outside of that area as well. This is

due to the fact that not the outer edge but the center of the line is located at the origin

of that area. Therefore, it is indispensable to specify an outline that amounts the half

of the line thickness (rounded up) which is sufficient to cover the largest area that ever

would be drawn outside. In scrolling visualization mode, a missing outline would show

incomplete lines on the caps of the internally used CGLayers when pasting the layes side

by side. Specifically, the part of the line that lies beyond the allocated data point area

will be truncated and not visible which could be observed in Figure 3.16.

If BCiContinuousLineLayer is asked to use a reduced rendering quality, primarily line

shapes are drawn without antialiasing. Further, Core Graphics is assigned to perform

every drawing operation targeting one of the internal layers with a lower rendering

quality.

BCiContinuousLineLayer also provides support for data point aggregation that could

dramatically accelerate the presentation of a huge number of data points due to a potential

heavy reduction of drawing operations. Thereby, the aggregate weight influences the

number of data points which are combined to a lighter aggregate. A min/max-aggregate is
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Layer 1 Layer 2

(a) Line is broken at layer caps without an outline

Layer 1 Layer 2

(b) Line is continuous with an outline of six points

Figure 3.16.: Screenshot: continuous line layer outline - shows one second of a signal
with 32 Hz; data points are drawn using 12 point Line shapes

used to preserve information about the entire value range. Complete aggregates are drawn

either disconnected or connected depending on the relation between the aggregate weight,

the current width of the allocated data point area and the line thickness. Figure 3.17

illustrates both methods:

• Aggregates are drawn connected if the largest possible allocated area for an aggre-

gated data point allows visible distinction between two line shapes or rather

aggregates. This is the case if (Data Point Width · Aggregate Weight) >

Line Thickness. Then, every complete aggregate is represented as a horizon-

tally adjusted line, starting from either the maximum- or minimum value of the

aggregate and ending at the respective opposite whichever occurred first. Each

aggregate is also connected with the ending of the previous aggregate using a simple

vertical line. Although this method is still fully implemented, it is no more utilized

by iScope because aggregate weights are never specified in the way to meet the

criteria above.

• On the other hand, if it would not be possible to distinguish between displayed

aggregated data points, further drawing operations can be saved by drawing a discon-

nected line for each aggregate. Mathematically, this appears if (Data Point Width ·

Aggregate Weight) <= Line Thickness. Then, every complete aggregate is drawn

as a single vertical line. No gaps will be visible because the line shape itself fills

the assigned area entirely. In doing so, the thickness of the line corresponds to the

number of data points in the completed aggregate. In some cases, the value range

of an aggregate does not overlap the range of its antecessor which would result

in a vertical, visible gap between both aggregates. However, that gap is filled by

extending the line in the direction of the closest ending of the antecessor.
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Omitted data points will never be part of an aggregate and always treated regularly.

Before any omitted data point is processed, potential incomplete aggregates will be

flushed first.

(a) No aggregation (b) Connected aggregates (c) Disconnected aggregates

Figure 3.17.: Drawing aggregates: an aggregate weight of 2.5 is used to map 20 data
points to eight aggregates.

Instruments shows that BCiContinuousLineLayer reaches up to 60 FPS constantly,

irrespective of aggregation or reduced rendering quality is activated. This was tested

with one layer that was updated 60 times per second under iOS® 4.3.1 on an iPhone®

3GS compiled with LLVM GCC 4.2. 60 FPS also represents the maximum possible value

for any target platform.

3.8.1.3. Drawing Spectra

BCiContinuousSpectrumLayer derives from BCiContinuousContentLayer in order to

display spectra one after another. Every spectrum corresponds to one data point that

does not consist of one value but rather a set of values provided by the data source.

Values are color-coded by a mapping to the Hue Saturation Brightness (HSB) space.

In this manner, only the hue component is adjusted in the range from 0◦ (red) to 240◦

(blue), while saturation and brightness remain the same. Thereby, red corresponds to

the absolute maximum- and blue to the absolute minimum value. As a consequence, it

is guaranteed to create a discrete color spectrum without grey color graduation. Then,

the spectrum is vertically divided into uniform sections which are filled with calculated

colors. Omitted data points (or spectra) are represented by using a different alpha value.

Both types of spectra are illustrated in Figure 3.18. [80]

In order to ensure efficient repeated drawing of the last spectrum, every spectrum is

drawn to a CGLayer first and after that pasted to one of the two internal buffer layers.

If BCiContinuousSpectrumLayer is assigned to render the buffered spectrum multiple

times, the spectrum layer is still drawn only once but with a different scaling that fits

the desired width. This approach saves performance without having any drawbacks in
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Figure 3.18.: Screenshot: spectogram layer example - shows the first 3.5 seconds
of a spectogram based on a linear chirp signal with 256 Hz, starting
with 1 Hz and crossing 100 Hz after 3 seconds. Spectra are computed
60 times per second. Every spectrum uses Hamming windows of 1
Second. Therefore, no spectral information is available until the first
window could be selected which is indicated by omitted data points.

precision. In general, for the spectrum layer, interpolation in the native Red Green

Blue (RGB) color space is deactivated to avoid potential grey colors. Further, the two

internal layers use a specific blending mode which causes to override the current contents

with the contents of the current spectrum to prevent blurring.

Depending on data value aggregation is enabled, the dimensions of the spectrum layer

and how a spectrum is effectivly prepared differs. In contrast, data point aggregation is

generally not supported.

• If data value aggregation is disabled, the spectrum layer’s height is equal to the

number of values per data point (or spectrum) and one in width. Then, every

calculated color corresponds to one single point in the spectrum layer. After all,

the prepared layer is rendered using an appropriate scaling to match the allocated

data point area.

• On the other hand, if data value aggregation is used, the spectrum layer’s dimensions

exactly match the allocated data point area. In doing so, every value is added

to an averaging aggregate first. The aggregate weight is calculated by splitting

the content area height into as many uniform sections as values are contained in

one data point (or spectrum). Then, for every completed aggregate, the color in

the HSB space is computed which is used to finally render the aggregate. In this

manner, only a reduced number of actually visible aggregates rather than all data

point values are drawn. Additionally, no further scaling is necessary which also

improves performance.
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3.8.2. Graph Views

In the course of iScope, different graph views (or BCiGraphViews) are created for various

visualizations. All share a similar interface to notify delegates (BCiGraphViewDelegate,

BCiGraphDelegate) about specific occurences and receive data and/or meta data through

designated data sources (BCiGraphViewDataSource, BCiGraphViewMetaDataSource).

Every graph view derives from UIView and confirms to the BCiGraph interface. Figure 3.19

gives an overview about all implemented graph views.

In the strict sense, these graph views do not visualize data directly, rather manage

BCiButtonGraphView

BCiSpectrumGraphView

<<UIView>>

BCiGraphView

BCiPeriodicGraphView BCiScopeGraphView

Figure 3.19.: Class Diagram: Graph Views

a couple of specific generic Core Animation sublayers that are assigend for this task.

Hence, no drawing routine of UIView is used, instead sublayers are forced to redraw their

contents by calling setNeedsDisplay. Thereby, all involved sublayers with the exception

of continuous content layers also implement the BCiSmartLayer interface. This will block

invoking the drawing routine of a smart layer unless the dimensions of the content area

or the represented contents have effectivly changed. In this manner, smart layers are

only redrawn if it was really necessary, thus improving performance.

The following generic smart layers are implemented:

• BCiTextLayer renders a given text in an optimal font size to match the bounds of

the layer.

• BCiYAxisLayer draws an optionally mirrored vertical axis including labels in an

ideal font size.

• In contrast, BCiXAxisLayer is capable of rendering a horizontal axis that also

shows labels in ideal font sizes.

• BCiHorizontalGridLayer visualizes a configurable horizontal grid with solid- and

dashed lines.

• On the other hand, BCiVerticalGridLayer draws a vertical grid that is highly

adaptable, also using solid- and dashed lines.
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Every graph view takes care of stacking sublayers in a well-defined order that minimizes

drawing effort. Expensive alpha channels are only applied, if transparency increases

usability or important information would be hidden. In this case, the bounds of the

sublayer are kept as small as possible to avoid unnecessary computations.

Further, all graph views have exactly one background image to create an unified appear-

ance. For this purpose, a stretchable image of no more than 27 × 31 pixels is used to

represent the entire background of arbitrary size. In this manner, also round corners are

achieved without setting the corner radius property of the underlying Core Animation

layer that would have envolved an alpha channel and drain performance.

Graph views could be switched into detail mode that reveals additional information

depending on the concrete view. In doing so, almost always the layout of specific sublayers

has to be rearranged. Due to the lack of a suitable layout manager at layer level, every

frame has to be set manually.

In general, three types of information are distincted which could be independently up-

dated. These are dynamic contents, either data that is provided by the data source or

non-data and simple static content. If the bounds of the graph view have changed, all

dynamic non-data- and static content is redrawn. In this case, dynamic data content

is only cleared in order to avoid redrawing a potential high number of data points

automatically. Nevertheless, the delegate is informed about layout changes which in turn

could force to finally redisplay data.

3.8.2.1. Scope Graph View

BCiScopeGraphView is a concrete BCiGraphView that uses generic smart layers as well as

one additional specific smart layer to represent a scope with additional meta information

(see Figure 3.20).

According to the detail mode, contents vary slightly. In every case, the view shows at

least:

• The title of the graph in the left top corner of the view as a BCiTextLayer.

• In the center of the view, a BCiContinuousLineLayer represents the actual contents

of the graph.

• A BCiVerticalGridLayer that uses different line types for seconds, half seconds

and tenth seconds which is also linked to the configured observation period.
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<<BCiSmartLayer, CALayer>>

BCiYAxisLayer

<<protocol>>

BCiScopeBackgroundLayerDelegate

<<BCiSmartLayer, CALayer>>

BCiTextLayer

<<BCiSmartLayer, CALayer>>

BCiScopeBackgroundLayer

<<protocol>>

BCiXAxisLayerDelegate

BCiScopeGraphView

<<BCiSmartLayer, CALayer>>

BCiVerticalGridLayer

<<protocol>>

BCiTextLayerDelegate

<<BCiSmartLayer, CALayer>>

BCiHorizontalGridLayer

<<BCiSmartLayer, CALayer>>

BCiXAxisLayer

<<protocol>>

BCiYAxisLayerDelegate

<<protocol>>

BCiVerticalGridLayerDelegate

<<CALayer>>

BCiContinuousContentLayer

<<protocol>>

BCiHorizontalGridLayerDelegate

1
titleLayer1

1

1

minValueLayer

1

1

1

maxValueLayer

1

1

1

1

1

1

1

1

observationPeriodLayer

1

Figure 3.20.: Class diagram: scope graph view
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• A centered BCiHorizontalGridLayer with five lines.

• In the background, a layer that is vertically splitted into two equal sized areas.

Every area is filled with a different color to highlight the center value.

In regular mode, the maximum and minimum value (amplitude) is represented as a

BCiTextLayer in the top right and bottom right corner. Thereby, the current observation

period is displayed in the bottom left corner by means of a BCiTextLayer. Figure 3.21(a)

shows a recorded sample signal in regular mode.

In contrast, the detail mode shows an additional time axis and omits a seperate label for

the observation period as demonstrated in Figure 3.21(b). Additionally, the vertical axis

labels every value of the vertical grid.

Only the first two decimal places will be displayed for each label for layout reasons.

(a) Regular (b) Details

Figure 3.21.: Screenshots: scope graph view

3.8.2.2. Spectogram Graph View

BCiSpectrumGraphView represents a concrete BCiGraphView that displays a spectogram.

The internal layer composition is similar to those used in BCiScopeGraphView. Neverthe-

less, it does not dislay any grid and it represents spectra by a BCiContinuousSpectrum-

Layer. It also uses one specific smart layer as illustrated in Figure 3.22.

In regular mode, there is almost no difference compared to BCiScopeGraphView, except

rather frequencies are shown than amplitudes (see Figure 3.23(a)).

The detail mode shows frequencies instead of amplitudes as well. Additionally, a box

displaying the mapping between colors and actual values used to plot the spectra is

added at the right edge of the graph which could be observed in Figure 3.23(b).
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<<protocol>>

BCiTextLayerDelegate

<<BCiSmartLayer, CALayer>>

BCiTextLayer

<<BCiSmartLayer, CALayer>>

BCiSpectrumIntensityBoxLayer

<<protocol>>

BCiXAxisLayerDelegate

<<BCiSmartLayer, CALayer>>

BCiXAxisLayer

<<BCiSmartLayer, CALayer>>

BCiVerticalGridLayer

<<protocol>>

BCiYAxisLayerDelegate

<<protocol>>

BCiLayerDelegate

<<protocol>>

BCiSpectrumGraphMetaDataSource

BCiSpectrumGraphView

<<BCiSmartLayer, CALayer>>

BCiYAxisLayer

BCiContinuousSpectrumLayer

<<protocol>>

BCiVerticalGridLayerDelegate

<<protocol>>

BCiSpectrumIntensityBoxLayerDelegate

1

1

1

1

1

minFrequencyValueLayer

1

1

1

1

1

1

1

1

1

maxFrequencyValueLayer

1

observationPeriodLayer

titleLayer
spectogramPeriodLayer

cycleIntervalLayer

1

Figure 3.22.: Class diagram: spectrum graph view

(a) Regular (b) Details

Figure 3.23.: Screenshots: spectogram graph view
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3.8.2.3. Button Graph View

BCiButtonGraphView is a simple BCiGraphView reporting the current state of a signal

similar to a labeled button. Figure 3.24 demonstrates all involved classes.

BCiButtonGraphView

BCiButtonValueLayer

<<BCiSmartLayer, CALayer>>

BCiTextLayer

<<protocol>>

BCiButtonValueLayerDelegate

valueLayer

titleLayer1

1

1

1

<<protocol>>

BCiTextLayerDelegate

Figure 3.24.: Class diagram: button graph view

Analogously to other graph views, the title of the graph is displayed in the top left corner

of the view. Detail mode and regular mode always have the same appearance. Thereby,

in the bottom right corner, a rounded box is attached to the view that contains the

current value of the signal. The font size is flexible and will always exploit the width

of the box. In this manner, only the first three decimal places will be considered as

illustrated in Figure 3.25. According to the current state, the background of the box

has a different color. The color is dark blue if the current value exceeds a configured

threshold, red if the current value is not initialized and grey if the current value is less

than the threshold.

Figure 3.25.: Screenshot: button graph view - current value is less than the config-
ured threshold of 1.0
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3.8.3. View Controllers

View controllers of the Graphs module do not substitute UIKit’s UIViewController and

should rather be considered as a logical extension of these. In this section, the term view

controller refers to classes implementing the BCiViewController interface. They are a

building block of a custom MVC assemblage. Thereby, every view controller is used to

retrieve, manipulate one particular graph view and is in charge of hosting the supplying

data model. In turn, a view controller is typically managed by a UIViewController and

therefore part of another MVC construct. Figure 3.26 gives an overview about the public

view controller API. Further, view controllers expose its graph views as BCiGraph that

offers a reduced API and do not reveal the underlying view. This approach facilitates

the extendability and exchange of visualizations.

Basically, two main groups of view controllers are distincted, BCiPeriodicGraphView-

Controllers and BCiAperiodicGraphViewControllers. Periodic view controllers are

designed to manage visualizations of trends, whereas aperiodic view controllers relinquish

the time component. In each case, a designated data source and meta data source is

asked through particular interfaces to provide the most recent data. Relying on interfaces

rather than concrete classes alleviates testing without having real life data. Figure 3.27

shows the relation between graphs, data sources and view controllers.

The Graphs module provides BCiGraphViewControllerFactory which accords to the

prototype factory- and factory method pattern to instantiate concrete view controllers [74].

Creating view controllers based on registered prototypes makes it easy to add custom

view controllers for other purposes or exchange existing ones. At any time, only one

instance of the factory exists due to the adoption of the explicit singleton design pattern.

Every view controller derives from BCiBasicGraphViewController which implements

amongst others, two fundamental functions:

• Fetching data from associated data sources either by omitting or processing every

added data point. Data points are omitted by calling omitData whereas updateData

will consider each data point individually. In addition, data points could be

optionally marked as lost indicating no information is available for the corresponding

time period. For this purpose, the view controller keeps track of the data sequence

number gained through the last fetch cycle. Then, only if data has changed in any

respect, drawing code could be invoked on the next request. The same also applies

to meta data. Omitting every added data point drastically boosts performance due

to skipping processing and reducing drawing operations. In this case, graph views
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<<protocol>>

BCiSpectrumGraphViewController

<<property>> useSpectrumLog()

<<property>> numberOfComputedSpectrumsPerSecond()

<<property>> windowFunction()

<<protocol>>

BCiButtonGraphViewController

<<protocol>>

BCiGraphViewControllerDataSource

rawDataBuffer()

currentDataSequenceNumber()

globalMaxValue()

globalMinValue()

<<protocol>>

BCiAperiodicGraphViewController

<<protocol>>

BCiGraphViewControllerMetaDataSource

dataSourceName()

dataUnit()

bufferedPeriod()

numberOfDataPointsPerSecond()

<<protocol>>

BCiScopeGraphViewController

<<protocol>>

BCiGraphViewController

<<property>> graphViewControllerDataSource()

<<property>> graphViewControllerMetaDataSource()

<<property>> metaDataChanged()

<<property>> dataChanged()

<<property>> showAllDetails()

<<property>> showActivityIndicator()

<<property>> tag()

<<property>> timeRageScaleFactor()

<<property>> valueRangeScaleFactor()

<<property>> scalingMode()

<<property>> maxValueBound()

<<property>> minValueBound()

<<property>> currentMaxValue()

<<property>> currentMinValue()

<<property>> removeDataOnClearData()

graph()

createPrototype()

updateMetaData()

updateData()

omitData()

clearData()

resetData()

setNeedsClearData()

setNeedsDisplayMetaData()

setNeedsDisplayData()

resetScaleFactors()

scaleTimeRangeBy:()

scaleValueRangeBy:()

<<singleton, prototype factory>>

BCiGraphViewControllerFactory

<<protocol>>

BCiPeriodicGraphViewController

<<property>> contentMode()

<<property>> useAggregates()

<<property>> flushDataPointAggregates()

NSCopying

*

prototypes

Figure 3.26.: Class diagram: graph view controllers overview
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BCiBasicGraphViewController

<<protocol>>

BCiGraphDelegate

graphViewWillBeginDragging()

graphViewDidDragWith:()

graphViewDidEndDragging()

<<protocol>>

BCiGraphViewDataSource

nextDataSet()

numberOfOmittedDataPointsInCurrentDataSet()

numberOfDataValuesPerDataPoint()

dataValueAggregateWeight()

dataPointXWeight()

dataPointAggregateWeight()

maxDataValueBound()

minDataValueBound()

dataPointHint()

<<protocol>>

BCiGraphViewMetaDataSource

graphTitle()

unit()

observationPeriod()

<<protocol>>

BCiGraphViewControllerDataSource

<<UIView>>

BCiGraphView

<<protocol>>

BCiGraphViewDelegate

didChangeLayout()

didDisplayData()

<<protocol>>

BCiGraphViewControllerMetaDataSource

<<protocol>>

BCiGraphViewController

<<protocol>>

BCiGraph

<<property>> graphDelegate()

<<property>> tag()

asUIView()

<<category>>

BCiGraphView_Subclass

1

1

1 1

1

1

0..1

1

Figure 3.27.: Class diagram: basic graph view controller
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will draw omitted data points instead of regular ones. This is useful if the view

controller has not been asked to update its contents for a while and the amount

of added data points is estimated high. Lost data points will also be treated as

omitted in the rendering process.

• Configuring and scaling of maximum and minimum representable data point values.

In this manner, scaling factor will snap to the original limits if it was set close

enough to exceed or fall below a certain threshold of ±0.05.

• Locking the internal data model and API calls related to fetch cycle while managed

graph view is rendering in the background.

On every fetch cycle, periodic view controllers are asked to store added data points in

a seperate data model as illustrated in Figure 3.28. Although multi-level data models

could exist in parallel, only one data model is active and used to supply the graph view.

Presently, just one data model is hosted that contains data in the highest available

resolution. However, switching between data models with different resolutions is already

possible and could be utilized in the future. This would transform the work load from

rendering to preprocessing (e.g., downsampling) by reducing the amount of data points

that have to be effectivly considered for visualization.

BCiBasicGraphViewController
<<protocol>>

BCiPeriodicGraphViewController

<<category>>

BCiPeriodicGraphViewControllerImpl_Subclass

BCiPeriodicGraphViewControllerImpl

<<protocol>>

BCiPeriodicGraphViewControllerModel

dataBuffer()

latestSequenceNumber()

initWithCapacity:()

addDataPoint:()

addLostDataPoint()

setNumberOfOmittedDataPoints:()

removeAllDataPoints()

resetProcessedDataPoints()

reinitialize()

1

activeModel
1

Figure 3.28.: Class diagram: periodic graph view controller

Two periodic view controllers are designed to handle the visualization of scopes (see

Figure 3.29) and spectograms (see Figure 3.30). The current implementations are using

BCiScopeGraphView and BCiSpectrumGraphView.

Further, every periodic view controller features the following basic functions:

• Enabling the usage of aggregates. In this case, the view controller decides which

form of aggregates is suitable. Also the aggregate weight is determined by the view
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controller. In doing so, scope view controllers will use aggregate weights to reduce

the number of data points and drawing operations to optimally take advantage of

the graph view’s content frame. This leads to aggregated data points with a width

of one point in the floating-point coordinate system. Even though this approach

is not optimized for Retina® displays, it will work on all related devices though.

The same applies to spectogram view controllers, although only data point value

aggregation is performed. In this manner, one data point comprises the results of

one FFT. Then, a number of bins is aggregated that ideally fits the height of the

graph view’s content frame in order to draw one aggregate with a height of one

point in the floating-point coordinate system.

• Setting and scaling the time dimension. Basically, every periodic view controller

represents samples of one signal within a specific observation period. Anyhow, the

visible time period can be temporarily changed by applying a scale factor. This

factor will always result in a time period containing an integer number of raw

data points. Additionally, the factor snaps to the next full second if the current

scaling factor enters a threshold area of ±0.15 seconds. Although spectogram view

controllers will show time periods reflecting only integer raw data points, this is

not true for spectra which result from comprising multiple raw data points in one

spectrum. In this way, scope view controllers as well as spectogram view controllers

could be used to observe exactly the same time period of a given signal.

Specifically the spectogram view controller infrastructure makes use of Common module’s

FFT encapsulation. Thereby, time window is not yet configurable and will be always

one second of the signal. However, this is determined by a single constant which could

be altered without much effort. On the other hand, the number of computed spectra

per second and the window function are already fully parametrizeable and specified by

the application. Furthermore, lost data points received from the data source will be

substituted with their next valid antecessors before the FFT is calculated.

Currently, only one aperiodic view controller exists that attaches a BCiButtonGraphView

which can be observed in Figure 3.31. It has no explicit data model and also disregards

scaling of the time dimension because only the most recent value is utilized.
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<<protocol>>

BCiScopeGraphViewController

BCiScopeGraphView

BCiScopeGraphViewControllerImpl

BCiScopeGraphViewControllerModel

BCiDataBufferIterator

highestResolutionModel

1

dataSequences *

firstDataSequence 0..1

resultSequence 1

lastValueIterator

1

1

dataIterator

1

activeModel1

BCiDataSequence

BCiValueDataIterator

BCiDataBuffer
BCiPeriodicGraphViewControllerImpl

<<protocol>>

BCiPeriodicGraphViewControllerModel

Figure 3.29.: Class diagram: scope graph view controller

BCiSpectrumGraphView

activeModel1

highestResolutionModel

1

1
cachedSpectrum 0..1

spectrum

1

rawDataBuffer 1

nextDataIterator
1

dataPointHintIterator
1

1

latestSpectrum 0..1

BCiPeriodicGraphViewControllerImpl

<<protocol>>

BCiPeriodicGraphViewControllerModel

BCiSpectrumGraphViewControllerImpl

BCiSpectrumGraphViewControllerModel

<<protocol>>

BCiSpectrumGraphViewController

BCiSpectrumController

BCiVectorDataBuffer

BCiSpectrumDataBuffer

BCiDataBuffer

BCiDataBufferIterator

<<protocol>>

BCiReadableDataBuffer

Figure 3.30.: Class diagram: spectrum graph view controller

BCiButtonGraphViewControllerImplBCiButtonGraphView

BCiValueDataIterator

BCiAperiodicGraphViewControllerImpl

<<protocol>>

BCiButtonGraphViewController

BCiBasicGraphViewController <<protocol>>

BCiAperiodicGraphViewController

dataIterator11dataPointHintIterator

Figure 3.31.: Class diagram: aperiodic graph view controller
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3.9. iScope - App Module

This module assembles the executable application that is based on all other module

libraries as well as on TinyXML++ and related Boost libraries. Hence, these libraries

also have to be statically linked with the final binary. The associated XCode® project

file is located in trunk/src/BCiScope and contains the target BCiScope. In order to

work correctly, iScope demands iOS® devices with accelerometer- and wireless LAN

capabilities.

3.9.1. General

Basically, iScope involves three main screens which are the connection-, selection- and

visualization screen as demonstrated in Figure 3.32. Furthermore, two orthogonal sub-

(a) Connection screen (b) Selection screen (c) Visualization screen

Figure 3.32.: Screenshots: iScope main screens

screens (settings-, signal details screen) will guide the user through particular workflows.

Transitioning between each other is done either by using the top navigation bar or

the bottom toolbar. The navigation bar allows to reach the previous and next screen

relative to the active screen. Thereby, screen transitions will use different UIKit’s built-in

animations. In order to ensure clear navigation, transitions between main screens use

a different animation than transitions to/from subscreens. Figure 3.33 shows a state

machine that defines all possible transitions.
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d
Settings Screen (C)

Connection Screen Visualization ScreenSelection Screen

Settings Screen (S) Settings Screen (V)

Signal Details Screen

Figure 3.33.: State machine: iScope’s active screen - final state is not visible because
it can be adopted by every state.

Every screen is represented by a BCiScreenViewController which is derived from

UIViewController and therefore, responsible for all corresponding tasks described in

Section 2.4.4.2. Screen view controllers generalize basic functionality like showing/hiding

a spinning activity indicator, the presentation of the root view and managing the toolbar.

The toolbar is split into two sections. All global buttons are visible on every screen and

are left-aligned. Currently, only one global button exists that will open the settings

screen. The current screen will be exchanged with the settings screen by flipping around

its vertical axis in an animation sequence. In constrast, local (or screen specific) buttons

are attached on the right side of the toolbar.

BCiScreenViewControllerMap guarantees that the same instance of every screen can be

retrieved from any location. Nevertheless, screen view controllers are intiliazed by a nib

file that is tailored for the present device. In this manner, some parts of the layout are

arranged statically which will not affect the dynamic nature of the internal visualization

screen’s layout. Although different nib files for iPad® and iPhone®/iPod touch® devices

are used, functionality of each screen is implemented in device independent classes.

Figure 3.34 shows a global point of view of incorporated classes.

In many respects, the behaviour of iScope is configurable by two types of settings. In

general, global settings that are neither frequently changed nor alterable at runtime can

be defined in the native iOS® Settings app (see Section 3.9.3). In contrast, local settings

can also be changed while iScope is in use and are managed by the settings screen (see

Section 3.9.8). BCiApplicationSettings encapsulates both types of settings.

Changes of the physical orientation of the device are recognized by means of the ac-

celerometer. In this case, every screen view controller will also arrange its views according

to the new orientation (by adopting either the portrait- or landscape perspective).
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BCiPhoneAppDelegateBCiPadAppDelegate

BCiAppDelegate

<<singleton>>

BCiScreenViewControllerMap

<<singleton, factory>>

BCiSignalServerClientFactory

<<singleton, prototype factory>>

BCiGraphViewControllerFactory

BCiWorkflowController

<<singleton>>

BCiApplicationContext

BCiScreenViewController

UIViewController

<<protocol>>

BCiScreenViewControllerDelegate

BCiApplicationSettings

<<protocol>>

BCiSignalServerClient

BCiVisualisationScreenViewController

BCiSelectionScreenViewController

BCiConnectionScreenViewController

BCiSettingsScreenViewController

BCiSignalInfoScreenViewController

<<protocol>>

BCiSignalServerClientDelegate

<<protocol>>

UIApplicationDelegate

first* 1current1orderedControllers* 1

1

1

1

Figure 3.34.: Class diagram: iScope overview
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Basically, every screen has access to the singleton instance of the BCiApplication-

Context, thus the same BCiSignalServerClient, BCiApplicationSettings and BCi-

WorkflowController. The workflow controller is in charge of managing the order of

screens.

3.9.2. Application Start and Shutdown

While iScope is being launched, an image optimized for the current device and orientation

is shown. Basically, the image looks like the first screen (i.e. connection screen) without

any mutable content (e.g., text). Once the application is ready to use, the image will

be replaced by the real connection screen. This approach should suggest the impression

that the application launches faster.

iScope responds to changes of the application state. The majority of tasks is done in

BCiAppDelegate. Further, two device specific application delegates exist that are derived

from BCiAppDelegate. After iScope has finished launching, they carry out initialization

tasks and are responsible for registering unique screen view controller instances in the

BCiScreenViewControllerMap.

Basically, background execution is not supported, thus hitting the home button will

terminate the application. In this case, iScope attempts to regularly close an open signal

server connection. Unfortunetaly, there is no guarantee that this task will complete

successfully until the application is definitly purged from memory due to the time

limitations explained in Section 2.2.1. Pseudo multitasking has no beneficial impact

because all non Voice over IP (VoIP) sockets would be still closed after the application has

moved to the background state. Consequently, also the socket based control connection

to TiA server would have been interrupted.

At any time, if the TiA client becomes corrupted (see Section 3.6.3.1), an explaining pop-

up dialog will appear prompting the user to restart the application manually. Otherwise,

iScope would keep running, would instance another client and the former client would

be memory leaking. It is discouraged by Apple to programmatically quit an application

with exit(0) or similar.

3.9.3. Settings App

iScope adds a custom entry to the native iOS® Settings app. For this purpose, corre-

sponding setting screens are automatically generated based on interlinked property list
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files (.plist) located in the app’s settings bundle. Basically, every screen is configured

by one seperate property list file. XCode® provides a convenient way to edit those files

and manage associated entries. Currently, two screens are used for basic settings and

settings for more experienced users. Furthermore, iScope specializes its settings bundle

for iPhone®-, iPod touch®- and iPad® devices. Amongst others, the possible values for

different settings are made device dependend. Figure 3.35 shows a specialized version of

both settings screens. All settings are persisted in the user’s defaults database which is

accessed by BCiApplicationSettings to initialize all global settings members.

The following basic settings are defineable:

• Number of pages reserved for graphs in the visualization screen.

• Number of rows, Number of columns per interface orientation. These values

determine the grid layout of the visualization screen for portrait- and landscape

layout. Only iPad® devices support the columns parameter to ensure readability.

• Displayed period specifies the maximum recorded time period of any signal.

Furthermore, the settings below are configurable through expert settings screen:

• Window function which is applied to the input vector of the FFT that is used to

compute the spectogram.

• Use log results switches the unit of the spectogram from µV 2 to dB and vice versa.

• Show spectrum indicates if spectogram graphs are shown on the visualization screen.

• Max FFT cycles per second determines if the spectogram is based on an overlapping

STFT. The actual number of cycles depends on the integer result of fs/Max FFT cycles

which calculates the amount of raw data points after one FFT is computed.

• Simulation mode will use Simulated Server Client from Section 3.6.3.2 instead of

the Real SignalServer Client from Section 3.6.3.1.

3.9.4. Multi-Language Support

Basically, every application related file could be internationalized. iOS® apps use language

projects (.lprj) to maintain translations for specific combinations of language and/or

region, both identified by their International Organization for Standardization (ISO)
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(a) Basic settings (b) Expert settings

Figure 3.35.: Screenshots: iPhone® Settings app

codes. Thereby, each bundle manages its own language projects. Currently, iScope only

has one main- and one settings bundle which provide one language project for English

(eng.lproj) without specifying any region. However, creating additional language

projects requires minimal effort. Always one version of every resource file has to be

placed in the developer’s native language project. At a glance, whenever a file is accessed,

iOS® will automatically try to find the version that best matches the local language-

and region settings of the user. If no match was successfull at all, the developer’s native

version will be used instead.

In this manner, all nib files, string files (.string) and all property list files related to

the Settings app are internationalized. String files contain translations of specific hard

coded text strings which are marked for internationalization. genstrings, a tool that is

shipped with iOS® SDK can be used to automatically parse the source code and generate

these string files in Universal Multiple-Octet Coded Character Set UCS Transformation

Format for 16 Planes of Group 00 (UTF-16). Unfortunately, it is not possible to put

translation projects in static libraries. In order to provide internationalized versions of all

text strings from module libraries, the iScope module has to take care of all corresponding

string files by itself.
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3.9.5. Connection Screen

After iScope launched, the connection screen as illustrated in Figure 3.32(a) managed by

BCiConnectionScreenViewController becomes visible. In the center of the screen, a

chronological ordered connection history is presented by a scrollable UITableView with

custom cells based on a nib file. It contains a list of hostname and portnumber pairs

used by successful attempts to connect to TiA server(s). Currently, the last 50 pairs are

shown but this number could be easily changed by altering a single constant in the source

code. Whenever a connection was successfully established, the history is also written to

a property list file in the application bundle in order to persist after the termination of

iScope.

The navigation bar shows two BCiNavBarTextFields for hostname and portnumber as

well as a ”Connect” button. As the user taps one of the textfields, an onscreen keyboard

appears prompting to enter both parameters. In order to hide the keyboard immediately,

any other position on the screen has to be tapped again. The textfields also act as a filter

for connection history entries. Only those entries will be shown in the current history

that match the current input.

Hitting the ”Connect” button initiates a connection attempt. In this context, also input

parameters are validated. If one of the parameters contain an illegal value, a pop-up

dialog will appear displaying a corresponding failure message. If all parameters were valid,

BCiSignalServerClient will be used to establish a connection and request a list of all

available signals in a background thread. In the meantime, a spinning wheel indicating

the client is still working appears. All control elements are also disabled to ensure the

user cannot initiate further connection attempts or navigate to another subscreen. If the

connection was successfully established, the workflow controller will show the selection

screen, else a pop-up dialog will open showing an appropriate failure message. In either

cases, all control elements are enabled and the activity indicator is hidden again.

3.9.6. Selection Screen

The selection screen is hosted by BCiSelectionScreenViewController that primarly

consists of a scrollable UITableView located at the center. Basically, the table contains

multiple sections for all available signal types at TiA server. Thereby, every section is

represented by a BCiTableSectionHeaderView which allows to customize user interaction.

If the user taps the blue arrow button of the section header in original position, all rows

of the corresponding section will expand animated. Otherwise, if the section already has
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been expanded, the section will collapse also using a smooth animation.

Every row of the table is initialized from an individual nib file that corresponds to one

channel. These rows show the channel number on the left and the channel name on the

right. If processing of one channel is considered as a problem (e.g., the virtual sampling

rate exceeds the estimated maximum of the present device), a red exclamation mark

appears on the right side of the row in addition. However, when the selection screen

appears, also a pop-up dialog will display a similar but more general statement.

Multiple channels of different signal types can be selected by taping the right cap of a

table row. Then, a checkmark on the right cap of the corresponding row will indicate

that the channel is effectivly selected. If the user taps a checkmarked row, the associated

channel will be unselected again. Similarly, all channels from a section could be selected

or deselected by taping the background of the section header and vice versa. Then, the

background of the section header changes. It turns light if a further tap will unselect

all channels and dark in reverse. If the section was collapsed additionally, it will be

expanded first.

Returning to connection screen is done via ”Disconnect” button in the navigation bar.

This will also try to regularly close the connection to the TiA server asynchronously. On

the other hand, ”Apply” button in the navigation bar will force the client to collect data

of all selected channels. In this context, it is important to bear in mind that also if critical

channels are not selected, they will be transmitted, thus have to be read from socket and

parsed anyway as explained in Section 3.6.3. However, BCiSignalServerClient already

provides an appropriate API to select specific channels which is also utilized. Hence, this

will also involve client/server communication and asynchronous program behaviour in the

future. When the client finished its duties, the workflow controller will show the desired

screen. As long as the client is busy, all control elements and the toolbar are disabled.

If any error occured, the selection screen remains visible and an adequate message is

displayed in a pop-up dialog.

The bottom toolbar contains one local button that brings the signal details screen to

front which is managed by BCiSignalInfoScreenViewController and illustrated in

Figure 3.36. An animation is used that covers the selection screen vertically. Dismissing

is done by hitting ”Close” button in the top navigation bar. The signal details screen also

displays a scrollable UITableView in the center. Every row corresponds to one signal.

The layout of a row is arranged by a nib file. Thereby, the type (e.g., EEG), sampling

rate (e.g., 128 Hz), unit (e.g., µV ) and periodicity (either periodic or aperiodic) of the
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signal are displayed. If the signal is aperiodic, the sampling rate will be omitted.

Figure 3.36.: Screenshot: signal details screen

3.9.7. Visualization Screen

Basically, BCiVisualisationScreenViewController manages the behaviour and the

design of the visualization screen.

While the visualization screen is appearing, the status bar, navigation bar and the toolbar

are turning translucent and will finally disappear after further 0.5 seconds. Nevertheless,

a single tap will smoothly overlay the contents of the screen with the transculent versions

of the bars and vice versa. This approach allows to take advantage of the entire screen

without any restrictions on the usage of the navigation- and toolbar.

The content of the visualization screen consists of various graph views according to the

set of configured functions and selected channels. Currently, two functions, ”scope” and

”spectogram”, are defined for periodic signals and ”button” for aperiodic signals. For

every function, a graph view controller prototype is registered in the BCiGraphView-

ControllerFactory. The controller of the visualization screen will ask the factory to

clone prototypes for every channel depending on the periodicity of the signal. In this

case, one BCiScopeGraphViewController and one BCiSpectrumGraphViewController

will be created for all periodic signals and one BCiButtonGraphViewController will

be created for all channels of aperiodic signals. Section 3.8.3 describes all associated

visualizations.

After all, these graph view controllers provide the graph views. In turn, the layout of

these graph views is arranged by BCiGridPageLayoutManager. In this manner, graph

views will be uniformly distributed over the pages of the layout manager. The number of

pages and graph views per page are specified by the Settings App, respectivly the current
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global settings. Using the layout manager will also allow to reorder and (de-)magnify

graph views by user interaction as demonstrated in Section 3.7. For this purpose, turning

the layout manager into edit mode is done by ”Edit” button in the navigation bar or

pressing the screen of the device with one finger for at least 1.5 seconds. Then, ”Edit”

button will be exchanged with ”Cancel” button and the layout manager animates the

graph views. On the other hand, disabling edit mode is carried out in the same way.

During a fetch cycle, graph view controllers operate over data sources provided by the

Signal Server Client. In principle, fetch cycles are initiated on a regular basis which

occurs whenever a specific update timer fires. The timer interval depends on the highest

virtual sampling rate in the current signal selection. If the rate exceeds the device

maximum, the maximum is used instead inhibiting a potential performance drain.

The visualization screen implements a lazy update model to increase performance. On

every timer tick, only graph view controllers of visible graph views will be asked to

perform a fetch cycle, preprocess (e.g., calculate spectra) and visualize their data points

afterwards. This is also performed if the layout manager finished changing the set of

visible graph views. While the set is changed for any reason, especially in conjunction

with scrolling or paging, the update timer will not fire until the layout manager has

finished. This is a precaution to avoid a lagging user interface.

Figure 3.37 shows how all modules merge together.

In general, visualization screen supports two modes of operation:

• Data transmission is initiated by Signal Server Client and all visible graph views

track and visualize received data. While tracking data, the update timer is installed.

• Data is no longer tracked and client has stopped data transmission. Also the update

timer will not fire in this state.

Manually toggling these modes is possible either by using a dedicated local toolbar button

or physcially shaking the device. A shake is detected if acceleration of the device in

any direction exceeds a particular threshold which is determined by a single constant.

Accordingly, fine-tuning shake detection is very simple. The toolbar button will change its

shape from pause- to play symbol after tracking was activated or deactivated. Tracking

data will always be initiated instantly as the visualization screen appears and the selection

screen was formerly active.

Due to the lazy update approach, invisible graph view controllers could be inactive for a

longer period. Then, handling all accumulated data points would be potentially expensive
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BCiVisualisationScreenViewController
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Figure 3.37.: Class diagram: visualization screen

and would slow down the application. This can occur whenever the set of visible graph

views changes in conjunction with (de-)magnification of graph views, scrolling within

the current page or turning pages and changing the user interface orientation. For this

purpose, rather than processing every single data point by calling updateData, omitData

is used to use the proxy representation of omitted data points instead as demonstrated

in Section 3.8. This is the standard behaviour if data is currently tracked. In this way,

it is impossible to compare two graphs that are not visible on the same area of the

screen because scrolling would always induce omitted data points. For this reason, this

characteristic is also oppositional in the non-tracking data mode. Hence, potential longer

rendering times have to be accepted additionally.

All periodic graph view controllers support seperate scaling of the time- and value

dimension. In this manner, both dimensions will snap to particular values (integer seconds,

initial scale factors) if certain thresholds are exceeded as mentioned in Section 3.8.3. It

is important to recollect, as graph views display only the first two decimal places of the

observation period, scaling could lead to unsynchronous graph views in spite of showing

equal observation periods. This could happen if the internal accurate observation periods

are different.

Basically, scaling is triggered by performing pinch gestures which are tracked by a single
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BCiPinchGestureRecognizer for the whole screen. Thereby, horizontal pinches will

affect the time dimension and vertical pinches the value dimension. Every time the

gesture recognizer adopts ”Changed” state (see Section 3.5.3), derived scaling factor is

applied to all graph view controllers but only visible graph views are forced to refresh

visualizations. In this case, tracking data mode causes changes to the value dimension

not being shown directly. The visualization is not cleared and the observable effects are

delayed until the end of the next regular fetch cycle. In contrast, graph views will reflect

changings to the time dimension immediately. In this manner, corresponding graph

view controllers clear their associated contents first. Then, they are forced to redraw all

previously processed data points by treating them as omitted data points. These two

techniques facilitate keeping the user interface responsive by saving dispensable drawing

operations.

On the other hand, if non-tracking data mode is activated and regardless which dimension

is being scaled, graph view controllers will always clear their contents and redraw every

already processed data point. Because a pinch is a continuous gesture and ”Changed”

state is very likely adopted several times in series, an optimization had to be implemented.

In doing so, when the gesture recognizer moves to ”Began” state, all visible graph view

controllers are assigned to use aggregation and reduce rendering quality. At the end of

the pinch which takes place if the gesture recognizer is either in ”Cancelled”- or ”Ended”

state, both actions are rewinded. Furthermore, the contents of the graph views are

cleared again. Then, every visible graph view controller uses an individual rendering

thread to display the contents of their graph views in full resolution. While rendering,

a spinning activity indicator stays in the center of each refreshed graph view. User

interaction (pinches, scrolling etc.), all buttons in the toolbar and navigation bar are

disabled until every spawned thread has finished.

”Selection” button in the navigation bar allows to return to selection screen. In this case,

Signal Server Client is assigned to stop data transmission in the background. In the

meantime, all toolbar buttons are disabled. If the client successfully stopped transmission,

workflow controller will activate selection screen controller again. Otherwise, a pop-up

dialog will display a failure message.

Generally, whenever visualization screen becomes visible, current channel selection and

application settings are applied. This involves updating the set of graph view controllers

maintained by layout manager as well as configuring them by changing the content- and

scaling mode.
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The toolbar provides a second local button to take screenshots of the current visible

screen area. Currently, screenshots are rendered in native resolution but iScope could be

extended to use higher resolutions in the future. In this manner, an entire white view

fades in by altering the alpha channel from 0 to 1 in an animation sequence which should

suggest the flash of a camera. At the end of the sequence, the screenshot is rendered.

In the meantime, a spinning wheel is shown and user interaction as well as all control

elements are disabled. When the screenshot is ready, a menu appears to ask for the

further procedure. The screenshot could be simply discarded, saved to the native Photo

app or sent by email. If the email option was selected, a MFMailComposeViewController

from Section 2.4.5 is activated that shows an email form similar to the iOS® Email app.

Then, the screenshot has been already attached and the subject has been entered. Next,

the email is scheduled in the email outbox. After all, an appropriate pop-up dialog will

indicate the success or failure of the chosen operation.

3.9.8. Settings Screen

The visible appearance of the settings screen is controlled by BCiSettingsScreenView-

Controller. It uses a scrollable UITableView to organize the layout and structure of

all settings. Most of the rows are based on customized built-in table cells but also nib

files were created to layout cells containing scaling related settings. ”Close” button in

the navigation bar is responsible of dismissing the settings screen.

All control elements are initialized with the current BCiApplicationSettings. In the

first instance, any changes are made to a local copy in order to allow to restore the

original settings. If the settings were altered and no longer equal the original settings,

”Close” button will turn to a blue ”Apply” button which is reversible if this condition

will be true again. For this purpose, a ”Reset” button is attached to the end of the

table. Taping this button will automatically restore the original settings immediately.

In contrast, if ”Apply” button was hit, settings will be persisted to be still available

after the application has been terminated. Furthermore, settings screen will be finally

dismissed. For this purpose, also the local settings are synchronized with the user’s

default database.

The following settings are configurable by settings screen in Figure 3.38:

• Content mode determines the visualization mode for all periodic graphs (spectogram-

and scope graphs). Thereby, either ”Scroll” or ”Clear” are possible which correspond

to visualizations modes of continuous content layers in Section 3.8.1. In order to
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ensure that all periodic graphs are synchronized, only one option for both type of

periodic graphs is provided.

• Scale mode is individually configurable for both types of periodic graphs. If ”Auto”

is specified then all associated BCiGraphViewControllers will automatically scale

values of their graphs. In this manner, represented maximum and minimum will

correspond to effectivly measured maximum and minimum. This is useful to fully

exploit the height of a scope graph or color range of a spectogram graph. On

the other hand, ”Fixed” will allow to specify the value limits manually by two

BCiSliders for each graph type. The Maximum- and minimum slider are bound to

each other and will update its ranges if the respective other has been manipulated.

This approach prevents illegal and contradicting values like setting a maximum to

a lower value than the configured minimum.

(a) Collapsed settings (b) Expanded settings

Figure 3.38.: Screenshots: settings screen

3.9.9. Performance Limits

Technically, as a result of using a floating point coordinate system, any number of data

points could be visualized. However, computational power is a restraining factor though.

Running iScope with Instruments on an iPhone® 3GS showed that workload is primarly

shared between receiving data packets from SignalServer, extracting data samples and
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data visualization. The former two tasks are consuming approximately 1⁄4 and the latter

task uses about 5⁄8 of CPU time depending on simultanously transmitted signal channels

and displayed graphs per screen - ten channels were transmitted with a virtual sampling

rate of 150 Hz, whereas three scopes were displayed on the same screen. Consequently,

these three tasks have to be well balanced to guarantee iScope is optimally working. This

can be already done by configuring SignalServer to use lower virtual sampling rates and

applying a layout with less graphs per screen.

Fortunately, screen resolution is also constrained and thus, sampling rates are especially

limited by being still able to optically distinct between rendered data points. An iPhone®

3GS displays graphs with content areas that feature a maximum width of 296 or 456

pixels according to the device orientation.

If a scope graph view that records ten seconds is assumed. Then, the maximum

representable sampling rate in the content area amounts 30 Hz respectively 45 Hz

whereas every data point is at least one pixel in width. In theory, a smaller width is

possible but would cause indistinguishable or overlapping data points. When considering

two seconds, then 148 Hz and 228 Hz respectively are the upper bounds. Displaying only

one second would be less reasonable because the display changes too fast to recognize

any trends or artifacts in the signal. Despite the one pixel minimum width, still a signal

with ten channels can be transmitted at 250 Hz while three channels are visualized in

parallel on one screen. Thereby, iScope operates fluently and the user interface keeps

responsive. In this case, even if data is not tracked, as a result of rendering temporary

data points in a reduced representation, progressive scaling is still guaranteed for the

entire ten seconds or 7500 data points (which are spread over three graphs).

Considering the initial position from above, a maximum of 30 respectively 45 FFT cycles

per second can be reasonably visualized in a spectogram graph. Viewed realistically, a

width of two pixels has to be used in order to avoid blurring that reduces the maximum

effective cycle amount by further 50%. Furthermore, representing a quite smaller time

window in the graph is not advisable to ensure keeping track of changes in the spectral

domain. Test runs on an iPhone® 3GS revealed exemplary maximum configurations

from Table 3.8. Deriving from these results, if a high number of cycles per second is

required, only one graph per screen should be configured to optimize performance results.

Generally, performing test runs of iScope demonstrated that the device’s maximum

resolution could be utilized at an adequate performance level.
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Virtual Transmitted Graphs FFT cycles
Sampling rate Channels per screen per second

250 Hz 10 1 45

250 Hz 10 3 20

150 Hz 10 3 25

Table 3.8.: Exemplary maximum configurations for spectogram graph - every config-
uration uses a Hamming window of one second.
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4. Deployment

Enrolling iOS® developer program is a prerequisite and cannot be avoided in an official

way. There exist other inofficial deployment scenarios but they are not part of this thesis.

An app has to be cryptographically signed with a certificate in order to run on real

iOS® devices. The process of how to deploy apps depends on the current project phase

which can be either development & testing or distribution. Both phases require having

access to iOS® provisioning portal where different administrative tasks are organized

(e.g., managing certificates, registering iOS® devices, creating provisioning profiles etc.).

In this context, iOS® developers have different roles and responsibilities. Basically,

administrative tasks are assigned to team admins and team agents rather than to simple

team members.

4.1. Building from Source

At the time, the entire source code of iScope is under source control and located at

https://svn.tugraz.at/svn/iscope/trunk. After checking out the Subversion (SVN)

repository, BCiScope.xcodeproj has to be opened with XCode® and the active build

configuration has to be specified. Debug should be used when iScope is deployed in

development & testing phase. For the distribution phase, it is recommanded to clone the

Release configuration and rename it according to the distribution channel (e.g., Ad-Hoc

Distribution). In both cases, an appropriate provisioning profile has to be selected for

code signing, otherwise the build will not successfully run to completion. Debug builds

are also fully functional and run on real devices. Finally, either Device or Simulator has

to be selected indicating the target platform for the app.

When the build has started, all required sub projects (i.e. libraries) are generated as well.

Neither additional binaries and external libraries have to be installed, nor any further

configuration beyond XCode® has to be done. All necessary files are included in specific

sub folders of the project directory.
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Builds are initiated using the Build menu in XCode®. XCode® will create a build

directory in the BCiScope project directory containing a sub directory for the active

build environment (combination of active build configuration and target platform - e.g.,

Release-iphoneos). If Build option was selected from the Build menu, the outcome

of the build process is a named folder called the application bundle (BCiScope.app)

containing all resources and binaries of the application. If Build and Archive was chosen,

the application bundle is packed into a .ipa archive and no provisioning profile (.mo-

bileprovision) has to be additionally provided which is more practical for distribution.

4.2. Development & Testing

Every developer or team member owns an iOS® development certificate for signing. In

the provisioning portal, a dedicated development provisioning profile has to be created

which comprises a list of developers allowed to sign a set of apps identified by an App

ID for particular devices. The app will not run if the development certificate is invalid

or the developer, app or device does not match the configuration in the provisioning

profile. If all requirements are fulfilled, iScope can be built from source (see Section 4.1)

by means of XCode®. Then, iScope will start immediately after XCode® has installed

all files (including the provisioning profile) on the physically connected device.

4.3. Distribution

This phase requires a dedicated distribution provisioning profile which is similar to a

development provisioning profile. It includes a distribution certificate for digitally signing

the resulting binary to run on iOS® devices. The binary itself can be built with XCode®

by following steps in Section 4.1.

Distributables are either ad-hoc (e.g., for test users), in-house (for companies) or targeting

App Store℠.

4.3.1. Ad-Hoc Distribution

This type of distribution allows apps to be installed on specific devices listed in the

provisioning profile. The Standard iOS® developer program has a limitation of up to 100

devices. If no .ipa file was generated, the provisioning profile file (.mobileprovision)

has to be delivered in addition to the application bundle.
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The distributer is free in deciding how distribution files are provided to users. In order

to install an app ad-hoc, all distribution files have to be dragged into iTunes® and

synchronized with the connected iOS® device.

Online services like TestFlight emerged that allow easier, over-the-air distribution of

iOS® binaries for beta testing. After creating a free account, .ipa files have to be

uploaded to the portal and TestFlight takes care of distributing the app to registered

users. These users will be notified by email if a new binary is available. Users can directly

open the email notification on the iOS® device and install the app without the need of

iTunes®. [81]

4.3.2. In-House Distribution

The Enterprise iOS® developer program allows distribution of archived apps without

App Store℠ and the necessity of specifying particular devices which are allowed to run

these apps. After all, apps are installed with iTunes® similar to ad-hoc distribution.

4.3.3. App Store℠

No devices or users have to be explicitly specified in the distribution provisioning profile.

In order to upload an app to the App Store℠, an iTunes® Connect account is required.

Next, an entry for iScope has to be created in iTunes® Connect. Then, BCiScope.app

has to be compressed and uploaded to iTunes® Connect with Application Loader which

is shipped with iOS® SDK. Once the app is validated by Apple®, the application is

ready for download via the App Store℠.

4.4. Licensing

Basically licensing is an important topic because ”if you don’t license your code, it can’t

be used (legally) by other people” [82]. Anyway, since iScope only aggregates software

components that are licensed under the X Version 11 (X11) license (TinyXML++ library),

the Boost Software license (Boost library) and the modified BSD license (TiA library

client will supposably use this license in the future), it is also possible to use a proprietary

license that omits sharing the source code. Bugs tend to persist shorter in open and

frequently updated codebases. For this reason, a free software license or open source

software license is contemplable. [83].
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4.4.1. Licensing Limitations

Careful considerations need to be taken into account if an open source or free software

license is chosen in conjunction with iTunes Store® as distribution channel. When buying

and installing an app via iTunes Store®, even without charge, every user has to aggree

to Terms of Service (ToS) of iTunes Store® respectivly ToS of App Store℠. GNU Go [84]

and Applidium VLC [85], two famous examples, demonstrate why this is an important

issue. Both apps were licensed under the GPL version 2 (GPLv2). In either cases, the

app was actually removed from iTunes Store® due to the fact that the GPLv2 is legally

incompatible with those ToS [86, 87, 88]. More precisly, section 6 of the GPLv2 contains

the following condition guarded by a strong copyleft clause:

”Each time you redistribute the Program (or any work based on the Program),

the recipient automatically receives a license from the original licensor to

copy, distribute or modify the Program subject to these terms and conditions.

You may not impose any further restrictions on the recipients’ exercise of the

rights granted herein.” [89]

At the time when Apple® redistributes GPL licensed apps through their App Store℠ to

end customers, the ToS will violate this condition. The violation results from limiting

the customer’s freedom in usage and distribution of the app, granted through Usage

Rules in their ToS which every customer has to apply to and that is representing this

kind of further restrictions. [86, 87]

As stated by the free software foundation, creator of the GPL, this problem also applies to

all other versions of the GNU GPL and the GNU Affero General Public License (AGPL)

as well [86, 89].

Nevertheless, strong belivers in free software could enforce the use of a copylefted license

by establishing a dual licensing scheme within their projects. In this manner, the app is

licensed under a lax permissive license (e.g., X11 license) in order to avoid legal violations

and a license with a copyleft clause (e.g., GNU GPLv3) for the free software and open

source community. The former one should not be given away from the project’s copyright

holder to prevent turning the project into proprietary software. A major disadvantage

is that utilizing contributions from the communities for official distribution channels

(e.g., App Store℠), legally always involves forcing every developer to formally assign

copyrights to the copyright holder of the project. This can lead to an impracticable effort

for larger projects with a huge number of already existing contributors. In addition, some

developers might mind contributing to two seperate legal entities where the copyright
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holder grants himself special rights. Another downside is that dual licensing would not

solve the problem entirely, as one of the main intentions of free software, conceding the

right to copy, modify and redistribute the software, does not apply to end customers in

the same way as it does to the copyright holder of the project. Although they could copy

and modify the copylefted code, they still would not be able to distribute a modified

copylefted version of the app through App Store℠ [90, 91].

103



5. Summary and Conclusion

iScope has reached a state considerable as functional and ready for beta testing. For this

purpose, ad-hoc distributions have been built, successfully installed and passed common

use case tests on real iPhone® and iPad® devices. Typically, beta versions enable all

fundamental features but can contain also a couple of minor issues.

Communication with SignalServer is possible in order to start and stop data transmission

of different types of biosignals at sufficient sampling rates as described in Section 3.6.3.2.

As a valueable result of the module architecture, modifying or exchanging the client part

will only have local impacts to Signal Server Client module and will not affect the main

application or other modules. This is especially important in conjunction with selective

channel transmission which is a future feature of SignalServer.

Three types of graphs are implemented to display data of independently selectable

channels. Periodic biosignals are represented online in line graphs sample by sample

and/or as the result of STFT in spectogram graphs. Also a generic graph was implemented

that shows the state of an aperiodic signal such as a button.

Periodic graphs can be visualized in two different modes - data is either drawn at the

position of a vertical bar that repeatedly runs from the left to the right edge of the

display; or continuously on the very right position of a virtually infinite, scrolling area.

Furthermore, graphs are automatically arranged by a configurable, generic layout manager

that respects the current spatial orientation of the device, let the user magnify graphs

to show a detailed view highlighting more information and manipulate the ordering of

graphs. This approach allows to have a dynamic, configurable number of graphs per

screen as well as embedding new types of graphs very easily without touching any line of

layout specific code.

Many other parameters used by iScope are also adaptable by means of a settings screen

which is directly integrated in the app’s workflow or by an entry in the native iOS®

Settings app. For instance, every graph is scaleable in two dimensions (value- and time

dimension) with either of two scale modes disregarding data is simultanously transmitted.
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For this purpose, an auto scaling feature could be used to fit values into their ideal

boundaries. Otherwise, the value range could be manually fixed using a nice user interface

resembling the look and feel of iOS® and its core applications.

In this manner, graphs can be reordered in a similar way to apps in the native app

launcher application. After all, just a few common and individual gestures involving one

up to two fingers are enough to handle every use case.

Finally, as a consequence of selective measures such as lazy update of invisible graphs,

reducing the rendering quality of temporary visible graph content and exploiting fast

graphic cache, it was feasible to achieve aimed performance requirements as mentioned

in Section 3.9.9.
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6. Outlook

In the next step, beta testing of the ad-hoc distribution should be done in real world

scenarios (i.e. BCI measurement with non developer user and a human subject) and

fixing all possibly discovered issues to be ready to potentially release the binary on App

Store℠.

The current version of iScope is not already tailored for retina displays but would run

on those devices anyhow. View controllers of the Graphs Module have to optimize the

aggregate weight parameter(s) for retina displays (or similar potential future display

enhancements) as described in Section 3.8.1.

The entire application is managed by XCode® 3.2 projects. However, iScope can be

built with XCode® 4 in compatibility mode. Nevertheless, the application should be

ported to native XCode® 4 projects which should be a straight forward process.

In the future, issues regarding too high sampling rates to reasonably represent on

constrained iOS® device screens will be eliminated by a downsampling module integrated

into SignalServer. Additionally, performance will be increased by making use of selective

channel transmission which is also a future feature of SignalServer. iScope’s selection

screen and Signal Server Client module already respect this feature which will reduce

the current communication- and parsing load.

There is already a feature request that lies beyond the scope of this thesis. Spectogram

graphs or more precisely their view controllers should support the possibility to scroll

and scale the range of displayed frequencies. This poses the problem of how to control

these use cases by user interaction. The swipe gesture is already assigned to scrolling

between different pages respectively graphs as well as the pinch gesture that is used to

scale time- and value dimension depending on the orientation of the pinch. A two-finger

swipe would be a reasonable workaround for the first use case. However, this will not

work for scaling as pinching with more fingers would be cumbersome. Consequently,

at least for that use case, a new gesture or workflow extension has to be considered to

determine which dimension shall be scaled. Another approach might allow these new use
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cases only when a graph is magnified whereas scrolling between graphs and pages is not

possible by design and both gestures are unassigned.
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A. Appendix

A.1. Benchmarking BCiDataBuffer with

BCiCommonBenchmarks

Table A.1, Table A.2 and Table A.3 show the results of BCiCommonBenchmarks as

described in Section 3.5.1.1. Every instance of a task was executed 1000 times to average

the final results. The benchmark was compiled with LLVM GCC 4.2 and ran on a real

iPhone 3GS with iOS® 4.3.1.

• Adding task carries out adding sample values to the ring buffer twice as much the

buffer size. In this regard, new values are inserted into NSMutableArray either at

the tail (forward version) or at the front (backward version). The forward version

tests NSNumber as well as a custom mutable class to wrap values. In the course of

applying a custom wrapper, added objects are reused as the maximum number of

elements has been reached to avoid unnecessary heap allocations. If the buffer was

already full, NSMutableArray and std::deque have to remove an element from

the buffer before inserting another one.

• Traversing task steps through and actually accesses all elements of the buffer.

std::deque accesses the elements either with the STL iterator class or with an

appropriate random access method. NSMutableArray is benchmarked with fast

enumerations and also a proper random access method.

• Copying task copies the whole buffer to a C-array of equal length. This involves

iterating through all elements of the buffer if NSMutableArray or std::deque are

used.
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Adding

Buffer size BCiDataBuffer std::deque
NSMutableArray
(forward)

NSMutableArray
(backward)

102 0.082 ms −12.50%
+1287.50% 1)

+1362.50% 1)

+2312.50% 2)

103 0.069 ms −34.78%
+1576.81% 1)

+1550.73% 1)

+2707.25% 2)

104 0.649 ms −8.01%
+1650.38% 1)

+1630.82% 1)

+2869.34% 2)

105 6.027 ms +13.04%
+1792.43% 1)

+1825.17% 1)

+3063.88% 2)

Table A.1.: Ring buffer benchmark results: adding task - 1) with NSNumber; 2) with
custom wrapper class

Traversing

Buffer size BCiDataBuffer std::deque
NSMutableArray
(forward) ∗)

NSMutableArray
(backward) ∗)

102 0.007 ms
−14.29% 1) +0.00% 3)

+28.57% 2)

+114.29% 2) +14.29% 2)

103 0.046 ms
+26.09% 1) +19.57% 3)

+54.35% 2)

+243.48% 2) +52.17% 2)

104 0.464 ms
+22.63% 1) +15.73% 3)

+65.09% 2)

+242.67% 2) +48.92% 2)

105 4.504 ms
+25.56% 1) +21.20% 3)

+57.60% 2)

+256.88% 2) +58.80% 2)

Table A.2.: Ring buffer benchmark results: traversing task - 1) with STL iterator; 2)

with random access method; 3) with fast enumeration; ∗) with NSNumber
wrapper
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Copying

Buffer size BCiDataBuffer std::deque
NSMutableArray
(forward) ∗)

NSMutableArray
(backward) ∗)

102 0.001 ms +500.00% +800.00% +700.00%

103 0.002 ms +2750.00% +3600.00% +3550.00%

104 0.009 ms +6333.33% +7966.67% +8733.33%

105 0.113 ms +5038.94% +6404.42% +6434.51%

Table A.3.: Ring buffer benchmark results: copying task - ∗) with NSNumber wrapper

A.2. Building Boost Libraries for iOS®

No individual XCode project is required to build the Boost libraries for iOS®. Instead,

Boost (version 1.44.0) uses Jam (similar to Make) as a build tool to compile each libary

separately. These are specifically Boost.System and Boost.Date Time in respect to iScope.

All other required functionality can be obtained by simply including corresponding Boost

header files. Jam faciliates customization of all tools that are applied during the build

process (i.e. specifying iOS® SDK compilers). First of all, in order to inject a compiler

of the iOS® SDK to Jam, it is necessary to edit user-config.jam which has to be

explicitly created. It should be located either in the home directory ($HOME) or the

Boost build directory ($BOOST BUILD PATH). Basically, this file is read on startup of

Boost.Build and allows to define additional compilers and other tools that should be

considered. Every library has to be built thrice, targeting i386 (for iOS® Simulator),

ARM®v6 (for older iOS® devices) and ARM®v7 (for newer iOS® devices). Thereby,

the ARM®v6 build omits the Thumb compiler flag. After bootstrapping Boost (see

the Boost documentation) and entering the Boost directory, every build is done in two

steps: editing user-config.jam, then invoking Jam. It is required to rename the output

file after each build step. Listing A.2 shows the Jam configuration targeting ARM®v6,

Listing A.1 for ARM®v7 and Listing A.3 for iOS® Simulator.
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using darwin : 4 . 2 . 1 ˜ iphone

: <PathToSDK>/iPhoneOS . p lat form / [ . . . ] / llvm−gcc −4.2

−arch armv7 −mthumb

− f v i s i b i l i t y=hidden − f v i s i b i l i t y −i n l i n e s−hidden

: <s t r i p e r>

: <a r ch i t e c tu r e>arm <target−os>iphone

;

Listing A.1: Boost user-config.jam - ARM®v7

using darwin : 4 . 2 . 1 ˜ iphone

: <PathToSDK>/iPhoneOS . p lat form / [ . . . ] / llvm−gcc −4.2

−arch armv6 − f v i s i b i l i t y=hidden − f v i s i b i l i t y −i n l i n e s−hidden

: <s t r i p e r>

: <a r ch i t e c tu r e>arm <target−os>iphone

;

Listing A.2: Boost user-config.jam - ARM®v6

using darwin : 4 . 2 . 1 ˜ iphonesim

: <PathToSDK>/iPhoneSimulator . p lat form / [ . . . ] / llvm−gcc −4.2

−arch i386 − f v i s i b i l i t y=hidden − f v i s i b i l i t y −i n l i n e s−hidden

: <s t r i p e r>

: <a r ch i t e c tu r e>x86 <target−os>iphone

;

Listing A.3: Boost user-config.jam - iOS® Simulator

Finally, the libraries can be created by calling Jam as demonstrated in Listing A.4 for

ARM®v6 and ARM®v7 devices. Creating iOS® Simulator libraries make use of Jam as

shown in Listing A.5. Thereby, <iOSVersion> specifies the target iOS® version. Unless

the corresponding iOS® SDK has been installed, building will not work.
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. / bjam t o o l s e t=darwin a r c h i t e c t u r e=arm target−os=iphone

macosx−ve r s i on=iphone−<iOSVersion> de f i n e= LITTLE ENDIAN

l i n k=stat ic i n s t a l l

Listing A.4: Boost Jam invocation targeting iOS® devices

. / bjam t o o l s e t=darwin a r c h i t e c t u r e=x86 target−os=iphone

macosx−ve r s i on=iphonesim−<iOSVersion> l i n k=stat ic i n s t a l l

Listing A.5: Boost Jam invocation targeting iOS® Simulator

The ARM®v6 and iOS® Simulator builds will result in libraries (libboost date -

time.a, libboost system.a) containing code for one single architecture. In contrast,

the ARM®v7 build produces fat libraries targeting ARM®v7- and ARM®v6 architectures.

Unfortunately, these ARM®v6 contents are generated using the Thumb flag because the

ARM®v7 options are used. However, lipo, a command line tool available under Mac OS

X® which creates or operates on universal (multi-architecture) files (e.g., libraries), is able

to bypass this issue. The tool can be used to produce fat libraries for Boost.System and

Boost.Date Time by merging the libraries of the different builds together (see Listing A.6).

After all, the library files contain all three target architecture types (ARM®v6, ARM®v7

and i386) and correct corresponding contents.

<...>$ l s −1

l i bboo s t da t e t ime . a

l i bboo s t da t e t ime a rm6 bu i l d . a

l i bboo s t da t e t ime arm7 . a

l i bboo s t da t e t ime a rm7 bu i l d . a

l i b b o o s t d a t e t ime s imu l a t o r bu i l d . a

l i bboo s t sy s t em . a

l i bboo s t sy s t em arm6 bu i l d . a

l ibboos t sys tem arm7 . a

l i bboo s t sy s t em arm7 bu i l d . a

l i b boo s t s y s t em s imu l a t o r bu i l d . a

<...>$ l i p o − i n f o l i bboo s t sy s t em arm6 bu i l d . a

input f i l e l i bboo s t sy s t em arm6 bu i l d . a i s not a f a t f i l e
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Non−f a t f i l e : l i bboo s t sy s t em arm6 bu i l d . a i s a r c h i t e c t u r e :

armv6

<...>$ l i p o − i n f o l i b boo s t s y s t em s imu l a t o r bu i l d . a

input f i l e l i b boo s t s y s t em s imu l a t o r bu i l d . a i s not a f a t f i l e

Non−f a t f i l e : l i b b oo s t s y s t em s imu l a t o r bu i l d . a i s a r c h i t e c t u r e :

i 386

<...>$ l i p o − i n f o l i bboo s t sy s t em arm7 bu i l d . a

Arch i t e c tu r e s in the f a t f i l e : l i bboo s t sy s t em arm7 bu i l d . a are :

armv7 armv6

<...>$ l i p o −th in armv7 l i bboos t sy s t em arm7 bu i l d . a

−output l ibboost sys tem arm7 . a

<...>$ l i p o − i n f o l ibboost sys tem arm7 . a

input f i l e l ibboos t sys tem arm7 . a i s not a f a t f i l e

<...>$ l i p o −c r e a t e l i bboo s t sy s t em arm6 bu i l d . a

l ibboos t sys tem arm7 . a

l i b boo s t s y s t em s imu l a t o r bu i l d . a

−output l i bboo s t sy s t em . a

<...>$ l i p o − i n f o l i bboo s t sy s t em . a

Arch i t e c tu r e s in the f a t f i l e : l i bboo s t sy s t em . a are :

armv6 armv7 i386

<...>$ l i p o −th in armv7 l i bboo s t da t e t ime a rm7 bu i l d . a

−output l i bboos t da t e t ime arm7 . a

<...>$ l i p o −c r e a t e l i bboo s t da t e t ime a rm6 bu i l d . a

l i bboo s t da t e t ime arm7 . a

l i b b o o s t d a t e t ime s imu l a t o r bu i l d . a

−output l i bboo s t da t e t ime . a

Listing A.6: Creating fat (universal) Boost libraries - (formatted output)

Fat library- and header files for Boost.System and Boost.Date Time are located in

trunk/extern/lib. However, these libraries could be rebuilt with a different compiler

(flags) or targeting other (additional) architectures and therefore exchanged in the future.
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A.3. Performance Overview of Signal Server Client

Module

Table A.4, Table A.5, Table A.6, Table A.7, Table A.8 and Table A.9 list detailed

performance results for the tests described in Section 3.6.3.2.

Sampling rate Mean loss SD Absolute loss
[Hz] [Packets] [%]

32 0.028 0.314 2.723
64 0.030 0.461 2.903
128 0.023 0.573 2.276
256 0.037 1.000 3.528
512 0.024 1.102 2.316
600 0.025 1.225 2.408
650 0.001 0.024 0.057
700 0.025 1.351 2.400
800∗) 7.128 125.967 87.695

Table A.4.: Packet loss: 1 channel - calculated packet loss based on up to 100000
successfully received data packets, except for ∗) where data transmission
was aborted after ten minutes due to a dramatically increase of data loss.
data packets were only read from network socket but not processed.
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Sampling rate Mean loss SD Absolute loss
[Hz] [Packets] [%]

32 0.032 0.340 3.105
64 0.030 0.460 2.925
128 0.013 0.415 1.241
256 0.024 0.793 2.309
512 0.019 1.003 1.902
600 0.032 1.404 3.102
650 0.020 1.121 1.935
700 0.022 1.244 2.121
800 ∗) 1.806 46.679 64.359

Table A.5.: Packet loss: 1 channel - calculated packet loss based on up to 100000
successfully received data packets, except for ∗) where data tansmission
was aborted after ten minutes due to a dramatically increase of data loss.
data packets were read from socket, contents were parsed and added to
data model.

Sampling rate Mean loss SD Absolute loss
[Hz] [Packets] [%]

32 0.031 0.318 2.965
64 0.024 0.463 2.299
128 0.023 0.568 2.281
256 0.001 0.018 0.034
512 0.029 1.225 2.775
600 0.017 1.009 1.639
650 ∗) 25.639 461.439 96.245

Table A.6.: Packet loss: 10 channels, 1 selected - calculated packet loss based on
up to 100000 successfully received data packets containing ten channels,
except for ∗) where data transmission was aborted after ten minutes to
a dramatically increase of data loss. data packets of one channel were
only read from network socket but not processed.
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Sampling rate Mean loss SD Absolute loss
[Hz] [Packets] [%]

32 0.034 0.356 3.325
64 0.024 0.414 2.377
128 0.030 0.631 2.896
256 0.020 0.715 1.923
512 0.020 1.007 1.923
600 0.017 0.999 1.632
650 ∗) 16.580 391.668 94.311

Table A.7.: Packet loss: 10 channels, 1 selected - calculated packet loss based on
up to 100000 successfully received data packets cotanining ten channels,
except for ∗) where data transmission was aborted after ten minutes due
to a dramatically increase of data loss. data packets of one channel were
read from socket, contents were parsed and added to data model.

Sampling Rate Mean Loss SD Absolute Loss
[Hz] [Packets] [%]

32 0.025 0.299 2.395
64 0.019 0.357 1.828
128 0.020 0.527 1.971
256 0.021 0.724 2.020
512 0.020 1.036 1.994
600 0.016 0.990 1.606
650 ∗) 8.757 375.606 89.749

Table A.8.: Packet loss: 10 channels, 3 selected - calculated packet loss based on up
to 100000 successfully received data packets containing three channels,
except for *) where data transmission was aborted after ten minutes
due to a dramatically increase of data loss. data packets were only read
from network socket but not processed.
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Sampling rate Mean loss SD Absolute loss
[Hz] [Packets] [%]

32 0.019 0.247 1.857
64 0.019 0.367 1.829
128 0.018 0.481 1.738
256 0.018 0.696 1.802
512 0.001 0.025 0.060
600 0.017 1.004 1.648
650 ∗) 10.036 206.420 90.938

Table A.9.: Packet loss: 10 channels, 3 selected - calculated packet loss based on up
to 100000 successfully received data packets containing three channels,
except for *) where data transmission was aborted after ten Minutes
due to a dramatically increase of data loss. data packets of one channel
were read from socket, contents were parsed and added to data model.

A.4. Legal Disclaimer

ARM®, Cortex™, NEON®, Thumb® are trademarks or registered trademarks of ARM
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Store®, App Store℠, Cocoa®, Cocoa Touch®, Retina®, Quartz®, XCode® are registered

trademarks or service marks by Apple Inc. in the U.S. and other countries. UNIX® is a

registered trademark of The Open Group in the U.S. and other countries. NextStep® is

a registered trademark of NeXT Software Inc. in the U.S. and other countries.
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