
Master’s Thesis

Design and Development of a Mobile
Computerized Glucose Management
System to Support Inpatient Care for

Patients with Diabetes

Bernhard Höll, BSc

Institut of Information Systems and Computer Media (IICM),
Graz University of Technology

8010 Graz, Austria

Institute for Biomedicine and Health Sciences (HEALTH),
JOANNEUM Research Forschungsgesellschaft mbH

8010 Graz, Austria

Supervisor: Assoc. Prof. Andreas Holzinger, PhD, MSc, MPh, BEng, CEng, DipEd, MBCS

with support of: Dipl.-Ing. Stephan Spat

Graz, 13.09.2011

This page intentionally left blank

Masterarbeit

(Diese Arbeit ist in englischer Sprache verfasst)

Design und Entwicklung eines mobilen
computerisierten

Glukosemanagementsystems zur
Unterstützung der stationären

Behandlung von Patienten mit Diabetes

Bernhard Höll, BSc

Institut für Informationssysteme und Computer Medien (IICM),
Technische Universität Graz

8010 Graz, Österreich

Institut für Biomedizin und Gesundheitswissenschaften (HEALTH),
JOANNEUM Research Forschungsgesellschaft mbH

8010 Graz, Österreich

Begutachter/Betreuer: Univ.-Doz. Ing. Mag. Mag. Dr. Andreas Holzinger

mit Unterstützung von: Dipl.-Ing. Stephan Spat

Graz, 13.09.2011

This page intentionally left blank

Abstract

This master thesis deals with the design and development process of a mobile An-
droid application to support the inpatient glucose management of patients with
diabetes at the University Hospital Graz in order to optimize the current paper
based glucose management. An integrated decision support service for insulin dos-
ing should provide additional security and support for clinicians. The master thesis
was carried out in the course of the EU-project REACTION at the Joanneum Re-
search institute HEALTH - Institute for Biomedicine and Health Sciences - in Graz.
The thesis is generally divided into two parts. The first part deals with an extensive
requirements analysis, in order to get an imagination of the design of the applica-
tion’s user interface, as well as to understand clinical workflow patterns. The design
phase followed a user-centered design approach, which means that the end-users have
been involved in every step of the design process. In the second part, the achieve-
ments of the requirements analysis were used to set up the implementation of the
inpatient glucose management system. Due to maintainability and expandability it
was decided to distinguish between a frontend application for user interactions and
a platform independent backend application, which contains the business logic for
the decision support, as well as the data storage and interfaces to the hospital infor-
mation system. The exchange of data between the backend and the frontend is done
via encrypted web services to provide data security. This master thesis primarily
deals with the development of the frontend apllication and should illustrate collected
experiences during the design and the development process. It should demonstrate
the requirements and challenges of implementing safety-critical medical software and
should show how the end user can be involved in the engineering process.

Keywords
MEDICAL DEVICE SOFTWARE, USER-CENTERED DESIGN, ANDROID

ÖSTAT classification
1138, 1140, 1157, 3927

ACM classification
D.2, H.4.1, H.5.2, J.3

5

This page intentionally left blank

6

Kurzfassung

Diese Diplomarbeit präsentiert den Design- und Entwicklungsprozess einer mobilen
android-basierten Anwendung zur Unterstützung des stationären Glukosemanage-
ments für Patienten mit Diabetes auf der Universitäts-Klinik in Graz. Eine integrier-
te Entscheidungshilfe für Insulindosierungen soll in Sicherheit und Unterstützung
für das klinische Personal resultieren. Die Masterarbeit entstand im Rahmen des
EU-Projekts REACTION am Institut für Biomedizin und Gesundheitswissenschaf-
ten (HEALTH) der Joanneum Research in Graz. Die Arbeit besteht grundsätzlich
aus 2 Teilen. Der erste Teil beschreibt eine umfassende Anforderungsanalyse um
einerseits eine Vorstellung für die Gestaltung der Benutzerschnittstelle zu bekom-
men und andererseits um klinische Abläufe zu verstehen. Die Designphase folgte
einem benutzerzentrierten Ansatz, d.h.: die Endbenutzer wurden in jedem Schritt
eingebunden. Im zweiten Teil wurden die erhobenen Anforderungen in eine mobile
Anwendung implementiert. Um Wartbarkeit und Erweiterbarkeit zu gewährleisten
wurde die Anwendung in ein Frontend, welches die Benutzerschnittstelle darstellt,
sowie in ein plattformunabhängiges Backend, welches die Logik für die Entschei-
dungshilfe und den Datenspeicher beinhaltet, aufgeteilt. Der Austausch der Daten
zwischen dem Frontend und dem Backend wird durch verschlüsselte Web Services
ermöglicht. Die Diplomarbeit beschäftigt sich in erster Linie mit der Entwicklung der
Frontend-Anwendung und soll gesammelte Erfahrungen während der Design- und
Entwicklungsphase aufzeigen. Die Arbeit soll die Anforderungen und Schwierigkeiten
bei der Entwicklung von sicherheitskritischer medizinischer Software verdeutlichen
und soll zeigen wie Endbenutzer in den Entwicklungsprozess eingebunden werden
können.

Schlüsselwörter
MEDIZINISCHE SOFTWARE, BENUTZERZENTRIERTES DESIGN, ANDROID

ÖSTAT Klassifikation
1138, 1140, 1157, 3927

ACM Klassifikation
D.2, H.4.1, H.5.2, J.3

7

This page intentionally left blank

8

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Graz, 13.09.2011
BERNHARD HÖLL

9

This page intentionally left blank

10

Acknowledgements

This work was partly funded by the E. C. under the 7th Framework Program in the
area of Personal Health Systems under Grant Agreement no. 248590.

11

This page intentionally left blank

12

Table of Contents

1 Introduction and Motivation for Research 19

1.1 Glucose Management at the General Ward 19

1.2 Objectives of the REACTION Project 20

1.3 Structure of Work . 21

2 Related Work 23

3 Theoretical Background 25

3.1 Medical Aspects . 25

3.1.1 Diabetes Mellitus . 25

3.1.2 Protocol for Insulin Dosing (Rabbit 2 Trial) 26

3.2 Medical Device Directive (MDD) for Software 28

3.2.1 Conditions of the Medical Device Directives for Software . . . 29

3.2.2 Relevant Standards for Developing Medical Device Software . 30

3.3 User-Centered Design Approach . 37

3.3.1 Participatory Design . 39

3.3.2 Requirement Enineering . 40

3.3.3 Human Computer Interaction on Mobile Touch Screen Devices 42

3.4 Technical Materials . 43

3.4.1 Apache Maven . 44

3.4.2 The Android Operating System 47

3.4.3 Model Driven Architecture (MDA) 58

13

3.4.4 Unit Testing . 61

4 Methods 63

4.1 Workflow Analysis/Current State . 64

4.2 Protocol for Insulin Dosing (Decision Support) 67

4.3 First Iteration - User Motivation . 69

4.3.1 Target Analysis of the First Iteration 70

4.3.2 Microsoft Excel Prototype . 72

4.3.3 Testing the Usability of the Microsoft Excel Prototype 73

4.3.4 Results of the First Iteration 76

4.4 Second Iteration - Mock-Ups . 77

4.4.1 Target Analysis of the Second Iteration 78

4.4.2 Mock-up Story Board . 82

4.4.3 Evaluation of Mock-up Story Board and Results of Second
Iteration . 84

4.5 Risk Management . 85

4.5.1 Risk Analysis . 86

4.5.2 Risk Evaluation . 86

4.5.3 Risk Control . 88

4.6 Third Iteration - Practical Implementation 89

4.6.1 Issue Tracking with JIRA . 90

4.6.2 Development of the Backend 90

4.6.3 Results of the Backend . 96

4.6.4 Development of the Frontend 102

4.6.5 Design of the Android User Interface 105

4.6.6 Visualizing Therapy Values Using aiCharts 106

4.6.7 Data Recording via Android Dialogs 107

4.6.8 Accessing Backend Web Services 108

4.6.9 Testing the Frontend . 112

14

5 Results 117

5.1 Displaying (enrolled) Patients at Ward, Including Filter/Sorting Func-
tionality . 119

5.2 Enrolment of Patient for Glucose Management System 121

5.3 Initialization of Basal-Bolus Therapy 124

5.4 Adding an Insulin Administration to a Patient, who is Assigned to
the Basal-Bolus Regimen . 126

6 Summary and Lessons Learned 129

7 Future Work 131

List of Figures 133

List of Tables 137

References 139

15

This page intentionally left blank

16

List of Abbreviations

ALARP As Low As Reasonably Practicable

API Application Programming Interface

BG Blood Glucose

DVM Dalvik Virtual Machine

EN European Norm

GUI Graphical User Interface

HIS Hospital Information System

HL7 Health Level 7

IDE Integrated Development Environment

IEC International Electrotechnical Commission

ISO International Organization for Standardization

JSF JavaServer Faces

LIS Laboratory Information System

MDA Model Driven Architecture

MDD Medical Device Directive

NPH Neutral Protamine Hagedorn

PC Personal Computer

17

PIM Platform Independent Model

POCT Point Of Care Testing

POM Project Object Model

PSM Platform Specific Model

REACTION Remote Accessibility to Diabetes Management and Therapy in
Operational Healthcare Networks

SDK Software Development Kit

SOAP Simple Object Access Protocol

SOUP Software of Unknown Provenance

SQL Structured Query Language

THA Thinking Aloud

UML Unified Modeling Language

VBA Visual Basic for Applications

VO Value Object

XML Extensible Markup Language

18

1. Introduction and Motivation for Re-
search

Computers and modern information technologies have influenced the human lifestyle.
Modern technologies should help to make things more comfortable and more safe.
Especially in health care, technologies were early used to provide more security to
patients. After World War II the first organized forums for engineers working in
medicine emerged. The primary focus of healthcare technologies in the 20th cen-
tury was in areas of medical equipment and technology management. In the last few
years, with the turn of the century, the focus of clinical engineering is shifting to-
wards clinical systems integration (Zambuto (2004)). Thus, lots of studies have been
carried out that determine improvements of clinical outcomes by using information
technologies. One of these studies, of which the results were published in 2009 by
Amarasingham, examines whether greater automation of hospital information can
be associated with reduced rates of inpatient mortality, complications, costs and
length of stay. 167 233 patients were involved in this study. The results show that
hospitals with automated notes and records, order entry and clinical decision sup-
port had lower mortality rates, lower costs and fewer complications (Amarasingham
et al. (2009)).

1.1 Glucose Management at the General Ward

Particularly in the inpatient treatment of diabetes patients, there is potential for
improvement. Statistics show that people with diabetes are more likely to be hos-
pitalized and to have longer durations of hospital stay than those without diabetes.
Due to the continued worldwide expansion of type 2 diabetes, it is estimated that

19

22% of all in-hospital days were accounted by people with diabetes and that inpa-
tient care accounted for half of the total US medical expenditures associated with
this disease (Moghissi et al. (2009)). Although studies demonstrate that in-hospital
hyperglycaemia has been found to be an important marker of poor clinical outcome
and mortality among diabetic patients and that aggressive treatment of diabetes and
hyperglycaemia results in reduced mortality and morbidity (Clement et al. (2004)).
However, the inpatient glycemic control of acute diseased patients with diabetes is
often considered secondary in importance. Therefore, patients with diabetes require
a well thought-out glucose management during inpatient stays, including continu-
ous glycemic control, reached by blood glucose monitoring and a determination of
suitable treatment strategies (Höll et al. (2011a)).
This master thesis deals with the user-centered design and development process of
a mobile Android application, including an integrated decision support service, in
order to optimize the current paper based glucose management of patients with
diabetes at the University Hospital at Graz.

1.2 Objectives of the REACTION Project

In 2010 the project REACTION (Remote Accessibility to Diabetes Management
and Therapy in Operational healthcare Networks) founded by the European Union
started with the objective to improve treatment quality in both, the long-term man-
agement in the outpatient setting as well as the glucose management of acutely ill
diabetic patients in the hospital. The project is intended to run for 4 years and the
project consortium consists of 16 organisations from 10 different countries, including
the two Austrian institutions Joanneum Research and Medical University of Graz.
The project intends to research and develop an intelligent service platform with
the aim to provide different clinical applications for monitoring vital signs, con-
text awareness, feedback to the point of care, event and alarm handling as well as
integration of clinical workflows, according to patients with diabetes. A planned
REACTION platform should consist of production servers for data management,
security, application execution and communication. All servers interoperate over
web services and are thus completely platform independent. The REACTION plat-
form should connect to sensors and devices, placed at the point of care and to

20

Figure 1.1: Architecture of the REACTION Platform (REACTION (2011))

healthcare professionals as well as emergency and crisis management teams. The
platform should also provide an interface to external Health Information Systems
and external medical knowledge repositories and security providers. The concept of
the REACTION platform is shown in figure 1.1. The REACTION platform should
represent the central production environment for the deployment of REACTION
applications.

1.3 Structure of Work

Chapter 2 presents some already existing mobile applications, according to the glu-
cose management of diabetics, which were found during a research on the internet.
However most of these applications were targeted the outpatient area.
Chapter 3 starts with a short medical introduction related to Diabetes Mellitus, to
understand the importance of continuous glucose control of people with diabetes.
It also gives a summary about the RABBIT 2 protocol for insulin dosing, which
provided the basis for the decision support service. Furthermore, chapter 3 gives
an overview of methods as well as technical materials used during the development
process. Implementing medical device software requires a high level of quality and
security. Therefore standards were established which should help to comply with

21

the medical device directives. Chapter 3 introduces the challenges of implementing
medical device software and points out the most important standards to follow.
Chapter 4 give insights in the accomplished requirement engineering process, where
all necessary requirements for the inpatient glucose management system were itera-
tively collected within two development iterations. It indicates how end users can be
intensively involved in the engineering process and deals with the risk management,
which accompanies the engineering process. Afterwards chapter 4 presents how the
achievements of the requirements analysis were used to set up the implementation
of the inpatient glucose management system in a third development iteration. The
focus of this master thesis primarily lies on the implementation of the Android-based
frontend application, however chapter 4 will also introduce the development of the
backend application using Model Driven Architecture (MDA) as well as the data
model of the data storage. Chapter 5 presents the current results of the practical
implementation. Activity diagrams illustrate the Android application’s architecture
and the interaction between the application’s components and screenshots should
visualize actual results of the Android user interface.
Chapter 7 and 8 provide a summary of the topics presented in this master thesis,
figures out what could be learned during the development process and finally give
an outlook to the next steps of the development.

22

2. Related Work

Due to the fact that diabetes is widespread and that glucose control for diabetics is
indispensable, it is not surprising that intensive research on the internet results that
there already exist different software tools, which aim to mange glucose control of
diabetics. Especially in the outpatient area there are promising applications for the
daily treatment of diabetes. One of them is called Diabeo1. Diabeo is a telemedicine
solution, where patients can share glucose recordings with their physicians. There-
fore a patient uses a mobile self-monitoring application, running on a smartphone, to
record his glucose values, nutrition and administered medications. The records are
transferred automatically to a secure web portal, where the records can be viewed
and analyzed by the patient’s physician. Diabeo also provides an insulin calculator
for insulin dosing based on a medical protocol established with the physician. Over
the web portal the physician can prescribe medication, which is sent to the patient‘s
mobile device. Figure 2.1 shows examples of the mobile interface of Diabeo. Diabeo

1http://www.voluntis.com/en/our-solutions/telecare/diabeo.html

Figure 2.1: User interface of the Diabeo tool 1

23

was already tested in a study, which demonstrates that

"individualized insulin dose adjustments combined with telemedicine
support significantly improves HbA1c in poorly controlled type 1 diabetic
patients" (Charpentier et al. (2011)).

HbA1c can be seen as an indicator for well controlled diabetes patients. Diabeo
relates to the outpatient environment of glucose management. However, there are
also software tools, which were established for inpatient glucose management. For
example EndoTool 2 manages the glucose control for acutely ill patients in hospital.
EndoTool is a desktop application, which has to be installed on the hospital’s IT
system. EndoTool provides a complex mathematical insulin dosage calculation,
which was already verified in a study (Mann et al. (2009)). In addition to costly
tools for glucose management in professional use, there are also free or cheep apps
available for almost all smartphones. These apps are designed to track the course of
somebody’s own diabetes disease, including glucose levels, administered medication,
food intake and other factors, which have an effect on the health of a patient with
diabetes (Preuveneers and Berbers (2008)). Despite the variety of existing tools
for the glucose management, no tool could be found which targets on the mobile
inpatient environment.

2http://www.hospira.com/Products/endotool.aspx

24

3. Theoretical Background

3.1 Medical Aspects

In order to understand the content and the aim of the thesis some medical back-
ground knowledge about Diabetes Mellitus and the inpatient treatment of patients
with diabetes is crucial.

3.1.1 Diabetes Mellitus

Diabetes Mellitus is a group of diseases, caused by defects in insulin production,
insulin action or both, which leads to high levels of blood glucose, called hypergly-
caemia. The most frequent occurring diabetes forms are Diabetes Mellitus Type
1 and Diabetes Mellitus Type 2. Patients with Diabetes Mellitus Type 1 cannot
regulate their blood glucose on their own. Therefore they have to take insulin to
survive. This form of diabetes is not dependent on lifestyle and can occur at any
age. Patients with Diabetes Mellitus Type 2 do not use insulin properly, so the
need for insulin rises. At some point, the body is not able to meet the needs of
insulin anymore and consequently supplement insulin has to be supplied. Diabetes
Mellitus Type 2 is associated with older age and obesity. Especially in patients
with Diabetes Mellitus Type 2, the morbidity and mortality compared to healthy
patients increased significantly. In Germany, about 5% of the population suffers
from diabetes, in which 90% are patients with Diabetes Mellitus Type, 2,5% are
patients with Diabetes Mellitus Type 1 and the remaining 5% suffer from other
types of diabetes. Patients with diabetes have to control their blood glucose level
to avoid hyperglycaemia. The most common but also the most dangerous unwanted
effect of an insulin therapy is a too low blood glucose level, called hypoglycaemia.

25

Hypoglycaemia can be caused by avoidable errors in therapy, such as the absence of
food intake, excessive alcohol consumption or incorrect insulin dosage. Occurrences
of hyperglycaemia or hypoglycaemia are dangerous and can lead to heart diseases,
strokes, hypertension, blindness, kidney diseases, nervous system diseases and am-
putations (USDepartment (2011)). Treatment measures must be matched to the
different individual needs in order to obtain a preferably normal blood glucose con-
trol. Principle of treatment is to balance the existing lack of insulin through a flexible
replacement therapy. In order to achieve the desired norm-close blood glucose con-
trol, the insulin dose has to be coordinated with the feeding behavior and physical
activities. However, this is only possible on the basis of regular blood glucose mea-
surements. There is a large variety of available insulin preparations for patients
with diabetes mellitus. Generally, insulin can be distinguished between rapid-acting
insulin and long-acting insulin. Rapid-acting insulin, also called Prandial or Bolus
insulin, is given to patients based on their intake of carbohydrates during scheduled
meals and acts fast but only for a short period. On the other hand, long-acting
insulin, also called Basal insulin, acts slow but for a longer period. The need for
Basal insulin represents about 50% of the total insulin requirements and ensures the
continuous supply of the body with insulin, independent of food intake. The Basal
insulin is usually administered once a day. In addition to an insulin therapy oral
antidiabetics can be used to lower the blood glucose level. Today, there are also
established combinations of long-acting and rapid-acting insulin available in order
to simplify the insulin treatment. Insulin requirements of a patient vary from day
to day. Consequently a same insulin dosage does not mean identical blood glucose
profiles. Therefore the insulin dosage depends on the current blood glucose level
of the patient (Flasnoecker (1999)). Diabetes is an incurable chronic disease, but
patients are able to control the disease, prevent complications and live a normal and
vital life through proper care (Chen et al. (2010)).

3.1.2 Protocol for Insulin Dosing (Rabbit 2 Trial)

The correct dosage of insulin is very important in order to avoid hyperglycaemia or
hypoglycaemia. At hospital, physicians often define a patient’s insulin dosage based
on intuitions, which they have collected during years. However, there are some

26

physicians, which are not as familiar with diabetes and consequently have problems
to find correct insulin dosages in some situations. 2007, Umpierrez first published
the so-called RABBIT 2 trial (Umpierrez et al. (2007, 2009)). The protocol, which
is presented in this trial, is used as the basis for the decision support functionality
which should be provided by the inpatient glucose management system. This makes
it necessary to describe the basic concept of this protocol.

Aim of the RABBIT 2 trial was to compare the efficacy and safety of a basal-
bolus regimen with that of a sliding-scale regular insulin with patients with type 2
diabetes. It was conducted at Grady Memorial Hospital in Atlanta, Georgia and
at the Jackson Memorial Hospital in Miami, Florida together with the institutional
review board at Emory University and the University of Miami, which approved the
study protocol. In this trial 130 nonsurgical insulin-naive patients were randomly
assigned to receive either sliding scale regular insulin or a basal-bolus regimen. The
goal of the study was to determine differences between treatment groups in the av-
erage daily blood glucose concentration, number of episodes of hypoglycaemic and
hyperglycaemic events, length of hospital stay and mortality rate. For the patients
who were assigned to the basal-bolus regimen, a starting total daily insulin dose was
calculated, depending on an up-to-date measured blood glucose value. One half of
the daily insulin dose was given as a long acting basal insulin once daily, the other
half was subdivided into 3 equal short acting bolus insulin doses, in addition with
supplement bolus insulin, calculated per sliding scale protocol, to be administered
before meals. If a patient was not able to eat, only a supplement bolus dose, cal-
culated per sliding scale protocol, was administered every 6 hours. The dose of the
long acting basal insulin was reduced by 20% after an episode of hypoglycaemia or
increased 20% if the mean blood glucose level during the day was higher than 140
mg/dl in the absence of hypoglycaemia. Patients randomized to the sliding scale
insulin therapy, received regular insulin, which was calculated per sliding scale pro-
tocol, four times a day for glucose concentrations higher than 140 mg/dl. If a patient
was not able to eat, he or she received regular insulin every 6 hours. The sliding
scale protocol differs between three insulin resistances (sensitive, usual, resistant).
If blood glucose measurements of a patient repeatedly resulted in too high values,
the patient was increased from the insulin resistance sensitive to usual or usual to
resistant. The other way round, the insulin resistance of a patient could also be

27

Figure 3.1: Importance and criticality of software in medical environment
(Feldmann et al. (2007))

decreased in case of hypoglycaemia. In both treatment regimens the blood glucose
was measured before each meal and at bedtime, or every 6 hours in case of missing
nutrition.
The results of the study show that a treatment with basal-bolus insulin offers a
significant improvement in glycaemic control compared to the sliding scale ther-
apy. The mean blood glucose concentration, measured by patients assigned to the
basal-bolus regime results 164 mg/dl, the mean blood glucose measurements at the
sliding scale regimen results 188 mg/dl. There were no differences between the two
treatment groups according to episodes of hypoglycaemia or length of hospital stay.

3.2 Medical Device Directive (MDD) for Software

Software becomes more and more an integral part of medical devices. To ensure
safety and efficacy of a medical device that contains software, it is necessary to con-
cretely know what the software should intend and to prove that the software achieves
this effect without causing unacceptable risks (OVE/ON (2007)). In 1996, Wallace
and others publicised that 10% of medical product recalls were caused by integrated
software. Wallace pointed out that one possibility for this result is the rapid increase
of software in medical devices (Wallace and Kuhn (2001)). In 2006 a German survey
on medical device recalls indicated that software was the top cause for risk related
to construction and design defects of medical device products. The study shows
that 21% of medical design failures are caused by software defects (Feldmann et al.
(2007)). Figure 3.1 indicates the relevance of software in medical device products.
According to Feldmann, 84% of surveyed companies rate software in medical devices
as very important and another 14% classifies software as important. The figure also

28

indicates that software is a safety-critical element of the medical product in 76% of
the cases and only 16% of software modules have non safety-critical functionalities.

3.2.1 Conditions of the Medical Device Directives for Soft-

ware

One of the key issues, a manufacturer of software that is intended for medical use,
has to think of is: Does the product come within the scope of the medical device di-
rective? To answer this question it is necessary to know what distinguishes software
from medical device software. The Global Harmonization Task Force has proposed
the following definition for medical devices:

"Medical devices are any instrument, apparatus, implement, machine,
appliance, implant, in vitro reagent or calibrator, software, material or
other similar or related article, intended by the manufacturer to be used,
alone or in combination, for human beings for one or more of the specific
purpose(s) of

• diagnosis, prevention, monitoring, treatment or alleviation of dis-
ease,

• diagnosis, monitoring, treatment, alleviation of or compensation for
an injury,

• investigation, replacement, modification, or support of the anatomy
or of a physiological process,

• supporting or sustaining life,

• control of conception,

• disinfection of medical devices,

• providing information for medical purposes by means of in vitro
examination of specimens derived from the human body,

and which does not achieve its primary intended action in or on the
human body by pharmacological, immunological or metabolic means, but
which may be assisted in its function by such means" (ISO (2007)).

29

Medical device software is defined by the IEC 62304 standard as a software system,
which was developed to be integrated into a medical device, or for the intended use
as an independent medical device. Medical software which comes within the scope
of the MDD has to comply with the same rules as medical devices and therefore
risk analysis, change requests on requirements, software life cycle management and
stringent documentation of all activities have to be performed.

In order to prevent later errors, the development of medical device software
is regulated by various standards and laws, which describe recommended software
lifecycle models and tools, which should be used by software engineers. The objective
of these standards is to define general process steps to produce safe and high quality
medical device software.

3.2.2 Relevant Standards for Developing Medical Device

Software

Following standards have been considered as relevant for the development of medical
software which falls within the scope of MDD (Hall (2010)):

• ISO 13485 standard: defines the requirements for a quality management sys-
tem for medical devices.

• IEC 62304 standard: has emerged as a global benchmark for management of
the software development lifecycle.

• ISO 14971 standard: has traditionally been adopted as the base standard for
risk management for medical devices and will also be used for software.

• IEC 62366 and IEC 60601-1-6 standards: provide information about the ap-
plication of usability engineering for software as medical devices.

3.2.2.1 Software Life Cycle Processes for Medical Device Software (IEC
62304)

IEC 62304 provides a framework of life-cycle processes with tasks and activities,
prepared for safe design and maintenance of safety-critical medical device software.
The standard defines requirements which developers have to follow in order to fulfill

30

Figure 3.2: Overview of software development process and activities (Box
numbers correspond to clauses of IEC 62304) (OVE/ON (2007))

that the implemented software can be later used in medical environment. The
standard applies to the development of medical device software, if the software itself
is a medical device or if the software is only an embedded part of the medical end
device. IEC 62304 requires that software is developed within a quality management
and a risk management. According to IEC 62304, before starting the development
process, the tended software has to be assigned to a safety class. Safety classes
describe the potential impact of a risk to the patient, the user or other persons,
which can be caused by the software. The standard differentiates between 3 safety
classes:

• Safety class A: No injury or damage to health is possible

• Safety class B: No serious injury is possible

• Safety class C: Serious injury or even death is possible

Figure 3.2 gives an overview of the software development process and its activi-
ties, required by the IEC 62304.

Main processes according of the software life cycle process

31

As a first process phase, IEC 62304 requires to create a software development plan
which must include:

• Processes, which are used in the software development.

• Results to be delivered.

• Used software technologies.

• Addressed problems that are discovered in every phase of the life-cycle.

• Traceability between system requirements, software requirements, software
system testing and risk control measures that are implemented in the
software.

The IEC 62304 standard requires a comprehensive analysis of the system
requirements and a documentation of thus requirements. The documentation must
include the most important system parameters, such as functional requirements,
input and output of the system, interfaces to other systems, requirements for data
security, etc.
After analyzing the requirements of the medical device software, the requirements
have to be documented in a system architecture, which describes the structure of
the software and identifies the software components to be implemented.
Afterwards, the software architecture must be subdivided as long as it is presented
by software units in the detailed design phase. These units must then be
implemented and verified by unit tests. Finally the implemented software units
have to be integrated and validated by integration tests.
Before the software system is ready for release a set of system tests with input
values and expected output values have to be defined and successfully executed.

Supporting processes of the software life cycle process

According to IEC 62304 a software risk management process has to be
performed during the development process. A detailed description of the general
requirements of a risk management process is established in the ISO 14971
standard, which is presented in chapter 3.3. Furthermore, a scheme to clearly

32

identify configuration items and their versions must be established in the software
configuration management process, which should be reviewed for the project.
For used SOUP modules, the title, the manufacturer and the SOUP identification
has to be documented. SOUP (Software of Unknown Provenance) is already
developed software, which is not intended for use as medical device software.
According to IEC 62304, for every problem that was discovered in a software
product, a problem report has to be created in the software problem resolution
process. A problem report must include the type and the criticality of the
problem. Afterwards the problem has to be analyzed and if possible the reason for
the problem should be identified.

IEC 62304 allows developers lots of flexibility in how they run the individual
processes. In addition, also any number of further processes can be executed if
deemed as necessary by the developer. However, it is important that each process
is well documented in order to ensure traceability over the whole development
process.

3.2.2.2 Application of Risk Management to Medical Devices (ISO 14971)

The effective management of risk is crucial to the success of software projects. Risk
management is intended to minimize the occurrences of unexpected events and to
keep all possible outcomes under tight control. Risk management in software
development primarily concerns the development process itself, rather than the
end product (Roy (2004)). Especially in the development of medical software
products, the use of a well structured risk management is essential. Failures of the
developed software can have potentially catastrophic effects that can lead to injury
of a patient or even to death. The International standard ISO 14971

"specifies a process through which the manufacturer of a medical
device can identify hazards associated with a medical device, estimate
and evaluate the risks associated with these hazards, control these risks,
and monitor the effectiveness of that control" (ISO (2007)).

33

The international standard primarily deals with processes for managing risks,
related to the patient but also to the operator, to other persons, to equipment and
to the environment. ISO 14971 assumes that the concept of risk consists of two
components:

• The probability of occurrence of harm.

• The consequences of that harm.

It accepted that the stakeholders understand that the use of a medical device
entails some degree of risk and that the acceptability of a risk is influenced by the
above mentioned components. Figure 3.3 shows the required risk management
process, according to ISO 14971. Therefore the manufacturer of the medical device
has to analyze possible risks, evaluate these risks and finally control these risks.
Every step of the risk management process has to be well documented. At the
beginning of the risk management process, the manufacturer has to perform a risk
analysis, where he has to describe the intended use and foreseeable misuse of the
medical device. Furthermore, the manufacturer has to identify qualitative and
quantitative characteristics that could affect the safety of the medical device. At
the risk analysis, all possible hazards associated with the medical device in both,
normal and fault conditions, have to be identified. Finally, for each identified
hazard, the associated risks have to be estimated. If a risk for some reason can not
be estimated, the possible consequences have to be listed for use in risk evaluation
and risk control. At the risk evaluation the manufacturer has to examine the
estimated risk for each identified hazardous situation. Then, the defined risk
criteria are used to determine whether the estimated risk is acceptable or not. At
the risk evaluation the developer also has to decide if a risk reduction is necessary.
If the evaluation reveals that a reduction is necessary, the manufacturer has to
identify risk control measures that reduce the proper risk to an acceptable level.
ISO 14971 provides the following three risk control options to reduce a risk:

1. Provision of inherent safety by design

2. Provision of protective measures

34

Figure 3.3: Overview of risk management process, according to ISO 14971
(ISO (2007))

35

3. Provision of safety information.

According to ISO 14971, the manufacturer should try to use the risk control
options in the order, listed above. Finally, the implementation of each risk control
measure has to be verified and documented. After all risk control measures have
been implemented and verified, the manufacturer has to decide again whether all
risks lie in the acceptable range. The results of every step of the risk management
process have to be recorded in a risk management report. At the end the
manufacturer has to monitor production and post-production information that can
affect their risk estimates.

3.2.2.3 Quality Management Systems - Requirements for Regulatory
Purposes (ISO 13485)

ISO 13485 specifies requirements for a quality management system for the design,
development, production, installation and maintenance of medical devices. The
standard requires the manufacturer to establish, document, implement and
maintain a quality management system, within the development process.
According to ISO 13485 the manufacturer has to:

• identify processes required by the quality management system,

• identify sequence and reciprocity of these processes,

• define methods for the effective implementation of these processes,

• provide required resources for the implementation of these processes,

• detect and analyze these processes and

• take measures to achieve planned results.

Furthermore, the manufacturer has to perform a detailed documentation, which
has to consist of quality targets, quality policy, used methods and a quality
management handbook (CEN (2009)).

36

3.2.2.4 Application of Usability Engineering to Medical Devices (EN
62366)

Errors, caused by lack of usability in medical devices software give increasing cause
for concern. However, many manufacturers of medical device software pay too
little attention to the usability of their products. EN 62366 defines requirements
for a process to analyze, specify, develop, verify and validate usability aspects of
medical devices. According to EN 62366 the manufacturer has to implement,
document and follow a usability orientated development process to ensure safety
for patients, users and other persons in terms of usability. EN 62366 should
guarantee that the final user interface is intuitive and easy to learn or rather to
use. Used methods and results, during the usability orientated development
process, must be documented. Chapter 3.3.2 and chapter 3.3 provide basics about
used techniques to fulfill the user‘s needs and to ensure a high level of usability
(CENELEC (2008)).

3.3 User-Centered Design Approach

The development of mobile applications in a medical context provides engineers
with a complex task. In addition to the aim of supporting the daily medical
routine, usability is an additional important issue, according to clinical safety, to
consider when designing the user interfaces and system functionalities. Therfore
IEC 62366 (see chapter 3.2.2.4) and IEC 60601-1-6 provide guidlines about the
application of usability engineering.
2005, Holzinger indicates that there are five essential usability characteristics that
should be part of any software project (Holzinger (2005)):

• Learnability: The user should be able to rapidly begin working with the
system.

• Efficiency: The user should attain a high level of productivity.

• Memorability: The user must not forget how to operate the system.

37

• Low error rate: The user should make fewer and easily rectifiable errors
while using the system.

• Satisfaction: The user should be happy to work with the software.

Non-intuitive usability often leaves the user frustrated and unable to complete
simple tasks. The lack of usability in medical devices is dangerous, and can lead to
unforeseeable risks to patients. Therefore, the consistent pursuit of a user-centered
design is a crucial condition to understand the users, their environment and the
context in which the application is used (Hameed (2003); Wu et al. (2007);
Holzinger and Errath (2007); Holzinger et al. (2008); Svanaes et al. (2010)). The
term "user-centered design" describes a development process that aims to enhance
user satisfaction by focusing on direct user feedback in the early stages of the
development (Lau (1997)). End-users can influence the engineering process in
different ways but the general concept of a user centered design is that users are
involved in one way or another (Abras et al. (2001)). One of the most widely used
user centered design methods invites users to evaluate existing software
(prototypes) in usability trials. With the results, the software can be refactored,
according to the needs of the end users. Usability trials can be performed with end
users (test methods) and/or without end users (inspection methods). The aim of
inspection methods is to identify usability problems and to improve the usability
of a design by checking it against established standards. In contrast to inspection
usability methods, test methods provide direct information about how people
interact with the system. Figure 3.4 shows the comparison of the most widely used
usability evaluating techniques. According to Holzinger, the Thinking Aloud
(THA) test method is the most valuable usability engineering method. At this
method, participants have to continuously think out loud while using the system.
The advantage of the THA method is that by verbalizing the end user’s thoughts,
developers are able to understand how they view the system and can identify the
major misconceptions.

38

Figure 3.4: Usability evaluation techniques according to Holzinger (Holzinger
(2005))

3.3.1 Participatory Design

Another user-centered design method is known as "Participatory Design".
Participatory Design, which has its origins in Scandinavia, is based on the
principle that end users are involved as partners with engineers and consequently
have strong influence during the whole design process. Aim of this user centered
design method is to ensure that the product will behave to its intended purpose in
the intended environment. At the Participatory Design method it is recommended
that the team uses prototypes, mockups or paper-based outlines in order to avoid
misunderstandings between end-users and developers. An advantage of using a
Participatoty Design during the development process is that

"a deeper understanding of the psychological, organizational, social
and ergonomic factors that affect the use of computer technology
emerges from the involvement of the users at every stage of the design
and evaluation of the product." (Abras et al. (2001)).

According to Abras, this approach leads to products that are more efficient,
effective and safe and these products require less redesign. Other advantages of the
Participatory Design method are that the users develop a sense of ownership for
the product and that more creative design solutions to problems can be generated.

39

Clear disadvantages of the Participatory Design method are that the development
process takes more time, requires additional design team members, and
consequently is more costly. Furthermore, Participatory Design can lead to
products that may be too specific for general use.

3.3.2 Requirement Enineering

The history of software development has shown that requirement engineering is the
most critical phase in the software development process. The success of a software
system can be measured by the degree to which it meets the purpose for which it
was intended. Requirements Engineering in software development is

"the process of discovering that purpose by identifying stakeholders
and their needs and documenting these in a form that is amenable to
analysis, communication and subsequent implementation" (Nuseibeh
and Easterbrook (2000)).

However, there are inherent difficulties in the requirement engineering process. For
example, the goals of stakeholders often vary or change during the development
process. This makes it necessary to apply requirement engineering practices in
every phase of the software development process (Pandey et al. (2010)). The
specialized literature describes various techniques that can be used to impose
system requirements. The choice of the technique depends on the time and
resources available and on the kind of information that is needed. One of these
techniques includes the use of questionnaires, surveys, interviews or analysis of
existing systems. Other techniques, which are called group elicitation techniques,
aim to foster stakeholder agreement while exploiting team dynamics. These
techniques include brainstorming or workshops. Also cognitive techniques can be
used to impose system requirements. Cognitive techniques include protocol
analysis, in which an expert thinks aloud while performing specific tasks, or
laddering, in which targeted questions should identify relationships between
product characteristics and their benefit. Another elicitation technique is called
’prototyping’. In software engineering, the word ’prototyping’ is known as a

40

concept of software construction within a general strategy for system development.
The idea behind prototyping is to use prototypes as another formal document
during requirements analysis to provide a better basis for understanding between
developers and users. According to Budde and Zullighoven,

"a prototype is an operational model of the application system. It
implements certain aspects of the future system" (Budde and
Zullighoven (1990)).

Furthermore Budde and Zullighoven describe that prototypes provide a basis for
discussion between users, developers and management and help to clarify questions
or help to prepare particular decisions. Prototyping can be used in different ways
during the requirement engineering process. Budde and Zullighoven distinguish
between several aims of prototyping:

• Exploratory prototyping is used to determine the requirements and
assessment of certain solutions, focusing on the functionality of the system
with the aim to get a clear requirement specification.

• Experimental Prototyping focuses on the technical implementation of a
development goal in order to collect user experiences with the use of these
prototypes at a later time.

• Evolutionary prototyping describes the continuous development and
improvement of prototypes in an iterative software development process.

No matter which prototyping method is chosen, prototyping provides deep insight
into the user’s needs and can verify system functionalities in early phases of the
software development process.

41

3.3.3 Human Computer Interaction on Mobile Touch Screen

Devices

In 2011, 60 % of mobile devices shipped in Western Europe and North America
applied a touch screen as user interface (Gartner (2011)). This is not surprising
due to the fact that the touch screen technology is gaining sophistication. A touch
screen interface is well suited to small mobile devices, because thus there is no
need to compromise the display size of the device. However, designing mobile
applications, which are using a finger-based touch screen interface, requires a set of
usability aspects to consider. In 2009, Anna Haywood and Gemma Boguslawski
did a research on the human computer interaction with mobile devices and offered,
as a result, best practice guidelines to help designing and evaluating
finger-activated touch screen solutions for small mobile devices. The following list
summarizes the most important design requirements, according to Haywood and
Bogulawski (Haywood and Boguslawski (2009)):

• Screen representation:

– Never overload the screen with elements.

– Avoid that fingers occlude important information, so carefully consider
the placement of visual feedback (for example: place visual feedback
above, not under, a selected item).

– Image Icons, such as Image buttons, should be labeled with supplement
textual clues to avoid confusion.

– In order to not overload the screen, keep labels and instructions short
and simple, but avoid abbreviations if possible.

– Use familiar icons and color conventions so that the user can associate
with them.

– To enhance visibility, there should be a high contrast between touch
elements, text and background colors.

– Icons should be suitably sized and spaced to avoid accidental selection
of nearby icon elements.

42

• Virtual Keyboard:

– If a virtual keyboard is necessary offer a clear access to it.

– Avoid a multi-tap configuration of the keyboard; each character should
be placed on one key. Offer an easy way to change between different
text input modes.

– Allow a horizontal view of the keyboard.

• Navigation:

– Minimize steps to access or perform core functions.

– Allow a direct navigation to return to the main menu.

– Ensure consistency throughout the interface.

– Allow actions to be readily reversible.

– Keep response times short, otherwise offer information if the system is
busy.

– Design for limited input methods.

Of course these guidelines are very general. In order to ensure best usability of a
mobile touch screen application, usability tests with end-users are unavoidable.
However, these guidelines can be integrated in early design steps of the application
and can therefore avoid time-consuming and costly design refactoring in later
development steps.

3.4 Technical Materials

For implementation of both, the frontend and the backend application of the
inpatient glucose management system a set of technical materials were used. The
most important ones are presented in the following chapters.

43

3.4.1 Apache Maven

Both, the frontend application and the backend application use Apache Maven 2 as
a building tool. This chapter will provide basic information about Apache Maven.
As a knowledge source for this chapter the official Maven website 1 was used.

Apache Maven is an open source tool, for building and managing any Java-based
project. The primary goal of Apache Maven is to make the build process of a Java
application easier so that the developer does not need to know details about
underlying mechanisms. Furthermore Maven provides a uniform build system,
which means that if someone is familiarized with how one Maven project is built,
he automatically knows how all Maven projects are built. Maven adheres strictly
to the principles of ’best practices development’, so for example, execution and
reporting of unit tests are part of the Maven build lifecycle.
Maven projects have a common directory layout. In the project home directory
there is the POM.xml (Project Object Model) file, as heart of each Maven project.
The POM.xml file includes information about the project’s structure, versioning,
configuration management, resources, dependencies, etc. In addition to the
POM.xml file, the home directory of a Maven project usually consists of a
src-directory, including all of the project’s source material, and a target-directory,
in which the outputs of the build are placed.
Apache Maven builds a project according to a so-called build lifecycle. The build
lifecycle consist of different phases, which are executed sequentially. The most
important phases of the lifecycle are listed below:

• Validate: Checks if all necessary information is available to build the
project.

• Compile: Compiles the source code of the project.

• Test: Uses a unit testing framework to test the compiled source code

• Package: Packages the compiled source code, according to the package
type, defined in the POM.xml file.

1Apache Maven Project - http://maven.apache.org/ (last access 07/2011)

44

• Integration-test: runs optional integration tests.

• Verify: verifies if the generated package is valid.

• Install: Installs the generated and verified package into a local Maven
repository.

• Deploy: Copies the generated package to a remote repository.

Each of the phases can be executed, using mvn <phase>, in doing so, all prior
phases will be executed first. For example if mvn compile is executed the project
will be compiled after finishing the validation phase. As already mentioned, the
POM.xml file is the basic unit of work in Maven. It is an XML representation of
the Maven project. It contains all necessary information about a project and
configuration of plugins to be used during the build process. The POM.xml file
requires at least a description of the project, including the modelVersion, which
indicates what version of the object model this POM is using, the groupId, which
describes an identifier to group different Maven projects, the artifactId, which is
the name of the Maven project and the version of the project. For default, Maven
will package the source code of the project to a .jar. The package type can be
changed by adding the packaging tag to the project description. A sample
POM.xml file of a project, named ’GluCoManSys’, with the package type ’war’
can looks like below.

<project>

<modelVersion>4.0.0</modelVersion>

<groupId>eu.reaction</groupId>

<artifactId>GluCoManSys</artifactId>

<version>1</version>

<packaging>war</packaging>

</project>

If a Maven Project depends on other software modules, such as libraries, these
software modules and their location have to be defined in the POM.xml file under
the dependency-tag. Apache Maven 2 downloads the defined dependencies during
the build process and takes care of other libraries, which depends on the defined

45

one. The example below indicates how to integrate the JUnit library into a Maven
project:

<project>

...

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>4.0</version>

<type>jar</type>

<scope>test</scope>

</dependency>

...

</dependencies>

</project>

All dependencies are defined inside the dependencies-tag. groupID, artifactID and
version identify the desired library. type corresponds to the packaging type of the
dependency. The scope ’test’ indicates that the dependency should be only
available for the test compilation and execution phases. Maven also provides
inheritance between projects. Therefore, a parent project must exist, which has
the packaging type ’pom’. Values, such as dependencies, which are defined in the
POM.xml file of the parent’s project are inherited by its children. In a children’s
POM.xml file, the parent has to be defined, using the parent tag. An example is
shown in the code snippet below.

<project>

...

<parent>

<groupId>eu.reaction</groupId>

<artifactId>GluCoManSys</artifactId>

<version>1</version>

<relativePath>../GluCoManSys</relativePath>

</parent>

<artifactId>GluCoManSys_childproject</artifactId>

</project>

46

Furthermore a Maven project can have different modules. Modules are projects
which should be executed as a group. Therefore these modules have to be defined
in a parent’s POM.xml file, as shown in the following example.

<project>

...

<artifactId>GluCoManSys</artifactId>

...

<modules>

<module>GluCoManSys_childproject</module>

<module>GluCoManSys_anotherchildproject</module>

</modules>

</project>

An advantage of so-called ’aggregator projects’ is that in combination with project
inheritance the builds of a parent project and all his modules can be controlled
through a single POM.xml file of the parent.

3.4.2 The Android Operating System

Android is an open and free software platform for mobile devices, which was
developed by The Open Handset Alliance, powered by Google. Android became
very popular in the last few years, firstly because the Android‘s source code is
completely free and consequently there are no royalty fees and secondarily because
Android is highly suitable for expansion and enhancement (Kuzmanovic et al.
(2010)). Aim of the software development under Android is not to reinvent the
wheel each time. Based on a set of preinstalled applications, new applications can
be developed that use parts of other applications.

3.4.2.1 An Introduction to the Android Operating System

Android relies on a Linux-Kernel, which contains of the core system services.
Furthermore, the Android Linux Kernel has some improvements in terms of energy
consumption and storage management. Both aspects are very important because

47

Figure 3.5: General Android system architecture (Kuzmanovic et al. (2010))

storage and energy is limited in mobile devices (Paul and Kundu (2010)). Android
consists of a stable runtime environment. Core of the Android runtime
environment is the Dalvik Virtual Machine (DVM). Therefore, a program called dx
transforms each Android application code into a special DVM compatible byte
code, which is finally packaged into an apk-file. An apk-file represents the
application package, which can be executed by the DVM at runtime. For each
application a separate system process with a DVM is started, which ensures that
Android applications do not share storage and that if a system process is killed,
only one application is killed too. Furthermore Android contains of a set of native
libraries, which are written in C/C++ and are used by various components of the
Android system. Android provides system classes in the Android Application
Framework that allow Android applications to have access to hardware
components. These system classes are completely implemented in Java and can be
used by a developer. The top layer of the Android system architecture is the
application level, which consists of the Android applications. In the application
layer all human-computer interaction and the communication between Android
applications take part (Becker and Pant (2010)). Figure 3.5 summarizes the
Android system architecture.

48

3.4.2.2 The Android Sandbox-Principle

Android applications are executed in a so-called sandbox. The Android system
with its sandbox principle ensures that an application is running in a dedicated
environment and that the application is assigned to an own area in the file system.
From the perspective of the operating system an Android Application consists of:

• An own process.

• An own user.

• An own DVM.

• An own area in the file system.

• An own area in the heap memory of the device.

To allow an application access to resources outside the sandbox, permissions have
to be explicitly defined in the Android-Manifest of an application. For example, if
the application should have access to the internet, the following permission has to
be added to the Android Manifest:

<uses-permission android:name="android.permission.INTERNET" />

In Android it is also possible that more than one application run in a common
sandbox. This can be achieved by using a sharedUserId. Therefore all involved
applications get a sharedUserId defined in the Android-Manifest (Becker and Pant
(2010)).

3.4.2.3 Android Components

Android applications consist of essential building blocks, which are called Android
components. There are four different types of application components, where each
type has a distinct purpose and lifecycle (Becker and Pant (2010)):

49

• Activity: Activities are used for representation and management of an
application’s surface, including the handling of user inputs. An Activity
should always be implemented to represent exactly one screen. Each element,
which is visible on the surface of an Activity derived from the Android class
View. Views are arranged on the screen by using layouts. An Activity can
consist of one view element or a set of view elements, which are packed into
layouts. More details about views and layouts are provided in chapter
3.4.2.6. Each Activity has a specific lifecycle. Therefore an Activity can be

– active or running, which means that the Activity is in the foreground of
the screen,

– paused, which means that the Activity lost focus but is still visible,

– stopped, which means the Activity is obscured by another Activity, but
still retains all state and member information and

– destroyed, which means that the Activity and all its state and member
information is destroyed.

If other applications need memory, paused or stopped Activities can be
destroyed by the system (Android-Developer-Guide (2011)).

• Service: An Android Service is responsible for background operations,
which do not need any surfaces. Services help to make surfaces faster,
according to their responsiveness. Android Services run asynchronously to an
Activity and report if finished successfully.

• Content Provider: The task of an Android Content Provider is to manage
structured data sets across application boundaries. A Content Provider can
be used for example to import contacts, stored on the device.

• Broadcast Receiver: Android often uses system messages to give
applications the ability to respond to changes in the system state. Broadcast
Receivers receive these system messages. Possible system messages are for
example information about low battery state or problems in network
connectivity.

50

3.4.2.4 The Android-Manifest

The Android Manifest is a mandatory xml-file in the root directory of an Android
project. The Android Manifest usually contains of the following information
(Android-Developer-Guide (2011)):

• The package name of the application

• The version of the application

• The minimal API level, under which the application should run. API level is
an integer value that uniquely identifies the version of the Android platform
(for example Android 2.2 has the API level 8).

• The Android components (Activities, Service, Content Providers, Broadcast
Receivers) of the application

• The permissions of the application

• The libraries, which are used by the application

• Additional information about the application, such a the application name,
application icon, etc.

3.4.2.5 Android Resources

Resources are stored by convention in the directory res in the root folder of the
application. This folder is responsible for handling files, which do not contain any
source code. The most important resources, according to Android applications are:

• Drawables (res/drawable): Include concepts for graphics, which can be
drawn to the screen, such as Bitmaps.

• Layouts (res/layout): Include xml-files, according to the architecture of
view elements of an Activity or another user interface element.

• Menus (res/menu): Include xml-files, which define application menus.

51

• Values (res/values): Include other resource values, such as the strings.xml
file, in which textual values of the application are defined.

In order to have access to the resources at runtime, the resources are packaged into
an R.java class during the compiling process. The resources can be then accessed
either within a resource definition (@ressource-type/resource-name), or within the
Javacode (for example: getResource().getDrawable(R.drawable.resource-name).
Accesses to resources are always read-only, because the resources are part of the
compiled application (Becker and Pant (2010)).
In order to implement applications, which are intended to be used in different
countries with different languages, it is important to provide alternative resources,
as for example messages. To do this, Android offers an easy way to handle
multilingual applications. According to the language settings of the device,
Android can use other value directories. So, for example if German should be
provided as a second language, a directory res/value-de can be added with
resources related to the German language. Android always uses the res/value
directory as a default location. If German is defined as a language on the device,
Android will not use the default res/value directory, it will use the res/value-de, if
existing, as a resource directory.

3.4.2.6 Android Layouts and Views

Layouts in Android define rules for the arrangement of surface elements, called
Android Views and are usually placed at the resource directory res/layout.
Alternatively they can also be assembled programmatically in the source code.
Android provides a set of different layouts, the most important ones are:

• LinearLayout: Linear Layouts arrange view elements linear in horizontal or
in vertical direction and scale well.

• RelativeLayout: Relative Layouts arrange view elements relative to the
margin, do not scale well but have a good performance.

• TableLayout: Tabular Layouts arrange view elements in tabular form and

52

scale well.

• FrameLayout: Frame layouts are the most simple layouts and are used only
for displaying a single view element.

Each layout has properties, which define their appearance and behavior. The
attributes android:layout_width and android:layout_height are mandatory for all
views and layouts. Possible values for these two attributes are fill_parent,
wrap_content or numeric values, declared in pixel (px) or density independent
pixel (dp). fill_parent means that the layout or the view takes up as much space
as the parent layout or the screen provides. In contrast, wrap_content ensures that
the layout or view only occupies as much space as its content claims. In order to
guarantee that the view or the layout is given an appropriate size on the current
screen, fill_parent, wrap_content or numeric values in density independent pixel
should be used (Becker and Pant (2010)). Another important attribute is
android:id, which can be defined for every view or layout. With this attribute a
layout or view gets a unique identifier, which can be used to make the layout or
view available in the source code. Layouts can be nested, where child-layouts
always inherit the attributes of the parent-layout. According to the frontend
application of the inpatient glucose management system, one of the most
interesting view elements is the ListView. A ListView describes a list, which can
be scrolled vertically by the user. List items of an Android ListView are managed
by a list adapter, which is also responsible for formatting list items. To change the
appearance of single list items of a ListView, Android provides a set of different
list adapters, which can be customized by extending the chosen adapter class
(Mosemann and Kose (2009)). For the implementation of the frontend application
primarily a SimpleAdapter was chosen as a list adapter, which maps data to views
defined in a layout file. If an Activity is used mainly to display a list of data,
Android provides a specialized Activity class ListActivity, which has an implicit
ListView element as the root of its screen. In addition to the ListActivity, which is
specialized to show data in a list, Android also provides a TabActivity, which is
specialized in dealing with tabs. A TabView can be used to change between views
within the same Activity or to change between separate Activities
(Android-Developer-Guide (2011)).

53

3.4.2.7 Android Dialogs

The frontend application of the inpatient glucose management system should avoid
as much manual user input as possible. However, there is some information, which
can not be achieved automatically through the HIS. For these manual inputs the
frontend application uses so-called Android Dialogs. A dialog is a window that
appears, while the underlying Activity loses the focus. Each dialog can get its own
layout. Therefore the developer has nearly all possibilities to customize a dialog
about his aims. Android offers 4 types of dialogs, which inherit of the base class
Dialog and can be used by a developer :

• AlertDialog: Task of an AlertDialog is to prompt a user to perform short
tasks, such as selecting an item from a list or entering the username to login.

• ProgressDialog: A ProgressDialog is and extension of the AlertDialog and
is responsible for displaying a current progress.

• DatePickerDialog: A DatePickerDialog allows the user to select the date.

• TimePickerDialog: A TimePickerDialog provides a dialog to select the
time.

Most of the dialogs, used for the implementation of the frontend application, are
AlertDialogs, because they are fast and on the official Android developer website,
AlertDialogs are described as the ’suggested dialog type’
(Android-Developer-Guide (2011)).

3.4.2.8 Android Menus

Android generally provides 2 types of menus:

• Options menu: Option menus are menus that are activated via the
hardware menu key on the device. For each Activity, exactly one option
menu can exist.

54

• Context menu: Context menus can be activated by clicking (or touching)
long on a view element. A context menu can be defined for each view
element.

Usually menus in Android are defined as xml-files in the resource folder res/menu.
The layout definition of the menu can be used by both types, option menus and
context menus. For each menu item, which is defined inside a xml layout, the
attribute android:id must be defined in order to interpret the item at the source
code. Additionally a menu can also be defined dynamically at the Java code. This
can be helpful if for example menu items or their behavior change during runtime
(Becker and Pant (2010)).

3.4.2.9 Automated Testing in Android

Android provides a testing framework, based on JUnit, which offers powerful tools
for:

• GUI Tests

• Unit Tests

• Stress Tests

Figure 3.6 summarizes the Android testing framework: Tests in Android are
organized into separate Android projects and therefore include own test packages
and Android-Manifest files. In an Android-Manifest of a test application the
application package, which is the reference to the application that should be
tested, has to be defined. An Android test project includes so-called test suites
with test classes, where each test class is a container for related test methods.
Android allows invoking callback methods in the test code, so it is possible to run
through the lifecycle of a component step by step. For Android-independent
classes the JUnit TestCase class, which does not have any relations to the Android
SDK can be used to do unit testing. The Android testing framework also provides
classes that create mock system objects in order to isolate tests from the rest of

55

Figure 3.6: Android testing framework (Android-Developer-Guide (2011))

the system. Mock Objects are dummy objects that emulate real code (Mackinnon
et al. (2001)). Basis of an Android test is the InstrumentationTestRunner, which
extends the JUnit test runner framework, loads, sets up, runs and tears down each
test case. The InstrumentationTestRunner is instrumented in order to control how
the test package loads the application and the test cases under test. The
InstrumentationTestRunner also supports other testing tools, such as
MonkeyRunner, which is a tool that controls an Android device from outside of
Android code and is primarily designed to perform functional-level application
tests (Becker and Pant (2010)).

GUI Tests GUI Tests or Activity Tests in Android are JUnit test cases, which
start the target application and simulate the surface of the application. GUI Tests
should verify that the application prints out the desired output on every input at
the surface. GUI testing can be both, testing the whole application’s surface or
just separate activities. To write GUI tests on Android, it is enough to know the
application from the user perspective, it is not necessary to know any source code.
The simulation of an application’s surface is done by a so-called robot (Becker and
Pant (2010)).

56

Unit Tests Unit Tests should ensure that single classes behave as expected.
Therefore for each class to be tested a test class is created, which should validate
all visible methods of the target class. In Android a distinction must be made
between Android-dependent classes, which use the Android API and
Android-Independent classes, which do not refer to the Android library. To
implement Unit Tests for Android-independent classes the
junit.framework.TestCase class can be used to do unit testing. To implement Unit
Tests for Android-dependent classes, the system environment, or rather the
Android components have to be simulated. For each Android component the
Android testing framework provides a base class (Becker and Pant (2010)):

• ActivityUnitTestCaseClass: Unit testing of Android Activities

• ProviderTestCase2: Unit testing of Android Content Providers

• ServiceTestCase: Unit testing of Android Services

• AndroidTestCase: An AndroidTestCase is used whenever only access to a
resource of an application or an application context is required. The
AndroidTestCase can also be used to test a Broadcast Receiver.

Stress Tests Stress Tests are tests, that use an application on the device over a
long period of time by random and thus set the application under ’stress’. Stress
tests can be performed using Monkey, which is a program that runs on the device
and generates random streams of user events (Becker and Pant (2010)).

3.4.2.10 Optimization Rules in Android

Mobile devices do not have the same hardware resources as for example a desktop
or a server system. Consequently implementing mobile applications effort some
rules to keep the memory usage, the battery consumption and the processor load
low (Thompson et al. (2009)). Lots of books about Android describe what should
be considered by implementing mobile applications in Android, as well as in other
mobile operating systems. One of the most important optimization rules is to keep

57

the source code as slight as possible. Good performance of an application is more
important than the appearance of the source code. Therefore, interfaces and not
absolutely necessary methods, such as setter and getter methods should be
avoided. It is also pointed out to avoid object creation, because object creation
needs time and memory (Becker and Pant (2010)). The Android developer website
suggests preferring static elements over virtual elements.

"If you don’t need to access an object’s fields, make your method
static. Invocations will be about 15%-20% faster"
(Android-Developer-Guide (2011)).

Also accesses to the database should be minimized, because SQL requests require
lots of memory accesses and memory space for presenting the results (Becker,
2010). Friesen and Smith indicate that integer operations on Android devices are
twice as fast as floating-point operations, so floating-point operations should be
minimized (Friesen and Smith (2011)).

3.4.3 Model Driven Architecture (MDA)

Developing large software projects often means a large programming effort. Object
orientated programming and improved software development processes should help
to reduce the programming effort in those software projects. However, software
development is still very labour intensive, because most of the steps must be
performed manually by programmers. The idea behind Model Driven Architecture
is to automate steps in the software development, so that code must not been
implemented manually by programmers (Wimmer (2005)). Therefore the focus of
the developer shifts away from implementation to modelling. Basis of the Model
Driven Architecture concept is thus the step by step transformation of abstract
models of software systems to their implementation. Usually the Unified Modelling
Language (UML) is used for modelling. In literature, advantages of a software
development process using MDA consist of:

• increased productivity,

58

Figure 3.7: Tranformation from PIM to source code Schulz (2005)

• increased portability of applications,

• improvements according to interoperability of components,

• advantages of documentation and maintenance and

• high quality of generated source code (Warmer and Kleppe (2003)).

Important is the distinction between platform-independent (PIM) and
platform-specific models (PSM), where a PIM describes the technical aspects of a
software system without reference to specific technologies and a PSM consists of
additional information in order to enable the transformation into a concrete
technology. A PIM has to be transformed to platform specific source code.
Therefore, different plugins called cartridges are used, which analyze the PIM and
construct a PSM and finally produce platform specific source code. Figure 3.7
provides an illustration of the transformation from a PIM to source code. For the
development of the Java-based backend application AndroMDA is used as a MDA
tool. AndroMDA is an open source framework and can generate source code from
a platform independent UML model which is automatically integrated into the
build process. AndoMDA is well documented on the official website (Bohlen et al.
(2011)), where most of the facts, described in this chapter were retrieved.
AndroMDA provides cartridges to generate code for Hibernate, EJB, Spring,
Webservices and Struts. AndroMDA takes an UML model as an input and
generates several components which are connected with each other. Figure 3.8
shows various application layers, which are supported by AndroMDA: The
presentation layer contains of components, which are responsible for user
interaction. AndroMDA offers two technologies to build web based presentation
layers: Struts and JSF (Java Server Faces). The business layer represents the

59

Figure 3.8: Layers supported by AndroMDA (Bohlen et al. (2011))

60

core functionality of the backend application. The business layer packages all
necessary information into so called value objects and transfers these value objects
to the presentation layer. The data access layer is responsible for accessing and
manipulating data. AndroMDA provides Hibernate 2 to generate the data access
layer. Hibernate is a solution for java environments to map data from an object
model representation to a relational data model representation. Hibernate also
provides data query and retrieval facilities to avoid manual data handling.
AndrodMDA creates DAOs (data access objects) for the entities, which have been
defined in the UML model. The DAOs use Hibernate to convert database records
to objects. The data stores layer is responsible for data storage of the
application. If Hibernate is used to access data, each database which is supported
by Hibernate can be chosen.

3.4.4 Unit Testing

For the term ’unit testing’ lots of different definitions can be found in literature.
For example Koomen and Pol define unit testing as

"a test, executed by the developer in a laboratory environment, that
should demonstrate that the program meets the requirements set in the
design specification" (Koomen and Pol (1999)).

2006 Runeson wrote:

"Unit testing means testing the smallest separate module in the
system" (Runeson (2006)).

Generally, unit testing can be seen as a process of evaluating units of source code
in order to determine if they are fit to use. The selected unit test framework, for
testing the backend application, is TestNG3, where NG stands for Next
Generation. TestNG is a testing framework, inspired by JUnit, which supports

2Hibernate - http://www.hibernate.org/ (last access 07/2011)
3TestNG - http://testng.org/doc/index.html (last access 07/2011)

61

powerful features, such as flexible annotation-based testing, testing groups, parallel
testing, etc. TestNG classes don’t have to extend particular classes and their
methods don’t have to follow naming conventions. Each unit test method is
flagged by the @Test annotation and the Java asserts function can be used to test
calculated values against expected values. Another annotation @BeforeMethod
ensures that a defined method is executed before every test and the annotation
@AfterMethod can be used to make sure that a defined method is called after each
test. TestNG unit tests are usually organized into logical sets, called test suites.
Test suites are defined by a XML configuration file. A TestNG configuration file
consist of information how the tests are organized and where they are located. A
powerful feature of TestNG is its support for test groups. For example a test group
can specify a certain part of the system, such as database tests, user interface
tests, etc. Each test case can belong to one or more test groups. An advantage of
this feature is that test groups can be executed separately at different times or in
different places. Another powerful feature of TestNG is the ability to run unit tests
simultaneously in several threads (Smart (2008)).

62

4. Methods

A team consisting of physicians and nursing staff of the Division of Endocrinology
and Metabolism at the Medical University of Graz, as well as engineers from
Joanneum Research and the Medical University of Graz, was established to impose
requirements for the in-hospital glucose management system. Therefore, an
iterative requirement engineering process was established, which is indicated in
figure 4.1. The requirement engineering process began with a detailed analysis of
current clinical workflows, according to the stationary treatment of patients with
diabetes. In parallel, relevant publications relating to the ideal in-hospital
management of hyperglycaemia including validated glucose control protocols, were
identified by the team and discussed with diabetes specialists. The results were
described in a status report, based on various patient scenarios, as a starting point
for the target analysis. The most important identified requirements were
implemented in a first software prototype. The last step of the first iteration of the
development process, involved performing real-life usability trials in the Medical
University Hospital of Graz. The second design iteration started with the
integration of the test results into the requirement set as the basis for the second
target analysis. With the revised and extended requirements the full functionality

Figure 4.1: Requirement engineering process (Höll et al. (2011b,a))

63

of the in-hospital glucose management system could be designed and simulated in
paper-mockups. Finally the mockups were again evaluated by end-users and
modified until the design and functionality could be completely verified.
Right now, the development process is in its third iteration. The aimed prototype
as a final product of the third iteration is currently implemented in an
Android-based mobile application and should be evaluated in clinical field trials
after finishing the implementation. The development process, including every
iteration step, was accompanied by continuous interdisciplinary meetings regarding
risk identification, evaluation and the setting of appropriate measures to avoid
these risks. Emphasis is placed on both technical and medical risks.

4.1 Workflow Analysis/Current State

The treatment of hospitalized patients is primarily based on routine processes. To
avoid complications, caused by a too high or too low blood glucose level, patients
with diabetes need a time-coordinated workflow management during their insulin
therapy. So, as a first part of the development process, lots of time was
investigated to identify the common general ward workflow, according to the
stationary treatment of patients with diabetes, in detail. The workflow analysis
took part at two clinical wards in the Medical University Hospital of Graz
(Endocrinology and Cardiology) using comprehensive surveys and different patient
scenarios. The ’state of the art’ of the inpatient glucose control was analysed with
a semi-structured interview. Information from nurses and medical staff was
obtained to understand workflow patterns for medical decision making and related
problems. Finally, protocols have been developed for the analysis of 50 patients
with established or newly diagnosed diabetes mellitus, in order to have an
overview of the current situation of the glucose management in these two wards.
Especially the following parameters were assessed during the analysis:

• Actual number of glucose measurements.

• Mode of diabetes treatment.

64

Figure 4.2: Inpatient daily routine

• Use of insulin.

• Algorithms of dose adjustments.

• Overall quality of diabetes control.

The protocols have been submitted to the Ethics Committee of the Medical
University Graz, where they have been approved. The achieved daily in-hospital
routine is shown in figure 4.2. The analysis of the daily routine revealed that a
usual day of a hospitalized patient includes three meals. Before each meal and
before bedtime the blood glucose level is measured followed by a possible
subsequent insulin administration. After breakfast the physician makes his ward
round to order the therapy for the next 24 hours. Although the workflows of all
three groups run independently, they have to fit with each other. Out of the daily
routine, the workflow is very complex and differs from day to day depending on
the patient’s health status as well as on planned examinations and potential
delays. These circumstances have to be taken into account for safe glycaemic
control. The current inpatient workflow related to the glucose management at the
Endocrinology and Cardiology wards of the Medical University Hospital of Graz is
described in figure 4.3. The whole process of the in-hospital glucose management
starts with the admission of a patient with the diagnosis of diabetes mellitus (1).

65

Figure 4.3: Workflow of the inpatient diabetes treatment

66

The diagnosis of diabetes mellitus and thus for glucose management is based on
blood glucose measurements and/or medical history of the patient. Afterwards a
physician has to define and to document the treatment and the number of
measurement of the patient with diabetes mellitus (2). The determination of the
treatment results from a variety of important criteria, such as medical history,
actual and general health status, interactions with other medications, associated
conditions, etc. As indicated in the daily routine, before meals and before bedtime
the blood glucose level is measured (3). The measurement is performed, usually by
a nurse using a POCT (Point of Care Testing) device. The measured blood glucose
value is manually transferred to a paper chart and automatically transferred by
the POCT device to the laboratory information system. Based on the actual blood
glucose value, the nutrition (fasting or non-fasting), the actual status of the
patient (e.g. severity of illness, estimated insulin resistance, concomitant diseases
such as diarrhoea) and scheduled upcoming examinations and treatments, the
insulin dose is calculated (5, 6). In case of hypoglycaemia, carbohydrates can be
administered to a patient in order to increase the blood glucose level (7). Oral
antidiabetic drugs are given at particular predefined time regardless of actual
measured glucose values. The dosing is manually transferred to the paper chart by
a nurse or a physician. A glucose measurement will be performed again after a
certain period of time (usually before the next meal) (8). The glucose value in
combination with the chosen treatment and the condition of the patient will be
used to evaluate the decisions and to adjust further steps according to the outcome
of the treatment (9). The whole process of the inpatient glycaemic control
management usually ends with the discharge of the patient (10).

4.2 Protocol for Insulin Dosing (Decision Sup-

port)

Only few clinical trials have focused on optimal inpatient glucose and insulin
management in the non-critical setting and no definition of adequate glycaemic
targets exist. Aim of this development phase was to review the state of the art of

67

glycaemic management protocols and to find a proper evidence-based protocol to
offer a decision support service for insulin dosing, within the inpatient glucose
management system. Glycaemic control is based on different protocols, which have
different benefits and disadvantages. Research shows that insulin administration
should include three components to be effective:

• Basal insulin to achieve a long-term reduction of the blood glucose.

• Nutritional insulin to balance increasing blood glucose values after meals.

• Correctional insulin to provide real-time adjustment of insulin dosing based
on the patient’s insulin sensitivity.

There are few trials where this concept has been implemented:

• Algorithm of the Rabbit 2 Trial (Umpierrez et al. (2007)).

• Algorithm for the comparison between Detemir plus Aspart versus NPH plus
regular insulin (Umpierrez et al. (2009)).

• Algorithm for patients during enteral nutrition therapy (Korytkowski et al.
(2009)).

These trials were considered and intensively studied as a starting point. Benefits
but also shortcomings were identified. The protocol based on a basal-bolus
regimen as provided by the RABBIT 2 trial (see chapter 3.1.2), proved to be most
promising for the clinical diabetes experts due to its straightforward advice for
insulin dosing, which was shown to be associated with improved outcomes. A
significant problem in the analysis of dosage protocols was that important
information in these protocols was not described in the necessary depth. For
example, there was no clear indication, which blood glucose value (fasting value in
the morning or premeal value in the evening) of the last day was used to adjust
the daily insulin dose. However, the protocols are supposed to work in an
electronic system and therefore all conditions for calculating the insulin dose must
be known. The lack of information was discussed in numerous meetings with

68

Figure 4.4: Improved RABBIT2 protocol for insulin dosing

diabetes specialists at the Medical University Hospital in Graz and incorporated
into the protocol. The meetings resulted in an improved RABBIT 2 algorithm for
safe glycaemic control, indicated in figure 4.4. The improved RABBIT 2 protocol
is currently evaluated by clinical trials at the Endocrinology and Cardiology wards
of the Medical University Hospital of Graz.

4.3 First Iteration - User Motivation

The current state analysis, as well as the analysis and improvement of the
RABBIT 2 protocol provided enough knowledge to start a first iteration of the
development process. Problems with the current treatment of patients with

69

diabetes at the analyzed departments at the Medical University Hospital in Graz
were identified and possible software solutions were elaborated in the first target
analysis. Afterwards the collected basic requirements were implemented in a
Microsoft Excel Prototype and tested in usability trials.

4.3.1 Target Analysis of the First Iteration

Aim of the target analysis was to collect first requirements and basic
functionalities, according to an inpatient glucose management system. Therefore
problems with the current paper-based glucose management were identified,
structured, analyzed and documented. For each detected problem a possible
software solution was prepared. Table 4.1 shows the detected problems, the
workflow phase(s)) in which the problem occured, according to figure 4.3 and an
elaborated software solution.

Table 4.1: Results of first target analysis
Problem Relation

to work-
flow(s)

Solution

Paper-based access to the data
only for one person at the same
time.

1-9 Electronic paperless data
record with mobile access
point (e.g. tablet PC) ensures
access for more persons at
the same time at different
locations.

Difficult traceability of docu-
mentation and decision mak-
ing.

1-9 Usage of centrally managed
data repositories to ensure
traceability of performed ac-
tivities.

No data backup in case docu-
ments are lost.

1-9 Synchronization of data on
server database to ensure
backup of data even in case of
a system breakdown.

70

Fixed presentation of data. 1-9 Different modes of visualiza-
tion to ensure dynamic data
presentation.

Suboptimal decisions and
treatments, no standardized
instructions and decisions.

2,4 Electronic Decision Support
system to ensure standardized
instructions and decisions (e.g.
evidence based medicine, sup-
port identification of patients
with risk).

Sometimes neglect to perform
measurements.

3 Active system-reminder to pre-
vent missed measurements.

Mistakes caused by literal er-
rors or unreadability.

1-9 Automated transfer of mea-
sured and relevant data to the
patient’s record and hospital
information system to avoid
mistakes by literal errors or un-
readability.

Risk of wrong patient identifi-
cation.

1-9 Automated patient identifica-
tion to avoid identification
mistakes.

Challenge to retrieve archived
data.

2,4,9 Electronic archive data repos-
itory to make data of former
admission available.

Documentation tabular (un-
clear).

1-9 Visualization of therapy values
in charts.

Not an All-in-One workflow. 3-7 Workflow Management of ap-
plication to approximate an
All-in-one workflow (measure-
ment, decision on treatment
and insulin administration).

71

Physician has to command a
laboratory analysis of impor-
tant therapy parameters.

1 Automatic request of impor-
tant therapy parameters via
interface to the hospital infor-
mation system.

Paper-based documentation is
unsanitary.

1-9 Tablet PC disinfectable.

Decision on therapy individu-
ally.

4-7 Decision Support or with links
to guidelines about decision
making.

4.3.2 Microsoft Excel Prototype

The first target analysis helps to get a general imagination of what an inpatient
glucose management system could look like and which functionalities could be
useful. However, detailed requirements were missing. In order to achieve these
requirements a prototype was implemented, based on the ideas and findings of the
former development steps. The prototype was implemented in Microsoft Excel
2007 by using Visual Basic for Applications (VBA). Microsoft Excel was chosen,
due to the extensive display options of charts and quick and easy visualization of
glucose and insulin profiles, as well as optical alarm borders. Furthermore
Microsoft Excel is well suited to quickly create prototype solutions. Aim of the
Microsoft Excel prototype was to implement step by step the basic functionalities
of an inpatient glucose management system. Weekly meetings with nurses and
physicians were held in which the design of the user interface, basic functionalities,
workflow support and the integration of the decision support service were
discussed. For the prototype a Microsoft Access database was used, to store
patient and therapy test data.

Figure 4.5 shows a screenshot of the Microsoft Excel prototype, where the
following action and information areas can be distinguished:

• Patient data: Patient’s name, admission date, insulin resistance, required

72

Figure 4.5: Miocrosoft Excel prototype

daily insulin dose, borders for hyper-/hypoglycaemia (upper left of the
screen)

• Glucose and insulin profiles: Visualization of the glucose and insulin profiles,
including glucose values, insulin dosages, insulin on board, target range,
borders for hyper-/hypoglycemia, display of food delivery and comment fields
(left middle of the screen)

• Basic functionalities: Entering glucose values, creating and selecting a
patient, administration of medication, scaling of glucose and insulin profiles
(right upper and right middle of the screen)

• Tabular summary of glucose measurement results and administered insulin
(bottom of the screen) The prototype also contains a first simulation of the
decision support service, which is indicated in figure 4.6.

4.3.3 Testing the Usability of the Microsoft Excel Prototype

In order to implement workflow-supporting software which can be used safely in
medical environment, continuous communication to, and feedback from end users

73

Figure 4.6: Decision support in the Microsoft Excel prototype

are necessary. Therefore, as a last step of the first iteration, usability tests and
interviews with clinical end users based on the first prototype of the inpatient
glucose management system in clinical environment at the Medical University
hospital in Graz were conducted, using three participants:

1. A physician and diabetes specialist with experience of outpatient and
inpatient environments.

2. A nurse and head of care of the diabetes ambulance focusing on patients
with diabetes type 1.

3. A nurse and head of care of the division of Endocrinology.

Aim of the usability study was to collect the following information and
suggestions, arranged to their importance, to the application.

• Functionality:

– Does the system offer all necessary functionalities?

– Are provided functions unnecessary?

– Do the provided functions behave correctly?

– Do the provided functions support the usual workflow?

• Risks:

– What risks can occur while using the application?

74

– What preventions can be taken against these risks?

• Layout:

– Is the information clearly arranged?

– Is the usability intuitive?

– Do the charts show all necessary information?

During the usability trials, the Thinking Aloud testing method (see chapter 3.3)
was used followed by a semi-structured interview. The exact steps were as follows:

• Introduction: The investigator gave participants a short description about
the project and the aims of the usability trials.

• Presentation of the prototype: To familiarize the participants with the
prototype, the investigator firstly presented the basic functionalities.
Afterwards the participants were invited to perform simple actions on the
prototype by themselves.

• Test Tasks: Five different tasks with varying levels of difficulty,
corresponding to the role of the participants (physician, nurse), had to be
performed. The participants were encouraged to vocalize their thoughts
(thinking aloud). Aim of these tasks was to highlight weaknesses in the
prototype’s functionalities, workflow support and usability.

• Interview: The investigator asked participants about questions of interest,
which had been defined previously and had not been achieved during the test
tasks. During the interviews also experiences of the participants, according to
mobile devices (smart phones, tablet PCs) were identified. Finally a dummy
paperboard mockup, which should simulate a potential mobile device for the
inpatient glucose management system, was presented to the user in order to
get an imagination of the required size and shape of the desired end-device.

All tests were documented on video, the results were interpreted and suggested
improvements were documented as a basis for the second iteration.

75

4.3.4 Results of the First Iteration

The first iteration, especially the usability trials with the use of the Microsoft
Excel prototype provide a variety of new information, according to workflow
support, functionalities, displaying patient and therapy information, as well as
information to desired potential mobile devices. A selection of the most important
results is listed below:

• Each type of insulin, which is available on the market, is identified by a
certain color. The application should use these colors in order to provide a
good and easy distinction.

• In addition to the graphical representation, the application should also allow
the user to view measured blood glucose levels and administered medication
in tabular form.

• Only the most important information should be displayed in order to keep
clarity. Therefore, only the blood glucose profile, including occupied
nutrition and administered medication should be visualized on the patient‘s
main screen. Insulin profiles should optionally be available in a submenu.

• Especially during the first days after the admission of a patient it is
important to know what therapy the patient had before. Therefore the
application has to provide information about the pre-therapy to the user.

• The ordered daily insulin dose must be clearly distinguished from the partial
insulin doses, which are administered before meals in order to avoid
confusion.

• Beside the most important demographic values to identify a patient, the
defined insulin therapy, including current regimen, ordered medication and
the insulin resistance has to always be observable.

• Manual user inputs should be minimized.

• The user should be able to add textual comments to every blood glucose
measurement in order to provide and document special events, according to a

76

patient.

• Decision Support for insulin dosage is very desirable. However, the suggested
dosage has to be confirmed by an authorized user.

• A reminder for “open tasks” should be provided by the application in order
to support clinical personnel to meet all requirements and criteria for
decision support.

• A laptop as a mobile device is not desirable, because it is too heavy and has
negative effects on the communication between physician and patient,
because of its size and shape.

• The desired mobile device should be easy to carry and it should be able to
hold the device in one hand.

• The modification or deletion of input values should be possible within a
certain period of time (24 hours) under certain circumstances (no influence of
subsequent activities).

• In addition to the support of the basal-bolus regimen, also a workflow
without decision support should be possible. In this case, the application
only serves as a documenting tool.

The findings from the usability trials were finally discussed and reviewed in the
team and the improvements were accepted in the requirement specification for the
second iteration.

4.4 Second Iteration - Mock-Ups

The user evaluation of the first glucose management prototype and the target
analysis of the second iteration resulted in an extensive requirement specification
document, which consists of identified functional requirements as well as
non-functional requirements related to the inpatient glucose management system.
Afterwards the revised user requirements were drawn up in a paper mockup

77

screenplay consisting of all functionalities, using Visio stencils for Android. Finally,
the results were discussed in the team. Aim of the second iteration was to collect
all user requirements in order to start the technical specification of the system.

4.4.1 Target Analysis of the Second Iteration

At the second target analysis a detailed requirement specification document was
written. As a first step, the results of the first iteration, especially the results of
the usability trials were analyzed and discussed and improvements were transferred
to functional and non-functional requirements. To provide a better overview of the
functional requirements, they were structured into the following 6 main function
groups with various use cases.

• User Management: The user management is responsible for adding,
editing and deactivating the system’s users. Only users with administrative
roles have access to the user management. In later versions the user
management should be synchronized with the user management system of
the hospital. Thus, for example users can be retrieved directly form the HIS
and manual editing of users will not be necessary any more.

• Patient Management: The patient management is responsible for adding
and editing the patient profile, displaying and sorting patient lists, searching
for patients, and the enrolment of patients for the glucose management
system. Data retrieved from the HIS, including personal data and
hospital-specific data, will be transferred into the system automatically.
Supplement data which is needed by the system has to be entered manually
during the enrolment.

• Drug Management: The drug management takes care of adding, editing
and deleting drugs, including insulin and other medications, which should be
available by the system. Only users with administrative roles have access to
the drug management. Future versions of the system should interface the
register of authorized drugs. Thus, adding, editing or deleting of drugs will
not be necessary any more.

78

• Glucose Management: The glucose management is the central part of the
system. Data retrieved from the HIS, data entered by the enrolment and also
data collected during blood glucose measurements and insulin
administrations are visualized in this component. The collected and
displayed information is the base for the decision support service for insulin
dosing and thus, for the therapy adjustment during the ward round. The
main actions performed within the glucose management are ‘Blood Glucose
Measurement’, ‘Insulin Administration’, and ‘Therapy Adjustment’. ‘Blood
Glucose Measurement’ guides the user through the process of retrieving and
storing a blood glucose value. Blood glucose values are measured by a POCT
(Point of Care Testing) device and are automatically transferred to the LIS
and afterwards to the mobile device. So the user does not have to enter the
measured blood glucose level manually. Once the blood glucose level is
gathered, the system will be able to suggest an insulin dose automatically by
using the action ‘Insulin Administration’, which also requires specifying if a
meal is intended. The function ‘Therapy Adjustment’ will be used to adjust
the daily insulin dose and to define the therapy for the next 24 hours. The
‘Therapy Adjustment’ should be performed at the daily ward round.

• Open Task Management: The open task management is responsible to
remind users of tasks, which have to be performed in the near future or tasks
which have not been done yet.

• Default Parameter Management: The default parameter management is
responsible for setting default parameters according to patients’ therapies.

Figure 4.7 summarizes the identified Use Cases, structured to their proper
component.

The use cases diagram shows 5 different actors, which have been identified at the
target analysis. The reason for the distinction between different user roles is that
physicians have other privileges than nurses. The identified user roles, including
their privileges are listed below:

• Nurse

79

Figure 4.7: Identified use cases during the second target analysis

80

– Enrol patient for Glucose Management

– Insulin administration

– Discontinue Glucose Management

– Blood glucose measurement

• Administrative Nurse

– Enrol patient for Glucose Management

– Insulin administration

– Discontinue Glucose Management

– Blood glucose measurement

– Drug Management

• Physician

– Enrol patient for Glucose Management

– Insulin administration

– Discontinue Glucose Management

– Blood glucose measurement

– Adjust therapy

• Administrative Physician

– Enrol patient for Glucose Management

– Insulin administration

– Discontinue Glucose Management

– Blood glucose measurement

– Adjust therapy

– Drug Management

– Default Parameter Adjustment

• Administrator

– Enrol patient for Glucose Management

81

– Insulin administration

– Discontinue Glucose Management

– Blood glucose measurement

– Adjust therapy

– Drug Management

– Default Parameter Adjustment

– User Management

Parallel to the functional requirements, non-functional requirements were identified
for the inpatient glucose management system. The identified non-functional
requirements consist of:

• Mobile access point in wards of inpatient environment

• Improvement of quality and accessibility of documentation

• Medical and technical safety

• Selection of a mobile device for inpatient glucose control based on given
requirements:

– Lightweight/portable

– Easy-to hold/handle and ergonomic design

– Spill an drip resistant (easy disinfection)

– Inputs via touch screen

– Wireless communication

– Ease of operation

• Multi-user availability

4.4.2 Mock-up Story Board

After the specification of functional and non-functional requirements, these
requirements had to be implemented into a new prototype. Due to the high

82

Figure 4.8: Mock-up of the main screen of the glucose management

number of new user requirements, a software prototype seemed to be not suitable,
because the implementation would be too time-consuming. Consequently it was
decided to design the collected user requirements in a mock-up story board, which
should simulate the functionalities. Based on the acquired requirements for a
mobile device the Samsung Galaxy Tab was chosen, as a template for the
simulated user interface. The Samsung Galaxy Tab uses Android 2.2 as an
operating system. So, the mock-ups were designed, using the Android GUI
prototyping stencils for Microsoft Visio1. The functionalities have been represented
in documented paper mock-ups and afterwards discussed in the team and adapted
accordingly. As an example, figure 4.8 shows the drawn mock-up of the main
screen of the glucose management.

Basic data of the selected patient can be found on the top left side of the mock-up.
The basic data consists of the name and the age of the displayed patient. Also the
location and the admission date are presented to the user in order to certainly
identify the patient. Moreover the basic data consists of the current selected
therapy regimen, ordered medication, as well as the insulin resistance of the
patient. ‘DSS’ indicates that the decision support is activated which means that
the system automatically gives dosage advice for the next insulin administration.

1http://www.artfulbits.com/Android/Stencil.aspx

83

The bottom left side presents the three main activities of the glucose management,
including ‘Blood Glucose Measurement’, ‘Insulin Administration’ and ‘Therapy
Adjustment’. The glucose and insulin charts in the middle of the mock-up visually
display the most important measurement and insulin administration parameters,
which were identified by the target analysis. The user can also view the course of
the therapy in tabular form, by touching the ‘Glucose Table’ tab or he can view or
adjust therapy parameters, by touching the ‘Therapy’ tab. At the top of the
screen, a menu bar allows the user to change to the patient list, to view open tasks
and to log out of the glucose management system. By touching the ’View Full
Screen’ button the user can view the visualization in full screen mode. With the
‘Edit/Delete Recent Activities’ button, the user can modify or delete already
finished activities.

4.4.3 Evaluation of Mock-up Story Board and Results of

Second Iteration

In order to evaluate the designed mock-ups, Microsoft Power Point presentations
were prepared to simulate use cases of the application. Each slide consisted of
exactly one mock-up and additional textual descriptions, which should present the
functionality of the presented mock-up and should simulate user-operations. The
slides were continuously presented to clinicans at the Medical University hospital
in Graz. Afterwards suggestions for improvements, as well as all other comments
were documented, analyszed and discussed in the team. The mock-ups were
adjusted repeatedly and improvements were incorporated directly into the
paper-mockups until they finally met the requirements of the clinicans.

In contrast to the results of the first iteration, where the focus was primarily on
identifying new requirements, the second iteration helps to pack the requirements
into an already verified design. With the completion of the second iteration the
functionality and the design of the application were mostly fixed. Next, the
technical requirements had to be considered in order to implement the user
requirements into a safe, executable medical device software application.

84

4.5 Risk Management

The inpatient glucose management system will provide a decision support for
insulin dosing and therefore falls within the scope of the medical device directive.
Consequently IEC 62304 requires performing a risk management within the
development process. A team consisting of physicians and nursing staff at the
Medical University of Graz, as well as engineers from Joanneum Research and the
Medical University of Graz, was established to perform the risk management.

At first the softare has to be assigned to a safety class, which describes the
potential impact of a risk, which can be caused by the software. As described in
chapter 3.3, IEC 62304 differentiates between 3 safety classes:

• Safety class A: No injury or damage to health is possible

• Safety class B: No serious injury is possible

• Safety class C: Serious injury or even death is possible

A wrong treatment with insulin can lead to hypoglycaemia or hyperglycaemia
which can effect dangerous complications. However, the aim of the inpatient
glucose management system is to support medical decisions and physicians finally
have to decide by themselves, how to treat a patient. Therefore the application
can be assigned to safety class B.

After the assignment to a safety class, possible risks, which can be caused by the
application were identified in the risk analysis. Both components of a risk,
probability and consequence, were analysed separately for the estimation of a
hazard in the risk evaluation. With the estimation of a risk, it had to be decided
whether the risk was acceptable or a measure to reduce the risk was necessary.

85

4.5.1 Risk Analysis

The risk analysis process was started with a description of the intended use and
characteristics related to the safety of the medical device. According to these
characteristics, the following questions were discussed:

• Does the medical device provide interpretive statements?

• Does the medical device use other medical devices, drugs or medical
technology?

• Does the use of the medical device require special training or special skills?

• Can design features, according to the user interface cause errors in the use of
the application?

• Is it possible (and if so, how) that the medical device is used intentionally in
a false way?

• Does the medical device save data that is critical to patient care?

• Can the medical device affect the mobility of the clinical staff?

Afterwards potential hazards were identified and risks were estimated for
hazardous situations. The identification of the hazards and risks were performed in
a kind of group brainstorming, within the interdisciplinary team. Emphasis was
based on both, technical and medical risks. Finally, the identified risks were
structured and documented.

4.5.2 Risk Evaluation

After the risk analysis the risks had to be evaluated. Aim of the risk evaluation
was to decide if a risk was acceptable or not acceptable. Therefore, the probability
and consequence of each identified risk were analysed separately.
The consequences of each risk were estimated, using the criteria, indicated in table
4.2. The probability of each risk was estimated, using the criteria, presented in

86

Table 4.2: Criteria for risk consequences
Severity Description
catastrophic (5) Death of the patient
critical (4) Permanent disability or life-threatening in-

jury
serious (3) Injury/disability that requires a knowledge-

able medical intervention
low (2) Temporary injury/disability that requires

NO knowledgeable medical intervention
negligible (1) Inconvenience or temporary discomfort

Table 4.3: Criteria for risk probability (per patient)
Probability Description
frequent (5) daily
likely (4) weekly
occasional (3) monthly
remote (2) annually
unlikely (1) every few years

table 4.3:

The estimation of the risk results of:

Risk = Probability × Consequence

After the analysis of the probability and consequences of the risks, the risks had to
be categorized, according to figure 4.9.

Therefore, a risk can be:

Figure 4.9: Acceptance of risks

87

• Acceptable: The probability that the risk occurs is very low. If the risk still
occurs, there are no serious consequences. A measure of risk reduction is not
necessary.

• ALARP (as low as reasonably practicable): Either the probability that the
risk occurs is low, however the appearance of this risk can lead to serious
consequences, or the probability that a risk occurs is likely, but does not lead
to dangerous situations. Risks, which are assigned to this category, do not
necessarily need a risk control.

• Not acceptable: A risk which is assigned to the non-accepted category
occurs frequently and can lead to serious consequences. Therefore, measures
have to be defined to reduce this risk.

4.5.3 Risk Control

For the case, a risk was assigned, during the risk evaluation, to the ’not acceptable’
category, ISO 14971, requires defining measures to reduce this risk. Afterwards,
the risk has to be newly evaluated, until the risk can be assigned to the ’accepted’
or ’ALARP’ level. After risk control it is also required to perform a risk analysis
again, because identified measures can lead to new risks. For risk control there is a
stepwise approach to reduce risk:

1. Inherent safety by design.

2. Protective measures in the medical device itself or in the manufacturing
process

3. Information for safety. Consequently, if practicable, the medical device
should be designed to be inherently safe. If this is not practicable, then
protective measures such as barriers or alarms are appropriate. The least
preferred protective measure is a written warning or contra-indication. It is
possible that there is no practicable way of reducing the risk to acceptable
levels. In this case, a risk/benefit analysis must be carried out to determine
whether the benefit of the medical device outweighs the residual risk.

88

Figure 4.10: Requirement engineering process

4.6 Third Iteration - Practical Implementation

Based on experiences and requirements, which were collected during previous
development steps, the technical architecture of the system was built up. Due to
maintainability and expandability it was decided to distinguish between an
Android-based user interface and a platform independent Java-based backend
which contains business logic for the decision support, the reminder functionality,
as well as the data storage. The frontend application should present the data,
received from the backend, in an appropriate manner to the user and collects new
relevant data. The behavior of the frontend application should relate to the
clinical workflow in every step, which was identified together with end-users in the
design phase. Figure 4.10 indicates the common architecture components of the
inpatient glucose management system. The exchange of data between the backend
and frontend components is completely done via web services. In order to ensure
data security, Fraunhofer Institute, as a project partner, implements a secure
Android SOAP (Simple Object Access Protocol) client application, which supports
encrypted communication and mutual authentication of both communication
endpoints.
The backend application should consist of a configurable interface to query the
Hospital Information System (HIS) and Laboratory Information System (LIS) via

89

HL7 in order to receive actual blood glucose levels (the POCT device
automatically sends blood glucose values to the LIS) and demographic values of
the patient to avoid manual inputs. HL7 stands for Health Level 7 and is a
communication standard for exchanging patient data. At the moment the
interfaces to the external components have not been specified more precisely and
are therefore not part of this master thesis.

4.6.1 Issue Tracking with JIRA

JIRA is a web-based application, powered by Atlassian2, to manage issues of any
kind within the development process and therefore allows an effective bug-, task-
and quality management. During the development process of the frontend, as well
as of the backend, JIRA is used as a requirement and task management tool for
documenting each implementation step. JIRA acts as preparation for the needs of
the IEC 62304 standard, and for ensuring an overview of open and already
completed requirements, development tasks and identified bugs. In JIRA, each of
these issues can be assigned to an authorized editor who reports after finishing the
issue. A provided project summary, including open and resolved issues, helps to
have a quick overview of the development progress.

4.6.2 Development of the Backend

The development of the backend is done by engineers of Joanneum Research, as
well as by partners of the Computational Medicine Laboratory at the Institute of
Computer Science in Greece. Aim of the backend is to provide a data storage for
saving necessary patient data and a platform-independent application which is
able to tranfer data via web service to a (mobile) user interface. The development
of the backend application is not the essential part of this master thesis, however,
the next chapters will give a short introduction of how the server database schema,
as well as the already implemented web services were generated, using AndroMDA.

2http://www.atlassian.com/

90

Figure 4.11: UML modelled entity ’Patient’

4.6.2.1 Development of the Backend Using AndroMDA

The schema of the server database was completely created using AndroMDA (see
chapter 3.4.3). Let‘s take a look of how a table can be modelled and afterwards
generated automatically by AndroMDA. As an example, the entity ’Patient’ with
the mandatory attributes name, sex and date of birth, as well as the optional
attributes national insurance number, phone number, martial status and the
patient’s address should be modelled. The sex of a patient can be MALE or
FEMALE and the martial status can be UNKNOWN, SINGLE, MARRIED,
WIDOWED or DIVORCED. Additionally each patient should have a mandatory
unique identifier. Based on these requirements, the class, shown in figure 4.11, can
be modelled: To let AndroMDA know that the drawn class is an entity the
modelled class must have the stereotype Entity. Optional attributes have the
multiplicity [0..1], which means that a patient can have one or none of the
associated attributes. Each attribute of an entity must have a data type. In the
example the data types String and Date as well as SexType and MartialStatusType
were used. It should be noted that for example the type String is not equivalent to
the java.lang.String. In model driven architecture all elements and their data types
are platform independent. The model will be translated to platform dependent
code later in the transformation process (see 3.7). Because the sex and the martial
status of a patient only accept predefined values, classes for the data types
SexType and MartialStatusType have to be created with the stereotype

91

Figure 4.12: Modelling enumerations

Enumeration, shown in figure 4.12.

In order to transform the drawn model to platform dependent code, the maven
command mvn install can be executed in the source directory of the maven
project. In addition to the automatically generation of java classes and source
code, AndroMDA can also create tables in a database. Taking the example from
above, the maven command mvn create-schema will force AndroMDA to create the
table Patient with the attributes, defined in the UML model, as table columns. If
a maven project has more entities, these entities can relate to each other in a
different way. AndroMDA allows the common UML class diagram relationships:

• Associations: Associations represent relationships between 2 entities. An
association can be unidirectional, if the navigability exists only in one
direction, or bidirectional, if the association contains navigability in both
directions.

• Aggregation:

"Aggregation is the part-of relationship" (Fowler and Scott
(1999)).

and is therefore a special form of the association.

• Composition: A composition exists if the existence of an entity depends on
another entity.

• Generalization: A generalization, according to entities relationships,
describes that a child entity is a specialization of a parent entity and
therefore the child entity inherits all attributes of the parent entity.

92

Associations, aggregation and compositions should additionally have a multiplicity
at their end to indicate how many entities may participate in the given
relationship. Possible types of multiplicities are:

• 0: 0 entities

• 0..1: 0 or 1 entity

• 0..*: 0 to an infinite number of entities

• 1: 1 entity

• 1..*: 1 to an infinite number of entities

• *: 0 to an infinite number of entities (same as 0..*)

Now, let‘s take a look of how to model web services. Web services are necessary to
transfer data from the business layer to the presentation layer (see figure 3.8). One
possibility is to package the necessary information into so called ’value objects’. A
value object is characterized that its identity is determined by the values of which
it is built (Kuebeck (2009)). As an example a web service loadDrugs, which should
return a list of available drugs is explained in here. The model of this web service
is shown in figure 4.13. First the value objects, which are colored grey, have to be
defined. The value objects must have the stereotype ValueObject and will later
hold the data we want to transfer via the web services. The model includes three
value objects:

• LoadDrugsInVO: Is the value object the web service will get as a parameter.

• LoadDrugsOutVO: Is the value object the web service will return to the
client.

• DrugVO: LoadDrugsOutVO is associated with the value object DrugVO,
which holds the actual attributes.

The dependency from the entity Drug to the value object DrugVO will generate
helper code in DrugDaoBase.java and in DrugDaoImpl.java to support the
translation between the two components.

93

Figure 4.13: UML modelled web service ’loadDrugs’

94

Next the web service has to be defined. Therefore the DrugService, which is
colored yellow, with the method loadDrugs, and the stereotypes Service and
WebService has to be modeled. The method loadDrugs gets the value object
LoadDrugsInVO as a parameter and returns the value object LoadDrugsOutVO.
The dependency from DrugService to the entity Drug ensures that DrugService
later has access to the DrugDao. That‘s it!
Because DrugService is a web service, the value objects are mapped to an
xml-structure. What happens exactly by building the project is very complex. In
short, the web service cartridge of AndroMDA generates the xsd-file (XML
Schema definition) and the wsdl-file (web service description language), which
refers to the schema. The generated wsdl-file includes a SOAP (Simple Object
Access Protocol) binding, so that the web service can be called by a SOAP
message later by the client. Afterwards the java classes, which implement the web
service, are generated from the wsdl-file (contract first). The generated output is
packaged into a deployable war-file.

4.6.2.2 Testing the Backend, Using TestNG

Standard EN 62304 requires continuous unit testing during the development
process. Fort testing the backend functionality, TestNG (see chapter 3.4.4) in
combination with Maven 2 (see chapter 3.4.1) was used. The execution of tests is
part of the Maven build lifecycle. To tell a Maven application about the usage of
TestNG, a dependency has to be integrated into the POM.xml file of the
application. The following example indicates how TestNG 5.9 can be integrated
into a Maven project.

<dependency>

<groupId>org.testng</groupId>

<artifactId>testng</artifactId>

<version>5.9</version>

<scope>test</scope>

<classifier>jdk15</classifier>

</dependency>

95

Maven automatically recognizes TestNG test cases and the scope test ensures that
the TestNG framework is only available during the Maven test lifecycle phase.

The backend was generally evaluated by unit tests, which can be divided in 2
major categories:

• Domain tests

• Service tests

Domain tests are the unit tests that evaluate data persistence functionality. More
analytically, this has to do with entity functionality that implements data
persistence transactions (i.e. Create, Read, Update and Delete) and transformation
procedures that are required. The functionalities of the entities are tested in
certain test cases in order to verify the proper operation and the expected results.
Service tests are those tests, which should verify the accessibility of the
implemented web services. Therefore, simple test cases at the backend send
dummy requests to each web service and parse the status code of their response.
Instrumentation tests at the frontend (see chapter 4.6.9) check the correct
functionality of the implemented web services in more detail.

4.6.3 Results of the Backend

The implementation of the backend is currently in progress. However, the database
scheme and most of the web services are already completed and are available to the
Frontend. The set of web services, provided by the current Backend consists of:

• Enrolment Service: Service, which performs the enrolment procedure for
the patients inside the glucose management system. The service provides
methods to start, stop and update the enrolment for a specific patient.

• Facility Service: Service, which provides location-dependent information,
such as available rooms at a specific ward.

96

• Measurement Service: Service for managing measurement records,
including loading measurements, updating measurements and adding new
measurements.

• Drug Service: Service, which provides medication-dependent information,
such as available insulin or tablets.

• Medication Service: Service for managing medication records, including
loading medications, updating medications and adding new medications.

• Proposed Medication Service: Service for managing decision support
dependent issues, such as returning calculated insulin dosage suggestions.

• Patient Service: Service for finding and returning patients on a specific
location.

• Therapy Service: Service for setting and loading therapy adjustments.

• User Service: Service, which is responsible for the user management,
including finding, adding, editing and deleting users of the system.

Accessing the web services from the Frontend is illustrated in chapter 4.6.8.

As already mentioned in chapter 4.6.2.1, the database scheme was completely
created by modeling entities. Afterwards AndroMDA generated the database
schema out of the modelled entities. Figure 4.14 shows the first part of the entities
of the completed data model. The already known entity Patient can have none, or
one entity PatientLocation, which refers to the current location at the hospital,
such as the facility, the ward, the room and the bed, related to the patient. The
entity PatientLocation additionally has a mandatory attribute startDateTime,
which is the exact time, the patient was assigned to the location, and an optional
attribute endDateTime, which is the time, the patient leaves the location. A
patient can have any numbers of visits (entity Visit). Each visit has an admission
date and gets a unique admission number. The mandatory boolean attribute
currentVisit defines if a visit of a patient is the current one. So if a patient has
more than one visit, only one currentVisit can be true. If a patient is discharged,
the attribute dischargeDateTime defines the exact time of discharge and the

97

Figure 4.14: Part 1 of the data model

98

attribute dischargeDisposition defines the reason for the discharge. The
application should support the clinical workflow, according to the glucose
management of patients. This includes helping the medical personnel to remember
important activities, such as blood glucose measurements. Therefore the attribute
nextSchedulin defines at what time the next activity of a patient is pending. The
entity Activity represents the activities, according to the glucose management. At
the moment there are 3 different types of activities:

• Therapy adjustment

• Blood glucose measurement

• Medication (Insulin Administration)

Each activity has a name and a description, as well as the time of execution and
creation. The algorithm for suggesting the insulin dose requires the distinction
between morning-, midday-, evening- and bedtime activities. This is defined
through the attribute scheduledTimeOfDay. An activity can also have a scheduled
start and end date and information about the priority of the activity. An activity
is assigned to the enrolment of a patient via the foreign key enrolmentID.
Furthermore, each activity can have any number of comments (entity
ActiviyComment), which consist of a comment to the activity and the exact time,
the comment was created. Only if a patient has a current visit the patient can be
enrolled for glucose management. Therefore the entity Enrolment has a mandatory
attribute startDateTime, which defines at what time a patient was enrolled, as well
as an optional attribute endDateTime, which defines at what time the enrolment
of a patient was stopped. Furthermore every enrolment has the unique identifier
enrolmentID. The second part of the entity model will give more detailed
information about the enrolment and the associated entities.
An activity can only be performed by a user (entity GlucoManUser). Each user
has a unique user name and user id to login to the glucose management system.
Beside general information about the user, such as name and email, each user is
assigned to a ward. If the boolean attribute deactivated is set to false, a user is not
allowed to login. In this case, the attribute deactivateDateTime specifies the exact

99

Figure 4.15: Part 2 of the entity model

time the user has been deactivated. The entity AuditTrail ensures that each
creation and deactivation of a user is documented with the exact time and an
optional comment. The entities Room and Ward include all available wards and
rooms. It must be noted that a room must belong to one and only to one ward.
Finally, the entity Drug represents all drugs, which are available within the glucose
management system. A drug consists of the mandatory attributes atcCode, which
corresponds to the Anatomical Therpeutical Chemical classification code to
categorize drugs, productName, which is the standardized name of the drug,
productCode, which is a unique code, every drug must have, activateDateTime,
which is the time the drug was applied in the system and the boolean attribute
deactivated, which specifies whether a drug is deactivated or not. An optional
attribute drugType defines the type of the drug. In case of a mixed insulin, the
mixing ration of basal and bolus insulin is defined in the attribute
basalToBolusRatio.

Figure 4.15 shows the second part of the entity model. After a patient was

100

enrolled, any number of records can be assigned to the enrolment. There are six
different types of records. Each type is represented in an own entity and inherits
from the parent entity Record.

• EnrolmentRecord: Is the record of the enrolment itself. The enrolment record
consists of 4 attributes, which can be defined by the user during or after the
enrolment process. The attribute diabetesType specifies, whether the patient
is assigned to diabetes type 1, diabetes type 2 or to other rarer diabetes
types. The attribute preTherapy defines what diabetes therapy the patient
got before the current enrolment. The attributes weight, needed by the
decision support, and height are self-explanatory.

• StopEnrolmentRecord: This entity documents stopping every enrolment of a
patient. The enrolment of a patient can be stopped manually or
automatically and efforts specifying a reason for stopping the enrolment.

• MeasurementRecord: This entity documents all measurements to the
enrolment of a patient. Every measurement record has an entity
MeasurementType. This entity specifies the type of the measurement. The
entity MeasurementRecord itself specifies the value, the time, the unit and
the input type of the measurement.

• ProposedMedicationRecord: Often, the amount of administered insulin won’t
match with the suggested amount, which was calculated by the decision
support. The entity ProposedMedicationRecord documents all suggestions
calculated by the decision support.

• MedicationRecord: The entity MedicationRecord documents administered
drugs by specifiying the administered units, the unit type, the type of
administration, the time of the day and the exact time of the medication.
Furthermore a medication record consists of the information if a meal is
intended, as well as the suggested amount of insulin, which is calculated by
the decision support. Every medication record has an entity
therapyMedication, which contains of detailed information to administered
medication, such as the drug type or the product code.

101

• TherapyAdjustmentRecord: After the enrolment, each patient gets an
individual therapy. The current therapy is described through the entity
TherapyAdjustmentRecord. A therapy of a patient consists of the regimen
type (Basal-Bolus or non-supported regimen), any number of
TherapyMedication entities, a blood glucose target range, the current daily
insulin dose, the insulin resistance of the patient and other parameters. The
boolean attribute dssActive describes the status of the decision support,
which is true in case the basal-bolus regimen is selected, a daily insulin dose
is defined and at least one basal and one bolus insulin is assigned to the
patient.

4.6.4 Development of the Frontend

The Android frontend application of the inpatient glucose management system is
currently under development. However, this chapter will give insights of the
methods, related to the previous implementation work of the Frontend. The
frontend application represents the user interface of the inpatient glucose
management system. It is responsible for data recording, data representation and
data visualization. The recorded data is sent via web service to the backend, where
it is processed and finally stored to the server database. The other way round the
backend application sends required data via web service to the frontend
application, where the data is presented in an appropriate manner to the user.
Based on the findings gained during the first and the second iteration, the Samsung
Galaxy Tab, shown in figure 4.16, was chosen as a preferred frontend-device. The
Galaxy tab, which uses Android 2.2 (see chapter 3.4.2) as an operating system, fits
in any coat pocket and is lightweight, compared to other tablets, such as the Apple
iPad, which is an important indicator for its intended medical use.

For developing the frontend application each use case, which was identified during
the second iteration, was analyzed and the workflow of the use case was drawn in a
conceptional activity diagram. Finally each of the activity diagrams was
implemented and tested after finishing the implementation.

102

Figure 4.16: Samsung Galaxy Tab (Niederschmid (2010))

4.6.4.1 Setting up and Building the Frontend, Using Maven for Android

The frontend application uses Apache Maven 2 (see chapter 3.4.1) as a building
tool. The Maven-Android Plugin allows an Android application to be built,
deployed, tested and released automatically with Apache Maven outside an
integrated development environment (IDE). Also the dependency management is
organized through the Maven-Android plugin. Before an Android application can
be deployed on a device or an emulator, it has to be transformed to a Dalvik
compatible byte code and packaged into an apk-file, which is managed by the
Maven-Android plugin too. The easiest way to set up a Maven-Android project is
to use Maven Android Archetypes, which allow creating Android applications with
the desired modules and ready POM.xml files with only one command. For the
frontend application of the inpatient glucose management system
android-with-test-archetype was used, which creates a multi-module project. The
precise command used to set up the frontend application looks like the following:

mvn archetype:generate \

-DarchetypeArtifactId=android-with-test \

-DarchetypeGroupId=de.akquinet.android.archetypes \

-DarchetypeVersion=1.0.5 \

-DgroupId=eu.reaction.android \

-DartifactId=GluCoManSysFrontend \

103

The command creates a Maven project, including the following components:

• A parent project GluCoManSysFrontend with the package type pom.

• A module containing a dummy application to be customized, named
application, with the package type apk.

• A module containing a dummy test application to be customized, named
application-it with the package type apk.

The modules application and application-it are separate Android applications, and
thus can be built and deployed separately. The maven command mvn install at
the parent project directory will built and deploy both applications on a running
emulator or connected device and will automatically execute the instrumentation
tests, which are placed in the application-it project (GitHub (2011)). The
packaging type apk in an application’s POM.xml file leads to a customized build
lifecycle of Maven with the following additional phases in the default lifecycle (see
chapter 3.4.1):

• generate-sources: Packages the Android specific resources, such as the
AndroidManifest.xml, using the Android Asset Packaging Tool (aapt).

• process-classes: converts all classes into Davlik compatible byte code, using
the dx-tool.

• package: packages the Davlik compatible byte code into an apk-file.

• pre-integration-test: Deploys all related apk-files to the device or
emulator.

• integration-test: Executes available instrumentation tests against the
deployed application.

The Maven Android Plugin provides a set of additional goals, which execute
specific lifecycle phases. The most important ones are:

• android:apk: Builds the apk-file of the application.

104

• android:deploy: Builds the apk-file of the application and deploys it on the
emulator or device.

• android:instrument: runs the instrumentation tests on the device or
emulator.

• android:undeploy: removes the apk-file of the current application from the
device or emulator.

In order to build the Android application the maven command mvn install
android:deploy in the parent directory GluCoManSysFrontend/application is
executed.
In order to run the test cases the maven command mvn install android:deploy in
the parent directory GluCoManSysFrontend/application-it is executed.

4.6.5 Design of the Android User Interface

As presented in chapter 3.4.2.3, Android activities are responsible for interacting
with the user. Activities are the most used components of the frontend
application. The surface of each Android Activity is defined by an underlaying
layout.xml file. The usage of the frontend application has to fit with the identified
clinical workflow. To provide a user-friendly interface, the layouts were mostly
reconstructed from the already validated mock up storyboards (see chapter 4.4.2).
In addition, the general usability aspects, according to mobile touch screen devices
(see chapter 3.3.3), were observed.
Because Android runs on a variety of devices that offer different screen sizes and
densities, great attention was paid to the scaling of view elements. Consequently
the heights and widths of views and layouts were specified using fill_parent,
wrap_content or, if necessary, numeric values in density independent pixel in order
to guarantee that the view or the layout is given an appropriate size on the current
screen. Also text sizes were specified using scale-independent pixels (sp) to scale
the size of TextViews related to the device‘s density.
The use of long-click events (a view has been clicked and held), has been omitted
beside a few exceptions. The reason for this is that long-click events are not

105

intuitive and not trained users could have problems with finding functionalities,
which are hidden behind such long-click events.

4.6.6 Visualizing Therapy Values Using aiCharts

One of the main requirements, identified during previous development steps is to
visualize the course of therapy in charts. Therefore, the frontend application of the
inpatient glucose management system uses aiCharts, which is a chart library
designed and optimized for Android. aiCharts is powered by ArtfulBits3 and
supports a wide range of different chart types, which can be combined in one chart
area. To integrate aiCharts in an Activity’s layout the view element ChartView
must be used. Each ChartView element can have several numbers of ChartArea
elements with a several number of chart series, where each series must belong to a
specific chart type. According to the frontend application the chart types Line for
displaying the course of measured blood glucose values and the chart type Point,
for displaying medications, nutrition, comments and day borders were used.
aiCharts provides good possibilities to customize the appearance of chart series,
such as drawables for markers, customized labels, etc. One of the greatest
advantages of aiCharts is that charts can be made user interactive, so for example
the touch of a ChartPoint can be captured. According to the frontend application
the touch of a ChartPoint, which is represented by a comment, forces a dialog to
open, which presents the comment to the user. This can be done by using an
OnTouchListener of the view element ChartView. The following code snippet
illustrates an OnTouchListener of a chart, named chartViewBG:

final ChartView chartViewBG = (ChartView)findViewById(R.id.fullScreenChart);

chartViewBG.setHitTestEnabled(true);

chartViewBG.setOnTouchListener(new OnTouchListener() {

public boolean onTouch(View v, MotionEvent event) {

switch (event.getAction()) {

case MotionEvent.ACTION_DOWN: {

int x = (int) event.getX();

int y = (int) event.getY();

3aiCharts - http://www.artfulbits.com/products/android/aicharts.aspx

106

List<Object> hitObjects = chartViewBG.hitTest(x, y);

for (Object object : hitObjects) {

if (object instanceof ChartPoint) {

ChartPoint myPoint = (ChartPoint) object;

Toast.makeText(ShowChart.this, myPoint.toString(),

Toast.LENGTH_SHORT).show();

}

}

break;

}

}

return true;

}

});

If a touch event appears, the exact x and y coordinates are fetched. Afterwards,
the code tries whether these coordinates match with a ChartPoint. At the end a
Toast-Message is presented to the user, showing a string representation of the
touched chart point.

4.6.7 Data Recording via Android Dialogs

The frontend application of the inpatient glucose management system should avoid
as much manual user input as possible. Due to this requirement the backend
should later provide interfaces to the hospital information system to receive
available patient data and measured blood glucose values. However, there is some
information, which could not be achieved automatically. For these manual inputs
the frontend application uses Android Dialogs (see chapter 3.4.2.7). A dialog is a
window that appears, while the underlying Activity loses the focus. Each dialog
can get its own layout. Due to terms of maintainability, cutomized dialogs, which
extend the AlertDialog class, provided by the Android SDK, were implemented.
Each customized dialog is responsible for recording a required data type. So, for
example the customized dialog WheelPickerDialog is loaded if a numeric value is
required. The user can set the value by sliding over the wheel, shown in figure 4.17:
Figure 4.18 illustrates another customized dialog example. ListSelectorDialog is

107

Figure 4.17: Customized AlertDialog WheelPickerDialog

Figure 4.18: Customized AlertDialog ListSelectorDialog

used if the user should select between predefined values, provided in a ListView.

4.6.8 Accessing Backend Web Services

The exchange of data between the backend and frontend components is completely
done via web services, using SOAP, in order to provide a platform independent
server logic and maintainability, according to the backend application. SOAP
(Simple Object Access Protocol) is a standarized XML based protocol for
exchanging data (Cerami (2002)). Let’s take a look how web service can be
accessed. The following SOAP request relates to the example, shown in figure 4.13.
A sample SOAP message to load a drug with the product name ’Actrapid’ looks as
follows:

108

1. <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:med="http://medication.service.glucosemanagement.prototype.reaction.eu/"

xmlns:med1="http://medication.vo.glucosemanagement.prototype.reaction.eu/">

2. <soapenv:Header/>

3. <soapenv:Body>

4. <med:loadDrugs>

5. <med:loadDrugsInVO>

6. <med1:productName>Actrapid</med1:productName>

7. </med:loadDrugsInVO>

8. </med:loadDrugs>

9. </soapenv:Body>

10. </soapenv:Envelope>

Line 4 illustrates the web service method, which was defined in the DrugService
component in figure 4.13. The method loadDrugs must get the parameter
loadDrugsInVO from the type LoadDrugsInVO, which corresponds to the modeled
value object. The value object LoadDrugsInVO has 5 optional attributes, including
productName, which can be optionally added as parameters inside the
med:loadDrugsInVO tag. If no attribute would be specified, all available drugs
would be returned by the web service.
If the server database contains of a drug with the product name ’Actrapid’, the
web service will return the following SOAP response:

1. <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

2. <soap:Body>

3. <ns2:loadDrugsResponse

xmlns="http://medication.vo.glucosemanagement.prototype.reaction.eu/"

xmlns:ns2="http://medication.service.glucosemanagement.prototype.reaction.eu/"

xmlns:ns3="http://exception.glucosemanagement.prototype.reaction.eu/"

xmlns:ns4="http://therapy.vo.glucosemanagement.prototype.reaction.eu/">

4. <ns2:LoadDrugsOutVO>

5. <drugVOs>

6. <atcCode>A10AB01</atcCode>

7. <drugType>insulin</drugType>

8. <productName>Actrapid</productName>

9. <description>Actrapid insulin</description>

10. <productCode>0000000001</productCode>

11. <insulinType>BOLUS</insulinType>

109

12. <activateDateTime>2011-02-17T00:00:00+01:00</activateDateTime>

13. <deactivated>false</deactivated>

14. </drugVOs>

15. </ns2:LoadDrugsOutVO>

16. </ns2:loadDrugsResponse>

17. </soap:Body>

18. </soap:Envelope>

Line 4 to 15 contain the value object LoadDrugsOutVO with the defined attributes
related to figure 4.13. If one more drug with the product name ’Actrapid’ would
exist, another LoadDrugsOutVO value object would be returned by the web service.

Because patient data must be handled in strict confidence, Fraunhofer Institute, as
a project partner, implements a secure Android SOAP client application, which
supports encrypted communication and mutual authentication of both
communication endpoints. The Android Frontend application uses this secure
SOAP client for sending every web service request and receiving every web service
response. Therefore a web service handler was implemented, for accessing the
secure SOAP client application, displaying a ProgressDialog, and starting a
thread, which calls the proper web service method in the background and reports
after finishing. The following code snippet should illustrate the functionality of the
web service handler:

private static SOAPServiceConnection mConn;

public static ProgressDialog progressDialog;

public static final int LOAD_DRUGS = 0;

public static final int ERROR = 99;

...

final Handler handler = new Handler() {

public void handleMessage(Message msg) {

progressDialog.dismiss();

if (msg.what == WebServiceHandler.LOAD_DRUGS) {

... //Web service was successfully executed

} else if (msg.what == WebServiceHandler.ERROR) {

... //Error appeared during the request

}

}

110

};

public void initializeWebService(Activity context, Integer method) {

currentActivity = context;

progressDialog = new ProgressDialog(currentActivity);

progressDialog.setMessage(currentActivity.getString(R.string.ts_loading));

progressDialog.show();

myMethod = method;

mConn = new SOAPServiceConnection(currentActivity, this);

try {

mConn.connect();

}

catch (SecurityException e) {

... //Error while connectiong to SOAP client application

}

}

public void onServiceUp() {

Thread checkUpdate = new Thread() {

public void run() {

Looper.prepare();

if (myMethod == WebServiceHandler.LOAD_DRUGS) {

WebServicePatientManagement ws = new WebServicePatientManagement();

if (ws.loadDrugs(mConn) == true)

handler.sendEmptyMessage(WebServiceHandler.LOAD_DRUGS);

else

handler.sendEmptyMessage(WebServiceHandler.ERROR);

} else if {

... //Other web service methods can be placed in here

}

mConn.disconnect();

}

};

checkUpdate.start();

}

Connecting to the SOAP client is done within the method
initializeWebService(Activity context, Integer method), which gets the current
Android Activity and the web service method to call as parameters. The method
starts a progress dialog to let the user know, that the application is busy. The
method onServiceUp() is called after the connection to the SOAP client was

111

established successfully. It runs a thread, which is calling the proper web service
method and is reporting about the web service result. Afterwards the
ProgressDialog is closed and depending on which web service method was required
and the result of the web service, further steps can be executed.

The web service call itself can be done, using the code snippet below:

public boolean loadDrugs(final SOAPServiceConnection mConn) {

ISOAPService srvc = mConn.getService();

ISOAPMessage soapMsg = new ISOAPMessage(SOAPConstants.SOAPVERSION.SOAP1_1);

soapMsg.getDocumentElement().setPrefix("soapenv");

soapMsg.getBody().setPrefix("soapenv");

Element body = soapMsg.getBody();

... //Build soap message for loading drug

ISOAPMessage resp = null;

try {

resp = srvc.send(<service endpoint>, null, soapMsg);

} catch (RemoteException e) {

return false;

}

... //Parse web service response

return true;

}

The SOAP message is built up using the ISOAPMessage class, provided by the
secure SOAP client and is finally sent asynchronously to the proper web service
endpoint, which waits for a web service response, using an ISOAPService object.

4.6.9 Testing the Frontend

IEC 62304 requires testing all critical components of medical device software.
Because the frontend application of the inpatient glucose management system is
only responsible for user interaction and data visualization and doesn’t provide
any critical business logic, as for example functionality, related to the decision
support for insulin dosing, it is sufficient to test the correct behavior of the
application, according to the user interface. Consequently GUI tests (see chapter

112

3.4.2.9) are performed for each implemented use case. Therefore a separate
Android test project with the following AndroidManifest was implemented:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="eu.reaction.android.test"

android:versionCode="1"

android:versionName="1.0-SNAPSHOT">

<application

android:icon="@drawable/icon"

android:label="@string/app_name">

<uses-library android:name="android.test.runner" />

</application>

<uses-permission android:name="idservice.permission.ACCESS"/>

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.RUN_INSTRUMENTATION" />

<instrumentation android:targetPackage="eu.reaction.android"

android:name="eu.reaction.android.test.GluCoManSysTestSuite" />

</manifest>

The AndroidManifest of the test application includes the permission
android.permission.RUN_INSTRUMENTATION, as well as the element
instrumentation, which specifies the target application package to test
(eu.reaction.android) and the instrumentation test runner
eu.reaction.android.test.GluCoManSysTestSuite, which extends the Android
InstrumentationTestRunner class and manages the test suite. The test application
contains of test classes, where each test class represents a group of test. Each test
class can be activated or deactivated in a TestConfig.properties file in the
application’s asset directory. The GluCoManSysTestSuite loads the
TestConfig.properties, parses its content and fill the test suite with the test classes
that should be executed by the InstrumentationTestRunner, if the proper test class
is set to true in the properties file. This is done in the overridden method
getAllTests(). Each test class extends the ActivityInstrumentationTestCase2 class,
which provides testing of Android Activities and offers a method setUp(), which
initialize the environment before each test runs as well as a method tearDown(),
which is called after each test has finished and makes sure that the environment is
cleaned up before moving to the next test. The simulation of an application’s

113

surface is done by an external library, called robotium. Robotium is a free testing
tool, which simulates touching, scrolling, clicking and other actions, belonging to
view elements of Android Activities. In order to check the correct data
representation of the frontend application a separate web service was implemented
to fill the server database with test data. This ensures that each test class gets a
known database initialization and can check if the expected data is presented
correctly on the application’s surface. The following code snippet should show the
base structure of a GUI test case class. The example shows the simplified test class
DisplayCurrentlyEnrolledPatients, with only one test method
testAmountOfDisplayedPatients(). The test case should check the correct amount
of presented patients in the list.

public class DisplayCurrentlyEnroledPatients extends

ActivityInstrumentationTestCase2<StartScreen> {

private Solo mySolo;

public DisplayCurrentlyEnroledPatients() {

super(StartScreen.class);

}

@Override

protected void setUp() throws Exception {

super.setUp();

WebServiceTestHandler ws = new WebServiceTestHandler();

ws.initializeTestSetup(getActivity(),

WebServiceTestHandler.DISPLAY_PATIENTS_GMS_TESTCASE); mySolo = new

Solo(getInstrumentation(), getActivity());

mySolo.clickOnButton(getActivity().getString(R.string.bt_login));

}

public void testAmountOfDisplayedPatients() {

assertEquals(4, mySolo.getCurrentListViews().get(0).getCount());

}

@Override

protected void tearDown() {

super.tearDown();

}

}

114

Because the test class should test an Android Activity,
DisplayCurrentlyEnroledPatients extends the ActivityInstrumentationTestCase2
class. The parameter StartScreen represents the name of the Activity under test.
In the constructor the super constructor is called to tell the environment what
Android Activity should be tested. In this case it is the StartScreen Activity,
because the test should start there. The setUp() method initializes the
environment before each test. It calls the web service to initialize the server
database. At the backend an implemented test case handler, which performs the
initialization, is executed, depending on the parameter, sent by the web service
request. Each test case class has its own test case handler in the backend to ensure
that the frontend test application knows what data is expected. Finally robotium
is used to click on the login button of the StartScreen Activity to start the Patient
Management of the frontend application. After the setUp() method the test
method testAmountOfDisplayedPatients() is executed. The test case checks if the
expected amount fits with the amount of currently displayed list items. After the
test finishes or an assert-failure occurs the tearDown() method is called to clean
up the environment.

115

116

5. Results

Although the frontend application of the inpatient glucose management system is
currently at the development stage, most of the identified use cases are already
implemented and positive feedback from clinical end users, who have already seen
current results, approve that we are on the right way.

Figure 5.1 presents a screenshot of the already implemented main screen with the
visualization of the most important measurement and insulin administration
parameters of the mobile inpatient glucose management application. In addition,
the figure shows the main functionalities of the application:

• Blood Glucose Measurement: Enables users to add blood glucose
measurements to the system

• Insulin Administration: suggests an insulin dose, calculated using the
identified protocol (see chapter 4.2) and finally enables users to add an
insulin administration to the system.

• Therapy adjustment: enables users to adjust the daily insulin dose.

• Patient List: Presents all currently enrolled patients at the user’s ward.

• Open Tasks: reminds users of the system to perform recommended tasks.

• Logout: Logs the user out of the glucose management system.

• Glucose Table: presents the therapy values of the patient in tabular form.

• Therapy: Enables users to adjust therapy parameters

117

Figure 5.1: Main screen of the glucose management of virtual patient ’Bern-
hard Höll’

• Full Screen (Image Button): presents the visualization of the therapy
values in scrollable and zoomable full screen mode.

At the moment the Android application has the following, entirely or almost
completed features:

• Displaying (enrolled) patients at ward, including filter/sorting functionality.

• Enrolment of patient for Glucose Management System.

• Stop/Update Enrloment of enrolled patient.

• Initialization of Basal/Bolus therapy.

• Manual adjustment of Basal/Bolus therapy.

• Manual adjustment of non-supported therapy.

• Visualization of therapy values of patient in charts and in tables.

• Daily therapy adjustment (daily dose adjustment).

• (Manually) Adding a BG measurement to a patient.

• Adding an insulin administration to a patient, who is assigned to the
basal-bolus regimen.

118

• Providing full screen mode to view therapy values, including scrolling and
zooming functionality.

The following chapters should exemplarily present the current results of the
frontend application. Selected use cases and their implementation, are illustrated
in activity diagrams and screenshots finally demonstrate the actual results of the
implemented user interface. It should be noted that all patients, shown by the
screenshots, are just virtual patients and do not have any known diabetes history.

5.1 Displaying (enrolled) Patients at Ward, In-

cluding Filter/Sorting Functionality

User Case

Every user is assigned to one ward. After the login the user can see all patients of
the suitable ward, who are already enrolled. Optionally the user can also view a
list of all patients of the ward. Already enrolled patients are highlighted green in
this list. In both lists, the patients are ordered by their room and bed number for
default. Optionally the user can sort the patient lists by their names.
Furthermore, it is possible to filter the patient lists by room number. Therefore
the user has to select rooms, available at the ward to be filtered.
Results

According to figure 5.2, the application is started with the StartScreen Activity,
which contains a login button. At the moment there is no User Management
implemented, so this is just a dummy login where a virtual physician at the ward
’Endocrinology’ is automatically logged in. To display the patients at ward the
web service PatientsService using the method findPatients with the unique
identifier of the ward (wardID), the user is assigned to, is called. The web service
method returns a list of the current patients to the proper ward. The
WebServiceHandler starts the TabActivity PatientManagement, which manages
two child tabs, PatientsWithGM and PatientsAtWard. After the login, the
ListActivity PatientsWithGM is presented to the user, which contains a list where

119

Figure 5.2: Android implementation - Displaying (enrolled) patients at ward,
including filter/sorting functionality

120

Figure 5.3: Screenshot - Patients at ward, sorted by name

the patients at ward, which are currently enrolled are presented. The other tab
includes the ListActivity PatientsAtWard, where all patients at ward are displayed.
To mark currently enrolled patients a CustomizedListAdapter
ListAdapterPatientsAtWard was implemented, which checks for each list item if
the associated patient is enrolled. Beside the tab navigation, PatientManagement
owns a ’Sort By Name’ and a ’Filter by Room’ button. The button ’Sort By
Name’ changes the sorting of the items of the proper list adapter, firstly by their
second name and secondly by their first name. The button ’Filter By Room’ calls
the method loadRooms of the web service FacilityService to get available rooms at
ward. These rooms are presented to the user, using a standard Android
AlertDialog. Finally the list items of both list adapters are filtered by the selected
rooms. Figure 5.3 presents a screenshot of the frontend application, presenting all
patients at the ward ’Endocrinology’ in a scrollable list, sorted by their name.

5.2 Enrolment of Patient for Glucose Manage-

ment System

User Case

To perform an enrolment, a currently not enrolled patient has to be selected in the

121

Figure 5.4: Android implementation - Enrolment of patient for Glucose Man-
agement System

list, which displays all patients at ward. Afterwards the user has to define the
diabetes type and the weight as mandatory enrolment parameters. Optionally the
user should be able to set the patient’s height and to specify the pretherapy of the
patient. Undefined mandatory parameters are marked with a red exclamation
point; optional parameters are marked with an orange cross. Already defined
parameters should be marked with a green tick. Without defining the mandatory
parameters a patient cannot be enrolled.
Results

According to figure 5.4, there are two options to enrol a patient for glucose
management. Therefore a patient can be enrolled by touching or long-touching on
a list item which contains of a currently not enrolled patient. For the
long-touching option, the context menu SelectOperation is used. A

122

Figure 5.5: Screenshot - Activity to perform enrolment

ContextMenuListener of the ListView waits for a long-touch event to build up the
context menu. The context menu is defined dynamically in the Java code, because
the menu items differ depending on the enrolment status of the long-touched
patient. If the selected patient is currently not enrolled the context menu only
contains of 1 list item to enrol the patient for Glucose Management. If the selected
patient is currently enrolled the user can select between starting the Glucose
Management, stopping the enrolment or updating the enrolment in the context
menu. According to the aim to avoid long-touch (or long-click) events (see chapter
4.6.5), in this particular use case it was desired by the end users to use a
long-touch event. According to the enrolment of a patient most of the work is done
by the ListActivity PatientEnrolment, which presents some details of the patient,
such as the name, age, admission date, etc. which were received through the
method loadPatientEnrolment of the web service PatientService. The received
details of the patient were represented by Android TextViews. Additionally
PatientEnrolment includes a ListView, to handle enrolment parameters. The
customized list adapter ListAdapterPatientEnrolment manages the list items and
their formatting. PatientEnrolment automatically requires the user to define the
mandatory parameters by showing the proper customized dialogs. If all mandatory
data is defined, the method enrolPatient of the web service EnrolmentService is
requested to finish the enrolment. Figure 5.5 shows the surface of the implemented
Activity PatientEnrolment.

123

5.3 Initialization of Basal-Bolus Therapy

User Case

After finishing the enrolment the user is asked to select between the basal-bolus
regimen and the non-supported therapy (the patient is assigned to the
non-supported therapy by default). After selecting the basal-bolus regimen the
user is required to order exactly one basal and one bolus insulin for the proper
patient. Afterwards the user is required to order an initial daily insulin dose. Only
after these two mandatory parameters have been defined, the user is assigned to
the basal-bolus regimen. The initialization of the basal-bolus regimen must not be
performed after the enrolment. It can also be performed at any time thereafter. A
symbol in the patient details indicates that the decision support service is enabled.
Results

After the enrolment the GMMainscreen Activity is started which shows the
ListActivity NonSupportedRegimenTherapySettings in the background and the
dialog to select the therapy regimen in the foreground, using a ListSelectorDialog,
where the non-supported regimen is marked by default. If the regimen is changed
to the basal-bolus therapy the content of the current tab is changed to the
ListActivity BasalBolusRegimenTherapySettings, which is presented in the
background. In the foreground the dialog to order basal and bolus insulin is shown
(SelectBasalBolusInsulinDialog), which only accepts the ordering of exactly one
bolus and one basal insulin. Afterwards the dialog is dismissed and the dialog to
order the initial daily insulin dose is displayed (DailyInsulinDoseDialog), where the
user can manually set the initial daily dose or optionally use the decision support,
which calculates the initial daily dose based on the identified protocol (see chapter
4.2), using the CalcDailyInsulinDoseDialog. After finishing the therapy
initialization the list adapter ListAdapterTherapySetting and the patient details are
updated and the web service TherapyService stores the changes to the backend.
Before the therapy initialization is started, the current therapy settings are backed
up, in order to restore them if the initialization is aborted or errors during the
initialization occur.

124

Figure 5.6: Android implementation - Initialization of Basal-Bolus therapy

125

Figure 5.7: Screenshot - Finished basal-bolus therapy initialization

Figure 5.7 illustrates the finished basal-bolus therapy initialization after the
enrolment of the virtual patient ’Höll’.

5.4 Adding an Insulin Administration to a Pa-

tient, who is Assigned to the Basal-Bolus Reg-

imen

User Case

An insulin administartion of a patient, who is assigned to the basal-bolus regimen
requires that a blood glucose measurement has been performed within the last 30
minutes. Otherwise the user should be asked to perform a blood glucose
measurement first. In case an actual blood glucose value is available the user
should get a suggestion, according to the basal and bolus insulin dosage. The user
should be able to adjust both the bolus dose and the basal dose. Finally the user
has to approve the specified insulin administration and a message is presented
which prompts the user to perform the approved insulin administration.
Results

126

Figure 5.8: Android Implementation - Adding an insulin administration to a
patient, who is assigned to the basal-bolus regimen

127

Figure 5.9: Screenshot - Insulin Administration with insulin suggestion

According to figure 5.8 the insulin administration is started by touching the button
’Insulin Administration’. Afterwards the application checks if a blood glucose value
is available within the last 30 minutes. If no actual blood glucose value is available
the user is prompted to perform a blood glucose measurement. Otherwise a dialog
is presented to the user, to specify if a meal is intended using a YesNoDialog.
Based on the actual blood glucose value and the information about the meal, a
webservice request is executed to get a suggestion about the bolus and basal
insulin dosage. At the moment this web service does not exist, so the suggestion is
simulated by the WebServiceHandler, which afterwards changes the content of the
’Therapy’ tab to the BasalBolusInsulinAdministration Activity.
BasalBolusInsulinAdministartion contains of some information about the
associated blood glucose measurement, as well as the current daily insulin dose
and presents the calculated suggestion about the basal and bolus insulin dosages
to the user. The user can adjust and has to approve the dosages. During
performing an insulin administration adjustment, the user can switch between the
tab navigation to view the patient’s course of therapy. Finally a MessageDialog
displays a summary of the defined insulin administration to the user.

Figure 5.9 illustrates the BasalBolusInsulinAdministartion Activity with the
calculated suggestions about the basal and bolus insulin dosage.

128

6. Summary and Lessons Learned

This master thesis illustrated the design and development process of a
safety-critical mobile Android application in order to support the current paper
based glucose management of patients with diabetes at the University Hospital in
Graz. Because an integrated decision support service for insulin dosing can
influence physicians and nurses in their medical decisions, the mobile glucose
management system falls within the scope of the medical device directive and
therefore a set of additional requirements have to be considered during the
development process.
One important requirement in the context of medical device software is the
usability of the end product in order to avoid critical situations that can harm
patients or user. Therefore we followed a user-centered design process, in which
end-users have been involved in every step of the design phase. Our experiences
through the first and the second iteration, presented in this master thesis, show
that engineers and clinicians have very different points of view concerning software.
While engineers often focus on gathering as much and as complex functionality as
possible, clinicians mostly prefer software which offers only the required base
functionality. For clinicians a well sophisticated user interface, which is tailored to
current workflow patterns, is most desired. A problem, which we encountered
during collecting first base requirements, was that even end-users do not exactly
know what functions should be provided by the targeted software. Consequently
we used prototypes as triggers in each iteration step to give clinicians a
preliminary idea of how an inpatient glucose management system could look like.
After presenting the prototypes in an evaluation phase, end-users were able to give
clear ideas of their requirements for a mobile glucose management system.

129

The whole development process was accompanied by a risk management.
Especially in the risk identification and risk evaluation it is important to have an
interdisciplinary team in order to gather all possible risks, including medical risks,
software risks, hardware risks, misuse risks, etc.
Based on experiences and requirements, which were collected during the
requirement analysis, we decided to use an Android application as a user interface
for the mobile glucose management system. As a frontend device the Samsung
Galaxy Tab was chosen. Android was primarily designed for private use, which has
continuously provided us with new challenges. The Android framework provides a
wide range of available libraries but for example we missed sufficient security
components that allow secure transfer of patient data via web services.
Consequently Fraunhofer Institute, as a project partner is currently implementing
a secure Android SOAP client which supports encrypted communication and
mutual authentication.
Another risk criterion is that the device on which the software runs should only be
utilized for the intended use. Otherwise, for example changed device settings, can
lead to undesirable effects. At the Android Market, applications are available,
which can lock the access to installed applications on the device, so that targeted
applications can only be accessed by using a pin code.
However, while overcoming the various limitations on available libraries, Android
offers powerful testing tools, which allow producing high level validation and
verification tests for applications, which is one of the most important conditions
for medical device software.

130

7. Future Work

At the moment the protocol which is responsible for the application’s decision
support for insulin dosing is verified in a clinical trial at the department of
Endocrinology and Cardiology at the Medical University Hospital in Graz.
Therefore the protocols were submitted to the Ethics Commission, where they
were approved. In summer 2012 the inpatient glucose management system should
be verified in clinical trials too. Beside the implementation of the outstanding use
cases, the completed software must meet all requirements of the medical device
directives, in order to pass the request to the Ethics Commission. Therefore a
quality management is currently built up which should prescribe the software
development process more accurately. Furthermore the quality management
should specify how to deal with change requests, if one or more requirements have
changed.
In November 2011 further usability tests with at least 10 participants, including
physicians and nurses, are planned.
According to traceability, another crucial requirement is to implement a secure
User Management. Therefore each user has to login with a username and a
password. It is planned that each user must have an own user certificate, stored on
the device in order to login.
The user interface was designed to support the current clinical workflow at the
analyzed ward. However, each ward in each hospital usually follows its own
workflow. Therefore, great attention will be placed in the maintainability of the
user interface. For example, it is planned to implement a configurable workflow
engine component for handling application sequences based on workflow patterns.
Testing all of the application‘s functionality is one of the base requirement,

131

according to the medical device directives. This includes a detailed documentation
of the test cases or rather of the test results. At the moment the documentation is
done manually, in future versions it is planned to automatically produce a
reporting document, by running the instrumentation tests.

It’s still a long way, that the mobile inpatient glucose management system
becomes a medical device which is steadily used in the inpatient environment.
However, positive feedback of nurses and physicians make us confident.

132

List of Figures

1.1 Architecture of the REACTION Platform (REACTION (2011)) . . . 21

2.1 User interface of the Diabeo tool 1 23

3.1 Importance and criticality of software in medical environment (Feld-
mann et al. (2007)) . 28

3.2 Overview of software development process and activities (Box num-
bers correspond to clauses of IEC 62304) (OVE/ON (2007)) 31

3.3 Overview of risk management process, according to ISO 14971 (ISO
(2007)) . 35

3.4 Usability evaluation techniques according to Holzinger (Holzinger (2005)) 39

3.5 General Android system architecture (Kuzmanovic et al. (2010)) . . . 48

3.6 Android testing framework (Android-Developer-Guide (2011)) 56

3.7 Tranformation from PIM to source code Schulz (2005) 59

3.8 Layers supported by AndroMDA (Bohlen et al. (2011)) 60

4.1 Requirement engineering process (Höll et al. (2011b,a)) 63

4.2 Inpatient daily routine . 65

133

4.3 Workflow of the inpatient diabetes treatment 66

4.4 Improved RABBIT2 protocol for insulin dosing 69

4.5 Miocrosoft Excel prototype . 73

4.6 Decision support in the Microsoft Excel prototype 74

4.7 Identified use cases during the second target analysis 80

4.8 Mock-up of the main screen of the glucose management 83

4.9 Acceptance of risks . 87

4.10 Requirement engineering process . 89

4.11 UML modelled entity ’Patient’ . 91

4.12 Modelling enumerations . 92

4.13 UML modelled web service ’loadDrugs’ 94

4.14 Part 1 of the data model . 98

4.15 Part 2 of the entity model . 100

4.16 Samsung Galaxy Tab (Niederschmid (2010)) 103

4.17 Customized AlertDialog WheelPickerDialog 108

4.18 Customized AlertDialog ListSelectorDialog 108

5.1 Main screen of the glucose management of virtual patient ’Bernhard
Höll’ . 118

5.2 Android implementation - Displaying (enrolled) patients at ward, in-
cluding filter/sorting functionality . 120

5.3 Screenshot - Patients at ward, sorted by name 121

134

5.4 Android implementation - Enrolment of patient for Glucose Manage-
ment System . 122

5.5 Screenshot - Activity to perform enrolment 123

5.6 Android implementation - Initialization of Basal-Bolus therapy 125

5.7 Screenshot - Finished basal-bolus therapy initialization 126

5.8 Android Implementation - Adding an insulin administration to a pa-
tient, who is assigned to the basal-bolus regimen 127

5.9 Screenshot - Insulin Administration with insulin suggestion 128

135

136

List of Tables

4.1 Results of first target analysis . 70

4.2 Criteria for risk consequences . 87

4.3 Criteria for risk probability (per patient) 87

137

138

References

Abras, C., D. Maloney-Krichmar, and J. Preece [2001]. User-Centered Design,
pages 763–768. unknown.

Amarasingham, R., L. Plantinga, M. Diener-West, D.J. Gaskin, and N.R. Powe
[2009]. Clinical Information Technologies and Inpatient Outcomes: A Multiple
Hospital Study. Archives of internal medicine, 169(2), pages 108–114.
doi:10.1001/archinternmed.2008.520.
http://www.ncbi.nlm.nih.gov/pubmed/19171805.

Android-Developer-Guide [2011]. The Developer’s Guide.
http://developer.android.com/guide/index.html. Last access 07/2011.

Becker, A. and M. Pant [2010]. Android 2: Grundlagen und Programmierung.
Dpunkt Verlag. ISBN 3898646777. http://books.google.com/books/about/

Android_2.html?hl=de&id=aUkSRQAACAAJ.

Bohlen, M., C. Brandon, and W. Zoons [2011]. AndroMDA.
http://www.andromda.org/. Last access 07/2011.

Budde, R. and H. Zullighoven [1990]. Prototyping revisited. In Proceedings of the
1990 IEEE International Conference on Computer Systems and Software
Engineering, pages 418–427. ISBN 0-8186-2041-2.
doi:10.1109/CMPEUR.1990.113653.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=113653.

CEN [2009]. ISO 13485 Medical Devices: Quality management systems:
Requirements for regulatory purposes.

139

http://www.ncbi.nlm.nih.gov/pubmed/19171805
http://developer.android.com/guide/index.html
http://books.google.com/books/about/Android_2.html?hl=de&id=aUkSRQAACAAJ
http://books.google.com/books/about/Android_2.html?hl=de&id=aUkSRQAACAAJ
http://www.andromda.org/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=113653

CENELEC [2008]. EN 62366 Medical devices: Application of usability engineering
to medical device.

Cerami, E. [2002]. Web services essentials. O’Reilly. ISBN 9780596002244.
http://books.google.com/books?id=j-YOMIoLXWYC.

Charpentier, G., P. Benhamou, D. Dardari, A. Clergeot, S. Franc,
P. Schaepelynck-Belicar, B. Catargi, V. Melki, L. Chaillous, A. Farret,
J. Bosson, and A. Penfornis [2011]. The Diabeo Software Enabling Individualized
Insulin Dose Adjustments Combined With Telemedicine Support Improves
HbA1c in Poorly Controlled Type 1 Diabetic Patients: A 6-month, randomized,
open-label, parallel-group, multicenter trial. Diabetes Care, 34(3), pages 533–539.
doi:10.2337/dc10-1259.
http://care.diabetesjournals.org/content/34/3/533.

Chen, J., S. Su, and C. Chang [2010]. Diabetes care decision support system. In
2010 2nd International Conference on Industrial and Information Systems,
pages 323–326. ISBN 978-1-4244-7860-6. doi:10.1109/INDUSIS.2010.5565846.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5565846.

Clement, S., S.S. Braithwaite, M.F. Magee, A. Ahmann, E.P. Smith, R.G. Schafer,
and I.B. Hirsch [2004]. Management of diabetes and hyperglycemia in hospitals.
Diabetes Care, 27(2), pages 553–591.
http://www.ncbi.nlm.nih.gov/pubmed/14747243.

Feldmann, R.L, F. Shull, C. Denger, M. Host, and C. Lindholm [2007]. A Survey
of Software Engineering Techniques in Medical Device Development. In High
Confidence Medical Devices, Software, and Systems and Medical Device
Plug-and-Play Interoperability, pages 46–54. ISBN 978-0-7695-3081-9.
doi:10.1109/HCMDSS-MDPnP.2007.4.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4438163.

Flasnoecker, M. [1999]. Thiemes Innere Medizin. Thieme, Stuttgard. ISBN
3131123613.

Fowler, M. and K. Scott [1999]. UML Distilled: A Brief Guide to the Standard

140

http://books.google.com/books?id=j-YOMIoLXWYC
http://care.diabetesjournals.org/content/34/3/533
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5565846
http://www.ncbi.nlm.nih.gov/pubmed/14747243
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4438163

Object Modeling Language (2nd Edition). Addison-Wesley Professional. ISBN
0-201-65783-X.

Friesen, J. and D. Smith [2011]. Android Recipes: A Problem-Solution Approach.
Apress Series, Apress. ISBN 9781430234135.
http://books.google.com/books?id=mJdDp9GuhSQC.

Gartner [2011]. Gartner Outlines 10 Mobile Technologies to Watch in 2010 and
2011. http://www.gartner.com/it/page.jsp?id=1328113. Last access
05/2011.

GitHub [2011]. android-archetypes.
https://github.com/akquinet/android-archetypes. Last access 07/2011.

Hall, K. [2010]. Developing Medical Device Software to IEC 62304. http://www.

emdt.co.uk/article/developing-medical-device-software-iso-62304.
Last access 07/2011.

Hameed, K. [2003]. The application of mobile computing and technology to health
care services. Telemat. Inf., 20, pages 99–106. ISSN 0736-5853.
doi:10.1016/S0736-5853(02)00018-7.
http://portal.acm.org/citation.cfm?id=766754.766755.

Haywood, A. and G. Boguslawski [2009]. I Love My iPhone ... But There Are
Certain Things That Niggle Me. In Human-Computer Interaction. New Trends,
volume 5610, pages 421–430. Springer Berlin / Heidelberg.
http://dx.doi.org/10.1007/978-3-642-02574-7_47.

Höll, B., S. Spat, J. Plank, L. Schaupp, K. Neubauer, P. Beck, F. Chiarugi,
V. Kontogiannis, T.R. Pieber, and A. Holzinger [2011a]. Design of a mobile,
safety-critical in-patient Glucose Management System. In Proceedings of MIE
2011, page unknown. ISBN unknown. doi:unknown. unknown.

Höll, B., S. Spat, J. Plank, L. Schaupp, K. Neubauer, P. Beck, T.R. Pieber, and
A. Holzinger [2011b]. Design einer mobilen Anwendung für das stationäre
Glukosemanagement. In Proceedings of EHealth 2011, page unknown. ISBN
unknown. doi:unknown. unknown.

141

http://books.google.com/books?id=mJdDp9GuhSQC
http://www.gartner.com/it/page.jsp?id=1328113
https://github.com/akquinet/android-archetypes
http://www.emdt.co.uk/article/developing-medical-device-software-iso-62304
http://www.emdt.co.uk/article/developing-medical-device-software-iso-62304
http://portal.acm.org/citation.cfm?id=766754.766755
http://dx.doi.org/10.1007/978-3-642-02574-7_47
unknown
unknown

Holzinger, A. [2005]. Usability Engineering for Software Developers.
Communications of the ACM, 48(1), pages 71–74.

Holzinger, A. and M. Errath [2007]. Mobile computer Web-application design in
medicine: some research based guidelines. Univers. Access Inf. Soc., 6, pages
31–41. ISSN 1615-5289. doi:10.1007/s10209-007-0074-z.
http://portal.acm.org/citation.cfm?id=1283708.1283718.

Holzinger, A., M. Hoeller, M. Bloice, and B. Urlesberger [2008]. Typical Problems
with developing mobile applications for health care: Some lessons learned from
developing user-centered mobile applications in a hospital environment, pages
235–240. IEEE.

ISO [2007]. ISO 14971 Medical Devices: Application of risk management to
medical devices.

Koomen, T. and M. Pol [1999]. Test Process Improvement: A Practical
Step-by-Step Guide to Structured Testing. Addison-Wesley Professional. ISBN
0201596245. http:

//www.amazon.com/Test-Process-Improvement-step-step/dp/0201596245.

Korytkowski, M.T., R.J. Salata, G.L. Koerbel, F. Selzer, E. Karslioglu, A.M.
Idriss, K. Lee, A.J. Moser, and F.G.S. Toledo [2009]. Insulin therapy and
glycemic control in hospitalized patients with diabetes during enteral nutrition
therapy: a randomized controlled clinical trial. Diabetes Care., 32, pages
594–596. doi:10.2337/dc08-1436.
http://care.diabetesjournals.org/content/32/4/594.full.pdf.

Kuebeck, S. [2009]. Software-sanierung: Weiterentwicklung, Testen und Refatoring
bestehender Software. mitp-Verlag. ISBN 9783826650727.
http://books.google.com/books?id=TjsIEq6U_f4C.

Kuzmanovic, N., T. Maruna, M. Savic, G. Miljkovic, and D. Isailovic [2010].
Google’s android as an application environment for DTV decoder system. In
Consumer Electronics (ISCE), pages 1–5. ISBN 0-7803-4184-8.
doi:10.1109/ISCE.2010.5523724.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5522728.

142

http://portal.acm.org/citation.cfm?id=1283708.1283718
http://www.amazon.com/Test-Process-Improvement-step-step/dp/0201596245
http://www.amazon.com/Test-Process-Improvement-step-step/dp/0201596245
http://care.diabetesjournals.org/content/32/4/594.full.pdf
http://books.google.com/books?id=TjsIEq6U_f4C
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5522728

Lau, T. [1997]. Toward a user-centered web design: lessons learned from user
feedback. In Proceedings of the Proffessional Communication Conference 1997,
pages 149–153. ISBN 0-7803-4184-8. doi:10.1109/IPCC.1997.637042.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=637042.

Mackinnon, T., S. Freeman, and P. Craig [2001]. Endo-Testing : Unit Testing with
Mock Objects. Most, page 287301. http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.23.3214&rep=rep1&type=pdf.

Mann, E.A., J.A. Jones, S.E. Wolf, and C.E. Wade [2009]. Computer Decision
Support Software (EndoTool) Safely Improves Glycemic Control in the Burn
Intensive Care Unit.
https://ccc.amedd.army.mil/conferences/2009/posters/CT5.pdf.

Moghissi, E.S., M.T. Korytkowski, M. Dinardo, D. Einhorn, R. Hellman, I.B.
Hirsch, S.E. Inzucchi, F. Ismail-Beigi, M.S. Kirkman, and G.E. Umpierrez
[2009]. American Association of Clinical Endocrinologists and American
Diabetes Association Consensus Statement on Inpatient Glycemic Control.
Diabetes Care, 32(6), pages 1119–1130. doi:10.2337/dc09-9029.
http://care.diabetesjournals.org/content/32/6/1119.full.pdf.

Mosemann, H. and M. Kose [2009]. Android: Anwendungen fr das
Handy-Betriebssystem erfolgreich programmieren. Carl Hanser Verlag. ISBN
3446417281. http://www.amazon.de/

Android-Anwendungen-Handy-Betriebssystem-erfolgreich-programmieren/

dp/3446417281.

Niederschmid, B. [2010]. Samsung Galaxy Tab GT-P1000: Backblech mit
Potenzial. http://www.androidapptests.com/

samsung-galaxy-tab-gt-p1000-backblech-mit-potenzial.html. Last access
07/2011.

Nuseibeh, B. and S. Easterbrook [2000]. Requirements engineering: a roadmap. In
Proceedings of the Conference on The Future of Software Engineering, pages
35–46. ISBN 1-58113-253-0. doi:10.1145/336512.336523.
http://delivery.acm.org/10.1145/340000/336523/p35-nuseibeh.pdf?

143

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=637042
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.3214&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.3214&rep=rep1&type=pdf
https://ccc.amedd.army.mil/conferences/2009/posters/CT5.pdf
http://care.diabetesjournals.org/content/32/6/1119.full.pdf
http://www.amazon.de/Android-Anwendungen-Handy-Betriebssystem-erfolgreich-programmieren/dp/3446417281
http://www.amazon.de/Android-Anwendungen-Handy-Betriebssystem-erfolgreich-programmieren/dp/3446417281
http://www.amazon.de/Android-Anwendungen-Handy-Betriebssystem-erfolgreich-programmieren/dp/3446417281
http://www.androidapptests.com/samsung-galaxy-tab-gt-p1000-backblech-mit-potenzial.html
http://www.androidapptests.com/samsung-galaxy-tab-gt-p1000-backblech-mit-potenzial.html
http://delivery.acm.org/10.1145/340000/336523/p35-nuseibeh.pdf?key1=336523&key2=8726584031&coll=DL&dl=ACM&ip=129.27.12.54&CFID=19851822&CFTOKEN=96166632
http://delivery.acm.org/10.1145/340000/336523/p35-nuseibeh.pdf?key1=336523&key2=8726584031&coll=DL&dl=ACM&ip=129.27.12.54&CFID=19851822&CFTOKEN=96166632

key1=336523&key2=8726584031&coll=DL&dl=ACM&ip=129.27.12.54&CFID=

19851822&CFTOKEN=96166632.

OVE/ON [2007]. EN 62304 Medizingeraete-Software:
Software-Lebenszyklus-Prozesse.

Pandey, D., U. Suman, and A.K. Ramani [2010]. An Effective Requirement
Engineering Process Model for Software Development and Requirements
Management. In 2010 International Conference on Advances in Recent
Technologies in Communication and Computing, pages 287–291. ISBN
978-1-4244-8093-7. doi:10.1109/ARTCom.2010.24.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05656776.

Paul, K. and T.K. Kundu [2010]. Android on Mobile Devices: An Energy
Perspective. Computer and Information Technology, International Conference
on, 0, pages 2421–2426.
doi:http://doi.ieeecomputersociety.org/10.1109/CIT.2010.416.

Preuveneers, D. and Y. Berbers [2008]. Mobile phones assisting with health
self-care: a diabetes case study. In Proceedings of the 10th Conference on
Human-Computer Interaction with Mobile Devices and Services, Mobile HCI
2008,, pages 177–186. ACM International Conference Proceeding Series.
doi:http://doi.acm.org/10.1145/1409240.1409260.
https://lirias.kuleuven.be/handle/123456789/229978.

REACTION [2011]. This is the REACTION project.
http://www.reactionproject.eu. Last access 05/2011.

Roy, G.G. [2004]. A risk management framework for software engineering practice.
In Proceedings of the 2004 Australian Software Engineering Conference, page 60.
ISBN 0-7695-2089-8. doi:10.1109/ASWEC.2004.1290458.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1290458.

Runeson, P. [2006]. A Survey of Unit Testing Practices. IEEE Softw., 23, pages
22–29. ISSN 0740-7459. doi:10.1109/MS.2006.91.
http://portal.acm.org/citation.cfm?id=1159169.1159387.

Schulz, D. [2005]. MDA-Frameworks: AndroMDA.

144

http://delivery.acm.org/10.1145/340000/336523/p35-nuseibeh.pdf?key1=336523&key2=8726584031&coll=DL&dl=ACM&ip=129.27.12.54&CFID=19851822&CFTOKEN=96166632
http://delivery.acm.org/10.1145/340000/336523/p35-nuseibeh.pdf?key1=336523&key2=8726584031&coll=DL&dl=ACM&ip=129.27.12.54&CFID=19851822&CFTOKEN=96166632
http://delivery.acm.org/10.1145/340000/336523/p35-nuseibeh.pdf?key1=336523&key2=8726584031&coll=DL&dl=ACM&ip=129.27.12.54&CFID=19851822&CFTOKEN=96166632
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05656776
https://lirias.kuleuven.be/handle/123456789/229978
http://www.reactionproject.eu
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1290458
http://portal.acm.org/citation.cfm?id=1159169.1159387

Smart, J.F. [2008]. Java Power Tools. O’Reilly Media. ISBN 0596527934. http:

//www.amazon.com/Java-Power-Tools-Ferguson-Smart/dp/0596527934.

Svanaes, D., O.A. Alsos, and Y. Dahl [2010]. Usability testing of mobile ICT for
clinical settings: Methodological and practical challenges. . International Journal
of Medical Informatics, 79, pages 24–34. http://www.sciencedirect.com/

science?_ob=MImg&_imagekey=B6T7S-4TF07W3-2-1&_cdi=5066&_user=

464374&_pii=S138650560800110X&_origin=gateway&_coverDate=04%2F30%

2F2010&_sk=999209995&view=c&wchp=dGLbVlz-zSkzk&md5=

fa12d75864675b17ff43dd9124a6f54c&ie=/sdarticle.pdf.

Thompson, C., J. White, B. Dougherty, and C.D. Schmidt [2009]. Optimizing
Mobile Application Performance with Model Driven Engineering. In Proceedings
of the 7th IFIP WG 10.2 International Workshop on Software Technologies for
Embedded and Ubiquitous Systems, pages 36–46. Springer-Verlag. ISBN
978-3-642-10264-6. doi:http://dx.doi.org/10.1007/978-3-642-10265-3_4.
http://portal.acm.org/citation.cfm?id=1694300.

Umpierrez, G.E., T. Hor, D. Smiley, A. Temponi, D. Umpierrez, M. Ceron,
C. Munoz, C. Newton, L. Peng, and D. Baldwin [2009]. Comparison of inpatient
insulin regimens with detemir plus aspart versus neutral protamine hagedorn plus
regular in medical patients with type 2 diabetes. The Journal of clinical
endocrinology and metabolism, 94(2), pages 564–569. doi:10.1210/jc.2008-1441.
http://jcem.endojournals.org/cgi/reprint/94/2/564.

Umpierrez, G.E., D. Smiley, A. Zismann, L.M. Prieto, A. Palacio, M. Ceron,
A. Puig, and R.Mejia [2007]. Randomized Study of Basal-Bolus Insulin Therapy
in the Inpatient Management of Patients With Type 2 Diabetes. Diabetes Care,
30(9), pages 2181–2186. doi:10.2337/dc07-0295.Clinical.
http://care.diabetesjournals.org/content/30/9/2181.full.pdf.

USDepartment [2011]. National Diabetes Statistics, 2011.
http://diabetes.niddk.nih.gov/dm/pubs/statistics/. Last access 05/2011.

Wallace, D.R. and D.R. Kuhn [2001]. Failure Modes in Medical Device Software:
an Analysis of 15 Years of Recall Data. In ACS/ IEEE International Conference

145

http://www.amazon.com/Java-Power-Tools-Ferguson-Smart/dp/0596527934
http://www.amazon.com/Java-Power-Tools-Ferguson-Smart/dp/0596527934
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T7S-4TF07W3-2-1&_cdi=5066&_user=464374&_pii=S138650560800110X&_origin=gateway&_coverDate=04%2F30%2F2010&_sk=999209995&view=c&wchp=dGLbVlz-zSkzk&md5=fa12d75864675b17ff43dd9124a6f54c&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T7S-4TF07W3-2-1&_cdi=5066&_user=464374&_pii=S138650560800110X&_origin=gateway&_coverDate=04%2F30%2F2010&_sk=999209995&view=c&wchp=dGLbVlz-zSkzk&md5=fa12d75864675b17ff43dd9124a6f54c&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T7S-4TF07W3-2-1&_cdi=5066&_user=464374&_pii=S138650560800110X&_origin=gateway&_coverDate=04%2F30%2F2010&_sk=999209995&view=c&wchp=dGLbVlz-zSkzk&md5=fa12d75864675b17ff43dd9124a6f54c&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T7S-4TF07W3-2-1&_cdi=5066&_user=464374&_pii=S138650560800110X&_origin=gateway&_coverDate=04%2F30%2F2010&_sk=999209995&view=c&wchp=dGLbVlz-zSkzk&md5=fa12d75864675b17ff43dd9124a6f54c&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T7S-4TF07W3-2-1&_cdi=5066&_user=464374&_pii=S138650560800110X&_origin=gateway&_coverDate=04%2F30%2F2010&_sk=999209995&view=c&wchp=dGLbVlz-zSkzk&md5=fa12d75864675b17ff43dd9124a6f54c&ie=/sdarticle.pdf
http://portal.acm.org/citation.cfm?id=1694300
http://jcem.endojournals.org/cgi/reprint/94/2/564
http://care.diabetesjournals.org/content/30/9/2181.full.pdf
http://diabetes.niddk.nih.gov/dm/pubs/statistics/

on Computer Systems and Applications, pages 301–311.
http://csrc.nist.gov/groups/SNS/acts/documents/final-rqse.pdf.

Warmer, J. and A. Kleppe [2003]. The Object Constraint Language: Getting your
models ready for MDA. Addison-Wesley Professional. ISBN 0321179366.

Wimmer, M. [2005]. Model Driven Architecture in der Praxis: Evaluierung
aktueller Entwicklungswerkzeuge und Fallstudie. Master’s Thesis, TU Wien,
Austria.
http://www.big.tuwien.ac.at/system/theses/65/papers.pdf?1298559218.

Wu, J., S. Wang, and L. Lin [2007]. Mobile computing acceptance factors in the
healthcare industry: a structural equation model. International Journal of
Medical Informatics, 76, pages 66–77.
http://www.ncbi.nlm.nih.gov/pubmed/16901749.

Zambuto, R.P. [2004]. Clinical engineers in the 21st century. Engineering in
Medicine and Biology Magazine, 23(3), pages 37–41. ISSN 0739-5175.
doi:10.1109/MEMB.2004.1317980.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1317980.

146

http://csrc.nist.gov/groups/SNS/acts/documents/final-rqse.pdf
http://www.big.tuwien.ac.at/system/theses/65/papers.pdf?1298559218
http://www.ncbi.nlm.nih.gov/pubmed/16901749
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1317980

	Introduction and Motivation for Research
	Glucose Management at the General Ward
	Objectives of the REACTION Project
	Structure of Work

	Related Work
	Theoretical Background
	Medical Aspects
	Diabetes Mellitus
	Protocol for Insulin Dosing (Rabbit 2 Trial)

	Medical Device Directive (MDD) for Software
	Conditions of the Medical Device Directives for Software
	Relevant Standards for Developing Medical Device Software

	User-Centered Design Approach
	Participatory Design
	Requirement Enineering
	Human Computer Interaction on Mobile Touch Screen Devices

	Technical Materials
	Apache Maven
	The Android Operating System
	Model Driven Architecture (MDA)
	Unit Testing

	Methods
	Workflow Analysis/Current State
	Protocol for Insulin Dosing (Decision Support)
	First Iteration - User Motivation
	Target Analysis of the First Iteration
	Microsoft Excel Prototype
	Testing the Usability of the Microsoft Excel Prototype
	Results of the First Iteration

	Second Iteration - Mock-Ups
	Target Analysis of the Second Iteration
	Mock-up Story Board
	Evaluation of Mock-up Story Board and Results of Second Iteration

	Risk Management
	Risk Analysis
	Risk Evaluation
	Risk Control

	Third Iteration - Practical Implementation
	Issue Tracking with JIRA
	Development of the Backend
	Results of the Backend
	Development of the Frontend
	Design of the Android User Interface
	Visualizing Therapy Values Using aiCharts
	Data Recording via Android Dialogs
	Accessing Backend Web Services
	Testing the Frontend

	Results
	Displaying (enrolled) Patients at Ward, Including Filter/Sorting Functionality
	Enrolment of Patient for Glucose Management System
	Initialization of Basal-Bolus Therapy
	Adding an Insulin Administration to a Patient, who is Assigned to the Basal-Bolus Regimen

	Summary and Lessons Learned
	Future Work
	List of Figures
	List of Tables
	References

