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Abstract

Efficient multi-class machine learning methods are a key component in many
computer vision applications. In this area the Random Forest (RFo) clas-
sifier is considered state-of-the-art as it provides an efficient way to learn
an inherently multi-class classifier, that naturally handles high dimensional,
multi-modal data. Recent research focused on optimizing this classifier for dif-
ferent applications, by learning appropriate node split criteria. In this work we
present a different scheme for acquiring these node splits. By selecting feature
subsets and using an ensemble of weak classifiers, we propose different linear
subspace and ordinal embeddings to derive flat classifiers for leaf assignment,
similar to the popular Random Ferns (RFe) classifier. Therefore we use a
generic framework into which we integrate all of our proposed embeddings.
We evaluate our classifiers on several machine learning benchmark datasets, as
well as on well-known computer vision datasets. We show, that our classifiers
can outperform conventional RFe and even RFo without significantly increas-
ing computational costs. Further, we show the applicability of our classifier
for the task of planar object tracking, as well as 3D interest point recognition.

Keywords: Random Ferns, Random Forest, classification, computer vision,
machine learning, embedding, subspace, ordinal, WTA hash, CRT, oblique,
PCA, CCA, LDA
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1 Introduction

Computer vision is a rapidly evolving field which is getting increasing attention in in-
dustrial and consumer applications. In the last years there has been a vast improvement
in the imaging technology by increasing resolution, frame rates, and image quality, thus
leading to higher data rates and the need for more sophisticated image processing al-
gorithms that can handle this amount of data. Computer vision applications are also
pushing into the wearable devices segment, which have considerably smaller computa-
tional resources than current personal computers. This makes it necessary to adapt and
develop specialized methods that can cope with this restricted resources.

One of the tasks which is commonly required in computer vision applications, and also
has a huge researching community, is classification [8, 17, 72, 81, 84]. The applications
are wide spread and some examples are shown in Figure 1. Classifiers can be used, e.g.
in object detection [111], where an image is given and one should name and localize
the object(s) which are present (recognition), or to solve the correspondence problem by
interpreting interest point recognition as classification [65], or in digit recognition [73].
In classification, we recognize the type or category y of some input data x and assign it
to a specific discrete, categorical class label among H classes such that g : x → y and
y ∈ {1, . . . H}.

(a) Object detection. [21] (b) Interest point recognition. (c) Digit recognition: 1, 2, 7.

Figure 1: Different example applications of classifiers in computer vision.

The classification problem is getting increasingly complex with larger, more realistic
datasets, e.g. Pascal VOC [21], which contain hundreds or thousands of object classes,
and highly complex image or feature representations, such as the Scale-Invariant Fea-
ture Transform (SIFT) [71] descriptor with 128 dimensions or the Histogram of Oriented
Gradients (HOG) [16] descriptor with 37801 dimensions. This increasing computational
complexity demands more efficient classifiers, which on the one hand can cope with the
more complex data, and on the other hand are computationally efficient such that they
can run on mobile devices with restricted computational power.

1Example dimensionality calculated for 7 blocks, 15 cells per block, and 36 bins per cell, thus 7·15·36 =
3780 dimensions. [16]
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For such high dimensional features the so called curse of dimensionality makes it com-
putationally difficult to select relevant features, representations or combinations for the
classification. The optimal choice of features and their combination is a NP-hard prob-
lem [63, 6]. This problem can be circumvented by using an ensemble of base classifiers,
where each classifier uses a different set of randomly selected features [41].

One of the most popular ensemble classifiers is the Random Forest (RFo) [9]. It trains
an ensemble of decision trees by selecting subsets of features for each weak classifier and
finding optimal node splits. The inference of the optimal node splits is a computationally
expensive task, thus the so called Extremely Randomized Trees [33] were introduced,
that allow faster training by selecting random node splits. Still, this lightweight imple-
mentation has the hierarchical structure of the decision trees that limits the classification
speed. In order to mitigate this problem, the Random Ferns (RFe) principle was intro-
duced, that allows even faster training and classification by using a flat structure instead
of the hierarchical decision trees.
Proposed by Özuysal et al. [84] the RFe classifier is a simple, inherently multi-class and
randomly trained classifier. Due to its relation to the well-known RFo classifier, the RFe
share most of its advantages. They include inherent support of multiple classes, robust-
ness against label noise, robust to overfitting to the training data, and natural handling
of high dimensional features. Further, the RFe has a reduced computational complexity
compared to the RFo classifier at a comparable classification performance, which enables
faster classification. It has been shown to run efficiently on mobile devices, see e.g. [116].
RFo, as well as RFe, are of special interest for (near) real-time applications with complex
inputs, as they can be easily parallelized and very fast implementations for Graphics
Processing Unit (GPU) exist [101].

Since the introduction of the RFe, there have been many applications taken advantage
of this classifier. The applications range from interest point recognition [84, 70, 116], over
general machine learning [58, 20], to object detection [111, 113, 114], camera stabiliza-
tion [49], action recognition [81], online learning [112, 89], etc.

Besides the big advantages of the RFo principle, these methods use feature representa-
tions, that only allow for axially parallel node splits. Thus the use of different embeddings
for the RFo was proposed [74], in order to allow non-axially aligned splits and to archive
better classification results. While these possibilities have been investigated for RFo ex-
tensively, it has not gained any interest in the RFe framework yet.
By employing a subspace projection of the original input data using a certain projection
method, the multi-class data can be more effectively separated, and thus higher classi-
fication performance is achievable. In the RFo framework embeddings or subspaces can
be determined by iteratively searching for optimal subspaces at each node. This does
not integrate well in the RFe framework, as we want to determine the subspaces instan-
taneous to keep the runtime low. Although it would be possible to select optimal leaf
assignments (instead of node splits due to the flat structure) this would considerably
reduce the performance.
Thus we investigate different embedding methods for the RFe framework. Besides linear
subspaces, we also evaluate ordinal embeddings, that do not only encode the feature val-
ues, but also the different feature relations with their spatial position within the feature
vector. This approach promises invariance against different linear perturbations [18], as
well as stronger base classifiers for a better classification.
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In this work we propose highly efficient classifiers based on the random ensemble
principle. Therefore we present and evaluate different embeddings for the RFe classifier.
Our proposed subspace embeddings can adapt to the data properties in order to induce a
higher commonality within the leaves and thus increase the classification accuracy. Fur-
ther our ordinal embeddings only use the order of the input data and thus provide a high
tolerance to a perturbation of the input data. We show, that all of our embeddings only
increase the runtime of the classification marginally. Our classifiers provide the same
advantageous properties of the RFe, as inherent multi-class capability, handling of high
dimensional data, tolerance to noise and fast runtime.
We demonstrate the performance of our approach using several machine learning and
computer vision datasets, which amongst others deal with specific computer vision prob-
lems, as e.g. image classification or face recognition. Further, we show the applicability
of our classifiers for solving correspondence problems for the applications of planar object
tracking and 3D interest point recognition.

Please note, that in machine learning the term ordinal classification is differently used
for methods, where the objective is to predict labels in an ordinal scale, see e.g. [50, 12, 38]
for an overview. Given an input vector of observations x the objective is to predict the
label y such that g : x → y, where a natural order in the output label space exists. For
example y ∈ {never, sometimes, often} would imply such an order with y1 ≺ y2 ≺ y3

where ≺ denotes the order. In contrast we do not infer the ordinal labels but we use the
order of the input data for classification.

Throughout the thesis we use matrix and vector notations extensively, thus we define
them first for clarity. We assume a D-dimensional vector to be a row-vector denoted by
a small boldface letter x = [x1, . . . xD] ∈ R1×D and the subscript indicates the dimension.
A matrix is denoted by a boldface capital letter M ∈ RR×C where R is the number of
rows and C the number of columns, respectively. We use superscripts to refer to the
individual elements M = [M1, . . .MC ].
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2 Related work

The foundations of this work are provided by the Random Ferns (RFe) framework pro-
posed by Özuysal et al. [84]. Primarily, the classifier was proposed for interest point
recognition in tracking applications for which the correspondence problem of one interest
point to the learned prototypes can by formulated as a classification problem [65]. They
have shown, that the RFe can outperform the RFo in terms of accuracy and speed for
planar tracking applications. For the RFe an ensemble of flat classifiers called ferns are
trained by selecting randomly chosen features, and the consensus of the ensemble is used
for predicting the class. A Semi-Naive Bayesian approach is used to estimate the pos-
terior probabilities and to combine the predictions from the weak classifiers within the
ensemble. For interest point recognition each fern is trained by a set of features, where
each feature is derived from a comparison of two pixel values. The RFe are trained using
a huge set of artificially created training samples. Since its publication many extensions
and further applications have been proposed.

Next to the RFe, Williams et al. [119] simultaneously proposed a related classifier,
the Randomized Lists for the purpose of interest point recognition in the context of
Simultaneous Localization And Mapping (SLAM). Similarly, they use a sequence of
binary tests to classify interest points, but they only store binarized leaf scores and
for each interest point they evaluate multiple class hypotheses instead of the one with
maximum posterior probability. Further, they use an intensity offset for the feature
computation to generate more stable features in monotone areas where only noise is
measured, and they explicitly handle noise during training by discarding features that
are close to a noise threshold.

Villamizar et al. [111] proposed to apply boosting and bootstrapping, common prin-
ciples borrowed from the RFo classifier, to extend the RFe in order to improve the per-
formance for object classification, especially if the number of training samples is low.
Therefore they train their boosted classifiers and evaluate them on a bootstrapped sam-
ple set. Then they retrain the classifiers with new warped samples of the classified and
misclassified samples. This allows them to train their classifier with only a few samples at
classification rates which are obtained by training with more samples, but their approach
requires an extended training phase.

The memory consumption can be a bottleneck for the usage of RFe in mobile ap-
plications. Therefore Lee et al. [62] proposed a method which significantly reduces the
memory footprint of the classifier. They do not store the full posterior probabilities in
the leaves, but only binarized probabilities, which are derived by thresholding the original
posterior distribution. Thus the memory usage is reduced by a factor of 32 compared to
the original memory requirement, but with a loss of classification accuracy.

Fragoso et al. [29] and Gao et al. [31] proposed methods for efficiently selecting fea-
tures. As the features for the RFe are derived from pixel comparison, they both work on
the selection of locations for the feature comparison. Fragoso et al. use non-cooperative
game theory to produce unique descriptors per patch. One player tries to maximize his
payoff by selecting pixel pairs that exhibit high variations within the patches, while the
other player wants to minimize the payoff by selecting different patch pairs. They show a
higher recognition rate and better rotational invariance, at the cost of solving the game
in a costly training phase. In contrast to this, Gao et al. first create a subset of feature
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locations with high discrimination capability from a large, random candidate set. Among
these discriminative features they estimate the dependencies. A group of features that
show similar dependencies is then used to create multiple ferns. This procedure is re-
peated for several groups of features, thus forming multiple “layers”. They achieve a more
accurate and robust classifier without speed loss, though they require a more complex
training.

Wagner et al. [116] used an adapted version of the RFe for natural feature tracking and
pose estimation on mobile phones. In order to reduce the memory usage they reduce the
number of features per fern and further discretize the posterior probabilities to bytes in the
range of [0, 255]. As this two methods considerably limit the classification performance,
they add rotational invariance to the ferns by using the dominant gradient orientation.
Further, they do not use the correspondence with the maximum class probability, but the
top ranked as putative matches for calculating the pose, and they apply a sophisticated
outlier removal.

Liu et al. [70] proposed an extension to the RFe for homography estimation, where
they use the interest points matched by the RFe and the calculated homography to alter-
natively refine each other. Therefore they use an assignment matrix from the detected to
the learned interest points which is iteratively optimized using energy minimization tech-
niques. They can improve the accuracy of the homography estimation but the iterative
optimization is a computationally costly operation.

Although the RFe is commonly used for interest point recognition, Kursa [58] proposed
the usage of RFe for general purpose machine learning. Therefore he generalized the
feature representation and introduced a feature importance measure, similar to RFo.
The classification results of his proposed ferns are comparable to RFo but at higher
classification and training speed especially for large datasets.

Bosch et al. [8] introduced RFe for image classification. They combine shape and
appearance representations with spatial pyramid matching in order to derive a descriptor
for different regions of interest of an image. For classifying these descriptors they evalu-
ated RFe and RFo classifiers, where they use random subspace projections with random
thresholds for the node tests for both. The information gain criterion is used to select
the best node test for each node from a set of random tests. They have shown, that for
this task the RFe and RFo perform similar to Support Vector Machine (SVM) but at
improved speed.

The RFe classifier is related to the RFo classifier of Breiman [9]. He trains an ensemble
of decision trees and combines the result of each tree to form the final prediction. Each
tree is trained on a bootstrapped subset of the training data and the rest of the samples
is used to estimate the generalization error of the tree. A tree is trained top-down by
choosing random feature dimensions for the node splits and the optimal split is derived by
minimizing an impurity measure, e.g. Gini gain. For prediction a sample is pushed down
each tree and the ensemble consensus is used as result. While Breiman uses bootstrapping
and bagging, Ho [41] uses random subspaces to train each tree, which is more similar to
the RFe principle.

For the related RFo classifier, different subspace methods have been intensively stud-
ied. In the context of RFo they are called oblique due to their non-axis aligned decision
boundaries [74]. For the induction of optimal hyperplanes that define the oblique splits,
there are many works that propose different learning algorithms to derive optimal sub-
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space projections for oblique RFo. For example Murthy et al. [78] use a randomized
hill-climbing algorithm that derives a hyperplane for each node split, that optimally sep-
arates the data. Their oblique trees are smaller and more accurate than the axially parallel
node splits for domains with numeric attributes. Similarly, Menze et al. [74] proposed
different subspaces to train RFo. They compare random subspace projections, Principal
Component Analysis (PCA), Linear Discriminant Analysis (LDA) and ridge regression
to obtain a linear subspace for the node splits and analyze the different subspaces for the
application on different data types. They identified that RFo with orthogonal (axially
parallel) node splits work best for data with discrete features, RFo with random projec-
tions for numeric data and their proposed ridge regression and LDA subspace worked
best for highly correlated, high dimensional data.

While subspace embeddings try to find efficient subspaces, that have certain properties
that make classification easier, ordinal embeddings try to add additional invariance into
the classification process. Thus several works were published that use rankings or ordinal
information for interest point descriptors. Wang et al. [118] proposed a descriptor which
is invariant to monotonic intensity changes. They first divide the image patches into
regions based on the intensity order. Further, they extract the rank of the intensity values
sampled from a pixel neighborhood to build a histogram of rankings to form an interest
point descriptor which outperforms many other descriptors. Similarly, Tang et al. [108]
proposed an ordinal preprocessing of the image patches. Therefore they group pixels with
similar ordinal range intensities to achieve invariance to pixel noise and monotonic light
changes.

In order to incorporate ordinal information, Yagnik et al. [123] proposed a hashing
method, the so called Winner Take All (WTA) hash, which derives a hash code from
a feature vector while correlating the Hamming distance to rank similarity measures.
Therefore the sample vector is randomly permuted multiple times and the first K di-
mensions are used to determine the index with the largest value. This results in a hash
code whose dimensionality can be parametrized. They used a binary version of the hash
code with K = 2 for similarity search in high dimensional space and showed that they
outperform conventional descriptors and machine learning methods. Further, the WTA
hash was successfully used for embedding HOG filter responses in object detection [17]
due to its invariance to numeric perturbations and its ability for efficient hash generation.

Schulter et al. [98] proposed a method related to the WTA hash, which uses ordinal
node splits for RFo. For their splitting function they randomly sample the input vector
and if the dimension of the maximum value matches a defined node-specific constant, the
sample is assigned to the left child node, otherwise to the right child node. This makes
the commonality of data in one branch higher, thus strengthening the splitting functions.
All samples within the child node fulfill multiple inequalities instead of a single. They
showed, that the Ordinal RFo can outperform conventional RFo for digit recognition and
object detection.

Another method for incorporating ordinal features is to use the order of the input
data directly. Therefore Demetz et al. [18] proposed the Complete Rank Transform
(CRT), which is a specialized approach of partial order. The CRT transforms a pixel
neighborhood into a vector, where each element encodes the relative order within the
neighborhood. They used the invariance to grey-scale rescaling of the descriptor for
robust optical flow calculation.
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To sum up, there have been many improvements and adoptions published, where
most of the related work focuses on optimization of the feature selection process, or on
different representations of the posterior probabilities, e.g. to save memory. There could
not be found any work that examines efficient embeddings and subspace methods for
RFe, which is in contrast to RFo, for which these methods have been evaluated. This
reason motivates for an evaluation of different embeddings in the context of RFe.
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3 Embeddings for Random Ferns

In this work we focus on embeddings for Random Ferns (RFe) classifier and we propose
different embedding methods. Therefore we first describe and generalize the underlying
RFe framework which is the foundation of our embeddings, and further outline the evalu-
ated embeddings. We formulate our proposed classifiers as embeddings for a generalized
RFe classifier, although they could be described as a new kind of ensemble classifier based
on a Semi-Naive Bayesian approach as well.

We propose different embeddings where we first present subspace embeddings de-
rived from well-known linear dimension reduction methods, as e.g. Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA), or Canonical Correlation Anal-
ysis (CCA). Further, we describe different ordinal embeddings which are based on the
relative order of different input dimensions. At last we discuss a combination of subspace
embedding and ordinal analysis, where we first project the data into a subspace in which
an ordinal analysis is performed.

3.1 Random Ferns framework

In this work we use the RFe framework for multi-class classification. Formally, in classi-
fication we want to predict the discrete categorical class label among H classes y ∈ Y =
{1, . . . H} of an input sample x ∈ RD where D is the number of features (dimensional-
ity) of the input sample, thus g : x → y. We perform supervised classification, where
a training set with N samples and their class labels (xi, yi), i = 1 . . . N is provided in
advance.

The RFe classifier is an ensemble classifier, that consists of multiple weak classifiers,
the so called ferns. A fern is a flat structure, where at each level a binary test is performed
on randomly chosen feature dimensions, in contrast to the related hierarchical binary
decision tree. The RFe classifier can be derived from the well-known RFo classifier of
Breiman [9] by using the same node split criterion at each tree level and thus transforming
the hierarchical structure of the tree into the flat structure of the fern, which is depicted
in Figure 2.

Figure 2: Correspondence of a decision tree to a fern. [83]

The classification using the RFe can be derived within a Naive Bayesian framework,
which was shown by Özuysal et al. [83]. Given a set of C features fc, which are derived
from the input sample, we want to find the class ŷ that maximizes the posterior probability
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over all possible classes Y such that

ŷ = arg max
yi

p(Y = yi|f1, f2, . . . , fC). (1)

Using Bayes’ Formula the conditional probability can be reformulated as

p(Y = yi|fi, f2, . . . , fC) =
p(f1, f2, . . . , fC |Y = yi)p(Y = yi)

p(f1, f2, . . . , fC)

∝ p(f1, f2, . . . , fC |Y = yi).

(2)

In this work we assume the class probability p(Y ) uniform, and the denominator is
independent of the classes which resembles a scaling factor that can be neglected. Thus
we can simplify

ŷ = arg max
yi

p(f1, f2, . . . , fC |Y = yi). (3)

Due to the possibly high number of features it is not feasible to store all 2C joint proba-
bilities, thus by assuming independence between features we can rewrite the joint prob-
abilities as

p(f1, f2, . . . , fC |Y = yi) =
C∏
j=1

p(fj|Y = yi), (4)

which resembles a Naive Bayesian model [4].
However, complete independence is a very extreme formulation that can be relaxed by
grouping features to S = C

M
groups, which are called ferns and model the joint prob-

ability between the features. M denotes the number of ferns Fm where the whole
ensemble is formed by F = {F1,F2, . . .FM}. Each fern evaluates S binary features
Fm = [fm1 , f

m
2 , . . . f

m
S ] leading to L = 2S leaf nodes Lml per fern and l ∈ {1, 2, . . . L}.

Thus using the joint probabilities of a fern Fm the conditional probabilities are

p(f1, f2, . . . , fC |Y = yi) = p(F|Y = yi) =
M∏
m=1

p(Fm|Y = yi). (5)

This is equivalent to a Semi-Naive Bayesian [126] approach, which models only some of
the joint probabilities.
The final classification rule is then stated as

ŷ = arg max
yi

M∏
m=1

p(Fm|Y = yi) (6)

or more convenient by logarithmizing as

ŷ = arg max
yi

M∑
m=1

log
(
p(Fm|Y = yi)

)
, (7)

thus mitigating numerical problems in the multiplication of the individual probabilities.
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An essential part of this formulation is the calculation of appropriate binary features
fi. In the original work [84] the feature evaluation method fms is stated as

fms =

{
1, if x(dms,1) < x(dms,2)

0, otherwise
(8)

where x(dms ) is the sample value of the dimension dms . By choosing two random dimensions
dm1 and dm2 the comparison is invariant to any linear transformation of the sample x.
A more general formulation for the feature evaluation [58, 20] can be stated as

fms =

{
1, if x(dms ) < τms
0, otherwise

(9)

where the sample value x(dms ) is compared to a random feature-specific threshold τms .
This formulation is more flexible as it does not require the input x to be drawn from
a single feature scale, as e.g. an image with each pixel in the range [0, 255]. τms can be
chosen in different way, as e.g. randomly, fixed, or the median value over all samples can
be used to generate a threshold that splits the training set.
S such feature evaluations are used to form a binary vector Fm = [fm1 , f

m
2 , . . . f

m
S ] which

is then used to assign each sample to the corresponding leaf Lml with l =
∑S

i=1 2i−1fmi .
This feature generation and evaluation process can be seen in Figure 3. Based on the

input vector x random dimensions are selected RD → RT and from them the features are
calculated. In the original RFe framework [84] a random subspace RT is not explicitly
defined but implicitly by the feature selection vector dm. The features, i.e. the binary
vector, are then used for leaf assignment. Each leaf stores a trained distribution p(Fm|Y )
over Y ∈ {1, . . . H} classes. Thus the required memory for storing the probabilities
depends on both, the number of classes H and the number of leaves L, which isO(MHL)2

for M ferns.
We generalize this feature generation step further and do not limit the leaf assignment

on the generation of binary features, but on an arbitrary assignment of the input data
to the leaves. Therefore we formulate the leaf assignment as general mapping φ : x→ L
that does not imply any input data properties. Thus not only binary features can be
integrated into the RFe framework, but any arbitrary feature representation as we further
show. The mapping φ has to be a bijective function (an injective non-surjective function
would also work, but is non optimal in terms of memory requirements). Thus we use the
RFe framework only for combining the base classifier results.

The training procedure for the RFe classifier is shown in Algorithm 1. Instead of
training the probabilities, which is done by e.g. [20, 84], we only train the number of
samples per leaf. Therefore we use a frequency matrix [57], which counts the occur-
rences of the samples for each leaf, in order to estimate the probabilities p(Fm|Y ). For
the frequency matrix we use a sparse matrix representation3 to circumvent the memory
limitation. Thus the new memory requirement is O(M min(N,LH)). This is especially

2O(·) denotes the big O notation, which is used to express and compare the computational complexity
of an algorithm. [56]

3Sparse matrices are supported by many software packages and can be created e.g. in Matlab using
the sparse function or in OpenCV using the SparseMat class.
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Figure 3: Feature evaluation of a single fern. By evaluating the input features of the fern,
each sample can be assigned to a leaf, which stores the class probabilities.

advantageous if the number of training samples is low and the number of leaves L is high
or there are many classes H.
The training procedure is straightforward. For each of the M ferns in the ensemble we
first choose the random feature dimensions dm. The feature dimensions are randomly
drawn from all possible features without repetition in order to hold the assumption for
independent feature combinations. Then the frequency matrix Pm is initialized with 0 for
each class and leaf. By using a sparse matrix this step might be obsolete. Then we iterate
over all N training samples given as training data matrix X =

[
x1,x2, . . .xN

]
∈ RN×D

and calculate the leaf assignment from each sample by evaluating the random features.
Therefore φ denotes a general mapping of an input sample x to a fern leaf L, whereas
different mappings, i.e. embeddings, do not alter the training and classification process.
The frequency matrix is incremented for each occurrence of a leaf for the given class yn.
The classification is then carried out based on this frequency matrix.

Algorithm 1 Training the RFe classifier.

Require: Training samples (X,Y) (data and class label)
Require: Number of ferns M
Require: Number of features S
Require: Leaf assignment mapping φ

for all m ∈ 1 . . .M do
dm ← randomly sampled subset of D (dm ⊂ {1 . . . D}S)
Pm = {0}L×H
for all n ∈ 1 . . . N do

φ : xn(dm)→ L
Pm(L, yn)++

end for
end for

Given the trained frequency matrix Pm for fern m we classify a given test sample
x as illustrated in Algorithm 2. Therefore the conditional probabilities of each fern are
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combined. In order to derive the probabilities from the frequency matrix, the frequency
matrix is normalized for the general multinomial case using

p(Fm|Y ) =
Pm(L, y) + u∑
L (Pm(L, y) + u)

(10)

such that
∑
LPm(L, y) = 1 where u is a Dirichlet prior with u = 1 [83]. The Dirichlet

prior provides a smoothing of the probabilities among the classes and further handles the
case if there are no counts in the frequency matrix for a leaf. In this case the probability
would be zero and thus multiplying to zero and loosing the information from the other
ferns, which is prevented by adding the Dirichlet prior. The input sample is assigned
to a leaf providing p(Fm|Y ), which is used to combine the conditional probabilities in a
logarithmic manner. The maximum probability over all classes from all combined ferns
is then used as predicted class ŷ.

Algorithm 2 Classification of a sample using the RFe classifier.

Require: Test sample x
Require: Number of ferns M
Require: Chosen features d
Require: Trained frequency matrix P
Require: Leaf assignment mapping φ
p(F|Y ) = 0
for all m ∈ 1 . . .M do

φ : x(dm)→ L
p(F|Y ) += log (p(Fm|Y ))

end for
ŷ = arg maxyi p(F|Y = yi)

As we have introduced the framework, we propose different embeddings that imple-
ment the leaf assignment φ in the next sections. The embedding should be chosen in
such a way that the different classes can be optimally separated. A higher common-
ality within the leaves induces more information thus providing a higher classification
confidence. This is similar to RFo where e.g. information gain [41], i.e. information maxi-
mization or entropy minimization, is used for feature selection in order to derive possibly
pure class leaves for better classification results. However, we do not apply this in an
iterative node optimization manner as in the context of RFo, but through our different
embeddings much faster.

3.2 Subspace embeddings

At first we introduce our subspace embeddings, which we name Oblique Ferns similar to
the RFo. For this method we project the samples into a linear subspace of the original
input space. The transformation of a feature representation to a subspace is a common
method in machine learning. In the context of RFo subspace methods are successfully
used to obtain smaller classification errors [78, 74], thus the application in our RFe frame-
work is obvious.
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A subspace embedding as dimensionality reduction is convenient as the ferns memory is
exponential in the number of features S, i.e. O(2S). By using such a projection we can
consider a higher number of features (more than the practical limitation of S = 12 . . . 15)
per fern and thus derive more discriminative base classifiers within the ensemble. Fur-
ther, our subspace embeddings can adapt to the input data in order to derive a higher
commonality within leaves.

Next we describe our Oblique Ferns framework into which all different linear subspaces
can be integrated. In the following sections we propose the usage of different methods
to obtain the linear projections and describe their individual properties. We describe the
linear projection methods, i.e. random orthonormal projections, PCA, LDA, and CCA,
in detail.

3.2.1 Oblique Ferns framework

Our Oblique Ferns framework can be derived in a similar way as described in 3.1. There-
fore we first provide a statistical formulation and then the integration into the RFe frame-
work.

Again, we want to maximize the posterior probability

p(Y = yi|f1, f2, . . . , fC) ∝ p(f1, f2, . . . , fC |Y = yi) (11)

as shown before, in order to derive the most appropriate class label for a given set of
input features fc. In this case we derive the features from a subspace projection of the
original data into a reduced space RT → RS. The T feature dimensions in the input
data space are randomly chosen for each fern and combined over multiple ferns in an
ensemble manner [41]. One can think of this as a windowed subspace projection of the
original high dimensional input space to a low dimensional space in which the features
are calculated. This provides a local emphasis on the input features, that can extract
information which otherwise might be neglected in a global approach due to the curse of
dimensionality. This local selectivity was, e.g. shown for a random subspace LDA [117].

A fundamental statistical assumption of our subspace methods (CCA, LDA, PCA) is,
that the input data is normally distributed [51, 86]. For CCA and LDA the input data
features should be independent [86]. Both requirements are not guaranteed to be fulfilled
in the general case. This makes the projections suboptimal and thus only approxima-
tive [51, 86], but still accurate enough as we use them only for dimensionality reduction.
All these subspace methods provide a new orthogonal subspace, which is generally re-
garded independent [92]. But for the general case of an arbitrary input distribution, the
independence cannot be guaranteed. Thus we use a Semi-Naive Bayesian approach in
order to model the joint probabilities of the possibly dependent variables. Further, the
Semi-Naive Bayesian approach combines the features in the subspace. Depending on the
relation of the number of features S to the subspace dimensionality T , the most impor-
tant dimensions of the projections can be selected, that e.g. provide most variance in case
of PCA. However, the subspace dimensions are mutually dependent from the common
input dimensions, which is modeled through combining the features as well.

By assuming independence between features we can rewrite the joint probabilities as

p(f1, f2, . . . , fC |Y = yi) =
C∏
j=1

p(fj|Y = yi), (12)
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which resembles a Naive Bayesian model. But as discussed this assumption does not hold
for the general case. Therefore we formulate a trade-off between the independence of the
individual input variables and the jointly modeled probabilities by grouping features to
S = C

M
groups, similar as described in Section 3.1. We apply a dimensionality reduction

in each fern thus the choice of S is limited by the subspace dimensionality T and for
the CCA and LDA by the number of classes, as we discuss later. The chosen input data
dimensionality T depends on the underlying data properties, but in all cases S ≤ T .
Each fern evaluates S binary features Fm = [fm1 , f

m
2 , . . . f

m
S ] which are calculated in the

subspace. This leads to L = 2S leaf nodes Lm per fern. Thus we formulate the joint
probabilities of a fern Fm similar to Equation 5 as

p(f1, f2, . . . , fC |Y = yi) = p(F|Y = yi) =
M∏
m=1

p(Fm|Y = yi). (13)

The final classification rule is then stated equivalently to Equation 7 as

ŷ = arg max
yi

M∑
m=1

log
(
p(Fm|Y = yi)

)
. (14)

Although we consider a high number of features per fern for constructing the ferns
(possibly up to T = dD

2
e in the evaluation), the Semi-Naive Bayesian principle can still

be used by assuming independence between the jointly modeled probabilities. For each
fern we select randomly chosen feature dimensions without repetition. Further, we use
M independently trained ferns, where the number of different combinations of input
dimensions is D!

dD/2e! . Thus it is very unlikely that multiple ferns contain the same feature
combination. Each new feature combination creates another projection of the data using
the subspace methods thus creating independent features per fern. However, we show in
the evaluation that these assumptions do not hold in all cases.

Our proposed subspace embedding is shown in Figure 4 for a single fern. We apply a
projection ψ on the data by using T randomly selected features per fern to obtain a S-
dimensional subspace, which is ψ : RT → RS with T ≥ S. We define an explicit subspace,
similar to [41], which is used to derive the linear projection. The dimensionality S can
either be chosen freely, as e.g. when using PCA, or it is limited by the number of classes as
we discuss later for the LDA and CCA subspaces. The mapping ψ, our linear projection,
can be implemented as matrix multiplication. We only consider linear projections as
subspace projection methods. The samples are projected into the fern-specific subspace
x′m = x(dm)Wm ∈ RS where Wm ∈ RT×S is a projection matrix for fern m. In this
subspace the assignment vector from data to the leaves is obtained by the binary vector
Fm = [fm1 , . . . f

m
S ] = (x′m > cm), which can be derived for each dimension independently.

The individual features are calculated by thresholding the individual dimensions by

fms =

{
1, if x′ms > cms
0, otherwise.

(15)

The threshold cm can be derived from the median value over all samples for each
dimension, in order to bisect the data. A more sophisticated, but computationally more
complex approach for calculating the optimal threshold is provided by Strecha et al. [105].
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Figure 4: Illustration of a single Oblique Fern. The input data of randomly selected input
dimensions per fern is used to obtain the subspace projection Wm and the threshold cm.
Samples can be assigned to a leaf by projecting them into the subspace and thresholding.

Therefore they project two input vectors x1 and x2 into the subspace y1 = x1W and y2 =
x2W and calculate the individual threshold for each dimension using a linear search over
possible thresholds cs ∈ {min(y1

s , y
2
s), . . .max(y1

s , y
2
s)}. If the threshold cs < min(y1

s , y
2
s) or

cs > max(y1
s , y

2
s) the s-th assignment bits coincide and thus assign the two samples to the

same leaf. This optimal assignment can be formulated as a maximization problem [105]

max
cs
{TP(cs) + TN(cs)} = max

cs
{ p(min(y1

s , y
2
s) ≥ cs ∨max(y1

s , y
2
s) < cs|P)

+ 1− p(min(y1
s , y

2
s) ≥ cs ∨max(y1

s , y
2
s) < cs|N )}

(16)

where TN denotes the true negative and TP the true positive rate. The probabilities p(·)
are estimated on randomly chosen pairs of input samples.
As this optimal threshold is only defined between two classes, i.e. the positive P and
negative N pairs, we adapt this for our multi-class framework. Therefore we generalize
this approach to multiple classes by applying a one-vs-all scheme, familiar from e.g. SVM
classifiers [91]. We maximize the problem formulation of Equation 16 by setting matches
between the class samples as positive pairs and all matches between class and non-class
samples as negative pairs. This is done for each class and we average the true positive
and true negative rates over all classes, i.e. the threshold that separates one or more
classes best from the rest. Further the true positive and true negative rates are smoothed
using a mean filter in order to mitigate fluctuations due to the random pair selection. An
example of this threshold method is shown in Figure 5. Figure 5a shows the function of
the true negative and true positive rate over the different thresholds and Figure 5b shows
the selected thresholds for the median and the optimal method with the underlying data.
If there is a good separation possible, as for dimension 1, the optimal threshold clearly
selects the better threshold, but if the data is not separable, as for dimension 2, both
thresholds are similar and the median provides a good and fast approximation of the
optimal threshold.

The computational complexity of the median is O(SN) [55] for S subspace dimen-
sions and N training samples. The optimal threshold has a computational complexity of
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(a) True positive and true negative rate for dif-
ferent thresholds.

(b) PCA subspace with thresholds.

Figure 5: Different thresholds shown for sample data, illustrated by using the first 3
dimensions of the Iris dataset [27].

O(tHSN) with t denoting the number of thresholds used in the linear search and H the
number of classes.

During training all training samples are used to determine the subspace projection
(Wm, cm) and further the training samples are used to estimate the conditional prob-
abilities in each leaf. For constructing each fern, T different randomly selected feature
dimensions are used and thus different subspaces are derived for each fern. Although
some of the subspace methods are unsupervised, the training of our classifier is still su-
pervised, but only the calculation of the subspace projection is unsupervised.
For testing, the data sample is subsampled using the chosen feature dimensions per fern
and further projected into the subspace. The binary assignment vector is obtained by
thresholding the data using the trained threshold and then assigned to a leaf for each
fern. The class probabilities of all ferns are then combined to obtain the classification
result equivalent to Algorithm 2.

The linear projections used can be derived in several ways, where each method has
its specific properties. They can be chosen

(a) in a random matter, similar to oblique splits at random orientations [9, 8],

(b) unsupervised, e.g. using PCA which captures most of the variance of the original
data, or

(c) supervised by considering the class labels and thus deriving more discriminative leaf
assignments as e.g. LDA maximizes inter-class distances, or CCA obtains an orthog-
onal subspace in which the data maximally correlates to the class labels.

Subspace projections are sensitive to feature scaling. Therefore we preprocess the
input data and normalize each feature dimension to zero mean and unit variance, which
is a common normalization method [2, 52]. The mean and variance are estimated from
the training set. Although more sophisticated feature scaling methods exist, which derive
better results by weighting the feature scales, as e.g. in [7], we do not apply such domain
specific methods.
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In the next sections we describe different methods for obtaining the required linear
projections.

3.2.2 Random Oblique Ferns

The first and most straightforward method for obtaining the projection matrix Wm is
to choose it in a random matter. In this case we use a random, orthonormal matrix
Wm ∈ RT×S for each fern. An orthonormal matrix can be derived from a random matrix
A ∈ RT×S, whose values are drawn from an uniform distribution A ∼ U(0, 1)T×S by
using the QR decomposition [32] such that

A = QR. (17)

R ∈ RT×S is an upper triangular matrix and Q ∈ RT×T is an orthonormal matrix, whose
columns are orthogonal unit vectors such that QᵀQ = I, where I is the identity matrix.
In case of dimension reduction a non-square matrix Wm is needed, thus we take the S
first columns of the square matrix Q.

The random subspace is unsupervised and data independent, hence it does not incor-
porate any of the input data’s properties. This might be derogatory for the classification
result, but we state it here as baseline and for completeness. However, each projection is
randomized and can provide a different “view” on the data, even if the features are the
same. Especially if the dataset has a low dimensionality, it decreases the correlation be-
tween the ferns. If all ferns were trained with the same features, the ferns ensemble would
overfit the training data as all ferns would be highly correlated. The random projections
have a regularization effect on the decision boundaries, as the different projections create
new classification hyperplanes for each fern that smooth the overall decision boundary of
the ensemble.

3.2.3 PCA Ferns

An unsupervised projection method is PCA [45], which calculates an orthogonal sub-
space whose basis-vectors correspond to the directions of highest variance of the data.
By increasing the variance in the orthogonal subspace the data gets “stretched”, thus
increasing the margin between the decision boundaries. PCA is a well-known method for
dimensionality reduction. Usually it is used to reduce the dimensionality of a dataset,
where only the dimensions containing most variance are kept. Instead of applying PCA
to the whole dataset, we use PCA to generate a subspace for each fern individually. This
provides a more feature-specific emphasis on the variances of the data, which increases
the specificity on variances and thus the strength of the base classifiers instead of a global
representation.
The PCA is calculated from the covariance matrix C ∈ RT×T using

C =
1

N − 1
X>X (18)

where X ∈ RN×T is the subsampled and normalized data matrix and N is the number of
data samples.

17



Further, the eigenvalues and eigenvectors are computed from C by using a simple eigen-
value decomposition, such that

CV = VD (19)

where D = diag(λ1, . . . λT ) is a diagonal matrix with the eigenvalues of C on the main
diagonal and the columns of V are the eigenvectors of C. The eigenvectors, which de-
fine a new orthogonal coordinate system, indicate the directions of the highest variances,
i.e. principal components, within the dataset. The corresponding eigenvalues account
for their statistical significance. By discarding the minor principal components, i.e. the
eigenvectors with smaller eigenvalues, the projection matrix Wm ∈ RT×S can be formed
from the S retained eigenvectors thus achieving dimension reduction.
Alternatively the principal components can be acquired using the Singular Value Decom-
position, see [51] for details.

There are no restrictions on the dimensionality of the subspace, unless there are more
data samples than features, thus N > T and the rank of C is full [43].

3.2.4 LDA Ferns

In contrast to the unsupervised PCA, LDA provides a supervised subspace method thus it
incorporates the class labels. LDA can be used to find a linear, discriminant subspace for
multi-class problems by minimizing the intra-class distances and maximizing the inter-
class distances. The classification is then performed in the more discriminative subspace,
which improves the separation between the classes and thus increases the commonality
of the data within the leaves.

For each fern we calculate the LDA subspace based on the fern-specific feature dimen-
sions. LDA was initially introduced for two-class problems [27]. Therefore the scatter
matrix Si ∈ RT×T for class yi, which is an estimate of the covariance matrix, is given by

Si =
∑
x∈yi

(x− µi)>(x− µi) (20)

where µi = 1
Ni

∑Ni

i=1 xi is the mean over the class samples and x ∈ RT is a subsampled

input sample. Thus the full intra-class scatter matrix Σ̂w is calculated by

Σ̂w = S1 + S2 =
2∑
i=1

∑
x∈yi

(x− µi)>(x− µi). (21)

Further, the inter-class scatter matrix Σ̂b ∈ RT×T is given by

Σ̂b = (µ1 − µ2)>(µ1 − µ2) (22)

where µ1 and µ2 are the means over the class samples for class y1 and y2, respectively.
From these two matrices the projection W is determined by maximizing the so called
Rayleigh coefficient

J (W) =
|W>Σ̂bW|
|W>Σ̂wW|

. (23)
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The projection matrix W can be derived from the eigenvectors of Σ̂−1
w Σ̂b if Σ̂w is non-

singular, thus requiring N ≥ T +H [66].
This approach of calculating the LDA would considerably limit our classifier to only

two-class problems, therefore [90] introduced a multi-class extension. Similarly to the
two-class problem, the intra-class scatter matrix Σ̂w is calculated by accumulating the
scatter matrices over all H classes Y ∈ {1, . . . H} by

Σ̂w =
H∑
i=1

Si =
H∑
i=1

∑
x∈yi

(x− µi)>(x− µi). (24)

Further, the inter-class scatter matrix Σ̂b is given by

Σ̂b =
H∑
i=1

Ni(µ
i − µ)>(µi − µ) (25)

where Ni is the number of samples of class yi such that N =
∑H

i=1Ni and

µ =
1

N

N∑
i=1

xi (26)

is the mean over all samples. Note, that for the multi-class extension different weighting
schemes exist for incorporating the number of samples per class, see e.g. [63, 66]. Hence,
we follow the notation of [66].
The projection vectors w are then obtained by solving the generalized eigenvalue problem

Σ̂bw = λΣ̂ww (27)

where λ is the eigenvalue to the corresponding eigenvector w. Again, we choose the S
eigenvectors, with the corresponding highest eigenvalues for assembling the projection
matrix Wm ∈ RT×S.

The LDA subspace dimensionality is limited by Σ̂b, whose rank is rk(Σ̂b) = H − 1 at
most and rk(Σ̂w) = N −H [66]. By assuming that N � H, only the rank for Σ̂b limits
the subspace dimensionality.

3.2.5 CCA Ferns

A different supervised approach is given by the CCA [46]. Instead of maximizing the
inter-class distance like LDA, or maximizing the variance of a dimension like PCA, CCA
is used to find a lower-dimensional subspace, in which two sets of variables are maximally
correlated. One set of variables is given by the training data and the other set is created
from the class labels [107].

Again, the first set is our subsampled training data X ∈ RN×T and the second set is
the class label matrix Y ∈ {0, 1}N×H , which encodes the class label that corresponds to
the data sample. Therefore the corresponding matrix value is set to Y(i, yi) = 1 using a
1-of-K binary coding [4]. Although the training data matrix incorporates different feature
dimensions per fern and thus is different for each fern, the class label matrix is the same
for all ferns.
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We use the CCA to obtain an orthogonal subspace with maximum correlation of data
to class labels. Two projection vectors wx ∈ RT and wy ∈ RH are calculated from the
correlation coefficient

ρ =
wxX

>Yw>y√
wxX>Xw>x wyY>Yw>y

(28)

by maximizing ρ. This equation can be reformulated as maximization problem since ρ is
invariant to the scaling of wx and wy [107]

max
wx,wy

wxX
>Yw>y s.t. wxX

>Xw>x = 1, wyY
>Yw>y = 1. (29)

It is equivalent to the generalized eigenvalue problem[
X>Y(Y>Y)−1Y>X

]
w>x = λ

[
X>X

]
w>x (30)

where we determine the eigenvectors that resemble the projection vector wx. For our
orthogonal projection matrix we only consider wx that provides the projection from data
to the subspace. We choose the S eigenvectors that correspond to the major eigenvalues
to assemble Wm ∈ RT×S.

The CCA is sensitive to the ranks of X and Y. The rank of Y is full, thus rk(Y) = H,
if samples are present for each class. Otherwise there would be a zero column due to our
1-of-K coding resulting in a non-full matrix. The rank of X is sensitive to the feature
selection and rk(X) = T at most. If one or multiple feature dimensions are constant,
the matrix is not of full rank thus rk(X) < T . In order to mitigate this problem we
apply a regularization to the data matrix [107]. The maximum subspace dimensionality
is therefore min(H,T ). However, only the limitation of H is relevant, as T can be chosen
depending on data properties.

3.2.6 Connection to binary hashing

There exists a connection of our Oblique Ferns to different binary hashing methods. For
example our PCA Ferns are related to Iterative Quantization (ITQ) [35] or our LDA
Ferns to the LDAHash [105]. Similarly, they use an intermediate subspace embedding in
which they binarize the data in order to generate a binary hash. The binary codes are
then used to find nearest neighbors by calculating the Hamming distance from a query
code to the database codes. However, our Oblique Ferns naturally include a classification
that renders a subsequent nearest neighbor search unnecessary. Özuysal [82] has already
shown, that the RFe acts as an approximate nearest neighbor classifier, that resembles a
randomized locality-sensitive hash function in the feature space. Thus each fern calculates
a hash from the input data, which is then used for classification. Further, we calculate
the embedding on multiple random subspaces of the input feature space, that provide
more emphasis on local data structures compared to a global subspace representation.

20



3.2.7 Comparison of subspace embeddings

Each of our proposed subspace methods exhibits its own characteristics. Therefore we
provide a comparison in Table 1, which shows an overview over the subspace methods
used. All but one of our proposed subspace methods depend on the data, thus incorpo-
rate the data properties for the subspace generation. The random oblique method does
not incorporate any data properties. The two unsupervised subspace methods, random
oblique and PCA, have no considerable limitation of the subspace dimension. Though,
the subspace dimensionality of the LDA and CCA methods are limited by the number
of classes which are present in the problem. For problems with a high number of classes,
e.g. > 10, this is no serious obstruction, but for two-class problems this limitation should
be considered.

The time complexity for acquiring a subspace of a single fern is similar for all subspace
methods, as they are based on the calculation of covariance matrices and eigenvalue
decomposition. For calculating the covariance matrix the complexity is O(NT 2) and
for a general eigenvalue decomposition O(T 3) [85]. For simplicity we assume T,H �
N . This leads to a complexity of O(NT 2 + T 3) [85] for the PCA, O(N max(T,H)2 +
max(T,H)3) for the CCA, and O(NT min(N, T )) [66] for the LDA, where N denotes
the number of training samples, H the number of classes and T the number of input
features. The random oblique method has the lowest complexity of O(T 3) [32] due to the
QR decomposition.
The memory complexity is unchanged with O(M min(N,LH)) with L = 2S, but note
that for constructing each fern T ≥ S features are used. Thus we can incorporate T
features into a fern, at reduced memory requirements of S.

The runtime of the RFe for training is O(N logL) where L = 2S. For the related RFo
the training complexity is O(KNL) where K is the number of node tests. The runtime
for classification is O(logL) for both the RFe and RFo, and O(T logL) for the Oblique
Ferns where T is the subspace dimensionality.

Method Max. subspace
dimension

Computational
complexity training

Supervised Data
dependent

Random Oblique T O(T 3) Ö Ö

PCA T O(NT 2 + T 3) Ö X
LDA H − 1 O(NT min(N, T )) X X

CCA H
O(N max(T,H)2

+ max(T,H)3)
X X

Table 1: Comparison of different subspace methods. The complexity is stated for a single
fern.

Figure 6 illustrates the properties of different subspace method for a simple example
of ψ : R3 → R2. Nevertheless the essential characteristics of the subspace projections
can be observed. The random oblique projections does not generate any meaningful
subspace, thus there is no pattern visible. Solely the samples are more scattered in R2

compared to the case of truncating the third dimension. For the PCA it can be clearly
seen that the projection plane fits the direction of the highest variance and thus the R2

subspace offers the biggest variance along its feature dimensions, i.e. the most scattered
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data representation. In the LDA subspace the three classes can be best separated, thus
the three clusters are most discriminative as theory implied. Although CCA finds a
subspace that correlates the data classes most, it does not separate the data as well as
LDA. The samples are denser clustered but the clusters overlap.
The figures also show our two proposed threshold methods for assignment bit generation.
While the median threshold simply bisects the data, the optimal threshold finds the
threshold for each dimension that optimally separates the class samples.

(a) Random oblique. (b) PCA.

(c) LDA. (d) CCA.

Figure 6: Different subspaces and thresholds illustrated by using the first 3 dimensions
of the Iris dataset [27].

As we have only covered linear subspaces in this section, one might think of using
non-linear subspace methods, were e.g. kernel methods can be used. But as we deal
with large datasets, the kernel methods are infeasible to compute with limitations in
memory and runtime [13]. The kernel space complexity is quadratic in the number of
samples [122, 96], thus for our datasets with a high number of samples kernel methods are
infeasible to compute. The linear subspace methods are only polynomial in the subspace
dimensionality T , which is low due to our design of subsampling.
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3.3 Ordinal embeddings

Next to the subspace embeddings we introduce different ordinal embeddings, that use
the order of the features within an input sample as information. This information can be
obtained by using the order of the values directly [18] or by using an extremal value [98,
123], i.e. the maximum or minimum value, of the input data. Ordinal information has
recently gained popularity for feature descriptors [118, 108] and was also proposed as
embedding for a RFo [98]. The advantage of ordinal embeddings is, that they are invariant
to any linear perturbation and additional spatial information about the feature location
is added into the model, i.e. not only that one feature is larger than another, but also the
position of the feature within the feature vector.
This invariance property can be illustrated in a small example. Given the vector x =
[10, 4, 14, 6, 1] we apply different perturbations to the vector.

1. We apply a function f(x) = 2 · x+ 2 thus x′ = f(x) = [22, 10, 30, 14, 4].

2. We add ±1 in alternation thus x′ = [11, 3, 15, 5, 2].

3. We add Gaussian noise n ∼ N (−1, 1) thus
x′ = x + n = [10.4, 3.8, 13.2, 6.8, 1.3].

Given the example of an image as input sample, the first function might resemble a non-
linear light change and the latter two perturbations can be different noise effects. In all
cases the order of the values stays the same, as well as the position of the maximum and
minimum, respectively. While in linear space the similarity of the different data vectors
is questionable, all different examples are congruent in ordinal space, i.e. they have the
same order x5 < x2 < x4 < x1 < x3.
The original feature evaluation method, presented in Section 3.1, can already be regarded
as a very simple ordinal embedding, as it relies on the comparison of two input values.
Thus each feature is based on a partial order of two input values, where the first is smaller
or larger than the second one. However, this is not a sophisticated embedding and we
show different ordinal embeddings that outperform the original one.
Therefore we use partial order statistics on the input data to derive a more sophisti-
cated leaf assignment for each fern. We propose and evaluate several approaches which
incorporate ordinal information into the RFe framework in different ways.

Although all ordinal embeddings are invariant to linear feature scaling per definition,
this assumption holds only if the data is derived from one feature scale, as e.g. from
an image where each feature (pixel) value is the range of [0, 255] or from physical mea-
surements where each feature value (measurement in e.g. meters) is given in the range
of [0,∞). Given different feature scales that cannot be compared in a reasonable way,
as metaphorically speaking comparing apples and oranges, this invariance vanishes and
even restrains an application. The scale of one feature might be smaller by magnitudes
compared to another feature thus prohibiting a reasonable comparison.
An illustration of this problem is given in Figure 7 where the raw feature values are shown
for the Diabetes dataset [104]. In this specific dataset the features are derived from dif-
ferent feature scales. If we use the raw data for ordinal feature comparison, feature FID
7 (diabetes pedigree function) will always be smaller than feature FID 5 (2-hour serum
insulin µU/ml) which renders a comparison useless, i.e. a comparison will not contain
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any discriminative information that can be used for classification. Therefore we convert
all features to a common scale by normalizing the data to zero mean and to a range of
[−1, 1], if the individual features are derived from different scales. If we use pixel values
as features, this normalization is already done in the process of image formation and
thus not necessary. Nevertheless a problem could arise in computer vision for example, if
different descriptor types are combined that have different feature scales. In such a case
feature normalization has to be performed.
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(a) Raw feature values.
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(b) Normalized feature values.

Figure 7: Comparison of different feature scales on selected feature dimensions of the
Diabetes dataset [104].

In the following sections we introduce several methods of incorporating ordinal infor-
mation into our RFe framework. We start with our so called WTA Ferns, that incorporate
the Winner Take All (WTA) hash [123] for generating a non-linear feature transformation
for leaf assignment. This hashing function derives a hash code from a feature vector by
using ordinal information such that the distance between hash codes correlates to rank
similarity measures. Then we propose the Maximum Order Ferns, which incorporate a
relaxed formulation of [98] that uses the position of the maximum value within the fea-
ture vector. This embedding enforces multiple order relations instead of a single one used
in the original feature evaluation function within a single leaf assignment bit. Further
we introduce the Direct Ordinal Ferns. This embedding directly integrates the order of
the input features by using the Complete Rank Transform (CRT) [18]. Each possible
input order is then assigned to a different leaf, thus enforcing a high commonality in each
leaf. At last we formulate an extension to the Direct Ordinal Ferns, the Soft Assignment
Ferns, which try to mitigate noise problems in the Direct Ordinal Ferns. Therefore we
use a soft assignment of the samples to the leaves by using rank correlation measures as
feature weights.

3.3.1 WTA Ferns

The first of the proposed Ordinal Ferns are our so called WTA Ferns, which implement
the WTA hash for feature calculation and leaf assignment. This hashing method was
proposed by Yagnik et al. [123] and provides a non-linear feature transformation which
we use for leaf assignment. The WTA hash has several advantages that support the usage
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in our RFe framework. It provides a learning-free, non-linear mapping from the input
data to the hash code, which is based on partial orders. This ordinal representation adds
tolerance to numeric perturbations and noise in the input values. The dimensionality of
the hash code can be tuned using two hyperparameters that integrate well into the RFe
framework. Further, the algorithm can be efficiently implemented which favors the RFe
principle.

In the following paragraphs we introduce our WTA Ferns. We first describe the
hashing function itself and then how it is incorporated into our RFe framework.
The WTA hashing function derives a hash code from an input sample x by permuting
the sample S times using random permutations Θ =

[
θ1, . . .θS

]
. The permuted input

sample is denoted x′ = x(θi) and θi is a random permutation vector that reorders the
input sample. S such vectors can be used to generate S different permutations of the
original input vector. From each of these permutations x′ we use the K first dimensions
to determine the index with the largest value, thus

ci = arg max
d={1,...K}

x′(d). (31)

This results in a S-dimensional hash vector c = [c1, c2, . . . cS] ∈ KS, where each hash code
encodes the position of the maximum value within the window size thus ci ∈ {1, . . . K}.
For a window size of K = 2 the hash code is binary.
The algorithm for calculating the full WTA hash is illustrated in Algorithm 3. First the
hash c is initialized with zeros. Then for each permutation the index of the maximum
within the window size K is determined and added to the hash.
The computational complexity for calculating the hash of an input sample is O(SK)
where S is the number of permutation and K the window size.

Algorithm 3 WTA hash calculation.

Require: Input sample x
Require: S random permutations Θ =

[
θ1, . . .θS

]
Require: Window size K

c = [0, . . . 0]
for all s ∈ 1 . . . S do

x′ = x(θs)
cs = arg maxd={1,...K} x

′(d)
end for

We have described the WTA hashing algorithm and we further introduce the hash
codes as ordinal features in the RFe framework. Therefore we formulate a probabilistic
framework for our WTA Ferns.
The initial classification rule that maximizes the posterior probability is

ŷ = arg max
yi

p(Y = yi|c1, c2, . . . cC). (32)

The posterior probability now depends on the individual hash codes ci and not on binary
features as described in Section 3.1.
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By using Bayes’ Formula we rewrite the probability as

p(Y = yi|c1, c2, . . . cC) =
p(c1, c2, . . . cC |Y = yi)p(Y = yi)

p(c1, c2, . . . cC)

∝ p(c1, c2, . . . cC |Y = yi).

(33)

Again, the class probability p(Y ) is assumed uniform and the denominator is neglected as
it is independent of the class. In order to estimate the posterior probability we would have
to model all joint probabilities, which is not feasible, as a high number of codes C > 1000
is necessary for good results [123]. Therefore we rewrite the conditional probabilities in
a Naive Bayesian model as

p(c1, c2, . . . cC |Y = yi) =
C∏
j=1

p(cj|Y = yi), (34)

thus assuming independence between the individual input features. Although our original
input features are permuted for the generation of the codes, the random permutations of
the input features4 do not affect the statistical properties of the underlying joint proba-
bility distribution [14] as we assume independence between the input features. Therefore
we relax the independence assumption and model some of the joint probabilities in a
Semi-Naive Bayesian manner, thus forming S = C

M
groups equivalently to the original

RFe formulation. Our ferns ensemble C = {c1, c2, . . . cM} is formed by M individual
ferns, of which each fern calculates its specific WTA hash cm = [cm1 , c

m
2 , . . . c

m
S ] using

the fern-specific permutation matrix thus providing independence between the individual
codes. Each hash code is in ci ∈ {1, . . . K} which leads to L = KS leaves per fern. By
using the joint probabilities of a fern cm the conditional probabilities are integrated as

p(c1, c2, . . . cC |Y = yi) = p(C|Y = yi) =
M∏
m=1

p(cm|Y = yi). (35)

The final classification rule can be stated equivalently to Equation 7 as

ŷ = arg max
yi

M∑
m=1

log
(
p(cm|Y = yi)

)
. (36)

Therefore each leaf stores the probability p(cm|Y = yi) or equivalently the number of
training samples in the frequency matrix P(cm, yi), which are then combined according
to Equation 36.

The integration of the hashing method into our RFe framework is shown in Figure 8.
The original input vector x is first subsampled, where RD → RT is the selection of the
fern-specific feature subset dm. For this example the subsampled vector is permuted
S = 3 times using the random permutation vectors θ1,2,3. The permutation vectors
are randomly sampled from this T ≥ K dimensional feature subspace. The random

4Formally, this type of variable is called exchangeable sequence of random variables. An infinite
sequence of random variables is exchangeable, if a rearrangement with a finite permutation does not
alter the underlying joint probability distribution. [14]
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permutation matrix Θm is specific for each fern. From these permutations we calculate
the WTA hash, where the index of the largest value is determined from the first K = 4
dimensions in this example. The position index is used for the leaf assignment. Therefore
it is encoded as binary vector. For an arbitrary window size K, the number of bits
necessary for leaf assignment is dlog2(K)e using this binary vector procedure. For the
given example with a window size of K = 4 we would need 2 bits to encode the index
for each permutation. The binary vector is then used as leaf index by simply converting
its numeric base. Formally the WTA hash is a non-linear mapping from the subspace to
the hash space, thus RT → KS.

Figure 8: Illustration of our WTA Ferns depicting a single fern. In this example we use
the WTA parametrization with K = 4, S = 3, θ1 = [5, 4, 1, 2, 3], θ2 = [2, 3, 1, 4, 5] and
θ3 = [3, 5, 2, 1, 4].

If the window size K is not a power of 2, the leaf assignment is not optimal because
the bit space is not fully used and several leaves would be empty. In order to save
memory we do not use such a binary assignment as depicted here for simplicity, but a
general mapping that directly assigns each hash code to a leaf. Thus a mapping function
ζ : c → L is used for leaf assignment which maps each hash code c to a leaf Ll and the
leaf index l is calculated by

l = 1 +
S∑
i=1

(ci − 1)Ki−1 (37)

with l ∈ {1, . . . KS}.
If the subspace dimensionality T = D, thus the permutation matrix is calculated

from all features in each fern, it directly maps the input sample x ∈ RD → L ∈ KS

without a fern-specific subspace limitation. The selection of the input feature dimensions
is fully controlled by the random permutation matrix and thus dynamically sampled
from all possible dimensions for each fern. For this case we can still assume independence
between the features if the window size K is much smaller than the feature dimensionality
D. The number of combinations for different windows is denoted by

(
D
K

)
and if K � D

the probability that we sample the same combination multiple times is sufficiently small.
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Training and testing works in the same manner as described in Section 3.1. For
training, the random permutation vectors are created for each fern and from each sample
the leaf assignment is calculated using the WTA hash. The occurrence of the training
samples is counted for each leaf. For testing, the leaf assignment is calculated again for
the test sample, but the same permutation matrix as used for training must be applied.

There exists a connection between our WTA Ferns and the original feature evaluation
of [84] presented in Section 3.1. The original RFe can be seen as a specialized version
of our WTA Ferns with a window size K = 2 and the random permutation vector
θi =

[
dmi,1, d

m
i,2

]
, i = 1 . . . S with dm being the fern-specific random feature dimensions.

But instead of only encoding one inequality, each WTA code encodes K − 1 inequalities.
For example the index encoding of the maximum of the first permutation in Figure 8
satisfies 4 − 1 = 3 inequalities, namely x′1 > x′2, x′1 > x′3, and x′1 > x′4. So for example
by encoding 7 inequalities using the original feature formulation we would need 7 bits for
the leaf assignment. For our WTA approach we would require a window size of K = 8
and thus only need log2(K) = 3 bits at most to encode the inequalities.

3.3.2 Maximum Order Ferns

Next we present our so called Maximum Order Ferns which provide a feature evaluation
function that integrates well into the RFe framework as it provides binary features and
encodes the position of the maximum within the subsampled input data. Therefore we
first present the related feature evaluation function from the RFo and our adaptations,
and then how it integrates into the RFe framework.

A method related to the WTA hash which uses ordinal node splits for a RFo was
recently proposed by Schulter et al. [98]. They introduced a splitting function Ψ that
incorporates partial order statistics as

ΨD,δ(x) =

{
0, if

(
arg maxd={1...K} x(D)d

)
= δ

1, otherwise
(38)

where D is a K-dimensional vector, which randomly samples the input x. This leads to
a K-dimensional vector x(D) whose index of the maximum is compared to a reference
value δ ∈ {1, 2, . . . K} within a window of size K. If the dimension of the maximum value
of x(D) matches δ, the sample is assigned to the left child node, otherwise to the right
child node. During training the best splitting function is selected from a set of randomly
sampled functions, i.e. random D and δ, by minimizing an impurity measure. Using this
splitting function the commonality of the split data is higher, thus strengthening the
splitting functions, where all samples within the child node fulfill K − 1 inequalities.

This splitting function is too strict for our RFe as we do not sample the optimal
splitting function from a set of possible ones. We only use a randomly chosen function
in order to adhere to the RFe principle and to keep the runtime low. Especially for a
large window size of K � 2 the function would evaluate to 0 for most samples. However,
the criterion can be relaxed to fit. Instead of using the strict comparison = δ we use the
inequality ≤ δ. Thus each leaf fulfills K − δ inequalities instead of K − 1.
We construct our feature evaluation function fms for fern m and feature s as

fms =

{
0, if

(
arg maxd={1...K} x

′m
s (d)

)
≤ δms

1, otherwise
(39)
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where x′ms = x(θms ) a randomly permuted input sample with the feature-specific random
permutation vector θms , and δms ∼ U(1, K) is a randomly chosen reference value within
the window size K. For the order we assume total order that satisfies the binary relation
xj < xk ⇐⇒ (xj < xk) ∨ (xj = xk ∧ j < k). This method encodes more than one
comparison into a single bit of the leaf index. Thus each bit of the leaf index is derived
from a specific partial order.
This feature evaluation function integrates well into the Semi-Naive Bayesian approach
presented in Section 3.1 because our ordinal feature evaluation function also results in a
binary value. The Semi-Naive Bayesian feature combination in Equation 5 is still valid
for this embedding; however, with our ordinal feature evaluation function. If K = 2 each
feature encodes 2 − δ inequalities, with δ ∼ U(0, 2), which corresponds to the original
RFe [84] in average.

In order to illustrate the feature evaluation function we state an example. Given
x(θms ) = [1, 3, 5, 4, 2] with K = 5 the index of the maximum is 3. Assume δ = 3 for
the original splitting function Ψ which fulfills the K − 1 = 4 inequalities x1,2,4,5 < x3.
Our adapted function with δ ≤ 3 fulfills the inequalities x2,3,4,5 < x1 or x1,3,4,5 < x2

or x1,2,4,5 < x3. Thus the inequality x4,5 < x1,2,3 is fulfilled in all cases which make up
K−δ = 5−3 = 2 inequalities. Although we fulfill only K−δ inequalities the commonality
of the samples within each leaf is still higher than using a single comparison as proposed
for the original feature evaluation function. However, samples that do not fulfill this
inequality constraint fulfill δ − 1 other constraints, which are x4 > x1,2,3 or x5 > x1,2,3

and combined x4,5 > x1,2,3. Thus the overall commonality is in average still higher than
in the original RFe method.

The integration into our RFe framework is shown in Figure 9. First the input sample
is subsampled from RD → RT using a random fern-specific subspace. Then we introduce
randomness in two different ways. We generate S different random permutations using
the permutation vectors θms and we compare the index position of the maximum to the
predefined random reference value δs ∼ U(1, K). Thus by evaluating fms for different
θms and δms per assignment bit, a binary feature vector Fm = [fm1 , f

m
2 , . . . f

m
S ] can be

constructed. The binary vector is then used for leaf assignment by simply converting it
into the leaf index. This feature evaluation function provides a non-linear mapping from
RT → L. The number of leaves is L = 2S.
The runtime for the feature evaluation method is O(SK) in order to determine the
maximum within the first K dimensions once for each of the S permutations.

Although it is similar to the previously introduced WTA Ferns, it provides a different
and more convenient parametrization, thus leading to different memory requirements.
Similar to WTA Ferns different permutations are used, but the number of leaves is in-
dependent of the window size K and only depends on the number of permutations S.
The window size K does not correlate with the number of leaves L = 2S, thus K can be
selected independent of S. This is in contrast to the WTA Ferns, where the window size
K directly influences the number of leaves L = KS.
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Figure 9: Illustration of our Maximum Order Ferns depicting a single fern. In this figure
maxi denotes a function that returns the index of the maximum. The parametrization
is S = 3, K = 5, δ1 = 1, δ2 = 4, δ3 = 3, and θ1 = [5, 4, 1, 2, 3], θ2 = [2, 3, 1, 4, 5] and
θ3 = [3, 5, 2, 1, 4] for this example.

3.3.3 Direct Ordinal Ferns

Another method for incorporating ordinal information into the RFe framework is to use
the order of the input data directly. Therefore we modify the Complete Rank Transform
(CRT) proposed by Demetz et al. [18], which is a specialized approach of partial order,
and integrate this feature transformation into our RFe framework. This ordinal feature
transformation provides a non-linear mapping of the input data to the leaves, where each
input feature set encodes multiple inequalities that uniquely define the order of the values
in the set. This order is then used to assign samples to leaves. We first introduce some
used mathematical definitions and then we show the integration of our modified CRT
into the RFe framework.

For this type of Ferns classifier we use certain mathematical definitions that we in-
troduce first. We assume, that we have given an ordinal space S = {S1, S2, . . . SQ} with
ordered items S1 ≺ S2 ≺ . . . ≺ SQ. In our case the ordinal space is spanned by all
possible partial orders of the input data vector. The symbol ≺ (precedes) denotes the
order between different ranks. A rank RS is an integer number in the range of [1, Q] such
that RS(Sj) = j for an ordinal item [38]. The rank depends on the set on which it is
calculated. In order to clarify the used set, we denote it in the subscript as we calculate
the rank for different sets. The rank defines a relationship between two items of the set
S, such that each item can be ranked higher ≺ or ranked lower � than another item. In
the mathematical order theory the precedence ≺ can be rewritten as < because the items
of the set, i.e. real numbers, are numerically comparable. The rank in lexicographical
order5 is simply the number of items that precede the item [79].

For leaf assignment in our Direct Ordinal Ferns we use a transformation of the input
samples that integrates the partial order of the features within the input vector. Therefore

5Formally, lexicographical order on Nn is defined by (x1, . . . xn) ≤ (y1, . . . yn) ⇐⇒ (x1, . . . xn) =
(y1, . . . yn) ∨ (∃k ∈ {1, . . . n} with xi = yi : i < k ∧ xk < yk). [97]
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we use a transformation similar to the CRT [18]. The original CRT transforms a k × k
image neighborhood into a K = k2 long vector σ, where each element encodes the
rank within the neighborhood with a value in the range of [1, K]. An example of this
transformation is shown in Figure 10. Figure 10a shows an arbitrary neighborhood of a
gray-scale image. The ranking is shown in Figure 10b where each element encodes the
partial order within the neighborhood. In case of ties, both tied values are encoded with
the same index in this example6. The ranking is transformed into a vector σ from top
left to bottom right, thus forming the CRT vector (descriptor) for this neighborhood.

1 3 3
4 15 6
17 8 19

(a) Intensity values.

1 2 2
3 6 4
7 5 8

(b) Order.

σ =



1
2
2
3
6
4
7
5
8


(c) CRT.

Figure 10: Example of the original formulation of the CRT for a 3 × 3 neighborhood of
a gray-scale image.

We generalize this transformation not only to pixel neighborhoods but to generic
input data. Thus we do not define the neighborhood as direct pixel neighbors, but as an
arbitrary combination of S random features selected by each fern. An example of this
transformation is depicted in Figure 11 where x is the input vector and σ the generalized
CRT vector.

x =


10
3
3
6
17
8


(a) Input data.

σ =


4
1
1
2
5
3


(b) CRT.

Figure 11: Example of our generalized CRT for an arbitrary input vector.

The integration of the generalized CRT into our RFe framework can be seen in Fig-
ure 12. Again, for each fern we randomly select the fern-specific subspace RD → RS and
from this subspace we calculate the CRT as a feature transformation. Further we use

6The ties are encoded in a dense matter. Thus if a tie arises, the subsequently ranked value is encoded
with the subsequent index number. Another encoding scheme would be the competition method, which
skips the subsequent index number in case of ties. It is familiar from e.g. sports. Nevertheless this is
simply a different representation that does not change the behavior.
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the rank of the CRT vector to assign each of the CRT vectors to a leaf. In the follow-
ing paragraphs we first discuss different order methods, next we show the probabilistic
framework, and then we describe the leaf assignment of the CRT vectors.

Figure 12: Illustration of a single fern of our Direct Ordinal Ferns which implements a
generalized CRT as feature transformation and uses the rank of the CRT vector for leaf
assignment.

In order to integrate this feature transformation into the RFe framework, we introduce
a mapping that assigns each possible CRT vector to a leaf. Therefore we use the rank of
the CRT vector, but before we focus on the leaf assignment, we discuss a problem that
occurs if two input data values are the same. In that case a tie arises and the order is not
explicitly defined anymore. In the previous example we solved this issue by assigning both
features the same index, but there is a different solution. Thus we propose two different
order methods that mitigate this problem, which are weak order and total order. The
difference between the two order methods lies in the handling of ties. Total order uses
the position of the tied values within the data vector to resolve the tie. Thus the first
element which causes the tie is encoded with the lower position index and the second
tied value with the higher index. Weak order encodes the tie in such a way, that both
tied values are encoded with the same position index as already depicted in our example
in Figure 11. Each of these encoded vectors makes up an individual rank. This effect is
illustrated in Table 2. In the case of total order different input data vectors are assigned
to the same rank, if ties occur. For the weak order, each possible tie is encoded in an
individual rank.

As discussed, the original CRT is sensitive to ties within the order, i.e. Demetz et
al. [18] use weak order which explicitly encodes ties. This consideration comes at the
expense of an increased number of possible combinations. The number of possible com-
binations for total order is denoted by the factorial S!. For weak order the number of
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hhhhhhhhhhhhhhhhhhInput data
Order method

Weak Total

x = [10, 10, 10] [1, 1, 1]→ RΠS
w

= 1 [1, 2, 3]→ RΠS
t

= 1

x = [10, 10, 20] [1, 1, 2]→ RΠS
w

= 2 [1, 2, 3]→ RΠS
t

= 1

x = [10, 20, 10] [1, 2, 1]→ RΠS
w

= 3 [1, 3, 2]→ RΠS
t

= 2

x = [10, 20, 20] [1, 2, 2]→ RΠS
w

= 4 [1, 2, 3]→ RΠS
t

= 1

x = [10, 20, 30] [1, 2, 3]→ RΠS
w

= 5 [1, 2, 3]→ RΠS
t

= 1

x = [10, 30, 20] [1, 3, 2]→ RΠS
w

= 6 [1, 3, 2]→ RΠS
t

= 2

x = [20, 10, 10] [2, 1, 1]→ RΠS
w

= 7 [3, 1, 2]→ RΠS
t

= 5

Table 2: Comparison of different order methods for S = 3 features. The partial order is
given in brackets and the ranks are stated for lexicographical order.

possible combinations is expressed by the n-th ordered Bell number [54]

OBN(n) =
n∑
k=0

k∑
j=0

(−1)k−j
(
k

j

)
jn. (40)

For example OBN(6) = 4683 and 6! = 720 for 6 features or OBN(7) = 47293 and
7! = 5040 for 7 compared to the original feature evaluation method of [84] with 26 = 64
or 27 = 128. This significantly increases the number of leaves for a given number of
features.
Although this approach limits the number of compared features, for a similar number of
leaves, e.g. 7! = 5040 and OBN(6) = 4683 compared to 212 = 4096, the complete order
of the features within the data vector is mutually encoded. Thus each order enforces
multiple inequalities, i.e. xi1 < xi2 < . . . xiS , which makes the commonality of the data
assigned to one leaf high.

As we have introduced the feature representation, we can model a probabilistic frame-
work. By using the ranks as features we can formulate the Bayesian decision rule. From
the subsampled input data x′ = x(dm) each feature is the rank of the value Rx′(x′i)
within the input vector. Therefore we estimate the posterior probability as

p(Y = yi|Rx′(x′1),Rx′(x′2), . . . ,Rx′(x′C))

∝ p(Rx′(x′1),Rx′(x′2), . . . ,Rx′(x′C)|Y = yi)
(41)

by using Bayes’ Formula and neglecting the class-independent denominator and assuming
an evenly distributed prior probability p(Y ). The ranks within the input vector are not
independent from each other, as each rank mutually defines each other. We model this
in our Semi-Naive-Bayesian framework, i.e.

p(Rx′(x′1),Rx′(x′2), . . . ,Rx′(x′C)|Y = yi) =
M∏
m=1

p(πm|Y = yi) (42)

where πm = [Rx′(x′1),Rx′(x′2), . . . ,Rx′(x′S)] is the permutation that is generated from
the fern-specific feature subset, which models the feature combinations mutually. S
dimensions are randomly selected, thus assuming independence between the input values
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and each permutation π models the joint probabilities of the Semi-Naive Bayesian model,
by defining their rank with respect to the other values. As the permutations are drawn
from different subsets they can be regarded as independent.
The final classification rule, equivalent to Equation 7 can be stated as

ŷ = arg max
yi

M∑
m=1

log(p(πm|Y = yi)). (43)

The permutations π can be efficiently assigned to the leaf by using their rank with
respect to the permutation set RΠS(π) as we show next.
Formally, the total order transformation represents the order between values of an ordinal
variable. The indices of a vector that resemble the order are a permutation of integers.
Let ΠS

t denote the set of all permutations of the vector [1, 2, . . . S]. A specific order or
permutation π is an element of this set. Further, a mapping σ : x → ΠS

t assigns a S-
dimensional vector x to a permutation π ∈ ΠS

t . In the case of the CRT the mapping σ is
implemented as π = [Rx(x1),Rx(x2), . . . ,Rx(xS)] where each element encodes the rank
within the vector x. A computationally less complex but equivalent method is provided
by [118], which sorts all elements of x such that xi1 < xi2 < . . . < xiS with the binary
relation xj < xk ⇐⇒ (xj < xk) ∨ (xj = xk ∧ j < k) specific for total order. The indices
serve as permutation π = [i1, i2, . . . , iS]. This can be simply implemented by sorting the
input vector using stable sorting [55], thus maintaining the relative order of tied items,
and using the rearrangement indices of the sorting as permutation π.
Further we define a mapping function which maps each of these S! permutations directly
to a leaf of a fern β : π → L with β ∈ {1, 2, . . . S!}.
Similarly, the weak order transformation is a mapping of the S-dimensional input vector
x into the set ΠS

w such that σ : x→ ΠS
w and ΠS

w ⊂ {1, . . . S}S is a set of all possible orders
of S elements with repetitions, i.e. ties [18]. Again, all elements of x are sorted such that
xi1 ≤ xi2 ≤ . . . ≤ xiS but with the binary relation xi ≤ xk ⇐⇒ (xi < xk) ∨ (xi = xk)
for weak order. The indices are used as permutation π, but in case of tied values the
index number is shared xj = xk ↔ ij = ik. The target set for leaf assignment of
β ∈ {1, 2, . . .OBN(S)} has an increased cardinality for weak order.

Practically, the mapping β, which assigns each possible permutation to a leaf L, can
be implemented by using a hashmap in O(1) [55], or by using ranking algorithms in lex-
icographical order in O(S2) [68], or without special order in O(S) [79].
We use a hashmap for this mapping which is computationally less complex than the rank-
ing based methods but requires a precedent initialization of the mapping. The ranking
based methods do not require a previous initialization but they are slower for classifi-
cation, thus we optimize the computational complexity for classification rather than for
training. Therefore all possible permutations have to be enumerated in order to create
the mapping. For weak order we use Cayley Trees [76] and for total order Heap’s algo-
rithm [100] to generate all possible permutations. The mapping assigns each permutation
to a leaf index. Note, that the mapping must be the same for training and classifica-
tion. For this purpose the mapping is established only once when creating the ferns.
Thus the creation of the mapping does not influence the runtime of our RFe method for
classification and only marginally for training. For training the complexity increases by
an additional O(S!) or O(OBN(S)) as we need to enumerate all permutations, but as
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the number of features S is small (S � 10) this does not increase the runtime. The
complexity of the classification is slightly increased, because the order of the input data
has to be established. The assignment of the order to the leaf is done in O(1) but the
creation of the order requires a sorting of the subsampled input vector, thus O(S logS).

Each rank RΠS(π) fulfills
(
S+1

2

)
inequalities, thus specifying the positions of the values

within the vector. Given the vector x = [10, 20, 40, 30] for example. Its ranking π =
[Rx(10),Rx(20),Rx(40),Rx(30)] = [1, 2, 4, 3]. Each rank encodes S − 1 inequalities, as
shown in Table 3 for our example but they are not independent from each other. The
inequalities from the latter rows can be partially constructed from the previous ones.
For S = 4 each permutation vector encodes 6 inequalities. Our Direct Ordinal Ferns
need L = 4! = 24 leaves to encode these inequalities, the original RFe, however, requires
L = 26 = 64 leaves for 6 inequalities.
If we choose S = 2 for our Direct Ordinal Ferns, they correspond to the original RFe
formulation [84] with parameter S = 1 as both incorporate a single comparison.

Rx(x1) x1 < x2 x1 < x3 x1 < x4

Rx(x2) x1 < x2 x2 < x3 x2 < x4

Rx(x3) x1 < x3 x2 < x3 x4 < x3

Rx(x4) x1 < x4 x2 < x4 x4 < x3

Table 3: Inequalities satisfied by each rank. Unique inequalities are colored.

3.3.4 Soft Assignment Ferns

The method of direct ordinal assignment is sensitive to noise, i.e. a perturbation of one
feature value changes the complete partial order of the input features which leads to
a different leaf assignment in the fern. Therefore we propose a soft assignment, which
assigns different permutations πi, πj to the same leaf, if they do not excess a similarity
measure threshold θ by corr(πi, πj) < θ. As similarity measure we use a rank correlation
measure corr(·, ·), which is e.g. Kendall τ or Spearman ρ [3]. This allows to tolerate
perturbations of the input data.
Soft assignment is also used for example in the context of Naive Bayes classifiers, where
a weighted version was proposed [30, 124] to increase the classification performance of
Naive Bayes.

In order to show the influence of noise on the input data we perform a Monte Carlo
simulation [39] with realistic input data and a Gaussian noise model. The inputs are
N = 1000 randomly chosen patches from a gray-scale image from which S random feature
dimensions are chosen. From this features we calculate the total order π1, which specifies
the leaf of the fern where the sample would be assigned. Next we generate randomly
perturbed samples by adding Gaussian noise with zero mean and a standard deviation
of 5% of the input feature magnitude to the original samples. From these perturbed
input we calculate the total order π2 and compare the total order of the perturbed input
to the original total order using the Spearman ρ correlation measure. The result of
this simulation is shown in Figure 13a. We show the fraction of rank preserving orders
to all input orders Rp = #(π1=π2)

N
, which decreases with the number of input features

S. Further, Prnd = 1
S!

is the probability that we randomly select the same order,
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which is negligible compared to Rp in this case. At last we show the average correlation
ρ = 1

N

∑N
i=1 corr(π

i
1, π

i
2), which does not fluctuate much. Although the rate of correctly

matching orders decreases drastically, the overall correlation is still high. This can be
observed in Figure 13b as well, which shows the distribution of the correlation measure
for a different number S of input features. The noise perturbation itself does not change
the order significantly, which can be seen by a high correlation, but if the order changes,
the input data is still assigned to a different leaf of the fern.
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Figure 13: Evaluation of noise effects on the order. (a) depicts the Monte Carlo simulation
of total order with Gaussian noise perturbation, showing the fraction of rank preserving
orders Rp, the probability of random rank matching Prnd and the average correlation
measure ρ. (b) shows the histogram of the correlation measure ρ for a different number
of features S.

In order to mitigate these noise problems with the input order we propose a soft
assignment. For the integration of soft assignment into our RFe framework we use the
already introduced Direct Ordinal Ferns with total order. It can be integrated for weak
order as well, but instead of S! we would have to consider OBN(S) different permutations
and the correlation measure would have to be able to handle ties.
Recap Equation 42 introduced with the Direct Ordinal Ferns

p(Rx′(x′1),Rx′(x′2), . . . ,Rx′(x′C)|Y = yi) =
M∏
m=1

p(πm|Y = yi) (44)

where we stated the Semi-Naive Bayesian estimate of the posterior probability with the
feature representation π that represents the total order permutation. For this formulation
we introduce the weight w(πi, πj) ∈ R+ to generate a soft assignment of the features
depending on the rank correlation measure. The correlation measure acts as a distance
between ranks, thus it is similar to different distance measures, as e.g. `2, but in ordinal
space. A higher correlation denotes more similar permutations in ordinal space, which is
in contrast to distance measures, where a smaller distance denotes more similar data in
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Euclidean space. Thus we use the feature weight and rewrite the equation as

p(Rx′(x′1),Rx′(x′2), . . . ,Rx′(x′C)|Y = yi) =
M∏
m=1

L∏
l=1

p(πml |Y = yi)w(πm,πm
l ) (45)

where πm is the permutation that is generated from the fern-specific feature subset. M
is the number of ferns and L the number of leaves. This weighting scheme resembles
the most general case of weighted Bayes, where each weight depends on each feature
value [124]. The final classification rule, equivalent to Equation 7, can be stated as

ŷ = arg max
yi

M∑
m=1

L∑
l=1

w(πm, πml ) · log
(
p(πml |Y = yi)

)
. (46)

We calculate the weight w(πi, πj) between two permutations πi and πj by

w(πi, πj) =
1

Z
w′(πi, πj), and w′(πi, πj) =

{
0, if corr(πi, πj) < θ

eλ·corr(πi,πj), otherwise
(47)

where θ and λ are two parameters which implement a threshold and an exponential
backoff, and Z is a normalization factor. The weight is normalized to [0, 1] such that

Z =
L∑
j=1

w′(πi, πj) (48)

for each permutation πi.
As correlation measure we use the Spearman ρ [3] rank correlation measure, which is
calculated between two permutations π1 and π2 as

corr(π1, π2) = 1− 6

S(S2 − 1)

S∑
i=1

(πi1 − πi2)2 (49)

for S input features.
An example of the weights for different permutations is shown in Figure 14. We plot the
weight w(π, πj) over all possible permutations πj. More similar permutations get higher
weights and less similar smaller weights. Due to the threshold θ most of the weights
w(π, πj) become zero for permutations with low similarity.

Practically we use a weight vector w ∈ RL to calculate the coefficients for weighted
class assignment. In order to speed classification up, we select w from a precalculated
assignment matrix W ∈ RL×L, where ∀π ∈ ΠS

t : W(i, j) = w(πi, πj).
The complexity of this method has increased over the Direct Ordinal Ferns. For

classification we establish the order of the input features thus requiring O(S log(S)) and
further combine the probabilities which requires O(HL) with L = S! for total order.
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Figure 14: Weights for S = 7 features, θ = 0.7 and λ = 8. π = [1, 2, 3, 4, 5, 6, 7] and
πj, j = 1 . . . S! are enumerated in lexicographic order with the rank as label on the x-
axis.

3.3.5 Comparison of ordinal embeddings

We introduced our different ordinal embeddings above, where each of these embeddings
incorporates the ordinal information in a different way. Therefore we provide a compari-
son showing the key properties of the proposed ordinal embeddings in Table 4.
In comparison to the subspace methods we do not have to consider any limitations of
the subspace dimension, as they can be chosen through the parametrization for all of the
ordinal embeddings. However, the ordinal methods have different memory and runtime
requirements.

The overall memory complexity is unchanged withO(M min(N,LH)), but the number
of leaves L depends on the embedding. For the WTA Ferns the number of leaves L
depends on the window size K and the number of permutations S thus L = KS. The
Maximum Order Ferns can be parametrized similar to the original RFe, where the number
of leaves directly depends on the number of feature evaluations L = 2S independent of
any window size. For the Direct Ordinal Ferns we have to distinguish between total
and weak order. For total order the number of leaves is factorial with L = S! and
for weak order L = OBN(S) for S features per fern. Thus the memory requirements
significantly increase with the number of features per fern. As we use total order for our
Soft Assignment Ferns there are L = S! leaves.

The time complexity for a single sample and fern is also shown in Table 4. For the
WTA and the Maximum Order Ferns the computational complexity depends on finding
the maximum value within a window, thus the complexity is O(KS) for both. The Direct
Ordinal Ferns require a sorting of the input subspace thus the runtime is O(S log(S)).
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However, S has to be chosen small (S � 10) due to memory limitations. The complexity
of Soft Assignment Ferns has drastically increased to O(HS!) over the Direct Ordinal
Ferns due to the feature weighting scheme.

Two of the ordinal embeddings namely the WTA and the Maximum Order Ferns
encode the maximum value, and the Direct Ordinal and Soft Assignment Ferns use the
complete order of the input data. Although the maximum value does not contain as
much information as the complete order of the data, it is more stable to perturbation of
the data and faster to compute.

Ordinal embedding Computational
complexity

Space complexity

WTA O(KS) O(M min(N,HKS))
Maximum Order O(KS) O(M min(N,H2S))
Direct Ordinal total

weak
O(S log(S))

O(M min(N,HS!))
O(M min(N,H OBN(S)))

Soft Assignment O(HS!) O(M min(N,HS!))

Table 4: Comparison of different ordinal embeddings.

One can see from the comparison that the ordinal embeddings, except the Soft As-
signment, are computationally less complex than the subspace embeddings, where the
calculation of the projection is costly. Though the ordinal embeddings can require much
memory. Especially the Direct Ordinal or Soft Assignment Ferns, where the memory
is factorial in the number of features per fern, or the WTA embedding where a larger
window size K also increases the memory requirement.

3.4 Subspace ordinal embeddings

At last we want to discuss a combination of our embeddings. One can think of a Ferns
classifier for which we use ordinal embeddings in the subspace. Therefore the samples
are projected into a subspace in which the ordinal analysis is performed. Instead of the
threshold selection in subspace we use an ordinal embedding for leaf assignment and
denote this Subspace Ordinal Ferns.

An illustration of a single Subspace Ordinal Fern is shown in Figure 15. The left
part is similar to our Oblique Ferns. First the fern-specific input features are selected,
thus RD → RT . Then the selected features are projected onto the subspace RT → RS

by using a linear projection x′ = x(dm)Wm, where dm specifies the fern-specific input
dimensions. In this subspace we use an ordinal embedding to assign the samples to the
leaves x′ ∈ RS → L. The subspace projection as well as the ordinal embedding can
be arbitrarily chosen as one of the methods we have already described in the previous
sections. Thus the individual properties of this classifier depend on the chosen subspace
method as well as on the ordinal embedding.

We have shown in Section 3.2.1 that the threshold selection is O(SN) for the median
threshold and even larger for the optimal threshold. By using an ordinal embedding the
computational complexity is significantly reduced, as training the leaf assignment does
not depend on number of training samples N . This leads to a speedup for training but
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Figure 15: Illustration of our Subspace Ordinal Ferns depicting a single fern. The samples
are first projected into the subspace and then an ordinal embedding is used for leaf
assignment.

also to an increased classification time as the values for each assignment bit are not simply
thresholded but ordinal analysis on the input is performed that may be more complex.
However, the subspace projection of the training data is still required.

The training and testing is straightforward, by first projecting the samples on the
subspace and then using the ordinal embedding to generate the leaf assignment.

There exists a variety of possible combinations, i.e. our 4 subspace methods with
our 4 ordinal embeddings plus original feature evaluation summing up to 20 different
possibilities. Each possible combination has an increased parameter space, which makes it
hard to tune or cross-validate. Thus it is not feasible to evaluate all possible combinations.
Therefore we select three of the possible combinations and evaluate them.

1. PCA subspace with original embedding: The PCA subspace can generate a high
dimensional subspace. The original embedding is the simplest ordinal embedding,
which only incorporates a single comparison per assignment bit. This combination
exhibits similar computational complexity and memory requirements as the PCA
Ferns.

2. PCA subspace with WTA embedding: Again, PCA is used to generate a high
dimensional subspace. The WTA embedding resembles a more sophisticated ordinal
embedding. The computational complexity and memory requirements are slightly
increased due to the WTA embedding.

3. LDA subspace with WTA embedding: The LDA subspace provides a discriminative
subspace for multi-class data in order to separate the classes, although with a
reduced subspace dimensionality depending on the number of classes. We combine
this with the WTA embedding, which again slightly increases the computational
and memory complexity.

However, a fundamental problem exists for this type of Ferns. The subspace dimen-
sionality B is limited by the subspace projection. But we need a number of independent
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features in the subspace, in order to generate the leaf assignment. The generalized em-
bedding provides a large number of independent features by choosing different thresholds.
However, the ordinal embeddings as e.g. the original embedding can generate at most

(
B
2

)
different features. With a subspace dimensionality of B = 10 we have 45 different features
available at most. The WTA embedding can use

(
B
K

)
different combinations. Thus for

a window size of K = B/2 most different features can be created, though they are not
completely independent. If B = 1 or B = 2, as it is given for CCA and LDA for two-class
problems, no ordinal embeddings can be applied at all.
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4 Evaluation

In this section we present and discuss the results of the evaluation. We evaluate each
proposed Ferns classifier mentioned in Section 3. The evaluation is carried out on well-
known computer vision and machine learning datasets. Further we evaluate the usability
of our classifiers for 3D interest point recognition and we implement our classifiers for the
task of pose tracking on planar surfaces, which was the original intention of the Random
Ferns (RFe) classifier [84].

We evaluate on a computer with a Core 2 Duo with 2.6GHz and 4GB of RAM using
Ubuntu 12.04 32bit. The implementation and evaluation of the different classifiers is
carried out using Matlab 2012a in the style of Piotr Dollar’s Image & Video Matlab Tool-
box [20]. Selected classifiers are then integrated into an application for the task of pose
tracking on planar surfaces, which is implemented in C++ using the OpenCV 2.4.6 library7.
For the calculation of the CCA we use the regularized least squares implementation of
Sun et al. [107] in order to mitigate rank problem with non-full rank matrices.

4.1 Computer vision and machine learning datasets

First we evaluate the different classifiers on several common computer vision and machine
learning datasets. The datasets used are shown in Table 5. Besides the dataset name, we
denote the input data dimensionality D, the number of training samples N , the number
of test samples M , the number of classes H, the distribution of the class labels, i.e. the
fraction of the major and minor class samples, and the data type. For the data type
we distinguish between numeric, categorical, and spectral (correlated numerical features)
data. Machine learning datasets resemble the numeric and categorical datasets and the
computer vision datasets can all be classified as spectral data.
Most datasets can be retrieved from the UCI machine learning repository8 or from the
respective authors website. All datasets are fully supervised, i.e. the full ground-truth
is available. If the dataset has an explicit separation between training and test sets, we
evaluate using these sets. Otherwise we evaluate using 10-fold cross-validation which is
denoted by a “CV-10” in the test sample column.
We evaluate the classification accuracy on different datasets, different data representa-
tions (e.g. raw pixel values, descriptors, encodings), and different data categories in order
to show the individual properties of our classifiers.

As evaluation criterion the average classification accuracy Acc on a K-fold cross-
validation or on a test set is commonly used, e.g. in [78, 74], or the equivalent error Err =
1 − Acc, as e.g. in [9]. The objective is to maximize the accuracy of the classification,
thus a higher classification accuracy denotes a better classifier.

7opencv.org
8archive.ics.uci.edu/ml/
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Dataset name D N M H Class distr.
min/max

Data type

Australian [87] 14 690 CV-10 2 44.49/55.51% num./cat.
Caltech 101 [25] � 12000 1515 1515 101 0.99/0.99% spec.
Diabetes [104] 8 768 CV-10 2 34.9/65.1% num.
Ionosphere [102] 34 351 CV-10 2 35.9/64.1% num.
Iris [27] 4 150 CV-10 3 33.33/33.34% num.
Isolet [24] 617 6238 1559 26 3.82/3.85% num.
Fourclass [42] 2 862 CV-10 2 35.61/64.39% num.
German [26] 24 1000 CV-10 2 30/70% num./cat.
Leukemia [34] 7129 38 34 2 28.95/71.05% num.
Liver disorders [28] 6 345 CV-10 2 42.03/57.97% num.
MNIST [61] � 784 60000 10000 10 9.03/11.24% spec.
Multi-PIE [37] � 254 54809 10000 150 0.21/0.76% spec.
Mushroom [95] 112 8124 CV-10 2 48.2/51.8% cat.
ORL [93] � 4096 400 CV-10 40 2.5/2.5% spec.
Sonar [36] 60 208 CV-10 2 46.63/53.37% num.
Spambase [44] 57 4601 CV-10 2 39.4/60.6% num.
Splice [80] 60 1000 2175 2 48.3/51.7% num.
SVMguide1 [48] 4 3089 4000 2 35.25/64.75% num.
USPS [60] � 256 7291 2007 10 7.43/16.38% spec.
Voting [95] 16 435 CV-10 2 38.62/61.38% cat.
Vowels [19] 10 528 462 11 9.09/9.09% num.
WDBC [106] 30 569 CV-10 2 37.25/62.75% num.
WOBC [121] 9 683 CV-10 2 34.99/65.01% cat.
Wine [1] 13 178 CV-10 3 26.96/39.88% num.

Table 5: Overview with statistics of the datasets used for evaluation. D denotes the data
dimensionality, N the number of training samples, M the number of test samples, and
H the number of classes. � denotes computer vision datasets.
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We conduct a K-fold cross-validation experiment as following.

1. First we randomly divide the dataset into K disjoint partitions, possibly equally
sized, and with representative class distribution.

2. Then we use one partition to test and K − 1 partitions to train the classifier.

3. At last we calculate the average classification accuracy as performance criterion.

The accuracy Acck of one fold can be calculated as

Acck =
1

Nk

Nk∑
i=1

I(yi = ŷi) (50)

where yi is the ground-truth class label, ŷi the class label derived by our classifier, Nk

the number of test samples of fold k, and

I(x) =

{
1, if x = true

0, otherwise
(51)

is the indicator function.
The average classification accuracy Acc over K folds is given by

Acc =
1

K

K∑
i=1

Acci (52)

with its standard deviation Accσ as

Accσ =

√√√√ 1

K − 1

K∑
i=1

(Acci − Acc)2. (53)

In case there is an explicit separation between training and test set, we calculate the
accuracy Acc over the M test samples by using

Acc =
1

M

M∑
i=1

I(yi = ŷi). (54)

As we deal with randomly trained classifiers, we have to evaluate multiple trials to
neglect random training effects. Therefore the training and evaluation step is executed
5 times9 and the accuracy is averaged. Thus we state the average classification accuracy
with its standard deviation.
For statistical significance among the results we use a two sided t-test with a confidence
level of 95%, in order to test each method against the best or to compare our classifiers to
the baseline [47]. We use the symbols •, ◦ to show statistically significant improvement

9Due to the high computational effort of the evaluation we only use 5 repetitions. However, e.g. [74]
or [9] use 100 repetitions. Nevertheless our evaluation shows that 5 repetitions already provide a good
estimate as the variation of the classification accuracy is only minor for M = 50 base classifiers.
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or degradation over the baseline, i.e. the original RFe [84], in the tables throughout the
evaluation.

As baseline we use the original RFe classifier [84], and the related Random Forest
(RFo) classifier [9], both implemented in [20] as well as a state-of-the-art linear Support
Vector Machine (SVM) [22]. The linear SVM is a linear classifier that generates maximum
margin hyperplanes for classification, i.e. it does not apply any kernel trick, which makes
training a large amount of samples feasible. For the comparison of the runtime we do
not state any timings explicitly, as the different methods are implemented in different
environments (C, mex, Matlab) and thus a direct comparison would not be fair. Hence, we
have already stated the computational complexity of the different classifiers in Section 3.

For all the stated evaluations we use a cross-validation over the classifier parameters
in order to determine the best configuration among a set of parameters. For this cross-
validation we use the full datasets. The baseline linear SVM is trained with L2-regularized
L2-loss support vector classification and the penalty parameter C for the loss function is
determined from C ∈ {2−15...15} as recommended in [22]. The input data for the SVM
is normalized to zero mean and unit variance. The baseline RFo is fully trained without
pruning for a depth of S ∈ {1 . . . 15} in order to correspond with the RFe parameters,
the number of features for each node split is

√
D, and the number of samples for training

each tree is N/2. The parameters for the different Ferns classifiers are listed in Table 6.
For the generalized RFe [20] the threshold value is uniformly sampled from τs ∼ U(−1, 1)
and the input data is normalized to zero mean and scaled to an interval of [−1, 1]. For
all RFe and the baseline RFo we keep the number of base classifier constant, i.e. M = 50.
For the Oblique Ferns we use the median threshold for the evaluation because it is the
faster method. However, we provide an evaluation of the different threshold methods
separately. For the Subspace Ordinal Ferns we use a fixed B = 0.7 · T in order to reduce
the parameter space for the sake of speed and a window size of K = 4 for the WTA
embedding as for K = 2 it is equivalent to the original feature evaluation method. We
do not evaluate our Subspace Ordinal Ferns on all datasets, as for most machine learning
datasets the LDA subspace dimensionality is 1 for two-class problems and thus no ordinal
leaf assignment is possible. Further they are a specialized type of Oblique Ferns and thus
do not significantly differ from the Oblique Ferns, and due to the possibly many different
combinations of subspace and embeddings it is computationally infeasible to evaluate
them all. However, we show their performance on several selected datasets separately.
The parametrization is chosen such that the required memory is similar for all methods,
because the memory is a limiting factor on our evaluation system. A different evaluation
approach would consider the overall number of features that are used. Recall, that the
overall features are grouped into the ferns structure depending on the degree of modeling
the dependencies within the Semi-Naive Bayesian framework. Some methods cannot
increase the number of features per fern above a certain limit, e.g. S ≤ 8 for Direct
Ordinal Ferns, as this would excess memory limitations. Thus they do not use as many
overall features as others, which is derogatory for some datasets. However, we state the
accuracy for the same number of overall features for selected examples.

We have separated the datasets of Table 5 into machine learning datasets and com-
puter vision datasets. First we discuss the properties of our classifiers on the results
of the machine learning datasets. Then we go into details for specific computer vision
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Ferns classifier Parameter space

Original [84] S ∈ {1 . . . 15}
Generalized [20] S ∈ {1 . . . 15}
Oblique (Random Oblique,
PCA, CCA, LDA)

S ∈ {1 . . . 15}, T ∈ {dD · 2−1...−7e}

WTA
S ∈ {1 . . . 15}, K ∈ {2 . . . 10}, KS ≤ 32768,
T ∈ {dD · 20...−7e}

Maximum Order S ∈ {1 . . . 15}, K ∈ {2 . . . 10}, T ∈ {dD · 20...−7e}
Direct Ordinal total order S ∈ {1 . . . 8}

weak order S ∈ {1 . . . 7}
Soft Assignment S ∈ {1 . . . 8}, θ = 0.7, λ = 8
Subspace Ordinal S ∈ {1 . . . 15}, T ∈ {dD · 2−1...−7e}, B = 0.7 · T , K = 4

Table 6: Parameter space used for determining the optimal parameter configuration. The
number of ferns is M = 50 for all classifiers.

datasets, their problem formulations, and their specific characteristics. At last we analyze
the Ferns classifiers with respect to their individual parameters and characteristics.

4.1.1 Machine learning

First we evaluate a number of common benchmark machine learning datasets in order to
provide comparable results for other general machine learning methods.
The evaluation results are shown in Table 8. The RFo performs best on most datasets,
which is undoubted as it applies a sophisticated feature and node test selection. However,
this is computationally very intensive and it takes more time by a magnitude compared
to the RFe. Nevertheless the RFe classifiers can outperform the RFo and the SVM on
several datasets. For most of the datasets the accuracies are close together beyond any
statistical significance. This fact has a lot to commend for the RFe classifier as it has a
much lower computational complexity, i.e. it is faster for training and classification.
From the results it is hard to derive any conclusions on the performance on a specific
data type of the dataset. The RFo performs best on several numeric datasets. The
SVM performs best on numeric and on categorical data, although especially on two class
problems, due to the dual class formulation of the support vectors. The original RFe is
inferior to our proposed Ferns on all dataset, as either our Oblique or our Ordinal Ferns
can outperform it.
The generalized RFe performs well on the Fourclass and WOBC dataset. It outperforms
our other Ferns on most datasets with a small input data dimensionality. Due to the
feature generation through random thresholds it can generate more features than the
other Ferns, thus outperforming them for these datasets. However, it is inferior on all
high dimensional datasets, because the random thresholds do not incorporate any data
structure and thus the commonality of the data in the leaves is low.
For the WTA Ferns a window size of K = 2 works best for most datasets. They cannot
leverage any additional informational from a larger window size and thus resemble an
original RFe. The differences in the classification accuracies are due to random training
effects. However, for the Spambase and Voting dataset a larger window size of K = 8
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and K = 6 is used, which results in a significantly improved accuracy compared to the
original RFe. The Voting dataset contains categorical features and uses 1-of-K coding.
This creates a data property that can be well classified with a larger window size. The
Spambase dataset contains histograms of word occurrences combined with others fea-
tures. The histograms exhibit many zeros and by using a larger window size these zeros
can be efficiently suppressed. Similar conclusion can be stated for the Maximum Order
Ferns. For most of the datasets the used window size is small. However, for the Spambase
and Voting datasets a window size of K = 10 is used, thus increasing the accuracy over
the baseline original RFe. The inequality of the feature evaluation method enforces less
comparisons of the data within the leaves, thus deteriorating the accuracy for most of
the datasets compared to the original RFe or WTA Ferns.
The Direct Ordinal Ferns perform similar to the original RFe for all datasets. However,
the number of features per fern is significantly lower than for the original RFe, because
more inequalities are modeled with less features. The number of jointly modeled fea-
tures depends on the dataset structure and stronger classifiers, i.e. modeling more joint
features, are not beneficiary beyond a dataset specific point. For some of the machine
learning datasets we obtain a small value for the number of features per fern S, or the
accuracy does not change with S. This is due to independent features of several machine
learning datasets, for which the Semi-Naive Bayesian approach is not beneficiary.
Our Soft Assignment Ferns perform worse than the Direct Ordinal Ferns for most datasets
due to the lack of noise, which we explicitly assumed in the design. By using the soft
assignment the conditional probabilities get “smoothed” over the leaves and thus loosing
accuracy for non-noisy features. It might allow for fine tuning the two weighting pa-
rameters λ and θ, although this is very time consuming. The sole improvement over the
Direct Ordinal Ferns is for the Isolet dataset, which is known to contain noisy feature
values [24].
The Oblique Ferns perform very well on several datasets. The two unsupervised sub-
space projections random oblique and PCA perform similar on most datasets, though
Random Oblique Ferns are trained faster because the projections are randomly chosen.
The biggest differences occur on the Leukemia, Sonar, and WDBC datasets, where PCA
Ferns work better on the prior two datasets and the Random Oblique Ferns on the last
one. The Leukemia dataset is very sparse in a high dimensional space. In this case PCA
acts more as dimensionality reduction than estimating the variances, yet PCA is a more
reasonable dimensionality reduction method than random oblique directions, as it incor-
porates the data structure. The Sonar dataset is highly correlated with large variances,
which especially benefits the PCA subspace, because it efficiently uses the directions of
the empirical variances whereas random projections simply provide arbitrary projections
with no data support and thus performing worse. The WDBC dataset has low dimen-
sional and highly correlated data, but the different fern-specific PCA subspaces have too
little variation between the projections, thus causing high correlation between the ferns.
The random oblique projections provide different views for each fern, thus they generalize
better resulting in a higher accuracy for this dataset.
The two supervised subspace methods CCA and LDA perform significantly different
than their unsupervised counterparts on several datasets. Most of the machine learning
datasets are two class problems, which derogates especially our CCA and LDA Ferns as
their subspace dimensionality is limited by the number of classes. However, for some
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datasets the underlying data structure benefits these methods such that we still obtain
good results. Big differences are reported e.g. for the Isolet and Leukemia dataset, where
in the first dataset LDA performs very well and in the second CCA. The Isolet dataset
has a high number of classes thus providing a high subspace dimensionality for the LDA.
Further, the data is well separable in the subspace that especially benefits the LDA
method. For the Leukemia dataset CCA uses many input features to correlate them with
the class labels, which works well for this sparse data. However, LDA performs worse for
this dataset as it is very sparse and thus difficult to maximize inter-class distances due
to lack of samples and the data is worse separable in the subspace. Advantage over the
unsupervised projection methods is only given, if the data is well separable in subspace.
Otherwise the supervised methods are inferior as e.g. shown on the Spambase dataset,
which is a two-class dataset thus only providing a one-dimensional subspace with worse
separability.
The last row of Table 8 shows the mean of the average classification accuracies over all
datasets. The RFo clearly performs best due to its sophisticated, but time-consuming,
feature selection. The generalized RFe perform best among the Ferns, as they do not im-
ply any specific dataset properties. However, as described above, there are embeddings
that work better for specific dataset properties.
Table 7 shows a ranking of the different Ferns classifiers. We rank the classifiers according
to the number of datasets of Table 8 on which they perform best or on which the accuracy
does not differ statistically significant from the best result. The generalized RFe rank
overall first, as they perform best or similar to the best on 9 datasets. The WTA, Random
Oblique, PCA, CCA, and LDA Ferns perform best or similar on 5 datasets thus ranking
overall second, followed by the original RFe that perform best or similar on 3 datasets.
Thus, when an out-of-the-box classifier for unknown dataset properties is required, the
generalized RFe provide good results. However, if the dataset properties are known in
advance, the accuracy can be significantly improved by choosing an adequate embedding.

Ranking 1 2 3

Overall Gen. (9) WTA, Random Obl., PCA, CCA, LDA (5) Orig. (3)

Table 7: Ranking of the Ferns classifiers. The classifiers are ranked according to the
number of datasets on which they performed best or similar to the best, which is stated
in the brackets.
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Dataset name RFo [9] Linear SVM [22] Original RFe [84] Generalized RFe [20] WTA Maximum Order

Australian 86.67± 0.48% 87.10% 86.78± 0.35% 86.55± 0.59% 86.90± 0.55% 86.49± 0.49%
Diabetes 77.29± 0.41% 73.82% 71.82± 0.47% 76.35± 0.73% 72.37± 0.32% 71.91± 0.52%
Ionosphere 93.34± 0.32% 89.17% 90.20± 0.55% 91.81± 0.74% 92.77± 0.32% 88.38± 1.22%
Iris 96.13± 0.55% 86.00% 82.53± 0.30% 95.73± 1.12% 83.73± 0.53% 82.67± 0.00%
Isolet 93.59± 0.24% 91.35% 85.98± 1.21% 86.81± 1.70% 87.35± 0.48% 85.93± 0.57%
Fourclass 99.58± 0.19% 70.77% 68.91± 0.00% 99.00± 0.18% 68.91± 0.00% 68.91± 0.00%
German 76.08± 0.96% 70.20% 74.46± 0.42% 75.32± 0.55% 75.18± 0.34% 75.36± 0.58%
Leukemia 80.00± 4.36% 91.18% 78.82± 3.83% 68.82± 1.61% 80.59± 7.35% 72.35± 3.35%
Liver disorders 73.00± 0.69% 65.50% 69.35± 0.62% 64.16± 1.54% 69.28± 1.28% 69.41± 0.53%
Mushroom 100.00± 0.00% 100.00% 99.99± 0.01% 98.74± 0.30% 99.98± 0.01% 99.97± 0.02%
Sonar 83.28± 1.27% 77.36% 83.47± 1.05% 80.30± 2.06% 82.80± 1.33% 81.06± 1.18%
Spambase 94.20± 0.10% 92.02% 91.56± 0.17% 82.68± 0.96% 93.88± 0.08% 92.71± 0.13%
Splice 96.50± 0.43% 85.47% 82.02± 0.99% 87.63± 3.95% 83.20± 0.49% 80.99± 1.31%
SVMguide1 97.17± 0.15% 84.88% 83.65± 1.00% 94.22± 0.78% 84.48± 0.05% 84.50± 0.00%
Voting 96.14± 0.25% 95.17% 93.23± 0.45% 93.79± 0.96% 95.03± 0.57% 94.99± 0.44%
Vowels 56.84± 2.48% 33.55% 43.81± 1.11% 53.38± 1.72% 44.50± 0.86% 42.94± 1.49%
WDBC 96.17± 0.19% 98.25% 92.97± 0.56% 94.38± 0.28% 93.92± 0.49% 92.89± 0.59%
WOBC 97.28± 0.27% 97.22% 94.88± 0.21% 97.33± 0.19% 95.23± 0.20% 94.50± 0.26%
Wine 97.86± 0.26% 98.33% 94.95± 0.80% 97.56± 0.30% 96.05± 0.53% 95.85± 0.64%

Average 89.00% 83.54% 82.59% 85.50% 83.48% 82.20%

Table 8: Evaluation results for different classifiers and embeddings. Values show the average classification accuracy with its standard
deviation Acc± Accσ. (continued on next page, part 1 of 2)
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Dataset name Direct Ordinal Soft Assignment Oblique
Total Weak Random PCA CCA LDA

Australian 86.84± 0.28% 86.61± 0.39% 85.57± 0.57% 85.10± 0.49% 84.09± 0.28% 86.70± 0.75% 86.55± 0.43%
Diabetes 69.19± 0.63% 70.52± 0.37% 68.54± 0.43% 72.03± 0.61% 72.97± 0.44% 72.55± 0.70% 72.18± 0.38%
Ionosphere 89.87± 0.99% 90.16± 0.82% 86.56± 0.61% 89.02± 0.55% 88.27± 0.37% 80.40± 0.59% 78.92± 0.45%
Iris 82.67± 0.00% 82.67± 0.00% 81.33± 0.00% 87.60± 1.53% 88.27± 1.01% 91.73± 0.76% 83.20± 1.19%
Isolet 84.17± 0.61% 84.93± 1.26% 86.38± 0.96% 86.48± 1.15% 86.35± 1.07% 85.59± 1.15% 91.49± 0.47%
Fourclass 68.91± 0.00% 68.91± 0.00% 68.91± 0.00% 71.46± 0.00% 71.50± 0.10% 71.99± 0.42% 71.46± 0.00%
German 75.00± 0.80% 74.26± 0.98% 39.42± 1.10% 74.82± 1.15% 74.70± 0.61% 76.12± 0.40% 75.66± 0.65%
Leukemia 74.12± 2.46% 68.24± 8.16% 71.76± 4.46% 71.18± 7.32% 82.94± 2.46% 90.00± 3.35% 66.47± 3.35%
Liver disorders 68.51± 0.53% 69.33± 1.05% 68.69± 0.82% 69.13± 0.95% 69.05± 0.55% 64.14± 1.30% 65.89± 0.87%
Mushroom 98.13± 0.26% 97.81± 0.20% 97.42± 0.27% 100.00± 0.00% 100.00± 0.00% 98.86± 0.11% 99.86± 0.03%
Sonar 80.67± 3.06% 79.53± 1.43% 78.38± 2.92% 85.50± 2.63% 87.35± 0.91% 79.89± 0.40% 79.20± 0.86%
Spambase 90.68± 0.23% 90.30± 0.33% 88.13± 0.43% 93.56± 0.13% 93.69± 0.17% 88.49± 0.23% 88.40± 0.04%
Splice 83.78± 1.94% 84.34± 1.37% 82.91± 2.52% 86.97± 1.53% 85.38± 1.64% 85.64± 0.41% 85.62± 0.33%
SVMguide1 84.50± 0.00% 84.50± 0.00% 84.50± 0.00% 91.16± 1.32% 92.19± 0.31% 92.03± 0.67% 92.19± 0.31%
Voting 93.15± 0.75% 93.88± 0.31% 89.93± 0.55% 92.22± 0.41% 93.84± 0.19% 93.50± 0.19% 93.27± 0.34%
Vowels 42.03± 1.41% 43.12± 2.00% 40.13± 0.50% 46.67± 1.96% 47.49± 1.74% 45.15± 2.97% 44.20± 2.95%
WDBC 93.04± 0.46% 92.97± 0.48% 91.28± 0.27% 94.84± 0.36% 92.87± 0.44% 94.20± 0.48% 91.35± 0.23%
WOBC 95.08± 0.34% 95.49± 0.47% 93.32± 0.71% 96.32± 0.06% 95.93± 0.38% 95.70± 0.25% 95.61± 0.46%
Wine 93.35± 0.63% 94.50± 0.91% 92.70± 1.66% 96.65± 0.89% 96.44± 0.63% 98.66± 0.64% 97.67± 0.82%

Average 81.77% 81.68% 78.72% 83.72% 84.38% 83.75% 82.06%

Table 8: Evaluation results for different classifiers and embeddings. Values show the average classification accuracy with its standard
deviation Acc± Accσ. (continued, part 2 of 2)
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Categorical data. Further we evaluate different encoding schemes for categorical data,
although they are only relevant for machine learning datasets. There are different pos-
sibilities to encode categorical features. The two most common methods include 1-of-K
binary coding [4], where each categorical feature is split into K binary features, or nu-
meric coding, such that each category makes up a natural number in the range of [1, K].
Hence, we evaluate these two representations on the Australian and German dataset,
which contain several categorical features. The 1-of-K coding increases the dimensional-
ity from D = 14 for the Australian dataset to D = 42 and from D = 24 to D = 49 for
the German dataset. The used parameters are acquired using a cross-validation over all
parameters for the numeric encoding and kept for the 1-of-K encoding. The Direct Ordi-
nal Ferns are used with total order. We evaluate 5 trails and report average classification
accuracy with its standard deviation.

The results are shown in Table 9. The PCA Ferns and original RFe perform signif-
icantly better for 1-of-K encoding for both datasets. The PCA Ferns benefit from the
lifting to a higher dimension, as they can get more variance from the different dimen-
sions. For the numeric coding all variance is along one dimension, but for the 1-of-K
coding the variance is spread over different dimensions and thus it is possible to derive a
better subspace from a single feature. Further, a higher number of different subspaces is
possible, which reduces the correlation between the different ferns.
The original RFe generates features from comparing two dimensions. If all information
is encoded in one dimension by K values no comparison is possible, but when spread in
different dimensions, comparisons from a single original feature are possible.
The WTA and Maximum Order Ferns, that both rely on the position of the maximum
value, perform inferior for 1-of-K coding, because all values are 0 or 1, thus always se-
lecting the first 1. The same applies for the Direct Ordinal Ferns, as the order is not
distinctive with all values 0 or 1.
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Classifier Australian German
numeric 1-of-K numeric 1-of-K

RFo [9] 86.67± 0.48% 87.07± 0.48% 76.08± 0.96% 75.72± 0.91%
Linear SVM [22] 87.10% 86.38% 70.20% 69.90%
Original RFe [84] 86.78± 0.35% 87.59± 0.36% 74.46± 0.42% 75.12± 0.43%
Generalized RFe [20] 86.55± 0.59% 86.49± 0.85% 75.32± 0.55% 74.06± 0.44%

Random Oblique 85.10± 0.49% 86.78± 0.64% 74.82± 1.15% 75.14± 0.98%
PCA 84.09± 0.28% 87.04± 0.45% 74.70± 0.61% 75.90± 0.74%
CCA 86.70± 0.75% 86.52± 0.40% 76.12± 0.40% 75.08± 0.66%
LDA 86.55± 0.43% 86.58± 0.17% 75.66± 0.65% 74.54± 0.53%
WTA 86.90± 0.55% 87.54± 0.57% 75.18± 0.34% 74.46± 0.23%
Maximum Order 86.49± 0.49% 87.51± 0.40% 75.36± 0.58% 74.48± 0.45%
Direct Ordinal 86.84± 0.28% 86.61± 0.63% 75.00± 0.80% 74.30± 0.61%

Table 9: Evaluation results for different categorical data encoding schemes showing the average classification accuracy with its
standard deviation. Statistically significant improvement/degradation is in boldface.
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4.1.2 Digit recognition

The first specific computer vision problem that we analyze is digit recognition. This
task is a common benchmark for machine learning algorithms, not only in the field of
computer vision. In pure machine learning it is often only used to distinguish between
two digits (classes), as e.g. in [74], but we perform real classification among all classes.
Therefore we use the two most common datasets MNIST and USPS for evaluation.

MNIST. The MNIST dataset [61] is a challenging dataset for handwritten digit recog-
nition. It consists of a training set of 60 000 samples and a test set of 10 000 samples. Each
sample is assigned a class y ∈ {0, 1, . . . 9}. Each digit is size-normalized and centered in
a 28× 28px image. We use the sample images without preprocessing and transform each
image into a 728-dimensional feature vector x ∈ R728, which is then used for training
and testing. The background of the images is black with the digits in white, but with
gray levels at the borders due to aliasing effects. Random sample images are shown in
Figure 16a for each class.

(a) MNIST samples each 28× 28px. (b) USPS samples each 16× 16px.

Figure 16: Sample images of digit recognition datasets.

For the evaluation we compare two different data representations.

1. We use the raw pixel values as input data for the classifier, which is the most simple
representation.

2. As we have a PCA compressed version of the MNIST dataset readily available,
we also analyze this data representation which is commonly used and thus worth
discussing. We apply PCA dimensionality reduction on the full dataset and retain
the 164 dimensions corresponding to the major principal components, which capture
95% of the variance of the original data.

The evaluation results for the MNIST dataset are shown in Table 10. We show the
different classifiers as well as the different data representations. On the raw data our
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proposed WTA Ferns as well as the Random Oblique and PCA Ferns clearly outperform
the baseline RFe. However, the best performing classifier is the RFo, because it employs
a more sophisticated feature selection at each node split.

The reason for these results can be found in the data representation. As one can see
on the sample images, most of the image is black, i.e. the background pixel values are all
zero. 80.88% of all pixels are zero and the dataset contains 67 zero-columns (out of 784),
i.e. pixels that are black in all images resemble a zero-column in the vectorized dataset
representation. This has an effect on all methods when the raw pixel values are used
as input, that should not be underestimated. Especially some of the subspace methods
suffer from this representation. The CCA is very sensitive to those zero-columns, because
they reduce the rank of the data matrix and thus lead to numeric problems. Therefore a
regularization of the CCA [63] is necessary. A look on the optimal parameters shows, that
many input dimensions are used, e.g. the subsampled input dimensionality is T = 32 for
the PCA Ferns for S = 15 features thus T > 2 · S. This increases the chance of selecting
non-zeros columns as features in the random input dimension selection process. The
RFo on the other hand does not suffer from such problems, because it optimizes each
node split and avoids using such zero-columns as they do not contain any discriminative
information.
All zero values within the input sample resemble a tie for our Direct Ordinal Ferns.
This is handled differently for weak and total order. Although the weak order explicitly
encodes these ties, it performs not significantly different. We will discuss and analyze this
in detail in Section 4.1.5. The WTA Ferns provide a high accuracy, because encoding the
position of the maximum value is more tolerant to those zeros, as they can be suppressed
by simply using any value greater than 0. Therefore the WTA uses a large window
size of K = 8, which increases the probability of selecting non-zero values within the
window. The Maximum Order Ferns behave similar, where the best results are obtained
with K = 6. Though if the window size K decreases, the number of features per fern
S increases within the parameter space in order to model the dependence between the
features and to generate stronger classifiers.
As there are only 10 different digits, both datasets contain 10 classes. This limits the
subspace dimensionality of both the CCA and LDA Ferns. A comparison of these methods
that provides the same number of features would thus limit the number of used features
per fern to S = 9. For S = 9 our baseline original RFe performs at 87.19± 0.97% on the
raw pixels. Thus the CCA and LDA Ferns significantly outperform the baseline for the
same number of features, which shows that the features are more discriminative in the
subspace and provide a more efficient embedding. For comparison with the Direct Ordinal
Ferns, the baseline RFe for the same number of features S = 7 performs at 85.27±0.66%.
Thus the Direct Ordinal Ferns slightly outperform the baseline for the same number of
features, due to the stronger base classifiers that encode more inequalities per feature.
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Classifier Raw pixels PCA
Acc Parameters Acc Parameters

RFo [9] 95.04± 0.11% S = 15 94.92± 0.13% S = 15
Linear SVM [22] 91.73% C = 20 18.19% C = 2−15

Original RFe [84] 90.85± 0.46% S = 15 86.95± 0.76% S = 10
Generalized RFe [20] 87.19± 0.46% S = 15 77.87± 3.23% S = 15

Random Oblique 91.65± 0.30%• S = 15, T = 49 87.16± 0.75% S = 10, T = 11
PCA 92.02± 0.23%• S = 15, T = 49 86.06± 1.58% S = 10, T = 11
CCA 90.78± 0.29% S = 10, T = 25 93.34± 0.15%• S = 10, T = 82
LDA 89.07± 0.53%◦ S = 9, T = 25 92.47± 0.04%• S = 9, T = 41
WTA 92.50± 0.26%• S = 5, K = 8, T = 784 87.64± 0.54% S = 11, K = 2, T = 164
Maximum Order 90.75± 0.49% S = 15, K = 6, T = 784 83.74± 0.54%◦ S = 15, K = 2, T = 784

Direct Ordinal
86.43± 1.46%◦ S = 7, total order 80.28± 2.68%◦ S = 5, total order
85.84± 0.85%◦ S = 7, weak order 81.91± 2.23%◦ S = 5, weak order

Table 10: Evaluation results for the MNIST dataset comparing different embeddings by showing the average classification accuracy
with its standard deviation Acc± Accσ.
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Further we stated the results for a different representation, a PCA compression of
the dataset, which shows other interesting properties of the classifiers. On the PCA
compressed data all but the LDA and CCA Ferns perform worse than on the raw pixel
data.
Both the LDA and CCA Ferns provide good classification performance. These subspace
methods require independent variables as input and the class label as dependent variable
for which the transformation is calculated. The prior PCA transformation provides a set
of orthogonal, thus independent [92], variables that are used as input for the classifiers.
Therefore they perform well for the PCA input. When used on the original input data,
this independence assumption is not fulfilled for all input features, thus only providing
suboptimal results.
The Random Oblique and PCA Ferns perform bad in this case. As already described
in Section 3.2.3, the PCA projection creates an orthogonal subspace from the correlated
input values, that resembles its principal components, i.e. captures most of the variance of
the data. When applying the PCA again on this data, no correlations can be calculated, as
all feature dimensions are orthogonal, i.e. uncorrelated and the new principal components
coincide with the previous ones if S ≈ T . If S 6≈ T the repeated PCA transformation
drops random feature dimensions from the subspace, thus the results are much worse
(< 80% accuracy). Thus for S ≈ T the PCA subspace projection becomes close to
identity and a classification similar to the generalized RFe is performed, which simply
thresholds the data values for leaf assignment. The same holds for the Random Oblique
Ferns, where we use different random projections, which mix the orthogonal dimensions
similar to PCA. For this dataset the PCA dimensionality reduction creates a highly
non-linear separable subspace that makes the classification extremely difficult for a linear
classifier, which can be seen for the linear SVM. The principal components that provide
high variance in the full dataset may not contain any discriminative information which
leads to worse classification results.
On the PCA data representation all of the Ordinal Ferns perform worse. From the
numeric values no meaningful classification hypothesis can be derived. A comparison
of two dimensions is not necessarily meaningful in the subspace as in this subspace the
dimensions might be arbitrarily ordered.

USPS. The USPS dataset [60] deals with the task of handwritten digit recognition,
similar to the MNIST dataset. Its training set contains 7291 samples and its test set
2007. Both sets were acquired using different methods, thus it is regarded more complex
than the MNIST dataset. Each scanned digit is deslanted and size-normalized, which
results in a 16× 16px gray-scale image. An input sample (xi, yi) has a dimensionality of
x ∈ R256 and y ∈ {0, 1, . . . 9}. Sample images are shown in Figure 16b. Again, the digits
are written in white on a black background, with shades of gray at the borders.
We evaluate two different data representations:

1. We use the raw pixel values as input, which are normalized to [−1, 1].

2. Due to a smaller dataset size we evaluate the usage of descriptors. Therefore we
extract the Spatial Pyramid Histogram of Oriented Gradients (SPHOG) descrip-
tor [72] from each sample image, which was proposed by [73] for digit recognition
as it archives good performance. We calculate the SPHOG for 3 pyramid levels
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with a block size of {16, 8, 4}. The blocks are 50% overlapping. We use 12 gradient
orientations calculated by using the first order derivative of a Gaussian with σ = 1.
The descriptor dimensionality is 12 · (1 + 8 + 40) = 588.

The evaluation results are shown in Table 11. The reported human accuracy is
97.5% [103] for this dataset. For the raw pixel values the RFo performs best, due to
the sophisticated node split optimization. However, our PCA Ferns significantly outper-
form the original RFe. The data is highly correlated which benefits the PCA embedding.
The rest of our classifiers perform similar to the baseline RFe. However, a comparison
of these methods using the same number of features shows, that for S = 9 our baseline
original RFe performs at 88.58 ± 0.83% on the raw pixels. Again, the CCA and LDA
Ferns significantly outperform the baseline for the same number of features. The baseline
RFe with S = 7 performs at 87.95± 0.25%. Thus the Direct Ordinal Ferns slightly out-
perform the baseline for the same number of features. Nevertheless the Maximum Order
Ferns perform inferior in this case. The Maximum Order Ferns perform best with K = 2,
which makes them similar to the original RFe. However, their feature evaluation uses a
weaker criterion that derogates the performance.
Although 66.92% of all pixels of the USPS dataset are non-zero, it contains no zero-
columns and is normalized to [−1, 1] which relaxes the problem with the monochrome
background. For the normalized data the WTA Ferns with a smaller window size of K = 4
performs best. The window size is reduced due to the normalization that mitigates the
zero value issue.

We also report the performance on the SPHOG representation for the USPS dataset.
The SPHOG representation accumulates gradients orientations over subwindows. The
gradients are mostly located on the edges between digit and background and the uniform
background contains no gradients. Thus the descriptor is sparsely filled with 77.61% non-
zero. However, the gradients can be accumulated for greater areas of the image due to the
pyramidal structure. The usage of the SPHOG descriptor benefits all but the generalized
RFe. The RFo and the LDA Ferns perform best. Due to the pyramidal structure the
features are less correlated, thus less dependent features are modeled, i.e. S is smaller.
Further they are better separable in the, though augmented, subspace, which benefits
the LDA Ferns, as well as the SVM. For the WTA and Maximum Order Ferns a larger
window size is used, due to the increased dimensionality and the sparsity.

In contrast to the machine learning datasets where the parameters strongly depend
on the dataset, the parameters for these datasets perform best, that provide the highest
number of features as well as most modeled joint probabilities. So for example with
M = 50 and S = 15 we use 750 individual features for classification. This shows that
the independence assumption between the individual features does not hold for these
datasets. Especially neighboring pixels are dependent, i.e. correlated.
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Classifier Raw pixels, normalized SPHOG
Acc Parameters Acc Parameters

RFo [9] 93.11± 0.09% S = 15 95.53± 0.14% S = 15
Linear SVM [22] 85% C = 2−9 93.97% C = 2−13

Original RFe [84] 90.26± 0.17% S = 15 93.02± 0.70% S = 10
Generalized RFe [20] 87.53± 0.46% S = 15 87.22± 0.98% S = 9

Random Oblique 90.08± 0.30% S = 15, T = 32 92.60± 0.34% S = 15, T = 19
PCA 91.48± 0.35%• S = 15, T = 32 93.52± 0.50% S = 15, T = 19
CCA 90.05± 0.35% S = 10, T = 16 93.32± 0.31% S = 10, T = 19
LDA 90.12± 0.51% S = 9, T = 16 94.17± 0.28%• S = 9, T = 37
WTA 90.61± 0.30% S = 7, K = 4, T = 256 93.17± 0.24% S = 4, K = 7, T = 588
Maximum Order 88.99± 0.28%◦ S = 15, K = 2, T = 256 92.33± 0.31% S = 15, K = 4, T = 588

Direct Ordinal
88.90± 0.59%◦ S = 7, total order 92.04± 0.35%◦ S = 6, total order
87.80± 0.73%◦ S = 7, weak order 92.17± 0.75% S = 5, weak order

Table 11: Evaluation results for the USPS dataset comparing different embeddings by showing the average classification accuracy
with its standard deviation Acc± Accσ.
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4.1.3 Image classification

Another common task in computer vision is image classification for which a diversity of
datasets exist. In order to evaluate our Ferns classifiers we use the probably most common
dataset which is the Caltech 101 dataset [25]. It contains over 9000 images from 101
object categories thus y ∈ {1, . . . 101}. Sample images are shown in Figure 17. We skip
the additional background class and follow the standard protocol for evaluation. Thus we
use 15 images per class for training and randomly selected 15 from the remaining images
for testing. Each image is represented by Pyramid Histogram Of Visual Words (PHOW)
features [8]. This representation uses the descriptors of interest points and assigns them
to the nearest visual words. The occurrences of visual words are then spatially counted
in histograms, which is done for different spatial extends in a pyramidal manner. The
histograms are then combined over the different spatial extends to form a single descriptor.
The codebook for visual words assignment is computed using k-means [53] and we use a
codebook size of 600. This results in a feature vector x ∈ R12000 for each image. However,
this is a very simple representation by using only a single image cue, i.e. dense SIFT.
For calculating the image representations we use the implementation of [110]. Note, that
we do not use any further kernel mappings [59], which are commonly used with this
representation, despite the fact that the reported accuracies are higher with the kernel
representation. The kernel maps the data into a higher dimensionality, which is hard to
handle because of the memory restrictions on our evaluation system.
Due to the high feature dimensionality we further evaluate a PCA compressed dataset.
Therefore we project the feature vectors on the 1160 major principal components, which
capture 95% of the variance of the original data.

Figure 17: Sample images of the Caltech 101 dataset for randomly chosen categories.

The results for the different representations are shown in Table 12. The reported state-
of-the-art accuracy for this descriptor is 64% using a kernel SVM [110]. The histogram
representation has a very high dimensionality that is hard to handle. We use only 50 ferns
with e.g. 15 features each, thus only a fraction of the 12 000 features are actually used for
classification. The best results are obtained by the SVM which fits the maximum margin
hyperplanes that can separate the data best. The SVM performs also well on the PCA
compressed data, which is in contrast to the MNIST dataset, where the SVM performed
worse. The MNIST dataset has more samples that are scattered in the PCA space, which
makes it harder to fit the hyperplanes. The well separable data also benefits the LDA
Ferns that perform very well on the histogram data.
Also the PCA Ferns outperform the original RFe, because they use a high number of
input features for estimating the variances due to the sparse histograms. However, the
CCA Ferns perform worse because the histograms are sparse which derogates the CCA
method, similar to the zero-column issue described for the digit recognition.
The WTA Ferns perform best among the Ferns for this evaluation, which can be accounted
to the histogram representation. The histograms contain counts of visual words and the
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number of occurrences of a visual word should be the same for similar images, i.e. the
histograms show the same peak. The WTA Ferns use the position of the maximum
histogram bins within the subspace as feature and as a high value bin represents a high
occurrence of a visual word this provides a distinctive feature. This can be seen on the
parameters of the WTA Ferns, where the window size is K = 10 and only a single code per
fern is used. However, the Maximum Order Ferns cannot benefit from this property, as
they do not encode the position of the maximum directly, but only through an inequality
constraint. This weakens the leaf assignment criterion such that K = 2 provides the best
results, which resembles a leaf assignment similar to the original RFe.
The sparse histogram representation does not fit for the Direct Ordinal Ferns either, as
they use only a small number of features per fern, which are presumably tied with empty
bins. Further the Direct Ordinal Ferns require many training samples, as we show later
in an explicit evaluation, which are not present for this evaluation.

For the PCA compressed data LDA and CCA Ferns outperform the baseline by magni-
tude. The reason is the orthogonal PCA space, as already described for digit recognition.
However, in this experiment the PCA compressed dataset is linearly well separable, thus
the linear SVM achieves a high classification accuracy as well.

Although the RFo performs a sophisticated feature selection, it performs comparably
bad for both data representation. For each feature selection we consider

√
12000 ≈ 110

features, which seems too little for the sparse histograms. However, it performs similar
to the original RFe for the histogram representation, and it clearly takes advantage of
the feature selection for the PCA compressed dataset as shown in the results.
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Classifier Histogram PCA
Acc Parameters Acc Parameters

RFo [9] 26.38± 0.72% S = 15 24.26± 1.61% S = 15
Linear SVM [22] 56.17% C = 2−15 57.49% C = 2−15

Original RFe [84] 27.34± 1.36% S = 5 10.89± 0.97% S = 4
Generalized RFe [20] 16.34± 1.06% S = 15 5.77± 0.50% S = 15

Random Oblique 21.62± 0.70%◦ S = 5, T = 94 11.95± 1.75% S = 3, T = 10
PCA 30.05± 1.26%• S = 11, T = 375 10.76± 0.79% S = 5, T = 10
CCA 19.39± 0.58%◦ S = 5, T = 94 32.90± 0.61%• S = 5, T = 145
LDA 35.17± 0.82%• S = 7, T = 375 50.47± 0.55%• S = 7, T = 580
WTA 36.45± 1.24%• S = 1, K = 10, T = 12000 13.15± 1.64%• S = 1, K = 10, T = 1160
Maximum Order 27.59± 1.23% S = 7, K = 2, T = 12000 9.40± 0.80%◦ S = 7, K = 2, T = 1160

Direct Ordinal
24.84± 0.60%◦ S = 4, total order 7.67± 0.72%◦ S = 4, total order
25.70± 1.35%◦ S = 2, weak order 7.88± 0.65%◦ S = 4, weak order

Table 12: Evaluation results for the Caltech 101 dataset comparing different embeddings by showing the average classification
accuracy with its standard deviation Acc± Accσ.
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4.1.4 Face recognition

The last specific computer vision problem that we discuss is face recognition, which is yet
another common application of computer vision. The characteristics of face recognition
datasets are the small amount of training images and the possibly minor changes between
images. We evaluate two different datasets, which are the ORL [93] and the Multi-
PIE [37] dataset, both common benchmarks for face recognition methods. Again, we
use two different data representations. For the ORL dataset we use the normalized, raw
images and for the Multi-PIE we evaluate the PCA compressed image data.

ORL. The ORL face recognition dataset [93] consists of 40 persons each represented
by 10 different images showing them in an upright, frontal position. The images show
variations in lightning, different facial expressions, and were taken at different times with
some persons changing glasses. The background is homogeneous and dark. The initial
images are cropped to 64 × 64px such that the face is centered within the image. Each
image is then normalized to unit norm. We follow the standard evaluation protocol for
this dataset and train the classifier on 5 images of each person and test on the remaining
5 [11]. Therefore we use 10 random splits of the data into training and test set. Sample
images are shown in Figure 18a.

(a) ORL samples each 64× 64px [11]. (b) Multi-PIE samples each 80 ×
80px [88].

Figure 18: Sample images of face recognition datasets.

The evaluation results are shown in Table 13. Our LDA Ferns outperform all methods.
Also the linear SVM performs well, by using the maximum margin constraint it fits the
separating hyperplanes very well due to the little training samples and linear separability.
Our LDA Ferns perform even close to state-of-the-art methods on the dataset, which
report e.g. 95.50% [109] or 96.30% [125]. Our simple Ferns structure also outperforms
the RFo by magnitudes. LDA is well known to provide very good recognition rates for
face detection on image data, because the subspace resembles the most discriminative
features from the image data. Our LDA Ferns work comparable to random sampling
LDA of Wang et al. [117], although this method is a specifically engineered state-of-the-
art method for face recognition.
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All of the Ordinal Ferns perform similar, yet worse. They suffer from difficulties to extract
discriminative features from the image data, as different pixel combinations are prone to
noise, different face alignment, facial expressions, and non-Lambertian surface effects,
e.g. shadows, and do not provide good features for this task.

Classifier Acc Parameters

RFo [9] 80.60± 3.36% S = 15
Linear SVM [22] 92.50% C = 2−7

Original RFe [84] 78.60± 2.16% S = 6
Generalized RFe [20] 75.20± 3.73% S = 10

Random Oblique 77.00± 3.26% S = 5, T = 32
PCA 79.40± 1.95% S = 11, T = 128
CCA 64.00± 2.37%◦ S = 7, T = 32
LDA 93.70± 1.25%• S = 5, T = 64
WTA 75.50± 2.15% S = 9, K = 2, T = 4096
Maximum Order 73.90± 1.67%◦ S = 11, K = 2, T = 4096

Direct Ordinal
71.70± 2.20%◦ S = 5, total order
72.80± 2.41%◦ S = 5, weak order

Table 13: Evaluation results for the ORL dataset comparing different embeddings by
showing the average classification accuracy with its standard deviation Acc± Accσ.

Multi-PIE. Further we evaluate the Multi-PIE dataset [37], which resembles a very
large dataset with more than 750 000 images of 337 persons. The images were recorded
in different sessions and provide different view points, illumination conditions, as well as
facial expressions. From the frontal-most images we detect the faces using a Viola-Jones
face detector [115] and normalize the detections to 80×80px gray-scale patches with zero
mean and unit variance, which are 64 809 faces from 150 persons. As this dataset size is
not tractable memory-wise, we use PCA to reduce the dimensionality by projecting the
patches onto the 254 major principal components that resemble 95% of the variance [88].
We randomly select 10 000 samples as our test set and use the remaining samples for
training. Sample images are shown in Figure 18b. The dataset is more complex, because
the face detector has detection jitter and the face orientations also vary more than in the
ORL dataset.

The results for the different classifiers are shown in Table 14. The reported perfor-
mance is low for all classifiers as this dataset is quite difficult. However, our CCA and
LDA Ferns outperform all other methods by magnitude. This dataset is PCA compressed
and thus the CCA and LDA Ferns perform very well as already discussed for the digit
recognition.
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Classifier Acc Parameters

RFo [9] 31.81± 0.51% S = 15
Linear SVM [22] 14.11% C = 2−15

Original RFe [84] 31.29± 0.99% S = 8
Generalized RFe [20] 14.99± 1.51% S = 15

Random Oblique 31.02± 1.37% S = 8, T = 8
PCA 31.18± 0.89% S = 8, T = 8
CCA 35.74± 0.64%• S = 7, T = 16
LDA 50.42± 0.31%• S = 9, T = 64
WTA 30.88± 0.84% S = 7, K = 2, T = 254
Maximum Order 26.14± 0.46%◦ S = 15, K = 2, T = 254

Direct Ordinal
22.21± 2.54%◦ S = 4, total order
22.00± 2.00%◦ S = 5, weak order

Table 14: Evaluation results for the Multi-PIE dataset comparing different embeddings
showing the average classification accuracy with its standard deviation Acc± Accσ.

4.1.5 Ferns analysis

We have presented the results for different specific datasets and in the following para-
graphs we analyze different aspects of our proposed Ferns in detail. First we show the
influence of the different parameters and then we compare the different thresholds for the
Oblique Ferns and present evaluation results for the Subspace Ordinal Ferns. Further we
compare the total and weak order for Direct Ordinal Ferns and show how our classifiers
react to noise perturbed input. Then we discuss the influence of the number of training
samples on the classification accuracy and show effects of the probabilistic formulation.

Oblique Ferns parameter analysis. In comparison to the original RFe, our Oblique
Ferns require one more parameter, namely the input dimensionality T . We analyze the
parameters in the following paragraphs for the Oblique Ferns.
Our Oblique Ferns require parameters for the number of random input features T and
the number of features per fern S. We perform two experiments, one by varying T and
fixing S and the other one vice versa. We report the average classification accuracy with
its standard deviation for each parameter combination acquired from 5 random trails.
The parameters are varied within the limits that have already been shown in Table 6.

We first show the effects of the parameter choice for the PCA Ferns, with the evalua-
tions depicted in Figure 19 for the USPS dataset. Some parts of the plot are spared out,
because S > T are non-valid parameter combinations.
For a fixed S the accuracy decreases when T gets larger, because more dimensions are
used for calculating the subspace projection. Thus feature-specific data properties of
the dataset get neglected towards more global data properties. This has similar effects
as applying PCA dimensionality reduction on the full dataset. Hence, using the local
data properties is advantageous. Further, by using more random input dimensions T the
projections change towards a global representation and there is also information in the
other neglected components that is missed, because we are still using only the S most
major principal components. Thus using most of the T dimensions is better, although
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this depends on the data as seen for the evaluations before. This can also be observed on
the second plot, where T is fixed and the performance increases with using more features
of the subspace. However, the increase gets smaller when S gets closer to T and increases
only marginally between S = 10 and S = 15. The projections are sorted for our PCA
Ferns with the major principal components in the front and the lower in the back, thus
the prior dimensions contain the higher variances. Only minor variances are used for
the latter dimensions, which are less significant and thus only contribute to the result
marginally.
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Figure 19: Classification accuracy with its standard deviation Acc±Accσ for PCA Ferns
using different parameters. Shown for the USPS dataset.

The same evaluations can be conducted for the Random Oblique, LDA, and CCA
Ferns. However, the results are similar and for the sake of compactness we spare them
out. Nevertheless the input dimensionality T depends on the data structure, where some
datasets might need more and others less input dimensions for an optimal result.
The subspace is limited for the LDA and CCA Ferns by the number of classes, i.e.
S ≤ H − 1 = 9 and S ≤ H = 10, for the USPS dataset. But similar to the PCA
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subspace, the performance increases by concerning more subspace dimensions per fern.
The Random Oblique Ferns provide the best results if T ≈ S by simply using different
projections per fern. Using the random oblique subspace for dimensionality reduction
does not make sense, unless there are dimensions that contain no information and thus
can be suppressed, as e.g. the monotone background in the MNIST dataset.

Ordinal Ferns parameter analysis. Further we analyze the Ordinal Ferns in the
same manner.
The Direct Ordinal Ferns have a straight forward parametrization similar to original RFe,
as they need only one parameter, which is the number of features per fern S and the type
of order, i.e. total or weak. These properties are shown in different experiments in detail
in the next section.
However, the WTA and Maximum Order Ferns require further parameters for the win-
dow size K, the input dimensionality T , and the number of features or codes per fern S,
which we evaluate next.
The influence of the parameters for the WTA Ferns are shown in Figure 20 for the USPS
dataset and in Figure 21 for the Ionosphere dataset. We use two different datasets in
order to show the different behavior of the window size depending on the complexity of
the dataset. Again, impossible configurations are spared out, as e.g. the required memory
for KS > 32768 is too large.
For both datasets a larger subspace T of the feature selection benefits the classification
accuracy. A larger subspace for feature selection leads to more possible window combi-
nations

(
T
K

)
and a smaller correlation between the individual hash codes. The increase is

significant for the first few dimensions, but flattens when a certain number of dimensions
is reached.
A larger window size K increases the number of inequalities per feature and thus increases
the strength of each fern. However, this is not advantageous for all datasets. While for
the USPS the best result is achieved with a window size of K = 6, the Ionosphere dataset
requires a smaller window size of K = 2 for good results. With a larger K the ferns tend
to overfit and more samples would be necessary to provide reasonable leaf probabilities.
Similar properties can be observed for the number of codes per fern. While more codes
per fern provide better results for the USPS dataset with S = 7, the optimal parameter
for the Ionosphere dataset is S = 5. The USPS dataset resembles highly correlated data
thus modeling more dependencies is beneficiary, which is in contrast to the Ionosphere
dataset, because it contains a less correlated data structure.

Similar evaluations can be conducted for the Maximum Order Ferns. Again, more
input dimensions T provide less correlated features per fern, which increases the classi-
fication performance. This is also unison with the original RFe, which potentially use
the full input space for feature selection. Again, more features per fern S provide better
results. However, the performance increases with more features per fern further, while
for the WTA Ferns the curve already flattens for S = 7. The Maximum Order Ferns
are more prone to overfitting due to the randomization in the feature generation process,
which we show in the following section for the evaluation of the probabilistic formulation
in detail.

At last we discuss our Soft Assignment Ferns, which require two parameters λ and
θ for calculating the feature weights. Therefore we evaluate the Soft Assignment Ferns
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(d) Acc±Accσ over S and K with T = 256.

Figure 20: Classification accuracy with its standard deviation Acc±Accσ for WTA Ferns
using different parameters. Shown for the USPS dataset.
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Figure 21: Classification accuracy with its standard deviation Acc±Accσ for WTA Ferns
using different parameters. Shown for the Ionosphere dataset.
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for the Isolet dataset, which shows significantly different results compared to the Direct
Ordinal Ferns.
If no additional noise is added, the influence of the parameters on the classification result
is negligible, as shown in Figure 22d. Thus we add Gaussian noise to the feature values
with zero mean and a standard deviation of 40% of the feature value. The threshold
θ models the number of features, i.e. leaves, that are concerned for soft assignment. A
lower threshold leads to more leaves that are considered and vice versa. If noise is added,
weighting more leaves provides better accuracy. For θ = 0.9, which almost resembles the
case of no soft assignment, the accuracy is worst due to the fact that the highly perturbed
input features lead to noisy leaf assignments. However, the exponential factor λ does not
effect the result much and might be neglected.
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Figure 22: Classification accuracy with its standard deviation Acc ± Accσ for Soft As-
signment Ferns using different parameters. Shown for the Isolet dataset.

Subspace Ordinal Ferns. Next we evaluate the Subspace Ordinal Ferns. As their
results strongly depend on the used subspace method we do not evaluate them on all
datasets, but on some selected.
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The evaluation results are shown in Table 15. We use the Caltech dataset that provides
a high number of classes which does not penalize the LDA subspace, further the ORL
dataset that represents raw image data with a reasonable number of classes, the Isolet
dataset with a reasonable number of classes but for non-pixel data, and the USPS dataset
with pixel representation and a small number of classes thus causing a small LDA sub-
space.
We evaluate 5 random trails and report average accuracy with its standard deviation. We
report the accuracy for the optimal parameters which are chosen from a cross-validation
among the parameter space. Both PCA versions are trained with the same randomly
chosen input dimensions.
The magnitude of each subspace dimension can change due to the subspace projection,
which influences the ordinal analysis. As we already discussed for the ordinal embeddings,
the magnitude of the feature dimensions must be similar for ordinal analysis, i.e. derived
from one feature scale. This requirement might be violated by the subspace projection,
and therefore in this case a feature normalization is required. However, an evaluation
has shown that there is no significant difference in the accuracy and by neglecting the
normalization we can reduce the runtime.
For the Caltech dataset the accuracy of the PCA Ferns decrease from 30.05% to 25.93%
and 27.60% compared to the threshold leaf assignment. The LDA Ferns decrease from
35.17% to 30.65%. However, for the ORL dataset the accuracy of the PCA Ferns increase
from 79.40% to 82.00% and 83.60%, though the LDA Ferns’ performance decreases sig-
nificantly from 93.70% to 86.30%. For the Isolet dataset all evaluated Subspace Ordinal
Ferns increase their performance. For the PCA Ferns the performance rises from 86.35%
to 88.66% and 88.79%, and for the LDA Ferns from 91.49% to 93.75%. On the USPS
dataset the Ferns do not show any statistically significant difference in the accuracy
compared to the threshold leaf assignment.

Dataset PCA + original PCA + WTA LDA + WTA

Caltech 101
histograms

25.93± 1.92%◦
S = 5, T = 94

27.60± 1.16%◦
S = 3, T = 94

30.65± 1.14%◦
S = 3, T = 375

ORL
raw pixels

82.00± 1.50%•
S = 5, T = 64

83.60± 3.38%•
S = 3, T = 64

86.30± 0.76%◦
S = 3, T = 32

Isolet 87.57± 0.28%•
S = 7, T = 39

88.17± 0.82%•
S = 3, T = 39

93.75± 0.20%•
S = 5, T = 309

USPS
raw pixels

91.12± 0.43%
S = 11, T = 64

90.72± 0.37%
S = 7, T = 64

89.55± 0.27%
S = 7, T = 32

Table 15: Comparison of different Subspace Ordinal Ferns showing the average classi-
fication accuracy with its standard deviation Acc ± Accσ. • denotes superior accuracy
compared to threshold leaf assignment and ◦ inferior accuracy.

In order to understand these partially contradictory results we have to take a closer
look on the leaf assignment for the case of ordinal and threshold leaf assignment. There-
fore we visualize the decision boundary of a single assignment bit, which is shown in
Figure 23. We compare the threshold split with the simple ordinal split of the original
feature evaluation method due to simplicity. The WTA decision boundaries are not easily
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visualizable, but for a window size of K = 2 they are the same as for the original feature
evaluation method. While the threshold provides an axially parallel split in the subspace,
the ordinal split is the bisecting line between the x1- and x2-axis for x1, x2 ∈ R+.

Figure 23: Topology of leaf assignment for threshold (left) and ordinal (right), i.e. original
feature evaluation method, in a two dimensional subspace.

Obviously the splits are different in the subspace. While the threshold uses axially
parallel decision boundaries, they are oblique at 45◦ angles in the ordinal case. However,
the separability of the data through leaf assignment strongly depends on the structure of
the data in the subspace. Therefore we plot the subspace for the two different subspace
methods for the ORL dataset, which shows an improvement for the PCA and degradation
for the LDA subspace, and further for the Isolet dataset, which shows more samples and
also an improvement for the PCA subspace. The scatter plots of the data are shown
in Figure 24 with the corresponding decision boundaries for x1 < x2 as split criterion.
We project the data on the two major subspace components. However, the data is zero
centered, which creates rather strange decision boundary for the negative feature values.
The LDA subspace has an elongated shape for the ORL dataset, while the PCA subspace
is more spherical as well as for the Isolet dataset. Considering the leaf assignment for the
LDA subspace, most of the data is located in one leaf, which reduces the commonality
within the leaves and leads to worse classification accuracy. However, the PCA subspace
for the ORL dataset separates the data into two balanced sets, though with reduced com-
monality because the data is obviously linearly non-separable. For the Isolet dataset the
PCA subspace with ordinal assignment works well, because the data is spherical and thus
the data separation is balanced. Further the form of the data benefits the oblique splits,
as they increase the commonality of the data in the leafs compared to axially parallel
splits.
The subspace methods create a new orthogonal subspace where e.g. the variance or the
inter-class distance is maximized along each axis. This benefits the threshold assign-
ment, which creates the splits orthogonal to these axis along which the methods property
is maximized. By using the oblique decision boundaries in the subspace, i.e. ordinal
leaf assignment, these maximization properties are ignored which leads to suboptimal
leaf assignment. However, one cannot control the subspace properties, as they depend
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on the original data structure and the projection method. Thus for some datasets the
classification accuracy is improved with the ordinal leaf assignment.

(a) ORL with PCA subspace
T = 128.

(b) ORL with LDA subspace
T = 64.

(c) Isolet with PCA subspace
T = 39.

Figure 24: Scatter plots of the data in the subspace with decision boundaries.

Oblique Ferns threshold selection. In Section 3.2.1 we proposed two different thresh-
old selection methods for the Oblique Ferns. The first and computationally fast method
uses the median to bisect the data for each assignment threshold. Our second and more
sophisticated method optimizes the threshold on the true positive and true negative rates
on the training data. Thus we want to evaluate the effects of the threshold on the classi-
fication accuracy. We compare the median threshold to the optimal threshold on several
datasets. We use the same random input dimensions for both methods in order to mit-
igate random training effects. The optimal parameters, i.e. the input dimensionality T
and the number of features per fern S, are determined from a cross-validation over the
parameter space using the median threshold. The optimal parameters are then used for
both methods. For the optimal threshold we sample t = 100 thresholds equidistantly
between the maximum and minimum value of the individual dimension, from which our
proposed algorithm selects the best. We perform 5 trails and report the average classifi-
cation accuracy with its standard deviation.

The results for some selected datasets are shown in Table 16. For the Australian and
USPS dataset there is no statistically significant difference between the two methods.
Nevertheless there are significant improvements with the optimal threshold method for
the Ionosphere and Isolet dataset.
Our Subspace Ordinal Ferns also use a subspace projection but with a different leaf assign-
ment in the subspace that uses non-axially parallel decision boundaries as we described
before. However, the results show a similar behaviour for the datasets. For the Isolet
dataset the Subspace Ordinal Ferns with LDA improved the accuracy to 93.75% and with
PCA to 88.17%, which is even slightly better than our optimal threshold. Though the
performance of the Subspace Ordinal Ferns did not increase for the USPS dataset where
PCA scored 91.12% and LDA 89.55%, which is slightly worse than the optimal threshold.
However, the optimal threshold is computationally more expensive and does not neces-
sarily provide better results. The performance depends on the separability of the data in
the subspace as we show next.

The separability of the data in the subspace can be observed from the scatter plots
and the leaf distribution. Figure 25 shows the leaf distribution for the median and for
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Dataset PCA Ferns LDA Ferns
Median Optimal Median Optimal

Australian 85.04± 0.55% 85.10± 0.47% 86.93± 0.45% 86.72± 0.47%
Ionosphere 86.96± 0.58% 91.69± 0.37% 79.31± 0.94% 87.93± 0.51%
Isolet 86.22± 1.01% 87.26± 0.88% 90.70± 0.60% 92.25± 0.87%
USPS 91.35± 0.24% 91.40± 0.44% 90.28± 0.33% 90.15± 0.52%

Table 16: Comparison of different threshold methods for Oblique Ferns showing the av-
erage classification accuracy with standard deviation Acc±Accσ. Statistically significant
improvements are marked in boldface.

the optimal threshold as well as the scattered data in the subspace for the Ionosphere
dataset. Therefore we use the PCA subspace with T = 9 for this illustration and show the
first two dimensions of the subspace, i.e. the major principal components of the subspace.
However, the same principles apply to the other subspace methods, which are not shown
here explicitly. The Ionosphere dataset contains two classes that can be well separated
in the subspace by the optimal threshold, as shown in the scatter plot where the two
different thresholds are compared. This increases the commonality of the data within
the leaves compared to the median threshold, which is indicated by the higher peaks
in the histogram. A higher leaf commonality is beneficiary for an increased accuracy.
Further the optimal threshold algorithm calculates the threshold for each assignment bit
by using the one-vs-all approach as described before. However, the Ionosphere dataset
contains only two classes which resembles an one-vs-one approach. This benefits the
optimal threshold algorithm, because the separation problem is easier for two classes,
thus achieving better results.

The same plots are shown in Figure 26 for the USPS dataset. We use a LDA subspace
with T = 16 and show the first two dimensions of the subspace. The multi-class data
cannot be well separated as shown in the scatter plots. However, the optimal method
finds the optimal global solution, which in this case separates the best separable class
from the rest. The best separable class is scattered in the top blue cluster, which is class
label 2 that corresponds to the digit 1. This increases the commonality of the data in
the leaves for one class, but the rest is slightly worse separable and worse balanced, as
e.g. the leaf that corresponds to the top right decision area contains very little samples.
The median threshold simply chooses the median that bisects the data, which provides a
similar accuracy in this case by enforcing more balanced leaf distributions. Although the
optimal threshold increases the classification accuracy for class 2 by 2%, the accuracies
of the other classes decrease. Further, the distribution of the leaves shows, that there is
hardly any change between the two methods, thus the similar accuracies.

73



0

50

100

150

200

250

300

0

2

4

6

8

10

12

Class

Leaf

(a) Leaves with median threshold.

0

50

100

150

200

250

300

0

10

20

30

40

50

Class

Leaf

(b) Leaves with optimal threshold.
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(c) Data in subspace.

Figure 25: Leaf distributions and scatter plots with thresholds. Shown for the Ionosphere
dataset.
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(a) Leaves with median threshold. (b) Leaves with optimal threshold.
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(c) Data in subspace.

Figure 26: Leaf distributions and scatter plots with thresholds. Shown for the USPS
dataset.
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Direct Ordinal Ferns order. Our Direct Ordinal Ferns support two different order
methods that handle ties within the input data differently. Therefore we evaluate the two
different orders, i.e. weak and total order, and show the effects for different datasets. In
the previous experiments we used randomly chosen input features for all methods. In this
evaluation we choose random features, but we use the same features for both methods in
order to eliminate any influence from the random input feature selection. We perform 5
trails and report average classification accuracy with its standard deviation.

The results are shown in Table 17. The difference between the classification accu-
racy of the different orders is statistically not significant for all datasets. The datasets
Ionosphere and Isolet cause hardly any ties in the input data, but the MNIST dataset
has a lot of background pixels, i.e. 0, that cause ties. However, the Australian dataset,
which contains several categorical input variables that cause ties, does not benefit from
the weak order either.
The minor differences in the accuracies are caused by the increased number of possi-
ble permutations for weak order which imposes more leaves. If there are no ties, the
leaves that correspond to the tied permutations are empty. Thus the normalization of
the frequency matrix with the Dirichlet prior increases its influence. The samples are
more spread and the density in the frequency matrix is lower. This causes a difference
in the classification accuracy, but with the Dirichlet prior u→ 0 the difference decreases
towards zero.
The evaluation of the MNIST dataset, which contains ties, does not show this behavior.
With a Dirichlet prior u = 0.01 the weak order performs at 87.63± 0.50% and the total
order at 87.23± 0.47%. However, the statistical significance is minor. If there are lots of
equal feature values, weak order performs better because it explicitly encodes this equal-
ity. If there are not many equal features there is no benefit of a different order. Thus the
total order achieves the same accuracy but with lower memory requirements.

Dataset Weak order Total order Parameters

Australian 86.29± 0.42% 86.00± 0.51% S = 5
Ionosphere 90.20± 1.08% 89.81± 0.56% S = 5
Isolet 84.61± 1.32% 84.54± 1.19% S = 5
MNIST 85.04± 1.15% 84.81± 1.30% S = 7

Table 17: Comparison of different order methods for Direct Ordinal Ferns showing the
average classification accuracy with its standard deviation Acc± Accσ.

Noise. Further we show the effects of noise on the classification accuracy. Noise is an
important factor in classification, as it perturbs the samples and thus causes potentially
wrong class assignments or wrong learned models. In order to analyze the effects of
noise on our Ferns classifiers, we use simple Gaussian feature noise. Therefore we add
Gaussian noise with zero mean and variable standard deviation to the data. We perturb
the training and test samples independently, where the standard deviation of the noise
depends on the data range of the individual feature dimension. The standard deviation
is varied in the range of [0 . . . 40%] of the maximum value of the dimension. We perform
5 trails and report average classification accuracy with its standard deviation.
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The influence of the noise perturbation is shown in Figure 27 for the USPS dataset.
The evaluation shows, that each Ferns classifier reacts differently on the noise perturba-
tion of the data. The USPS dataset contains image data which is known to be exposed
to noise.
From the Oblique Ferns the Random Oblique Ferns show the worst performance, because
the noise has a direct impact on the subspace projection. For PCA Ferns a small noise
perturbation does not change the subspace at all, as the principal components that re-
semble the variance of the input stay the same. This leads to a resistance for a small
noise perturbation, but if the noise level increases, the noise itself makes up a major
part of the variances which deteriorates the result. The CCA and LDA Ferns show a
similar behavior. They start at lower accuracy, but loose less accuracy than the PCA
Ferns. CCA maximizes the correlations between the noisy input data and the class labels
thus the Gaussian noise evens out. A similar behavior shows the LDA by increasing the
inter-class distance and minimizing intra-class distances it can cope with noise well, by
increasing inter-class distance. These observations are in accordance to [5].
However, all Oblique Ferns except the Random Oblique Ferns are more resistant to noise
compared to the original RFe and Ordinal Ferns. The original RFe is shown in both plots
for comparison.
The Direct Ordinal Ferns have inferior tolerance to noise, as already shown in the simu-
lation results in Section 3.3.4. A single change in the input order causes a different leaf
assignment and thus different class probabilities. Our Soft Assignment Ferns mitigate
these noise problems, as already theoretically described. For high noise levels they per-
form similar to all other Ordinal Ferns. However, in the absence of noise they score worse
results, because they smooth the conditional probability among the leaves. Further they
have a high computational complexity, which makes them inferior to the other Ordinal
Ferns.
All other Ordinal Ferns perform similar with a decreasing accuracy for higher noise lev-
els. However, the WTA Ferns perform better than the original RFe and they can keep
the advance in accuracy over the other classifiers, because the maximum value is more
tolerant to noise. Also the generalized feature evaluation outperforms the original for
high noise levels. Due to the threshold the assignment bit stays the same if the value
including noise is smaller or larger than the threshold, which is especially given if the
value differs significantly from the threshold.

The evaluation on a second dataset, the Isolet dataset, is shown in Figure 29. The
dataset resembles numeric features that are non-pixel values and it is considered a noisy
dataset by default [24]. All of the Oblique Ferns show similar characteristics as for the
USPS dataset. However, the PCA Ferns perform significantly worse for this dataset. A
reason for this result can be found in the data structure. The scatter plot of the two
datasets in Figure 28 shows, that the Isolet dataset has a more spherical shape and the
USPS an elongate shape with highly correlated dimensions. Thus the major principal
component of the PCA is located along this major variance which is, due to the scale,
rather robust to noise. The Isolet dataset, however, is more prone to noise as projections
of the data on the principal components of the PCA exceed the leaf assignment threshold
easier due to the greater distance of the features to the principal components, and thus
deteriorate the result.
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(b) Ordinal Ferns.

Figure 27: Classification accuracy with its standard deviation Acc ± Accσ over the per-
centage of noise added. Shown for the USPS dataset.
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Figure 28: Scatter plots for USPS and Isolet datasets.
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The Direct Ordinal Ferns perform worst of all Ordinal Ferns. However, as noise
is present in all samples the Ordinal Direct Ferns are not inferior if adding even more
noise, because the less correlated data structure tolerates this. The Soft Assignment
Ferns perform similar to the other Ordinal Ferns, even outperforming most of the other
Ordinal Ferns for high noise levels. Thus the soft assignment is still beneficiary for high
noise levels.
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(b) Ordinal Ferns.

Figure 29: Classification accuracy with its standard deviation Acc ± Accσ over the per-
centage of noise added. Shown for the Isolet dataset.

Training samples. Further we analyze how the number of training samples influences
the classification accuracy, as the different Ferns classifiers directly depend on the estima-
tion of the probabilities from the frequency matrix. Therefore we use n out of the total N
training samples with n ∈ {0.1 ·N, . . . N} for training and discard the rest. However, we
do not change the overall class distribution while subsampling the training samples. The
test samples are not altered and the full test sets are used for testing. For training we use
the optimal parameters that are derived from the cross-validation within the parameter
space using all samples.
The influence on the number of training samples is shown in Figure 30 and 31 for the
USPS and the Isolet dataset, respectively. The tendency is the same for all types of RFe,
as they increase their accuracy with the number of training samples.

The more training samples are provided, the better the approximation of the proba-
bilities through the frequency matrix. Thus by using more samples, a better classification
accuracy can be achieved.
For both datasets our LDA Ferns show the best results for a small number of training
samples. Maximizing the inter-class distances, as LDA does, increases the margin for
new samples. The PCA Ferns show the biggest difference between few and many train-
ing samples. For a few training samples only small or noisy variances exist in the data,
thus the principal components do not resemble the true variance of the full dataset which
derogates the accuracy.
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(b) Ordinal Ferns.

Figure 30: Classification accuracy with its standard deviation Acc±Accσ over the fraction
of training samples used n

N
. Shown for the USPS dataset.
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(b) Ordinal Ferns.

Figure 31: Classification accuracy with its standard deviation Acc±Accσ over the fraction
of training samples used n

N
. Shown for the Isolet dataset.
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The Ordinal Ferns perform all very similar except the Direct Ordinal Ferns, which perform
worst for a small number of training samples. Due to their strong base classifiers, they
tend to overfit the small amount of training samples.
Especially if we use more features per fern, thus increase the number of leaves, the Ferns
start to overfit the training samples. For example S features per fern and N samples
make N

2S
samples in average per leaf. If there is a small number of training samples,

many leaves might be empty. This increases the influence of the Dirichlet prior, which is
supposed to mitigate these empty bins in the frequency matrix. The final classification
result of the full ensemble might be performed by only a small number of ferns, that
actually learned a relevant and discriminative feature combination. This circumstance
makes the Ferns classifiers prone to wrong classifications. However, this issue can be
mitigated by providing more training samples, by using more ferns thus evaluating more
feature combinations, or by using less features per fern. Though using less features per
fern can deteriorate the results, because this is a data depending parameter. Increasing
the number of ferns in the ensemble is also limited, as it exhibits saturation effects which
we show in the next section.
The fundamental problem of providing enough training data to efficiently estimate the
conditional probabilities is solved in the original RFe application by generating a large
amount of artificial training data [84]. However, this is done for image data and it
is significantly more difficult to generate representative training examples for machine
learning datasets.

Effects of probabilistic formulation. The core element of the Ferns classifiers is
their Semi-Naive Bayesian feature combination. The joint probabilities are modeled by
combining the features within the ferns, depending on the degree of dependence between
the features. This motivates some evaluations that deal with this probabilistic formula-
tion. Therefore we first evaluate the Semi-Naive Bayesian feature combination and then
how the ferns perform with different ensemble sizes, i.e. more features in total.

Complete independence between the features is a very extreme formulation that we
relaxed by modeling the joint probabilities in groups of S = C

M
features. Thus using the

joint probabilities from Equation 5 of a fern Fm the conditional probabilities are

p(f1, f2, . . . , fC |Y = yi) =
C∏
c=1

p(fc|Y = yi) =
M∏
m=1

p(Fm|Y = yi). (55)

The degree of modeling the joint probabilities can be varied by using a different number
of features per fern S. This property depends on the complexity of the data as we show
next. Therefore we keep the overall number of features C = 1000 constant and model
the trade-off between the number of ferns and the features per fern thus M = bC

S
c for

S ∈ {1, . . . 20}. For each S we run 5 trails and report the average classification accuracy.
The best working fern-specific parameters, as e.g. the subspace dimensionality T , are
selected from a cross-validation among all possible parameters of Table 6.
We show the results for this evaluation in Figure 32 for the USPS dataset. Due to restric-
tions for some Ferns, e.g. memory or T ≥ S, not all curves reach S = 20 features. Oblique
Ferns only perform well for a higher number of features per fern S, thus simply using the
major component of each projection is not sufficient for good results. However, the choice
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of S depends on the subspace dimensionality T . The major projection vectors, e.g. the
principal components, provide the highest increase in performance. In the USPS dataset
the pixel values are highly correlated, thus modeling more dependent input dimensions
leads to better results.
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(b) Ordinal Ferns.

Figure 32: Classification accuracy with its standard deviation Acc ± Accσ for the same
number of features overall but different number of features per fern. Shown for the USPS
dataset.

The same evaluation is provided for the Isolet dataset in Figure 33, which has simi-
lar properties as the USPS dataset with respect to the dimensionality, dataset size, and
number of classes. Some embeddings provide worse performance with higher number of
features per fern. The Isolet dataset contains less correlation between the features than
the USPS dataset, which leads to overfitting for a higher number of features per fern S.
However, the generalized feature evaluation and the Maximum Order Ferns show a fairly
constant accuracy even for higher values of S, which indicates their tolerance to overfit-
ting. By using randomized features, they do not overfit the data.

Further we evaluate the influence of the number of features on the classification ac-
curacy. Therefore we keep the number of features per fern constant and increase the
overall number of features by using more ferns M . The number of features per fern is
set to the optimal parameters for the dataset found by using a cross-validation over the
parameter space. The number of ferns is varied with M ∈ {1, . . . 1000}, thus using S ·M
features total. For each number of ferns we randomly train 5 times and report the average
classification accuracy.
The results are shown in Figure 34 for the USPS dataset. The classification accuracy
increases asymptotically with the number of base classifiers, i.e. ferns, for all of our Ferns
classifiers. This property is already familiar from the RFo [9]. This characteristic of
the classifier is independent of the dataset and its properties, and can be shown for all
datasets. Also the standard deviation of the classification accuracy declines with more
base classifiers. However, increasing the number of features takes more time and only in-
creases the accuracy asymptotically. For selecting the optimal number of base classifiers
we can refer to e.g. [99].

For M = 1 the plot also shows the “strength” of a single fern. Of course, the RFo
creates the strongest base classifier within the ensemble, because it chooses the best
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(b) Ordinal Ferns.

Figure 33: Classification accuracy with its standard deviation Acc ± Accσ for the same
number of features overall but different number of features per fern. Shown for the Isolet
dataset.
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(b) Ordinal Ferns.

Figure 34: Classification accuracy with its standard deviation Acc±Accσ over the number
of base classifiers M for a fixed number of features per fern. Shown for the USPS dataset.
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features for each tree node but the improvement from one to multiple base classifiers is
small. However, PCA has the lowest classification accuracy of a single Oblique Fern,
but can increase the accuracy most. LDA Ferns, WTA Ferns and original RFe have the
strongest base classifier of which WTA has the strongest ensemble.
It is often assumed, that each base classifier, i.e. fern in our case, provides an independent
prediction by using different random features per fern. However, this assumption does
not hold because the random feature selection does not necessarily provide independent
ferns [9].
The LDA Ferns provide strong base classifiers, but their accuracy saturates faster with
the number of ferns M , because the ferns are less independent. LDA derives a similar
subspace for each fern from the different random input dimensions, i.e. the subspace that
separates the classes best. However, the PCA subspace provides more independent ferns,
because the principal components depend stronger on the chosen input features, and thus
deriving different projections for each set of input features. This benefits the ensemble
structure, because the ferns are more independent and thus the saturation effect starts
with a higher number of ferns M . The WTA Ferns have strong base classifiers and can
increase the accuracy with M further, as they have more possible window configurations
than binary comparisons of the original RFe, i.e. the number of possible features

(
D
2

)
<(

D
K

)
if K > 2. This increased number of possible features leads to less correlated ferns.

Although the base classifiers of the generalized RFe and the Maximum Order Ferns are
the weakest, they can increase the accuracy for a higher number ferns in the ensemble
even further, because the randomized features provide less correlated ferns.

In the derivation of the Semi-Naive Bayesian framework in Section 3.1 we assumed an
even class distribution and thus have not accounted the prior probabilities. For most of
our problems this assumption holds, but some machine learning datasets have a non-even
class distribution. However, evaluations have shown that this assumption still works well,
because adding priors shifts the classification results towards the major classes, causing
worse results at the minor class. The Dirichlet prior of the frequency matrix already
accounts for these non-balanced cases.

4.2 Interest point recognition

Özuysal et al. [84] initially proposed the RFe classifier for planar object tracking, which is
interest point recognition in the broader context. Thus we also evaluate our embeddings
for the purpose of interest point recognition. Therefore we first evaluate 3D interest point
recognition and further planar object tracking using our proposed Ferns classifiers.

4.2.1 3D interest point recognition

For the evaluation of 3D interest point recognition we use the datasets named Trevi and
Liberty provided by Winder and Brown [120]. Each dataset contains over 100k image
patches, which are sampled from a 3D scene reconstruction. Therefore the 3D points are
back-projected into the original images and a 64 × 64px patch P ∈ R4096 is extracted
around the back-projected point. Thus each 3D point P is associated with 2 to over 50
patches which show the same 3D point, but from different viewpoints, scene brightness
or partial occlusions. Figure 35 shows the most common image patches for different
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datasets. All patches share the same canonical scale and orientation. This procedure is
idealized because given an actual interest point detector, the localization, orientation and
scale accuracy is much lower. Nevertheless the datasets provide a good starting point and
basis for an evaluation. The Liberty dataset contains over 450k patches and the Trevi
dataset over 100k. The Liberty dataset is considered more complex, because it contains
much repetitive structure which induces similarities between different 3D points and it
contains less patches per 3D point than the Trevi dataset.

(a) Trevi. (b) Liberty.

Figure 35: Sample input images each 64× 64px for the datasets Trevi and Liberty. Each
column depicts patches associated with one 3D point.

Each 3D interest point can be represented in different ways, as it consists of many
patches. Therefore we train our classifiers using the most common representations which
include mean [94] or median [67] over all patches of the same 3D point, or all patches [69].
We also extract the SIFT descriptor [71] from the patches and evaluate the classification
performance in the 128-dimensional feature space. We use the implementation of [110]
to calculate the SIFT descriptors. Therefore we locate the interest point in the center
of the patch and calculate the Difference of Gaussians (DoG) interest point orientation,
which corresponds to the dominant gradient orientation. The scale is chosen such that
the patch is fully covered by the descriptors’ spatial support. The descriptor is then
extracted given the position, orientation and scale.

We evaluate our classifiers on the dataset using the different interest point represen-
tations. Therefore given a patch P, we want to assign the corresponding 3D point P such
that g : P→ P with P ∈ {1, . . . H}. Thus each 3D point is represented by an individual
class and all patches associated with the 3D point share the same class label. From each
dataset we use the H 3D points which have most associated image patches. This benefits
the training because more samples are available. All experiments are performed as 10-
fold cross-validation. Again, we report the average classification accuracy as performance
criterion.
As baseline we use a k-Nearest Neighbors (kNN) classifier, which is commonly used in
3D interest point recognition [69, 67]. A true kNN is computationally not feasibly for
such high dimensional data in huge dataset, thus we use an approximative kNN algo-
rithm named Fast Approximate Nearest Neighbor (FLANN) [77], which is much faster
and requires less memory at comparative classification performance.
The gray-value patches are normalized to zero mean and unit variance for the kNN and
the Oblique Ferns. The Ordinal Ferns are invariant to this normalization by design
and we use the raw pixel values. The used optimal parameters are acquired using a
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cross-validation over a set of parameters, which is sparsely evaluated due to runtime and
memory restrictions as these datasets are excessive in both.

First we evaluate our different RFe embeddings and then the different interest point
representations. The results of the evaluation comparing different embeddings is shown in
Table 18. Due to memory restrictions on the evaluation platform we are limited to < 10k
patches. This leads to a different number H of 3D points for Trevi H = 400 and Liberty
H = 1000, which is caused by the different number of patches per 3D point. Liberty has
a much lower number of patches per 3D point, thus more 3D points are considered.
The classification accuracy for the Trevi dataset is high for all classifiers, because the
patches of one interest point are very similar. However, some of our RFe classifiers clearly
outperform the kNN baseline. The LDA Ferns significantly outperform the original RFe
as well as the baseline kNN. Due to the small amount of training samples per 3D point and
the high intra-class similarity, LDA can create a discriminative subspace which benefits
the classification, as already discussed for the face detection. Due to the low amount
of training data, the empirical variances of the training data used by PCA are mostly
caused by noise and do not resemble the real variances which worsens the result.
The other Oblique Ferns do not significantly differ from the baseline RFe. The WTA
Ferns degenerate to an original RFe with K = 2, which provides the best results for the
WTA Ferns. Using a higher window size K leads to overfitting due to the low number
of training samples combined with the increasing number of leaves. The same applies
for the Maximum Order Ferns, but as they apply a weaker leaf assignment function, the
results are slightly worse. The Direct Ordinal Ferns perform similar to the baseline RFe.
However, weak order does not benefit the classification, as there are hardly any ties in
these natural images. The results are yet worse as discussed before, due to the influence
of the Dirichlet prior as we have a small amount of training data and the Ordinal Direct
Ferns require more training samples.
For Oblique Ferns and kNN we use normalized gray-scale patches. This provides a basic
invariance to light changes, and thus improves the kNN accuracy significantly by over
10%.
The biggest problem for these datasets is the small amount of training samples per 3D
point, i.e. ≈ 9 for the Liberty and ≈ 20 for the Trevi dataset. This makes it hard for
all RFe to estimate the conditional probabilities. The chosen parameters of the Ordinal
Ferns show, that they only model a small number of joint probabilities, i.e. the number of
features per fern S is low. A higher number leads to overfitting, and further the samples
per leaf decrease for a higher number of features per fern. Further we use a high input
dimensionality of 4096, where the dependence between the input features is lower, thus
requiring a lower number S of features per fern. An analysis of the correlation between
the input pixels shows, that pixels are mostly correlated with neighboring pixels. Thus
using a higher dimensional input decreases the chance of choosing a correlated pixel.

Next we compare different interest point representations. The results are shown in
Table 19. For the Trevi dataset we use H = 400 3D points and for Liberty H = 1k
3D points, again limited due to memory restrictions. Further we evaluate Trevi with
H = 10k SIFT descriptors due to smaller memory requirements of the SIFT descriptors.
We only use H = 1k 3D points for Liberty because they are already hard to classify and
for H = 10k it would be still harder causing worse accuracy.
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Classifier Trevi H = 400 Liberty H = 1k Parameters
Acc Acc

kNN [77] 95.38± 0.78% 14.60± 0.95% default
Original RFe [84] 96.87± 0.62% 15.62± 1.11% S = 5
Generalized RFe [20] 96.38± 0.69% 15.45± 1.23% S = 9

Random Oblique 88.68± 1.09%◦ 12.36± 1.17%◦ S = 12, T = 16
PCA 94.61± 0.73%◦ 15.52± 1.58% S = 13, T = 32
CCA 94.48± 0.14%◦ 15.68± 0.78% S = 8, T = 16
LDA 97.57± 0.32%• 19.20± 0.71%• S = 12, T = 64
WTA 96.60± 0.55% 15.34± 1.15% S = 5, K = 2, T = 4096
Maximum Order 95.08± 0.46%◦ 12.03± 0.96%◦ S = 4, K = 3, T = 4096

Direct Ordinal
96.93± 0.67% 14.80± 1.06% S = 5, total order
96.09± 0.74% 14.70± 0.96% S = 4, weak order

Table 18: Evaluation results for Trevi and Liberty. Both evaluations use approximately 9k
patches. We compare different embeddings by showing the average classification accuracy
with its standard deviation Acc± Accσ.

We only evaluate a subset of the Ferns which have given good results in the previous
evaluation. The used Ferns classifiers for this evaluation are the original RFe as baseline,
the LDA Ferns, and the Direct Ordinal Ferns. We evaluate the LDA Ferns because they
performed well in the previous experiment and the Direct Ordinal Ferns as they provide
a different feature evaluation scheme in comparison to the WTA and Maximum Order
Ferns. The WTA and Maximum Order Ferns were shown to degenerate to K = 2 for this
experiment and thus perform equivalent to the original RFe, which is not interesting as
we have the original RFe as baseline.
We use the parameters which were acquired above, i.e. S = 5 for the original RFe and
Direct Ordinal Ferns with total order, and for the LDA Ferns S = 5 and T = 8 for the
case of mean and median representation in order to account for the reduced training set.
The results show that our LDA Ferns perform better than the other Ferns for most of the
experiments. However, they are not well suited for real-time applications as they need
normalized patches and require a computationally more complex training.

Using SIFT descriptors increases the accuracy of the classifiers as shown for the Lib-
erty with H = 1k. The increase is significant for all but the LDA Ferns. The descriptor
provides a more discriminative representation at lower dimensionality compared to the
image patch. While the accuracy for the mean and median representations decreases for
the image patches, the accuracy increases for this descriptor.

For the mean representation we first calculate the mean and then round to the next
integer. The mean and median are calculated over the training set and the test set is not
included for the calculation. In case of LDA Ferns and kNN we do not round the mean
or median, as they need normalized data with higher precision anyway. For the Trevi
dataset the mean and median representations get worse results in all cases. However, for
the Liberty dataset they achieve better results. The mean and median representations
are not well suited for the RFe classifier, as there is only one sample per 3D point (class)
for training. Thus the kNN performs best for this representation for most of the datasets.

87



Direct Ordinal Ferns with S = 5 have more leaves as the original RFe, thus they score
worse results for mean and median representation due to increased overfitting.

We also evaluate the benefits of generating artificial training images. Therefore we
generate 50 views per patch as described in Section 4.2.2, but we only use the central
15×15px area of the patch due to border artifacts caused by the affine transformation and
smaller memory requirements. A mean and median representations for the synthetically
generated views is not meaningful, as the reason for generating them is to use a diversity
of training samples. The usage of the generated training samples usually benefit the
classification. However, generating 50 views does not seem to be enough to calculate
representative leave distributions, as the original RFe performs at 23.66± 1.23% for the
Liberty dataset with H = 500. Due to the similar patches for different 3D points, the
random affine transformations induce even more similarities that worsen the results. For
this evaluation the Ordinal Direct Ferns perform best, as they resemble the strongest
classifier among the evaluated for S = 5. Also the kNN cannot cope well with this
amount of data, because the additional samples induce possibly contradictory nearest
neighbors.
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Dataset H 3D points Classifier Acc
all mean median

Trevi H = 400
9170 patches

kNN [77] 95.38± 0.78% 92.71± 0.64% 90.52± 1.32%
Original RFe [84] 96.87± 0.62% 85.88± 1.29% 84.85± 1.20%
LDA Ferns 97.57± 0.32% 87.47± 0.75% 87.08± 1.29%
Direct Ordinal Ferns 96.93± 0.67% 76.22± 1.37% 75.15± 1.57%

Trevi SIFT H = 10k
58638 descriptors

kNN 69.11± 0.46% 54.37± 0.64% 54.54± 0.63%
Original RFe 54.26± 0.53% 53.34± 0.94% 57.14± 0.69%
LDA Ferns 57.26± 0.98% 56.13± 0.45% 57.53± 0.69%
Direct Ordinal Ferns 55.69± 0.77% 49.50± 0.74% 54.05± 0.62%

Liberty H = 1k
8623 patches

kNN 14.60± 0.95% 17.78± 1.08% 16.83± 1.20%
Original RFe 15.62± 1.11% 15.09± 1.28% 14.78± 1.19%
LDA Ferns 19.20± 0.71% 16.00± 1.21% 16.45± 1.42%
Direct Ordinal Ferns 14.80± 1.06% 12.40± 0.80% 12.68± 1.16%

Liberty SIFT H = 1k
8623 descriptors

kNN 19.47± 1.33% 24.48± 1.16% 23.67± 0.97%
Original RFe 20.74± 1.14% 23.13± 1.41% 23.29± 1.00%
LDA Ferns 20.97± 0.87% 25.06± 1.58% 23.29± 1.21%
Direct Ordinal Ferns 20.65± 0.94% 22.05± 1.28% 22.63± 0.88%

Liberty synth. H = 500
50 views per patch
231150 patches

kNN 17.95± 1.09% − −
Original RFe 15.54± 1.05% − −
LDA Ferns 17.97± 1.26% − −
Direct Ordinal Ferns 21.05± 1.29% − −

Table 19: Evaluation results for 3D interest point recognition comparing different embeddings and interest point representations by
showing the average classification accuracy with its standard deviation Acc± Accσ.
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4.2.2 Planar object tracking

Next we evaluate the RFe classifiers for planar object tracking. Therefore we follow the
protocol of [65, 83]. We use a user-defined planar template that should be detected
consecutively in each frame of a video.
We compare the original RFe to our WTA Ferns and Direct Ordinal Ferns. Although
we have shown in the previous experiment that our LDA Ferns perform well too, they
are not well suited for real-time tracking as they require memory intensive normalization
(floating points) and considerable time for training the subspace.

We use the planar object tracking workflow of [65, 83]. First we extract the most
stable interest points from the template. Therefore we create 5000 random affine trans-
formations of the original template and run a interest point detector on each transformed
image. The random affine transformations are generated by warping the image with an
affine transformation matrix A = RθR

−1
φ SRφ. Rθ and Rφ are two rotation matrices

which are parametrized by the angles θ and φ, and S = diag(λ1, λ2) is a scaling matrix.
The parameters are randomly chosen from θ ∼ U(0, 2π), φ ∼ U(0, π), and λ ∼ U(0.5, 1.5).
For the interest point detection we use an approximated Laplacian of Gaussian detec-
tor [64] and run the detector on each level of a Gaussian pyramid [10] with 4 levels and
a 7 × 7 Gaussian kernel with σ = 22/3. The most stable interest points are derived by
back-projecting the detected interest points of the warped images into the original im-
age and checking if the distance between detected and back-projected interest points is
smaller than 2px. The 400 interest points that satisfy this condition at most are then
used to represent the model.

Next we train our Ferns classifiers. Therefore we use these most stable interest points
and generate 10 000 random affine transformations of the template. We add white Gaus-
sian noise within the range of [−20, 20] to the image and apply a Gaussian smoothing
with a randomly chosen kernel size of σ ∼ U(3, 7). The patches of size 32× 32px around
the interest point locations, which are the stable interest point locations projected into
the generated images, are extracted and further used to train the classifier, as already
described in Section 3.1.

Finally we use the trained classifier for planar object tracking. Therefore we detect
a maximum of 1000 interest points in each video frame at 4 scales and classify each
interest point. Given the initial correspondences between video frame interest points
and model interest points, the homography is estimated using the Progressive Sample
Consensus (PROSAC) method [15] with 1500 iterations and an inlier threshold of 10px.
The template is considered detected if at least 10 inliers are found.

Figure 36 shows some of the inlier correspondences for individual image frames. Each
pair shows the correspondences between the model image on the left side and the video
frame on the right side. For the left image pairs we used our Direct Ordinal Ferns and for
the right image pairs the original RFe, both using S = 7 features per fern and M = 20
ferns. Our Direct Ordinal Ferns encodes more inequalities in each fern, i.e. they provide
stronger base classifiers, as shown in Section 3.3.3, thus providing more correspondences
for the selected video frames.

Next we evaluate the number of tracked interest points, i.e. the inliers of the homogra-
phy estimation, which is the performance criterion for this evaluation. The more interest
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(a) (b)

(c) (d)

(e) (f)

Figure 36: Detected interest points for individual frames and the correspondences to the
model frame shown as red lines. The model image is on the left side. (a), (c), and (e)
show the matches using the Direct Ordinal Ferns, and (b), (d), and (f) show the matches
for the original RFe. Both methods use S = 7 features per fern and M = 20 ferns.
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points are tracked as inliers, the better the estimation of the homography. Therfore we
perform two evaluations.

1. First we evaluate the number of tracked interest points for the same number of
features per fern. Therefore we use S = 7 features per fern for all Ferns classifiers
and a window size of K = 4 for the WTA Ferns.

2. Second we evaluate the number of tracked interest points for the same amount of
used memory. Therefore we use S = 7 for the Direct Ordinal Ferns, S = 12 for the
original RFe, and for the WTA Ferns we use K = 4 and S = 6. The number of
leaves is 7! = 5040 for the Direct Ordinal Ferns, 212 = 4096 for the original RFe and
46 = 4096 for the WTA Ferns, which is the closest comparable set of parameters.

The results for the first evaluation are shown in Figure 37. Our two embeddings
perform significantly better when using the same number of features than the original
RFe, because the Direct Ordinal Ferns as well as the WTA Ferns encode more inequalities
per feature, thus leading to stronger ferns. Further, by using 10 000 training samples per
interest point the conditional probabilities can be sufficiently estimated. The runtime is
similar for all of the three compared Ferns classifiers, each performing at about 12fps on
the evaluation system with a video resolution of 640× 480px.
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Figure 37: Tracked interest points (inliers) throughout the video comparing the original
RFe with our Ferns classifiers. All use the same number of features S = 7 and M = 20
ferns.

The results for the second evaluation are shown in Figure 38. By using the same
amount of memory all Ferns classifiers perform similar, with a few fluctuations. The
stronger classifiers of the previous experiment are created at the cost of memory, which
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is depicted in Figure 39. In this case the required memory is proportional to the number
of leaves per fern. The WTA and Direct Ordinal Ferns encode more inequalities per leaf,
i.e. provide stronger classifiers, than the original RFe for a small number of features per
fern. However, for a higher number of features per fern, the memory requirements of the
WTA and Direct Ordinal Ferns increase much faster than for the original RFe, which
decreases the number of inequalities per leaf significantly.
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Figure 38: Tracked interest points (inliers) throughout the video comparing the original
RFe with our Ferns classifiers by using the same amount of memory to store the leaf
probabilities.
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Figure 39: Number of inequalities encoded per leaf.

4.2.3 Oxford dataset

In order to evaluate the interest point recognition in a more controlled environment
we use the Oxford dataset [75] of which we use the Graffiti sequence. As the number
of tracked interest points, i.e. the inliers, in the previous evaluation can be influenced
by several parameters of the PROSAC algorithm, e.g. the number of iterations or the
inlier threshold, we directly evaluate the accuracy of the classification by calculating the
fraction of the number of correctly classified interest points to all detected interest points
in the reference image. The Oxford dataset is designed for interest point recognition and
consists of image sequences of mostly planar objects taken from different viewpoints. This
perspective change between the images is resembled by a homography. The homography
is known for all images with respect to the reference image.

For the evaluation we use a Harris corner detector [40] and detect the 200 most
prominent corners in the reference image, where the points close to the borders are
discarded. We extract 15×15px patches around the interest points and train our classifiers
by using the same procedure as described in Section 4.2.2 by artificially creating 100
warped samples for each patch. Note, that we do not use an affine covariant detector and
thus we do not normalize the patches around the keypoints. Further we transform the
interest point locations of the reference image p into the other images p′ of the sequence
by using the ground-truth homography H ∈ R3×3 with

p′ = Hp, p =

xy
1

 , p′ =

x′y′
1

 (56)
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in homogeneous coordinates. Then we query our trained classifiers with the patches
around these calculated interest point locations from the other images of the sequence.
Figure 40 shows some of the artificially created image patches used for training.

Figure 40: Artificial input patches each 15× 15px used for training. Each column resem-
bles the generated samples for one interest point.

Again, we compare the original RFe with our WTA Ferns and the Direct Ordinal
Ferns by using the same number of features per fern S = 7 and for the WTA Ferns we
use a window size of K = 4.
The results are shown in Figure 41, which are similar to tracking experiment before, but
in this experiment we obtained the matching percentage and not the number of tracked
interest points. The WTA Ferns outperform both, the original RFe and the Direct Ordinal
Ferns. However, the accuracy decreases for all Ferns similarly with greater viewpoint
changes, i.e. higher image number. The results are consistent with the tracking results
before. The original RFe perform worst. Though there is a larger difference between WTA
and Direct Ordinal Ferns, that can be accounted to the number of training samples. In
this example we use 100 artificial training samples per interest point and for the tracking
application 10000 due to the better performance. As shown in Section 4.1.5 the Direct
Ordinal Ferns perform inferior for a small number of training samples.
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Figure 41: Average classification accuracy over the different views for the Graffiti se-
quence.

4.3 Guidelines for using embeddings

In the previous sections we have shown different applications of our Ferns classifiers and
their performance on the different tasks. Finally we summarize these results in order to
define possible criteria for an application. Notable criteria for an application can be

1. the number of classes,

2. the data dimensionality,

3. dataset properties,

4. required data normalization,

5. the number of training samples,

6. the number of adjustable parameters,

7. computational complexity, or

8. memory requirements.

A comparison of the different Ferns classifiers based on these criteria is shown in Table 20.
Note, that we compare the criteria with respect to the other mentioned Ferns classifiers
and not to classifiers in general.
The original RFe provides a very simple ordinal embedding, that consists of a single com-
parison, and thus it is invariant to linear transformations of the input data. It has only
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two parameters to set, which are the number of ferns and the number of feature per fern,
i.e. the degree of modeling joint probabilities. It does not require any normalization of
the input data, though all input features must be derived from the same feature scale.
Due to the simple feature comparison it has a low computational complexity as well as a
low memory footprint.
The generalized RFe uses random thresholds for leaf assignment. Thus it is efficient for
low dimensional data, as it can generate many random features using the random thresh-
olds. However, the input data must be normalized within a certain range, which is an
additional parameter besides the number of ferns and the number of features per fern.
Again, the computational complexity and memory requirements are low.
The Oblique Ferns work well on high dimensional data. They all need normalized data,
e.g. to zero mean and unit variance. The subspace dimensionality is an additional pa-
rameter that has to be specified. Further, LDA and CCA Ferns prefer a high number of
classes as the subspace dimensionality depends on the number of classes. LDA and CCA
Ferns perform especially well on statistically independent or orthogonal data, e.g. PCA
compressed data, and PCA Ferns work well on highly correlated data. The Random
Oblique Ferns work well on correlated, low dimensional datasets, because they create
different views on the data which causes less correlation between the ferns. The compu-
tational complexity of the Ordinal Ferns is slightly increased, as they require a subspace
projection, i.e. vector multiplication, but the memory requirements are still low.
The Ordinal Ferns use more sophisticated ordinal embeddings. High dimensional data is
preferred in order to generate a large number of features. Although the data properties
are irrelevant, the evaluations have shown that they perform well on image or histogram
data and not very well on orthogonal, e.g. PCA compressed, data for example. They do
not need normalized data, though all features must be derived from the same feature scale.
The Soft Assignment Ferns work comparable to other Ordinal Ferns on noisy data, but
inferior in the absence of noise. The required parameters depend on the Ferns classifier,
thus WTA and Maximum Order Ferns need an additional window size and the subspace
dimensionality, which can be set to the full input dimensionality without performance
concerns. Direct Ordinal Ferns require the same parameters as original RFe plus the
order, and the Soft Assignment as an extension of the Ordinal Direct Ferns requires two
feature weighting parameters. The computational complexity is low for all Ordinal Ferns
except the computationally complex soft assignment. The memory requirements are low
for Maximum Order Ferns, which provide a similar parametrization as the original RFe.
However, the memory requirements are slightly increased for WTA Ferns as the window
size influences the used memory, and high for the Direct Ordinal and Soft Assignment
Ferns as the memory consumption quickly increases with the number of features per fern.
Most of the Subspace Ordinal Ferns properties depend on the applied subspace method
as well as the used ordinal embedding. In all cases normalized data is required for the
subspace projection. If a CCA or LDA subspace is used, the number of classes should be
high in order to generate a high subspace dimensionality, which is desired for the ordinal
embeddings.
All Ferns need a large amount of training samples, though the Direct Ordinal and Soft
Assignment Ferns require more training samples in comparison to the other Ferns.
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``````````````̀Classifier
Criterion

1 2 3 4 5 6 7 8

Original RFe [84] ∼ high ∼ feat. scale ∼ 2 (M,S) low low
Generalized RFe [20] ∼ low ∼ range ∼ 3 (M,S,range) low low

Random Oblique ∼ high ∼ norm. ∼ 3 (M,S,T) medium low
PCA ∼ high corr. norm. ∼ 3 (M,S,T) medium low
CCA high high stat. indep. norm. ∼ 3 (M,S,T) medium low
LDA high high stat. indep. norm. low 3 (M,S,T) medium low
WTA ∼ high ∼ feat. scale ∼ 4 (M,S,T,K) low medium
Maximum Order ∼ high ∼ feat. scale ∼ 4 (M,S,T,K) low low
Direct Ordinal ∼ high ∼ feat. scale high 2 (M,S) low high
Soft Assignment ∼ high noisy feat. scale high 2 (M,S,θ,λ) high high
Subspace Ordinal ∼ high ∼ norm. ∼ 3+ (M,S,T,. . .) medium+ low+

Table 20: Comparison of characteristic properties of different Ferns classifiers. The criteria are denoted by 1 the number of classes,
2 the data dimensionality, 3 dataset properties, 4 required data normalization, 5 the number of training samples, 6 the number of
adjustable parameters, 7 computational complexity, and 8 memory requirements.
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5 Conclusion

In this work we have proposed different embeddings for the well-known Random Ferns
(RFe) classifiers. All of our classifiers share similar advantages. They are inherently
multi-class, provide a high computational performance, can handle multi-modal data,
are tolerant to noise, and naturally handle high dimensional data by applying a random-
ized subspace principle.
In order to introduce the embeddings, we first generalized the RFe in an appropriate
framework in which we integrated all of our proposed embeddings. Then we described
our Oblique Ferns, that use different linear subspace projections as embeddings. The
projections can be derived from different methods, as e.g. PCA, LDA or CCA. The
subspace method allows our classifier to adapt to individual dataset properties, as e.g.
correlated or well separable data. Further, the Oblique Ferns provide more emphasis on
local structures of the data compared to a global subspace representation, by applying
the subspace methods on randomly selected input dimensions.
Next we proposed different ordinal embeddings, i.e. Ordinal Ferns, that apply ordinal
analysis on the input data to generate features for the classification. They do not rely on
any numeric values but only on order relations, which make them invariant to different
kinds of input perturbations. We presented different ordinal embeddings, e.g. one inte-
grates an ordinal hash function, or another one uses the complete order of the input data
directly.
Further we discussed a combination of these two embeddings by using ordinal analysis
within the subspace.
At last we have evaluated the performance of our Ferns classifiers and compared them
to baseline RFe and Random Forest (RFo) classifiers. We provided an extensive evalu-
ation on computer vision and machine learning datasets, and analyzed the influence of
the parameters on the classification accuracy as well as the influence of different dataset
properties. We have shown, that the Oblique Ferns work well for machine learning and
computer vision datasets. Especially the PCA Ferns work well on datasets with highly
correlated features and the LDA Ferns work well for low intra-class variations and on
orthogonal data, e.g. PCA compressed data. Further we have evaluated our Ferns for
interest point recognition. We have shown for various applications that the Ordinal
Ferns, especially our proposed WTA and Direct Ordinal Ferns, perform well in real-time
applications.

Our generalized RFe framework provides manifold possibilities for future work, by
integrating different embeddings. In the context of our Oblique Ferns formulation, one
could evaluate alternative thresholding strategies, e.g. similar to [23], with respect to
runtime and accuracy, or even go a step further and evaluate iterative strategies for ob-
taining the linear projections, e.g. like [74, 78]. In this work, however, we did not consider
these iterative methods due to an increased computational complexity, but approxima-
tions might be possible that work reasonably well.
Moreover, there are extensions for our different Ordinal Ferns possible. For example Yag-
nik et al. [123] proposed polynomial kernels for the WTA hash, which could be evaluated
for our WTA Ferns. As the Direct Ordinal Ferns suffer from high memory requirements,
one could find possibilities to reduce the required memory, or to show, that there is an
information theoretic boundary on the number of inequalities encoded per leaf.

99



References

[1] Stefan Aeberhard, Danny Coomans, and Olivier de Vel. Comparison of classifiers in
high dimensional settings. Technical report, Dept. of Computer Science and Dept.
of Mathematics and Statistics, James Cook University of North Queensland, 1992.

[2] Selim Aksoy and Robert M. Haralick. Feature normalization and likelihood-based
similarity measures for image retrieval. Pattern Recognition Letters, 22(5):563–582,
2001.

[3] Dinkar N. Bhat and Shree K. Nayar. Ordinal measures for visual correspondence.
In Proceedings of International Conference on Computer Vision and Pattern Recog-
nition (CVPR), 1996.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[5] Matthew B. Blaschko and Christoph H. Lampert. Correlational spectral cluster-
ing. In Proceedings of International Conference on Computer Vision and Pattern
Recognition (CVPR), 2008.

[6] Avrim Blum and Ronald L. Rivest. Training a 3-node neural network is np-
complete. Neural Networks, 5(1):117–127, 1992.

[7] Liefeng Bo, Ling Wang, and Licheng Jiao. Feature scaling for kernel fisher discrimi-
nant analysis using leave-one-out cross validation. Neural Computation, 18(4):961–
978, 2006.

[8] Anna Bosch, Andrew Zisserman, and Xavier Muñoz. Image classification using
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