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Preface

The literature on random effect models is now extensive. One general form of a random

effect model is a generalized linear model where a random effect is added into the linear

predictor. If the distribution of this random effect is conjugate to the distribution of an

exponential family, maximum likelihood estimation is straightforward, at least in simple

models like the negative binomial and the beta binomial model. By assuming a normal

distribution for the distribution of this random effect the parameters can be estimated

via EM-algorithm and Gaussian quadrature. If no assumption for the distribution of the

random effect can be made, a non-parametric maximum likelihood approach can be used.

The thesis is divided into three chapters. Chapter 1 serves as an introduction to the class

of generalized linear models, where maximum likelihood estimation and quasi-likelihood

functions are discussed. Chapter 2 gives detailed account of simple overdispersion mod-

els, including the beta binomial and the negative binomial model. Furthermore, extra-

binomial and extra-Poisson variation is explained and analyzed. Chapter 3 deals with

random effect models, especially random intercept and variance component models.
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Chapter 1

Generalized Linear Models

In this chapter the classical linear model will be generalized to cover many other models.

Generalized linear models include for example log-linear models for the analysis of

count data, logit and probit models for data in the form of proportions and models with

continuous data. All these models share some properties, such as linearity and a common

method to compute parameter estimates.

First, we revisit the linear model, as the basis for further regression analysis. Then there

will be a short introduction into the terms exponential family and link function, to specify

the generalized linear model. Section 1.3. discusses the maximum likelihood estimation

and the algorithm of iterative weighted least squares, in the following denoted by IWLS.

In the next section we consider the quasi-likelihood approach with the maximum quasi-

likelihood estimation and some of the properties of the quasi-likelihood function. Finally

two measures of fit for a model will be discussed in Section 1.5.

The chapter is based on McCullagh and Nelder (1989).

1.1 The Linear Model

Generally one can say that regression analysis is based on analyzing the relationship

between explanatory variables x1, . . . , xp and response variables y = (y1, . . . , yn)T .

The assumptions made for the classical linear model are:

• The response variables yi, i = 1, . . . , n, are independent normally distributed and

the variance of yi, Var(yi) = σ2, is constant.

• The explanatory variables x1, x2, . . . , xp, all of length n, form the n×p model matrix

X.

1



2 CHAPTER 1. GENERALIZED LINEAR MODELS

• E(y) = µ can be modeled through a linear combination of the explanatory variables,

µ = Xβ

with β being a parameter vector of length p, or

y = Xβ + ε

with ε having mean zero and variance matrix σ2In×n.

The assumptions regarding constant variance and normality are not very common in

real world datasets. For dealing with discrete data, the normality assumption is not

appropriate at all. Moreover, the constant-variance assumption is sometimes neglected,

as the variance could depend on the mean. To circumvent this difficulty one approach

is to transform the dataset. One famous transformation is the Box-Cox transformation

(see Box and Cox, 1964), where the transformed response variables are assumed to be

normally distributed with a constant variance. The other approach leads to the so called

generalized linear models. There it is possible to assume a whole class of distributions for

the response variables. Furthermore, a function of the mean is modeled linearly and not

the mean itself as in the classical linear model. In addition the variance is allowed to also

depend on the mean.

1.2 Generalized Linear Models

In order to define the class of generalized linear models we first need to introduce the

terms exponential family and link function.

1.2.1 Exponential Family

First we define the general k-parameter exponential family (see also McCullagh, Searle,

and Neuhaus, 2008) and then the one-parameter exponential family.

Definition 1.1 (k-parameter exponential family) A family of probability density func-

tions (pdf) or probability mass functions (pmf) is called an exponential family with pa-

rameter vector θ = (θ1, . . . , θk)
T , if it can be written as

f(y, θ) = h(y) · c(θ) · exp

(
k∑
i=1

bi(θ) · ti(y)

)
,

where h(y) ≥ 0 and t1(y), . . . , tk(y) are functions of y and independent of θ, c(θ) ≥ 0 and

b1(θ), . . . , bk(θ) are functions of the parameter θ, independent of y. Further θ is called the

canonical vector of the exponential family.
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In generalized linear regression analysis a k-parameter exponential family is not useful

since we only need a one-parameter exponential family. Therefore, McCullagh and Nelder

(1989) proposed an alternative formulation of the exponential family with one parameter.

Definition 1.2 (one-parameter exponential family)

f(y, θ) = exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
for known functions a(·), b(·) and c(·) with a(φ) > 0. If φ > 0 is known, f(y, θ) is called

the one-parameter exponential family with canonical parameter θ.

To derive the mean and the variance of this exponential family, we will first have a look

at the score function.

Theorem 1.1 For the score function of an exponential family, the following equations

hold:

E
(
∂ log f(y, θ)

∂θ

)
= 0, (1.1)

Var

(
∂ log f(y, θ)

∂θ

)
= E

(
∂ log f(y, θ)

∂θ

)2

= E
(
−∂

2 log f(y, θ)

∂θ2

)
(1.2)

Proof:

The derivative of the log-likelihood function is

∂ log f(y, θ)

∂θ
=

1

f(y, θ)

∂f(y, θ)

∂θ

and since a pmf or a pdf is normalized,∫
R
f(y, θ)dy = 1.

Therefore

E
(
∂ log f(y, θ)

∂θ

)
= E

(
∂f(y, θ)

∂θ

1

f(y, θ)

)
=

∫
R

∂f(y, θ)

∂θ

1

f(y, θ)
f(y, θ)dy

=

∫
R

∂f(y, θ)

∂θ
dy

=
∂

∂θ

∫
R
f(y, θ)dy

= 0
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and (1.1) follows.

Result (1.2) is derived by using the chain rule

E
(
−∂

2 log f(y, θ)

∂θ2

)
= E

(
−∂

2(y, θ)

∂θ2
1

f(y, θ)
+
∂f(y, θ)

∂θ

∂f(y, θ)

∂θ

1

f(y, θ)2

)
= E

(
−∂

2f(y, θ)

∂θ2
1

f(y, θ)

)
+ E

(
∂f(y, θ)

∂θ

∂f(y, θ)

∂θ

1

f(y, θ)2

)
=

∫
R
−∂

2f(y, θ)

∂θ2
1

f(y, θ)
f(y, θ) dy +

∫
R

(
∂f(y, θ)

∂θ

)2
f(y, θ)

f(y, θ)2
dy

= − ∂2

∂θ2

∫
R
f(y, θ), dy +

∫
R

(
∂ log f(y, θ)

∂θ

)2

f(y, θ)2
f(y, θ)

f(y, θ)2
dy

=

∫
R

(
∂ log f(y, θ)

∂θ

)2

f(y, θ) dy

= E
(
∂ log f(y, θ)

∂θ

)2

.

�

From this it follows that the corresponding score equation is

∂ log f(y, θ)

∂θ
=

1

a(φ)
(y − b′(θ))

⇔ E
(
∂ log f(y, θ)

∂θ

)
=

1

a(φ)
E (y − b′(θ)) = 0

⇔ E(y) = b′(θ) = µ

and

0 = E
(
∂2 log f(y, θ)

∂θ2

)
+ E

(
∂ log f(y, θ)

∂θ

)2

= − 1

a(φ)
b′′(θ) +

1

a2(θ)
E(y − b′(θ))2

with

E(y − b′(θ)) = Var(y).

Thus,



1.2. GENERALIZED LINEAR MODELS 5

Var(y) = a(φ)b′′(θ) = a(φ)V (µ),

where mean and variance are also called the first two moments or cumulants of the expo-

nential family. The function V (µ) is called the variance function, which dependents on µ

but which is independent of φ. Furthermore, φ is called dispersion parameter and a(φ) is

independent from µ. The function a(φ) is commonly of the form

a(φ) = a · φ

with φ being constant over all observations and a is a known weight which varies from

observation to observation.

In the following we will have a short overview over the cumulant generating function, to

derive moments of order greater than two.

The kth cumulant can be calculated by using the cumulant generating function K(t) =

logM(t) with M(t) being the moment generating function. The kth cumulant κk is given

by

κk(y) = K(k)(t)|t=0.

To derive the cumulant generating function we will first consider the moment generating

function. With

1 =

∫
R
f(y, θ)dy

it follows for f(y, θ) being from the exponential family that

1 =

∫
R

exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
dy = exp

(
− b(θ)
a(φ)

)∫
R

exp

(
y

a(φ)
θ + c(y, φ)

)
dy.

From this it follows that

exp

(
b(θ)

a(φ)

)
=

∫
R

exp

(
y

a(φ)
θ + c(y, φ)

)
dy
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and the moment generation function M(t) is

M(t) = E(ety) =

∫
R
etyf(y, θ)dy

=

∫
R

exp (ty) exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
dy

= exp

(
− b(θ

a(φ)

)∫
R

exp

(
y

a(φ)
(θ + a(φ)t) + c(y, φ)

)
= exp

(
− b(θ)
a(φ)

)
exp

(
b(θ + a(φ)t)

a(φ)

)
= exp

(
b(θ + a(φ)t)− b(θ)

a(φ)

)
.

Therefore, we have

κk(y) = K(k)(t)|t=0 = a(φ)k−1b(k) (θ + a(φ)t) |t=0 = a(φ)k−1b(k)(θ).

So for the first two cumulants we get

E(y) = b′(θ) = µ

and

Var(y) = a(φ)b′′(θ) = a(φ)V (µ).

As in the following we will often model Poisson and binomial responses, we show that

the Poisson and the binomial distribution are members of the one-parameter exponential

family.

Example 1.1 (Poisson distribution) Suppose the response y follows a Poisson distri-

bution with parameter µ: y ∼ P (µ). The pmf is then given by

f(y, µ) = P (y = y) =
µy

y!
e−µ = exp (y log µ− µ− log y!) , y = 0, 1, 2, . . . .

Assuming that θ = log µ and φ=1 leads to an exponential family with

a(φ) = φ, b(θ) = µ = exp(θ), c(y, φ) = − log y!

and

E(y) = b′(θ) = exp(θ) = µ,

Var(y) = a(φ)b′′(θ) = 1 · exp(θ) = µ,

κk(y) = a(φ)k−1b(k)(θ) = exp(θ) = µ, for k > 2.
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Example 1.2 (Binomial distribution in its standard form) Let us assume that the

response y follows a standardized binomial distribution, that is my ∼ B(m,µ). Then the

pmf is given by

f(y,m, µ) = P (y = y) = P (my = my) =

(
m

my

)
µmy(1− µ)m−my

= exp

(
log

(
m

my

)
+my log µ+ (m−my) log(1− µ)

)
= exp

(
log

(
m

my

)
+my log µ+m log(1− µ)−my log(1− µ)

)
= exp

(
y log µ

1−µ − log 1
1−µ

1/m
+ log

(
m

my

))
.

With θ = log µ
1−µ and a = 1/m, φ = 1, this is an exponential family with

a(φ) = a · φ, b(θ) = log
1

1− µ
= log (1 + exp(θ)) , c(y, φ) = log

(
1/φ

y/φ

)
and

E(y) = b′(θ) =
exp(θ)

1 + exp(θ)
= µ

Var(y) = a(φ)b′′(θ) = φ
exp(θ)

(1 + exp(θ))2
=

1

m
µ(1− µ)

κ3(y) = a(φ)2b(3)(θ) =
1

m2

exp(θ)(1 + exp(θ))2 − 2 exp2(θ)(1 + exp(θ))

(1 + exp(θ))4

=
1

m2

exp(θ)− exp2(θ)

(1 + exp(θ))3
=

1

m2

exp(θ)(1− exp(θ))

(1 + exp(θ))3

=
1

m2
µ(1− µ)

1− exp(θ)

1 + exp(θ)︸ ︷︷ ︸
1

1+exp(θ)
− exp(θ)

1+exp(θ)
=1−µ−µ=1−2µ

=
1

m2
(1− 2µ)µ(1− µ)

κ4(y) =
1

m3
(1− 6µ(1− µ))µ(1− µ).

Other continuous members of the exponential family are for example normal, gamma

and inverse Gaussian. All with a different variance functions V (µ), different canonical

parameters θ and therefore different functions b(θ). Table 1.1 shows the forms of V (µ),

θ, b(θ) for the five main GLM distributions (see also Lee, Nelder, and Pawitan, 2006).
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V (µ) θ b(θ)

normal 1 µ θ2/2

Poisson µ log µ exp(θ)

binomial µ(1− µ) log µ
1−µ log(1 + exp(θ))

gamma µ2 −1/µ − log(−θ)
inverse Gaussian µ3 −1/2µ2 −(−2θ)1/2

Table 1.1: V (µ), θ and b(θ) for some exponential family members.

1.2.2 Link Function

In contrast to the linear model, the predictor of a generalized linear model is allowed to

be any monoton function of the mean. We write

g(µ) = η = XTβ,

where g is called the link function, since it links the mean of y and the linear predictor

η. In the Poisson case, with y = 0, transformation of the data to log y is useless, since

log y is not defined for y = 0. To overcome this, log µ = Xβ is considered instead, which

causes no difficulty when y = 0.

Moreover, if η = θ, the canonical parameter, then the corresponding link function is called

canonical link. Canonical links are often used because they give rise to a simple sufficient

statistic for the regression parameters. Some of the main distributions and their canonical

links are shown in Table 1.2 (see also Faraway, 2006).

link

normal identity µ

Poisson log log µ

binomial logit log µ
1−µ

gamma reciprocal 1/µ

inverse Gaussian 1/µ2

Table 1.2: Canonical links for some exponential family members.

1.2.3 Definition of the Generalized Linear Model

Generalized linear models can be derived from the the classical linear model through the

following generalizations.
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• The response variables yi follow a distribution which is a member of the exponential

family, i.e.

yi ∼ Exponential family(θi)

with E(yi) = µi = µ(θi) and Var(yi) = ai(φ)V (µi).

• The mean E(yi) = µi is modeled through a link function

g(µi) = ηi

and a linear predictor

ηi = xTi β,

where xi = (xi1, . . . , xip)
T is the vector of explanatory variables for the ith response

which form the design matrix X = (x1, . . . , xn)T , β = (β1, . . . , βp)
T is the vector of

the unknown parameters, η = (η1, . . . , ηn)T is the vector with the linear predictors

and g(.) is a known link function.

• The variance may depend on the mean by allowing

Var(yi) = ai(φ)V (µi),

where V (µi) is called the variance function and depends on µi, whereas φ is called

the dispersion parameter and ai(φ) is independent from µi.

1.3 Maximum Likelihood Estimation

In this section an introduction to maximum likelihood estimation in GLMs is given. For

deriving the maximum likelihood estimates β̂ the IWLS algorithm is used.

Suppose we have a GLM as defined in Section 1.2.3, then the parameter vector is given

by (θi, φ), where θ = (θ1, . . . , θn)T contains the unknown canonical parameters and φ is

considered to be known for the moment. Then the likelihood function is given by

L(y, θ) =
n∏
i=1

exp

(
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

)
and the corresponding log-likelihood function is therefore

l(y, θ) = logL(y, θ) =
n∑
i=1

(
yiθ − b(θi)
ai(φ)

+ c(yi, φ)

)
. (1.3)



10 CHAPTER 1. GENERALIZED LINEAR MODELS

Since we are mostly interested in modeling the mean and thus in the parameter vector β,

we consider the β score function

∂l(y, θ(β))

∂βj
=

n∑
i=1

∂l(yi, θ(β))

∂µi

∂µi
∂βj

=
n∑
i=1

∂l(yi, θ(β))

∂θi

∂θi
∂µi

∂µi
∂βj

, j = 1, . . . , p .

With
∂µ

∂θ
=
∂b′(θ)

∂θ
= b′′(θ) = V (µ)

and
∂µ

∂β
=
∂µ

∂η

∂η

∂β︸︷︷︸
x

=
∂µ

∂g(µ)
x =

x

g′(µ)

it follows that

∂l(y, θ(β))

∂βj
=

n∑
i=1

yi − µi
ai(φ)V (µi)

xij
g′(µi)

= 0, j = 1, . . . , p. (1.4)

Remark 1.1 With µ = b′(θ) it follows for the canonical link g(µ) = η = θ that g(b′(θ)) =

θ. In this case g(·) is the inverse of b′(·) and

g′(µ) =
∂g(µ)

∂µ
=
∂θ

∂µ
=

∂θ

∂b′(θ)
=

1

b′′(θ)
=

1

V (µ)
.

Thus, the score equation simplifies to

∂l(y, θ(β))

∂βj
=

n∑
i=1

yi − µi
ai(φ)V (µi)

xijV (µi) =
n∑
i=1

yi − µi
ai(φ)

xij = 0, j = 1, . . . , p. (1.5)

To obtain the maximum likelihood estimate β̂ one has to solve equations (1.4) resp. (1.5)

in case of the canonical link function. Both of these equations can be solved iteratively

with the Newton Raphson method. This leads to the IWLS algorithm.

1.3.1 Iterative Weighted Least Squares

To solve the equations (1.4) resp. (1.5) McCullagh and Nelder (1989) discussed the method

of IWLS involving an adjusted dependent variable z. First we will apply the Newton

Raphson method for finding successively better approximations to the roots of the score

functions (1.4) and (1.5). This leads to

β(t+1) = β(t) +

(
−∂

2l(y, θ(β))

∂β∂βT

)−1
∂l(y, θ(β))

∂β
, t = 0, 1, . . . ,
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where the derivatives are evaluated in β(t). The score function can be written as

∂l(y, θ(β))

∂βj
=

n∑
i=1

yi − µi
ai(φ)V (µi)

xij
g′(µi)

=

=
n∑
i=1

yi − µi
ai(φ)V (µi)(g′(µi))2

g′(µi)xij, j = 1, . . . , p.

If we define

di = g′(µi),

1/wi = ai(φ)V (µi)(g
′(µi))

2 (1.6)

and D = diag(di), W = diag(wi), the score equation can be rewritten in matrix notation

as
∂l(y, θ(β))

∂β
= XTDW (y − µ).

Thus, the resulting negative Hessian matrix is given by

−∂
2l(y, θ(β))

∂β∂βT
= −∂(XTDW (y − µ))

∂βT
= −∂(XTDW (y − µ))

∂ηT
∂ηT

∂βT

= −XT

(
∂DW

∂ηT
(y − µ) +DW (−1)

∂µ

∂ηT

)
X

= −XT

∂DW∂ηT
(y − µ)−DW ∂µ

∂ηT︸︷︷︸
1/g′(µ)=D−1

X

= XT

(
W − ∂DW

∂ηT
(y − µ)

)
X

with

∂diwi
∂ηi

=
∂ (1/(ai(φ)V (µi)g

′(µi)))

∂ηi

= −
ai(φ)V ′(µi)

∂µi
∂ηi
g′(µi) + ai(φ)V (µi)g

′′(µi)
∂µi
∂ηi

(ai(φ)V (µi)g′(µi))2

= −
ai(φ)∂µi

∂ηi
(V ′(µi)g

′(µi) + V (µ)g′′(µi))

ai(φ)2V (µi)g′3(µi)
g′(µi)

∂µi
∂ηi

= 1
g′(µi)= −V

′(µi)g
′(µi) + V (µi)g

′′(µi)

ai(φ)V (µi)g′3(µi)
. (1.7)

If we define

w∗i = wi −
∂diwi
∂ηi

(yi − µi) (1.8)
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and W ∗ = diag(w∗i ), then E(W ∗) = W and the Newton Raphson method yields

β(t+1) = β(t) +
(
XTW ∗X

)−1
XTDW (y − µ), t = 0, 1, . . . . (1.9)

Introducing so called adjusted dependent variables z with

z = Xβ +W ∗−1DW (y − µ),

the Newton Raphson procedure (1.9) can be written as

β(t+1) = β(t) +
(
XTW ∗X

)−1
XTDW (y − µ)

=
(
XTW ∗X

)−1
XTW ∗Xβ(t) +

(
XTW ∗X

)−1
XTW ∗W ∗−1DW (y − µ)

=
(
XTW ∗X

)−1
XTW ∗ (Xβ(t) +W ∗−1DW (y − µ)

)
=

(
XTW ∗X

)−1
XTW ∗z, (1.10)

which is an IWLS representation with an adjusted dependent variable z, where the right

side is evaluated at β(t).

Simplification occurs when canonical links are considered because then the derivatives of

(1.7) are

∂diwi
∂ηi

= −V
′(µi)g

′(µi) + V (µi)g
′′(µi)

ai(φ)V (µi)g′3(µi)

= −V
′(µi)/V (µi)− V ′(µi)/V (µi)

ai(φ)/V (µi)
= 0,

since

g′(µ) =
1

V (µ)

as in Remark 1.1 and

g′′(µ) = − V
′(µ)

V 2(µ)
.

Thus, the resulting IWLS procedure under a canonical link model is

β(t+1) = (XTWX)−1XTWz (1.11)

with

z = Xβ +D(y − µ).

We get the same IWLS equation for arbitrary link models, if we use the expected instead

of the observed Hessian matrix in (1.10). This approach is called Fisher Scoring and was

first introduced in the context of probit analysis by Fisher (1935). Since

E(W ∗) = W and E
(
XTW ∗X

)
= XTWX



1.4. QUASI-LIKELIHOOD FUNCTION 13

it follows that the resulting IWLS equation has the same form as in (1.11).

Furthermore, mean and variance of z are given by

E(z) = Xβ and Var(z) = DVar(y)DT = W−1.

Remark 1.2 The least squares estimate of the parameter β in the classical linear model

is

β̂ = (XTX)−1XTy (1.12)

which must not be solved iteratively since W = I in this case. Moreover, (1.12) is based

on known responses y and not on unknown adjusted dependent variables z.

1.4 Quasi-Likelihood Function

To find the maximum likelihood estimates for the parameters β it is essential to know the

underlying distribution in order to determine the likelihood function. The purpose of this

section is to show how inference can be drawn from experiments where it is impossible to

construct a likelihood function, because only a relationship between mean and variance

is given.

The term quasi-likelihood function was first introduced in Wedderburn (1974).

1.4.1 Introduction

For further analysis, let us assume without any loss of generality that the dispersion

parameter is given by a(φ) = φ.

Definition 1.3 Let y be a random response variable with E(y) = µ and Var(y) = φV (µ)

and known variance function V (·). Then the quasi-likelihood function q(y, µ) is defined

as

q(y, µ) =

∫ µ

y

y − t
φV (t)

dt

plus a function in y. Equivalent to this definition is the following

∂q(y, µ)

∂µ
=

y − µ
φV (µ)

.

The derivative ∂q/∂µ is called the quasi-score function.

In the following we will have a short look on some characteristics of the quasi-likelihood

function.
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Theorem 1.2 Let y be the response variable with E(y) = µ and Var(y) = φV (µ). Then

the following equations hold:

E
(
∂q(y, µ)

∂µ

)
= 0 (1.13)

and

Var

(
∂q(y, µ)

∂µ

)2

= E
(
∂q(y, µ)

∂µ

)2

= −E
(
∂2q(y, µ)

∂µ2

)
=

1

φV (µ)
. (1.14)

Proof:

Equation (1.13) is proven by

E
(
∂q(y, µ)

∂µ

)
= E

(
y − µ
φV (µ)

)
= 0

and equation (1.14) by

E
(
∂q(y, µ)

∂µ

)2

= E
(
y − µ
φV (µ)

)
=

Var(y)

φ2V 2(µ)
=

1

φV (µ)

E
(
∂2q(y, µ)

∂µ2

)
= E

(
∂

∂µ

(
y − µ
φV (µ)

))
= E

(
−φV (µ)− (y − µ) ∂

∂µ
(φV (µ))

φ2V 2(µ)

)

= E
(
− 1

φV (µ)
− (y − µ)

φ2V 2(µ)

∂

∂µ
(φV (µ))

)
= − 1

φV (µ)

�

The following theorem proves that the log-likelihood function equals the quasi-likelihood

function, if and only if the underlying distribution is from an exponential family.

Theorem 1.3 (Wedderburn, 1974) For a response y from Definition 1.3, the log-

likelihood has the following characteristic

∂l(y, µ)

∂µ
=
y − µ
V (µ)

, (1.15)

if and only if the pmf or pdf of y is of the form

exp

(
yθ − b(θ)

φ
+ c(y, φ)

)
(1.16)

with θ being a function of µ and where φ is independent from µ.
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Proof:

“⇒”: The log-likelihood function can be integrated with respect to µ as

l(y, µ) =

∫
∂l(y, µ)

∂µ
dµ =

∫
y − µ
φV (µ)

dµ

=
y

φ

∫
1

V (µ)
dµ− 1

φ

∫
µ

V (µ)
dµ

=
y

φ

∫
1

b′′(θ)
dµ− 1

φ

∫
b′(θ)

b′′(θ)
dµ

=
y

φ

∫
∂θ

∂b′(θ)
dµ− 1

φ

∫
b′(θ)∂θ

∂b′(θ)
dµ

=
y

φ

∫
∂θ

∂µ
dµ︸ ︷︷ ︸

θ

−1

φ

∫
b′(θ)∂θ

∂µ
dµ︸ ︷︷ ︸

b(θ)

=
yθ − b(θ)

φ
+ c(y, φ). (1.17)

Therefore it follows that

f(y, µ) = exp

(
yθ − b(θ)

φ
+ c(y, φ)

)
.

“⇐”: Mean and variance of a member from the exponential family are E(y) = µ = b′(θ)

and Var(y) = φV (µ) = φb′′(θ). Now it follows that

dµ

dθ
=
db′(θ)

dθ
= b′′(θ) = V (µ).

As we know, θ is a function of µ and

l(y, µ) =

(
yθ − b(θ)

φ
+ c(y, φ)

)
.

As a result we get

∂l(y, µ)

∂µ
=

∂

∂µ

(
yθ − b(θ)

φ
+ c(y, φ)

)
=

y

φ

dθ

dµ
− b′(θ)

φ

dθ

dφ

=
y

φV (µ)
− µ

φV (µ)

=
y − µ
φV (µ)

. (1.18)

�
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1.4.2 Characteristics of the Quasi-Score Function

The quasi-score function with E(y) = µ,Var(y) = φV (µ), g(µ) = xTβ and µ = µ(β) is

∂q(y, µ(β))

∂βj
=
∂q(y, µ(β))

∂µ

∂µ

∂βj
=

y − µ
φV (µ)

∂µ

∂βj

with

E
(
∂q(y, µ(β))

∂βj

)
= E

(
∂q(y, µ(β))

∂µ

∂µ

∂βj

)
= E

(
y − µ
φV (µ)

∂µ

∂βj

)
= 0,

E
(
∂2q(y, µ(β))

∂βj∂βk

)
= E

(
∂

∂βj

(
∂q(y, µ(β))

∂µ

∂µ

∂βk

))
= E

(
∂2q(y, µ(β))

∂µ2

∂µ

∂βj

∂µ

∂βk
+
∂q(y, µ(β))

∂µ

∂2µ

∂βj∂βk

)
= − 1

φV (µ)

∂µ

∂βj

∂µ

∂βk
,

E
(
∂q(y, µ(β))

∂βj

∂q(y, µ(β))

∂βk

)
= E

((
y − µ
φV (µ)

)2
∂µ

∂βj

∂µ

∂βk

)
=

1

φ2V 2(µ)
Var(y − µ)

∂µ

∂βj

∂µ

∂βk

=
1

φV (µ)

∂µ

βj

∂µ

∂βk

= −E
(
∂2q(y, µ(β))

∂βj∂βk

)
. (1.19)

Comparison of the quasi-score function to the score function in Theorem (1.1) yields equal

results and relationships for the expected quasi-score.

1.4.3 Maximum Quasi-Likelihood Estimation

Suppose we have n independent responses yi, i = 1, . . . , n, then the resulting quasi-score

vector u is given by

u(β) =
n∑
i=1

∂q(yi, µi(β))

∂β
=

n∑
i=1

∂q(yi, µi(β))

∂µi

∂µi
∂β

. (1.20)

By setting

ci =
∂µi
∂β

,

equation (1.20) can be written in matrix notation as

u(β) = CTV −1(y − µ)/φ.
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The maximum quasi-likelihood estimator β̂ is achieved by solving

u(β̂) = 0

with u(β) being the quasi-score function. Moreover, mean and variance of u can easily be

calculated as

E(u(β)) = E(CTV −1(y − µ)/φ) = 0

and with the characteristics of the quasi-score function from Subsection 1.4.2 it follows

that

Var(u(β)) = Var
(
φ−1CTV −1(y − µ)

)
= φ−1CTV −1 Var(y − µ)(φ−1CTV −1)T

= φ−1CTV −1C

(1.19)
= −E

(
∂u(β)

∂β

)
.

A Taylor series expansion of the quasi-score in β around β̂ yields the following approxi-

mation

0 = u(β̂) ≈ u(β) +
∂u(β)

∂β
(β̂ − β).

For ordinary likelihood estimation we used the Fisher-Scoring technique, so using the

mean of the Hessian instead of the observed Hessian itself. If we use this approximation

here, we can approximate ∂u(β)
∂β

by the negative mean −φ−1CTV −1C. This results in

β̂ − β ≈ φ
(
CTV −1C

)−1
u(β) =

(
CTV −1C

)−1
CTV −1(y − µ). (1.21)

This is one step of a weighted least squares regression of the residuals (y − µ) on C with

weights V −1. If µ is close enough to y, this method converges and gives β̂.

Moreover, the first two moments of the maximum quasi-likelihood estimator β̂ are

E(β̂) ≈ β

Var(β̂) ≈ Var
(
φ
(
CTV −1C

)−1
u(β)

)
= φ2

(
CTV −1C

)−1
Var(u(β))

(
CTV −1C

)−1
= φ

(
CTV −1C

)−1
.

An important property of this method is that the estimation of β does not depend on the

value of φ. To estimate φ, the mean Pearson estimator is used

φ̂ =
1

n− p

n∑
i=1

(yi − µ̂i)2

V (µ̂i)
=

1

n− p
X̂2,

where X2 is the Pearson X2 statistic.
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1.5 Measuring the Goodness of Fit

The process of fitting a model to the data can be described as a way to replace the real

data values y by the fitted values µ̂ from the model under investigation. In general the

fitted values will not equal the real values exactly, therefore a measure of how discrepant

they are is required. Two such measures are in common use. The first one we consider is

the likelihood ratio test statistic, also called deviance, and the second is the Pearson X2

statistic.

1.5.1 Deviance

The scaled deviance takes the form

1

φ
D(y, µ̂) = −2 (l(y, µ̂)− l(y, y)) , (1.22)

where l(y, y) describes the full or saturated model, which gives us a measure of how well

any model could possibly fit. In the saturated model we need to use n parameters for n

data points, so one per observation, and the µ̂s derived from this model match the data

exactly. In practice, the full model is uninformative, as the data is not summarized, but

fully repeated. However, the full model gives us a baseline for measuring the discrepancy

for any other model with p parameters. The model under investigation is given by l(y, µ̂).

Furthermore, the minimal scaled deviance is achieved for the maximum likelihood esti-

mates.

As we will show below, for normally distributed responses the deviance is exactly χ2

distributed with n − p degrees of freedom (df), whereas for other distributions of the

exponential family only asymptotic results are available.

Example 1.3 (Deviance for Gaussian data) Let yi be independent normally distributed

with mean µi and constant variance σ2. Then the log-likelihoods for the model under con-

sideration and the saturated model are given by

l(y, µ) =
n∑
i=1

(
−1

2
log(2πσ2)− (yi − µi)2

2σ2

)
= −n

2
log(2πσ2)− 1

2

n∑
i=1

(yi − µi)2

σ2

l(y, y) = −n
2

log(2πσ2)

Therefore, the scaled deviance is

1

φ
D(y, µ̂) =

1

σ2

n∑
i=1

(yi − µ̂i)2 =
1

σ2
SSE(β̂),
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which has a χ2
n−p distribution with mean n− p.

As in the following chapter we often need deviances of Poisson and binomial distributed

data, we give a short overview of how to achieve those two.

Example 1.4 (Deviance for binomial data) Let miyi
ind∼ B(mi, µi) with

yi = 0, 1/mi, 2/mi, . . . , 1. Then the log-likelihood for this model is given by (see also 1.2)

log f(y, µ) =
n∑
i=1

(
miyi log

µi
1− µi

−mi log
1

1− µi
+ log

(
mi

miyi

))
and the full model is

log f(y, y) =
n∑
i=1

(
miyi log

yi
1− yi

−mi log
1

1− yi
+ log

(
mi

miyi

))
.

Thus, the resulting scaled deviance with φ = 1 and ai(φ) = 1/mi is

1

φ
D(y, µ̂) = −2

n∑
i=1

(
miyi log

µ̂i
1− µ̂i

−mi log
1

1− µ̂i
−miyi log

yi
1− yi

+mi log
1

1− yi

)
= −2

n∑
i=1

(
miyi

(
log

µ̂i
yi

+ log
1− yi
1− µ̂i

)
−mi log

1− yi
1− µ̂i

)
= 2

n∑
i=1

mi

(
(1− yi) log

1− yi
1− µ̂i

+ yi log
yi
µ̂i

)
.

Example 1.5 (Deviance for Poisson data) Let yi
ind∼ Poisson(µi) with yi ≥ 0. Then

the log-likelihood for this model is given by

log f(y, µ) =
n∑
i=1

(yi log µi − µi − log yi!)

and the saturated model is

log f(y, y) =
n∑
i=1

(yi log yi − yi − log yi!) .

The resulting deviance with φ = 1 and ai(φ) = φ is therefore

1

φ
D(y, µ̂) = −2

n∑
i=1

(yi log µ̂i − µ̂i − yi log yi + yi)

= 2
n∑
i=1

(yi(log yi − log µ̂i)− (yi − µ̂i))

= 2
n∑
i=1

(
yi log

yi
µ̂i
− (yi − µ̂i)

)
.

Since for intercept models
∑n

i=1(yi−µ̂i) = 0, we only use its relevant part 2
∑n

i=1 yi log yi/µ̂i.
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1.5.2 Pearson X2 Statistic

As mentioned above, the other important measure of discrepancy is the Pearson X2

statistic, which is of the form

X2 =
n∑
i=1

(yi − µ̂i)2

V (µ̂i)

with V (µ̂i) being the estimated variance function.

Both, the deviance and the Pearson X2 statistic follow a χ2 distribution with n−p degrees

of freedom for normally distributed responses. For other distributions we can rely just on

asymptotic results. A general advantage of the deviance is that it is additive for nested

sets of models, leading to likelihood ratio tests.

1.5.3 Quasi-Deviance

By analogy to (1.22) we define the quasi-deviance function as

D(y, µ) = −2φ (q(y, µ)− q(y, y)) = −2
n∑
i=1

∫ µi

yi

yi − t
V (t)

dt,

which is strictly positive except at y = µ and minimal for the maximum quasi-likelihood

estimation.

Example 1.6 (Incidence of leaf-blotch on barley) McCullagh and Nelder (1989) gave

an example concerning the incidence of leaf blotch in 1965 on 10 varieties of barley grown

at nine sites. The response variable is the percentage of leaf area affected. They first

suggested to fit the data as a pseudo-binomial model with a variance of φµ(1− µ). How-

ever, this variance function does not satisfy the variation of the data. Therefore, following

Wedderburn’s suggestion with a variance function of the form µ2(1 − µ)2, this yields the

following quasi-likelihood function, with 0 < µ < 1 and 0 ≤ y ≤ 1

q(y, µ) =

∫ µ y − t
t2(1− t)2

dt = (2y − 1) log
µ

1− µ
− y

µ
− 1− y

1− µ

and

q(y, y) = (2y − 1) log
y

1− y
− 2.

The resulting quasi-deviance is therefore given by

D(y, µ) = −2φ
n∑
i=1

(
(2yi − 1)

(
log

1− yi
1− µi

− log
yi
µi

)
+ 2− yi

µi
− 1− yi

1− µi

)
= −2φ

n∑
i=1

(
(2yi − 1)

(
log

1− yi
1− µi

− log
yi
µi

)
+ (2µi − 1)

yi − µi
µi(1− µi)

)
.
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Unfortunately, this function is not defined for yi = 1 or yi = 0, because then the terms

(2yi−1) log yi
µi

resp. (2yi−1) log 1−yi
1−µi do not exist. However, the maximum quasi-likelihood

estimate β̂ exits nevertheless since by setting the quasi-score equal to zero, no difficulty

occurs.
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Chapter 2

Simple Overdispersion Models

In the previous chapter we discussed generalized linear models but in practice, generalized

linear models often do not fit or represent the data adequately. This can be due to several

reasons: The distribution of y may not be a member of the exponential family or the

fitted regression model may not be appropriate. A simple way of expressing this problem

is discussed in this chapter. Section 2.1 introduces random effect models and one simple

overdispersion model, namely the beta binomial model, is discussed in Section 2.4. In

addition a R-function will be discussed to model beta binomial data. In Section 2.6 the

negative binomial distribution will be considered to model overdispersed count data and

a R-function for negative binomial distributed data will be discussed. If only a mean-

variance relationship is specified, Section 2.8 and Section 2.10 discuss two approaches to

model data with this property.

2.1 Random Effect Models

In Chapter 1 we considered linear predictors of the form

ηi = g(µi) = xTi β, i = 1, . . . , n,

where the vector xi = (xi1, . . . , xip)
T denotes a p-dimensional vector of given explanatory

variables, corresponding to the ith response yi, i = 1, . . . , n. The vectors xi form the n×p
design matrix X, and β = (β1, . . . , βp)

T are the unknown parameters which are subject

to estimation. We will now discuss an extension of the previous assumptions, where we

include a random effect into the linear predictor.

This has the followings reasons: Suppose that in the model we have estimated there are

one or more important explanatory variables missing. Would those explanatory variables

23
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have been recorded, we would add them into the linear predictor. In reality we even don’t

know what predictor variables should have been recorded to construct an adequate model.

A good way of expressing this problem is to add random variables into the linear predictor.

Assuming that there is another vector of unobserved variables ui = (ui1, . . . , uip′)
T in

addition to the observed predictor xi leads to the following model

ηi = g(µi) = xTi β + uTi γ, i = 1, . . . , n, (2.1)

where γ = (γ1, . . . γp′)
T is the p′-dimensional unknown parameter vector for the unob-

served predictor variables ui. Since we know nothing about ui and γ , the term uTi γ is in

fact considered as a single random variable. So we can write with zi = uTi γ

ηi = g(µi) = xTi β + zi.

Another reason for using random variables is that the data might be grouped. Sometimes

the grouping structure is simple, where each case belongs to a single group and there is

only one grouping factor. But in reality the grouping structure is rather complicated which

for example implicates the correlation of observations within the same group. Therefore,

a model which assumes independence of the observations is inappropriate. Suppose we

have n independent groups of observations yi = (yi1, . . . , yini)
T with correlation between

the yijs in group i = 1, . . . , n, j = 1, . . . , ni. If we include a random effect for each group

into the linear predictor,

ηij = g(µij) = xTijβ + zi

we get a model for the correlated data.

2.2 Conjugate Distributions

As we will use the term conjugate distribution in the following section, we need to define

a priori, a posteriori and conjugate distributions first. This section is based on Casella

and Berger (2002).

Theorem 2.1 (Bayes Theorem) Let A ⊂ Ω be an event and B1, B2, . . . , Bk a decom-

position of the sample space Ω with P (Bj) > 0, j = 1, . . . , k. Then

P (Bj|A) =
P (A|Bj)P (Bj)∑n
i=1 P (A|Bi)P (Bi)

.
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There exists an analogue formula for the pdf in the continuous case.

Theorem 2.2 Let the pdf of an observation (y, z) be f(y, z). Then

f(z|y) =
f(y|z)f(z)∫∞

−∞ f(y|z)f(z)dz
.

The basic idea of Bayes Theorem is that before doing an experiment one has a certain

“a priori” idea of the underlying value of z. This idea of the value can be described as

an a priori density function f(z). Then Bayes Theorem can be used to determine the a

posteriori distribution f(z|y) after the experiment.

For determining the a posteriori distribution, one has to solve the integral
∫∞
−∞ f(y|z)f(z)dz

which could be hard to evaluate. If we use a conjugate distribution for z, the integral can

be solved analytically.

Definition 2.1 (Conjugate distribution) The distribution of f(z) is called conjugate

distribution for f(y|z) if f(z|y) and f(z) are of the same form, that means that the a

priori- and the a posteriori distributions belong to the same family of distributions.

Remark 2.1 Some important distributions and their corresponding conjugate distribu-

tions are given in Table 2.1.

distribution conjugate distribution

Gaussian Gaussian

gamma gamma

Poisson gamma

binomial beta

Table 2.1: Distributions and corresponding conjugate distributions for two continuous

and two discrete distributions.

2.3 Maximum Likelihood Estimation

Let the unobserved random variables zi be independent and identically distributed. Com-

pared to the mean µi = E(yi) in the generalized linear model we have to consider now the

conditional mean

µi = E(yi|zi)

or
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µij = E(yij|zi).

In addition we assume that the conditional distribution of the response, given the unob-

served variables, is a member of the exponential family,

yi|zi ∼ Exponential family or yij|zi ∼ Exponential family.

For the calculation of the maximum likelihood estimator we need the marginal distribu-

tion of y.

Suppose that the pdf of an observation (y, z) is f(y, z, θ) where θ is the vector of all

unknown parameters. Then the marginal distribution of y is f(y, θ) given by

f(y, θ) =

∫
R
f(y, z, θ)dz.

Furthermore, the marginal log-likelihood function l(y, θ) is

l(y, θ) = log f(y, θ) = log

∫
R
f(y, z, θ)dz.

If we use the relationship

f(y, z, θ) = f(y|z, θ)f(z, θ),

the integral gets

l(y, θ) = log f(y, θ) = log

∫
R
f(y|z, θ)f(z, θ)dz.

To estimate the parameter vector θ one has to maximize the marginal log-likelihood

function l(y, θ). In reality solving this integral often causes difficulties. Therefore one

approach to evaluate this integral is to approximate it (see next chapter). The other

opportunity is to use conjugate distributions for the distribution of z, because the integral

can then be evaluated explicitly.

2.4 The Beta Binomial Distribution

Suppose one observes binomial distributed frequencies, where the probability of success

is not known or random. Then one opportunity is to assume a beta distribution for the
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probability of success. For example we might consider using the beta binomial distribu-

tion to model the number of cars that crash in n races. The probability for a crash is

varying since the skills of every driver differs.

In this section we will have a short look at the beta binomial distribution and how to use

the beta distribution in terms of the conjugate approach.

Definition 2.2 (Beta-function) The beta-function for two positive integers a > 0 and

b > 0 is defined by

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt.

The following lemma gives us one way of using a simple conjugate distribution. As for

this distribution, the marginal distribution of y can easily be achieved, see also Friedl

(1991).

Lemma 2.1 Let z be independent beta distributed with pdf

f(z, p) =
1

B(a, b)
pa−1(1− p)b−1 with 0 < p < 1; a, b > 0.

Then

E(z) =
a

a+ b
= µ,

Var(z) =
ab

(a+ b)2(a+ b+ 1)
=
µ(1− µ)

a+ b+ 1
= φµ(1− µ),

where φ = 1/(a+ b+ 1).

In addition let y|z ∼ Binomial(m, z) with

P (y = k|z = p) =

(
m

k

)
pk(1− p)m−k, k = 0, 1, . . . ,m.

Then the marginal distribution of y is the beta binomial distribution,

P (y = k) =

(
m

k

)
B(a+ k,m+ b− k)

B(a, b)
with k = 0, 1, . . . ,m; a, b > 0,

and

E(y) = mµ,

Var(y) = mµ(1− µ)(1 + φ(m− 1)).
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Proof:

The marginal probability function of y is given by

P (y = k) =

∫ 1

0

P (y = k|z = p)P (z = p)dp

=

∫ 1

0

pa−1(1− p)b−1

B(a, b)

(
m

k

)
pk(1− p)m−kdp

=

(
m

k

)
1

B(a, b)

∫ 1

0

pa−1+k(1− p)b−1+m−kdp

=

(
m

k

)
B(a+ k,m+ b− k)

B(a, b)
.

The last identity results from applying Definition 2.3. Moreover, we know

E(y) = E(E(y|z)) = mE(z) = m
a

a+ b
= mµ

and since E(z2) = Var(z) + E2(z) = φµ(1− µ) + µ2 we further get

Var(y) = E(Var(y|z)) + Var(E(y|z))

= E(mz(1− z)) + Var(mz)

= m(E(z)− E(z2)) +m2 Var(z)

= m(µ− (φµ(1− µ) + µ2)) +m2φµ(1− µ)

= mµ(1− φ(1− µ)− µ+mφ(1− µ))

= mµ(1− µ+ φ(1− µ)(m− 1))

= mµ(1− µ)(1 + φ(m− 1)).

�

Remark 2.2 The parameter φ is often referred to as the dispersion parameter and the

term (1 + φ(m − 1)) as overdispersion. If we have binary responses, then m = 1 and no

overdispersion is possible under this model.

Crowder (1978) analyzed the orob2 dataset (see Table 2.2) where he considered the group

specific dispersion parameter φi to be a global dispersion parameter φ for illustration pur-

poses. For a proper calculation Griffiths (1973) also used the beta binomial distribution

for the incidence of noninfectious disease in households. He considered a truncated beta

binomial distribution, because cases of no disease were not included in the data.

In the example below we assume a generalized linear model and consider the predictor to

be

η = logit(µ) = xTβ.
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2.5 R-Function for the Beta Binomial Distribution

In this section we will look at one R-function which can handle beta binomial distribu-

tions. The one considered here is called betabin, provided by the package aod (see also

Lesnoff and Lancelot, 2010).

The function betabin fits a beta binomial generalized linear model accounting for overdis-

persion in clustered binomial data. The explicit call of the function is described in Ap-

pendix A.1.1.

First we will consider a short example, given in the package aod, to see how the function

betabin works. The experiment is about comparing 2 types of seeds and 2 types of root

extracts. There are 5 to 6 replicates in each of the 4 treatment groups, so altogether there

are 21 observations. Each replicate comprises a number of seeds exposed to germination

and a number of seeds which actually terminated. Seed is a factor with 2 levels, namely

O73 and O75, and root is a factor with levels BEAN and CUCUMBER.

BEAN CUCUMBER

O75 O73 O75 O73

y n y n y n y n

10 39 8 16 5 6 3 12

23 62 10 30 53 74 22 41

23 81 8 28 55 72 15 30

26 51 23 45 32 51 32 51

17 39 0 4 46 79 3 7

10 13

Table 2.2: orob2: Data describing the germination for seed

2.5.1 Logistic Regression Model

A simple logistic regression model for the data given in Table 2.2

> library(aod)

> data(orob2)

> attach(orob2)

> m.glm.binomial<-glm(cbind(y,n-y)~seed*root, family=binomial)

yields the following summary
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> summary(m.glm.binomial)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4122 0.1842 -2.238 0.0252 *

seedO75 -0.1459 0.2232 -0.654 0.5132

rootCUCUMBER 0.5401 0.2498 2.162 0.0306 *

seedO75:rootCUCUMBER 0.7781 0.3064 2.539 0.0111 *

Null deviance: 98.719 on 20 degrees of freedom

Residual deviance: 33.278 on 17 degrees of freedom

AIC: 117.87

Now we see that the residual deviance from model m.glm.binomial is quite large (33.23

compared to 17 df), suggesting that other relevant factors are varying over the data. We

now fit the same data with a beta binomial model, assuming that the random effects zi
follow a beta distribution.

2.5.2 Beta Binomial Model

A big advantage of the function betabin from the package aod is that the user can

either fix the parameter φ to a constant or the parameter φ will be estimated from the

sample. Moreover one can also specify the random argument either as a global dispersion

parameter (random=~1) or as a specific dispersion parameter for the levels of a given group

factor (random=~group). Let us consider the following two models:

> m.betabin.1<-betabin(cbind(y,n-y)~seed*root, random=~1)

> m.betabin.seed<-betabin(cbind(y,n-y)~seed*root, random=~seed)

Then m.betabin.1 is a model with a global dispersion parameter and m.betabin.seed

has a specific dispersion parameter for each seed group. The output of m.betabin.1 and

m.betabin.seed is as follows.

> m.betabin.1

Fixed-effect coefficients:

Estimate Std. Error z value Pr(> |z|)

(Intercept) -4.456e-01 2.183e-01 -2.041e+00 4.124e-02

seedO75 -9.612e-02 2.737e-01 -3.512e-01 7.255e-01

rootCUCUMBER 5.235e-01 2.968e-01 1.764e+00 7.780e-02

seedO75:rootCUCUMBER 7.962e-01 3.779e-01 2.107e+00 3.514e-02
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Overdispersion coefficients:

Estimate Std. Error z value Pr(> z)

phi.(Intercept) 1.236e-02 1.131e-02 1.093e+00 1.373e-01

Log-likelihood statistics

Log-lik nbpar df res. Deviance AIC AICc

-5.377e+01 5 16 3.094e+01 1.175e+02 1.215e+02

Two different hypotheses H0 and H1 specify values for φ, namely

H0 : φ = 0

H1 : φ 6= 0.

By accepting H0, a binomial distribution is supported, whereas by rejecting H0 a beta

binomial distribution is supported. A p-value of 0.1373 provides evidence that no global

dispersion parameter is needed.

> m.betabin.seed

Fixed-effect coefficients:

Estimate Std. Error z value Pr(> |z|)

(Intercept) -4.391e-01 2.162e-01 -2.031e+00 4.224e-02

seedO75 -1.025e-01 2.725e-01 -3.763e-01 7.067e-01

rootCUCUMBER 5.255e-01 2.893e-01 1.816e+00 6.930e-02

seedO75:rootCUCUMBER 7.949e-01 3.739e-01 2.126e+00 3.352e-02

Overdispersion coefficients:

Estimate Std. Error z value Pr(> z)

phi.seedO73 9.782e-03 2.221e-02 4.404e-01 3.298e-01

phi.seedO75 1.313e-02 1.334e-02 9.844e-01 1.625e-01

Log-likelihood statistics

Log-lik nbpar df res. Deviance AIC

-5.376e+01 6 15 3.092e+01 1.195e+02

An analysis of variance (ANOVA) yields the following result:

> anova(m.betabin.1,m.betabin.seed)

logL k AIC Res.dev. Res.Df

Deviance Df P(> Chi2)

m.betabin.1 -53.77 5 117.5 30.94 16

m.betabin.seed -53.76 6 119.5 30.92 15 0.01585 1 0.8998
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One important conclusion from the ANOVA table is that there is strong evidence that

there is no need of group specific parameters, as the χ2-test with a p-value of 0.8998 shows.

2.5.3 Deviance

The deviance concerning the function betabin is calculated as

D(y, µ) = −2(log f(y, µ)− log f(y, y)) (2.2)

with f(y, y) being the full or saturated model. The log-likelihood for the saturated model

is taken from a binomial distribution, because the value of f(y, y) under the beta bino-

mial assumption is getting maximal for φ→ 0 and the binomial distribution approximates

the beta binomial distribution arbitrarily well for small φ (φ → 0). Note that the log-

likelihoods in (2.2) comprises the dispersion.

To derive the log-likelihood of the saturated model, we consider

> sum(dbinom(y,n,y/n,log=TRUE))

[1] -38.29813.

To check the log-likelihood of the model under consideration we notice that for a beta

binomial distribution we further need two parameters, a and b, because the probability

function is

P (yi = k) =

(
mi

k

)
B(ai + k,mi + bi − k)

B(ai, bi)
.

m.betabin.1 delivers us an estimate of φi = 1/(ai+bi+1) and µi = ai/(ai+bi). Therefore

ai =
µi − φiµi

φi
= µi

1− φi
φi

bi =
1− φi
φi

− µi − φiµi
φi

=
1− φi
φi

− ai.

For m.betabin.1 we assumed a global dispersion parameter so φi = φ, i = 1, . . . , n. For
calling the function dbetabin from package VGAM, which calculates the value of the pmf
from beta binomial distributed data, we first have to define the vectors mu1 and phi1.
With

> mu1<-fitted(m.betabin.1)

> phi1<-m.betabin.1@random.param
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the function dbetabin gives the value of the pmf:

> sum(dbetabin(y, n, mu1, phi1, log=TRUE))

[1] -53.76678

which is the same as the log-likelihood reported in m.betabin.1. Therefore

D(y, µ) = −2(log f(y, µ)− log f(y, y)) = −2(−53.77 + 38.298) = 30.94.

For deriving the log-likelihood from model m.betabin.seed, we first have to define new

vectors mu2 and phi2. Important to note is that in the data set there are 11 observations

of seed O73 and 10 of seed O75.

> mu2<-fitted(m.betabin.seed)

> phi2<-c(rep(m.betabin.seed@random.param[2],11),

rep(m.betabin.seed2@random.param[1],10))

Those estimates yield to the log-likelihood value in m.betabin.seed:

> sum(dbetabin(y, n, mu2, phi2, log=TRUE))

[1] -53.75885

Therefore, the deviance is calculated as −2(−53.76 + 38.298) = 30.92.

To compare the parameter estimates, Table 2.3 shows the parameter estimates and their

standard errors for the three different models. The parameter estimates under both beta

binomial models are almost the same as in the logistic regression case, but the standard

errors are slightly larger.

Further investigation for this example is given in Crowder (1978).

2.6 The Negative Binomial Distribution

The negative binomial distribution describes the distribution of the number of trials, which

are necessary to determine a given number of successes. It arises from the Poisson(λ)

distribution, where the parameter λ follows a gamma distribution.

Definition 2.3 The gamma function is defined for a > 0 as

Γ(a) =

∫ ∞
0

ta−1e−tdt.

The following lemma shows us how to use the gamma distribution as a conjugate distri-

bution to the Poisson distribution.
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m.glm.binomial m.betabin.1 m.betabin.seed

Intercept −0.4122 (0.1842) −0.4456 (0.2183) −0.4391 (0.2162)

seedO75 −0.1459 (0.2232) −0.0961 (0.2737) −0.1025 (0.2893)

rootCUCUMBER 0.5401 (0.2498) 0.5235 (0.2968) 0.5255 (0.2893)

seedO75:rootCUCUMBER 0.7781 (0.3064) 0.7962 (0.3779) 0.7949 (0.3739)

phi 0.0123 (0.0113)

phi.seedO73 0.0098 (0.0222)

phi.seedO75 0.0131 (0.0133)

res.dev 33.28 30.94 30.92

df 17 16 15

Table 2.3: orob2 data: Parameter estimates and deviances under three different models:

m.glm.binomial, m.betabin.1 and m.betabin.seed.

Lemma 2.2 Let z be gamma distributed with density function

f(z, a, b) =
1

Γ(a)ba
za−1e−z/b, with a, b > 0.

Then

E(z) = ab,

Var(z) = ab2.

In addition let y|z ∼ Poisson(z) with

P (y = k|z = z) =
e−zzk

k!
k = 0, 1, . . . .

Then the marginal pmf of y is the negative binomial pmf, defined by

P (y = k) =
Γ(a+ k)

Γ(a)k!

(
µ

µ+ a

)k (
a

µ+ a

)a
with k = 0, 1, . . . ; a, b > 0,

and

E(y) = ab = µ,

Var(y) = ab+ ab2 = µ+
1

a
µ2 = µ+ φµ2 where φ = 1/a.

Proof:

The marginal pmf of y is given by

P (y = k) =

∫ ∞
0

P (y = k|z = z)P (z = z)dz

=

∫ ∞
0

e−zzk

k!

1

Γ(a)ba
za−1e−z/bdz

=
1

k!Γ(a)ba

∫ ∞
0

za+k−1e−z(1+1/b)dz.
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Substituting w = z(1 + 1/b) = z b+1
b

, therefore dw = dz(1 + 1/b), further yields

P (y = k) =
1

k!Γ(a)ba

∫ ∞
0

(
b

b+ 1
w

)a+k−1
e−w

b

b+ 1
dw

=
1

k!Γ(a)ba

∫ ∞
0

(
b

b+ 1

)a+k
wa+k−1e−wdw

=
1

k!Γ(a)ba
Γ(a+ k)

(
b

b+ 1

)a+k
=

Γ(a+ k)

k!Γ(a)

(
1

b+ 1

)a(
b

b+ 1

)k
.

Reparametrize this by using b = µ/a gives

P (y = k) =
Γ(a+ k)

Γ(a)k!

(
µ

µ+ a

)k (
a

µ+ a

)a
. (2.3)

In the special case when a is an integer, equation (2.3) can be written as

P (y = k) =

(
a+ k − 1

k

)(
µ

µ+ a

)k (
a

a+ µ

)a
.

Mean and variance are:

E(y) = E(E(y|z)) = E(z) = ab = µ

and

Var(y) = E(Var(y|z)) + Var(E(y|z))

= E(z) + Var(z)

= ab+ ab2

= µ+
1

a
µ2

= µ+ φµ2 for φ = 1/a.

�

The following is based on Aitkin, Francis, Hinde, and Darnell (2009).

Suppose we have n groups of counts yi = (yi1, . . . yini), where there might be some kind

of correlation between the yijs in group i, i = 1, . . . , n, j = 1, . . . , ni, and we consider a

log-linear Poisson model for the response
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log µij(zi) = ηij + zi

with zi, i = 1, . . . , n, being a random effect for each group. For this model, the conjugate

distribution of zi is log-gamma. To use a similar approach as in Lemma 2.2 for getting

the marginal pmf, we will use wi = ezi . Thus, the model becomes

log µij(wi) = ηij + logwi (2.4)

with wi having a gamma distribution. We take the gamma distribution in the standard

form, that means that the pdf of wi is of the form

f(wi, ai, 1/ai) =
aaii

Γ(ai)
wai−1i e−wiai with ai > 0.

With this formulation, wi has mean 1 and variance 1/ai. Together with the previous

assumptions it follows that yij|wi ∼ Poisson(µij(wi)), where

µij(wi) = wie
ηij .

The marginal distribution of yij is again the negative binomial with pmf

P (yij = y) =

∫ ∞
0

P (yij = y|wi = w)P (wi = w)

=

∫ ∞
0

aaii
Γ(ai)

e−aiwwai−1
e−we

ηij
(weηij)y

y!
dw

=
aaii e

ηijy

Γ(ai)y!

∫ ∞
0

e−w(e
ηij+ai)wy+ai−1dw

=
aaii e

ηijy

Γ(ai)y!

Γ(y + ai)

(eηij + ai)y+ai

=
Γ(y + ai)

Γ(ai)y!

(
eηij

eηij + ai

)y (
ai

eηij + ai

)ai
.

With

E(yij) = E(E(yij|zi)) = E(µij(wi)) = E(wie
ηij) = eηij E(wi)︸ ︷︷ ︸

=1

= eηij = µij

we get the following negative binomial pmf

P (yij = y|ai = a, µij = µ) =
Γ(y + a)

Γ(a)y!

(
µ

µ+ a

)y (
a

µ+ a

)a
.
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Moreover, the variance is derived by

Var(yij) = E(Var(yij|zi)) + Var(E(yij|zi))
= E(µij(wi)) + Var(µij(wi))

= µij + Var(wie
ηij)

= µij + e2ηij Var(wi)

= µij + µ2
ij

1

ai
= µij + µ2

ijφi with φi = 1/ai. (2.5)

With

pij =
eηij

eηij + ai

a logit model for the probability pij, i = 1, . . . , n; j = 1, . . . , ni, yields

logit pij = log
pij

1− pij
= log

eηij

eηij+ai

1− eηij

eηij+ai

=

= log
eηij(eηij + ai)

ai(eηij + ai)
= ηij − log ai = xTijβ − log ai.

Thus, maximum likelihood estimation for the negative binomial distribution is rather sim-

ple, as for fixed values of a1, . . . , an, the parameter vector β could be estimated directly

from a binomial logit model for pij. In this special case, where the ais are known, the

negative binomial distribution is part of the exponential family (using the standard it-

eratively re-weighted least squares (IRLS) algorithm for generalized linear models). The

correct intercept is achieved by using an offset of − log(ai) in the model. To estimate

ai, i = 1, . . . , n, one can use the Newton-Raphson algorithm for the score equation. For

obtaining the maximum likelihood estimates cycling between the estimation of β and

ai, i = 1, . . . , n, is essential. See also Lawless (1987) and Hinde and Demetrio (1998) for

further details on this estimation technique.

2.7 R-Function for the Negative Binomial Distribu-

tion

In the following section we will discuss two important functions of the statistical pro-

gramm R, which can handle models for negative binomial distributed responses. The first
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one is called glm.nb in the package MASS (see also Venables and Ripley, 2002). The other

one is called negbin, provided by the package aod (see also Lesnoff and Lancelot, 2010).

The explicit call of both functions is described in Appendix A.1.2 and A.3.1.

We will consider a dataset which is also given by Lesnoff and Lancelot (2010). A field

trial in Senegal was conducted to assess the effect of ewes deworming on the mortality of

their offspring. The data consists of the factor group with two levels, CTRL and TREAT,

the numeric vector trisk indicating the exposition time to mortality and the values n

and y, where n indicates the number of animals exposed to mortality and y the number

of deaths. The data is given in Table 2.4

CTRL TREAT

n trisk y n trisk y

1 12 11.534 0 29 30 25.422 5

2 3 2.364 2 30 9 8.515 1

3 4 2.337 2 31 8 7.036 2

4 3 3.000 0 32 10 7.885 2
...

...
...

...
...

...
...

...

28 8 4.381 5 47 2 3.165 0

Table 2.4: dja data: Mortality of Djallonke Lambs in Senegal.

2.7.1 Log-linear Poisson Model

The model we consider here is

log
µ

trisk
= β0 + β1(group=TREAT). (2.6)

At first we will have a look at a log-linear Poisson model without any random effects

> library(aod)

> data(dja)

> attach(dja)

> m.glm.poisson<-glm(y~group+offset(log(trisk)), family=poisson)

which gives the summary

> summary(m.glm.poisson)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
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(Intercept) -0.6975 0.1170 -5.960 2.53e-09 ***

groupTREAT -0.8754 0.1712 -5.112 3.19e-07 ***

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 162.67 on 74 degrees of freedom

Residual deviance: 136.86 on 73 degrees of freedom

AIC: 271.33

with a residual deviance of 136.86 on 73 df, indicating that the assumed variance-model

does not properly fit.

2.7.2 Negative Binomial Model

A log-linear Poisson model does not seem to fit the data adequately. Therefore, we assume

that we have a global overdispersion parameter φ. In the first section we will discuss the

function glm.nb and in the second the function negbin.

Function glm.nb

A negative binomial regression model using glm.nb

> m.nb<-glm.nb(y~group+offset(log(trisk)))

yields the following summary:

> summary(m.nb)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.5976 0.1743 -3.429 0.000605 ***

groupTREAT -0.9782 0.2399 -4.077 4.56e-05 ***

(Dispersion parameter for Negative Binomial(2.6136) family taken to be 1)

Null deviance: 101.649 on 74 degrees of freedom

Residual deviance: 85.268 on 73 degrees of freedom

AIC: 255.08
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Number of Fisher Scoring iterations: 1

Theta: 2.61

Std. Err.: 1.15

2 x log-likelihood: -249.076

Here, the parameter Theta in the summary is the ai from Section 2.6 with ai = a as

the function glm.nb always assumes a global dispersion parameter. To get the dispersion

parameter φ, we have to calculate φ̂ = 1/â = 0.383.

Function negbin

The other function, negbin, produces slightly different estimates.

> m.negbin.1<-negbin(y~group+offset(log(trisk)),~1)

> m.negbin.1

Fixed-effect coefficients:

Estimate Std. Error z value Pr(> |z|)

(Intercept) -5.976e-01 1.796e-01 -3.327e+00 8.788e-04

groupTREAT -9.784e-01 2.439e-01 -4.012e+00 6.022e-05

Overdispersion coefficients:

Estimate Std. Error z value Pr(> z)

phi.(Intercept) 3.825e-01 1.694e-01 2.258e+00 1.196e-02

Log-likelihood statistics

Log-lik nbpar df res. Deviance AIC

-1.245e+02 3 72 1.186e+02 2.551e+02

The estimates for the parameters are the same as in m.nb, but the standard erros slightly

differ. Moreover, there is a big difference between the deviance in m.nb and that in

m.negbin.1. This will be explained in the next section.

2.7.3 Deviance

One may be a bit confused about the different deviances in m.nb and m.negbin.1. The

reason why there is such a big difference is that different implementations make different

choices for the full or saturated model, as the deviance is calculated by

D(y, µ) = −2(log f(y, µ)− log f(y, y))
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with log f(y, y) being the log-likelihood under the saturated model and log f(y, µ) being

the likelihood for the model under consideration.

The function negbin assumes that the maximum value of the saturated model is reached

for a Poisson model. This can be shown easily as for a tending to infinity, i.e.

P (yi = y) =
Γ(y + a)

Γ(a)y!

(
µ

µ+ a

)y (
a

µ+ a

)a
=

Γ(y + a)

Γ(a)y!

(
µ

µ+ a

)y (
1

1 + µ/a

)a
=

Γ(y + a)

Γ(a)(µ+ a)y︸ ︷︷ ︸
a→∞−−−→1

µy

y!

(
1

1 + µ/a

)a
︸ ︷︷ ︸

a→∞−−−→ 1
eµ

.

Therefore,

lim
a→∞

P (yi = y) =
µy

y!
e−µ,

which is the pmf of a Poisson(µ) distribution.

Figure 2.1 shows this characteristic with λ = 4 for the Poisson distribution, and for in-

creasing values of a for the negative binomial distribution.

The deviance of m.negbin.1 can easily be calculated through the log-likelihood for the

model under consideration

> sum(dnbinom(x=y, size=a, mu=fitted(m.negbin.1), log=TRUE))

[1] -124.5383

and the log-likelihood under the saturated model

> sum(dpois(x=y, lambda=y, log=TRUE))

[1] -65.2358,

which results into −2(−124.54 + 65.24) = 118.60 and this is the same as in the summary

of m.negbin.1.

The function glm.nb instead assumes that the maximal likelihood for the saturated model

is reached for the estimated φ. This can be seen in Figure 2.2, where the negative binomial
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Figure 2.1: Convergence of the Negative Binomial pmf for growing a to the Poisson pmf.

Blue: Negative binomial with a = 0.1, green: Negative binomial with a = 1, yellow:

Negative binomial with a = 10, black: Poisson with λ = 4.

log-likelihood function with various values of φ is shown.

Now, the log-likelihood function under the saturated model is calculated as

> sum(dnbinom(x=y, size=size, mu=y, log=TRUE))

[1] -81.90406

therefore the deviance is −2(−124.5383 + 81.904) = 85.268.

Note that for the function dnbinom one has to use for size the parameter a, because the

variance of dnbinom for this implementation is given by µ+µ2/size. (Further information

and the explicit call is described in A.5.2.)

A big advantage of the function negbin over the function glm.nb is that the user can

either fix the parameter φ to a constant or the parameter φ will be estimated from the

sample. Further one can also specify the random argument either to allow only for a global
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Figure 2.2: Log-Likelihood function corresponding to a negative binomial model, evalu-

ated at µ̂, allowing various values of phi.

parameter (random=~1) or for specific parameters for the levels of a given group factor

(random=~group). The function glm.nb always assumes a global dispersions parameter.

In order to decrease the deviance we can try the same model but with group specific dis-

persion parameters φg. So that the variance of the model varies over the different levels

of the group factor. This is supported by the function negbin.

> m.negbin.group<-negbin(y~group+offset(log(trisk)), ~group, dja)

> m.negbin.group

Fixed-effect coefficients:

Estimate Std. Error z value Pr(> |z|)

(Intercept) -5.404e-01 2.297e-01 -2.353e+00 1.862e-02

groupTREAT -1.035e+00 2.616e-01 -3.958e+00 7.547e-05
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Overdispersion coefficients:

Estimate Std. Error z value Pr(> z)

phi.groupCTRL 8.388e-01 4.18e-01 2.007e+00 2.239e-02

phi.groupTREAT 1.232e-07 2.00e-13 0.000e+00 1.000e+00

Log-likelihood statistics

Log-lik nbpar df res. Deviance AIC AICc

-1.212e+02 4 71 1.118e+02 2.503e+02 2.509e+02

The output of m.negbin.group indicates that group specific dispersion parameters are

supported only for group CTRL (p-value of 0.02239), whereas there seems to be no need

for a dispersion parameter for group TREAT (p-value of 1.0).

An ANOVA comparing the model with a global φ to the one with group specific dispersions

yields the following result:

> anova(m.negbin.1, m.negbin.group)

logL k AIC Res.dev. Res.Df Df P(> Chi2)

m.negbin.1 -124.5 3 255.1 118.6 72

m.negbin.group -121.2 4 250.3 111.8 71 1 0.009242

There is a strong evidence for the second model, as the value of the χ2-test statistic in-

dicates. The deviance slightly decreased, but we can’t compare the deviance with the

degrees of freedom because of the choice of the saturated model. Now we recalculate the

deviance and take for the saturated model the negative binomial distribution with the

estimated φ-vector.

First we have to define the φ vector. As there are two different groups CTRL and TREAT

we have two group specific φ’s, where φCTRL belongs to group CTRL and φTREAT to group

TREAT.

> a<-rep(0,75);

> for(i in 1:75)

if( group[i]=="CTRL" )

{a[i]= 1/m.negbin.group@random.param[1]}

> for(i in 1:75)

if(group[i]=="TREAT")

{a[i]=1/m.negbin.group@random.param[2]}

The deviance is then calculated as
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> -2*(sum(dnbinom(x=y, size=a, mu=fitted(m.negbin.group), log=TRUE))-

sum(dnbinom(x=y, size=a, mu=y, log=TRUE)))

[1] 85.45406.

This is not smaller than the deviance of a model with a global dispersion parameter

(dev=85.268). So if we consider this model and calculate the saturated model for the

deviance by the negative binomial distribution with the estimated φ’s, then a global dis-

persion parameter would be supported. Otherwise, for calculating the saturated model

via the Poisson distribution, a group specific overdispersion parameter seems to be more

appropriate.

Maybe the best idea for other models is to decide model-based whether a global dispersion

parameter or a group specific dispersion parameter is more appropriate. If the former in-

vestigation gives rise to a group specific dispersion parameter, the function negbin is the

one which can handle that, otherwise, for a global dispersion parameter, both functions

yield the same parameter estimates.

To sum up, in Table 2.5 we see, that the parameter estimates are slightly affected by the

overdispersion modeling with a smaller slope and a larger intercept. Important to note

is that there is almost no dispersion in the TREAT group and a rather large dispersion in

the CTRL group. Also the standard errors of the coefficients increase, as the variability is

increasing, induced by the overdispersion parameters. In order to correct this, the dataset

would need further investigation. Compared to a log-linear Poisson model without a ran-

dom effect the model with random effects fits the dataset better, but as said before, it

would still need further investigation.

Figure 2.3 shows the difference between the fitted values of m.nb and m.negbin.group ver-

sus trisk. The green points correspond to m.nb and the purple points to m.negbin.group.

As one can see, there is a difference between green and purple points in the upper group,

meaning that the upper points correspond to group CTRL. This also illustrates the nearly

zero dispersion coefficient in group TREAT.

2.8 Extra-Binomial Variation

Logistic models are often used when the response variable is a proportion. Then it can

happen, that even when all available explanatory variables have been used in the predic-

tor, the residual variation is still greater than assumed by a binomial model. Therefore,

we allow somewhat called extra-binomial variation.
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m.glm.poisson m.nb m.negbin.1 m.negbin.group

Intercept −0.6975 (0.1170) −0.5976 (0.1743) −0.5976 (0.1796) −0.5404 (0.2297)

groupTREAT −0.8754 (0.1712) −0.9782 (0.2399) −0.9784 (0.2439) −1.035 (0.2616)

phi 0.3826 0.3825 (0.1694)

phi.groupTREAT 1.2e−07 (2e−13)

phi.groupCTRL 0.8388 (0.418)

res.dev. 136.86 85.26 118.6 111.8

df 73 73 72 71

Table 2.5: dja data: Parameter estimates and deviances under four different models:

m.glm.poisson, m.nb, m.negbin.1, m.negbin.group.
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Figure 2.3: Example dja: Fitted versus trisk with a global (green) dispersion parameter

and with group specific (purple) dispersion parameters.

This section is based on Williams (1982) and Friedl (1991).

To allow for extra-binomial variation we introduce unobserved continuous random vari-
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ables zi, independent distributed on (0, 1) with

E(zi) = πi and Var(zi) = φπi(1− πi).

Furthermore, the conditional pmf of yi, i = 1, . . . , n, given zi is assumed to be binomial,

so

yi|zi ∼ Binomial(mi, zi).

From the proof of Lemma 2.6, the first two moments of the responses are

E(yi) = miπi = µi

Var(yi) = (1 + φ(mi − 1))miπi(1− πi) = ai(φ)V (µi).

In this scenario we cannot use maximum likelihood estimation because the distribution of

yi is not fully specified. The relationship between mean and variance restricts us to the use

of the quasi-likelihood function which is maximized by iterative use of the weighted least

squares equations. The adjusted dependent variables introduced in the IRLS algorithm

from Section 1.3.1 have the form

z = Xβ +D(y − µ) = η +
∂η

∂µ
(y − µ).

In the following we will consider the canonical link g(µ). The canonical link for the

binomial variance is the logit-link

g(µ) = η = log
µ

m− µ
.

From this it follows that

∂µ

∂η
=

exp(η)

(1 + exp(η))2
= V (µ) =

1

g′(µi)
.

Mean and variance of zi are given by

E(zi) = E
(
ηi +

yi − µi
V (µi)

)
= ηi

Var(zi) = E
(

(yi − µi)2

V 2(µi)

)
=

Var(yi)

V 2(µi)

=
ai(φ)V (µi)

V 2(µi)
=

ai(φ)

V (µi)
.
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If we use the matrix W = diag(wi) as in equation (1.6) with

wi =
1

ai(φ)V (µi)(g′(µi))2
=
V (µi)

ai(φ)
,

then the estimate for the parameter vector β becomes

β̂ =
(
XTWX

)−1
XTWz. (2.7)

With η̂ = Xβ̂ it follows from the IRLS algorithm that

η̂ = X
(
XTWX

)−1
XTWz.

Furthermore, we define residuals

z − η̂ =
(
I −X

(
XTWX

)−1
XTW

)
z.

Since E(z) = η = Xβ we have

E(z − η̂) = 0

and because of Var(z) = W−1 we get

Var(z − η̂) = Var
(
(I −X(XTWX)−1XTW )z

)
= Var

(
(X(XTWX)−1XTW − I)z

)
=

(
X(XTWX)−1XTW − I

)
Var(z)

(
WX(XTWX)−1XT − I

)
= X (XTWX)−1XT WW−1︸ ︷︷ ︸

=I

WX︸ ︷︷ ︸
=I

(XTWX)−1XT −W−1W︸ ︷︷ ︸
=I

X(XTWX)−1XT

−X(XTWX)−1XT WW−1︸ ︷︷ ︸
=I

+W−1

= W−1 −X(XTWX)−1XT = W−1 −Hw

with Hw being the weighted hat matrix Hw = (hij) = X(XTWX)−1XT .

The weights wi depend on φ which is usually unknown. If the weights wi are calculated

from an initial estimate of φ, and β is estimated iteratively from (2.7), then Williams

(1982) approximated the goodness of fit statistic

X̂2 =
n∑
i=1

(yi − µ̂i)2

ai(φ)V (µ̂i)
,

through the weighted sum of squares of the residuals, i.e.
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X̂2 ≈ (z − η̂)T W (z − η̂) .

The mean of this approximation is then

E(X̂2) =
n∑
i=1

Var(zi − η̂i)wi =
n∑
i=1

(w−1i − hii)wi

=
n∑
i=1

(1− wihii) =
n∑
i=1

(1− V (µi)hii/ai(φ)).

If we now substitute ai(φ) = 1+φ(mi−1), the resulting general mean of the approximation

is given by

E(X̂2) =
n∑
i=1

1

ai(φ)
(1− V (µi)hii/ai(φ)) (1 + φ(mi − 1)). (2.8)

In case of ai(φ) = 1, i = 1, . . . , n, equation (2.8) gets

E(X̂2) =
n∑
i=1

(1− V (µi)hii) (1 + φ(mi − 1))

=
n∑
i=1

1−
n∑
i=1

V (µi)hii +
n∑
i=1

(1− V (µi)hii)φ(mi − 1)

= n−
n∑
i=1

V (µi)hii + φ
n∑
i=1

(1− V (µi)hii)(mi − 1). (2.9)

Furthermore, for ai(φ) = 1 it follows that WHw = V Hw = WX(XTWX)−1XT =

X(XTX)−1XT = H which is the unweighted hat matrix with trace(H) = p. With

this knowledge, equation (2.9) simplifies to

E(X̂2) = n− p+ φ

n∑
i=1

(mi − 1)(1− V (µi)hii). (2.10)

Furthermore, if all the mi are equal, mi = m, i = 1, . . . , n, equation (2.10) reduces to
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E(X̂2) = n− p+ φ
n∑
i=1

(m− 1)(1− V (µi)hii)

= n− p+ φ

n∑
i=1

(m− 1)− φ
n∑
i=1

(m− 1)(V (µi)hii)

= n− p+ φn(m− 1)− φ(m− 1)p

= (n− p)(1 + φ(m− 1)),

and the heterogeneity factor 1+φ(m−1) is estimated by X̂2/(n−p). Altogether Williams

(1982) derived the following procedure: (“Model II”)

1. Assume φ = 0, then it follows that ai(φ) = 1. From the estimation of the model

logit(µ) = η by maximum likelihood, the estimate β̂ results. Evaluate the X̂2

goodness of statistic.

2. Compare X̂2 with the mean of a χ2
n−p distribution. If X̂2 is unacceptably large

conclude that φ > 0 and calculate the estimate

φ̂ =
X̂2 − (n− p)∑n

i=1(mi − 1)(1− V (µ̂i)hii)
. (2.11)

3. Calculate new iterates ai(φ̂) = 1 + φ̂(mi − 1) and estimate β iteratively using (2.7)

and recalculate X̂2.

4. If X̂2 is close to n− p the estimate φ̂ is satisfactory. If not, re-estimate φ̂ as

φ̂ =
X̂2 −

∑n
i=1

1

ai(φ̂)
(1− V (µ̂i)hii/ai(φ̂))∑n

i=1
1

ai(φ̂)
(1− V (µ̂i)hii/ai(φ̂))(mi − 1)

and return to step 3.

2.9 R-Function for Extra-Binomial Variation

The function considered here fits the generalized linear model II proposed by Williams

(1982) and is called quasibin provided by the package aod. The explicit call is described

in Appendix A.1.3

We will again consider the orob2 dataset given in Table 2.2. Let us have a look at the

following three models.
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> m.glm.binomial<-glm(cbind(y,n-y)~seed*root, family=binomial, data=orob2)

> m.quasibin.0<-quasibin(cbind(y,n-y)~seed*root, data=orob2, phi=0)

> m.quasibin<-quasibin(cbind(y,n-y)~seed*root, data=orob2)

The predictor model we consider here is given by

η = β0 + β1(seed=O75) + β2(root=CUCUMBER) + β3(seed=O75*root=CUCUMBER).

Due to the fact that in the second model the overdispersion parameter is set to zero, the

resulting parameter estimates should have the same values as the parameter estimates in

the logistic model with family=binomial (see Table 2.3). Model m.quasibin results in:

> m.quasibin

Fixed-effect coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4653 0.2439 -1.9081 0.0564

seedO75 -0.0701 0.3115 -0.2250 0.8219

rootCUCUMBER 0.5102 0.3347 1.5244 0.1274

seedO75:rootCUCUMBER 0.8196 0.4352 1.8831 0.0597

Overdispersion parameter:

phi

0.0249

Pearson’s chi-squared goodness-of-fit statistic = 17.0007

The binomial model results into a residual deviance of 33.278 on 17 df and in a Pearson

statistic of 31.651 on 17 df, see Table 2.3, indicating clearly evidence against this binomial

assumption and the supposed variance structure. As a result of Williams procedure, we

get an overdispersion coefficient of 0.0249 and slightly other parameter estimates for the

linear predictor. The Pearson statistic corresponds to its df since in step 4 of the algo-

rithm we check whether X2 = (n− p). Furthermore we get larger standard errors, as the

variability increases.

One disadvantage of the function quasibin is that there is no summary-method available.

Therefore the output of the function quasibin includes all relevant information.

Parameter estimates and residual deviances of this three models are given in Table 2.6.
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m.glm.binomial m.quasibin.0 m.quasibin

Intercept −0.4122 (0.1842) −0.4122 (0.1842) −0.4653 (0.2439)

seedO75 −0.1459 (0.2232) −0.1459 (0.2232) −0.0701 (0.3115)

rootCUCUMBER 0.5401 (0.2498) 0.5401 (0.2498) 0.5102 (0.3347)

seedO75:rootCUCUMBER 0.7781 (0.3064) 0.7781 (0.3064) 0.8196 (0.4352)

phi 0.0249

res.dev. 33.278

Pearson X2 31.651 31.651 17.0007

df 17 17 17

Table 2.6: orob2 data: parameter estimates and deviances for the models

m.glm.binomial, m.quasibin.0 and m.quasibin.

2.10 Extra-Poisson Variation

Count data yi, i = 1, . . . , n, are often fit by a log-linear model as described in Section

1.2.2. Then it can happen that the data exhibits greater variability than is assumed

by the implicit mean-variance relationship. To overcome this we allow somewhat called

extra-Poisson variation (compare with Breslow, 1984).

We now assume that there exist unobserved random variables λi with

E(λi) = µi and Var(λi) = φµ2
i . (2.12)

Furthermore, we assume that the conditional pmf of yi given λi is a Poisson pmf, i.e.

yi|λi ∼ Poisson(λi).

It follows that

E(yi) = E (E(yi|λi)) = E(λi) = µi

and

Var(yi) = E(E(yi|λi)) + Var(E(yi|λi)) = µi + φµ2
i = µi(1 + φµi).

For fitting this model, Breslow (1984) suggested, to set the chi-square criterion equal to

its degrees of freedom, i.e.

n∑
i=1

(yi − µ̂i)2

V̂ar(yi)
=

n∑
i=1

(yi − µ̂i)2

µ̂i(1 + φ̂µ̂i)

!
= n− p
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or

φ̂ =
1

n− p

n∑
i=1

(yi − µ̂i)2

µ̂i(µ̂i + 1/φ̂)
. (2.13)

This and setting weights wi = (1 + φµ̂i)
−1 leads to the so called Procedure II:

The initial fit is made with weights wi = 1.

1. Fit the Poisson model as described in Section 1.3.1. If the deviance is close to

its degrees of freedom stop and conclude that the residual variation is adequately

explained, otherwise go to step 2.

2. Solve equation (2.14) iteratively for φ

φ = (n− p)−1
n∑
i=1

(yi − µ̂i)2

µ̂i(µ̂i + 1/φ
) (2.14)

3. Define new weights wi = (1 + φµ̂i)
−1 and return to step 1.

If the model with weights wi = 1 does not fit adequately, an initial estimate of φ is

φ(0) =

∑n
i=1(yi − µ̂i)2/µ̂i − (n− p)∑n

i=1 µ̂i(1− µ̂ihii)
, (2.15)

where the matrix of iterated weights Ŵ has diagonal elements µ̂i and the hii are the

diagonal elements of HW = X(XT ŴX)XT . Equation (2.15) is derived by considering

the associated least squares problem.

2.11 R-Function for Extra-Poisson Variation

In this section we will consider one function in R which fits models based on Procedure II

in Breslow (1984). The function is called quasipois provided by the package aod. The

explicit call is described in Appendix A.1.4

Table (2.7) shows the number of revertant colonies of salmonella observed on each of three

replicate plates tested at each of six dose levels of quinoline. This data is also given in

the package aod. We consider a log-linear model with

log(µ) = β0 + β1(dose) + β2 log(dose+ 10).

As in the previous section, we will have a look at the following three models.
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Dose of quinoline (µg per plate)

0 10 33 100 333 1000

15 16 16 27 33 20

21 18 26 41 38 27

29 21 33 60 41 42

Table 2.7: Numbers of revertant colonies of salmonella.

> library(aod)

> data(salmonella)

> attach(salmonella)

> m.glm.salm<-glm(y~dose+log(dose+10),family=poisson)

> m.quasipois.0<-quasipois(y~dose+log(dose+10), phi=0)

> m.quasipois<-quasipois(y~dose+log(dose+10))

A summary of m.glm.salm, a log-linear Poisson model, yields

> summary(m.glm.salm)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.1727730 0.2184269 9.947 < 2e-16 ***

dose -0.0010130 0.0002452 -4.131 3.61e-05 ***

log(dose + 10) 0.3198250 0.0570014 5.611 2.01e-08 ***

Null deviance: 78.358 on 17 degrees of freedom

Residual deviance: 43.716 on 15 degrees of freedom

AIC: 142.25

with a residual deviance of 43.72 on 15 df, which indicates that there might be overdis-

persion in the data. Therefore, fitting the data with quasipois yields to:

> m.quasipois

Fixed-effect coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.2031 0.3636 6.0591 < 1e-4

dose -0.0010 0.0004 -2.2284 0.0259

log(dose + 10) 0.3110 0.0991 3.1394 0.0017

Overdispersion parameter:

phi

0.0718



2.12. CONCLUSION 55

Pearson’s chi-squared goodness-of-fit statistic = 15.0004

m.glm.salm m.quasipois.0 m.quasipois

Intercept 2.173 (0.2184) 2.173 (0.2184) 2.203 (0.3636)

dose −0.001 (0.0002) −0.001 (0.0002) −0.001 (0.0004)

log(dose+10) 0.320 (0.0570) 0.320 (0.0570) 0.311 (0.0991)

phi 0.0718

res.dev. 43.716

Pearson X2 46.27 46.27 15.004

df 15 15 14

Table 2.8: Salmonella data: parameter estimates and deviances for m.glm.salm,

m.quasibin.0 and m.quasibin.

Like before, the parameter estimates in Table (2.8) for the Poisson model and the param-

eter estimates for the quasipois model when φ is fixed to 0 are exactly the same. Using

a likelihood approach results in a residual deviance of 43.716 on 15 degrees of freedom,

which could mean that the data exhibit greater variability than is assumed by the mean-

variance relationship. So there is strong evidence for the model Breslow (1984) described.

Fitting the data with this model results in a overdispersion coefficient of 0.0718, almost

the same parameter estimates, but slightly larger standard errors.

2.12 Conclusion

In this chapter we considered models for negative binomial and beta binomial distributed

data. Furthermore, we discussed how to handle extra-Poisson variation and extra-binomial

variation. For each of the topics discussed appropriate R functions exist, which are in-

troduced in two different R packages, MASS and aod. All of them deliver results of the

parameter estimates similar to the parameter estimates of the log-linear Poisson model

or the logistic binomial model, but induced by allowing larger variability, the standard

errors are also larger.

All of the functions seem to work properly, moreover the documentation of the package

aod is explained in full detail.
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Chapter 3

Random Effect Models

In the previous chapter we discussed one approach for obtaining the marginal pmf or pdf

f(y, θ). There we assumed that the density function of an observation (y, z) is f(y, z, θ)

with θ being the vector of all unknown parameters. Therefore, to obtain f(y, θ) we solved

the integral

l(y, θ) = log f(y, θ) = log

∫
f(y, z, θ)dz = log

∫
f(y|z, θ)f(z, θ)dz. (3.1)

This could be easily calculated when assuming a conjugate distribution for the distri-

bution of f(z, θ). In this chapter another approach to solve this integral is discussed.

Section 3.1 briefly introduces the EM-algorithm and Section 3.2 deals with two kinds of

overdispersion models, namely the non-parametric maximum likelihood estimation and

the normal random effect models. Section 3.3 is dedicated to the investigation of variance

component models and Section 3.4 to random coefficient models. In addition, in every

section some R-functions are considered to discuss the explained theory in practice.

3.1 EM-Algorithm

This section is based on Dempster, Laird, and Rubin (1977) and Lee et al. (2006). Since

the following algorithm consists of two steps, namely the expectation step and the maxi-

mization step, the algorithm is called EM-algorithm.

The conditional density of z given y is denoted by

f(z|y, θ) =
f(y, z, θ)

f(y, θ)
.

With this, the marginal log-likelihood function (3.1) can be written as

57
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l(y, θ) = log f(y, θ) = log f(y, z, θ)− log f(z|y, θ)

or

log f(y, z, θ) = log f(z|y, θ) + l(y, θ). (3.2)

If we consider l(y, θ) then we notice that its conditional expectation given the observation

y is again l(y, θ), since

E (l(y, θ)|y, θ0) =

∫
l(y, θ)f(z|y, θ0)dz = l(y, θ)

∫
f(z|y, θ0)dz︸ ︷︷ ︸

1

= l(y, θ).

Meaning that optimizing E (l(y, θ)|y, θ0) leads to the same result as optimizing l(y, θ).

Therefore, the following equation holds,

E (log f(y, z, θ)|y, θ0) = E (log f(z|y, θ)|y, θ0) + E (l(y, θ)|y, θ0)∫
log f(y, z, θ)f(z|y, θ0)dz =

∫
log f(z, θ)f(z|y, θ0)dz + l(y, θ)

Q(θ|θ0) = H(θ|θ0) + l(y, θ).

To determine the maximum likelihood estimate θ̂ we have to maximize the marginal log-

likelihood function l(y, θ) in θ. This can be alternatively achieved by maximizing Q(θ|θ0)
in θ and θ0:

Suppose that θ′, maximizes the function Q(θ|θ0) for a given value θ0. Therefore, the

difference between the Q-functions is

Q(θ′|θ0)−Q(θ0|θ0) ≥ 0, (3.3)

and the resulting difference of the marginal log-likelihood functions is

l(θ′|y)− l(θ0|y) = Q(θ′|θ0)−Q(θ0|θ0)− (H(θ′|θ0)−H(θ0|θ0)) .

Lemma 3.1 For any pair (θ, θ0) the inequality

H(θ|θ0) ≤ H(θ0|θ0) (3.4)

holds, with equality if and only if f(z|y, θ) = f(z|y, θ0) almost everywhere.
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Proof:

Equation (3.4) is a consequence of Jensen’s inequality E(g(x)) ≤ g(E(x)) for concave

functions g(x) like the logarithm.

H(θ|θ0)−H(θ0|θ0) =

∫
log f(z|y, θ)f(z|y, θ0)dz −

∫
log f(z|y, θ0)f(z|y, θ0)dz

=

∫
log

f(z|y, θ)
f(z|y, θ0)

f(z|y, θ0)dz

= E
(

log
f(z|y, θ)
f(z|y, θ0)

∣∣∣∣ y, θ0)
≤ logE

(
f(z|y, θ)
f(z|y, θ0)

∣∣∣∣ y, θ0)
= log

∫
f(z|y, θ)
f(z|y, θ0)

f(z|y, θ0)dz

= log

∫
f(z|y, θ)dz︸ ︷︷ ︸

=1

= 0.

�

Thus, with (3.3) and (3.4) it is clear that maximizing Q(θ|θ0) results in an increase of

l(y, θ), therefore

l(θ′|y)− l(θ0|y) ≥ 0.

As mentioned above, the EM-algorithm contains two important steps. The first is the

expectation step where the conditional mean Q(θ|θ0) for a given value θ0 is calculated.

The second step is called maximization step where Q(θ|θ0) is maximized in θ. By denoting

θ′ as the maximizer, an E-step is performed with θ0 = θ′. These two steps are repeated

until convergence occurs.

The EM-algorithm is known to have a slow (linear) convergence rate, but is remarkable

because of its simplicity and the generality of the associated theory. Instead of maximizing

the integral (3.1), one has to consider

Q(θ|θ0) =
n∑
i=1

∫
log f(yi, zi, θ)f(zi|yi, θ0)dzi,

which can be written with the conditional density of z given y denoted by
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f(z|y, θ) =
f(y|z, θ)f(z, θ)

f(y, θ)
,

as

Q(θ|θ0) =
n∑
i=1

∫
log f(yi, zi, θ)

f(yi|zi, θ0)
f(yi, θ0)

f(zi, θ0)dzi

=
n∑
i=1

1

f(yi, θ0)

∫
log f(yi, zi, θ)f(yi|zi, θ0)f(zi, θ0)dzi. (3.5)

Unfortunately it is still often hard to evaluate this integral and further f(yi, θ0) explicitly.

An approach to avoid this difficulty is numerical integration, therefore two methods of

numerical integration are described in the Sections 3.2.1 and 3.2.2. The first method uses

the Gauss-Hermite quadrature, the second estimates the integral via a non-parametric

approach. However, this can become computationally heavy as the dimensionality of the

integral increases. For such cases, we can approximate the marginal likelihood function

by the Laplace approximation, compare to Lee et al. (2006),

∫
Rd
f(y|z, θ)f(z, θ)dz = f(z, θ)f(y|z, θ)

(
2π

n

)d/2
|D|−1/2{1 +O(n−1)}

∣∣∣∣∣
z=z∗

(3.6)

where D = ∂2 log f(y|z, θ)/∂z2 and z∗ solves ∂ log f(y|z, θ)/∂z = 0 for fixed θ and d

denotes the dimensionality of the random effect.

3.2 Overdispersion Models

Sometimes one or more important explanatory variables are missing, therefore adding

random variables into the linear predictor is a good way of expressing this problem. Fur-

thermore, if the specified variance structure does not represent the data appropriately,

this could be an indication for using random intercept models. Refer to this as overdis-

persed data.

Without any loss of generality we can write the linear predictor as in equation (2.1) as

ηi = g(µi) = xTi β + σzi,

with (β, σ) being the unknown parameter vector. Two common methods are described

in the next two sections. The first method assumes that z follows a standard normal

distribution, z ∼ N(0, 1), and the second estimates f(z) by the non-parametric maximum

likelihood estimate f̂(z).
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3.2.1 Normal Random Effect Models

Hinde (1982) introduced fitting compound Poisson models, where z is assumed to be nor-

mally distributed. This approach can be extended to fit models with another distribution

than Poisson, see e.g. Friedl (1998). By assuming a normal distribution for z, the model

is given by

yi|zi ∼ F (µi)

F ∈ Exponential family(µi)

zi ∼ N(0, 1)

with the linear predictor

ηi = g(µi) = xTi β + σzi, zi
iid∼ N(0, 1).

Thus, we write φ(zi), the standard normal density, for f(zi, θ0). However, since zi were

not observed, the maximum likelihood estimates can be determined by the EM-algorithm.

The Q(θ|θ0) function is then given by

Q(θ|θ0) =
n∑
i=1

1

f(yi, θ0)

∫
log f(yi, zi, θ)f(yi|zi, θ0)φ(zi)dzi. (3.7)

In the following we consider an approach to approximate this integral numerically. For

this purpose we define in the next subsection the Gaussian quadrature, which evaluates

the continuous integral as the discrete sum of a finite number of terms.

K-point Gauss-Hermite Quadrature

Consider an integral of the form ∫
f(u)e−u

2

du,

then the K-point Gaussian Hermite quadrature approximates this integral as a discrete

sum of a finite number of terms∫
f(u)e−u

2

dz ≈
K∑
k=1

wkf(uk) (3.8)

with masses

wk =
2K−1K!

√
π

K2[HK−1(uk)]2

and mass points uk, k = 1, . . . , K. The mass points uk are the zeros of the Kth order

Hermite polynomial HK(u). The approximation is exact if f(u) is a polynomial of order

2K − 1.



62 CHAPTER 3. RANDOM EFFECT MODELS

Definition 3.1 (Hermite polynomials) The standardized Hermite polynomials are de-

fined by

HK(u) = (−1)Keu
2 ∂K

∂uK
e−u

2

with HK(u) satisfies the differential equation

y′′ − 2uy′ + 2Ky = 0.

Remark 3.1 The first 7 Hermite polynomials are

H0(u) = 1

H1(u) = x

H2(u) = x2 − 1

H3(u) = x3 − 3x

H4(u) = x4 − 6x2 + 3

H5(u) = x5 − 10x3 + 15x

H6(u) = x6 − 15x4 + 45x2 − 15.

If the integral is of the form∫
f(u)φ(u)du =

∫
f(u)

1√
2π
e−u

2/2du,

a linear transformation of u will be used to convert the function φ(u) into e−u
2
. By

transforming z = u/
√

2, therefore u =
√

2z and du =
√

2dz the above integral can be

approximated by ∫
1√
π
f(
√

2z)e−z
2

dx ≈
K∑
k=1

πkf(zk) (3.9)

where zk =
√

2uk are the transformed mass points and πk = wk/
√
π the transformed

masses.

Using Gaussian quadrature and writing f(z, θ0) = φ(z) in equation (3.7), f(y, θ0) can be

approximated by

f(y, θ0) =

∫
f(y|z, θ0)φ(z)dz ≈

K∑
k=1

f(y|zk, θ0)πk, (3.10)

where zk are the transformed mass points and πk the associated masses, as in (3.9). Using

Gaussian quadrature, the other integral in (3.7) can be approximated by
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∫
log f(y, z, θ)f(y|z, θ0)φ(z)dz ≈

K∑
k=1

log f(y, zk, θ)f(y|zk, θ0)πk. (3.11)

With (3.10) and (3.11) we derive the following approximation for Q(θ|θ0):

Q(θ|θ0) ≈
n∑
i=1

∑K
k=1 log f(yi, zk, θ)f(yi|zk, θ0)πk∑K

j=1 f(yi|zj, θ0)πj

=
n∑
i=1

K∑
k=1

wik log f(yi, zk, θ) (3.12)

with weights

wik =
πkf(yi|zk, θ0)∑K
j=1 f(yi|zj, θ0)πj

. (3.13)

Since the weights wik are evaluated at θ = θ0, they are fixed terms for the subsequent

maximization.

By writing

f(y, z, θ) = f(y|z, θ)φ(z)

it follows that

log f(y, z, θ) = log f(y|z, θ) + log φ(z)

and approximation (3.12) gets

Q(θ|θ0) ≈
n∑
i=1

K∑
k=1

wik(log f(yi|zk, θ) + log πk). (3.14)

The M-step of the EM-algorithm consists of setting the partial derivatives of Q(θ|θ0) equal

to zero and solving the resulting equations. Furthermore, maximizing (3.14) is equivalent

to a weighted maximum likelihood estimation with weights given in (3.13). This is the

same as fitting a regression model with nK observations with an y-variable given as

y = (y1, . . . , yn, y1, . . . , yn, . . . , y1, . . . , yn)︸ ︷︷ ︸
K copies

and K copies of the explanatory variables. The resulting linear predictor can be written

as
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ηik = xTi β + σzk,

with known quadrature points and unknown parameters β and σ. Therefore, for every

iteration of the EM-algorithm a weighted maximum likelihood estimation of a generalized

linear model has to be computed.

Table 3.1 shows the resulting structure of the data set, see also Friedl (1998).

y w β1 . . . βp σz

y1 w11 x11 . . . x1p z1
...

...
...

...
...

yn wn1 xn1 . . . xnp z1

y1 w12 x11 . . . x1p z2
...

...
...

...
...

yn wn2 xn1 . . . xnp z2
...

...
...

...
...

y1 w1K x11 . . . x1p zK
...

...
...

...
...

yn wnK xn1 . . . xnp zK

Table 3.1: Structure of a model with normally distributed random intercept

3.2.2 NPML Estimation

If no assumption can be made for the distribution of z, Aitkin (1994) or Aitkin (1996) pro-

posed to use a non-parametric maximum likelihood approach. Thus, the linear predictor

can be written as

ηi = xTi β + zi, zi
iid∼ F (z) (3.15)

with F (z) being any unknown distribution function with zero mean, which has to be

estimated. An analogous approach, as in the Gaussian quadrature before, results in the

same approximation as (3.14):

Q(θ|θ0) ≈
n∑
i=1

K∑
k=1

wik(log f(yi|zk, θ) + log πk)

with weights
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wik =
πkf(yi|zk, θ0)∑K
j=1 f(yi|zj, θ0)πj

,

where zk and πk are now unknown. Therefore, the following estimates for πks are used:

With the condition
∑K

k= πk = 1 and a Lagrange multiplier it follows that

∂

∂πk

(
Q(θ|θ0)− λ

(
K∑
k=1

πk − 1

))
=

1

πk

n∑
i=1

wik − λ.

Setting this equation equal to zero yields to

πk =
n∑
i=1

wik
λ

and summation over all k gives

1 =
K∑
k=1

πk =
n∑
i=1

K∑
k=1

wik
λ

=
n

λ
.

Therefore λ = n and we get the estimation for πk,

π̂k =
1

n

n∑
i=1

ŵik.

Moreover, the linear predictor can be written as

ηik = xTi β + zk,

with unknown mass points zk which have to be estimated. With the help of a k-level

factor, we write the linear predictor as

ηik = xTi β + z1 · 0 + · · ·+ zk−1 · 0 + zk · 1 + zk+1 · 0 + · · ·+ zK · 0,

where the new data set has nK observations. Further, it is important to note that in the

NPML case, no difference between the intercept and z1 can be made, if and only if the

explanatory variable x contains an intercept. Table 3.2 shows the enlarged data set with

nK responses.

Therefore, at each iteration of the M-step a weighted maximum likelihood estimation of

a GLM hast to be calculated and in the E-step the weights wik have to be updated.
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y w β1 . . . βp z1 z2 . . . zK
y1 w11 x11 . . . x1p 1 0 . . . 0
...

...
...

...
...

...
...

yn wn1 xn1 . . . xnp 1 0
... 0

y1 w12 x11 . . . x1p 0 1 . . . 0
...

...
...

...
...

...
...

yn wn2 xn1 . . . xnp 0 1 . . . 0
...

...
...

...
...

...
...

y1 w1K x11 . . . x1p 0 0
... 1

...
...

...
...

...
...

...

yn wnK xn1 . . . xnp 0 0
... 1

Table 3.2: Response structure of a NPML model.

In the NPML approach the unknown distribution of the random effects is approximated

by a discrete mixture, yielding estimated mass points ẑ1, . . . , ẑK and estimated masses

π̂1, . . . , π̂K . Thus, a NPML estimate for the distribution of the random effects is derived

through the K pairs

f̂(z) = {(ẑ1, π̂1) , . . . , (ẑK , π̂K)} ,

if convergence occur.

3.2.3 R-Function for the Quadrature Points

The package npmlreg provides a function gqz which calculates the Gaussian quadrature

points for the normal distribution, by using abscissas and weights for Hermite integration,

compare to zk and πk in (3.9). For illustration purposes, the location of the mass points

and their corresponding weights for K = 2, 3, 4, 5, 6 are shown in Table 3.3.

> library(npmlreg)

> gqz(3)

location weight

1 1.732051e+00 0.1666667

2 1.256074e-15 0.6666667

3 -1.732051e+00 0.1666667

The package glmmML provides another function called ghq for calculating mass points and

their weights, which are slightly different to those used in the package npmlreg. The

reason for that is, that ghq displays the values of uk and wk, compare to (3.8). By
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mass points masses

k = 2 1 0.5

−1 0.5

k = 3 1.732051e+ 00 0.1666667

1.256074e− 15 0.6666667

−1.732051e+ 00 0.1666667

k = 4 2.3344142 0.04587585

0.7419638 0.45412415

−0.7419638 0.45412415

−2.3344142 0.04587585

k = 5 2.856970e+ 00 0.01125741

1.355626e+ 00 0.22207592

1.256074e− 15 0.53333333

−1.355626e+ 00 0.22207592

−2.856970e+ 00 0.01125741

k = 6 3.3242574 0.002555784

1.8891759 0.088615746

0.6167066 0.408828470

−0.6167066 0.408828470

−1.8891759 0.088615746

−3.3242574 0.002555784

Table 3.3: Location of mass points and their corresponding masses calculated by gqz.

transforming the values as in (3.9) one gets the resulting values of gqz. The usage of the

function ghq is explained in A.5.2. Table 3.4 shows the location of the mass points and

the corresponding masses for K = 2, 3, 4, 5, 6.

> library(glmmML)

> ghq(3,FALSE)

$weights

[1] 0.295409 1.181636 0.295409

$zeros

[1] 1.224745 0.000000 -1.224745

3.2.4 R-Functions for Normal Random Effect Models

Some functions in different packages support the fitting of overdispersed models by max-

imum likelihood and numerical integration via Gaussian quadrature. The functions con-

sidered here are glmmML provided by the package glmmML proposed by Broström (2009)
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mass points masses

k = 2 0.707106 0.886227

−0.7071068 0.886227

k = 3 1.224745 0.295409

0.000000 1.181636

−1.224745 0.295409

k = 4 1.6506801 0.08131284

0.5246476 0.80491409

−0.5246476 0.80491409

−1.6506801 0.08131284

k = 5 2.0201829 0.01995324

0.9585725 0.39361932

0.0000000 0.94530872

−0.9585725 0.39361932

−2.0201829 0.01995324

k = 6 2.3506050 0.00453001

1.3358491 0.15706732

0.4360774 0.72462960

−0.4360774 0.72462960

−1.3358491 0.15706732

−2.3506050 0.00453001

Table 3.4: Location of mass points and their corresponding masses calculated by ghq

and alldist provided by the package npmlreg proposed by Einbeck, Darnell, and Hinde

(2009).

Example

In the following we will fit the dja data, given in Table 2.4, by the two R-functions men-

tioned above. The dja data contains 75 observations with a factor group of two levels,

CTRL and TREAT, the numeric vector trisk indicating the exposition time to mortality

and the values n and y, where n indicates the number of animals exposed to mortality

and y the number of deaths.

As described in Section 2.7.1, an appropriate model has the mean number of deaths

divided by trisk modeled by the grouping factor. Moreover, the number of deaths can

be assumed to follow a Poisson distribution. Using the log-link results in

η = log
µ

trisk
= β0 + β1(group=TREAT).
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In Section 2.7.1 we fitted a log-linear Poisson model, given by

> library(aod)

> data(dja)

> attach(dja)

> summary(glm(y~group+offset(log(trisk)), family=poisson))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6975 0.1170 -5.960 2.53e-09 ***

groupTREAT -0.8754 0.1712 -5.112 3.19e-07 ***

Null deviance: 162.67 on 74 degrees of freedom

Residual deviance: 136.86 on 73 degrees of freedom

AIC: 271.33

which clearly indicates overdispersion, as the deviance of the fitted model (136.86) is

very large compared to its df (73). The most plausible explanation is that there are some

unobserved variables varying over the data. In the following sections we consider therefore

functions which include a random effect into the linear predictor, to model the unobserved

variables.

Function alldist

Hinde and Demetrio (1998) proposed to model the unexplained variation with random

effects zi for every response yi, that are assumed to be independent normally distributed,

i.e.

yi|zi
ind∼ Poisson(µi)

z
iid∼ N(0, 1),

and

ηi = log
µi

triski
= β0 + β1(groupi) + σzi.

Since we assumed that the zi are independent standard normally distributed, a large value

of K results into a good approximation of the standard normal pdf. Calling the function

alldist for the dja data with a starting number of thirty quadrature points yields

> library(npmlreg)

> m.alldist.gq<-alldist(y~group, family=poisson(link=log),data=dja,
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offset=log(trisk), random=~1, k=30, random.distribution="gq")

> summary(m.alldist.gq)

Coefficients:

Estimate Std. Error t value

(Intercept) -0.8077248 0.1266790 -6.376154

groupTREAT -0.9136324 0.1714024 -5.330335

z 0.5957891 0.0867942 6.864389

Random effect distribution - standard deviation: 0.5957891

-2 log L: 250.2 Convergence at iteration 7

with a smaller intercept and a smaller slope coefficient than under the log-linear Poisson

model. The standard deviation parameter for the random effect is estimared by 0.596.

Furthermore, Figure 3.1 shows the convergence of the EM- algorithm.

In order to compare the deviance of the random effect model to the log-linear Poisson

model we consider the following call

> m.aldist.gq$deviance

[1] 119.7591

which is derived by

D(y, µ) = −2 (log f(y, µ)− log f(y, y)) .

The full or saturated model is calculated by the Poisson pmf at µ = y, i.e.

log f(y, y) = −y + y log y − log y!

as

> sum(dpois(x=y, lambda=y, log=TRUE))

[1] -65.2358

To derive the value of log f(y, µ) we have to calculate

n∑
i=1

(
log

(
K∑
k=1

f(yi|zk)πk

))
.

With

yi|zk
ind∼ Poisson(µik)



3.2. OVERDISPERSION MODELS 71

0 1 2 3 4 5 6 7

25
0

25
5

26
0

26
5

EM iterations

−
2l

og
L

Figure 3.1: dja data: Convergence of the EM-algorithm for K=30.

it follows that

f(yi|zk) =
e−µikµyiik
yi!

,

where

µik = exp (β0 + β1 log(groupi) + log(triski) + σzk) .

Evaluating log f(y, µ) in R gives:

> intercept<-coefficients(m.alldist.gq)[1]

> beta1<-coefficients(m.alldist.gq)[2]

> sigma<-coefficients(m.alldist.gq)[3]

> group.1.0<-rep(0,75);

> for(i in 1:75)
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if(group[i]=="TREAT"){group.1.0[i]<-1}

> mu<-matrix(ncol=16, nrow=75)

> for(j in 1:16)

{

mu[,j]<-exp(beta1*group.1.0+intercept+sigma*gqz(30)[j,1]+log(trisk))

}

> f_y_mu<-0

> for(j in 1:16)

{

f_y_mu<-exp(-mu[,j])*mu[,j]^y*gqz(30)[j,2]/factorial(y)+f_y_mu

}

and yields the following result

> sum(log(f_y_mu))

[1] -125.1155

and therefore the deviance is −2 · (−125.12 + 65.24) = 119.76, which is the same as in

the deviance of m.alldist.gq on page 71. Important to note is that several mass points

with masses less than 0.000001 will be omitted. For this reason, we only have 16 “real”

mass points with noticeable masses. Table 3.5 shows the parameter estimates for various

values of K.

K intercept group sigma dev.

1 −0.6974 −0.8754 − 136.85

30 −0.8077 −0.9136 0.5958 119.76

40 −0.8076 −0.9138 0.5960 119.76

50 −0.8076 −0.9138 0.5960 119.76

70 −0.8076 −0.9138 0.5960 119.76

Table 3.5: Parameter estimates and deviances calculated by alldist for the dja data

with increasing values of K.

The normal mass points model shows reasonable stability in the parameter estimates. In

the following we will fit the same data with another function than alldist.

Function glmmML

Another function for random effect models is the function glmmML, see also Broström

(2003). In fact, glmmMl is designed to model grouped data with a random effect for every

group, but by assuming n (the number of observations) groups, this function can also be
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used to model overdispersed data. If the number of quadrature points is set to 1, Laplace

approximation, as in approximation (3.11) is used. We consider the same model as for

the function alldist,

η = log
µ

trisk
= β0 + β1(group=TREAT) + σz.

For the call of glmmML one needs to define a certain cluster, indicating which of the

responses are correlated. By defining a cluster id with n different groups for n responses,

we get

> id<-factor(1:75)

> m.glmmML.gq<-glmmML(y~group+offset(log(trisk)), family=poisson,

cluster=id, method="ghq", n.points=30)

> summary(m.glmmML.gq)

coef se(coef) z Pr(>|z|)

(Intercept) -0.8076 0.1847 -4.372 1.23e-05

groupTREAT -0.9151 0.2441 -3.749 1.78e-04

Scale parameter in mixing distribution: 0.5994 gaussian

Std. Error: 0.1446

Residual deviance: 119.8 on 72 degrees of freedom AIC: 125.8

with thirty quadrature points. To compare this with alldist, Table 3.6 shows parameter

estimates and deviances for increasing K.

K intercept group sigma dev.

1 −0.8118 −0.9153 0.6094 119.26

30 −0.8076 −0.9151 0.5994 119.76

40 −0.8076 −0.9151 0.5994 119.76

50 −0.8077 −0.9150 0.5994 119.76

70 −0.8076 −0.9151 0.5994 119.76

Table 3.6: Parameter estimates and deviances calculated by glmmML for the dja data with

increasing values of K.

Compared to Table 3.5, Table 3.6 gives nearly the same estimates with an equal intercept

and a little smaller slope and a larger sigma estimate. This can be due to different imple-

mentations and therefore different stopping criteria of the EM-algorithm. Moreover, the

Laplace approximation results into quite the same estimates as the Gauss-Hermite quadra-

ture. Further, the function glmmML stabilizes for more than 5 quadrature points whereas
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the function alldist stabilizes for more than 30 quadrature points. This indicates that

glmmML might use an adaptive Gauss-Hermite quadrature technique. In contrast to the

Gauss-Hermite quadrature, where the transformed mass points are symmetrical around

the mean of the weight function, the adaptive Gauss-Hermite quadrature approximates

the integrand by the normal density centered at the mode of the integrand. Here this

weight function is the Gaussian pdf with mean 0 and variance 1. An adaptive Gauss-

Hermite quadrature method often decreases the number of required quadrature points,

especially for functions with maxima far from zero.

3.2.5 R-Function for NPML Estimation

The function alldist can also be used to model overdispersed data with a NPML ap-

proach, see also Einbeck and Hinde (2009).

Function alldist

In the following we will again fit the dja data, given in Table 2.4. The call of the function

alldist differs only with respect to the choice of the random.distribution. Now this

has to be set to np.

> summary(m.alldist.np<-alldist(y~group, family=poisson(link=log),data=dja,

offset=log(trisk), random=~1, k=3, random.distribution="np"))

Coefficients:

Estimate Std. Error t value

groupTREAT -1.1539315 0.1740137 -6.6312692

MASS1 -2.4341566 0.3925273 -6.2012411

MASS2 -0.3840778 0.1365674 -2.8123688

MASS3 0.1780657 0.1813111 0.9821004

Mixture proportions:

MASS1 MASS2 MASS3

0.2237459 0.6539367 0.1223174

Random effect distribution - standard deviation: 0.909377

-2 log L: 244.1 Convergence at iteration 15

The deviance of m.alldist.np is

> deviance(m.alldist.np)

[1] 113.649

This value is derived through
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> beta1<-coefficients(m.alldist.np)[1]

> z1<-coefficients(m.alldist.np)[2]

> z2<-coefficients(m.alldist.np)[3]

> z3<-coefficients(m.alldist.np)[4]

> mu1<-exp(beta1*group.1.0+z1+log(trisk))

> mu2<-exp(beta1*group.1.0+z2+log(trisk))

> mu3<-exp(beta1*group.1.0+z3+log(trisk))

> sum(log(exp(-mu1)*mu1^y*m.dja.alldist.np$masses[1]/factorial(y)

+ +exp(-mu2)*mu2^y*m.dja.alldist.np$masses[2]/factorial(y)

+ exp(-mu3)*mu3^y*m.dja.alldist.np$masses[3]/factorial(y)))

[1] -122.0604

> deviance<--2*(f_y_mu-sum(dpois(x=y, lambda=y, log=TRUE)))

113.649

since we use again the Poisson pmf for calculating the value of the saturated model.

Moreover, Figure 3.2 shows the convergence of the log-likelihood maximum under the

EM-algorithm and the estimation of the corresponding mass points. There we can see

that it takes 15 iterations for the convergence of the EM-algorithm and furthermore, it is

graphically displayed how the mass points converge to their estimates.

To compare the results of the Gaussian quadrature with the NPML estimation, Table 3.7

shows the corresponding parameter estimates and the different deviances. The estimated

intercept can be calculated as

β̂0 = Ê(z) =
K∑
k=1

π̂kẑk

and in R as

> sum(m.alldist.np$mass.points*m.alldist.np$masses)

For a short overview Table 3.8 shows results of the log-linear Poisson model compared

to alldist with Gaussian quadrature, glmmML and alldist with the non-parametric

approach.

The deviance for the non-parametric model is smaller than for the Gaussian quadrature,

the slope is also smaller but the intercept is somewhat larger.
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Figure 3.2: Convergence of the EM-algorithm for K=3 and the estimation of the corre-

sponding mass points.

3.3 Variance Component Models

Suppose the observations arise through repeated measurement or are grouped in a differ-

ent way, e.g. in a control group and a treatment group. Therefore, a model which includes

a random effect for each group in the linear predictor would be appropriate. These models

are called variance component models.

Thus, the theory of overdispersion (ni = 1 ∀i) models can be used to fit variance com-

ponent models, where the count of observations of the same group is bigger than one,

ni ≥ 1, compare to Friedl (1998) or Aitkin et al. (2009).

The linear predictor is now

ηij = xTijβ + σzi with zi
iid∼ N(0, 1)
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K intercept group dev.

1 0.6974 −0.8754 136.85

3 −0.7740 −1.1539 113.65

5 −0.7733 −1.1558 113.65

7 −0.7917 −1.1387 113.57

9 −0.8000 −1.1252 113.56

11 −0.7831 −1.1269 113.56

21 −0.7769 −1.1380 113.57

31 −0.7858 −1.1261 113.56

41 −0.7815 −1.1317 113.56

Table 3.7: Parameter estimates and deviances of alldist for the dja data with increasing

K and NPML estimation.

K intercept group sigma dev.

m.glm.poisson 1 −0.6974 −0.8754 - 136.85

m.alldist.gq 40 −0.8076 −0.9138 0.5960 119.76

m.glmmML.gq 7 −0.8076 −0.9151 0.5994 119.76

m.alldist.np 11 −0.7831 −1.1269 0.9277 113.56

Table 3.8: Comparison of the four models, m.glm.poisson, m.alldist.gq, m.glmmML and

m.alldist.np.

for the Gaussian quadrature and

ηij = xTijβ + zi with zi
iid∼ G (3.16)

for the non-parametric estimation approach. Meaning that all observations of the same

group or cluster share the same random intercept. The Q function is nearly the same as

in the overdispersed case, with the additional assumption that observations within the

same group are conditionally independent. Therefore, the conditional pdf is

f(yi|zi) =

ni∏
j=1

= f(yij|zi)

and the Q function for the Gaussian quadrature and for the non-parametric approach is

approximately

Q(θ|θ0) ≈
n∑
i=1

∑K
k=1 log f(yi, zk, θ)f(yi|zk, θ0)πk∑K

j=1 f(yi|zj, θ0)πj
.

Thus, it follows that



78 CHAPTER 3. RANDOM EFFECT MODELS

Q(θ|θ0) ≈
n∑
i=1

K∑
k=1

wik log f(yi, zk|θ) (3.17)

=
n∑
i=1

K∑
k=1

ni∑
j=1

wik (log f(yij|zk, θ) + log πk) , (3.18)

with weights

wik =
πk
∏ni

j=1 f(yij|zk, θ0)∑K
l=1

∏ni
j=1 f(yij|zl, θ0)πl

.

The most important difference to the Q function in (3.14) is the additional summation

over the elements of the same cluster. In the non-parametric approach the π’s are assumed

to be unknown with
∑K

k=1 πk = 1. Using a Lagrange multiplier λ we get

∂

∂πk

(
Q(θ|θ0)− λ

(
K∑
k=1

πk − 1

))
=

1

πk

n∑
i=1

niwik − λ.

Therefore, π̂k =
∑n

i=1 niŵik/λ̂ and with
∑K

k=1wik = 1 follows that

K∑
k=1

π̂k =
n∑
i=1

ni

λ̂
.

By maximizing the criterion (3.17) the following estimate for πk results,

π̂k =

∑n
i=1 niŵik∑n
i=1 ni

.

Again, for maximizing approximation (3.17), a weighted maximum likelihood estimation

has to be calculated, which is related to the structure of the design matrix in the overdis-

persed case. Due to the fact that there are ni replications within the ith group, the row

which corresponds to the first observation with k = 2, is replaced by the matrix given in

Table 3.9 and in case of an unknown distribution the row is replaced by the matrix given

in Table 3.10.

3.3.1 R-Functions for Variance Component Models with Nor-

mally Distributed Random Intercept

In the following we will have a closer look at two R-functions to fit variance component

models. As said before, the function glmmML is mainly designed to model variance com-

ponent models. The other function considered here is allvc, proposed by Einbeck et al.
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y w β1 . . . βp σ

y11 w12 x111 . . . x11p z2
...

...
...

...
...

y1n1 w12 x1n11 . . . x1n1p z2

Table 3.9: Structure of a variance component model with normally distributed random

intercept.

y w β1 . . . βp z1 z2 . . . zn1

y11 w12 x111 . . . x11p 1 0 . . . 0
...

...
...

...
...

...
...

y1n1 w12 x1n11 . . . x1n1p 1 0 . . . 0

Table 3.10: Response structure of variance component model with the non-parametric

approach.

(2009). We will consider an example of Irish suicide rates, where the data is also given in

the package npmlreg. This dataset describes the mortality due to suicide and intentional

self-harm in the Republic of Ireland from 1989 − 1998, which is obtained from the All

Ireland Mortality Database. This data were investigated using Poisson mixed models by

Sofroniou, Einbeck, and Hinde (2006). In this study, the Republic of Ireland is divided

into 13 “health regions”, including the 8 former health boards which existed during this

period (the health board system was initially created in 1979 with 8 health boards and was

reformed in 1999 from 8 to 11 health boards) and the cities Cork, Dublin, Galway, Lim-

erick and Waterford, extracted from these health boards. Figure 3.3 graphically displays

the regions, also given in Sofroniou et al. (2006). The data consists of 104 observations

with variables death, age, sex, Region, ID and pop. pop is a numeric vector, giving the

population sizes. ID is a factor denoting the different Regions and age is a factor with

levels 1 (0− 29), 2 (30− 39), 3 (40− 59), 4 (60 + years). The data is given in Table 3.11.
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nr Region ID pop death sex age

1 Cork 1 31923 6 0 1

2 Cork 1 31907 52 1 1
...

...
...

...
...

...
...

8 Cork 1 8299 22 1 4

9 Dublin 2 117575 33 0 1
...

...
...

...
...

...
...

16 Dublin 2 33385 37 1 4
...

...
...

...
...

...
...

103 WHB - Gal. 13 29832 13 0 4

104 WHB - Gal. 13 27260 58 1 4

Table 3.11: Irish suicide data
476 Analyzing Irish suicide rates

1

2
3
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5
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7
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9

10

11

12

13

BB

(((

�

�
�ID:

1 Cork City

2 Dublin City

3 Galway City

4 Limerick City

5 Waterford City

6 EHB−Dublin

7 Mid WHB−Limerick

8 Midland HB

9 NEHB

10 NWHB

11 SEHB−Waterford

12 SHB−Cork

13 WHB−Galway

FIGURE 1. Map of Health Boards and Cities for the Republic of Ireland. The ex-
cluded regions of Northern Ireland are shown in dark grey. The ‘−’ sign indicates
that a city is excluded from its health board.

2005). This database divides the Republic of Ireland into 13 ‘health re-
gions’ (the 8 former health boards which existed during this period, and
the cities Cork, Dublin, Galway, Limerick, and Waterford extracted from
these health boards; see Fig. 1). The data are graphically displayed in Fig. 2
(left) and are part of the R package npmlreg (Einbeck et al., 2006). We will
use the explanatory variables gender, age, a suitable measure of regional
autocorrelation, and a cluster-level random effect to account for the re-
gional heterogeneity (e.g., arising from regions with big/small populations,
outliers etc.). This leads to a two-level model, also called a variance com-
ponent model, where the clustering variable is the health region ID. The
age variable is a factor with four categories from 0–29 (reference category),
30–39, 40–59, and 60+ years.
For each region i = 1, . . . , 13 and each subpopulation j = 1, . . . , 8 (defined
by a certain gender/age combination), we have a total count of suicides
Yij over the 10 years. Further, the subpopulation sizes nij are available,
as well as the standardized mortality ratios (SMR), i.e., the ratio ob-
served/expected number of deaths, from which the Eij are immediately
obtained.

Figure 3.3: Map of health boards and cities for the Republic of Ireland. The excluded

regions of Northern Ireland are shown in dark grey. The ‘-’ sign indicates that a city is

excluded from its health board.
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A simple log-linear Poisson model for the number of deaths in relation to sex and age

with an offset of log(pop) results into

> summary(m.glm.irish<-glm(death~sex+age+offset(log(pop)), data=irlsuicide,

family=poisson))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.20092 0.04348 -188.61 <2e-16 ***

sex1 1.44468 0.04092 35.30 <2e-16 ***

age2 0.77089 0.04540 16.98 <2e-16 ***

age3 0.72734 0.04053 17.95 <2e-16 ***

age4 0.50125 0.04932 10.16 <2e-16 ***

Null deviance: 2299.12 on 103 degrees of freedom

Residual deviance: 290.97 on 99 degrees of freedom

AIC: 803.76

which shows a large residual deviance of 290.97 on 99 df. Therefore, we will add a random

intercept for every region. The following model has an unobserved common random effect

zi for each region i, i = 1, . . . , 13. By writing the linear predictor as

ηij = log

(
µij
popij

)
= β0 + β1(sex1ij) + β2(age2ij) + β3(age3ij) + β4(age4ij) + σzi

with i = 1, . . . , n, j = 1, . . . , ni, we get a model for the correlated data.

Function allvc

The function allvc provided by the package npmlreg is able to fit grouped models with a

group specific random intercept. By setting random.distributin="gq" we first approx-

imate the Q-function with Gaussian quadrature and forty quadrature points, to get an

acceptable approximation of the normal pdf.

> summary(m.allvc.irish.gq<-allvc(death~sex+age, random=~1|ID, offset=log(pop),

k=40, data=irlsuicide, family=poisson, random.distribution="gq"))

Coefficients:

Estimate Std. Error t value

(Intercept) -8.1599326 0.04353230 -187.445480

sex1 1.4405493 0.04092213 35.202210

age2 0.7741483 0.04540167 17.051096

age3 0.7234966 0.04053309 17.849529
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age4 0.4742595 0.04937286 9.605672

z 0.1549697 0.01467215 10.562174

Random effect distribution - standard deviation: 0.1549697

-2 log L: 703.3 Convergence at iteration 39

By calculating the saturated model as

> sum(dpois(x=death, lambda=death, log=TRUE))

[1] -251.3939

we get a deviance of −2(−351.639 + 251.3939) = 200.49, which is much smaller than for

the log-linear Poisson model without random effects. Table 3.12 shows the parameter

estimates for increasing K.

K int. sex1 age2 age3 age4 sigma dev.

1 −8.20 1.44 0.77 0.73 0.50 - 290.97

40 −8.16 1.44 0.77 0.72 0.47 0.15 200.49

50 −8.16 1.44 0.77 0.72 0.47 0.16 200.51

70 −8.16 1.44 0.77 0.72 0.47 0.16 200.51

Table 3.12: Parameter estimates and deviances of allvc for the irlsuicide data with

increasing K and Gaussian quadrature.

We also tried different values of K, especially values which are smaller than 40, but by

doing so, some weird characteristics occur. The parameter estimates for β are nearly the

same, in all iterations of K, but the deviance and the estimate of sigma differ, especially

for odd values of K compared to even values of K. Odd values of K lead to compa-

rable results with other odd values of K, and vice versa for even values of K. But by

considering a sequence of odd and even values, the differences between single steps are

large. However, for a choice of K larger than 40, it stabilizes and odd and even values of

K lead to the same result. Implying that Gaussian quadrature is not useful for a poor

approximation of the normal pdf.

Fitting the same model with an NPML approach and further random.distribution="np"

yields into

> summary(m.allvc.irish.np<-allvc(death~sex*age, random=~1|ID, offset=log(pop),

k=3, data=irlsuicide, family=poisson, random.distribution="np"))

Coefficients:

Estimate Std. Error t value

sex1 1.4412361 0.04092216 35.21896
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age2 0.7743245 0.04540173 17.05496

age3 0.7243116 0.04053299 17.86968

age4 0.4733938 0.04940511 9.58188

MASS1 -8.5184120 0.05666877 -150.31934

MASS2 -8.1596255 0.04514065 -180.76002

MASS3 -7.9461554 0.05555707 -143.02689

Mixture proportions:

MASS1 MASS2 MASS3

0.0953224 0.7151025 0.1895751

Random effect distribution - standard deviation: 0.1444652

-2 log L: 697.2 Convergence at iteration 5

with nearly equal estimates as for the Gaussian quadrature. The intercept can again be

calculated as

β̂0 =
K∑
k=1

ẑkπ̂k.

Thus, Table 3.13 gives parameter estimates for increasing K.

K intercept sex1 age2 age3 age4 dev.

1 −8.20 1.44 0.77 0.73 − 290.97

3 −8.15 1.44 0.77 0.72 0.47 194.44

5 −8.15 1.44 0.77 0.72 0.47 193.83

10 −8.15 1.44 0.77 0.72 0.47 193.98

Table 3.13: Parameter estimates and deviances of allvc for the irlsuicide data with

increasing K and NPML estimation

As investigated in Sofroniou et al. (2006), for the model with K = 3 the deviance has

dropped compared to the log-linear Poisson model and does not fall significantly further

for increasing K.

Function glmmML

Fitting the same model with the Gaussian quadrature, glmmML and forty quadrature points

results into

> summary(m.glmmML.irish<-glmmML(death~sex+age+offset(log(pop)),cluster=ID,

data=irlsuicide, n.points=40, family=poisson)
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coef se(coef) z Pr(>|z|)

(Intercept) -8.1589 0.06262 -130.286 0

sex1 1.4406 0.04093 35.195 0

age2 0.7741 0.04540 17.050 0

age3 0.7235 0.04054 17.847 0

age4 0.4743 0.04944 9.594 0

Scale parameter in mixing distribution: 0.1554 gaussian

Std. Error: 0.03626

Residual deviance: 200.5 on 98 degrees of freedom AIC: 212.5

where all explanatory variables are highly significant. If the optimization does not con-

verge, we have the option to select different start values for σ. Testing this model with

different values of start.sigma always yields the same results.

Furthermore, Table 3.14 gives parameter estimates for increasing K.

K int. sex1 age2 age3 age4 sigma dev.

1 −8.16 1.44 0.77 0.72 0.47 0.16 200.5

40 −8.16 1.44 0.77 0.72 0.47 0.16 200.5

50 −8.16 1.44 0.77 0.72 0.47 0.16 200.5

70 −8.16 1.44 0.77 0.72 0.47 0.16 200.5

Table 3.14: Parameter estimates and deviances of glmmML for the irlsuicide data with

increasing K and Gaussian quadrature.

This confirmed the assumption that the function glmmML uses an adaptive Gauss-Hermite

quadrature, since also for small values of K the estimates do not change significantly.

We also tried here different values of K and noticed that there exists also a difference

between the deviances for different values of K, but rather for large K, K > 80. For

these values of K, the values of the deviances change sometimes, although the parameter

estimates are completely the same. But as far as Gaussian quadrature is concerned, there

is no big difference in the mass points and masses when changing K = 80 to K = 100.

So using far more than 80 mass points not recommended.

Another weird fact is that when we order the data set in different ways, the function

glmmML calculates different deviances and sigmas. For example the irish suicide data is

ordered by the factor levels of ID, which is a numeric vector with increasing integers. If

we take the factor Region as clustering variable, which is of the same content as ID but
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not numeric, the estimate of sigma strongly differs, and so does the deviance. To sum

up, for the function glmmML it is important that the clustering variable is a numeric vec-

tor, otherwise the parameter estimate for sigma could differ compared to the parameter

estimate calculated by the function allvc.

Comparison of the four different models is shown in Table 3.15.

K int. sex1 age2 age3 age4 sigma dev.

m.glm.irish 1 −8.20 1.44 0.77 0.72 0.50 - 290.97

m.allvc.irish.gq 41 −8.16 1.44 0.77 0.72 0.47 0.16 200.51

m.allvc.irish.np 3 −8.15 1.44 0.77 0.72 0.47 0.14 194.44

m.glmmML.irish 2 −8.16 1.44 0.77 0.72 0.47 0.16 200.5

Table 3.15: Parameter estimates and deviances for the irlsuicide data for the four

different models: m.glm.irish, m.allvc.irish.gq, m.allvc.irish.np, m.glmmML.

Actually, there is no difference between the estimates of glmmML and allvc. The de-

viance for the non-parametric approach is smaller than for the Gaussian quadrature, but

the parameter estimates are the same. Further investigation into this dataset is given in

Sofroniou et al. (2006).

3.4 Random Coefficient Models

Since all of the functions mentioned above fit random intercept models, we will have a

short overview over random coefficient models in this section, which is based on Aitkin

et al. (2009) and Friedl (1998). Now, the intercept is assumed to be fixed and the slope

varies across the data set. Usually there is also a random intercept included in the model,

but here we consider the intercept as fixed. Under the NPML approach, the model is

given by

ηi = xTi β + xijzi with zi
iid∼ G.

If we compare this expression to equation (3.16), we notice, that instead of the random

intercept term there is its interaction with the jth variable. For the application of the

EM-algorithm, we again define a K-level factor and rewrite the linear predictor as

ηik = xTi β + z1xij · 0 + · · ·+ zk−1xij · 0 + zkxij · 1 + zk+1xij · 0 + · · ·+ zKxij · 0

which leads to Table 3.16, giving the response design structure.
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y w β1 . . . βp z1 z2 . . . zK
y1 w11 x11 . . . x1p x1j 0 . . . 0
...

...
...

...
...

...
...

yn wn1 xn1 . . . xnp xnj 0
... 0

y1 w12 x11 . . . x1p 0 x1j . . . 0
...

...
...

...
...

...
...

yn wn2 xn1 . . . xnp 0 xnj . . . 0
...

...
...

...
...

...
...

y1 w1K x11 . . . x1p 0 0
... x1j

...
...

...
...

...
...

...

yn wnK xn1 . . . xnp 0 0
... xnj

Table 3.16: Response structure of a NPML model with a random slope coefficient.

3.4.1 R-Functions for Random Coefficient Models

The two functions mentioned before, alldist and allvc, can also be used to model

random coefficient models. In the first subsection we will consider a different example

than the previous examples, because the previous included factors as explanatory variables

and this allows only to model a factor specific random intercept. The example we consider

here is the Oxboys data frame, describing the height of 26 boys from Oxford, England,

which was measured on nine occasions over two years. The data set hast 234 rows and

4 columns and is given in the package nlme. It contains the vector Subject, which is an

ordered factor giving a unique identifier for each boy in the experiment, the vector age,

which is a numeric vector giving the standardized age (dimensionless) and height is a

numeric vector, giving the height of the boys (cm). Figure 3.4 graphically displays the

data.

Simple Generalized Linear Model

A simple generalized linear model, with normal pdf, where the height is modeled through

the age of the boys, yields

> glm.Ox<-glm(height~age, data=Oxboys)

> summary(glm.Ox)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 149.3718 0.5286 282.599 < 2e-16 ***

age 6.5210 0.8170 7.982 6.64e-14 ***
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Figure 3.4: Heights of 26 boys over two years.

Null deviance: 19308 on 233 degrees of freedom

Residual deviance: 15148 on 232 degrees of freedom

AIC: 1645.9

Number of Fisher Scoring iterations: 2

with a large deviance of 15148 on 232 df. Thus, we will include a random coefficient on

age.

Random Coefficient Model

Using a random coefficient on the variable age and 3 mass points results into

> summary(m.allvc.Ox<-allvc(height~age, random=~age|Subject, data=Oxboys,

k=3))

Coefficients:

Estimate Std. Error t value

age 7.919030 0.4065465 19.478782

MASS1 138.588240 0.2827517 490.141113
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MASS2 149.249701 0.1921859 776.590184

MASS3 158.909797 0.2627202 604.863195

MASS1:age -2.350977 0.5966915 -3.940021

MASS2:age -1.701525 0.5034540 -3.379703

Mixture proportions:

MASS1 MASS2 MASS3

0.2313332 0.5007243 0.2679425

Component distribution - MLE of sigma: 3.586

Random effect distribution - standard deviation: 7.161265

-2 log L: 1315 Convergence at iteration 10

with a residual deviance of

> deviance(m.allvc.Ox)

[1] 3694.751

Since for random slopes the NPML approach is the default and nothing else can be chosen,

we need not to specify the random.distribution here.

Table 3.17 shows the deviances for increasing K for a random coefficient model on age.

Random Coefficient Model

K dev.

1 15148.46

3 3694.75

4 2201.36

5 1648.34

6 1010.08

7 820.31

8 467.47

Table 3.17: Oxboys data: Deviances for increasing K

Further increasing of K leads to another deviance reduction, but as the scaled deviance

for Gaussian data is given by

1

φ
D(y, µ̂) =

1

σ2
SSE(β̂)

the deviance is tending to zero, as the number of mass point (the number of parameters)

increase. Aitkin et al. (2009) recommended to fit this data with a quadratic term on age.

They fully analyzed this data set, therefore no further analysis is given here.
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Factor Specific Random Intercept Models

As mentioned before, the models considered in the previous sections included only factors

as explanatory variables and this allows only to model a factor specific random intercept

and not a random slope coefficient. Thus, we will fit a factor specific random intercept

for the model in the next section.

Let us consider the irish suicide data again and additionally assume that the factor sex

has a factor specific random intercept. Fitting this random coefficient model with three

quadrature points results into

> summary(m.allvc.irish.rc<-allvc(death~sex+age, random=~sex|ID, data=irlsuicide,

family=poisson, offset=log(pop), k=3 ))

Coefficients:

Estimate Std. Error t value

sex1 1.48446575 0.09783953 15.1724535

age2 0.77416374 0.04540229 17.0512044

age3 0.72418451 0.04053330 17.8664084

age4 0.47341257 0.04940393 9.5824886

MASS1 -8.45991330 0.09067320 -93.3011461

MASS2 -8.16520193 0.05115727 -159.6098070

MASS3 -7.98105290 0.09125134 -87.4623083

MASS1:sex1 -0.11637736 0.13906112 -0.8368792

MASS2:sex1 -0.03619804 0.11012785 -0.3286911

Mixture proportions:

MASS1 MASS2 MASS3

0.09862076 0.70994388 0.19143536

Random effect distribution - standard deviation: 0.1225526

-2 log L: 696.5 Convergence at iteration 5

with a deviance of 193.7 on 93 df. Sofroniou et al. (2006) fully analyzed this data set,

therefore no further analysis will be considered here.

3.5 Conclusion

In this chapter we considered overdispersion, variance component and random coefficient

models. As we have seen, the analysis of variance component models parallels closely that
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for overdispersion models. Moreover, two packages have been discussed which are able to

fit both, namely npmlreg and glmmML with the 3 functions alldist, allvc and glmmML.

The package npmlreg, as its name says, is accounted to model data via a non-parametric

maximum likelihood estimation and therefore offers more flexibility and variation in defin-

ing and trying different models than the package glmmML.

Four types of conditional pdf and pmf are offered in npmlreg, namely Gaussian, gamma,

Poisson or binomial. Currently, the only valid families to choose in the glmmML package

are binomial and Poisson. Furthermore, glmmML fits only models with a random intercept,

whereas allvc and alldist fit random intercept and random coefficient models. Never-

theless, for the same models they all yield the same parameter estimates, they differ only

with respect to the 2nd or 3rd decimal place, which is due to different implementation

and therefore different convergence criteria of the EM-algorithm. Of course, there are

many other packages and functions for random effect models, like glmer in the package

lme4, glmmPQL in MASS or hglm in package hglm, but considering all of them is beyond

the scope of this thesis.



Appendix A

R-Packages

A.1 Package aod

A.1.1 Function betabin

The usage of the function betabin is as follows, see also Lesnoff and Lancelot (2010).

> betabin(formula, random, data, link=c("logit","cloglog"),

phi.ini=NULL, warnings=FALSE, na.action=na.omit,

fixpar=list(), hessian=TRUE, control=list(maxit=2000), ...)

with arguments

formula A formula for the fixed effects. The left-hand side of the formula must

be of the form cbind(y,n-y) where the modeled probability is y/n.

random A right-hand formula for the overdispersion parameter(s) φ.

link The link function for the mean p: “logit” or “cloglog”.

data A data frame containing the response (n and y) and explanatory vari-

able(s).

phi.ini Initial values for the overdispersion parameter(s) φ. Default to 0.1.

warnings Logical to control printings of warnings occurring during log-likelihood

maximization. Default to FALSE (no printing).

na.action A function name. Indicates which action should be taken in the case

of missing value(s)

hessian A logical. When set to FALSE, the hessian and the variances-

covariances matrices of the parameters are not computed.

control A list to control the optimization parameters. See optim. By default,

set the maximum number of iterations to 2000.

91
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fixpar A list with two components (scalars or vectors) of the same size, in-

dicating which parameters are fixed (i.e., not optimized) in the global

parameter vector (β, φ) and the corresponding fixed values. For ex-

ample, fixpar=list(c(4,5),c(0,0)) means that the 4th and 5th

parameters of the model are set to 0.

. . . Further arguments passed to optim.

A.1.2 Function negbin

The usage of the function negbin is as follows, see also Lesnoff and Lancelot (2010)

> negbin(formula, random, data, phi.ini=NULL, warnings=FALSE,

na.action=na.omit, fixpar=list(), hessian=TRUE,

control=list(maxit=2000), ...)

with arguments

formula A formula for the fixed effects. The left-hand side of the formula must

be the counts y, i.e., positive integers y ≥ 0. The right-hand side can

involve an offset term.

random A right-hand formula for the overdispersion parameter(s) φ.

data A data frame containing the response (y) and explanatory variable(s).

phi.ini Initial values for the overdispersion parameter(s) φ. Default to 0.1.

warnings Logical to control printings of warnings occurring during log-likelihood

maximization. Default to FALSE (no printing).

na.action A function name. Indicates which action should be taken in the case

of missing value(s).

fixpar A list with two components (scalars or vectors) of the same size, in-

dicating which parameters are fixed (i.e., not optimized) in the global

parameter vector (β, φ) and the corresponding fixed values. For ex-

ample, fixpar=list(c(4,5),c(0,0)) means that the 4th and 5th

parameters of the model are set to 0.

hessian A logical. When set to FALSE, the hessian and the variances-

covariances matrices of the parameters are not computed.

control A list to control the optimization parameters. See optim. By default,

set the maximum number of iterations to 2000.

. . . Further arguments passed to optim.
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A.1.3 Function quasibin

The usage of the function quasibin is as follows, see also Lesnoff and Lancelot (2010):

> quasibin(formula, data, link=c("logit", "cloglog"), phi=NULL, tol=0.001)

with arguments

formula Formula for the fixed effects. The left-hand side of the formula must

be of the form cbind(y,n-y) where the modeled probability is y/n.

link Link function for the mean p: “logit” or “cloglog”.

data Data frame containing the response (n and y) and explanatory vari-

able(s).

phi When phi is NULL (the default), the overdispersion parameter φ is

estimated from the data. Otherwise, its value is considered as fixed.

tol A positive scalar (default to 0.001). The algorithm stops at iteration

r + 1 when the condition χ2[r + 1] − χ2[r] ≤ tol is met by the χ2

statistics.

A.1.4 Function quasipois

The usage of the function quasipois is as follows, see also Lesnoff and Lancelot (2010)

> quasipois(formula, data, phi=NULL, tol=0.001)

with arguments

formula A formula for the fixed effects. The left hand side of the formula must

be the counts y i.e., positive integers (y ≥ 0). The right hand side can

involve an offset term.

data A data frame containing the response (y) and explanatory variable(s).

phi When phi is NULL (the default), the overdispersion parameter φ is

estimated from the data. Otherwise, its value is considered as fixed.

tol A positive scalar (default to 0.001). The algorithm stops at iteration

r + 1 when the condition χ2[r + 1] − χ2[r] ≤ tol is met by the χ2

statistics.

A.2 Package npmlreg

A.2.1 Function alldist and allvc

The usage of the functions alldist and allvc is as follows, see also Einbeck et al. (2009).
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> alldist(formula, random = ~1, family = gaussian(), data, k = 4,

random.distribution = "np", tol = 0.5, offset, weights,

pluginz, na.action, EMmaxit = 500, EMdev.change = 0.001,

lambda = 0, damp = TRUE, damp.power = 1, spike.protect =0,

sdev, shape, plot.opt = 3, verbose = TRUE, ...)

> allvc(formula, random = ~1, family = gaussian(), data, k = 4,

random.distribution = "np", tol = 0.5, offset, weights,

pluginz, na.action, EMmaxit = 500, EMdev.change = 0.001,

lambda = 0, damp = TRUE, damp.power = 1, spike.protect = 0,

sdev, shape, plot.opt = 3, verbose = TRUE, ...)

with arguments

formula A formula defining the response and the fixed effects (e.g. y~x).

random A formula defining the random model. In the case of alldist, set

random =~1 to model overdispersion, and for instance random =~x to

introduce a random coefficient x. In the case of allvc, set random

=~1|PSU to model overdispersion on the upper level, where PSU is a

factor for the primary sampling units, e.g. groups, clusters, classes,

or individuals in longitudinal data, and define random coefficients ac-

cordingly.

data The data frame (mandatory, even if it is attached to the workspace)

k The number of mass points/integration points (supported are up to

600 mass points)

random.distribution

The mixing distribution, Gaussian Quadrature (gq) or NPML (np)

can be set.

tol The tol scalar (usually, 0 ≤tol≤ 1)

offset An optional offset to be included in the model.

weights Optional prior weights for the data.

pluginz Optional numerical vector of length k specifying the starting mass

points of the EM algorithm.

na.action A function indicating what should happen when NA’s occur, with pos-

sible arguments na.omit and na.fail. The default is set by the

na.action setting in options().

EMmaxit Maximum number of EM iterations.

EMdev.change Stops EM algorithm when deviance change falls below this value.
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lambda Only applicable for Gaussian and Gamma mixtures. If set, standard

deviations/shape parameters are calculated smoothly across compo-

nents via a Aitchison-Aitken kernel (dkern) with parameter lambda.

The setting lambda = 0 is automatically mapped to lambda = 1/k

and corresponds to the case “maximal smoothing” (i.e. equal compo-

nent dispersion parameters), while lambda = 1 means “no smoothing”

(unequal disp. param.)

damp Switches EM damping on or off.

damp.power Steers degree of damping applied on dispersion parameter according

to formula 1-(1-tol)^(damp.power*iter+1), see Einbeck and Hinde

(2006).

spike.protect Protects algorithm to converge into likelihood spikes for Gaussian

and Gamma mixtures with unequal or smooth component standard

deviations, by stopping the EM algorithm if one of the component

standard deviations (shape parameters, resp.), divided by the fitted

mass points, falls below (exceeds, resp.) a certain threshold, which

is 0.000001*spike.potect (10^ 6*spike.protect, resp.) Setting

spike.protect=0 means disabling the spike protection. If set, then

spike.protect=1 is recommended. Note that the displayed disparity

may not be correct when convergence is not achieved. This can be

checked with EMconverged.

sdev optional; specifies standard deviation for normally distributed re-

sponse. If unspecified, it will be estimated from the data.

shape optional; specifies shape parameter for gamma-distributed response.

Setting shape=1 gives an exponential distribution. If unspecified, it

will be estimated from the data.

plot.opt if equal to zero, then no graphical output is given. For plot.opt=1 the

development of the disparity−2 log L over iteration number is plotted,

for plot.opt=2 the EM trajectories are plotted, and for plot.opt=3

both plots are shown.

verbose if set to FALSE, no printed output is given during function execution.

Useful for tolfind.

... generic options for the glm function. Not all options may be supported

under any circumstances.

A.2.2 Function gqz

The usage of the function gqz is as follows, see also Einbeck et al. (2009).

> gqz(numnodes=20, minweight=0.000001)
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numnodes theoretical number of quadrature points.

minweight locations with weights that are less than this value will be omitted.

A.3 Package MASS

A.3.1 Function glm.nb

The usage of the function glm.nb is as follows, see also Venables and Ripley (2002).

> glm.nb(formula, data, weights, subset, na.action,

start = NULL etastart, mustart, control glm.control(...),

method = "glm.fit",model = TRUE, x = FALSE, y = TRUE,

contrasts = NULL, ..., init.theta, link=log)

formula an object of class “formula” (or one that can be coerced to that class):

a symbolic description of the model to be fitted. A typical predictor

has the form response~terms where response is the (numeric) re-

sponse vector and terms is a series of terms which specifies a linear

predictor for response. For binomial and quasibinomial families

the response can also be specified as a factor (when the first level

denotes failure and all other success) or as a two-column matrix with

the columns giving the numbers of successes and failures. A terms

specification of the form first + second indicates all the terms in

first together with all the terms in second with any duplicates re-

moved. A specification of the form first:second indicates that the

set of terms obtained by taking the interactions of all terms in first

with all terms in second. The specification first*second indicates

the cross of first and second.

data an optional data frame, list or environment containing the variables

in the model. If not found in data, the variables are taken from

environment(formula), typically the environment from which glm is

called.

weights an optional vector of prior weights to be used in the fitting process.

Should be NULL or a numeric vector.

subset an optional vector specifying a subset of observations to be used in

the fitting process.
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na.action a function which indicates what should happen when the data contains

NAs. The default is set by the na.action setting of options, and

is na.fail if that is unset. The factory fresh default is na.omit.

Another possible value is NULL. no action. Value na.exclude can be

useful.

start starting values for the parameters in the linear predictor.

etastart starting values for the linear predictor.

mustart starting values for the vector of means.

control a list of parameters for controlling the fitting process. See the docu-

mentation for glm.control for details.

method the method to be used in fitting the model. The default method

“glm.fit” used iteratively reweighted least squares (IWLS), and

“model.frame” which returns the model frame and does no fitting.

User-supplied fitting functions can be supplied either as a function or

a character string naming a function, with a function which takes the

arguments as glm.fit.

model a logical value indicating whether ‘model frame’ should be included as

a component of the returned value.

x, y For glm: logical values indicating whether the response vector and

model matrix used in the fitting process should be returned as com-

ponents of the returned value.

For glm.fit: x is a design matrix of dimension n*p, and y is a vector

of observations of length n.

contrasts an optional list. See the contrasts.arg of model.matrix.default.
...

init.theta Optional initial value for the theta parameter. If omitted a moment

estimator after an initial fit using a Poisson GLM is used.

link The link function. Currently must be one of log, sqrt or identity.

A.4 Package stats

A.4.1 Function dnbinom

The usage of the function dnbinom is as follows, see also

http://127.0.0.1:24648/library/stats/html/NegBinomial.html.

> dnbinom(x, size, prob, mu, log=FALSE)

with arguments
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x Vector of (non-negative integer) quantiles.

size Target for number of successful trials or dispersion parameter (the

shape parameter of the gamma mixing distribution). Must be strictly

positive, need not be integer.

prob Probability of success in each trial. 0 <prob≤ 1.

mu Alternative parametrization via mean. (Use only with size and x.

The variance is µ+ µ2/size is this parametrization.)

log, log.p logical; if TRUE, probabilities p are given as log(p).

A.5 Package glmmML

A.5.1 Function glmmML

The usage of the function glmmML is as follows, see also Broström (2009).

> glmmML(formula, family = binomial, data, cluster, weights, cluster.weigths,

subset, na.action, offset, prior=c(‘‘gaussian’’, ‘‘logistic’’,

‘‘’cauchy’), start.coef = NULL, start.sigma = NULL, fix.sigma = FALSE,

control=list(epsilon=1e-08, maxit=200, trace = FALSE),

method = c(‘‘Laplace’’, ‘‘ghq’’), n.points = 8, boot = 0)

with arguments

formula A symbolic description of the model to be fit.

family Currently, the only valid values are binomial and poisson. The

binomial family allows for the logit and cloglog link.

data an optional data frame containing the variables in the model. By

default the variables are taken from ‘environment(formula)’, typi-

cally the environment from which ‘glmmML’ is called.

cluster Factor indicating which items are correlated.

weights Case weights. Default to one.

cluster.weights

Cluster weights. Default to one.

subset an optional vector specifying a subset of observations to be used in

the fitting process.

na.action See glm.

start.coef starting values for the parameters in the linear predictor. Defaults

to zero.
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start.sigma starting value for the mixing standard deviation. Defaults to 0.5

fix.sigma Should sigma be fixed at start.sigma?

offset this can be used to specify an a priori known component to be included

in the linear predictor during the fitting.

prior Which “prior” distribution (for the random effects)? Possible choices

are “gaussian”(default), “logistic”, and “cauchy”.

control Controls the convergence criteria. See glm.control for details.

method There are two choices “Laplace” (default) and “ghq” (Gauss-Hermite).

n.points Number of points in the Gaussian Hermite quadrature. If n.points

==1, the Gauss-Hermite is the same as the Laplace approximation. If

method is set to “Laplace”, this parameter is ignored.

boot Do you want a bootstrap estimate of cluster effect? The default is

No (boot = 0). If you want to say yes, enter a positive integer here.

It should be equal to the number of bootstrap samples you want to

draw. A recommended absolute minimum value is boot = 2000.

A.5.2 Function ghq

The usage of the function ghq is as follows, see also Broström (2009).

> ghq(n.points = 1, modified = TRUE)

n.points Number of points.

modified Multiply by exp(zeros**2)? Default is TRUE.
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