Master’s Thesis

Semantic Recommendation Systems
in Research 2.0

PATRICK THONHAUSER
patrick.thonhauser@gmail.com

Graz University of Technology

TU

Grazm

Institute for Information Systems and Computer Media
Advisor: Assoc.Prof. Dipl.-Ing. Dr.techn Martin Ebner
Co-Advisor: Selver Softic, MSc

Graz, July 2012

Masterarbeit

Semantische Empfehlungssysteme
fiur Research 2.0

PATRICK THONHAUSER
patrick.thonhauser@gmail.com

Technische Universitat Graz

TU

Grazm

Institut fir Informationssysteme und Computer Medien
Betreuer: Univ-Doz. Dipl.-Ing. Dr.techn. Martin Ebner
Mitbetreuer: Selver Softic, MSc

Graz, Juli 2012

Abstract

In this age of data processing, data mining, topic related data-search and the recom-
mendation of data and information is already a common, wide spread as well as profitable
and trend-setting topic. The content of this master’s thesis deals with a recommender
system, which recommends users from a specific social networks to each other. These
recommendations are based on the analysis of text artefacts and aim to connect similar
minded or interested people. By applying many existing methods and technologies, a
system for making recommendations in the form of user profiles of social platforms was
developed. The fact that the amount of internet users has now exceeded the one billion
user mark, made developing an appropriate strategy to limit this huge set of people to
a manageable and promising subset, one of this thesis’ main tasks. Finding appropriate
metrics for accomplishing this filtering task was essential for limiting the amount of po-
tential recommendations. The analysis of user profiles was mainly realized by analyzing
user generated text. As part of this, it was possible to find a way to classify content whilst
staying aware of its context and therefore, filtering scientific content or finding people that
produce such content. One very important task of this thesis and the implemented proof of
concept system, was to find and identify metrics and to develop comparable ratios, which
enabled the system to classify user profiles at a satisfying rate of error. The systems and
strategies that were developed delivered unmistakably positive results. This leads to the
opinion that the system developed, along with the methods and strategies, would prove
useful for future Semantic Recommender Systems for Research 2.0 and beyond.

Keywords Recommender Systems, Semantic, Twitter, Social Media, Data Mining,
Classification, Part of Speech Tagging, Research 2.0, Linked Data, Semantic Web, Python,
Knowledge Discovery in Databases, Microblogging

Zusammenfassung

Gezielte und themenbezogene Datensuche- und die Empfehlung von Daten und In-
formation, ist in diesem Zeitalter der Datenverarbeitung bereits ein alltégliches, breit-
gefichertes, aber auch lukratives und richtungsweisendes Thema. Der Inhalt dieser Arbeit
beschaftigt sich mit einem Empfehlungssystem, dessen Aufgabe es ist, Benutzer eines be-
stimmten sozialen Netzwerkes einander zu empfehlen. Diese Empfehlungen basieren auf
der Analyse und Klassifizierung von Text und haben die Aufgabe, dhnlich oder sogar
gleich interessierte Benutzer einander bekannt zu machen. Mit Hilfe von vielen bestehen-
den Technologien und Methoden wurde so ein System geschaffen, das es einem Benutzer
ermoglicht, Empfehlungen in Form von anderen Benutzern der selben sozialen Plattform
auf der er oder sie sich bewegt, zu erhalten. Da die Anzahl von Menschen die das Internet
benutzt die Milliardengrenzen bereits bei Weitem iiberschritten hat, war eines der Haupt-
ziele im Zuge dieser Arbeit eine Strategie zu finden, dieses riesige Menge an potentiellen
Empfehlungen so gut wie moglich auf eine iiberschaubare und moglichst vielversprechende
Menge einzuschranken. Um diese Einschrankung moglich zu machen, war das finden von
Metriken zur Beschrankung Empfehlungszielgruppe eines der essenziellen Punkte wahrend
der Konzeptionierung des entwickelten Systems. Die Analyse von Benutzerprofilen wurde
hauptséachlich an Hand der Analyse von benutzergeneriertem Text realisiert und im Zuge
dessen, konnte ein Weg gefunden werden, um die Thematik des Inhaltes zu klassifizieren
und so vor allem wissenschaftliche Inhalte bzw. Benutzer die wissenschaftliche Inhalte ver-
breiten, aus der Masse heraus gefiltert werden. Das Hauptaugenmerk dieser Arbeit und
des implementierten Proof of Concept Systems lag auf dem Entwickeln von Kennzahlen
und Erkennen von vergleichbaren Merkmalen um Benutzer zu einem zufriedenstellenden
Anteil an Falschklassifikation als potentiell interessant oder uninteressant klassifizieren
zu konnen. Es konnten durchaus positive Ergebnisse erzielt werden, die das entwickelte
System bzw. die entwickelten Strategien fiir zukiinftige Realisierungen von Semantischen
Empfehlungssystemen fiir Research 2.0 und dariiber hinaus sehr von Nutzen sein kénnen.

Keywords Recommender Systems, Semantic, Twitter, Social Media, Data Mining,
Classification, Part of Speech Tagging, Research 2.0, Linked Data, Semantic Web, Python,
Knowledge Discovery in Databases, Microblogging

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material which
has been quoted either literally or by content from the used sources.

Place, date Signature

Eidesstattliche Erklarung

Ich erklare an FEides statt, dass ich die vorliegende Arbeit selbststandig verfasst, an-
dere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wortlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Ort, Datum Unterschrift

Acknowledgements

This master’s thesis would not have been possible without the guidance and help of several
individuals, starting with the people who directly influenced this thesis.

Martin Ebner and Selver Softic, who always had an open ear for all my questions and
did their very best in guiding me through this thesis and the associated work. Judith
Dohr for giving me great and highly engaging advice and assistance at the beginning of
the writing process. Also a big thank you to all the people who volunteered themselves
as testers for my proof of concept system.

The following people did not have any direct association with this thesis, but were
essential to me throughout the time I attended university.

All my family members who supported me during my studies, in particular my parents
who always believed in me and offered me the opportunity to study. The great support
of my beloved girlfriend Sonja Guntschnig and also her family. Some of my student
colleagues who attended most of the practical parts of our studies with me. Especially
Georg Kitz who always encouraged me to be better than average inside and outside the
borders of university.

Patrick Thonhauser
Graz, Austria, July 2012

Contents

1 Introduction 1
2 Fundamentals 3
2.1 Semantic Web and its standards 3
2.1.1 Linked Data 4
2.1.2 Resource Description Framework(RDF) 5
2.1.3 SPARQL Protocol and RDF Query Language 6
2.1.4 Web Ontology Language (OWL) 7
2.1.5 RDF, RDF/S and OWL combined 9
2.1.6 More Standards 11

2.2 Twitter and Microblogging Lo 12
2.2.1 Social Awareness Streams 13
2.2.2 Making Tweets semantic 14
2.2.3 Semantic Relatedness and Metrics 14
2.2.4 Trend detection 15
2.2.5 Categorizing users 16

2.3 Recommender Systems 16
2.3.1 Collaborative Filtering, 17
2.3.2 Content-based Recommendation 22
2.3.3 Knowledge-based Recommendation 25
2.3.4 Hybrid Recommendations 25

2.4 Classification of Microtext Artefacts and Part of Speech Tagging. 26
2.4.1 NLP Pipeline 26
2.4.2 Hidden Markov Models 27
2.4.3 Support Vector Machines 29
244 Clustering 31

il

3 Concept

3.1 Knowledge Discovery in Databases (KDD)
3.2 Selection
3.2.1 Thought Bubbles
3.2.2 Proof of Concept Application
3.2.3 Imitial Data
3.24 Language selection o L
3.3 Preprocessing
3.4 Transformation
3.5 DataMiningo
3.5.1 Tweet Frequency
3.5.2 NLP Pipeline
3.5.3 Retweet ratio
3.5.4 Measuring Similarityo
3.5.5 Clustering
3.5.6 Categorization
3.6 Interpretation and Evaluation
3.6.1 Semantic Benefits o000
3.6.2 Evaluation Technique

4 Technical Details and Implementation

4.1 Development Platform and Frameworks
4.2 Database design and implementation
4.3 Data Preprocessing implementation
4.4 Data Mining implementation 0L
4.4.1 NLP Pipeline Implementation
4.4.2 Clustering implementation
4.4.3 Categorization implementation
4.4.4 FOAF document creation
4.5 Complete Architecture and UML Diagram

5 Results and Evaluation

5.1 Evaluation Technique . . .
5.2 Test Setup
5.3 Test Results

5.3.1 Real-world-test . .

5.3.2 Supervised test-run
5.4 Test evaluation

6 Conclusion and Future Work
A Appendix

Bibliography

iii

33
33
35
35
36
38
39
39
41
42
42
43
44
44
45
46
46
46
47

48
48
49
20
o1
52
o4
95
56
o8

60
60
62
64
64
65
67

70

72

77

List of Figures

2.1
2.2

2.3

24
2.5

3.1
3.2
3.3
3.4

3.5
3.6

4.1
4.2

5.1
5.2
2.3
5.4

OWL2 structure (http://www.w3.org/TR/owl2-overview/)

Example Tweetonomy for the Tweet: “RT@tim new blog post: http://mydomain.com

Ac09” . .

Example HMM for POS tagging with four different kinds of POS tags (NP,
NN, PRP, VE) and its transition probabilities from one state to another.

Margin maximization by training hyperplanes

Example of clustering data points into four clusters.

An overview of the steps that compose the KDD process.
Example Twitter Network Graph with Thought Bubbles.
Proof of Concept Application schematical Architecture.

Twitter language statistics from July 2010 to October 2011 (http://reyt.
net/twitter-61-of-tweets-are-not-in-english/8683)

Preprocessing chain for filtering potential recommendation candidates.

NLP Pipeline of Thought Bubbles proof of concept application.

Entity Relationship diagram of database design visualized with graphivz

UML class diagram of core components.

Visualization of Precision and Recall.
Average threshold for 22 hand picked test users.
Gaussian bell curve and Standard Deviation of ten test users

Supervised test run for Qmebner.o

v

13

28
30
32

34
36
37

40
40
43

List

5.1
5.2
9.3

of Tables

Test results for 10 test users
Confusion matrix for supervised test run.

Evaluation ratios for supervised test for @mebner

List of Listings

2.1
2.2
3.1
4.1
4.2
4.3
4.4
4.5

4.6

4.7

4.8

RDF Example Code
OWL Example Ontology
Example Twitter User JSON response for an existing Twitter account.

Pseudo code for preprocessing data. L.
Regex for stripping Twitter mentions.
Regex for stripping URLs.
Pseudocode of a NLP Pipeline worker thread.

This distance function defines how the distances are calculated and com-
pared with each other. L

Base class of Bayes classifier for classifying probability of whether a Twitter
user is part of a specific category.

Example of creating a FOAF connection between two Twitter users. The
example is taken from foaflib documentation.

RDF output.

vi

Chapter

Introduction

Twitter has grown tremendously in the last few years and is generating 300 million Tweets
and 1.6 million search queries each day. As of now (2011), Twitter has over 300 million
users. These are pretty impressive numbers for a microblogging/social-network platform
and Twitter has already become a cultural phenomenon'. Every day people all over the
world are communicating via Twitter, exchanging the latest news and discussing millions
of diverse topics. They are spreading their knowledge and personal opinions all over the
web. An indicator for making this behavior possible, is that nearly every web- or native
social application provides the option to tweet about your activities. Working on a specific
project, writing on a scientific paper, attending a workshop or just enjoying a tasty piece
of pizza. The list of tweetable actions is almost infinite and everybody who is interested in
a specific person or a specific topic, has the ability to consume the information by reading
certain tweets or exploring the tweeted resources?. However the interesting questions for
researchers are, how to make use of the information contained within millions of tweets and
what can be extracted from those 140 character microblogs? How much useful information
is in a single Tweet and how can we separate useful information from noise?

Anyway, the questions asked aren’t new but keep researchers from all over the world
busy. Many known and approved researchers try to find answers and some of them, like
[Softic et al., 2010], [Mika and Laniado, 2010] or [Choudhury and Breslin, 2010], indeed
were able to resolve parts of this challenging puzzle. For Semantic Web researchers, Twit-
ter has become one of the most popular applications for the dissemination of information
[Kraker et al., 2010] and it is therefore a legitimate candidate to serve as the main source
for mining data that concerns users and providing information of scientific interest. Al-
though Twitter is very popular, there are still a lot of tasks that require attention for
Semantic Web researchers. Doing semantic analysis, classifications of Tweets, trend de-
tection, mining of Tweets etc. are all very important, interesting and substantial parts
to discovering the sense and meanings of Tweets and Twitter in general. Nonetheless
there is a lack of workable and useful real world examples. The content of this master’s

1| http:/ /prsay.prsa.org/index.php/2012/03 /23 /friday-five-looking-back-at-twitters-seminal-
moments/ (June 2012)
2Weblinks, fotos etc.

2 1. Introduction

thesis isn’t just about providing a valid explanation of how to extract information from
Twitter, but rather valuable guidance and an example of how to use existing research
and gained scientific findings to build a useful recommendation system which allows the
discovery and utilization of interesting content and user information. The main questions
this thesis addresses are listed below:

e [s Twitter useful for discovering new connections between researchers in similar or
the same subject areas?

e Is it possible to recommend Twitter users based on their Tweets?
e [s it possible to separate useful content from noise to a satisfying level of success?

e Are there any appropriate classifiers and metrics to measure the significance of
Twitter users and Tweets?

In general, the improvement and optimization of recommendation systems is still a
challenging and topical subject. Nonetheless, whilst recommending people from diverse
research branches is one of the most interesting aspects of this issue, it is not the only
significant reason for exploring this topic in detail. Another highly interesting aspect is
the opportunity to focus the stream of information a user is searching in. Undoubtedly,
this represents a very powerful kind of online personalization in which Twitter accounts
are able to play a massive role in the bundling of information that is obtained.

The reason for the major role of Twitter is for one, that Twitter has an already
huge and exponentially growing number of users and secondly the selective and con-
scious (although unfortunately not always) usage of hashtags by Twitter users. Twitter
uses hashtags to tag a Tweet with a topic. e.g. one main topic of my #masterthesis
is #semanticweb. Consequently, my Tweet is tagged with the words masterthesis and
semanticweb and can be found by other users by searching for these keywords. Besides
hashtagging, the ability to retweet somebody’s information gives the user the opportunity
to highlight information that could be of further interest for other users that may work
in the same research community. All the aforementioned indicators and features of this
microblogging platform build a very promising basis for recommendations in general.

Obviously, there are a lot of application areas for Semantic Recommendation Systems.
Not only for individuals, but also for companies or universities. The ability to access a
personalized environment, that is tailored to particular needs and topic areas, is of benefit
to anybody who is seeking interesting information or expertise. Furthermore, it’s also very
useful for detecting trends, especially in technology and science [Kraker et al., 2010].

Within this thesis, the basics of Semantic Web, its tools and standards are discussed.
Linked Data, Recommendation Systems and the classification of microtext artefacts will
also be discussed as part of those basics. The next step is introducing a concept and the
definition of building such a Semantic Recommender System for Research 2.0, followed by
the design and implementation of this system. Finally, the proof of concept is presented
and discussed.

Chapter

Fundamentals

Before being able to develop and further to explore Semantic Recommendation Systems
in detail, some pre-work has to be done. There are some very important and interesting
topics that should be discussed and mentioned to avoid the risk of "reinventing the wheel”.
The following sections represent the basis of the forthcoming system and led this thesis
and it’s associated work in specific directions. At the very beginning it was necessary to
work through a substantial amount of existing research to obtain a fundamental knowledge
of the things that should be addressed before undertaking the development and design of
Semantic Recommendation System for Research 2.0. Reading through this section serves
as a good grounding for gaining important background knowledge in order to understand
the related topics and practical parts of the thesis.

2.1 Semantic Web and its standards

In the early 90s the prolific emergence of pervasive and user-friendly digital technologies
in our information society, made it nearly impossible to manage all the data on the Web.
Also machine processing couldn’t be established under the preveiling circumstances [Leger
et al., 2006]. Obviously something had to change. Around this time, the first concept of
a Semantic Web was invented and finally it became one of the major improvements of
the World Wide Web. None other than Tim Berners-Lee, the pioneer of the World Wide
Web came up with the idea of Semantic Web in 2001 in his ”"The Semantic Web” article
in the "Scientific American” magazine [Berners-Lee et al., 2001]. He defined the word
Semantic Web as follows:

”The Semantic Web is an extension of the current web in which information
is given a well-defined meaning, better enabling computers and people to work
in cooperation.”

In other words, Berners-Lee, who is also the director of the World Wide Web Consortium?

(W3C), was talking about an additional layer of information, which describes the meaning

http://www.w3.org/ (January 2012)

4 2. Fundamentals

of data. Combined with the Web 2.0 [O’Reilly, 2005] concept, Semantic Web defined a
new era of the World Wide Web: Web 3.0 [Markoff, 2006]. Semantic Web was and still is
a new idea of mining human intelligence to make a computer reason in a human fashion.
The possibility of doing so, opened a lot of promising doors, especially for industrial and
scientific facilities.

The World Wide Web Consortium is leading this collaborative movement called Se-
mantic Web and promotes common formats for describing and mining resources on the
Web. W3C aims to convert the current unstructured documents to a so called ”Web
of Data”. The most important and fundamental Framework for the realization, is the
Resource Description Framework?, which will be discussed later. However the term ”Se-
mantic Web” is also referred to in W3C'’s vision of linked data, which is defined by W3C
as follows:

"The Semantic Web is a Web of Data — of dates and titles and part
numbers and chemical properties and any other data one might conceive of.
The collection of Semantic Web technologies (RDF, OWL, SKOS, SPARQL,
etc.) provide an environment where applications can query that data, draw
inferences using vocabularies, etc.”

In the following subsections these technologies and terms are discussed in depth. Start-
ing with one of the base concepts of Semantic Web: Linked Data.

2.1.1 Linked Data

Linked Data is nothing other than creating typed links between data from different sources
[Bizer et al., 2009]. While the lion’s share of the web consists of HTML documents, Linked
Data relies on documents written in RDF. This sounds quite familiar when someone thinks
of the term Semantic Web. But there’s an important difference between Linked Data and
Semantic Web. More precisely, Linked Data is the data, that makes resources semantically
readable for computers [Stankovic et al., 2010].

A simple way to explain the relationship between them is by using the example of
ontologies. Let’s say there exists an ontology called ”Reptiles”. In an object oriented way
of thinking, you can say, "Reptiles” is our base class. Instances of the base class such as
"Snake”, ”Gecko” or 7 Alligator” are semantic data of this ontology. Now when you link
these instances, for example,via DBpedia?, you will get Linked Data. By exploring and
following those links, a computer is able to notice, that an alligator, snake or gecko, is a
reptile.

The famous Tim Berners-Lee defined some very important and still valid rules for
publishing data on the web. The aim of these rules is, to make this published data part
of a single global data space [Berners-Lee, 2006]. These rules are:

*RDF

3DBpedia is a project that is extracting structured information from Wikipedia and making this
information explorable for web applications. The DBpedia system offers the possibility, of linking this
data with information from those web applications.

2.1. Semantic Web and its standards 5

e Use URIs* as names for things.
e Use HTTP URISs so that people can look up these names.

e When someone looks up a URI, provide useful information, using the standards
(RDF, SPARQL®).

e Include links to other URIs. so that they can discover further information.

"These rules have become known as the 'Linked Data principles’, and provide
a basic recipe for publishing and connecting data using the infrastructure of
the Web while adhering to its architecture and standards.” [Bizer et al., 2009

By following these 4 simple rules, everybody has the ability and responsibility to make
the data and resources that are provided semantically useful.

2.1.2 Resource Description Framework(RDF)

So what is RDF and what is it good for?

RDF is a standardized model for describing information related to objects (resources)
in the World Wide Web. These resources are identified via URIs. The syntax of RDF is
quite distinct from XML’s tree-based infoset and therefore, quite easy and straightforward
to learn and read. RDF is a collection of triples. Each triple is consisting of a subject, a
predicate that denotes the relationship and an object. A predicate always points from the
subject to the object and never in the opposite direction. Subjects and objects are nodes
that can be URIs. Subjects and objects can both be blank nodes® but only an object can
also be a literal. For a detailed description of the concept and design of RDF, see the
W3C definition of this concept’.

The following example is a description for the resource "http://www.w3schools.com/
rdf” and serves to display how RDF is used to describe resources in general.

<?xml version="1.0"7>

<RDF>
<Description about="http://www.w3schools.com/rdf">
<author>Jan Egil Refsnes</author>
<homepage>http://www.w3schools.com</homepage>
</Description>
</RDF>

Listing 2.1: RDF Example Code

4URISs are unique identifiers, which consist of character strings and describe a physical resource on the
web.

SRDF and SPARQL will be discussed in the following subsections.

6The blank nodes in an RDF graph are drawn from an infinite set. This set of blank nodes, the set of
all RDF URI references and the set of all literals are pairwise disjoint.

"http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-1iteral (January
2012)

6 2. Fundamentals

Let’s say this resource: http://www.w3schools.com/rdf is a subject, predicate is ”au-
thor”(see line 5 in the code example 2.1) and the object is ”"Jan Egil Refsnes”. So this
piece of RDF-Code says, that Jan Fgil Refsnes is the author of this resource. By using
this standardized description of resources, computers are now able to link the name Jan
Egil Refsnes to this resource and can also figure out, in which relationship he interrelates
to it.

After defining what RDF is and how it can be used to describe simple resources,
there is also the need for a source that describes the properties and classes of RDF
resources. Concluding, one needs a common vocabulary and the RDF Schema® offers
such a vocabulary for formalizing ontologies. Because RDF only supports type-elements
for typecasting, one needs some additional concepts, for example, to create a taxonomy
of terms. Therefore RDF Schema supports the concept of Classes and Properties. A class
represents an abstract object. By joining the concept of classes and types, RDF Schema
is able to create instances. Classes have different properties, which represent the second
additional concept in comparison to RDF, to describe an instance of a class. To be able
to query RDF and RDF/S resources, you a need a query language similar to that of SQL
for accessing and manipulating relational databases.

2.1.3 SPARQL Protocol and RDF Query Language

Another very important Semantic Web standard is SPARQL. SPARQL is recommended
by W3C and is entirely designed to meet the use cases and requirements identified by
the RDF Data Access Working Group? . This query language is also mentioned in Tim
Berners-Lee’s four ”Linked Data Principles” [Berners-Lee, 2006] and plays a major role
when talking about Semantic Web and Linked Data. What SQL is to databases, SPARQL
is to Linked Data formalized in RDF. There are four different query forms to form different
result sets for RDF graphs.

e SELECT: Returns specified or all variables bound in a query match pattern and
those results are returned in a table format.

e CONSTRUCT: Returns an RDF graph, which was extracted from a SPARQL end-
point.

e ASK: Returns true or false according to whether the defined query pattern matches
or not.

e DESCRIBE: Returns an RDF graph, that describes the resources found.

For a detailed description of the usage and definition of the four query forms, see the
W3C documentation of SPARQL!Y.

SRDF/S
http://www.w3.org/TR/rdf-dawg-uc/ (January 2012)
Ohttp://www.w3.org/TR/rdf-sparql-query/ (January 2012)

2.1. Semantic Web and its standards 7

2.1.4 Web Ontology Language (OWL)

The first thing someone recognizes when he or she reads the acronym for Web Ontology
Language is that OWL doesn’t represent the first letters of the standard’s name. But
there is an easy and comprehensive explanation for that. It simply sounds better than
WOL and refers to the animal that symbolically stands for wisdom. Although this is not
the most interesting fact about OWL, it may cause confusion.. To also avoid any confusion
around RDF Schema and OWL from the beginning, OWL in comparison to RDF /S adds
more vocabulary for describing properties and classes. However both standards can and
do coexist within the very same RDF document. At the end of this section, there will
be an example combining RDF, RDF Schema and OWL to illustrate the interactions of
these essential Semantic Web standards.

The idea behind OWL is, that some applications might not just need to represent
information to humans, but rather need to process the content of the information. By
providing additional vocabulary along with formal semantics, the language’s machine
interpretability of web content is much bigger than the machine interpretability of other
well known languages. OWL was developed to exactly meet the needs of a Semantic Web.
The main purpose is, to make it easier for machines to automatically process and integrate
information, which is available on the Web. If machines are expected to perform useful
reasoning tasks on these documents, the language must go beyond the basic semantics
of RDF/S.! More precisely, it describes the meaning of the terminology used in Web
documents, by using more detailed and specially designed concepts for fulfilling the task
of linking data.

OWL is split into three sub languages. The following descriptions are taken from
W3C’s definition of OWL’s sublanguages'?:

e OWL Lite: This sub language is the light version of OWL. To be utilized by users
that just need a classification hierarchy and simple constraints. The advantage of
OWL Lite is the easy and quick migration path for thesauri and other common
taxonomies and it’s less formally complex than the two other OWL versions.

e OWL DL: OWL DL supports those users who want the maximum expressiveness
while retaining computational completeness (all conclusions are guaranteed to be
computable) and decidability (all computations will finish in finite time). OWL
DL includes all OWL language constructs, but they can be used only under certain
restrictions (for example, while a class may be a subclass of many classes, a class
cannot be an instance of another class). OWL DL derives from its correspondence
with description logics, a field of research that has studied the logics that formed
the formal foundation of OWL.

e OWL Full: OWL Full is meant for users who want maximum expressiveness and
the syntactic freedom of RDF with no computational guarantees. For example,

Uhttp://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.2 (January 2012)
2http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.3 (January 2012)

8 2. Fundamentals

in OWL Full a class can be treated simultaneously as a collection of individuals
and as an individual in its own right. OWL Full allows an ontology to augment
the meaning of the pre-defined (RDF or OWL) vocabulary. It is unlikely that any
reasoning software will be able to support complete reasoning for every feature of
OWL Full

Deciding which of these sublanguages is the right choice is by far more difficult than
one might think and every OWL developer has the ordeal of choice. Nevertheless, ev-
ery developer who plans to use OWL should think about his individual expectations and
should read the W3C documentation very accurately before beginnung with the develop-

ment!3.

Since the definition of OWL in early 2004, OWL 2 has been released and officially
documented and recommended by W3C in late 2009. OWL 2 is very similar to OWL
1 and fully backwards compatible with it’s ancestor. The role of RDF /XML and other
syntaxes have not changed. OWL 2 just adds new functionality to OWL 1 and therefore,
makes the adoption of the new standard very easy and straight forward. Similar to OWL
1, there are also three sublanguages, which are now referred to as Profiles. The following
listing of OWL 2’s sublanguages are cited from OWL 2’s official definition of W3C,

¢ OWL 2 EL enables polynomial time algorithms for all the standard reasoning tasks;
it is particularly suitable for applications where very large ontologies are needed,
and where expressive power can be traded for performance guarantees.

e OWL 2 QL enables conjunctive queries to be answered in LogSpace (more precisely,
ACO) using standard relational database technology; it is particularly suitable for
applications where relatively lightweight ontologies are used to organize large num-
bers of individuals and where it is useful or necessary to access the data directly via
relational queries (e.g. SQL).

¢ OWL 2 RL enables the implementation of polynomial time reasoning algorithms
using rule-extended database technologies operating directly on RDF triples; it is
particularly suitable for applications where relatively lightweight ontologies are used
to organize large numbers of individuals and where it is useful or necessary to operate
directly on data in the form of RDF triples.

Several new features like keys, property chains, richer data types and ranges, asym-
metric, reflexive, and disjoint properties etc. make OWL more powerful and offer more
expressivity than ever. To conclude the big topic of OWL, figure 2.1 shows the overall
structure and main building blocks of OWL 2. The center of this figure is an OWL 2
ontology, which can be seen as a RDF graph. On top of the center, you see various

Bhttp://www.w3.org/TR/2004/REC-owl-features-20040210/ (January 2012)
Yhttp://www.w3.org/TR/owl2-overview/http://wuw.w3.org/TR/owl2-profiles/ (Jan-
uary 2012)

2.1. Semantic Web and its standards 9

concrete syntaxes. These different syntaxes can be used to exchange and serialize ontolo-
gies. The two blue marked boxes at the bottom of this graph represent the two semantic
specifications that define the meaning of OWL 2 ontologies!®.

RDF/XML fi] G
0,
Functional document i S fﬂ OWL/XML I,
syntax -

document
document A
AN \ -@ g { g
Y A S - 7
e £ 7/
0 o 3 by
Manchester—= AR 202’0@ £ ?I 60&/0(@\; g Turtle
syntax - N NG o /&
) e e, o W O R document
document \’b% N 60,,\ , El g BN 4 W v
~ ,?3.‘@ \C@f‘% AN :94 \496. g_ a . 0@) > Q{v ' o e&/ -
2 . -~
~fo, 0r, éofa AN \) 7 74 LGKOQ /:U“?;\l
i, 'Sy \ s AT T oo
??0' ~ N 4 QT.O 7 \?’
- LY Y " -~ Q’ﬂ‘
~ -
impart OWL 2 Ontology

ma

Ontology
Structure Mapping

Syntax layer

Semantics layer

h .
Direct Semantics _ _orespandence theorem {fi' DL subset) —» | RDF-Based Semantics

Figure 2.1: OWL2 structure (http://www.w3.org/TR/owl2-overview/)

2.1.5 RDF, RDF/S and OWL combined

As already

mentioned, OWL, RDF and RDF/s can and do coexist in even a single doc-

ument. The following listing 2.2 displays an example of the usage of RDF, RDF/S and

OWL1:

<rdf :RDF
xmlns:
xmlns
xmlns:
xmlns
xmlns

:rdfs="http://www.w3.0rg/2000/01/rdf ~schema#"
:dc="http://purl.org/dc/elements/1.1/"
:plants="http://www.linkeddatatools.com/plants#">

<!'-- OWL Header Omitted For Brevity -->

<!-—- OWL Class Definition - Plant Type -->

rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#"

owl="http://www.w3.0rg/2002/07/owl#"

5TImage is

taken from W3Cs OWL 2 documentation http://www.w3.org/TR/owl2-overview/

(January 2012)
http://www.linkeddatatools.com/introducing-rdfs-owl (January 2012)

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

10 2. Fundamentals

<owl:Class rdf:about="http://www.linkeddatatools.com/plants#
planttype">

<rdfs:label>The plant type</rdfs:label>
<rdfs:comment>The class of all plant types.</rdfs:comment>

</owl:Class>

<!'-- OWL Subclass Definition - Flower -->
<owl:Class rdf:about="http://www.linkeddatatools.com/plants#flowers"
>
<! -- Flowers %s a subclassification of planttype -->

<rdfs:subClass0f rdf:resource="http://www.linkeddatatools.com/
plants#planttype"/>

<rdfs:label>Flowering plants</rdfs:label>

<rdfs:comment>Flowering plants, also known as angiosperms.</
rdfs:comment>

</owl:Class>

<! -- OWL Subclass Definition - Shrub -->
<owl:Class rdf:about="http://www.linkeddatatools.com/plants#shrubs">

<!-- Shrubs is a subclassification of plantitype -->

<rdfs:subClass0f rdf:resource="http://www.linkeddatatools.com/
plants#planttype"/>

<rdfs:label>Shrubbery</rdfs:label>

<rdfs:comment>Shrubs, a type of plant which branches from the base
.</rdfs:comment>

</owl:Class>

<! -- Individual (Instance) Exzample RDF Statement -->
<rdf:Description rdf:about="http://www.linkeddatatools.com/plants#
magnolia">
<! -- Magnolia <s a type (instance) of the flowers classification
-=>
<rdf:type rdf:resource="http://www.linkeddatatools.com/plants#
flowers"/>
</rdf:Description>
</rdf:RDF>

Listing 2.2: OWL Example Ontology

This example represents three plant classes. Flowering plants and shrubs are both
subclasses of the planttype class. This planttype class is at the top of the plant hierarchy
in this example. As you see, OWL ontologies are defined by RDF resources, as well as
RDF/S properties and classes. OWL is used as a semantic extension for RDF and OWL
ontologies are defined by extension of RDF /S meaning.

2.1. Semantic Web and its standards 11

2.1.6 More Standards

This subsection presents some more Semantic Web Standards that are used very frequently
and should also be mentioned when talking about Semantic Web Standards.

2.1.6.1 Simple Knowledge Organization System Reference (SKOS)

SKOS is a family of formal languages and is designed for expressing the basic structure
and content of many types of controlled vocabulary. SKOS is built upon RDF and RDF/S
and its main purpose is to provide a model for composing and publishing concepts on the
World Wide Web and linking such concepts semantically. Just as in RDF, concepts are
identified with URI’s and are described with strings in many different languages. SKOS’s
fundamental elements become concepts by introducing the class concept. This class makes
it possible to identify a given resource as a concept. For describing concepts, SKOS offers
a variety of labels, where you can choose preferred, alternative and hidden labels. In
comparison to OWL, SKOS is a stand alone vocabulary and is widely used beyond the
librarians world. The reason for this is the aforementioned labeling feature that can be
used with any kind of real world data. SKOS is also very popular for interchanges between
different social networks [Bleier et al., 2011].

2.1.6.2 Friend of a Friend Project (FOAF)

The Friend Of A Friend project aims to create a Web of machine readable pages. Each
page of this web describes an internet user itself as well as users, where each user is
connected to other users by different kinds of relationships defined by Social Networks
and similar connections. FOAF is not only used to describe how people are connected
to each other, but rather to make visible, what they do and create on the World Wide
Web. Every user on the Web has the ability to generate such a FOAF file and upload it
to the Web. FOAF is also an RDF application and therefore can be combined with many
other vocabularies. This vocabulary is widely used for enriching Social Network accounts
by integrating new data, described by FOAF profiles. Services like [IYOUIT [Boehm and
Luther, 2009] try to provide personalized services by context aware user profiling and the
adoption of common semantic representation formats. For a detailed introduction to this
standard, take a look at the official Friend of a Friend website!”.

2.1.6.3 Semantically-Interlinked Online Communities (SIOC)

Semantically-Interlinked Online Communities are also a mentionable Semantic Web tech-
nology. The SIOC vocabulary is also based on RDF and recommended by W3C. This
standard was designed to meet the requirements of a Semantic Web ontology representing
rich data from Social Web in RDF. Usually it’s used hand in hand with FOAF for describ-
ing Social Network accounts and information. SIOC has become a standard for expressing

"http://www.foaf-project.org/docs (January 2012)

12 2. Fundamentals

user generated content and offers new ways and possibilities for creating Semantic Web
applications, built on top of user generated data. Online blogs, message boards, wikis,
etc. have replaced traditional methods of publication on the web and make it possible to
build bridges between the huge amount of published information.

"Developers can use this ontology to express information contained within
» 18

community sites in a simple and extensible way.
A detailed documentation of this powerful vocabulary can be found on their official SIOC
homepage®.
After now having had a brief look at Semantic Web and its standards, we can move
on to the next basic topic for building a Semantic Recommender System.

2.2 Twitter and Microblogging

In the last few years, microblogging and especially Twitter?® have gained strong impor-
tance and their usage and adoption rate have grown dramatically [Softic et al., 2010].
More and more people use microblogging for sharing their knowledge, experiences, opin-
ions and feelings.

"People are connecting with each other in a very smart way, sharing and
discussing their topics, exchanging information,using it with their devices over
mobile Internet access and evolved different techniques to enhance their online
communication.” [Ebner, 2010]

Twitter is the largest microblogging platform of 2012 so far and is used as a reference
microblogging platform throughout the whole thesis. But what exactly is microblogging
and what can we extract from that huge amount of user generated data?

”Microblogging is a small-scale form of blogging, generally made up of short,
succinct messages, used by both consumers and businesses to share news, post
status updates and carry on conversations.” [Templeton, 2008]

Extracting useful data from microblog platforms like Twitter, was and is a very popular
and promising field of research and many researchers have found ways to make microblogs
semantically useful. However, to be able to make Tweets and the information contained
readable to machines, the computer has to understand the meaning of individual Tweets.
Many researches like [Choudhury and Breslin, 2010], [Softic et al., 2010] or [Milikic et al.,
2011] have come up with different approaches for detecting connections between Tweets
in various categories like sports, science, events, etc. In this section I'm going to explore

8http://rdfs.org/sioc/spec/ (January 2012)
Yhttp://sioc-project.org/ (January 2012)
Wnttp://www.twitter.com (January 2012)

2.2. Twitter and Microblogging 13

some very interesting previously undertaken work and research concerning this topic,
starting with formalizing and defining tweets in general and explaining how they differ
from usual information streams in the World Wide Web.

2.2.1 Social Awareness Streams

Any user of the World Wide Web who has ever used Twitter, Facebook?' or a similar
Social Network has certainly seen Social Awareness Streams without even noticing them.
When users login to a Social Network website, they usually see a stream of information
generated by other users they might follow or are friends with, in reverse chronological
order. Knowing what Social Awareness Streams are, makes it pretty obvious that one
of the major features of Twitter is such a Social Awareness Stream. However this isn’t
anything unusual for a Social Network. In comparison to other social streams of similar
systems, the stream of Twitter seem to be kind of special. In networks like Facebook or
Google+22, the data structure of messages is defined by developers. In contrast, Twitter
messages have a user defined data structure, because users have the ability to use hashtags,
retweets?® and replies or mentions?® on their own terms. This has made Social Awareness
Streams in Twitter much more complex and implies a dynamic data structure. Therefore,
[Wagner and Strohmaier, 2010] introduced and analyzed a model for formalizing T'weets as
tripartite models named Tweetonomies. Fig. 2.2 visualizes an example Tweet formalized
as Tweetonomy.

Mgy
retweeted message instance

Ua

R; (http://mydomain.com)

Figure 2.2: Example Tweetonomy for the Tweet: “RT@tim new blog post:
http://mydomain.com #ldc09”

lhttp://wuw.facebook. com (January 2012)
Znttps://plus.google.com/ (January 2012)
23RT

24@

14 2. Fundamentals

U, R and M are finite sets containing users (U), resources (R) and messages (M). By
using this kind of formalization, three mode networks can be generated and analyzed for
visualizing relationships between users, resources and messages. This isn’t just interesting
for doing research on specific tweets, but rather for revealing how much different and
dynamic information a tweet can contain.

After defining Tweets theoretically, the next step is using this knowledge to bring
Tweets inti a semantically useful type of machine read- and interpretable presentation by
using technology and standards already mentioned in section 2.1

2.2.2 Making Tweets semantic

To make Tweets semantically useful, twitter data has to be brought into a machine read-
able form of presentation. RDF is is a good example for doing such a thing. The next step
would be the description of the relationships between the different Tweets and tweeters.
Semantic Web standards like SIOC (see section 2.1.6.3), FOAF (see section 2.1.6.2) or
OWL (see section 2.1.4) are appropriate tools. One example of such a system is Grabeeter
%5 Grabeeter was developed by TU Graz and stores as well as indexes Tweets of a Twitter
account for further processing and usage [Softic et al., 2010].

"The Grabeeter web application enables users to archive their tweets in the
Grabeeter database and to perform a search on the stored tweets through a
web interface.” [Muehlberger et al., 2010]

With systems like DBPedia?®, the semantic version of Wikipedia, sources can be
mapped to each other as described in section 2.1.1. However, after extracting the data,
Tweets can be used for analysis by using SPARQL endpoints and lookup services.

Nevertheless, this represents only one possible way of making microblogs semantically
useable. The real challenge hides in detail and that’s the linking of data and the definition
of Tweets and the information that is contained in them, however that is related to the
identification of users that are of a certain scientific interest.

2.2.3 Semantic Relatedness and Metrics

The big task here is to define rules, which make it possible to extract as much useful
information as possible and identify, in which context information is linked to each other
[Milikic et al., 2011].

The meaning of the term is always defined by the social context. Social systems
are dynamic when they depend on their context as are the meaning of terms. This is
a big problem concerning the linking of individual terms to each other because they
are constantly changing and they also have different meanings within different circles of

Phttp://grabeeter.tugraz.at/ (January 2012)
Zhttp://dbpedia.org/About (January 2012)

2.2. Twitter and Microblogging 15

people. It’s quite easy to detect trends in the world of Twitter by searching for hashtags
or simply using the integrated trend feature. One question that arises at this point is
how are these trends related to each other? Let’s say the terms iPad3, launchday and
Austria are the current trending topics on Twitter. The dynamic changing of relationships
between terms makes it very hard to define how these terms relate in different contexts.

[Milikic et al., 2011] also offer a very interesting solution for this problem. They
developed a function named Normalized Micropost Distance, which makes it possible, to
measure the relatedness of terms over a defined period of time. Therefore, identifying the
sense of context between two terms is not enough for filtering useful information. The
reason is that information about the importance of single terms, the Twitter user and
hashtags is still lacking.

2.2.4 Trend detection

Trend detection is a very widespread field of research especially concerning microblogging.
Researchers all over the world are developing operations to detect what people are actually
talking about and what bothers them. The aim is not only to detect general trends, but
also to gain customized information, which is of interest to a certain target audience
(e.g. soccer fans, computer geeks, music nerds, etc.). As a fact, the number of Tweets
increases with every second. This however, reflects such an unbelievably huge amount
of information that it is really impossible to read all the Tweets. Additionally, a lot of
Tweets are just noise and thus have to be eliminated from the evaluation. [Kraker et al.,
2010] developed such a trend detection system by using either (a) a specified taxonomy
of keywords, (b) specified list of users, or (c¢) a combination of both. After the crawled
Tweets are scanned for informative nouns or hashtags, using POS-tagging®’, which will be
discussed in depth in section 2.4, the obtained information can be used for the evaluation
of Tweets.

Another technique to detect hashtags, which exhibit the desirable properties of strong
identifiers or shortly summarized, which are probably trends, is introduced by [Mika and
Laniado, 2010]. The first step they took to "rate” hashtags was to define metrics and
scales for different attributes concerning Tweets and hashtags. They present four very
interesting attributes in their paper.

e Frequency: Hashtags are used by a circle of people with some frequency. This
frequency is measured in number of users using this hashtag and the number of
messages sent by those users containing this hashtag. By exploring the correlation
between these two numbers, they calculate the frequency of a hashtag.

e Specificity: The extent to which the usage of a hashtag deviates from the usage
of the word without a hash.

e Consistency in usage: Hashtags are used consistently by different users and in
different messages to indicate a single topic or concept.

2TPart of Speech tagging

16 2. Fundamentals

e Stability over time: The hashtag should become a part of the persistent vocab-
ulary of Twitter users, i.e. it should have sustained levels of usage and a stable
meaning over a period of time.

They defined a vector space model for evaluating the metrics of a hashtag and studied
the evolution over time. Vector Space Models are discussed in section 2.3.2.1 of this
chapter.

2.2.5 Categorizing users

Another significant discussion concerns the categorization of individual Twitter users and
the possibility of detecting single Tweets that fit the nature of a certain user. [Horn et al.,
2011] for example, used a supervised classification to deal with this problem and they also
implemented an application following the path of supervised learning(see section 2.3.2.3).
However the difficulty regarding the huge amount of information still remains. [Choudhury
and Breslin, 2011] also addressed this kind of problem by developing a prototype for
discovering sports T'weets and finding appropriate classifiers, which allow for identification
of Tweets and tweeting users that belong to and/or tweet about a specific sports event.
And indeed they found classifiers which were almost completely fulfilling their needs.
There are many different approaches to solving these problems and this hints at a growing
economical importance and potential. Twitter is also referred to as the electronic word-
of-mouth. Indisputably, getting information about customized needs, e.g. about user
preferences regarding car brands and concerning expectations, brings valuable competitive
advantage among others [Jansen et al., 2009].

Nonetheless, the question of high scientific interest that remains is indeed a very
delicate one. Is it necessary to develop classifiers for each event or category you want
to filter, or is it indeed possible to define a set of rules or metrics or classifiers that are
able to automatically readjust according to changing circumstances? In other words, the
question deals with the difficulty of not losing the context in this tremendous, dynamic
and ever progressing pool of information.

2.3 Recommender Systems

The idea of Recommender Systems emerged in the 90s, when more and more people
started using the internet and consequently the associated amount of information avail-
able for everybody who had access to information provided by other internet users, in-
creased dramatically. In 1992, the PARC Tapestry System [Terry, 1992] was introduced.
Eventually, it was the first system for collaborative filtering. This system was supposed
to help internet users to find more interesting and useful data related to their personal
needs. In the first place, it demonstrated how explicit data and implicit behavioral data,
can be stored into a queryable database. By combining these two kinds of data?®, personal

28Explicit data is data, shared by users, like writing an article or rate something. Implicit data is
data that is derived from explicit data, like when you say: ”"Marco was tired when he came home from

2.3. Recommender Systems 17

filters were born. Nonetheless, the big disadvantage of the system is, that the generation
of personal filters aren’t working automatically and therefore, every user had to define
his own filter. In 1994, the GroupLens System [Resnick et al., 1994] made the usage of
recommender systems easy for everyone, by providing an automated mechanism for the
generation of collaborative filters in a network for news articles. Over the years there
have been four states in advancing Recommender System, which will be discussed in the
following sections.

The way to commercialization wasn’t a broad one. In the mid 90s, the internet business
expanded rapidly and so did the need for Recommender Systems in real world systems.
Nonetheless integrating them into existing or even new real world systems also brought
some new challenges, including changing items, new and growing userbase, trust, trans-
parency etc. Between the year 2000 and 2006, research on Recommender Systems literally
exploded, eventually caused by the burst of the so called internet bubble in 2000* and
the fear of a second burst in 2006. A lot of big companies, like Amazon [Linden et al.,
2003], had already integrated and were using Recommender Systems in their online sys-
tem and thus, gained huge advantages over websites and systems which weren’t using
those systems and the huge related benefits.

Netflix gave this field of research a big boost by introducing the Netfliz Prize® in
2006, which ended in 2009 by declaring “BellKor’s Pragmatic Chaos” [Bell et al., 2008] as
the winner. However, the boost of popularity and the interest regarding this topic did not
peter out after the competition ended. Now, in the very beginning of the year 2012, this
hot topic is indeed on its way to the best accuracy levels obtained so far. This section
serves as an overview of state of the art Recommender Systems. As already mentioned,
there are four basic concepts for such systems, starting with the father of the Recom-
mender System concepts: Collaborative Filtering. Reference should be made to [Jannach
et al., 2011] which serves as the relevant source concerning the following sections of the
thesis. However, this work provides a very detailed overview of the most important and
preferably applied Recommendation System techniques. However, Collaborative Filtering
and Content based Recommendations are of huge relevance to the practical part of this
master ‘s thesis and are thus discussed in more detail.

2.3.1 Collaborative Filtering

Collaborative Filtering®! deals with similarities between individual users. If one considers
that user A bought bananas and user B also did, it suggests that they may have something
in common. If they both buy the same or mostly akin products, the possibility that
they will act in similar ways in the near future is conceivably high. Consequently, it
is comprehensible that if A buys a coffee mug, it’s very likely, that user B also wants
to buy one. This reveals that the users collaborate with each other in an implicit way.

university”, implicit data is for example: Marco is a student.
Phttp://articles.latimes.com/2006/jul/16/business/fi-overheat16 (March 2012)
30http://www.netflixprize.com/ (March 2012)
3lCollaborative Filtering = CF

18 2. Fundamentals

Another very interesting fact about CF is, that the system doesn’t need to know anything
about the items that are recommended, meaning the data doesn’t have to be semantic.
All recommendations are based on individual user behaviors. Nevertheless, there is one
big disadvantage known as the so-called cold-start problem. For example, if you imagine
books that haven’t been bought on a certain platform before, there are logically no
recommendations available. In particular, there are three major problems in CF that one
has to deal with, including the cold-start problem. The two remaining are scalability and
sparsity. Millions of users and items occur in systems like Last.fm®? or Facebook®?. The
computational complexity for calculating recommendations based on all those items and
users in such a big environment is in fact huge. Sparsity however, originates from the fact
that platforms like Amazon are selling a large variety of items, but just a few users really
rate those items. Eventually, as a result, some of the most popular and most sold items
are never rated by the customers. However, Collaborative Filtering/Recommendation,
which represents a long-standing leading theme in the community, has been investigated
for nearly 20 years now. Consequently, there is a huge wealth of knowledge regarding
the advantages and disadvantages. Hence, there are a lot of solutions that are aimed at
an efficient decrease of the impact caused by the three problem factors that have been
mentioned.

A collaborative recommender approach always produces the same types of result:.

e A comparable numeric quantity of information based on the user behavior, meaning,
i.e. if a user likes or dislikes an item.

o A list of n items that are recommended.

Most of todays successful Recommender Systems rely on CF and its techniques be-
cause it simply is the best-researched for predicting recommendations. There are two
basic concepts for Collaborative Recommendations. User-based and item-based nearest
neighbor recommendations.

2.3.1.1 User-based nearest neighbor recommendation

As indicated by the name, user-based nearest neighbor recommendation predictions are
generated by analyzing users. Generally, this technique works as as follows:

Let R,,., be a matrix where m are users of the system and n are items to be sold. The
value R; ; in R, represents ratings from a user ¢ of an item j. Now the task is to find
users that have similar likes or dislikes. These users are referred to as neighbors, where
the nearest neighbor to a single user A is the one that has the most accordances with likes
and dislikes of user A [Chen et al., 2010]. Next, it’s time to predict which items a user will
like in the future. This prediction is based on analysis of nearest neighbors. Similarities
between users can be measured and calculated using several rating ratios. Some of the

32yww.last.fm (March 2012)
33yww . facebook.com (March 2012)

2.3. Recommender Systems 19

most frequently used and for this master’s thesis important ratios are discussed later
on. Companies or learning platforms with very specific environments need well adapted
metrics and techniques for filtering recommender relevant information in order to weight
different ratios so that a maximum amount of accuracy is obtained. The APOSODLE
project for example aims to connect interesting people providing interesting information.
To be able to acquire such a behavior, environment specific metrics and weights have to
be found or developed [Beham et al., 2010].

2.3.1.2 Item-based nearest neighbor recommendation

Although user-based nearest neighbor recommendation is applied successfully in many
different use cases, the problem of scalability in huge e-commerce systems still remains.It’s
at this point that item-based nearest neighbor recommendation comes into play. Real time
predictions of recommendations in huge systems like Amazon are practically impossible.
Therefore, preprocessing and precomputation has to be done to allow for the supply of
real time predictions. Item similarity matrices are calculated in advance to lower the
amount of possible items. At runtime, predictions are calculated by only taking into
account the number of nearest neighbors, equal to the amount of ratings a user has
produced [Linden et al., 2003]. In advance, there are many other useful additional ways
to lower the complexity of prediction matrices, or to filter the most important factors
for recommending items. Particularly in an environment where ratings are submitted
by users, the choice concerning the scale of rates is an essential factor for developing a
successful and satisfying Recommender System. Unfortunately, there’s no panacea for
defining an appropriate scale in advance.

Something that all Recommender Systems have in common is that testing and test
data is a key factor for developing such a system. This however leads to the first big
problem regarding the development of a Recommender System, as already mentioned in
section 2.3.1, the lack of test data provided for several fields of interest, especially learning
platforms [Drachsler et al., 2010].

While user-based nearest neighbor recommenders are referred to as memory based,
because the database is held in memory for instant prediction processing, item-based
nearest neighbor recommenders are referred to as model based. This can be accounted for
by offline precomputation of pre defined models, which are used to calculate predictions
in real time.

There are several model based approaches such as matrix factorization, which is used
by the winners of the Netfliz Prize [Bell et al., 2008], association rule mining [Romero
and Ventura, 2010] or probabilistic recommender approaches [Jannach et al., 2011]. With
the current success of using matrix factorization for predicting recommendations, it’s
nearly impossible to not recognize them as a potential way to go. However, for further
information concerning model based approaches the above mentioned references might be
of interest.

20 2. Fundamentals

2.3.1.3 Matrix Factorization

As already mentioned, in the world of collaborative filtering, matriz factorization has
stirred things up in the last couple of years. This kind of model based recommendation
aims to derive latent factors from rating patterns. Those latent factors can be seen as
semantics. They are calculated by approximating a matrix X to the product of two
smaller matrices W and H. Thereby, X is the partially observed rating matrix. W
contains vectors of latent factors which describes a user u; and H describes the items 7,
with feature vectors [Thai-Nghe et al., 2010]. w, and h;; are elements of W and H. The
result is the rating given by a user u to an item 1.

K
> waphi = (WHT),, i (2.1)
k=1

Formula 2.1 serves to calculate the rating, a user u has given for an item 7. Researchers
have shown, that the success of matrix factorization is strongly bound to the adequate
elimination of data noise. Herein the key factor is, to train the system. Actually, there
are several kinds of stochastic methods to sharpen the sense of such noise filters [Jannach
et al., 2011]. Nonetheless, in a usual memory based or item based Recommender System,
so-called similarity measures are commonly used for detecting similarities between users
or items. The following section will discuss the three most commonly used types.

2.3.1.4 Similarity Measures

Choosing and defining similarity measures, plays a key role in developing a Recommender
System. It’s quite usual, that multiple different similarity measures are calculated to
reach a higher level of accuracy in predicting recommendations. The most important and
most common similarity measures are presented in the following.

Cosine Similarity Measure: In item-based recommender approaches, cosine similarity
is established as the most accurate metric for describing the similarity between two
items. In fact, it’s also commonly used in the field of information retrieval and
text mining, this however makes it even more interesting and useful for a Semantic
Recommender System based on Tweets. The similarity between ratings of two item

vectors, a and b is defined as follows®* 37
— a - g
sim(a,b) = ———_ (2.2)
|al * [b]

Nonetheless cosine similarity has one big disadvantage, meaning that the average
rating behavior is neglected.

34The symbol | stands for euclidean length of a vector
35The symbol - stands for product of vectors

2.3. Recommender Systems 21

Adjusted Cosine Similarity Measure: This advanced kind of cosine similarity takes
average user ratings into account by subtracting it from the ratings. In the following
formula, U is a set of users, who rated item a and b:

sim(@,B) = 2uev(Tua — T (rup —) (2.3)

N \/ZueU(Tu,a - TL)Q\/ZueU(m,b — 7)?

The cosine similarity is predicted for every user or item entry in our R,,,, matrix

and the rating entries are now replaced by adjusted or unadjusted cosine similarities.
Predictions can be done in both cases by calculating a weighted sum of a user’s rating
for items that are similar to a specific item.

Pearson Correlation Coefficient What cosine similarity is for item-based nearest neigh-
bor recommenders, the Pearson correlation coefficient is for user-based nearest
neighbor recommenders. It represents a commonly used and outperforming measure
for calculating similarity, in this case, for users instead of items. In the following
formula, U represents a set of users and I a set of items. Our R,,,, matrix remains
in the previously defined state of representing the ratings from users for items. User
a’s and user b’s similarity is calculated according to the formula below.

sim(@,B) = 2ici{Tai — Ta)(Tbi —) (2.4)

- \/ZieI<Ta7i - 7"71)2\/21‘61(7‘672‘ —7p)?

By applying this formula for all users compared to each other, it’s pretty straight

forward to analyze the nearest neighbors. The next task is to make a prediction for
a particular item in the system. This, however, includes the decision, regarding the
nearest neighbor ratings that should be taken into account and how these ratings
should be valued. In almost all use cases, this depends on the type of environment,
that the system has to be adapted to. Consequently, it is possible to make pre-
dictions for an individual user, revealing/ suggesting possible new items of interest
which the user might buy in the future.

In fact, collaborative filtering, which was the subject of detailed investigations through-
out the last 20 years, represents a huge scientific field. This makes the aforementioned
approach of developing Recommender Systems a very promising one, especially concern-
ing semantic approaches. Experts in this field, like [Modritscher, 2010] or [Solskinnsbakk
and Gular, 2011], often take the advantages of using this technology to recommend infor-
mation or also users in diverse environments. Classic collaborative filtering methods can
be extended by tags for discovering similarities between users and items. But these tags
aren’t seen as semantics, but rather are seen as additional users in our user-item matrix
for predicting similarities. Ratings in this matrix are set to 1, if a tag, belongs to this
item.

22 2. Fundamentals

2.3.2 Content-based Recommendation

In contrast to collaborative filtering, content-based recommendation systems are aware
of the items they are recommending. Content-based recommenders know characteristics
of items and users. For example, descriptions of video games are used to identify users,
who are known to have similar affectations and who the system thus identifies as possible
customers for a new video game. When a single user bought the videogame Halo 1
and Halo 3 and has bought several other shooter games, it’s very likely that the user is
interested in the newly added Halo Reach, although no one else has bought this game so
far. The big challenge concerning the development of such systems is the identification of
useful information about items, which might be of certain interest to a specific user. In
fact content-based doesn’t always mean that items and their characteristics are stored in
relational databases and then are checked for similarities.

This recommendation technique has been developed for the purpose of Semantic Rec-
ommender Systems by analyzing news feeds and other documents, and checking for their
semantic relatedness. So the main task, is to find relevant keywords within a document.
Things like social tagging, which for example is used in Twitter (see section 2.2), helps
in finding relevant keywords. Unfortunately, you can’t always rely on social tags and
therefore, it requires another approach, which at least describes and measures useful in-
formation. One approach is vector space models.

2.3.2.1 Vector Space Models (VSMs)

Vector space models are often used for analyzing folksonomy systems like Twitter.

"VSMs are commonly used in information retrieval as a representation of
documents, where each dimension corresponds to term in the collection and
cach value measures the weight of that term for the document.” [Mika and
Laniado, 2010]

Content of a document can be encoded in keyword lists by using TF-IDF3¢. TF is a
measure of the appearence of a certain term in a document. IDF is responsible for reducing
the weight of keywords, that appear very often in all documents. The following definition
the term frequency T'F(i,j) of a keyword 7 in a document j is just an example taken
from [Jannach et al., 2011] to point out, how it can be done. freq(i,j) is the absolute
frequency of i in j. Other Keywords(i, j) denote the set of other keywords, appearing in
j. First we need to know maxOthers(i, j), which is defined by max(freq(z,1)), where
z € Other Keywords(i, j).

o [freqli,g)
TEGJ) = maxOthers(i, j) (2:5)

The idea behind IDF is, that keywords, which appear very often in nearly all documents,
aren’t as important as keywords occuring very infrequently in just a few documents. N

36term frequency-inverse document frequency

2.3. Recommender Systems 23

is the number of documents and n(i) are the documents, in which the keyword i appears.
Now we want to calculate I DF (i) to be able to weight the keyword according to the idea
of RDF. N
IDF(i) =1g —
(i) =1lg 0
TDF — IDF(i,j) where i is the keyword again and j is the document in which the
keyword appears is defined as follows:

(2.6)

TDF — IDF(i,§) = TF(i,j) * IDF (i) (2.7)

Our final vector space model consists of TDF-IDF weighted vectors for keyword 1
in document j. Nonetheless, the weighting of keywords reveals some major problems.
Imagine a music store for guitars. In the description of the store it reads: ”No left-hander
guitars are sold in our store”. Now, because the word ”left-handers” occurs just once
in the whole description, the system weights it by far heavier than the word would be
weighted in a description of a store which sells only lefthander guitars. The outcome
would be, that someone who searches for lefthander guitar stores, will likely be guided
to the store, which doesn’t sell lefthander guitars. This non context awareness is a big
problem, especially for recommendations regarding scientific papers.

2.3.2.2 k-nearest Neighbor (k-NN)

This approach also deals with the analysis of user profiles and is very similar to col-
laborative approaches. For the evaluation of an item, the likes/dislikes of a user have
to be tracked and remembered. Next, cosine similarity (previously discussed in section
2.3.1.4) is used to measure the similarity of two documents. For a newly added item in
the systems, we need to find the £ most similar rated items. By analyzing those k-nearest
neighbors in comparison to the user’s behaviors, the system is able to decide whether
the user is probably interested in the newly added item or not. K-nearest neighbor®”
approaches are also used for tag recommendations in folksonomy systems [Gemmel et
al., 2009] to develop, for example, automatic approaches for annotating documents with
concepts extracted from social data[Solskinnsbakk and Gular, 2011].

Summarized, k-NN systems have the big advantage of a simple implementation and
it’s easy to adapt the system to recent changes. Another big advantage is that the cold
start problem is all but eliminated. But researches have shown, that pure kNN approaches
often don’t reach the accuracy of more ambitious techniques.

2.3.2.3 Classification

Content-based recommendation tasks can be formulated as classification problems. Doing
that, allows the application of many different machine learning techniques. [Horn et al.,
2011] for example, developed a system for detecting user types and tweet quality based

3Tk-NN

24 2. Fundamentals

on supervised machine learning classification. Supervised means that the algorithm relies
on training data where input and output is known. Finding such representative training
sets is by the way one the most challenging tasks in supervised learning. Especially in
text classification, it’s a big problem to label a document as relevant or irrelevant. That’s
because new documents have to be assigned to predefined classes. A typical use case for
something such as this is an anti spam system, which has to analyze a document if it fits
into the spam scheme, know and classified by the system.

The next thing that may causes problems in classifying documents is, that there aren’t
only true or false options, but rather there can be by far more classification possibilities.
Supervised based classification and machine learning techniques tend to overspecify classes
and recommendations over time. A lack of recommendations containing fresh information
would be the consequence, as recommended documents become too similar. So it’s very
important for developers of a recommender system based on supervised learning, to pro-
vide a mechanism for also recommending, let’s say, unexpected documents. In advance
of the Recommender Systems section 2.3, classification of microtext artefacts is discussed
in section 2.4.

The following classification approach is based on Bayes. Bayes based systems occured
very frequently during the research prior to this master’s thesis and they are a classic
classification approach for recommender systems.

2.3.2.4 Bayes Classifiers

In particular, let’s start with Multinomial Naive Bayes. These approaches are commonly
used for text classification [Eibe and Boukaert, 2004] and are based on the Bayes Theorem
which is defined as follows:

P(A|B) = (2.8)

P(A) and P(B) are a priori probabilities of A and B. A priori probability can be
explaind with an easy to understand real world example. Imagine a bag that contains
green and yellow stones. What is the probability of picking a green one? Therefore it’s
necessary to know what happened before we wanted to know what the probability of
getting a green one is. P(B|A) is the probability of B on condition, that A has happened.
So P(A|B) describes the probability relationship between A and B. In Naive Bayes
for Text Classifiers, each document is viewed as a collection of words by neglecting the
arrangement of words in this document. In the following formula, we use the Bayes
Theorem for describing the probability relationship that class value ¢ fits a test document
d. Word w occurs n,g times in document d. P(d) and P(c) are a priori probabilities for
a document d or a class c.

P(e) [Tupea - Pwlc)™
P(d)

P(c|d) = (2.9)

2.3. Recommender Systems 25

A detailed definition of all variables and probability relations, can be found in [Eibe
and Boukaert, 2004]. [Seth et al., 2008] used Naives Bayes for developing a subjective
credibility model for participatory media, like Twitter. This is in fact not POS (see section
2.4) but also a very interesting approach for making sense of Twitter. By defining several
rules for identifying a particular message as useful and defining the credibility metrics,
they created a bayesian user model, that computes credibility of a document in relation
to a specific user. This system was developed to improve existing recommender systems
or to filter previously executed recommendations. In Seth et al.’s paper, they talk about
applying this technique to Collaborative Filtering techniques, which is a good example
for a hybrid recoomender (see section 2.3.4).

Nonetheless, before talking about hybrids, it’s important to talk about the last pure
kind of recommendation techniques first: Knowledge-based Recommendations.

2.3.3 Knowledge-based Recommendation

Knowledge-based recommendations only rely on user ratings and demographic informa-
tion. The two previously discussed techniques have their strengths and advantages but
they don’t fit all the requirements a recommender system could have. One typical use
case for when a knowledge-based approach should be used is when you plan to do some-
thing that happens very infrequently and the decision has to be made very carefully. For
example buying a new guitar or TV. In cases such as this, it’s important to take knowl-
edge about a quite long time span into account. People have very different needs and
requirements for choosing their guitar and so they want to have the option to define their
own rules for choosing the products. Such a task isn’t typical for collaborative filtering
or content-based approaches. Sometimes there aren’t even ratings needed.

Knowledge-based recommender systems recommend items, for one specific user who
defined the rules and metrics that a recommended item has to meet to be classed as
interesting. These types of recommender systems are divided into two sub domains.
Constraint-based recommendations and case-based recommendations. Constraint-based
Recommenders rely on user predefined recommendation rules and recommend items from
a given set that fulfill these requirements. Case-based recommendations focus on retrieval
of similar items. This is done by comparing different types of similarity measures.

2.3.4 Hybrid Recommendations

Just like the name says, this section is about hybridization. All three of the presented
recommender approaches have their strengths and weaknesses. Some of the weaknesses
can be absorbed by combining different techniques of developing a recommender system
like that mentioned in section 2.3.2.3. The main task here is to identify the strengths
and weaknesses when you implement a recommender system for a particular need and of
course, find an alternative that is able to overcome the weaknesses of your system.

26 2. Fundamentals

[Jannach et al., 2011] define some of most used and common patterns for combining
different algorithms and models and present a table for categorizing the input data re-
quirements of recommendation algorithms. This table aims to make it easier to choose a
particular algorithm for specific needs. But meeting all the prerequisites is just one aspect
of system development. When it’s possible to apply different design patterns, the overall
design of a system becomes a very precarious task. Nearly all recommender systems in
real world examples are hybrids, like the previously mentioned example of the Netflix
Prize winners [Bell et al., 2008] or [Seth et al., 2008]. A very interesting and well written
summary of how recommender systems can be combined and the different approaches that
a are widely used is presented by [Adomavicius and Tuzhilin, 2005]. They also present a
table in their publication, for choosing the right algorithms and recommender approaches
for specific needs.

2.4 Classification of Microtext Artefacts and Part of Speech
Tagging.

The classification of microtext artefacts is the basis of being able to build a Twitter-based
Semantic Recommender System. This section deals with the question, what exactly has
to be classified and can you make a machine context aware? How is a machine able to
understand that a sentence like: ”This feature is killer”, has nothing to do with a human
who Kkills people? One major and commonly used step in developing context awareness
in text classification is the usage of part-of-speech® tagging techniques, which is part of
the broad topic of Natural Language Processing.

POS tagging aims to tag every single word in a sentence with predefined tags, which
describe the meaning of a word in context. This enables a machine to detect semantic
relationship between words in different contexts. POS tagging is just a part of the big
topic of Natural Language Processing®®. As we already heard in section 2.3 techniques like
cosine similarity or TF-IDF don’t have any semantic knowledge about the things they
recommend. Therefore, it’s essential to process written words in their very own context.
So this technique makes it possible, to compare the text or information by its meaning
and measure and recommend in advance.

2.4.1 NLP Pipeline

POS-tagging is just a part of a typical NLP pipeline. [Russel, 2011] describes a typical
NLP pipeline as follows:

e End of Sentence Detection: The first part of the pipeline is responsible for
breaking a text into meaningful sentences.

3BPOS
39NLP

2.4. Classification of Microtext Artefacts and Part of Speech Tagging. 27

Tokenization: Tokenization means, making each word in a sentence a token.

POS tagging: Assigning part of speech information to each token.

Chunking: This step aims to analyze tagged tokens and detect logical concepts
within them.

Extraction: This step analyzes chunks and tags those chunks as named entities.
Entities can be just about anything, such as animals, gadgets, people etc.

This is an example of how such a pipeline can be realized. In real world examples,
the elements of the presented pipeline differ slightly. The information that is obtained by
applying these steps can be used for measuring similarities (see section 2.3 Recommender
Systems). POS is either an unsupervised or supervised machine learning approach. Un-
supervised learning is defined by [Ghahramani, 2004] as follows:

”Finally, in unsupervised learning the machine simply receives inputs x1, x2,
., but obtains neither super- vised target outputs, nor rewards from its
environment.”

The difference lies in the ability to tag a completely unknown word. [Gimple et al.,
2011] for example, developed a POS-tagger especially for the needs of Twitter messages.

2.4.2 Hidden Markov Models

As already mentioned, the meanings of microtext artefacts in systems like Twitter, change
dynamically over time and are used differently in various contexts. A classic and com-
monly used technique for defining the changing circumstances and dealing with probabil-
ities that occur from unpredictable happenings in the system are HMMs. HMMs describe
the probabilities for implicit(hidden) information. The following simple real world exam-
ple demonstrates how HMMs work and are built:

First, imagine a coin. A coin has two sides, one displaying a symbol or person and
the other one defines the value of the coin by displaying a number. The coin is flipped
by another person and this person tells you the results after he/she flipped the coin.
In addition to that, you can’t see how the coin is flipped. So all you know about this
experiment, is the result. Let’s say H is head and N is number. A possible result is:

O=HHN,HHH,..N (2.10)

So there are two possible states in this model, where each state has a probability
of 0.5. We don’t have any hidden elements in this model. But what if neither state is
uniquely associated with either heads or numbers? The probability for each state would
still remain 0.5, but the outcome sequences are independent from the state transitions.
In other words, this model would be hidden [Juang and Rabiner, 2003]. This very simple
sounding approach, can be applied to tasks like POS tagging, as described in [Goldwater

28 2. Fundamentals

and Griffiths, 2005]. In the case of a POS tagger, HMMs help to identify a word, in
relation to its sentence. Let’s say we have a sentence like this: ”This is @PathonHauser’s
first tweet for AuroraApps”.

In a real world POS taggers, every possible POS tag represents exactly one state
Yy € S1, ..., S, in a HMM. Because all word categories can emerge after another, our graph
would be fully connected. All edges have transition probabilities. Each state also produces
a word of the sequence and a sentence can be generated by a walk through the graph.
Figure 2.3 displays a possible HMM for classifying words in four different categories.
Transition probabilities are fictional.

0.08

Figure 2.3: Example HMM for POS tagging with four different kinds of POS tags
(NP, NN, PRP, VE) and its transition probabilities from one state to
another.

Output symbols are defined as x € (01, ...,0p,), which are also referred to as obser-
vations. The probability for the starting sequence is defined as P(Y; = w;) and the
probability for a state transitions is P(Y = y;|Y;_1 = yi_1). P(X; = z|Y; = y;) is rep-
resenting output/emission probability. A word is equated with an observation. Every
output and state sequence, has its probability:

P(z,y) = P(T1, .. 1, Y1y - Y1) (2.11)

After that, it’s time to estimate the probability for transitions and emissions. Transi-
tions can be estimated by the number of time state a followed state b in divided by the
number of occurrences of state b. Emissions are estimated by the number of times output
a is observed in state b divided by the number of times state b occurs. These estimations
have to be smoothed in advance to obtain proper results. So far we we assume, that our
system has input and output. But in an unsupervised approach, the system doesn’t have
an output.

What can be done, is to estimate expected frequencies and use them to calculate the

2.4. Classification of Microtext Artefacts and Part of Speech Tagging. 29

parameters, because the system doesn’t know these hidden parameters. In Advance to
applying this technique we define forward-backward probabilities.

The forward probability is defined by wanting to know, at a time ¢, what the probability
that the system is in state s and the observation thus far has been oq,..,0; is. A =
parameters(A, B) is.

ai(s) = P(sy = 5,01, ..., 01| \) (2.12)

Backward probability deals with the question, what is the probability that while the
system is in state s at time ¢ that the observation that follows will be 01, ...,o0r. Math-
ematically formulated you get the following:

Bi(s) = P(0t41, ..., 0r|st = 5, \) (2.13)

The following list represents the idea of the Baum-Welch algorithm, taken from a lecture
by [Hahn, 2012].

1. Initialize your parameters with some random values.
2. Calculate the forward-backward probabilities based on your current parameters.

3. Forward-backward probabilities can now be used to calculate the expected frequen-
cies.

4. Use the expected frequencies to estimate the parameters.

5. Repeat this until the parameters converge.

For a complete mathematical formalization, see [Hahn, 2012]. But applying the tech-
nique that has just been presented for overcoming unsupervised learning problems is one
of many different possible ways to go.[Goldwater and Griffiths, 2005] for example devel-
oped a fully Bayesian approach for unsupervised POS tagging, which performs quite well.
But because of relevance for this thesis, support vector machines are discussed next.

2.4.3 Support Vector Machines

The topic of support vector machines is indeed a very complex one. There are several
different ways how to apply this classification technique. This section provides a look at
the very basics of this concept to point out how this kind of classification can be useful
for POS tagging and classification of words and also for chunking. [Nakagawa et al., 2001]
was the first to introduce SVM?* for unknown word guessing and his work is used as
a reference for discussing SVMs regarding POS tagging. In their paper they define the
principle of SVM as follows:

40Support Vector Machines

30 2. Fundamentals

Support Vector Machines (SVMs) are supervised machine learning algorithm
for binary classification on a feature vector space x € R”.

w-r+b=0weR" beER (2.14)

SVMs aim to build a model based on training data. This model predicts the target
values of test data, given test data attributes [Hsu et al., 2010]. Hyperplanes (2.14)
separate sets of objects in classes, aiming to produce the most possible free space near
class borders. The distance between the first object of a class and a hyperplane is call
margin. A hyperplane is defined by training sets (2.15).

{(zs,ys)|zi € R¥ gy € {£1}, 1< <1} (2.15)

SVMs try to find hyperplanes with maximum margins. Figure 2.4 visualizes the prob-
lem of finding maximum margins:

2 Positive Example
® Negative Example

Figure 2.4: Margin maximization by training hyperplanes

But as one can imagine, not all objects can be classified by two dimensional lines.
Therefore, non-linear tasks have to be mapped onto a higher dimensional space. This
done by mapping the feature vectors. Because all data points appear as inner products
from a linear point, we also only need the inner product in a higher dimensional space.
These values aren’t mapped to higher dimensions. They are calculated in R” by so called
kernel functions.

Kernel functions allow the calculation of linear functions (in this case hyperplanes)
implicitly in higher dimension spaces. There are several kinds of kernel functions that can
be applied, but there are four, let’s say basic functions that are applied commonly [Hsu
et al., 2010]. Linear, polynomial, radial basis function and sigmoid. SVMs are binary
classifiers and in the case of POS tagging more than two classes have to be classified. K
classifiers are created to separate a class from all other classifiers. For predicting a POS
tag the following features are used [Nakagawa et al., 2001].

2.4. Classification of Microtext Artefacts and Part of Speech Tagging. 31

e POS context: The words next to the unknown word.
e Word context: The lexical forms of the two coterminous words.

e Substrings: Prefixes and suffixes(up to 4 chars) of the unknown word and the
existence of numerals, capital letters and hyphens in the unknown word.

Back to the example presented in section 2.4.2: "This is @PathonHauser’s first tweet
for AuroraApps”. Let’s say the word AuroraApps is the unknown word in this sentence.
In fact there are two known approaches for solving this problem in the case of SVMs.
Both make usage of the previously presented additional features. The first approach uses
only preceding POS tags. Because there are no probabilities calculated as in HMMs(see
section 2.4.2), a deterministic method has to be applied. A dictionary containing all
previously used and known POS tags is used and all tags that are contained are used as
possible candidates. The one that best fits the features, is taken. The second approach
is using preceding and succeeding POS tags. So you treat unknown words the same way
known words are treated, but by using the three previously presented features.

SVMs can also be used for chunking approaches [Kudo and Matsumoto, 2001]. The
concept for this approach is quite the same, with of course slight adaptions of hyperplanes,
kernel functions and features for detecting so far unknown phrases. In this case SVMs
aim to identify common English phrases.

2.4.4 Clustering

Clustering is one the most important tasks of unsupervised learning problems*'. The
concept of clustering relies on one fundamental ideal and that’s the application of grouping
similar items to clusters. [Witten et al., 2011] defines clustering as follows:

"These [obtained] clusters should reflect some mechanism at work in the
domain from which instances or data points are drawn, a mechanism that
causes some instances to bear a stronger resemblance to one another than
they do to the remaining instances.”

Figure 2.5 visualizes what the task of clustering aims to achieve in a given set of data
items. In this example the clustering technique builds four clusters.

Applications of cluster techniques and methods are pattern recognition, classification,
compression and classic disciplines like marketing or psychology [Fung, 2001]. There are
many approved and commonly used different ways to express and formulate the problem
of clustering.

e Exclusive Clustering: One data item belongs to exactly one cluster.

e Overlapping Clustering:An item has the possibility of belonging to several clus-
ters.

“http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/ (April 2012)

32 2. Fundamentals

- -

Figure 2.5: Example of clustering data points into four clusters.

e Probabilistic Clustering: Items have probabilities that define to which degree of
probability this item belongs to a specific cluster.

e Hierarchical Clustering: This kind of clustering is based on the union between
the two nearest clusters.

There is not only one path that leads to proper results when formulating the prob-
lem of clustering, but rather there exists several methods and algorithms to deal with
their problem specific circumstances. A list of commonly used algorithms can be found
in [Fung, 2001]. The most important measures in clustering techniques are distance mea-
sures between data points. Therefore, the base for applying a clustering technique is
converting all data points to the same physical unit. In the case of developing a Semantic
Recommender Systems for Research 2.0 the problem of clusters can be found in tasks
such as identifying users for different categories (Probabilistic Clustering) or simply in
sorting multidimensional ration vectors (Hierarchical Clustering).

This chapter presented the very basics and some important techniques a developer
needs to know for developing a Semantic Recommender System. Combining the knowledge
of Semantic Web in general with the technology of Recommender Systems, opens the door
for many application areas and straightens the path, for the constant improvement of any
kind of information preparation. The next chapter’s content, is the presentation of an
idea for a system that aims to filter and recommend context aware and user relevant data
based on Twitter feeds for a defined set of categorized users.

Chapter

Concept

After digging more deeply into some basic concepts and techniques of Semantic Web,
Recommender Systems and Natural Language Processing, this chapter serves as a basic
concept definition of this maser’s thesis practical part. Semantic Recommender Systems
aim to mine knowledge and deliver it as an end product. That’s in fact a very rough
generalization of the indeed quite complex task of developing a system such as this, but
points out the overall benefit very well.

This chapter describes and defines the stages that lie in between developing and deliv-
ering knowledge as an end product. The following section introduces a model that aims
to describe and define all stages of a development process for identifying and discovering
valid, novel and potentially useful patterns in data.

3.1 Knowledge Discovery in Databases (KDD)

The term KDD became popular in the mid 1990s, when the volume of data on the World
Wide Web grew so big that a normal human being wouldn’t be able to stay aware of
the fast growing volumes of digital media. Manual detection of changing circumstances is
slow, expensive and subjective and therefore not the right task for a human. Such work
needs to be automated and this automated process always follows the same or very similar
rules and traces of development stages. According to these findings, the process model of
KDD became more applicable than ever. This raises the question: what exactly makes
KDD in comparison to similar sounding processes processes, such as usual classification
or recommender task as discussed in chapter 2, so different?

The answer is indeed a very simple one. KDD serves as an overall model for displaying
the path from the very beginning of developing a system, which is in most cases a raw
and big set of data, to the very last step of a development process [Fayyad et al., 1996].
Therefore, this model serves as a skeletal structure for this forthcoming system. The ex-
traction of high level knowledge from low level data is the major goal of every data mining
application and also, a very vital part of KDD. Nonetheless, the task of data mining, or
classification, or recommendation, is just a part of a complete model. Generally, these

33

34

3. Concept

process models are split into five particular main stages of development and conception.

. The Selection stage deals with the task of understanding and exploring the relevant

domain knowledge and identifying the goals of the forthcoming application. By
being aware of what the system should be capable of, the developer should also be
able to select an initial data set that serves as a basis for extracting knowledge.

. Preprocessing is the next step in this process chain. This stage’s task is to prepare

the data for further processing. A typical step within this stage would be cleaning
the data of noise.

. The next task is to format and transform preprocessed data that makes further

usage of the initial data as manageable and convenient as possible. According to
the goals of the application, the extraction of potentially useful features is also part
of this development stage. As a matter of fact, this stage is called Transformation.

. This stage contains classic Data Mining techniques like classification, clustering,

etc. The aim of this stage is to find a technique or algorithm that meets the expec-
tations of this system.

. One of the final steps is Interpretation. This stage involves the possibility and abil-

ity to return to any former stage for improving applied techniques and algorithms.
The last step is the Evaluation of results and findings that were discovered during
development.

Figure 3.1 visualizes the KDD process model. Note that every stage can and should

be re-entered during development to continuously improve the system.

Interptetanun "
Eva]uaﬂon

Data Mining
Transformation
Preprocessing
I

Patterns
‘ Transformed
Preprocessed Data Data
-
'
Data Target Date

Figure 3.1: An overview of the steps that compose the KDD process.

3.2. Selection 35

In the following sections, the concept for the practical part of this master’s thesis is
presented and defined in every stage of KDD. By following the path of KDD, a detailed
insight in all fundamental software design, implementation and data acquisition decisions
that were made from the very beginning of this project is given. Starting with the Selection
Stage, which serves as the initial starting point.

3.2 Selection

A main part of this stage invlolved digging one’s nose into the topic of Semantic Web,
Recommender Systems, Natural Language Processing and the topic of micro blogging
itself. This pre-work took a considerable amount of time and ensured a fundamental
understanding of how things work in this huge field of research was gained. The results
and findings of this literature search are summarized in chapter 2 of this master’s thesis.
Whilst carrying out this extensive pre-work, the idea for the proof of concept application
arose and consequently defined the goals of this project. The definition of goals led to a
proof of concept application that is discussed in advance of defining the initial idea. In
advance of discovering the goals of the system, one also has to find out, what form and
kind of data would be a solid and promising initial dataset.

3.2.1 Thought Bubbles

The concrete idea for a proof of concept application in the form of a Semantic Rec-
ommender System for Research 2.0 came up during spending spare time on searching
for potentially interesting information spreading Twitter users on the Twitter platform.
Whilst doing that, it became obvious that when one browses for new and interesting users,
one nearly always does this by having a look at who a friend is following or a follower list.
People you consider potentially interesting, open doors to other people, which are might
of interest as well. By being conscious of this, the idea of, let’s call it Thought Bubbles,
emerged.

Twitter users follow other users for specific reasons. In the majority of cases these
reasons are due to similar fields of interest. Nonetheless, this doesn’t mean the connection
between similarly interested Twitter users is bidirectional. When social network connec-
tions aren’t bidirectional, an individual user doesn’t implicitly have to know his followers.
Obviously, the follower is interested and involved with similar topics, to the person he or
she follows. Therefore, there is a high probability that friends and other colleagues of the
followed user have similar connections, which can be of certain interest to a particular
user.

A user is active in several kinds of topic based bubbles, where the participating users
do not necessarily know all participants of such a bubble. However, in most cases, one
doesn’t have just one special kind of interest and he or she is part of several topic based
subsets of users. Hence, users within one user’s specific bubble, might be of interest to

36 3. Concept

each other. Figure 3.2 shows an example of a network graph,which reveals the sphere of
activity within diverse Thought Bubble.

Developer Bubble

Figure 3.2: Example Twitter Network Graph with Thought Bubbles.

Users marked with a star (*) are potentially of high interest for the centered account

in figure 3.2. These users belong to the same topic specific bubble, as illustrated here, to
the Science Bubble.

This implies that following a specific user within a certain field increases the probabil-
ity of finding further relevant users who are also engaging in a field of specific relevance.
The missing bidirectionality of certain user connections, hints at interest only relation-
ships. Being conscious of this, led to the concept of Thought Bubbles. This presents the
possibility of recommending people and information, which is contained within a bubble
and is yet to be explored by a specific Twitter user.

3.2.2 Proof of Concept Application

The proof of concept application that is being developed during this master’s thesis, deals
with the realization of recommending Twitter users according to the idea of Thought
Bubbles mentioned in section 3.2.1. In fact, the focus of this is proof of concept application
relies on filtering potentially interesting persons for a specific Twitter account. Figure 3.3
visualizes the applications architecture.

A client application is using the REST! API?, which is supplied by the Thought Bubble
Server and serves as the main access for third parties to this system. The usage of common

'Representational state transfer (REST)
2application programming interface (API)

3.2. Selection 37

External
Clients (iOS, Twitter API
Web, etc)
Internal
Tweet
REST API
Collector

$ A

Classification
Worker
Threads Rater

/

Database ~—| Database sQLite
Operations <—>| Wrapper Database
Thread

Figure 3.3: Proof of Concept Application schematical Architecture.

http requests, enables the client to subscribe to the Thought Bubble Service or in advance,
receive recommendation data from the server. A detailed list of implemented API-calls
can be found in chapter 5. When a user subscribes to the Thought Bubble Service, the
Tweet Collector instance starts to fetch user lists, shown on the previously discussed
example of Thought Bubbles. When the Tweet Collector is finished fetching user lists for
the users that are using the service, the information for potential recommendations is
stored to the database for further processing. All database operations are executed via
the Database Operation Thread. After that, Classification Worker Threads are started
to calculate the similarity between users. The similarity calculation is based on user
specific ratios, which are discussed in depth in section 3.5. All results are again stored
with help of the Database Operation Thread. The architecture presented is just a brief
overview of the technical functionality of this proof of concept application, in order to
visualize the different parts of the system that need to be developed and planned in
advance. This section serves as a fundamental basis skeleton for designing and planing all
particular software modules that are needed to realize the system. A detailed technical
documentation can be found in chapter 4.

38 3. Concept

3.2.3 Initial Data

Based on findings describes in section 2.2, micro blogging data created by Twitter users
on the according platform serves as the initial data source for further processing. To
be able to categorize a Twitter account, it’s necessary to take a look at one’s Tweets,
Retweets and in particular, one’s hashtags. Consequently, a user’s Tweets will serve as
an initial dataset for categorization. Not only the Tweets themselves can be identified
as useful data, but rather information about the entire Twitter account of a user. The

10

12

14

16

18

20

22

24

26

28

30

32

34

following listing displays a sample response from Twitter REST API3.

{

"contributors_enabled":false,

"created_at":"Fri Apr 04 09:02:32 +0000 2008",

"default_profile":false,

"default_profile_image":false,

"description":"Semantic Web, Linked Data, Social Media, Reputation
Systems enthusiast and researcher. Phd Student @ Graz University
of Technology & a very bad guitar player ;)",

"favourites_count":3,

"follow_request_sent":false,

"followers_count" :131,

"following":false,

"friends_count":243,

"geo_enabled" :false,

"id" :14301066 ,

"id_str":"14301066",

"is_translator":false,

"lang":"en"

"listed_count":12,

"location":"AUT",

"name" :"Selver Softic",

"notifications":false,

"profile_background_color":"022330",

"profile_background_image_url":"http:\/\/a...",

"profile_background_image_url_https":"https:\/\/si0.twimg.com...",

"profile_background_tile":false,

"profile_image_url":"http:\/\/a0.twimg.com\/profile_images
\/1135082711\/semweb-softic-small_normal.JPG",

"profile_image_url_https":"https:\/\/si0.twimg.com\/profile_images
\/1135082711\/semweb-softic-small_normal.JPG",

"profile_link_color":"0084B4",

"profile_sidebar_border_color":"a8c7f7",

"profile_sidebar_fill_color":"CODFEC",

"profile_text_color":"333333",

"profile_use_background_image" :true,

"protected" :false,

"screen_name":"selvers",

"show_all_inline_media":false,

3The following request URL was taken: https://api.twitter.com/1/users/show.json?

screen_name=selvers&include_entities=false

36

38

40

42

3.3. Preprocessing 39

"status":

{....},
"statuses_count" :676,
"time_zone":"Vienna",
"url" :null,
"utc_offset" :3600,
"verified" :false

Listing 3.1: Example Twitter User JSON response for an existing Twitter account.

The representation or respectively format of this API response is called JSON*. Only
one, pre-prepared by the Twitter REST API, http request brings so much additional
information for a specific Twitter account. Ratios like follower and following count, loca-
tion, listing count, preferred language, etc., can all help, on the one hand to categorize a
user and on the other hand, to measure the influence of Twitter accounts. One of these
mentioned ratios leads directly to the pre selection stage of this KDD stage.

3.2.4 Language selection

The fact that Twitter is a multilingual platform, makes it pretty hard to handle all possible
languages that occur within Tweets. Statistics based on a dataset of 5.6 billion tweets
from all over the world, collected over a period of 16 months, from July 2010 to October
2011, showed that English is still the main language of tweeted content. Followed by
Japanese and Portuguese. In addition to these Twitter statistical facts, the usage of the
English language for scientific papers and reports for international conferences or journals,
to make written science and the according information accessible for the broadest audience
possible, led to the decision, to only use Twitter accounts marked as English for evaluation.
Every Twitter user has to select the language he or she is tweeting in when they sign up
for Twitter. Figure 3.4 visualizes the aforementioned language statistics®.

After defining the fundamental details for the data sources to be used, the stage of
preprocessing defines the first steps of preparing the initial data for further processing.

3.3 Preprocessing

The elimination of noise within the dataset is an important step during development.

Noise elimination is a very elementary preprocessing step and deals with filtering data
that can be disregarded from recommendation right from scratch. The operative point
in this task lies in identifying data features that point to the identification of data as
noise. Let’s assume we observe one specific Twitter account. Which facts could hint to

4JavaScript Object Notation is a lightweight object notation that is also human readable. http:
//javascript.about.com/library/bljson.htm (March 2012)

SStatistics are taken from http://reyt.net/twitter-61-of-tweets-are-not-in-english/
8683 (March 2012).

40 3. Concept

40
30

20}

) I I l
. - [——

English Japanese Portugese Spanish Malay Dutch Korean

Figure 3.4: Twitter language statistics from July 2010 to October 2011 (http://
reyt.net/twitter-61-of-tweets-are-not-in-english/8683)

a quite big probability, that a Twitter account is potentially not useful or improper for
recommendations? Figure 3.5 visualizes these steps as filter chain.

Filter accounts Filter accounts where: Filter non
that are already follower_count < 300 English speaking
connected to you status_count < 1000 accounts

Friends of —
- Identifiy People
Friends | =
: >| Filter Filter Filter by using a simple
Twitter S
NLP Pipeline
Accounts

Set of Twitter accounts for
further processing

A

Figure 3.5: Preprocessing chain for filtering potential recommendation candidates.

e In the first place, when the service user is already following the provided Twitter
account, recommending such a person, wouldn’t make any sense at all and can be
neglected.

e Twitter accounts that follow a huge amount of other Twitter accounts, but in com-
parison have very few or no followers, hints at a spamming, or just very unpopular
user. Such accounts are often advertisers for various dubious purposes and are often

3.4. Transformation 41

6

referred to as Blast Followers®. As a consequence of that, a user has to reach a

specific limit of followers to be considered as a potential recommendation”.

e Just signed up, unused or non data producing Twitter accounts should also be
disregarded. As already mentioned in section 3.2.3, information regarding such
circumstances can quite easily be extracted from Twitter REST API responses by
observing tweet frequencies and the friends and follower ratio (see listing 3.1).

e Asmentioned in section 3.2.4, accounts that don’t use English as their main language
can also be disregarded.

e What does it mean when the currently observed account represents an institution or
company? In this case, it’s very likely, that the account is doing a lot of advertising
and therefore, it is also quite uninteresting for a recommendation within the realms
of Research 2.0. Consequently, one needs to find a way to eliminate as many accounts
as possible that don’t belong to, at least fictionally, real people.

By filtering all accounts according to these criteria, leads to a manageable and poten-
tially interesting set of Twitter accounts for further categorization and data mining.

After preprocessing the potential set of Twitter accounts that could be used as initial
data for the task of recommendation, also the Tweets of those people also have to be pre-
processed. The very first test runs of this proof of concept application led to discovering
the fact, that not all Tweets in a users timeline are potentially useful for classification. In
fact, Retweets of specific users influenced the identification of interests of a user. There-
fore, Retweets are stripped in advance of the classification task. Within tweets, also
mentions and URLs are stripped because they aren’t useful for classification tasks and
only tend to increase the computation time of. That’s because mentions aren’t contained
in any test set for POS taggers or chunkers and therefore can’t be properly identified.
Nonetheless, personal and overall like in the case of Twitter mentions, fictional names,
don’t expose any information about a specific account. This finding is based on the fact

that users usually mention others, whom they communicate with or are already followed
by®.

3.4 Transformation

This stage of transformation aims to transform the initial data to a manageable, easy and
convenient process format.

Although Semantic Web and its technologies and standards were discussed in section
2.1, none of them were used during or for development so far. The reason for this is either
that the official Twitter REST API is delivering responses packed in JSON objects and

Shttp://www.makeuseof .com/dir/blastfollow-mass-follow-twitter-users/ (April
2012)

"A factor of min. 300 followers was chosen during development.

8http://www.momthisishowtwitterworks.com/ (April 2012)

42 3. Concept

the fact that the commonly used web technologies like Python?, Ruby!® or PHP!! are
very well prepared for dealing with JSON. Also the most third party libraries support
JSON by default.

Another valid reason for choosing JSON as the main data format is the fact, that
JSON can and will also be used for the Thought Bubble REST API. Internally, JSON
objects will be casted into platform specific objects. Details for the technical realization
can be found in chapter 4.

Although semantic technologies like FOAF (see section 2.1.6.2) or SIOC (see section
2.1.6.3) weren’t used so far, it is planned to make use of them in advance of finishing this
proof of concept application. This would indeed enable this system to link people beyond
the borders of Twitter. [DeVoch et al., 2011] for example, already conceived and partially
approved a system using these classic semantic approaches to mine specific science related
events and their participants.

3.5 Data Mining

After fetching a pre-filtered set of potential future recommendations for a Thought Bubble
service user, it’s time to pick and identify the most similar and potentially interesting
connections within this set. Each of the following steps present one major operation on
the initial dataset of potential Twitter users and its Tweets.

3.6.1 Tweet Frequency

The request limits of Twitters REST API forced us to filter the set of potential recom-
mendations in advance to the main classification and categorization task. Therefore, we
made use of a very popular Twitter statistic: the Tweet Frequency'?. Let t. be the time
in days since a user has created his or her account and 7w, be one specific Tweet. The
result is the Tweet Frequency of one Twitter account tf, :

te

the = <
/ D i Twi

(3.1)

The top n accounts that tweeted the most Tweets within a day, are considered for the
classification task. Each Tweet Frequency is stored as a ratio in the database for further
calculations.

http://www.python.org/ (March 2012)

Ohttp://www.ruby-lang.org/en/ (March 2012)

Hhttp://www.php.net/ (March 2012)
12http://blog.kissmetrics.com/science-of-social-timing-1/ (April 2012)

3.5. Data Mining 43

3.5.2 NLP Pipeline

One major part of classifying a user’s account is to apply a simple NLP Pipeline. Figure
3.6 visualizes all necessary preprocessing steps that have to be executed to get a set of
comparable feature vectors.

Tokenization and
stripping
@mentions and
URLs

Neglect 200 most
used English
words

Raw Tweets POS tagged Tweets

[('The', 'AT"
('grand', 'JJ");
@testuser The (jury', 'NN"),
grand jury) (‘commented', ,
commented on a POS tagging 'VBD"), (‘on’, 'IN'), > Chunking
number of... (‘a', 'AT"),
('number’,
'NN"), ... (., ']
ll Set of Frequency T
Distributed mined Mined nouns ahd phrases
nouns and phrases
[(jury', 'NN
A [(jury', 34), 'number’,
(‘'social', 23), < Frequency » 'NN"),
('test case', Distribution N ('social
16), ...] dayly',

NP, ..]

T —
‘ Filter top n words \

Figure 3.6: NLP Pipeline of Thought Bubbles proof of concept application.

The first step in this NLP Pipeline is to tokenize all accumulated Tweets of a specific
user. During tokenization, mentions and URLs are stripped from the Tweets as described
in section 3.3.

Based on these results, all tokenized Tweets are POS tagged, similar to the description
in section 2.4. When all accumulated Tweets of an account are POS tagged, the tagged
Tweets are chunked to identify common word phrases and names within the Tweet set.

The found words and phrases are processed for the 200 most commonly used English
words!®. Those 200 words are stripped from the result set because they don’t have any
influence in categorizing accounts. The result set contains all detected proper nouns and
names, excluding mentions and URLs. Although most hashtags are recognized by the
chunker as proper nouns, they are added additionally to the result set. A side effect of
that is that hashtags are counted twice within a set and therefore, are twice as influential

3http://www.world-english.org/english500.htm (April 2012)

44 3. Concept

as commonly detected words. Frequency Distribution method is then applied to the result
set to identify the top n influential and used words and phrases. In advance to that, they
are stored as feature vectors for each account in the observed user set and of course, for
the user, who is requesting recommendations.

Nevertheless, this part of the system is where NLP is applied. As mentioned in section
3.3, it’s necessary to identify whether a Twitter account belongs to a person or something
else, like a company or institution. Therefore all screen names'* of accounts are tokenized,
POS tagged and chunked. For this approach, the NLP Pipeline is very simple. The
chunked nodes are observed as to whether the chunker has identified persons. If so, a user
is taken into account for further processing. A detailed description of the chosen methods
can again be found in chapter 4.

3.5.3 Retweet ratio

During the tokenization step in the NLP Pipeline that mines the feature vector of a user,
another very important and useful ratio is mined. The so called Retweet ratio. Let rt()
be a function for determining the number of Retweets one Tweet has and T'W; be exactly
one observed Tweet of a user. n is the amount of observed Tweets for an account and the
result is the average amount of Retweets one gets per Tweet tr,,.

> ico TH(Twy)

. (3.2)

tr, =

After computation, this ration is also stored for further comparison tasks. This ratio
correlates directly with the amount of Tweets that are fetched from the Twitter Rest API,
so it doesn’t consider all Tweets a user has ever tweeted.

3.5.4 Measuring Similarity

After processing feature vectors for each user, it’s time to compare those vectors. A
classic approach for item-based recommender systems is Cosine Similarity (see section
2.3.1.4). This approach seems to fit the needs of this comparison task perfectly, because
in comparison to systems where different items are rated by users, it’s not necessary to
take average ratings into account. The reason for that is based on the fact that average
occurrences of words in other users feature vectors aren’t interesting. Those vectors
shouldn’t be influenced by the usage of a specific noun or phrase of other users.

In the first place, it’s important to define a specific size of comparable vectors, because
both vectors have to be of the same size. To accomplish that, it’s necessary to merge the
features of a vector and define a specific set of features. The corresponding vector is then
filled with the ratings of each users top n words and phrases vectors. Formula (2.2) is
applied to compute the similarity of two Twitter accounts. Cosine Similarities are stored

M Name of a Twitter user that is displayed for other users. In most cased the real name of a person.

3.5. Data Mining 45

in the database. It’s the main ratio for making a decision as to whether an account should
be recommended or not.

Basically, there are four important tables within this database design:

3.5.5 Clustering

Once all potential recommendations have been measured for their similarity, it’s time to
compare all computed ratios. A vector consists of three so far calculated ratios:

1. Cosine Similarity of compared feature vectors of the users (section 3.5.4).
2. Tweet Frequency (section 3.5.1).

3. Retweet ratio (section 3.5.3).

Those vectors can be seen as points in a common three dimensional cartesian coordi-
nate system. The challenge now is to find a clustering method that is able to find the best
scoring ratio vectors without neglecting one of them. This conceptual formulation hints
at a hierarchical clustering (see section 2.4.4). Nevertheless, the more precarious task is
to find an algorithm that meets all the requirements of this task. Hierarchical clustering
treats every single point as a singleton cluster. During the clustering task, all singleton
clusters are merged, until all data points occur in one single cluster. [Olson, 1996] lists
the four most used variations of clustering, based on several different distance measures.

e Single Linkage Clustering: This form of distance measuring always takes the
shortest distance between data points as distance between two clusters. One major
disadvantage of this method is the danger of chaining. This phenomenon is caused
by only measuring the shortest distance between two clusters based on only one
data point from each cluster. The two nearest data points. That means that within
the merged clusters, other data points can be very distant from each other.

e Complete Linkage Clustering: In contrast to Single Linkage Clustering, Com-
plete Linkage Clustering takes the two most distant data points for measuring the
distance. This form of clustering tends to produce very tight clusters.

e Average Linkage Clustering: Just like the name says, Average Linkage Clus-
tering computes the average distance between clusters, so all data points within a
cluster are taken into account. Based on this computation, the two nearest clusters
are merged during one iteration step.

e Centroid Linkage Clusters: This variation is very similar to Average Linkage
Clustering, but uses the group centroid of clusters, to measure their distance.

These four types of hierarchical clustering will be tested to determine, which method
of determining the distance between clusters is most suitable for the needs of this clus-
tering task. Chapter 5 discusses the performance of the four techniques and explains the
motivation for choosing one of them.

46 3. Concept

3.5.6 Categorization

The task of categorizing recommendations according to their topics is the last stage in
this proof of concept application. This stage aims to classify the rated set of users that
are recommended according to their ranks and were calculated in step 3.5.5. The fact
that the content of this master’s thesis deals a with question genuinely concerning the
practicability of Twitter for building a Recommender System for Research 2.0, this proof
of concept application aims to identify Research 2.0 content. As a matter of fact, the
recommendations will be categorized as Research 2.0 be they relevant or not.

Technically, this will be accomplished by applying Bayes classifiers, as discussed in
section 2.3.2.3. Therefore, test and training data sets in the form of Tweet lists have
to be collected in advance of applying the classification tasks to determine, whether a
user’s T'weets are relevant for Research 2.0 or not. In the sense of Thought Bubbles, this
classification task can be adjusted for additional topics. By implementing and training
Bayes classifiers for each of the pre-selected topics, topic related Thought Bubbles can be
built.

3.6 Interpretation and Evaluation

Interpretation and Evaluation is the last and maybe most important stage in a KDD pro-
cess model. Within the development and first tests of this proof of concept application,
many techniques and methods of data mining, preprocessing and fundamental architec-
tural concepts had to be sharpened, reconsidered and newly adopted. Although this chain
changed during development, the preceding sections of this chapter described the stages
of selection, transformation and data mining in their very last state of development within
this master’s thesis. During early stages of development, a scientific paper was written
about the first test runs and results of this proof of concept application. These first re-
sults and a brief overview of the Thought Bubble concept were committed to the iKnow
Conference in 2012 of Knowledge Management and Knowledge Technologies®.

3.6.1 Semantic Benefits

Additionally, it’s planned that future Thought Bubble client applications will have the
ability to rate recommendations as useful, ok or simply useless. Based on this continu-
ously collected evaluation data, recommendations can be filtered and compared according
to these user evaluations. Based on those rated recommendations, projects like FOAF
(discussed in section 2.1.6.2) can be used to semantically link newly connected people
beyond the borders of Twitter and so, enrich and support the movement of Linked Data
and Semantic Web. In contrast to [DeVoch et al., 2011] who uses semantic technologies
to aggregate potential connections between people who attend the same conferences or
other Research 2.0 related events, it’s planned to add knowledge to the Semantic Web and

http://i-know.tugraz.at/ (April 2012)

3.6. Interpretation and Evaluation 47

newly link data. The next chapter will also present a possible implementation strategy
for realizing such a feature.

3.6.2 Evaluation Technique

In general, evaluation is done by analyzing Twitter accounts of researchers and colleagues,
who are personally known by the developers and advisers of this project. By presenting
the results to those pre-selected test users, it was possible to measure the satisfaction of
the users with their recommendations. Based on their feedback and of course based on
our own experiences with the recommended set of users, led us to develop increasingly
better proof of concept applications. This kind of evaluation is commonly referred to as
precision and recall informational retrieval'®. A final evaluation and interpretation of the
test results, is presented in the last and concluding chapter of this thesis.

The next chapter deals with the technical details of this system and presents methods,
techniques and algorithms used that enable the system to find new and useful people,
especially regarding the community and topic of Research 2.0.

http://thenoisychannel.com/2009/03/17/precision-and-recall/ (April 2012)

Chapter I

Technical Details and Implementation

After defining the system architecture and describing the rough usage of techniques and
methods for filtering potentially interesting users in the previous chapter, this chapter
serves as a detailed description of all applied operations and technologies for realizing the
proof of concept application. According to the KDD process model, this chapter starts
with the stage of preprocessing. Nonetheless prior to that, the frameworks and libraries
that are used to realize this application are presented and discussed to clarify why and
for what purpose they were used.

4.1 Development Platform and Frameworks

All development tasks are coded and run on an iMac Mid 2010 with the following hardware
setup:

e Processor 2.93 GHz Intel Core i7
e Memory 12 GB 1333 MHz DDR3

e Software Mac OS X Lion 10.7.3 (11D50)

In advance of starting to implement, Python! was chosen as the main programming
language. In particular, Python version 2.7, because it was at time of development the
most recently released and supported Python version for Mac OS. The decision to use
Python is based on the fact, that NLTK? is a Python only library and therefore there was
hardly a way to find that leads past Python. Speaking of NLTK, this framework is used
for realizing all NLP tasks, like POS tagging, chunking, etc. The decision to use NLTK is
based on the huge amount of provided methods and techniques in the field of classification
and NLP. Also the fact that O'Reilly® published some very useful documentation and
howto guides, played a major role during the technology pre-selection stage.

http://www.python.org/ (April 2012)
’http://www.nltk.org/ (April 2012)
3http://oreilly.com/ (April 2012)

48

4.2. Database design and implementation 49

The proof of concept application is implemented as Django* web app. The fact that a
Python IDE® named Pycharm 2.5° provides high class capabilities for the Django frame-
work, leads to choosing it as main development IDE. Assuming the fact that Pycharm
also has integrated SQLite” support, SQLite was chosen as database engine.

Another very important factor when developing an application where the main task
is analyzing Twitter data, is of course a reliable and fast python wrapper around the
Twitter REST API. Therefore, the Python Twitter® is used for fetching Twitter data. As
already mentioned in chapter 3, Twitter data is processed and received as JSON objects.

Also additional frameworks are used during development that aren’t mentioned in
this section. These frameworks and libraries are referenced during the entire system
walkthrough according their very own use case within this application.

4.2 Database design and implementation

The usage of a database is basically necessary for storing connections between Twitter
accounts and ratios, which describe similarities between people. Also feature vectors need
to be stored. Assuming the fact that SQLite isn’t built for storing generic objects, it
was necessary to look for another solution. The usage of a third party library called
y_serial enabled the system to store objects such as lists or dictionaries into our SQLite
database”. An alternative to y_serial was also found in pickle. This framework enables to
serialize and de-serialize python object structure from and to text files. After testing both
alternatives, the decision for using y_serial came close because of the ability to compress
and additionally annotate objects. Also the byte overhead with pickle was significantly
bigger.

Basically, there are four important tables within this database design:

e TwitterAndServiceuser: An Entry of this database table represents one Twitter
account. This Twitter user can whether be a usual Twitter user who is considered
for a recommendation, a Twitter user who is signed up for the Thought Bubble
service or both. Each Twitter user can be in a n to n relationship with each other.
That means, a user can have a set of n possible recommendations but can also occur
as recommendation in another service users potential recommender list.

e ComparisonRating: A ComparisonRating describes a similarity rating between
two TwitterAndServesUsers.

e ImportantTweet: When a Tweet of a user has, compared to other Tweets of this
user, a significant high Retweet count, a Tweet is identified as potentially interesting

‘https://www.djangoproject.com/ (April 2012)

SIntegrated Development Environment
Shttp://www.jetbrains.com/pycharm/ (April 2012)
"http://www.sqlite.org/ (April 2012)
Shttp://code.google.com/p/python-twitter/ (April 2012)
http://yserial.sourceforge.net/ (April 2012)

50 4. Technical Details and Implementation

and also stored.

e Recommendation: When a user is identified as potentially interesting, a Recom-
mendation entry is stored.

e Category: All categories that are implemented as classifier instances own such a
table entry. These entries are to tag a recommendation for a specific Thought Bubble
category.

Figure 4.1 displays the complete database design with all elements of a table entry.
The figure was visualized by using graphviz'® library.

UserRecommendation
ImportantTweets
id AutoField . Comparison
id AutoField

serviceUserName CharField taxt CharFleld id AutoField
accepted BooleanField date DateField

retweetCount IntegerField
recommendationRank IntegerField B ey

mostDominantCategory (userrecommendation) \recommendedUser (userrecommendation) /owner (importanttweets) person (comparison) ating (comparison)

TwitterAndServiceUser
e e ool a—
id AutoFleld fullName CharField otentialRecommendations (twitterandserviceuser) id AutoField
tweetFrequency FloatField rating FloatField
cat N CharFleld
BperyTANBLLINT retweetCount IntegerField ratingName CharField

isServiceUser BooleanField

Figure 4.1: Entity Relationship diagram of database design visualized with graphivz

All database storing operations are processed by one single thread to prevent race
conditions. A thread object is started when the web server starts the application and
waits for jobs that are pushed as predefined objects into a common job queue!l.

4.3 Data Preprocessing implementation

Pseudo code of the applied data preprocessing steps that are previously visualized in
figure 3.5 are is listed in listing 4.1.

list crawlPotentialRecommendationsListForUser (TwitterUser user){

2 potentialRecommendations = [];
serviceUser = TwitterAPI.getFriendsO0fUser (user);
4 for (friend in serviceUser)d{

friendsOfFriend = TwitterAPI.getFriendsOfUser (friend);

Ohttp://www.graphviz.org/ (May 2012)
Hmplemented according to the Producer-Consumer design pattern: http://zone.ni.com/
devzone/cda/tut/p/id/3023 (April 2012)

10

12

14

16

18

20

22

24

4.4. Data Mining implementation 51

for (f in friendsOfFriend){
if (checkIfUseable (£f))
potentialRecommendations.append (£f) ;
}
}
for (user in potentialRecommendation) {
tokens = nltk.tokenize (user.Realname) ;
postaggged = nltk.postag(tokens);
chunks = nltk.chunk(postagged) ;
for (node in chunk){
if (not node.hasAttribute (’PERSON’))
potentialRecommendations.remove (user) ;

else
user .tweetFrequency = calcTweetFrequency (user) ;
b
b
potentialRecommendations = sort(potentialRecommendations, ’

descending’) ;
storel00BestScoringUsersToDB (potentialRecommendations) ;

3

Listing 4.1: Pseudo code for preprocessing data.

The code lines from two to ten visualize the crawling task of friends of the Thought
Bubble service user. All found Twitter accounts are preprocessed by calling the function
checkIfUseable() in line 7. This function parses for the main language, the follower count,
the amount of Tweets a user has tweeted so far and whether the currently observed Twit-
ter account is already in the PotentialRecommendation list. The next step is to identify
that the Twitter account is an account from a real person. This is done by applying a sim-
ple NLP Pipeline by using the NTLK library. The functions nltk.tokenize.word_tokenize,
nltk.pos_tag and nltk.ne_chunk'? are used to mine person entities. nitk.ne_chunk is a pre-
trained chunker. This kind of chunker whether just tags NE'? or adds category labels like
"PERSON’ or 'ORGANIZATION’. By parsing for 'PERSONS’ it’s possible to eliminate
other entities. If a user is classified as a person, Tweet Frequency is calculated as described
in section 3.5.1. In advance of this, all remaining accounts in the potentialRecommenda-
tions list are sorted according to their Tweet Frequency. The top n accounts are used for
further data mining tasks.

4.4 Data Mining implementation

This is the main implementation area of this proof of concept application. Data is the
most challenging part of implementation across this master’s thesis practical task. The
first step is to mine the comparable data of a Twitter account.

12A detailed API documentation about these functions ca be found here: http://www.nltk.org/
documentation (April 2012)
13Named Entitiers

52 4. Technical Details and Implementation

4.4.1 NLP Pipeline Implementation

NLTK was also used for realizing the NLP Pipeline. Basically, the task of choosing
broadly high performing and reliable techniques is indeed a very challenging task. The
fundamental investigation presented in chapter 2 was an essential part of this selection
task and delivered the base knowledge in order to judge the usefulness of the massive
amount of techniques that are supported by NLTK. The aim of this NLP Pipeline, is to
mine the most used words within the users Tweets by only acknowledging words that are
relevant for classification. The words are stored into user related lists.

This pipeline starts like every other NLP pipeline, fetching initial data for mining.
Therefore the most recent 200 Tweets of an account are fetched. The acquisition of data
is done by whether using the Grabeeter or Twitter REST API. Unfortunately, the Twitter
REST API is only used when the currently observed user isn’t subscribed to Grabeeter.
This data acquisition strategy is motivated by Twitter REST APIs 350 requests per hour
limit. All fetched Tweets are tokenized and POS tagged as described in section 4.3.
Although the NLP Pipeline is so far fit for the task of identifying Twitter accounts as
people, the task of chunking is different and way more complex. Only identifying named
entities isn’t enough. Word phrases should also be identified. Prior to the POS tagging
task, mentions and URLs are stripped from the tweets. This is accomplished by applying
Regular expressions'*. The developed expression for eliminating mentions is visualized in
listing 4.2 and listing 4.3 displays the Regex for eliminating URLs:

r" ([e71) (\w+)\b"

Listing 4.2: Regex for stripping Twitter mentions.

r" (httplftplhttps) :\/\/[\w\-_T1+(\. [\w\-_1+) +([\w\-\.,@7? =% &
5o/ T\+#]*x [\w\-\@? =Y &/ " \+#]) 7"

Listing 4.3: Regex for stripping URLs.

NLTKs Trigram tagger is used!® for POS tagging. Trigram Taggers need to be trained
and as a matter of fact, an appropriate training and test set is needed. Although it was
discussed to build a custom text corpora for the task of tagging Tweets, the decision
was made to go with as to whether to and well approved corpus. CoNLLZ2000 corpus
is the product of a shared task of the corresponding conference in the year 2000 [Tjong
Kim Sang and Buchholz, 2000] and is recommended and known as a solid corpus even
for relatively short text artefacts[Perkins, 2010]. The fact that this chunking corpus is
delivered with NLTK led to the decision of using this corpus for the first proof of concept
application. In advance of applying the Trigram tagger, the text is chunked.

This POS tagging and chunking task is implemented as Singleton class and therefore,
only one instance of this object is created, trained and used during runtime. It is therefore

1A detailed explanation of how Regular Expressions. word can be found here: http://www.
regular-expressions.info/ (April 2012).
15 A trigram tagger is POS tagger based on a second order HMM (see section 2.4.2)

11

13

17

19

21

23

4.4. Data Mining implementation 53

the bottleneck of this application. When a Tweet was chunked, the chunked data is
traversed for NPs'® and NNs!7. Those words and phrases are then stored as list for
the corresponding user. Nonetheless, before the words and phrases are stored to the
database, they are filtered for common English words as already described in section 3.5.2.
Although hashtags are usually detected by the chunker, they are additionally stored into
the same list to strengthen the hashtagged words influence. During the task of chunking
the particular tweets, their Retweet count is stored for further computation of the users
Retweet ratio. When all fetched Tweets are processed, Frequency Distribution is applied
to count the occurrence and frequency of different words. The top n words are stored
as vectors. This NLP Pipeline task is implemented according to the Producer-Consumer
pattern to enable partially parallel computation. A complete implementation of the core
classes for this proof of concept application can be found in the submission data package
corresponding to this master’s thesis (see appendix A). The pseudo code visualized in
listing 4.4 shows the scheme of the implementation of worker threads that process the
NLP Pipeline for one user.

class TweetObserverThread (){

(void)run () {
while true{
job = getJobFromJobQueue () ;
if (job == nil)
stopThread () ;
retweetFrequency = 0;
tweets = fetchTweetsfromGrabeeterAPI (job.comparedUser ()) 7
fetchTweetsFromTwitterAPI (job.comparedUser ()) : self.sleep
(60) ;
for (tweet in Tweets){
stripURLSandMentions (tweet) ;
tokens = nltk.tokenize(tweet.text);
tags = nltk.pos_tag(tokens);
chunkTree = TringramTagger.getInstance ().tagAndChunk(tags) ;
featureVector = traverseTree (chunkTree) ;
retweetFrequency += tweet.retweets();
featureVector.addHastags (tweet.hashtags ());
}
featureVector = applyFrequencyDistribution(featureVector);
user .save (featureVector , retweetFrequency) ;
jobQueue .addJob (Job (user)) ;

Listing 4.4: Pseudocode of a NLP Pipeline worker thread.

In advance of this, the cosine similarity of users is calculated and stored into the
database. This task is also implemented using Pythons thread API and follows the same

6noun phrases

1"Nouns

54 4. Technical Details and Implementation

producer-consumer principle as NLP Pipeline threads.

4.4.2 Clustering implementation

After mining three promising and comparable ratios, each user is present as a vector built
from those three significant values. Cosine Similarity followed by Tweet Frequency and
the Retweet ratio. As discussed in section 3.5.5, four hierarchical clustering approaches for
sorting the vectors that correspond to their ratios were tested. Notably, common sorting
algorithms could not be applied as the sorting task should consider all three values within
a vector. In fact, particular values of the vector had to be weighted to be able to define
the influence of a ratio.

Cosine Similarity is defined as the ratio with the most influence, so Tweet Frequency
and Retweet ratio should never be able to overrule this similarity ratio. In contrast to
that, the other two ratios should have the same weight and therefore influence. A higher
Tweet Frequency should overrule a lower Retweet ratio and vice versa. Therefore a custom
distance function is developed to meet these requirements. Listing 4.5 displays the pseudo
code for the developed distance function:

lambda (x, y, z, o),(u, v, w, p): (float(abs(x-u)), float(abs(y-v)
*0.2), float(abs(z-w)*0.2)

Listing 4.5: This distance function defines how the distances are calculated and
compared with each other.

The letters x and u represent the Cosine Similarity, y and v Tweet Frequency and z
and w Retweet ratio, where the last two ratio’s influence is lowered by weighting them
by 20 percent. This aims to always take Cosine Similarity as the prime ratio. o and
p are placeholder names to be able to identify the compared vectors according to their
recommendation objects.

Now to the four different hierarchical clustering approaches. Complete Linkage Clus-
tering couldn’t meet our requirements. Basically, it was based on the fact that this
technique of hierarchical clustering merges clusters according to their most distant points
within one cluster. This behavior leads to an effect where the clustering result isn’t sorted
according to the nearest distance of data points, caused by not necessarily merging the
nearest clusters. Average Linkage Clustering and Centroid Linkage Clustering also tend
to break the strict sorting rules, but perform much better than Complete Linkage Clus-
tering. Nonetheless, a Single Linkage Clustering approach brought the expected results.
Therefore, this approach is applied for the realization of this proof of concept applica-
tion. The usage of a third party Python library named ladida *® helped to realize this
computation step.

8http://pypi.python.org/pypi/cluster/1.1.0bl (April 2012)

11

13

17

19

21

23

25

27

4.4. Data Mining implementation 95

4.4.3 Categorization implementation

After clustering was completed, all potentially interesting Twitter accounts that had been
identified were classified by their topic relationship. For the needs of testing and as this is
a proof of concept application, only one topic related classifier was initialized and trained
so far. Nonetheless, it’s a quite easy to add more topic related classifiers to the system by
firstly providing topic related test and training data for the classifier and also by adding
an instance of the classifier class and feeding it with this data.

As mentioned in section 3.5.6 a Bayes classifier is used to serve as topic classifier.
NLTK also provides a ready to use Bayes classifier implementation, is part of the re-
alization of this feature. Listing 4.6 contains the corresponding pseudo code for such a
classifier instance. This class serves as a base class for developing other topic related
Bayes classifiers that might have to meet slightly different requirements.

class TweetCategorizer (){

-(void)loadCategoryData(self, cateogry):
document = fopen(category)
for (line in document){
data.append (nltk.tokenize (line))
return data

-(void) trainClassifier{
data = loadCategoryData(category)
testSet = nltk.FrequDist(data) #get most used words for training

trainingData = loadCategoryData(categoryTest)

trainSet = nltk.FrequDist(trainingData)

#train classifier

self.classifier = nltk.NaiveBayesClaissifier.train(trainSet)
nltk.classify.accuracy(self.classifier, testSet)

-(void) categorize (self, featureVector){
#calculate probability for feature vector to be part of category
prob = self.classifier.prob_classify(featureVector)
return prob.prob.(’category’)

b

X

Listing 4.6: Base class of Bayes classifier for classifying probability of whether a
Twitter user is part of a specific category.

The stored feature vectors that contain the ranked top n words of a user’s Tweets, were
used for classifying whether a user belongs to a topic related Thought Bubble or not. In
advance of this, a threshold for every single different topic related classifier instance had to
be defined. Based on the title of this masters’s thesis a classifier for Research 2.0 related

11

13

15

17

19

21

56 4. Technical Details and Implementation

content was implemented, or rather, fed with test and training data. When the probability
that a users feature vector is part of this topic related bubble is at a satisfying level, a
user becomes symbolically part of this specific Thought Bubble. The implementation of a
Twitter Bayes Classifier is taken from an open source command line tool called Twitter

Comander'®

. Twitter Commander is a twitter client with smart filtering and the ability
to statistically classify Tweets. All one has to do to create a topic specific classifier is
to feed an instance of the Bayes classifier base class with topic specific test and training
data until the error rate is minimized to a satisfying level. In this case, we chose to set

the maximum error limit to 10%.

4.4.4 FOAF document creation

As already mentioned in chapter 2 of this thesis, FOAF utilizes OWL to make interested
inferences between people and FOAF was chosenfor the project to link people semantically.
In this specific use case, the aim is to connect people according to their Twitter account
names, which are unique and therefore perfectly suited for this FOAF approach. Rather
than fetching and mining information from existing semantic data sources, this system
generates Linked Data.

The idea behind this approach follows a very simple principle. Link people semanti-
cally who accepted Thought Bubble recommendations. The creation of FOAF files can be
realized by making usage of the third party Python library foaflib*°. The following listing
4.7 displays what the creation and linking of two Twitter users looks like by using foaflib.

Create a new person
me = Person ()

Set basic attridbutes

me.name = "Bill Bloggs"
me.gender = "male"
me . homepage = "http://www.bill.bloggs.net"

me .add_mbox("mailto:bill@bloggs .net")
me .add_mbox ("mailto:bill@megacorp.com")

Add an account

twitter = OnlineAccount ()

twitter.accountServiceHomepge = "http://www.twitter.com"
twitter.accountName = "bbloggs42"

me .add_account (twitter)

Add a friend (someone you foaf:know), from scratch
wife = Person ()

wife.name = "Belinda Bloggs"

wife.gender = "female"

wife.homepage = "http://www.belinda.bloggs.net"
wife.add_mbox ("mailto:belinda@bloggs.net")

Yhttps://github.com/hmason/tc (April 2012)
2nttp://code.google.com/p/foaflib/ (May 2012)

23

25

27

29

31

33

11

13

15

17

19

21

23

25

27

29

4.4. Data Mining implementation o7

Add Twitter account for wsife

twitterW = OnlineAccount ()

twitterW.accountServiceHomepge = "http://www.twitter.com"
twitterW.accountName = "belinda42"

wife.add_account (twitterW)

add wife as friend
me.add_friend(wife)

me.save_as_xml_file("my_foaf.rdf", format=’xml’)

Listing 4.7: Example of creating a FOAF connection between two Twitter users.
The example is taken from foaflib documentation.

This code whether creates a new foaf profile for a user or enriches an existing one with
information about their newly established Twitter friendship. Systems such as [DeVoch
et al., 2011] are now enabled by applying common reasoning to detect new connections
between people. Listing 4.8 is RDF-output for executing the data presented in listing 4.7.

<?xml version="1.0" encoding="UTF-8"7>

<rdf :RDF
xmlns:nsl="http://xmlns.com/foaf/0.1/"
xmlns:ns2="http://webns.net/mvcb/"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf -~syntax -ns#"

<rdf:Description rdf:about="#me">
<nsl:mbox rdf:resource="mailto:bill@megacorp.com"/>
<nsl:mbox rdf:resource="mailto:bill@bloggs.net"/>
<nsl:name rdf:resource="Bill Bloggs"/>
<nsl:holdsAccount rdf:nodeID="_70cb2451-21aa-45e9-a454-3
afeeldeeb5b" />
<nsl:homepage rdf:resource="http://www.bill.bloggs.net"/>
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<nsl:gender rdf:resource="male"/>
<nsl:knows rdf:nodeID="_e2fc3984-8ccl-4667-blc8-e16593af7£82"/>
</rdf:Description>
<rdf:Description rdf:nodelID="_e2fc3984-8ccl-4667-blc8-e16593af7£82">
<nsl:mbox rdf:resource="mailto:belinda@bloggs.net"/>
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<nsl:name rdf:resource="Belinda Bloggs"/>
<nsl:homepage rdf:resource="http://www.belinda.bloggs.net"/>
</rdf:Description>
<rdf:Description rdf:nodeID="_70cb2451-21aa-45e9-a454-3afeeldeeb5b">
<nsl:accountName rdf:resource="bbloggs42"/>
<nsl:accountServiceHomepage rdf:resource=""/>
</rdf:Description>
<rdf:Description rdf:nodelID="_857b5126-69ab-4bad-a2f1-83500ce34fdf">
<nsl:primaryTopic rdf:resource="#me"/>
<ns2:generatorAgent rdf:resource="http://code.google.com/p/foaflib
Il/>
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/

58 4. Technical Details and Implementation

PersonalProfileDocument"/>
31 </rdf:Description>
</rdf :RDF>

Listing 4.8: RDF output.

This code establishes a connection between two people who own a Twitter account and
describes the relationship between them. As a byproduct, this linked data can be used
again as a source for discovering new connections. By exploring the connections of the
newly linked person, new connections may be found within the set of other connections
this person has.

4.5 Complete Architecture and UML Diagram

The overall architecture and software design of the system part that is responsible for the
complete recommendation task is displayed in figure 4.2.

Twitter Crawler

_potentialRecommendations
_firstLevelConnections
_twitterAPI

parseForPersons(self)
calcTweetFrequencyForUser(self, user)

GetFriendshipExists(self, user_a, user_b)

Parserinstance

getlnstance()

1 t
UserA Comperator DatabaseStoreObject
ChunkParser “userB _LyspeerA
def __call__(self, *args, **kw) —compVecA “userB
T _compVecB -
d*'fnn*(se")” t __init__(self, userA, userB) —similarity
ef parse(self, sentence) run(self) _userToAdd
buildVectorsAndCompare(self)
scalarProdct(self, vector)
cosineSimiIaritmselfz

————— 1 | _classificationQueue

Queues
crawlQeue

addUser(self, user)
startlterationForAllService
Users(self)
startlterationForUser(self, user)

DBSaveThread

—init_(self, initalUser, fullName) categorizationQueue 1 —mit_(sel
fetchRecommendationList(self) cIusterQe}ue I run(self, *args, **kwargs)
fetchListForUser(self, userName, more) _dbOperations

storeComparison(self, currentOperationObject)

getAllUsers(self, currentOperationObject)

addUserSseIf, currentOEeraﬁonOb'ectz

’
’
/
/

4
threading.Thread
<<interface>>

TwitterUserEvaluation
name B
_tags run((;:l;f?ter TweetObserver _
_freq Classifier
_realName N _currentUser __init__(self)
_retweetCount _twitterAPI laodCategory(self, category)
_tweets trainClassifier(self)

_mostCommonEnglishWords

categorize(self, featureVector)

__init__(self)
1 run(self)
traverse(self,t)

*

ResearchClassifier

1

instance setTwitterAPI(self, api) __init__(self)
:currentServiceUser loadTweets(self) fetchTestAndTrainingData(self)
b 1
—_init__(self) 1

Figure 4.2: UML class diagram of core components.

One iteration for computing the top-n recommendations for a user follows the following

sequence description:

4.5. Complete Architecture and UML Diagram 59

1. A user is added to the corresponding queue via the addUser(self, user) method.
By initializing a DatabaseStoreObject, the user is added to the database queue and
stored automatically by the DBSaveThread.

2. Subsequently, the classification can be started for one specific user by calling the
method startlterationForUser(self, self) or by starting an overall new iteration for
all service users by calling the method startlterationForAllService Users(self).

3. When an iteration is started, the Twitter Crawler fetches the potential recommenda-
tion list and stores it to the database. DatabaseStoreObjects and the DBSave Thread
are again used to process this task.

4. When a user’s potential recommendation list is ready, a new job is added to the
corresponding queue.

5. Three TweetObservers threads are started per service user for applying the NLP-
pipeline and computing their similarities. When all ratings for a potential recom-
mendation are computed, a Comperator object is used to compare the users and
store the results to the database.

6. When all data mining methods have been applied for all potential recommendations,
a cluster task is added to the corresponding queue.

7. The results of the clustering task are again stored to the database and a categoriza-
tion job is added to the corresponding queue.

8. In advance of this, the Tweets of the top-n recommended users are classified by
applying topic related Classifiers.

9. After identifying the Twitter users main tweeted about topics, one iteration for one
user is complete.

The following chapter presents the test results for this proof of concept application.

Chapter

Results and Evaluation

All test runs that were conducted on the proof of concept application that has been previ-
ously described, serve as data for this chapter’s content: The evaluation and interpretation
of recommendations for several Twitter users.

This chapter also describes the setup of the test runs and how the results were evalu-
ated and performed overall. In addition, this chapter closes with an in depth discussion
about the evaluated results and future work.

5.1 Evaluation Technique

To be able to measure and judge the test results, a classic Precision and Recall approach is
applied, which is kind a standard in pattern recognition and information retrieval systems,
especially NLP systems [Melamed et al., 2001]. Precision is a fraction of the retrieved
instances that are relevant to the search task. Y is the set of relevant instances and X is
a set of retrieved instances. Precision (precsion(X|Y')) is defined as follows:

| XNY |

s (5.1)

precision(X|Y) =
Recall (recall(X | Y)) is the fraction of relevant instances to the amount retrieved
instances and is defined as follows:

1 XNY |

recall(X|Y) = X

(5.2)

In the case of determining the accuracy of a classification task, such as in the case of
identifying Twitter accounts as potentially interesting or not, the terms true-positive, true-
negative, false-negative and false-positive are commonly used to describe a classification

result.

e true-positive (tp): A user who is classified as interesting and also really is.

60

5.1. Evaluation Technique 61

e true-negative (tn): An account that was not useful and therefore was not classi-
fied as interesting.

e false-negative (fn): A Twitter account that is interesting for a user, but wasn’t
classified as such.

e false-positive (fp): This user is not interesting but was classified as such.

Nonetheless, one of these terms isn’t really useful for measuring the quality of a rec-
ommender system and therefore, doesn’t say much about the quality of such a system.
When one thinks of a search engine that delivers results for a specific search query, one
never cares about potential matches that weren’t presented as results. All that matters
to the user in terms of quality of service are items that are delivered to the user and
consequently faces directly. Therefore, Precision and Recall are very useful ratios for
determining the quality of recommender systems because none of these ratios includes tn
results. Figure 5.1 visualizes the confusion matrix for these terms.

Classified as

False Negatlve Positive

Really is

I True Negative Negative

Figure 5.1: Visualization of Precision and Recall.

Red highlighted parts (tp and fp) identify the properties of Precision in this context
and yellow marked terms (¢p and fn) are parts of Recall. In fact, Precision and Recall are
defined as follows:

. tp
precision = 5.3
tp+ fp (5:3)
lp
recall = 5.4
tp+ fn (5:4)

The probabilistic interpretation for Precision is the probability that a Twitter user is
identified as relevant. Recall can be seen as the probability that a relevant Twitter user

62 5. Results and Evaluation

is also identified as relevant. Additionally, the Accuracy ratio is calculated by using the

following formula:
tp +1tn

tp+tn+ fp+ fn

accuracy = (5.5)

Accuracy describes the proportion of all true results to the amount of tested data.
Although tn results don’t say much about a recommender system, they are very important
for evaluating a classifier.

Moreover, the statistic test accuracy is calculated by applying the traditional F-
measure or also referred to as F1-score [Olsen and Delen, 2008]. This measure considers
Precision and Recall and calculates their harmonic mean . One can also refer to this ra-
tio as weighted average of Precision and Recall. It is calculated by applying the following
formula:

recision - recall
F1 — score =2 - P

5.6
precision + recall (56)

All four mentioned ratios follow the same rating principles. 0 is the worst possible
rating and 1 the best.

5.2 Test Setup

All participating users of the test runs were given a set of top-25 recommendations for
their Twitter account. Consequently, all evaluated results rely on the subjective opinions
of those test-users, which evaluated whether a recommendation is of use to them, or
irrelevant. The decision to use a third party library for categorizing the recommended
Twitter accounts led to the decision not to include categorization in the test run that was
presented. That means, only self written system modules are part of this test run. All
that has to be done to be able to categorize Twitter accounts according to their main
tweeted about topic, is to provide test and training data for a specific topic and feed it
to an instance of the base class described in section 4.4.3. This task has to be repeated
until the Bayes classifier is able to categorize users at a satisfying error rate.

All test-users had to fulfill pre requirements to be considered as potential testers.

e Using English as their main Tweet language: English only preferred.

e Following at least 50 other accounts.

Tweeted at least 2000 status updates (Retweets and mentions do not count as status
update).

Followed by minimum 300 other Twitter users.

The test-users should have an academic background to enable the verification of
whether their topic related interests were met.

'http://mathworld.wolfram.com/HarmonicMean.html (May 2012).

5.2. Test Setup 63

Ten Twitter accounts were chosen to serve as test-users. The numbers for these thresh-
old ratios were chosen during development based on the amount of average fnumber of
recommendations found for a Twitter account. Several test runs showed that these num-
bers lead the system to find less than 1500 potential recommendations, which are used
for further processing. Consequently, the steps of Preprocessing cuts this set of Twitter
accounts down to approximately 300 accounts. Thereupon, the remaining recommenda-
tions are analyzed by the NLP-Pipeline. By applying the Clustering task, 25 accounts
were recommended per test-user.

As a matter of fact, it is very difficult to determine concrete figures for fn and tn
results within this test set because tmore than 1000 potential accounts were fetched for
further processing per test user. Hence, a supervised test set was prepared to determine
how well the system is able to separate relevant data from others. The test setup for this
second test-run looks as follows:

e 50 Twitter users
e 20 of those should be classified as relevant

e 30 of them shouldn’t be classified as relevant

Usually, the top-25 accounts are taken as recommendations. Previously executed tests
during development have shown, that when a recommendation similarity ratio scores lower
than 0.9, the currently observed Twitter account should be disregarded and presented as
a potential adjuvant account. Figure 5.2 shows the test results for 22 tested users that
were compared to each other and to a test set of noise users to determine a threshold,
where positive classified users shouldn’t fall below this value. All optimal thresholds
visualized in figure 5.2 identify the threshold for a specific user, where 75% of accounts
that should have been classified as potentially interesting also were classified as such. As
a matter of fact, a mean of all those optimal thresholds was calculated and now serves as
an additional threshold to the top-25 k-NN approach. These tests were executed in April
2012.

0.25

0.188

0.063

@mebner @cpappas @timbarker @SebastianThrun @gargamit100 @Emmadw @atsc @selvers
2 Opitimal Threshold O Average Threshold

Figure 5.2: Average threshold for 22 hand picked test users.

64 5. Results and Evaluation

5.3 Test Results

The following two subsection present the test results for the supervised and the real world
test. Both tests were run between May 23rd 2012 and May 31st 2012. Repeating those
tests would probably bring different results because new tweeted content would influence
the similarity measures and of course the set of recommended accounts. Therefore, the
test results are significant within the mentioned period of time but all manually selected
accounts for applying this test will have to be reviewed again to guarantee a supervised
test environment.

5.3.1 Real-world-test

After delivering the personalized top-25 recommendations to the test users, except in
the case of @selvers who got ten, on average it took 2 to 3 days for the users to supply
feedback. The user evaluations are listed in table 5.1. One test run took ten to fifteen
minutes.

Table 5.1: Test results for 10 test users

account # recommendations | tp | fp | precsion
Qgekitz 25 22 | 3 0.88
@richmarkt 25 23 | 2 0.92
@PathonHauser 25 19 | 6 0.76
@selvers 10 4 6 0.4
@bitfluter 25 18 | 7 0.72
@florianlionel 25 15 | 10 0.6
@timbuckteeth 25 4 121 0.16
@alexmarkt 25 24 |1 0.96
@andidol 25 23 | 2 0.92
@mebner 25 3 |22 0.12

| 10 \ 235 [155 [80 | 00.644 |

155 of 235 recommendations were evaluated by the test users as interesting, of which
80 were rated as not really useful. The average Precision was computed by dividing all
Precision ratio through the amount of participating test users.

In advance of this real world test a supervised test was executed to back these figures.
All 10 of the test users were asked if their recommendations interests and tweeted content
fits their own interests. They all answered that the recommendations they described as
useful, all fit their interests and aren’t just interesting in general.

In addition to observing the average Precision, Standard Deviation is a very interesting
ratio that displays, how far the test values are spread out. One can see this ratio as a mean
deviation from an average value. In particular, Sample Standard Deviation is applied and
is defined as follows:

5.3. Test Results 65

K

1 _
i=1

N is the amount of test samples, ten in our case. The average Precision is represented

by Z and x; is the Precision of a test run for one of ten test users. The Standard Deviation

for the ten tested users is 31.5%. Figure 5.3 visualizes the corresponding Gaussian bell

curve?.

1.30 O O
1.25

1.20 -IS|.
1.15

1.10 O O

O
0.3600 0.4825 0.6050 0.7275 0.8500

+ Precisions of test results © Standard Derivation
Precision Mean

Figure 5.3: Gaussian bell curve and Standard Deviation of ten test users

5.3.2 Supervised test-run

The supervised test-run returned the results visualized in figure 5.4 . Twitter accounts
marked with a star (*) should be classified as relevant. Within this test-run, only the
similarity ratio is used for evaluation whether a recommendation is relevant or. The
reason for this decision is based on the fact that Tweet Frequency and Retweet Count are
pure statistical ratios, whereas the similarity ratio relies on classification tasks and the
result of the implemented NLP-Pipeline.

16 accounts were classified as relevant, where 3 of them weren’t marked with a star

“http://mathworld.wolfram.com/NormalDistribution.html (June 2012)

66

5. Results and Evaluation

recommendations are framed

@gargamit100*
@selvers*®
@UpsideLearning*
@poposkidimitar*
@jkalten*
@cpappas*
@pfidalgo1*
@timbuckteeth”
@starsandrobots*
@Thed Russ
@cliveshepherd*®
@Microsoft
@jtcobb*
@MichaelPhelps
@SebastianThrun*

@elearninc!;*

@BarackObama
@SteveVictor
@AnwarRichardson
@pabaker55*
@jamesmclynn
@DrEvanHarris
@mstrohm*
@AmyFrearson
@gekitz

@Hhaitch
@sclater*
@TheRock
@MCeraWeakBaby
@fatcharlesh
@FrankViola
@timbarker
@AnnaOscarsson
@WithDrake
sabrinaVanessa
@charliesheen
@WWEDanielBryan
@cmccosky
@kaitlyntrigger
@judithsei*
@atsc*
@melaniedaveid
@Emmadw*
@ladygaga
@marcusfairs
@lucyheartsTW
@PeterSmith
@MikeVick
@meadd cameron

0 0.075 0.150 0.225

M similarity score M threshold

Figure 5.4: Supervised test run for @mebner.

0.300

5.4. Test evaluation 67

and therefore, should’t have been classified as such. Usually the system filters the top-
25 recommendations, but only 16 had a better similarity score than 0.9. Seven of the
accounts that should have been classified as interesting, weren’t. Table 5.2 summarizes
the results in a confusion matrix.

Table 5.2: Confusion matrix for supervised test run.

- Positive | Negative
Positive 13 7
Negative 3 27

Based on these figures the following ratios were calculated (see table 5.3).

Table 5.3: Evaluation ratios for supervised test for @mebner.

ratio score
Precision | 0.813
Recall 0.65

Accuracy | 0.8
F1-Score | 0.722

5.4 Test evaluation

The probability that a recommended item is relevant is 81.3%3. Although this figure
looks very promising the real world test scored significantly lower (64,4%) than the su-
pervised one. In particular @mebner and @timbuckteeth scored far beyond the rest of
the tested users. After taking a closer look at their Twitter accounts and talking to them
personally, the bad ratings seemed to be caused by the set of people they are following.
The two users don’t seem to follow only people they are interested in, but rather follow
people for status or business motivated reasons. Therefore, the pre-selection of potential
recommendations often delivers a set of users that don’t contain as many satisfactory ac-
counts as usual?. Additionally, the similarity scores of the top-25 recommendations were
significantly lower than the scores of the recommendations of the other 8 test users. On
average, the difference was up to 0.15. Bearing in mind that the pre-defined threshold for
considering a recommendation as potentially useful or not (0.9), this gap is quite large.
As a matter of fact, the presented recommendations are a kind of reflection of which
accounts one follows and therefore, the following of users for reasons other than topic or
tweet content harms the recommendation results. A way of overcoming and respectively

3Precision
4800 to 1500 accounts per iteration

68 5. Results and Evaluation

improving the bad results for those users would be for example, to limit the recommen-
dations to user specified topic related Thought Bubbles. Nonetheless, this circumstance
doesn’t harm the integrity of the system. The reason for that is associated with fact that
per iteration, only a small section of all users that are potentially interesting are observed.
Subsequently finding a set of useful recommendations, takes more iterations and so more
time. In these cases, it is probably more effective to recommend less people, mainly those
with a high similarity score.

Another interesting observation made during the process of generating recommen-
dations for @selvers was that this account allows an online service to tweet automated
tweets. In this case, this account tweeted the same sentence every day. Additionally,
when this user has a very low tweet frequency, this single sentence gets an enormous
weight when it is processed by the NLP-pipeline. Therefore, nearly all recommendations
are based on this single Tweet. As a matter of fact, recommendations computed by this
Thought Bubble service are reciprocal. Also the Standard Deviation computed in section
5.3.1 emphasizes, that the results are relatively wide spread around the average Precision
rate. This behavior is caused by the quality of tweeted content and following behavior of
the test users. Although, the fact is that the lions share of the tested users had a Precsion
ratio above the average.

Another related problem is (as already mentioned in chapter 4) request limitations
of Twitters REST API. During these tests, multiple Twitter developer accounts were
used for all different Twitter API calls to maximize the request limit. Although these
actions were very useful for fetching more information and potential recommendations for
further processing, the limit still seems to be a show stopper when it comes up to generate
recommendations for multiple accounts. The fact that Grabeeters user base isn’t as big
as expected, increases this problem. As a matter of fact, it’s hardly imaginable that the
Thought Bubbles service will ever be a live service, but rather a services where one is able
to sign up and receive recommendations from time to time. One possible use case that
was implemented during this test phase, is to to add the recommendation list in form of
a Twitter list to the subscribed user’s account, which generally generated good feedback.

The rate of relevant classified items (13) in comparison to all available relevant items
(20), is referred to as Recall and is 0.65. Consequently 65% of available interesting
accounts were recommended. Although this figure doesn’t seem to be particularly high,
Recall hasn’t that much of weight and importance in the field of recommender systems.
Although this ratio is quite useful for supervised environments, it loses importance in
real world application. In the case of this system, only the top-25 recommendations are
presented to the user. So it doesn’t matter to the user how many relevant users are really
in the set, but rather only the set one has access to. When there is a set of 1000 observed
and compared users and this set contains for example 99 relevant accounts, what would
that mean for the Recall ratio? Let’s imagine all top-25 recommendations are part of
those 99 relevants, the Recall would still be very low. 25.3% to be precise.

5.4. Test evaluation 69

Also the accuracy is only helpful in a supervised test environment when one talks about
recommender systems in general. With a rate of 80% this ratio seems to be satisfying. As
it displays the overall correctness of classification taking t¢ps and tns into account, there’s
not much more to say about this ratio.

The combination of Precision and Recall called F1-Score scored 0.722. This com-
monly used ratio for binary classification tasks describes the test accuracy of this super-
vised test run.

So far, these test results and ratios seem to be very promising and ok but how do sim-
ilar services perform in similar tests perform? [Hannon et al., 2010] developed a similar
recommender system for Twitter related content. They also used Content and Collabora-
tive Filtering approaches for realizing their system based on the Lucene® platform. Their
test results were interpreted as very positive and promising with a precision between 11%
and almost 25% while they tested several different implementations for 15 test users. In
comparison, the Thought Bubble proof of concept application reached a precision of up to
81.3% in the supervised test and an average of 64.4% during the real-world-tests. That
means we have a twice as successful Precision where the lowest, which scored @mebner,
is still in-between their average precision rates.

Shttp://lucene.apache.org/core/ (June 2012)

Chapter

Conclusion and Future Work

Classification and recommendation of user profiles in social networks isn’t just a Twitter
related topic but can be used and applied for similar networks as well. The appliance
of such services aims to connect similarly interested people, especially regarding their
scientific interests or expertise [Stankovic et al., 2010]. Nonetheless, the tests in chapter 5
have shown, that this service isn’t just useful in the field of Research 2.0, but rather can
be used for connecting and recommending people beyond the borders of a specific topic.
After all, by applying classification according the users strongest interests (see section
4.4.3) scientific motives of users can be detected and classified.

The Thought Bubble service and its concept aims to mine potentially useful new Twit-
ter accounts, no matter what interests the service user has. Hence, the feature of catego-
rization, still enables the user to limit recommendations to a specific topic.

Recommending novel and useful new users and following them, automatically gener-
ates a personalized stream of information, similar to a search engine like Google!. This
isn’t just a fast and convenient way for finding new interesting people, but rather a way
to create one’s personal network of people, which might be able to answer your questions
or influence your work.

Although this proof of concept applications test results (see chapter 5) are very promis-
ing and of course have proved the concept, there is still a lot of work to do, to make this
system applicable for real world usage. Major limitations like the Twitter REST API
request limit have to be overcome and also the accuracy of classifications has to be sharp-
ened and approved to meet the user’s requirements for an outstanding recommendation
tool that’s as best as possible.

As mentioned in section 4.4.4, linking accepted recommendations with the service
user by using FOAF technology could lead to new users beyond the borders of Twitter.
Although the possibility that these newly found connections own Twitter accounts is
existent, additional ways have to be found to filter again potentially interesting content
from noise. [DeVoch et al., 2011] also used FOAF for mining connections between users
on social platforms and it’s there that this work could serve as an example how to realize

http://www.google.com (May 2012)

70

71

this feature.

After doing all the theory research presented in chapter 2 and after implementing and
testing this proof of concept system, the base questions that led to this master’s thesis
(see chapter 1) can be answered:

e Twitter is indeed useful for discovering new connections between researchers in sim-
ilar or same subject areas. The test results of the Thought Bubble service have
shown that recommendations for specific interested Twitter users can reach a satis-
fying rate of precision (see section 5.3.1).

e [t is possible to recommend Twitter users based on their tweeted content, although
Tweets aren’t the only factor for determining, whether an accounts is a potential
recommendation or not. Multiple factors like Tweet Frequency, Retweet Count,
language, the amount of followers and the amount of status updates in general all
influence this circumstance (see chapter 4).

e This proof of concept application is able to separate noise from useful data at a rate
of up to 80% (see chapter 5). Although the real world tests scored partially lower
than the supervised one, noise can be eliminated at a satisfying rate of error.

e There were indeed appropriate metrics found to measure the significance of Twitter
users and Tweets. The main ratios for recommendations are Cosine Similarity,
Tweet Frequency and Retweet Count (see chapter 3).

The fact that the developed system started to move away from using semantic tech-
nologies (see section 2.1) for discovering new connections between users, was motivated
by the existence of the system developed by DeVocht [DeVoch et al., 2011] one year
before this master’s thesis started. Nonetheless, the additional feature for enriching on-
line available semantic data (see section 4.4.4) supports the semantic web movement by
semantically linking new established Twitter connections.

Another notable fact of the Thought Bubble concept is, that recommendations and the
metrics for filtering those recommendations change dynamically in every new iteration,
because only the 200 newest Tweets of a service user are used for processing one’s potential
recommendations. That means, that the system is able to stay context aware over time
and changes the recommended accounts according to new and fresh tweeted content.

The next step will be implementing a web app to make the Thought Bubble service
usable for everyone. Also a decision of which topic related classifiers will finally be im-
plemented and supported will play a major role in the next few weeks and months. The
collection of test and training data for every single supported topic related classifier will
take a lot of time in order to guarantee an appropriate level of accuracy. Also an iOS
Twitter client that supports and integrates the Thought Bubble concept is being planned.
All in all, the proof of concept system has turned out to be a very useful and promising
recommender tool that probably has a bright future as a tool for finding new connections
and interesting information on Twitter not only for scientists, but rather for everyone.

Appendix A

Appendix

The attached .zip file contains:

e This master’s thesis as LaTeX project.

Concrete figures for all diagrams in a Numbers file.

All test results as .tzt files.

The source code implemented in Python.

This master’s thesis as .pdf file.

A readme.txt file that describes all necessary steps for setting up a test environment
for the Thought Bubble service.

72

Bibliography

Adomavicius, Gediminas and Alexander Tuzhilin, 2005. Toward the Next
Generation of Recommender Systems: A Survey of the State-of-the-Art and
Possible Extensions. (6). http://ids.csom.umn.edu/faculty/gedas/papers/

recommender-systems-survey-2005.pdf.

Beham, Giinter, Barbara Kump, Tobias Ley, and Stefanie Lindstaedt, 2010. Recom-
mending Knowledgeable People in a Work-Integrated Learning System. http://wuw.
sciencedirect.com/science/article/pii/S1877050910003169.

Bell, Robert M., Yehuda Koren, and Chris Volinsky, 2008. The BellKor 2008 Solution
to the Netflix Prize. http://wwu2.research.att.com/~volinsky/netflix/Bellkor2008.
pdf.

Berners-Lee, Tim, 2006. Linked Data - Design Issues. http://www.w3.org/DesignIssues/
LinkedData.html.

Berners-Lee, Tim, James Hendler, and Ora Lassila, 2001. The Semantic Web.
The Scientific American. http://www.scientificamerican.com/article.cfm?id=

the-semantic-web.

Bizer, Christian, Tom Heath, and Tim Berners-Lee, 2009. Linked Data - The Story So Far.
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf.

Bleier, Armin, Benjamnin Zapilko, Mark Thamm, and Peter Mutschke, 2011. Using
SKOS to Integrate Social Networking Sites with Scholary Information Portals. http:
//ceur-ws.org/Vol-830/sdow2011_paper_4.pdf.

Boehm, Sebastian and Marko Luther, 2009. FOAF on Awr: Context-aware User Profiles
for the Social Web. http://ceur-ws.org/Vol-520/paperll.pdf.

Chen, Zhimin, Yi Jiang, and Yao Zaho, 2010. A Collaborative Filtering Recommendation
Algorithm Based on User Interest Change and Trust Evaluation. http://www.aicit.
org/jdcta/ppl/13_JDCTAS19-557001 . pdf.

Choudhury, Smitashree and John G. Breslin, 2010. FExtracting Semantic Entities and
FEvents from Sports Tweets. http://ceur-ws.org/Vol-718/paper_17.pdf.

73

74 Bibliography

Choudhury, Smitashree and John G. Breslin, 2011. FExtracting Semantic Entities and
FEvents from Sports Tweets. http://ceur-ws.org/Vol-718/paper_17.pdf.

DeVoch, Laurens, Selver Softic, and Martin Ebner, 2011. Semantically driven Social
Data Aggregation Interfaces for Research 2.0. http://www.scribd.com/mebner007/d/
65189313-Semantically-driven—-Social-Data-Aggregation-Interfaces-for-Research-2-0.

Drachsler, Hendrik, Toine Bogers, Riina Vuorikari, Katrien Verbert, Erik Duval, Nikos
Manouselis, Gilinther Beham, Stefanie Lindstaed, Hermann Stern, Friedrich Martin,
and Martin Wolpers, 2010. Issues and Considerations regarding Shareable Data Sets for
Recommender Systems in Technology Enhanced Learning. http://www.sciencedirect.
com/science/article/pii/S1877050910003236.

Ebner, Martin, 2010. Is Twitter a Tool for Mass-FEducation? http://www.scribd.com/
doc/72687166/Is-Tuitter-a-Tool-for-Mass-Education.

Eibe, Frank and Remco R. Boukaert, 2004. Naive Bayes for Text Clas-

sification with Unbalanced Classes. http://www.cs.waikato.ac.nz/~eibe/pubs/
FrankAndBouckaertPKDDO6new. pdf.

Fayyad, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth, 1996. From Data
Mining to Knowledge Discovery in Databases. http://www.kdnuggets.com/gpspubs/
aimag-kdd-overview-1996-Fayyad.pdf.

Fung, Glenn, 2001. A Comprehensive Ouverview of Basic Clustering Algorithms. http:
//patwa.googlecode.com/svn/trunk/docs/ref/clustering.pdf.

Gemmel, Jonathan, Thomas Schimoler, Maryam Ramezani, and Bamshad Mobasher,
2009. Adapting K-Nearest Neighbor for Tag Recommendation in Folksonomies. http:
//www.dcs.warwick.ac.uk/~ssanand/itwp09/papers/gemmell.pdf.

Ghahramani, Zoubin, 2004. Unsupervised Learning. http://mlg.eng.cam.ac.uk/zoubin/
papers/ul.pdf.

Gimple, Kevin, Nathan Schneider, O’Connor Brendan, Dipanjan Das, Daniel Mills, Jacob
Eisenstein, Michael Heilman, Dani Yogamata, Jeffrey Flanigan, and Noah A. Smith,
2011. Part-of-Speech Tagging for Twitter: Annotation, Features, and Fxperiments.
http://www.ark.cs.cmu.edu/TweetNLP/gimpel+etal.aclll.pdf.

Goldwater, Sharon and Thomas L. Griffiths, 2005. A Fully Bayesian Approach to Unsu-
pervised Part-of-Speech Tagging. http://cocosci.berkeley.edu/tom/papers/bhmm. pdf.

Hahn, Koo, 2012. Baum-Welch algorithm. http://www.sjsu.edu/faculty/hahn.koo/
teaching/1ing124/slides/1ing124_forward_backward.pdf.

Hannon, John, Mike Bennett, and Barry Smyth, 2010. Recommending Twitter Users to
Follow Using Content and Collaborative Filtering Approaches. http://irserver.ucd.
ie/dspace/bitstream/10197/2524/1/john-hannon-recsys-v4-April-25.pdf.

Bibliography 75

Horn, Christopher, Elisabeth Lex, and Michael Granitzer, 2011. WHO
TWEETS: DETECTING USER TYPES AND TWEET QUALITY USING SU-
PERVISED CLASSIFICATION. http://know-center.tugraz.at/download_extern/
papers/iadis2011-whotweets-chorn.pdf.

Hsu, Chih-Wei, Chang Chih-Chung, and Chih-Jen Lin, 2010. A Practical Guide to Support
Vector Classification. http://wuw.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

Jannach, Dietmar, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich, 2011.
Recommender Systems. Cambridge. ISBN 978-0521493369.

Jansen, Bernard, Mimi Zhang, Kate Sobel, and Abdur Chowdury, 2009. Twitter Power:
Tweets as Electronic Word of Mouth. Journal of the American Society for Information
Science and Technology.

Juang, B. H. and L. H. Rabiner, 2003. An Introduction to Hidden Markov Models. http:
//ieeexplore.ieee.org/stamp/stamp. jsp?tp=&arnumber=1165342.

Kraker, Peter, Claudia Wagner, Fleur Jeanquartier, and Stephanie Lindstaed, 2010. On
the Way to a Science Intelligence: Visualizing TEL Tweets for Trend Detection. http:

//know-center.tugraz.at/download_extern/papers/science_intelligence.pdf.

Kudo, Taku and Yuji Matsumoto, 2001. Chunking with Support Vector Machines. http:
//acl.ldc.upenn.edu/N/N01/N01-1025.pdf.

Leger, Alain, Johannes Heinecke, Lyndon Nixon, Pavel Shivaiko, Jean Charlet, Paola Hob-
son, and Francois Gosadoue, 2006. The Semantic Web from an Industry Perspektive.

http://www.technologyreview.com/video/semantic

Linden, Greg, Brent Smith, and Jeremy York, 2003. Amazon.com Recommendations.
http://ieeexplore.ieee.org/stamp/stamp. jsp?tp=&arnumber=1167344&userType=
&tag=1.

Markoff, John, 2006. Entrepreneurs See a Web Guided by Common Sense. The New York
Times. http://www.nytimes.com/2006/11/12/business/12web.html.

Melamed, Dan, Ryan Green, and Joseph P. Turian, 2001. Precision and Recall of Machine
Translation. http://acl.ldc.upenn.edu/N/N03/N03-2021.pdf.

Mika, Peter and David Laniado, 2010. Making sense of Twitter. http://iswc2010.
semanticweb.org/pdf/352.pdf.

Milikic, Nikola, Jelena Jovanovic, and Milan Stankovic, 2011. Discovering the Dynamics
of Terms’ in Semantic Relatedness through Tuwitter.

Muehlberger, Herbert, Martin Ebner, and Behnam Taraghi, 2010. Try out Grabeeter
to Export, Archive and Search Your Tweets. http://www.scribd.com/doc/40231851/

twitter-Try-out-Grabeeter-to-Export-Archive-and-Search-Your-Tweets.

76 Bibliography

Modritscher, Felix, 2010. Towards a Recommender Strategy for Personal Learning Enuvi-
ronments. http://www.sciencedirect.com/science/article/pii/S1877050910003157.

Nakagawa, Tetsuji, Taku Kudoh, and Yuji Matsumoto, 2001. Unknown Word Guessing
and Part-of-Speech Tagging Using Support Vector Machines. http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.11.2808.

Olsen, David L. and Dursun Delen, 2008. Advanced Data Mining Techniques. Springer.
ISBN 978-3540769163.

Olson, Clark F.; 1996. Parallel Algorithms for Hierarchical Clustering. http://faculty.
washington.edu/cfolson/papers/pdf/pc95.pdf.

O’Reilly, Tim, 2005. What s Web 2.0. http://oreilly.com/web2/archive/
what-is-web-20.html.

Perkins, Jacob, 2010. Python Text Processing with NLTK 2.0 Cookbook. PACKT pub-
lishing. ISBN 978-1849513609.

Resnick, Paul, Neophytos Iacovou, Mitesh Suchak, Peter Berstrom, and John Riedl, 1994.
GroupLens: an open architecture for collaborative filtering of netnews. http://dl.acm.
org/citation.cfm?id=192905.

Romero, Cristobal and Sebastian Ventura, 2010. Educational Data Mining: State of the
Art. http://ieeexplore.ieee.org/stamp/stamp. jsp?tp=%arnumber=5524021.

Russel, Matthew A., 2011. Mining the Social Web. O’Reilly. ISBN 978-1449388348.

Seth, Aaditeshwar, Jie Zhang, and Robin Cohen, 2008. A Subjective Credibility Model for
Participatory Media. http://www.cse.iitd.ac.in/~aseth/credibilityv7.pdf.

Softic, Selver, Martin Ebner, Herbert Muehlburger, Thomas Altmann, and Behnam
Taraghi, 2010. @twitter Mining Microblogs Using Semantic Technologies. http:
//iswc2010.semanticweb.org/pdf/352.pdf.

Solskinnsbakk, Geir and Jon Atle Gular, 2011. Semantic Annotation from Social Data.
http://ceur-ws.org/Vol-830/sdow2011_paper_3.pdf.

Stankovic, Milan, Claudia Wagner, Jelena Jovanovic, and Philippe Laubert, 2010. Looking
for Experts? What can Linked Data do for You? http://events.linkeddata.org/
1dow2010/papers/1dow2010_paper19.pdf#.

Templeton, Mike, 2008. Micorblogging defined. http://microblink.com/2008/11/11/
microbloggingdefined/.

Terry, Douglas B., 1992. Replication in an Information Filtering System. http:
//ieeexplore.ieee.org/xpls/abs_all. jspTarnumber=242615&tag=1.

Bibliography 7

Thai-Nghe, Nguyen, Lucas Drumond, Artus Krohn-Grimberghe, and Lars Schmidt-
Thieme, 2010. Recommender System for Predicting Student Performance. http:
//www.ismll.uni-hildesheim.de/pub/pdfs/Nguyen_et_al_RecSysTEL2010.pdf.

Tjong Kim Sang, Erik F. and Sabine Buchholz, 2000. Introduction to the CoNLL-2000
Shared Task: Chunking. http://acl.ldc.upenn.edu/W/WO0/WO0-0726.pdf.

Villata, Serena, Nicolas Delaforge, Fabien Gandon, and Amelie Gyard, 2011. Social Se-
mantik Web Access Controll. http://ceur-ws.org/Vol-830/sdow2011_paper_5.pdf.

Wagner, Claudia, 2010. FEzxploring the Wisdom of Tweets: Towards Knowledge
Acquisition from Social Awareness Streams. http://www.joanneum.at/uploads/tx_
publicationlibrary/WAC_2010_ESWC.pdf.

Wagner, Claudio and Markus Strohmaier, 2010. The Wisdom in Tweetonomies: Acquiring
Latent Conceptual Structures from Social Awareness Streams. http://kmi.tugraz.at/
staff/markus/documents/2010_SemSearch2010_Tweetonomies.pdf.

Witten, Tan h., Frank Elbe, and Mark A. Hall, 2011. Practical Machine Learning Tools
and Techniques. Morgan Kaufmann. ISBN 978-0123748560.

78

Bibliography

