
Master’s Thesis

Learning temporal relationships
between hidden causes in

networks of spiking neurons

————————————–

Institute for Theoretical Computer Science
Graz University of Technology

Submitted by:
David Kappel

Supervisor:
O.Univ.-Prof. Dipl.-Ing. Dr.rer.nat. Wolfgang Maass

January 30, 2011

Masterarbeit

Lernen zeitlicher
Zusammenhänge zwischen
versteckten Zuständen in
spikenden neuronalen

Netzwerken

————————————–

Institut für Grundlagen der Informationsverarbeitung
Technische Universität Graz

Vorgelegt von:
David Kappel

Betreuer:
O.Univ.-Prof. Dipl.-Ing. Dr.rer.nat. Wolfgang Maass

30. Januar 2011

Abstract

Spike time dependent plasticity (STDP) is considered to be the major mecha-

nism for learning and adaptive behaviour in the brain. In a recent work it was

shown that a purely local synaptic learn rule enables a network of spiking neu-

rons, connected to winner-take-all circuits, to discover hidden causes. These

findings suggest, that neural networks in the neocortex and the hypocampus

are able to compute Bayesian inference. However, temporal correlations of the

input were neglected by assuming consecutive hidden causes to be indepen-

dent. Natural signals, like speech, show high correlations between nearby time

windows and it is likely, that evolution has found some way to exploit these

correlation in biological neural networks. In this thesis we extend the basic

results on winner-take-all circuits to enable them to detect temporal relation-

ships between hidden causes from an input spike stream. We will show that

this goal can be achieved by using relatively simple extensions of the basic

architecture. We will investigate the learning dynamics of such networks, and

compare the results to recent data from neuroscience, and to standard machine

learning paradigms such as the hidden Markov model. We study different net-

work architectures and analyse them in terms of their computational power

and biological plausibility.

V

Kurzfassung

Es wird angenommen, dass Spike-Zeit abhängige Plastizität (STDP) der neu-

ronale Mechanismus für Lernen und adaptive Prozesse im Gehirn ist. In einer

kürzlich veröffentlichten Arbeit wurde gezeigt, dass Schaltkreise von Neuronen,

die sich innerhalb des Netzwerkes gegenseitig inhibieren, durch STDP in der

Lage sind, versteckte Zustände aufzudecken. Aus diesem Ergebnis folgt, dass

neuronale Netzwerke im Neocortex und dem Hippocampus, die Fähigkeit be-

sitzen Bayes’sche Inferenz zu berechnen. Allerdings wurde hier angenommen,

dass zeitlich aufeinander folgende Zustände unabhängig voneinander sind. Zeit-

liche Korrelationen in den Spike-Mustern wurden nicht beachtet. Natürliche

Signale, wie etwa Sprachsignale, weisen starke Korrelationen zwischen nahe-

gelegenen Zeitfenstern auf und es ist anzunehmen, dass die Evolution einen

Weg gefunden hat diese im Gehirn zu verarbeiten. In dieser Arbeit wird die

ursprüngliche Theorie erweitert, sodass das Netzwerk zeitliche Abhängigkeiten

zwischen versteckten Zuständen entdecken kann. Es wird sich zeigen, dass die-

ses Ziel durch relativ einfache Erweiterungen erreicht werden kann. Wir wer-

den die Lerndynamik solcher Netzwerke studieren und mit Ergebnissen aus

den Neurowissenschaften und maschinellem Lernen vergleichen.

VII

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources / resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the used
sources.

date signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst, andere als die angegebenen Quellen / Hilfsmittel nicht benutzt und die
den benutzten Quellen wörtlich und inhaltlich entnommene Stellen als solche
kenntlich gemacht habe.

Graz, am Unterschrift

IX

Danksagung

Mein besonderer Dank gilt...

Wolfgang Maass, für die Unterstützung dieser Arbeit und die Möglichkeit an
aktueller Forschung teilzunehmen.

Bernhard Nessler, für die vielen Stunden die er dieser Arbeit geopfert hat und
die kreativen Ideen die daraus entstanden sind.

Stefan Habenschuss, Markus Murschitz und Nikolaus Hammler für die anre-
genden Diskussionen.

meinen Eltern, Eva und Konrad die mir dieses Studium ermöglicht und stets
meine Interessen und Talente gefördert haben.

meinen Großeltern, für ihre Unterstützung während meiner Studienzeit.

meinen Geschwistern, Lisa und Paul für viele unterhaltsame Stunden und auf-
munternde Worte.

Susanne, für die schöne Zeit, die wir zusammen verbringen.

all meinen Freunden, Kollegen und Verwandten, die mich aufmuntern und
unterstützen und ohne die diese Arbeit nicht möglich gewesen wäre.

Graz, im Jänner 2011 David Kappel

XI

diese Arbeit ist in
englischer Sprache verfasst

Contents

List of Figures XVII

List of Tables XIX

1 Introduction 1

2 Biological mechanisms for sequential data processing 5
2.1 Neural codes for sequential data 5
2.2 Neural replay of complex patterns 8
2.3 Implicit and statistical learning 9
2.4 Neural circuits of songbirds . 10

3 Probabilistic Models 13
3.1 Graphical models and hidden causes 13
3.2 The expectation-maximisation algorithm 14
3.3 Monte Carlo methods . 15

3.3.1 Importance sampling . 16
3.3.2 Markov chain Monte Carlo 16
3.3.3 Monte Carlo EM . 17

3.4 The hidden Markov model . 18
3.4.1 HMM parametrisation 19
3.4.2 The Baum-Welch algorithm 20
3.4.3 The forward-backward algorithm 21

3.5 Extensions of the basic HMM 23
3.5.1 Online HMM learning 23
3.5.2 Simplifications and extensions of the Baum-Welch algo-

rithm . 24

4 Neuron Models 27
4.1 Standard neuron models . 27

4.1.1 The McCulloch and Pitts neuron 28
4.1.2 The leaky integrate-and-fire neuron 29

XV

Contents

4.2 Synaptic plasticity . 30
4.2.1 Hebbian learning . 30
4.2.2 Spike time dependent plasticity 31
4.2.3 Synaptic tagging . 32

4.3 Neural codes . 33
4.3.1 Spike and rate codes . 33
4.3.2 Winner-take-all circuits 34

4.4 The spiking expectation-maximisation network 35
4.4.1 Bayesian inference in soft WTA circuits 35
4.4.2 A STDP rule for EM . 36
4.4.3 Relation to the LIF neuron 37

4.5 Neural implementations of HMMs 38

5 STDP learning of temporal hidden causes 41
5.1 Discovering temporal hidden causes using multiple time-lags . . 41
5.2 STDP learning of HMMs . 43

5.2.1 Introducing temporal relations between hidden causes
through lateral connections 44

5.2.2 A sampling approximation of the forward-backward al-
gorithm . 45

5.3 A STDP Rule for HMM Learning 49
5.3.1 An illustrative example 53
5.3.2 Generalisation to SEM learning on multiple time-lags . . 54
5.3.3 Simplifications of the importance sampling approach . . 55

6 Numerical Experiments 59
6.1 Learning spatiotemporal patterns using time-lagged inputs . . . 59
6.2 Monte Carlo approximation of HMMs 61

6.2.1 Convergence of the approximate algorithms 62
6.2.2 General HMM learning tasks 64

6.3 Artificial grammar learning . 65
6.3.1 Implicit learning of artificial grammars 67
6.3.2 Detailed models emerge from approximate HMM learning 68

6.4 Discussion . 76

7 Conclusion and future work 79

Bibliography 81

XVI

List of Figures

3.1 The Bayesian network of an observed variable and its hidden
cause . 13

3.2 The Bayesian network of the HMM 18
3.3 Illustration of the message passing in the forward-backward al-

gorithm . 22

4.1 Schematic representation of a neuron 28
4.2 The SEM network structure . 35

5.1 The Bayesian network of a time lagged SEM model 42
5.2 A SEM circuit with recursive connections to capture the tem-

poral structure of the input. 44
5.3 Extending the network with an inhibitory neuron 50
5.4 Illustration of the weight tagging 52

6.1 The input-output behaviour of the time lagged network 60
6.2 Demonstration of the Monte Carlo approximation for HMMs . . 63
6.3 Mean normalised log likelihood error of different HMM training

approaches . 64
6.4 Artificial grammar model . 66
6.5 Percentage of correctly classified sequences for three different

test grammars . 70
6.6 Comparison of the network performance using sparse initial

weights . 73
6.7 Comparison of the network performance using initial weights

with Beta prior . 74
6.8 Comparison of the network performance using random initial

weights . 75

XVII

List of Tables

5.1 The model parameter of the example HMM 51

6.1 Performance of HMM approximation for implicit learning task . 67
6.2 Grammatical rules to describe the artificial grammar 71

XIX

1 Introduction

In the brain information between neurons is propagated by sending out uni-
formly shaped electric pulses, called action potentials or spikes. Virtually all
input arrives at the brain in temporal patterns of such spike trains, propagated
along nerval fibres. Even if we look at a static image, the saccadic movements
of our eyes chop the image into dynamic ‘movies’. The same is true for the
motor output of the brain. Performing tasks like juggling or playing the piano
require to coordinate our arms and fingers with very precise timings. Not least
speech acquisition and production require to process highly complex sequen-
tial patterns and very accurate motor control timings. Even when performing
tasks like walking, the brain needs to process an endless stream of informa-
tion coming form eyes, touch and equilibrium sense. Due to these facts the
neural mechanisms, that enable the brain to solve these tasks - we find so
difficult in machine learning - with such ease, have been of great interest by
neuroscientists over the last decades.

In machine learning we speak about sequential data when data samples arrive
in an ordered sequence. Such data samples often arise through measurements
of time series and usually show large correlations between nearby time points
[Bishop, 2006]. In classical machine learning sequential data used to play a
secondary role. Data samples were usually assumed to be independent and
identically distributed breaking their temporal correlation. This assumption
was taken in many cases due to computational simplifications. Only in recent
years processing of sequential data has attracted more and more attention.
This change in paradigms was due to the increasing computational power of
modern computer hardware and to the wide applicability in tasks, were the
independence assumption was found to be insufficient.

One of the first statistical models that was introduced to solve this prob-
lem, was the hidden Markov model, introduced by Baum and colleges in the
1960s [Baum and Petrie, 1966]. The major assumption of this model is, that
any stream of sequential data we observe in nature, can be perceived as being
generated by an unobserved probabilistic state machine. If that internal state
of the model was known, the independence assumption on the observed data

1

1 Introduction

would hold. Efficient algorithms have been derived to estimate the parameters
of the model and the hidden state variables. Due to its computational simplic-
ity the hidden Markov model has become a standard model in machine learning
with applications ranging from speech processing to gene sequencing [Rabiner,
1989,Churchill, 1989].

One of the most astounding predicates of neurons is their adaptive behaviour.
Many neural circuits of the brain stay plastic over their whole lifetime, being
adaptive to new environments and situations. The mechanisms of this plastic-
ity is under extensive research, but today not completely understood. Spike
time dependent plasticity (STDP) is considered to be a key feature, causing
adaptive behaviour. In a recent theoretical study [Nessler et al., 2010] revealed
that STDP enables networks of spiking neurons to solve maximum likelihood
estimation on incomplete data. This neural learning paradigm was called
spiking expectation maximisation (SEM). SEM Networks showed good per-
formance in unsupervised learning tasks and the necessary calculations could
be explained on a biological background. But, in the proposed theory, the
hidden causes were again assumed to be independent over time.

In this thesis we will close this gap. We will discuss models from computational
neuroscience and standard machine learning approaches on learning sequential
data, compare them and point out their similarities and differences. We will
investigate two approaches, that introduce temporal dependences between hid-
den causes to the SEM network. These approaches emerge from very simple
extensions to the original architecture. The first one emerges from extending
the network inputs with time-lags, the second from recurrent connections that
feed back the network outputs from previous time steps. We will see that the
latter architecture implements a hidden Markov model. Careful analysis of
both models will show that exact parameter learning can not be done using
STDP learning alone. We will derive an extended learn rule that uses synaptic
tagging to solve this problem. The algorithm for the hidden Markov model
case was found in a collaborate work with Bernhard Nessler. We will evaluate
this algorithm using numerical simulations and show that it can achieve similar
performance to standard machine learning approaches.

Neurophysiological studies have shown that sequence processing tasks are ac-
companied by highly complex neural circuits and coding. Specialised cells in
the brain encode information on a surprisingly high level of abstraction, when
they are exposed to sequential data [Barone and Joseph, 1989,Averbeck et al.,
2002]. On the other hand behavioural studies on humans suggest, that in the
early phases of sequential data learning, only a rudimentary representation
of local statistics is developed [Cleeremans et al., 1998]. It remains unclear

2

whether the more abstract information coding is learned on top of these early
statistical representations, or if the two phenomenons are independent. We
will show that both phenomenons can emerge from the same neural substrate
using the models introduced in this thesis. These findings suggest, that ab-
stract neural codes can emerge from early statistical representations through
a process of model refinement.

The rest of this thesis is organised as follows: In chapter 2 we will give a brief
overview of the brain’s sequential data processing. In chapter 3 we will review
the hidden Markov model and other standard machine learning approaches.
In chapter 4 we will discuss computational neuron models, compare them to
the probabilistic models and introduce the SEM network and its extension.
We will also talk about neural codes and extensions to STDP learning. In
chapter 5 we will introduce the extended SEM approaches and discuss their
advantages and disadvantages. In chapter 6 we will show experimentally that
some aspects of the neural codes found in biological systems can be explained
by the introduced models. In chapter 7 we conclude and give a outlook to
future work.

3

2 Biological mechanisms for
sequential data processing

The neural processing of sequential stimuli has been of great interest by the
neuroscience community. Many studies have approached this problem from
different research directions. In this chapter we will review some of the mech-
anisms that were found.

2.1 Neural codes for sequential data

The neural code, the representation of sequential data in the brain is based
on, was under extensive research over the last decades. Of particular inter-
est were experiments concerning motor planning and sequence memorisation.
There are numerous studies of neural recordings from monkeys performing
these tasks. A region in the brain that is highly involved in sequence process-
ing is the prefrontal cortex. Neurons located in that area show highly complex
activity patterns that exploit sequential data on a surprisingly high level of
abstraction.

One early study of sequence learning and motor planning was done by [Barone
and Joseph, 1989]. They recorded 302 neurons from the prefrontal cortex of
macaque monkeys, which had to memorise and reproduce a sequential pattern.
The monkeys were trained to push buttons on a panel in a specific order they
had observed before. The panel consisted of a central fixation point and three
target points, two lateral and one above the fixation point. In the first phase
of the experiment the monkey had to purely observe the appearance of the
target points while focusing the fixation point. The target points appeared
in random order. In the second phase it had to reproduce the sequence by
pressing the targets in the observed order. If the monkey correctly reproduced
the sequence it was rewarded with juice. It was shown that in the first phase
one set of neurons storing positions and time-relationships became active, while

5

2 Biological mechanisms for sequential data processing

during execution of the sequence, another set of neurons became active that
encoded the current state of the sequence.

[Barone and Joseph, 1989] identified several classes of task related neurons:
One class of cells that became active in phase one, after onset of one of the
targets, was denoted visual tonic cells . These cells were target dependent and
also selective to the rank order in which the target appeared. Different groups
of these cells were identified each of which encoding one of the targets activated
at a specific sequential order. The activity was independent of the subsequent
illumination of the other targets. It was also reported that the activity of
these cells was correlated with the animals’ performance. In trials where the
sequence was reproduced correctly, the temporal patterns were different form
incorrect ones. A second group of neurons was classified as fixation cells . These
cells changed their activation in phase two of the experiment during fixation
of a target before pressing it. Again the majority of them were selective for
one specific target. These cells were reported to be primarily related to visual
attention. The activation started when attention was directed to the target
and after the target-pressing the unspecific activity was restored. The largest
group of neurons was classified as context cells . Again the activation of the
majority of the cells depended on the target on which the animal directed
its attention. In addition different groups of these neurons encoded in which
particular sequence the targets were activated. Thus, the activation was mod-
ulated by the context of future and past targets. Different classes of these
cells have been identified being either highly selective on a specific sequence
or encoding multiple sequences. This class of neurons is of particular interest
in our discussion, because the cells encode hidden cause information. They
infer information from the input that is not directly observable, but must be
restored form the, usually noise activation of other cells. These findings have
shown that the prefrontal cortex comprises divers classes of neurons related
to memorising sequences, sequence decoding and action planning. Most of
these cells were specific on one special aspect of the spatio-temporal input and
encoded the sequential information on different levels of abstraction.

In a related study Averbeck and collaborators have shown that sequences of
motor actions are represented by patterns of neuronal ensemble activity in
prefrontal cortex in macaque monkeys [Averbeck et al., 2002]. The monkeys
were trained to reproduce simple geometric shapes using a joystick-controlled
cursor. Each trial started with a short waiting time after which the shape
was displayed on a screen. If the shape was correctly reproduced the monkey
was given a juice reward. The same shape was presented several times in
successive trials, such that the monkey was aware of the shape during the

6

2.1 Neural codes for sequential data

waiting time after the first trial. Aside the neural recordings form prefrontal
cortex the position of the joystick and the eye movements were monitored. The
authors investigated the correlation between the motor trajectories and the
neural response. Each drawing of a shape was composed of distinct movement
segments and it was shown that these segments can be associated with patterns
of neuronal ensemble activity. These activity patterns differed significantly
among each other but on execution of the movement segment they were clearly
represented by the neural readout. Notably, the activity patterns were also
represented during the waiting phase and the strength of their representation
was correlated with their serial order in the movement sequence. From this
finding Averbeck et. al. concluded that ‘the strength of segment representation
is the neural code for serial order ’ [Averbeck et al., 2002].

Yet a more abstract neural code for sequential order was found by [Berdyyeva
and Olson, 2009]. They studied neurons form the supplementary eye field of
rhesus monkeys, while the monkeys were performing different sequential eye
movement tasks. It was already known from previous studies that during such
tasks, some neurons from the supplementary eye field, encode the rank order
of movements (see [Berdyyeva and Olson, 2009] and referenced therein). The
authors investigated whether these neurons generalise the abstract informa-
tion of rank order independent of the particular movement task. To address
this issue they monitored the neural activity during serial action and a se-
rial object tasks. The serial action tasks were designed such that the animals
had to perform a series of eye movements in a learned sequence. In the se-
rial object tasks the animals had to direct their gaze to objects appearing on
random positions, in a learned sequences of object identities. Berdyyeva and
Olson showed that a group of the studied cells, called rank-selective neurons ,
encoded solely the sequential order of the current movement within the se-
quence, independent of the task. They further showed that this behaviour is
neither modulated by temporal aspects of the experiment nor reward expec-
tation. Thus rank-selective neurons really encode the abstract information of
rank positions within a sequence.

Based on these findings [Salinas, 2009] developed a neural model for memo-
rising and replaying sequential data. They proposed a two layer, feed forward
network: The input layer is composed of rank-order neurons as defined in the
previous paragraph, the output layer consists of simple linear neurons which
drive the motor units. As proposed by Berdyyeva and Olson, the rank-order
neurons are activated in a fixed sequential order. Each rank in the sequence
is represented by multiple neurons. This sequential pattern drives the out-
put neurons to produce an action sequence. Multiple action sequences can be

7

2 Biological mechanisms for sequential data processing

trained into the weights between input and output layer. To do so Salinas
used different rate modulations for the rank-order neurons. For each action
sequence a distinct pattern of firing rates was used for training and for pat-
tern replay. These activity patterns were chosen at random, but needed to be
constant over the whole action pattern. The replay was reported to be very
robust to noise and the number of action patterns, that could be stored, was
only limited by the number of rank-order neurons. One issue that is still open
is how the rate modulation of the rank-order neurons is realised in a biolog-
ical network. Not only that demanding firing rates of rank-order neurons to
be modulated with the sequence identity is against the assumption that they
encode information that is independent of any sequence identity, the neural
mechanism of the modulation is unclear.

2.2 Neural replay of complex patterns

In the previous section we have seen that the prefrontal cortex plays an impor-
tant role in memorising and planning sequential tasks. We pointed out that,
when performing motor planning tasks, highly complex and abstract memory
traces are replayed in that area of the brain. In this section we will review work,
that has explored in more detail, how these memory traces are formed. The
standard model of system consolidation suggests that recent memory traces
are kept in the hippocampus for several days. During that time the memory
is slowly moved to the neo-cortex where it is stored and can be recalled for
several years or even live time [Roediger et al., 2007]. Experimental data sug-
gests that this shifting of memory between two brain areas is accomplish by
repeated replay of the memory traces during sleep. The prefrontal cortex has
been under extensive research in this context.

The hippocampus formation and the neo-cortex are strongly connected. The
main afferent axons originate in the entorhinal cortex, a subregion of the tem-
poral lobe. Efferent connections are sent back to the entorhinal cortex and
directly to the prefrontal cortex [Buzsáki, 1989]. The efferent connections give
rise to cortical memory replay. Neural activity patterns in neo-cortex and hip-
pocampus have shown to be densely coupled during slow wave sleep [Sirota
et al., 2003]. Patterns that are generated when performing tasks in the awake
state are replayed during this phase [Peyrache et al., 2009,Isomura et al., 2006].
In rat’s prefrontal cortex this replay occurs in transient episodes that corre-
spond to activity of distinct cell assemblies. It was also found that the patterns
were most often replayed, when they had appeared in a situation of decision

8

2.3 Implicit and statistical learning

making in a learning task [Peyrache et al., 2009]. The pattern replay does
not occur at the same speed as in the awake state. Patterns are compressed
in time by a factor of about 6-7 [Euston et al., 2007]. The afferent connec-
tions from the neo-cortex to the hippocampus have been hypothesize to select
unique subpopulations of hippocampal neurons [Isomura et al., 2006]. This
allows to selectively replay hippocampal activity pattern during the formation
of neocortical memory traces.

2.3 Implicit and statistical learning

Besides these studies on neural readouts from monkeys and rats, data gath-
ered from behavioural studies on humans exists, that allows at least some
insight into the underlying neural processes. Two major fields that are closely
related are the paradigms of statistical learning and implicit learning. Both
fields account for the same phenomenon - learning sequential data without
clear awareness or even the intention to learn, just by being exposed to a
rule-governed stimuli - but they use different methods to describe this phe-
nomenon [Perruchet and Pacton, 2006]. Statistical learning was introduced by
Saffran and collaborators [Saffran et al., 1996]. They reported that 8-month-
old infants are able to segment an ongoing sequence of monotonic speech into
words. This ability is not innate but can be learned by presenting a speech
stream of nonsense words in random order. Since there were no pauses or other
clues for the word boundaries, Saffran proposed that the word boundaries were
inferred only from the statistics of the syllable transitions. The infants showed
a significant discrimination between words and non-word stimuli after only two
minutes of training.

Implicit learning was introduced in [Reber, 1967] and has since then been in-
vestigated by several authors (see [Cleeremans et al., 1998] for a review). A
common experimental paradigm used in this field is artificial grammar learn-
ing (AGL). In an AGL task sequences of symbols are presented that have been
generated by a finite-state grammar. After a memorisation phase, the subjects
are asked to classify new sequences as being created by the same grammar or
not in a forced-choice-task. Typically subjects perform better than chance
would predict, but report that they were guessing and are unable to verbalise
the rules of the grammar. Conway and Pisoni reported that the performance
in these tasks depends on the modality used to present the data [Conway and
Pisoni, 2008, Conway and Christiansen, 2005]. Tactile, visual and auditory
stimulations were used. For tactile stimuli vibrotactile pulses were delivered

9

2 Biological mechanisms for sequential data processing

to participants fingers, where each finger was associated with a different sym-
bol. For visual stimuli, black squares appearing at different spatial locations
on a screen were presented and the auditory stimuli were composed out of
tone patterns. It was shown that the performance in the classification task
was highest for the auditory modality 75% and about 62% for the other two
modalities. They also showed that different grammars presented in paral-
lel with different modalities could be learned relatively independent of each
other. From these findings Conway and Pisoni concluded that although learn-
ing mechanisms share common aspects across modalities, the learning takes
place in different modality specific areas.

2.4 Neural circuits of songbirds

Songbirds have impressive motor and memory abilities that have been subject
to extensive research (see [Hahnloser and Kotowicz, 2010] for a recent review).
The ability to sing is not innate, but learned in a similar way speech is ac-
quired by human children. The songs are usually learned from an adult tutor,
often the birds father. The learning involves two phases, a period of memo-
risation in which the vocal information is stored in long-term memory, and a
sensorimotor phase in which the birds own song is compared and refined to the
memorised information [Bolhuis and Gahr, 2006]. In the first phase a ‘tem-
plate’ of the tutor song is stored in long-term memory. When the birds start to
vocalise in the second phase, the vocal repertoire is still restricted. These first
vocalisations are called subsongs and are considered to be the avian counter-
part to human babbling [Aronov et al., 2008]. In this phase the bird matches
its own song with the memorised ones, refining its singing abilities as well as
the tutor template. It is believed that the bird uses the auditory template to
produce a feedback as an error-correction mechanism for its own song. This
theory is supported by the fact that birds need to hear themselves to learn
their song [Konishi, 1965]. After this training phase, the produced songs of
the adult bird resemble the tutor songs.

The exact locations and neural mechanisms of song learning are still unknown.
Traditionally, a set of specialised brain areas, known as the song-control system
were believed to be the neural substrate for song production and learning. The
system was separated into a motor pathway responsible for song production
and a basal-ganglia pathway for learning [Vates and Nottebohm, 1995]. This
model was proposed because lesions in the basal-ganglia pathway impaired
the birds of learning songs, but did not affect the production of songs already

10

2.4 Neural circuits of songbirds

learned. However, this simplistic view was not sufficient to explain data from
more recent studies, which have shown that the inability to learn resulted in
fact from motor deficit. It was also shown that subsongs were generated by
the basal-ganglia pathway and not the motor pathway, suggesting that both
pathways carry motor information [Aronov et al., 2008].

Also brain regions outside the traditional song-control system were found to
be involved in song learning. The caudomedial nidopallium (NCM) and cau-
domedial mesopallium (CMM) receive input from the lower auditory fields.
The two areas have bidirectional connections and NCM is connected to the
song-control system. They are often viewed as being analogous to Wernickes
area in humans [Hahnloser and Kotowicz, 2010]. Increased gene expression in
NCM and CMM was observed when birds were exposed to conspecific songs,
but much less when exposed to heterospecific songs. Repeated playbacks of
one song resulted in increased gene expression in NCM for the first 30 minutes
only, thus an increased response to novelty. Singing of deafened birds showed
no increased response. Areas NCM and CMM are thus assumed to be related
to auditory memory and as being part of the neural substrate of the tutor
template [Bolhuis and Gahr, 2006].

11

3 Probabilistic Models

Probabilistic models are powerful tools extensively used in machine learning.
They allow to describe complex problems in a general framework, and to in-
clude prior knowledge and uncertainty easily. In this chapter we will review
algorithms and models that are used throughout this thesis. A detailed de-
scriptions of the concepts introduced here can be found in [Bishop, 2006].

3.1 Graphical models and hidden causes

Probabilistic models define the relationships between a set of random variables.
The value of a random variable is unknown, but a probability distribution over
all possible values can be defined. In many cases, the knowledge about the
outcome of one random variable may change the distribution over the outcomes
of another variable. For example, observing that the street is wet increases the
probability that it has recently rained. This causal relationship between the
two random variables (the street is wet) and (it has recently rained) can be
described by a graphical representation shown in figure 3.1, known as Bayesian
network. A Bayesian network defines random variables and their relationships.
Here, observed variables are represented by blue, hidden ones by white nodes.
In our simple example the observed variable x corresponds to the street is
wet, the hidden variable z corresponds to it has recently rained. z is called
a hidden variable because it can not be directly observed (in the example,

z

x

Figure 3.1: The Bayesian network of an observed variable and its hidden cause.
Observed variables are represented by blue, hidden ones by white
node. Relationships between variables are indicated by arrows.

13

3 Probabilistic Models

because it lies in the past), but it has some effect on another variable that can
be observed. This relationship between the random variables is represented
by a parent-child relation, indicated by an arrow from the parent to the child.
The observed and the hidden variables form a unit which is usually referred
to as the complete data, whereas if the outcomes of the hidden variables are
unknown one speaks about incomplete data.

The joint distribution of a Bayesian network is given by the product of the
probability distribution of all random variables conditioned on their direct
parents. Thus, the joint distribution of our example Bayesian network is given
by

p (x, z) = p (z) p (x | z) (3.1)

In this simple example both random variables x and z are binary. Inference
about the hidden variable can be done easily by probability calculus. For
example the probability that it has rained, given that the street is wet is given
by

p (z = 1 | x = 1) =

p (z = 1) p (x = 1 | z = 1)

p (z = 0) p (x = 1 | z = 0) + p (z = 1) p (x = 1 | z = 1)

(3.2)

In the next section we will discuss how the probability tables on the right hand
of equation (3.2) can be learned in a general framework.

3.2 The expectation-maximisation algorithm

The parametrisation of the simple example model from section 3.1 was given by
the prior and conditional probabilities, p (z) and p (x | z) respectively, which
shall be collected in the parameter vector θ. In a general learning task a se-
quence of T samples from the observed variable X = {x(1) . . . x(T)} is given.
The problem of estimating the optimal model parameters from a given obser-
vation sequence X is solved by maximising the likelihood function

L (θ | X) = p (X | θ) =
∑
Z

p (X,Z | θ) . (3.3)

The sum over Z denotes the sum over all possible outcomes of the sequences of
hidden variables. Unfortunately there exists no closed form solution to solve
this maximisation problem. The problem arises because the data set is in-
complete, since the hidden variables are unknown, which requires to consider

14

3.3 Monte Carlo methods

all possible hidden state configurations. The standard algorithm for the max-
imisation of likelihoods with incomplete data is the expectation-maximisation
(EM) algorithm [Dempster et al., 1977]. It finds a local maximum of L (θ | X)
by applying an iterative update rule. In every iteration, the algorithm re-
places the current parameter set θold by a new one θnew that is guaranteed to
improve the model. Each iteration consists of two steps, the expectation (E)
and maximisation (M) step. In the E step an expectation of the complete data
log likelihood is evaluated based on the conditional probability p

(
Z | X, θold

)
.

Using this, an auxiliary function of the old and the new parameter set is de-
fined, given by

Q
(
θ, θold

)
=
∑
Z

p
(
Z | X, θold

)
log p (Z,X | θ) . (3.4)

In the M step a parameter set θnew is found that maximises Q and the old
parameter set is replaced by the new one. This procedure can be proven to
increase L(θ|X) monotonically until some local optimum was reached.

3.3 Monte Carlo methods

Monte Carlo methods can be used to solve two problems [MacKay, 2003]:

1. Generate a set of L independent samples from a probability distribution
p (z).

2. Estimate the expectation of a function under a given distribution.

Both problems are solved using numerical sampling. The basic idea of Monte
Carlo methods is that the expectation of a function f (z) with respect to a
probability distribution p (z) given by

E{f} =

∫
f (z) p (z) d z, (3.5)

can be approximated by a finite sum over a set of L independent samples
z1 . . . zL drawn from the distribution p (z), given by

f̂ =
1

L

L∑
l=1

f (zl) . (3.6)

15

3 Probabilistic Models

As L converges to infinity f̂ will become identical to the expected value (3.5).
Monte Carlo methods are of particular interest, when p (z) is too complex to
evaluate it directly. There exist two major classes of Monte Carlo methods:
one that is based on importance sampling and Markov chain Monte Carlo
techniques [Hernández et al., 1996].

3.3.1 Importance sampling

If drawing from p (z) directly is not possible, importance sampling can be used
to approximate equation (3.5). Let us assume that the distribution p (z) is
known and can be evaluated up to a normalising constant, but it is too complex
to draw samples from it easily. Then, equation (3.5) can be approximated
by drawing samples z1 . . . zL from a proposal distribution q (z). The proposal
distribution can be any distribution that is non-zero wherever p (z) is non-zero.
Equation (3.6) is then rewritten

f̂ =
1

L

L∑
l=1

rl · f (zl) , with: rl =
p (zl)

q (zl)
. (3.7)

The factors rl are called importance weights and correct the bias introduced by
sampling from the wrong distribution. In general it is desirable that the pro-
posal is as close as possible to the true distribution, such that the importance
weights are close to a constant value [Bishop, 2006].

In a related approach, known as rejection sampling the importance weights
are given by binary random variables rl ∈ {0, 1}, thus the sample is either
accepted or complete rejected from the sum (3.7). The probability that a
sample is accepted is given by

p (rl = 1) = c · p (zl)

q (zl)
, (3.8)

where c is a constant that should be as large as possible under the constraint
that p (rl = 1) ≤ 1 such that, as little samples are rejected as possible.

3.3.2 Markov chain Monte Carlo

So far, we considered samples that are drawn independently from a proposal
distribution, for the approximate expectation (3.7). In order to converge fast to
the target function (3.5) we require that a large number of drawn samples lies

16

3.3 Monte Carlo methods

within regions with high probability in the target density p (z). Unfortunately
this requirement is hard to achieve with importance sampling approaches for
high dimensional problems [MacKay, 2003]. More powerful sampling tech-
niques, that scales well with dimensionality are methods based on Markov
chain Monte Carlo (MCMC). They are similar to rejection sampling, with the
major difference that samples are not drawn independently. Instead a pro-
posal distribution q (zl | zl−1) is defined that depends on the last sample that
has been excepted zl−1. If a new sample is excepted zl is assigned to that new
value, if it is rejected zl is assigned to the previous value zl−1. The sequence
of samples z1 . . . zL forms a Markov chain, which increases the chance that
many samples are drawn from dense regions of the target distribution. Using
MCMC, the probability space is faster explored which results in more efficient
and accurate sampling methods. In order to obtain independent samples using
MCMC methods only every M th sample is retained. For M sufficiently large
the samples can be considered independent for all practical purposes [Bishop,
2006].

3.3.3 Monte Carlo EM

Monte Carlo methods are of particular interest here, because they can be
used to approximate the E step of the EM algorithm, by drawing a finite
set of hidden variables given the current model parameters. More precisely,
equation (3.4) can be approximated by a finite sum over L samples drawn from
the posterior distribution p

(
Z | X, θold

)
, give by

Q
(
θ, θold

)
≈ 1

L

L∑
l=1

log p (Zl,X | θ) . (3.9)

The approximate Q function is then optimised using the exact M step. This
procedure is called Monte Carlo EM [Bishop, 2006].

The special case, where only a single sample is drawn from the posterior distri-
bution is called stochastic EM . The sample drawn in the E-step completes the
data set. Thus, in the M-step a complete data maximum likelihood estima-
tion is performed, which is easy to solve for many practical problems [Nielsen,
2000].

17

3 Probabilistic Models

· · ·

z
(1)

z
(2)

z
(3)

z
(T−2)

z
(T−1)

z
(T)

x
(1)

x
(2)

x
(3)

x
(T−2)

x
(T−1)

x
(T)

Figure 3.2: The Bayesian network of the HMM. The state sequence forms
a Markov chain on top of the observation sequence. There is no
direct dependence between the observations, all dependences are
covered by the state sequence.

3.4 The hidden Markov model

In section 3.1 we introduced a simple example model with a hidden and an ob-
served variable. We showed that by using the EM algorithm, we can learn the
parametrisation of such models, given a sequence of observed variables only.
Yet, the calculations we used, did not capture any temporal structure of that
sequence. Thus, presenting the sequence in any random order would lead to
similar results. In practice however, successive samples from natural sources
will be correlated and exploiting this correlations will significantly increase the
descriptive power of probabilistic models. The hidden Markov model captures
these temporal dependences of successive samples by introducing dependences
between the hidden cause variables. In this section we will give a short intro-
duction on the theory of discrete HMMs, for a complete review see [Rabiner,
1989,Bengio, 1999,Bishop, 2006,Yamagishi, 2006].

The hidden Markov model is a statistical time series model for describing a
time varying signal X = {x(1) . . . x(T)}. It assumes that the observed sequence
has been created by an underlying, unobserved process. This process is mod-
elled by a probabilistic state machine with K states. Each state encodes a
probability distribution over the observations and in each time step a tran-
sition between states according to a table of transition probabilities is made.
Thus the HMM assigns a sequence of latent state variables Z = {z(1) . . . z(T)}
to the sequence of observations X. The temporal dependence between time in-
stances is captured in the state variables. The state sequence can be described
by a Markov chain which is illustrated by the Bayesian network in figure 3.2.
One can see the Markov chain of state transitions on top of the observations.

By exploring the structure of the Bayesian network many useful independence

18

3.4 The hidden Markov model

properties can be discovered. One of the most important ones is that the whole
temporal information within X is covered by the Markov process. If the state
variables are given, the observations become independent. The second inde-
pendence property, known as the Markov property , states that given a hidden
cause z(t) at any time point t, all observations before t become independent
of all observations after t. We will make extensive use of these properties
throughout our discussions.

We will only consider HMMs with discrete states and discrete time. Through-
out this thesis we will use the following notation: Each state at time t is rep-
resented by a binary vector z(t) ∈ {0, 1}K , with K elements z

(t)
k , k ∈ {1 . . . K}.

The vector elements obey the constraint
∑K

k=1 z
(t)
k = 1,∀t. The model being

in the kth state at time t is then represented by setting z
(t)
k to one. We will use

similar considerations for the input variable. Let us consider N discrete obser-
vations which can be collected in a binary vector x(t) ∈ {0, 1}N with elements

x
(t)
i , that follow the same constraint as the state vectors. In addition, we use

the shorthand notation p
(
z

(t)
k

)
for p

(
z

(t)
k = 1

)
.

3.4.1 HMM parametrisation

A HMM is characterised by its set of parameters θ = {A,B, π}, where A is the
table of transition probabilities , B is the table of observation probabilities , the
probability of seeing an observation in a certain state and π are the prior prob-
abilities for the initial states. Let us denote the elements of these probability
tables by akj, bki and πk given by

akj ≡ p
(
z

(t)
k | z

(t−1)
j

)
,

bki ≡ p
(
x

(t)
i | z

(t)
k

)
,

πk ≡ p
(
z

(1)
k

)
.

(3.10)

Here, we only consider homogeneous models for which the set of parameters is
independent of time.

There are three basic problems to be solved for HMMs, for each of which an
efficient algorithm exists:

• Calculate the probability of an observation sequence X given the model
p (X | θ).

19

3 Probabilistic Models

• Given an observation sequence X find the most probable path, which is
usually referred to as Viterbi path.

• Adjust the model parameters θ to a given observation sequence X.

All solutions to these problems make extensive use of the independence prop-
erties of the HMM. Of particular interest is that the joint probability over the
complete data factorises into the form

p (X,Z | θ) = p
(
z(1)
)
p
(
x(1) | z(1)

) T∏
t=2

p
(
z(t) | z(t−1)

)
p
(
x(t) | z(t)

)
= πz(1) · bz(1),x(1)

T∏
t=2

az(t),z(t−1) · bz(t),x(t)

(3.11)

In the next section we will present an efficient solution for problem three based
on this factorisation.

3.4.2 The Baum-Welch algorithm

The standard algorithm to find the HMM parameters θ∗ that maximises the in-
complete data likelihood (3.3) is the Baum-Welch algorithm [Baum and Petrie,
1966]. The Baum-Welch algorithm is an instance of the EM algorithm. We
will review here the basic Baum-Welch equations in more detail.

In the standard HMM literature, in order to introduce the E step for HMMs,
a short hand notation for the probability of making a transition from state
j → k and the probability of being in state k at time t, given an observation
X, is introduced

ξ
(
z

(t)
k , z

(t−1)
j

)
= p

(
z

(t)
k , z

(t−1)
j | X, θ

)
,

γ
(
z

(t)
k

)
= p

(
z

(t)
k | X, θ

)
=

K∑
l=1

ξ
(
z

(t)
k , z

(t−1)
l

)
.

(3.12)

Using these quantities we can define the set of parameters that maximises the

20

3.4 The hidden Markov model

Q function (3.4) which can be found using Lagrange multipliers method

anewkj =

∑T
τ=1 ξ

(
z

(τ)
k , z

(τ−1)
j

)
∑T

τ=1 γ
(
z

(τ−1)
j

) ,

bnewki =

∑T
τ=1 γ

(
z

(τ)
k

)
x

(τ)
i∑T

τ=1 γ
(
z

(τ)
k

) ,

πnewk =
γ
(
z

(1)
k

)
∑

l γ
(
z

(1)
l

) .
(3.13)

These formulas have a nice frequentist interpretation: The sum over the whole
state sequence over ξ yields the sufficient statistics of the HMM. We can define

nkj =
T∑
τ=1

ξ
(
z

(τ)
k , z

(τ−1)
j

)
and nk =

T∑
τ=1

γ
(
z

(τ)
k

)
(3.14)

as the expected number of zj → zk transitions and expected number of being in
state k, respectively. The expectation is taken over the whole input sequence.
The update equation for the transition probabilities is just a fraction of these
two expected numbers. Further note that all update equations (3.13) can be
written in terms of ξ and thus, evaluation of this quantity is the central task
of the E step. In the next section we will introduce an efficient algorithm for
this task.

3.4.3 The forward-backward algorithm

By inspecting the independence properties of the Bayesian network in figure
3.2 we see that we can rewrite equation (3.12) as

ξ
(
z

(t)
k , z

(t−1)
j

)
= p

(
z

(t)
k , z

(t−1)
j | X

)
=

p
(
X | z(t)

k , z
(t−1)
j

)
p
(
z

(t)
k , z

(t−1)
j

)
p (X)

=
p
(
X(1...t−1), z

(t−1)
j

)
p
(
x(t) | z(t)

k

)
p
(
z

(t)
k | z

(t−t)
j

)
p
(
X(t+1...T) | z(t)

k

)
p (X)

21

3 Probabilistic Models

f
(1)

f
(T)

z
(1)

z
(t)

z
(T)

α(z(1)) α(z(1)) α(z(t)) α(z(t)) α(z(T−1)) α(z(T))

β(z(1)) β(z(t)) β(z(t)) β(z(T−1)) β(z(T))

Figure 3.3: Illustration of the message passing in the forward-backward al-
gorithm. The factor graph of the HMM is shown and the flow of
messages is indicated. Since X is given the graph can be sim-
plified by absorbing the emission probabilities into the factors,
which are then given by f (1)

(
z(1)
)

= p
(
z(1)
)
p
(
x(1) | z(1)

)
and

f (t)
(
z(t−1), z(t)

)
= p

(
z(t) | z(t−1)

)
p
(
x(t) | z(t)

)
.

where we have dropped the dependence on θ assumed to be constant. This
expression can be calculated efficiently by the forward-backward algorithm.
The algorithm consists of two recursive equations, one running forward and
one backward in time given by

α
(
z(t)
)

= p
(
X(1...t), z(t)

)
=

∑
z(t−1)

p
(
x(t) | z(t)

)
p
(
z(t) | z(t−1)

)
α
(
z(t−1)

)
(3.15)

and

β
(
z(t)
)

= p
(
X(t+1...T) | z(t)

)
=

∑
z(t+1)

p
(
x(t+1) | z(t+1)

)
p
(
z(t+1) | z(t)

)
β
(
z(t+1)

)
. (3.16)

Inserting this into equation (3.12) we can write

ξ
(
z

(t)
k , z

(t−1)
j

)
=
α
(
z

(t−1)
j

)
p
(
x(t) | z(t)

k

)
p
(
z

(t)
k | z

(t−t)
j

)
β
(
z

(t)
k

)
p (X)

(3.17)

In the E Step these equations are evaluated in terms of the current HMM model
parameters given in equation (3.10). The normalisation in equation (3.17) is
usually omitted since it cancels out when calculating the parameter update
(3.13). The forward messages start running at the first and the backward
messages at the final time step T . The messages are initialised to be

α
(
z

(1)
k

)
= p

(
z

(1)
k

)
p
(
x(t) | z(1)

k

)
and β

(
z

(T)
k

)
= 1. (3.18)

22

3.5 Extensions of the basic HMM

To get an intuitive interpretation of this algorithm consider figure 3.3. The
factor graph of the HMM and the flow of forward and backward information
is shown. The forward messages start at the first factor and are passed on
forward in time until they reach the last node. The backward messages start
at the last variable node and are passed back to the first one. At each factor
node they pass, the messages are updated using equations (3.15) and (3.16).
At each variable node the messages are passed through unchanged. Thus, the
forward-backward algorithm is an instance of the sum-product algorithm and
the calculation of the forward and backward pass is equivalent to the message
passing in that framework [Bishop, 2006]. Note that for evaluating equation
(3.17) at each time step, each message only needs to be computed once and
thus this procedure can be done efficiently.

3.5 Extensions of the basic HMM

Since its introduction by [Baum and Petrie, 1966] the HMM has been under
extensive research. Today, a huge collection of extensions and simplifications
exist for the basic HMM equations. In this section we give a brief overview of
the work, that is most relevant for this thesis.

3.5.1 Online HMM learning

In a real world learning task the HMM is not adapted to a single observation
sequence X, but to a whole batch of sequences X = {X1 . . .XS}. For example
each of the sequences might be features extracted from a certain word spoken
by one of S different speakers to learn a HMM word model. To achieve this
using the Baum-Welch algorithm the forward-backward algorithm is run for
each sequence separately to give ξ

(t)
kjs, s ∈ {1 . . . S} and then averaged over the

whole batch

ξ
(t)
kj =

1

S

S∑
s=1

ξ
(t)
kjs, (3.19)

from which the M step is then computed [Rabiner, 1989]. We will refer to this
approach as batch learning .

Obviously this requires to store the whole batch of training sequences. Since
their number can grow very large in certain tasks, online algorithms are of
increasing interests. In online learning the whole batch is not assumed to be

23

3 Probabilistic Models

given, but pieces of the batch arrive one after another. In the HMM litera-
ture there are two different definitions of how this arrival of new data takes
place. In [Baldi and Chauvin, 1994] each of the sequences Xl is assumed to ar-
rive one after another. The batch of sequences is enlarged, but the sequences
arrive as a whole. The growing amount of data renders batch Baum-Welch
learning infeasible, but the forward-backward calculations can still be evalu-
ated on each new sequence. The second definition was used in [Mongillo and
Deneve, 2008,Stiller and Radons, 1999]. The input is assumed to be given by
a single sequence that is lengthened by appending a new sample x(t) to the
end of the sequence at each time step. From the definition of the forward-
backward message passing one can easily see, that when a new sample arrives
all backward messages need to be updated, which makes the forward-backward
algorithm infeasible for increasing sequence lengths. In order not to confuse
these different approaches we will use the following nomenclature: We refer
to the first approach as online learning and to the latter one as incremental
learning . In addition, we always refer with sample to a single observation x(t)

of a sequence of observations.

An online HMM learning approach was given by [Baldi and Chauvin, 1994].
The HMM parameters are given by a normalized exponential representation
for which a smooth gradient-based learn rule can be derived. For the weight
update the standard forward-backward equations are computed on a single
sequence. The authors showed that the algorithm converges to the same result
as the Baum-Welch algorithm. This work is very similar to the approach that
will be introduced in the original part of this thesis. For the incremental HMM
learning in [Mongillo and Deneve, 2008, Stiller and Radons, 1999] a update
rule for the HMM’s sufficient statistics was derived. The sufficient statistics
are kept in a Parameter Tensor and updated incrementally for each arriving
sample. The equations were proven to be equivalent to Baum-Welch algorithm.
This approach does not require to pass information backwards in time directly.
The backward pass of information is achieved by making the model parameters
explicitly dependent on the current time step. The parameters can be updated
incrementally, but with higher computational complexity.

3.5.2 Simplifications and extensions of the Baum-Welch
algorithm

The segmental k-means algorithm [Juang and Rabiner, 1990] approximates the
Baum-Welch equations by using only the most likely path sequence (Viterbi
path). The most likely path sequence can be efficiently calculated using the

24

3.5 Extensions of the basic HMM

Viterbi algorithm [Viterbi, 1967], which has a similar structure to the forward-
backward algorithm. Thus, the HMM parameters are estimated using a sin-
gle path. The training results obtained by the segmental k-means algorithm
are similar to that calculated using standard Baum-Welch. In [Merhav and
Ephraim, 1991] a upper bound between the segmental k-means and the Baum-
Welch likelihoods has been proven.

In [Alamino and Caticha, 2008] the HMM parameters are updated using a
Bayesian learning approach, assuming a Dirichlet prior over the parameters.
The exact calculation requires to sum over all possible path sequences and are
thus intractable for practical cases. A Mean Field approximation for Gaussian
distributions was shown. In [Huda et al., 2009] a hybrid between standard and
stochastic EM was introduced to overcome local minima. The contribution of
stochastic EM was controlled using the Simulated Annealing technique. The
authors reported that the proposed algorithm outperformed standard EM in
a speech processing task.

The HMM theory was generalised to continuous state space in [Thrun et al.,
1999]. The Baum-Welch equations are adapted to continuous state space by
using a sampling-approximation of the forward- and backward-messages using
importance - sampling - resampling. The sampled distributions are then rep-
resented in density trees so that the Baum-Welch equations can be evaluated.
In [Krishnamurthy and Moore, 1993] an online learning algorithm was derived
for a HMM with Gussian distributed observations. The derivations are based
on maximization of the Kullback-Leibler divergence and use the properties of
distributions form the exponential family. But, they do not generalise to other
distributions.

25

4 Neuron Models

Networks of biological neurons are highly non-linear structures that can show
rich and very complex behaviour. Each neuron receives input from some hun-
dred other cells, integrates this information and produces a discrete output,
which leads to dynamics that are very hard to predict. The mathematical
description of these dynamics has been a major issue in machine learning and
computational neuroscience. First attempts to address this problem range
back more than 60 years. Starting form these basic models various research
directions have developed neural models with different levels of detail and
complexity. In this section we will review some of the major results.

4.1 Standard neuron models

It is well accepted, that most computations in the nervous system are based
on the electrical properties of neurons. Neurons are special cells that are able
to control their membrane potential , the electric potential between the inter-
and the extra-cellular liquid. The membrane potential is controlled by ac-
tively transporting ions through the cell membrane or letting them passively
flow through specialised ion channels. Typically different types of ions are in-
volved, each of which is gated through a specific ion channels. A typical neuron
is composed of three functionally distinct parts: The dendrites over which it
receives input from other neurons, the soma that integrates this information
and generates the output that is propagated along the axon to downstream
neurons [Gerstner and Kistler, 2002] (See figure 4.1 for a schematic representa-
tion). Most neurons of the mammalian brain form connections to other neurons
through chemical synapses. With chemical synapses, the electric potential of
the pre-synaptic neuron is not directly propagated to the post-synaptic neu-
ron, but transmitted by expressing a neurotransmitter that is translated back
to a membrane potential at the post-synaptic side. The strength of these
connections is usually adaptive, which is considered to be the major mecha-
nism of learning in the brain. Synapses can contribute a depolarising effect
to the membrane potential, which are called excitatory synapses, or they pull

27

4 Neuron Models

dendrites

soma

axon

Figure 4.1: Schematic representation of a neuron. Most neurons of the brain
are composed of three parts: The dendrites that receive synaptic
connections from other neurons (synapses are indicated by small
triangles), the soma and the axon, that projects to downstream
neurons (downstream neuron’s synapses indicated in gray).

the membrane potential closer to the cells resting potential, called inhibitory
synapses. The sum of all synaptic currents is collected over the dendrites and
propagated to the soma. If depolarisation at the soma exceeds some specific
threshold a spike is generated that is transmitted over the axon and may be
received by other downstream neuron’s synapses.

4.1.1 The McCulloch and Pitts neuron

One of the first artificial neuron models that tried to model biological neurons
was introduced in [McCulloch and Pitts, 1943]. All dynamics of the den-
drites were reduced to calculating the membrane potential u at the soma by a
weighted sum over the activation of N input neurons

u =
N∑
i=1

wixi + w0. (4.1)

28

4.1 Standard neuron models

The weights wi are the synaptic strengths to the ith input neuron. The bias
weight w0 can be used to move the neuron’s resting potential. The output z
is computed by a simple threshold function with a threshold parameter ϑ

z =

{
1 if u ≥ ϑ

0 else
. (4.2)

Despite its strong simplifications compared to biological neurons, the McCul-
loch and Pitts neuron and its extensions have proven to be very powerful
models. Efficient algorithms exists to adapt the network weights of single
neurons or whole networks and once trained evaluation of the network breaks
down to simple equations. Due to this, artificial neural networks have become
and important field in machine learning [Bishop, 2006].

4.1.2 The leaky integrate-and-fire neuron

The leaky integrate-and-fire neuron is considered to be a good trade-off be-
tween biological accuracy and computational tractability and is probably the
best-known formal spiking neuron model [Gerstner and Kistler, 2002]. The
electrical circuit of the membrane at the soma is modelled by a capacitor C in
parallel with a resistor R. The driving current I injected by the dendrites is
split into a current that charges the capacitor and a leaky current discharging
it over the resistor, modelling ion leakage through open channels. The mem-
brane potential u is given by the voltage across the capacitor which follows the
differential equation

RC
du

dt
= −u(t) +RI(t) (4.3)

An output spike is emitted whenever the membrane potential exceeds the
threshold ϑ. After the spike was emitted the membrane potential is reset to
the resting potential ur < ϑ [Gerstner and Kistler, 2002].

While the spike generation of the soma is described accurately in this model,
there are no assumptions made upon the driving current I. In a biological
setup the driving current will by governed by the activity of the presynaptic
neurons observed over the neuron’s dendrites. Each spike received at a synapse
will contribute a current pulse to I. The current that is injected by each
synapse is proportional to its excitatory post synaptic potential (EPSP), the
depolarisation induced by synaptic activity. The total input current is then
given by the sum over all current pulses, weighted by the synaptic efficiencies

29

4 Neuron Models

I(t) =
∑
i

wi
∑
f

αi (t− ti,f) , (4.4)

where ti,f are lists of all input spike times arriving at synapse i. The kernel
αi (t) is the shape of the current pulse injected by synapse i, which is a Dirac
δ-pulse in the simplest case. In a more realistic setup the EPSPs can be
modelled by a double exponential kernel, with finite fall- and rise times τs and
τr, respectively

αi (t) =
q

τs − τr

(
exp

(
−t−∆i

τs

)
− exp

(
−t−∆i

τr

))
Θ (t−∆i) , (4.5)

where Θ (t) is the Heaviside step function, q is the total charge that is injected
via a single synapse and ∆i are transition delays induced by the synapse’s
distance to the soma [Gerstner and Kistler, 2002].

4.2 Synaptic plasticity

So far we have only stated, that learning in the brain is achieved by changing
the synaptic strength, but we did not give a formal rule or neural mechanism
that allows a synapse to show this plastic behaviour. In this section we will
close this gap. First we will review the classic theory of Hebbian learning and
then more recent results on spike time dependent plasticity.

4.2.1 Hebbian learning

Short after the first artificial neural network models were introduced by McCul-
loch and Pitts, Hebb proposed his theory on correlation based learning [Hebb,
1949]. He investigated the ability of neural networks to self-organise from a
theoretical point of view, and proposed a very simple rule for adapting the
synaptic strengths:

‘When an axon of cell A is near enough to excite cell B or repeatedly or per-
sistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the cells firing B,
is increased.’ [Hebb, 1949]

Thus, the synaptic strength between two cells, is increased when the pre-
synaptic cell takes part in firing the post-synaptic cell. A more formal definition

30

4.2 Synaptic plasticity

is given by the equation for the weight change ∆wki, between a presynaptic
cell i and the postsynaptic cell k. The weight change depends on the binary
input xi received from cell i and the binary output zk of cell k

∆wki = ηxizk, (4.6)

where η is a learn rate parameter. This is the basic Hebbian learn rule, the
synaptic weights trained with this rule directly reflect the correlation between
the pre- and post-synaptic neuron. However, the learn rule lacks biological
plausibility since the weight change is always positive or zero and thus the
weights will grow to infinity [Gerstner and Kistler, 2002].

4.2.2 Spike time dependent plasticity

The first experimental result that supported Hebbs theory on correlation-based
learning was given by [Bliss and Lømo, 1973]. They recorded the membrane
potentials of cells in the Hypocampus of the rabbit, when pre-synaptic cells
were stimulated. They found that the synaptic efficiency of granule cell’s
synapses can be strengthened by tetanic stimulation of the pre-synaptic cell.
The increase in synaptic efficiency lasted for several hours, a phenomenon
that is now referred to as long term potentiation (LTP) and the opposite
phenomenon, where synaptic efficiency is decreased as long term depression
(LTD) [Dan and Poo, 2004]. These mechanisms can be understood as the
biochemical implementation of Hebbian learning [Lisman, 1989]. Yet more
recent studies have shown that not only the coincident activation, but the
precise timings of pre- and post-synaptic spikes is crucial for synaptic plasticity.
An increase in synaptic efficiency is only observed if pre-synaptic spikes arrive
within a critical time window [Markram et al., 1997]. This phenomenon is
referred to as spike time dependent plasticity (STDP) [Dan and Poo, 2004].

In general, the value of the synaptic efficiency change is a function of the
pre- and post-synaptic spike times. In many cases, only the difference of
a single spike pair is taken into account, but also combinations of multiple
spike times have been considered [Froemke and Dan, 2002]. Experimental
data suggests that the precise shape of the STDP windows is task dependent.
A zoo of different functions has been identified, depending on the type of
synapse [Caporale and Dan, 2008]. Most of these functions are monotonically
decreasing with the magnitude of spike time difference. If the pre-synaptic
spike arrives before the post-synaptic spike is emitted, the synaptic efficiency

31

4 Neuron Models

is increased and otherwise decreased, which reflects the causal relationship of
interacting neurons.

4.2.3 Synaptic tagging

Besides the short lasting temporal dependence of pre- and post-synaptic spikes,
more detailed studies of the biochemical mechanisms of LTP have revealed
mechanisms on a longer time scale. Long-lasting synaptic strengthening in-
volves gene expression in the neuron [Krug et al., 1984]. Since the synthesis of
macromolecules occurs mainly in the soma the following question arises: How
do synapses communicate with the long distant soma and how do the synthe-
sised molecules find their way back to the right synapse? The synaptic tag
hypothesis copes with this problem and is well supported experimentally [Frey
and Morris, 1998]. It suggests that activated synapses are marked by setting
up a synaptic tag. Macromolecules involved in LTP are synthesised at the
soma and diffusely dispensed over the dendrites. Gene expression is triggered
when the tags are set and LTP takes place when the molecules reach a tagged
synapse. This hypothesis gives a relatively simple answer to the question
above and also explains the paradoxical finding that LTP was also observed
when gene expression was inhibited [Krug et al., 1984]. Since a reservoir of
Macromolecules is persistent in the dendritic tree and synaptic tagging does
not involve gene expression, LTP persists until the reservoir is used up [Frey
and Morris, 1998].

Besides its functional necessity to implement LTP in neurons, synaptic tag-
ging adds an extra dimension to Hebbian learning. The time window between
setting the tags and arrival of macromolecules can be used to further modulate
the change in synaptic efficiency. It has been shown, that during this critical
time the strength of LTP can be modulated by reward. Dopamine is a neuro-
transmitter closely related to reward. If dopamine is blocked, the maintenance
of LTP is suppressed [Frey et al., 1990], whereas dopamine release facilitates
LTP [Otani et al., 2003]. These findings have inspired the work of [Izhikevich,
2007]. The authors proposed that reward modulated LTP could be the key to
the distal reward problem. The distal reward problem arises form the fact that
in a reinforcement learning task, the reward often arrives seconds or minutes
after the cues that have led to the reward. Thus, the spike patterns the cues be-
came manifest in, have already vanished when the reward arrives. [Izhikevich,
2007] proposed that this problem could be solved by using a reward modulated
STDP rule. Synapses that took part in firing during the cue’s spike patterns
become tagged. When the reward arrives the tags are consolidated leading

32

4.3 Neural codes

to LTP. On the other hand, tags that did not lead to reward transiently die
out.

Other studies showed that the consolidation of synaptic tags also depends
on the synaptic input activity. [Sajikumar and Frey, 2004] showed that low
frequency stimulation (LFS) of hippocampal CA1 neurons, short after the in-
duction of LTP, resets the synaptic tags. The authors suggested that LTP of
a single synapse can be stopped in the early phase (5 minutes after induction)
using LSF, preventing the formation of memory traces. This effect did not
influence the efficiency of other synapses that already have consolidated LTP.
In a related experiment it was shown that tag resetting is not achieved by
suppressing gene expression, but seems to be a local synaptic process [Young
and Nguyen, 2005]. Nevertheless, the authors found that the tag resetting
mechanism affects LTP in the whole neuron. In particular, they found that
the stability of the neuron’s tags can be influenced by applying different input
patterns to a single synapse. They reported that applying a short tetanic input
to one synapse, prevented the resetting of tags at another synapse. Subsequent
application of LFS did not influence the synaptic efficiency and led to normal
LTP. This mechanism of active forgetting or active memory maintenance fur-
ther extends the basic theory of Hebbian learning, for which we will derive a
theoretical basis throughout this thesis.

4.3 Neural codes

Spikes are uniform events and thus fully described by their time of occurrence.
Since spikes are used to exchange information, this implies that information is
encoded in the brain by patterns of spike arrival times.

4.3.1 Spike and rate codes

A simple way to interpret the output of neurons is to assume that the in-
formation is solely captured in its average firing rate. The average is most
commonly taken over a finite time window of the neuron’s output. The length
of the time window should contain several spikes to avoid strong fluctuations
in the rate [Maass and Bishop, 2001]. This neural code is motivated by results
that suggest that neural activity is largely influenced by noise processes. In
fact, many experimental studies in vivo suggest that spike times are driven
by a Poisson process [Softky and Koch, 1993]. It remains unclear whether

33

4 Neuron Models

this random behaviour is driven by noise injected with the input, or an intrin-
sic feature of the neuron. Many studies suggest that the former is the case.
Features like correlation, synchrony and phase of spiking inputs have been
shown to carry information that is used in neural processing [Gray and Singer,
1989, von der Malsburg and Buhmann, 1992, O’Keefe and Recce, 1993]. But
in practice it can be shown that in many cases the results of spike and rate
codes are identical if parameters are carefully chosen, e.g. by making the time
window for averaging small enough [Gerstner and Kistler, 2002].

4.3.2 Winner-take-all circuits

Viewing the brain as a randomly connected set of neurons is not in accor-
dance with the facts. Besides the large-scale anatomical areas, that differ in
shape, size and functionality, also within neural microcircuits a lot of structure
emerges. One of the best studied brain area in this regard is the neocortex,
which has a well organised, layered structure [Douglas and Martin, 2004]. The
layers 2 and 3 receive input from subcortical and other cortical areas. The
output of these layers is then further processed in layer 5, which projects back
to layers 2 and 3 and subcortical areas. Cells of the layers 2,3 and 5 are organ-
ised in patches that inhibit each other within a layer. This lateral inhibition
gives rise to a competition between the neurons. Only neurons that were most
excited by their input will fire a spike that suppresses activity of all other
cells within the patch. If only the strongest neuron is selected these circuits
are called winner-take-all (WTA), if neighbouring neurons are not completely
suppressed, but strongly inhibited allowing them to fire with low but non-zero
probability they are called soft WTA circuits. These circuits have been proven
to be very powerful computational units. In particular [Maass, 2000] showed
that a single layer of cells connected to a soft WTA circuit, with linear weights
to an input layer has the universal approximator property.

WTA circuits provide another form of neural coding. Since each cell’s firing
represents the strongest response to an input pattern, while keeping all other
cells of the patch silent, the identity of the active cell can be considered as
a neural code. The information is encoded in the whole patch of neurons.
If each cell reports its certainty about, being the winner neuron by its spike
rate, the patch activity becomes a probabilistic population code, representing
a probability distribution over all input identities [Zemel et al., 1998].

34

4.4 The spiking expectation-maximisation network

...

...

w11

wKN

WTA

x1

xN

z1

z2

zK

Figure 4.2: The SEM network structure. The network is composed of a single
layer of neurons z1 . . . zK , that form a soft WTA circuit through
lateral inhibition. The WTA layer receives feedforward connections
from the inputs x1 . . . xN with weights wki, indicated in green.

4.4 The spiking expectation-maximisation
network

In section 4.3.2 we have outlined the computational power of soft WTA circuits.
In this section we will review recent work that further benefits from their
properties.

4.4.1 Bayesian inference in soft WTA circuits

The spiking expectation-maximisation (SEM) network was introduced recently
[Nessler et al., 2010]. The authors proved that a soft WTA circuit can approx-
imate a stochastic version of EM using a STDP rule. The SEM network is
composed of a simple, feedforward, one-layer structure. The input is given by
a vector x ∈ {0, 1}N . It consists of N binary unites xi that obey

∑
i xi = 1.

The output layer consists of K neurons that receive feedforward connections
with weights wki between the ith input and the kth output, which are collected in
a matrix W. In addition, each output neuron has a bias weight wk0, collected
in a vector w0. See figure 4.2 for a schematic view of the network structure.

35

4 Neuron Models

The membrane potential of neuron k is computed by a linear combination of
the weighted inputs

uk =
N∑
i=1

wkixi + wk0. (4.7)

The neurons produce a binary output vector z ∈ {0, 1}K . It is assumed that
the output neurons inhibit each other, to form a soft WTA network. On that
account, the probability that the kth unit produces a spike, is given by the
soft-max function:

p (zk | x,w0,W) =
euk∑K
l=1 eul

. (4.8)

It was shown, that if the weights are equal to the target values

w∗ki = log p (xi | zk) , w∗k0 = log p (zk) , (4.9)

the network computes Bayesian inference. Thus, the output probabilities are
equal to posterior distributions of the hidden causes for the input stimulus.
The output spikes generated by the network can be interpreted as drawing
samples form this posterior distribution.

4.4.2 A STDP rule for EM

In the previous section we have argued that, if the network weights were given
by the target weights (4.9) the network would compute Bayesian inference. It
was further shown that the target weights can be reached using a STDP rule.
Due to the logarithmic form of the weights an update rule can be found, which
was reported in [Nessler et al., 2010] to be

∆wki =

{
η (e−wki xi − 1) , if zk = 1

0, if zk = 0
, ∆wk0 = η

(
e−wk0 zk − 1

)
. (4.10)

This is a purely local rule, that depends only on the current value of the weights
and the correlation between pre- and post-synaptic spikes. In [Nessler et al.,
2010] several STDP windows were reported that approximate the rectangular
shape of the rule. The target weights (4.9) are the only equilibrium points of
the optimal rule (4.10) and they are reached exponentially fast.

It can be shown that the application of the learn rule (4.10), is equal to the
application of stochastic EM. Each output spike generated by the network can
be interpreted as a stochastic E step, the weight update was proven to move

36

4.4 The spiking expectation-maximisation network

always into the direction of the M step. Thus, the network proposed is able
to learn a model of the form shown in figure 3.1, where the distribution of x
is given by a mixture of multinomials [Nessler et al., 2010]. The model can be
trained in an online fashion and fully unsupervised, by presenting a series of
input patterns. The networks can also be used to build hierarchies. Due to
the softmax function (4.8) the output obeys the same constraint as the input∑

k zk = 1, multiple SEM networks can be stacked onto each other to form
deep multi-layered structures.

[Nessler et al., 2010] experimentally verified the computational power of the
network by training it to distinguish between handwritten digits. The digits
were presented through 858 spiking neurons, each of which corresponded to
one pixel of the digit images. The inputs were binary, a Poisson rate of 40
Hz corresponded to a black pixel, 0 Hz to a white pixel. A Poisson process
caused firing of the WTA circuit approximately every 5ms. Ten neurons were
trained, three of which adapted to one of the three presented digit identities.
The network learned fully unsupervised to distinguish between the three digit
classes.

4.4.3 Relation to the LIF neuron

A biologically more realistic implementation of the SEM network was estab-
lished in [Nessler et al., 2010]. They used a double exponential EPSP kernel,
as introduced in section 4.1.2 with zero delays on the dendrites to learn spa-
tiotemporal patterns. The patterns were generated by drawing fixed spike
times from a Poisson distribution with 15Hz for each of the 500 input chan-
nels. They created patterns of 50ms length and presented them to the SEM
network alternating with frames of pure spike noise. The network quickly
adapted to the input, representing the pattern identity in the output activity
and showed robustness to noise and time warping.

In [Habenschuss, 2010] a generalisation of the model was introduced. Similar
learn rules to that given in equation (4.10), can be used to learn mixtures of
any probability distribution from the exponential family, when the network
inputs are given by their sufficient statistics. Of particular interest in the
context of neuron modelling is the Poisson distribution. The input variables
xi have to be equal to the rates of the ith input, which can be achieved by
using a rectangular EPSP kernel, averaging the input spikes over a window of

37

4 Neuron Models

lenght T

α (t) =

{
1 if 0 ≤ t ≤ T

0 else
. (4.11)

The membrane potential was calculated by a slight modification of equation
(4.7). Using this representation of the input, equation (4.10) was proven to
learn a mixture of Poisson distributions.

Processing Poisson distributions allows the network to deal with spiking inputs.
A spiking output can be generated by letting the whole network fire with an
overall Poisson rate λ. The kth neuron’s firing rate is then given by

λ
(t)
k = λ · eu

(t)
k∑K

l=1 eu
(t)
l

, (4.12)

Each neuron fires with its individual spike rate λ
(t)
k . Thus, in a discrete time

simulation it is possible, that multiple neurons emit a spike simultaneously.
Although this case is not supported by theory, we will show experimentally
that this simple spiking neuron model achieves good learning results.

4.5 Neural implementations of HMMs

The relation between HMMs and neural networks has been proposed by several
authors. [Bobrowski et al., 2009] have shown that recurrent neural networks
can implement Bayesian inference for HMMs. The transition probabilities of
the HMM were implemented by lateral connections between the neurons, the
observation probabilities by feed forward connections from the input. Using a
specific parametrisation for the weights, a spiking network was able to imple-
ment Bayesian filtering, but the authors did not provide a learn rule for these
weights.

In an approach similar to the SEM network a spiking neural model was found
that is capable of doing Bayesian inference on a binary hidden cause vari-
able [Deneve, 2008a]. The model was named Bayesian spiking neuron. The
neurons are at any time in one of two states, the on or the off state. They keep
track of the log-odds ratio of the hidden states. The underlying model is as-
sumed to be a two-state hidden Markov model over the history of input spikes.
In addition to the true log-odds ratio, that is computed on the neuron’s inputs,
the model keeps track of a predicted value of the log-odds ratio computed on
the output. If the observed input exceeds the internal representation a spike is

38

4.5 Neural implementations of HMMs

emitted. On this account the neuron reports only new information, that is not
captured by the internal model. This results in a very efficient neural code,
that uses the minimum number of spikes. This neural model is very similar
to the leaky integrate-and-fire neuron. The true log-odds can be interpreted
as the neuron’s membrane potential, the predicted log-odds as a time-varying
threshold for spike generation. The spike generation is deterministic, but the
output spike distribution has been shown experimentally to be close to a Pois-
son distribution, if the inputs are Poisson distributed. Since input and output
follow approximately the same distribution, the network can be used to form
hierarchies.

In the companion letter [Deneve, 2008b] the parameter learning for the Bayesian
spiking neuron was derived. It was shown that the cells can learn the HMM
parameters using a STDP rule. The computations are similar to the on-
line expectation-maximisation algorithm that was introduced in [Mongillo and
Deneve, 2008] and thus, the neuron has to keep track of the sufficient statistics
of the input. To achieve this, learning is not performed just on the firing times
of a single input and output spike, but on a sliding window over the neural in-
puts including future and past spike events. The exact neural mechanisms for
computing the sufficient statistics were not reported by the authors. Extend-
ing this model to HMMs with multiple hidden states is not straightforward,
since both computations for inference and learning benefit form simplifications
that are possible in a two state HMM only. Distributing the hidden cause in-
formation over a network of multiple binary neurons is also not trivial, since
this would involve sharing information of the neuron’s internal states over the
whole network. To the best of our knowledge the Bayesian spiking neuron is
the only neural model that can learn HMMs using a STDP-like rule.

39

5 STDP learning of temporal
hidden causes

In the previous chapter we have reviewed the recent results introduced in
[Nessler et al., 2010]. In this chapter we will extend this idea to enable the
network to detect relationships between temporal hidden causes from an input
spike stream. We will investigate two approaches, both are based on extending
the input of the network:

• In section 5.1 we will extend the network inputs with time lags. We will
see that this simple extension significantly increases the computational
power of the network.

• In section 5.2 we will extend the network with lateral excitatory connec-
tions. We will show that this network is able to perform a Monte Carlo
approximation of HMM inference and learning.

5.1 Discovering temporal hidden causes using
multiple time-lags

In the original work on SEM networks the spike trains of all inputs arrived at
the soma simultaneously [Nessler et al., 2010]. In a biological neuron however,
different synapses on the dendritic tree of a single cell have different delays.
These delays arise from the distances to the soma. Synapses that are far
away have larger delays due to finite propagation speed of the EPSPs. A more
realistic mathematical representation of the input activation over the dendrites
was given by the EPSP kernel in equation (4.5). Each synapse i contributes a
specific delay ∆i to the input spikes. We will use this input representation here
to capture temporal relations between nearby time windows of the input.

41

5 STDP learning of temporal hidden causes

· · ·

· · ·

z
(t)

z
(t−1)

z
(t−2)

x
(t)

x
(t−1)

x
(t−2)

x
(t−3)

x
(t−4)

Figure 5.1: The Bayesian network of a time lagged SEM model. Here the
input is presented on three time lags, ∆1 = 0, ∆2 = 1 and ∆3 = 2.
Each hidden cause depends on the most recent input history.

The network input is extended by presenting it to the network at M different
time lags ∆m, m = 1 . . .M . Thus, the network input vector is given by

y(t) =
[
x(t−∆1),x(t−∆2), ...,x(t−∆M)

]
. (5.1)

y(t) is a vector of size N ·M , where N is the size of x(t). The network benefits
from this extension by being able to extract statistical information from the
input at multiple points in time simultaneously (figure 5.1 shows an example).
The hidden causes depend on all time-lagged inputs and thus capture temporal
correlations. The membrane potential is calculated according to (4.8)

u
(t)
k =

N∑
i=1

wkiy
(t)
i + wk0. (5.2)

Using the SEM learn rule (4.10), the synaptic weights converge to the log
probabilities

w∗ki = log p (yi | zk) , w∗k0 = log p (zk) . (5.3)

We find for the network output probability, with respect to these target weights

p
(
z

(t)
k | x

(t−∆1), . . . ,x(t−∆M)
)

=
euk∑K
l=1 eul

=
p
(
z

(t)
k

)∏M
m=1 p

(
x(τ−∆m) | z(t)

k

)
∑K

l=1 p
(
z

(t)
l

)∏M
m=1 p

(
x(τ−∆m) | z(t)

l

) . (5.4)

The output probabilities are equivalent to the inference of the hidden cause
z

(t)
k given the time lagged inputs, which can be seen by inspecting the Bayesian

network from figure 5.1.

42

5.2 STDP learning of HMMs

The hidden cause’s dependence on multiple time lags introduces a serious
challange to the model. Consecutive hidden causes in the Bayesian network
from figure 5.1 share child nodes, which entails the problem of explaining away
[Bishop, 2006]. The hidden causes can no longer be assumed to be independent
for a given input sequence X. To see this, we write down the conditional
probability of a hidden cause sequence Z given X

p (Z | X) =
p (Z,X)∑
Z′ p (Z′,X)

=

∏T
τ=1 p

(
z(τ)
)∏M

m=1 p
(
x(τ−∆m) | z(τ)

)∑
Z′
∏T

τ=1 p
(
z′(τ)

)∏M
m=1 p

(
x(τ−∆m) | z′(τ)

) . (5.5)

Since the denominator is a sum of products over Z, equation (5.5) will in
general not factorise into a product of terms depending on single hidden causes
z(τ). Thus, we find that the hidden causes are no longer independent. However,
the network samples a path Z by drawing an individual sample from equation
(5.4) in each time step. The whole-path probability is given by the product of
all individual sampling probabilities

q (Z | X) =
T∏
τ=1

p
(
z(τ)
)∏M

m=1 p
(
x(τ−∆m) | z(τ)

)∑
Z′ p

(
z′(τ)

)∏M
m=1 p

(
x(τ−∆m) | z′(τ)

)
=

p (Z | X)∏T
τ=1

∑
Z′ p

(
z′(τ)

)∏M
m=1 p

(
x(τ−∆m) | z′(τ)

) . (5.6)

Comparing equation (5.6) with the true conditional (5.5), we find that the
network implicitly introduced an independence assumption between the hidden
cause variables, since equation (5.6) is factorisable over the hidden causes. This
simplification introduces a bias to the learning. Although we will see in chapter
6 that using this biased learn rule the network can achieve good performance in
solving some practical problems, it will lead to suboptimal results in general.
In the next section we will derive an extended learn rule for HMMs that copes
with a similar problem. We will find that this extension is also capable to
correct the bias of the model introduced above.

5.2 STDP learning of HMMs

In section 4.4 we have argued that a winner-take-all circuit can approximate
a stochastic version of EM using a simple STDP rule. We will extend this

43

5 STDP learning of temporal hidden causes

...

...

v11

vKK

w11

wKN

WTA

x
(t)
1

x
(t)
N

z
(t)
1

z
(t)
2

z
(t)
K

Figure 5.2: A SEM circuit with recursive connections to capture the temporal
structure of the input.

approach here to capture the temporal structure of the input by introducing
lateral connections. We will show that this network structure can do inference
on the HMM’s hidden states and Monte Carlo EM can be used to learn the
network weights.

5.2.1 Introducing temporal relations between hidden causes
through lateral connections

The network structure of the extended SEM circuit is shown in figure 5.2.
Like in the original SEM network, the input layer consists of N binary unites
x

(t)
i that represents a population code of a time varying input variable. The

inputs are collected in a vector x(t) ∈ {0, 1}N . The output layer consists of
K neurons that receive feed-forward connections with weights wki from the
input and lateral connections vkj between the output layer units. The feed-
forward and lateral weights are collected in the matrices W and V respectively.
The neurons produce a binary output vector z(t) ∈ {0, 1}K in each time step.
Through the lateral connections the output of the previous time step z(t−1) is
fed back to the network. In this setup, the layer of WTA neurons is a recurrent
neural network with all-to-all connectivity. As in the original SEM network,
the probability that unit k fires at time t, is given by the soft-max function:

44

5.2 STDP learning of HMMs

p
(
z

(t)
k | x

(t), z(t−1),W,V
)

=
eu

(t)
k∑K

l=1 eu
(t)
l

,

with u
(t)
k =

N∑
i=1

wkix
(t)
i +

K∑
j=1

vkjz
(t−1)
j ,

(5.7)

where u
(t)
k is the membrane potential of cell k at time t. The soft-max repre-

sentation avoids zero probabilities, which is in general a desirable property for
HMMs [Baldi and Chauvin, 1994].

At this point we notice that, if the weights of the network were given by

w∗ki = log p
(
x

(t)
i | z

(t)
k

)
,

v∗kj = log p
(
z

(t)
k | z

(t−1)
j

)
,

(5.8)

the output probability (5.7) would become equivalent to the inference of the
state at time t in a HMM, given the previous state and current observation.
By substituting equation (5.8) into (5.7) we get

p
(
z

(t)
k | x

(t), z(t−1)
)

=
eu

(t)
k∑K

l=1 eu
(t)
l

=
p
(
x(t) | z(t)

k

)
p
(
z

(t)
k | z(t−1)

)
∑K

l=1 p
(
x(t) | z(t)

l

)
p
(
z

(t)
l | z(t−1)

) , (5.9)

where we have dropped the direct dependence on the network weights assumed
to be constant. Thus, the output layer of the network represents in every time
step, the hidden state of a HMM inferred from the previous state and the
current observation. In the remainder of this discussion we will show how the
target weights (5.8) can be learned.

5.2.2 A sampling approximation of the forward-backward
algorithm

In section 3.5.1 we have seen that although the forward-backward algorithm
can be computed efficiently when the observation is given as a whole batch

45

5 STDP learning of temporal hidden causes

of length T , the calculation of the backward messages becomes very difficult
when the algorithm is applied on incrementally arriving data. In the neural
implementation of HMMs, using the recurrent architecture shown in figure 5.2
we can no longer assume an input sequence of length T to be given. The current
observation will only be transiently available by the spike patterns arriving at
the neuron’s inputs. Applying standard forward-backward equations in such
an environment is not feasible, as we have argued above. In this section we
will introduce an approximate algorithm that uses Monte Carlo techniques to
solve this problem. In our discussion we will focus on algorithms that can
be implemented in an online setup, it should be stressed however that these
algorithms would also work in a batch application.

We assume, that at the beginning of a sequence one neuron z0 is active, that
projects to neuron k of the WTA population with a synaptic strength given
by

v∗k0 = log p
(
z

(1)
k

)
, (5.10)

which models the HMM initial state probabilities. To simplify the notation
let us use the convention p

(
z(1) | z(0)

)
≡ p

(
z(1)
)
. Then, the probability of

sampling a path Z using equation (5.9) is given by

q (Z | X) =
T∏
τ=1

p
(
z(τ) | x(τ), z(τ−1)

)
=

T∏
τ=1

p
(
x(τ) | z(τ)

)
p
(
z(τ) | z(τ−1)

)∑K
l=1 p

(
x(τ) | z(τ)

l

)
p
(
z

(τ)
l | z(τ−1)

)
=

p (Z,X)∏T
τ=1

∑K
l=1 p

(
x(τ) | z(τ)

l

)
p
(
z

(τ)
l | z(τ−1)

) . (5.11)

The numerator is the correct HMM joint distribution (3.11). The denominator,
however is not the accurate normalisation of the conditional distribution and
thus we will find in general that q (Z | X) 6= p (Z | X).

Before we continue let us explore some properties of the distribution (5.11).
We rewrite the transition probability between two states at time t for a given
observation (3.12) in terms of the distribution (5.11)

ξq
(
z(t), z(t−1)

)
=

∑
Z\z(t),z(t−1)

q (Z | X)

46

5.2 STDP learning of HMMs

=
∑

Z\z(t),z(t−1)

T∏
τ=1

p
(
z(τ) | x(τ), z(τ−1)

)
=

∑
z(1)...z(t−2)

t∏
τ=1

p
(
z(τ) | x(τ), z(τ−1)

)
×(∑

z(t+1)...z(T)

T∏
τ=t+1

p
(
z(τ) | x(τ), z(τ−1)

))

The second term sums to one, thus we can write

ξq
(
z(t), z(t−1)

)
=

∑
z(1)...z(t−2)

t∏
τ=1

p
(
z(τ) | x(τ), z(τ−1)

)
= p

(
z(t), z(t−1) | X(1...t)

)
. (5.12)

If we compare this result to the standard forward-backward equations (3.17),
we see that (5.12) computes the forward messages correctly but does not take
the backward messages into account. Unlike the hidden Markov model would
suggest, all transitions are independent of future observations, which intro-
duces a bias.

Next we observe that, since the denominator is always between zero and one,
equation (5.11) will be zero only where p (Z,X) is zero1. It holds true that

q (Z | X) 6= 0 ⇔ p (Z,X) 6= 0. (5.13)

Hence equation (5.11) can be used in the framework of importance sampling
as a proposal distribution for p (Z,X). The bias introduced by ignoring the
backward messages can be corrected by using importance weights, given by

r (Z) =
p (Z,X)

q (Z | X)
=

T∏
τ=1

K∑
l=1

p
(
x(τ) | z(τ)

l

)
p
(
z

(τ)
l | z

(τ−1)
)
,

which can be updated recursively

r (Z) = r
(
Z1...T−1

)
×

K∑
l=1

p
(
x(T) | z(T)

l

)
p
(
z

(T)
l | z(T−1)

)
. (5.14)

1The pathological case where the denominator of equation (5.11) becomes zero is implicitly
avoided by the use of the logarithmic parametrisation of the proposed network.

47

5 STDP learning of temporal hidden causes

Paths sampled from the proposal distribution are generated by the network ar-
chitecture we have presented in the previous section, by repeatedly evaluating
equation (5.9). We will refer to this path generation as forward sampling . To
correct the bias, the sampled paths must be accumulated in a weighted sum
similar to equation (3.7). We assume that a set of paths Zl, l ∈ {1 . . . L}, was
generated for a given observation X and the importance weights were calcu-
lated using (5.14). To approximate the E step equation (3.12) we would like
to find an expression for the conditional distribution p (Z | X) rather than the
joint p (Z,X). Note however that since the proposal is already conditioned on
X a re-normalisation can be easily achieved by forcing all importance weights
to sum to one. Using this we can write down the approximation of equation
(3.12) given by

γ
(
z

(t)
k

)
≈ 1∑L

m=1 r (Zm)

L∑
l=1

r (Zl) · z(t)
k,l

ξ
(
z

(t)
k , z

(t−1)
j

)
≈ 1∑L

m=1 r (Zm)

L∑
l=1

r (Zl) · z(t)
k,l · z

(t−1)
j,l ,

(5.15)

where z
(t)
k,l is the kth element of the sampled path Zl at time t. The algorithm

can be summarised as follows:

1. For a given observation X, sample L paths from the model using equation
(5.9) and the current model parameters.

2. Calculate the importance weights for each sampled path using equation
(5.14).

3. Calculate the approximate E Step using equation (5.15).

4. Update the model parameter using the update equations (3.13).

This algorithm converges to the Baum-Welch results for L → ∞. It works in
both an online and a batch setup. If the algorithm is used in the batch mode,
the paths can be sampled one after another and together with the weights,
they can be accumulated in a matrix. When all paths have been sampled the
update rules can be applied on the whole batch using the exact M step. In
the online setup, L paths are sampled for a given sequence, the importance
weights can be calculated incrementally. For this approach to make sense also
an online version of the M step must be found. This problem will be addressed
in the next section, where we will show that a STDP rule with synaptic tagging
can be used to solve this task.

48

5.3 A STDP Rule for HMM Learning

5.3 A STDP Rule for HMM Learning

We will derive the learning rule for the recurrent weights vkj only, since adap-
tation for the feed-forward and initial state weights is straightforward. Let us
introduce the weight update rule for the recurrent state connections, which is
a slight modification of the STDP rule that was introduced in [Nessler et al.,
2010]

∆v
(t)
kj =

η (e−vkj −1) , if z

(t)
k = 1 and z

(t−1)
j = 1

−η, if z
(t)
k = 0 and z

(t−1)
j = 1

0, if z
(t−1)
j = 0

, (5.16)

where η is the learn rate. For the HMM learning task we derive the equilibrium
point analysis for a sequence of length T . The application of the learn rule
will be governed by n∗kj the expected numbers of zj → zk transitions and n∗j
the expected number of times spent in state j, over the whole sequence. Using
equivalent calculations as in [Nessler et al., 2010] we get for the equilibrium
point of equation (5.16)

E{∆v(t)
kj } = 0 ⇔ η

(
e−vkj −1

)
n∗kj − η

∑
l 6=k

n∗lj = 0

⇔ e−vkj n∗kj = n∗j

⇔ vkj = log
n∗kj
n∗j
,

Note that if n∗kj and n∗j were equal to the quantities given in equation (3.14) the
weights updated by rule (5.16) would converge to the correct target distribu-
tion (5.8). Unfortunately the network samples from the proposal distribution
q (Z | X) and thus the transition and state probabilities are biased. To correct
this bias we must implement the importance weights into the STDP rule.

In order to adapt the STDP rule to the importance sampling let us first in-
troduce an inhibitory neuron that creates the sum over all output activations
and inhibits each neuron of the population with a current

i(t) =
K∑
l=1

eu
(t)
l . (5.17)

Figure 5.3 illustrates the inhibitory neuron. Note that i(t) is equivalent to the
denominator of the soft-max function. To this end, it can be used by each

49

5 STDP learning of temporal hidden causes

...

...

x
(t)
1

x
(t)
N

z
(t)
1

z
(t)
2

z
(t)
K

i
(t)

Figure 5.3: Extending the network with an inhibitory neuron to calculate the
importance weights.

neuron to compute equation (5.7) locally. Further note that the inhibition is
equivalent to the update term in equation (5.14), thus it can also be used to
calculate the importance weights, which can be updated online using equation
(5.17)

r (Z) = r
(
Z1...T−1

)
× i(t). (5.18)

The update rule can not be applied instantaneously because the importance
weights need to be accumulated over a time window of length T . In the neural
implementation we can achieve this by a synaptic tagging mechanism. This
approach is similar to that in [Izhikevich, 2007] but here it is applied to an
unsupervised learning task. Instead of updating the weights directly they get
tagged and consolidation of the tags is delayed until the whole sequence was
read. The strength of the tags is initialised to the weight changes (5.16) and
then modulated by reward signals which are equivalent to the importance
weights. The weight update over a whole sequence is given by

vnewkj = vkj + r (Z)×
T∑
τ=1

∆v
(τ)
kj . (5.19)

Again several paths need to be sampled to get an accurate approximation of
the statistics. The weight update for a set of L sampled paths can be written

50

5.3 A STDP Rule for HMM Learning

(a) πk

k
1 .5
2 .0
3 .0
4 .5
5 .0
6 .0

(b) akj

j\k 1 2 3 4 5 6
1 .0 .9 .0 .0 .0 .0
2 .0 .0 .9 .0 .0 .0
3 .0 .0 .9 .0 .0 .0
4 .0 .0 .0 .0 .9 .0
5 .0 .0 .0 .0 .0 .9
6 .0 .0 .0 .0 .0 .9

(c) bki

k\x(t) A B C D
1 .9 .0 .0 .0
2 .0 .9 .0 .0
3 .0 .0 .9 .0
4 .9 .0 .0 .0
5 .0 .9 .0 .0
6 .0 .0 .0 .9

Table 5.1: The model parameter of the example HMM. (a) the initial state
prior, (b) the transition probabilities, (c) the observation probabil-
ities. Values are rounded to one digit precision.

vnewkj = vkj +
L∑
l=1

r (Zl)×
T∑
τ=1

∆v
(τ)
kj,l. (5.20)

We are still missing the normalisation over all drawn paths to ensure the path
probabilities to be normalised given the observation X. Unfortunately unlike
in the Baum-Welch equations this normalisation does not cancel out in our
STDP rule but remains in the results as a bias. Introducing this normalisation
into the neural implementation is not trivial. The easiest way to implement
it would be to have L networks sample a path independently and in parallel.
The importance weights are then normalised over all networks. This setup
would be an efficient implementation of the importance sampling but it remains
unclear how it could be implemented in a biologically plausible way since all
networks would have to share the same weights and some mechanism needs
to be introduced that keeps all importance weights normalised. A second
approach is more biologically plausible: The model is represented in a single
network and paths are sampled one after another. It is assumed that an input
X is held in a short term memory such that it can be repeatedly presented.
The bias is corrected by replaying the same input multiple times. The number
of times the input is repeated is proportional to the importance weight. We
will discuss this approaches later in more detail, let us first turn to a small toy
example that illustrates the weight tagging mechanism.

51

5 STDP learning of temporal hidden causes

bcbc

bc

z
(t)
1

z
(t)
2

z
(t)
3

z
(t)
4

z
(t)
5

z
(t)
6

t = 1 t = 2 t = 3

A B C

(a) Accepting a path for A-B-C

bcbc

bc

z
(t)
1

z
(t)
2

z
(t)
3

z
(t)
4

z
(t)
5

z
(t)
6

t = 1 t = 2 t = 3

A B D

(b) Rejecting a path for A-B-D

bcbc

bc

z
(t)
1

z
(t)
2

z
(t)
3

z
(t)
4

z
(t)
5

z
(t)
6

t = 1 t = 2 t = 3

A B C

(c) Rejecting a path for A-B-C

bcbc

bc

z
(t)
1

z
(t)
2

z
(t)
3

z
(t)
4

z
(t)
5

z
(t)
6

t = 1 t = 2 t = 3

A B D

(d) Accepting a path for A-B-D

Figure 5.4: Illustration of the weight tagging. The sampling is shown unfolded
over time. At each time step the active neuron is indicated by blue
color and the weight tags by green flags. See text for details.

52

5.3 A STDP Rule for HMM Learning

5.3.1 An illustrative example

To illustrate the weight tagging consider a signal source that produces se-
quences of four symbols A, B, C and D. The sequences are produced by suc-
cessively generating words A-B-C or A-B-D. Each of the two words is produced
with 50% probability. A HMM that can model this signal source is give by
the model parameters in table 5.1. The model has 6 states: z1 and z4 encode
symbol A, z2 and z5 encode symbol B, z3 encodes symbol C and z6 symbol D.
Each of the two words is encoded by a unique state sequence {z1, z2, z3} for
A-B-C and {z4, z5, z6} for A-B-D. The transition probabilities within each of
the state sequences are high and all that are not part of a sequence are close to
zero. Since one of the two words is generated randomly the initial probabilities
of z1 and z4 are 0.5 and zero for all others. States z3 and z6 are terminal and
thus self-recurrent. Note that this HMM is not the best choice to model this
simple task, but we shall use it here to demonstrate the weight tagging.

The HMM from table 5.1 has one big disadvantage: it is ambiguous. For an ob-
servation sequence A-B both state sequences {z1, z2} and {z4, z5} are possible.
Only on receiving the third symbol C or D one of the two state sequences be-
comes more likely. In the Baum-Welch algorithm this ambiguity is resolved by
taking the backward messages into account which allow us to adapt the path
probabilities to future events. Since this is not possible with our sampling
approach, the best thing we can do is to guess and decide on one of the state
sequences. As the crucial third symbol arrives we gain information whether
our choice was good or not and we require this information to influence the
weight update of the whole sampled path. This is achieved by the weight tag-
ging, which is illustrated in figure 5.4. The figure shows the sampling unfolded
over time, such that the state of the network in each time step is presented in
each column. The four possible combinations of drawn states and inputs are
shown. In each time step a winner neuron is drawn using equation (5.7). To
keep the figure uncluttered only the weights that are currently updated are
indicated by arrows linking two neurons. Each weight that lies between two
successively drawn cells becomes tagged, indicated by small flags. The size of
the flags indicates the current importance weight for the sequence, which is
updated according to the current inhibition at each time step. Tags that have
been set in previous time steps remain active for the whole sequence, indicated
in gray.

Figures 5.4(a) and 5.4(c) show two sampled paths for the observed word A-B-
C, 5.4(d) and 5.4(b) for A-B-D. The first path starts for A-B-C in state z1, the
second in state z4 for the observation A. The next observation is B for which

53

5 STDP learning of temporal hidden causes

the most probable state transitions, according to table 5.1, are z1 → z2 and
z4 → z5. In each time step the importance weights are indicted by the size of
the flags. All markers that are currently present are displayed in gray the new
arriving marker is shown in blue. Since the transitions in the first two time
steps had high probabilities the inhibition is close to one and thus the markers
keep their initial height. Next a symbol C arrives. The only state in which
this symbol can be observed is z3. For the fist path this state can be reached
with high probability, for the second however a transition to state z3 is very
unlikely. This causes the inhibition to drop close to zero, which does not only
effect the current weight update, but also tags that were set up previously.
The whole path that was generated so far is devalued. For the second word
A-B-D we observe a similar behaviour, but this time the first path turns out
to be in the worse sequence as symbol D arrives, which causes the importance
weight to be reduced. Using this tagging mechanism the information of the
arrival of the critical symbol C or D is propagated backwards in time.

5.3.2 Generalisation to SEM learning on multiple time-lags

In section 5.1 we proposed a time-lagged input presentation to capture tem-
poral hidden causes. We noted that inference in this model suffered from a
bias introduced by assuming successive network outputs to be conditionally
independent. Interestingly, the importance sampling approach introduced for
inferring HMM states, can also be used to overcome this problem. As in the
HMM case, the bias arises from the normalisation of the WTA circuit. To
correct the bias we can use importance weights, which we find from equations
(5.6) and (5.5) to be given by

r (Z) =
p (X,Z)

q (X | Z)

=
T∏
τ=1

K∑
l=1

p
(
z

(τ)
l

) M∏
m=1

p
(
x(τ−∆m) | z(τ)

l

)
, (5.21)

which is again the product of all softmax denominators over the whole se-
quence, which can be tracked by a global inhibitory neuron. Thus, the same
network architecture and weight tagging mechanism as introduced for the
HMM case, can be used for the SEM with time-lags to correct the biased
inference equations. Again we need to introduce the normalisation over L
sampled paths to recover the conditional p (Z | X). We will cope with this
problem in the next section.

54

5.3 A STDP Rule for HMM Learning

5.3.3 Simplifications of the importance sampling approach

One obvious problem of the importance sampling approach is that a biologi-
cally plausible implementation of the weight update (5.18) and normalisation
is not straightforward. In this section we will introduce a simplification of the
model that addresses both problems.

Before we describe the exact formalism, let us first outline an environment that
allows its implementation: In the discussion here we will restrict the online
learning problems to the case, where the input is not given by an endless
stream, but we have access to a process that chops the input into finite length
sequences. This is not a very hard assumption since we have already seen
in our discussion on statistical learning in section 2.3, that the detection of
word boundaries seems to be a fundamental feature of the brain’s sequence
processing. Let us further assume that the sequences, found by the word
boundary detection process, can be stored in short term memory and replayed,
as discussed in section 2.2. The model we introduce here is thought to be
located on top of this memory model, controlling its replay behaviour.

Assuming this input environment to be given, it is easy to redefine the sam-
pling approach in a biologically plausible way, that avoids normalisation of the
importance weights. To do so, we turn to the rejection sampling framework
introduced in section 5.2. In a Monte Carlo framework we approximate the
HMM sufficient statistics by drawing L hidden state sequences. Paths through
the state space are generated by our network using the proposal distribution
(5.11). To correct the bias introduce by not taking the backward messages
into account it is sufficient, for the setup we have defined here, to use a binary
weight deciding whether the sampled path is kept or not. If the path is kept
the synaptic tags (5.16) get implemented into the weights, if the path is re-
jected the tags are simply discarded. This binary decision can be made upon
the current value of the inhibitory unit i(t) given by equation (5.17). To see
this we first note that i(t) is the probability of observing the current symbol,
give the previous state variable

i(t) =
K∑
l=1

eu
(t)
l

=
K∑
l=1

p
(
x(t) | z(t)

k

)
p
(
z

(t)
k | z

(t−1)
)

= p
(
x(t) | z(t−1)

)
, (5.22)

55

5 STDP learning of temporal hidden causes

where we have used equations (5.17), (5.7) and the definition of the target
weights (5.8). This quantity is a probability distribution over the current
observation and can thus be used to make a decision, local in time, whether
the current path should be accepted. The probability of accepting the path at
any time step is given directly by the lateral inhibition. If in any time step, the
circuit decides not to accept the path, the whole path is rejected and must be
re-sampled using the short-term memory. The overall probability of accepting
a path is given by the product over all local decisions

p (accept) =
T∏
τ=1

p
(
x(τ) | z(τ−1)

)
, (5.23)

The overall joint probability of an accepted path Z and an input sequence X
is given by the proposal distribution (5.11) and the probability of accepting it,
given by

q (Z | X)× p (accept)

=
p (Z,X)∏T

τ=1

∑K
l=1 p

(
x(τ) | z(τ)

l

)
p
(
z

(τ)
l | z(τ−1)

) × T∏
τ=1

p
(
x(τ) | z(τ−1)

)
= p (Z,X) , (5.24)

which is the correct HMM joint probability. By sampling L paths using this
framework we can approximate the HMM’s sufficient statistics using similar
calculations as for the importance sampling approach (5.15)

ξ
(
z

(t)
k , z

(t−1)
j

)
≈ 1

L

∑L
l=1 z

(t)
k,l · z

(t−1)
j,l . (5.25)

Here again, z
(t)
k,l are the elements of the accepted paths. From this equation we

can see that the normalisation in this framework is trivial since it is given by
a constant 1

L
. Equation (5.25) converges to the correct HMM equation (3.12)

for L→∞.

One obvious drawback of this approach is that the probability of accepting a
path (5.23) can become small and thus re-sampling has to be performed very
often. Especially if the paths become long this issue may cause problems. To
improve the path acceptance rate we can introduce a normalising constant c
into equation 5.23 as used in the original rejection sampling equation 3.8, such

56

5.3 A STDP Rule for HMM Learning

that

p (accept) =
T∏
τ=1

c · p
(
x(τ) | z(τ−1)

)
. (5.26)

In general selecting this constant will not be trivial since the maximum value
of the inhibition is unknown and also depends on the current weights, which
are changing during training. Obviously there is a tradeoff between using a
small value for c, for which many paths will be rejected and thus sampling
will take long, or using large values for which again a bias is introduced. If c
is selected as large that every path is accepted, we restore the pure forward
sampling results. In the next section we will show experimentally that in some
practical cases good training results can be achieved by a very simple tracking
mechanism for c and only using a single sampled path.

57

6 Numerical Experiments

In this chapter we will show the applicability of the extensions to the SEM
network we have introduced in the previous chapter. We will investigate three
different learning tasks: In the first task we will show that the time lagged
extension introduced in section 5.1 is able to detect hidden causes from a
spiking input stream. In the second task we will investigate the performance
of the importance sampling approximation of HMMs from section 5.2 and
compare it to standard HMM learning. We will show that it can achieve
comparable results for a large class of problems. In the third experiment we
will use the approximate HMM approach to learn artificial grammar models
and compare the results with the behavioural study outlined in section 2.3.
All experiments in this chapter were done using Matlab.

6.1 Learning spatiotemporal patterns using
time-lagged inputs

In section 5.1 we have argued, that a SEM network, that receives input patterns
on multiple time lags is able to detect temporal hidden causes. In this experi-
ment we will confirm this by presenting sequences of spatiotemporal patterns
to the network. Here, we use the biased inference equation (5.4) that treads
the temporal hidden causes independently. We will see, that for the particular
task used in this experiment, this simplified treatment is sufficient.

The patterns are fed into the network over 200 input neurons x
(t)
i that create

patterns with fixed spike times. The patterns were generated by drawing
samples from a Poisson distribution with 15Hz rate. We created three patterns
A, B and C, of length 50ms. Other than in previous experiments done in
[Nessler et al., 2010] we did not present these patterns in random order, but
only allowed fixed words A-B-C and A-C-B. These words were presented, with
50% probability each in an endless stream superposed with 5Hz random spike
noise. Between two successive words, a 50ms frame with pure Poisson noise

59

6 Numerical Experiments

200 400 600 800 1000 1200

50

100

150

200

time [ms]

network input (coloured according to label)

200 400 600 800 1000 1200

2

4

6

8

10

time [ms]

network output

ACB ABC ACB ABC ACB ACB

Figure 6.1: The input-output behaviour of the trained network. The top plot
shows the network input spikes x(t), for a single delay at 150ms.
Spikes are coloured according to the pattern labels (blue: A, green:
B, red: C, noise spikes in gray). The bottom plot shows the network
output spikes, coloured according to the pattern identity during
which the neurons are most prominently active. Word boundaries
are indicated by dashed lines.

60

6.2 Monte Carlo approximation of HMMs

of 20Hz was presented. Thus, the overall input firing rate was 20Hz per input
channel.

We used a network with K = 10 neurons to cluster this input, which was
presented on four time lags: 0ms, 50ms, 100ms and 150ms. Throughout this
experiment we used the extended learn rule for mixtures of Poisson distribu-
tions, outlined in section 4.4.3. The length of the rectangular EPSP window
was chosen to T = 30ms. We let each SEM neuron fire with its individual
Poisson-rate according to equation (4.12). The overall network activity was
chosen to be λ = 200Hz. The weights were initialised to small, negative ran-
dom values and trained using the learn rule for learning mixtures of Poisson
distributions given in [Habenschuss, 2010].

We trained the network over 100 seconds. For the simulation we used fixed
time steps of 1ms. Figure 6.1 shows the response of the trained network to
an input sequence. The network responds with spike bursts at fixed locations
within each pattern sequence. Without the time lagged inputs the cells would
cluster the input into the three pattern identities A, B and C. With the simple
extension we have presented here the network is able to recover the hidden
cause variable of word identities. As expected, the network integrates infor-
mation from different points in time. The neurons learn to distinguish a B
inside a word A-B-C from one inside A-C-B. Each neuron, except those that
adapted for the noise frames, have exclusively selected one combination of pat-
tern and word identity. For example neuron seven responds with a spike bursts
during pattern B, but only when the pattern appears inside the word A-B-C.
If B appears inside A-C-B it remains silent. Neuron six shows the opposite
behaviour. The cells, that emerged here using unsupervised learning, show
similar properties as the context cells, outlined in section 2.1. Their selective
behaviour is modulated by the current input history. The trained network is
able to infer its output behaviour from temporal hidden causes.

6.2 Monte Carlo approximation of HMMs

In section 5.2 we introduced three approximations to the exact Baum-Welch
HMM learning algorithm:

1. The pure forward sampling. The backward messages are completely
ignored, the sampled paths are inferred from the forward messages only.
This is the simplest learn rule for HMM learning proposed here, but the
learn rule is biased and can lead in general to arbitrarily wrong results.

61

6 Numerical Experiments

2. The second approach introduces the backward messages using impor-
tance sampling. It is the most efficient algorithm since all sampled paths
are included in the estimate of the sufficient statistics, but its biological
implementation is doubtful.

3. The rejection sampling approach is intermediate to the other approaches.
It includes the backward messages through a stochastic process and a
biological implementation is feasible.

In this section we will compare these three approaches in terms of their descrip-
tive power using different learning tasks. For the comparison with standard
HMM calculations we used the Hidden Markov Model (HMM) Toolbox for
Matlab1.

6.2.1 Convergence of the approximate algorithms

In the first experiment we verified the convergence of the Monte Carlo ap-
proaches for HMM learning to the exact forward-backward calculations. We
applied the algorithms to approximate the E step of a HMM with 5 states and
10 observations. We generated random observation- and transition matrices
by drawing them from a Beta distribution with α = 0.2 and β = 0.8. We
used this model to generate an observation sequence of length T = 10. Then
we used equation (5.9) to draw state sequences from the model for the given
observation. The target distribution was generated by computing the forward-
backward algorithm on the sequence. We computed an approximate version of
this distribution by using the importance- and rejection-sampling approaches.
For the latter, the normalising constant was selected sufficiently small not to
introduce a bias, for which we found the value c = e1.25. To investigate the
convergence properties of the algorithms we computed the Kullback-Leibler
divergence between the sampled and the true distribution after each sampled
path [Bishop, 2006]. Figure 6.2 shows the results. One can see that both
algorithms converge asymptotically with one over the number of iterations to
the target distribution.

1 Hidden Markov Model (HMM) Toolbox for Matlab, written by Kevin Murphy, 1998.
http://www.cs.ubc.ca/∼murphyk/Software/HMM/hmm.html

62

http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html

6.2 Monte Carlo approximation of HMMs

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

iteration

K
ul

lb
ac

k−
Le

ib
le

r
di

ve
rg

en
ce

importance sampling
rejection sampling
1/iteration

Figure 6.2: Demonstration of the Monte Carlo approximation for the forward-
backward algorithm. Convergence of the Kullback-Leibler diver-
gence between the sampled and the true distribution, with respect
to the iteration is shown. Both, the importance-sampling and the
rejection sampling approach converge asymptotically with one over
the number of iterations.

63

6 Numerical Experiments

0

0.1

0.2

0 20 40 60 80 100

number of epochs

no
rm

al
is

ed
lo

g
lik

el
ih

oo
d

Baum-Welch algorithm
SEM with forward-backward

SEM with 100 sampled paths
SEM with 10 sampled paths
SEM with forward sampling

Figure 6.3: The mean of the normalised log likelihood errors of the different
training approaches.

6.2.2 General HMM learning tasks

In order to give a quantitative comparison between the importance sampling
introduced here and standard HMM learning, we applied it to solve a general
HMM learning task. To do so we generated random teacher HMMs, with 5
hidden states and 10 observations and used them to generate observation se-
quences. Using this data we compared the training performance of five different
methods: standard Baum Welch training on the whole batch of sequences, the
online update rule (5.16) using the true sufficient statistics calculated using the
forward-backward algorithm, forward sampling and the importance sampling
approximation using 10 and 100 sampled paths.

The teacher HMMs were generated by drawing initial state, observation and
transition probability tables from a Beta distribution with α = 0.2 and β = 0.8
and then normalising the tables to proper conditional probabilities. The Beta
prior on the parameters was chosen because it yields very rich and dynamic
models, which allow a much better comparison of the learning performance
than using a uniform prior. From each of these models we generated a train
set of 200 and a test set of 2000 sequences of length T = 50.

64

6.3 Artificial grammar learning

For training we generated an initial model by drawing HMM parameters from
a uniform distribution. We adapted this model to the train set using the five
different training methods. The complete training data set was repeatedly
present to the network. We will refer to the presentation of the whole batch
of training sequence as an epoch. We applied the online learn rule after each
sequence was observed and the Baum-Welch update after each epoch. The
learn rate was chosen to be constant η = 0.005. We generated 50 trials using
50 different teacher HMMs. To get comparable results we used the normalised
log-likelihood error [Mongillo and Deneve, 2008] given by

λ (i) =
〈logL〉 (i)− 〈logL〉true
〈logL〉init − 〈logL〉true

(6.1)

where 〈logL〉 (i) is the average log likelihood over the test set given the current
model at epoch i, 〈logL〉init is the average log likelihood of the initial model
and 〈logL〉true the average log likelihood of the teacher model, that has created
the data. This measure yields a normalised distance to the true model between
zero and one.

The results of the five different training approaches are compared in figure 6.3.
The figure shows the mean of the normalised log likelihoods over the 50 trials.
As can be seen the Baum-Welch algorithm closely restored the teacher model
and so did the online approach with the exact forward-backward calculations.
Pure forward sampling, which is equal to ignoring the backward messages at
all, was not sufficient to solve the task. But by sampling more and more
paths we rapidly approach the performance of the exact calculations. The
approximate training with 100 sampled paths already achieved a comparable
result.

6.3 Artificial grammar learning

In the last experiment we investigate the ability of our network to learn ar-
tificial grammar models . Artificial grammars are, like grammars in natural
language, models that define how symbols can be concatenated to form se-
quences. The models can be represented in a graph structure. An example
grammar model, that was used in [Conway and Pisoni, 2008] is shown in figure
6.4. The model consists of 10 states, a set of six symbols {1, 2, 3, 4, Start,
End}, and transitions between the states. Each grammatical sequence begins
with the Start symbol and terminates with the End symbol. In between any

65

6 Numerical Experiments

B C D

A E F G

H I J

Start

3,2

2,3

4

2

2

3 1,3

4

1

4

3

1,3
1

2

End

4

1

4

2

3,1

3

Figure 6.4: The artificial grammar model that was introduced in [Conway and
Pisoni, 2008]. The model consists of 10 states indicated by circles
and transitions between these states indicated by interlinking arcs.
At each transition the symbol next to the arc is emitted. Besides
the original grammar with symbols shown in black, two alternative
grammars were created. One uses different symbols leaving node
A shown in blue, the other uses different symbols entering node G
shown in green.

path can be taken along the arcs that connect the states to generate a se-
quence. Outgoing arcs from the states represent possible transitions to the
next state. In each time instant, one of the transitions is randomly selected
and the next state is entered until the sequence terminates. At each transi-
tion being made the symbol that is associated with the transition is emitted.
In that way the grammar model describes the set of possible and impossible
sequences in a very compact way. For example a sequence Start-2-4-1-End is
grammatical whereas Start-2-4-4-End is not under the given grammar, since
there is no transition that emits symbol 4 outgoing from state F.

Obviously these grammar models are closely related to hidden Markov models.
In fact it is very easy to find a HMM that represents the grammar shown here.
The only difference between a HMM and a grammar model, is that symbols
are emitted when a transition is made, and not when the state is entered2.

2For the sake of completeness, it should be mentioned that some authors (e.g. [Stiller and
Radons, 1999]) use an alternative definition of HMMs where symbols are generated on
transitions. In our discussion on artificial grammar models, we will stick to the definition

66

6.3 Artificial grammar learning

train method % correct classified mean squared error
forward sampling 0.9310 0.0873
importance sampling 0.9550 0.0716

Table 6.1: The performance of the HMM approximation for the implicit learn-
ing task.

In this section we will investigate the capability of our model to learn such
grammars.

6.3.1 Implicit learning of artificial grammars

In the first experiment on AGL, we used the small data set introduced in [Con-
way and Christiansen, 2005]. The data set consists of only 12 training se-
quences of lengths between three and six. As discussed in section 2.3 these
sequences were played to participants in a memorisation phase. After that,
the ability to distinguish between sequences generated from the same and a
unknown grammar was investigated in a testing phase. In [Conway and Chris-
tiansen, 2005] 20 sequences were used for testing, ten of which were generated
from the same grammar as for the train data (legal sequences Xl) and ten
from a different grammar (illegal sequences Xi). In this experiment we re-
peated this task using the network introduced in the previous chapter. We
created a network with six neurons and trained it using the forward sampling
and the importance sampling learning. As in the original experiment each
train sequence was presented twice. For training we used a constant learn rate
η = 0.05 and five sampled paths for the importance sampling approach.

For the testing phase we used a threshold ϑ on the log-likelihood function to
decide whether the sequence was legal. A sequence X was classified according
to the function

c (X, ρ) =

{
1, if logL (X) ≥ ϑ

0, else
, (6.2)

where c = 1 indicates that the network decides that X is a legal sequence.
Throughout these experiments we selected ϑ always to be the optimal threshold

we gave in the previous chapters, because it is more common and better fits our neural
model. Also note that the two definitions are compatible and can be easily converted
into each other.

67

6 Numerical Experiments

that maximises the score function, which is given by

ϑ∗ = arg max
ϑ

∑
Xl∈Xl

c (Xl, ϑ) +
∑

Xi∈Xi

(1− c (Xi, ϑ)) , (6.3)

Note that in the original setup of the experiment we don’t have access to the
optimal threshold since its calculation requires access to the true class labels,
but here we shall use it to compare the results in terms of the maximum
achievable performance. To this end, the results we present here are an upper
bound of the performance that can be achieved by the network. Further note
that we have not yet defined how the network can evaluate the likelihood
function. For the time being, we postpone these problems to future work.

We trained and tested the networks 50 times with random initial weights and
averaged the classification score. The results are shown in table 6.1. Both train
methods have reached near optimal score (> 90%). Obviously, this very simple
task can be solved without evaluation of the backward messages. The small
networks of 6 neurons outperformed the results reported in the behavioural
task of about 62% − 75% [Conway and Christiansen, 2005], but as discussed
above, in a biologically realistic implementation of the classification, a consid-
erable worse result is expected since access to the optimal threshold ϑ∗ is not
given.

6.3.2 Detailed models emerge from approximate HMM
learning

We have outlined above that artificial grammar models are closely related to
HMMs. A grammar model can be turned into a HMM by first inserting states
at each arc, that emit the symbol associated with that arc. Then all states of
the original grammar model must be removed and replaced with transitions
between the HMM states. Some redundancy can be resolved, in a third step,
by collapsing multiple states into one. This procedure results in a HMM with
a sparse transition matrix, that is only non-zero for transitions associated with
an arc. We found that our example grammar model from figure 6.4 can be
turned into a HMM with 17 states, where four groups composed of four states
encode the symbols 1-4 and one state encodes the End symbol. The Start
symbol can be absorbed into the prior so we did not explicitly model a state
that emits this symbol. We will refer to the resulting HMM as θtrue.

In total, the model is described by 38 non-zero prior and transition probabil-
ities, which are listed as a set of transition rules in table 6.2(a). The rules

68

6.3 Artificial grammar learning

define all possible transitions between the HMM states. Each line of the table
defines all transitions that can be made leaving a certain state. The third line,
for example, defines that states 1c and 4c can be reached from state 1b. All
transitions can be made with equal probability. The naming of the states is
composed of the symbol they emit and a subscript letter to distinguish multi-
ple states that emit the same symbol. By following a path through the state
space it can be easily seen that the set of rules describes the same grammar as
the graph in figure 6.4.

In this experiment we exploit the ability of the proposed neural network to
restore the structure of θtrue. To do so we generated 106 grammatical sequences.
Using this train set we trained a network with 17 neurons. The input layer was
composed of five units encoding the symbols 1-4 and the End symbol. Again,
we compare the performance of different training algorithms: pure forward
sampling, importance sampling with five sampled paths and rejection sampling
using a single sample. In order to get results that can be interpreted more easily
we initialised the observation weights to the weights of the true observations
of θtrue plus small equally distributed noise. Using this we assured that in
the trained models each neuron encoded exactly one symbol. For training
the networks we used the same parametrisation as in the experiment from
section 6.2.2. For the rejection sampling algorithm we used a simple tracking
of the normalising constant c, for which we used an exponential representation
c = eζ . Whenever a path was accepted ζ was decreased by 10−4, if the path
was rejected ζ was increased by 5 · 10−4. ζ was initialised to a relatively large
value ζ = 2, for which we found that, at the beginning of the learning every
path was accepted. As learning proceeds ζ slowly converges to an equilibrium
acceptance rate, which we found to be a feasible number of about eight samples
per input sequence.

After the networks were trained, in the evaluation step, we tested the ability
to classify unknown sequences to being grammatical or not. For this test we
generated 103 legal sequences Xl from θtrue. In addition, we created a differ-
ent grammar model from which we sampled a set of 103 illegal sequences Xi.
Obviously the performance will be correlated with the difference between the
legal and illegal sequences, so we tested three different cases: A grammar θrand
where each transition and emission was drawn randomly and two grammars
that were created by modifying the original grammar model. The first one, θA
was created by flipping the symbols leaving the first state A which is indicated
in figure 6.4 in blue, and the second, θG was created by flipping the symbols
entering the last state G shown in green. These three grammars differ in the
location of the symbols that are different from the original model. θrand gen-

69

6 Numerical Experiments

50

60

70

80

90

100

θrand θA θG

%
co

rr
ec

tc
la

ss
ifi

ca
tio

n

Figure 6.5: The percentage of correctly classified sequences for a network
trained with forward sampling (blue), importance sampling (green)
and rejection sampling (red), for the three different test grammars.

erates sequences that are different at all location whereas sequences generated
by θA only differ at the beginning, that generated by θG only at the end. Us-
ing these test grammars, we again evaluated the classification score given the
optimal threshold (6.3).

The results are depicted in figure 6.5. The figure shows the percentage of
correctly classified sequences for the three different test grammars. The per-
formance was averaged over 20 training results. It can be seen that five sampled
paths were sufficient to achieve nearly perfect performance relatively indepen-
dent of the used test grammar, for importance sampling. On the other hand
the performance of the network with forward sampling showed strong depen-
dence on the test grammar that was used. While it achieved comparable results
for the random grammar, the performance dropped significantly for the two
modified grammars. The rejection sampling approach achieved intermediate
results, outperforming the forward sampling at all three cases.

As mentioned above, a rule based grammar model results in sparse transition
probability tables. To get further insight why the learning approaches per-
formed so differently we investigated up to what degree the rule-based structure
was recovered. To do so we extracted the rules from the learned probability
tables by accepting a transition rule for all entries that were significantly non-
zero (≥ 0.01). The rules that were found in one exemplary training trial, by
the network trained with importance sampling, are listed in table 6.2(b). As

70

6.3 Artificial grammar learning

(a) The grammatical rules for the
artificial grammar model.

Start → 2a, 3a
1a → End
1b → 1c, 4c
1c → 2b, 4a
1d → 2d, 4d
2a → 1d, 4d
2b → 1a, 1b, 2d, 3c
2c → 1a, 4b
2d → 3d
3a → 2b, 4a
3b → 1a, 1b, 2d, 3c
3c → 1a, 4b
3d → 3d, End
4a → 2c, 3b
4b → 1a, 4b
4c → 1d, 4d
4d → 1a, 1b, 2d, 3c

(b) The grammar rules found by
the neural network.

Start → 2a, 3a
1a → 2b, 2c, 4a
1b → 1a, 4b, End
1c → End
1d (unreachable)
2a → 1a, 4a
2b → 1b, 2c, 3b
2c → 1b, 1c, 2c, 3d, 4c
2d → 1b, 1c, 4c
3a → 2b, 4d
3b → 1c, 3d, 4c, End
3c → 1b, 1c, 2c, 3c, 4c
3d → 3d, End
4a → 1b, 2c, 3c
4b → 1a, 4a
4c → 1c, 4c
4d → 2d, 3c

Table 6.2: The grammatical rules to describe the artificial grammar model
from figure 6.4. The original model (a) and the model found using
importance sampling (b). The states are named according to the
symbols they emit, with a one-letter subscript if there are multiple
states that emit the same symbol (of course the assignment of these
letters is arbitrary).

71

6 Numerical Experiments

mentioned above, the original model can be described with 38 rules. The SEM
network selected 44 rules out of 306 possible transitions and thus recovered the
sparse structure of the grammar model. By carefully comparing the two sets
of rules we find many similarities. In fact eight out of 17 states have identical
transition patterns. For most other states a counterpart in the original set can
be found that shows at least some similarities. One big exception is the state
1d which became reachable only with very low probability which resulted in
an overall complexity increase of the model. But, although the set of rules is
not perfect, a lot of the structure covered in the original grammar model was
discovered.

On the other hand, the network trained with forward sampling did not cap-
ture the rule-based structure of the input at all. More than 200 transitions
probabilities were found greater than 0.01, allowing transitions between almost
every pair of states. The only significant structure that was captured is that
no state that emits symbol 1 could be followed by a state that emits symbol
3, and the Start state could only be followed by symbols 2 or 3. By carefully
inspecting the grammar model we see that a subsequence 1-3 is the only lo-
cal transition that is not grammatical and obviously all sequences must start
with Start-2 or Start-3. Thus, the network trained without backward pass
extracted only local statistics but largely ignored the global rule-based struc-
ture. Since the beginning of the sequence was modelled much more accurate
than the end, by learning the correct local transitions leaving the Start state,
we observed a significantly better performance for test grammar θA than θG.
Again the rejection sampling approach achieved an intermediate result. The
clear rule-based structure of the model was not recovered, but transition tables
were found in general to be more structured. Apparently, the simple tracking
of the normalising constant and sampling a single path is not sufficient to solve
the learning task completely. But the results show that this simple implemen-
tation of rejection sampling significantly increased the quality of the learned
models.

To test the impact of the network size on the classification performance we
repeated the experiment with different numbers of output neurons. We gener-
ated six networks with different numbers of SEM units. Again, we initialised
the observation matrices to the sparse structure encoding one preferred input
symbol. Thus for each of the five inputs, a group of units showed increased
response. We achieved this, like in the previous experiment by initialising the
observation probabilities of each neuron k of one group l to bki = δil+ν, where
ν is equally distributed noise between zero and 0.1. Each group encoding one
input had the same size, except for the End symbol which was encoded by

72

6.3 Artificial grammar learning

5 9 13 17 21 25
0.5

0.6

0.7

0.8

0.9

θ
rand

5 9 13 17 21 25
0.5

0.6

0.7

0.8

0.9

θ
A

5 9 13 17 21 25
0.5

0.6

0.7

0.8

0.9

θ
G

5 9 13 17 21 25
0.5

0.6

0.7

0.8

0.9

%
 c

or
re

ct
 c

la
ss

ifi
ed

5 9 13 17 21 25
0.5

0.6

0.7

0.8

0.9

5 9 13 17 21 25
0.5

0.6

0.7

0.8

0.9

5 9 13 17 21 25
0.5

0.6

0.7

0.8

0.9

5 9 13 17 21 25
0.5

0.6

0.7

0.8

0.9

number of neurons
5 9 13 17 21 25

0.5

0.6

0.7

0.8

0.9

Figure 6.6: Comparison of the network performance for different network sizes
using sparse initial weights. Forward sampling (blue), importance
sampling (green) and rejection sampling (red).

73

6 Numerical Experiments

6 11 16 21 26 31

0.6

0.8

1

θ
rand

6 11 16 21 26 31

0.6

0.8

1

θ
A

6 11 16 21 26 31

0.6

0.8

1

θ
G

6 11 16 21 26 31

0.6

0.8

1

%
 c

or
re

ct
 c

la
ss

ifi
ed

6 11 16 21 26 31

0.6

0.8

1

6 11 16 21 26 31

0.6

0.8

1

6 11 16 21 26 31

0.6

0.8

1

6 11 16 21 26 31

0.6

0.8

1

number of neurons
6 11 16 21 26 31

0.6

0.8

1

Figure 6.7: Comparison of the network performance for different network sizes
using initial weights with Beta prior. Forward sampling (blue),
importance sampling (green) and rejection sampling (red).

74

6.3 Artificial grammar learning

6 11 16 21 26 31

0.6

0.8

1

θ
rand

6 11 16 21 26 31

0.6

0.8

1

θ
A

6 11 16 21 26 31

0.6

0.8

1

θ
G

6 11 16 21 26 31

0.6

0.8

1

%
 c

or
re

ct
 c

la
ss

ifi
ed

6 11 16 21 26 31

0.6

0.8

1

6 11 16 21 26 31

0.6

0.8

1

6 11 16 21 26 31

0.6

0.8

1

6 11 16 21 26 31

0.6

0.8

1

number of neurons
6 11 16 21 26 31

0.6

0.8

1

Figure 6.8: Comparison of the network performance for different network sizes
using equally distributed initial weights. Forward sampling (blue),
importance sampling (green) and rejection sampling (red).

75

6 Numerical Experiments

only one cell. The networks were generated with increasing group size from 1
to 6, thus the first group had in total 5 units, the second 9, the third 13 and
so on. We trained these networks using the same parametrisation as in the
previous experiment. The results are shown in figure 6.3.2.

The performance of the networks trained with the three training approaches
is shown. As can be seen the performance of the network trained without
backward pass shows only little dependence on the network size. This can be
explained by the fact that already a network with one neuron per symbol is
sufficient to learn local statistics. However, the network trained with impor-
tance and rejection sampling showed a steep performance increase with the
number of units. Not very surprisingly the network with six cells achieved
about the same classification rate as the network without backward pass. The
network with five neurons per symbols (21 in total), trained with importance
sampling achieved almost perfect classification rates.

Obviously initialising the observation matrices to the sparse structure that was
used throughout this experiment will also have an impact on the performance.
In a third experiment we investigated the impact of the weight initialisation
by repeating the above experiment, using initial transition matrices with a
Beta prior (α = 0.2, β = 0.8) and another initialisation with connectivity
drawn from a uniform distribution. Again we trained networks of different
size. Figures 6.3.2 and 6.3.2 shows the training results for Beta priors and
random initialisation, respectively. Still we observe a significant increase in
performance with the number of neurons, for the importance and rejection
sampling approaches. But the results suggest, that the sparse structure has a
large impact on the training result. The best performance is achieved using
sparse and worst for equally distributed initial weights.

6.4 Discussion

We have seen, that when using pure forward sampling we ignore the complete
backward information. The backward messages assure that the sampled paths,
as a whole, are consistent with the model learned so far. Ignoring them, the
model wildly jumps around between states that may explain the input data,
loosing the global structure of the input, but still being able to capture local
transition statistics. That explains why relatively good results were achieved
for the random test grammar. In that case all the local statistical properties
of the grammar were broken and even without the exact knowledge of the
grammar rules, the SEM network was able to distinguish random sequences

76

6.4 Discussion

from grammatical ones. This accounts for the concept of statistical learning,
outlined in section 2.3. In the early learning phase only a rudimentary repre-
sentation of the signal statistics is formed, but the global rule-based structure
is ignored. We have seen that forward sampling alone is sufficient to explain
data from behavioural tasks [Conway and Christiansen, 2005], but it is not
able to learn detailed models.

The importance sampling approaches, on the other hand, gain access to the
backward messages at least approximately, which enables them to extract more
information than just local statistics. This allows the model to discover much
more detail of the grammar model. The evaluation of the importance weights
can be interpreted as a form of hypothesis verification. Paths that are sampled
but contradict the model learned so far, obtain a weight close to zero and are
thus discarded and not used for the learning. Due to this hypothesis verification
strategy the network gains access to an almost perfect rule-like structure of
the grammar model, which results in the sparse structure of the transition
probability table.

Thus we have seen, that statistical learning and the discovery of rule-based
structures, can be grounded on one common neural model. These findings
provide evidence that the two mechanisms are not mutually exclusive but
might be successive strategies of model refinement. First statistical learning
extracts some statistical properties of the input and then, as the model gets
more and more accurate, the hypothesis verification sets in to extract the fine
structure.

77

7 Conclusion and future work

In this thesis we investigated two extensions of the SEM network to capture
temporal hidden causes, that emerged from extending the input. The first
one uses dendritic delays to integrate input statistics at multiple time lags.
The second uses lateral connections to include the previous time step when
inferring the current state. We have seen that both approaches give rise to one
common problem: Exact inference of the hidden causes depends on the whole
input sequence, since the independence assumption is broken when temporal
hidden causes are involved. Nevertheless, we have seen that still assuming the
hidden causes to be independent in a forward sampling manner, is sufficient
to explain some experimental results: the emergence of context cells [Barone
and Joseph, 1989] and statistical learning [Perruchet and Pacton, 2006].

We introduced two Monte Carlo approximations of the exact inference that
correct the bias of the forward sampling. Both algorithms need to extend the
basic theory of STDP learning using a synaptic tagging mechanism. In fact,
the results presented here suggest, that classical STDP learning is not adequate
to learn the parametrisation of models involving temporal hidden causes, since
exact inference always needs to take future events into account. We solved
this problem of looking into the future here, by delaying the consolidation of
the weight changes until the whole sequence is read to its end. During this
temporal window an inhibitory neuron, that acts as a global observer, is able
to interfere with the weight consolidation by modulating the present synaptic
tags. Biological data suggests that there are at least two neural mechanisms
how this modulation could be realised: One mechanism involves controlled
release of dopamine, the other uses specific activity patterns to actively reset
or consolidate the synaptic tags [Frey et al., 1990, Otani et al., 2003, Young
and Nguyen, 2005].

The two approaches we have proposed are appealing from different perspec-
tives: The importance sampling approach is preferable from a computational
point of view, since no sampled path needs to be rejected completely and thus
sampling is more efficient. But, we have argued that a neural implementation is
doubtful. The rejection sampling framework for HMMs we have presented here,

79

7 Conclusion and future work

results in very compact mathematics based only on binary decisions, local both
in space and time. Also the normalisation over all importance weights is not
an issue in this context, since the probabilities of accepting one path are simply
normalised by replaying the same input until one single path is accepted. This
means that the number of times a sequence is replayed is proportional to 1

p(X)
.

Thus, sequences that are novel and to that fact not well represented in the
learned model get more attention in the learning process, which is an intuitive
assumption and supported by experimental data [Peyrache et al., 2009]. It
must be stressed however that, although there are reports on neural replay of
complex patterns from memory, the functional role we propose here and the
connection to synaptic tagging, arises only from theoretical considerations.

So far, paths were sampled independent of each other, which could result in
sampling the same path multiple times even if it had been rejected. In a more
advanced setup one could use the local information of synaptic tags and early
LTP to modulate the probability distribution for subsequent samples, leading
to a Markov chain Monte Carlo approach. Such an approach would lead to
more efficient sampling and might work without a normalising constant we
found hard to select.

In the experiments on AGL we computed the likelihood function using stan-
dard HMM calculations. In a biologically realistic setup however a direct
evaluation by the network itself would be desirable. Again, the inhibitory neu-
ron might play a major role in this evaluation, since we have seen that the
probability of accepting a path is proportional to the path likelihood. Future
work will have to show, whether a reliable decision can be made solely based
on calculations performed by the inhibitory unit.

The two extensions to the basic SEM we have proposed are not orthogonal
to each other. Since they only emerged from extending the network input, a
network that uses both, dendritic delays and lateral connections would be fea-
sible. Also note that the exclusive activity of an external unit at the beginning
of a sequence, which we used to model the initial probabilities of HMMs, would
easily enable the model to form hierarchies. Single cells of a WTA circuit could
act as initial units for other circuits. Taking all together large neural models
could be build with multiple hierarchically organised SEM circuits integrating
information over long time windows.

80

Bibliography

[Alamino and Caticha, 2008] Alamino, R. and Caticha, N. (2008). Bayesian
online algorithms for learning in discrete hidden Markov models. Discrete
and Continuous Dynamical Systems Series B, 9(1):1–10. (Cited on page 25.)

[Aronov et al., 2008] Aronov, D., Andalman, A., and Fee, M. (2008). A spe-
cialized forebrain circuit for vocal babbling in the juvenile songbird. Science,
320:630–633. (Cited on pages 10 and 11.)

[Averbeck et al., 2002] Averbeck, B., Chafee, M., Crowe, D., and Georgopou-
los, A. (2002). Parallel processing of serial movements in prefrontal cor-
tex. Proceedings of the National Academy of Sciences, 99(20):13172–13177.
(Cited on pages 2, 6 and 7.)

[Baldi and Chauvin, 1994] Baldi, P. and Chauvin, Y. (1994). Smooth on-
line learning algorithms for hidden Markov models. Neural Computation,
6(2):307–318. (Cited on pages 24 and 45.)

[Barone and Joseph, 1989] Barone, P. and Joseph, J. (1989). Prefrontal cortex
and spatial sequencing in macaque monkey. Experimental Brain Research,
78(3):447–464. (Cited on pages 2, 5, 6 and 79.)

[Baum and Petrie, 1966] Baum, L. and Petrie, T. (1966). Statistical inference
for probabilistic functions of finite state Markov chains. The Annals of
Mathematical Statistics, 37(6):1554–1563. (Cited on pages 1, 20 and 23.)

[Bengio, 1999] Bengio, Y. (1999). Markovian models for sequential data. Neu-
ral Computing Surveys, 2:129–162. (Cited on page 18.)

[Berdyyeva and Olson, 2009] Berdyyeva, T. and Olson, C. (2009). Monkey
supplementary eye field neurons signal the ordinal position of both actions
and objects. The Journal of Neuroscience, 29(3):591–599. (Cited on page 7.)

[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine Learn-
ing. Springer (New York). (Cited on pages 1, 13, 16, 17, 18, 23, 29, 43
and 62.)

81

Bibliography

[Bliss and Lømo, 1973] Bliss, T. and Lømo, T. (1973). Long-lasting potentia-
tion of synaptic transmission in the dentate area of the anaesthetized rabbit
following stimulation of the perforant path. The Journal of Physiology,
232(2):331–356. (Cited on page 31.)

[Bobrowski et al., 2009] Bobrowski, O., Meir, R., and Eldar, Y. (2009).
Bayesian filtering in spiking neural networks: Noise, adaptation, and mul-
tisensory integration. Neural computation, 21(5):1277–1320. (Cited on
page 38.)

[Bolhuis and Gahr, 2006] Bolhuis, J. and Gahr, M. (2006). Neural mechanisms
of birdsong memory. Nature Reviews Neuroscience, 7(5):347–357. (Cited
on pages 10 and 11.)

[Buzsáki, 1989] Buzsáki, G. (1989). Two-stage model of memory trace forma-
tion: A role for ‘noisy’ brain states. Neuroscience, 31(3):551–570. (Cited
on page 8.)

[Caporale and Dan, 2008] Caporale, N. and Dan, Y. (2008). Spike timing-
dependent plasticity: A hebbian learning rule. The Annual Review of Neu-
roscience, 31:25–46. (Cited on page 31.)

[Churchill, 1989] Churchill, G. (1989). Stochastic models for heterogeneous
DNA sequences. Bulletin of Mathematical Biology, 51(1):79–94. (Cited on
page 2.)

[Cleeremans et al., 1998] Cleeremans, A., Destrebecqz, A., and Boyer, M.
(1998). Implicit learning: News from the front. Trends in cognitive sci-
ences, 2(10):406–416. (Cited on pages 2 and 9.)

[Conway and Christiansen, 2005] Conway, C. and Christiansen, M. (2005).
Modality-constrained statistical learning of tactile, visual, and auditory
sequences. Journal of Experimental Psychology, 31(1):24–39. (Cited on
pages 9, 67, 68 and 77.)

[Conway and Pisoni, 2008] Conway, C. and Pisoni, D. (2008). Neurocognitive
basis of implicit learning of sequential structure and its relation to language
processing. Annals of the New York Academy of Sciences, 1145:113–131.
(Cited on pages 9, 65 and 66.)

[Dan and Poo, 2004] Dan, Y. and Poo, M. (2004). Spike timing-dependent
plasticity of neural circuits. Cell Press, 44:23–30. (Cited on page 31.)

82

Bibliography

[Dempster et al., 1977] Dempster, A. P., Laird, N. M., and Rubin, D. B.
(1977). Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society. Series B, 39:1–22. (Cited on
page 15.)

[Deneve, 2008a] Deneve, S. (2008a). Bayesian spiking neurons I: Inference.
Neural Computation, 20:91–117. (Cited on page 38.)

[Deneve, 2008b] Deneve, S. (2008b). Bayesian spiking neurons II: Learning.
Neural Computation, 20:118–145. (Cited on page 39.)

[Douglas and Martin, 2004] Douglas, R. and Martin, K. (2004). Neuronal cir-
cuits of the neocortex. The Annual Review of Neuroscience, 27(1):419–451.
(Cited on page 34.)

[Euston et al., 2007] Euston, D., Tatsuno, M., and McNaughton, B. (2007).
Fast-forward playback of recent memory sequences in prefrontal cortex dur-
ing sleep. Science, 318:1147–1150. (Cited on page 9.)

[Frey and Morris, 1998] Frey, U. and Morris, R. (1998). Synaptic tagging:
implications for late maintenance of hippocampal long-term potentiation.
Trends in neurosciences, 21(5):181–188. (Cited on page 32.)

[Frey et al., 1990] Frey, U., Schroeder, H., Matthies, H., et al. (1990).
Dopaminergic antagonists prevent long-term maintenance of posttetanic
LTP in the CA1 region of rat hippocampal slices. Brain research, 522(1):69–
75. (Cited on pages 32 and 79.)

[Froemke and Dan, 2002] Froemke, R. and Dan, Y. (2002). Spike-timing-
dependent synaptic modification induced by natural spike trains. Nature,
416:433–438. (Cited on page 31.)

[Gerstner and Kistler, 2002] Gerstner, W. and Kistler, W. (2002). Spiking
neuron models, volume 15. Cambridge University Press Cambridge, UK.
(Cited on pages 27, 29, 30, 31 and 34.)

[Gray and Singer, 1989] Gray, C. and Singer, W. (1989). Stimulus-specific
neuronal oscillations in orientation columns of cat visual cortex. Proceed-
ings of the National Academy of Sciences of the United States of America,
86(5):1698–1702. (Cited on page 34.)

[Habenschuss, 2010] Habenschuss, S. (2010). Novel methods for probabilistic
inference and learning in spiking neural networks. Master’s thesis, Graz
University of Technology, A-8010 Graz, Austria. (Cited on pages 37 and 61.)

83

Bibliography

[Hahnloser and Kotowicz, 2010] Hahnloser, R. and Kotowicz, A. (2010). Au-
ditory representations and memory in birdsong learning. Current Opinion
in Neurobiology, 20:332–339. (Cited on pages 10 and 11.)

[Hebb, 1949] Hebb, D. (1949). The organisation of behaviour. Wiley, New
York. (Cited on page 30.)

[Hernández et al., 1996] Hernández, L., Moral, S., and Salmerón, A. (1996).
Importance sampling algorithms for belief networks based on approximate
computation. In Proceedings of the IPMU’96 Conference, volume II, pages
859–864. (Cited on page 16.)

[Huda et al., 2009] Huda, S., Yearwood, J., and Togneri, R. (2009). A stochas-
tic version of expectation maximization algorithm for better estimation of
hidden markov model. Pattern Recognition Letters, 30:1301–1309. (Cited
on page 25.)

[Isomura et al., 2006] Isomura, Y., Sirota, A., Özen, S., Montgomery, S.,
Mizuseki, K., Henze, D., and Buzsáki, G. (2006). Integration and segre-
gation of activity in entorhinal-hippocampal subregions by neocortical slow
oscillations. Neuron, 52(5):871–882. (Cited on pages 8 and 9.)

[Izhikevich, 2007] Izhikevich, E. (2007). Solving the distal reward prob-
lem through linkage of STDP and dopamine signaling. Cerebral Cortex,
17(10):2443–2452. (Cited on pages 32 and 50.)

[Juang and Rabiner, 1990] Juang, B. and Rabiner, L. (1990). The segmental
K-means algorithm for estimating parameters of hidden Markov models.
IEEE Transactions on Acoustics, Speech and Signal Processing, 38(9):1639–
1641. (Cited on page 24.)

[Konishi, 1965] Konishi, M. (1965). The Role of Auditory Feedback in the
Control of Vocalization in the White-Crowned Sparrow. Zeitschrift für
Tierpsychologie, 22(7):770–783. (Cited on page 10.)

[Krishnamurthy and Moore, 1993] Krishnamurthy, V. and Moore, J. B.
(1993). On-line estimation of hidden Markov model parameters based on
the Kullback-Leibler information measure. IEEE Transactions on Signal
Processing, 41:2557–2573. (Cited on page 25.)

[Krug et al., 1984] Krug, M., Lössner, B., and Ott, T. (1984). Anisomycin
blocks the late phase of long-term potentiation in the dentate gyrus of freely
moving rats. Brain research bulletin, 13(1):39–42. (Cited on page 32.)

84

Bibliography

[Lisman, 1989] Lisman, J. (1989). A mechanism for the Hebb and the anti-
Hebb processes underlying learning and memory. Proceedings of the National
Academy of Sciences of the United States of America, 86(23):9574–9578.
(Cited on page 31.)

[Maass, 2000] Maass, W. (2000). On the computational power of winner-take-
all. Neural Computation, 12(11):2519–2535. (Cited on page 34.)

[Maass and Bishop, 2001] Maass, W. and Bishop, C. (2001). Pulsed neural
networks. The MIT Press. (Cited on page 33.)

[MacKay, 2003] MacKay, D. (2003). Information theory, inference, and learn-
ing algorithms. Cambridge Univ Pr. (Cited on pages 15 and 17.)

[Markram et al., 1997] Markram, H., Lubke, J., Frotscher, M., and Sakmann,
B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic
APs and EPSPs. Science, 275:213–215. (Cited on page 31.)

[McCulloch and Pitts, 1943] McCulloch, W. and Pitts, W. (1943). A logical
calculus of the ideas immanent in nervous activity. Bulletin of mathematical
biology, 5(4):115–133. (Cited on page 28.)

[Merhav and Ephraim, 1991] Merhav, N. and Ephraim, Y. (1991). Maximum
likelihood hidden Markov modeling using a dominant sequenceof states.
IEEE Transactions on Signal Processing, 39(9):2111–2115. (Cited on
page 25.)

[Mongillo and Deneve, 2008] Mongillo, G. and Deneve, S. (2008). Online
learning with hidden Markov models. Neural Computation, 20:1706–1716.
(Cited on pages 24, 39 and 65.)

[Nessler et al., 2010] Nessler, B., Pfeiffer, M., and Maass, W. (2010). STDP
enables spiking neurons to detect hidden causes of their inputs. In Proceed-
ings of NIPS 2009: Advances in Neural Information Processing Systems,
volume 22, pages 1357–1365. MIT Press. (Cited on pages 2, 35, 36, 37, 41,
49 and 59.)

[Nielsen, 2000] Nielsen, S. F. (2000). The stochastic EM algorithm: estimation
and asymptotic results. Bernoulli, 6(3):457–489. (Cited on page 17.)

[O’Keefe and Recce, 1993] O’Keefe, J. and Recce, M. (1993). Phase relation-
ship between hippocampal place units and the EEG theta rhythm. Hip-
pocampus, 3(3):317–330. (Cited on page 34.)

85

Bibliography

[Otani et al., 2003] Otani, S., Daniel, H., Roisin, M., and Crepel, F. (2003).
Dopaminergic modulation of long-term synaptic plasticity in rat prefrontal
neurons. Cerebral Cortex, 13(11):1251–1256. (Cited on pages 32 and 79.)

[Perruchet and Pacton, 2006] Perruchet, P. and Pacton, S. (2006). Implicit
learning and statistical learning: One phenomenon, two approaches. Trends
in Cognitive Sciences, 10(5):233–238. (Cited on pages 9 and 79.)

[Peyrache et al., 2009] Peyrache, A., Khamassi, M., Benchenane, K., Wiener,
S., and Battaglia, F. (2009). Replay of rule-learning related neural patterns
in the prefrontal cortex during sleep. Nature Neuroscience, 12(7):919–926.
(Cited on pages 8, 9 and 80.)

[Rabiner, 1989] Rabiner, L. R. (1989). A tutorial on hidden markov models
and selected applications in speech recognition. In Proceedings of the IEEE,
pages 257–286. (Cited on pages 2, 18 and 23.)

[Reber, 1967] Reber, A. (1967). Implicit learning of artificial grammars. Jour-
nal of verbal learning and verbal behavior, 6:855–863. (Cited on page 9.)

[Roediger et al., 2007] Roediger, H., Dudai, Y., and Fitzpatrick, S. (2007).
Science of memory: concepts. Oxford University Press, USA. (Cited on
page 8.)

[Saffran et al., 1996] Saffran, J., Aslin, R., and Newport, E. (1996). Statistical
learning by 8-month-old infants. Science, 274:1926–1928. (Cited on page 9.)

[Sajikumar and Frey, 2004] Sajikumar, S. and Frey, J. (2004). Resetting of
‘synaptic tags’ is time- and activity-dependent in rat hippocampal CA1 in
vitro. Neuroscience, 129(2):503–507. (Cited on page 33.)

[Salinas, 2009] Salinas, E. (2009). Rank-order-selective neurons form a tem-
poral basis set for the generation of motor sequences. The Journal of Neu-
roscience, 29(14):4369–4380. (Cited on page 7.)

[Sirota et al., 2003] Sirota, A., Csicsvari, J., Buhl, D., and Buzsáki, G. (2003).
Communication between neocortex and hippocampus during sleep in ro-
dents. Proceedings of the National Academy of Sciences of the United States
of America, 100(4):2065–2069. (Cited on page 8.)

[Softky and Koch, 1993] Softky, W. and Koch, C. (1993). The highly irregular
firing of cortical cells is inconsistent with temporal integration of random
EPSPs. The Journal of Neuroscience, 13(1):334–350. (Cited on page 33.)

86

Bibliography

[Stiller and Radons, 1999] Stiller, J. C. and Radons, G. (1999). Online esti-
mation of hidden Markov models. IEEE Signal Processing Letters, 6(8):213–
215. (Cited on pages 24 and 66.)

[Thrun et al., 1999] Thrun, S., Langford, J., and Fox, D. (1999). Monte Carlo
hidden Markov models: Learning non-parametric models of partially observ-
able stochastic processes. In Proceedings of the 16th International Confer-
ence on Machine Learning (ICML’99), pages 415–424. (Cited on page 25.)

[Vates and Nottebohm, 1995] Vates, G. and Nottebohm, F. (1995). Feed-
back circuitry within a song-learning pathway. Proceedings of the National
Academy of Sciences of the United States of America, 92(11):5139–5143.
(Cited on page 10.)

[Viterbi, 1967] Viterbi, A. (1967). Error bounds for convolutional codes and
an asymptotically optimum decoding algorithm. IEEE Transactions on In-
formation Theory, 13(2):260–269. (Cited on page 25.)

[von der Malsburg and Buhmann, 1992] von der Malsburg, C. and Buhmann,
J. (1992). Sensory segmentation with coupled neural oscillators. Biological
Cybernetics, 67(3):233–242. (Cited on page 34.)

[Yamagishi, 2006] Yamagishi, J. (2006). An introduction to HMM-based
speech synthesis. Technical report, Tokyo Institute of Technology. (Cited
on page 18.)

[Young and Nguyen, 2005] Young, J. and Nguyen, P. (2005). Homosynaptic
and heterosynaptic inhibition of synaptic tagging and capture of long-term
potentiation by previous synaptic activity. The Journal of Neuroscience,
25(31):7221–7231. (Cited on pages 33 and 79.)

[Zemel et al., 1998] Zemel, R., Dayan, P., and Pouget, A. (1998). Probabilis-
tic interpretation of population codes. Neural Computation, 10(2):403–430.
(Cited on page 34.)

87

	List of Figures
	List of Tables
	Introduction
	Biological mechanisms for sequential data processing
	Neural codes for sequential data
	Neural replay of complex patterns
	Implicit and statistical learning
	Neural circuits of songbirds

	Probabilistic Models
	Graphical models and hidden causes
	The expectation-maximisation algorithm
	Monte Carlo methods
	Importance sampling
	Markov chain Monte Carlo
	Monte Carlo EM

	The hidden Markov model
	HMM parametrisation
	The Baum-Welch algorithm
	The forward-backward algorithm

	Extensions of the basic HMM
	Online HMM learning
	Simplifications and extensions of the Baum-Welch algorithm

	Neuron Models
	Standard neuron models
	The McCulloch and Pitts neuron
	The leaky integrate-and-fire neuron

	Synaptic plasticity
	Hebbian learning
	Spike time dependent plasticity
	Synaptic tagging

	Neural codes
	Spike and rate codes
	Winner-take-all circuits

	The spiking expectation-maximisation network
	Bayesian inference in soft WTA circuits
	A STDP rule for EM
	Relation to the LIF neuron

	Neural implementations of HMMs

	STDP learning of temporal hidden causes
	Discovering temporal hidden causes using multiple time-lags
	STDP learning of HMMs
	Introducing temporal relations between hidden causes through lateral connections
	A sampling approximation of the forward-backward algorithm

	A STDP Rule for HMM Learning
	An illustrative example
	Generalisation to SEM learning on multiple time-lags
	Simplifications of the importance sampling approach

	Numerical Experiments
	Learning spatiotemporal patterns using time-lagged inputs
	Monte Carlo approximation of HMMs
	Convergence of the approximate algorithms
	General HMM learning tasks

	Artificial grammar learning
	Implicit learning of artificial grammars
	Detailed models emerge from approximate HMM learning

	Discussion

	Conclusion and future work
	Bibliography

