
Thomas Ebner

A Proposed Failure Mechanism for Pulp
Fibre-Fibre Joints

Master’s Thesis

Graz University of Technology

Institute for Strength of Materials
Head: Univ.-Prof. Dr.-Ing. habil. Katrin Ellermann

Supervisor: Ass.-Prof. Dipl.-Ing. Dr.techn. Manfred H. Ulz

Graz, June 2015

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,
andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten
Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht
habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Dedicated to my parents, sisters, girlfriend and all my friends who walked with me.

Special thanks to my supervisor Manfred Ulz.

v

Abstract

In the following study a FEM modelling framework of a pulp fibre-fibre joint was
created. With this model it is possible to investigate the bonding area. The Institute
for Paper, Pulp and Fibre Technology at Graz University of Technology set up a
scientific test to determine the strength of the bond of two pulp fibres in paper.
The boundary conditions and the applied force for the modelling framework are
derived from this experiment. Three different failure modes in fracture mechanics
are observed: Mode 1 (opening), Mode 2 (shear) and Mode 3 (twisting). A parameter
study of the peak load at the edges of the fibres is carried out, in order to identify a
failure mechanism. The peak stresses are not directly taken from the FEM models
as these values are highly discretization-dependent. Instead the peak stresses are
estimated from resultant forces and moments in an idealized geometry of the bonding
region.

Zusammenfassung

In der vorliegenden Arbeit wurde ein finite Elemente Rechenmodell von einer Faser-
Faserverbindung von Holzfasern erstellt, mithilfe dessen es möglich ist, die Span-
nungsverteilung in der Bruchfläche zu simulieren. Am Institut für Papier-, Zellstoff-
und Fasertechnik der Technischen Universiät Graz wurde die Bindekraft von zwei
Holzfasern mittels eines Versuches ermittelt. Die Randbedingungen wie Einspan-
nung und Belastung für das Rechenmodell wurden von diesen Versuchsergebnissen
abgeleitet. Es wurden drei verschiedene Versagensursachen betrachtet. Mode1 (Abhe-
bung), Mode 2 (Scherung) und Mode 3 (Verdrehung). Um eine Versagenshypothese
bei Papierfasern zu finden, wurde eine Parameterstudie durchgeführt. Bei dieser wur-
den die unterschiedlichen Spannungsspitzen in der Verbindungsfläche bei veränderter
Geometrie und Belastung analysiert. Die maximale Spannung wurde nicht direkt
am FEM Modell abgelesen, sondern über resultierende Schnittkräfte und Momente
berechnet.

vii

Contents

Abstract vii

1 Introduction 1
1.1 Composition of the mechanical structure of wood 1

1.1.1 Chemical composition of wood 2
1.1.2 Organisation of the cell wall 3

1.2 Production of paper . 5
1.2.1 Pulping Processes . 6

2 Continuum Mechanics 11
2.1 Deformation . 11
2.2 Strain Measures . 12
2.3 The multiplicative split of the deformation gradient 14
2.4 Equilibrium and virtual work . 14
2.5 Stress Measures . 16
2.6 Basic finite element equation . 18
2.7 Non-linear analysis . 22

3 Summary of the appended paper 25
3.1 Title: A Proposed Failure Mechanism for Pulp Fiber-Fiber Joints . . 25
3.2 Abstract . 25
3.3 Contribution to paper . 25

4 Appendix 43
4.1 Source code for modelling fibre-fibre joints 43
4.2 Source code for analysing the results 67

Bibliography 81

ix

List of Figures

1.1 Portion of cellulose molecule . 2
1.2 Distribution of chemical constituents across the cell wall 4
1.3 The layered structure of a single pulp fibre. 4
1.4 Distribution of chemical constituents across the cell wall 5
1.5 The making of paper products from wood includes two main tech-

nological fields. Ek, Gellerstedt, and Henriksson, 2009 6
1.6 A schematic figure of a stone grinder. Ek, Gellerstedt, and Henriks-

son, 2009 . 7
1.7 A chip refiner with one rotating disc. Ek, Gellerstedt, and Henriks-

son, 2009 . 7
1.8 A simplified plot of a paper machine. Ek, Gellerstedt, and Henriks-

son, 2009 . 9

xi

1 Introduction

1.1 Composition of the mechanical structure of
wood

In the last years wood got more and more important for the economy, especially in
the industrial manufacturing sector e. g. (paper industry). Because of its renewability,
wood is very attractive as a material resource. Commonly woody plants are classified
into two groups: Softwood and hardwood. Their difference is based on anatomical
and chemical features. One major characteristic of wood is that it offers an unusual
degree of variability based on the different growth conditions, environmental factors
and in the variations in genetic stock. Bodig and Benjamin, 1993

Because of the complex internal structure of wood an anisotropic behaviour is given
that refers to the several levels of material organisation. Particular types of anisotropy
can be identified within a layer of the woody cell, in the cell wall as a whole, in the
entire cell, in an aggregate of cells, and finally in an aggregation of several types of
woody tissue. Bodig and Benjamin, 1993

The common wood fibre is hollow and designed as a rectangular or elliptical cross
section. The average length of such a wood fibre is about 5 mm. A wood fibre consists
of different layers and because of this quality they can be used as a composite. These
cell wall layers are composed of different components and amounts of the three
basic elements of wood: Cellulose, Hemicellulose and Lignin. In addition, these
three basic components influence the characteristics and structure of wood by their
contained amount.

1

1 Introduction

1.1.1 Chemical composition of wood

In the following chapters cellulose, hemicellulose, lignin and the extractives will be
described.

Cellulose

Cellulose is the primary content of the cell wall and can be found in almost every
natural resource. In its chemical structure, cellulose is the simplest of the cell wall
components. It consists of a linear polymer of glucose units. As shown in figure 1.1,
biosynthetic polymerisation means that the basic polymeric unit of two combined
glucose constituents is stretched to almost its maximum dimension. The range of
glucose units in a cellulose molecule reaches from a few up to 15000. Bodig and
Benjamin, 1993

HO

O

H
CH2OH O

H
H

O

H H H

H

H
H

H H

H

H
H

H

CH2OH

CH2OHHO

HO

O O

OOOH

OH

OH

Figure 1.1: Portion of cellulose molecule

Hemicellulose

About 30 percent of a wood cell are made up by hemicellulose. With this percent-
age it constitutes the second biggest part of the total wood mass. It consists of
two carbohydrate polymers, a xylose- and a mannose-containing polysaccharide.
Basically hemicellulose is a modified form of cellulose. Hemicellulose is located
in the cell walls in the form of individual molecules. In this way they are more

2

1.1 Composition of the mechanical structure of wood

closely associated with lignin and in an amorphous state, which is also caused by the
presence of many side groups that prohibit a crystallisation of the molecules. Bodig
and Benjamin, 1993

Lignin

Lignin is a three-dimensional polymer with apparently no ordered arrangement. It is
the third component of the cell wall and it is a phenolic polymer, differing from the
carbohydrates in its water repellency. Lignin is built up by the random free-radical
polymerisation of three closely located phenolic substances. A characteristic of
Lignin is, that it is completely amorphous and under normal conditions begins to
soften at temperatures of 165-175 degree centigrade. Bodig and Benjamin, 1993

Extractives

Ectractives have no or just a small impact on the direct mechanical behaviour of
wood. They are more likely to increase specific gravity and lower the equilibrium
moisture content. Extractives influence the mechanical properties indirectly, they can
control durability, colour, odour and taste. Bodig and Benjamin, 1993

1.1.2 Organisation of the cell wall

Cellulose molecules seldomly appear as individual entities. Within the cell wall they
are more likely to build discrete bundles called elementary fibrils. As described in
section 1.1, they can appear in the form of elliptical or rectangular cross sections of
the order of 3.5 x 3.5nm, which is considered as an acceptable value. Each single
elementary fibril consists of a parallel array of 50-80 cellulose molecules, which are
aligned with the fibril axis. These elementary structural fibrils are often collected
into larger units by means of hydrogen bonding between their respective surfaces.
Microfibrils are the result of this construction in the dimension of 3.5 x 10nm, as
shown in figure 1.2. Figure 1.2 also represents a schematic construction of microfib-
rils arranged in orderly form in a cell wall layer. One can note the spaces between
the microfibrils which are available for deposition of different chemical substances
and for the absorption of water. Bodig and Benjamin, 1993

3

1 Introduction

Microfibril Microfibril Microfibril

43nm

12
nm

3.
5n
m

10nm

Figure 1.2: Distribution of chemical constituents across the cell wall

Primary wall

S1 layer

S2 layer

S3 layer

Figure 1.3: The layered structure of a single pulp fibre.

The organisation of cell wall layers is very complex. In common the cell wall of pulp
fibres are built of four major layers as shown in figure 1.3. The primary wall is a thin,
flexible and extensible layer of the cell wall. The next layer, the S1 layer, is very
thin, usually no greater than 0,1 micrometres in thickness. Furthermore, the S2 layer,

4

1.2 Production of paper

with a thickness about 2µm, is the thickest of the three layers and tends to dominate
the behaviour of the cell. The last one is the S3 layer. All layers are composed of
different degrees of cellulose, hemicellulose and lignin, which can be seen in figure
1.4.

cellulose

hemicellulose

lignin

0

20

40

60

80

100

D
R

Y
3W

E
IG

H
T

3(
L

)

S2 S3S1
SECONDARY3WALLCP

ML

Figure 1.4: Distribution of chemical constituents across the cell wall

1.2 Production of paper

Paper-making is a complex process, which includes diverse manufacturing steps.
The production of paper products from wood is dependent on two main technologies.
These two fields are the pulp- and the paper technology. The pulp technology
focuses on the liberation of fibres fixed in the wood or plant matrix, where the

5

1 Introduction

paper technology is the knowledge of how to unify the fibres into a find paper
product. Ek, Gellerstedt, and Henriksson, 2009

Figure 1.5: The making of paper products from wood includes two main technological fields. Ek,
Gellerstedt, and Henriksson, 2009

1.2.1 Pulping Processes

The aim of the pulping process is to liberate the fibres from the wood matrix. This
can be done in two different ways, either mechanically or chemically. Each of
these methods has advantages and disadvantages. For example a mechanical process
makes use of the whole wood material but, on the other hand this process demands a
lot of electric energy. The advantage of a modern chemical pulp mill is that there
is no need for external energy. The disadvantage is that only approximately half
of the wood becomes pulp. The other half gets dissolved. In order to create an
economical chemical pulping process, the existence of an efficient recovery system
is of importance. Ek, Gellerstedt, and Henriksson, 2009

Mechanical Pulping

To obtain a mechanical pulp the fibres in the wood have to be released. This is done
by grinding wood or wood chips. Depending on what mechanical pulping method is
used, the pulp yield ranges between 90 and 100 %. The mechanical pulp consists
of fibres and a large portion of smaller material called fines. These fines are made
up by fragments from the fibre wall and broken fibres. They are very important for
the excellent optical properties of mechanical pulps. A higher portion of long fibres
guarantees the pulp strength. Figure 1.6 shows how groundwood pulp is produced.
Round wood logs are pressed against a rotating cylinder which is made of sandstone.

6

1.2 Production of paper

The logs are fed parallel to the cylinder axis and by this process the fibres are scraped
off. Ek, Gellerstedt, and Henriksson, 2009

Figure 1.6: A schematic figure of a stone grinder. Ek, Gellerstedt, and Henriksson, 2009

Refiner pulp is another sort of mechanical pulp. In this case, wood chips are fed into
the centre of two refining discs, as illustrated in figure 1.7. While one, or even both
discs are rotating, the chips are reduced in chips and fibres are abraded off. In this
process the discs are grooved. Near the centre the grooves are coarser and towards
the perimeter the grooves are getting finer. The pulp is getting finer towards the edge
of the disc. Ek, Gellerstedt, and Henriksson, 2009

Figure 1.7: A chip refiner with one rotating disc. Ek, Gellerstedt, and Henriksson, 2009

7

1 Introduction

Chemical Pulping

The fibres in woods are held together by lignin. By chemical pulping most of the
lignin and the fibres are released. It has to be said that no chemical method is able
to remove all of the lignin in the pulping stage. The process of delignification is
terminated with still some lignin remaining in the pulp. The most often used method
to remove lignin is the Kraft cooking. Sodium hydroxide and sodium sulphite are the
used chemicals for this technique. If only sodium hydroxide is used it is called soda
cooking. The sulphite cooking process uses sulphurous acid (H2SO3) and bisulphite
ions (H2SO3-) to dissolve lignin. By performing chemical pulping better results are
reached compared to the mechanical method. The chemical pulp fibres are more
flexible and offer good strength properties. Ek, Gellerstedt, and Henriksson, 2009

Bleaching

Some paper products are in need of white paper. To get a better contrast between the
paper and the print, a good print quality is required. Another reason is the cleanliness
of the paper, which needs the technique of bleaching. Furthermore, bleaching delays
the ageing process. Ek, Gellerstedt, and Henriksson, 2009

The bleaching process consists of several steps and by using different chemicals
in each step. In the mechanical pulp dithionite and hydrogen peroxide are used.
Chemical pulps are delignified with oxygen before entering the actual bleaching
plant. Ek, Gellerstedt, and Henriksson, 2009

Papermaking

The process of papermaking requires a paper machine, which consolidates the
liberated fibres from the wood to form again a web of paper. First of all, a very dilute
slurry of fibres is sprayed on to a moving wire. This slurry can incorporate fillers,
retention aid and wet strength additives. The wire is made up of an endless woven
wire cloth with a mesh size that allows the water to be drained, but the fibres are
retained on the wire. At this certain stage of papermaking the paper web enters the
pressing section of the paper machine. Now the water is pressed out by squeezing
the paper web between steel rolls. To ensure that a certain dryness of the paper can
be given, the paper is dried in the drying section. The web is reeled at the end of

8

1.2 Production of paper

Figure 1.8: A simplified plot of a paper machine. Ek, Gellerstedt, and Henriksson, 2009

the paper machine. In figure 1.8 a simplified plot of a paper machine is given. Ek,
Gellerstedt, and Henriksson, 2009

9

2 Continuum Mechanics

This chapter is written with reference to SIMULIA-DassaultSystémes, 2012

2.1 Deformation

Matter cannot appear or disappear. With this information we can assume that a
material particle, initially located at some position ~X in space, will move to a new
position~x. The history of the location of a particle can always be written as

~x =~x(~X , t) (2.1)

~X is the initial position of the material particle and ~x is the position during the
deformation.

Now we consider two neighbouring material particles. If the initial configuration
of these two particles is located at ~X and at ~X + d~X , the current configuration must
satisfy

d~x =
∂~x
∂~X

·d~X (2.2)

and the matrix

F =
∂~x
∂~X

(2.3)

is called the deformation gradient matrix. So we can write the equation 2.2 as

d~x = F ·d~X (2.4)

The motion of the vicinity of a material point distinguishes between the straining
of the material and the rigid body motion. The material behaviour depends on the

11

2 Continuum Mechanics

straining of the material. Now we are looking at an infinitesimal gauge length d~X .
The initial and current lengths are measured by

dL2 = d~XT ·d~X and dl2 = d~xT ·d~x (2.5)

The “stretch ratio” of this gauge length is

λ =
dl
dL

=

√
d~xT ·d~x

d~XT ·d~X
(2.6)

If there is only a rigid body motion, the stretch ratio has the value one.

Now we use the equation 2.4 to define the current infinitesimal gauge length.

d~xT ·d~x = d~XT ·FT ·F ·d~X (2.7)

λ 2 =
d~XT

√
d~XT ·d~X

·FT ·F · d~X√
d~XT ·d~X

= ~NT ·FT ·F ·~N (2.8)

~N is a unit vector in direction of the gauge length d~x. The stretch ratio associated
with any direction ~N, at any material point defined by ~X , is calculated as shown in
equation 2.8.

2.2 Strain Measures

The stretch ratio λ as a measure of deformation is already known, but it is an
unsatisfactory way of measuring deformation of steel. The elastic modulus of steel is
about 200 ·103MPa and the yield stress about 200 MPa. So the deviation from zero
only begins in the fourth significant digit. That is why we define strain as a function
of the stretch ratio.

ε = f (λ) (2.9)

ε = f (1)+ (λ −1)
d f
dλ

+
1
2!
(λ −1)2 d2 f

dλ 2 + ... (2.10)

We must have the following constraints:

f (1) = 0

12

2.2 Strain Measures

d f
dλ (1)

= 1

d f
dλ

> 0 at λ > 1

f (1) = 0 means the strain ε has the value zero, if the stretch ratio λ has the value
one. d f

dλ = 1 at λ = 1 is chosen to have the usual definition of strain as the “change
in length per unit length” for small strains. The last constraint ensures, that each
value of stretch has a unique corresponding value of strain.

Examples of commonly used strain measures:

Nominal strain (Biot’s strain): f (λ) = λ −1

This definition is used for uniaxial testing of stiff specimens.

Logarithmic strain: f (λ) = lnλ

This strain measure is commonly used in metal plasticity.

Green’s strain : f (λ) =
1
2
(λ 2 −1)

This strain measure is used for problems involving large motions but only small
strains.

Obviously many strain functions are possible and all of these satisfy the basic
restrictions. The choice of the function depends on the user’s convenience. There
are two considerations. First, how easy the strain is able to be computed from the
displacements, and second the appropriateness of the strain measure with respect to
the particular constitutive model. The above examples do all refer to one-dimensional
cases. In equation 2.11 the generalisation to a three-dimensional case is shown by
the example of Green’s strain.

εG =
1
2
(FT F− I) (2.11)

13

2 Continuum Mechanics

2.3 The multiplicative split of the deformation
gradient

Many useful materials can carry only very small amounts of elastic strain in com-
parison to the plastic strain. Conventional structure steel is such a material. If we
have elastic and plastic strain in a material particle, the elastic deformation reverses
by unloading. The total deformation is elastic deformation multiplied by plastic
deformation as shown in equation 2.12.

F = FelFpl (2.12)

2.4 Equilibrium and virtual work

The exact solution of each mechanical problem requires that both force and moment
equilibrium are maintained at all times over any arbitrary volume of the body. An
approximation of this equilibrium requirement is used in the displacement finite
element method. In this section we write the exact equilibrium in the form of the
virtual work statement. The exact equilibrium of force, as shown in equation 2.13
indicates that the sum of body force and surface traction has to be zero.

∫

S
~tdS+

∫

V
~f dV =~0 (2.13)

In equation 2.13, t is the force per unit at any point on the surface S, and f is the
body force per unit of current volume. At any point on surface S,~t can be calculated
from the Cauchy stress and the unit vector ~n. This interrelationship is defined in
equation 2.14.

~t =~nσ (2.14)

If we use these two definitions, equations 2.13 and 2.14, we get
∫

S
~nσdS+

∫

V
~f dV =~0. (2.15)

By using the Gauss’s theorem we are able to write a surface integral as a volume
integral. So we can write 2.15 as

∫

S
~nσdS =

∂
∂~x

·σdV . (2.16)

14

2.4 Equilibrium and virtual work

Since the volume is arbitrary, this equation must hold at each point in the body. Thus,
the integrals can be omitted.

∂
∂~x

·σ + ~f =~0 (2.17)

The same considerations for the moment equilibrium found that the Cauchy stress
matrix must be symmetric. 2.18 shows the general case of a moment equilibrium.

∫

S
(~x×~t)dS+

∫

V
(~x×~f)dV =~0 (2.18)

Gauss’s theorem applied to Equation 2.18 shows that the Cauchy stress matrix must
be symmetric.

σ = σT (2.19)

Up to this point no approximations were done. The basis of the displacement finite
element method is replacing the equilibrium equation by an equivalent “weak form”.
This form is obtained by multiplying the pointwise differential equations by a “test
function”, and integrating as shown in equation 2.20. The “test function” is a “virtual”
velocity field δ~v. ∫

V

[
∂
∂~x

·σ + ~f
]
·δ~vdV = 0 (2.20)

After applying the chain rule and Gauss’s theorem we get equation 2.21.

∫

S
~t ·δ~vdS+

∫

V
~f ·δ~vdV =

∫

V
σ :
(

∂δ~v
∂~x

)
dV (2.21)

In the last term of equation 2.21 we find the virtual velocity gradient in the current
configuration as shown in equation 2.22.

(
∂δ~v
∂~x

)
= δL = δD+ δW (2.22)

The gradient is able to decompose into a symmetric and an antisymmetric part. δD
is the symmetric part and δW is the anti symmetric part.

δD = sym(δL) = 1
2(δL+ δLT) ... virtual strain rate

15

2 Continuum Mechanics

δW = asym(δL) = 1
2(δL−δLT) ... virtual rate of spin

With these definitions:

σ : δL = σ : δD+σ : δW

Since σ is symmetric,

σ : δW = 1
2σ : δL− 1

2σ : δLT = 1
2σ : δL− 1

2σ : δL = 0

Now it is possible to write the virtual work equation in the classical form as shown
in equation 2.23.

∫

V
σ : δDdV =

∫

S
δ~v ·~tdS+

∫

V
δ~v ·~f dV (2.23)

2.5 Stress Measures

The conjugate virtual strain rate (the rate of deformation) and the equilibrium in
terms of Cauchy (“true”) stress are expressed in the virtual work statement as shown
in equation 2.23. In this case “conjugate” means work conjugate. Work per current
volume is defined by the product of stress and strain rate.

A solid material has a natural, elastic, reference state. To this reference state it
returns upon unloading. A fully elastic material will always return to the original,
unstressed state. A material like metal which yields, will be modified by the inelastic
deformation.

The elasticity of the material is derivable from a thermodynamic potential. So there
is a potential function for the elastic strain energy per unit of the natural reference
volume for isothermal deformations. With this information the work rate per unit of
volume in this elastic reference state is defined, as shown in equation 2.24.

dW 0 = τ : dε (2.24)

In equation 2.24 ε is a particular choice of strain matrix based on the discussion in
section 2.2. Furthermore τ is the stress matrix that is work conjugate to dε .

16

2.5 Stress Measures

The internal virtual work rate, as seen in equation 2.23, could be transformed as an
integral over the natural reference volume as shown in equation 2.25.

∫

V
σ : DdV =

∫

V 0
Jσ : DdV 0 (2.25)

J is the Jacobian of the elastic deformation (and is defined as dV /dV 0), which is
between the natural reference and the current volume.

The stress measure is defined in equation 2.26 and it is named Kirchhoff stress.

τ = Jσ (2.26)

D = sym
(

∂v
∂x

)
(2.27)

Equation 2.27 shows the rate of deformation of the strain measure. The stress mea-
sure, equation 2.26, is work conjugated to the rate of deformation, equation 2.27.

If we use the standard Green’s strain matrix, described in equation 2.11, εG =
1
2(F

T F− I), the rate of Green’s strain is

ε̇G =
1
2
(
ḞT ·F+FT · Ḟ

)
(2.28)

Using Ḟ = F ·L so that

ε̇G = 1
2FT ·

(
L+LT) ·F = FT ·D ·F

and, thus,
D = F−T · ε̇G ·F−1 (2.29)

The equation 2.29 can be used for the calculation of the work rate per unit reference
volume

dW 0 = Jσ :
(

F−T · ε̇G ·F−1
)
= J

(
F−1 ·σ ·F−T) : ε̇G (2.30)

So we get the second Piola-Kirchhoff stress tensor, S, equation 2.31, which is work
conjugated to ε̇G, as shown in equation 2.28.

S = JF−1 ·σ ·F−T (2.31)

17

2 Continuum Mechanics

2.6 Basic finite element equation

In this section the basic finite element equations are described. For a detailed de-
scription see SIMULIA-DassaultSystémes, 2012.

If the left-hand side of the virtual work equation 2.23 is replaced with the integral
over the reference volume of the virtual work rate per reference volume defined by
any conjugate pairing of stress and strain, the equation can be written in another
form as shown in equation 2.32.

∫

V 0
τc : δεdV 0 =

∫

S
δ~v ·~tdS+

∫

V
δ~v ·~f dV (2.32)

This equation includes variables which are any conjugate pairing of material stress
and strain measures. These variables are τc and ε .

δ~v = NNδ~vN (2.33)

δε = βNδ~vN (2.34)

NN is the interpolation function. It is used to interpolate the nodal points displace-
ments within the elements and the virtual velocity field δ~v . The strain-displacement-
matrix βN shows the relationship between the virtual velocity field and strains. So
the equation 2.23 can be written as

δ~vN
[∫

V 0
βN : τcdV 0 −

∫

S
NT

N ·~tdS+
∫

V
NT

N ·~f dV
]
= 0 (2.35)

Since the virtual variables are independent and arbitrary, we obtain the equation for
the assumed displacement finite element analysis procedure.

∫

V 0
βN : τcdV 0 =

∫

S
NT

N ·~tdS+
∫

V
NT

N ·~f dV (2.36)

18

2.6 Basic finite element equation

The Jacobian of the finite element equilibrium equations is needed for the Newton
algorithm. Equation 2.37 shows a variation of equation 2.32, which is used to develop
the Jacobian.

∫

V 0
(dτc : δε + τc : dδε)dV 0 −

∫

S
d~tT ·δ~vdS−

∫

S
~tT ·δ~vdAr

1
Ar

dS

−
∫

V
d~f T ·δ~vdV −

∫

V
~f T ·δ~vdJ

1
J

dV = 0
(2.37)

In equation 2.37 d() represents the linear variation of the quantity with respect to
the basic variables. As shown in equation 2.38, J is the volume change between the
reference and the current volume.

J =

∣∣∣∣
dV
dV 0

∣∣∣∣ (2.38)

Ar is the surface area ratio between the reference and the current configuration, as
shown in equation 2.39.

Ar =

∣∣∣∣
dS
dS0

∣∣∣∣ (2.39)

We get the Jacobian matrix by restricting the above variations. Only variations in the
nodal variables uN are allowed. With these findings, the equation 2.37 is examined
term by term.

The first term includes dτc. We assume that the constitutive theory allows us to
write

dτc = H : dε + g

H and g are defined in terms of the current state. Please see SIMULIA-DassaultSystémes,
2012 for a detailed information on the matrices H and g forming the material model.
From the choice of the generalised strain measure and interpolation function,

19

2 Continuum Mechanics

∂Nε =
∂ε

∂uN = βN

Based on the above constitutive assumption,

∂Nτc = H : βN

The second part of the first term in equation 2.37 is δε . It is the first variation of ε
with respect to the nodal variables,

δε = ∂MεδuM = βMδuM

Therefore we obtain the first term in the Jacobian Matrix,

∫

V 0
βM : H : βNdV 0

the usual “small-displacement stiffness matrix”.

The second term in equation 2.37 is

∫

V 0
τc : dδεdV 0.

It is rewritten as

∫

V 0
τc : ∂NδεdV 0,

which is

∫

V 0
τc : ∂NβMdV 0.

This term is the second term in the Jacobian matrix and is called the “initial stress
matrix.”

20

2.6 Basic finite element equation

The next term in equation 2.37 is the external load rate. In general, these load vectors
can be written as

~t =~t(λ ,~x) and ~f = ~f (λ ,~x).

In this equation λ represents the externally prescribed loading parameters. The
variation of the load vector with nodal variables can then be written symbolically
as

∂N~t +~t
1
Ar

∂NAr = QS
N ,

∂N~f + ~f
1
J

∂NJ = QV
N ,

and then writing

δ~v = NMδvM.

In this equation NM is obtained directly from the interpolation functions. So the
Jacobian terms of the last four terms of equation 2.37 can be written as

−
∫

S
NT

M ·QS
NdS−

∫

V
NT

M ·QV
NdV .

These terms are called the “load stiffness matrices.”

So we can write the complete Jacobian matrix, which is shown in equation 2.40.

KMN =
∫

V 0
βM : H : βNdV 0 +

∫

V 0
τc : ∂NβMdV 0

−
∫

S
NT

M ·QS
NdS−

∫

V
NT

M ·QV
NdV

(2.40)

21

2 Continuum Mechanics

2.7 Non-linear analysis

The generated finite element models in Abaqus are usually nonlinear. These models
can involve from a few to thousands of variables. Similar to equation 2.23, a work
equation can be written symbolically as

FN(uM) = 0 (2.41)

In this equation FN is the force component conjugate to the Nth variable in the
problem. uM is the value of the Mth variable. The task is to find the solutions for the
uM throughout the history of interest for the equation 2.41. In common for solving
the nonlinear equation the Newton method is used, which is characterised by the
following basic formalism: For example, we obtain an approximation uM

i to the
solution after an iteration i. So there is a difference between this solution and the
exact solution to the discrete equilibrium equation. This difference is described as
cM

i+1. This means that

FN(uM
i + cM

i+1) = 0

If the left side of this equation is written as a Taylor series about the approximate
solution uM

i , then we obtain equation 2.42

FN(uM
i)+

∂FN

∂uP (uM
i)cP

i+1 +
∂ 2FN

∂uP∂uQ (u
M
i)cP

i+1cQ
i+1 + ... = 0 (2.42)

To get a linear system of equations all terms can be neglected except the first two.
This neglection is possible, because the term cP

i+1 is very small. This linear system
of equations can be written as equation 2.43.

KNP
i cP

i+1 = −FN
i (2.43)

In this equation

22

2.7 Non-linear analysis

KNP
i =

∂FN

∂uP (uM
i)

is the Jacobian matrix and

FN
i = FN(uM

i) .

The next approximation to the solution is then

uM
i+1 = uM

i + cM
i+1

and the iteration continues.

For further information the reader is referred to SIMULIA-DassaultSystémes, 2012

23

3 Summary of the appended paper

3.1 Title: A Proposed Failure Mechanism for Pulp
Fiber-Fiber Joints

3.2 Abstract

Due to stress concentration at the edges fiber-fiber bonds under load are known to
fail gradually, inwards from the edges. In this paper we propose a failure mechanism
for fiber-fiber joints under load, based on the peak stresses occurring at the bond
edges. We have modeled the mechanical testing of individual fiber-fiber joints under
different modes of loading using a FEM modeling framework. The model is based
on results of fiber-fiber joint strength tests designed to induce each of the three
failure modes in fracture mechanics: Mode 1 (opening), Mode 2 (shear) and Mode 3
(twisting). We carried out a parameter study of the peak load at the edges of the fibers
in order to identify a failure mechanism. The peak stresses were not directly taken
from the FEM models as these values are highly discretization-dependent. Instead
the peak stresses were estimated from resultant forces and moments in the bond and
an idealized geometry of the bonding region. The literature has up to now focused
on shear load as a failure mechanism for fiber fiber bonds. However, our findings
indicate that pulp fiber joints are sensitive to normal stresses and insensitive to shear
stresses. Hence, we suggest to utilize failure criteria related to normal stress in future
work.

3.3 Contribution to paper

• development of input script in Abaqus to model a fibre - fibre bond

25

3 Summary of the appended paper

• performance of all simulations
• evaluation and interpretation of numerical results in cooperation with M. Ulz
• formulation of submitted text to the journal Cellulose in cooperation with U.

Hirn and M. Ulz

26

Cellulose

A Proposed Failure Mechanism for Pulp Fiber-Fiber Joints
--Manuscript Draft--

Manuscript Number:

Full Title: A Proposed Failure Mechanism for Pulp Fiber-Fiber Joints

Article Type: Original Research

Keywords: failure criteria; interfiber joint strength; fiber-fiber bond; shear and normal stress

Corresponding Author: Manfred H Ulz
Graz University of Technology
Graz, AUSTRIA

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Graz University of Technology

Corresponding Author's Secondary
Institution:

First Author: Thomas Ebner

First Author Secondary Information:

Order of Authors: Thomas Ebner

Ulrich Hirn

Wolfgang J Fischer

Franz J Schmied

Robert Schennach

Manfred H Ulz

Order of Authors Secondary Information:

Abstract: Due to stress concentration at the edges fiber-fiber bonds under load are known to fail
gradually, inwards from the edges. In this paper we propose a failure mechanism for
fiber-fiber joints under load, based on the peak stresses occurring at the bond edges.

We have modeled the mechanical testing of individual fiber-fiber joints under different
modes of loading using a FEM modeling framework. The model is based on results of
fiber-fiber joint strength tests designed to induce each of the three failure modes in
fracture mechanics: Mode 1 (opening), Mode 2 (shear) and Mode 3 (twisting). We
carried out a parameter study of the peak load at the edges of the fibers in order to
identify a failure mechanism. The peak stresses were not directly taken from the FEM
models as these values are highly discretization-dependent. Instead the peak stresses
were estimated from resultant forces and moments in the bond and an idealized
geometry of the bonding region.

The literature has up to now focused on shear load as a failure mechanism for fiber-
fiber bonds. However, our findings indicate that pulp fiber joints are sensitive to normal
stresses and insensitive to shear stresses. Hence, we suggest to utilize failure criteria
related to normal stress in future work.

Suggested Reviewers: Tetsu Uesaka
Mid Sweden University
Tetsu.Uesaka@miun.se
expert in modeling pulp fibers

Mikael Magnusson
Innventia
mikael.magnusson@innventia.com
expert in modeling pulp fibers;former staff member of the Department of Solid

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

27

Mechanics, KTH Royal Institute of Technology, Sweden (see references)

Sören Östlund
KTH Royal Institute of Technology
soren@kth.se
expert in modeling pulp fibers

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

28

Cellulose manuscript No.
(will be inserted by the editor)

A Proposed Failure Mechanism for Pulp Fiber-Fiber Joints1

Thomas Ebner · Ulrich Hirn · Wolfgang J.2

Fischer · Franz J. Schmied · Robert Schennach ·3

Manfred H. Ulz4

5

Received: date / Accepted: date6

Abstract Due to stress concentration at the edges fiber-fiber bonds under load are known7

to fail gradually, inwards from the edges. In this paper we propose a failure mechanism for8

fiber-fiber joints under load, based on the peak stresses occurring at the bond edges.9

We have modeled the mechanical testing of individual fiber-fiber joints under different10

modes of loading using a FEM modeling framework. The model is based on results of11

fiber-fiber joint strength tests designed to induce each of the three failure modes in fracture12

mechanics: Mode 1 (opening), Mode 2 (shear) and Mode 3 (twisting). We carried out a13

parameter study of the peak load at the edges of the fibers in order to identify a failure14

mechanism. The peak stresses were not directly taken from the FEM models as these values15

are highly discretization-dependent. Instead the peak stresses were estimated from resultant16

forces and moments in the bond and an idealized geometry of the bonding region.17

The literature has up to now focused on shear load as a failure mechanism for fiber-18

fiber bonds. However, our findings indicate that pulp fiber joints are sensitive to normal19

stresses and insensitive to shear stresses. Hence, we suggest to utilize failure criteria related20

to normal stress in future work.21

Keywords failure criteria · interfiber joint strength · fiber-fiber bond · shear and normal22

stress23

T. Ebner · M. H. Ulz
Institute for Strength of Materials, Graz University of Technology, 8010 Graz, Austria
E-mail: manfred.ulz@tugraz.at

U. Hirn · W. J. Fischer
Institute for Paper, Pulp and Fiber Technology, Graz University of Technology, 8010 Graz, Austria

F. J. Schmied
Mondi, R&D Paper Europe & International, Theresienthalstrae 50, 3363 Ulmerfeld-Hausmening, Austria

R. Schennach
Institute of Solid State Physics, Graz University of Technology, 8010 Graz, Austria

T. Ebner · U. Hirn · W. J. Fischer · F. J. Schmied · R. Schennach
CD-Laboratory for Surface Chemical and Physical Fundamentals of Paper Strength, Graz University of Tech-
nology, 8010 Graz, Austria

Manuscript
Click here to download Manuscript: Paper.pdf
Click here to view linked References

29

2 Thomas Ebner et al.

1 Introduction24

The bonding strength between pulp fibers in paper is one of the key parameters determining25

the strength of the paper. It is not possible to measure fiber-fiber bond strength reliably from26

paper sheets because paper strength also depends on other factors like e.g. fiber length, fiber27

tensile strength, paper density and straining during drying of the sheet. Therefore, fiber-28

fiber bond strength is usually investigated by measuring the bond strength of individual29

fiber-fiber joints, compare Saketi and Kallio (2011), Fischer et al. (2012), Magnusson et al.30

(2013b), Schmied et al. (2012), Schniewind et al. (1964). It might be intuitive to think that31

the strength (i.e. the breaking load in N) of a fiber-fiber joint is composed of a specific bond32

strength (bonding force per unit area, N/m2) times the bonded area (in m2) of the fiber-fiber33

joint. This, however, is not the case. Stress concentrations occur at the edges of the bonding34

area (Button (1979), Uesaka (1984), Page (2002)) which leads to a progressive failure of the35

fiber-fiber bonds. This progressive failure has also been observed in fiber-fiber joint testing,36

where sudden drops in loading force indicate local failure of the bond. Please refer to Uesaka37

(1984), Magnusson et al. (2013c) and specifically to Schmied et al. (2013).38

There is considerable evidence that failure in paper also occurs due to progressive failure39

of fiber-fiber bonds. Nordman et al. (1952) found that the light scattering coefficient of paper40

increases upon straining. The increase in light scattering can be attributed to new surface area41

created in the paper due to the separation of previously bonded fiber regions (Page, 2002).42

Investigations of fiber-fiber bonds in paper using polarized light microscopy have shown43

that the bonds indeed fail progressively, under dynamic load (Page et al., 1962) as well as44

under constant load, i.e. creep testing (DeMaio et al., 2006).45

It is the aim of this work to propose a key mechanism of fiber-fiber bond failure based46

on the peak stresses occurring at the edges of the bonds. Progressive failure is always ini-47

tiated by the peak stresses in the structure. Therefore failure theories give a criterion for48

yield or fracture in the material by providing a scalar representation of a multiaxial state49

of stress, i.e. the normal- and shear stress are combined into a single value (Brinson and50

Brinson, 2008, Pruitt and Chakravartula, 2011). It is important to understand that in many51

respects the behavior of pulp fibers is fundamentally different from classical engineering52

materials: typically, pulp fibers possess a sophisticated hierarchical micro-structure (Bodig53

and Benjamin, 1993). Therefore, classical failure theories may not directly apply. Collagen,54

like pulp fibers, is a viscoelastic, fibril based biomaterial. It is well researched, because of its55

relevance regarding defects and surgery of blood vessels. Still, no conclusive failure mech-56

anism has been worked out for this material, although several different failure mechanisms57

have been discussed, compare Gasser (2011) and also Wang et al. (1997). Recently a com-58

prehensive Finite Element Method (FEM) framework to model the behavior of fiber-fiber59

joints during mechanical testing was presented by Magnusson et al. (2013c). The work fo-60

cused on resultant forces and moments in the bonding regions and did not consider local61

stress concentrations. Based on that they discussed a failure criterion according to which the62

bonds are more sensitive to shear load than to normal load. For further work they recom-63

mended incorporation of local stress variations, e.g. by cohesive zone modeling. In a recent64

review (Da Silva and Campilho, 2012) on cohesive zone modeling, several different fail-65

ure models are discussed for fiber-based composites, the results there also do not permit a66

general recommendation for the case of pulp fibers.67

In this work we will propose a key mechanism of pulp fiber-fiber bond failure based on68

the analysis of peak stresses inferred from FEM models of fiber-fiber bond mechanical test-69

ing. We have conducted three different types of fiber-fiber bond strength measurements, each70

one designed to predominantly load the fiber-fiber joint in one of the three fracture modes,71

30

A Proposed Failure Mechanism for Pulp Fiber-Fiber Joints 3

compare Figure 1. The parameters for the FEM models are taken from the experiments and72

the literature, compare Magnusson et al. (2013c). Several parameters that represent the char-73

acteristic features of the pair of bonded fibers are defined. These are fiber thickness t, fiber74

width w, fiber fibril angle ψ and crossing angle φ of the fiber-fiber joint. These parameters75

are varied in physically meaningful ranges in a parameter study for three different types of76

loading, which correspond to mode 1, mode 2 and mode 3 type of fracture modes. The ap-77

plied loading in the numerical model is taken from the corresponding experimental results78

at rupture. For each parameter set and type of loading, the arising resultant shear and nor-79

mal forces as well as the resultant peeling, twisting and tearing moments in the bond region80

are obtained with the help of a FEM model in Abaqus (2012). These resultant forces and81

moments allow to compute estimated normal and shear stress distributions in the interfiber82

joint based on a simplified model of the fiber-fiber joint geometry. Based on that, we can83

identify peak values for normal and shear stress for each parameter set.84

The paper is organized as follows. Section 2 describes the experiments on fiber-fiber85

joints and provides the experimentally obtained parameters for the FEM model. Section86

3 shows the FEM discretization and the computation of the estimated normal and shear87

stress distributions in the bonding region. Section 4 presents the obtained peak stresses for88

the three types of loading. Our results show a surprising behavior: while the obtained peak89

values for normal stress are within the same range for the three types of loading, the peak90

values for shear stress are clearly in different ranges. This suggests that normal stress plays91

an important role in the failure of pulp fiber-fiber bonds.92

2 Experimental evaluation93

In fracture mechanics three different modes of progressive failure are known, Figure 1.94

Cracks may propagate in the plane perpendicular to normal stress (Mode 1, peeling), in the95

plane with shear stresses with the crack line perpendicular to the stresses (Mode 2, shearing)96

or in the plane with shear stress with the crack line parallel to the shear stress (Mode 3,97

tearing). In single fiber testing we have performed experiments to specifically address these98

different failure modes.99

(a) Mode 1 (peeling) (b) Mode 2 (shearing) (c) Mode 3 (tearing)

Fig. 1 Illustration of the three modes of fracture mechanics.

For this work the experimental setup is shown in Figure 2. The setup in Figure 2(a)100

creates predominantly Mode 1 load, the setup in Figure 2(b) creates predominantly Mode 2101

31

4 Thomas Ebner et al.

load and the setup in Figure 2(c) creates predominantly Mode 3 load. The details for the102

experimental procedure for Mode 1 are described by Schmied et al. (2012) and for Modes103

2 and 3 by Fischer et al. (2012). Please note that the configurations shown in Figure 2 do104

not create pure loadings according to Mode 1, 2 and 3. Due to the curved geometry of the105

fibers, fiber twisting during the experiment and the tilting of the fibril angle to the fiber axis106

there is a large amount of peeling-, twisting- and tearing load on the bonding region in all107

three experiments. For a detailed analysis of this question please refer to Magnusson et al.108

(2013c,a).109

(a) Mode 1 (peeling)

F

Ø

(b) Mode 2 (shearing)

F

Ø

(c) Mode 3 (tearing)

Fig. 2 The experimental setup for the three modes.

The geometry of the specimens were captured by micrographs. Furthermore, the ap-110

plied force at rupture was measured. As the individual pairs of bonded fibers differ strongly,111

mean values were reported. The mean fiber width is found to be 32.00µm and the mean112

fiber thickness equals 7.45µm. The experimentally obtained mean force in Mode 1 equals113

0.33mN, see Schmied et al. (2013). The mean force for Mode 2 is 6.45mN and for Mode 3114

it is 1.06mN, see Fischer et al. (2012).115

3 Structural analysis using a finite element model116

3.1 Geometric discretization, material behavior and loading117

The cell wall of pulp fibers consists of four major layers. These are the primary wall and118

three secondary layers (S1,S2,S3) as shown in Figure 3. All layers are composed of cellulose,119

hemicellulose and lignin in varying composition (Bodig and Benjamin, 1993). Furthermore,120

each secondary layer shows a micro-fibril wrapped helically along the fiber at a specific121

angle. The fiber’s cell wall is made up to 80-85% of the S2 layer (Page, 1969a) and it is122

commonly assumed in the literature that this layer has the highest influence on the fiber’s123

mechanical behavior (e.g. Magnusson and Östlund (2013)). Therefore, the pulp fiber will be124

modeled by the S2 layer only.125

The objective of this work is to develop a numerical model of a pair of bonded fibers,126

which keeps the principled characteristics, but neglects superfluous details. Each real pair of127

32

A Proposed Failure Mechanism for Pulp Fiber-Fiber Joints 5

Primary wall

S1 layer

S2 layer

S3 layer

Fig. 3 The layered structure of a single pulp fiber.

bonded fibers is unique. It will differ from any other pair in terms of geometry and material128

properties. Therefore, a system that is reduced to a minimal set of parameters is chosen to129

study the distinct influence of the model parameters. The fiber-fiber cross is modeled by two130

straight beams, which is tantamount to neglecting the curvature and the twist along the fiber131

direction (Seth, 2006). The model parameters are chosen to be the width w, the thickness t132

and the fibril angle ψ of the fibers, Figure 4. Furthermore, the crossing angle φ of both fibers133

is investigated, Figure 2(b,c).134

The fibers are considered as fully collapsed volumetric bodies. The cross section of135

the idealized fiber model is given in Figure 4. Each fiber consists of two parts with the136

micro-fibril pointing in opposite directions in each part. If the upper part shows an angle of137

ψ = 30◦, then the lower part has −30◦. The micro-fibril angle is expected to be constant138

along the fiber length. Furthermore, the length of the fibers is taken to be 1mm, in close139

agreement with the previously described experiments. In all performed computations the140

loaded fiber is positioned right in the middle of the fixed fiber.

t

w
ψ

Fig. 4 Cross section and geometry of the idealized fiber structure.

33

6 Thomas Ebner et al.

The material behavior of the fiber (modeled by the S2 layer only) is chosen to be trans-141

versely isotropic in the model. This material law considers the effect of the micro structure142

of the fiber. The micro-fibrils act as a reinforcement in the matrix of lignin and hemicellu-143

lose. The axis of transverse isotropy is aligned with the direction of the micro-fibril. The144

material constants as used in the simulation are shown in Table 1. The modulus of elasticity145

E1 = 30GPa is chosen as an average of the data given in Magnusson and Östlund (2013).146

It has to be mentioned that the material properties of the S2 layer are subject to wide varia-147

tions (Groom et al., 1995, Neagu et al., 2004, Page et al., 1977). Furthermore, the fibers will148

show viscoelastic material behavior in reality. As there is no material data available for this149

behavior, we assume the fiber to behave according to the previously described anisotropic150

elastic model.

Coefficient E1 E2 = E3 G12 = G13 G23 ν12 = ν13 ν23

Value E1
E1
11

E1
23

E2
2(1+ν23)

0.022 0.39

Table 1 Material constants of the cell wall. Taken from Magnusson and Östlund (2013).

151

Three different modes of loading were tested according to the experiments described152

in Section 2. The three models of the various modes, their boundary conditions and the153

direction of the applied force can be seen in Figure 2. In mode 2 and 3 the load is applied154

in x-direction. If the crossing angle φ is different to 90◦ and thereby the axis of the loaded155

fiber is not aligned to the x-direction, then the force is still applied in x-direction. In mode156

1 the applied force points into the negative y-direction. We assume the load to rupture the157

bonding region to be much smaller than the load to plastically deform (or even rupture) the158

fiber (Burgert et al., 2003). Hence, the bonding region is the predetermined breaking point159

of the structure.160

3.2 Finite element discretization161

The commercial FEM software Abaqus (2012, version 6.11-2) and its scripting interface in162

Python is used to perform the simulations (non-linear quasi-static FEM model). The pair163

of bonded fibers is discretized using a mesh consisting of 8-noded hexahedral elements164

with reduced integration (C3D8R in the Abaqus element library). A mesh size dependency165

check is performed and the elements’ size is chosen to render the deviation in the results of166

Section 5 to be practically insignificant.167

The FEM model assumes the contact area to be fully bonded, which is unlikely for real168

bonded fibers. Regions close to the edge of the bonding region or even in the interior of169

the bonding region may not be molecularly bonded (Page, 1960, Kappel et al., 2009). It is170

discussed in Torgnysdotter et al. (2007a,b) that the degree of contact is of great importance171

for the maximum stress in the bonding region. Recent results suggest that usually there is172

a high degree of bonding between fiber surfaces (Hirn et al., 2013), thus for simplification173

we neglect possible flaws in the bonding. Furthermore, we assume that the contact zone174

does not change before rupture. As a result, the two surfaces of the fibers in contact are tied175

to each other by a surface-to-surface contact discretization (tie constraints in Abaqus). An176

example of the meshed pair of bonded fibers is given in Figure 5.177

34

A Proposed Failure Mechanism for Pulp Fiber-Fiber Joints 7

Fig. 5 Finite element model of the fiber-fiber bond.

3.3 Resultant forces and moments in the bonding region178

The applied loading causes resultant reaction forces and moments in the bonding region
(compare with the similar treatment in Magnusson and Östlund (2013)). These are described
in a local coordinate system, the origin of which is defined at the centroid of the interface
region. As already shown in Figure 2, the y-axis is defined by the outward unit normal, z is
defined in direction of the fixed fiber, and x is orthogonal to the previous two directions. The
resultant reaction forces and moments in coordinate directions are computed from the nodal
forces (NFORC in Abaqus). The quantities Ni,Qxi and Qzi are the nodal forces at node i (for
n nodes in the bonding region) in y-. x- and z-direction, respectively. The resultant reaction
forces are computed as

N =
n

∑
i=1

Ni, Qx =
n

∑
i=1

Qxi, Qz =
n

∑
i=1

Qzi. (1)

The resultant moments in the local coordinate system are found as

Mx =
n

∑
i=1

−zi ·Ni, Mz =
n

∑
i=1

xi ·Ni, My =
n

∑
i=1

zi ·Qxi − xi ·Qzi. (2)

The quantities xi and zi are the perpendicular distances of the nodal forces to the origin of179

the coordinate system. Figure 6 gives a visualization of the resultant forces and moments in180

the bonding region.181

4 Resultant stresses in the bonding region182

Although it may appear straightforward, the peak stresses extracted directly from the FEM183

model of the fiber-fiber joints need to be treated with care, for a detailed discussion on this184

topic please refer to Da Silva and Campilho (2012). The peak stresses are typically found185

close to the stress discontinuities of the model, i.e. sharp corners or interfaces with different186

material properties. In our case this is where the rounded edge of one fiber touches the187

surface of the other fiber, compare Figure 5. The magnitude of the peak stresses in the FEM188

model strongly depend on how well the stress field is modeled around these discontinuities,189

specifically it is very sensitive to both the mesh size used and the considered geometrical190

details in the model. In particular, the latter cannot be appropriately met in any simplified191

fiber-fiber model. Therefore, we refrain from extracting the peak stresses directly from the192

model.193

Instead we apply the resulting forces and moments (as described in the previous sec-194

tion) to estimate the peak stresses using an idealized model of the bonding region. We are195

35

8 Thomas Ebner et al.

x

Mz

MxQres

N

My

z

y

Fig. 6 Resultant forces and moments in the bonding region. Qres =
√

Qx
2 +Qz

2.

simplifying the actual stress situation in fiber-fiber joints by neglecting local unbonded re-196

gions and irregularities in the fiber geometries. We are aware that these simplifications lead197

to deviations from the reality in terms of absolute stresses. It is, however not our goal to198

correctly model the absolute values of the peak stresses or fit the experimental results to the199

FEM model. Instead we want to extract the general behavior of the peak stresses and the re-200

lation between shear- and normal stresses. We obtain this generalization on the one hand by201

simplifying the geometry of the model and on the other hand by varying the parameters for202

fiber-fiber bond configurations in a wide range, compare Table 2. Nevertheless, we would203

like to point out that the simplification only relates to the rectangular geometry of the bond-204

ing zone and the negligence of edge effects creating stress discontinuities, the calculation205

of the stresses follows standard procedures in mechanics. In conclusion the presented ap-206

proach computes idealized stress distributions (constant for tensile and shear loading, linear207

for bending and torsion) and obtains a single estimated peak value for the normal stress and208

a single estimated peak value for the shear stress for each pair of fibers. This allows for an209

easy comparison of very different geometrical settings.210

The interface region between the fibers in a joint is defined by the area A of the bonding
region, the second area moment of inertia I for bending and the polar section modulus Wp
for torsion. As can be seen in Figure 4 the length of the bonding region has the value w− t.
We find for two orthogonal fibers (crossing angle φ = 90◦)

A = (w− t)2, I =
(w− t)3 · (w− t)

12
, Wp = 0.208 · (w− t)3. (3)

The presented formula for Wp is only valid for a square section area (Grote and Feldhusen,211

2011). If the crossing angle φ is different to 90◦, the bonding region A changes to a rhom-212

boid. For this case the area A and the second area moments of inertia I1, I2 are analytically213

and the torsion constant Wp is numerically computed for principal axes.214

The estimated normal stress distribution according to the resultant normal force is con-
stant

σN =
N
A
. (4)

36

A Proposed Failure Mechanism for Pulp Fiber-Fiber Joints 9

Next, the contribution to the normal stress due to bending for orthogonal fibers is computed
as

σB =
Mz

I
· x− Mx

I
· z. (5)

If the crossing angle φ is different to 90◦, σB is set up in principal axes. The total normal
stress distribution is given as

σres = σN +σB (6)

and is visualized in Figure 7. The maximum of the total normal stress may be obtained by215

computing its value at the corresponding corner of the bonding region.

z

x

y

(a) normal stress

z

x

y

(b) bending stress about the x-axis

z

x

y

(c) bending stress about the z-axis

Fig. 7 Components of normal stress.

216

The estimated shear stress distribution according to the resultant shear forces is assumed
to be constant over the bonding region

τQres =
1
A

√
Q2

x +Q2
z . (7)

Furthermore, the maximum shear stress due to torsion is computed as

τT =
My

Wp
. (8)

If the crossing angle φ is different to 90◦, τT is numerically computed. The maximum value
of the total shear stress is found as

τres = τQres + τT (9)

and is visualized in Figure 8.217

t [µm] w [µm] ψ [◦] φ [◦]
range 4.65 - 10.25 25.20 - 45.60 0 - 45 60 - 120

increments 0.70 3.40 5 5

Table 2 Ranges of modified parameters.

37

10 Thomas Ebner et al.

z

x

y

(a) shear stress in x-direction

z

x

y

(b) shear stress in z-direction

z

x

y

(c) torsional shear stress about
the y-axis

Fig. 8 Components of shear stress.

5 Results, Discussion and Conclusions218

The obtained peak values for normal and shear stresses for each parameter set and type219

of loading are collected and presented in Figure 9. The range of the varied parameters are220

listed in Table 2. The applied load is taken according to Section 2. Furthermore, a depen-221

dency check on the applied load, Young’s modulus and Poisson’s ratio (compare Table 1) is222

performed by varying a single quantity and keeping the remaining parameters unchanged.223

The results were essentially equivalent to Figure 9, thus we refrained from reproducing them224

here.225

Our results show that the obtained peak values for normal stress are within the same226

range for all three types of loading, while the peak values for shear stress are found in227

different ranges (compare Figure 9). Please note that the fiber bond testing setups specifically228

designed to apply shear forces to the fiber-fiber bond (Mode 2 and 3 in figure 2, M2 and229

M3 in figure 9) have the same - or even higher peak normal stresses - like the Mode 1230

configuration. Our findings thus lead to a new interpretation of the single fiber-fiber testing231

experiments described in the literature. The intuitive explanation that the different setups232

lead to different failure modes is not plausible anymore, instead we suggest that in all three233

types of experiments the bonds fail due to normal stresses, i.e. Mode 1 failure.234

Material failure strongly depends on whether the material microstructure renders it duc-235

tile, brittle, or semi-brittle (Bartenev and Zuyev, 1968, Collins, 1981, Pruitt and Chakravar-236

tula, 2011). While ductile materials yield before failure, brittle materials will instantly frac-237

ture. A semi-brittle system shows a small amount of plastic deformation prior to failure.238

Metals are commonly considered as ductile (Tresca or von Mises failure criterion), ceram-239

ics as brittle (normal stress failure criterion) and polymers or tissues range somewhere in240

between. The mechanical behavior of macromolecular structures is known to depend on241

many variables in a complex manner: chain chemistry, configuration and length; molecu-242

lar weight distribution; strain rate; local loading conditions; etc. (Pruitt and Chakravartula,243

2011). However, our findings suggest that the fiber-fiber joint is more likely to be sensitive244

to normal loading than shear loading. Furthermore, this allows us to conclude that the failure245

criterion of fiber-fiber joints should be related to normal stress.246

Finally, the ideas presented in this paper have the potential to shift the understanding247

of how the fiber-fiber bonds in paper are failing. The fibers in paper under tensile load are248

subjected to shear stress, because they are aligned predominantly in the paper plane. That249

has intuitively lead to the idea that the shear stresses are responsible for the paper failure.250

Also the most common theory on paper tensile strength, the equation of Page (1969b), em-251

ploys shear stress as the key mechanism for fiber-fiber bond strength. As a consequence,252

38

A Proposed Failure Mechanism for Pulp Fiber-Fiber Joints 11

0 10 20

0

10

20

30

40

50

60

70

80

core of M1

core of M2

core of M3

normal stress [MPa]

s
h
e
a
r

s
tr

e
s
s
 [
M

P
a
]

M1 ψ
M1 t

M1 w

M1 φ
M2 ψ
M2 t

M2 w

M2 φ
M3 ψ
M3 t

M3 w

M3 φ

Fig. 9 Peak values of normal and shear stress of parameter study (M1 . . . mode 1, M2 . . . mode 2, M3 . . .
mode 3). For each mode a “core region” of the estimated peak stresses can be identified in the plane of normal
stress and shear stress.

usually shear load is regarded to be the tensile failure mechanism in paper, also compare253

Page (2002). The present results, however, suggest that Mode 1 failure may be predominant254

in fiber-fiber bonds which is a new perspective on the mechanical failure of paper under255

tensile load.256

Conflict of Interest Statement257

The authors declare that they have no conflict of interest.258

39

12 Thomas Ebner et al.

References259

Abaqus FEA. 2012. Abaqus/CAE User’s Manual. Dassault Systémes.260

Bartenev GM and Zuyev YS. 1968. Strength and failure of visco-elastic materials. (Oxford:261

Pergamon Press Ltd.).262

Bodig J and Benjamin AJ. 1993. Mechanics of wood and wood composites. (Florida:263

Krieger Publishing Company).264

Brinson HF and Brinson LC. 2008. Polymer engineering science and viscoelasticity: an265

introduction. (New York: Springer).266

Burgert I, Frühmann K, Keckes J, Fratzl P, and Stanzl-Tschegg SE. 2003. Microtensile267

testing of wood fibers combined with video extensometry for efficient strain detection.268

Holzforschung, 57:661–664.269

Button AF. Fiber-fiber bond strength: a study of a linear elastic model structure. PhD thesis,270

IPST, Georgia Institute of Technology, 1979.271

Collins JA. 1981. Failure of materials in mechanical design: analysis, prediction, preven-272

tion. (New York: John Wiley & Sons, Inc.).273

Da Silva LFM and Campilho RDSG. 2012. Advances in numerical modelling of adhesive274

joints. SpringerBriefs in Applied Sciences and Technology. (Berlin: Springer).275

DeMaio A, Lowe R, Patterson T, and Ragauskas A. 2006. Direct observations of bonding276

influence on the tensile creep behavior of paper. Nordic Pulp & Paper Research Journal,277

21(3):297–302.278

Fischer W, Hirn U, Bauer W, and Schennach R. 2012. Testing of individual fiber-fiber279

joints under biaxial load and simultaneous analysis of deformation. Nordic Pulp & Paper280

Research Journal, 27:237–244.281

Gasser C. 2011. An irreversible constitutive model for fibrous soft biological tissue: A 3-d282

microfiber approach with demonstrative application to abdominal aortic aneurysms. Acta283

Biomaterialia, 7(6):2457–2466.284

Groom LH, Shaler SM, and Mott L. Characterizing micro and macromechanical properties285

of single wood fibres. In International Paper Physics Conference, Niagara-on-the-Lake,286

pages 11–14, 1995.287

Grote KH and Feldhusen J. 2011. Dubbel. (Berlin: Springer Verlag), 23 edition.288

Hirn U, Schennach R, Ganser C, Magnusson M, Teichert C, and Östlund C. Trans. of289

the 15th Fundamental Research Symposium, Cambridge, chapter The area in molecular290

contact in fiber-fiber bonds, pages 201–226. 2013. ISBN 978-0-9926163-0-4.291

Kappel L, Hirn U, Bauer W, and Schennach R. 2009. A novel method for the determination292

of bonded area of individual fiber-fiber bonds. Nordic Pulp & Paper Research Journal,293

24:199–244.294

Magnusson MS and Östlund S. 2013. Numerical evaluation of interfibre joint strength295

measurements in terms of three-dimensional resultant forces and moments. Cellulose,296

20:1691–1710.297

Magnusson MS, Fischer JW, Östlund S, and Hirn U. Interfibre joint strength under peel-298

ing, shearing and tearing types of loading. In Trans. of the 15th Fundamental Research299

Symposium, Cambridge, pages 103–124, 2013a.300

Magnusson MS, Zhang X, and Östlund S. 2013b. Experimental evaluation of the interfibre301

joint strength of papermaking fibres in terms of manufacturing parameters and in two302

different loading directions. Experimental Mechanics. DOI 10.1007/s11340-013-9757-y.303

Magnusson MS, Zhang X, and Östlund S. 2013c. Experimental evaluation of the interfibre304

joint strength of papermaking fibres in terms of manufacturing parameters and in two305

different loading directions. Experimental Mechanics, 53:1621–1634.306

40

A Proposed Failure Mechanism for Pulp Fiber-Fiber Joints 13

Neagu RC, Gamstedt EK, and Lindström M. 2004. Influence of wood-fibre hygroexpansion307

on the dimensional instability of fibre mats and composites. Composites Part A, 36:772–308

788.309

Nordman L, Gustafsson C, and Gustafsson G. 1952. On the strength of bondings in paper.310

Paperi ja Puu, 3:47.311

Page DH. 1960. Fibre-to-fibre bonds part 1 - a method for their direct observation. Paper312

Technology, 1:407–411.313

Page DH. 1969a. A method for determining the fibrillar angle in wood tracheids. Journal314

of Microscopy, 90:137–143.315

Page DH. 1969b. A theory for the tensile strength of paper. Tappi J., 52(4):674–681.316

Page DH. 2002. The meaning of nordman bond strength. Nordic Pulp & Paper Research317

Journal, 17(1):39–44.318

Page DH, Tydeman PA, and Hunt M. A study of fibre-to-fibre bonding by direct observation.319

In Fund. Res. Symp 1961, The formation and structure of paper, volume 1, pages 171–320

194. 1962.321

Page DH, El-Hosseiny F, Winkler F, and Lancaster APS. 1977. Elastic modulus of single322

wood pulp fibres. Tappi Journal, 60:114–117.323

Pruitt LA and Chakravartula AM. 2011. Mechanics of biomaterials: fundamental principles324

for implant design. (Cambridge: Cambridge University Press).325

Saketi P and Kallio P. Microrobotic platform for making, manipulating and breaking individ-326

ual paper fiber bonds. In IEEE International Symposium on Assembly and Manufacturing327

(ISAM), pages 1–6, 2011.328

Schmied F, Teichert C, Kappel L, Hirn U, and Schennach R. 2012. Joint strength measure-329

ments of individual fiber-fiber bonds an atomic force microscopy based method. Review330

of scientific instruments, 83:073902–1 – 073902–8. http://dx.doi.org/10.1063/1.4731010.331

Schmied F, Teichert C, Kappel L, Hirn U, Bauer W, and Schennach R. 2013. What holds332

paper together: Nanometre scale exploration of bonding between paper fibres. Scientific333

Reports, 3:2432 1–6. http://dx.doi.org/10.1038/srep02432.334

Schniewind AP, Nemeth LJ, and Brink DL. 1964. Fiber and Pulp Properties - I. Shear335

Strength of single Fiber Crossings. Tappi J., 47:244–248.336

Seth RS. 2006. The importance of fibre straightness for pulp strength. Pulp & Paper337

Canada, 107:34–42.338

Torgnysdotter A, Kulachenko A, Gradin P, and Wågberg L. 2007a. Fiber/fiber crosses: Finite339

element modeling and comparison with experiment. Journal of Composite Materials, 41:340

1603–1618.341

Torgnysdotter A, Kulachenko A, Gradin P, and Wågberg L. 2007b. The link between the342

fiber contact zone and the physical properties of paper: A way to control paper properties.343

Journal of Composite Materials, 41:1619–1633.344

Uesaka T. Handbook of physical testing of paper, chapter Determination of fiber-fiber bond345

properties, pages 379–402. CRC Press, 1984.346

Wang JL, Parnianpour M, Shirazi-Adl A, and Engin A E. 1997. Failure criterion of collagen347

fiber: viscoelastic behavior simulated by using load control data. Theoretical and Applied348

Fracture Mechanics, 27:1–12.349

41

4 Appendix

The code was written by the author. Based on preliminary work done by Peter
Oswald and the book Puri, 2011

4.1 Source code for modelling fibre-fibre joints

#

parameters [mm bzw. TPa bzw. mikroN]

#

geometry adhesive part

AdhesiveThickness =0.00001 # model behavior of adhesive joints

Results in article ‘‘A Proposed Failure

Mechanism for Pulp Fiber -Fiber Joints ‘‘are

calculated without cohesive elements

geometry fixed fiber

FixedFiberWidth =0.032

FixedFiberThickness =0.00745/2

FixedFiberLength =1.0

FixedFiberFibrilAngle =10

geometry strained fiber

StrainedFiberWidth =0.032

StrainedFiberThickness =0.00745/2

StrainedFiberLength =1.0

StrainedFiberOverhang=StrainedFiberLength /2

StrainedFiberFibrilAngle =10

connection

AngelFiber =90 # encolsing angle of fibers

DistanceFiber=FixedFiberLength /2 #position of the strained fiber

Mesh

43

4 Appendix

MeshSize =0.01

MinMeshSize =0.1

deviationFactor =0.1

Fiber Material Properties

FiberElasticModuli1 =30000000000

FiberElasticModuli2=FiberElasticModuli1 /11

FiberElasticModuli3=FiberElasticModuli1 /11

FiberPoissonsRatio1 =0.022

FiberPoissonsRatio2 =0.022

FiberPoissonsRatio3 =0.39

FiberShearModuli1=FiberElasticModuli1 /23

FiberShearModuli2=FiberElasticModuli1 /23

FiberShearModuli3=FiberElasticModuli2 /(2*(1+ FiberPoissonsRatio3))

Adhesive Material Properties

GTC=7

deltaratio =0.0005

deltafail =0.00005* MeshSize

Keff =2*GTC/(deltaratio*deltafail*deltafail)

QuadeDamage =50

DamageEnergie =300

Force

R_Force = 0.0005 # defines the force application area

R_Force2 = 0.0025

Center_Distance = (FixedFiberWidth /2 + 0.003)/sin(AngelFiber*pi /180)

Force =0.000330 * 1000000

AngelForce=AngelFiber # AngelForce is 90 or AngelFiber

FiberJob_name = ’FiberJob_FA120_MODE1_V_L2 ’ # Abaqus Job name

--

from abaqus import *

from abaqusConstants import *

session.viewports[’Viewport: 1’]. makeCurrent ()

session.viewports[’Viewport: 1’]. maximize ()

session.journalOptions.setValues(replayGeometry=COORDINATE ,

recoverGeometry=COORDINATE)

from caeModules import *

from driverUtils import executeOnCaeStartup

executeOnCaeStartup ()

Mdb()

44

4.1 Source code for modelling fibre-fibre joints

mdb.models.changeKey(fromName=’Model -1’, toName=’Fiber -Fiber Joint ’)

fiberModel = mdb.models[’Fiber -Fiber Joint ’]

#

define Material Properties

#

Adhesive Material:

adhesiveMaterial = fiberModel.Material(name=’AdhesiveMaterial ’)

adhesiveMaterial.Elastic(type=TRACTION , table =((Keff , Keff , Keff),))

adhesiveMaterial.QuadeDamageInitiation(table =((QuadeDamage , QuadeDamage ,

QuadeDamage),))

adhesiveMaterial.quadeDamageInitiation.DamageEvolution(

type=ENERGY , modeMixRatio=TRACTION , table =((DamageEnergie ,),))

Fiber Composite Material:

fiberMaterial = fiberModel.Material(name=’FiberCompositeMaterial ’)

fiberMaterial.Elastic(type=ENGINEERING_CONSTANTS , table =((

FiberElasticModuli1 , FiberElasticModuli2 , FiberElasticModuli3 ,

FiberPoissonsRatio1 , FiberPoissonsRatio2 , FiberPoissonsRatio3 ,

FiberShearModuli1 , FiberShearModuli2 , FiberShearModuli3) ,))

Fiber Composite Material Isotrop:

fiberMaterial_iso = fiberModel.Material(name=’FiberCompositeMaterial_iso ’)

fiberMaterial_iso.Elastic(table =((FiberElasticModuli1 , 0.3),))

#

create "Adhesive Part"

#

AdhesiveSketch = fiberModel.ConstrainedSketch(name=’AdhesiveSketch ’, sheetSize

=100)

g, v, d, c = AdhesiveSketch.geometry , AdhesiveSketch.vertices , AdhesiveSketch.

dimensions , AdhesiveSketch.constraints

AdhesiveSketch.setPrimaryObject(option=STANDALONE)

AdhesiveSketch.Line(point1 =(0.0, 0.0), point2 =(0.0 , FixedFiberWidth -2*

FixedFiberThickness))

AdhesiveSketch.Line(point1 =(0, FixedFiberWidth -2* FixedFiberThickness), point2

=(StrainedFiberWidth -2* StrainedFiberThickness , FixedFiberWidth -2*

FixedFiberThickness))

AdhesiveSketch.HorizontalConstraint(entity=g.findAt (((StrainedFiberWidth -2*

StrainedFiberThickness)/2, FixedFiberWidth -2* FixedFiberThickness)),

addUndoState=False)

AdhesiveSketch.Line(point1 =(StrainedFiberWidth -2* StrainedFiberThickness ,

FixedFiberWidth -2* FixedFiberThickness), point2 =(StrainedFiberWidth -2*

StrainedFiberThickness , 0.0))

AdhesiveSketch.Line(point1 =(StrainedFiberWidth -2* StrainedFiberThickness , 0.0),

point2 =(0.0 , 0.0))

AdhesiveSketch.HorizontalConstraint(entity=g.findAt (((StrainedFiberWidth -2*

StrainedFiberThickness)/2, 0.0)), addUndoState=False)

AdhesiveSketch.ParallelConstraint(entity1=g.findAt ((0, (FixedFiberWidth -2*

FixedFiberThickness)/2)), entity2=g.findAt ((StrainedFiberWidth -2*

StrainedFiberThickness , (FixedFiberWidth -2* FixedFiberThickness)/2)))

45

4 Appendix

AdhesiveSketch.FixedConstraint(entity=v.findAt ((0.0, 0.0)))

AdhesiveSketch.DistanceDimension(entity1=g.findAt ((0.0, (FixedFiberWidth -2*

FixedFiberThickness)/2)),

entity2=g.findAt ((StrainedFiberWidth -2*

StrainedFiberThickness , (FixedFiberWidth

-2* FixedFiberThickness)/2)),

textPoint =(0.02 , 0.03), value=

StrainedFiberWidth -2*

StrainedFiberThickness)

AdhesiveSketch.DistanceDimension(entity1=g.findAt (((StrainedFiberWidth -2*

StrainedFiberThickness)/2, FixedFiberWidth -2* FixedFiberThickness)),

entity2=g.findAt (((StrainedFiberWidth -2*

StrainedFiberThickness)/2, 0.0)),

textPoint =(0.05 , 0.01),value=FixedFiberWidth

-2* FixedFiberThickness)

AdhesiveSketch.AngularDimension(line1=g.findAt ((0.0, (FixedFiberWidth -2*

FixedFiberThickness)/2)),

line2=g.findAt (((StrainedFiberWidth -2*

StrainedFiberThickness)/2, 0.0)),

textPoint =(0.05 , 0.05), value=AngelFiber)

AdhesivePart = fiberModel.Part(name=’Adhesive ’, dimensionality=THREE_D , type=

DEFORMABLE_BODY)

AdhesivePart.BaseSolidExtrude(sketch=AdhesiveSketch , depth=AdhwsiveThickness)

v1 = AdhesivePart.vertices

d1 = AdhesivePart.datums

f1=AdhesivePart.faces

AdhesivePart.DatumPointByMidPoint(point1=v1[0], point2=v1[5])

AdhesivePart.DatumPointByOffset(point=d1[2], vector =(0, -(FixedFiberWidth -2*

FixedFiberThickness)/2, 0.05))

AdhesivePart.DatumPointByOffset(point=d1[2], vector =(0, -(FixedFiberWidth -2*

FixedFiberThickness)/2, -0.05))

AdhesivePart.DatumPlaneByThreePoints(point1=d1[3], point2=d1[2], point3=d1[4])

AdhesivePart.DatumAxisByTwoPoint(point1=d1[4], point2=d1[3])

AdhesivePart.DatumPlaneByRotation(plane=f1.findAt(coordinates =((

StrainedFiberWidth -2* StrainedFiberThickness)/2, 0,

AdhwsiveThickness /2)), axis=d1[6], angle =-(90- AngelFiber))

AdhesivePart.DatumPlaneByOffset(plane=d1[7], point=d1[2])

#

create one half of the fixed Fiber

#

fixedFiberSketch = fiberModel.ConstrainedSketch(name=’fixedFiberSketch ’,

sheetSize =100)

46

4.1 Source code for modelling fibre-fibre joints

fixedFiberSketch.rectangle(point1 =(0, 0), point2 =(FixedFiberWidth ,

FixedFiberThickness))

fixedFiberPart = fiberModel.Part(name=’fixed Fiber Half’, dimensionality=

THREE_D ,

type=DEFORMABLE_BODY)

fixedFiberPart.BaseSolidExtrude(sketch=fixedFiberSketch , depth=

FixedFiberLength)

fixedFiberPart.Round(radius=FixedFiberThickness , edgeList =(fixedFiberPart.

edges[1], fixedFiberPart.edges [5]))

#

partition the "fixed Fiber Half" into 3 sections for meshing

#

c = fixedFiberPart.cells

pickedCells = c.getSequenceFromMask(mask=(’[#1]’,),)

e, v1, d1 = fixedFiberPart.edges , fixedFiberPart.vertices , fixedFiberPart.

datums

fixedFiberPart.PartitionCellByPlanePointNormal(point=v1[3], normal=e[4], cells

=pickedCells)

pickedCells = c.getSequenceFromMask(mask=(’[#2]’,),)

e1, v2 , d2 = fixedFiberPart.edges , fixedFiberPart.vertices , fixedFiberPart.

datums

fixedFiberPart.PartitionCellByPlanePointNormal(point=v2[7], normal=e1[4],

cells=pickedCells)

#

create one half of the strained Fiber

#

strainedFiberSketch = fiberModel.ConstrainedSketch(name=’strainedFiberSketch ’,

sheetSize =100)

strainedFiberSketch.rectangle(point1 =(0, 0), point2 =(StrainedFiberWidth ,

StrainedFiberThickness))

strainedFiberPart = fiberModel.Part(name=’strained Fiber Half’, dimensionality

=THREE_D ,

type=DEFORMABLE_BODY)

strainedFiberPart.BaseSolidExtrude(sketch=strainedFiberSketch , depth=

StrainedFiberLength)

strainedFiberPart.Round(radius=StrainedFiberThickness , edgeList =(

strainedFiberPart.edges[1], strainedFiberPart.edges [5]))

strainedFiberPart.DatumPointByCoordinate(coords =(StrainedFiberWidth /2,

StrainedFiberThickness /2, 0.0))

47

4 Appendix

strainedFiberPart.DatumPointByCoordinate(coords =(StrainedFiberWidth -

StrainedFiberThickness /2, StrainedFiberThickness /2, 0.0))

strainedFiberPart.DatumPointByCoordinate(coords =(StrainedFiberThickness /2,

StrainedFiberThickness /2, 0.0))

#

partition the "strained Fiber Half" into 3 sections for meshing

#

c = strainedFiberPart.cells

pickedCells = c.getSequenceFromMask(mask=(’[#1]’,),)

e, v1, d1 = strainedFiberPart.edges , strainedFiberPart.vertices ,

strainedFiberPart.datums

strainedFiberPart.PartitionCellByPlanePointNormal(point=v1[3], normal=e[4],

cells=pickedCells)

pickedCells = c.getSequenceFromMask(mask=(’[#2]’,),)

e1, v2 , d2 = strainedFiberPart.edges , strainedFiberPart.vertices ,

strainedFiberPart.datums

strainedFiberPart.PartitionCellByPlanePointNormal(point=v2[7], normal=e1[4],

cells=pickedCells)

#

defining Sections

#

fiberModel.CohesiveSection(name=’AdhesiveSection ’,

material=’AdhesiveMaterial ’, response=TRACTION_SEPARATION ,

outOfPlaneThickness=None)

fiberModel.HomogeneousSolidSection(name=’FiberCompositeSection ’,

material=’FiberCompositeMaterial ’)

#

assign section to parts

#

adhesive_region = (AdhesivePart.cells ,)

AdhesivePart.SectionAssignment(region=adhesive_region , sectionName=’

AdhesiveSection ’, offset =0.0,

offsetType=MIDDLE_SURFACE , offsetField=’’)

fixedFiber_region = (fixedFiberPart.cells ,)

fixedFiberPart.SectionAssignment(region=fixedFiber_region , sectionName=’

FiberCompositeSection ’, offset =0.0,

offsetType=MIDDLE_SURFACE , offsetField=’’)

strainedFiber_region = (strainedFiberPart.cells ,)

strainedFiberPart.SectionAssignment(region=strainedFiber_region , sectionName=’

FiberCompositeSection ’, offset =0.0,

offsetType=MIDDLE_SURFACE , offsetField=’’)

48

4.1 Source code for modelling fibre-fibre joints

#

assign datumCSYS to ’fixed Fiber Half ’

#

v1 = fixedFiberPart.vertices

fixedFiberPart.DatumCsysByThreePoints(origin=v1[4], point1=v1[7], point2=v1

[1],

name=’RectangularCSYS ’, coordSysType=CARTESIAN)

#

assign datumCSYS to ’strained Fiber Half ’

#

v1 = strainedFiberPart.vertices

strainedFiberPart.DatumCsysByThreePoints(origin=v1[4], point1=v1[7], point2=v1

[1],

name=’RectangularCSYS ’, coordSysType=CARTESIAN)

#

assign material orientation to "fixed Fiber Half"

#

c = fixedFiberPart.cells

cells = c.getSequenceFromMask(mask=(’[#7]’,),)

region = regionToolset.Region(cells=cells)

orientation = fixedFiberPart.datums [6]

fixedFiberPart.MaterialOrientation(

region=region , orientationType=SYSTEM , localCsys=orientation , fieldName=’’

,

axis=AXIS_3 , additionalRotationType=ROTATION_ANGLE , angle=

FixedFiberFibrilAngle ,

additionalRotationField=’’, stackDirection=STACK_3)

#

assign material orientation to "strained Fiber Half"

#

c = strainedFiberPart.cells

cells = c.getSequenceFromMask(mask=(’[#7]’,),)

region = regionToolset.Region(cells=cells)

orientation = strainedFiberPart.datums [9]

strainedFiberPart.MaterialOrientation(

region=region , orientationType=SYSTEM , localCsys=orientation , fieldName=’’

,

axis=AXIS_3 , additionalRotationType=ROTATION_ANGLE , angle=

StrainedFiberFibrilAngle ,

additionalRotationField=’’, stackDirection=STACK_3)

49

4 Appendix

#

Create the Assembly

#

fiberAssembly = fiberModel.rootAssembly

#

Add fixed Fiber to the Assembly

#

fiberAssembly.DatumCsysByDefault(CARTESIAN)

fiberAssembly.Instance(name=’fixed Fiber Half -1’, part=fixedFiberPart ,

dependent=OFF)

fiberAssembly.Instance(name=’fixed Fiber Half -2’, part=fixedFiberPart ,

dependent=OFF)

#

create Surface for Tie Constrained on fixed Fibers

#

a = fiberAssembly

s1 = fiberAssembly.instances[’fixed Fiber Half -1’].faces

side1Faces1 = s1.findAt (((FixedFiberThickness /2, 0.0, FixedFiberLength /2),),

((FixedFiberWidth /2, 0.0,

FixedFiberLength /2),), ((FixedFiberWidth -FixedFiberThickness /2, 0.0,

FixedFiberLength /2),))

a.Surface(side1Faces=side1Faces1 , name=’Surf -1’)

s1 = a.instances[’fixed Fiber Half -2’]. faces

side1Faces1 = s1.findAt (((FixedFiberThickness /2, 0.0, FixedFiberLength /2),),

((FixedFiberWidth /2, 0.0,

FixedFiberLength /2),), ((FixedFiberWidth -FixedFiberThickness /2, 0.0,

FixedFiberLength /2),))

a.Surface(side1Faces=side1Faces1 , name=’Surf -2’)

#

create constraints to assamble fixed fiber

#

a1 = fiberAssembly

f1 = a1.instances[’fixed Fiber Half -2’].faces

f2 = a1.instances[’fixed Fiber Half -1’].faces

a1.FaceToFace(movablePlane=f1[1], fixedPlane=f2[1], flip=OFF , clearance =0.0)

a1.FaceToFace(movablePlane=f1[3], fixedPlane=f2[3], flip=ON , clearance =0.0)

e1 = a1.instances[’fixed Fiber Half -2’].edges

e2 = a1.instances[’fixed Fiber Half -1’].edges

a1.EdgeToEdge(movableAxis=e1[0], fixedAxis=e2[10], flip=OFF)

50

4.1 Source code for modelling fibre-fibre joints

#

Add Adhesive to the Assembly

#

a1 = fiberAssembly

a1.Instance(name=’Adhesive -1’, part=AdhesivePart , dependent=OFF)

p1 = a1.instances[’Adhesive -1’]

#

create constraints to assamble Adhesive

#

a1 = fiberAssembly

f1 = a1.instances[’fixed Fiber Half -1’].faces

f2 = a1.instances[’Adhesive -1’].faces

d1 = a1.instances[’Adhesive -1’]. datums

a1.FaceToFace(movablePlane=f2[4], fixedPlane=f1[9], flip=ON , clearance =0)

a1.FaceToFace(movablePlane=f2[1], fixedPlane=f1[0], flip=ON , clearance=-(

FixedFiberWidth -2* FixedFiberThickness))

a1.FaceToFace(movablePlane=d1[5], fixedPlane=f1[1], flip=OFF , clearance=-

DistanceFiber)

#

Add strained Fiber to the Assembly

#

a = fiberAssembly

session.viewports[’Viewport: 1’]. setValues(displayedObject=a)

a.DatumCsysByDefault(CARTESIAN)

p=strainedFiberPart

a.Instance(name=’strained Fiber Half -1’, part=strainedFiberPart , dependent=OFF

)

a.Instance(name=’strained Fiber Half -2’, part=strainedFiberPart , dependent=OFF

)

#

create Surface for Tie Constrained on strained Fibers

#

s1 = a.instances[’strained Fiber Half -1’].faces

side1Faces1 = s1.findAt (((StrainedFiberThickness /2, 0.0, StrainedFiberLength

/2),), ((StrainedFiberWidth /2, 0,

StrainedFiberLength),), ((StrainedFiberWidth -StrainedFiberThickness /2,

0.0, StrainedFiberLength /2),))

a.Surface(side1Faces=side1Faces1 , name=’Surf -7’)

s1 = a.instances[’strained Fiber Half -2’].faces

51

4 Appendix

side1Faces1 = s1.findAt (((StrainedFiberThickness /2, 0.0, StrainedFiberLength

/2),), ((StrainedFiberWidth /2, 0,

StrainedFiberLength),), ((StrainedFiberWidth -StrainedFiberThickness /2,

0.0, StrainedFiberLength /2),))

a.Surface(side1Faces=side1Faces1 , name=’Surf -8’)

#

create constraints to assamble strained Fiber

#

a = fiberAssembly

f1 = a.instances[’strained Fiber Half -1’].faces

f2 = a.instances[’Adhesive -1’].faces

f3 = a.instances[’fixed Fiber Half -1’]. faces

d2 = a.instances[’Adhesive -1’]. datums

a.FaceToFace(movablePlane=f1[1], fixedPlane=d2[8], flip=OFF , clearance=

StrainedFiberOverhang)

a.FaceToFace(movablePlane=f1[4], fixedPlane=f2[2], flip=ON, clearance =0)

a.FaceToFace(movablePlane=f1[9], fixedPlane=f3[9], flip=ON, clearance =0)

f1 = a.instances[’strained Fiber Half -2’].faces

f2 = a.instances[’strained Fiber Half -1’].faces

a.FaceToFace(movablePlane=f1[1], fixedPlane=f2[1], flip=OFF , clearance =0.0)

a.FaceToFace(movablePlane=f1[3], fixedPlane=f2[3], flip=ON, clearance =0.0)

e1 = a.instances[’strained Fiber Half -2’].edges

e2 = a.instances[’strained Fiber Half -1’].edges

a.EdgeToEdge(movableAxis=e1[0], fixedAxis=e2[10], flip=OFF)

#

partion the the strained fiber for adding the load

#

a = mdb.models[’Fiber -Fiber Joint’]. rootAssembly

f11 = a.instances[’strained Fiber Half -1’]. faces

e11 = a.instances[’strained Fiber Half -1’]. edges

t = a.MakeSketchTransform(sketchPlane=f11.findAt(coordinates =(FixedFiberWidth

/2,

FixedFiberThickness , DistanceFiber)), sketchUpEdge=e11.findAt(

coordinates =(FixedFiberWidth /2,

FixedFiberThickness , DistanceFiber + (StrainedFiberWidth /2 -

StrainedFiberThickness)/sin(AngelFiber*pi /180))), sketchPlaneSide=

SIDE1 , origin =(FixedFiberWidth /2, FixedFiberThickness ,

DistanceFiber))

s1 = mdb.models[’Fiber -Fiber Joint’]. ConstrainedSketch(name=’__profile__ ’,

sheetSize =2.0, gridSpacing =0.05, transform=t)

g, v, d, c = s1.geometry , s1.vertices , s1.dimensions , s1.constraints

s1.setPrimaryObject(option=SUPERIMPOSE)

a.projectReferencesOntoSketch(sketch=s1, filter=COPLANAR_EDGES)

s1.CircleByCenterPerimeter(center =(0 , -Center_Distance),

point1 =(R_Force , -Center_Distance))

52

4.1 Source code for modelling fibre-fibre joints

s1.CircleByCenterPerimeter(center =(0 , -Center_Distance),

point1 =(R_Force2 , -Center_Distance))

s1.CircleByCenterPerimeter(center =(0 , -Center_Distance),

point1 =(R_Force +(R_Force2 -R_Force)/3, -Center_Distance))

s1.CircleByCenterPerimeter(center =(0 , -Center_Distance),

point1 =(R_Force +(R_Force2 -R_Force)*2/3, -Center_Distance))

pickedFaces = f11.findAt (((FixedFiberWidth /2, FixedFiberThickness ,

DistanceFiber),))

a.PartitionFaceBySketch(sketchUpEdge=e11.findAt(coordinates =(FixedFiberWidth

/2, FixedFiberThickness , DistanceFiber + (StrainedFiberWidth /2 -

StrainedFiberThickness)/sin(AngelFiber*pi /180))),

faces=pickedFaces , sketch=s1)

s1.unsetPrimaryObject ()

del mdb.models[’Fiber -Fiber Joint ’]. sketches[’__profile__ ’]

c1 = a.instances[’strained Fiber Half -1’].cells

e1 = a.instances[’strained Fiber Half -1’].edges

pickedCells = c1.findAt (((FixedFiberWidth /2, FixedFiberThickness ,

DistanceFiber),))

pickedEdges =(e1.findAt(coordinates =(FixedFiberWidth /2 + (Center_Distance +

R_Force)*sin(AngelFiber*pi/180) , FixedFiberThickness , DistanceFiber - (

Center_Distance + R_Force)*cos(AngelFiber*pi/180))),)

e2 = a.instances[’fixed Fiber Half -2’]. edges

a.PartitionCellByExtrudeEdge(line=e2.findAt(coordinates =(FixedFiberThickness ,

-FixedFiberThickness *3/4, 0.0)), cells=pickedCells , edges=pickedEdges ,

sense=FORWARD)

pickedCells1 = c1.findAt (((FixedFiberWidth /2, FixedFiberThickness ,

DistanceFiber),))

pickedEdges1 =(e1.findAt(coordinates =(FixedFiberWidth /2 + (Center_Distance +

R_Force +(R_Force2 -R_Force)/3)*sin(AngelFiber*pi /180), FixedFiberThickness ,

DistanceFiber - (Center_Distance + R_Force +(R_Force2 -R_Force)/3)*cos(

AngelFiber*pi /180))),)

e2 = a.instances[’fixed Fiber Half -2’]. edges

a.PartitionCellByExtrudeEdge(line=e2.findAt(coordinates =(FixedFiberThickness ,

-FixedFiberThickness *3/4, 0.0)), cells=pickedCells1 , edges=pickedEdges1 ,

sense=FORWARD)

pickedCells1 = c1.findAt (((FixedFiberWidth /2, FixedFiberThickness ,

DistanceFiber),))

pickedEdges1 =(e1.findAt(coordinates =(FixedFiberWidth /2 + (Center_Distance +

R_Force +(R_Force2 -R_Force)*2/3)*sin(AngelFiber*pi/180),

FixedFiberThickness , DistanceFiber - (Center_Distance + R_Force +(R_Force2 -

R_Force)*2/3)*cos(AngelFiber*pi/180))),)

53

4 Appendix

e2 = a.instances[’fixed Fiber Half -2’]. edges

a.PartitionCellByExtrudeEdge(line=e2.findAt(coordinates =(FixedFiberThickness ,

-FixedFiberThickness *3/4, 0.0)), cells=pickedCells1 , edges=pickedEdges1 ,

sense=FORWARD)

pickedCells1 = c1.findAt (((FixedFiberWidth /2, FixedFiberThickness ,

DistanceFiber),))

pickedEdges1 =(e1.findAt(coordinates =(FixedFiberWidth /2 + (Center_Distance +

R_Force +(R_Force2 -R_Force)*3/3)*sin(AngelFiber*pi/180),

FixedFiberThickness , DistanceFiber - (Center_Distance + R_Force +(R_Force2 -

R_Force)*3/3)*cos(AngelFiber*pi/180))),)

e2 = a.instances[’fixed Fiber Half -2’]. edges

a.PartitionCellByExtrudeEdge(line=e2.findAt(coordinates =(FixedFiberThickness ,

-FixedFiberThickness *3/4, 0.0)), cells=pickedCells1 , edges=pickedEdges1 ,

sense=FORWARD)

#

creating the Step in which the load is applayed

#

fiberModel.StaticStep (name=’FiberLoad ’, previous=’Initial ’,

timePeriod =1.0, initialInc =0.1,

description=’Load the front surface of the Fiber ’)

fiberModel.fieldOutputRequests[’F-Output -1’]. setValues(variables =(’S’, ’PE’, ’

PEEQ’, ’PEMAG’, ’LE’, ’U’, ’RF’, ’CF’, ’SF’, ’NFORC’, ’TF’, ’CSTRESS ’, ’

CDISP’, ’COORD ’))

#

create Partions for the seed

#

partion the fixed Fiber

a = fiberAssembly

c1 = a.instances[’fixed Fiber Half -1’]. cells

cells1 = c1.findAt (((FixedFiberThickness /2, FixedFiberThickness /2, 0),), ((

FixedFiberWidth /2, FixedFiberThickness /2, 0),), ((FixedFiberWidth -

FixedFiberThickness /2, FixedFiberThickness /2, 0),))

c2 = a.instances[’fixed Fiber Half -2’]. cells

cells2 = c2.findAt (((FixedFiberThickness /2, -FixedFiberThickness /2, 0.0),),

((FixedFiberWidth /2, -FixedFiberThickness /2, 0),),

((FixedFiberWidth -FixedFiberThickness /2, -

FixedFiberThickness /2, 0),))

pickedCells = cells1+cells2

54

4.1 Source code for modelling fibre-fibre joints

f11 = a.instances[’Adhesive -1’].faces

a.PartitionCellByExtendFace(extendFace=f11.findAt(coordinates =(FixedFiberWidth

/2, FixedFiberThickness + AdhwsiveThickness /2, DistanceFiber -(

StrainedFiberWidth /2- StrainedFiberThickness)/sin(AngelFiber*pi/180))),

cells=pickedCells)

c1 = a.instances[’fixed Fiber Half -1’]. cells

cells1 = c1.findAt (((FixedFiberThickness /2, FixedFiberThickness /2,

FixedFiberLength),), ((FixedFiberWidth /2, FixedFiberThickness /2,

FixedFiberLength),), ((FixedFiberWidth -FixedFiberThickness /2,

FixedFiberThickness /2, FixedFiberLength),))

c2 = a.instances[’fixed Fiber Half -2’]. cells

cells2 = c2.findAt (((FixedFiberThickness /2, -FixedFiberThickness /2,

FixedFiberLength),), ((FixedFiberWidth /2, -FixedFiberThickness /2,

FixedFiberLength),), ((FixedFiberWidth -FixedFiberThickness /2, -

FixedFiberThickness /2, FixedFiberLength),))

pickedCells = cells1+cells2

f11 = a.instances[’Adhesive -1’].faces

a.PartitionCellByExtendFace(extendFace=f11.findAt(coordinates =(FixedFiberWidth

/2, FixedFiberThickness + AdhwsiveThickness /2, DistanceFiber +(

StrainedFiberWidth /2- StrainedFiberThickness)/sin(AngelFiber*pi/180))),

cells=pickedCells)

partion the strained Fiber

c1 = a.instances[’strained Fiber Half -1’].cells

cells1 = c1.findAt (((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness /2, FixedFiberLength /2),),

((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness /2, FixedFiberLength /2+(

StrainedFiberWidth -StrainedFiberThickness)/(2* sin(

AngelFiber*pi /180))),),

((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness /2, FixedFiberLength /2-(

StrainedFiberWidth -StrainedFiberThickness)/(2* sin(

AngelFiber*pi /180))),))

c2 = a.instances[’strained Fiber Half -2’].cells

cells2 = c2.findAt (((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness *3/2, FixedFiberLength /2),),

((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness *3/2, FixedFiberLength /2+(

StrainedFiberWidth -StrainedFiberThickness)/(2* sin(

AngelFiber*pi /180))),),

((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness *3/2, FixedFiberLength /2-(

StrainedFiberWidth -StrainedFiberThickness)/(2* sin(

AngelFiber*pi /180))),))

pickedCells = cells1+cells2

f11 = a.instances[’Adhesive -1’].faces

a.PartitionCellByExtendFace(extendFace=f11.findAt(coordinates =(

FixedFiberThickness , FixedFiberThickness+AdhwsiveThickness /2,

FixedFiberLength /2+ FixedFiberWidth /2* cos(AngelFiber*pi/180))), cells=

55

4 Appendix

pickedCells)

c1 = a.instances[’strained Fiber Half -1’].cells

cells1 = c1.findAt (((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness /2, FixedFiberLength /2),),

((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness /2, FixedFiberLength /2+(

StrainedFiberWidth -StrainedFiberThickness)/(2* sin(

AngelFiber*pi /180))),),

((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness /2, FixedFiberLength /2-(

StrainedFiberWidth -StrainedFiberThickness)/(2* sin(

AngelFiber*pi /180))),))

c2 = a.instances[’strained Fiber Half -2’].cells

cells2 = c2.findAt (((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness *3/2, FixedFiberLength /2),),

((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness *3/2, FixedFiberLength /2+(

StrainedFiberWidth -StrainedFiberThickness)/(2* sin(

AngelFiber*pi /180))),),

((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness *3/2, FixedFiberLength /2-(

StrainedFiberWidth -StrainedFiberThickness)/(2* sin(

AngelFiber*pi /180))),))

pickedCells = cells1+cells2

f11 = a.instances[’Adhesive -1’].faces

a.PartitionCellByExtendFace(extendFace=f11.findAt(coordinates =(FixedFiberWidth

-FixedFiberThickness , FixedFiberThickness+AdhwsiveThickness /2,

FixedFiberLength /2- FixedFiberWidth /2* cos(AngelFiber*pi/180))), cells=

pickedCells)

#

create Surface for Tie Constrained in the connection

s1 = a.instances[’fixed Fiber Half -1’]. faces

side1Faces1 = s1.findAt (((FixedFiberWidth /2, FixedFiberThickness ,

DistanceFiber),))

a.Surface(side1Faces=side1Faces1 , name=’Surf -3’)

s1 = a.instances[’strained Fiber Half -1’].faces

side1Faces1 = s1.findAt (((FixedFiberWidth /2, FixedFiberThickness ,

DistanceFiber),))

a.Surface(side1Faces=side1Faces1 , name=’Surf -6’)

#

Mesh the Assembly

#

a = fiberAssembly

56

4.1 Source code for modelling fibre-fibre joints

partInstances =(a.instances[’fixed Fiber Half -1’], a.instances[’fixed Fiber

Half -2’],)

a.seedPartInstance(regions=partInstances , size=MeshSize , deviationFactor=

deviationFactor ,

minSizeFactor=MinMeshSize)

e1 = a.instances[’strained Fiber Half -1’].edges

pickedEdges = e1.findAt (((FixedFiberWidth /2 + (Center_Distance + R_Force2)*sin

(AngelFiber*pi/180), FixedFiberThickness , DistanceFiber - (Center_Distance

+ R_Force2)*cos(AngelFiber*pi/180)),))

a.seedEdgeByNumber(edges=pickedEdges , number=8, constraint=FINER)

e1 = a.instances[’strained Fiber Half -1’].edges

pickedEdges = e1.findAt (((FixedFiberWidth /2 + (Center_Distance + R_Force +(

R_Force2 -R_Force)*2/3)*sin(AngelFiber*pi/180) , FixedFiberThickness ,

DistanceFiber - (Center_Distance + R_Force +(R_Force2 -R_Force)*2/3)*cos(

AngelFiber*pi /180)),))

a.seedEdgeByNumber(edges=pickedEdges , number=8, constraint=FINER)

e1 = a.instances[’strained Fiber Half -1’].edges

pickedEdges = e1.findAt (((FixedFiberWidth /2 + (Center_Distance + R_Force +(

R_Force2 -R_Force)*1/3)*sin(AngelFiber*pi/180) , FixedFiberThickness ,

DistanceFiber - (Center_Distance + R_Force +(R_Force2 -R_Force)*1/3)*cos(

AngelFiber*pi /180)),))

a.seedEdgeByNumber(edges=pickedEdges , number=8, constraint=FINER)

e1 = a.instances[’strained Fiber Half -1’].edges

pickedEdges = e1.findAt (((FixedFiberWidth /2 + (Center_Distance + R_Force)*sin(

AngelFiber*pi /180), FixedFiberThickness , DistanceFiber - (Center_Distance

+ R_Force)*cos(AngelFiber*pi /180)),))

a.seedEdgeByNumber(edges=pickedEdges , number=8, constraint=FINER)

e1 = a.instances[’strained Fiber Half -1’].edges

pickedEdges = e1.findAt (((FixedFiberWidth /2 + (Center_Distance + R_Force2)*sin

(AngelFiber*pi/180) , FixedFiberThickness+StrainedFiberThickness ,

DistanceFiber - (Center_Distance + R_Force2)*cos(AngelFiber*pi/180)),))

a.seedEdgeByNumber(edges=pickedEdges , number=8, constraint=FINER)

e1 = a.instances[’strained Fiber Half -1’].edges

pickedEdges = e1.findAt (((FixedFiberWidth /2 + (Center_Distance + R_Force +(

R_Force2 -R_Force)*2/3)*sin(AngelFiber*pi/180) , FixedFiberThickness+

StrainedFiberThickness , DistanceFiber - (Center_Distance + R_Force +(

R_Force2 -R_Force)*2/3)*cos(AngelFiber*pi/180)),))

a.seedEdgeByNumber(edges=pickedEdges , number=8, constraint=FINER)

e1 = a.instances[’strained Fiber Half -1’].edges

pickedEdges = e1.findAt (((FixedFiberWidth /2 + (Center_Distance + R_Force +(

R_Force2 -R_Force)*1/3)*sin(AngelFiber*pi/180) , FixedFiberThickness+

StrainedFiberThickness , DistanceFiber - (Center_Distance + R_Force +(

R_Force2 -R_Force)*1/3)*cos(AngelFiber*pi/180)),))

a.seedEdgeByNumber(edges=pickedEdges , number=8, constraint=FINER)

57

4 Appendix

e1 = a.instances[’strained Fiber Half -1’].edges

pickedEdges = e1.findAt (((FixedFiberWidth /2 + (Center_Distance + R_Force)*sin(

AngelFiber*pi /180), FixedFiberThickness+StrainedFiberThickness ,

DistanceFiber - (Center_Distance + R_Force)*cos(AngelFiber*pi/180)),))

a.seedEdgeByNumber(edges=pickedEdges , number=8, constraint=FINER)

partInstances =(a.instances[’fixed Fiber Half -1’], a.instances[’fixed Fiber

Half -2’],)

a.generateMesh(regions=partInstances)

partInstances =(a.instances[’strained Fiber Half -2’], a.instances[’strained

Fiber Half -1’],)

a.seedPartInstance(regions=partInstances , size=MeshSize , deviationFactor=

deviationFactor ,

minSizeFactor=MinMeshSize)

partInstances =(a.instances[’strained Fiber Half -1’], a.instances[’strained

Fiber Half -2’],)

a.generateMesh(regions=partInstances)

Meshtype fixed fiber

c1 = a.instances[’fixed Fiber Half -1’]. cells

cells1 = c1.findAt (((FixedFiberThickness /2, FixedFiberThickness /2, 0.0),), ((

FixedFiberWidth /2, FixedFiberThickness /2, 0.0),), ((FixedFiberWidth -

FixedFiberThickness /2, FixedFiberThickness /2, 0.0),),

((FixedFiberThickness /2, FixedFiberThickness /2,

DistanceFiber),), ((FixedFiberWidth /2,

FixedFiberThickness /2, DistanceFiber),), ((

FixedFiberWidth -FixedFiberThickness /2,

FixedFiberThickness /2, DistanceFiber),),

((FixedFiberWidth /2, FixedFiberThickness /2,

FixedFiberLength),), ((FixedFiberWidth /2,

FixedFiberThickness /2, FixedFiberLength),), ((

FixedFiberWidth /2, FixedFiberThickness /2,

FixedFiberLength),))

c2 = a.instances[’fixed Fiber Half -2’]. cells

cells2 = c2.findAt (((FixedFiberThickness /2, -FixedFiberThickness /2, 0.0),),

((FixedFiberWidth /2, -FixedFiberThickness /2, 0.0),), ((FixedFiberWidth -

FixedFiberThickness /2, -FixedFiberThickness /2, 0.0),),

((FixedFiberThickness /2, -FixedFiberThickness /2,

DistanceFiber),), ((FixedFiberWidth /2, -

FixedFiberThickness /2, DistanceFiber),), ((

FixedFiberWidth -FixedFiberThickness /2, -

FixedFiberThickness /2, DistanceFiber),),

58

4.1 Source code for modelling fibre-fibre joints

((FixedFiberWidth /2, -FixedFiberThickness /2,

FixedFiberLength),), ((FixedFiberWidth /2, -

FixedFiberThickness /2, FixedFiberLength),), ((

FixedFiberWidth /2, -FixedFiberThickness /2,

FixedFiberLength),))

pickedRegions =((cells1+cells2),)

elemType1 = mesh.ElemType(elemCode=C3D8R , elemLibrary=STANDARD)

elemType2 = mesh.ElemType(elemCode=C3D8R , elemLibrary=STANDARD)

elemType3 = mesh.ElemType(elemCode=C3D8R , elemLibrary=STANDARD)

a.setElementType(regions=pickedRegions , elemTypes =(elemType1 , elemType2 ,

elemType3))

Meshtype strained fiber

c1 = a.instances[’strained Fiber Half -1’].cells

cells1 = c1.findAt (((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness /2, DistanceFiber +(StrainedFiberWidth -

StrainedFiberThickness)/(2* sin(AngelFiber*pi/180))),),

((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness /2, DistanceFiber),),

((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness /2, DistanceFiber -(

StrainedFiberWidth -StrainedFiberThickness)/(2* sin(

AngelFiber*pi /180))),),

((FixedFiberWidth /2-(StrainedFiberOverhang)*sin(AngelFiber*

pi/180), FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness /2, DistanceFiber +(

StrainedFiberOverhang)*cos(AngelFiber*pi /180)),),

((FixedFiberWidth /2-(StrainedFiberOverhang)*sin(AngelFiber*

pi/180) -(StrainedFiberWidth /2- StrainedFiberThickness /2)

*cos(AngelFiber*pi/180) , FixedFiberThickness+

AdhwsiveThickness+StrainedFiberThickness /2,

DistanceFiber +(StrainedFiberOverhang)*cos(AngelFiber*pi

/180) -(StrainedFiberWidth -StrainedFiberThickness)/2*sin

(AngelFiber*pi/180)),),

((FixedFiberWidth /2-(StrainedFiberOverhang)*sin(AngelFiber*

pi/180)+(StrainedFiberWidth /2- StrainedFiberThickness /2)

*cos(AngelFiber*pi/180) , FixedFiberThickness+

AdhwsiveThickness+StrainedFiberThickness /2,

DistanceFiber +(StrainedFiberOverhang)*cos(AngelFiber*pi

/180)+(StrainedFiberWidth -StrainedFiberThickness)/2*sin

(AngelFiber*pi/180)),),

((FixedFiberWidth /2+sin(AngelFiber*pi /180)*(

StrainedFiberLength -StrainedFiberOverhang),

FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness /2, DistanceFiber -cos(AngelFiber*

pi/180)*(StrainedFiberLength -StrainedFiberOverhang)),)

,

((FixedFiberWidth /2+sin(AngelFiber*pi /180)*(

StrainedFiberLength -StrainedFiberOverhang)+cos(

59

4 Appendix

AngelFiber*pi /180) *((StrainedFiberWidth -

StrainedFiberThickness)/2), FixedFiberThickness+

AdhwsiveThickness+StrainedFiberThickness /2,

DistanceFiber -cos(AngelFiber*pi/180)*(

StrainedFiberLength -StrainedFiberOverhang)+sin(

AngelFiber*pi /180) *((StrainedFiberWidth -

StrainedFiberThickness)/2)),),

((FixedFiberWidth /2+sin(AngelFiber*pi /180)*(

StrainedFiberLength -StrainedFiberOverhang)-cos(

AngelFiber*pi /180) *((StrainedFiberWidth -

StrainedFiberThickness)/2), FixedFiberThickness+

AdhwsiveThickness+StrainedFiberThickness /2,

DistanceFiber -cos(AngelFiber*pi/180)*(

StrainedFiberLength -StrainedFiberOverhang)-sin(

AngelFiber*pi /180) *((StrainedFiberWidth -

StrainedFiberThickness)/2)),))

c2 = a.instances[’strained Fiber Half -2’].cells

cells2 = c2.findAt (((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness *3/2, DistanceFiber +(StrainedFiberWidth -

StrainedFiberThickness)/(2* sin(AngelFiber*pi/180))),),

((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness *3/2, DistanceFiber),),

((FixedFiberWidth /2, FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness *3/2, DistanceFiber -(

StrainedFiberWidth -StrainedFiberThickness)/(2* sin(

AngelFiber*pi /180))),),

((FixedFiberWidth /2-(StrainedFiberOverhang)*sin(AngelFiber*

pi/180) , FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness *3/2, DistanceFiber +(

StrainedFiberOverhang)*cos(AngelFiber*pi /180)),),

((FixedFiberWidth /2-(StrainedFiberOverhang)*sin(AngelFiber*

pi/180) -(StrainedFiberWidth /2- StrainedFiberThickness /2)

*cos(AngelFiber*pi/180) , FixedFiberThickness+

AdhwsiveThickness+StrainedFiberThickness *3/2,

DistanceFiber +(StrainedFiberOverhang)*cos(AngelFiber*pi

/180) -(StrainedFiberWidth -StrainedFiberThickness)/2*sin

(AngelFiber*pi/180)),),

((FixedFiberWidth /2-(StrainedFiberOverhang)*sin(AngelFiber*

pi/180) +(StrainedFiberWidth /2- StrainedFiberThickness /2)

*cos(AngelFiber*pi/180) , FixedFiberThickness+

AdhwsiveThickness+StrainedFiberThickness *3/2,

DistanceFiber +(StrainedFiberOverhang)*cos(AngelFiber*pi

/180)+(StrainedFiberWidth -StrainedFiberThickness)/2*sin

(AngelFiber*pi/180)),),

((FixedFiberWidth /2+sin(AngelFiber*pi /180)*(

StrainedFiberLength -StrainedFiberOverhang),

FixedFiberThickness+AdhwsiveThickness+

StrainedFiberThickness *3/2, DistanceFiber -cos(

AngelFiber*pi /180)*(StrainedFiberLength -

StrainedFiberOverhang)),),

((FixedFiberWidth /2+sin(AngelFiber*pi /180)*(

StrainedFiberLength -StrainedFiberOverhang)+cos(

AngelFiber*pi /180) *((StrainedFiberWidth -

60

4.1 Source code for modelling fibre-fibre joints

StrainedFiberThickness)/2), FixedFiberThickness+

AdhwsiveThickness+StrainedFiberThickness *3/2,

DistanceFiber -cos(AngelFiber*pi/180)*(

StrainedFiberLength -StrainedFiberOverhang)+sin(

AngelFiber*pi /180) *((StrainedFiberWidth -

StrainedFiberThickness)/2)),),

((FixedFiberWidth /2+sin(AngelFiber*pi /180)*(

StrainedFiberLength -StrainedFiberOverhang)-cos(

AngelFiber*pi /180) *((StrainedFiberWidth -

StrainedFiberThickness)/2), FixedFiberThickness+

AdhwsiveThickness+StrainedFiberThickness *3/2,

DistanceFiber -cos(AngelFiber*pi/180)*(

StrainedFiberLength -StrainedFiberOverhang)-sin(

AngelFiber*pi /180) *((StrainedFiberWidth -

StrainedFiberThickness)/2)),))

pickedRegions =((cells1+cells2),)

elemType1 = mesh.ElemType(elemCode=C3D8R , elemLibrary=STANDARD)

elemType2 = mesh.ElemType(elemCode=C3D8R , elemLibrary=STANDARD)

elemType3 = mesh.ElemType(elemCode=C3D8R , elemLibrary=STANDARD)

a.setElementType(regions=pickedRegions , elemTypes =(elemType1 , elemType2 ,

elemType3))

#

create Tie Constrains between Fiber Halfs

#

a = fiberAssembly

region1=a.surfaces[’Surf -1’]

region2=a.surfaces[’Surf -2’]

fiberModel.Tie(name=’Constraint fixed Fiber -Fiber ’,

master=region1 , slave=region2 , constraintEnforcement=SURFACE_TO_SURFACE ,

positionToleranceMethod=COMPUTED , adjust=ON ,

tieRotations=ON, thickness=ON)

region1=a.surfaces[’Surf -7’]

region2=a.surfaces[’Surf -8’]

mdb.models[’Fiber -Fiber Joint’].Tie(name=’Constraint strained Fiber -Fiber ’,

master=region1 , slave=region2 ,constraintEnforcement=SURFACE_TO_SURFACE ,

positionToleranceMethod=COMPUTED , adjust=ON ,

tieRotations=ON, thickness=ON)

#

create Tie Constrains between fixed Fiber and strained Fiber

#

a = fiberAssembly

region1=a.surfaces[’Surf -3’]

61

4 Appendix

region2=a.surfaces[’Surf -6’]

fiberModel.Tie(name=’Constraint fixed Fiber - strained Fiber’,

master=region1 , slave=region2 ,constraintEnforcement=SURFACE_TO_SURFACE ,

positionToleranceMethod=COMPUTED , adjust=ON ,

tieRotations=ON, thickness=ON)

#

Create a Node Set

#

nodes1 = a.surfaces[’Surf -3’]. nodes

a.Set(nodes=nodes1 , name=’NodeSet_fixed ’)

nodes2 = a.surfaces[’Surf -6’]. nodes

a.Set(nodes=nodes2 , name=’NodeSet_strained ’)

#

Create a Element Set

#

elm1 = a.surfaces[’Surf -3’]. elements

a.Set(elements=elm1 , name=’ElmSet_fixed ’)

elm2 = a.surfaces[’Surf -6’]. elements

a.Set(elements=elm2 , name=’ElmSet_strained ’)

create Boundary Conditions

#

first side

a = fiberAssembly

f1 = a.instances[’fixed Fiber Half -1’]. faces

fixed_end_face1_half1_pt1_x = FixedFiberThickness *4/5

fixed_end_face1_half1_pt1_y = FixedFiberThickness /2

fixed_end_face1_half1_pt1_z = FixedFiberLength

fixed_end_face1_half1_pt1 = (fixed_end_face1_half1_pt1_x ,

fixed_end_face1_half1_pt1_y ,fixed_end_face1_half1_pt1_z)

fixed_end_face1_half1_pt2_x = FixedFiberWidth -FixedFiberThickness *4/5

fixed_end_face1_half1_pt2_y = FixedFiberThickness /2

fixed_end_face1_half1_pt2_z = FixedFiberLength

fixed_end_face1_half1_pt2 = (fixed_end_face1_half1_pt2_x ,

fixed_end_face1_half1_pt2_y ,fixed_end_face1_half1_pt2_z)

fixed_end_face1_half1_pt3_x = FixedFiberWidth /2

fixed_end_face1_half1_pt3_y = FixedFiberThickness /2

fixed_end_face1_half1_pt3_z = FixedFiberLength

fixed_end_face1_half1_pt3 = (fixed_end_face1_half1_pt3_x ,

fixed_end_face1_half1_pt3_y ,fixed_end_face1_half1_pt3_z)

62

4.1 Source code for modelling fibre-fibre joints

faces1 = f1.findAt (((fixed_end_face1_half1_pt1),), ((

fixed_end_face1_half1_pt2),), ((fixed_end_face1_half1_pt3),))

f2 = a.instances[’fixed Fiber Half -2’]. faces

fixed_end_face1_half2_pt1_x = FixedFiberThickness *4/5

fixed_end_face1_half2_pt1_y = -FixedFiberThickness /2

fixed_end_face1_half2_pt1_z = FixedFiberLength

fixed_end_face1_half2_pt1 = (fixed_end_face1_half2_pt1_x ,

fixed_end_face1_half2_pt1_y ,fixed_end_face1_half2_pt1_z)

fixed_end_face1_half2_pt2_x = FixedFiberWidth -FixedFiberThickness *4/5

fixed_end_face1_half2_pt2_y = -FixedFiberThickness /2

fixed_end_face1_half2_pt2_z = FixedFiberLength

fixed_end_face1_half2_pt2 = (fixed_end_face1_half2_pt2_x ,

fixed_end_face1_half2_pt2_y ,fixed_end_face1_half2_pt2_z)

fixed_end_face1_half2_pt3_x = FixedFiberWidth /2

fixed_end_face1_half2_pt3_y = -FixedFiberThickness /2

fixed_end_face1_half2_pt3_z = FixedFiberLength

fixed_end_face1_half2_pt3 = (fixed_end_face1_half2_pt3_x ,

fixed_end_face1_half2_pt3_y ,fixed_end_face1_half2_pt3_z)

faces2 = f2.findAt (((fixed_end_face1_half2_pt1),), ((

fixed_end_face1_half2_pt2),), ((fixed_end_face1_half2_pt3),))

region = regionToolset.Region(faces=faces1+faces2)

fiberModel.EncastreBC(name=’BC -1’, createStepName=’Initial ’, region=region)

#

create Surface for Reaktionforces

#

a = fiberAssembly

a.Surface(side1Faces=faces1+faces2 , name=’Surf_rf1 ’)

second side

fixed_end_face2_half1_pt1_x = FixedFiberThickness *4/5

fixed_end_face2_half1_pt1_y = FixedFiberThickness /2

fixed_end_face2_half1_pt1_z = 0

fixed_end_face2_half1_pt1 = (fixed_end_face2_half1_pt1_x ,

fixed_end_face2_half1_pt1_y ,fixed_end_face2_half1_pt1_z)

fixed_end_face2_half1_pt2_x = FixedFiberWidth -FixedFiberThickness *4/5

fixed_end_face2_half1_pt2_y = FixedFiberThickness /2

fixed_end_face2_half1_pt2_z = 0

fixed_end_face2_half1_pt2 = (fixed_end_face2_half1_pt2_x ,

fixed_end_face2_half1_pt2_y ,fixed_end_face2_half1_pt2_z)

fixed_end_face2_half1_pt3_x = FixedFiberWidth /2

63

4 Appendix

fixed_end_face2_half1_pt3_y = FixedFiberThickness /2

fixed_end_face2_half1_pt3_z = 0

fixed_end_face2_half1_pt3 = (fixed_end_face2_half1_pt3_x ,

fixed_end_face2_half1_pt3_y ,fixed_end_face2_half1_pt3_z)

faces1 = f1.findAt (((fixed_end_face2_half1_pt1),), ((

fixed_end_face2_half1_pt2),), ((fixed_end_face2_half1_pt3),))

fixed_end_face2_half2_pt1_x = FixedFiberThickness *4/5

fixed_end_face2_half2_pt1_y = -FixedFiberThickness /2

fixed_end_face2_half2_pt1_z = 0

fixed_end_face2_half2_pt1 = (fixed_end_face2_half2_pt1_x ,

fixed_end_face2_half2_pt1_y ,fixed_end_face2_half2_pt1_z)

fixed_end_face2_half2_pt2_x = FixedFiberWidth -FixedFiberThickness *4/5

fixed_end_face2_half2_pt2_y = -FixedFiberThickness /2

fixed_end_face2_half2_pt2_z = 0

fixed_end_face2_half2_pt2 = (fixed_end_face2_half2_pt2_x ,

fixed_end_face2_half2_pt2_y ,fixed_end_face2_half2_pt2_z)

fixed_end_face2_half2_pt3_x = FixedFiberWidth /2

fixed_end_face2_half2_pt3_y = -FixedFiberThickness /2

fixed_end_face2_half2_pt3_z = 0

fixed_end_face2_half2_pt3 = (fixed_end_face2_half2_pt3_x ,

fixed_end_face2_half2_pt3_y ,fixed_end_face2_half2_pt3_z)

faces2 = f2.findAt (((fixed_end_face2_half2_pt1),), ((

fixed_end_face2_half2_pt2),), ((fixed_end_face2_half2_pt3),))

region = regionToolset.Region(faces=faces1+faces2)

mdb.models[’Fiber -Fiber Joint’]. EncastreBC(name=’BC -2’, createStepName=’

Initial ’, region=region)

#

create Surface for Reaktionforces

#

a = fiberAssembly

a.Surface(side1Faces=faces1+faces2 , name=’Surf_rf2 ’)

#

create Boundary Conditions for load application line

#

f1 = a.instances[’strained Fiber Half -1’].faces

BC_pt1_x_half1 = FixedFiberWidth /2+ sin(AngelFiber*pi/180)*(StrainedFiberLength

-StrainedFiberOverhang)

64

4.1 Source code for modelling fibre-fibre joints

BC_pt1_y_half1 = FixedFiberThickness+StrainedFiberThickness /2

BC_pt1_z_half1 = DistanceFiber -cos(AngelFiber*pi/180) *(StrainedFiberLength -

StrainedFiberOverhang)

BC_pt2_x_half1 = FixedFiberWidth /2+ sin(AngelFiber*pi/180) *(StrainedFiberLength

-StrainedFiberOverhang)+cos(AngelFiber*pi/180) *((StrainedFiberWidth -

StrainedFiberThickness)/2)

BC_pt2_y_half1 = FixedFiberThickness+StrainedFiberThickness /2

BC_pt2_z_half1 = DistanceFiber -cos(AngelFiber*pi/180) *(StrainedFiberLength -

StrainedFiberOverhang)+sin(AngelFiber*pi /180) *((StrainedFiberWidth -

StrainedFiberThickness)/2)

BC_pt3_x_half1 = FixedFiberWidth /2+ sin(AngelFiber*pi/180) *(StrainedFiberLength

-StrainedFiberOverhang)-cos(AngelFiber*pi/180) *((StrainedFiberWidth -

StrainedFiberThickness)/2)

BC_pt3_y_half1 = FixedFiberThickness+StrainedFiberThickness /2

BC_pt3_z_half1 = DistanceFiber -cos(AngelFiber*pi/180) *(StrainedFiberLength -

StrainedFiberOverhang)-sin(AngelFiber*pi /180) *((StrainedFiberWidth -

StrainedFiberThickness)/2)

faces1 = f1.findAt (((BC_pt1_x_half1 , BC_pt1_y_half1 , BC_pt1_z_half1),), ((

BC_pt2_x_half1 , BC_pt2_y_half1 , BC_pt2_z_half1),), ((BC_pt3_x_half1 ,

BC_pt3_y_half1 , BC_pt3_z_half1),))

f2 = a.instances[’strained Fiber Half -2’].faces

BC_pt1_x_half2 = FixedFiberWidth /2+ sin(AngelFiber*pi/180) *(StrainedFiberLength

-StrainedFiberOverhang)

BC_pt1_y_half2 = FixedFiberThickness+StrainedFiberThickness *3/2

BC_pt1_z_half2 = DistanceFiber -cos(AngelFiber*pi/180) *(StrainedFiberLength -

StrainedFiberOverhang)

BC_pt2_x_half2 = FixedFiberWidth /2+ sin(AngelFiber*pi/180) *(StrainedFiberLength

-StrainedFiberOverhang)+cos(AngelFiber*pi/180) *((StrainedFiberWidth -

StrainedFiberThickness)/2)

BC_pt2_y_half2 = FixedFiberThickness+StrainedFiberThickness *3/2

BC_pt2_z_half2 = DistanceFiber -cos(AngelFiber*pi/180) *(StrainedFiberLength -

StrainedFiberOverhang)+sin(AngelFiber*pi /180) *((StrainedFiberWidth -

StrainedFiberThickness)/2)

BC_pt3_x_half2 = FixedFiberWidth /2+ sin(AngelFiber*pi/180) *(StrainedFiberLength

-StrainedFiberOverhang)-cos(AngelFiber*pi/180) *((StrainedFiberWidth -

StrainedFiberThickness)/2)

BC_pt3_y_half2 = FixedFiberThickness+StrainedFiberThickness *3/2

BC_pt3_z_half2 = DistanceFiber -cos(AngelFiber*pi/180) *(StrainedFiberLength -

StrainedFiberOverhang)-sin(AngelFiber*pi /180) *((StrainedFiberWidth -

StrainedFiberThickness)/2)

faces2 = f2.findAt (((BC_pt1_x_half2 , BC_pt1_y_half2 , BC_pt1_z_half2),), ((

BC_pt2_x_half2 , BC_pt2_y_half2 , BC_pt2_z_half2),), ((BC_pt3_x_half2 ,

BC_pt3_y_half2 , BC_pt3_z_half2),))

65

4 Appendix

region_Load = regionToolset.Region(faces=faces1+faces2)

fiberModel.DisplacementBC(name=’BC-Load’, createStepName=’FiberLoad ’, region=

region_Load , u1=0.0, u2=UNSET , u3=0.0, ur1=UNSET , ur2=UNSET , ur3=UNSET ,

amplitude=UNSET , fixed=OFF , distributionType=UNIFORM , fieldName=’’,

localCsys=None)

create Surface for Reaktionforces

a = fiberAssembly

a.Surface(side1Faces=faces1+faces2 , name=’Surf_rfL ’)

#

Create a Node Set for reactionforce

#

nodes1 = a.surfaces[’Surf_rf1 ’].nodes

nodes2 = a.surfaces[’Surf_rf2 ’].nodes

nodes3 = a.surfaces[’Surf_rfL ’].nodes

a.Set(nodes=nodes1 , name=’NodeSet_rf ’)

a.Set(nodes=nodes3 , name=’NodeSet_rfL ’)

#

Create a CSYS in the connection area

#

d1 = a.datums

a.DatumCsysByOffset(datumCoordSys=d1[16], name=’Datum csys -3’, coordSysType=

CARTESIAN , vector =(FixedFiberWidth /2, FixedFiberThickness , DistanceFiber))

#

create Load

#

a = fiberAssembly

s1 = a.instances[’strained Fiber Half -1’].faces

load_face_half1_pt1_x = FixedFiberWidth /2 + (Center_Distance)*sin(AngelFiber*

pi/180)

load_face_half1_pt1_y = FixedFiberThickness

load_face_half1_pt1_z = DistanceFiber - (Center_Distance)*cos(AngelFiber*pi

/180)

load_face_half1_pt1 = (load_face_half1_pt1_x ,load_face_half1_pt1_y ,

load_face_half1_pt1_z)

66

4.2 Source code for analysing the results

side1Faces1 = s1.findAt (((load_face_half1_pt1),))

region = regionToolset.Region(side1Faces=side1Faces1)

fiberModel.Pressure(name=’Load -1’,

createStepName=’FiberLoad ’, region=region , distributionType=TOTAL_FORCE ,

field=’’, magnitude=Force , amplitude=UNSET)

#

create a Job

#

mdb.Job(name=FiberJob_name , model=’Fiber -Fiber Joint ’, type=ANALYSIS ,

explicitPrecision=SINGLE , nodalOutputPrecision=SINGLE , description=’Fiber -

Fiber Adhesive Joint ’,

parallelizationMethodExplicit=DOMAIN , multiprocessingMode=DEFAULT ,

numDomains =1, userSubroutine=’’, numCpus=1,

echoPrint=OFF , modelPrint=OFF , contactPrint=OFF , historyPrint=OFF)

mdb.jobs[FiberJob_name]. submit(consistencyChecking=OFF)

mdb.jobs[FiberJob_name]. waitForCompletion ()

print ’end’

4.2 Source code for analysing the results

import getopt , sys

import string , fpformat

from odbAccess import *

from visualization import *

import odbAccess

import odb

import os

import time

#

import pythoncom , win32com.client , win32api

import win32com.client

from win32com.client import constants

from win32com.client import Dispatch

open a EXCEL file

excel = win32com.client.Dispatch("Excel.Application")

67

4 Appendix

book = excel.Workbooks.Add()

sheet = book.Worksheets (1)

sheet.Range("A1").Value = "Output data for the odb files"

sheet.Range("A3").Value = "Sectionforce fixed fiber Case 4: variabel

Fiberthickness"

sheet.Range("A5").Value = "Fiber Width"

sheet.Range("B5").Value = "Ny"

sheet.Range("C5").Value = "Mz"

sheet.Range("D5").Value = "Mx"

sheet.Range("E5").Value = "Qx"

sheet.Range("F5").Value = "Qz"

sheet.Range("G5").Value = "My"

sheet.Range("H5").Value = "Qres"

sheet.Range("I5").Value = "Mres"

sheet.Range("K3").Value = "Sectionforce strained fiber Case 4: variabel

Fiberthickness"

sheet.Range("K5").Value = "Fiber Width"

sheet.Range("L5").Value = "Ny"

sheet.Range("M5").Value = "Mz"

sheet.Range("N5").Value = "Mx"

sheet.Range("O5").Value = "Qx"

sheet.Range("P5").Value = "Qz"

sheet.Range("Q5").Value = "My"

sheet.Range("R5").Value = "Qres"

sheet.Range("S5").Value = "Mres"

FixedFiberWidth =0.0320

FixedFiberThickness= 0.003725

FixedFiberLength =1.0

DistanceFiber=FixedFiberLength /2

different odb files for different geometries

odbPath_Thickness = [’FiberJob_FTh0 ,00465 _MODE1_V.odb’, ’FiberJob_FTh0 ,00535

_MODE1_V.odb’, ’FiberJob_FTh0 ,00605 _MODE1_V.odb’, ’FiberJob_FTh0 ,00675

_MODE1_V.odb’, ’FiberJob_FTh0 ,00745 _MODE1_V.odb’, ’FiberJob_FTh0 ,00815

_MODE1_V.odb’, ’FiberJob_FTh0 ,00885 _MODE1_V.odb’, ’FiberJob_FTh0 ,00955

_MODE1_V.odb’, ’FiberJob_FTh0 ,01025 _MODE1_V.odb’]

fiberThickness = [0.00465 , 0.00535 , 0.00605 , 0.00675 , 0.00745 , 0.00815 ,

0.00885 , 0.00955 , 0.01025]

jobcount = 0 # counter for opening odb files

row = 6

##

68

4.2 Source code for analysing the results

###

different Fiberthickness

###

for odbPath in odbPath_Thickness:

Try to open odb , otherwise throw exception

try:

fiberOdb = openOdb(path=odbPath , readOnly=True)

except IOError , value:

print ’Error:’, value

##

--

Define variables for the current frame

--

currentFrame = fiberOdb.steps[’FiberLoad ’]. frames [-1]

--

Define variables for the Assembly

--

assembly = fiberOdb.rootAssembly

--

Define variables for stresses and displacements

--

#Create CSYS

assembly.DatumCsysByThreePoints(name=’Transform CSYS’, coordSysType=

CARTESIAN , origin =(0, 0, 0), point1 =(1.0, 0, 0), point2 =(0, 1.0, 0))

odb_stresses = fiberOdb.steps[’FiberLoad ’]. frames [-1]. fieldOutputs[’S’]

odb_displacements = fiberOdb.steps[’FiberLoad ’]. frames [-1]. fieldOutputs[’U

’]

odb_reactionforce = fiberOdb.steps[’FiberLoad ’]. frames [-1]. fieldOutputs[’

RF’]

odb_sectionforce_x = fiberOdb.steps[’FiberLoad ’]. frames [-1]. fieldOutputs[’

NFORC1 ’]

odb_sectionforce_y = fiberOdb.steps[’FiberLoad ’]. frames [-1]. fieldOutputs[’

NFORC2 ’]

odb_sectionforce_z = fiberOdb.steps[’FiberLoad ’]. frames [-1]. fieldOutputs[’

NFORC3 ’]

odb_coord = fiberOdb.steps[’FiberLoad ’]. frames [-1]. fieldOutputs[’COORD ’]

69

4 Appendix

Transformation for Stresses

CSYS = assembly.datumCsyses[’Transform CSYS’]

odb_stresses_trans = odb_stresses.getTransformedField(datumCsys=CSYS)

Create a variable that refers to the desired node set

myNset_fixed = assembly.nodeSets[’NODESET_FIXED ’]

myNset_strained = assembly.nodeSets[’NODESET_STRAINED ’]

RFNset = assembly.nodeSets[’NODESET_RF ’]

Create a variable that refers to the displacement of

this node set

myDisplacement = odb_displacements.getSubset(region=myNset_fixed)

myStress = odb_stresses_trans.getSubset(position=ELEMENT_NODAL ,

region=myNset_fixed)

myRF = odb_reactionforce.getSubset(region=RFNset)

myCoord_fixed = odb_coord.getSubset(region=myNset_fixed)

mySF_x_fixed = odb_sectionforce_x.getSubset(region=myNset_fixed)

mySF_y_fixed = odb_sectionforce_y.getSubset(region=myNset_fixed)

mySF_z_fixed = odb_sectionforce_z.getSubset(region=myNset_fixed)

myCoord_strained= odb_coord.getSubset(region=myNset_strained)

mySF_x_strained = odb_sectionforce_x.getSubset(region=myNset_strained)

mySF_y_strained = odb_sectionforce_y.getSubset(region=myNset_strained)

mySF_z_strained = odb_sectionforce_z.getSubset(region=myNset_strained)

write to txt file

filename = "c:/ SIMULIA/Abaqus/Temp/TXT/" + odbPath [0: -4]+’_fixed -strained.

txt’

print "Writing to file: %s" % filename

file = open(filename , ’w’)

file.write("% Output data for the" + odbPath)

file.write("%\n\n")

write coords fom the fixed fiber side to file

single_line = "Fixed Fiber Side\n"

file.writelines(single_line)

single_line = "##############################\n"

file.writelines(single_line)

single_line = "coords for nodes in node set " + myNset_fixed.name + "\n"

file.writelines(single_line)

single_line = ’{0:5} {1:10} {2:10} {3:10} ’.format(’number ’, ’

x_coord ’ , ’y_coord ’, ’z_coord ’)+"\n"

file.writelines(single_line)

file.writelines(’

--’+"\n")

coord_fixed =[[], [], [], []]

coord_fixed_trans =[[], [], [], []]

for v in myCoord_fixed.values:

coord_fixed [0]. append(v.nodeLabel)

70

4.2 Source code for analysing the results

coord_fixed [1]. append(v.data [0])

coord_fixed [2]. append(v.data [1])

coord_fixed [3]. append(v.data [2])

coord_fixed_trans [0]. append(v.nodeLabel)

coord_fixed_trans [1]. append(v.data[0]- FixedFiberWidth /2)

coord_fixed_trans [2]. append(v.data[1]- fiberThickness[jobcount]/2)

coord_fixed_trans [3]. append(v.data[2]- DistanceFiber)

for i in range(len(coord_fixed [0])):

Line = ’{0:5} {1:10} {2:10} {3:10} ’.format(coord_fixed

[0][i], coord_fixed [1][i], coord_fixed [2][i], coord_fixed [3][i],)+

"\n"

file.writelines(Line)

file.write("\n\n")

single_line = "transformed coords for nodes in node set " + myNset_fixed.

name + "\n"

file.writelines(single_line)

single_line = ’{0:5} {1:10} {2:10} {3:10} ’.format(’number ’, ’

x_coord ’ , ’y_coord ’, ’z_coord ’)+"\n"

file.writelines(single_line)

file.writelines(’

--’+"\n")

for i in range(len(coord_fixed_trans [0])):

Line = ’{0:5} {1:10} {2:10} {3:10} ’.format(

coord_fixed_trans [0][i], coord_fixed_trans [1][i],

coord_fixed_trans [2][i], coord_fixed_trans [3][i],)+"\n"

file.writelines(Line)

file.write("\n\n")

write sectionforce from the fixed fiber side to file

single_line = "sectionforce for nodes in node set " + myNset_fixed.name +

"\n"

file.writelines(single_line)

single_line = ’{0:5} {1:10} {2:10} {3:10} ’.format(’number ’, ’

x_direction ’ , ’y_direction ’, ’z_direction ’)+"\n"

file.writelines(single_line)

file.writelines(’

--’+"\n")

71

4 Appendix

Sectionforces_fixed= [[], [], [], []]

averagedSF_x = 0

SF_x = 0

nodeLabel =0

count=0

for n in myNset_fixed.nodes [0]: # doing calculations only at selected

nodes

nodeNum=n.label

for v in range(len(mySF_x_fixed.values)):

if nodeNum == mySF_x_fixed.values[v]. nodeLabel:

SF_x = SF_x + mySF_x_fixed.values[v].data

count=count +1

nodeLabel=mySF_x_fixed.values[v]. nodeLabel

averagedSF_x= SF_x

Sectionforces_fixed [0]. append(nodeLabel)

Sectionforces_fixed [1]. append(averagedSF_x)

averagedSF_x = 0

SF_x = 0

nodeLabel =0

count=0

averagedSF_y = 0

SF_y = 0

nodeLabel =0

count=0

for n in myNset_fixed.nodes [0]: # doing calculations only at selected

nodes

nodeNum=n.label

for v in range(len(mySF_y_fixed.values)):

if nodeNum == mySF_y_fixed.values[v]. nodeLabel:

SF_y = SF_y + mySF_y_fixed.values[v].data

count=count +1

nodeLabel=mySF_y_fixed.values[v]. nodeLabel

averagedSF_y= SF_y

Sectionforces_fixed [2]. append(averagedSF_y)

72

4.2 Source code for analysing the results

averagedSF_y = 0

SF_y = 0

nodeLabel =0

count=0

averagedSF_z = 0

SF_z = 0

nodeLabel =0

count=0

for n in myNset_fixed.nodes [0]: # doing calculations only at selected

nodes

nodeNum=n.label

for v in range(len(mySF_z_fixed.values)):

if nodeNum == mySF_z_fixed.values[v]. nodeLabel:

SF_z = SF_z + mySF_z_fixed.values[v].data

count=count +1

nodeLabel=mySF_z_fixed.values[v]. nodeLabel

averagedSF_z= SF_z

Sectionforces_fixed [3]. append(averagedSF_z)

averagedSF_z = 0

SF_z = 0

nodeLabel =0

count=0

for i in range(len(Sectionforces_fixed [0])):

Line = ’{0:5} {1:10} {2:10} {3:10} ’.format(

Sectionforces_fixed [0][i], Sectionforces_fixed [1][i],

Sectionforces_fixed [2][i], Sectionforces_fixed [3][i],)+"\n"

file.writelines(Line)

file.write("\n\n")

##

nodeLabel = 0

SF_X = 0

SF_Y = 0

SF_Z = 0

SM_Z = 0

SM_X = 0

SM_Y = 0

73

4 Appendix

for i in range(len(Sectionforces_fixed [0])):

nodeLabel = Sectionforces_fixed [0][i]

SF_X = SF_X + Sectionforces_fixed [1][i]

SF_Y = SF_Y + Sectionforces_fixed [2][i]

SF_Z = SF_Z + Sectionforces_fixed [3][i]

SM_Z = SM_Z + Sectionforces_fixed [2][i]* coord_fixed_trans [1][i]

SM_X = SM_X - Sectionforces_fixed [2][i]* coord_fixed_trans [3][i]

SM_Y = SM_Y + (Sectionforces_fixed [1][i]* coord_fixed_trans [3][i] -

Sectionforces_fixed [3][i]* coord_fixed_trans [1][i])

file.writelines(’SF_y = ’ + str(SF_Y) + "\n")

file.writelines(’SM_z = ’ + str(SM_Z) + "\n")

file.writelines(’SM_x = ’ + str(SM_X) + "\n")

file.write("\n")

file.writelines(’SF_x = ’ + str(SF_X) + "\n")

file.writelines(’SF_z = ’ + str(SF_Z) + "\n")

file.writelines(’SM_y = ’ + str(SM_Y) + "\n")

file.write("\n\n")

row1 = row

#print to a excell file

sheet.Cells(row ,1).Value = fiberThickness[jobcount]

sheet.Cells(row ,2).Value = SF_Y

sheet.Cells(row ,3).Value = SM_Z

sheet.Cells(row ,4).Value = SM_X

sheet.Cells(row ,5).Value = SF_X

sheet.Cells(row ,6).Value = SF_Z

sheet.Cells(row ,7).Value = SM_Y

sheet.Cells(row ,8).Value = (SF_X **2 + SF_Z **2) **(1/2)

sheet.Cells(row ,9).Value = (SM_X **2 + SM_Z **2) **(1/2)

row = row1

nodeLabel = 0

SF_X = 0

SF_Y = 0

SF_Z = 0

SM_Z = 0

SM_X = 0

SM_Y = 0

##

74

4.2 Source code for analysing the results

##

write coords fom the strained fiber side to file

single_line = "Strained Fiber Side\n"

file.writelines(single_line)

single_line = "##############################\n"

file.writelines(single_line)

single_line = "coords for nodes in node set " + myNset_strained.name + "\n

"

file.writelines(single_line)

single_line = ’{0:5} {1:10} {2:10} {3:10} ’.format(’number ’, ’

x_coord ’ , ’y_coord ’, ’z_coord ’)+"\n"

file.writelines(single_line)

file.writelines(’

--’+"\n")

coord_strained =[[], [], [], []]

coord_strained_trans =[[], [], [], []]

for v in myCoord_strained.values:

coord_strained [0]. append(v.nodeLabel)

coord_strained [1]. append(v.data [0])

coord_strained [2]. append(v.data [1])

coord_strained [3]. append(v.data [2])

coord_strained_trans [0]. append(v.nodeLabel)

coord_strained_trans [1]. append(v.data[0]- FixedFiberWidth /2)

coord_strained_trans [2]. append(v.data[1]- fiberThickness[jobcount

]/2)

coord_strained_trans [3]. append(v.data[2]- DistanceFiber)

for i in range(len(coord_strained [0])):

Line = ’{0:5} {1:10} {2:10} {3:10} ’.format(coord_strained

[0][i], coord_strained [1][i], coord_strained [2][i], coord_strained

[3][i],)+"\n"

file.writelines(Line)

file.write("\n\n")

single_line = "transfomed coords for nodes in node set " + myNset_strained

.name + "\n"

file.writelines(single_line)

single_line = ’{0:5} {1:10} {2:10} {3:10} ’.format(’number ’, ’

x_coord ’ , ’y_coord ’, ’z_coord ’)+"\n"

file.writelines(single_line)

file.writelines(’

--’+"\n")

for i in range(len(coord_strained_trans [0])):

75

4 Appendix

Line = ’{0:5} {1:10} {2:10} {3:10} ’.format(

coord_strained_trans [0][i], coord_strained_trans [1][i],

coord_strained_trans [2][i], coord_strained_trans [3][i],)+"\n"

file.writelines(Line)

file.write("\n\n")

write sectionforce from the strained fiber side to file

single_line = "sectionforce for nodes in node set " + myNset_strained.name

+ "\n"

file.writelines(single_line)

single_line = ’{0:5} {1:10} {2:10} {3:10} ’.format(’number ’, ’

x_direction ’ , ’y_direction ’, ’z_direction ’)+"\n"

file.writelines(single_line)

file.writelines(’

--’+"\n")

Sectionforces_strained= [[], [], [], []]

averagedSF_x = 0

SF_x = 0

nodeLabel =0

count=0

for n in myNset_strained.nodes [0]: # doing calculations only at selected

nodes

nodeNum=n.label

for v in range(len(mySF_x_strained.values)):

if nodeNum == mySF_x_strained.values[v]. nodeLabel:

SF_x = SF_x + mySF_x_strained.values[v].data

count=count +1

nodeLabel=mySF_x_strained.values[v]. nodeLabel

averagedSF_x= SF_x

Sectionforces_strained [0]. append(nodeLabel)

Sectionforces_strained [1]. append(averagedSF_x)

averagedSF_x = 0

SF_x = 0

nodeLabel =0

count=0

76

4.2 Source code for analysing the results

averagedSF_y = 0

SF_y = 0

nodeLabel =0

count=0

for n in myNset_strained.nodes [0]: # doing calculations only at selected

nodes

nodeNum=n.label

for v in range(len(mySF_y_strained.values)):

if nodeNum == mySF_y_strained.values[v]. nodeLabel:

SF_y = SF_y + mySF_y_strained.values[v].data

count=count +1

nodeLabel=mySF_y_strained.values[v]. nodeLabel

averagedSF_y= SF_y

Sectionforces_strained [2]. append(averagedSF_y)

averagedSF_y = 0

SF_y = 0

nodeLabel =0

count=0

averagedSF_z = 0

SF_z = 0

nodeLabel =0

count=0

for n in myNset_strained.nodes [0]: # doing calculations only at selected

nodes

nodeNum=n.label

for v in range(len(mySF_z_strained.values)):

if nodeNum == mySF_z_strained.values[v]. nodeLabel:

SF_z = SF_z + mySF_z_strained.values[v].data

count=count +1

nodeLabel=mySF_z_strained.values[v]. nodeLabel

averagedSF_z= SF_z

Sectionforces_strained [3]. append(averagedSF_z)

averagedSF_z = 0

SF_z = 0

nodeLabel =0

77

4 Appendix

count=0

for i in range(len(Sectionforces_strained [0])):

Line = ’{0:5} {1:10} {2:10} {3:10} ’.format(

Sectionforces_strained [0][i], Sectionforces_strained [1][i],

Sectionforces_strained [2][i], Sectionforces_strained [3][i],)+"\n"

file.writelines(Line)

file.write("\n\n")

##

nodeLabel = 0

SF_X = 0

SF_Y = 0

SF_Z = 0

SM_Z = 0

SM_X = 0

SM_Y = 0

for i in range(len(Sectionforces_strained [0])):

nodeLabel = Sectionforces_strained [0][i]

SF_X = SF_X + Sectionforces_strained [1][i]

SF_Y = SF_Y + Sectionforces_strained [2][i]

SF_Z = SF_Z + Sectionforces_strained [3][i]

SM_Z = SM_Z + Sectionforces_strained [2][i]* coord_strained_trans [1][i]

SM_X = SM_X - Sectionforces_strained [2][i]* coord_strained_trans [3][i]

SM_Y = SM_Y + (Sectionforces_strained [1][i]* coord_strained_trans [3][i]

- Sectionforces_strained [3][i]* coord_strained_trans [1][i])

file.writelines(’SF_y = ’ + str(SF_Y) + "\n")

file.writelines(’SM_z = ’ + str(SM_Z) + "\n")

file.writelines(’SM_x = ’ + str(SM_X) + "\n")

file.write("\n")

file.writelines(’SF_x = ’ + str(SF_X) + "\n")

file.writelines(’SF_z = ’ + str(SF_Z) + "\n")

file.writelines(’SM_y = ’ + str(SM_Y) + "\n")

#print to a excell file

sheet.Cells(row ,11).Value = fiberThickness[jobcount]

sheet.Cells(row ,12).Value = SF_Y

sheet.Cells(row ,13).Value = SM_Z

sheet.Cells(row ,14).Value = SM_X

sheet.Cells(row ,15).Value = SF_X

sheet.Cells(row ,16).Value = SF_Z

sheet.Cells(row ,17).Value = SM_Y

78

4.2 Source code for analysing the results

sheet.Cells(row ,18).Value = (SF_X **2 + SF_Z **2) **(1/2)

sheet.Cells(row ,19).Value = (SM_X **2 + SM_Z **2) **(1/2)

nodeLabel = 0

SF_X = 0

SF_Y = 0

SF_Z = 0

SM_Z = 0

SM_X = 0

SM_Y = 0

file.write("\n\n")

######################

Reactionforces

######################

single_line = "reactionforces for nodeset" + RFNset.name + "\n"

file.writelines(single_line)

row = row+1

nodecount = 0

count=0

RF_x = 0

RF_y = 0

RF_z = 0

RF_x_list =[]

RF_y_list =[]

RF_z_list =[]

nodeLabel =0

for v in myRF.values:

RF_x=v.data [0]

RF_y=v.data [1]

RF_z=v.data [2]

nodeLabel=v.nodeLabel

RF_x_list.append(RF_x)

RF_y_list.append(RF_y)

RF_z_list.append(RF_z)

79

4 Appendix

nodecount=nodecount +1

RF_x = 0

RF_y = 0

RF_z = 0

RFx_sum = sum(RF_x_list)

RFy_sum = sum(RF_y_list)

RFz_sum = sum(RF_z_list)

file.write("\n\n")

file.writelines(’reactionforce x-direction = ’ + str(RFx_sum) + "\n")

file.writelines(’reactionforce y-direction = ’ + str(RFy_sum) + "\n")

file.writelines(’reactionforce z-direction = ’ + str(RFz_sum) + "\n")

file.write("\n\n")

file.close()

jobcount = jobcount + 1

print odbPath

print nodecount

#########################

#########################

#save excel file

book.SaveAs("fiber_analysis_fixed -strained_fTh.xlsx") # or .xls depending on

version

sheet = None

book = None

excel.Quit()

excel = None

80

Bibliography ∗

Bodig, J and A J Benjamin (1993). Mechanics of wood and wood composites.
(Florida: Krieger Publishing Company) (cit. on pp. 1–3).

Ek, M, G Gellerstedt, and G Henriksson (2009). Pulping Chemistry and Technology.
(Berlin: Walter de Gruyter GmbH & Co. KG) (cit. on pp. 6–9).

Puri, G (2011). Python Scripts for Abaqus: Learn by Example. (self-publishing
company). ISBN: 978-0-615-52050-6 (cit. on p. 43).

SIMULIA-DassaultSystémes (2012). Abaqus/CAE User’s Manual (cit. on pp. 11,
18, 19, 23).

∗For further references, the author kindly refers to the bibliography of the appended paper in this
thesis.

81

