
Graz University of Technology

Institute for Computer Graphics and Vision

Microsoft Photogrammetry

Master’s Thesis

Interactive Semantic Segmentation on

Aerial Images

Patrick Knöbelreiter
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Abstract

Extracting semantic information out of images is one of the most challenging problems in

computer vision. The goal is to identify all foreground and background objects visible on

an image simultaneously. Every pixel on the image gets a logical class label assigned, such

that a pixel accurate segmentation results, which is referred to as a semantic segmentation.

Deriving a semantic segmentation of arbitrary input images allows a computer not just to

see the images with a camera, but also to understand what the content of an image actually

is. This allows to automate a lot of things. However, viewpoint variations, occlusions and

different scales make semantic segmentation a very complex task.

In this thesis, a semantic segmentation of aerial images should be computed using an

interactive approach. This requires the classifiers to be very fast at test time, such that

the user gets immediate feedback after the classifier has been updated. Random forests

and random ferns are classifiers fulfilling this property and have therefore been used in

this thesis for the classification task. It is shown how random forests and random ferns

can be used online, such that new training data can be incorporated at any time. To keep

the interaction necessary as little as possible, a concept called active user guidance has

been developed. This concept allows the user to update the classifier with those samples,

which will have the greatest impact on performance.

With the application it is possible to semantically segment complete aerial projects

in 2D as well as in textured 3D. Projects in 3D allow to incorporate additional features

like pixel synchronous surface normals for example, which are highly discriminative and

therefore a powerful information source for semantic segmentation.

Keywords: Interactive, Semantic Segmentation, Scene Parsing, Random Forest, Ran-

dom Fern, Machine Learning, Aerial Photos
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Kurzfassung

Das Extrahieren von semantischer Information aus Bildern ist ein schwieriges Problem der

Bildverarbeitung. Ziel ist es gleichzeitig alle Objekte, die sich sowohl im Vordergrund als

auch im Hintergrund befinden, zu identifizieren. Das bedeutet, dass jeder einzelne Pixel

des Bildes eine logische Kategorie zugewiesen bekommt. Das Ergebnis wird als semantische

Segmentierung eines Bildes bezeichnet. Mit Hilfe einer semantischen Segmentierung ist

es für einen Computer nicht nur möglich die Bilder mit einer Kamera zu betrachten,

sondern auch zu erkennen, welche Objekte sich wo auf dem Bild befinden. Aufgrund

unterschiedlicher Blickpunkte, Verdeckungen und unterschiedlicher Skalierungen ist die

Berechnung einer semantischen Segmentierung ein sehr komplexes Problem.

In dieser Arbeit wird ein interaktiver Ansatz gewählt, um eine semantische Segmen-

tierungen von Luftbildern zu berechnen. Dies impliziert, dass die Evaluierung von neuen

Bildern sehr schnell erfolgen muss, sodass der Benutzer das Ergebnis seiner Interaktion un-

mittelbar sehen kann. Random Forests und Random Ferns sind Klassifikatoren, die diese

Anforderung erfüllen und wurden deshalb in dieser Arbeit verwendet. Es wird gezeigt

wie Random Forests bzw. Random Ferns online - neue Trainingsdaten können zu jedem

Zeitpunkt in den Klassifikator integriert werden - verwendet werden können. Um die

notwendige Interaktion so gering wie möglich zu halten wurde ein Konzept entwickelt, das

dem Benutzer zeigt, welche annotierten Pixel die größte Qualitätsverbesserung bewirken.

Mit dieser Anwendung ist es möglich eine semantische Segmentierung von Luftbild-

Projekten sowohl in 2D als auch in texturiertem 3D zu erstellen. Wenn es sich um ein

Projekt in 3D handelt, ist es außerdem möglich, Normalvektoren der Pixel als zusätzliche

Informationsquelle zu verwenden.
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Chapter 1

Introduction

A fundamental problem in computer vision is image segmentation. Image segmentation

is the task of grouping logical corresponding pixels in an image together. That is, for

example, if pixels have a strong correlation to objects or regions in real world images,

they should correspond to one group of pixels. Image segmentation is an important pre-

processing step for further image analysis including classification, recognition, etc., i.e., it is

the first step from raw pixel-based color information towards more meaningful information.

There exist a lot of basic low level segmentation algorithms such as thresholding, k-means

clustering or watershed segmentation. Figure 1.1 shows examples of these segmentation

algorithms. For a more complete list and more details about basic image segmentation

algorithms see [68], for a survey of segmentation methods see [41].

However, these basic methods are very sensitive to the parameters used. Bad im-

age quality accompanied with noise, poor contrast, weak boundaries and highly textured

objects make segmentation a very hard task. To overcome these difficulties, in the last

decades, a lot of research has been done in this area and many more sophisticated im-

age segmentation algorithms evolved (Level Sets [12], Graph-based segmentation [19, 64],

Mean-Shift [11], Markov Random Fields [7], Variational Formulations [48]).

The huge number of publications reflects the importance of image segmentation and

that it is not solved completely yet. However, for some very specific tasks the segmentation

results are pleasing. Applications of image segmentation are found in various fields, like

in aerial image processing, object recognition, industrial computer vision, medical image

analysis and many others.

1



2 Chapter 1. Introduction

(a) Thresholding

(b) Watershed segmentation

(c) K-Means clustering

Figure 1.1: Examples of basic image segmentation algorithms. Image courtesy of [44], [43]
and [5].

1.1 Definition of Image Segmentation

In mathematical terms, images are functions I : Ω → R
c, where Ω is called the image

domain. The dimensionality of Ω is 2 for 2D images. For gray-scale images c = 1 and for

color images c = 3. Every pixel on an image is assigned to a region Ωi, where different
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regions do not overlap. Hence, image segmentation can be defined as

Ω =
K⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ ∀i 6= j (1.1)

All pixels in a region Ωi should be homogeneous and different from surrounding regions Ωj .

IfK = 2, the segmentation is called binary segmentation. The aim of binary segmentations

is to partition an image into foreground and background. For K > 2, the problem is

called multi-label segmentation. The reminder of this work will deal with multi-label

segmentations, if not other specified.

From the definition above, it can be seen that image segmentation is ambiguous, i.e.,

many segmentations do exist, which fulfil Equation (1.1). However, we are only interested

in a small subset of them. More precisely, we want to get homogeneous region in some

respect. This similarity could be color, spatial vicinity, or the correspondence to the same

object for example. The question of which segmentations are “correct” solutions is not

trivial to answer. Figure 1.2 shows some correct segmentations done by humans.

Figure 1.2: Segmentation ambiguity. Example of human-annotated images from the
Berkley segmentation dataset [42]. Note the variation of annotations and the difference in
the number of resulting segments. However, all of these segmentations are correct. Image
courtesy of [3].
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1.2 Machine Learning and Image Segmentation

Image segmentation can also be seen as a machine learning task. In general one distin-

guishes between unsupervised and supervised machine learning algorithms. The difference

lies in the existence of class labels, where in the supervised setting target labels exist and

in the unsupervised setting no class labels exist. In other words unsupervised machine

learning algorithms are completely dependent on the data itself and supervised machine

learning algorithms make use of additional information called labels. In the context of

this work, machine learning algorithms are actually segmentation algorithms.

1.2.1 Unsupervised Segmentation

In the unsupervised segmentation configuration the target is to discover the data and

group similar examples within the data together. Since in image segmentation the data

is an image, the task is to group similar pixels together. The process of grouping similar

data together is also called clustering. Actually, this fits exactly to the definition of image

segmentation (see Equation (1.1)).

1.2.2 Supervised Segmentation

In the supervised setting, the input data comprises examples of the input vector along

with their corresponding target vectors, i.e., the labels are available in addition. This

enables the possibility to inject external information to the algorithms and therefore guide

them and furthermore the resulting segmentation. Since the result of the segmentation

are learnt class labels, supervised segmentation is a classification task. However, the result

of this segmentation are not just regions as it is in the unsupervised setting, but regions

with a label assigned to them. Therefore, also semantic information is incorporated into

supervised segmentation which leads to a semantic segmentation. Semantic segmentation

is discussed in Section 1.3.

1.2.3 Why Machine Learning

On this place, one could ask the question: “Why to use machine learning for semantic

segmentation? Why don’t use a sophisticated model designed specific for semantic seg-

mentation?” Indeed, these questions are eligible. However, the answer to these questions

is the following: It is unclear how to model different categories [39]. Take the category
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Window for example. The intra class variability is very high which makes it difficult or

even impossible to define a model representing all variants of windows.

To overcome this problem a machine learning strategy is used. By using machine

learning techniques, we want to learn what distinguishes different classes rather than

manually specify their difference. The complexity of semantic segmentation and other

recognition problems results from [39]:

• Viewpoint variations

• Different illuminations

• Occlusions

• Different scales

• Deformations of the objects

• Background clutter

Since the high complexity of semantic segmentation a lot of research focuses on machine

learning techniques. Machine learning tackles these difficulties by trying to use statistical

reasoning to find an approximate solution to the problem [33] (cf. Section 2.3.1).

1.3 Semantic Segmentation

Image segmentation (see Section 1.1) is the process of finding regions of corresponding

pixels in an image. However, in many applications it is not enough to only know which

pixels correspond to which segments in an image. More often, one wants to know which

regions do correspond to which logical class in addition. In general, arbitrary class labels

are possible, this is only a question depending on the task to be solved. Examples for such

semantic classes could be

• Façade

• Door

• Window

• Roof

• Vegetation
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• Street

• Car

• . . .

In semantic segmentation all foreground (i.e., the “things”) and background (i.e., the

“stuff ”) objects, which are present on an image should be detected. From another point

of view a thing is everything on the image, where it is possible to draw a bounding box

around (e.g., car, window) and the stuff are the regions where it is not possible to draw a

bounding box around (e.g., sky). However, one does not just want to detect the objects by

drawing a bounding box around them, but to perform a pixel-wise segmentation. Hence,

semantic segmentation tries to

• segment an image into regions, where each region represents either a thing or stuff

• find exact boundaries between things and stuff

• assign a class label to each region.

In other words, one could say that semantic segmentation turns visual data into a mean-

ingful representation. Semantic segmentation performs a recognition task, which is in

general very hard to do for computers, since a model does not exist. The step leads form

numerical values, i.e., the colors of the pixels, to objects and meaningful regions present

on an image.

By knowing what is on an image, it is possible to automate a lot of things. Semantic

segmentation gives a computer with a camera not just the possibility to see, but also the

possibility to understand the world as human do. This could be seen as one of the final

targets of computer vision. With this ability a lot of things could be done automatically

by computers.

Semantic Segmentation on Aerial Images In this work, the focus lies on aerial

images. They differ from images shipped in a segmentation database. The images in

labelling databases are almost designed for some predefined classes, i.e., that the images

contain exactly the classes, for which one is looking. From a machine learning perspective

of view, the most challenging part on aerial image is that there exist hardly any or even

no ground truth annotations. An overview of differences is summarized in Table 1.1.
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(a) Database image (b) Semantic segmentation

Figure 1.3: Example of a semantic segmentation. The semantic segmentation is pixel
accurate, i.e., each pixel has a logical class label assign to it. Different colors encode
different class labels. Image taken from the MSRC image database [57].

Labelling database image Aerial image

Size small - medium medium - large

Resolution medium - high low - high

View arbitrary orthogonal, oblique

Visible Classes predefined arbitrary

Ground truth available not available

Table 1.1: Differences of images from labelling databases and aerial images from a machine
learning perspective of view.

How a semantic segmentation can be performed with a machine learning approach is

discussed in Section 2. This application tackles the problem using an online approach (see

Section 1.4 and Section 4). An example for an semantic segmentation on an aerial image

is visualized in Figure 1.5.

1.4 Interactive Semantic Segmentation

In an interactive semantic segmentation system, the user has the possibility to interact with

the algorithms. In fact, the user provides the labels for training and updating the classifier.

Therefore, he can guide the algorithms what to learn. As illustrated in Figure 1.4, it is

possible to distinguish different classes with very little annotation effort. A human operator

has the possibility to guide the algorithm by intelligently providing the most useful samples

as training data. For example, when the user provides the two red circles and the two

green triangles (see Figure 1.4), then the classifier is able to separate the classes perfectly.

These important samples defining the decision boundary are referred to as the support

vectors. As can be seen from this toy example it is possible to achieve very good results
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without the need of a huge amount of training data. In addition, by having the user in the

loop, the ambiguity problem in image segmentation is not a problem anymore. The user

can always teach the algorithms to learn, what he defines to be the ground truth. It is

no problem, if this ground truth does change over time for example, since it is possible to

update the knowledge of the classification algorithms on demand. Unsupervised methods

are heavily dependent on the parameters used, like the number of segments in the final

segmentation. In contrast, by using an interactive approach, the number of segments is

implicitly defined by the number of labels the user uses.

m
ar
gi
n

Figure 1.4: The advantage of an interactive semantic segmentation approach is that it
is possible to achieve very good results with very little training data. In this case it is
possible to split the two categories (circles and triangles), by annotating only the red and
green coloured samples.

When a new classifier is trained from scratch, it is possible to create pleasing semantic

segmentations with very little annotation effort. This is especially useful when hardly any

ground truth annotations exist.

1.4.1 Classifier requirements

Based on the definition of interactivity, some properties, which must be fulfilled by the

semantic segmentation algorithm can be derived:

• Online capability of the classifier

The classifier must support trainings data arriving online, i.e., the classifier does not



1.4. Interactive Semantic Segmentation 9

see all training data in advance, but only some data in a stream-like setting.

• Do not overfit on trainings data

Since only a subset of the data is available during the training stage, it is important

that the classifier does not overfit to this data. The generalization (performance on

previous unseen data) of the classifier should be as good as possible.

• Fast evaluation

An application is only interactive, if the user gets immediate feedback after he has

performed some operation. This requires a classifier that is very fast at test time,

i.e., in deriving the semantic segmentation based on the samples provided by the

user.

• Multi-class

The classifier should be able to handle multiple classes and not just the binary case

(foreground versus background), because in general one wants to split the data into

more than two different classes. However, since the binary segmentation is just a

special case of the multi-class segmentation problem, it can be solved with a multi-

class classifier, too.

• Probabilistic output

The classifier should output the complete posterior distribution over the class labels

and not directly a class label. This is especially important, because these class label

probabilities can be used almost directly to guide the user (see Section 5.3).

Here a short overview of classifiers commonly used throughout the literature in semantic

segmentation is presented. It is shown whether they fulfil the required properties stated

above or not. For a more complete list of classifiers used in machine learning the reader

is referred to [27].

The first classifier presented is a Support Vector Machine (SVM). SVMs are known

to be margin maximizing classifiers and therefore, they generalize very well on previously

unseen data. However, SVMs are not inherently multi-class classifiers, i.e., SVMs can

handle multiple classes only by training 1 versus all SVMs. That is, for each class one

SVM is trained against all other classes and the results of all SVMs are then combined to

derive the final result. As Criminisi et al. pointed out in [14] this can lead to asymmetric

decision boundaries which are not really justified by the training data. The performance

of a SVM depends on the number of classes in the classification problem. The more classes



10 Chapter 1. Introduction

should be distinguished, the more SVMs are necessary and therefore the processing time

increases. In addition, since semantic segmentation is a complex task, it is not possible to

split the classes using a linear SVM, but a kernel SVM must be used. If there are a lot of

support vectors to compare against, the performance suffers. Confidence output can only

be produced with the usage of relevance vector machines [70], but only at the expense

of further computations. SVMs are inherently online and therefore training data arriving

any time can be incorporated easily.

Boosting is a classifier using the power of ensembles. There a strong classifier is

constructed out of many weak learners. The most famous boosting algorithm is called

AdaBoost [20]. Boosting concentrates on the difficult samples by re-weighting the samples

appropriately. This makes boosting a powerful classifier. However, due to the re-weighting

noise becomes more important too and therefore, this classifier is more noise sensitive. Due

to the many weak learners which must be used to achieve a good performance, boosting

is rather slow. As it is the case with SVMs, boosting is not inherently multi-class, i.e., the

algorithm was designed for binary classification problems originally.

Another option to consider are deep neural networks (DNN). A neural network is said

to be deep if it has more than one stage of non-linear feature transformation. The structure

of DNNs is rather complex and it is difficult to comprehend what is actually happening in

the DNN. However, DNNs are powerful classifiers which can be used in an online setting.

To achieve interactive performance it is necessary to implement them on the GPU.

In this work, the main classifier used is a random forest (see Section 2.5). Random

forests are inherent multi-class, very fast to evaluate and are known to be margin maxi-

mizing, which are great advantages. However, random forests are not inherently online,

i.e., some tricks must be applied to use them in an online setting. Different variants of

using random forests online are revealed in Section 4.2.

For comparison random ferns (see Section 2.6) are used in this thesis. Random ferns

are similar to random forests. However, their structure is simplified and random ferns are

generative classifiers. Therefore, they can be used in an online setting easily.

To summarize, on one hand interactive segmentation enables a lot of capabilities, due

to the knowledge of a human, which can guide the semantic segmentation. However, on

the other hand the interactivity also introduces some constraints on which algorithms are

actually usable. Random forests and random ferns are best suited for interactive semantic

segmentation. DNNs would be an interesting alternative, however, due to the simplicity

of forests and ferns they are used in this thesis.
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1.4.2 User Interaction

Obviously, in an interactive application some user interaction is required. The tool must

provide a feature to incorporate the knowledge of the user into the learning algorithm.

That is, the user must have the possibility to guide the algorithm by segmenting some

of the data. In this work, the preference is given to brush strokes, i.e., scribbles, because

of the several advantage they have compared to drawing bounding boxes or polygons or

to mark the contours between objects. Drawing scribbles onto an object is very intuitive

and it is easy to use them for different granularities. Furthermore, the annotation can be

done very fast by using this technique. The scribbles are color coded and with different

colors the user specifies the classes for the semantic segmentation. After the user did all

annotations, i.e., he provided some samples of all classes he wants to segment, the classifier

tries to learn the intent of the user and generalizes the gained knowledge to the complete

image. If the user is not satisfied with the result, it is possible to enhance the segmentation

by providing additional scribbles at incorrect segmented areas. In Figure 1.5b scribbles

are visualized.

(a) Oblique aerial image (b) Interactive annotation (c) Semantic segmentation

Figure 1.5: Example of a semantic segmentation on an oblique aerial image. 1.5a shows
the input image where a semantic segmentation should be derived. 1.5b shows the user
annotation of the classes Roof, Vegetation, Façade, Window, Car, Ground, En-

try. 1.5c shows the final semantic segmentation created based on the user input. Notice
the pixel accurate class borders.

1.5 Outline

The further sections are organized as follows. Section 2 gives an overview of related work in

semantic segmentation and how this problem can be solved. Section 2.1 introduces general
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definition and notations used throughout this thesis. In Section 2.3 a general classifier is

defined. The used classifiers in this thesis, random forests and random ferns, are reviewed

in Section 2.5 and Section 2.6 in detail. Section 2.7 introduces the concept of boosting

and how it can be used in the context of semantic segmentation. Since context is very

important in a scene, Section 2.8 gives an overview of how context can be incorporated

into the classification task.

In Section 3 the focus lies on the feature channels, i.e., the information source of the

classifier, and on the features to be used for classification. The used feature channels are

reviewed in Section 3.1 in detail. In Section 3.2 different features are presented.

In Section 4 the algorithms and concepts developed and used in this thesis are de-

scribed. It starts with a general definition of online learning and reveals differences to

the offline setting and the concept of continuous learning is presented. Section 4.2 shows

how random forests can be used online, how the classifier can be updated and what can

be done to achieve a good generalization. Section 4.3 reviews how random ferns can be

used for interactive semantic segmentation. Some performance tricks incorporated in the

implementation are shown in Section 4.5.

In Section 5 the application resulting from this thesis is presented. Section 5.1 defines

the interactive semantic segmentation pipeline. The graphical user interface to be used for

the semantic segmentation is stated in Section 5.2. To get the most out of the labels, i.e.,

the annotations made by the user should be as little as possible, in Section 5.3 a concept

called Active User Guidance is described. Finally, Section 5.4 shows the algorithms used

for regularizing the output of the classifier.

In Section 6 the used algorithms are evaluated and compared to state of the art al-

gorithms. The performance evaluation of random forests is shown in Section 6.1 and the

evaluation results for random ferns are shown in Section 6.2.

Section 7 summarizes and gives an outlook for further work.
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Related Work

2.1 Notations

Before diving deeper into the related work, the notations used in this thesis are introduced.

In the following paragraphs, general definitions and machine learning definitions are done.

Table 2.1 summarizes common used letters throughout this work.

General Definitions Lower case letters (e.g., x, λ) are used for scalar variables. Vectors

are denoted by bold face lower case letters (e.g., x) and unless other noted, vectors are

column vectors. An example for a row vector would be xT = (x, y). The k-th element of

a vector is represented by a subscript (e.g., xk). Matrices are denoted by bold face upper

case letters (e.g., M) and the elements are ordered row-major, i.e., the element in row i

and column j is denoted by Mij . Sets are represented by calligraphy letters like X .

A random variable (RV) is denoted by upper case letters, such as Y . A probabil-

ity distributions over a RV Y is denoted as P[Y ]. In this thesis, the random variables

correspond to the unknown class labels and are therefore discrete. The probability of a

discrete random variable taking the value yi is denoted as P[Y = yi] or in short p(yi). The

expectation of a RV X is given by E[X = xi].

Machine Learning Definitions A set of labelled data is defined as Xl = {(x, y)|x ∈

X , y ∈ Y}, where X is a d-dimensional feature space R
d. Each entry xi in the data point

represents some attribute of it, called feature. Each labelled data point x has a label y

assigned. The class labels are discrete numbers Y = {1, . . . ,K} and therefore a |Y|-class

classification problem is given. In case |Y| = 2, i.e., a binary problem is addressed, the

labels are drawn from y ∈ Y = {−1,+1} to be compatible to other literature. A set of

13



14 Chapter 2. Related Work

unlabelled data is defined as Xu = {x|x ∈ X}. In an unlabelled data set, no class labels

are available. One data point xi ∈ Xl or x ∈ Xu is referred to as a sample.

Likelihood and potentials When dealing with classifiers directly, usually one is in-

terested in the posterior probabilities over the class labels. The output of the classifier

is the likelihood that a data point x belongs to class y. The greater the likelihood for

class yi, the more probable that yi is the correct label and therefore higher probabilities

are better. However, some models require potentials, where the classification problem is

stated as an energy minimization problem. Since this is a MINimization problem, lower

values are better. Therefore, the probabilities must be transferred to potentials. Given

the probability for class label pi, the corresponding potential fi can be calculated easily

by

fi = 1− pi, pi ∈ [0, 1] (2.1)

The lower the potential fi, the better.

Images A grey scale image is represented as a matrix I, where each entry Iij is called

pixel and has an intensity of 8-Bit. In a color image IRGB, each pixel has a vector of size

3 assigned, where the values represent the red, green and blue intensity respectively.

Symbol Description

Xl labelled set

Xu unlabelled set

P set of all patches in an image

Y set of all labels

X set of all features

T set of all test parameters

h(x,θ) (weak) classifier

Table 2.1: Predefined variables and notations

2.2 System Approach

In this section, we want to define the system approach, which is used in this thesis. Three

important steps are necessary to perform a semantic segmentation on an arbitrary input

image, where the first step can be considered as a preprocessing step and in step 2 and 3

the semantic segmentation is done based on the information calculated in step 1.
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(1) Feature channels

The first step in a semantic segmentation framework is to extract so called feature

channels. Feature channels can be extracted out of the RGB input image and ab-

stract the pure color information for further processing. What feature channels are

actually used and why they play a very important rule is described in Section 3.

(2) Classification

In the second stage, a powerful classifier is used to estimate the class likelihoods

in a dense manner. The class likelihoods are often referred to as the unaries. By

assigning the class label with the highest probability to each pixel, the maximum

a posteriori (MAP) solution can be derived. However, this solution might be very

noisy, since each pixel is treated completely individual. We used random forests

(Section 2.5) as well as random ferns (Section 2.6) as classifiers in this thesis.

(3) Regularization

Because the pure MAP solution is visually not very pleasing, the third part is the

regularization part (Section 5.4). Regularization means that the MAP solution is

not used directly, but the class posteriors are smoothed. This leads to the effect that

the labels are smooth in the final solution and label transitions are preferred to be

at strong boundaries in the image.

Patches for Semantic Segmentation In order to do semantic segmentation, each

pixel in the image must be presented as a data point x. In semantic segmentation such

a data point is represented through the actual pixel and the local neighbourhood of that

pixel. This local neighbourhood is referred to as a patch. An example image and one

contained patch in this image is visualized in Figure 2.1. In this application the size of

such a patch is defined by 25× 25 pixel, but in general an arbitrary patch size is possible.

However, the data point x contains not the pixels of the patch directly, but properties of

the patch called feature channels (Section 3). Each feature channel patch is saved as a

row vector and the concatenation of all feature channel vectors is the resulting data point.

2.3 Classifier

As already proposed in Section 1.2, semantic segmentation can be solved using machine

learning approaches. Since we want to learn discrete class labels, semantic segmentation

can be considered as a classification task. The oracle, which actually does the learning is
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(a) Patch (b) Complete Image

Figure 2.1: Patches for semantic segmentation. 2.1a: To classify one pixel in semantic
segmentation a patch around this pixel (the red dot) is cropped out of the image. The
data point x is a concatenation of the feature channels of the patch. 2.1b shows the source
image where the visualized patch is marked with a red rectangle.

called classifier. Formally defined, a classifier is defined as a mapping

C(x) = C(x,θ) : X × T → Y (2.2)

where x ∈ X is a feature vector, θ ∈ T are the parameters of the classifier and Y is the

set of discrete class labels.

The aim of a classifier is to partition the feature space X into disjoint regions,

where each region is associated with a certain class label. These regions are

created during classifier training by finding the decision boundaries between distinct

classes and denoted as decision regions. When the decision regions are defined

(Figure 2.2), new data points can be classified. Classification of a feature vector x

means to determine the decision region to which x corresponds to. After this re-

gion has been determined, the appropriate class label can be assigned to the feature vector.

In the case of semantic segmentation, the feature vector x can be derived

from the patch. The label space Y contains discrete class label such as window, roof,

façade for example.
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Figure 2.2: Visualization of two feature spaces partitioned into disjoint regions. The
regions are derived during the training of the classifier.

2.3.1 Statistical Viewpoint

From a statistical point of view, a classifier tries to distinguish new data based on observed

data during the trainings phase. The observed data can also be seen as samples from

a probability distribution. The Bayes’ theorem (Equation (2.3)) allows us to evaluate

the uncertainty in X after we have observed Y in the form of the posterior distribution

p(x|y) [5].

p(x|y) =
p(y|x)p(x)

p(y)
(2.3)

In words, the Bayes’ theorem can be stated as

posterior =
likelihood× prior

evidence
(2.4)

∝ likelihood× prior

The denominator, i.e., the evidence, can be omitted, because this is simply a scaling factor

and does not affect the outcome of the most probable class label. Depending on what terms

of the Bayes’ theorem a classifier actually models, they can be separated into two different

kinds. In general one distinguishes between a generative and a discriminative classifier.

Discriminative Classifier A discriminative classifier models the posterior directly.

Such a classifier tries to separate the data without modelling the underlying probabil-

ity distribution of the data. This means that the classifier does not know how the data is

distributed. A visualization of the posterior probability is shown in Figure 2.3b.

Generative Classifier In difference, a generative classifier does not model the posterior

probability directly but tries to model the likelihood and the prior of the classes in the data.
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Hence, a generative classifier knows how the data is distributed in the feature space. The

corresponding posterior probabilities can be derived easily by using the Bayes’ theorem

(Equation (2.3)). A visualization of the likelihood modelled by a generative classifier is

shown in Figure 2.3a.

(a) (b)

Figure 2.3: Generative versus discriminative classifier: In 2.3a a generative classifier was
used. This classifier models the likelihood, i.e., the densities, of the different classes.
2.3b shows the corresponding posterior probabilities. A discriminative classifier does only
model the posterior distribution without modelling the class densities. Notice, how the
posterior distribution can be inferred from the likelihood. Image courtesy of [39].

2.3.2 Ensemble Methods

In ensemble methods the strengths of multiple learners are combined to build one strong

classifier. The idea is to find combinations of base learners that overall perform better than

each individual part. In general, ensemble learning can be broken into two phases [27]:

(1) Construct base learners with the training data

(2) Combine the base learners to form a strong classifier

Prominent ensemble methods are random forests (Section 2.5) and random ferns (Sec-

tion 2.6). There, the individual base classifiers can be combined by the normalized com-

bination of the base classifiers:

C(x) =
1

N

N∑

n=1

cn(x) (2.5)
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Another well known ensemble method is called boosting (Section 2.7). In this method the

weak learners are combined using a weighted summation of the classifiers:

C(x) =
N∑

n=1

αncn(x) (2.6)

where αn corresponds to the influence of the n-th classifier. In difference to random forests

and random ferns, in boosting the ensemble evolves over time, i.e., one weak classifier is

added to the ensemble in each iteration.

2.4 Decision Tree

Decision trees exist for a long time [8, 54, 55]. A decision tree is a special type of graph.

Formally spoken, a decision tree is a directed, acyclic graph connected from a root node

(Figure 2.4). One distinguishes between the root node, split nodes and leaf nodes. Notice

that the root node is a split node too. Except of the root node, all nodes in the tree have

exactly one incoming edge and since we are dealing with binary decision trees, each node

has exactly two outgoing edges. However, note that a general decision tree can have an

arbitrary number of children at each node.

A decision tree is a set of binary questions, which are hierarchically organized. When

an unknown feature vector is pushed through the decision tree, at each node the feature

vector is handed over either to the left or to the right child node based on the outcome of a

binary test. After pushing an unknown feature vector through the tree, the correspondence

of the feature vector to different classes is estimated by the reached leaf node. Which

questions are applied at each split node is defined by the tree parameters θ. Where it is

possible to define θ by hand for simple problems, due to the high complexity of semantic

segmentation, θ is learnt automatically from the available training data.

Each split node in the decision tree is also called split function, weak learner or test

function. Note that these terms are used interchangeable and treated as synonyms in this

work. The parameters of each weak learner, i.e., how the data is split in each weak learner,

are discussed in Section 2.4.1. For now, just see a weak learner as a rule which encodes

how data arriving at a specific node is split.

Precisely, a weak learner (e.g., the j-th node in the tree) is defined as the mapping

from the Cartesian product of feature space X and the set of all test functions T to a

binary output true or false.
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h(x,θj) : X × T → {0, 1} (2.7)

where θj ∈ T denotes the parameters of the test function for the j-th split node. The

binary decision whether a feature vector is propagated to the right child or to the left child

is done using exactly this split function (Figure 2.5).

(a) (b)

Figure 2.4: Decision Tree: 2.4a shows a binary decision tree. The orange node is denoted
as root node, the nodes in light green are split nodes or internal nodes and the purple
nodes are the leaf nodes. 2.4b shows how a decision tree classifies an input vector f
by a series of yes/no questions starting at the root node. At each node in the tree, the
feature space is split according to the outcome of some binary decision criterion Si(f). The
leaf nodes contain the posterior distribution over the class labels p(yi|f) created during
training. The colors red, blue, green and yellow indicate the relative frequency of samples
ending in a specific leaf node. The gap between the green and blue bar indicates that an
arbitrary number of classes is possible when working with decision trees.

As can be seen from this definition, a decision tree can be thought of as a technique

for spitting one complex problem into a set of simpler problems, because a data point is

not classified directly but after a series of simple binary questions.

2.4.1 Tree Training

In machine learning the parameters of a classifier are derived from training points. A

training point x ∈ X is a point in a high dimensional feature space. As described in

Section 2.2, in semantic segmentation data points correspond to features extracted from

local patches. The set of all training points is called the training set and denoted by S.
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The trainings set Sj denotes the set of all training points arriving at the j-th node in the

tree. Note that the nodes in the tree are enumerated in breadth first order starting with 0

at the root node. S0 is split into SL
0 and SR

0 denoting the subset going to the left and right

child node respectively. Using these definitions, a binary decision tree fulfils the following

properties [14]:

(1) Sj = SL
j ∪ SR

j

(2) SL
j ∩ SR

j = ∅

(3) SL
j = S2j+1

(4) SR
j = S2j+2

(a) (b)

Figure 2.5: Split nodes. Visualization of a split node and its behaviour at train- (Fig-
ure 2.5a) and test-time (Figure 2.5b). During training the optimal parameter θ∗

j is derived
by optimizing the information gain Ij . During test time, the weak learner is applied to
the incoming feature vector v and is propagated to the left or right child node depending
on the outcome of the learnt test function h(v,θ∗

j ). Image courtesy of [14].

The essential part of the trainings phase is how the individual weak learners in the tree

are trained. This is important, because the split functions define the strength of the tree

and how well data with different labels can be separated. To make the training of each

weak learner most effective, we want to measure the quality of a proposed split. The

most common used quality measures to measure the quality of a split are the entropy, the

Gini index and the misclassification error [27]. Figure 2.6 visualizes these node impurity

measures.

Impurity Measures The entropy is a measure of uncertainty of a random variable and

comes from the mathematical sub-domain information theory. The higher the entropy of
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Figure 2.6: Visualization of the node impurity measures Entropy and Gini index as a
function of the proportion p in the 2nd class. Note, the higher the uncertainty, the higher
the impurity measure. The entropy has been scaled to pass through (0.5, 0.5) [27].

a random variable, the more uncertain is the outcome of it. The Shannon entropy [63] is

defined as

HE(S) = −
∑

y∈Y

p(y) log p(y) (2.8)

The Gini index is very similar to the entropy. However, as visualized in Figure 2.6, the

Gini index is less sensitive to changes in the node probabilities than the entropy. The Gini

index is defined as

HG(S) =
∑

y∈Y

p(y)(1− p(y)) (2.9)

We decided to use the entropy in this work. In a classification task like semantic segmen-

tation, we want to minimize the uncertainty of the predicted class label. This means, the

purer S in terms of class labels, the smaller is the entropy. With a decision tree we try

to separate data such that the leaf nodes are as pure as possible, i.e., they contain only

one class in it. In terms of entropy, we are striving for small entropies which means that

there is no uncertainty about the correct labelling. However, we will see that it is not

always possible to get pure leaf nodes. This is due to the high complexity of semantic

segmentation.

Information gain The impurity measures can further be used to calculate the so called

information gain which results after a split. The information gain is a measure of the

improvement of the purity after a split and can be defined as
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I = H(S)−
∑

i∈{L,R}

|Si|

|S|
H(Si) (2.10)

The smaller the impurity in the child nodes SL and SR, the greater the information gained

by the split and therefore the better the split.

Data separation As described in the previous paragraph the quality of a candidate

split can be measured using the information gain. In this paragraph the model for actually

splitting the data is defined. In general one distinguishes between data separation based

on

• axis aligned hyperplanes

• oriented hyperplanes

• nonlinear surfaces

For example, in 2D the hyperplanes correspond to lines and surfaces correspond to curves

respectively (Figure 2.7). In this application axis aligned hyperplanes are used to split

the data, because they can be evaluated very fast and the performance is good if the used

classifier is strong. The parametrization of a linear model is defined as

h(x,θj) = 1[f(x,φ) ≥ τ ] (2.11)

where 1[.] is the indicator function, θj = (φ, τ), where φ are the parameters of the hyper-

plane, f(.) computes the feature response of a data point x and τ is a threshold. Each

split node (weak learner) applies exactly such a test to its incoming data to decide whether

the data point is propagated to left or right child node. The splits are actually done using

features. This is described in detail in Section 3.2.

At this place, we have all tools available to choose the best weak learner among all

possible weak learners. We can do this by maximizing the information gain by doing an

exhaustive search in the space of all possible parameters:

θ∗
j = argmax

θj∈T
Ij(Sj ,S

L
j ,S

R
j ,θj) (2.12)

This means that depending on the subset Sj , the function which splits the

incoming data best in terms of the information gain is chosen. Then the

weak learner is said to be learnt. After the training of one weak learner, two
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Figure 2.7: Visualization of data separation models in 2D. (a) axis aligned line (b) oriented
line (c) quadric. Image courtesy of [14].

new nodes evolve. The training is continued recursively until a certain stopping

criteria (e.g., maximum tree depth, information gain lower than a threshold, ...) is reached.

To summarize, after tree training we obtain

• optimized weak learners associated to each node in the tree

• a learnt tree structure

• different sets of training points at each leaf (forming the leaf statistics)

Note that a decision tree is a discriminative classifier (see Section 2.3.1), because the

posterior distribution over the class labels is modelled directly. Hence, a decision tree tries

to split the data as good as possible without considering the real distribution of the data.

2.4.2 Tree Testing

The aim of a classifier is to assign previously unseen data to specific regions in the fea-

ture space and then classify the data by assigning a logical class label to it. The weak

learners trained during the training phase are now applied to a new incoming data point

x. Depending on the outcome of the binary test (Equation (2.11)) x is propagated either

to the left or right child node. This procedure is continued until a leaf node is reached.

Each leaf node contains a set of labelled training points forming a probability distribution.

Figure 2.5b shows a visualization of how an input vector x is classified using a decision

tree. Due to the fact that a decision tree outputs the posterior distribution over the class

labels

p(yi|x) (2.13)
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it is not possible to directly assign a class label to the input vector x. However, the

data point can be classified to a discrete class label by finding the mode of the posterior

distribution

C(x,θ) = argmax
i

P[Y = yi|x] (2.14)

2.5 Random Forests

Single (random) decision trees do not perform comparable to other classifiers like SVMs

or neuronal networks for complex tasks. However, by using not only one decision tree,

but an ensemble of decision trees, the performance can be increased significantly. Random

Forests are basically ensembles of Random Decision Trees (Definition 2.5.1). The main

classifier used in this thesis is a random forest. Random forests have been used in a broad

range of applications in computer vision [38, 47, 58, 65]. The concept of Random Forests

was first introduced by [4, 10]. Breiman defined Random Forests as follows:

Definition 2.5.1 (Random Forest) A Random Forest is a classifier consisting of a col-

lection of tree structured classifiers {h(x,θk), k = 1, . . . }, where the {θk} are independent

identically distributed random vectors and each tree casts a unit vote for the most popular

class at input x.

Each tree is a classifier h(x,θk), where x is an input vector and the parameter θk is a

random parameter vector. For the k-th tree a random vector θk is generated independently

of the past random vectors θ1, . . . ,θk−1 but with the same distribution. The number of

trees in a forest is denoted as T and is arbitrary in general. All trees in a forest are trained

individually, i.e., they do not even know that there exist other trees.

The following sections define all necessary ingredients needed for a random forest. The

concept of one decision tree was already discussed in Section 2.4. The reminder of this

section will continue with how decision trees can be trained randomly and why this is a

good idea. The last section derives properties of random forests like generalization and

the strength.

2.5.1 Randomized Training

Semantic segmentation and computer vision problems are very hard and complex prob-

lems. Therefore it is not possible to select the parameters of a split function by searching

the complete space of possible weak learners. Hence, some randomness is injected into the
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training phase of each decision tree. Randomly trained decision trees are referred to as

random decision trees and ensembles of random decision trees are referred to as random

forests. Randomness can be injected into the training process in two different ways which

are described in the next paragraphs. Note that both types of randomization can be used

together. This was done in this work, too.

Randomized Node Optimization When randomized node optimization is used, the

set of all test functions T is reduced. Especially for complex problems like semantic

segmentation, this is necessary, due to the inherent complexity of the problem, i.e., there

are too much parameters for exhaustively searching the complete space of test functions.

Therefore, only a subset of all possible training parameters is used, i.e., TR ⊂ T is used

for training. This can be defined mathematically as

θ∗
j = argmax

θj∈TR

Ij(Sj ,S
L
j ,S

R
j ,θj) (2.15)

where TR is a random subset of split parameters. If the size of the subset Tj , |Tj |, is 1,

i.e., only one random test is used for the weak learner selection, the tree is referred to as

an Extremely Randomized Decision Tree [25]. Breiman suggested to use [27]

|Tj | =
√

|x| (2.16)

where |x| is the dimension of the feature vector and corresponds to

patchSize2 × numFeatureChannels.

Random Training Set Sampling Another possibility to incorporate randomness into

the training phase is to sub-sample the set of all training samples. Three methods of how

this sub-sampling could be done are outlined in the following paragraphs.

• Random Sub-sampling

In this method completely random samples are drawn out of the training data for

each weak learner.

• Bagging

In bagging (= Bootstrap aggregating) [9] for each weak learner a random subset out

of the complete training set is drawn with replacement. This reduces the variance of

the data seen by each weak learner.



2.5. Random Forests 27

• Per Node Sub-sampling

In difference to the previous revealed sub-sampling methods, Schulter et al. proposed

to randomly sub-sample the training data in each node [62]. When the underlying

structure of the data is represented reasonably by this subset, then the strength s

does not suffer too much and the correlation ρ of the trees is decreased further [62]

(cf. Equation (2.22)).

All methods proposed above lead to a decorrelation of the trees, because each tree focuses

on a specific set of training data. The combination of many trees ensures a strong classifier

with improved accuracy compared to correlated (each tree gets the whole and same training

data) trees. By sub-sampling the training data in each splitting node, the training speed

can be highly increased, because small subsets of the whole training data are enough to

achieve a good performance.

2.5.2 Testing

After all trees are trained, the forest forms a strong classifier. A new data point, i.e., a

point without a class label, is now pushed through all trees until it reaches a leaf node

in each tree. The predictions, i.e., the posterior distributions, of each leaf node must be

combined to one final prediction for the data point. This can be done by an averaging

operation [10]:

p(y|x) =
1

T

T∑

t=1

pt(y|x) (2.17)

where pt(.) denotes the posterior distribution of the t-th tree in the forest. The final class

output of a multi class classification problem can then be derived by using the mode of

the posterior distribution of the forest:

C(x,θ) = argmax
y∈Y

p(y|x) (2.18)

2.5.3 Properties

By introducing randomness in the forest training in the form of using different subsets of

training data for different trees in the forest, the trees become decorrelated. The following

definitions define a basis to analyse correlation and strength of random forests (based

on [10]). Breiman defined the classification margin as
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mr(x, y) = p(y|x)−max
k∈Y
k 6=y

p(k|x) (2.19)

The margin defines how secure a classifier is on its decision by comparing the most probable

label with the second most probable label. Obviously, the greater the margin, the more

secure the classification. It is also obvious that the classification is incorrect, if the margin

is negative. Based on this thoughts, the generalization error can be defined as [10]:

GE = E [mr(x, y) < 0] (2.20)

This error gives an estimate on how erroneous previously unseen data will be classified.

However, not only the expected generalization error is interesting, but it would be in-

teresting to derive an upper bound for this error. Breiman [10] actually calculated an

upper bound for the generalization error. However, before we can state the inequality for

the upper bound, the term strength must be defined. The strength of a classifier can be

calculated based on the margin measure. The strength is defined as the expected value of

the margin over the entire distribution:

s = E [mr(x, y)] (2.21)

Finally, the generalization error can be bounded by

GE ≤ ρ
1− s2

s2
(2.22)

where ρ is the mean correlation between pairs of trees in the forest, where the correlation

is actually measured in terms of the similarity of the predictions. This inequality confirms

what was addressed in the previous section. The stronger the individual classifiers and

the more decorrelated the classifiers, the lower the resulting classification error.

Maximum Margin Property A very important property in classification is how well

a classifier generalizes to previously unseen data. To achieve a good generalization even

with little trainings data, the maximum margin property is crucial. SVMs are known to

be margin maximization classifiers. However, also in the context of random forests, the

margin maximization property was discovered [14, 37]. It has been shown in [14] that

random forests exhibit the maximum margin property. Consider a two class classification

problem as shown in Figure 2.8. Criminisi et al. [14] showed that the separating line tends
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to lie within the gap between the two classes if the training parameter subset TR ⊂ T for

the weak learners is big enough. Due to the fact that the information gain is equal within

the gap, each separation line within the gap is optimal and equal likely. This actually

means that the separating lines are randomly distributed within the gap. The result is a

maximum margin random forest. For a formal deviation see [14].

Figure 2.8: Maximum margin property of a random forest. (a) shows the input training
points separated by a gap ∆. The two “support vectors” are highlighted. In (b) the
posterior distribution of the forest is visualized. The uncertainty remains just between the
gap. (c) shows the cross section of the class posteriors along the white dashed line. Image
courtesy of [14].

2.6 Random Ferns

Another classifier used in this thesis is called Random Fern [79, 80]. They can be consid-

ered as a special case of random forests, because each stage, i.e., each depth in a tree has

its own split function, rather than each node. This is visualized in Figure 2.9. Özuysal et

al. argued that the classification power of random forests does not lie in the tree structure,

but in the groups of binary tests used. Therefore, they proposed a non hierarchical ar-
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chitecture called Fern. Originally, ferns were used to detect keypoints in images, however

they have been used in image classification too [6]. The following section shows how ferns

are fit to a Bayes model.

Θ0 

Θ1 Θ2 

Θ3 Θ4 Θ5 Θ6 

(a) Tree

Θ0 

Θ1 Θ1 

Θ2 Θ2 Θ2 Θ2 

(b) Fern in Treestructure

Θ0 

Θ1 

Θ2 

(c) Fern

(d) Forest Splits (e) Fern Splits

Figure 2.9: Forests versus ferns: A forest as well as a fern can be visualized using binary
decision trees. The difference lies in how the parameters θj are chosen. In a forest each
node has its own split function (Figure 2.9a), where in a fern each stage, i.e., each depth
in the tree, has the same split function assigned (Figure 2.9b). In Figure 2.9c the compact
representation of a fern is visualized. In Figure 2.9d and Figure 2.9e respectively a data
set is visualized with the splits assigned by the forest and the fern. Image courtesy of [14].

2.6.1 Mathematical Formulation

In the following sections, the mathematical concept of ferns is derived. The start point is

given by the Bayes’ theorem (Equation (2.3)), then we will derive Naive Bayes until we

reach the definition of a fern.

In semantic segmentation, we want to infer the class label based on a feature vector

computed out of a pixel position. Formally, this can be defined as
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C(x) = argmax
i

P[Y = yi|x] (2.23)

where x is a feature vector and Y is a random variable representing the class. In probability

theory spoken, Equation (2.23) is nothing but a posterior probability distribution over

the class labels and the output of the classifier is the mode of this distribution. The

rule of Bayes tells us that the posterior is equal to the likelihood times the prior (see

Equation (2.5)). Using Bayes’ theorem yields to

P[Y = yi|x1, x2, . . . , xN ] =
P[x1, x2, . . . , xN |Y = yi]P[Y = yi]

P[x1, x2, . . . xN ]
(2.24)

Here, the denominator can be omitted, because this is only a scaling factor independent

from the classes and therefore it does not change anything of the result. After simplifying

this we get

P[Y = yi|x1, x2, . . . , xN ] ∝ P[x1, x2, . . . , xN |Y = yi]P[Y = yi] (2.25)

= P[x1, x2, . . . , xN , yi]

Equation (2.25) tells us now that we can infer the posterior distribution by learning the

joint likelihood distribution over all class labels. The problem arising here is that modelling

the complete joint distribution is most likely intractable. For example, assume N =

300, i.e., 300 features are used. Modelling the complete joint probability would require

to compute and store 2N = 2300 entries for each class. One could decrease this high

complexity by assuming complete independence of the random variables. This rather

extreme step yields to the so called Naive Bayes assumption. Formally, the Naive Bayes

formulation is

P[x1, x2, . . . , xN , yi]
Naive Bayes

≈ P[Y = yi]
N∏

j=1

P[xj |Y = yi] (2.26)

However, by using the Naive Bayes assumption, the dependence between the features

is completely ignored, even if it is actually there. This means that this approximation

underestimates the true posterior distribution grossly. From this start point, Özuysal

et al. proposed the concept of ferns. They tried to keep the simplicity of Naive Bayes

with introducing only some dependent features. In detail they defined a fern as a set of

dependent features, and used ensembles of ferns which are independent from each other.



32 Chapter 2. Related Work

Based on this definition, a fern can be seen as a Semi-Naive Bayes classifier, because it is

not completely naive. Consider M groups with size S = N
M
, where each group is referred

to as one fern and denoted as Fk. Then formally, the conditional probability becomes

P[x1, x2, . . . , xN , yi]
Fern
≈ P[Y = yi]

M∏

k=1

P[Fk|Y = yi] (2.27)

= P[Y = yi]

M∏

k=1

P[x1, . . . xS |Y = yi]

With this approach the joint probability of each fern can be modelled completely with an

appropriate S. This gives M · 2S parameters, which can be handled easily.

2.6.2 Usage

The procedure of using ferns instead of forests is very similar. In the following paragraphs,

fern training and testing is described and the similarities are referenced accordingly.

Training As it is the case with random forests, ferns are also trained randomly and

therefore they are called random ferns. The fern training is very similar to the training

of a random decision tree. The only difference is that the weak learners do not have

a hierarchy. Therefore, when a fern with size S = 10 is trained, 10 weak learners (cf.

Equation (2.7)) are trained, i.e., a binary split function is assigned to each node in the fern.

In the original way, each weak learner is trained completely independent by maximizing

the information gain (2.10). In other words, each weak learner can be seen as a decision

stump (Figure 2.10). For more information on how the training is done and how an optimal

split can be found see Section 2.5.1.
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Θ0,0 

0 1 0 1 0 1 0 1 0 1

1 0 1 10

Fern F0

h0,0

Θ0,1 Θ0,2 Θ0,3 Θ0,4 

h0,1 h0,2 h0,3 h0,4

Binary Code

Decimal Code 11

Input

Figure 2.10: Code generation using a fern: In this example the input image is a sheep. Each
yellow line represents one binary test, where some property of the red point is compared
to some property of the blue point. These tests are actually applied by the weak learners
h0,0, . . . h0,4 (decision stumps) in the fern F0. Depending on the outcome of this binary
tests, a binary code is generated. To find the entry in the fern statistics, the binary code
is converted into a decimal number (see Figure 2.11). The sheep image is taken from the
MSRC image database [57].
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After all split functions in each fern are defined, the training data is used to generate

statistics of the codes. For each of the |Y| classes an own statistic exists. When a fern

is applied to a trainings sample, a code is generated as shown in Figure 2.10. If the

sample corresponds to class y1, then the entry at position code is incremented by 1. This

procedure is done for all trainings samples to form valid statistics for each class. After

the training has finished, code statistics have been aggregated as shown in Figure 2.11.

And this is a major difference compared to a forest. A forest models directly the posterior

distribution over the class labels, i.e., no individual statistics for the classes are generated

as it is with ferns.

Figure 2.11: Statistics generation: By applying the fern to a bunch of input images,
a statistic is generated for each class. Notice that one statistic is generated for each
individual class. If a training sample belongs to class c1, then the generated code (see
Figure 2.10) is used to adapt the statistic for the appropriate class. The size of the
statistic of each class is 2S , where S corresponds to the size of the fern. Sample images
are taken from the LabelMe database [59].

Testing The testing procedure in a fern is different to that of a decision tree, because

we do not have the posterior distribution to directly infer the most probable class label.

When a new sample should be tested, the fern is applied to the input to generate the

binary code. Due to the fact that we do not know the true class label of the sample,

we simply use the generated code and construct the posterior distribution over the class

labels. This can be done by using the bin of each class statistics where the code points to.

This bins can be used to form a new probability distribution where it is possible to look

up the most probable class. This concept is visualized in Figure 2.12.
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Figure 2.12: Fern testing: When a new sample is tested (e.g., a patch of an image), the
fern is applied to the patch to generate the binary code. This code is then used to look up
the corresponding bin in each of the class statistics to construct the posterior distribution
over the class labels. Test image taken from [59].

Ensembles of Ferns Ferns can be combined into ensembles as it is done with decision

trees. The outcome of the individual ferns can be combined using Equation (2.17) as it is

done by using decision trees.

Decision Trees versus Ferns As visualized in Figure 2.9, a fern can be depicted as

a tree. This visualization already indicates the similarity of decision trees and ferns.

However, there are subtle differences. One difference is that a fern is not hierarchically

organized, as it is within a tree. In a decision tree the current weak learner is dependent

on the outcome of the previous weak learner, where in a fern each weak learner is applied

to incoming data, indifferent of the outcome of the previous weak learner. This simply

means that using a fern, each sample gets exactly the same binary questions, where in a

forest each sample gets different binary questions until a leaf node is reached.

Second, as [80] pointed out, ferns do need more samples to be as discriminative as

forests. However, this seems intuitive, because a decision tree is a discriminative classifier,

where a fern tries to model the likelihood, i.e., a fern is a generative classifier and the

posterior probability is constructed from the likelihood.
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2.7 Boosting

Boosting is a powerful technique to combine multiple “base” classifiers (weak learners) to

one powerful strong classifier. The performance of this combined strong classifier can be

significantly better than that of any weak learner. If each weak learner performs just a

little better than chance, i.e., the probability that the prediction is correct is greater than
1
2 , then the training error of the combined strong classifier drops exponentially fast [21, 22].

However, this will not be the case on the test set. The most widely used boosting algorithm

is called adaptive boosting or short AdaBoost [20]. AdaBoost can be used for binary and

multiclass problems. However, when multiple classes are used, it is rather difficult to

reach the error criteria, i.e., that the error is < 1
2 . Friedman et al. proposed other

boosting variants: RealBoost, GentleBoost and LogitBoost [24].

Precisely, boosting is an additive model. The weak learners are weighted according to

their performance and then added together to build the strong classifier. Mathematically,

this can be defined as

CM (x,θ) = sign

(
M∑

m=1

αmh(x,θm)

)

(2.28)

where M is the number of weak classifiers, x is an input vector, αm is the weight and θm

are the parameters for the m-th weak learner.

The strong classifier CM (x,θ) is created during training. First, each point in the

training data gets an equal weight assigned. The training dataset and the weights are

used to train a weak classifier, i.e., to find the optimal parameters θm according to a

quality criterion (cf. Equation (2.10)). The training of such a weak classifier can be done

like we would learn a node in a decision tree (Section 2.4.1). After the weak learner

is trained, its weight parameter αm is calculated depending on the performance of the

weak learner. In the next step, the weights of all training points classified incorrectly are

increased and the weights of the training points classified correctly are decreased. This

procedure ensures that the next classifier will concentrate on those samples which are

classified incorrectly with the current strong classifier Cm. This procedure continues until

M classifiers are trained. An abstract visualization of the training of a boosted classifier

is illustrated in Figure 2.13. Figure 2.14 shows real data and how a boosted classifier is

trained on it. Below, the AdaBoost algorithm is just outlined. For a more detailed version

see [5]. Note that the re-weighting of incorrect classified samples can be problematic when

the input data is noisy. In comparison to boosting, a random forest is more noise tolerant.
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Algorithm 1 AdaBoost

Require: Training set Xl = {(x, y)|x ∈ X , y ∈ Y}
Require: Number of weak learners M

1: Initialize weights wi =
1
N

∀i
2: for m = 1 . . .M do
3: Fit a weak classifier h(x,θm) by optimizing the parameters θm
4: Add the current weak classifier h(x,θm) to the strong classifier C(x)
5: Compute weak classifier weight αm according to the performance of the weak clas-

sifier
6: Update weights for all examples

7: return The boosted classifier C(x)

h(x,Θ0)

{(x, w
(0)

)}

α0

h(x,Θ1)

{(x, w
(1)

)}

α1

h(x,ΘM)

{(x, w
(M)

)}

αM

Trainingsdata 

and weights

Weak 

Learner

Figure 2.13: Creating a boosted strong classifier. The current weak classifier is dependent
on the outcome of all previous classifiers, i.e., the current strong classifier. After a weak
classifier is trained, the data points are re-weighted according to the current performance
of the strong classifier and a weight is assigned to the currently trained classifier.

Boosting has become famous in computer vision due to the great success of the face

detector developed by Viola and Jones [76]. However, boosting is a very general concept

and can be used in various disciplines of computer vision. Shotton et. al for example used

the JointBoost algorithm proposed in [71] to build a powerful strong classifier for semantic

segmentation [66]. They incorporated texture, layout and context in their framework and

used so called texture-layout filters to capture texture.
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Figure 2.14: Boosting on real data. Each weak learner is a simple threshold applied to
one of the axis. The most recent weak learner is shown as a dashed line and the current
combined strong classifier is indicated using the green solid line. The size of the data
points represents the current weight of the sample. Notice that the weight of incorrect
classified samples is increased, where the weight of correct classified samples is decreased.
Image courtesy of [5].

2.8 Context

In computer vision, the context of an object is defined by any data or meta-data not

directly produced by the object [29]. Following this definition, context is

• Nearby image data

The local neighbourhood of an object or a pixel.

• Scene information

Where in the scene is the pixel/object?

• Presence of other objects

Are there any other objects present on the image and if, where are they?

In other words, context is everything what stays in junction with an object, without the

object itself. Humans use a lot of context information. The less a human knows about a

given scene, the more important is the context (see Figure 2.15).

When a single pixel is classified in semantic segmentation, actually a patch around this

pixel is used to perform the classification task. This means that the class correspondence
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of one pixel is determined only by the appearance of the local neighbourhood of a pixel.

This procedure works considerably good as long as the patch contains salient points.

However, especially in low textured regions this is not the case. In order to achieve good

performance, context is very important. Figure 2.15 shows why context is very important

to distinguish similar looking local patches.

Figure 2.15: Importance of context. By looking at the two image patches on top of the
images, even for human it is very difficult to distinguish the categories Water and Sky

based only on the local appearance of the patches. However, if context is incorporated,
i.e., looking at the whole image, it is easy to distinguish the two categories. Image courtesy
of [28].

Due to the high importance of context, several researchers discovered how to incorpo-

rate context in a natural way. One way to incorporate context information is to use Markov

Random Fields (MRF) or Conditional Random Fields (CRF) [36]. In such approaches the

modelling and computing stages are studied in isolation. Due to the high computational

inference cost, context is limited to a fixed neighbourhood structure, which is not enough

in many cases. Context is used widely in the literature in semantic segmentation and

scene understanding [28, 30, 56, 66].

In difference to many energy minimization algorithms, auto-context uses the same

procedure during modelling and computing stages. In this approach numerous classifiers

are trained where the confidence output for each class of the previous classifier is used

as additional (context-) features for training the subsequent classifier. In other words

each learnt classifier provides new context information for the next classifier to be trained.

Note that the concept is similar to that of boosting (Section 2.7), since the output of the

previous classifier is used to generate the input for the following classifier. Auto-context

has several advantages [72]:

(1) Auto-context can be incorporated easily into classifier training
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(2) Auto-context is significant faster than much existing algorithms (MRF, CRF)

(3) Context is not restricted to the local neighbourhood, but context information is

available all over the image

Entangled Forest The concept of using the probabilistic output of a classifier as ad-

ditional feature maps was used by Montillo et al. They removed the necessity to train

several classifiers to incorporate context information. The used classifier was a random

forest trained breadth first (Algorithm 4). This enables the possibility to use the knowl-

edge of stage n to train stage n+ 1. Each depth is denoted as one stage during classifier

training. This concept is called entanglement and such a random forest is called entangled

decision forest [47]. With this approach context is incorporated and can be used as it

is available. They showed that an entangled decision forest outperforms a forest trained

with auto-context and a forest without any context information on a medical CT dataset.

2.9 Summary

In this chapter, the most important concepts regarding semantic segmentation are dis-

cussed. After the preliminary specification of the used notations in this work, it is de-

scribed how a semantic segmentation can be derived in a three stage manner based on

(1) feature computation, (2) estimation of the MAP probability for all classes and (3)

regularizing the result. In Section 2.3, the formal definition of a classifier is stated and

how classification fits into a statistical model. The main part of this chapter deals with

the classifiers used throughout this work. The first classifier used is a random forest (Sec-

tion 2.5), which consists of several randomized trained decision trees. It is discussed in

detail how a random forest can be constructed automatically based on training data and

how it is possible to infer the most probable class label using a random forest. The second

classifier reviewed is called random fern (Section 2.6). A random fern can be seen as a

semi-naive Bayes classifier, because only groups of features are considered to be dependent

and the individual groups are considered to be independent of each other. In Section 2.7,

the famous AdaBoost algorithm is described and how many weak classifiers can be com-

bined to one strong classifier. The section is closed with review of context in images and

why context is very important to understand what is actually visible on an image.
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Feature Channels and Features

In the previous sections the terms feature channel and features often appeared. However,

what these terms are actually stand for, was not discussed yet. The term feature channel

is used for an abstract representation of an image, which can either be derived directly

form the RGB source image or it encodes some additional pixel synchronous knowledge

corresponding to the source image. Exactly these feature channels are responsible for the

quality of the final segmentation. The better the feature channels generalize what is on the

image, the easier it is for the classifier to achieve a good performance. Up to now, we have

some abstract representations of the image, where the information for the classification

task comes from. To actually use this information, features are used. A feature combines

values in the feature channels at different locations and computes a feature response.

The classification is done using these feature responses by comparing them with learnt

responses.

To summarize, feature channels in combination with features enable a classifier to

actually classify. The next two sections will investigate the feature channels and features

used in more detail.

3.1 Feature Channels

Feature channels are used to compute feature responses on it instead of computing them

directly on the color pixels. With feature channels it is easier to encode ad-hoc domain

knowledge that is difficult to learn using a finite set of training data [75].

Fundamentally, one distinguishes between invariant and covariant feature channels.

Covariant means that the measure of the feature channel changes in a way consistent with

41
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the image transformation. Invariant is the opposite and means that a measure remains

unchanged under some image transformation. For easier understanding, imagine two

images with one and the same rose on it. The only difference is that these images have

been taken with two different cameras. Hence, the rose on the first image is a little bit

more reddish than the rose on the second image. A covariant feature channel would map

the differences in color directly to the feature channel, i.e., the feature channel of the first

image differs form the feature channel of the second image. In difference, an invariant

feature channel would not map the color differences to the resulting feature channel, i.e.,

the feature channel of the first image is equal to the feature channel of the second image.

In general, invariant feature channels are preferred, since the feature channels itself

are not affected by small appearance differences of an object. And that is exactly what

one wants. To reuse the example from above, it should be indifferent how the rose does

exactly look like, to get a correct classification of it. Invariant feature channels are the

key to achieve a good generalization of the classifier.

In the following sections a brief overview of the used feature channels of the application

is given. Additionally, they are categorized whether they are covariant or invariant.

3.1.1 L*a*b*

Feature channels should provide the information, such that it is possible for the classifier

to separate different classes. Obviously, color information can give a good hint of how

objects and classes can be separated.

Instead of using the RGB color space, each image is converted into the L*a*b* (also

called CIELAB) color space. In the L*a*b color space, the red, green, and blue components

of the RGB model are separated into luminance and two color components a and b. The

L*a*b* color space takes account of the roughly logarithmic response of the human visual

system. Actually, humans can perceive relative luminance differences of about 1% [69].

The advantages of L*a*b* are summarized in the following list:

• Separation of luminance and chrominance

• Perceptually uniform (differences in color correspond to differences in perception)

L*a*b* is a covariant feature channel, since it uses color information directly to generate

the feature channel. However, the real texture of objects is an important feature, since

many objects can be distinguished just by there texture. In Figure 3.1 the individual
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channels L (lightness), A and B (the color-opponent dimensions) are shown. For more

information about color, Poynton answered frequently asked questions about color in [53].

(a) Luminance (b) A (c) B

Figure 3.1: Visualization of the L*a*b* colorspace. L corresponds to lightness, a and b to
the opponent color dimensions. Image taken from the MSRC database [57].

3.1.2 1st order derivatives

As described in the previous section, color information can contain powerful information

for semantic segmentation. However, a classifier should not just split different classes

dependent on its texture, but also boost the confidence of categories, where the texture of

the objects do not match. To achieve this, invariant feature channels are necessary. The

color information can be abstracted by using the first derivative of an image.

Before it will be demonstrated how to calculate the gradient of a 2D image, imagine a

1D image. In Figure 3.2, such a 1D image, i.e., a 1D signal, is shown.

(a) Intensity change (b) First derivative (c) Second derivative

Figure 3.2: Derivatives of a 1D image. In 3.2a the edge is at the point of inflection, in 3.2b
the edge is at the maximum response and in 3.2c the edge is located at the zero crossing.
Notice that it is easier to locate the exact position of the edge in 3.2b and even easier
in 3.2c.

To actually calculate the derivatives of a 2D image the Sobel operator can be used. With

this operator it is possible to calculate the gradient in x- and in y-direction. This operator

is nothing but a kernel and therefore, it is possible to calculate the gradient images with

a convolution. Convolution is defined as
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g(i, j) =
∑

k,l

f(i− k, j − l)h(k, l) =
∑

k,l

f(k, l)h(i− k, j − l) (3.1)

where f(i, j) is the input image, h(k, l) is called kernel or mask and g(i, j) is the result,

i.e., the input image convolved with the mask. Convolution is often written as

g = f ∗ h (3.2)

where * is the convolution operator.

To actually compute the gradient of an image, the Sobel operator is used. Since an

image is a 2D signal, the derivative in x- and y-direction respectively must be computed.

The Sobel operator in x-direction is defined in Equation (3.3) and the Sobel operator in

y-direction is defined in Equation (3.4).

Sx =

-1 0 1

-2 0 2

-1 0 1

(3.3)

Sy =

-1 -2 1

0 0 0

1 2 1

(3.4)

The gradient images Gx = Sx ∗ I and Gy = Sy ∗ I can be calculated by a convolution of

the input image I with the filter kernels Sx and Sy. Finally, the gradient magnitude image

is calculated using Equation (3.5).

G =
√

G2
x +G2

y (3.5)

As can be seen in Figure 3.3, the Sobel operator is an edge detector. Edge detection is

equivalent to find significant changes in image intensity. And this is exactly what the

Sobel operator does. The greater the change in intensity, the greater the response of the

Sobel operator. The position of the edge is considered to be exactly where the response

of the Sobel operate reaches the local maximum.

3.1.3 2nd order derivatives

With the 1st derivative of an image I, we get changes in the intensity of an image. To get

the true location of an edge, the local maximum must be found. If one does differentiate
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(a) Original Image I (b) Gradient Magnitude G

(c) Gradient in x-direction Gx (d) Gradient in y-direction Gy

Figure 3.3: Image gradient computed with the Sobel operator. Image taken from the
eTRIMS database [35].

the gradient image again, the edge is located exactly at the zero crossing of the resulting

image. Therefore, with the second derivative, it is easier to find the exact location of an

edge. For the use in the semantic segmentation framework, the second derivative provides

a powerful feature channel. It is possible to calculate the second derivative of an image

directly by using the so called Laplace operator. The kernel of the Laplace operator is

defined in Equation (3.6). And as before, the Laplace filtered image can be generated by

convolving the input image I with the Laplace filter kernel. The Laplacian of an image is

visualized in Figure 3.4.

L =

0 1 0

1 -4 1

0 1 0

(3.6)
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(a) Original Image I (b) Laplacian

Figure 3.4: Image I filtered with the Laplace operator. Notice that the filter response
is equal to zero, exactly where an edge is located. Image taken from the eTRIMS
database [35].

3.1.4 Local Binary Pattern

Local Binary Pattern (LBP) [50] is an other coded representation of an image. LBP

considers the local 8-neighbourhood of a pixel. The intensity value of the center pixel is

compared with all neighbouring pixels and the outcome of the test is binary. Each of the

neighbouring pixels gets an index of a corresponding 8-bit number assigned. If the test

outcome is positive, the bit is set in the 8-bit number. After doing this procedure for all

neighbouring pixels, an 8-bit LBP code results. For clarity, Figure 3.5 visualizes the LBP

procedure. An extended rotation invariant version of LBP is proposed in [51].

Figure 3.5: Local Binary Pattern (LBP) [50]: the center pixel is compared with its 8-
neighbourhood. After the test an 8-bit LBP code is the result. Notice that instead of the
multiply-step it is equal to just set the corresponding bit in the 8-bit code.

3.1.5 Histogram of Oriented Gradients

One of the most powerful descriptors in object detection is called Histogram of oriented

gradients (HOG). In general, HOG is an adaption of scale invariant feature transform
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(SIFT) [40]. However, in the original form it was specifically designed to detect upright

object categories in images [15]. The procedure can be summarized as follows:

1. Gradient calculation

Compute image gradients in x- and y-direction. This can be done using the Sobel

operator, as described in Section 3.1.2.

2. Orientation binning

In this step, the window is partitioned into a grid of cells, where the cells can either

be rectangular or circular (see Figure 3.6). Each cell is contained within a block. A

common block size is 3× 3 with a cell size of 6× 6 pixels as it has been used in [15].

(a) R-HOG (rectangular) (b) C-HOG (circular)

Figure 3.6: HOG descriptor blocks. Image courtesy of [16].

After the window is split into blocks and cells, each pixel casts a weighted vote to

an orientation based histogram for the corresponding cells. The weight is based on

the gradient magnitude in the specific cell. A histogram with 9 bins between 0◦ and

180◦ achieve best results [15].

3. Normalization of blocks

The key in the normalization process is that the blocks are overlapping (see Fig-

ure 3.7) and that the normalization is done within each block. After the normaliza-

tion, the HOG feature vector is a concatenation of the normalized cell histograms

for all blocks. Therefore, the HOG descriptor is high dimensional.

By looking at visualizations of the HOG descriptor (Figure 3.8), it is obvious that the

shape of an object is encoded with this descriptor. Therefore it is very suitable for object

detection and has been used in many recent works.
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Figure 3.7: Visualization of blocks and cells in the HOG descriptor. Image courtesy of [16].

(a) Original Image I (b) HOG (c) Hoggles

Figure 3.8: Different visualizations of the HOG descriptor. 3.8b shows the original visu-
alization presented in [15], 3.8c shows a new visualization presented in [77].

HOG for Semantic Segmentation Since the original HOG descriptor was designed

for object detection, it is not directly applicable for semantic segmentation. In semantic

segmentation, one does not want to have a global descriptor, but a feature channel. In this

application a HOG-like feature channel is used. Therefore, the size of a cell is defined to be

odd, such that there exists a real center pixel. The histogram of oriented gradients of one

cell is assigned to the pixel at the center of the cell. The cell is slid over the image, such

that it is possible to extract a HOG for each pixel within the image (without the border).

The result of this procedure is a 9-dimensional histogram for each pixel. Now each bin of

the histograms forms an individual feature layer. This means, the first bin becomes one

feature channel, the second bin becomes one feature channel and so on. Hence, for each

image 9 feature channels result, because the orientations are binned into histograms of

size 9.
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3.1.6 Location

The pixel position is another powerful feature channel. This is especially useful in standard

databases, since the images in those databases are somehow standardized and focus on

some classes present on the images which should be semantically segmented. Location

feature are useful, since they encode that it is more probable that the sky appears on top

of an image and a street appears rather on the bottom of an image. However, since the

images are different in size, the locations are encoded form 0 to 1 in x- and y-direction and

then scaled in a proper way. From the location information, two feature channels can be

constructed. The first feature channel encodes the x-position of the pixel and the second

feature channel encodes the y-position of the pixel respectively.

3.1.7 Confidence Maps

All feature channels which have been presented in the previous sections can be extracted

directly from an input image. The confidence feature channel is the first feature channel

presented, where this is not the case. Confidence maps are defined as images, where at

each pixel of the image the confidence is encoded, with that a specific class is present at

this position on the real input image. Such a confidence map exists for each class. From

this definition, it can be seen that the confidence maps cannot be computed out of the

RGB input image directly.

Confidence maps have a big impact to the overall performance of the classifier. By

using confidence maps as additional feature channels, the classifier learns also context, i.e.,

what classes are around a specific class.

Confidence Map Generation Confidence maps are usually generated by using a sec-

ond classifier (cf. Section 2.8). Consider one image I, where the confidence maps for |Y|

classes should be generated. In the common classification task after routing all patches

pi ∈ I through the classifier the result is a discrete probability distribution indicating how

probable a specific class y ∈ Y is. From this probability distribution the confidence that pi

corresponds to label yj can be derived. Hence, after the evaluation, each patch is assigned

with a discrete probability distribution. Assume now that these probability distributions

are aligned in z-direction. Then each layer of this tensor corresponds to the confidence

map of the j-th class. This concept is visualized in Figure 3.9. Examples for confidence

maps are shown in Figure 3.10.
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...

Conf(l0)

Conf(lN)

Figure 3.9: Abstract visualization of the layout of the confidence maps

(a) (b) (c)

Figure 3.10: Visualization of confidence maps. In 3.10a, the input image is shown, 3.10b
shows the confidences for class Car and 3.10c shows the confidences for class Window.
The whiter a pixel in confidence map c, the more confident is the classifier that the pixel
corresponds to class c. Input image taken from [59].

3.1.8 Surface Normals

The surface normals are another feature channel, which cannot be derived directly from an

image. However, since the framework provides the capability to do semantic segmentation

on textured 3D environments (see Section 5), it is possible to extract pixel synchronous

normals. As one can imagine surface normals provide a powerful information source. Just

from this features and without any other knowledge it is e.g., possible to split Façade

pixels from Street pixels, since the normals are completely different, i.e., the normals

of Façade pixels are horizontal, where the normals of Street pixels are vertical. To

improve generality the normalized absolute values of the normals are used.

Feature Channel Construction The surface normal feature channels can be con-

structed in a similar way as the confidence feature channels has been constructed (see

Section 3.1.7). Each component of a normal vector corresponds to one feature channel.

Figure 3.11 shows the surface normals of a tile from a 3D scene.
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(a) |nx| (b) |ny| (c) |nz|

Figure 3.11: Visualization of the feature channels constructed from the surface normals

3.2 Features

To actually use the feature channels as information source features are used. In this

application Pixel Pair features and Generalized Haar Features are used. By applying

these features on feature channels, a numerical value, i.e., the feature response can be

computed. Existentially, this is how f(x, φ) in Equation (2.11) is computed.

3.2.1 Pixel Pair Feature

Pixel pair features are very simple features. As the name already suggests, the response

of a pixel pair feature can be computed by comparing two pixels on a patch. The pixel

positions on the patch and the actual feature channel used to compute the feature response

is determined in the training stage. The parameter θ captures all these properties of the

feature. A visualization of a pixel pair feature is shown in Figure 3.12a. The values of the

pixels can be compared using one of the following comparison modes:

• Difference: A−B

• Sum: A+B

• Absolute difference: |A−B|

3.2.2 Generalized Haar Feature

Haar features have been proven to achieve very good results in face detection [75]. They

used a set of predefined Haar-like features, to find different interest points in images. This

set contains edge features, line features and the four-rectangle features (see Figure 3.13).
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(a) (b)

Figure 3.12: Features. In 3.12a a pixel pair feature on a patch is visualized. The feature
response can be determined by comparing the two selected pixels, A and B, using one of
the above defined comparison modes. In 3.12b one sample of a Haar feature is visualized.
Because we are using generalized Haar features, the size of the rectangles A and B, i.e.,
their width and height respectively, is arbitrary. The response of a Haar feature is de-
termined by applying a comparison mode on the sum of all pixels under the rectangles.
Image courtesy of [23].

These features can be seen as convolution kernels (cf. Equation (3.1)). Each feature

responses a single value obtained by comparing the sum of pixels under the black rectangle

with the sum of pixels under the white rectangle.

Figure 3.13: Visualization of the simple Haar features used in [75]. First and second are
edge features, third and fourth line features and the fifth is a four-rectangle feature.

In this application we do not use pre-defined Haar features as shown in Figure 3.13,

but generalized Haar features. Generalized means that the size and the position of the

rectangles in the feature is arbitrary. This properties are determined during the training

stage of a classifier and optimized to generate a feature which results in an information

gain as big as possible. A generalized Haar feature as used in this thesis is visualized in

Figure 3.12b. Note also that the pixel pair feature is a special case of the generalized Haar

feature, where each rectangle is quadratic with the side length equal to 1.
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Efficient Computation of Rectangular Features One might think that the compu-

tational cost of Haar features is high in comparison to pixel pair features. In fact, when

integral images are used, it is possible to compute the response of Haar features in con-

stant time. An integral image contains the sum of pixel values of an image as defined in

Equation (3.7). An arbitrary rectangle can be calculated using Equation (3.8) in O(1).

Figure 3.14 shows how an integral image works.

IΣ(x, y) =
∑

x′≤x,y′≤y

I(x, y) (3.7)

a b

c d

Figure 3.14: The value of the integral image at point a contains the sum of all pixels from
the top left point to a. The same holds for b, c and d respectively. The sum contained in
the rectangle abcd can now calculated using Equation (3.8). Hence, independent of the
size of the rectangle only three operations are necessary, which results in constant runtime
O(1).

IΣ
(
abcd

)
= IΣ(d)− IΣ(b)− IΣ(c) + IΣ(a) (3.8)

3.3 Summary

In this chapter, the feature channels used in this application (see Section 5) are presented

and it was shown, how they can be computed out of an image. The feature channels

define an abstract representation of the image content. Through this abstraction it is

possible to distinguish different classes not only on texture, but also on more advanced

information like histograms of oriented gradients or local binary patterns. It is important

that invariant feature channels are used as discussed in Section 3.1. The second part of
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the chapter dealt with the features applied on the feature channels. Therefore pixel pair

features and generalized Haar features have been presented and it was shown how they

can be computed very efficiently by using integral images.



Chapter 4

Online Learning

As the title of the thesis already suggests, the target in this thesis is to build an interactive

segmentation tool. The term “interactivity” indicates that an online capable classifier is

necessary to perform this task. Before going into more detail about how random forests

(Section 2.5) and random ferns (Section 2.6) can be used as (semi-)online classifiers, it is

described what online learning actually is, how it differs from offline learning and what

special requirements are made to an online classifier.

Offline Classifier Offline learning is the common setting in machine learning applica-

tions. The term “offline” indicates that all the data on which the classifier is trained

is available at training time. That is, the classifier is said to work in batch mode. The

advantage of this setting seems obvious. All training data is available and therefore the

classifier sees the complete diversity of the dataset and is able to choose the best separation

criterion according to all data. After the training phase, nothing of the classifier changes

anymore. The one and the same classifier is then used on test data to predict the most

probable class labels based on the initial learnt training data.

Example To give a real world example, assume for now that a human is a classifier

and a library is the training data. In the offline setting described above, the human goes

into the library and reads every book without even leaving just one out. This corresponds

to the training stage in the machine learning process. After this stage, the human leaves

the library and tests his knowledge in the real world to see, what he has learnt.

Online Classifier In the online setting, there is nothing like a training stage or a test

stage. Online means that data used for training the classifier can arrive at arbitrary

55
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time. When new training data arrives, the classifier uses the newly available information

to update the current classifier. This requires to change the classifier dependent on the

information given by the new training data. Therefore, an online classifier has the ability

to change over time, which gives the possibility to adapt the underlying model until a

satisfactory result can be achieved completely automatically.

Example Again, for a real world example, assume that a human is a classifier for

now. But this time, he does not go to the library, since all training data is not available

at once. In this setting, the human has a guide, who teaches him what to learn. This is

very similar as it is in our real world. Human go to school and a teacher provides selected

information, what should be learnt. And exactly this happens in the online setting. The

human in the loop teaches the classifier with selected information, i.e., information which

is not known yet by the classifier, and provides them on demand.

To summarize, by using an interactive approach to do semantic segmentation,

it is required that the chosen classifier can deal with data arriving online or sequentially.

Table 4.1 reveals the differences between an offline and an online classifier. It can be

seen that an online classifier must be able to handle training data arriving at any time.

However, online classifiers also expand the domain, where they could be used. Their big

advantage is that it is not necessary that all training data is available at once. And this

is the case in many real world scenarios. It has been shown in [60] that the performance

of an online classifier converges to the performance of an offline classifier when the

number of samples increases. In addition, the performance of an online classifier can be

enhanced when additional training samples are provided.

Online Offline

Training when new training data arrives only during training stage

Testing every time after training stage

Table 4.1: Offline versus online: Training and Testing

Continuous Learning By using an online classifier, the learning procedure can be seen

as continuous learning. In difference to offline learning, this means that the classifier is

not trained once, but continuously. Hence, the first challenge is to allow the classifier to

adapt if the underlying classes change over time. How this adaption can be performed

is discussed in Section 4.2. A second, even more difficult problem is how new labelled
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data can be extracted, such that the classifier can be trained with the new data. In this

application (Section 5) the training data is selected by a human operator and therefore this

task is no problem. The user selects the samples, such that the classification performance

of the classifier can be increased as much as possible or until no performance increase is

possible anymore.

4.1 Online Random Forests

One of the requirements on a classifier used in an interactive approach is to incorporate

training data arriving at any time (cf. Section 1.4.1). However, standard random forests

as discussed in Section 2.5 are designed to learn in batch or offline mode. The following

example demonstrates why random forests are not inherently online.

Example This example shows, why a random forest is not inherently online. Therefore,

two forests, forest f1 and forest f2, are trained with the same training data. However, the

first forest will see all training data in advance as it is in the offline setting whereas the

second forest sees only a subset of the training data in advance and the rest of the data

arrives online. Without loss of generality a non randomized forest is used in this example.

This means, that the very best split function is used at every node. The training set X

consists of n data points.

The first forest, f1, is trained with n training points, i.e., all training data is used to

construct the structure of the trees in the forest.

The second forest, f2, is trained with n− 1 data points, i.e., the structure of the trees

in the forest is established with a subset of all training points. Afterwards, the missing

n-th data point arrives. An online classifier is able to incorporate this n-th data point,

such that the resulting classifier is equal to a classifier trained with all data points at

once, i.e., after incorporating the n-th data point f1 should be equal to f2. Nevertheless,

due to the recursive structure of a forest, the new data point affects the complete

structure, i.e., f1 = f2 is only possible by completely retraining f2 with all training

points. Therefore, a forest is not inherently online.

Saffari et al. proposed a method to use random forests online [60]. This method can

be seen as a tree growing approach. In fact, they start with a single root node in each

tree and maintain statistics for a set of candidate splits. When a new sample arrives,

these statistics are updated and the potential information gain of all candidate splits is
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measured. A split is actually done, if there have been enough samples in a node to form a

robust statistic and the information gain is above a threshold. In this setting new training

data can be incorporated online without the need of completely retraining the complete

forest.

4.2 Semi-Online Random Forests

When some data (with or without labels) is available in advance, this data can be used to

build a random forest with more robust statistics than in the completely online case. In the

following sections two possible ways to make a random forest semi-online are discussed.

They are said to be semi-online, because the structure of the tree is built once with the

available data and only the statistics in the leaf nodes are updated accordingly when new

training data arrives.

4.2.1 Supervised pre-training

Consider a set of labelled training data Xl and a set of unlabelled test sets {X i
u}. First, the

classifier is trained exactly with the same procedure as described in Section 2.4.1, i.e., the

structure of each tree and the statistics in the leaf nodes are constructed with the labelled

training data Xl. This can be seen as a pre-training step, where the classifier learns the

underlying distribution of the labelled input data. Note that the structure of the trees

learnt in this step keeps fixed.

Classifier Update In difference to an offline forest, in the semi-online setting the

statistics of the leaf nodes are not frozen. When a new training point arrives, this data

point is routed through the trees in the forest until it ends in a leaf node. However, in

this case the statistic in the leaf node is not used to infer the most probable class label,

but since the class label is known, the new sample is used to update the statistics with

the new training point in the appropriate leaf nodes. With this approach, it is possible

to incorporate new training data online.

A similar concept as described above has been used by [34]. The advantages of this

approach are visualized in Figure 4.1. When a test set X i
u is similar to the training set,

then the classifier will perform very well, because the learnt distribution will represent the

data in the test set as well (see Figure 4.1a). In this context, the term “similar” means that

the test images were taken e.g., with the same camera or at a similar daytime. However,
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the difficulty arises, when the test data differs from the training data. In this case, the

performance of the classifier will not be that good. Due to the usage of the labels in the

training stage, the classifier is very dependent on the training data and its distribution.

However, in this semi-online approach, the optimal decision boundary can be found by

updating the classifier with new samples (see Figure 4.1b).

(a) (b)

Figure 4.1: Class likelihood of training and test set. Figure 4.1a shows the class likelihood
for the classes y0 and y1 of the data used for classifier training. The red vertical line
indicates the optimal decision boundary learnt by the classifier during the pre-training
stage. When the test set is similar to the training set, the class likelihoods will also be
similar and therefore the classification will be good. However, if the class likelihoods of the
test data differ (Figure 4.1b), then the learnt decision boundary is not optimal anymore.
In 4.1b, the likelihood of class y1 is shifted. By using a semi-online approach it is possible
to shift the decision boundary towards the dashed red line.

4.2.2 Unsupervised pre-training

Another alternative used throughout the literature is to train a forest without the use of

labels. In [26] the structures of the trees are initialized completely random, i.e., they did

not optimize the splitting tests or thresholds in the tree nodes to avoid overfitting. How-

ever, this strategy allows splits, which do not separate any data at all and this contradicts

with the discriminative behaviour of forests.

Vezhnevets et al. went one step further with their extremely randomized hashing

forests [74]. They constructed the forest without looking at any class labels. They forced

the split to actually separate some data, such that at least one sample is split from all

others. This is in contrast to [26], where trivial splits are possible.

In this work, we want to go even further. We want to built an unsupervised pre-trained
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random forest which is as strong as possible. By following the maximum entropy principle,

the information gain can be calculated based on how balanced the resulting leafs are (see

Equation (4.1)). The more balanced the resulting child nodes, the better the split. This

enables the forest to improve its strength while maintaining a compact representation.

I = 1−
||SL| − |SR||

|SL|+ |SR|
(4.1)

As can be seen in Equation (4.1), the splits are computed only based on the size of the

samples travelling to the left and to the right child after the split. No label information

is used. This is, only the structure of the tree is built during this stage, i.e., there do not

exist statistics in the leaf nodes after this stage. The advantage considering generalization

of the forest is that the decision trees do not look on labels to distinguish different classes,

but try to group similar data together. Note that the structure of the pre-trained forest

stays fixed. However, this is no disadvantage, because the structure of the forest is general

(no class labels have been used) and discriminative.

Classifier Update The update of the random forest can be done exactly as in the case

of supervised pre-training. When a new sample arrives, it is routed through all trees in

the forest and updates the statistics accordingly.

Note that it is possible built the structure of the trees in the forest with unsupervised pre-

training even if the training set consists of labelled data. In this case, the labelled training

set can be used to immediately update the classifier with the samples in the training set

to initialize the statistics in the leaf nodes.

4.2.3 Implementation Details

In this section, it is described, how a random forest can be actually implemented. There

are some additional subtleties to consider implementing a random forest. To begin, assume

the standard supervised scenario.

Weights for Training Samples Each sample, i.e., each data point x, from the training

set has a label y assigned to it. However, the number of labels of each class is different.

This leads to a prior to that classes, where more samples exist (e.g., sky) in comparison

to classes where rather few samples exist (e.g., entry). In general, one does not want

to give a prior to some classes in semantic segmentation. To get an uniform prior for all
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classes independent of their appearance frequency in the training set, each sample gets

a weight w assigned. Before the samples from the training set are used in the trainings

procedure, the samples are re-weighted to get an uniform prior distribution. This can be

done using Equation (4.2) or Equation (4.3).

w
(t+1)
y∈Y =

∑

y∈Y w
(t)
y

w
(t)
y

(4.2)

where w
(t)
y is the initial weight for class y and w

(t+1)
y is the updated weight after the

normalization. This can also be expressed in terms of probabilities as

wy =
1

P[Y = y]
(4.3)

where wy is the weight of class y after normalization.

The first algorithm presented is the original algorithm proposed by Breiman [10]. The

pseudo code of the algorithm can be seen in Algorithm 2.

Algorithm 2 Random Forest [10]

Require: Training set S = {(x, y)|x ∈ X , y ∈ Y}
Require: Forest Size T
Require: Maximum tree depth D

1: for t = 1, . . . T do
2: Bootstrap training samples (= sample with replacement) from Xl

3: TrainDepthFirst(S, D) OR TrainBreadthFirst(S, D)

4: return The final forest F

As can be seen in Algorithm 2, the real training procedure can be done either with depth

first training or with breadth first training. In fact, the difference lies in the order of when

a specific node in the tree is trained (see Figure 4.2).

Depth first training is easier to implement then breadth first training. The first step in

the depth first training algorithm is to check, whether the training should be continued.

When this is the case, one node is trained, i.e., the optimal parameters are derived by

sampling a number of different weak learner. The parameters of the weak learner with the

highest information gain (cf. Equation (2.10) and Equation (4.1)). Afterwards this weak

learner is used to split the data into two sets SL and SR. The node training is continued

recursively until all nodes are trained (Algorithm 3).
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Figure 4.2: Depth first vs. breadth first training. In depth first training the nodes are
recursively trained. In breadth first training, all nodes of depth d are trained before the
training continues with depth d + 1. Frontier nodes define a set of nodes trained in the
next stage. Image courtesy of [13].

Algorithm 3 Depth First Training

Require: Set of training data S
Require: Maximum tree depth D

1: function TrainDepthFirst(S, D)
2: if d < D and ∃ non-pure node then
3: θ∗ = FindBestSplit(S)
4: else
5: GenerateLeafStatistics(S)

6: // Call recursively on left and right subset
7: (SL,SR) = SplitData(S, θ∗)
8: TrainDepthFirst(SL, d+ 1)
9: TrainDepthFirst(SR, d+ 1)

10: return depth first trained tree

An alternative to depth first training is breadth first training. In this algorithm, all

nodes of a specific depth d in the tree are trained in common. Breadth first training is

more difficult to implement. However, a breadth first trainings algorithm is required to

implement an entangled decision forest [47], because based on the output of one specific

depth d additional feature channels are computed and used for classifier training. The

first step in the algorithm is to compute the so called frontier nodes of a specific level with
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their learnt parameters θj and the subset of samples present at each node Sl ⊂ S. If the

maximal depth D is reached, the statistics for all leaf nodes are generated. Otherwise, all

frontier nodes are trained by searching the best parameters θ∗ for the weak learner. The

breadth first training algorithm is listed in Algorithm 4.

Algorithm 4 Breadth First Training

Require: Set of training data S
Require: Maximum tree depth D

1: function TrainBreadthFirst(S, D)
2: for d = 0, . . . , D do
3: L = GetAllFrontierNodes(S, d)

4: if d == D then
5: for l ∈ L do
6: GenerateLeafStatistics(Sl)

7: return Breadth first trained tree

8: // train level d in tree
9: for l ∈ L do

10: if l non-pure then
11: θ∗ = FindBestSplit(Sl)
12: θl = θ∗

4.3 Random Ferns

The second classifier used in this thesis is a random fern classifier (Section 2.6). Random

ferns were chosen (a) due to their similarity to random forests, i.e., only few modifications

in the code are necessary to implement random ferns and (b) because they are inherently

online. A random forest is highly discriminative and tries to split the data as good as

possible. Then each leaf node has its individual statistics, which is used to infer the most

probable class label for an unknown sample. In contrast, a random fern does not try

to split data, but one fern builds a global statistic for each class. Therefore a fern is a

semi-generative classifier. It is not completely generative, because the individual ferns are

considered to be independent from each other.

Classifier Update Due to the generative behaviour of a random fern, the update proce-

dure is easy. In fact, always when a labelled sample is used for training, the fern is actually
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updated. This can be done simply by applying the fern on the new sample, calculate the

corresponding fern code and update the statistics of the appropriate class.

Implementation Details To implement a random fern classifier, a lot of code from

the random forest implementation can be used. Each weak learner in the fern is selected

by optimizing the split on a bootstrapped set of training data. After the structure of the

ferns is built, the statistics are constructed using all available labelled data (Algorithm 5).

Algorithm 5 Fern Training

Require: Set of training data S
Require: Number of Ferns M
Require: Size of each Fern S

1: for m = 1 . . .M do
2: // built fern structure
3: for s = 1 . . . S do
4: SB = Bootstrap(S)
5: θm,s = FindBestSplit(SB)

6: // built statistics with training data
7: for x ∈ S do
8: class = GetClass(x)
9: code = ApplyFern(x)

10: UpdateStatistic(class, code)

11: return Fern Classifier (set of M ferns)

To infer the most probable class of an unknown test sample (Algorithm 6), the posterior

distribution over the class labels must be constructed. This is different to a random forest,

where the posterior distribution is saved directly in the leafs. Therefore, each fern is applied

on the sample to construct the binary code (see Section 2.6.2 and Figure 2.10). Then the

posterior distribution can be formed by using the bins of this code and aggregating the

statistics over all ferns.

4.4 Domain Adaption

Due to the high complexity of semantic segmentation, the classifiers are often limited to

certain kinds of images which are e.g., in the same image database. When a classifier

trained on database A is used on another database B, the performance of the classifier is
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Algorithm 6 Fern Testing

Require: Test sample x
Require: Number of Ferns M
Require: Size of each Fern S
Require: Number of classes C

1: for c = 1, . . . , C do
2: P [c] = 0

3: for m = 1 . . .M do
4: code = ApplyFern(x)
5: // Form posterior distribution
6: for c = 1 . . . C do
7: P [c] = P [c] + GetBin(code, m, c)

8: return Aggregated posterior distribution P [c]

decreased usually. However, when a new classifier is trained completely from scratch, the

knowledge of the old classifier is lost. Domain adaption tries to adapt a classifier from

a source domain to a target domain (cf. [17]). In this work, the knowledge of a trained

classifier is transferred to a new classifier. Therefore, a classifier which was trained on the

source domain (e.g., database A) is used to compute confidence maps for each class in

the target domain (e.g., database B). These confidence maps are then used as additional

feature channels when the new classifier is trained. With this approach, it is easy to

incorporate the knowledge of a trained classifier into a new classifier in a soft way. The

only requirement is that both classifiers support the same classes.

4.5 Performance Tricks

In order to achieve interactive performance, the implementation is highly optimized. Be-

cause the application runs on the central processing unit (CPU), a multi-threaded version

was implemented to fully utilize all cores of the CPU during training, updating and test-

ing. A good reference for efficient implementations of decision forests can also be found

in [13].

Tree Node Training The usage of a randomized forest encourage the computation of

the responses on the fly, because it is not known in advance which features will be chosen

as candidates actually and it is impossible to pre-compute all feature responses due to the
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huge search space. This also decreases the memory consumption during classifier training.

For each candidate feature, a threshold needs to be found. This threshold is then

used to decide whether a sample is pushed to the left or the right child node respectively.

When the tree is not extremely randomized, then in general multiple candidate thresholds

between the minimal and maximal feature response are chosen as candidates and the best

separating threshold is used [13, 14]. However, we found that it is even more efficient to

directly use the median of the responses of all data. The median of an unsorted list can be

computed without completely sorting the list. In C++ this can be done as shown below:

std::vector<int> responses{5, 6, 4, 3, 2, 6, 7, 9, 3};

std::nth_element(responses.begin(),

responses.begin() + responses.size()/2,

responses.end());

std::cout << "Median: " << responses[responses.size()/2];

Memory Organization A further very important thing is how the tree is organized

in the system memory. In fact, if the tree is organized well in the memory, the caching

architecture of the CPU is used heavily and therefore the overall performance is increased.

A simple implementation of one tree is the following. Each node in the tree stores a pointer

to the left and right child of it. However, due to the dynamic allocations during the training

stage, the nodes will not lie coherent in the memory. Therefore, the performance can be

increased by pre-allocating all nodes for the tree in an array. The first node in this array

is the root node. Due to the usage of binary decision trees, all other tree nodes can be

determined by

Idx(LeftChild) = 2 · Idx(Parent) + 1 (4.4)

Idx(RightChild) = 2 · Idx(Parent) + 2 (4.5)

This inherent relation between parent and child nodes also eliminates the necessity of

saving references to parent and child in each node and therefore decreases the memory

usage. Additionally, all nodes of the tree lie compact in the system memory and thus the

cache is used.
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Parallelization Modern CPUs have multiple cores which gives the possibility to perform

independent computations in parallel. Nowadays, libraries do exist to easily incorporate

the power of multiple threads (Microsoft’s Parallel Pattern Library (PPL) [46], Intel’s

Thread Building Blocks (TBB) [31]). These libraries allow to run a for-loop in parallel.

However, each iteration in the loop must be independent from the others, because each

iteration is executed using its own thread.

Despite the easy usage of these libraries, it is not ensured that parallelization will

increase the performance. Consider for example that threads work on shared data, i.e.,

they read and/or write to the same memory address. In such a case, the programmer is

responsible for a correct synchronisation between the threads. In fact, if there is too much

synchronization necessary, a lot of additional computations must be performed and there-

fore the single threaded version might be more performant. However, the synchronization

problem can be mitigated when each thread writes e.g., to its own predefined memory

address and the results of all threads are combined in a post-processing step.

In order to parallelize tree training and testing, a lot of different possibilities arise. It

makes a big difference, whether one parallelizes over the

• Weak learner

• Images

• Samples

• Trees

In order to get a performance boost through parallelization, keep the following basic

principle in mind: The task to perform must be more time consuming than the creation

and destruction of the thread itself. Following this principle, it has turned out by an

empirical evaluation that parallelization (parallel_for) over the samples gives an speed-

up of 2.7x - 7.6x compared to parallelization over the trees on evaluating one image

(Figure 4.3).

In depth first training, after a node has been trained, two new child nodes are created.

The training of these nodes can be parallelized using parallel_invoke. Then each node

is trained in its own thread leading to a speed-up of 4.8x - 15x on training a forest for

one image. All speed tests were performed with an Intel Xeon E5430 CPU running at

2.66 GHz.
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(a) (b)

Figure 4.3: Train and test performance. The effect of suitable parallelization can be
seen in 4.3a. While parallelizing over the trees is no good idea, parallelization over the
samples works very well. When the parallelization is done over the trees, there are too
many threads for very little work and therefore the overhead of thread management is
big. In 4.3b it is shown how the training time of a forest can be decreased by parallelism.
All tests were made on an image of size 640× 480, tree depth D = 15 and 128 candidate
features are used to find the best split.

4.6 Summary

In this chapter, the algorithms used in this work are discussed in detail. The first section

clarifies the difference between offline and online classifiers and defines the term continuous

learning. Afterwards, the concept of semi-online random forests is revealed. In the first

case, a random forest is pre-trained supervised which leads to a high dependence on the

labelled training data. In the second case, the pre-training is done unsupervised, such

that the labels of the training data are abstracted further. The statistics in the leaf nodes

are constructed by updating the pre-trained classifiers with the labelled training data.

The concepts of supervised pre-training and unsupervised pre-training are very similar.

However, the resulting tree and the performance of both variants is quite different.

Furthermore, different random forest training algorithms (depth first training and

breadth first training) as well as algorithms for creating and testing random ferns are

presented and outlined. The last section is concerned with performance, because perfor-

mance is crucial in an interactive classification scenario. It is shown how the training can

be done efficiently, how the memory should be organized to allow optimal caching and

what the impact of parallelization over different primitives (trees, samples, . . . ) is.
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Interactive Semantic Segmentation

In this chapter, the applications which is the result of this thesis is described in detail.

The algorithms and ideas presented in Section 4 are used to build a powerful interactive

labelling tool.

5.1 Pipeline

Since the training can take quite a lot of time, a classifier is pre-trained on a representative

dataset. The training is done unsupervised, which implies a better generalization on differ-

ent datasets. During this pre-training stage, the structure of the classifier is constructed,

such that data can be split best based on unsupervised observations. In other words, in

the pre-training stage, the features, which are used in the classifier are selected. At this

stage a domain adaption can be done additionally, i.e., the knowledge of a trained classifier

can be transferred to the new classifier (see Section 4.4). Notice that after this training

stage, the statistics in the leaf nodes are equally distributed, since there are no labels

used during the training phase (see Section 4.2.2). However, in an interactive semantic

segmentation tool, the user provides the labels and actually constructs the statistics with

the annotations.

After the application is started, the user loads the pre-trained classifier and the data

for semantic segmentation. Now, the user can draw some scribbles, to teach the classifier

the classes, which the classifier should learn and also how they look like.

When the user did all his annotations, i.e., he provided samples of all different labels,

which he wants to classify, all annotated samples are used to update the statistics of the

classifier. Therefore patches are cropped out of the image and pushed through the classifier

69
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until they update the statistics in the appropriate leaf nodes. After the update is finished,

the complete project area, i.e., all images which are currently loaded, is segmented using

the current classifier. Hence, the user gets feedback of what the classifier has learnt imme-

diately. Now the user decides, whether the semantic segmentation is already satisfying or

not. If there are numerous false classified pixels, it is possible to re-annotate these pixels

by drawing some scribbles with the correct labels to update the classifier. This loop can

be continued as long as the result is satisfactory. The complete pipeline is visualized in

Figure 5.1.

Figure 5.1: The annotation pipeline for interactive semantic segmentation. The initial
training of the classifier is performed offline. After the training phase the user can annotate
and update the classifier with new labels until the results are satisfying. Note that the
domain adaption is optional.

It should be noted that the initial training can be done with the graphical user interface

too, despite the training will take some time. For small tasks, where just one image should

be segmented, it is useful to train the forest directly on that image. Here the user can

decide to train the classifier supervised with initially provided labels. However, by doing

this, the classifier will not generalize as well as if it would be trained unsupervised, due to

overfitting on the viewed data.

5.2 Graphical User Interface

Apart from the algorithmic presented in the previous section, the graphical user interface

(GUI) is very important in an interactive semantic segmentation scenario. The GUI

handles how images and complete projects are displayed on the screen and provides the

tools to allow the user to do a semantic segmentation on an image. In this thesis the
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target is to build a strong labelling tool, which can be used to do a semantic segmentation

on aerial imagery. The idea is to semantically segment this data into

• Façade

• Window

• Roof

• Street

• Car

• Vegetation

• Water

• Sky

Therefore, the classifier is trained once on a representative dataset and this classifier is

then used again and again and updated with new labels on demand. Since the graphical

user interface (GUI) allows to intervene and teach the classifier what it should learn at

any time, this approach can be seen as life long learning. The concept behind this idea is

called continuous learning as described in detail in Section 4. The idea is to provide a good

structure of the classifier when it is trained. In fact, the structure of the classifier is very

important for the strength of the classifier. The better the structure of the classifier, the

less tests are necessary to confidentially split data based on their local feature responses.

The more projects the classifier has seen yet, the fewer user interaction is necessary to

achieve good results. However, if necessary, it should be possible to train a classifier

completely from scratch and tune it for a specific task too.

Note that it is possible to learn arbitrary classes with this application. The algorithms

do not change when different classes are used. The user defines the classes and their

semantic meaning when he annotates an image.

The compute intensive algorithms, classifier training, update and evaluation, are per-

formed in the background by starting additional threads. Therefore, the user can interact

with the GUI at any time. For example, it is possible to re-annotate some incorrect

labelled pixels during the evaluation of some other images in the project.
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Figure 5.2: Graphical User Interface (GUI) to do a semantic segmentation in 2D and 3D.
The Active User Guidance (AUG) is visualized as a map on the bottom right corner (see
Section 5.3).

5.2.1 Visualization of the Projects

There already exists a viewer to visualize geo-referenced projects and the segmentation

functionality should be incorporated into this viewing application. With this viewer it is

possible to explore the project area with the mouse. An overview of the basic functionality

can be seen in Table 5.1. Actually there are two different types of images to be used for

semantic segmentation. These types will be presented shortly in the next paragraphs.

Key Action

Left mouse button pan view

Right mouse button rotate view

Mouse wheel zoom in/out

Ctrl + left mouse button draw scribbles

Ctrl + mouse wheel change cursor size

Table 5.1: Basic functionality of the viewer

Ortho Images Orthophotos are geometrically corrected images, i.e., topographic re-

lief, lens distortion and the tilt from the camera position is adjusted. Orthophotos are
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constructed synthetically and the procedure of creating such an image is called orthorec-

tification. The result of orthorectification is an image where each viewing ray through

the camera is orthogonal to the image plane. This equals to an orthographic projection

(=orthogonal parallel projection). Since an orthophoto has uniform scale, it is possible

to measure distances, areas, angles and positions. The construction of an orthophoto is

visualized in Figure 5.3 and an example of an orthophoto can be seen in Figure 5.4.

Figure 5.3: Orthophoto construction: The terrain is projected to the xy-plane to compute
the ortho photo [61].

Oblique Images Photographs which are taken from an angle are called oblique images.

Oblique images are constructed using an oblique projection (=oblique parallel projection).

In this projection, the viewing rays are in parallel as it is in the orthographic projection.

However, the parallel viewing rays intersect the image plane at an angle and therefore

this projection is called oblique. The difference to orthophotos is that not only the

top view of a scene is visible, but also façades, windows, etc. can be seen on oblique images.

With the viewer it is possible to load single images and perform an interactive semantic

segmentation on them. Due to the fact that the projects are geo-referenced, i.e., each tile

of the complete project area has its own global position in a global coordinate system, it

is also possible to use multiple images at once. In addition to the images and the global

positions, a digital surface model (DSM) is also available. This enables the possibility

to project ortho- and oblique-images onto the DSM to get a complete textured 3D city.

Technically this is realized using projective texture mapping [18], which is an image based
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(a) Orthophoto (b) Oblique photo

Figure 5.4: Example of an ortho photo and an oblique photo. The oblique image was
taken under an angle of 45◦.

rendering (IBR) method [67].

(a) Textured 3D city (b) Digital Surface Model (DSM)

Figure 5.5: The images are projected onto the DSM using projective texture mapping.

5.2.2 Using the GUI for Interactive Semantic Segmentation

To actually perform semantic segmentation on those images, the viewer was extended with

new features. After a project has been loaded by the user, it is possible to train a classifier

on the images visualized in the GUI. To adjust the settings, i.e., what classifier should be

used with what parameters, a configuration dialog was designed (see Figure 5.6).
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Figure 5.6: Classifier dialog: All settings regarding the classifier for semantic segmentation
can be adjusted in this dialog. Notice that the parameters are grouped together logically
into Classifier, Training, Features, Feature Channels (see Section 3) and Regularization
(see Section 5.4). Regularization defines how the subsequent postprocessing is done using
the confidence maps of all labels.

If this dialog is opened the first time, all values are initialized with default values.

They are chosen, such that they fit to common semantic segmentation problems directly.

In addition, it is possible to choose from predefined values in drop-down menus, such

that the user has the possibility to try different settings. It is also possible to type values

directly into the combo boxes and therefore use values not present in the drop down menu.

This option is indented for expert users only. When a classifier is already loaded into the

GUI, the classification dialog shows all the settings, with that the imported classifier was

trained.

By pressing the OK-button the configured settings are applied and by clicking Clas-

sifier→Train Unsupervised in the menu bar the specified classifier is trained using the

defined settings.

Interactive Labelling The labelling functionality is the core of interactive semantic

image segmentation. The user can teach the classifier, what it should learn actually, by
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drawing some scribbles directly on the loaded image. The drawing functionality is enabled

by holding the Ctrl key. While this key is pressed, the size of the cursor can be changed

using the mouse wheel and a scribble is drawn on the image by simply pressing the left

mouse button. If the annotation mode is activated, i.e., the Ctrl key is pressed, a circle

is projected onto the image (see Figure 5.7), such that the user sees where the scribble

will be drawn by pressing the left mouse button immediately.

(a) Street (b) Façade (c) Roof

Figure 5.7: The cursor projected onto different surfaces. Notice how accurately the cursor
is projected onto the geometry.

The last thing missing for the user to actually draw the scribbles with semantic meaning are

the labels. The labels are the logical classes into that the input data should be segmented.

For that purpose another dialog, called the “Annotation Dialog” is used. In this dialog,

the user can choose between different labels and assign meaningful names to them (see

Figure 5.8). The colors in the dialog correspond to the colors used for the annotation in

the labelling GUI.

Since the concept of continuous learning is used, i.e., the classifier has been updated

at many different project with a lot of labels, the designations of the labels are saved in

combination with the classifier. This is especially useful if there exist different classifiers

for different purposes. Every time an existing classifier is loaded, the designations used

in the current classifier are loaded too and therefore the user immediately knows which

colors do correspond to which labels and what they stand for. In Figure 5.2 and Figure 1.5

examples for semantic segmentations made with the GUI presented here are shown.

Depending on the used classifier, it might be possible that pixels do not get the correct

label assigned, although exactly these pixels were annotated by the user. However, in fact

this is very unlikely. To minimize these situations, the user has the possibility to boost his

annotations. This actually means that the weight of an annotated sample is increased,

such that an incorrect label is hardly ever assigned to an annotated pixel (cf. Section 2.7).
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Figure 5.8: Annotation Dialog: this dialog is used to choose a label. It is possible to assign
a logical class name to each label in addition.

Even if the annotations are boosted, the result is still computed using Equation (2.18),

i.e., the prediction is constructed through averaging the posterior distributions of all trees.

In real boosting, the label is inferred by a summation over the weak learners as defined in

Equation (2.28).

5.3 Active User Guidance

Since this is an interactive labelling application, user interaction is necessary to teach the

classifier. Obviously, the less user input is affordable, the better. To actually minimize

the necessary user interaction, a concept called “Active User Guidance” (AUG) has been

developed (see Figure 5.9). AUG shows the confidence of the classifier to the user. This

means, by looking to the AUG, the user immediately sees, where the classifier is not

that confident and needs some additional help from the human in the loop. With this

technique, it is possible to minimize the afford to achieve a good semantic segmentation

on given imagery. Actually, the whiter an entry in the AUG, the more equally is the

posterior distribution over the class labels distributed. Hence, by providing samples at

exactly these positions, the best impact can be achieved. Figure 5.2 shows, how the AUG

is rendered in the GUI.

Consider the following example: Without enabling AUG, the user provides samples

by drawing some scribbles on the input images. However, it might be the case that the
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user always draws scribbles at positions, where the classifier is already very confident. In

this case, the statistics in the corresponding leafs will become even clearer, but there is no

global information gain. Hence, the quality of the semantic segmentation will not increase,

when the classifier is trained with “false” samples. By using AUG, exactly this is avoided,

since the user always knows, what samples will have the greatest impact considering the

global performance of the classifier.

(a) Input Image (b) Low confident classifier (c) High confident classifier

Figure 5.9: Visualization of the Active User Guidance (AUG). The whiter an entry in
the AUG, the more insecure is the classifier. This means that the posterior distribution
over the class labels used to classify the pixel is almost an equal distribution. Hence, by
guiding the classifier in exactly these regions with new annotated samples, the classifier
will become stronger with less annotation effort. In 5.9b the classifier is very insecure
especially on Land pixels. In 5.9c the classifier knows exactly which pixel correspond to
which label.

5.4 Regularization

As already proposed in Section 2.2, this application uses a two-stage approach to compute

the final semantic segmentation. When a sample is propagated through a classifier, the

output is a class label y ∈ Y. However, by directly using a class label as output of the

classifier a hard decision is made. This causes noisy semantic segmentations with a lot of

small isolated classes (see Figure 6.1). Despite this result is most of the times visually not

pleasing, it is actually the most likely labelling. Nevertheless, in general one does want to

get smooth results with no or hardly any small and isolated regions. Regularization is the

concept of producing a smooth result based on the posterior distributions inferred for each

pixel. This means that the input for the regularization is a |Y|-dimensional probability

vector p, where the entry pi is the probability that the sample corresponds to the i-th
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class. In other words, the confidence maps (see Section 3.1.7) for the classes are the input

for the regularization.

In the following paragraphs, the available regularization methods are described in

detail. Notice that there exist a lot of different possibilities how to actually regularize

the output of a classifier. Some of them are Superpixels, Markov Random Fields (MRF),

Conditional Random Fields (CRF), Potts model, etc. In this application two methods,

Superpixel regularization and a regularization with the Potts model, which are described

next, are used.

5.4.1 Superpixels

Before a superpixel segmentation can be used for regularization the terms must be defined

in advance. A superpixel can be defined as a set of pixels, where all the pixels contained

in this set are homogeneous in some respect. This homogeneity could be locality and

coherency for example. In other words superpixels are nothing but small regions, which

have a similar appearance. When a complete image is segmented into superpixels, the

result is called superpixel segmentation. An example for such a superpixel segmentation

can be seen in Figure 5.10. Notice, how the pixels are grouped into perceptual meaningful

atomic regions. The superpixel algorithm proposed by Felzenszwalb and Huttenlocher [19]

was chosen in this application. This has several reasons:

• Boundary recall

The superpixel algorithm of Felzenszwalb and Huttenlocher has the best boundary

recall rate when compared with other superpixel algorithms [2].

• Superpixel size

The size of the generated superpixels is adjusted automatically based on the image.

This is especially important, because it is more likely that also fine structures are

captured correctly as superpixels.

• Speed

The computation time of the superpixel algorithm of Felzenszwalb and Huttenlocher

is O(n log n).

Regularization with Superpixels In this section it is described how these superpixels

can be used to do a regularization on the output of the classifier. When using superpixels
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Figure 5.10: Visualization of superpixels generated by the algorithm of Felzenszwalb and
Huttenlocher [19] with two different zoom-levels. Image courtesy of [1].

for the regularization, it is assumed that one superpixel does contain only one logical class

label. This means instead of predicting the label for each pixel individually as it is done

by the classifier, now the label for one superpixel, i.e., one region, is predicted. To get

a prediction for a complete segment, the posterior distribution of the complete segment

is constructed out of the individual posterior distributions of the individual pixels. The

posterior probability of a superpixel can be calculated using Equation (5.1).

P(Y = yk|x1, . . . ,xN ) =
1

N

N∑

i=1

Pi(Y = yk|xi) (5.1)

where P is the posterior distribution over the class labels of the complete superpixel, Pi is

the posterior distribution over the class labels of the i-th pixel in the superpixel, xi is the

data point corresponding to the i-th pixel and N is the number of pixels in the superpixel.

To get the actual class prediction for the complete segment, the class label with the

highest probability is assigned to all pixels in the superpixel.

C(x1, . . . ,xN ) = argmax
k

P(Y = yk|x1, . . . ,xN ) (5.2)

By using superpixels for regularization, the results are improved both, visually and also

quantitatively. However, if the superpixel segmentation does not recover the original

object boundaries, i.e., one superpixel contains actually more than one label, than an error

is introduced. At this stage, there is no possibility to overcome this problem anymore.

However, the superpixel segmentation is most of the times accurate enough and yields to

very smooth and pleasing results.
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5.4.2 Potts Model

Another option to regularize the classifier output is to use the method proposed by

Unger [73]. This variational regularization approach does not deal with probabilities di-

rectly, but with potentials. However, the probabilities pi can be converted into potentials

fi easily by using Equation (2.1). Since the labelling problem is defined as an energy

minimization problem, potentials can be seen as costs, where a high potential corresponds

to a high cost and low potentials correspond to low costs respectively.

The general minimal partitioning problem for K-class labelling problem in the contin-

uous setting is given by

min
Ωi

{

1

2

K∑

i=1

Per(Ωi) +
K∑

i=1

∫

Ωi

fi(x)dx

}

,

s.t. Ω =

K⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ ∀i 6= j

(5.3)

where Per(Ωi) is the perimeter of the set Ωi and fi are the potentials. In the discrete

setting Equation (5.3) is referred to as the Potts model [52], which is a generalization of

the Ising model [32] for multiple labels. In these models pairwise costs are defined, i.e., if

there is a label switch in the neighbourhood of a pixel, a cost g(i, j) is assigned:

ψij(yi, yj) =







0 if yi = yj

g(i, j) otherwise
(5.4)

To actually solve the labelling problem stated in Equation (5.3), the relaxation proposed

by [78] augmented with a binary term to the total variation (TV) can be used (see Equa-

tion (5.5)). After transforming the relaxed version into a primal-dual problem, it can be

solved efficiently. For more information about variational multi-label image segmentation

the reader is referred to the work of Unger [73].

min
ui







K∑

i=1

∫

Ω
cb |∇ui|
︸ ︷︷ ︸

TV

+

K∑

i=1

∫

Ω
uifidx






,

s.t.

K∑

i=1

ui = 1, ui ≥ 0 ∀i = 1, . . . ,K

(5.5)
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5.5 Summary

In this chapter, the application resulting of this thesis is described in detail. An available

viewer, which is capable to visualize images in 2D and complete project areas in 3D is

extended with the semantic segmentation functionality. To facilitate the annotation task,

appropriate dialogs have been designed. In order to do a semantic segmentation on such

aerial projects the first step is to load or train a new classifier. Then the user can teach

the classifier until the semantic segmentation is satisfactory. The segmentation itself is

generated using a two stage approach. In the first stage, the unaries are generated with a

classifier and in the second stage, called regularization, the probabilities generated by the

classifier are used to infer a smooth labelling for each image. Two types of regularization,

superpixel regularization and a regularization based on the Potts model, are described in

detail.



Chapter 6

Evaluation

In this chapter, the algorithmic part of the application is evaluated. The performance

in terms of accuracy of random forests and random ferns are compared. A supervised

version of a random forest is used as a base line, because this setting is most common in

the literature [65, 66]. However, the accuracy of the final segmentation is not the only goal

in this application. Due to the fact that a user should interact with the algorithms, an

interactive performance is desired. Therefore, the parameters (forest size, maximal tree

depth, etc.) is chosen, such that the behaviour of the application remains interactive.

The performance of the different algorithms is evaluated on the eTRIMS [35] database

and on the MSRC database [57]. When the eTRIMS database is used, 40 images are used

for training and 20 images are used for testing. This is exactly the same setting as in [23].

When the MSRC database is used, the split is chosen exactly as it was done by Shotton et

al. in [57]. Since the training procedure incorporates some randomness, each test is done

five times and the result is averaged.

In order to evaluate the online capability of the classifiers, it is necessary to simulate

the interaction done by a human operator. The user will always annotate pixels which are

incorrect classified to teach the classifier. Hence, in the evaluation an intelligent procedure

for producing new samples online must be used. To tackle this problem, the active user

guidance (AUG) (see Section 5.3) can be used again. In this case the AUG does not help

the user, but the computer to create online samples intelligently.

To quantify the performance of the different settings and different classifiers, the global

and average recognition rate are measured. The global recognition rate reveals the fraction

of pixels labelled correctly compared to all pixels:
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Global Recognition Rate =
#correct labelled pixels

#all pixels
(6.1)

However, this quantity prefers bigger categories over small ones, because by labelling just

the big categories like Sky for example correctly, a good performance can be achieved even

if small classes are labelled completely incorrect. Therefore, the second quantity measured

are the average correct pixels. The average recognition rate is defined in Equation (6.2).

This quantity also incorporates how well small categories are labelled:

Average Recognition Rate =

∑

y∈Y
#Correct pixels of class y
#all samples of class y

#classes
(6.2)

Figure 6.1 shows some visual results obtained with the implementation of this thesis. In

the following sections, the results of the evaluations are presented for random forests and

random ferns. The detailed test settings for each evaluation are described in the specific

sections.

(a) Image (b) Ground truth (c) Forest (d) Forest SP (e) Fern (f) Fern SP

Figure 6.1: Visual results from the eTRIMS database. In (a) the input image is shown,
(b) shows the corresponding ground truth annotation, (c) and (d) show the unary result
and the superpixel-regularized result achieved with the forest of test 6.2. (e) and (f) show
the unary result and the superpixel-regularized result achieved with the fern of test 6.10b.
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6.1 Random Forest

A random forest is the main classifier used in this application. Here, it is evaluated how the

impact of different forest sizes T is and what maximum depth D should be used in order

to achieve the best generalization on previously unseen data. Table 6.1 shows common

parameters used throughout the evaluation.

Property Value

Maximum tree depth D 5, . . . , 20

Number of trees 2, 4, 6, 8, 10

Feature Channels
LAB, Gradients, HOG, LBP,

Location, [Confidence]

Features Pixelpair, Generalized Haar

Random tests 256

Threshold selection Median

Regularization Superpixel

Table 6.1: Random forest parameters used for the evaluation

6.1.1 Offline Performance

In the offline setting, the classifier is trained with a training set and then its performance

is measured on a test set. Here, different settings have been investigated. As a base line

for all evaluations, a supervised forest has been trained on the eTRIMS database for easy

comparison with the literature. All other tests will be compared with this test scenario.

The plots show the global and average correct labelled pixels respectively for different

parameters.

6.1.1.1 Supervised, Depth First

In this test run, each forest is trained completely supervised. The plot (Figure 6.2) shows

the results for different numbers of trees in the forest and different depths.
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(a) eTRIMS: Unary (b) eTRIMS: Superpixel

(c) MSRC: Unary (d) MSRC: Superpixel

Figure 6.2: Comparison of the effect of different forest parameters (forest size T , maximum
depth D) on the eTRIMS and MSRC database. Solid lines indicate the global recognition
rate and dashed lines indicate the average recognition rate.

6.1.1.2 Supervised, Entangled

In this test run entangled forests are used to incorporate context (see Section 2.8). In this

scenario, the confidence output for all classes y ∈ Y of depth n are used as addition feature

channels during the training of depth n + 1. In Figure 6.3, the results of an entangled

decision forest are shown.
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(a) eTRIMS: Unary (b) eTRIMS: Superpixel

Figure 6.3: Comparison of different parameters when an entangled random forest is used
on the eTRIMS database. Solid lines indicate the global recognition rate and dashed lines
indicate the average recognition rate.

6.1.1.3 Unsupervised, Depth First, Update

In this experiment, the tree structure is built unsupervised, i.e., no labels are used in the

training stage. Therefore, the structure of the trees is more general than in the supervised

case. However, different patches are also split in the nodes of the trees. Actually, after

the training of the unsupervised forest, no statistics exist in the leaf nodes. The statistics

are generated by a semi-online update of the forest with the labels of the training data

(see Section 4.2). Note, the structure is trained without considering the labels and the

statistics of the unsupervised trained forest is constructed using the labels of the training

set. As can be seen in Figure 6.4, especially the average recognition rate is worse compared

to the supervised trained forest (cf. Figure 6.2).
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(a) eTRIMS: Unary (b) eTRIMS: Superpixel

(c) MSRC: Unary (d) MSRC: Superpixel

Figure 6.4: Comparison of the performance of an unsupervised trained forest where the
statistics are generated through a semi-online forest update with the labelled training data
on the eTRIMS and MSRC database. Solid lines indicate the global recognition rate and
dashed lines indicate the average recognition rate.

6.1.1.4 Supervised, Depth First, Additional Confidence Maps

The next test run tries to incorporate the knowledge of a classifier trained on a source

database into the training phase of a new classifier for a different target database (see

Section 4.4). Therefore, in this test case, the first classifier providing the confidence maps

was trained on the LabelMe database which contains the same classes as the eTRIMS

database. With this classifier, confidence maps for images in the eTRIMS database are

created and used as additional feature channels during the training of a new classifier for

the eTRIMS database. This is similar to the concept of auto-context (cf. Section 2.8) ex-
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cept that the classifier which provides the confidence maps is trained on another database.

The performance of the new trained classifier is shown in Figure 6.5.

(a) eTRIMS: Unary (b) eTRIMS: Superpixel

Figure 6.5: Knowledge transfer from the LabelMe database to the eTRIMS database using
a supervised trained forest. Solid lines indicate the global recognition rate and dashed lines
indicate the average recognition rate.

6.1.1.5 Unsupervised, Depth First, Additional Confidence Maps

This test run is equal to the previous one, except of that the new forest is trained unsuper-

vised instead of supervised. In comparison to Figure 6.4, especially the average recognition

rate can be improved by using additional confidence maps even if the classifier which pro-

vides these confidence maps is trained on a different dataset (see Figure 6.6). Therefore,

it is possible to use learnt information from a previously trained classifier to construct a

more powerful new classifier.
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(a) eTRIMS: Unary (b) eTRIMS: Superpixel

Figure 6.6: Knowledge transfer from the LabelMe database to the eTRIMS database using
an unsupervised trained forest. Solid lines indicate the global recognition rate and dashed
lines indicate the average recognition rate.

6.1.1.6 Summary

Here, the best parameters from each evaluation are gathered and summarized. Table 6.2

shows the maximum reached global recognition rate and with which parameters the results

were achieved on the eTRIMS database. Table 6.3 shows the maximum reached average

recognition rate and with which parameters the results were achieved on the eTRIMS

database. Table 6.4 and Table 6.5 show the maximum results of the global and average

recognition results on the MSRC database.

Test Run Depth #Trees Global Average

6.2a 20 10 0.7848 0.6382

6.2b 19 10 0.8170 0.6646

6.3a 20 8 0.7852 0.6131

6.3b 19 8 0.8078 0.6274

6.4a 20 10 0.7169 0.3890

6.4b 20 2 0.7267 0.3730

6.5a 19 10 0.7845 0.6149

6.5b 18 10 0.8123 0.6448

6.6a 19 10 0.7525 0.5735

6.6b 20 10 0.8080 0.6150

Table 6.2: Performance of different supervised trained random forests on the eTRIMS
database. The table shows the best global recognition rate and the corresponding average
recognition rate.
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Test Run Depth #Trees Global Average

6.2a 14 10 0.7628 0.6622

6.2b 14 10 0.7985 0.6911

6.3a 14 10 0.7582 0.6546

6.3b 13 10 0.7802 0.6776

6.4a 20 6 0.7065 0.3936

6.4b 20 6 0.7203 0.3734

6.5a 14 10 0.7651 0.6355

6.5b 14 6 0.7883 0.6822

6.6a 18 10 0.7524 0.5738

6.6b 20 10 0.8080 0.6150

Table 6.3: Performance of different supervised trained random forests on the eTRIMS
database. The table shows the best average recognition rate and the corresponding global
recognition rate.

Test Run Depth #Trees Global Average

6.2c 20 10 0.5335 0.4406

6.2d 20 10 0.5758 0.4801

6.4c 20 10 0.4574 0.2080

6.4d 20 10 0.4659 0.1952

Table 6.4: Performance of different supervised trained random forests on the MSRC
database. The table shows the best global recognition rate and the corresponding av-
erage recognition rate.

Test Run Depth #Trees Global Average

6.2c 17 8 0.5059 0.4631

6.2d 17 8 0.5531 0.5134

6.4c 20 10 0.4574 0.2080

6.4d 20 2 0.4638 0.1960

Table 6.5: Performance of different supervised trained random forests on the MSRC
database. The table shows the best average recognition rate and the corresponding average
recognition rate.

6.1.2 Online Performance

Since in this application, all classifiers are used in an online setting, the online performance

is evaluated in addition. Therefore, the samples to update the classifier are chosen based

on the confidence of the classifier. This means that the least confident samples are used

to update the forest.
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In this test run, each forest is trained unsupervised on the training data (see Sec-

tion 4.2.2). The advantage of this approach is that a semantic segmentation can be

computed without the necessity of a labelled set of training data. To evaluate the online

performance of such a forest, the test images are used and each image is updated exactly

ten times. Initially, 500 random samples from the first image are used to update the clas-

sifier. Then the classifier is updated with the 500 least confident samples of each class.

This is equal to 1.14% of all pixels in each image in the eTRIMS database (average image

size = 512 × 768 pixels). However, as can be seen in Figure 6.7, the performance is very

good, even if there are very few samples provided. It can also be seen that 2 trees are not

enough to capture the variability of the data, because the red curve decreases at depth

18. This means that the forest starts to overfit to the training data. The forests with

T > 2 perform very well and do not overfit. However, it is not feasible to increase the

depth of the forest further, due to the exponential growth of the number of nodes. The

best performing forests in the online setting are summarized in Table 6.6.

(a) Unary: eTRIMS (b) Unary: MSRC

Figure 6.7: Online performance of a semi-online random forest on the eTRIMS and the
MSRC database. Note that the performance is almost equal as in the completely super-
vised setting in offline mode, where all samples are used to generate the statistics. In
difference to the supervised setting, the average recognition rate is better in the online
setting.

Another interesting property of an online classifier is how fast it adapts to new data. To

investigate this behaviour, the best performing forest (T = 10) has been used to plot the

adaption of a semi-online forest to new unseen data (Figure 6.8).
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Figure 6.8: Adaption of a semi-online random forest. Each image is updated exactly 10
times. After each local minimum, the performance increases very fast. This indicates that
it is possible to learn new information very fast.

Test Run Depth #Trees Global Average

6.7a 20 10 0.7908 0.7801

6.7b 20 10 0.5915 -

Table 6.6: Results of the unsupervised pre-trained semi-online random forest on the
eTRIMS and MSRC database. The performance is measured by averaging the perfor-
mance after the online update of each image.

6.2 Random Ferns

To compare the performance of the main classifier (random forest), random ferns have been

chosen, because they are inherently online and therefore very well suited for an interactive

approach. Common parameters used during the evaluation are shown in Table 6.7. These

parameters show that the number of ferns is greater than the number of trees in a forest

to achieve comparable performance. The weak learners of the fern are chosen according

to optimize the information gain and additionally, the training procedure tries to split

classes, which could not be split up to now. This procedure is similar to the procedure

used in a forest. But in difference to a forest, all tests in a fern are applied to the input

data, independent of the outcome of the previous test.
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Property Value

Maximum fern size S 10, . . . , 20

Number of ferns 10, . . . , 30

Feature Channels
LAB, Gradients, HOG, LBP,

Location, [Confidence]

Features Pixelpair, Generalized Haar

Random tests 256

Threshold selection Median

Regularization Superpixel

Table 6.7: Random fern parameters used for the evaluation

6.2.1 Offline Performance

As it was done with the random forest, the random ferns are tested in an offline setting

too. The same tests are done with the ferns to directly compare their performance with

the performance of a random forest.

6.2.1.1 Supervised

In this test run, the random fern is trained in a supervised manner. Figure 6.9 shows how

random ferns perform in this setting. See Figure 6.2 for the result of the random forest in

this experiment.

(a) eTRIMS: Unary (b) eTRIMS: Superpixel
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(c) MSRC: Unary (d) MSRC: Superpixel

Figure 6.9: Comparison of the effect of different fern parameters (number of ferns N , fern
size S) on the eTRIMS and MSRC database. Solid lines indicate the global recognition
rate and dashed lines indicate the average recognition rate.

6.2.1.2 Unsupervised, Update

In this test case, it is evaluated how a random fern performs, when it is trained unsuper-

vised, i.e., no labels are used during the training stage. The statistics are generated by

updating the ferns with the labels available in the training data. The performance of an

unsupervised trained fern is shown in Figure 6.10. Figure 6.4 shows the result of a random

forest in this experiment.

(a) eTRIMS: Unary (b) eTRIMS: Superpixel
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(c) MSRC: Unary (d) MSRC: Superpixel

Figure 6.10: Comparison of the performance of an unsupervised trained ferns where the
statistics are generated through an online update with the labelled training data on the
eTRIMS and MSRC database. Solid lines indicate the global recognition rate and dashed
lines indicate the average recognition rate.

6.2.1.3 Supervised, Additional Confidence Maps

In this test run, the knowledge of another classifier is incorporated in the learning proce-

dure of the fern, which should be trained. Therefore, a random forest has been trained

on the LabelMe database and the confidence maps of this classifier are used as additional

feature channels during the supervised fern training. Figure 6.11 shows the results of this

test case. See 6.5 for the performance of a random forest in this experiment.

(a) Unary: Global Correct (b) Superpixel: Global Correct

Figure 6.11: Knowledge transfer from the LabelMe database to the eTRIMS database
using a supervised trained fern. Solid lines indicate the global recognition rate and dashed
lines indicate the average recognition rate.
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6.2.1.4 Unsupervised, Additional Confidence Maps

This test run is quite similar to the test run above, except that the random fern is trained

unsupervised. The results are shown in Figure 6.12. Figure 6.6 shows the results of a

random forest in this experiment.

(a) Unary: Global Correct (b) Superpixel: Global Correct

Figure 6.12: Knowledge transfer from the LabelMe database to the eTRIMS database
using an unsupervised trained fern. Solid lines indicate the global recognition rate and
dashed lines indicate the average recognition rate.

6.2.1.5 Summary

Here an overview of the maximum performances achieved with random ferns in terms of

global and average recognition rate respectively are summarized. Table 6.8 and Table 6.9

show the results on the eTRIMS database and Table 6.10 and Table 6.11 show the results

on the MSRC database.

Test Run Size #Ferns Global Average

6.9a 18 25 0.7233 0.5972

6.9b 18 25 0.7605 0.6244

6.10a 18 25 0.7407 0.5529

6.10b 18 15 0.7705 0.5830

6.11a 18 30 0.7242 0.6034

6.11b 18 30 0.7589 0.6277

6.12a 18 25 0.7358 0.5511

6.12b 18 20 0.7658 0.5558

Table 6.8: Performance of different supervised trained random ferns on the eTRIMS
database. The table shows the best global recognition rate and the corresponding av-
erage recognition rate.
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Test Run Size #Ferns Global Average

6.9a 18 25 0.7233 0.5972

6.9b 18 25 0.7605 0.6244

6.10a 18 15 0.7355 0.5595

6.10b 18 15 0.7705 0.5830

6.11a 18 30 0.7242 0.6034

6.11b 18 30 0.7589 0.6277

6.12a 18 25 0.7358 0.5511

6.12b 16 20 0.7512 0.5598

Table 6.9: Performance of different supervised trained random ferns on the eTRIMS
database. The table shows the best average recognition rate and the corresponding average
recognition rate.

Test Run Size #Ferns Global Average

6.9c 18 30 0.4085 0.3378

6.9d 18 15 0.4247 0.3588

6.10c 18 25 0.4725 0.2767

6.10d 18 25 0.4795 0.2717

Table 6.10: Performance of different supervised trained random ferns on the MSRC
database. The table shows the best global recognition rate and the corresponding av-
erage recognition rate.

Test Run Size #Ferns Global Average

6.9c 18 30 0.4085 0.3378

6.9d 18 30 0.4246 0.3593

6.10c 18 25 0.4725 0.2767

6.10d 18 25 0.4795 0.2717

Table 6.11: Performance of different supervised trained random ferns on the MSRC
database. The table shows the best average recognition rate and the corresponding average
recognition rate.

6.2.2 Online Performance

The random ferns are evaluated in an online setting too. Therefore, all ferns are trained

unsupervised and the update is done based on the confidence of the current classifier,

i.e., the update is done exactly as it was done with the semi-online random forest (cf.

Section 6.1.2).

The adaption of the best random fern (M = 20, S = 14) is shown in Figure 6.14.
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However, the performance of the online fern is worse compared to the semi-online forest.

The fern suffers from the the fact, that only little training data is used for the update.

The best performing ferns in the online setting are summarized in Table 6.12.

(a) Unary: eTRIMS (b) Unary: MSRC

Figure 6.13: Online performance of a random fern on the eTRIMS and the MSRC
database. The performance is far worse compared to the performance of the semi-online
random forest (Figure 6.7). This is due to the generative behaviour of the ferns. They
need a lot of training samples to achieve a good performance.

Figure 6.14: Adaption of a random fern demonstrated using the best performing online
fern (F = 25, S = 14) on the eTRIMS database. Each image is updated exactly 10 times.
Here it can be seen that the fern learns slower than a random forest.
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Test Run Size #Ferns Global Average

6.13a 14 25 0.3982 0.3823

6.13b 10 30 0.3563 -

Table 6.12: Results of the unsupervised pre-trained semi-online random forest on the
eTRIMS and MSRC database. The performance is measured by averaging the performance
after the online update of each image.

6.3 Summary

In this chapter, the performance of the algorithms used in this thesis are evaluated. The

basis is given by a standard offline forest, which was trained in a supervised manner.

On this base line the performance of an entangled decision forest, unsupervised trained

forests with and without additional confidence maps is evaluated and compared. To reveal

the differences in performance, the same tests are also performed with the random ferns.

The best performing classifiers are summarized in Table 6.13 (eTRIMS) and Table 6.14

(MSRC). In the offline tests, the forest is better in most of the experiments. The fern is

better, when the classifier is trained unsupervised.

Setting Classifier Test Run
Depth/ #Trees/

Global Average
Size #Ferns

Supervised Forest 6.2b 20 10 0.8170 0.6646

Supervised, ACM Forest 6.5b 18 10 0.8123 0.6448

Unsupervised Fern 6.10b 18 15 0.7705 0.5830

Unsupervised, ACM Forest 6.6b 20 10 0.8080 0.6150

Table 6.13: Parameters and evaluation results of the best performing classifiers on the
eTRIMS database. ACM = Additional Confidence Maps.

Setting Classifier Test Run
Depth/ #Trees/

Global Average
Size #Ferns

Supervised Forest 6.2d 17 8 0.5531 0.5134

Unsupervised Fern 6.10d 18 25 0.4795 0.2717

Table 6.14: Parameters and evaluation results of the best performing classifiers on the
MSRC database.

Except from this offline evaluations, the semi-online random forest and the random

fern are tested under true online conditions. To generate reliable samples like a human

operator would do, the least confident samples are chosen using the active user guidance

(AUG). The evaluation has shown that a semi-online random forest with ten trees of depth
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20 yields best results in the online setting. The performance of the semi-online random

forest is comparable with the fully supervised setting. This is different to the behaviour of

the fern. When the fern is used online, the performance is worse than in the offline setting.

Due to the generative behaviour of the fern, many more samples are necessary to generate

reliable statistics for classification. In Table 6.15 the results of the best performing online

classifier are summarized.

Database Classifier Test Run Depth #Trees Global Average

eTRIMS Forest 6.7a 20 10 0.7908 0.7801

MSRC Forest 6.7b 20 10 0.5915 -

Table 6.15: Parameters and evaluation result of the best performing classifiers in an online
setting on the eTRIMS and MSRC database.

To summarize, with the algorithms presented in Section 4.2.2, a random forest achieves

very good results in an online setting. Actually a random forest performs better than the

fern which is inherently online.
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Conclusion & Further work

7.1 Conclusion

In this master thesis, an existing viewing application was extended with the functionality

to perform a semantic segmentation. The main target images are aerial images.

In Section 1.1 image segmentation is defined and some examples of image segmen-

tations are visualized. However, no information about what is visible on the image is

available. Therefore, the concept of semantic segmentation is introduced in Section 1.3.

In semantic segmentation, the task is to group pixels, which are similar in some respect,

together and assign a logical class label to every pixel. This means in a semantic seg-

mentation, all foreground and all background objects should be identified pixel accurately.

Due to the high complexity of semantic segmentation, machine learning approaches are

used to tackle the problem. Usually, a semantic segmentation is derived using supervised

machine learning approaches, i.e., a classifier is trained with a huge amount of training

data and uses the knowledge to semantically segment previously unseen images. However,

as shown in Figure 1.4 a very good semantic segmentation can be achieved using few

selected samples for training the classifier. Therefore, an interactive approach has been

chosen (see Section 1.4). In this setting, the categories and the appropriate samples are

selected by a human operator. New information is incorporated when it is available.

In Section 2 an overview of relevant related work for this thesis is given. A classifier is

defined and it is shown, how a classifier can be used for semantic segmentation. The main

part of this chapter describes random forests (Section 2.5) and random ferns (Section 2.6).

Random forests are powerful discriminative classifiers, which are very fast to evaluate

which makes them perfectly usable in an interactive approach. A random forest is the

103
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main classifier used in this thesis and as can be seen, it is also the most powerful classifier

in an offline as well as in an online setting (see Section 6). To compare the performance

of random forests, random ferns are used. They are similar to forests, except that not

each node in a tree has an individual split function, but each depth. A random fern is a

semi-naive Bayes classifier and therefore more generative then a random forest.

The information sources used by the classifier in semantic segmentation are called

feature channels. Feature channels abstract the pure color information. In this thesis,

LAB, image gradients, HOG and LBP are used as feature channels. If a project in 3D is

semantically segmented, surface normals are incorporated additionally as feature channels,

since they give a powerful information source. To actually use the feature channels, pixel

pair features and generalized Haar features are used. The usage of generalized Haar

features allows to select the best Haar feature automatically and therefore no predefined

Haar features must be specified.

Section 4 starts with a comparison of offline learning and online learning. The dif-

ferences are demonstrated by a real world example. Section 4.2 shows, how a random

forest can be used in an online approach. Therefore two different concepts, supervised

pre-training (Section 4.2.1) and unsupervised pre-training (Section 4.2.2) are revealed.

The core of an online approach is always how training data arriving at any time can be

incorporated as new information. In Section 4.2.3, the algorithms of how random forests

and random ferns can be actually implemented are listed. In an interactive approach, the

performance of evaluating unseen data is always crucial. Therefore, in Section 4.5 some

performance considerations are described.

The application, into which the semantic segmentation functionality is incorporated

is described in Section 5. By using an interactive approach, the labels are provided by

the human operator. Actually, the user specifies the categories into that the input images

should be segmented and provides samples of these categories. The categories can be

selected using the so called “Annotation Dialog”, (see Figure 5.8), which was specifically

designed for that purpose. The annotations itself can be done comfortably by simply

drawing some scribbles (see Figure 1.5b) with the appropriate label onto the source image.

Note that a rough annotation of the desired categories is enough. The hard work of doing

the exact semantic segmentation is done by the classifier after some labels have been

provided by the user. A quality criterion of online algorithms is always how much user

interaction is necessary to achieve good results. To minimize the user interaction necessary,

a concept called active user guidance has been developed (see Section 5.3). This allows
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the user to select the samples, where the classifier is not sure about the correct labelling.

Because the MAP classifier output is usually noisy, regularization methods used in this

thesis are described in Section 5.4.

In Section 6, the algorithmic part of the thesis is evaluated. The algorithms are evalu-

ated using the eTRIMS database and the MSRC database. The basic evaluation is defined

by a supervised trained random forest. Different configurations are evaluated (maximum

tree depth, number of trees, unsupervised trained, supervised trained, additional confi-

dence maps, entangled). The same evaluations are done with random ferns too. The

evaluations have shown that a random forest with ten trees yields to the best results in

the offline setting and in the online setting. Although ferns are more generative than

forests, ferns are worse compared to forests in the online setting. However, this is due to

the small number of samples used for updating the classifiers. A fern needs a lot more

samples to achieve a good performance.

To summarize, the application can be used to perform a semantic segmentation in 2D

as well as in a textured 3D environment. Unsupervised semi-online random forests yield to

very good results. In 3D pixel synchronous surface normals are used as additional feature

channels. It should be noted that entangled decision forests are not usable in an interactive

approach, because then for each input image and each depth in the tree, confidence maps

must be created and stored, which makes the application slow and memory hungry.

7.2 Further Work

Although the performance of the application is very good, we want to implement the eval-

uation of the classifiers on the GPU. This would lead to an additional speed-up, which

is always welcome. Therefore, general purpose graphics processing libraries like Nvidia’s

Compute Unified Device Architecture (CUDA)[49] or Microsoft’s C++ Accelerated Mas-

sive Parallelism (AMP) [45] could be used.

In the current configuration, the forest is pre-trained and than the samples are used to

update the statistics in the leaf nodes. Another possibility would be to make the random

forest online and not only semi-online. This would require to adapt the tree-structure in

some way.

When semantic segmentation is performed in 3D, further feature channels could be in-

corporated. For example digital surface model (DSM) minus digital terrain model (DTM)

should give another powerful information source. Additionally, due to the overlap of the

images, the votes of all images seeing one pixel should be aggregated to derive the final
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label.
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[23] Björn Fröhlich, Erik Rodner, and Joachim Denzler. Semantic Segmentation with Mil-

lions of Features: Integrating Multiple Cues in a Combined Random Forest Approach.

In Asian Conference of Computer Vision, pages 218–231. Springer, 2013.

[24] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive Logistic Regres-

sion: a Statistical View of Boosting. Annals of Statistics, 28(2):337–407, 2000.

[25] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely Randomized Trees.

Machine Learning, 63(1):3–42, 2006.

http://people.cs.missouri.edu/~duanye/cs8690/lecture-notes/HoG.pdf
http://people.cs.missouri.edu/~duanye/cs8690/lecture-notes/HoG.pdf


BIBLIOGRAPHY 109

[26] Martin Godec, Peter M. Roth, and Horst Bischof. Hough-based Tracking of Non-

Rigid Objects. In International Conference on Computer Vision, pages 81–88. IEEE,

2011.

[27] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning, volume 2. Springer, 2009.

[28] Xuming He, Richard S. Zemel, and Miguel Á. Carreira-Perpiñán. Multiscale Condi-
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