
Comparing ECDSA Hardware
Implementations based on
Binary and Prime Fields

Master Thesis

Michael Mühlberghuber
m.muehlberghuber@student.tugraz.at

Institute for Applied Information
Processing and Communications
Graz University of Technology

Inffeldgasse 16a
8010 Graz, Austria

Integrated Systems Laboratory
Swiss Federal Institute
of Technology Zurich

Gloriastrasse 35
CH-8092 Zürich, Switzerland

Supervisors: Dr. Michael Hutter and Dr. Martin Feldhofer, TU Graz
Dr. Frank Gurkaynak, ETH Zürich

Assessors: Dr. Karl-Christian Posch, TU Graz
Dr. Norbert Felber, ETH Zürich

June, 2011

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have
not used other than the declared sources / resources, and that I have
explicitly marked all material which has been quoted either literally or
by content from the used sources.

date (signature)

i

Acknowledgements

I wish to thank, first and foremost, Frank Gurkaynak and Beat Muheim from the In-
tegrated Systems Laboratory at the Swiss Federal Institute of Technology in Zurich for
their support during the whole project. They spent a lot of their time helping me to
put an idea into practice, especially throughout the backend design of the implemented
hardware architecture. I also want to thank Michael Hutter for all the corrections in the
final draft of this work. Furthermore I want to thank Martin Feldhofer, because without
his help I would have never been able to do this thesis abroad, as well as my assessors
at Graz University of Technology and at the Swiss Federal Institute of Technology in
Zurich, namely Karl-Christian Posch and Norbert Felber.

And last but certainly not least, I greatly thank my parents and my girlfriend Magdalena
for their support throughout my whole study. All of you have been a constant source of
support for me during the last months and years.

ii

Abstract

Currently, the most popular and sophisticated digital signature schemes with regard to
low-resources are based on elliptic curves. This is due to the fact that Elliptic-Curve
Cryptography (ECC) requires a much shorter keylength to ensure the same level of
security than traditional public-key cryptosystems like RSA do.

The Elliptic Curve Digital Signature Algorithm (ECDSA) is one of the most popu-
lar representatives of elliptic-curve based digital signature protocols and already many
different hardware implementations of it exist. Nevertheless, comparing designs from
various developers is rather difficult, because there are many different levels of abstrac-
tion where the implementations can differ (e.g. elliptic-curve operations, finite-field
operations, applied technology). Therefore we used the same design flow to implement
two different Application Specific Integrated Circuits (ASICs), both providing digital
signature generation and verification according to ECDSA. One of them is based on a
binary field and the other one on a prime field. Both chips offer all operations required
to generate and verify a digital signature, except the Random Number Generator (RNG)
and the hash function.

The two designs have been implemented using the 150 nm technology by the LFoundry
GmbH and can be clocked with up to 100 MHz. The binary-field based design requires
about 42 kcycles for the signature generation and up to 217 kcycles for the verification
process. The prime-field based design needs approx. 563 kcycles for the signature
generation, whereas the verification requires maximal 564 kcycles.

Our investigations showed that because binary-field arithmetics are more suitable
for hardware implementations than prime-field arithmetics, using binary fields as the
underlying finite field for ECC is more appropriate. They result in a shorter runtime of
the elliptic-curve operations without exceeding a reasonable range with regard to other
resource aspects like area and power.

Keywords: Digital Signature, ECDSA, Asymmetric-Key Cryptography, Public-Key
Cryptography, Elliptic-Curve Cryptography, Full Precision.

iii

Kurzfassung

Mit dem Algorithmus für digitale Signaturen basierend auf elliptischen Kurven (ECDSA)
existiert ein sehr weit verbreiteter Standard zur Generierung und Verifikation von digi-
talen Signaturen. ECDSA wurde bereits von namhaften Institutionen standardisiert und
in der Literatur sind zahlreiche Hardware-Implementierungen von unterschiedlichen Ent-
wicklern zu finden. Vergleiche dieser Implementierungen lassen sich aufgrund der vielen
Abstraktions-Ebenen des Algorithmus und den dadurch entstehenden, unterschiedlichen
Umsetzungsmöglichkeiten (elliptische Kurven-Operationen, Körper-Arithmetik, verwen-
dete Halbleiter-Technologie, etc.) nur bedingt durchführen. Aus diesem Grund wurde
der gleiche Design-Flow zur Umsetzung von zwei anwendungsspezifischen integrierten
Schaltungen (ASICs), welche die Funktionalität des ECDSA bieten, verwendet. Einer
der beiden Chips basiert dabei auf einem Binär-Körper zur Berechnung der elliptischen
Kurven-Operationen, wohingegen der andere mit einem Prim-Körper arbeitet. Beide
Designs stellen alle, zur Signatur-Generierung und -Verifikation nach ECDSA benötig-
ten Operationen zur Verfügung, mit Ausnahme des Zufallszahlen-Generators und des
Hash-Algorithmus.

Beide Chips wurden unter Verwendung der 150 nm Technologie des Halbleiterherstel-
lers LFoundry GmbH gefertigt und können mit bis zu 100 MHz Taktfrequenz betrieben
werden. Das Binär-Körper basierte Design benötigt ungefähr 42 kcycles zur Generierung
einer digitalen Signatur sowie maximal 217 kcycles für die Verifikation. Die Prim-Körper
basierte Implementierung erstellt eine digitale Signatur in rund 563 kcycles und benötigt
bis zu 564 kcycles um ein solche zu verifizieren.

Unsere Untersuchungen zeigen, dass sich aufgrund der Tatsache, dass Binär-Körper-
Operationen einfacher und effizienter in Hardware umzusetzen sind als Prim-Körper-
Operationen, Binär-Körper besser für die Hardware-Implementierung von elliptischen
Kurven basierter Designs eigenen. Das Binär-Körper basierte Design resultiert in kürze-
ren Laufzeiten für die elliptischen Kurven-Operationen ohne dabei in Bezug auf Fläche
und verbrauchte Leistung negativ aufzufallen.

Stichwörter: Digitale Signatur, Elliptic Curve Digital Signature Algorithm (ECDSA),
Asymmetrische Kryptographie, Public-Key Kryptographie, Elliptische Kurven-Kryptographie.

iv

Contents

1. Introduction 1
1.1. Outline . 2

2. Yet Another Cryptography Introduction 4
2.1. Historical . 4
2.2. Cryptography Goals . 5
2.3. Symmetric-Key Cryptography . 5

2.3.1. Key-Distribution Problem . 6
2.4. Asymmetric-Key Cryptography . 6

2.4.1. Private/Public-Key Relationship 8
2.4.2. Integer-Factorization Problem (IFP) 8
2.4.3. Discrete Logarithm Problem (DLP) 8
2.4.4. Elliptic Curve Discrete Logarithm Problem (ECDLP) 9
2.4.5. Timeline . 10

3. Elliptic-Curve Basics 11
3.1. Levels of Abstraction . 11
3.2. Number-Theoretic Background . 12

3.2.1. Group . 12
3.2.2. Field . 13

3.3. Definition of an Elliptic Curve . 14
3.4. Elliptic-Curve Group . 15

3.4.1. Chord-and-Tangent Rule . 15
3.4.2. The Point at Infinity O . 16

3.5. Choosing Point Coordinates . 17
3.6. Underlying Field . 17

3.6.1. Binary-Field Operations . 18
3.6.2. Prime-Field Operations . 19

3.7. Point Multiplication . 20

v

Contents

4. Finite-Field Arithmetic 22
4.1. Arithmetic in F2m . 22

4.1.1. Addition and Subtraction . 24
4.1.2. Multiplication . 24
4.1.3. Squaring . 26
4.1.4. Inversion and Division . 26

4.2. Arithmetic in Fp . 27
4.2.1. Addition and Subtraction . 28
4.2.2. Multiplication . 28
4.2.3. Squaring . 31
4.2.4. Inversion and Division . 31

4.3. Applied Algorithms . 33

5. Elliptic-Curve Cryptography 34
5.1. Elliptic Curve Digital Signature Algorithm (ECDSA) 34

5.1.1. Signature Generation . 35
5.1.2. Signature Verification . 36
5.1.3. Applied NIST Standards . 37

5.2. Point Multiplication . 38
5.2.1. Naive Point-Multiplication Approach 38
5.2.2. Double-and-Add Algorithm . 39
5.2.3. Montgomery Ladder Algorithm . 39
5.2.4. X-Coordinate Only Montgomery Ladder Algorithm over F2m . . . 40
5.2.5. Comparison of Point-Multiplication Algorithms 42

5.3. Multiple Point-Multiplication . 42

6. Design Implementation 44
6.1. Introduction . 44
6.2. Design Idea / Basic Architecture . 44
6.3. Golden Model . 47
6.4. HDL Model . 48
6.5. FB163 Arithmetic Implementation . 50

6.5.1. Multiplication . 51
6.5.2. Inversion . 52

6.6. FP192 Arithmetic Implementation . 52
6.6.1. Redundant Binary-Number Representation 53
6.6.2. SD2 Modular Addition . 58
6.6.3. Combined Arithmetic . 60

6.7. Higher-Level Operations . 63
6.8. AMBA APB - Interface . 63
6.9. Verification of the HDL Model . 66
6.10. Backend Design . 67

vi

Contents

7. Results 68
7.1. Area and Timing Results . 68

7.1.1. Finite-Field Arithmetic . 69
7.1.2. ECC Arithmetic . 69
7.1.3. ECC Runtimes as a Function of Finite-Field Operations 73
7.1.4. ECDSA Protocol Level . 73

7.2. Power and Energy Consumption . 74
7.3. Critical Path . 75
7.4. Layout . 76

8. Conclusion 77
8.1. Future Work . 78

8.1.1. Simultaneous F2m Operations . 78
8.1.2. X-Coordinate Only Multiple-Point Multiplication 78
8.1.3. Multiple Clock Domains . 79
8.1.4. Simplified SD2 Addition . 79
8.1.5. Montgomery Inverse . 79

8.2. Outlook . 79

A. Algorithms 80
A.1. Extended Euclidean Algorithm . 80
A.2. Binary GCD Algorithm . 80

B. Pinout and Pin Description 83

Acronyms 85

vii

List of Figures

2.1. Scytale . 4
2.2. Secure communication using symmetric-key cryptography. 6
2.3. Secure communication using public-key cryptography. 7
2.4. Asymmetric-cryptography scheme for authentication. 8
2.5. Timeline of public-key cryptography. 10

3.1. Hierarchy of elliptic-curve implementations. 11
3.2. Finite-Field Hierarchy. 13
3.3. Sample Curve: y2 = x3 − 8x+ 12. 14
3.4. Sample Curve: y2 = x3 − 5x+ 3. 14
3.5. Point addition. 15
3.6. Point doubling. 15
3.7. Point addition with O. 16
3.8. Point doubling with O. 16
3.9. Point cloud for y2 = x3 + 4x+ 20 over F29. 21

4.1. Paper and pencil multiplication over F28 25
4.2. Squaring in F2m using a polynomial-basis representation. 26

5.1. Block diagram of ECDSA components. 35

6.1. Basic design flow for a chip development. 45
6.2. Processor architecture. 45
6.3. Hierarchy of the ECDSA protocol. 45
6.4. ECDSA design overviews. 46
6.5. Golden model verification process. 47
6.6. Controlpath and datapath separation. 49
6.7. Different types of FSMs. 49
6.8. Addition in FB163. 51
6.9. Squaring in FB163. 51
6.10. Implementation of the multiplier in FB163. 52

viii

List of Figures

6.11. Area/time - tradeoff for the multiplier in FB163. 53
6.12. Schematic for the conversion from SD2 to SB. 55
6.13. A single cell adding two SD2 digits (SD2FACell). 57
6.14. The critical path of the SD2 full adder (SD2FA). 58
6.15. Combined datapath for the prime-field operations based on SD2 numbers. 62
6.16. AMBA APB - Write Timing. 65
6.17. AMBA APB - Read Timing. 65
6.18. Block diagram of the verification process of the HDL-Model. 67

7.1. Area distribution of the finite-field operations in FB163. 70
7.2. Area distribution of the SD2 arithmetic. 70
7.3. Area distribution of the ECC arithmetic over FB163. 71
7.4. Area consumption of the ECC arithmetic over FP192. 73
7.5. Comparison of required finite-field operations with regard to the ECC

arithmetic. 74
7.6. Layout - Left: Prime-field based design, Right: Binary-field based design. 76

B.1. Pinout. 84

ix

List of Tables

2.1. Keylength comparison of different cryptography schemes. 10

3.1. Projective-coordinate types. 17
3.2. Operations count for elliptic-curve arithmetic over F2m 19
3.3. Operations count for elliptic-curve arithmetic over Fp. 20
3.4. Points in E(F29). 20

4.1. Finite-field operations in F2m and Fp required for ECC. 22
4.2. Applied algorithms for the finite-field operations in F2m and in Fp. 33

5.1. NIST B-163 domain parameters. 37
5.2. NIST P-192 domain parameters. 38
5.3. Comparison of point-multiplication algorithms. 42

6.1. Area and timing properties of the addition and squaring operation in FB163. 51
6.2. Encoding for the SD2 digits using 2 bits. 55
6.3. SD2 addition rule. 56
6.4. SD2 modular addition operands. 59
6.5. AMBA APB Signal Definitions. 64
6.6. Inputs and Writing Addresses. 65
6.7. Outputs and Reading Addresses. 66
6.8. Control Byte - Bit Explanation. 66

7.1. Area/timing requirements for the operations in FB163. 69
7.2. Area distribution of the combined SD2 arithmetic working in FP192. . . . 70
7.3. Area requirements for the ECC arithmetic over FB163. 70
7.4. Timing requirements for the point addition and the point doubling over

FB163. 71
7.5. Timings of the point multiplication and the multiple-point multiplication

and the required operations based on FB163. 72

x

List of Tables

7.6. Required field operations over FP192 with regard to the elliptic-curve arith-
metic. 72

7.7. Timing results for the elliptic-curve operations over FP192. 73
7.8. Timing requirements for the ECDSA designs based on FB163 and FP192. . 74
7.9. Area requirements for the ECDSA designs based on FB163 and FP192. . . 75
7.10. Power consumption of the ECDSA designs. 75

B.1. Pin Descriptions. 83

xi

Chapter 1
Introduction

In the analog world, authentication of a person is mostly accomplished by the use of a
written signature or any biometric identification, which can be uniquely associated with
humans (e.g. fingerprints, iris recognition or DNA profiling). During the last years and
centuries the importance of the digital world has increased dramatically, hence nowadays
a digital signature is at least as important as its analog counterpart, if not even more
important.

Authentication in a digital communication process is not restricted to humans only, but
also includes entities like computers, ATMs, or smartcards. Because these participants
are getting smaller and smaller and must be ready to run without large supply units
(or even without supply units, just being powered passively), hardware solutions for an
authentication process are targeted, which require low resources with regard to area,
runtime, and power. One state of the art technique to generate and verify a digital
signature, which satisfies these needs and which has been treated within this work, is
the Elliptic Curve Digital Signature Algorithm (ECDSA). It is based on point operations,
performed on top of a special type of cubic curves, also known as elliptic curves. The
definition of such an elliptic curve includes an underlying finite field, which is required to
execute the curve operations on top of it. Currently the two most commonly used finite
fields for elliptic-curve operations are binary fields and prime fields. Comparing ECDSA
designs from various developers based on different finite fields is quite tricky, because
there are many abstraction levels (i.e. elliptic-curve operations, finite-field arithmetic,
applied technology) where the designs can differ.

In this thesis we implemented two ECDSA Application Specific Integrated Circuits
(ASICs), both working at the full bit width of their operands (i.e. full precision) with
the aid of the equivalent Electronic Design Automation (EDA) tools and the same manu-
facturing technology. The first design uses an elliptic-curve arithmetic working on top of
a binary field, whereas the second one is based on an underlying prime field. The defini-
tions for the shapes of the elliptic curves as well as the definitions for the underlying finite
fields have been taken from two standards provided by the National Institute for Stan-
dards and Technology (NIST), namely the B-163 and P-192. These standards provide

1

1. Introduction

sophisticated parameters, well suited for cryptography purposes like digital signature
generation and verification. Moreover these two standards make use of the narrowest
operands among the standards provided by the NIST and are therefore most suitable
for low-resource hardware designs. Furthermore, the two chips provide both parts of an
authentication process, i.e. the signature generation and the signature verification. In
order not to be vulnerable to timing attacks and simple power attacks with regard to
the signature generation, the signing process has been implemented in such a way that
it can be performed within a constant runtime, always performing the same operations,
independent of its input. Communication of the chips with their environment has been
realized using a standardized System on Chip (SoC) interface with an 8-bit wide data
bus.

Previous works on hardware implementations of ECDSA typically use an elliptic-
curve arithmetic based on a single type of finite fields. Moreover, sometimes the digital
signature protocol is implemented only partially, e.g. providing just the elliptic-curve
operations. We provide two ECDSA ASIC designs, offering the full functionality required
for a mutual authentication process, one based on a binary field and the other one based
on a prime field.

1.1. Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces the topic of
cryptography, starting with some historical background, followed by the major goals of
a cryptosystem. It also covers the differences on symmetric and asymmetric cryptosys-
tems as well as the most popular mathematically hard problems used within public-key
schemes, including the Elliptic Curve Discrete Logarithm Problem (ECDLP).

Because elliptic-curve arithmetic requires an underlying finite field to perform the
curve operations, the third Chapter starts with a brief introduction on number theory.
Next, the actual definition of an elliptic curve and the additive group which can be
defined on such a curve are presented. Also the group operation, namely the chord-and-
tangent rule will be treated in more detail throughout this chapter. Due to the fact that
different point representation types play a major role in elliptic-curve arithmetics, they
will be considered afterwards. Since the elliptic-curve point multiplication forms the
core of Elliptic-Curve Cryptography (ECC), it is described extensively using an example
at the end of Chapter 3.

During Chapter 4, the required finite-field arithmetic for binary fields and prime fields
and appropriate algorithms to perform the field operations, suitable for hardware de-
signs, are considered. The covered operations are addition, subtraction, multiplication,
squaring and division.

ECDSA is introduced in Chapter 5. The two most time-consuming operations during
the signature generation and the signature-verification process are the elliptic-curve point
multiplication and the multiple-point multiplication. The fifth chapter presents different
approaches to perform these operations with regard to the required runtime.

Throughout Chapter 6, the implementations of the two ECDSA designs are described.

2

1. Introduction

This is done by going through all the steps which are required during the development of a
hardware design. First, the basic architecture is presented, followed by some information
on the high-level model. Next, properties of the Hardware Description Language (HDL)
model are given and thereafter the designs of the binary and prime-field arithmetic are
covered. At the end of the chapter, the chip interfaces as well as the verification of the
HDL model are considered.

In Chapter 7, the results of the two implementations are presented. This includes
information about their timings, area and power consumption as well as the maximal
possible frequency. Finally, during the last chapter, i.e. Chapter 8, a conclusion is drawn
and some future work is suggested.

3

Chapter 2
Yet Another Cryptography Introduction

This chapter will give an overview on cryptography in general. It starts with a brief his-
torical introduction, followed by the central goals of a cryptographic system. Afterwards,
the two main types of cryptography, namely symmetric and asymmetric cryptography,
will be explained. The focus of the thesis lies on elliptic-curve cryptography which is
an asymmetric-key technique that is especially suitable for resource-constrained devices.
The chapter will close with a timeline, including the most relevant events with regard
to asymmetric cryptography.

2.1. Historical

Cryptography has been of great interest for humans for more than 2000 years. Already
a few centuries B.C. the Greeks invented the first cryptography tools. The Scytale, for
example, consists of a simple stick with a certain diameter, which was only known to
the two parties who wanted to communicate with each other in a “secure way”, and a
strip of leather or parchment. In order to “encrypt” a message, the sender wrapped the
leather around the stick and wrote the message on it. Then a courier had to bring the
strip of leather to the second party, which “decrypted” the message by wrapping the
strip of leather around its own stick with the same diameter and was then able to read
the message. Only those parties who knew the correct diameter of the stick were able
to read the message easily. Figure 2.1 shows a sketch of such a Scytale.

Figure 2.1.: Scytale1.

1Source: http://www.apprendre-en-ligne.net/crypto/menu/index.html

4

http://www.apprendre-en-ligne.net/crypto/menu/index.html

2. Yet Another Cryptography Introduction

The main fields of application for cryptography tools in those days had been the army
and diplomatic institutions. Till this day, these two sectors still invest the most money
to push cryptography improvements. Although the Scytale can not be considered to be
“secure” with regard to state of the art cryptography, it already made use of one of the
most important principles in cryptography:

Definition 2.1.1 (Kerckhoffs’ Principle). The security of a cryptosystem should only
be based on the secrecy of the key being used. Hence also the applied algorithm should
always be made public.

In the case of the Scytale the “secret key” was the diameter of the sticks being used
by the communicating parties.

2.2. Cryptography Goals

Beside the Kerckhoffs’ Principle, there exist other main goals which should always be
kept in mind when designing or implementing a cryptosystem:

Confidentiality: Only the parties which are designated to participate in a communication
should be able to read the messages. Unauthorized parties shouldn’t be able to
read them.

Integrity: As soon as the messages being sent within a cryptosystem get modified (e.g.
by an adversary), the participating parties should be able to recognize the modi-
fication.

Entity Authentication: When parties communicate with each other within a cryptosys-
tem, they have to convince the other participants of their identity.

Data Authentication: When a party receives a message from another party, the receiver
must be able to verify that the message indeed originates from the supposed sender.

Non-Repudiation: As soon as a party sends a message to another party, the sender is
not able to repudiate that the sent message does not origins from him.

In order to fulfill the aforementioned cryptography goals, two main types of cryptography
have been developed during the last years and centuries and will be described in the
following.

2.3. Symmetric-Key Cryptography

The Scytale, mentioned in Section 2.1, is a simple example for the so called symmetric-
cryptography schemes, which are based on a private secret key, only known to the entities
participating in the communication. This type of cryptography is therefor often called
secret-key cryptography. Sharing the secret key in a group of entities requires a key
distribution using a secure channel. The subsequent communication is then encrypted

5

2. Yet Another Cryptography Introduction

Secure ChannelEntity A Entity B

AB

Insecure Channel

AB

+ =

AB

+ =

Figure 2.2.: Secure communication using symmetric-key cryptography.

using this secret key. Figure 2.2 illustrates the main idea of a symmetric-key based
scheme between two entities A and B.

Note: Talking about a “secure channel” means that no other parties, except those
who are supposed to participate within the conversation, are able to eavesdrop the
communication. Messages sent over an “insecure channel” on the other hand can be
read by any entity, including adversaries.

2.3.1. Key-Distribution Problem

Although symmetric-key cryptography works very efficiently, it suffers from a major
drawback which is called the key-distribution problem. As already mentioned, for ex-
changing the secret key, a secure channel is required. Furthermore, this channel has to
be authentic. As long as, for instance, only two nearby entities want to communicate
with each other in a secure way, this doesn’t pose a huge problem. In such a case, the
participants can meet once prior communication to authenticate each other and simul-
taneously exchange the secret key. But when it comes to a large number of entities who
want to take part in a secure communication, this prior meeting becomes much more
difficult and poses a main problem, especially when the participants are distributed all
over the world.

2.4. Asymmetric-Key Cryptography

In order to avoid the key-distribution problem, Whitfield Diffie and Martin Hellman [7]
introduced a key-exchange protocol that makes use of asymmetric-key cryptography in
1976. It is based on the idea that each entity of the system receives a keypair consisting
of a private and a public key. Because of using public keys, these systems are often
refered to as public-key systems. As the name already implies, the public key of such
a keypair is made public whereas the private key is only known to the entity itself. A

6

2. Yet Another Cryptography Introduction

Entity A Entity B

B
Pu

Insecure Channel

B
Pu

+ =

B
Pr

+ =

Figure 2.3.: Secure communication using public-key cryptography.

secure communication using asymmetric-key cryptography is illustrated in Figure 2.3
works as follows:

• Entity A wants to send a secure message to entity B.

• A uses the public key of B (which is available to everybody) to encrypt the message.

• Afterwards A sends the encrypted message over an (insecure) channel to B.

• B uses its private key to decrypt the message received from A.

• Communication from B to A works vice versa.

The above example describes how two entities can communicate with each other in a
secure way. Because the private key of entity B is only known to itself, B is the only one
who can decrypt the message.

A few small changes in this process enables an entity to sign digital data. The process
is illustrated in Figure 2.4, and is divided into a sign and a verify step. It works as
follows:

• Entity B wants to be sure that the received message actually comes from entity A.

• A uses its private key to sign the message (i.e. A applies a signature scheme).

• Afterwards A sends the signed message to entity B over an (insecure) channel.

• B uses the public key of A to verify the signature. If the signature is valid, B can
be sure that the cryptography goals integrity, message authentication and non-
repudiation are satisfied.

• Authentication from B to A works vice versa.

Definition 2.4.1 (Mutual Authentication). The process, when two entities want to
authenticate each other, is referred to as “mutual authentication”.

7

2. Yet Another Cryptography Introduction

Insecure Channel

Entity A Entity B

A
Pu

A
Pr

+ =

A
Pu

+ = OK?

Figure 2.4.: Asymmetric-cryptography scheme for authentication.

2.4.1. Private/Public-Key Relationship

The private and public key of a keypair being used within a cryptographic scheme,
are related. This relationship is in general based on a mathematically hard problem,
for example the Integer-Factorization Problem (IFP), the Discrete Logarithm Problem
(DLP) or the ECDLP.

2.4.2. Integer-Factorization Problem (IFP)

The main idea of this mathematically hard problem, shown in Equation (2.1), is that
given the product n of two large prime numbers p and q, it is computationally intractable
to get p and q only from n.

n = p · q, p, q . . . prime. (2.1)

One of the first public-key primitives is RSA system, which has been published by its
inventors Ronald Rivest, Adi Shamir, and Leonard Adleman [31] in 1977. To be more
precise, it has been proven that determining the private key from the public key within
an RSA system is as hard as the IFP. Algorithm 2.1 describes how the RSA-keypair
generation works.

2.4.3. Discrete Logarithm Problem (DLP)

Another mathematically hard problem is the DLP. Here for a given set of parameters
(p, q, g) (the so called domain parameters) and the public key y, it is known to be “quite
hard” to determine the private key x from Equation (2.2):

y = gx mod p. (2.2)

The first Discrete Logarithm (DL) systems were already published by Diffie and Hellman
in 1976. In 1984, Taher Elgamal invented digital signature and encryption systems

8

2. Yet Another Cryptography Introduction

Algorithm 2.1 RSA-keypair generation.

Input: Desired bit length l of the prime numbers.
Output: RSA private key d and public key (n, e).

1: Randomly choose two distinct prime numbers p and q of the same bit length l.
2: Compute n = p · q.
3: Compute ϕ(n) = (p− 1) · (q − 1).
4: Choose an arbitrary integer e such that 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1.
5: Compute d ≡ e−1 mod ϕ(n).
6: return d, n, e.

using public-key cryptography based on this problem [8]. Seven years later, the NIST
published the Digital Signature Algorithm (DSA) which was finally standardized as the
Digital Signature Standard (DSS). All these algorithms have their keypair generation in
common, which is described in Algorithm 2.2.

Algorithm 2.2 Keypair generation for DL based cryptosystems.

Input: Domain parameters (p, q, g).
Output: Private key x and public key y.

1: Choose an integer x ∈ [1, q − 1].
2: Compute y = gx mod p.
3: return x, y.

2.4.4. Elliptic Curve Discrete Logarithm Problem (ECDLP)

The problem which has been treated within this work is the ECDLP. Here, for a given el-
liptic curve E (defined by its domain parameters) and the public key Q, which represents
a point on E, it is known to be “hard” to determine the scalar d from Equation (2.3):

Q = d ∗ P. (2.3)

Equation (2.3) represents the core of all elliptic-curve based cryptosystems, in which a
keypair is generated according to Algorithm 2.3. This operation is called point multipli-
cation (cf. Section 5.2) and is the most time consuming operation in ECC. Beside the
definition of the elliptic curve E itself, the domain parameters include a base point P as
well as its order n.

Algorithm 2.3 Keypair generation for elliptic curve based cryptosystems.

Input: Elliptic curve domain parameters.
Output: Private key d and public key Q.

1: Randomly choose an integer d ∈ [1, n− 1].
2: Compute Q = d ∗ P .
3: return d,Q.

9

2. Yet Another Cryptography Introduction

Table 2.1.: Required keylength for different crypography schemes [11].

Security level (bits)

Symmetric-key cryptography 80 112 128 192 256
RSA 1024 2048 3072 8192 15360
ECC 160 224 256 384 512

Although the first experiments with elliptic curves started more than 150 years ago,
it took until 1984 when factoring integers using elliptic-curve properties aroused more
interest from researchers. Two of them, namely Neal Koblitz [22] and Victor Miller [27],
independently proposed asymmetric-cryptography schemes using elliptic curves in 1985.

Preferring Elliptic-Curve based Cryptosystems

During the last 25 years elliptic-curve cryptography became more and more popular
due to a major advantage in contrast to traditional cryptosystems like RSA. And that
is, because for solving the ECDLP the currently most sophisticated algorithm requires
fully exponential runtime, whereas solving the IFP takes only subexponential runtime.
Hence within elliptic-curve systems a much shorter key length is needed to provide
the same level of security. Table 2.1 compares different asymmetric schemes and their
symmetric counterpart with respect to their keylength. An extensive research on required
keylengths for different cryptography schemes can be found for example in [24].

2.4.5. Timeline

Figure 2.5 displays a timeline of the most important events happened in the late 20th
century with regard to public-key cryptography. One can see that public-key cryptog-
raphy is “quite a new” achievement, especially in combination with elliptic curves.

1970 1980 1990 2000

1976

Public-key cryptography introduced

by Diffie & Hellman

1984

Integer factorization using

EC by Lenstra

1977

RSA published by Rivest,

Shamir, and Adleman

1984

First DL based crypto-

system by Elgamal

1985

Koblitz and Miller announced public-

key cryptography using EC

1991

NIST released DSS as first official

digital signature algorithm

2000

ECC accepted in the official NIST

standard for digital signatures

Figure 2.5.: Timeline of public-key cryptography.

10

Chapter 3
Elliptic-Curve Basics

Throughout this chapter, a brief introduction to the topic of elliptic curves will be
presented. This starts with some numbertheoretical background, which is required to
understand the mathematical hard problem on which ECC is based. Then the actual
properties of an elliptic curve, including its definition as well as the operations which
can be performed on it, will be described. Because the underlying field (discussed in
Section 3.6) of an elliptic curve plays a major role in ECC, more attention will be paid
to it afterwards. The chapter will close with an example, illustrating the complexity of
the ECDLP.

3.1. Levels of Abstraction

When working with an elliptic curve, the highest level of abstraction is represented by the
definition of the elliptic curve itself. From a geometrically point of view, this definition
determines how the curve will be shaped. The next lower abstraction level contains the
operations, which are performed on top of this elliptic curve. In order to carry out these
elliptic curve operations, an underlying finite-field arithmetic is required, representing
the lowest level of abstraction. Figure 3.1 illustrates the different abstraction levels of
elliptic-curve implementations.

Finite-Field Arithmetic

Elliptic-

Curve Operations

ECC

Protocol

A
b

st
ra

ct
io

n
 L

ev
el

Figure 3.1.: Hierarchy of elliptic-curve implementations.

11

3. Elliptic-Curve Basics

3.2. Number-Theoretic Background

In general, an elliptic curve E has to be defined over an underlying finite field K, denoted
by E/K. Therefore a few mathematical basics with regard to number theory1 have to
be covered before starting with the actual topic about elliptic curves.

3.2.1. Group

From a mathematical point of view, a group denoted by < S, � >, is a set S of elements2

together with an operation � fulfilling the following group axioms:

Closure Axiom. When applying operation � to any two elements x, y of the set S, its
result z must still be in S, i.e.

∀x, y ∈ S : z = x � y, z ∈ S.

Associativity Axiom. The order of applying the operation � to any three elements x, y, z
of the set S must not be of importance, i.e.

∀x, y, z ∈ S : (x � y) � z = x � (y � z).

Neutral/Identity-Element Axiom. For any element x of the set S, there must exist an
element e, also within S, such that x � e = e � x = e, which is called the neutral or
identity element, i.e.

∀x ∈ S, ∃e ∈ S : x � e = e � x = e.

Inverse-Element Axiom. For any element x of the set S, there must exist an element y
in S such that x � y = y � x = e, which is called the inverse element, i.e.

∀x ∈ S,∃y ∈ S : x � y = y � x = e.

Abelian Group

If, in addition to the axioms defined above, a group holds the following axiom it is called
an Abelian group.

Commutativity Axiom. The order of the elements x, y ∈ S performing the operation �
must not be of relevance, i.e.

∀x, y ∈ S : x � y = y � x.

The two most frequently used groups are those, using the addition and multiplication
as their group operation. They are called the additive and multiplicative group and are
denoted by < S,+ > and < S, · > respectively. The identity element of < S,+ > is
denoted by 0 whereas 1 denotes the identity element of < S, · >.

1More details about number theory are given for example in [26].
2A set is a collection of distinct objects (e.g. N, Z, R).

12

3. Elliptic-Curve Basics

3.2.2. Field

A set S of elements together with two operations � and ? is called a field denoted by
< S, �, ? > if:

• < S, � > represents an Abelian group with the identity element denoted by 0.

• < S∗, ? > represents an Abelian group with the identity element denoted by 1.
(S∗ = S\{0})

• The operation � is distributive with respect to the operation ?, i.e. ∀x, y, z ∈ S :
x ? (y � z) = (x ? y) � (x ? z).

Definition 3.2.1 (Finite Field). When the number of elements within S is finite, the
field is called a “finite field”, denoted by F.

The number of elements in a finite field is known as its order. For such a finite field
F it holds that its order is equal to pm, where p represents a prime number, called the
characteristic of F, and m an integer ≥ 1, called the dimension. Such a field is often
denoted by Fpm or GF (pm)3. Finite fields can be distinguished by means of their order
as follows.

• Finite fields with m = 1 are called Prime Fields, denoted by Fp.

• When m ≥ 2, finite fields are called Extension Fields.

• A special representative of the extension fields are the Binary Fields (characteristic
is equal to 2), denoted by F2m , where m ≥ 2.

Prime Fields Extension Fields

Finite Fields

m = 1 m ≥ 2

p = 2 Binary Fields

Figure 3.2.: Finite-Field Hierarchy.

It is a very common approach to use the additive and the multiplicative group when
working with a field. Hence addition and multiplication are the two available base oper-
ations. Further required field operations, namely subtraction and division, are defined
using these base operations. Subtraction on the one hand is defined using addition as
depicted in Equation (3.1), where −y represents the inverse element of y with regard

3GF is an abbreviation for “Galois Field”, named after Évariste Galois, one of the pioneers with
regard to finite fields.

13

3. Elliptic-Curve Basics

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

x

y

Figure 3.3.: y2 = x3 − 8x+ 12.

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

x

y

Figure 3.4.: y2 = x3 − 5x+ 3.

to < S,+ >. Division on the other hand is defined using multiplication as shown in
Equation (3.2), where y−1 represents the inverse element of y with regard to < S∗, · >:

x− y = x+ (−y) : x, y ∈ S, (3.1)

x/y = x ∗ y−1 : x, y ∈ S∗. (3.2)

3.3. Definition of an Elliptic Curve

Basically, an elliptic curve E is a cubic curve with arithmetic properties well suited for
asymmetric cryptography. A curve defined over a field K can be described using the
Long Weierstrass Equation, given in Equation (3.3):

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ K. (3.3)

The graphs in Figure 3.3 and Figure 3.4 show two different elliptic curves defined over
the field R of real numbers. The discriminant ∆ of E must hold ∆ 6= 0 and is defined
according to [11] as follows:

∆ = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6,

where d2 = a2
1 + 4a2,

d4 = 2a4 + a1a3,

d6 = a2
3 + 4a6, and

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

The reason why elliptic curves are suitable for public key cryptography is, because an
Abelian additive group can be defined on the set of points on E (together with the the
point at infinity - cf. Section 3.4.2). Solving the DLP within this group (i.e. solving the

14

3. Elliptic-Curve Basics

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

x

y
P

Q
-R

R

Figure 3.5.: Point addition.

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

x

y

P

-R

R

Figure 3.6.: Point doubling.

ECDLP) is known to be much harder than solving it within the group Zp, which is used
in traditional DL based cryptography systems4.

3.4. Elliptic-Curve Group

As already mentioned in Section 3.2.1 some axioms must be fulfilled so that a group can
be defined. With regard to an elliptic curve E, the set S is formed by all points located
on E which are represented using elements of the underlying field K. The set of points is
denoted by E(K). Together with the chord-and-tangent rule, this set forms an additive
Abelian group, using the point at infinity, denoted by O, as its neutral element.

3.4.1. Chord-and-Tangent Rule

Basically, the chord-and-tangent rule describes how two points on an elliptic curve have
to be added, resulting in a third point located on the curve. In order to explain this
addition, let’s assume an elliptic curve E, defined over the field R of real numbers
containing all points with coordinates x and y fulfilling:

E : y2 = x3 − 8x+ 12 x, y ∈ R

Adding two distinct points P = (xP , yP) and Q = (xQ, yQ) on the elliptic curve E,
results in a third point R = (xR, yR), i.e.

R = P +Q, P,Q ∈ E(K), P 6= Q (3.4)

Figure 3.5 illustrates this point addition and is described in the following:

• Draw a straight line through the two points P and Q.

4Within the group Zp all operations are performed modulo a large prime number p. The elements
within Zp are therefore (0, 1, 2, . . . , p− 1).

15

3. Elliptic-Curve Basics

• Take the third intersection of this line with the elliptic curve. This point is denoted
by −R and represents the negative element of R.

• Mirroring that intersection on the x-axis gives you the point R.

When the two points P and Q represent the same point, the addition operation is called
point doubling, i.e.

R = P +Q = 2P, P,Q ∈ E(K), P = Q (3.5)

Figure 3.6 shows the point doubling and is described in the following:

• Draw the tangent in the point P .

• Take the second intersection of the tangent with the elliptic curve. This point once
again is denoted by −R and represents the negative of the sum of the point P with
itself.

• To get the doubled point R, this intersection has to be mirrored on the x-axis.

3.4.2. The Point at Infinity O

Point addition and point doubling does not always work as well as described in Sec-
tion 3.4.1. Think of the situation when trying to add two points P and Q where Q = −P .
The straight line drawn from P to Q results in a parallel line with regard to the y-axis
which does not intersect the elliptic curve at a third point. The same problem arises
when one tries to double a point where the tangent is also a parallel line to the y-axis
(i.e. yP = 0) and hence does not intersect the elliptic curve at a second point. These
cases are illustrated in Figure 3.7 and Figure 3.8, respectively.

In order to get around this problem, a point, called the point at infinity, denoted by
O, has to be introduced. This point serves as the identity element within the additive
elliptic-curve group, fulfilling the group axioms as follows.

Addition with identity element: P + O = O + P = P, P ∈ E(K).

Addition with inverse element: P + (−P) = O, P ∈ E(K).

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

x

y

P

Q

Figure 3.7.: Point addition with O.

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

x

y P

Figure 3.8.: Point doubling with O.

16

3. Elliptic-Curve Basics

Table 3.1.: Projective-coordinate types.

Name c d Correspondence

Standard Projective 1 1 (X,Y, Z)P 7→ (x, y)A = (X/Z, Y/Z)
Jacobian Projective 2 3 (X,Y, Z)P 7→ (x, y)A = (X/Z2, Y/Z3)
López-Dahab Projective 1 2 (X,Y, Z)P 7→ (x, y)A = (X/Z, Y/Z2)

3.5. Choosing Point Coordinates

Because the point multiplication (cf. Section 5.2) consists of point additions and point
doublings, it is of great relevance to implement these two operations applying the most
efficient finite-field arithmetic. Basically, implementations can be distinguished with
regard to the type of coordinates being used to represent the elliptic-curve points. The
most intuitive way would be to use affine coordinates like in the previous sections for
demonstration purposes. The set of points using affine coordinates over a finite field is
denoted by A(K), representing all points according to:

A(K) = {(x, y) : x, y ∈ K}.

When using affine coordinates, a division within the underlying finite field is required
in every point addition and point doubling operation. Because in general division is much
more time consuming in contrast to the remaining arithmetic, it should be avoided if
possible. Therefore many implementations use projective coordinates, which circumvent
the division at the expense of an additional coordinate Z. The set of points using
projective coordinates over a finite field is denoted by P(K), representing all points
according to:

P(K) = {(X,Y, Z) : X,Y, Z ∈ K}. (3.6)

Throughout the remainder of this work, affine coordinates will be written using lower-
case letters, whereas capital letters will be used to represent projective ones. Trans-
formations between affine and different projective-coordinate types can be carried out
using the relationship

(X,Y, Z)P 7→ (x, y)A = (X/Zc, Y/Zd),

where c and d represent positive integers. Table 3.1 summarizes the most popular types of
projective coordinates together with their correspondences to affine coordinates. When
choosing point coordinates different to affine ones, the definitions of the elliptic curves,
presented in the following section, have to be altered accordingly.

3.6. Underlying Field

Elliptic-curve based implementations have to define several implementations. First, the
actual curve itself has to be defined. Second, the underlying field, on which the curve

17

3. Elliptic-Curve Basics

operations are performed, has to be fixed. Basically, any field K can be chosen to
perform the point addition and point doubling. Using the field R of real numbers like
in the previous sections is quite handy for demonstration purposes, but poses problems
with regard to speed and accuracy due to round-off errors. When it comes to practical
implementations of cryptosystems based on elliptic curves, efficient arithmetic operations
are required. The two most popular representitives, which have also been taken into
consideration within this work, are operations over binary fields F2m and over prime
fields Fp.

3.6.1. Binary-Field Operations

For an underlying binary field F2m , Equation (3.3) can be simplified using a so-called
admissible change of variables (the substitution is shown in Equation (3.7)).

(x, y) 7→
(
a2

1x+
a3

a1
, a3

1y +
a2

1a4 + a2
3

a3
1

)
. (3.7)

The simplified description of the resulting elliptic curve is given in Equation (3.8) and
holds as long as a1 6= 0. For further information, we refer to [11].

y2 + xy = x3 + ax2 + b, where a, b ∈ F2m and (3.8)

∆ = b.

Point Addition over F2m

The geometrically illustration of the point operations from Section 3.4.1 was mentioned
only for demonstration purposes. Using the linear equation, which can be set up running
through the two given points P and Q, together with the elliptic-curve definition E,
enables one to determine the algebraic relations between P , Q, and R. Equation (3.13)
shows the resulting coordinates when adding the points over a binary field F2m :

xR = λ2 + λ+ xP + xQ + a,

yR = λ(xP + xR) + xR + yP ,

with λ =

(
yP + yQ
xP + xQ

)
.

(3.9)

Point Doubling over F2m

Similar to the point addition, the relations for the doubled point R = 2P can be deter-
mined by intersecting the tangent running through P and the elliptic-curve definition
E. Equation (3.10) shows the relations for the doubled point:

xR = λ2 + λ+ a,

yR = x2
P + λxR + xR,

with λ = xP +
yP
xP

.

(3.10)

18

3. Elliptic-Curve Basics

Table 3.2.: Finite-field operations count for point addition and point doubling for an
underlying binary field F2m . Coordinates: A = affine, P = standard projec-
tive, J = Jacobian projective, L = López-Dahab projective; Operations: D
= division, M = multiplication.

Point Addition Point Doubling

A + A→ A 1D, 1M 2A→ A 1D, 1M
P + P→ P 13M 2P→ P 7M
J + J→ J 14M 2J→ J 5M
L + L→ L 14M 2L→ L 4M

As already mentioned in Section 3.5, using projective coordinates instead of affine coor-
dinaates eliminates the required field division at the expense of other field operations.
Table 3.2 compares the point addition and the point doubling over F2m using different
coordinate types with respect to the required field operations [11]. Because in F2m addi-
tions and squarings are cheap and can be performed in a single clock cycle (finite-field
operations will be discussed throughout Chapter 4), only multiplications and divisions
are considered.

3.6.2. Prime-Field Operations

For a finite field with a characteristic not equal to 2 or 3, which is true for the prime
fields used within elliptic curve cryptography systems, it is possible to simplify the Long
Weierstrass Equation using the admissible change of variables from Equation (3.11).

(x, y) 7→
(
x− 3a2

1 − 12a2

36
,
y − 3a1x

216
− a3

1 + 4a1a2 − 12a3

24

)
. (3.11)

This substitution leads to the simplified version of the elliptic-curve definition over Fp

and is depicted in Equation (3.12). Throughout the remainder of this work, the simplified
elliptic-curve definitions for both an underlying binary and prime field will be used.

y2 = x3 + ax+ b, where a, b ∈ Fp and (3.12)

∆ = −16(4a3 + 27b2).

Point Operations over Fp

Analogous to the point operations in F2m , the algebraic equations for the point addi-
tion and point doubling in Fp can be derived. The appropriate relations are given in
Equation (3.13) and Equation (3.14), respectively.

xR =

(
yQ − yP
xQ − xP

)2

− xP − xQ,

yR =

(
yQ − yP
xQ − xP

)
(xP − xR)− yP .

(3.13)

19

3. Elliptic-Curve Basics

Table 3.3.: Finite-field operations count for point addition and point doubling for an
underlying prime field Fp. Coordinates: A = affine, P = standard projective,
J = Jacobian projective; Operations: D = division, M = multiplication, S =
squaring.

Point Addition Point Doubling

A + A→ A 1D, 1M, 1S 2A→ A 1D, 1M, 2S
P + P→ P 12M, 2S 2P→ P 7M, 3S
J + J→ J 12M, 4S 2J→ J 4M, 4S

xR =

(
3x2

P + a

2yP

)2

− 2xP ,

yR =

(
3x2

P + a

2yP

)
(xP − xR)− yP .

(3.14)

The required field operations in Fp to perform the elliptic-curve arithmetic are compared
in Table 3.3 with regard to their point representation [11].

3.7. Point Multiplication

Because the security of elliptic curve cryptosystems relies on the assumed intractability
of the ECDLP, defined in Equation (2.3), the most important operation with regard to
elliptic curves is the so called point multiplication. For a given point P on an elliptic
curve E and a scalar k this means adding P to itself k times, i.e.

Q = k ∗ P = P + P + P + . . .+ P︸ ︷︷ ︸
k-times

. (3.15)

Because of the scalar k the point multiplication is also known as scalar multiplication.
In order to explain why solving the ECDLP is that hard, let’s take a look at a short
example taken from [11]. Let E be an elliptic curve given in Equation (3.7) defined over
the prime field F29. All points located on E are those shown in Table 3.4 together with
the point at infinity O.

E : y2 = x3 + 4x+ 20, x, y ∈ F29.

Table 3.4.: Points in E(F29).

(0, 7) (2, 6) (4, 10) (6, 12) (10, 4) (14, 6) (16, 2) (19, 13) (24, 7)
(0, 22) (2, 23) (4, 19) (6, 17) (10, 25) (14, 23) (16, 27) (19, 16) (24, 22)
(1, 5) (3, 1) (5, 7) (8, 10) (13, 6) (15, 2) (17, 10) (20, 3) (27, 2)
(1, 24) (3, 28) (5, 22) (8, 19) (13, 23) (15, 27) (17, 19) (20, 26) (27, 27)

20

3. Elliptic-Curve Basics

0 5 10 15 20 25 28
0

5

10

15

20

25

28

P

2P

3P

4P

5P

Figure 3.9.: Point cloud for y2 = x3 + 4x+ 20 over F29.

In order to describe how the point multiplication using the sample point P (4, 19)
and the scalar k = 5 works, the resulting points are given below and are illustrated in
Figure 3.9 within a grid. As one can see from the figure, adding a point to itself multiple
times does not follow any regularity. This “chaotic”, almost random looking “jumping
around” of points illustrates the difficulty to invert the point multiplication (i.e. solving
the ECDLP).

Performing a brute-force attack to solve the ECDLP is always possible, of course.
But when choosing an underlying finite field containing enough elements such that a
brute-force attack is not feasible within an adequate period of time, solving the ECDLP
becomes a really hard problem.

P = (4, 19) 4P = (8, 10) (3.16)

2P = (15, 27) 5P = (13, 23) (3.17)

3P = (17, 19) (3.18)

21

Chapter 4
Finite-Field Arithmetic

Due to the fact that elliptic-curve operations are performed using underlying finite-
field operations, it goes without saying that an efficient implementation of the field
arithmetic is mandatory for a sophisticated elliptic-curve based cryptosystem. Hence,
throughout this chapter, algorithms calculating the field operations given in Table 4.1
will be considered. At first, the operations in F2m will be treated, followed by those
in Fp. Beside the actual operations, some field-specific information will be presented,
including for instance how the elements in each field are represented.

Table 4.1.: Finite-field operations in F2m and Fp required for ECC.

a, b ∈ F2m a, b ∈ Fp

Addition/Subtraction a⊕ b a± b mod p
Multiplication a · b mod f(x) a · b mod p
Squaring a2 mod f(x) a2 mod p
Inversion/Division a−1 mod f(x) a/b mod p

4.1. Arithmetic in F2m

Elements in F2m are represented using a bit string of the form shown in Equation (4.1),
i.e. they can be treated as a m-dimensional vector:

a = (am−1 am−2 . . . a2 a1 a0), where ai ∈ {0, 1}, and i = 0 . . .m− 1. (4.1)

In order to know how this bit string has to be interpreted, a basis has to be chosen first.
Basically, the following two common basis representations exist.

22

4. Finite-Field Arithmetic

Normal-Basis Representation

If a normal basis of the form

x, x2, x4, . . . , x2m−2
, x2m−1

(4.2)

is used, the bit string within Equation (4.1) represents the F2m element shown in Equa-
tion (4.3):

a0x+ a1x
2 + a2x

4 + . . .+ am−2x
2m−2

+ am−1x
2m−1

. (4.3)

Here x is selected such that the elements within Equation (4.2) are linearly independent.
Although this representation looks a little bit inconvenient, its major advantage in

contrast to the polynomial-basis representation is that the squaring of field elements can
be performed by a simple rotation of its bit string, i.e.

a = (a0 a1 a2 . . . am−2 am−1),

a2 = (am−1 a0 a1 a2 . . . am−2).
(4.4)

This might be of great interest, especially for hardware designs where squaring (or ex-
ponentiation) is the most important operation like it is in the case of RSA. Because field
squaring is not that important for the ECC implementation within this work and field
multiplication is considered to be a more complex operation when using this basis, nor-
mal basis-representation has not further been taken into account. Detailed information
about the normal-basis representation as well as its arithmetic can be found for example
in [30].

Polynomial-Basis Representation

When using a polynomial-basis representation, the elements of F2m are the polynomials
of a degree at most m− 1, as illustrated in Equation (4.5):

a(x) = am−1x
m−1 + am−2x

m−2 + · · ·+ a1x+ a0 : ai ∈ {0, 1}. (4.5)

Hence the bit string, given in Equation (4.1), simply contains the binary coefficients ai
of the corresponding polynomial. In order to perform arithmetic in F2m , an irreducible
polynomial or field polynomial f(x) has to be chosen first.

Definition 4.1.1 (Irreducible Polynomial). Choose f(x) ∈ F2m of degree m. f(x) is
said to be irreducible over F2m if it cannot be factored as a product of two polynomials
with degree less than m.

For further information on finding such a polynomial, which exists for any m, we refer
to, e.g., [11]. Operations in F2m have to be performed modulo f(x). The irreducible
polynomial f(x) can also be written as within Equation (4.6). This representation is of
interest, because it will be used in later sections.

f(x) = xm + r(x) (4.6)

Throughout the remainder of this work, a polynomial a(x) ∈ F2m is often written using
a sole a, as long as it is understood from the context.

23

4. Finite-Field Arithmetic

4.1.1. Addition and Subtraction

Addition in F2m is performed like any other addition of polynomials. Hence adding two
polynomials a(x) and b(x) using binary coefficients is a simple bitwise addition of their
coefficients. Because the operation is performed on binary coefficients only, addition and
subtraction are identical over F2m and can be computed using an exclusive or, denoted
by ⊕. Algorithm 4.1 shows the addition in F2m for two m-bit wide operands.

Algorithm 4.1 Addition and subtraction in F2m .

Input: a = (am−1, . . . , a1, a0), b = (bm−1, . . . , b1, b0), ai, bi ∈ {0, 1}.
Output: c = (cm−1, . . . , c1, c0) = a+ b, ci ∈ {0, 1}.

1: for i = 0 to m− 1 do
2: ci = ai ⊕ bi.
3: end for
4: return c.

4.1.2. Multiplication

Multiplication in F2m has to be performed modulo an irreducible polynomial as shown
in Equation (4.7):

c(x) = a(x) · b(x) mod f(x). (4.7)

This can basically be done in two different ways:

Multiplication without interleaved reduction: Given the two input polynomials a(x),
b(x) ∈ F2m , the product c′(x) = a(x) · b(x) is calculated within the first step.
Afterwards, c′(x) gets reduced using the irreducible polynomial f(x) resulting in
c(x) = c′(x) mod f(x).

Multiplication with interleaved reduction: Within this method the multiplication is
performed using an interleaved reduction. This means that the multiplication
and the subsequent reduction are combined and hence for two given polynomials
a(x) and b(x) of degree m−1, the (large) intermediate result c′(x) of degree 2m−2
must not be stored.

A very promising representative for the second type of multiplication is the shift-and-add
method [11], which is described in the following.

Shift-and-Add Algorithm

Basically, this multiplication method is very similar to the multiplication performed by
paper and pencil (i.e. the school method). Here the multiplicand a gets added to itself
b times using straightforward shift and add operations. An example using the values
a = 10d and b = 13d is given in Figure 4.1.

The shift-and-add method in F2m is based on the idea that within each iteration, the
partial product xi · b(x) mod f(x) is calculated and depending on whether the current

24

4. Finite-Field Arithmetic

1010
b

1010

0000

1010

1010

10000010

1101
b*

Figure 4.1.: Paper and pencil multiplication over F28 .

bit of a is set or not, it is added to the result c. This is true, because for two binary
polynomials a(x) and b(x) their product is equal to:

a(x) · b(x) = am−1x
m−1b(x) + . . .+ a2x

2b(x) + a1xb(x) + a0b(x)

In order to determine the intermediate result xi · b(x) mod f(x) within each iteration,
the following idea is used. Given the polynomial in Equation (4.8), its multiplication
with x results in Equation (4.9). The remainder of the polynomial division by f(x) is
shown in Equation (4.10). Therefore the intermediate result xi · b(x) mod f(x) can be
computed by a simple shift operation followed by an addition with r, depending on the
Most Significant Bit (MSB) of b. Algorithm 4.2 illustrates the multiplication process.

b(x) = bm−1x
m−1 + bm−2x

m−2 + . . .+ b2x
2 + b1x+ b0, (4.8)

b(x) · x = bm−1x
m + bm−2x

m−1 + . . .+ b2x
3 + b1x

2 + b0x (4.9)

≡ bm−1r(x) + bm−2x
m−1 + . . .+ b2x

3 + b1x
2 + b0x mod f(x). (4.10)

Algorithm 4.2 Shift-and-add multiplication in F2m .

Input: (am−1 . . . a1 a0), (bm−1 . . . b1 b0), ai, bi ∈ {0, 1}.
Output: (cm−1 . . . c1 c0) such that c(x) = a(x) · b(x) mod f(x).

1: if a0 = 1 then
2: c = b.
3: else
4: c = 0.
5: end if
6: for i = 1 to m− 1 do
7: b = b · x mod f(x).
8: if ai = 1 then
9: c = c+ b.

10: end if
11: end for
12: return c.

25

4. Finite-Field Arithmetic

a
m-1

a
m-2

..... a
1

a
0

a
m-1

a
m-2

..... a
1

a
00 0 0 0

Inserted Zeros

Bit string of a(x)2:

Bit string of a(x):

Figure 4.2.: Squaring in F2m using a polynomial-basis representation.

4.1.3. Squaring

The most obvious way the realize squaring in F2m would be to use the multiplier with
twice the same input, of course. But because squaring a binary polynomial is a linear
operation, it can be implemented much more efficiently. For a given binary polynomial

a(x) = am−1x
m−1 + am−2x

m−2 + · · ·+ a1x+ a0, ai ∈ {0, 1},

its squared value is equal to:

a(x)2 = am−1x
2m−2 + am−2x

2m−4 + · · ·+ a1x
2 + a0.

Hence squaring in F2m is analogous to inserting zeros between all coefficients as illus-
trated in Figure 4.2. When the irreducible polynomial f(x) is fixed, the subsequent
reduction step of the squared polynomial can be interleaved easily. The following exam-
ple shows the squaring operation in F25 with the interleaved reduction using a reduction
polynomial f(x) = x5 +x2 + 1 and a field element a(x) = a4x

4 +a3x
3 +a2x

2 +a1x+a0.
In order to obtain Equation (4.12) from Equation (4.11), a simple polynomial division
is performed.

c(x) = a(x)2

= a4x
8 + a3x

6 + a2x
4 + a1x

2 + a0 (4.11)

≡ a2x
4 + (a4 + a3)x3 + (a4 + a1)x2 + a3x+ a4 + a0 mod f(x) (4.12)

As one can see from the example above, squaring in F2m can be executed using an
exclusive-or-network as long as the irreducible polynomial is fixed.

4.1.4. Inversion and Division

One always has to keep in mind that the division of two field elements a and b can also
be determined using an inversion with a subsequent multiplication, i.e. a/b = a · b−1.
Hence in the literatur, algorithms for calculating the inverse of a field element can be
found most of the time. Remember that the inverse a−1 of an element a in F2m is defined
according to Equation (4.13).

a−1a ≡ 1 mod f(x), a ∈ F2m (4.13)

26

4. Finite-Field Arithmetic

Inversion in general is the most complex and time-consuming field operation and there
exist basically two different approaches to calculate it: one based on the Extended Eu-
clidean Algorithm and one based on Fermat’s Little Theorem. Inversion using the Eu-
clidean algorithm is much more efficient, but requires additional logic in both, the dat-
apath and the controlpath. Because the inversion based on Fermat’s little theorem only
requires field multiplications and squarings, just a few changes in the control logic are
required to implement it. For the point representation within the binary-field design,
projective coordinates have been chosen and hence only a single inversion is required
during the scalar-multiplication process (for the transformation from projective to affine
coordinates). Consequently, the second approach has been selected and is described in
the following. For further information about the Euclidean-algorithm based approach,
see Section 4.2.4.

Fermat’s Little Theorem based Inversion

Fermat’s little theorem, as given in Equation (4.14) for an arbitrary finite field Fq and
the binary field F2m , can be used to compute the inverse of a field element.

a−1 = aq−2, a ∈ Fq,

a−1 = a2m−2, a ∈ F2m .
(4.14)

Because 2m−2 =
∑m−1

i=1 2i, Equation (4.14) becomes Equation (4.15). Hence the inverse
element a−1 can be computed using m− 1 squarings and m− 2 multiplications:

a−1 = a
∑m−1

i=1 2i =

m−1∏
i=1

a2i . (4.15)

For the binary field FB163, it can be shown that the number of required squarings and
multiplications can be greatly reduced resulting in Algorithm 4.3 which requires 9 mul-
tiplications and 162 squarings to perform a field inversion in FB163 [11].

4.2. Arithmetic in Fp
For the ECDSA prime fields are of great interest, because on the one hand they are
required to compute elliptic-curve operations (if one uses a prime field as the underlying
field) and on the other hand the ECC protocol-level operations make use of Fp arithmetic
(this will become clearer throughout Chapter 5). The elements in Fp are the integers,
given in Equation (4.16):

Fp = {0, 1, 2, . . . , p− 2, p− 1}. (4.16)

The value p is called the modulus of Fp and all operations in the field are performed
modulo this prime number. Basically for an element a ∈ Fp infinite numbers of possible
representations exist (i.e. a, a · p, a · 2p, a · 3p, . . .), however, using the value within
[0, p − 1] requires the least memory and is therefore the best choice for a sophisticated
implementation of a prime architecture.

27

4. Finite-Field Arithmetic

Algorithm 4.3 Inversion in F2m using Fermat’s little theorem.

Input: a ∈ F2m , m odd.
Output: a−1 ∈ F2m .

1: A = a2, B = 1, x = (m− 1)/2.
2: while x 6= 0 do
3: A = A ·A2x .
4: if x is even then
5: x = x/2.
6: else
7: B = B ·A, A = A2, x = (x− 1)/2.
8: end if
9: end while

10: return B.

4.2.1. Addition and Subtraction

As well as for binary fields, the addition in Fp constitutes the easiest operation, i.e.

c = a+ b mod p, a, b, c ∈ Fp. (4.17)

Because the resulting sum c might be equal to or greater than p, the modulus has to be
subtracted accordingly to gain the most memory-saving representation of c.

The subtraction a − b in the prime field can be written using the addition and the
negative element −b according to:

c = a− b mod p = a+ (−b) mod p, a, b, c ∈ Fp.

Once again the difference has to be checked whether it is smaller than 0 or not and has
to be corrected accordingly.

4.2.2. Multiplication

The multiplication in Fp, as given in Equation (4.18), can be performed in two steps. For
two integers a and b of width m, the intermediate result c′ = a · b is determined during
the first step whereas in the second step c′ gets reduced by p to gain c = c′ mod p.

c = a · b mod p, a, b, c ∈ Fp (4.18)

As soon as the width of the operands a and b increases (e.g. m = 192, as it is in FP192),
attention must be paid to the carry propagation of the addition, which is required to
add the partial products during the multiplication. This is due to the fact that this
addition is often part of the critical path within designs and limits the maximal possible
frequency. Therefore many designs found in the literature process the large numbers
“word by word”1(this is also known as multi-precision arithmetic).

1Typical values for the width of processor words are 8, 16, or 32 bits.

28

4. Finite-Field Arithmetic

The two most commonly used methods to perform the multiplication word by word
are mentioned in the following: The operand scanning form, which is also known as
the paper and pencil method, has already been described throughout Section 4.1.2. In
contrast to the operand scanning form, the second one, known as the product scanning
form, computes all terms required for a single digit of the final product at the same time.
Therefore the product scanning form needs less memory access and might be a better
choice with respect to a hardware design. Detailed descriptions of the two multiplication
methods can be found for example in [11].

Although multiplying large operands can be circumvented by processing them “word
by word”, the resulting product (which has to be reduced afterwards) is of width up to
2m and hence requires a lot of memory to be stored. In order to stay competitive with the
field multiplication in F2m , multiplication in Fp must also be interleaved with modular
reduction. Luckily modular multiplication is a very central operation in cryptography
and due to the popularity of RSA cryptosystems, which require a modular exponentiation
(i.e. multiple prime-field multiplications), research with regard to field multiplications
has been pushed a lot during the last centuries. An improved multiplication algorithm,
which is considered to be one of the most efficient ones, is due to Peter Montgomery [28]
and is described in the following.

Montgomery Multiplication

The main idea, developed by Montgomery, is to transform numbers from the integer
domain Z into another number domain, called the Montgomery domain, denoted by
M. When choosing the transformation parameters wisely, the modular multiplication
in M can be performed using very simple operations only (i.e. field addition and shift-
operations, which are quite cheap especially in hardware). Throughout the following
explanation, values within the Z domain will be represented using lower-case letters,
whereas for values in the M domain capital letters will be used. The transformed n-bit
value X ∈M is sometimes called the image of x and can be illustrated using its binary
representation as X = (Xn−1 Xn−2 . . . X1 X0). An image X of the integer x is defined
according to:

X = x ·R mod M, x ∈ Z, X ∈M, (4.19)

where R is a constant called the Montgomery radix and M is the n-bit wide modulus
fulfilling 2n−1 ≤ M < 2n. The Montgomery multiplication basically calculates the so
called Montgomery product (cf. Equation (4.20)), which results in another image Z:

MonPro(X,Y) = Z = X ∗ Y = X · Y ·R−1 mod M. (4.20)

Therefore it must hold that gcd(R,M) = 1, i.e. R and M have to be co-prime. If R is
chosen such that R = 2n (which is recommended, because then the ouput is bounded
by 2M according to [20]), gcd(R,M) = 1 is true as long as M is an odd value (which is
true in general for cryptography purposes). Already many different variations exist in
the literature to calculate the Montgomery product, a few of them are compared in [9].
Algorithm 4.4, taken from [19], describes how the Montgomery product can be deter-
mined. It contains simple additions and subtractions together with divisions by 2, which

29

4. Finite-Field Arithmetic

can easily be executed in hardware using shift operations. Also the modular division
by 2 can be calculated using a conditional addition together with a shift operation ac-
cording to Equation (4.21). Throughout the whole algorithm, the value of U is bounded
by 2M and can therefore be corrected afterwards easily with a single subtraction. This
correction step starts in line number 6.

Algorithm 4.4 Montgomery multiplication.

Input: 2n−1 < M < 2n, gcd(M, 2) = 1, 0 ≤ X,Y < M .
Output: Z = X · Y ·R−1 mod M , 0 ≤ Z < M .

1: A = Y , U = 0, V = X.
2: for i = n downto 1 do
3: A = (A−A0)/2.
4: U = (U +A0V)/2 mod M .
5: end for
6: if U ≥M then
7: Z = U −M .
8: else
9: Z = U − 0.

10: end if
11: return Z.

X

2
mod M =

{
X
2 , X0 = 0
X+M

2 , X0 = 1
(4.21)

In order to transform the values from Z to M and vice versa, the same algorithm as
for the Montgomery multiplication can be used. Value x ∈ Z can be transformed to
X ∈M by applying the Montgomery multiplication to x and the value R2 mod M , i.e.
the squared and reduced value of the Montgomery radix (which can be precomputed as
long as the modulus M does not vary). Transforming an image X back to its integer
representation x can be achieved by executing the Montgomery-multiplication algorithm
using the image and the value 1. The two transformations are given in Equation (4.22)
and (4.23), respectively:

Z 7→M : X = MonPro(x,R2) = x ·R2 ·R−1 mod M = x ·R mod M, (4.22)

M 7→ Z : x = MonPro(X, 1) = X · 1 ·R−1 mod M = x ·R ·R−1 mod M. (4.23)

Another advantage of the Montgomery representation of numbers is that it dos not affect
modular addition and modular subtraction algorithms. Hence, as long as no division
is required, operations can be performed in the Montgomery domain with just a single
transformation from Z 7→ M at the beginning of the calculation and a second one from
M 7→ Z at the end.

30

4. Finite-Field Arithmetic

4.2.3. Squaring

The squaring operation in Fp has been performed using the field multiplication with
twice the same input according to Equation (4.24) and hence is not further treated
herein:

a2 mod p = a · a mod p, a ∈ Fp. (4.24)

4.2.4. Inversion and Division

As already mentioned in Section 4.1.4, one possibility to determine the inverse of a field
element is based on the extended Euclidean algorithm and its variations. Because this
approach requires quite computationally expensive operations, another amendment of it
will be presented throughout the next two subsections.

Extended Euclidean based Inversion

The extended Euclidean algorithm is an enhancement of the classical Euclidean algo-
rithm which is used to determine the greatest common divisor (gcd) of two non-negative
integers a and b according to Algorithm 4.5.

Algorithm 4.5 Euclidean algorithm.

Input: a, b ∈ N∗, a ≥ b.
Output: gcd(a, b).

1: while b 6= 0 do
2: r = a mod b, a = b, b = r.
3: end while
4: return a.

The extension of this algorithm causes it, not only to yield the gcd(a, b), but also the
two integers x and y satisfying

ax+ by = gcd(a, b).

Because the actual result of the extended Euclidean algorithm is not that interesting for
the field inversion, the appropriate algorithm is solely given in Appendix A.1. Neverthe-
less, an amendment to it, listed in Algorithm 4.6, can be used to determine the inverse
element a−1 mod p (taken from [11]). This works as long as the modulus p is prime
and a ∈ [1, p− 1] (i.e. gcd(a, p) = 1).

Using the extended Euclidean algorithm to determine the inverse of a field element
suffers from the major drawback that it uses a computationally expensive division in
line number 4. In order to get around this problem, a binary version, called the Binary
GCD Algorithm, was used which will be explained in the following.

31

4. Finite-Field Arithmetic

Algorithm 4.6 Inversion in Fp using the extended Euclidean algorithm.

Input: Prime p, a ∈ [1, p− 1].
Output: a−1 mod p.

1: u = a, v = p.
2: x1 = 1, x2 = 0.
3: while u 6= 1 do
4: q = bv/uc, r = v − qu, x = x2 − qx1.
5: v = u, u = r, x2 = x1, x1 = x.
6: end while
7: return x1 mod p.

Extended Binary GCD Algorithm

The main idea of this approach to determine a−1 mod p is that the computationally
expensive division, required to determine the gcd(a, b) of two field elements a and b, is
replaced by cheaper operations, namely add and shift operations. Detailed information
about the computation of the gcd using these operations as well as the inversion process
(i.e. a−1 mod p) can be found in Appendix A.2.

Apart from the calculation of the inverse element, the extended binary gcd algorithm
can be used to determine the quotient a/b mod p by simply changing the initialization
values. A very promising version performing this division is due to Kaihara et al. [19]
and is listed in Algorithm 4.7.

All required operations for the aforementioned algorithm are easy to implement in
hardware. The modular-halving operation, a/2 mod p, has already been explained in
Section 4.2.2. The only operation which has not been treated yet, is the modular-
quartering operation, i.e. a/4 mod p. But this quotient can also be determined using
cheap add and shift operations according to Equation (4.25):

a

4
mod p =

a
4 , a ≡ 0 mod 4
a−p

4 , a ≡ 1 mod 4 and p ≡ 1 mod 4
a−p

4 , a ≡ 3 mod 4 and p ≡ 3 mod 4
a+2p

4 , a ≡ 2 mod 4
a+p

4 , a ≡ 1 mod 4 and p ≡ 1 mod 4
a+p

4 , a ≡ 3 mod 4 and p ≡ 3 mod 4

. (4.25)

Keep in mind that the modular reduction for a modulus m = 2i, i ∈ N∗ can be deter-
mined according to

a mod m =̂ a & (m− 1), (4.26)

where “&” represents a bitwise AND operation.

32

4. Finite-Field Arithmetic

Algorithm 4.7 Extended binary GCD algorithm for division in Fp.

Input: Prime modulus p of width n, 2n−1 < p < 2n, 0 ≤ x < p, 0 < y < p.
Output: z ≡ x/y mod p.

1: a = y, b = p, u = x, v = 0, ρ = n, δ = 0.
2: while ρ 6= 0 do
3: while a mod 2 = 0 do
4: a >> 1, u = u/2 mod p, ρ = ρ− 1, δ = δ − 1.
5: end while
6: if δ < 0 then
7: t = a, a = b, b = t, t = u, u = v, v = t, δ = −δ.
8: end if
9: if (a+ b) mod 4 = 0 then

10: q = 1.
11: else
12: q = −1.
13: end if
14: a = (a+ qb) >> 2, u = (u+ qv)/4 mod p, ρ = ρ− 1, δ = δ − 1.
15: end while
16: if b = 1 then z = v − 0 else z = p− v end if
17: return z.

4.3. Applied Algorithms

Table 4.2 summarizes the algorithms, which have been used to implement the finite-field
operations in F2m and in Fp, required for the ECC.

Table 4.2.: Applied algorithms for the finite-field operations in F2m and in Fp.

F2m Fp

Addition /
Subtraction

Exclusive-or relation 4.1.
Addition with subsequent sub-
traction of modulus 4.2.1.

Multiplication
Shift-and-add with interleaved
reduction 4.2.

Montgomery multiplica-
tion 4.4.

Squaring Exclusive-or-network 4.1.3.
Montgomery multiplication
with twice the same input 4.4.

Inversion /
Division

Fermat’s little theorem
based 4.3.

Extended binary GCD algo-
rithm4.7.

33

Chapter 5
Elliptic-Curve Cryptography

This chapter will start by presenting the elliptic-curve based digitial signature proto-
col, which has been implemented within this work, namely ECDSA. Both the signature
generation and the signature-verification process will be explained in detail. Due to the
popularity of ECDSA already many institutions, like the NIST, standardized elliptic-
curves and the appropriate underlying finite fields, that are well suited for cryptography
purposes. The implemented curves, namely the B-163 and the P-192, are two of these
representitives and will be handled afterwards. Due to the fact that the point multiplica-
tion dominates the execution time of ECC protocols, different approaches to implement
it will be considered in Section 5.2. Throughout the verification process of ECDSA (cf.
Section 5.1.2), the scalar multiplication has to be performed twice. Therefore at the end
of this chapter an algorithm is given, which computes the required operation much more
effectively than using two successive point multiplications.

5.1. Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA is the elliptic-curve counterpart of the DSA and has already been standard-
ized by many different institutions (e.g. by the NIST in the year 2000 [30]). Beside
the definition of the elliptic curve itself, including the underlying finite field, ECDSA
requires a prime-field arithmetic, a hash function, and a Random Number Generator
(RNG) to provide its full functionality. Figure 5.1 shows a block diagram of the required
components for an ECDSA implementation.

Although the RNG and the hash function are required to process the ECDSA in
general, they have not been implemented within this work. Hence the required ephemeral
key for the signature generation as well as the hash value of the message which should
be signed/verified, are assumed to be given and have to be provided as an input.

Most ECC protocols, like ECDSA, require further arithmetic beside the one for ellip-
tic curves, nevertheless the operations ontop of elliptic curves (i.e. the point multipli-
cation including point addition and point doubling) are the most important operations
in general. That is because they dominate the execution time of an elliptic-curve based

34

5. Elliptic-Curve Cryptography

Addition Subtraction DivisionMultiplication

Elliptic Curve - Finite Field Arithmetic

Elliptic Curve Operations

Elliptic Curve Arithmetic

Addition Multiplication Division

Prime Field Arithmetic

Random

Number

Generator

Hash Function
EC Point Multiplication

EC Point Addition EC Point Doubling

ECDSA

Figure 5.1.: Block diagram of the components required for an ECDSA implementation.

cryptosystem.
Like any other digital signature system, ECDSA consists of a signature-generation

algorithm and its verification counterpart which are described in the following.

5.1.1. Signature Generation

The generation of a digital signature according to ECDSA is given in Algorithm 5.1. In
contrast to the verification algorithm, it uses a RNG, which is required so that the same
input message does not always result in the same digital signature and hence does not
leak any information about the private key being used. The only elliptic-curve operation
within this process can be found in line number 3, namely the point multiplication.

Algorithm 5.1 ECDSA signature generation.

Input: Domain parameters (a, b, P, n), private key d, message m.
Output: Signature (r, s).

1: Compute e = HASH(m).
2: Randomly choose an integer k ∈ [1, n− 1].
3: Compute k ∗ P = (x1, y1).
4: Convert x1 to an integer x1.
5: Compute r = x1 mod n.
6: if r = 0 then Go to step 2.
7: Compute s = (e+ d · r)/k mod n.
8: if s = 0 then Go to step 2.
9: return (r, s).

Despite the fact that not all provided domain parameters are used within the afore-
mentioned algorithm, they are actually required, because they define the shape of the
elliptic curve and are needed throughout the elliptic-curve operations.

35

5. Elliptic-Curve Cryptography

5.1.2. Signature Verification

The verification process of the ECDSA is listed in Algorithm 5.2. Here the only elliptic-
curve operations can be found in line number 5, namely two point multiplications and
a subsequent point addition. One can combine these three elliptic-curve operations into
the so-called multiple point-multiplication (cf. Section 5.3).

Algorithm 5.2 ECDSA signature verification.

Input: Domain parameters (a, b, P, n), public key Q, message m, signature (r, s).
Output: Acceptance or rejection of signature.

1: if r /∈ [1, n− 1] or s /∈ [1, n− 1] then return Reject signature.
2: Compute e = HASH(m).
3: Compute u1 = e/s mod n.
4: Compute u2 = r/s mod n.
5: Compute X = u1 ∗ P + u2 ∗Q = (x1, y1).
6: if X = O then return Reject signature.
7: Convert x1 to an integer x1.
8: Compute v = x1 mod n.
9: if v = r then return Accept signature.

10: else return Reject signature.

Observing Algorithm 5.1 and Algorithm 5.2 reveals that the signature generation and
the signature-verification process both require more or less the same operations (except
of generating random numbers). Therefore the components needed during signature
generation and signature verification can be shared among these two modes of operation.

The following proof explains why for a valid keypair d and Q, the verification process
works correctly [11]. Keep in mind that the public key Q is determined according to Q =
d∗P and the modular division, i.e., x/y mod n, can be written using the multiplication
and the inverse element y−1.

ECDSA Verification Process Proof:

s ≡ (e+ d · r)/k mod n

≡ (e+ d · r) · k−1 mod n

k ≡ s−1 · (e+ d · r) mod n

≡ s−1 · e︸ ︷︷ ︸
u1

+ s−1 · r︸ ︷︷ ︸
u2

·d mod n

≡ u1 + u2 · d mod n

X = u1 ∗ P + u2 ∗Q = u1 ∗ P + u2 · d ∗ P = (x1, y1)

= (u1 + u2 · d)︸ ︷︷ ︸
k

∗P

And hence v = x1 mod n = r iff the correct keypair has been used.

36

5. Elliptic-Curve Cryptography

5.1.3. Applied NIST Standards

Due to the widely spread usage of elliptic curves within cryptosystems, institutions like
the NIST standardized curves with certain properties that are well suited for cryptog-
raphy purposes. The two curves being used within this work, namely the NIST B-163
and the NIST P-192, are recommend in [30] and have been implemented according to
[13]. The standard defines their domain parameters, specifying how the elliptic curve
looks like as well as the underlying finite field.

Basically, NIST provides 15 elliptic curves which are recommended for the use within
cryptosystems. They offer different levels of security based on the length of the pa-
rameters being used. The mentioned curves have been chosen, because they process
the smallest values among those, recommended by NIST and hence require the fewest
resources with regard to area and runtime. Furthermore, these curves are absolutely
sufficient for a state-of-the-art cryptosystem.

NIST B-163 Curve

The underlying finite field of this curve is a binary field F2m with m = 163. The domain
parameters of FB163 are described and given in Table 5.1. Some of them are written
using hexadecimal values showing the 163-bit wide vectors containing the coefficients of
the polynomial basis-representation as described in Section 4.1.

Table 5.1.: NIST B-163 domain parameters.

Domain Parameter Descriptions

a, b . . . Coefficients describing the elliptic curve.
x . . . The x coordinate of the base point P .
y . . . The y coordinate of the base point P .
n . . . The order of the base point P .

f(x) . . . Reduction polynomial.

Domain Parameter Values

a = 1

b = 0x 00000002 0A601907 B8C953CA 1481EB10 512F7874 4A3205FD

x = 0x 00000003 F0EbA162 86A2D57E A0991168 D4994637 E8343E36

y = 0x 00000000 D51FBC6C 71A0094F A2CDD545 B11C5C0C 797324F1

n = 0x 00000004 00000000 00000000 000292FE 77E70C12 A4234C33

f(x) = 0x 00000008 00000000 00000000 00000000 00000000 000000C9

NIST P-192 Curve

The P-192 curve works on an underlying finite field FP192 using 192-bit wide values. The
domain parameters describing the curve are given in Table 5.2.

37

5. Elliptic-Curve Cryptography

Table 5.2.: NIST P-192 domain parameters.

Domain Parameter Descriptions

a, b . . . Coefficients describing the elliptic curve.
x . . . The x coordinate of the base point P .
y . . . The y coordinate of the base point P .
n . . . The order of the base point P .
p . . . Prime field order.

Domain Parameter Values

a = −3
b = 0x 64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1

x = 0x 188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD 82FF1012

y = 0x 07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811

n = 0x FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831

p = 0x FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFF

5.2. Point Multiplication

Throughout this section, the point multiplication will be considered, i.e. the operation
computing k ∗ P . Basically many different approaches exist to determine the result of
the scalar multiplication, some of them require precomputations, others do not. Because
any kind of precomputation requires additional storage, it is not of interest within this
work. For further information about point-multiplication algorithms not handled in the
following subsections, we refer for example to [11] or [15].

5.2.1. Naive Point-Multiplication Approach

For a given scalar k and an elliptic curve point P the most obvious way to perform
a point multiplication within the additive elliptic-curve group would be, to add P to
itself k-times. For this approach, listed in Algorithm 5.3, k− 1 point additions would be
required. Due to the huge number of point additions, this would lead to an unacceptable
runtime proportional to k.

Algorithm 5.3 Naive point-multiplication approach.

Input: Elliptic-curve point P ∈ E(K), scalar k.
Output: Q = k ∗ P .

1: Q = P .
2: for i = k − 1 downto 1 do
3: Q = Q+ P .
4: end for
5: return Q.

38

5. Elliptic-Curve Cryptography

5.2.2. Double-and-Add Algorithm

Improvements concerning the required runtime can be made by using the so-called
double-and-add algorithm (with regard to the multiplicative group, it is known as the
square-and-multiply algorithm). It uses a scalar k given in the binary expansion, i.e.

k =
t−1∑
i=0

ki · 2i, ki ∈ {0, 1},

and performs the scalar multiplication according to Algorithm 5.4. The main idea of
this algorithm is, to add P to itself depending on whether the current bit of k is set or
not and considering the current position of the bit by doubling the value of Q.

Algorithm 5.4 Left-to-right double-and-add algorithm.

Input: Elliptic curve point P ∈ E(K), scalar k = (kt−1, . . . , k0)2.
Output: Q = k ∗ P .

1: Q = O.
2: for i = t− 1 downto 0 do
3: Q = 2Q.
4: if ki = 1 then
5: Q = Q+ P .
6: end if
7: end for
8: return Q.

A major problem with regard to security arises, because the runtime depends on the
Hamming weight of k. Hence a potential adversary is able to gain information about k,
using for instance a timing analysis or a Simple Power Analysis (SPA). This irregularity
poses a considerable threat, especially when k represents any kind of secret like it does
within the ECDSA.

Nevertheless this algorithm would require dlog2 ke point doublings and up to dlog2 ke
point additions. Assuming that the zeros and ones in k are uniformly distributed, the

number of point additions becomes
⌈

log2 k
2

⌉
.

5.2.3. Montgomery Ladder Algorithm

An algorithm, which performs the scalar multiplication within a fixed amount of time,
was proposed by Peter L. Montgomery [29]. According to its inventor it is called the
Montgomery Ladder and is given in Algorithm 5.5.

Although this point-multiplication algorithm does not depend on the Hamming weight
of the scalar k, one has to keep in mind that also the underlying abstraction levels (i.e.
point addition and point doubling as well as the finite-field arithmetic) must not leak
any information about the runtime, such that the scalar multiplication can be performed
regularly. The constantly required number of point additions and point doublings for
the Montgomery Ladder algorithm is equal to dlog2 ke.

39

5. Elliptic-Curve Cryptography

Algorithm 5.5 Montgomery Ladder algorithm.

Input: Elliptic curve point P ∈ E(K), scalar k = (kt−1, . . . , k0)2.
Output: Q = k ∗ P .

1: Q = O, R = P .
2: for i = t− 1 downto 0 do
3: if ki = 1 then
4: Q = Q+R.
5: R = 2R.
6: else
7: R = R+Q.
8: Q = 2Q.
9: end if

10: end for
11: return Q.

5.2.4. X-Coordinate Only Montgomery Ladder Algorithm over F2m

A very promising improvement to the algorithm described in Section 5.2.3 using an
underlying binary field F2m is due to Julio López and Ricardo Dahab [25], based on an
idea by Peter Montgomery [29]. Their scalar-multiplication algorithm is applicable for
arbitrary scalars k and does not need any kind of precomputations. Basically it is based
on the idea, that for two distinct points P1 = (x1, y1) and P2 = (x2, y2) whose difference
P4 = (x4, y4) = P2−P1 is known, the x-coordinate of the sum P3 = (x3, y3) = P1+P2 can
be obtained only from the x-coordinates of P1, P2 and P4 according to Equation (5.1).
This is true, as long as the relationship P2 − P1 is maintained invariant, because then
the x-coordinate of P4 satisfies x4 = xP .

x3 =

xP +
(

x1
x1+x2

)2
+ x1

x1+x2
, P1 6= P2

x2
1 + b

x2
1
, P1 = P2

(5.1)

López and Dahab provide two different versions of their algorithm, one uses affine
coordinates whereas the other one is based on projective ones and is listed in Algo-
rithm 5.6. Furthermore, they present a formula, given in Equation (5.2), which can be
used to restore the y-coordinate of the resulting point Q subsequent to the whole scalar-
multiplication procedure. Because within the ECDSA the y-coordinate of the resulting
point is not required, no further attention has been paid to its recovery.

yQ = (x1 + xP) · {(x1 + xP) · (x2 + xP) + x2
P + yP }/xP + yP (5.2)

For the algorithm a scalar k is assumed, where the MSB must be set. This is quite
handy, because with this assumption the first iteration of the for-loop can be skipped
by initializing X1, Z1, X2 and Z2 to their appropriate values and hence point additions
and point doublings with the point at infinity O do not have to be handled. The oper-
ations Madd and Mdouble, performing the point addition and the point doubling using
projective coordinates, are given in Algorithm 5.7 and Algorithm 5.8, respectively.

40

5. Elliptic-Curve Cryptography

Algorithm 5.6 X-Coordinate only Montgomery Ladder algorithm over F2m .

Input: Elliptic curve point P (xP , yP) ∈ E(F2m), scalar k = (1, kt−2, . . . , k0)2.
Output: xQ of Q = (xQ, yQ) = k ∗ P .

1: X1 = xP , Z1 = 1, X2 = x4
P + b, Z2 = x2

P .
2: for i = t− 2 downto 0 do
3: if ki = 1 then
4: (X1, Z1) = Madd(X1, Z1, X2, Z2), (X2, Z2) = Mdouble(X2, Z2).
5: else
6: (X2, Z2) = Madd(X2, Z2, X1, Z1), (X1, Z1) = Mdouble(X1, Z1).
7: end if
8: end for
9: return xQ = X1/Z1.

Algorithm 5.7 Madd operation.

Input: X1, Z1, X2, Z2, xP .
Output: (X3, Z3) = Madd(X1, Z1, X2, Z2).

1: X3 = X1 · Z2.
2: T1 = X2 · Z1.
3: Z3 = X3 + T1.
4: Z3 = Z2

3 .
5: T1 = X3 · T1.
6: X3 = xP · Z3.
7: X3 = X3 + T1.
8: return (X3, Z3).

Algorithm 5.8 Mdouble operation.

Input: X1, Z1, b.
Output: (X3, Z3) = Mdouble(X1, Z1).

1: X3 = X2
1 .

2: T1 = Z2
1 .

3: Z3 = X3 · T1.
4: X3 = X2

3 .
5: T1 = T 2

1 .
6: T1 = T1 · b.
7: X3 = X3 + T1.
8: return (X3, Z3).

41

5. Elliptic-Curve Cryptography

Table 5.3.: Comparison of point-multiplication algorithms with regard to the number of
required point additions and point doublings.

Elliptic-Curve Operations
Algorithm Additions Doublings

Naive point-multiplication approach k -

Double-and-add1
⌈

log2 k
2

⌉
dlog2 ke

Montgomery Ladder dlog2 ke dlog2 ke
X-coordinate only Montgomery Ladder2 dlog2 ke dlog2 ke

Although the number of required point additions and point doublings is equal to those
from Algorithm 5.5, the x-coordinate only version requires significantly less field opera-
tions to perform the two elliptic-curve operations (cf. Section 3.6). One iteration of the
algorithm requires 6 multiplications for both the point addition and the point doubling
(field additions and squarings are neglected because they require significantly less op-
erations than the multiplication). Furthermore, if the elliptic curve and the point with
which the scalar k has to be multiplied (i.e. the base point in ECDSA) are maintained
constant, two of these multiplications represent multiplications with a constant value
and hence can be possibly simplified.

5.2.5. Comparison of Point-Multiplication Algorithms

In order to get an overview of the presented scalar-multiplication algorithms determining
the value of k ∗P , Table 5.3 compares them with regard to the required number of point
additions and point doublings.

For the design based on the underlying binary field FB163, the x-coordinate only version
of the Montgomery Ladder has been chosen, whereas for the design based on the prime
field FP192 the Montgomery Ladder has been selected. The provided algorithms have
only been used during the digital signature generation of the ECDSA design. For the
verification process it is required to perform the point multiplication twice. In order
not to double the runtime due to the two time-consuming scalar multiplications, the
approach presented in the next section has been used.

5.3. Multiple Point-Multiplication

The most evident approach to perform the elliptic-curve operations required in the
ECDSA signature verification would be, to use two point multiplications together with
a subsequent point additioin (cf. Section 5.1.2). A more convenient and faster way is

1For the point additions it has been assumed, that the number of zeros and ones in the binary
expansion of k is uniformly distributed.

2Although the number of required elliptic-curve operations is equal to the standard Montgomery
Ladder, significantly less finite-field operations are desired.

42

5. Elliptic-Curve Cryptography

the so-called multiple point-multiplication which is also known as Shamir’s trick and was
originally proposed by E. Straus [32]. Algorithm 5.9, taken from [10], describes how the
multiple scalar-multiplication works.

Algorithm 5.9 Multiple Point-Multiplication.

Input: P,Q ∈ E(K), k = (kt−1, . . . , k0)2 and l = (lt−1, . . . , l0)2.
Output: R = k ∗ P + l ∗Q.

1: R = O.
2: Z = P +Q.
3: for i = t− 1 downto 0 do
4: R = 2R.
5: if ki = 1 and li = 0 then
6: R = R+ P .
7: else if ki = 0 and li = 1 then
8: R = R+Q.
9: else if ki = 1 and li = 1 then

10: R = R+ Z.
11: end if
12: end for
13: return R.

Although the runtime of this algorithm depends on the joint Hamming weight3 of k
and l, this does not pose a threat within the ECDSA verification, because no secret key
is part of the verification process and hence might be eavesdropped by an adversary
using any kind of side-channel attack. The multiple point-multiplication requires λ
point doublings and up to λ point additions, where λ = max(dlog2 ke, dlog2 le). One
little drawback, which is accepted due to the reduced execution time, is, that the sum of
the two points P and Q has to be precomputed and stored during the whole algorithm.

3The joint Hamming weight of two scalars k = (kt−1, . . . , k0)2 and l = (lt−1, . . . , l0)2 is the number
of nonzero bit vectors (ki, li) such that (ki, li) 6= (0, 0).

43

Chapter 6
Design Implementation

Throughout this chapter, the implementation of two ASIC designs, which provide a
signature generation and a signature verification-process according to ECDSA will be
presented. One of them is based on an elliptic-curve arithmetic using FB163 as the
underlying finite field and the other one uses FP192. Both designs have been worked out
processing the operands at full precision.

The chapter starts with the basic design idea, followed by a short insight into the
golden model. Next, the architecture and the HDL model implementations of the finite-
field arithmetics will be described. Throughout Section 6.8, the applied chip interface
will be addressed, followed by the verification of the HDL model. Finally a brief overview
of the steps, which have been performed during the back-end design will be given.

6.1. Introduction

Basically, the implementation of a chip design can be roughly subdivided into the steps
illustrated in Figure 6.1. During this chapter the individual steps of this block diagram
will be covered in terms of the implemented designs, focussing on the implementation of
the finite-field arithmetic for both the binary field FB163 and the prime field FP192.

6.2. Design Idea / Basic Architecture

Many ECDSA designs, currently available in the literature, are in general based on a
core logic, working on a 8, 16, or 32-bit wide datapath where the Arithmetic Logic Unit
(ALU) includes components like an adder, a Multiply Accumulate (MAC) unit and some
further components. This is the case, because they process the large operands “word by
word” (i.e. multi precision). Furthermore, they usually contain any kind of memory as
well as a controlling unit, which is responsible for creating the control signals, required
to calculate the correct operation during each clock cycle. A sketch of the required com-
ponents for this design approach is given in Figure 6.2. Due to the narrow and small
datapath, the most complexity herein is located in the controlpath.

44

6. Design Implementation

Design Idea

Golden Model
(MATLAB, Java, etc.)

HDL Model
(VHDL, Verilog, etc.)

HDL Model

Verification
(VHDL, Verilog, etc.)

Successful

T
es

t
V

ec
to

rs

No

Yes

Synthesis

Chip

Fabrication

Post Layout

Verification

Test

Vectors

Back-End Design

Floor- & Powerplanning

Place & Route

etc.

Yes

No

Successful

Figure 6.1.: Basic design flow for a chip development.

Memory

Further

Logic
MACAdder

C
o
n
tr
o
ll
er

I/O

n n

n

ALU

Field

Addition

Field

Multiplication

Field

Squaring

Field

Division

Point

Doubling

Point

Addition

Point

Multiplication

ECDSA

Figure 6.2.: Processor architecture with n
usually equal to 8, 16, or 32.

Figure 6.3.: Hierarchy of the ECDSA
protocol.

45

6. Design Implementation

C
o

n
tr

o
ll

er C
o
n
tr

o
ll

er Addition

Prime-Field Arithmetic

ECDSA Protocol Level

Elliptic-Curve Arithmetic

C
o
n
tr

o
ll

er

Binary-Field

Arithmetic

Addition

Multiplication

Squaring

Division

Multiplication

Division

nn

I/O MemoryController

n

n

(a) FB163 design.

C
o

n
tr

o
ll

er

nn

ECDSA Protocol Level

Elliptic-Curve Arithmetic

Prime-Field Arithmetic

C
o
n
tr

o
ll

er Addition

Multiplication

Division

C
o
n
tr

o
ll

er

n

n

I/O MemoryController

n

n

n

(b) FP192 design.

Figure 6.4.: Design overviews of the full precision ECDSA designs using FB163 and FP192

as the underlying finite field for the elliptic-curve operations.

The designs implemented within this work are based on a different architecture. In
general, the focus of the thesis lies on a competitive implementation of the elliptic-curve
arithmetic using FB163 as the underlying finite-field. The design therefor processes the
163-bit wide operands at their full bit width (i.e. full precision). In order to implement
two compareable designs, one working on FB163 and the other one on FP192 as the under-
lying finite field, also the prime-field version was designed at full precision. Because the
cell library of the manufacturer1, where the chips have been fabricated, didn’t support
the use of Random Access Memories (RAMs), standard-cell registers have been used as
storage elements.

Due to the fact that the ECDSA is built up in a very hierarchical structure (cf.
Figure 6.3), also the chip architecture has been developed according to this. This means
that the lowest hierarchy level (i.e. the finite-field arithmetic) was implemented at
first. Most of the field operations are implemented in separate modules, including their
own control logic as well as the required memories. The higher hierarchy levels then
only consist of a controlling unit, which is responsible for putting together the low
level operations correctly, and some registers required for intermediate results of the
appropriate algorithms.

Because the arithmetic in a prime field on the one hand is required for the underlying
finite field of the elliptic curve within the prime design, and on the other hand for the
modular operations on the ECDSA protocol level in both designs, a universally applicable
prime-field arithmetic has been developed (cf. Section 6.6). For the design using FP192

as the underlying finite field, this prime-field arithmetic has been shared among the

1The final designs have been manufactured at the LFoundry GmbH in Landshut.

46

6. Design Implementation

ECDSA Input Values

Test-Vector GenerationError-Message Output

Bit-True Golden Model IAIK-ECC Library

Output Value Verification

Verification

OK?

No Yes

Test-Vector

File

Figure 6.5.: Block diagram of the verification process of the bit-true golden model.

elliptic-curve operations and the ECDSA protocol-level operations, whereas the design
based on FB163 only uses it for the ECC protocol-level operations. A design overview
working on the full bit width based on FB163 and FP192, which is subdivided into the
different hierarchy levels are illustrated in Figure 6.4a and Figure 6.4b, respectively.

6.3. Golden Model

The development of the golden model (also known as the high-level model) was the first
step which was carried out after finishing the study on elliptic curves. Basically it should
fulfill the following two requirements:

Bit-True Model: Because debugging a HDL model is not as convenient as debugging an
implementation written in, for example MATLAB, Java or C++, a model which
performs exactly the same bitwise operations as the later developed HDL model
was targeted. With the use of this golden model, verification of the HDL model
and debugging becomes much easier.

Test-Vector Generation: Beside the before mentioned requirement, the golden model
was used to generate test vectors for both the verification of the HDL-model and
the post-layout simulation.

The Institute for Applied Information Processing and Communications (IAIK) developed
a Java-library2 which provides well-known cryptography algorithms based on elliptic
curves, including ECDSA. Using this library, the correctness of the bit-true high-level
model could easily be verified as illustrated in Figure 6.5. For that reason and for the
fact that Java provides the BigInteger3 data type, Java as a programming language was
chosen for the golden model.

For the implementation of the high-level model, the hierarchical structure of the
elliptic-curve arithmetic, required for ECDSA, was maintained. A small example, il-
lustrating the implementation in the high-level model is given in Listing 6.1. It shows

2http://jce.iaik.tugraz.at/sic/Products/Core-Crypto-Toolkits/ECCelerate
3The BigInteger data type provides arithmetic for integers of abitrary length, based on a two’s

complement representation. This is quite handy, especially when designing cryptosystems, where large
integers play a major role.

47

http://jce.iaik.tugraz.at/sic/Products/Core-Crypto-Toolkits/ECCelerate

6. Design Implementation

the golden-model implementation of the point addition from Algorithm 5.6. Line number
7 to 13 show the finite-field operation calls of the underlying Galois field.

Listing 6.1: Golden-model implementation of the point addition used by the x-coordinate
only scalar multiplication algorithm which is due to López and Dahab.

1 pub l i c MECPoint mAdd(Big Intege r x , B ig Intege r x1 , B ig Intege r z1 ,
B ig Intege r x2 , B ig Intege r z2)

{
3 Big Intege r xAdd = n u l l ;

B ig Intege r zAdd = n u l l ;
5 Big Intege r t1 = n u l l ;

7 xAdd = gf . mul t ip ly (x1 , z2) ;
t1 = g f . mul t ip ly (x2 , z1) ;

9 zAdd = gf . add (xAdd , t1) ;
zAdd = gf . square (zAdd) ;

11 t1 = g f . mul t ip ly (xAdd , t1) ;
xAdd = gf . mul t ip ly (x , zAdd) ;

13 xAdd = gf . add (xAdd , t1) ;

15 re turn new MECPoint(xAdd , zAdd) ;
}

6.4. HDL Model

Basically, for the description of an integrated circuit a so-called Hardware Description
Language (HDL) is required. The two most popular representatives for a HDL are Very
High Speed Integrated Circuit Hardware Description Language (VHDL) and Verilog .
Because the designs within this work have been carried out using the workflow at the
Integrated Systems Laboratory of the ETH Zurich and their design flow, in general, is
based on the use of VHDL, it has been chosen as the applied HDL.

As already mentioned, most of the operations within the ECDSA hierarchy (i.e. finite-
field operations, elliptic-curve operations, etc.) have been implemented in separate mod-
ules. Therefore the whole design consists of a “main module” containing many submod-
ules. In general, such a module can be subdivided into a datapath and a controlpath.
The implementation of the controlpath can be done within a separate module as shown
in Figure 6.6a. The approach which was chosen within this thesis, combines the dat-
apath and the controlpath in a single module as illustrated in Figure 6.6b. The main
advantage of the second approach compared to the first one is that it does not require
passing all the control signals from the control logic to the datapath and therefore the
portlists (i.e. the interface of the module) become much simpler.

The implementation of the control logic can be done either in a hardwired way, or
based on a set of available instructions, controlled by a microprogram which can, for
example, be stored in a Read Only Memory (ROM). The first control paradigm uses
so-called Finite State Machines (FSMs) to control the datapath flow, mostly using a

48

6. Design Implementation

Input RegistersInput Registers

Output RegistersOutput Registers

Datapath

C
o
n
tr

o
lp

at
h

Module

Controlpath

Module

Datapath

En

En

(a) Separated modules.

Input RegistersInput Registers

Output RegistersOutput Registers

Datapath

C
o
n
tr

o
lp

at
h

Module

Controlpath & Datapath

En

En

(b) Single module.

Figure 6.6.: Controlpath and datapath in separated modules and a single module, in-
cluding input and output registers.

hierarchical structure to get around too large and confusing FSMs. According to [17]
three different types of FSMs exist:

• Mealy machine

• Moore machine

• Medvedev machine

The three FSM types differ in the way they calculate the output from the input and
from the internal state. Figure 6.7a to Figure 6.7c illustrate the data-dependency graphs
of the three FSM types. A description of the parameters used in these figures is given
in the following:

The comparison between Figure 6.7b and Figure 6.7c shows that Medvedev machines
are a special subtype of Moore machines where the output is equal to the current state
(i.e. there exists no output function at all). Mealy and Moore machines can be described
according to Equation (6.1) and Equation (6.2), respectively:

g

f

s(k+1)

o(k)

s(k)

i(k)

(a) Mealy machine.

g

f

s(k+1)

o(k)

s(k)

i(k)

(b) Moore machine.

f

s(k+1)

o(k)

s(k)

i(k)

(c) Medvedev machine.

Figure 6.7.: Different types of FSMs.

49

6. Design Implementation

s(k) . . . k-th state (i.e. the current state)
s(k + 1) . . . (k + 1)-th state (i.e. the next state)

i(k) . . . k-th input
o(k) . . . k-th output
f . . . transition or next-state function
g . . . output function

o(k) = g(i(k), s(k)),

s(k + 1) = f(i(k), s(k)).
(6.1)

o(k) = g(s(k)),

s(k + 1) = f(i(k), s(k)).
(6.2)

Because the output of the Moore machine only depends on the current state, no
unregistered output values exist within this type of FSM, i.e. multiple Moore machines
can be connected in series without increasing the critical path. This is a major advantage
of Moore machines and hence it is, in general, recommended in the literature to use this
type of FSM. Furthermore it should be targeted to keep the output logic (i.e. g(s(k)))
as simple as possible, such that not too much combinational logic becomes part of a
subsequent transition function with regard to its longest path. All FSMs within this
thesis are implemented according to the Moore paradigm, trying to keep the output
logic as simple as possible.

6.5. FB163 Arithmetic Implementation

Two of the required finite-field operations in FB163, namely the addition (i.e. also the
subtraction) and the squaring, are quite easy to implement and therefore there is no need
to spend a lot of time developing sophisticated algorithms to determine their results.

As described in Section 4.1.1, addition and subtraction in F2m can be performed using
a simple exclusive-or operation as illustrated in Figure 6.8.

Because the irreducible polynomial for FB163 is fixed according to the NIST B-163
standard, the squaring operation was implemented using the idea from Section 4.1.3. In
order to get the correct coefficients for the squared polynomial, a universally applicable
polynomial division was implemented in the golden model using the B-163 reduction
polynomial, resulting in a quite cheap exclusive-or network. Most of the output bits
of the squaring operation (i.e. the bits of the squared and reduced polynomial) only
depend on two or three of the input bits. Just a few of the output bits depend on more
than three input bits, but none requires more than five. A sketch of the implementation
of the squaring operation in FB163 is shown in Figure 6.9.

Because the implementation of these two operations is fully combinational, both can be
performed within a single clock cycle. Furthermore they only require cheap exclusive-or
standard cells, what keeps their area within a reasonable amount. Table 6.1 summarizes
their area (obtained after synthesis) and timing properties.

50

6. Design Implementation

nn

n

Figure 6.8.: Addition in FB163.

Exclusive - OR

Network

n

n

Figure 6.9.: Squaring in FB163.

6.5.1. Multiplication

Throughout Section 4.1.2 a multiplication algorithm in F2m with interleaved reduction
was presented. An adaption of the described algorithm, which is suitable for a hardware
implementation is due to Beth et al. [5] and is given in Algorithm 6.1. The bit string

Algorithm 6.1 MSB first multiplier for F2m .

Input: a = (am−1, . . . , a1, a0), b = (bm−1, . . . , b1, b0) ∈ F2m , irreducible polynomial
f(x) = zm + r(x).

Output: c(x) = a(x) · b(x) mod f(x).
1: c← 0.
2: for i = m− 1 downto 0 do
3: c← (c << 1) + cm−1r.
4: if bi = 1 then
5: c← c+ a.
6: end if
7: end for
8: return c.

containing the binary coefficients of r(x) in FB163 is equal to (0 . . . 0 1 1 0 0 1 0 0 1), and
therefore the addition with r(x) becomes a simple bitwise inversion at those four posi-
tions, where ri = 1. Figure 6.10 shows a block diagram of the bit-serial multiplier in
FB163.

As already mentioned before, the design for the point multiplication using an under-
lying binary field is based on projective coordinates. Because addition and squaring
can be executed within a single clock cycle, the bit-serial multiplication, which requires
163 clock cycles, constitutes the major bottleneck throughout the elliptic-curve opera-

Table 6.1.: Area and timing properties of the addition and squaring operation in FB163.

Operation Timing
Area

Comb. Non-comb. Entire

Addition Fully combinational 435 GE - 435 GE 4 075 µm2

Squaring Fully combinational 521 GE - 521 GE 4 881 µm2

51

6. Design Implementation

tions. Therefore the previously mentioned algorithm was adapted to process multiple
bits within a single clock cycle by partly unrolling the loop within Algorithm 6.1. Fig-
ure 6.11 shows the area/time - tradeoff for the different implementations where both area
and time values have been normalized to the bit-serial implementation. In spite of this
improvement, the multiplication still requires definitely more clock cycles than the other
field operations and therefore dominates the execution time of the scalar multiplication.
For the final implementation of the multiplier in FB163 the digit-serial version processing
4 bits within a single clock cycle was used. Hence 41 cycles are required to determine the
product of two 163 bit wide operands. The desired area of the 4-bit multiplier, obtained
after synthesis, is 3802 GE.

6.5.2. Inversion

The implementation of the inversion in FB163 was done using Fermat’s little theorem
as described in Section 4.1.4. Therefore only the already described field operations are
required, together with some temporary registers and a simple control unit. Including
10 field multiplications and 162 squarings, the inversion operation results in altogether
572 cycles and requires 5 420 GE. Because the inversion is only required once during the
whole point-multiplication process (for the conversion from López - Dahab projective
coordinates to affine coordinates), the fact that the inversion is quite time-consuming
does not pose a major problem with regard to the timing.

6.6. FP192 Arithmetic Implementation

The observation of Algorithm 4.4 and Algorithm 4.7 shows that both require more or
less the same operations to determine their results. Marcelo Kaihara and Naofumi Tak-
agi [19] used this fact, to develop a design which uses a combined datapath for both the
Montgomery multiplication and the division based on the extended GCD algorithm. A
modified version of their design was implemented, which includes a modular addition
and hence provides all the field operations in Fp, required for the elliptic-curve oper-
ations as well as for the ECDSA protocol level. Because the field multiplication and

Bitwise
Inversion

n

n

n

a

b
Start

n

D Q

Clk

c

n

1

c

ReadyController

<<1

c(n-1)

Figure 6.10.: Implementation of the multiplier in FB163.

52

6. Design Implementation

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Area[norm.]

T
im

e
[n

o
rm

.]
Bit-serial

Digit-serial (2bits)

Digit-serial (4bits)

Digit-serial (8bits)
Digit-serial (16bits)

Figure 6.11.: Area/time - tradeoff for the multiplier in FB163.

the division, executed according to the aforementioned algorithms, can be determined
using addition and shift operations only, the addition becomes the most important op-
eration. In contrast to the arithmetic in F2m , a full precision implementation of the
arithmetic in Fp suffers from a major problem with regard to the addition, namely the
carry-propagation problem. In order to process the 192-bit wide operands on their full
bit width, special attention must be paid to it. To keep the maximal possible frequency
of their design within a reasonable range, Kaihara and Takagi made use of a redundant
binary representation which will be described in the following.

6.6.1. Redundant Binary-Number Representation

The two standard representations within binary-number systems are basically the one’s
and the two’s complement. As soon as the width of the numbers being processed in-
creases significantly, attention must be paid to the carry-propagation problem when
adding or subtracting two numbers. Because there is the possibility that the carry has
to be propagated from the Least Significant Bit (LSB) all the way up to the MSB, it is
very likely that the maximal possible frequency for such a number arithmetic is deter-
mined by the addition/subtraction. In order to get around this problem, a redundant
binary-number representation has been chosen.

Note: During the remainder of this work, the coefficients next to the radix of a binary
number will be called digits, whereas a single binary bit can also just describe parts of
a digit used within a redundant binary representation. When using a non-redundant
representation, the expressions digit and bit can be used interchangeable.

In general, standard binary-number representation systems use a single bit to represent
one digit of a binary number. The main idea of a redundant representation is, to use
more than just a single bit to describe one digit, which makes it possible to describe a
single binary number in many different ways. This redundancy allows one to perform
the addition/subtraction without propagating the carry through all the digits.

The representation chosen within this work uses a Signed-Digit (SD) representation
proposed by Avizienis [4]. It uses the digit set {−1, 0, 1} and due to the radix being used,

53

6. Design Implementation

this representation is called a Signed-Digit Radix-2 (SD2) representation. Throughout
the remainder of this work, −1 will be denoted by 1̄. An n-digit SD2 integer X can be
represented using a bit string of the form

x = (xn−1 xn−2 . . . x2 x1 x0), xi ∈ {1̄, 0, 1},

which represents the value

X =
n−1∑
i=0

xi · 2i.

Hence it is almost equal to a standard unsigned integer except that the coefficients xi
can be 1̄ too. In contrast to the standard one’s and two’s complement representations,
where the sign is depicted using the MSB of a number, the SD2 representation does not
require a special sign bit.

This redundant representation enables one to represent a single number using many
different ways. The following example shows this by displaying the decimal value 3 using
four different 4-digit SD2 representations.

(0011)SD2 = 2 + 1 = 3

(0101̄)SD2 = 4− 1 = 3

(11̄01̄)SD2 = 8− 4− 1 = 3

(11̄1̄1)SD2 = 8− 4− 2 + 1 = 3

The only integer which is uniquely represented using SD2 digits is 0. The major benefit
of the SD2 representation in contrast to the Standard-Binary (SB) representation is that
this redundancy allows one to perform an addition where the carry is only propagated one
digit to the left. Hence, using the SD2 representation eliminates the carry-propagation
chains at the expense of the redundant representation of the operands. This does not
say that addition using SD2 is more efficient than using SB in general, but as soon as the
width of the integers increases, it is quite obvious that the carry-propagation problem,
which is only present when using SB, represents the major bottleneck with regard to the
critical path.

Redundant Binary Encoding

Basically, there are several ways to represent the digit set {1̄, 0, 1} of the SD2 repre-
sentation using two bits. The encoding shown in Table 6.2 has been chosen due to the
following advantages:

• The bits xH and xL, representing one SD2 digit, can be interchanged without
altering the actual value of the SD2 number.

• In order to negate a SD2 number only the signs of all non zero digits have to be
changed. This can be done by inverting the bits xH and xL individually.

• The SB representation is one of the valid SD2 representations and can easily be
achieved by setting all xLi bits to 1 and the xHi bits to the actual SB value.

54

6. Design Implementation

Table 6.2.: Encoding for the SD2 digits using 2 bits.

xH xL SD2 Digit

0 0 1̄
0 1 0
1 0 0
1 1 1

Conversion between Redundant and Non-Redundant Representation

As already mentioned in the previous section, the conversion from SB to SD2 represen-
tation is not necessary, because the SB representation is also a valid SD2 representation
where all xLi bits are set to 1. Nevertheless for the conversion vice versa a subtraction
with carry propagation is required. This can of course be done at the very end of all
required Fp operations and works as follows:

• Let xSD2 be an n-digit wide SD2 number.

• Let xpos be an unsigned binary n-bit wide number, where all bits are set to 1
according to the positive bits in xSD2.

• Let xneg be an unsigned binary n-bit wide number, where all bits are set to 1
according to the negative bits in xSD2.

• Compute the difference x′ = xpos − xneg resulting in the n + 1-bit wide two’s
complement binary number, representing the same value as xSD2.

• Because x′ can also be negative, the modulus has to be added accordingly when
working in a prime field Fp to stay within [0, p− 1].

Figure 6.12 shows the schematic of a circuit which performs this conversion, getting the
xHi and xLi bits of an appropriate SD2 number as inputs. In order not to lower the
maximal possible frequency because of this carry-propagating addition, its calculation
has been split up such that it is performed during multiple cycles.

-

n n

n+1

InpH InpL

Oup

Figure 6.12.: Schematic for the conversion from SD2 to SB.

55

6. Design Implementation

Table 6.3.: Addition rules for the carry-propagation-free addition, based on the SD2
representation.

Case xi yi xi−1, yi−1 ci si

I
0 0

-
0 0

1 1̄ 0 0
1̄ 1 0 0

II 1 1 - 1 0

III 1̄ 1̄ - 1̄ 0

IV
0 1 neither is 1̄ 1 1̄

1 0 otherwise 0 1

V
0 1̄ neither is 1̄ 0 1̄

1̄ 0 otherwise 1̄ 1

Carry-Propagation-Free SD2 Addition

The carry-propagation-free addition (cf. for example [4] or [34]), for two operands x and
y, consisting of the digits xi and yi, basically works in two successive steps. During the
first step an intermediate sum digit si and an intermediate carry digit ci are determined
according to:

xi + yi = 2 · ci + si. (6.3)

In the second step the intermediate sum digit si and the intermediate carry digit from
the preceding position ci−1 are summed up to get the final sum digit zi, i.e.

zi = si + ci−1. (6.4)

In order to avoid generating a carry in the second step, the values of the intermediate
sum digit si and the intermediate carry digit ci have to be determined during the first
step such that si and ci−1 both will never neither be 1 nor 1̄. This is possible because the
SD2 numbers (01) and (11̄) both represent the value 1 and (01̄) and (1̄1) both represent
the value -1. Table 6.3 summarizes the addition rules for the SD2 arithmetic and the
different cases are described in the following:

Case I : This is the simplest case, because when the operand digits (xiyi) ∈ [(00), (11̄), (1̄1)],
the intermediate sum si and the intermediate carry ci are both 0, independently
of the preceding operand digits (xi−1yi−1).

Case II : When xi and yi are both 1, a positive carry is generated.

Case III : This is the counterpart to the previous case where both operand digits are
negative and hence a negative carry is generated.

Case IV : The fourth case is the first more interesting one. Because when (xiyi) ∈
[(01), (10)] the preceding operand digits (xi−1yi−1) have to be examined whether

56

6. Design Implementation

there is the possibility of a positive or negative carry. If there is the possibility of
a positive carry, (cisi) have to be set to (11̄) to stop propagating the carry. If the
possibility of a negative carry exists, (cisi) have to be set to (01). When neither
a positive nor a negative carry is possible, then (cisi) can either be set to (01) or
(11̄).

Case V : In the second interesting case, i.e. (xiyi) ∈ [(01̄), (1̄0)], carry propagation has
to be avoided too by checking the previous operand digits. If in this case the
possibility of a positive carry exists, (cisi) have to be set to (01̄). In order to avoid
propagating the carry when the possibility of a negative carry exists, (cisi) have
to be set to (1̄1). Once again setting (cisi) to (01̄) or (1̄1) does not matter when
neither a positive nor a negative carry is possible.

Determining whether there is the possibility of a positive carry or not, as mentioned in
the cases above, can be achieved by checking the preceding operand digits. If at least
one of the previous digits is 1 and the other one is either 1 or 0, then the possibility of
a positive carry exists. In contrast to this, to check if a negative carry might exist, at
least one of the preceding digits has to be 1̄ and the other one must either be 0 or 1̄.

SD2 Full Adder

The first approach to implement the addition rules for two SD2 digits according to
Table 6.3 was a simple look-up table. With that it was up to the synthesizer to generate
a suitable logic for adding the SD2 digits. The resulting logic for a component adding
two single SD2 digits, required 19 GE. Processing the FP192 operands at their full bit
width, requires 193 of these addition cells. In order to reduce the required area of the
SD2 full adder, another approach for the design of the digit-adding-cell, which is due to
Kim et al. [21], was implemented. It turned out that this design only requires 15.7 GE
after synthesis, i.e. 18% less than the previous one. The schematic of the cell is shown
in Figure 6.13.

AugH
AugL

AddH
AddL

CInH
CInL

COutH
COutL

SumH
SumL

Figure 6.13.: A single cell adding two SD2 digits (SD2FACell).

57

6. Design Implementation

Comb.
Logic

Comb.
Logic

Aug0Add0

CInH0

CInL0

Comb.
Logic

Comb.
Logic

Aug1Add1

Comb.
Logic

Comb.
Logic

Aug2

COut
H
2

COut
L
2

SumL2 SumH2

Add2

SumL1SumL0 SumH1SumH0

SD2FACell0 SD2FACell1 SD2FACell2

2n

2n

2

2

0

Comb.
Logic

Comb.
Logic

Augn

SumLn SumHn

SD2FACelln

Addn

Aug

Add

Sum
2n+2

0

Figure 6.14.: The critical path of the SD2 full adder (SD2FA).

Beside the two operand digits Augi and Addi, which are both expressed using the bits
(AugHi, Aug

L
i) and (AddHi, Add

L
i) respectively, the adder cell gets a “carry digit” from the

preceding cell to inform the current cell whether there is the possibility of a positive
or negative carry. As one can see from Figure 6.14, the critical path of the SD2 full
adder does not exceed the logic of two adder cells, independently of the width of the
operands. Without any timing constraints, the design of the 192-digit SD2 full adder
results in a critical path of 0.8 ns (cf. Listing 6.2), i.e. a maximal possible frequency of
fmax = 1.2 GHz.

Listing 6.2: Maximal timing results after synthesis for the 192-digit full adder.

Point Inc r Path
2 −−−

input e x t e r n a l de lay 0 .00 0 .00 f
4 AddSD2xDI [3 8 3] (in) 0 .00 0 .00 f

U1874/O (MOAI1S) 0 .17 0 .17 f
6 U1873/O (MOAI1S) 0 .37 0 .55 r

U2918/O (INV1S) 0 .10 0 .65 f
8 U2919/O (MOAI1S) 0 .18 0 .83 f

SumSD2xDO[3 8 4] (out) 0 .00 0 .83 f
10 data a r r i v a l time 0 .83
−−−

12 (Path i s unconstra ined)

6.6.2. SD2 Modular Addition

The modular addition using SD2 numbers is actually based on an idea by Takagi et
al. [33], and was adapted for the present prime-field arithmetic. Let M be the n-bit wide
modulus of the prime field satisfying 2n−1 < M < 2n, and let furthermore A and B be
two (n+ 1)-digit wide SD2 numbers within [−M,M]. Then the modular addition,

C = A+B mod M,

58

6. Design Implementation

Table 6.4.: Operands of the modular addition using SD2 numbers including their appro-
priate intervals and digit values.

Value Interval Width
Digits

n+ 2 n+ 1 n n− 1 n− 2 . . . 1 0

M − n − − − 1 Mn−2 . . . M1 M0

A [−M,M] n+ 1 − − An An−1 An−2 . . . A1 A0

B [−M,M] n+ 1 − − Bn Bn−1 Bn−2 . . . B1 B0

C ′ [−2M, 2M] n+ 2 − C ′n+1 C ′n C ′n−1 C ′n−2 . . . C ′1 C ′0
C ′′ [−M,M] n+ 3 C ′′n+2 C ′′n+1 C ′′n C ′′n−1 C ′′n−2 . . . C ′′1 C ′′0
C [−M,M] n+ 1 − − Cn Cn−1 Cn−2 . . . C1 C0

can be performed using three steps. During the first step, a carry-propagation-free
addition (cf. Section 6.6.1) is performed, resulting in the (n+ 2)-digit wide sum

C ′ = A+B, C ′ ∈ [−2M, 2M].

In order to keep the result within the interval [−M,M], the most significant two digits
of C ′, i.e. (C ′n+2C

′
n+1), are examined during the second step and 0, M or −M is added

to C ′ accordingly as their value is zero, negative or positive, i.e.:

C ′′ =

C ′ + 0, (C ′n+2C

′
n+1) = 0,

C ′ +M, (C ′n+2C
′
n+1) < 0,

C ′ −M, (C ′n+2C
′
n+1) > 0.

Using the standard SD2 full adder, this gives an (n + 3)-digit wide intermediate sum,
which is within [−M,M]. Due to the redundant representation, the most significant four
digits have to be examined and rewritten (this process is denoted by most significant
digits correction, i.e. MSDCorr) according to Equation (6.5) before C ′′ can be truncated
to (n+ 1) digits, i.e.

(C ′′n+3C
′′
n+2C

′′
n+1C

′′
n) = γ =

(0 0 0 1), γ = 1,

(0 0 1 0), γ = 2,

(0 0 1 1), γ = 3,

(0 0 0 1̄), γ = −1,

(0 0 1̄ 0), γ = −2,

(0 0 1̄ 1̄), γ = −3.

(6.5)

Table 6.4 summarizes the operands and (intermediate) results of the modular addition,
together with their intervals, widths and digits.

59

6. Design Implementation

6.6.3. Combined Arithmetic

Now that all finite-field operations required for the elliptic-curve arithmetic (squaring
within FP192 is performed using the multiplier with twice the same input) can be per-
formed using SD2 numbers, the combined datapath based on the idea of Kaihara et
al. [19] has been implemented. A major advantage of such a combined datapath is that
for a potential adversary it makes it much more difficult to eavesdrop information by
the use of side-channel attacks, because all operations use partly the same components
of the datapath. The datapath of the architecture, combining the logic for the Mont-
gomery multiplier, the field division based on the extended GCD algorithm and the
modular addition described in the previous section, is shown in Figure 6.15. The appro-
priate algorithm performing the FP192 operations is listed in Algorithm 6.6.1. As already
shown in Equation (4.21) and Equation (4.25), the required operations performing the
modular halving and the modular quartering, denoted by ModHalv and ModQuar, can be
determined using add and shift operations too.

Basically, the following algorithm is split up into four different steps. The Init Step and
the Output Step are of importance for all modes of the algorithm, whereas the two steps
in between, namely the Run Step and the Correction Step, are only of interest during the
prime-field multiplication and the division. The time-consuming Run Step is designed,
such that one iteration of it can be performed within a single clock cycle. The whole
modular arithmetic requires 33 kGE. This is mainly due to the higher amount of memory,
which is required because of the redundant representation and due to the combinational
logic, working on the large digit width. Originally the algorithm by Kaihara et al.uses a
mixed radix-4/2 approach, i.e. performing 2 digits during one clock cycle when possible
and 1 digit otherwise. Because this would enable an adversary to eavesdrop information
about the operands using a timing analysis, the algorithm was adopted to perform all
operations within a constant time by inserting some dummy operations where necessary.
MultDummy and DivDummy represent the dummy operations for the multiplication and
the division, both requiring a single clock cycle. For the Run Step this results in a cycle
count (for an n-digit wide number) equal to n for the multiplication and equal to 2n+ 5
for the division.

Algorithm 6.6.1 Combined arithmetic for SD2 numbers in Fp.

Input: mode ∈ {0, 1, 2, 3, 4},
prime modulus M : 2n−1 < M < 2n,
operands X,Y : −M < X,Y < M (Y 6= 0 when mode = 1).

Output: mode = 0 : Z = XY 2−(n+2) mod M , with Z ∈ [−M,M],
mode = 1 : Z = X/Y mod M , with Z ∈ [−M,M],
mode = 2 : Z = X + Y mod M , with Z ∈ [−M,M],
mode = 3 : Z = X − Y mod M , with Z ∈ [−M,M],
mode = 4 : Z = X + Y , with Z ∈ [−2M, 2M].

1: ———– Init Step ———–
2: A = Y, P = 2n+1, D = 1, s = 1.
3: if mode = 0 then B = 1̄, U = 0, V = X.
4: if mode = 1 then B = M,U = X,V = 0.
5: if mode = 2 then U = X + Y mod M .

60

6. Design Implementation

6: if mode = 3 then U = X − Y mod M .
7: if mode = 0 or mode = 1 then goto Run Step else goto Output step.
8: ———– Run Step ———–
9: while p0 6= 1 do

10: if A ≡ 2 mod 4 then
11: A >> 1, U = ModHalv(U, M).
12: if s = 0 then
13: if d1 = 1 then s = 1.
14: D >> 1.
15: else
16: D << 1, P >> 1.
17: end if
18: else
19: if ([a1a0] + [b1b0]) mod 4 = 0 then q = 1 else q = −1.
20: if mode = 0 or s = 0 or d0 = 1 then
21: A = (A+ qB) >> 2, U = ModQuar(U + qV, M).
22: if s = 1 then
23: D << 1.
24: if mode = 0 and p1 = 0 then P >> 2, Compute MultDummy.
25: else P >> 1, if p0 = 1 then s = 0.
26: else
27: D >> 1, if d0 = 1 then s = 1.
28: end if
29: else
30: {A = (A+ qB) >> 2, B = A}, {U = ModQuar(U + qV, M), V = U}.
31: if d1 = 0 then s = 0.
32: D >> 1.
33: end if
34: end if
35: end while
36: ———– Correction Step ———–
37: if mode = 0 and s = 1 then
38: U = ModHalv(U, M).
39: else if mode = 1 then
40: while D 6= 0 do
41: D >> 1.
42: Compute DivDummy.
43: end while
44: if ([b1b0] = 3 or [b1b0] = −1) then
45: V = −V .
46: end if
47: end if
48: ———– Output Step ———–
49: if mode = 1 then Z = V .
50: else if mode = 4 then Z = X + Y .
51: else Z = U .
52: return Z.

61

6
.
D
esign

Im
p
lem

en
tation

BSD2H bH
1 bH

0 BSD2L bL
1 bL

0 VSD2H vH
1 vH

0 VSD2L vL
1 vL

0 USD2H uH
1 uH

0 USD2L uL
1 uL

0ASD2L aL
1 aL

0

n n n n

>> 2 >> 1

2n 2n

2n

n n

2n 2n 2n 2n

T
r
u
n
c
a
t
e

2n+2

2n

n n n n

>> 2

2n

ModHalv

2n2n

SD2FA

ASD2L aL
1 aL

0

-1 0 0Modulus

n2n

InpYSD2xDI InpXSD2xDI

2n 2n 2n 2n

2n+2

2n

OupSD2xSO

2n+2

E
x
p
a
n
d

2n 2n 2n 2n

InpReqxSI

ModexSI

InpAckxSO

ClkxCI

RstxRBI

OupReqxSO

OupAckxSI

ModQuar

2n

Truncate

2n+2

SD2FA

MSDCorr

2n

2n 2n

2n

FSM

Figure 6.15.: Combined datapath for the prime-field operations based on SD2 numbers.

62

6. Design Implementation

6.7. Higher-Level Operations

As already mentioned in Section 5.2.5, the point multiplication for the binary design
was implemented using the projective version of the x-coordinate only algorithm which
is due to López and Dahab (cf. Algorithm 5.6). Therefor five 163-bit wide registers are
required to perform the elliptic-curve operations. Using the x-coordinate only paradigm
for the multiple-point multiplication does not work in the same way like within the
point-multiplication process4, because the difference of the points, performing the point
addition is not known (cf. Section 5.2.4). Hence, the other point coordinates have to
be processed too. Making use of projective coordinates would circumvent the time-
consuming field inversion in F2m , but requires further memory for the additional point
coordinates5. Due to the fact that using affine coordinates during the multiple-point
multiplication does not need any further registers for its main algorithm in comparison
to performing the scalar multiplication based on the x-coordinate only method using
projective coordinates (the registers storing the z-coordinates during the point multipli-
cation are used to store the y-coordinates throughout the multiple-point multiplication),
affine coordinates have been chosen for the calculation of the multiple-point multipli-
cation within the binary-field based design. Nevertheless, two additional registers are
required for the multiple-point multiplication to store a temporary point at the beginning
of the algorithm (cf. Algorithm 5.9). In the prime-field based design, the implementa-
tion of the field division only requires about twice the runtime of the multiplication and
hence, the use of projective coordinates can not really be justified. Therefore for the
P-192 design affine coordinates have been chosen for both the point multiplication and
the multiple-point multiplication.

6.8. AMBA APB - Interface

The ECDSA designs implemented in this work operate on relatively wide numbers (i.e.
163-bit and 192-bit values, respectively). Hence, it goes without saying that for writing
inputs to and reading outputs from the chip an adequate interface is required. One
state of the art protocol family, especially for SoC designs, is the family of the Advanced
Microcontroller Bus Architecture (AMBA) protocols [3]. The AMBA Advanced Periph-
eral Bus (APB) interface is one representative of this family and has been chosen for
the communication with the chip within this work. The APB protocol is a two phase
transaction protocol, taking at least two clock cycles. It is a protocol with a quite low
complexity where signal transitions occur during a rising clock edge. Furthermore, it is
compatible with the following protocols within the AMBA family:

• AMBA Advanced High-performance Bus (AHB)

• AMBA Advanced High-performance Bus Lite (AHB-Lite)

4Finding a way to apply the x-coordinate only formulae to the multiple-point multiplication would
be a nice breakthrough.

5Using projective coordinates with a common-z coordinate would lower the additional memory to
just a single 163-bit wide register.

63

6. Design Implementation

Table 6.5.: AMBA APB Signal Definitions.

Signal Direction Width Description

PClk IN 1 Clock signal
PResetn IN 1 Reset signal; Active LOW
PSel IN 1 Select signal; Indicates that for the specified APB

unit a data transfer is required.
PEnable IN 1 Enable signal; Starts the second phase of the commu-

nication and indicates that the data is available.
PWrite IN 1 Write/Read signal. Indicates whether a write

or read operation takes place. (HIGH. . .Write,
LOW. . .Read)

PAddr IN 7 Address signal. Specifies the address to which should
be written or from which should be read respectively.

PWData IN 8 Data write signal. Holds the data which should be
written to the APB unit.

PRData OUT 8 Data read signal. Holds the data which should be
read from the APB unit.

• AMBA Advanced Extensible Interface (AXI)

• AMBA Advanced Extensible Interface Lite (AXI4-Lite)

The required signals for the AMBA APB interface are given in Table 6.5. The two
main phases of the protocol are listed in the following:

Setup Phase: During this phase, a valid address is assigned. Furthermore, the APB
device has to be selected and the operation type (i.e. writing or reading) has to
be defined.

Enable Phase: Within the second stage, the APB device gets enabled and the data will
be written to or read from it.

All in all, a maximum of 32 pins were available for the communication between the chip
and its environment. Using a data bus width of 8 bits for both, the writing and reading
bus, together with 7 address bits, 3 control bits, the clock and the reset signal, this
results in 28 required bits overall.

Timings

The timing for the write access is shown in Figure 6.16. During the setup cycle (between
T2 and T3) the address of the data and the data itself get assigned. Furthermore, the
control signals PSel and PWrite indicate that a write access will follow. The follow-
ing cycle represents the enable cycle, during which the PEnable signal is set to HIGH
indicating that certain data should be written to the assigned address.

64

6. Design Implementation

T1 T2 T3 T4 T5

PClk

PAddr

PWrite

PSel

PEnable

PWData

Addr1

Data1

Figure 6.16.: AMBA APB - Write [3].

T1 T2 T3 T4 T5

PClk

PAddr

PWrite

PSel

PEnable

PRData

Addr1

Data1

Figure 6.17.: AMBA APB - Read [3].

In contrast to the write access, the APB unit has to ensure that during the read
access the data, which has been requested during the setup cycle (between T2 and T3),
is available while the enable cycle (between T3 and T4). The timing for the read access
is displayed in Figure 6.17.

I/O Addresses

The addresses required for writing data via the AMBA interface into the chip are listed
in Table 6.6. Those for reading data from the chip can be seen in Table 6.7. All data
is given using little-endian format (i.e. numeric significance increases with increasing
addresses).

Control Byte

The inputs for the calculations as well as their outputs differ with regard to the specified
mode of operation (i.e. signature generation and signature verification). In order to
define the mode of operation and to keep control over the calculation a Control Byte
has been implemented which can be accessed at address 120. Furthermore, this byte
contains the state-bit defining whether verification of a signature was successfully or

Table 6.6.: Inputs and Writing Addresses.

Value Prime Binary

Sign Verify Width Addresses Width Addresses

Private Key Public Key (x) 192 0 . . . 23 163 0 . . . 20
Message Digest Message Digest 192 24 . . . 47 163 21 . . . 41
Ephemeral Key Public Key (y) 192 48 . . . 71 163 42 . . . 62
- Signature (r) 192 72 . . . 95 163 63 . . . 83
- Signature (s) 192 96 . . . 119 163 84 . . . 104

65

6. Design Implementation

Table 6.7.: Outputs and Reading Addresses.

Value Prime Binary

Sign Verify Width Addresses Width Addresses

Signature (r) - 192 0 . . . 23 163 0 . . . 20
Signature (s) - 192 24 . . . 47 163 21 . . . 41

not. Currently, only the lowest four bits of this Control Byte are used. Table 6.8
describes the bits of the Control Byte.

6.9. Verification of the HDL Model

In order to verify the correctness of the HDL model, for most of the design units file-based
test benches have been implemented. The test benches, purely developed in VHDL, read
the test inputs together with the expected outputs from a single file, which has been
created by the golden model before. Afterwards they provide a set of required input
parameters for the current Device Under Test (DUT) and compare the actual outputs
with the expected ones. A summary of the results of this comparison is then written
in a report file. In comparison to other test bench approaches (e.g. using Tcl6-scripts
to provide the test bench with sample inputs), the one applied in here is known to be
much faster and hence very suitable when executing thousands of test runs. Figure 6.18
shows a sketch of the HDL model verification process.

The simulation of the VHDL modules as well as the post-layout simulation have been
performed using ModelSim7 by Mentor Graphics.

Table 6.8.: Control Byte - Bit Explanation.

Bit Name Description

x0 Mode Defines which mode of operation will be used. (LOW. . . Signature Gen-
eration, HIGH. . . Signature Verification)

x1 Start When set to HIGH the calculation starts.
x2 Ready As soon as the calculation finishes this bit will become HIGH.
x3 State During verification mode, this bit will define whether the signature has

been accepted or not (LOW. . . Signature rejected, HIGH. . . Signature
accepted)

6Tcl is a scripting language and many digital logic simulator manufacturer use it to provide an
interface to communicate with the HDL implementations.

7http://model.com/

66

http://model.com/

6. Design Implementation

Device Under Test

(VHDL)

Golden Model

(Java)

Test Bench

(VHDL)

=

Actual

Outputs

Inputs

Expected

Outputs

Test Vector

File

Verification

Report

Figure 6.18.: Block diagram of the verification process of the HDL-Model.

6.10. Backend Design

For both ECDSA implementations, the backend design has been performed. Because
the setup for the target technology (150 nm @ LFoundry) was not yet finished during
the development of the designs, the workflow was done using the 180 nm technology by
United Microelectronics Corporation (UMC) at first. As soon as the design flow for the
actual target technology finished, the gained build scripts have been altered from the
UMC to the LFoundry technology.

Basically, throughout the backend design the gate-level netlist, gained from synthesis8

was used in order to create the layouts of the two chips. Therefor, roughly the following
design steps have been accomplished:

Floorplanning: Physical properties like the width and the height of the chips are defined
during this step. Moreover, the placement of potentially available macro-cells
(which is not the case within the present designs) is done herein.

Power Planning: In order to have a uniformly distributed power consumption on the
chips, a well-conceived placement of the power wires is required. This includes the
definition of a power ring as well as a suitable number of power stripes.

Standard-Cell Placement: As soon as the power planning has finished, the standard
cells can be placed. This is in fact an important step, because afterwards the
utilization of the core area can be determined quite precisely.

Routing: One of the latter steps during the backend design is represented by the routing
process. After that, the final netlist is more or less finished and can be exported
for the post-layout simulation.

The backend design, in general, is a very iterative process, i.e. many steps have to be
performed multiple times to obtain the desired results. Once the final netlist has been
generated, it can be used to perform the post-layout simulation by applying the test
benches, generated for the HDL model simulation.

8To receive the gate-level netlist from the HDL model, the DesignCompiler tool by Synopsys has
been used.

67

Chapter 7
Results

Throughout this chapter, the results of the design implementations will be presented.
We carried out two ASIC designs, which are able to perform a digital signature genera-
tion as well as a signature verification according to ECDSA. The required elliptic-curve
operations for the first design are accomplished ontop of the binary field FB163, whereas
the second design uses the prime field FP192 as the underlying finite field. The results
contain information about the required resources with regard to area, timing, power and
the maximal possible clock frequency. Furthermore, the results of the binary-field based
design and the prime-field based design will be compared.

At the beginning of the chapter, the area and timing requirements will be considered
for the different ECDSA hierarchy levels, starting with the finite-field arithmetics and
then transfering over to the elliptic-curve operations and the ECDSA protocol-level
operations. Next, some information about the power and energy consumption as well
as the maximal possible clock frequency will be given. The chapter will close with a
screenshot of the final layout of both chips.

7.1. Area and Timing Results

Although the synthesizer being used within this thesis1 gives the results of the area
analysis in µm2, they have been transformed to Gate Equivalents (GEs) in order to be
comparable to designs, implemented using different technologies. With regard to the
runtime, the results of the implemented algorithms are given in required clock cycles.

Note: Although the final chips have been implementend using the 150 nm technology
by the LFoundry GmbH2, the area and timing results listed throughout this section are
obtained by the use of the 180 nm technology by UMC3. That is because the workflow

1For the synthesis of the VHDL model the Design Compiler tool by Synopsys has been used.
2http://www.lfoundry.com/
3http://www.umc.com/

68

http://www.lfoundry.com/
http://www.umc.com/

7. Results

Table 7.1.: Area/timing requirements for the operations in FB163.

Operation Cycles
Area

Comb. Non-comb. Entire

Addition 1 435 GE - 435 GE 4 075 µm2

Squaring 1 521 GE - 521 GE 4 881 µm2

Multiplication 41 2 827 GE 975 GE 3 802 GE 35 642 µm2

Inversion 572 2 552 GE 2 868 GE 5 420 GE 50 806 µm2

for the LFoundry technology at the Integrated Systems Laboratory4 was not yet set up
when running these tests.

7.1.1. Finite-Field Arithmetic

Because the finite-field operations form the lowest hierarchy level of the ECDSA struc-
ture, they are considered at first. In order to get an overview of the different modules,
implementing the required field operations in FB163, Table 7.1 summarizes their area
and timing requirements. Because addition and squaring are implemented only by the
use of exclusive-or cells, both operations can be performed within a single clock cycle
and do not require any sequential logic at all. Figure 7.1 shows the area distribution
of the field operations in FB163. It illustrates that the multiplication and the inversion
take most of the area. This is due to the fact that in contrast to the addition and the
squaring, the multiplication and the inversion require both combinational and sequential
logic as well as a more complex control logic.

As described in Section 6.6.3, all required operations in FP192 use mostly the same
datapath. Therefore the area requirements for this combined arithmetic are given in
Table 7.2 and illustrated in Figure 7.2. Due to the redundant binary representation,
which was used in order to circumvent the carry-propagation problem during the addi-
tion of the 192-bit wide operands, the SD2 arithmetic requires quite a lot memory. Also,
because of the large values being processed, the combinational logic takes much more
area in the FP192 arithmetic than within the FB163 arithmetic.

The modular addition as well as the standard addition using SD2 values can be per-
formed within a single clock cycle. Multiplication and division in FP192 require 194 and
391 clock cycles, respectively.

7.1.2. ECC Arithmetic

Because the elliptic-curve operations have been implemented using two different under-
lying finite fields, also the ECC results are separated with regard to them.

4http://www.iis.ee.ethz.ch/

69

http://www.iis.ee.ethz.ch/

7. Results

Table 7.2.: Area distribution of the combined SD2 arithmetic working in FP192.

Component Volume
Area

Comb. Non-comb. Entire

ModHalv 1 2 131 GE - 2 131 GE 19 980 µm2

ModQuar 1 4 979 GE - 4 979 GE 46 676 µm2

SD2FA 2 5 910 GE - 5 910 GE 55 405 µm2

Top level - 15 412 GE 11 368 GE 26 780 GE 251 046 µm2

Entire 39 800 GE 373 107 µm2

Table 7.3.: Area requirements for the ECC arithmetic over FB163.

Area
Component Comb. Non-comb. Entire

Finite-field operations 6 335 GE 3 843 GE 10 178 GE 95 412 µm2

Top level 17 686 GE 6 718 GE 24 404 GE 228 778 µm2

Entire 24 021 GE 10 561 GE 34 582 GE 324 185 µm2

Based on FB163

The ECC working on FB163 as the underlying finite field uses projective coordinates for
the representation of the elliptic-curve points when performing the point multiplication.
It is based on the x-coordinate only algorithm described in Section 5.2.4 and hence
does not need to store the y-coordinate at all. Altogether this algorithm requires five
163-bit wide registers to calculate the x-coordinate of the resulting point of the scalar
multiplication. The required area for the whole ECC working on FB163 as the under-
lying finite field is given in Table 7.3 and the area distribution is illustrated in Figure 7.3.

Due to the fact, that the x-coordinate only algorithm can only be applied under certain
conditions (cf. Section 5.2.4), which are not the case when performing the multiple-
point multiplication during the ECDSA signature-verification process, the control logic
can also perform the elliptic-curve operations (i.e. the point doubling and the point

Addition

Squaring

Multiplication

Inversion

53%

38%
4%

5%

Figure 7.1.: Area distribution of the finite-
field operations in FB163.

ModHalv

ModQuar

SD2FA

Top level - Non-comb.

Top level - Comb.

39%

29%

15%
5%

12%

Figure 7.2.: Area distribution of the SD2
arithmetic.

70

7. Results

Table 7.4.: Timing requirements for the point addition and the point doubling over FB163

using LD projective coordinates and affine coordinates.

Projective Coordinates Affine Coordinates
ECDoubleproj ECAddproj ECDoubleaff ECAddaff

Operation Volume(#) Cycles # Cycles # Cycles # Cycles

Addition 1 1 2 2 5 5 9 9
Squaring 4 4 1 1 2 2 1 1
Multiplication 2 82 4 164 2 82 2 82
Inversion - - - - 1 572 1 572

Entire 87 167 661 664

addition) using affine coordinates. Therefor the registers which hold the z-coordinates
during the point multiplication are used to hold the y-coordinates when performing the
multiple-point multiplication. Hence exactly the same number of registers are required
for the point addition and the point doubling using projective coordinates and affine
coordinates. Table 7.4 summarizes the required finite-field operations based on the two
different point-representation types. The overall runtimes for the point multiplication
and the multiple-point multiplication are listed in Table 7.5. Because the multiple-point
multiplication is not performed within a constant runtime, only the maximal required
clock cycles are given.

Based on FP192

Working with the SD2 arithmetic allows to perform the elliptic-curve operations at full
precision at the expense of a higher memory consumption. Because the conversion from
SD2 to SB requires an addition with carry propagation (cf. Section 6.6.1), converting
the operands into the standard-binary representation after each prime-field operation
would eliminate the advantage gained from the redundant representation. Therefore the
SD2 representation was maintained during the whole ECDSA calculation.

Using projective coordinates instead of affine coordinates is recommended, because
in general the inversion in a prime field is much more time-consuming than the other
field operations. Because for the implemented prime-field arithmetic the field division
only requires approximately twice the runtime of the multiplication, there would be

Addition

Squaring

Multiplication

Inversion

Top level

70%

16% 11% 1%
2%

Figure 7.3.: Area distribution of the ECC arithmetic over FB163.

71

7. Results

Table 7.5.: Timings of the point multiplication and the multiple-point multiplication and
the required operations based on FB163.

Point Multiplication Multiple-Point Multiplication

Operation Volume Cycles Operation Volume Cycles

Additiona 1 1 - -
Squaringa 2 2 - -
Multiplicationb 1 41 - -
Inversionb 1 572 - -
ECDoubleproj 162 14 094 ECDoubleaff 163 107 743
ECAddproj 162 27 054 ECAddaff ≤ 164 ≤ 108 896

Entire 41 764 Entire ≤ 216 639

aRequired during the first point doubling when the MSB is set.
bRequired for the conversion from projective to affine coordinates.

Table 7.6.: Required field operations and the appropriate timings for the elliptic-curve
arithmetic over FP192. Field operations: D = division, M = multiplication,
S = squaring, A = addition.

Required Field Operations Cycles

ECDouble 1D, 4M, 2S, 8A 1563
ECAdd 1D, 4M, 1S, 6A 1367

no advantage by the use of projective coordinates (cf. Section 3.6.2). Hence, affine
coordinates have been used for the point representation of the elliptic-curve points.

The required field operations for the point addition and the point doubling and their
appropriate runtimes are listed in Table 7.6. The multiplications with the constants
required for the point doubling (cf. Equation (3.14)) are performed in terms of two
consecutive field additions. The multiplication and the addition are done within the
Montgomery domain. Because the division works on standard integers, three additional
field multiplications are required to transform the operands of the division from the
Montgomery domain into the standard domain and the quotient vice versa.

The timing results for the point multiplication according to Algorithm 5.5 and the
multiple-point multiplication based on FP192 are given in Table 7.7. The runtime of
the multiple-point multiplication depends on its input values but requires at most a
single point addition more than the scalar multiplication5. The area consumption of the
ECC arithmetic including the distribution with regard to the finite-field arithmetic and
the top level is illustrated in Figure 7.4. Although there is no additional logic in the top

5Further improvements can be made to the multiple-point multiplication using the Joint Sparse
Forms (JSFs) to represent the scalars. We refer to [10] for detailed information.

72

7. Results

Table 7.7.: Runtime requirements for the point multiplication and the multiple-point
multiplication over FP192.

Required Operations Cycles

Point Multiplication 192 ECDouble, 192 ECAdd 562 560
Multiple-Point Multiplication 192 ECDouble, ≤ 193 ECAdd ≤ 563 927

level than the selection logic as well as some temporarily registers, it requires a lot of
area due to the large signal widths.

Figure 7.4.: Area consumption of the ECC arithmetic over FP192.

Component Area

FP192 arithmetic comb. 28 432 GE
FP192 arithmetic non-comb. 11 368 GE
Top level comb. 22 190 GE
Top level non-comb. 15 828 GE
Entire 77 818 GE

F
P192

 Arith. - Comb.

F
P192

 Arith. - Non-comb.

Top level - Comb.

Top level - Non-comb.

37%

20%
28%

15%

7.1.3. ECC Runtimes as a Function of Finite-Field Operations

The dependence of the runtimes of the elliptic-curve operations with regard to the finite-
field operations is of great interest. Therefore Figure 7.5 shows the runtimes of the
elliptic-curve operations, required for the signature generation and the verification ac-
cording to ECDSA with regard to the needed finite-field operations. Their overall run-
time has been normalized to one.

Because of the use of projective coordinates in the point multiplication, the runtime of
the signature generation using FB163 as the underlying finite field is determined heavily
by the field multiplication. When using affine coordinates, as within the signature-
verification process of the binary-field based design, the field inversion dominates the
runtime of the required elliptic-curve operation (i.e. the multiple-point multiplication).
Because the division in the prime-field based design only needs about twice the runtime
of the multiplication, both field multiplication and division determine the runtime of the
elliptic-curve operations, although affine coordinates have been used.

7.1.4. ECDSA Protocol Level

Beside the ECC arithmetic based on the finite field FB163, the ECDSA signature gener-
ation and signature-verification process requires some prime-field operations at the pro-
tocol level. Therefore the SD2 prime-field arithmetic working on 163-bit wide operands
was used to enable performing the entire digital signature algorithm. Due to the fact
that the prime-field arithmetic based on SD2 numbers does not imply any special kind of
modulus, it has been shared among the ECC operations and the ECDSA protocol-level

73

7. Results

Addition

Squaring

Multiplication

Inversoin

Division

1 2 3 4

Figure 7.5.: Required runtime for the different finite-field operations during the elliptic-
curve arithmetic (The sum of all operations are normalized to one). 1 -
Point multiplication (PM) using López Dahab projective coordinates based
on FB163, 2 - Multiple point multiplication (MPM) using affine coordinates
(A) based on FB163, 3 - PM using A based on FP192, 4 - MPM using A

based on FP192.

operations within the prime design. For the conversion between SD2 and SB numbers a
module, implementing the idea mentioned in Section 6.6.1, has been designed. Further-
more an AMBA APB interface was designed, which enables the chips to communicate
with their environment using an eight bit wide data signal (further information about
the interface can be found in Section 6.8) and holds the 163/192bit input and output
values during the entire calculation. The overall timing and area properties of both
ECDSA designs are given in Table 7.8 and Table 7.9, respectively.

7.2. Power and Energy Consumption

In order to get an estimation of the power and energy consumption of the two designs,
the EDA tools of the design flow at the Integrated Systems Laboratory have been used.
The first results of the power estimation were gained by setting a single global toggle-
activity to all internal nodes of the circuit. Due to the fact that this assumption is not
correct and should only be used for very rough estimations, another approach using a
so-called Value Change Dump (VCD) file was carried out in order to get a more precise
power estimation.

A VCD file contains the toggle information for all signals during a simulation run and
therefore predicts the power consumption of a design much more correctly than setting
a global toggle-activity. Table 7.10 summarizes the power consumption for both designs
based on the two aforementioned power-estimation variants working on a frequency of

Table 7.8.: Timing requirements for the ECDSA designs based on FB163 and FP192.

Based on FB163 Based on FP192

Signature Generation 42 264 cycles 563 147 cycles
Signature Verification ≤ 217 306 cycles ≤ 564 710 cycles

74

7. Results

Table 7.9.: Area requirements for the ECDSA designs based on FB163 and FP192.

Component Based on FB163 Based on FP192

ECC arithmetic 34 582 GE 18 % 37 093 GE 36 %
Modular arithmetic 33 227 GE 16 % 37 309 GE 36 %
SD2-to-SB converter 2 051 GE 2 % 2 568 GE 2 %
ECDSA top level 12 818 GE 14 % 15 653 GE 15 %
AMBA interface 9 250 GE 10 % 11 350 GE 11 %

Entire 91 928 GE 100 % 103 973 GE 100 %

Table 7.10.: Power consumption of the ECDSA designs (f = 100 MHz, UDD = 1.8 V).

Binary Design Prime Design

Global Toggle-Activity 92 mW 113 mW
VCD File Based 43 mW 61 mW

100 MHz and a supply voltage of 1.8 V. Due to the fact that both designs use a full
precision arithmetic, they consume more power than multi-precision designs found in
the literature. Especially the binary design has a very short runtime for the signature-
generation process (approx. 42 kcycles), hence the required energy, i.e. 18 µJ, is quite
low. The signature generation using FP192 as the underlying finite field requires about
340 µJ.

7.3. Critical Path

Because the critical path runs through the prime-field arithmetic and the two designs
make use of it, both have the same critical path in common, i.e. approx. 10 ns. This
results in a maximal possible frequency of 100 MHz. In contrast to the prime-field
arithmetic the critical path of the binary-field arithmetic is equal to 4 ns, i.e. it is
possible to clock it with up to 250 MHz.

75

7.
R
esu

lts

7.4. Layout

Figure 7.6.: Layout - Left: Prime-field based design, Right: Binary-field based design.

76

Chapter 8
Conclusion

Comparing different ECC implementations is, in general, very difficult, because there
are so many hierarchy levels (i.e. finite-field arithmetic, elliptic-curve operations, ECC
protocol level) where developers can vary their designs. Although the basic trend of ECC
implementations during the last years is towards multi-precision designs, we decided to
implement two full precision ECDSA designs, one based on a binary field and one based
on a prime field. The reason therefore laid in the fact that on the one hand binary-field
operations are well suited for hardware designs and can therefore also be implemented at
full precision without exceeding a reasonable range with regard to the required resources.
On the other hand a generally applicable prime-field arithmetic was targeted which
was then used for both, the elliptic-curve operations based on the prime field and the
ECDSA protocol-level operations in both designs. Furthermore, the encapsulation of
the particular finite-field operations in separated modules allows altering them easily
without touching any other parts of the designs.

The domain parameters, specifying the two elliptic curves as well as the underlying
finite field for the binary and the prime design, have been taken from a standard, pub-
lished by the NIST, namely the B-163 and the P-192, respectively. All field operations
in both designs have been implemented with an interleaved reduction, hence neither a
subsequent reduction step has to be performed, nor the (large) intermediate results have
to be stored.

In order to create two fairly comparable designs, we decided to implement the prime-
field arithmetic at full precision too. Using a standard binary representation for the
192-bit wide operands would have increased the critical path due to the field addition
significantly. Hence we decided to implement the prime-field operations using a redun-
dant binary representation. This redundancy allows a carry-free addition at the expense
of doubling the required memory for storing the operands. Beside the redundant repre-
sentation of the operands in the prime design, the combinational logic for selecting the
appropriate operands at the full bit width needs a decisive amount of area.

Summarizing we can say that we provide the first ASIC designs of ECDSA, one work-
ing on top of a binary field and the other one working on top of a prime field, which have

77

8. Conclusion

been implemented by the same designers using the equivalent design workflow and EDA
tools. Therefore comparisons between the different designs are more suitable than com-
paring designs from different designers using various work flows and technologies. Fur-
thermore the two designs offer both a signature generation and a signature-verification
mode. Basically, binary-field operations are much easier to implement in hardware than
prime-field operations, hence as long as there is a choice we suggest using F2m as the
underlying finite field of the elliptic-curve operations. When it comes to an ECC pro-
tocol where modular operations are necessary (e.g. ECDSA), using a prime field as the
underlying finite field based on a universally applicable field arithmetic might become
justified. That is because the respective hardware is needed either way and might be
shared. Nevertheless, the prime fields used for the elliptic-curve arithmetic are often of
a special type (i.e. a special modulus), such that reduction becomes easier and therefore
the modular operations at the lowest hierarchy level and at the ECC protocol level might
differ.

In comparison to multi-precision implementations, the full precision designs presented
herein require more resources with regard to area and power. This was expected due
to the wide datapaths. But when it comes to a runtime analysis, especially the binary
design performs the signature generation quite efficiently, i.e. in about 42 kcycles and
can even be lowered by optimizing the field multiplication in FB163.

8.1. Future Work

Some possible tasks to improve the binary and the prime design presented in this work
are given in the following.

8.1.1. Simultaneous F2m Operations

Addition and squaring in the binary field are implemented completely combinational.
Because their critical path is quite narrow and these operations are often required in a
subsequent way during the elliptic-curve arithmetic, they could be performed within a
single clock cycle easily. Moreover, both operations might be appended in the last, or
prefixed in the first cycle of the multiplication such that further cycles can be saved.

8.1.2. X-Coordinate Only Multiple-Point Multiplication

A very promising improvement with regard to the runtime would be to apply the x-
coordinate only approach presented in Section 5.2.4 to the multiple-point multiplication.
Therefore the difference of the two points, applying the point addition and the point
doubling, has to be known during the elliptic-curve operations. We are not sure yet if
this is even possible, but this would lower the number of required clock cycles for the
signature-verification process in the ECDSA significantly.

78

8. Conclusion

8.1.3. Multiple Clock Domains

Both designs are implemented using a single clock domain only. Because the critical
path within the prime-field arithmetic is more than twice as long as the critical path
within the ECC arithmetic based on FB163, inserting another clock domain would speed
up the binary design significantly.

8.1.4. Simplified SD2 Addition

The addition of two SD2 numbers is one of the major operation in the prime-field arith-
metic. Beside the standard addition of two arbitrary SD2 numbers, adding the modulus
to and subtracting it from any SD2 number is required quite often. Because the negative
of an integer, which is given in the standard representation, can be expressed with SD2
digits using only a single 1̄, addition/subtraction of the modulus can be achieved in a
simpler way than using the standard SD2 adder. For detailed information on the simpler
addition which would reduce the required area, see for example [33].

8.1.5. Montgomery Inverse

Due to the fact that the field division in FP192 according to the extended binary GCD
algorithm (cf. Section 4.2.4) requires an input value given in the standard domain,
but the field multiplication operates on values given in the Montgomery domain, three
additional multiplications are needed for each division to convert the operands between
the different domains. Using the Montgomery inversion (for further information see
for example [11]) circumvents these multiplications by the use of operands within the
Montgomery domain. Nevertheless it has to be verified first, whether the Montgomery
inversion can be implemented as efficient as the division using the extended binary GCD
algorithm.

8.2. Outlook

Full precision ECC designs are more or less only competitive with multi-precision im-
plementations when using a binary field as the underlying finite field. What might be
of interest is a mixed design, including a full precision ECC arithmetic working on a
binary field and a multi-precision modular arithmetic which performs the protocol-level
operations. This would combine the runtime benefits with regard to the binary field and
the elliptic-curve operations and the low area requirements for the rarely used modular
arithmetic. Nevertheless, an ECC design working on the full bit width, will never re-
quire as less power as a multi-precision implementation. But when runtime or energy
consumption play a major role in the requirements of a design, full precision might be
worth consideration.

79

Appendix A
Algorithms

A.1. Extended Euclidean Algorithm

Algorithm A.1, taken from [11], illustrates the extended Euclidean algorithm which
determines x, y and gcd(a, b) satisfying ax + by = gcd(a, b). A modification of this

Algorithm A.1 Extended Euclidean algorithm.

Input: a, b ∈ N∗, a ≤ b.
Output: d = gcd(a, b), x and y satisfying ax+ by = gcd(a, b).

1: u = a, v = b.
2: x1 = 1, y1 = 0, x2 = 0, y2 = 1.
3: while u 6= 0 do
4: q = bv/uc, r = v − qu, x = x2 − qx1, y = y2 − qy1.
5: v = u, u = r, x2 = x1, x1 = x, y2 = y1, y1 = y.
6: end while
7: d = v, x = x2, y = y2.
8: return (d, x, y).

algorithm, which is presented in Section 4.2.4, can be used to determine the inverse of
a field element a−1 ∈ Fp and b = p, because during the last iteration of the loop where
u is non-zero, the integers u, x1 and y1 satisfy ax1 + py1 = 1 (i.e. ax1 ≡ 1 mod p and
hence a−1 ≡ x1 mod p).

A.2. Binary GCD Algorithm

The main idea of the binary gcd algorithm is to replace the required division in the
extended Euclidean algorithm with cheaper operations, namely subtractions and shift-
operations. Algorithm A.2 shows this process [11].

The algorithm, given in Listing A.3 is an extension to the previous one and calculates
the inverse of an element in Fp without the requirement of the computationally expensive
field divisions [11].

80

A. Algorithms

Algorithm A.2 Binary GCD algorithm.

Input: a, b ∈ N∗.
Output: gcd(a, b).

1: u = a, v = b, e = 1.
2: while u and v are even do
3: u >> 1, v >> 1, e << 1.
4: end while
5: while u 6= 0 do
6: while u is even do
7: u >> 1.
8: end while
9: while v is even do

10: v >> 1.
11: end while
12: if u ≥ v then
13: u = u− v.
14: else
15: v = v − u.
16: end if
17: end while
18: return e · v.

81

A. Algorithms

Algorithm A.3 Inversion in Fp using the binary GCD algorithm.

Input: Prime p, a ∈ [1, p− 1].
Output: a−1 mod p.

1: u = a, v = p.
2: x1 = 1, x2 = 0.
3: while u 6= 1 and v 6= 1 do
4: while u is even do
5: u = u/2.
6: if x1 is even then
7: x1 = x1/2.
8: else
9: x1 = (x1 + p)/2.

10: end if
11: end while
12: while v is even do
13: v = v/2.
14: if x2 is even then
15: x2 = x2/2.
16: else
17: x2 = (x2 + p)/2.
18: end if
19: end while
20: if u ≥ v then
21: u = u− v, x1 = x1 − x2.
22: else
23: v = v − u, x2 = x2 − x1.
24: end if
25: end while
26: if u = 1 then
27: return x1 mod p.
28: else
29: return x2 mod p.
30: end if

82

Appendix B
Pinout and Pin Description

Both designs have been wrapped into a QFN56 package, where only 44 pins have been
used. Because both chips use the identical interface protocol, only a single pinout and
the appropriate pin descriptions are given in Figure B.1 and Table B.1, respectively. For
further information about the applied interface protocol, see Section 6.8.

Table B.1.: Pin Descriptions.

Pin Name Pin Numbers Direction Description

PClkxCI 44 IN Clock signal.
PResetnxRBI 45 IN Active-low asynchronous reset.
PWDataxDI 2-6, 9-11 IN Data write bus.
PRDataxDO 13, 16-20, 23, 24 OUT Data read bus.
PAddrxDI 25, 26, 30-34 IN Address bus of the.
PSelxSI 37 IN Select signal of the AMBA interface.
PEnablexSI 38 IN Enable signal of the AMBA interface.
PWritexSI 39 IN Mode signal of the AMBA interface.
ECDSAStartxSO 40 OUT Start signal of the ECDSA algorithm.

Becomes 1, when the actual ECDSA cal-
culation begins.

ScanEnxTI 46 IN Scan enable pin. Enables the scan inputs
of the scan registers.

ScanInxTI 57, 48, 51 IN Scan inputs.
ScanOutxTO 52, 53, 54 OUT Scan outputs.

83

B. Pinout and Pin Description

1

2

3

4

5

6

7

8

9

10

11

12

13

14

42

41

40

39

38

37

36

35

34

33

32

31

30

29

4356 55 54 53 52 51 50 49 48 47 46 45 44

2815 16 17 18 19 20 21 22 23 24 25 26 27

NOT CONNECTED NOT CONNECTED

NOT CONNECTED

ECDSAStartxSO

PWritexSI

PEnablexSI

PSelxSI

VDD Pad

VSS Pad

PAddrxDI(6)

PAddrxDI(5)

PAddrxDI(4)

PAddrxDI(3)

PAddrxDI(2)

NOT CONNECTED

PWDataxDI(0)

PWDataxDI(1)

PWDataxDI(2)

PWDataxDI(3)

PWDataxDI(4)

VSS Core

VDD Core

PWDataxDI(5)

PWDataxDI(6)

PWDataxDI(7)

PRDataxDO(0)

NOT CONNECTED

NOT CONNECTED

QFN56

V
D

D
 P

a
d

P
R

D
a

ta
x
D

O
(1

)

P
R

D
a

ta
x
D

O
(2

)

P
R

D
a

ta
x
D

O
(3

)

P
R

D
a

ta
x
D

O
(4

)

P
R

D
a

ta
x
D

O
(5

)

N
O

T
 C

O
N

N
E

C
T

E
D

N
O

T
 C

O
N

N
E

C
T

E
D

P
R

D
a

ta
x
D

O
(6

)

P
R

D
a

ta
x
D

O
(7

)

P
A

d
d

rx
D

I(
0

)

P
A

d
d

rx
D

I(
1

)

N
O

T
 C

O
N

N
E

C
T

E
D

V
S

S
 P

a
d

V
S

S
 P

a
d

N
O

T
 C

O
N

N
E

C
T

E
D

S
c
a

n
O

u
tx

T
O

(2
)

S
c
a

n
O

u
tx

T
O

(1
)

S
c
a

n
O

u
tx

T
O

(0
)

S
c
a

n
In

x
T

I(
2

)

N
O

T
 C

O
N

N
E

C
T

E
D

N
O

T
 C

O
N

N
E

C
T

E
D

S
c
a

n
In

x
T

I(
1

)

S
c
a

n
In

x
T

I(
0

)

S
c
a

n
E

n
x
T

I

P
R

e
s
e

tn
x
R

B
I

P
C

lk
x
C

I

V
D

D
 P

a
d

Figure B.1.: Pinout.

84

Acronyms

AHB Advanced High-performance Bus
AHB-Lite Advanced High-performance Bus Lite
ALU Arithmetic Logic Unit
AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus
ASIC Application Specific Integrated Circuit
AXI Advanced Extensible Interface
AXI4-Lite Advanced Extensible Interface Lite

DL Discrete Logarithm
DLP Discrete Logarithm Problem
DSA Digital Signature Algorithm
DSS Digital Signature Standard
DUT Device Under Test

ECC Elliptic-Curve Cryptography
ECDLP Elliptic Curve Discrete Logarithm Problem
ECDSA Elliptic Curve Digital Signature Algorithm
EDA Electronic Design Automation

FSM Finite State Machine

GE Gate Equivalent

HDL Hardware Description Language

IAIK Institute for Applied Information Processing and
Communications

IFP Integer-Factorization Problem

85

Acronyms

JSF Joint Sparse Form

LSB Least Significant Bit

MAC Multiply Accumulate
MSB Most Significant Bit

NIST National Institute for Standards and Technology

RAM Random Access Memory
RNG Random Number Generator
ROM Read Only Memory

SB Standard-Binary
SD Signed-Digit
SD2 Signed-Digit Radix-2
SoC System on Chip
SPA Simple Power Analysis

UMC United Microelectronics Corporation

VCD Value Change Dump
VHDL Very High Speed Integrated Circuit Hardware De-

scription Language

86

Bibliography

[1] Gordon B. Agnew, Ronald C. Mullin, and Scott A. Vanstone. An Implementation
of Elliptic Curve Cryptosystems Over F2155. IEEE Journal on Selected Areas in
Communications, 11:804–813, 1993.

[2] ANSI. ANSI X9.62-2005 - Public Key Cryptography for the Financial Service In-
dustry: The Elliptic Curve Digital Signature Algorithm (ECDSA).

[3] ARM. AMBA Open Specifications. Website, 2011. http://www.arm.com/

products/system-ip/amba/amba-open-specifications.php.

[4] Algirdas Avizienis. Signed-Digit Number Representation for Fast Parallel Arith-
metic. IRE Transactions on Electronic Computers, 1961.

[5] Thomas Beth and Dieter Gollmann. Algorithm Engineering for Public Key Al-
gorithms. IEEE Journal on Selected Areas in Communications, 7:458–465, May
1989.

[6] Jean-Sébastien Coron. Resistance against Differential Power Analysis for Elliptic
Curve Cryptosystems. Technical report, Ecole Normale Supérieure, 1999.

[7] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, November 1976.

[8] Taher Elgamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

[9] Çetin Kaya Koc and Tolga Acar. Analyzing and Comparing Montgomery Multipli-
cation Algorithms. IEEE Micro, 16:26–33, 1996.

[10] Johann Großschädl, Alexander Szekely, and Stefan Tillich. The energy cost of
cryptographic key establishment in wireless sensor networks. In Computer and
Communications Security, pages 380–382, 2007.

[11] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to Elliptic Curve
Cryptography. Springer-Verlag New York, Inc., 2004.

87

http://www.arm.com/products/system-ip/ amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/ amba/amba-open-specifications.php

Bibliography

[12] Michael Hutter, Marcel Medwed, Daniel Hein, and Johannes Wolkerstorfer. At-
tacking ECDSA-Enabled RFID Devices. Technical report, Institute for Applied
Information Processing and Communications (IAIK), 2009.

[13] IEEE Std 1363-2000. Standard Specifications for Public-Key Cryptography. New
York, 2000.

[14] Tetsuya Izu, Bodo Möller, and Tsuyoshi Takagi. Improved Elliptic Curve Multipli-
cation Methods Resistant against Side Channel Attacks. Technical report, Fujitsu
Laboratories Ltd., 2002.

[15] Marc Joye. Highly Regular Right-to-Left Algorithms for Scalar Multiplication.
CHES, pages 135–147, Berlin, Heidelberg, 2007. Springer-Verlag.

[16] Aleksandar Jurisic and Alfred Menezes. Elliptic Curves and Cryptography. Tech-
nical report, Certicom Corp., 2005.

[17] Hubert Kaeslin. Digital Integrated Circuit Design: From VLSI Architectures to
CMOS Fabrication. Cambridge University Press, New York, NY, USA, 1st edition,
2008.

[18] Marcelo E. Kaihara and Naofumi Takagi. A VLSI Algorithm for Modular Multipli-
cation/Division. IEEE Symposium on Computer Arithmetic, 16, 2003.

[19] Marcelo E. Kaihara and Naofumi Takagi. A Hardware Algorithm for Modular
Multiplication/Division. IEEE Transactions on Computers, 54(1):12–21, 2005.

[20] Marcelo E. Kaihara and Naofumi Takagi. Bipartite Modular Multiplication Method.
IEEE Transactions on Computers, 57:157–164, 2008.

[21] Yun Kim, Bang-Sup Song, J. Grosspietsch, and S. F. Gillig. A carry-free 54bx54b
multiplier using equivalent bit conversion algorithm. IEEE Journal of Solid-state
Circuits, 36:1538–1545, 2001.

[22] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

[23] Yong Ki Lee and Ingrid Verbauwhede. A Compact Architecture for Montgomery
Elliptic Curve Scalar Multiplication Processor.

[24] Arjen K. Lenstra and Eric R. Verheul. Selecting Cryptographic Key Sizes. Journal
of Cryptology, 14:255–293, 1999.

[25] Julio López and Ricardo Dahab. Fast Multiplication on Elliptic Curves over GF(2m)
without Precomputation. In Proceedings of the First International Workshop on
Cryptographic Hardware and Embedded Systems, CHES ’99, pages 316–327, London,
UK, 1999. Springer-Verlag.

88

Bibliography

[26] Alfred Menezes, Scott Vanstone, and Paul Van Oorschot. Handbook of Applied
Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

[27] Victor S. Miller. Use of elliptic curves in cryptography. In Lecture notes in computer
sciences; 218 on Advances in cryptology—CRYPTO 85, pages 417–426, New York,
NY, USA, 1986. Springer-Verlag New York, Inc.

[28] Peter L. Montgomery. Modular Multiplication Without Trial Division. Mathematics
of Computation, 44:519–519, 1985.

[29] Peter L. Montgomery. Speeding the Pollard and Elliptic Curve Methods of Factor-
ization. Technical report, American Mathematical Society, 1987.

[30] NIST. Digital Signature Standard (DSS) (FIPS PUB 186-3). National Institute of
Standards and Technology, 2009.

[31] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications of the ACM,
21:120–126, 1978.

[32] Ernst Straus. Addition Chains of Vectors. American Mathematical Monthly, 71:806–
808, 1964.

[33] Naofumi Takagi and Shuzo Yajima. Modular multiplication hardware algorithms
with a redundant representation and their application to rsa cryptosystem. IEEE
Trans. Comput., 41:887–891, July 1992.

[34] Naofumi Takagi, Hiroto Yasuura, and Shuzo Yajima. High-Speed VLSI Multipli-
cation Algorithm with a Redundant Binary Addition Tree. IEEE Transactions on
Computers, 34, September 1985.

[35] Annette Werner. Elliptische Kurven in der Kryptographie. Springer-Verlag Berling
Heidelberg, 2002.

89

	Introduction
	Outline

	Yet Another Cryptography Introduction
	Historical
	Cryptography Goals
	Symmetric-Key Cryptography
	Key-Distribution Problem

	Asymmetric-Key Cryptography
	Private/Public-Key Relationship
	Integer-Factorization Problem (IFP)
	Discrete Logarithm Problem (DLP)
	Elliptic Curve Discrete Logarithm Problem (ECDLP)
	Timeline

	Elliptic-Curve Basics
	Levels of Abstraction
	Number-Theoretic Background
	Group
	Field

	Definition of an Elliptic Curve
	Elliptic-Curve Group
	Chord-and-Tangent Rule
	The Point at Infinity O

	Choosing Point Coordinates
	Underlying Field
	Binary-Field Operations
	Prime-Field Operations

	Point Multiplication

	Finite-Field Arithmetic
	Arithmetic in F2m
	Addition and Subtraction
	Multiplication
	Squaring
	Inversion and Division

	Arithmetic in Fp
	Addition and Subtraction
	Multiplication
	Squaring
	Inversion and Division

	Applied Algorithms

	Elliptic-Curve Cryptography
	Elliptic Curve Digital Signature Algorithm (ECDSA)
	Signature Generation
	Signature Verification
	Applied NIST Standards

	Point Multiplication
	Naive Point-Multiplication Approach
	Double-and-Add Algorithm
	Montgomery Ladder Algorithm
	X-Coordinate Only Montgomery Ladder Algorithm over F2m
	Comparison of Point-Multiplication Algorithms

	Multiple Point-Multiplication

	Design Implementation
	Introduction
	Design Idea / Basic Architecture
	Golden Model
	HDL Model
	FB163 Arithmetic Implementation
	Multiplication
	Inversion

	FP192 Arithmetic Implementation
	Redundant Binary-Number Representation
	SD2 Modular Addition
	Combined Arithmetic

	Higher-Level Operations
	AMBA APB - Interface
	Verification of the HDL Model
	Backend Design

	Results
	Area and Timing Results
	Finite-Field Arithmetic
	ECC Arithmetic
	ECC Runtimes as a Function of Finite-Field Operations
	ECDSA Protocol Level

	Power and Energy Consumption
	Critical Path
	Layout

	Conclusion
	Future Work
	Simultaneous F2m Operations
	X-Coordinate Only Multiple-Point Multiplication
	Multiple Clock Domains
	Simplified SD2 Addition
	Montgomery Inverse

	Outlook

	Algorithms
	Extended Euclidean Algorithm
	Binary GCD Algorithm

	Pinout and Pin Description
	Acronyms

