
In-Memory Fuzzing on Embedded

Systems

Andreas Reiter

andreas.reiter@student.tugraz.at

Institute for Applied Information

Processing and Communications (IAIK)

Graz University of Technology

Inffeldgasse 16a

8010 Graz, Austria

Master Thesis

Supervisor: Dipl.-Ing. Kurt Dietrich

Assessor: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Karl Christian Posch

April, 2012

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Abstract

Fuzz testing or Fuzzing is a method to test software for bugs and vulnerabilities. It

is an important link in the chain of software-testing and enables automated software

tests from an applications view, and not like other testing methods from a source

code view.

Fuzzing can be used for different kinds of testing, e.g. for black-box testing where

no internals are known, as well as for gray-box testing where some system internals

are known which might affect or help to optimize the fuzzing process. Basically,

fuzzing puts a high load of malformed input data on the device or software under

test, examines the responses and looks for unexpected behaviour or even software

crashes. There are many types of fuzzers, with different interfaces, ranging from

generic software fuzzers to specific protocol fuzzers.

In this thesis, I analyse the existing fuzzing technologies, specific fuzzer imple-

mentations and define the requirements for in-memory fuzzers, especially on embed-

ded devices. In-memory fuzzing is a technology where the fuzzer analyses the target

program’s memory and tries to isolate regions of interest. These isolated regions can

then be tested separately without running through the whole program. For exam-

ple, the fuzzer could isolate the input parsing parts of a program, and exhaustively

test it with thousands of malformed inputs, with only a single application launch.

For this purpose it injects some code into the target, which generates test loops

and provides callbacks for the fuzzer. Further this thesis introduces an in-memory

fuzzing framework which was developed during the research for this thesis.

Keywords: software testing, fuzz testing, fuzzing, in-memory fuzzing

ii

Kurzfassung

Fuzz Testing oder Fuzzing ist eine Methode, um Software auf Bugs und Sicher-

heitslücken zu überprüfen. Diese Methode ist ein wichtiger Teil in der Kette von

Softwaretests und ermöglicht automatisierte Softwaretests aus der Sicht des Benut-

zers, nicht wie andere Testmethoden, aus der Sicht des Entwicklers.

Fuzzing kann für verschiedene Arten von Tests eingesetzt werden, z.B. für Black-

Box-Tests, wo keine Systeminterna erforderlich sind, ebenso wie für Grey-Box-Tests,

wo einige Systeminterna bekannt sind und die dazu beitragen, den Prozess zu opti-

mieren. Fuzzing testet Applikationen bzw. Geräte mit einer Menge aus gültigen und

ungültigen Daten und beobachtet das Verhalten der Applikation bzw. des Geräts. Es

gibt bereits viele verschiedene Arten von Fuzzern mit verschiedensten Schnittstellen,

angefangen bei generischen Software Fuzzern bis hin zu sehr spezifischen Protokoll

Fuzzern.

Diese Arbeit analysiert die vorhandenen Fuzzing Technologien, spezifische Fuz-

zer Implementierungen und definiert die Anforderungen an In-Memory-Fuzzer, die

vor allem auf Embedded-Geräten Einsatz finden. In-Memory-Fuzzing ist eine Tech-

nologie, bei der der Fuzzer den Speicher des Programms bzw. des Geräts analysiert

und interessante Bereiche zu isolieren versucht. Diese Bereiche können dann sepa-

rat getestet werden, ohne jedes Mal das gesamte Programm durchlaufen lassen zu

müssen. Der Fuzzer könnte zum Beispiel die Methode zur Eingabeverarbeitung iso-

lieren und diese mit tausenden von gültigen und ungültigen Eingabedaten testen, das

Programm aber nur einmal starten. Um dies zu bewerkstelligen werden Testschlei-

fen mit Einhängepunkten in die Applikation eingeschleust, die diese Methode immer

und immer wieder mit veränderten Eingangsdaten aufrufen. Weiters beschreibt diese

Arbeit ein In-Memory Fuzzing Framework welches im Zuge der Forschung für diese

Arbeit erstellt wurde.

Stichwörter: software testing, fuzz testing, fuzzing, in-memory fuzzing

iii

Contents

Introduction 1

1 Common Testing Methods 3

1.1 White-Box Testing . 4

1.1.1 Unit Testing . 4

1.1.1.1 Frameworks . 5

1.1.1.2 Example . 5

1.1.2 Code Review . 6

1.1.2.1 Tools . 6

1.2 Black-Box Testing . 7

1.2.1 Manual Testing . 7

1.2.2 Automated Testing . 8

1.3 Grey-Box Testing . 8

1.3.1 Binary Auditing . 8

1.4 Summary . 10

2 Vulnerabilities 11

2.1 From Bugs to Vulnerabilities . 11

2.2 Off-by-One Error . 12

2.3 Buffer Overflow . 13

2.3.1 Stack-Based Buffer Overflow 15

2.3.1.1 Exploiting the stack-based buffer overflow 17

2.3.2 Heap-Based Buffer Overflow 17

2.3.2.1 Exploiting the heap-based buffer overflow 18

2.4 Integer Overflow . 20

2.4.1 What is an Integer? . 20

2.4.2 What is an Integer-Overflow 21

2.4.3 Exploiting Integer-Overflows 22

iv

2.5 Summary . 24

3 Fuzz-Testing in General 25

3.1 Why Another Testing Methodology? 25

3.2 How Fuzzing Works, a General Overview 26

3.3 Fuzzer Classification . 27

3.3.1 Local Fuzzers . 28

3.3.1.1 Command-line Fuzzers 28

3.3.1.2 Environment Fuzzers 29

3.3.1.3 File Fuzzers . 31

3.3.2 Remote Fuzzers . 32

3.3.2.1 Network Protocol Fuzzers 32

3.3.2.2 Web-application Fuzzers 33

3.3.3 Data Generation . 34

3.3.3.1 Brute-Force Data Generation 34

3.3.3.2 Intelligent Data Generation 35

3.4 Summary . 37

4 In-Memory Fuzzing 38

4.1 Problems of Other Fuzzing Techniques 38

4.2 How In-Memory Fuzzing Works . 39

4.2.1 Mutation Loop Insertion . 40

4.2.2 Snapshot Restoration Mutation 42

4.2.3 Implementation Aspects . 43

4.3 Requirements . 44

4.4 Existing Frameworks . 45

4.5 Summary . 47

5 Implementation Details 48

5.1 Architectural Overview . 49

5.2 The Fuzzer Engine . 51

5.2.1 Configuration . 51

5.2.2 Bootstrapping the Fuzzer . 52

5.2.3 Support Library . 53

5.2.4 Remote Control . 54

5.2.5 Defining Fuzz-Descriptions and Fuzz-Locations 56

5.2.6 Data Generators . 59

v

5.2.7 GDB . 61

5.2.7.1 Process Snapshots and Restoration 61

5.2.7.2 The Core-Dump . 63

5.3 The Analyser Engine . 63

5.3.1 Configuration . 64

5.3.2 Analysers . 64

5.4 Summary . 65

6 Results 67

6.1 Application Tests . 67

6.1.1 HTEditor . 67

6.1.2 CoreHttp . 68

6.1.3 3Proxy . 69

6.1.4 ProFTPD . 70

6.2 Performance Test . 71

6.3 Known Issues . 71

6.4 Summary . 72

7 Conclusion and Future Work 73

A Sample Configuration Files 77

B Test Setup Configuration 79

B.1 HTEditor . 79

B.2 CoreHttp . 80

B.3 3Proxy . 81

B.4 ProFTPD . 83

List of Figures 87

List of Tables 88

Listings 89

Bibliography 91

vi

Introduction

Nowadays, software security is more important than ever. Every computer, hand-

held, mobile phone and many other devices, even home-automation-systems, heating-

installations or cars are interconnected. A single weak component can introduce

significant vulnerabilities in a whole system. Activities in the recent years showed,

that even global players do not invest enough time in (software-) testing [9][10][19].

The Second Annual Cost of Cyber Crime Study [16] gives an overview and compar-

ison to the last years results of the annual costs for committed cyber crimes of the

worlds top 50 companies. The results of this study are that the median costs for

cyber crimes in 2011 increased by 2.1 million dollars to 5.9 million dollars compared

to 3.8 million dollars in 2010. Thus, testing and vulnerability discovery is up-to-date

and more important than ever.

What is the right way to go? How can a developer be sure that his product does

not have any critical vulnerabilities? He can’t, but he can increase its chance to

avoid bugs by not relying on a single testing-method.

According to Fuzzing: Brute Force Vulnerability Discovery[27] many different

vulnerability discovery methodologies exist. They can be categorised in three groups:

• White-box testing where all program internals are known, access to the source

code is available and even access to the developers is available.

• Black-box testing where no extra information is available. A good example of

Black-box testing is testing a remote service without any documentation.

• Gray-box testing resides somewhere in between, there may be some documen-

tation available or there may be some known internals.

This thesis focuses on fuzz-testing or fuzzing, specifically on in-memory fuzzing

which is a method of software testing. In general fuzzing puts a high load of mal-

formed input data on the device or software under test, examines the responses and

looks for unexpected behaviour or even software crashes. Fuzz-testing can reside in

1

2

any White-box testing, Grey-box testing or Black-box testing depending on the infor-

mation available. Today, many different generic and specific fuzzers exist. However,

no informations on in-memory fuzzing nor any ready-to-use implementations are

available. This thesis defines the requirements for in-memory fuzzers and describes

an in-memory fuzzer implementation that was created during the research for this

thesis. It makes heavy use of existing tools and technologies and can use other

provided information to ease the process of fuzzing.

Before it focuses on the fuzz-testing approach, the existing testing methods are

analysed in chapter 1 and possible vulnerabilities along with their causes and effects

are discussed in chapter 2. A description of the different types of fuzz-testing engines

and an overview of the existing implementations follows in chapter 3. Chapter 4

focuses on all aspects of in-memory fuzzing, problems when dealing with in-memory

fuzzing and its area of application. A detailed description of the fuzzer-architecture,

and its components which were implemented during the research for this thesis is

shown in chapter 5. Before I conclude in chapter 7 the results are presented in

chapter 6.

Chapter 1

Common Testing Methods

This chapter focuses on widely spread and well established testing methodologies

and their pros and cons. The terms White-Box Testing, Black-Box Testing and

Grey-Box Testing will be used to further structure the testing methods.

Countless testing methodologies exist, discussing all of them would go beyond

the scope of this thesis. Therefore commonly used testing methods for each group

were selected. Another selection criterion is the metric used by the testing method

in order to remain comparable to others and especially to in-memory fuzzing. One

white-box testing method that is not included is, for example, Code Coverage testing.

It rates how many source-lines have been tested by the test-setup in contrast to the

complete source lines, therefore a code coverage of 100% is desirable but will not be

reached in practice. As you see Code Coverage testing has a different metric and

the output cannot be compared to the output of other testing methods. Therefore

Code Coverage testing and other testing methodologies with different metrics would

be misplaced here.

None of the described solutions are meant as the one-and-only solution, every

class of testing methods discovers other classes of errors. In a production envi-

ronment a combination of white-, grey- and black-box testing methods should be

used.

The subsequent sections define the terms White-Box Testing, Black-Box Testing

and Grey-Box Testing and focus on the following testing methods:

• White-Box Testing: Unit Testing, Code Review

• Black-Box Testing: Manual Testing, Automated Testing

• Grey-Box testing: Binary Auditing

3

CHAPTER 1. COMMON TESTING METHODS 4

1.1 White-Box Testing

The term White-Box Testing refers to testing methodologies that require full access

to the source code, in addition access to the developers may be available. This

methodology was historically simply referred to as testing. A simple scheme of

white-box testing is shown in figure 1.1.

known inputs known outputs

Figure 1.1: White-Box testing scheme

1.1.1 Unit Testing

Using the unit testing approach the program gets separated into small units which

can be tested independently. Figure 1.2 shows a basic unit testing scheme with tests.

Figure 1.2: Unit testing scheme

Unit tests do not test the interaction of different modules, they only test the

target unit, therefore unit tests are only a single part of a testing environment. An

important requirement for fast and reliable unit testing is that the execution does

not go out-of-scope, therefore a single unit-test should only check the target unit

and should not test any other related code (e.g. code from other units) which can

lead to unpredictable time constraints. Code from other units is tested by their

corresponding unit tests.

CHAPTER 1. COMMON TESTING METHODS 5

1.1.1.1 Frameworks

Countless unit-testing frameworks exist for nearly every programming language

available, but the most important framework is called SUnit[7] which is a test-

ing framework for Smalltalk and the origin of all so called xUnit testing frameworks.

It introduces itself as:

SUnit is the mother of all unit testing frameworks, and serves as

one of the cornerstones of test-driven development methodologies such

as eXtreme Programming.[7]

Kent Beck proposed this testing framework in 1989 in the paper Simple smalltalk

testing: With patterns[8]. Based on his work many different unit testing frameworks

appeared.

To name just a few:

• JUnit - Unit testing framework for Java-programming language.

• NUnit - Unit testing framework for Microsoft .NET and MONO.

• CppUnit

• ...

1.1.1.2 Example

A typical example of a unit-test looks similar to the example shown in listing 1.1. Of

course the implementation depends on the programming language but the outline

of the test will always look the same. First call the unit to test (the unit should

be chosen reasonable small), examine the return values and states, catch exceptions

and define success- and failure-states.

Listing 1.1: Unit-test example

public class FooTest{

@Test

public void testFoo (){

callMethod ();

examineReturnValuesAndState ();

// Define success and failure

assertTrue (...);

}

}

CHAPTER 1. COMMON TESTING METHODS 6

1.1.2 Code Review

Code Review is a manual or automated inspection of the source code. Practically

it is impossible to do a complete manual source code review. If used the review is

limited to a highly critical and small area of code. Another technique of manual

code review, which is also used in the field is Pair Programming. Using this software

development technique, two programmers always work at the same workstation, the

first one is typing the code (also called the driver) and the second one reviews the

code (also called the observer) and comes up with improvements. This method of

course has the advantage that (in most cases) it yields source code of higher quality,

but in fact this doesn’t say anything about bugs or vulnerabilities. There is a big

chance that two developers with the same background and the same point of view,

working on the same piece of code, will make the same mistakes.

Automated source code review tools in contrast can inspect the whole source

code for known, bad patterns. Many commercial and free review tools for various

programming languages are available and can be seamlessly integrated in the de-

velopment environment. Automated code review tools are able to detect, among

others the following common vulnerabilities:

• Methods which are generally considered unsafe, depending on the program-

ming language

• Static and limited dynamic pointer manipulation resulting in buffer overflows

during the succeeding program flow.

• SQL-injection vulnerabilities or in general, input validation vulnerabilities as

shown in listing 1.2

Listing 1.2: SQL-injection sample

SELECT * FROM sometable WHERE something=’ " + somevalue + " ’ "

The main drawback of automated review tools is, that they only inspect the

program from a developers point of view, and cannot perform a functional test from

the users or attackers point of view.

1.1.2.1 Tools

• RATS - Rough Auditing Tool for Security - is an auditing tool for C, C++

and other programming languages.

CHAPTER 1. COMMON TESTING METHODS 7

RATS scanning tool provides a security analyst with a list of

potential trouble spots on which to focus, along with describing the

problem, and potentially suggest remedies. It also provides a relative

assessment of the potential severity of each problem, to better help

an auditor prioritize. This tool also performs some basic analysis to

try to rule out conditions that are obviously not problems.[12]

• FxCop[18] is an external tool for the Microsoft Visual Studio environment.

It analyses .NET common language runtime assemblies and takes the review

approach even further by assisting the developer in following the given design

guidelines like naming conventions, error raising guidelines, security guidelines

and many more.

• Codan[2] is a light-weight static analysis framework for Java and can be com-

pared to FxCop. It is fully integrated in the Eclipse development environment.

1.2 Black-Box Testing

Black-Box Testing refers to testing methodologies which do not need to know the

inner workings on an application. The only information a black-box testing method

has access to is the information it can observe. Figure 1.3 shows a simple scheme of

a Black-Box Testing mechanism.

known inputs known outputs?
Figure 1.3: Black-Box testing scheme

1.2.1 Manual Testing

Manual testing is software testing with no support of any automated testing tools.

This process is not an alternative to an automated testing process, unless you

have your own testing-division with hundreds of employees.[27] As recent activ-

ities showed, one use-case for manual testing is testing web-pages using content

management systems with known vulnerabilities.

CHAPTER 1. COMMON TESTING METHODS 8

1.2.2 Automated Testing

Automated Testing is a general term for many different test methods, but what

most of them have in common are that test cases get defined at some point and are

running automatically. Automated Testing is not fixed to black-box testing, they

can also be white-box testing. Take a source module (also called a small unit),

define test cases and you have exactly the same set-up as with unit-tests. Test cases

for a text processing application could be many different files with all combinations

of formatting instructions including invalid instructions and special, non-standard

characters. This requires a lot of time for setting up the test-cases, but once created,

they can be run without interaction.

Fuzzing, as described in chapter 3, is also an automated testing method, but

with a different approach.

1.3 Grey-Box Testing

A Grey-Box Testing mechanism can use all the information it can observe (like black-

box testing) and all the information it can regenerate from the available (binary-)

files. There may be some parts of a binary-program, which can not be regenerated

to a human-readable form, as illustrated in figure 1.4.

known inputs known outputs?
Figure 1.4: Grey-Box testing scheme

1.3.1 Binary Auditing

Binary auditing is closely related to reverse engineering. Reverse engineering is the

process of decompiling a binary file to human readable source code and provide

assisting information to the developer. Reverse engineering tools are not able to

recover the original source code, because all meta-informations like variable names,

function names and comments are lost on compilation. The output of these tools is

an assembly file combined with a flow chart, to visualize the command flow. There

are also reverse engineering tools available (e.g. Boomerang[1]) which decompile at

least parts of the binary to a higher level language like C or C++.

CHAPTER 1. COMMON TESTING METHODS 9

Binary auditing is an automated reverse engineering process combined with an

analysis phase. In the analysis phase the binary auditor searches for potential vul-

nerable code constructs and determines whether they can be triggered by the user

or not.

A general overview of a binary-auditing process is shown in figure 1.5. The

process starts with the reverse engineering process which outputs the disassembled

code or regenerated higher language code and the already mentioned flow-chart to

assist the developer or analysis tool in inspecting the code. The next step is to find

the potential vulnerable code constructs. The output of this phase is a simple listing

of vulnerable code constructs, but this table does not contain any information if it

can be triggered by the user. This is done by the last step.

Figure 1.5: Binary-auditing overview

The advantage of this method is its availability, the binary file is available for

most of the applications, except remote- or web-applications. The disadvantage is

that reverse engineering is a highly complex process and requires highly specialized

skills[27].

An all-in-one solution is provided by IDA - The Interactive Debugger[14] which

is a disassembler and debugger with the capabilities to generate flowcharts and other

useful views of the program execution flow.

CHAPTER 1. COMMON TESTING METHODS 10

1.4 Summary

This chapter introduced a few commonly used testing methodologies and grouped

them by the information that is required to apply the test-method. The groups

are: White-Box-, Grey-Box- and Black-Box-Testing. Each testing method gets as-

signed to one of these groups by their required knowledge of the program-internals.

White-box testing methods have all program internals available including access to

the source code. Black-box testing methods in contrast have only the information

they can observe and grey-box testing methods additionally use reverse engineering

tools and externally supplied information to gather as many program internals (e.g.

method boundaries, method parameters, layout of data structures, stack layout,...)

as possible. Most of the described methods, regardless of which group they are as-

signed to, do not test the functionality of the application as a whole, they only test

small parts or modules. Only the automated testing approach tests the application

from a users point of view but this method is not applicable because it requires

too much time and too many resources. All the testing methods have their means

of existence and each testing method tests for different kinds of errors. But there

is no single-master-testing-method to apply. For a secure system a wisely chosen

combination of testing methodologies and other approaches are required.

Chapter 2

Vulnerabilities

A bug is not necessarily a vulnerability. A bug in an applications user interface for

example may not be exploitable and therefore is not a vulnerability. This chapter

gives an overview of the different exploitable bug-categories and illustrates the way

from bugs to vulnerabilities and exploits.

2.1 From Bugs to Vulnerabilities

What is a bug? In general a bug is a software behaviour that was not intended

by the developer. For example, a bug may allow users to access resources they are

not allowed to access. It may raise the user’s privilege level and may allow the user

to execute commands that should not be executable by design. Furthermore a bug

may cause changes in the user’s interface of an application.

In summary we can say, that there are multiple categories of bugs that compro-

mise the system in different ways. A bug in an applications graphical user interface

for example may not be critical for the whole system security and may even not

be critical for the application itself; a bug in contrast which allows the user of an

application to execute user-defined commands, compromises the whole system and

is easily exploitable.

Figure 2.1 shows the relationship of bugs, vulnerabilities and exploits. Once bugs

are discovered a combination of bugs is chosen by an attacker to create a vulnerability

or an attack-path. The vulnerability itself is only dangerous if exploit code exists,

so typically an attacker takes an available vulnerability and writes the exploit code

which compromises the system. As we can see the real threats are vulnerabilities

with existing exploit code.

11

CHAPTER 2. VULNERABILITIES 12

UI-Bug

User privilege
Bug

Cmd execution
Bug

non-critical bug

Bugs

Vulnerability

E X P L O I T

Attacker

write
exploit
code

Figure 2.1: From bugs to vulnerabilities and exploits

2.2 Off-by-One Error

The source of off-by-one errors is the way that computers count, Rathaus and

Evron[22] give a very good example of the problem.

How many fence posts are needed to build a fence 25 feet long with

posts placed every 5 feet? Well, you can compute this by dividing 25 by 5,

getting the answer of 5. While this is the correct answer for the number

of fence sections you need (S-1 though S-5), it is not the correct answer

for the number of posts needed.[22]

The problem is illustrated in figure 2.2, to come back to the fence example, it

requires six fence posts but only five fences. This is a source of error for every

developer.

1 2 3 4 5

1 2 3 4 5 6
Figure 2.2: Off-by-One Error

How is this related to software development? The prime example for off-by-

one errors are array indices in C programming language. They range from zero to

length-1, the index length may already be associated with another array.

CHAPTER 2. VULNERABILITIES 13

2.3 Buffer Overflow

This section focuses on buffer overflows and their general workings followed by two

concrete buffer overflow implementations:

• Section 2.3.1 focuses on stack-based buffer overflows

• Section 2.3.2 focuses on heap-based buffer overflows

Low

High

Program

buffer_a

buffer_b

writing direction
(growing addresses)

Virtual address space

Figure 2.3: General functional principal of a buffer
overflow

Buffer overflows are the

most common bugs in today’s

software and can be exploited

easily, if no protection mech-

anisms are applied to the ap-

plication or the operating sys-

tem. Figure 2.3 shows the gen-

eral functional principle of a

buffer overflow without going

into detail on Stack-Based or

Heap-Based buffer overflows, it

shows the virtual address space

of an application. The size and

proper locations of the buffers

and the executable code de-

pends on the architecture and

the operating system the application is executed on. What they all have in common

is that an allocated block of memory is a consecutive memory region, at least in the

context of virtual addresses. If an application writes beyond the bounds of a buffer,

call it buffer a as shown in figure 2.3 and the operating system or the application

has no protection against buffer overflows, it is likely that the application overwrites

memory that is allocated by another part of the program or it writes to memory

that has not been allocated yet. Both cases result in unpredictable application-states

and may crash the application, in the best case. Developers are the main source of

buffer-overflow-faults. The following list shows common causes of buffer overflows.

• User-definable parameters are used without checking: A user can provide a

variable-length buffer which is copied to internal buffers. These buffers may be

of fixed size (as it is for many applications handling command line arguments),

this may result in buffer overflows for ”long-enough” command lines.

CHAPTER 2. VULNERABILITIES 14

• Use of unsafe methods: Especially low-level languages like C and C++ provide

potentially unsafe methods like strcpy. It copies a source string character by

character to a destination buffer and continues as long as no null-element is

found.

• Many variations of the above exist like reading from files, network streams and

so on.

Low

High

text

Virtual address space layout

data region
(initialized data)

bss region
(uninitialized data)

heap

growing
direction

stack
growing
direction

Figure 2.4: Simplified virtual
memory layout of current operat-
ing systems running on the x86-
architecture

Before focusing on dedicated buffer-overflow

implementations, I will introduce the virtual-

memory-scheme and stack-layout used by cur-

rent operating systems running on the x86-

architecture. Figure 2.4 shows a common and

simplified layout of the virtual-memory of a run-

ning process. The figure only contains the rel-

evant components, in practice the virtual mem-

ory contains some more components like multiple

stacks, command line arguments, environment

variables, memory mapped IO, a mapped ker-

nel area and depending on the operating system

and installed devices other areas. The memory-

addresses in figure 2.4 grow from bottom to top,

the following sections are contained:

• text: This section contains the executable program code. The target of the

instruction pointer (ip) is somewhere in this section.

• data region: This section also comes from the executable and contains static

or constant values.

• bss section: This section contains all global variables that have not been ini-

tialized statically in source code.

• heap: The heap-section contains all dynamically allocated memory and is of

variable size. In general the size of the heap is not set by the developer

explicitly. A programming language like C, for example, contains methods to

acquire more dynamic memory (malloc). If a program requests more memory,

CHAPTER 2. VULNERABILITIES 15

the malloc-method checks if there is enough space available and increases the

size of the heap space (using the brk or sbrk system-call) if required. Analog

actions are performed if memory is released. For details on Heap-based buffer

overflows see 2.3.2.

• stack: The stack contains runtime information (local variables, parameters,

return address, saved registers) of the method currently executed and of all its

predecessors or callers. For details on Stack-based buffer overflows see 2.3.1

Sections 2.3.1 and 2.3.2 focus on vulnerabilities based on this simple buffer over-

flow.

2.3.1 Stack-Based Buffer Overflow

Stack

Low -
 address

High -
 address Stack frame

Stack frame

Stack frame

grow
direction

.

.

.

function parameter 1

function parameter 2

function parameter 3

return address

saved ebp

local variable 1

local variable 2

local variable 3 ESP

EBP
p

o
in

ts to
 E

B
P
 lo

ca
tio

n

o
f p

re
v
io

u
s sta

ck fra
m

e

Figure 2.5: Stack layout

To understand the functioning of a

Stack-Based Buffer Overflow I will first

give detailed explanation of the stack as

shown in figure 2.5. This represents the

stack-layout of a x86-architecture run-

ning a current operating system. The

stack is built of so-called stack-frames,

each stack-frame is associated with a

corresponding method in code (special

cases exist if the compiler applies opti-

mizations and determines that a func-

tion does not need to build a stack-

frame, but these special cases are ig-

nored for this simplified view) and con-

tains informations required by the asso-

ciated method to run. Before we look at

a complete stack-frame we need to intro-

duce the processor registers that are of

interest when talking about stacks:

• ESP - Stack-Pointer: It always points to the last used element of the stack,

thus to push an element on the stack the ESP needs to be incremented first.

It gets implicitly manipulated by POP and PUSH operations.[13]

CHAPTER 2. VULNERABILITIES 16

• EBP - Base-Pointer: It is used to reference the function-parameters and local

variables as shown in table 2.1. The Base-Pointer gets modified explicitly

only.[13]

• EIP - Instruction-Pointer: The Instruction-Pointer points to the next instruc-

tion that gets executed. If a function returns, the stack-frame is destroyed and

the Instruction-Pointer is set to the value of the return address (4(%ebp)).

As we will see this is one major attack-path.

16(%ebp) third function parameter
12(%ebp) second function parameter
8(%ebp) first function parameter
4(%ebp) old EIP (the function’s ”return address”)
0(%ebp) old EBP (previous function’s base pointer)
-4(%ebp) first local variable
-8(%ebp) second local variable
-12(%ebp) third local variable

Table 2.1: Base-Pointer offsets[13]

A complete stack frame is shown in figure 2.5 and contains the following elements:

• Function-parameters: The function or method parameters are pushed on the

stack by the caller. The call-conventions depend on the cpu-architecture and

compiler, but in general it is up to the compiler to also use cpu-registers

for passing arguments to the callee. For this example we assume that all

arguments are passed using the stack.

• Return address: The return address points to the instruction that is executed

right after the current method returns and is also pushed on the stack by the

caller.

• Saved registers (EBP): The old value of the EBP register is pushed on the

stack by the callee to restore the old stack-frame on return.

• Local variables: The local variables are pushed on the stack by the callee.

CHAPTER 2. VULNERABILITIES 17

2.3.1.1 Exploiting the stack-based buffer overflow

Now we have the complete tool-set to understand the technique of overflowing (or

smashing) the stack. Figure 2.6 shows an overflowed buffer on the stack and its

consequences.

Stack-frame
function parameter 1

function parameter 2

function parameter 3

return address

saved ebp

local variable 2

ESP

EBP

addresses -
grow

malicous buffer

malicous code

Figure 2.6: Smashed stack frame

Buffer overflows are possi-

ble because the program has

no information on sizes of allo-

cated buffers at runtime. The

example shows a stack-frame

with two local variables, where

the first is of interest and gets

passed from outside of the pro-

gram. If the passed data gets

large enough it writes beyond

the bounds of the buffer and

overwrites data that resides af-

ter the buffer e.g. the return

address. In this case the return

address gets overwritten with

an address that also points to the stack, more precisely it points in the address

space of the stack-buffer.

The result of this overflowed buffer is that, once the method returns the program

executes code that has been injected by the user.

2.3.2 Heap-Based Buffer Overflow

The heap space has already been introduced in chapter 2.3 and figure 2.3. It is a

memory area of dynamic size and contains all memory regions allocated at runtime.

As shown in figure 2.7 the heap-size is managed by the application (or by a library

in its address-space). It only requests more memory from the operating system-

kernel or releases allocated memory chunks beginning with the last one. The kernel

only provides relatively large chunks of memory (e.g. 4kB), the byte-wise memory

allocation is managed by the application (or library) itself.

The remaining parts depend on the implementation of the heap-manager, but a

common practice is that a header similar to listing 2.1 is added before every allocated

memory-block. The header contains a pointer to the next and to the previous

CHAPTER 2. VULNERABILITIES 18

. . .

memory-chunks as returned from kernel

byte-wise memory allocation

Figure 2.7: Heap space allocation

HeapHeader, hence they are organized in a double-linked list. It also contains the

size of the managed memory block and the usage state.

Listing 2.1: Simple heap header[17]

typedef struct HeapHeader {

struct HeapHeader *next;

struct HeapHeader *prev;

unsigned int size;

unsigned int used;

// Usable data area starts here

} HeapHeader_t;

Real-world implementations may contain more header-data and will implement

a sophisticated algorithm to avoid fragmentation, but this is not within the scope

of this thesis. Figure 2.8 shows the byte-wise allocated memory block headers with

its links to the next and previous memory block and payload.
h
e
a
d
e
r

payload

h
e
a
d
e
r

payload

h
e
a
d
e
r

payload

h
e
a
d
e
r

p
a
y
lo

a
d

. . .

Figure 2.8: Allocated memory blocks with headers and links

2.3.2.1 Exploiting the heap-based buffer overflow

As discussed in chapter 2.3.1.1 exploiting the stack is straight forward and only a

few application internals are required. To exploit the heap an attacker needs to

know the following application internals amongst others:

• Heap-management implementation - It is up to the application developer to

CHAPTER 2. VULNERABILITIES 19

chose one of the available heap-managers or even to manage the heap-space

himself.

• Executable heap - For the attacker it is important to know if the heap is

executable.

• Jump address to overflow - To execute injected code, an attacker needs to

identify an overflow-able address that is used as a function pointer or simi-

lar. Thus the attacker could use it as its entry-point. This can either be an

application specific jump-address or a weakness in the implementation of the

heap-manager. In case of a stack-based buffer overflow this address was fixed

to the stack-frame’s return address.

Once all these variables have been identified a heap-based buffer overflow attack

can be developed. As shown in figure 2.9 the attack looks similar to a stack-based

buffer overflow.

overflowed
fctn-pointer

h
e
a
d

e
r

h
e
a
d

e
r

program-
code

original pointer
value

modified pointer value

overflowed buffer containing
shell code

Figure 2.9: Overflowed heap layout

A buffer becomes overflowed with data and overrides the allocated memory block

that immediately follows the buffer’s data block. The overflow-data is specially

structured. It contains malicious code to be executed and the start-address of the

malicious code. The malicious code is also called shell-code because in most cases

when implementing an overflow attack the first thing to try is to open a remote shell.

The function pointer behind the buffer gets overflowed with the modified function

pointer. The shell-code gets invoked as soon as the function pointer is called and

the buffer is exploited.

CHAPTER 2. VULNERABILITIES 20

2.4 Integer Overflow

Integer overflows can not be directly exploited as it was the case for stack-based

and also for heap-based buffer overflows. They can shift the application in an un-

predictable application-state and may open the doors for other exploits. But before

going into detail on integer-overflow exploits this chapter focuses on the basics.

2.4.1 What is an Integer?

Integers, like all variables are just regions of memory. When we

talk about integers, we usually represent them in decimal, as that is the

numbering system humans are most used to.[21]

Integers are represented in two’s complement because it is not possible to prop-

erly handle negative numbers without special treatment of negative signs otherwise.

Figure 2.10 shows the number space of an 8-bit integer value. In contrast to the

sign-and-magnitude binary number representation where a bit is dedicated to the

sign representation only, the two’s complement representation uses the most signif-

icant bit (MSB) for sign representation and is weighted with the lowest negative

number:

• m is the bit-size of the integer-value

− 2m−1 : 1, 0, 0, 0, ..., 0, 0 (2.1)

• Thus for an 8-bit integer m = 8

− 27 = −128 : 1, 0, 0, 0, 0, 0, 0, 0 (2.2)

0111 11110000 0000,1000 0000 . . . 1111 1111,1111 1110, 0000 0001, 0000 0010 . . .
Binary
representation

Decimal
representation -128 . . . -2 -1 0 1 2 . . . 127

Figure 2.10: Two’s complement vs. decimal representation

But how does the two’s complement handle the initial problem where special

treatment would be required for negative numbers? Equation 2.3 shows the sign

and magnitude binary represenation of 1 and -1.

CHAPTER 2. VULNERABILITIES 21

(1)10 = (00000001)2

(−1)10 = (10000001)2
(2.3)

Imagine adding the binary representation of -1 to the binary representation of

1. The expected result is 0 but as seen in equation 2.4 the result is -2 because the

subtraction requires special treatment.

(00000001)2

+ (10000001)2

(10000010)2 = (−2)10

(2.4)

When using the two’s complement binary representation the addition for an 8-bit

integer looks as seen in equation 2.5. Due to the two’s complement the addition of

negative and positive numbers works without dedicated subtraction operation and

without special handling of negative numbers.

(00000001)2

+ (11111111)2

(00000000)2 = (0)10

(2.5)

2.4.2 What is an Integer-Overflow

We now know how integers are stored in memory. Again take an 8-bit signed integer

with its value set to the highest positive value as shown in equation 2.6.

x = (01111111)2(= (127)10) (2.6)

What happens if another positive value is added to x? The binary addition

will be processed as expected and shown in equation 2.7 but the two’s complement

interpreted result will be incorrect.

(01111111)2

+ (00000001)2

(10000000)2 = (−128)10

(2.7)

This is problematic, because after the addition has completed the developer has

no chance to tell if the value is the result of an overflow or not. As already mentioned

in the beginning, integer overflows cannot be directly exploited, but they may enable

for example standard stack-smashing exploits as described in chapter 2.3.1.

CHAPTER 2. VULNERABILITIES 22

The above explanation always assumes signed integers, but overflows are also

possible on unsigned integers as stated in equation 2.8, which is slightly modified

from equation 2.7.

(11111111)2

+ (00000001)2

(00000000)2 = (0)10

(2.8)

The only difference to signed integers is that the resulting value cannot be negative.

For an 8-bit unsigned integer the numbers range from (0...255).

2.4.3 Exploiting Integer-Overflows

A straight forward unsigned-integer overflow example taken from [21] is shown in

listing 2.2

Listing 2.2: Straight forward integer overflow example[21]

1 /* width1.c - exploiting a trivial widthness bug */

2 #include <stdio.h>

3 #include <string.h>

4

5 int main(int argc , char *argv []){

6 unsigned short s;

7 int i;

8 char buf [80];

9

10 if(argc < 3){

11 return -1;

12 }

13 i = atoi(argv [1]);

14 s = i;

15

16 if(s >= 80){ /* [w1] */

17 printf ("Oh no you don ’t!\n");

18 return -1;

19 }

20

21 printf ("s = %d\n", s);

22 memcpy(buf , argv[2], i);

23 buf[i] = ’\0’;

24 printf ("%s\n", buf);

25 return 0;

26 }

CHAPTER 2. VULNERABILITIES 23

The integer overflow occurs on line 14. The integer gets assigned to a short-type

variable and if the integer value is greater than 65535 (maximum value of unsigned

short) it gets truncated, and the check on line 16 is bypassed. The following outputs

are produced for the three shown test-cases:

• Valid input data, everything is working as expected. The condition at line 16

is not met.

Listing 2.3: Integer overflow example 1 output[21]

1 ./ width1 5 hello

2 s = 5

3 hello

• Valid input data, everything is working as expected. The condition at line 16

is met, program is aborted.

Listing 2.4: Integer overflow example 2 output[21]

1 ./ width1 80 hello

2 Oh no you don ’t!

• Invalid input data. The condition at line 16 is bypassed and the buffer given

on the command line can override local variables. This example shifts the

application in a state where a stack-smashing exploit as described in 2.3.1 is

possible.

Listing 2.5: Integer overflow example 3 output[21]

1 ./ width1 65536 hello

2 s = 0

3 Segmentation fault (core dumped)

CHAPTER 2. VULNERABILITIES 24

2.5 Summary

This chapter introduced and explained the terms bug, exploit and vulnerability and

showed their differences. A bug is a software behaviour that is not intended by the

developer but they do not necessarily compromise the system-security. One or more

bugs form a vulnerability but the vulnerability is not dangerous as long as no exploit

code exists. So, the real threats are vulnerabilities with existing exploit code.

The bugs were categorized into three groups: Off-by-One-Error, Buffer-Overflows

and Integer-Overflows. Most of the bugs are located in the Buffer-Overflow group,

which also offers the greatest exploit flexibility. While the other groups may only

enable other failures but are not directly exploitable, the Buffer-Overflow category

may enable the attacker to execute arbitrary code. Buffer overflows can further be

grouped into: Stack-Based and Heap-Based. Local variables are generally saved on

the program’s stack next to the function’s return address or other saved registers.

This clears the way for Stack-Based Buffer Overflows and provides a reliable entry

point for arbitrary code. The same applies to Heap-Based Buffer Overflows but

they require more knowledge of the program internals because the heap-structure is

not fixed, in contrast to the stack-structure.

Chapter 3

Fuzz-Testing in General

In chapter 1 common testing methods were introduced, in this chapter a raising

group of testing methodologies, called Fuzz-Testing or Fuzzing is discussed. The

first fuzzing approach is surrounded by legends, but every legend has its truth,

the quintessence of the first fuzzing approach is that some mysterious incidents

converged and a program that received truly random generated data crashed. The

concept of fuzzing was born, but was not really taken into account as a testing

method. It took till the late 90’s before the University of Oulu picked up the concept

and created a fuzzing test suite called PROTOS, but more on fuzzing-frameworks

in 3.3.

First we will define the term fuzzing. Fuzzing is

...a highly automated testing technique that covers numerous bound-

ary cases using invalid data (from files, network protocols, API calls,

and other targets) as application input to better ensure the absence of

exploitable vulnerabilities. The name comes from modem applications

tendency to fail due to random input caused by line noise on “fuzzy”

telephone lines.[20]

This chapter will give an overview of the fuzz-testing techniques available today

and will discuss different fuzzing approaches.

3.1 Why Another Testing Methodology?

Chapter 1 focused on commonly used testing methods. The only method that is

dedicated to test binary files is the Binary Auditing testing method, the disadvan-

tages of this method are: disassembly skills are required and the method limits to

25

CHAPTER 3. FUZZ-TESTING IN GENERAL 26

passively find known patterns in the disassembled binary file. No live tests (e.g. cor-

ner cases or input data distributed over the whole input data range) are performed.

This is how the fuzz-testing technology comes in. It tests a binary application with

many different input datasets and can also perform corner-case tests. Depending on

the implementation and the type of the fuzzer (see 3.3) it can also take advantages

from eventually available source code.

3.2 How Fuzzing Works, a General Overview

According to Sutton, Greene and Amini[27] the process of fuzzing can always be

divided in the following phases:

• Identify target. In the very beginning a target application or library is needed.

Consult different security related or bug tracking websites and look for mis-

takes this vendor already made. It is very likely to find similar mistakes in

the vendor’s applications. Further, watch out for libraries that are shared

across multiple applications. Finding a vulnerability in shared libraries is far

more critical than in standalone applications because this bug applies to all

programs using this library.

• Identify inputs. Fuzzers operate on binary files and try to find triggerable bugs

and vulnerabilities. All bugs are caused by insufficient checked user-input, thus

it is critical for the fuzzing process to identify all available user-interfaces.

Further it is important to identify the possible and valid range of input data,

which is not necessarily the same.

• Generate fuzzed data. This sounds trivial but is one of the most challenging

phases, especially for input data secured by hash functions or even message

authentication codes. Basically two data generation strategies are used: mutate

existing data or dynamically create new data. It depends on the application

which strategy can be applied.

• Execute fuzzed data. Depending on the application under test, this phase

starts an application in the trivial case or simulates a full client in a complex

network fuzzing scenario. The most important property of this phase is that

the execution performs fully automated without user interaction, otherwise

the advantage of fuzzing over manual-testing is lost and fuzz-testing would be

obsolete.

CHAPTER 3. FUZZ-TESTING IN GENERAL 27

• Monitor for exceptions. The complexity of this phase is similar to the com-

plexity of the generate fuzzed data phase, because it is not always clear if an

application is in error state, in any undefined state or in a defined state.

• Determine exploitability. This phase is a manual process and is performed by

security specialists. The outcomes of this phase are exploits for the application

or library under test.

The fuzzing process is illustrated in figure 3.1. The generation, execution and

monitoring step is performed for each fuzzing dataset.

Identify target
possible
targets Identify inputs

Generate
fuzzed data

generated/created
input data Execute

fuzzed data
Monitor for
exceptions

exceptions/
application behaviour

available input
vectors

Determine
exploitability

monitored exceptions
and unexpected application
behaviour

Figure 3.1: Fuzzing overview

This is just a basic view of the fuzzing process. For different applications this set

of phases act as a starting point and may get extended, but in general all fuzzing

processes have the above phases in common.

3.3 Fuzzer Classification

Many different types of fuzzers and at least as many different classifications are

available. For the purpose of this thesis I will introduce a simple classification:

• Local fuzzers. Fuzzers that test local code only, e.g. Command-line fuzzers

3.3.1.1, Environment fuzzers 3.3.1.2 or File fuzzers 3.3.1.3.

CHAPTER 3. FUZZ-TESTING IN GENERAL 28

• Remote fuzzers. Fuzzers that test remote systems, e.g. Network protocol

fuzzers 3.3.2.1 or Web-application fuzzers 3.3.2.2

3.3.1 Local Fuzzers

Local fuzzers test applications on the current system only, thus it is likely that the

binary file and the complete output generated by the application is available to the

fuzzer. This significantly eases the analysis of the application’s current state, by

using side-channel data like log-files or application outputs.

3.3.1.1 Command-line Fuzzers

Command-line fuzzers test applications that accept arguments on the command line

and try to find faults in the argument parsing code. In general they generate or have

a list of arguments and start the program under test for each input and wait for

program crashes or unexpected behaviour.

In the case of honggfuzz[28] (as an example for a command line fuzzer) a call

to the fuzzer would look as shown in listing 3.1. The file inputfiles/badcode1.txt

contains the input data for the target application targets/badcode1.

Listing 3.1: Honggfuzz start command

$ honggfuzz -f inputfiles/badcode1.txt -- targets/badcode1

___FILE___

To clearly reproduce the error the fuzzer writes log-files for each crash or unex-

pected behaviour of the target application with at least the following information:

• The signal that terminated the application.

• The program counter. (location in the binary file)

• Last executed instruction.

• And some other information depending on the signal.

Afterwards the tester inspects the issue by reproducing the fault e.g. in a de-

bugger and can try to exploit it.

CHAPTER 3. FUZZ-TESTING IN GENERAL 29

3.3.1.2 Environment Fuzzers

Environment Fuzzers are similar to Command-line fuzzers except that they fuzz

environment variables that are known to be used by the target application.

For demonstration the test application as shown in listing 3.2 is used.

Listing 3.2: Environment fuzzing test target application

#include "stdlib.h"

#include "stdio.h"

int main(int argc , char** argv){

printf (" MYVAR=%s\n", getenv (" MYVAR"));

}

It just prints the value of the environment variable MYVAR.

Basically there are two ways of fuzzing the environment of an application.

• The first way is to simply set the environment on program start as shown in

listing 3.3.

Listing 3.3: Simple environment fuzzing

$ MYVAR=myvalue ./ targetapplication

This overrides MYVAR for the context of targetapplication. The drawback of

this approach is that the fuzzer has no information about whether the target

application has read the environment variable at all, and which part of the

target application is interested in the environment variable. Thus another

tool is required to track the accesses to the variables. For this purpose ltrace

can be used as described in listing 3.4.

Listing 3.4: Use of ltrace to track environment variable accesses

$ MYVAR ="my value" ltrace -e getenv -i ./ targetapplication

[0 x40054d] getenv (" MYVAR") = "my value"

MYVAR=my value

[0 xffffffffffffffff] +++ exited (status 15) +++

This logs all calls of the getenv method and value of the program counter

(location in the binary file) at the execution time.

CHAPTER 3. FUZZ-TESTING IN GENERAL 30

• A second way of fuzzing an applications environment is by intercepting the

call to the getenv(...) method. This of course has the prerequisite that the ap-

plication uses this method. There are other methods available, but getenv(...)

is commonly used by most developers.

If a dynamically linked program gets started, it loads its libraries as they are

needed. In general the interception of the getenv(...) method (or any other

method located in a dynamically loaded library) works by pre-loading the user

supplied libraries with the modified method implementations. This means that

the methods of the pre-loaded libraries will be used before other methods with

the same name from later loaded libraries.

A simple example getenv -replacement library is shown in listing 3.5. It loads

the original library and saves a reference to its getenv(...) method. The

getenv(...) implementation returns the fuzzed value for MYVAR and the orig-

inal value for all others.

Listing 3.5: Replacement library for getenv[11]

#include <stdio.h>

#include <gnu/lib -names.h>

#include <dlfcn.h>

#include <string.h>

static void* glibc;

static char* (* real_getenv) (const char*);

static void load_glibc (void) __attribute__ ((

__constructor__));

static void load_glibc (void)

{

glibc = dlopen (LIBC_SO , RTLD_LAZY);

real_getenv = dlsym (glibc , "getenv ");

}

char* getenv (const char* name)

{

if(strcmp(name , "MYVAR") == 0){

return "my_value ";

}

return real_getenv(name);

}

A real environment-variable fuzzer may extend the functionality of the replacement-

CHAPTER 3. FUZZ-TESTING IN GENERAL 31

library by adding e.g. backtracking features to get the origin of the getenv

method call.

The last step is to pre-load the library. This is an operating system dependant

task. For linux operating systems the environment variable LD PRELOAD

contains all libraries that are loaded before any other. A sample call with and

without LD PRELOAD is shown in listing 3.6.

Listing 3.6: Call application with and without LD PRELOAD

$ MYVAR=no_value ./ targetapplication

MYVAR=no_value

$ LD_PRELOAD =./ getenv.so MYVAR=no_value ./ targetapplication

MYVAR=my_value

As you can see the first case returns the real environment variable and the

second case returns the value specified in the getenv -replacement library as

shown in listing 3.5.

Which way the tester chooses depends on the availability of the methods, because

not all flavours of operating systems offer the same possibilities. The results of the

methods are similar, although the first method is more an out-of-the-box approach.

The second method requires some time to implement the library and all its required

features but it is more flexible than the first method.

3.3.1.3 File Fuzzers

The first two fuzzing methods did not require much knowledge of the program that

is being fuzzed. In general, all the required information is found in the application

documentation. This does not apply to file fuzzers. They manipulate existing files,

load them back in and wait to see if the file parsing code crashes. Therefore the fuzzer

needs to be aware of the basic file format structure and protection mechanisms, e.g.

if the application looks for a magic-word to identify the file-type. If the magic words

do not match or the file-type contains a checksum and the checksum is not calculated

correctly, the application will stop processing the file and the complete fuzzing cycle

was useless. According to The Art of File Format Fuzzing[25] this approach is

generally called brute-force fuzzing. It has the advantage that every file type can be

fuzzed because no knowledge is required but the success rate is very low. A much

more effective method is called Intelligent fuzzing. Using this approach the fuzzer is

CHAPTER 3. FUZZ-TESTING IN GENERAL 32

aware of the file structure and can selectively fuzz single file properties and contents.

The fuzzer is also able to maintain file checksums to get a valid document. It has a

much higher success and a much lower false-positives rate but the file reconstruction

or reverse engineering can get very complex for proprietary file formats.

A well-known file-format fuzzer framework is called SPIKEfile[24], a fork of Im-

munity’s SPIKE - A network fuzzer creation kit. It is an API that can be used from

the C programming language which provides many pre-built methods and entities

that ease the fuzzing process and according to The Art of File Format Fuzzing[25]

has some success stories of discovered vulnerabilities:

• MS05-009 Vulnerability in PNG Processing Could Allow Remote Code Exe-

cution

• MS05-002 - Vulnerability in Cursor and Icon Format Handling Could Allow

Remote Code Execution

• MS04-041 - Vulnerability in WordPad Could Allow Code Execution

• MS04-028 - Buffer Overrun in JPEG Processing (GDI+) Could Allow Code

Execution

• US-CERT TA04-217A Multiple Vulnerabilities in libpng (Affecting Mozilla,

Netscape, Firefox browsers)

• CAN-2004-1153 Format String Vulnerabilities in Adobe Acrobat Reader

3.3.2 Remote Fuzzers

Remote fuzzers increase the level of difficulty compared to local fuzzers. The main

difficulty for remote fuzzers is to detect whether the remote system is in an error

state or not, because the fuzzer only has the information available that the remote

system exposes.

3.3.2.1 Network Protocol Fuzzers

As the name suggests Network Protocol Fuzzers pay attention to remote services of

all kinds including: mail servers, database servers, RPC-based services, remote access

services or similar. Figure 3.2 shows an overview of the basic fuzzer components.

CHAPTER 3. FUZZ-TESTING IN GENERAL 33

Victim

Network
service

Attacker

Fuzzer
Data generation /
manipulation
engine

Response
inspection

Figure 3.2: Network Protocol Fuzzer overview

The fuzzer basically is built of the following blocks:

• The Fuzzer block itself is the control logic. It invokes the data generation and

manipulation engine and may provide some captured and valid communication

data. It also records all exceptions that may occur during the fuzzing process

reported by the response inspection block.

• The data generation and manipulation engine block generates the data, as

the name suggests, that is sent to the remote service. In general there are

two different approaches to build the data generation block: Brute force and

intelligent approach. They are further described in 3.3.3.

• The response inspection block inspects the received responses and tells the

Control Unit if something unexpected was discovered, or if there was a response

at all.

As you can see, the attacker has no access to log-files or to log-outputs of the

target application which complicates the fuzzing process. The attacker may inspect

the generated log-files manually or by using available inspection tools but still has

to create links from the log-outputs to the generated fuzzer output. This operation

is typically not automated by the fuzzer.

A well known representative is the SPIKE network fuzzer creation toolkit[15].

Handling SPIKE is equal to the handling of SPIKEfile as described in 3.3.1.3.

3.3.2.2 Web-application Fuzzers

In general Web-application Fuzzers are specialized Network Protocol Fuzzers but

web applications provide attack surfaces that cannot be covered by generic Network

Protocol Fuzzers :

CHAPTER 3. FUZZ-TESTING IN GENERAL 34

• SQL injection - SQL Parameters get directly inserted into queries without

the use of prepared statements.

• XSS - Cross Side Scripting - User supplied code gets executed on other users

machines

• Remote code execution - Supplied code gets executed on the webserver.

• And many more...

3.3.3 Data Generation

A sophisticated, extendable and flexible data generation mechanism is the key to

success for every fuzzer. If the data generator only generates ordinary data without

focusing on special corner cases, the fuzzer will not generate reasonable results and

it would not make any sense to improve the fuzzer itself. Therefore it is important to

discuss the available data generation possibilities to get the most out of a fuzz-testing

engine.

3.3.3.1 Brute-Force Data Generation

Brute-Force Data Generation is possibly the first but also the worst approach every

fuzz-testing engine developer has. As brute-force is known from other areas (e.g.

password hacking) it tests every possible combination. This is also the case for data

generation. A Brute-Force Data Generator generates every possible permutation of

input data of the given size. This can take a very long time.

Let’s assume an 8-bit value. This means 256 different possible values. Assume

the fuzzer needs one-second to test a single value (quite optimistic). This results in

a test-time of 4-minutes and 16-seconds.

And now a real world example, assume a 32-bit value, 4294967296 different possi-

ble values. Applying the previous assumption results in a test-time of approximately

136 years!

As you can see Brute-Force Data Generation is not an option as the only data

generation method. It may be used to test the response of the application under

test to common data and to test for errors that are not dependant on the data itself,

but on other properties like the data-size.

CHAPTER 3. FUZZ-TESTING IN GENERAL 35

3.3.3.2 Intelligent Data Generation

Implementation of how to generate data is only part of the solution.

Equally as important is deciding what data to generate.[27]

Beside the fact that the data generator needs to be aware of its context, there

are some globally unique intelligent data generation approaches. Sutton, Greene

and Amini[27] describe various approaches:

• Integer values - For integer values it is obvious to test for their maximum and

minimum hexadecimal representation (0x00000000 and 0xFFFFFFFF). Prob-

ably the size argument is used as an argument to memory allocation routine

where it also would make sense to extend the border cases e.g. 1,2,3,...0xFFFFFFFF-

1, 0xFFFFFFFF-2, 0xFFFFFFFF-3... and so on, because the program may

extend the size and may therefore trigger an integer overflow.

• String repetitions - It generally is a good idea to fuzz string values with long

strings. Many programs have buffers of fixed size or dynamically allocated

buffers with a maximum length. Without the required sanity checks, long

strings will overflow the fixed sized heap or stack buffers and may enable

stack-based or heap-based buffer overflow attacks.

• Field delimiters - Non alphanumeric characters are often used as field de-

limiters, therefore it is a good practice to also include field-delimiters like

:|;& ./\<> and others in fuzzed strings. As an example listing 3.7 shows a

HTTP-Response. In this example spaces, colons and new-lines can be identi-

fied as field separators. The colons function as key-value separators. For the

fuzzing process it is important to vary all the identified fields (keys, values and

whole lines) in size.

Listing 3.7: Example HTTP-Response

HTTP /1.1 200 OK

Server: Apache /1.3.29 (Unix) PHP /4.3.4

Content -Length: 5000

Content -Language: de

Connection: close

Content -Type: text/html

Another well-known example where field-delimiters are exhaustively used are

URLs as shown in listing 3.8.

CHAPTER 3. FUZZ-TESTING IN GENERAL 36

Listing 3.8: Example Request URL

http :// example.com/page.php?field1=value1&field2=value2&

field3=value3

Again some delimiters can be identified. When fuzzing an URL the keys and

the values should be varied in size again.

• Format strings - It is always dangerous to use user-supplied strings as argu-

ments to printf(...) or similar. Identifying format-string issues is relatively

simple by supplying a custom format token e.g. %d and watching the output.

Exploiting a format-string vulnerability is often done in combination with the

%n format token, because it is the only format instruction performing write

operations. Other format-tokens can only be used to leak sensitive informa-

tion.

• Directory traversal - For web-servers, ftp-servers and other servers accepting

paths from remote parties, a potential attack-path is to provide faulty directory

values. E.g. a valid path would look like /path/to/file. This results in

/server/base/path/path/to/file on the server and the client is not allowed

to access files outside the servers base-directory. A faulty path would look

like /../../secret/path. If the server does not have the required sanity

checks implemented this results in /server/secret/path. Therefore the data

generator should also fuzz directory paths.

• Command injection - They always occur if user supplied input is directly

passed to methods like exec or similar for other programming languages. An

example is shown in listing 3.9.

Listing 3.9: Command Injection Vulnerability[27]

directory = socket.recv (1024)

listing = os.system ("ls /" + directory)

socket.send(listing)

In normal operation a path is received and the listing is sent back to the

sender. But because of the lack of input data checks the received ”directory”

could also look like var/lib; rm -rf / which results in the command ls

/var/lib; rm -rf /. Therefore the data-generator should also include the

command-injection-trigger characters as well.

CHAPTER 3. FUZZ-TESTING IN GENERAL 37

3.4 Summary

Fuzzing is a highly automated testing method. It puts a high load of malformed but

also valid data on the target device or target software and inspects the response. It

mainly operates on binary files or on remote application servers depending on the

type of fuzzer. Generally fuzzers test the application from a user’s point of view and

not from a developer’s point of view as many other testing methods do. Various

different types of fuzzers exist. To understand the concept of fuzzing a network

fuzzer suits best. It connects to the remote host as any other client would do and

sends malicious requests to the remote side. If the fuzzer can observe any unexpected

replies or even no reply it logs the required data to reproduce the error. Afterwards

the tester can examine the results and analyse any problems that occurred. This

key concept applies to all available fuzzer types.

A key component of every fuzzer is the data generator. Generally two different

data generation strategies are available: Brute-Force Data Generation and Intel-

ligent Data Generation. The first approach simply generates random input data

to preferably cover the whole input data range. In fact this approach has a very

small chance of success because most protocols (in the case of a network fuzzer) use

checksums, replay protections or encryption to protect the communication channel.

Using the Intelligent Data Generation approach the data generator is aware of the

underlying protocol and can generate valid packets that are accepted by the remote

side and therefore have a much higher chance of finding an error. It is clear now,

that the data generator is a key component of the whole fuzz-testing-setup. Fuzzers

can only be as good as their data generation-engine.

Chapter 4

In-Memory Fuzzing

Why does In-Memory Fuzzing get its own chapter? In contrast to other fuzzing

techniques it is a completely different approach. It does not fuzz user-input, files

or any communication channel. It focuses on the functions a binary is composed of

and fuzzes the functions parameters. More details on In-Memory Fuzzing are shown

later in 4.2.

4.1 Problems of Other Fuzzing Techniques

Assume a network fuzzing setup as shown in figure 3.2. The tester may be faced

with one or more of the following challenges:

• The victim may be protected against attacks by only allowing a few requests

in a given time. This would extremely slow down the fuzzing process and the

chance to find bugs.

• Depending on the transmission speed and the size of the requests it may be

necessary to transmit a huge amount of data to the remote side. Even if each

single test only has a few bytes, multiplied with the required test runs to cover

the input data range, again a huge amount of data needs to be transferred.

• The biggest problem arises when it comes to closed source or proprietary

protocols. To be able to fuzz such protocols the fuzzer needs to know some

details of the protocol.

– For mutation based fuzzers it may be possible to just mutate some bytes,

if the protocol has no checksum, no replay protections and no security at

all otherwise at least some internals are needed.

38

CHAPTER 4. IN-MEMORY FUZZING 39

– For generation based fuzzers the data generator needs to know the exact

structure of the protocol, which can only be discovered by using reverse

engineering techniques, in case of closed source or proprietary protocols.

This approach may be practical if you have the source code of the appli-

cation and write the fuzzer just as another client.

The same facts also apply to other fuzzers, like file-format fuzzers where you

may need to reverse engineer the file-format to be able to produce valid files. This

is where the In-Memory Fuzzing approach comes into account to make the fuzzing

process more efficient. Using this approach there is no need to reverse engineer the

network-protocol or file-format, to be able to fuzz a proprietary format.

4.2 How In-Memory Fuzzing Works

An In-Memory Fuzzer does not focus on file-formats, protocols or command lines,

and therefore does not need to know the structure. In contrast it focuses only

on the underlying code, the methods and especially its parameters. This has the

advantage that the network connection channels are skipped and any form of replay

protections, checksums, data encryption and other security mechanisms are not

working any more.

In general we can say that the fuzzer hooks at points of interests. A basic

scheme looks as shown in figure 4.1. It represents an application with a network-

stack which uses a checksum-enabled and encrypted protocol. Before the receiving

packet gets processed the network stack receives the packet, calculates the checksum

over the payload, compares it to the received checksum and finally decrypts the

payload. To attack a networked application with this layout using a network protocol

fuzzer the developer needs to reverse engineer the structure of the protocol, the

checksum calculation algorithm, the decryption mechanism and finally also needs a

valid encryption key.

Using in-memory fuzzing the fuzzer hooks before and after the parsing code.

Once the first hook is hit the fuzzer changes the variables of the processing method

(e.g. the decrypted payload) and after the parsing code it restores the program to

the state it was before. Using this approach the program only gets started once,

and many inputs can be tested, saving much time. Moreover the developer does not

need to reverse engineer the network stack or any of its components. If a failure

occurs, the fuzzer can exactly rebuild the inputs that are necessary to reproduce the

error.

CHAPTER 4. IN-MEMORY FUZZING 40

receive data
from remote
party

detach checksum
and compare to
calculated checksum

decrypt
payload

process request

send back
data to
remote party

calculate and
add checksum
to packet

encrypt
payload

network stack

network stack

packet

encrypted
payload

checksum

packet

encrypted
payload

checksum

In-memory fuzzer
entry point

In-memory fuzzer
restore point

Figure 4.1: Basic In-Memory Fuzzing scheme

Sutton, Greene and Amini[27] propose two fundamental schemes of how to hook

the target application.

4.2.1 Mutation Loop Insertion

The goal of the Mutation Loop Insertion method is to insert a mutate method in

the applications binary (or in the running process) which gets called directly after

the method under test (call it the parse method). The mutate method changes the

input parameters of the parse method on each run by invoking the associated data

generator and unconditionally jumps to the parse method again. Figure 4.2 shows a

simplified program flow with the additions inserted by the Mutation Loop Insertion

method. Using this approach the in-memory fuzzer can test a method a thousand

times with different input parameters by only launching the application once. This

bypasses the problems of other fuzzers discussed in 4.1. The parse method only

needs to be externally triggered once (green path). The inserted loop recalls the

method again and again with different input parameters (red path). The (external-)

fuzzer logic records occurred problems and other relevant data.

The drawback of the Mutation Loop Insertion method is, that not all side-effects

caused by the function under test get restored, this may yield a lot of false-positives.

Take a simplified pin checking method as shown in listing 4.1. This method allows

to check for the correct pin two times and rejects all pins then.

CHAPTER 4. IN-MEMORY FUZZING 41

recv()

unmarshal()

while(1):
 accept()

parse() func-2()

func-1()

...

mutate()

1 time

multiple times

Figure 4.2: Mutation Loop Insertion scheme[27]

Listing 4.1: C-example demonstrating the drawback of the Mutation Loop Insertion

method

int check_pin(char* pin) {

static int attempt = 0;

if (attempt < 2) {

if(internal_check_pin(pin) == 0){

attempt ++;

} else {

attempt = 0;

return PIN_ACCEPTED;

}

}

return PIN_REJECTED;

}

The following list shows the first three fuzzer rounds:

1. The first run triggers the fuzzer start-hook, everything works as expected.

2. The fuzzer inserts a fuzzed pin value. Everything works as expected. The

attempt-variable has a value of 2.

3. The fuzzer again inserts a fuzzed pin value, but regardless of the given value

the check pin(...) method will always return PIN REJECTED for the third

and all subsequent fuzzing-rounds.

CHAPTER 4. IN-MEMORY FUZZING 42

The cause of this problem is, that the fuzzer does not restore the original value

of the attempt-variable because it is of static type and keeps its value over multiple

method calls.

To summarize we can say that this approach is only applicable for methods

without any side-effects. If the tester can not be sure that the method under test

has no side-effects, it is not safe to use this method and may yield many false-

positives.

4.2.2 Snapshot Restoration Mutation

The Snapshot Restoration Mutation method is similar to the Mutation Loop Inser-

tion method, with the difference, that it creates a complete process snapshot at the

beginning of the method under test and restores the snapshot before fuzzing the

arguments for the next run.

Figure 4.3 shows a simplified program flow with the additions inserted by the

Snapshot Restoration Mutation method. Again, the parse method only needs to be

externally triggered once (green path). The inserted snapshot and restore methods

are called on every fuzzer run (red path).

recv()

unmarshal()

while(1):
 accept()

parse() func-2()

func-1()

...

snapshot()

restore()

1 time

multiple times

Figure 4.3: Snapshot Restoration Mutation scheme[27]

Using this method every fuzzing-round runs under the same conditions, this

effectively eliminates false positives. Because of the continuous snapshot creation

and restoration this approach is generally slower than the Mutation Loop Insertion

approach.

CHAPTER 4. IN-MEMORY FUZZING 43

4.2.3 Implementation Aspects

When it comes to the implementation of either of the two methods you will notice

that the requirements of both methods are similar:

• Choose the hook points

• Hook at specific points in the application

• Access (read and write) memory in the applications memory space

• Restore process snapshots and/or insert mutation loop

• Catch process exceptions

All of the requirements are best satisfied by implementing custom debuggers

or extending existing debuggers. Software- or hardware-breakpoints are used to

hook at specific points. Most debugging APIs and debugging frameworks provide

methods to read and write into the target application’s memory space. The snapshot

and restoration feature may not be included in the debugging API or framework,

although some frameworks have this feature built-in, but it can be implemented by

using standard debugging features.

For Windows operating systems the easiest way of implementing a custom de-

bugger is by using the PyDbg[6] debugging framework. It is a highly flexible wrapper

around the Windows debugging API with many additional functions. The snapshot

capability is provided directly by PyDbg. To choose the hook-points for Windows

applications, as it is for other operating systems, some reverse engineering skills and

tools are required.

• OllyDbg[30] is a Windows 32-bit assembler-level binary code debugging and

analysis tool. It is ideal for examining binary files where no source code is

available, hence it is ideal to find hook points on Windows operating systems.

• IDA - Interactive Disassembler[23] is a cross-platform disassembler, debugger

and program flow analyser. It can visualize the disassembled output to assist

the reverse engineer in finding the hook points.

For Linux/Unix operating systems there are several debugging APIs and toolkits

available:

• The Ptrace system-calls provide the tools necessary to implement breakpoint

debugging and system call tracing. This is a low-level API, therefore whenever

possible pre-built frameworks and tools should be used.

CHAPTER 4. IN-MEMORY FUZZING 44

• GDB: The GNU Project Debugger[4] is a well-known debugger, which uses

ptrace if available. The GDB provides all functions necessary to implement an

in-memory fuzzer. Chapter 5 focuses on the implementation details and tech-

nologies used. In fact GDB is an all-in-one solution because it also functions

if no source code is available and breakpoints can be set based on assembly

code. Compared to IDA it lacks the reverse engineering assistance, however

IDA and GDB are a good combination.

4.3 Requirements

To create a fuzzer that can be effectively used in production environments following

minimum requirements must be met:

• Modularity and expandability - It should be possible to easily exchange impor-

tant components of the fuzzer. E.g.:

– Extend the fuzzer with other connection methods. This is especially im-

portant for embedded systems, because they may be connected through

any proprietary port and may require a special application to establish a

connection to the target.

– Plug-in other fuzz-targets. There may be an application with a data

structure that can not be mapped with the existing fuzz-targets.

– Plug-in new data generation methods. An easy way is required to create

new data-generators which ideally tune their generated data for the target

application.

• Portability - As discussed in chapter 4.4 currently no in-memory fuzzer is

available for Linux/Unix operating systems. The only (freely-) available im-

plementations are based on PyDbg and therefore are not usable on operating

systems other than Windows. For In-Memory Fuzzing on Embedded Devices

it is crucial to be portable among all major operating systems.

• Flexibility - Some embedded systems have more and some less memory avail-

able. It should be possible to use the complete fuzzer feature-set on every

system, regardless of whether the system has enough memory for running the

complete suite or not. This can be accomplished by only running the necessary

components on the device. They can communicate with the host system with

CHAPTER 4. IN-MEMORY FUZZING 45

a full-blown setup. If the device has enough resources it has the option to run

the complete fuzzer.

• Small in size - This requirement goes hand in hand with the Flexibility-

requirement. It should be possible to run the fuzzer with a very low footprint.

• Speed - Depending on the resources of the target device a single fuzzing-round

should be quick. With huge round-times the advantages of in-memory fuzzers

fall off.

• Usability - It is clear that moderate skills in various disciplines like reverse

engineering are required, but once these challenges are mastered the fuzzer

should be easily configurable.

• Improve results with additional information - For many applications additional

information in the form of documentation or debugging symbols is available.

This information should be used by the in-memory fuzzer to improve the

usability and the results. Debugging symbols can be used to significantly

ease the hook point extraction and may make the reverse engineering step

obsolete or at least considerably ease it. The application documentation may

describe some internal structures, therefore it should be possible to include

manually extracted information in the reverse engineering step.

4.4 Existing Frameworks

In-memory fuzzing is still a field of heavy research. As of today, there are some

proof-of-concept fuzzers but none of them are commercially available or have ever

left alpha stage. The requirements for a ready-to-use in-memory fuzzer are defined

in chapter 4.3, but none of the currently available fuzzers meet all requirements:

• In Memory Fuzz PoC[26] - As the name suggests this is a proof-of-concept im-

plementation from the authors of Fuzzing: Brute Force Vulnerability Discovery[27].

It uses PyDbg[6] as debugger backend and clearly shows the fuzzing-concept.

It was never meant to be a fuzzing framework or ready-to-use fuzzing tool.

• HyperTest - Not much information is available concerning HyperTest, only

some source code without documentation. Testing the implementation showed

that it is working. Examining the source code showed that it uses the Windows

CHAPTER 4. IN-MEMORY FUZZING 46

debugging API directly. Compared to the fuzzer above the only difference is

that it bypasses PyDbg and invokes the debugging API directly.

• Corelan In-Memory Fuzzer[29] - Currently the most advanced in-memory

fuzzer implementation (freely-) available. It is also implemented using python

and the PyDbg toolkit, therefore it is only available for Windows operating

systems. This fuzzing toolset is separated into two components: the Tracer

and the Fuzzer Engine.

The Tracer eases the process of identifying the methods that process the user

input and its parameters. The workflow of the Tracer is shown in figure 4.4.

extract method
boundaries and
parameters

binary file

Tracer hooks
at extracted
points

Tracer launches
application and records
hit hook points

Reverse engineer
analyses output

Figure 4.4: Corelan In-Memory Fuzzing Tracer workflow

The first step is to extract a function list from the binary file, this can either be

done with the source code (if available) or with the help of disassembler tools

like OllyDbg and IDA. They process the binary file and look for known patterns

identifying function boundaries. The output is a list with all identified function

start addresses, their return addresses and the discovered function parameters.

Then the Tracer hooks at all of the discovered methods, for example, by setting

software- or hardware-breakpoints and launches the application with known

and valid input parameters. Every time a discovered and hooked method is

called, the Tracer breaks and logs the call and all of its parameters. A Sample

log output is shown in listing 4.2.

Listing 4.2: Sample Tracer log output

Log: function 0x10001800(

[ESP+8] 0x1b33184 "AAAA (heap)"

);

It shows a single call of a hooked method. The known input was ”AAAA”

in this case. Using this approach, the reverse engineer is able to reconstruct

the flow of the supplied input data (”AAAA”) through the complete program

and then decides which method to fuzz. Using any method without tracing

CHAPTER 4. IN-MEMORY FUZZING 47

the user input may also result in discovering bugs of internal methods, but

generally they are not triggerable by the user.

Once the snapshot and restore-points are defined, the Fuzzing Engine works

as described in 4.2.1 and 4.2.2.

The drawbacks of this fuzzer are:

– It heavily builds on PyDbg, therefore it is only usable on Windows oper-

ating system. No Linux/Unix or embedded system support is available.

– It only uses a rudimentary data generator and does not implement the

guidelines as described in 3.3.3.2.

– The fuzzer only detects program crashes, but there may also be overflows

(stack- or heap-based) or other errors that may not result in a crash.

4.5 Summary

In this chapter a different approach of fuzz-testing called In-Memory Fuzzing was

introduces and described why another method is required. Once approaching closed

source or proprietary protocols and file formats, other fuzzers may require a lot

of reverse engineering to rebuild the protocol- and file-structures. An in-memory

fuzzer does not need to know the structure, it focuses only on the underlying code,

the methods and especially its parameters. It hooks before and after relevant meth-

ods and changes the variables of the method-under-test before it is called, restores

the original program state afterwards and tests the method again. Two different

implementation approaches were discussed: the Mutation Loop Insertion and the

Snapshot Restoration Mutation method. When it comes to the implementation of

one of the methods I discovered that the requirements for both methods were nearly

the same. Both need access to the applications memory space and need to insert

code or hook at specific hook-points. Debuggers fulfil all the requirements and are

suited best to implement a custom in-memory fuzzer. At the end of this chapter

the existing in-memory fuzzing frameworks were analysed. None of the available

frameworks can be used in production environments because all of the available

fuzzers are either proof-of-concept implementations or never left pre-alpha stage.

The best results were achieved using the Corelan In-Memory Fuzzer, but the imple-

mentation is based on the PyDbg-debugging framework, which is only available for

Windows. The architectural idea of the the Corelan In-Memory Fuzzer is adopted

and advanced in chapter 5.

Chapter 5

Implementation Details

This chapter focuses on the implementation of an in-memory fuzzer (further ref-

erenced as IMF), that was created during the research for this thesis. The re-

quirements for embedded systems are separately highlighted and all components are

described in detail.

What are the goals of a newly developed in-memory fuzzer especially designed

for embedded systems? Most embedded systems use operating systems based on

Linux, but also bare embedded systems are available. One goal of IMF is to operate

on both approaches and still be extensible to future embedded systems with other

operating systems. Most existing fuzzers only monitor the application under test for

crashes or unexpected behaviour. In-memory fuzzing enables the tester to find bugs

which do not result in an application crash. Take an application with a stack-based

buffer overflow bug. Once the buffer is overflowed it may not necessarily result in

an application crash. Therefore one goal of an in-memory fuzzer is to also find bugs

which do not instantly result in application crashes but may be exploitable under

special conditions.

The required implementation effort to create an in-memory fuzzer from scratch

is enormous and would result in feature or usability compromises. Therefore it is

beyond dispute to reuse existing applications and components to realize the require-

ments as specified in 4.3. As already discussed in 4.4 the most promising available

in-memory fuzzer is the Corelan In-Memory Fuzzer, although it is only available for

Windows operating systems it is built on an extensible architecture. It also pro-

vides an external tool to ease the process of reverse engineering and of finding the

hook-points. In its early stage the IMF implementation has been oriented towards

the Corelan In-Memory Fuzzer architecture, but has been heavily improved and

extended later on.

48

CHAPTER 5. IMPLEMENTATION DETAILS 49

5.1 Architectural Overview

IMF is an implementation of a Snapshot Restoration Mutation based fuzzer as de-

scribed in 4.2.2. The architectural overview of IMF is shown in figure 5.1. It shows

a setup where the fuzzer footprint on the target device is as small as possible for

use on embedded devices with limited resources.

Target

Fu
zze

r stu
b

S
u
p
p
o
rt lib

ra
ry

Target application

Host

C
o
n
n
e
cto

r

Configuration

Log-
repository

Fuzzer logic

Data generators Loggers

Discovered
bugs

Analyser logic

Log analysers Error logger

Configuration

Figure 5.1: Architectural overview of IMF

The fuzzing suite is separated into two parts, the fuzzer and the analyser. The

fuzzer is built of various components again. To be as flexible as possible and to be

able to run the fuzzer on all devices, regardless of their available resources it uses a

stub - connector approach. The stub only receives commands from the fuzzer logic

which connects using an exchangeable connector. If host and target are the same

machine the connector and stub can meld to a single component. On the target

device a support library is used to perform device or architecture dependant tasks

and log target specific events. The support library connects back to the host (or

uses a prebuilt communication channel) to communicate with a dedicated support

libary logger.

CHAPTER 5. IMPLEMENTATION DETAILS 50

The fuzzer logic gets extended with various pluggable components, which are

provided by the configuration component. For the fuzzer logic the pluggable com-

ponents are:

• The data-generators - Some predefined data-generators are available. They can

be extended by providing external libraries or by simple script-files attached

to the main configuration file.

• Loggers - The speed of the fuzzing process varies depending on the captured

information. Depending on the attached loggers the fuzzer may only detect

certain vulnerabilities. E.g.: If the fuzzer is required to detect heap-based

buffer overflows a specific logger and support from the support library to log

all memory allocations is required. If the target application crashes because

of a heap based buffer-overflow and the logger was not activated, there is no

way to determine the real reason of the crash, nevertheless the tester will be

able to reproduce the error with the recorded input data.

The desired loggers can be attached to the fuzzing process using the config-

uration file. It may also be necessary to include custom loggers for custom

target devices.

• Fuzz Targets - Easily extend the fuzzer to support custom data structures.

While the fuzzer is running the loggers write their log-files to a log-repository.

For each fuzzing round an associated array of log-files is written to the repository.

Depending on the attached loggers this includes:

• Fuzzdata - Contains the data that has been generated for this specific round.

If an error occurs, this data can be used to reproduce the error or debug the

error manually.

• Errorlog - Contains information about obvious errors in this fuzzing round,

e.g.: segmentation fault.

• Execlog - Contains all read and write operations during this fuzzing round.

• Stackframeinfo - Contains all information that can be extracted from the cur-

rent stack frame in the end of each fuzzing round.

The second part of the fuzzer suite is the analyser. Its configuration is similar

to the configuration scheme used for the fuzzer. The analyser does not require a

CHAPTER 5. IMPLEMENTATION DETAILS 51

connection to the target device and only operates on the log-files generated in the

fuzzing process. This has the advantage that particular analysers can be improved

later on, when the fuzzing log-files have already been recorded without the need to

run the fuzzer again. Various log-analysers can be attached to the analyser-logic

using the configuration file. They are further discussed in 5.3.

The output of the analyser is a single file containing all discovered errors and

additional information, such as: in which round did the error occur, the current

execution address and additional logger specific values.

5.2 The Fuzzer Engine

Before the implementation can start an agreement on the programming language

must be made. It might seem obvious to use a low-level programming language be-

cause it is a strict requirement that the fuzzer is usable on embedded systems. But

the required implementation effort would significantly increase. This would result in

compromises which decrease the feature-set and lower the flexibility. Therefore C#

compiled with Mono was chosen. This enables the complete flexibility, resulting in

an engine which can dynamically load components. Because of the high modularity

it is possible to implement only small parts (or stubs) using C or C++ program-

ming languages, which are already ready-to-use as discussed in 5.2.7.This brings us

directly to the components of the fuzzer.

5.2.1 Configuration

Currently the fuzz-configuration is stored in an xml-file, an example is shown in

listing A.1.

The file can contain Include-tags. The values of the tags are supposed to be file-

names. The included files contain key-value pairs that can be used in path specifier

to parametrize the path values. Using this approach it is simple to adapt an existing

fuzz-configuration to other machines.

In general the configuration file is divided into three groups: TargetConnection,

FuzzDescription and Logger.

The TargetConnection group specifies how to create a target connection. This

can either be a remote connection, or a local connection to local running target

applications. Currently the only implemented TargetConnection is the general/gdb

connector which uses GDB as its backend. But GDB can be used in multiple modes:

CHAPTER 5. IMPLEMENTATION DETAILS 52

• It can be used in normal operation mode where GDB starts the target appli-

cation on its own in the background. To use this mode the target value needs

to be set to run local.

• To attach GDB to a local running process the target value needs to be set to

attach local and the value target-options with the process ID of the running

process needs to be inserted.

• Another operation mode is extended-remote host:1234 where GDB connects

to a remotely running GDBserver instance on port 1234.

More details on GDB and its internals are shown in 5.2.7.

The FuzzDescription group specifies where to set the snapshot- and restore-

points and which values should be fuzzed. Moreover the FuzzDescription tag can

contain multiple FuzzLocation tags. Every FuzzLocation can contain triggers which

specify when to start fuzzing, when to stop and which data generator to use. Details

on data generators are discussed in 5.2.6. Chapter 5.2.5 focuses on FuzzLocations

especially on the available data region specifiers.

The Logger group defines all attached loggers. More loggers may slow down the

fuzzing process but yield more log output and increase the chance of discovering

bugs and vulnerabilities. Currently the log-repository is a directory where all log

files, prefixed with the current fuzzing-round, are saved.

5.2.2 Bootstrapping the Fuzzer

The heart of the fuzzer is the FuzzFactory and the FuzzController. The first step

is to parse the configuration and build all necessary structures. This is where the

XmlFuzzFactory is invoked to perform the following steps:

• Initialize connection to the remote support library. For the purpose of this

implementation the proposed architecture was slightly modified. The support

library was enhanced to get a lightweight remote-control program. Further

details on the remote-control are discussed in 5.2.4.

• Initialize target connection. According to the configuration the symbol table

gets loaded (if available), the target connection gets initialized and the con-

nection gets established. More information on the target connection and the

inner workings can be found in 5.2.7.

CHAPTER 5. IMPLEMENTATION DETAILS 53

• Initialize fuzz targets. All the available FuzzDescriptions are iterated and

the specified snapshot and restore points are set. An in-depth discussion of

FuzzDescriptions and FuzzLocations can be found in 5.2.5.

• Initialize loggers. All specified loggers are attached to the fuzzing engine and

the target directory gets initialized. Loggers and the produced data are dis-

cussed in 5.3.

5.2.3 Support Library

The Support Library is a replacement library for malloc, calloc, realloc and free and

is tightly coupled with the Remote Control 5.2.4 application. In fact it intercepts

the call to the memory-allocation methods and outputs the following information:

• The values of the parameters. Especially for malloc (and similar) calls it is

important to know the size of the allocated memory block.

• Internally the replacement library calls the ’real’ methods and outputs its

return value.

• Finally the replacement library outputs a complete stack trace (if available).

This is important for the analysis phase to identify where a specific call came

from.

The output of the Support Library is written to a pipe as specified in the

LOG MEM PIPE environment variable or to stderr if none is specified.

A sample call using this library is shown in listing 5.1.

Listing 5.1: Sample call of the Support Library

LOG_MEM_PIPE =/tmp/mem_alloc LD_PRELOAD =./ log_memory_allocations.

so ./ targetapplication

The call depends on the operating system and its capabilities. A user may not be

allowed to use the LD PRELOAD environment variable as discussed in 3.3.1.2.

The output is structured as shown in listing 5.2.

Listing 5.2: Output of the Support Library

<function name >: args=[<arg name >=value ,... return=value] bt[0x<

address > ,...]

CHAPTER 5. IMPLEMENTATION DETAILS 54

• Function name can be one of malloc, calloc, free and others depending on the

implementation.

• Args specifies all arguments supplied to the corresponding method including

its return value as the last argument seperated by spaces.

• Bt - complete backtrace. The instruction pointer addresses are listed from the

inner frame to the outer, they are preceded by 0x and seperated by spaces.

5.2.4 Remote Control

The Remote Control application enhances the support library. For best embedded

device compatibility it is written in the C programming language. It listens for

connections on a TCP socket at the configured port and controls the remote side of

the fuzzer. The protocol is a simple bidirectional packet based protocol as shown in

listing 5.3.

Listing 5.3: Remote Control protocol specification

<FUZZ ><receiver subsystem 4-chars ><data length 2-bytes ><data >

Each packet starts with the magic number FUZZ (4 bytes) followed by the receiving

subsystem identifier with 4 characters. Each receiver specifies a subclass of packets

and is freely defined as needed. The receiver also specifies the structure of data.

The maximum length of a single packet may not exceed 10kB, so the data can only

have a maximum length of 10KB-10B.

Currently the following features are available:

• ECHO - Command to test the device connectivity.

• EXEC - Executes the specified program using fork/execve and sets the spec-

ified arguments and environment variables. The data is structured as shown

in listing 5.4.

Listing 5.4: Remote Control EXEC -data structure

data: <program_name_length int16 ><program_name >

<program_path_length int16 ><program_path >

<argument_count int16 >

[<arg1_length int16 ><arg1 > ,...]

<env_count int16 >

[<env_name1_length int16 ><env_name1 > ,...]

CHAPTER 5. IMPLEMENTATION DETAILS 55

The program name field can be freely chosen and is included in every response

concerning this particular program instance.

Once the process is forked a response is sent containing the newly spawned

process id. The response is structured as shown in listing 5.5

Listing 5.5: Remote Control EXEC response data structure

REXS (Response exec status)

data: <program_name_length int16 ><program_name ><pid int32 >

<status int32 >

If the execution was successful the status is 0, otherwise status is an error code

and the process id does not contain a valid value.

• PROC - Reads all running processes, process IDs and their associated users

and sends it to the remote side. This command does not accept any data but

sends a response with the structure shown in listing 5.6.

Listing 5.6: Remote Control PROC response data structure

RPRC (Response PROC)

data: <number_of_processes int32 >

[

<number_of_values_for_single_process int16 >

<length int16 ><value >,...

]

Multiple values for each process are sent, they always have the form of key=value

where only the first ’=’ is of interest. Unknown keys should be ignored by the

host, currently known keys are: user: donates the associated user ID, cmd:

gives the command that was executed to spawn this process, pid: contains the

associated process ID.

• PIPE - Opens the specified pipe for reading and sends all received data to the

host. The pipe request packet’s data only contains the pipe-name to listen on.

The response packet as shown in listing 5.7, is sent multiple times, as long as

the remote side of the pipe remains open. It only contains the plain data read

from the pipe.

CHAPTER 5. IMPLEMENTATION DETAILS 56

Listing 5.7: Remote Control PROC response data structure

RPIP (Response pipe)

data: <int16 pipe_id ><pipe_data >

This command is especially used to send the log-output generated by the

support library 5.2.3 to the host machine.

The Remote Control application can be seamlessly integrated into the fuzzing

process, by extending the configuration file as shown in listing 5.8. The Remote-

Control -section defines the host and port to connect to (where the application is

running) and defines one or more Exec-tags. The command represented by the Exec

tag gets executed on the remote side with respect to the trigger value. Currently

the following trigger values are available: immediate - executes the program right

after the connection has been established, onFuzzStart - executes the program at

the beginning of every fuzzer run and onFuzzStop - executes the program after every

fuzzer run.

Listing 5.8: Remote Control integration

<RemoteControl >

<Host >localhost </Host >

<Port >8899 </Port >

<Exec trigger =" immediate">

<Cmd >commandline </Cmd >

<Arg >arg1 </Arg >

<Arg >arg2 </Arg >

</Exec >

</RemoteControl >

With the help of the Remote Control an automated, remote fuzzing process can

be modelled.

5.2.5 Defining Fuzz-Descriptions and Fuzz-Locations

Fuzz-Descriptions and Fuzz-Locations define the exact region and arguments to test.

A class hierarchy of the Fuzz-Description and Fuzz-Location related classes is shown

in figure 5.2.

The Fuzz-Description is composed of a snapshot and restore point, modelled as a

breakpoint. The IBreakpoint interface is the base interface for all connector-specific

CHAPTER 5. IMPLEMENTATION DETAILS 57

FuzzDescription
Public Class

IBreakpoint
Public Interface

BaseFuzzLocation
Public Abstract Class

PredefinedFuzzLocation
Public Class

IFuzzLocation
Public Interface

UnixSocketFuzzLocation
Public Class

InMemoryFuzzLocation
Public Class

SnapshotBreakpoint

1

1

RestoreBreakpoint

1

1

1

1..*

Figure 5.2: Fuzz-Description and Fuzz-Location class hierarchy

breakpoints. According to the configuration listing in A.1 multiple breakpoint spec-

ifiers are available, which get translated to a connector specific breakpoint object:

• method|methodname - Sets a breakpoint at the beginning of the specified

method if symbols for the loaded binary are available.

• address|0x00000000 - Sets a breakpoint at the specified address. This spec-

ifier can also be used if no symbol table is available.

• source|file,line - Sets a breakpoint in the specified source-file and line if

symbols are available.

Every time the snapshot breakpoint is hit, the Fuzz-Locations are invoked in the

same order they are specified in the configuration file. A Fuzz-Location specifies the

data-region to fuzz in the context of the snapshot breakpoint. IMF implements a

very flexible scheme and in fact is not locked to in-memory fuzzing only, even though

the main focus is on in-memory fuzzing. Nevertheless, for some applications it might

be required to use a secondary fuzzing channel to build a fuzzing configuration. To

cover this case the FuzzerType can be specified in the configuration. The currently

available fuzzer implementations are: InMemoryFuzzLocation (fuzzer/in memory)

and UnixSocketFuzzLocation (fuzzer/unix socket). For details on the UnixSock-

etFuzzLocation see the source code documentation.

CHAPTER 5. IMPLEMENTATION DETAILS 58

For the fuzzer it is required to resolve the target-region to a valid address. But

for usability reasons multiple specifiers are available where human readable variable

names or expression can be specified. The following listing gives an overview of the

available specifiers and how the fuzzer resolves them to a valid address:

• variable|name - Resolves the specified variable name using the symbol table

in the context of the snapshot breakpoint as its target, therefore local variables

are valid too.

• address|0x00000000 - Uses the specified static address as its target.

• calc|${reg:rbp}+24 - Calculates a given expression and uses the resulting

value. Special variables are substituted by the preprocessor: ${reg:regname} -

gets replaced by the value of the specified CPU register; ${0xDEADBEEF}+1234

- to directly specify hexadecimal values.

• cstyle reference operator|struct->val - Depending on the connector, it

is not always possible to resolve an address using the above methods. This

especially applies to single fields of structures or classes. For this purpose the

cstyle reference operator -method is available. It prepends the addressOf (&)

operator to the specified expression and evaluates the result.

Another important feature of the InMemoryFuzzLocation is to fuzz data in dif-

ferent ways. The requirements for fuzzing an integer value and for fuzzing a dy-

namically allocated string value are entirely different. To fuzz an integer value, only

the address and size (which is implicitly defined by the data generator) of the value

are required. The fuzzed value can be written directly to the resolved address. For

dynamically allocated strings the situation is completely different. The generated

fuzz-data may vary in size and therefore the original buffer may be too small, thus a

new buffer needs to be allocated (and freed afterwards) and the variable pointing to

the old buffer needs to be set to the address of the newly allocated buffer. To solve

this issue, the fuzzer supports multiple fuzz technologies: single value - Writes all

fuzzed data to the resolved address. With this implementation it is possible to fuzz

all primitive types and static arrays. pointer value - Interprets the resolved value

as pointer. New memory gets allocated where the fuzzed data gets written to. The

pointer is set to the address of the allocated buffer.

As already mentioned earlier, the Fuzz-Locations are always invoked when the snap-

shot breakpoint is hit. But if multiple locations are specified the tester may not

CHAPTER 5. IMPLEMENTATION DETAILS 59

want to invoke all of the Fuzz-Locations on each hit. For this purpose the Trigger

and StopCondition capability were introduced.

The Trigger value tells the fuzzer when to invoke a specified Fuzz-Location. Three

different trigger types are available: start - always invokes the trigger after the

snapshot has been restored and before the fuzzing-round starts; end - invokes the

trigger in the end of a fuzzer run; location - the trigger specifies an address where

the trigger gets invoked.

After the trigger-type specifier a number can be specified which tells the fuzzer how

often to invoke the Fuzz-Location. E.g.: a number of 3 tells the fuzzer to invoke the

Fuzz-Location only at every third run, therefore a number of 1 (or no number) tells

the fuzzer to invoke it every time.

The StopCondition in contrast specifies when to not invoke the fuzzer. Currently the

only implemented StopCondition is count|num where the fuzzer runs the associated

FuzzLocation num-times. If no StopCondition is specified the FuzzLocation gets

invoked as long as the fuzzer gets interrupted by the user.

5.2.6 Data Generators

Data generators are one of the most important components and need to be as flexible

as possible. IMF uses an approach that enables the tester to easily extend the

fuzzer engine with new data generators. The configuration of the data generators is

illustrated in listing A.1. All specified DataGenArg key-value pairs are passed to the

data generator, therefore writing a new data generator does not require the developer

to write any parsing code. The predefined and ready-to-use data generators are:

• datagen/fixed bytes - This data generator always outputs the same sequence

of bytes, which is specified in the configuration.

• datagen/random bytes - This one generates random byte sequences with

respect to the specified type and length constraints. The following type-

constraints are available and should be self explanatory: All, PrintableASCII,

PrintableASCIINullTerminated and AllNullTerminated.

For the length constraint three different types are available: random - data

of random length between the minimum and maximum length is generated;

increase - data length is increased by the specified value starting with the

minimum length; decrease - data length is decreased by the specified value

starting with the maximum value.

CHAPTER 5. IMPLEMENTATION DETAILS 60

• datagen/replay - This data generator replays the data from another fuzzing

run. It reads previously applied data from the generated log output.

To include custom data generators without having to write custom libraries, a

scripting engine has been included which supports slightly modified C#-style code.

The scripting data generator is identified by datagen/scripted. A sample data

generation script is shown in listing 5.9. The difference to common C# code is, that

no surrounding class or method declarations are required. Imports can be done with

the special command #import followed by #endheader.

The fuzzer defines some methods that can be used directly without importing

anything:

• SetValue(string name, object value):void - sets a data generator spe-

cific value in its environment which can be used across multiple calls.

• GetValue(string name):object - retrieves a previously set value.

• IsValueSet(string name):boolean - checks if the specified value is set.

Listing 5.9: Remote Control integration

#import System.IO

#endheader

int size = 1;

if(IsValueSet (" last_size "))

size = (int)GetValue (" last_size ") + 1;

SetValue (" last_size", size);

byte[] data = new byte[size];

for(int i=0; i<size; i++){

data[i] = (byte)(i%256);

}

SetData(data);

The sample script generates data which increases in size on every call. The data

gets filled with values 1 - 255.

CHAPTER 5. IMPLEMENTATION DETAILS 61

5.2.7 GDB

ITargetConnector
Public Interface

GDBConnector
Public Class

ISymbolTable
Public Interface

Figure 5.3: Basic class diagram of the GDBCon-
nector

GDB is an advanced debugger

supporting multiple platforms

and it is a key-component of

the IMF . As shown in figure 5.3

GDB serves two requirements,

the symbol table and the de-

bugging connector. The symbol

table is used to resolve named

variables, breakpoint specifica-

tions involving source files and

many others. The fuzzer is also

functional without a symbol table and with a binary file without attached symbols,

but symbol tables significantly ease the fuzzing process.

The connector is linked to a GDB sub process and communicates with it by

parsing command line output, the same way a developer would use GDB.

5.2.7.1 Process Snapshots and Restoration

The whole fuzzer is based on a component that has a snapshot and restore feature

for processes. After heavy research it was discovered, that GDB provides two fea-

tures that can be used to achieve this requirement:

Newer versions of GDB have a checkpoint capability. This feature enables the

tester to create a checkpoint and to restore it later. Internally the checkpoint creation

works by forking an exact copy of the original process including randomized address

spaces. Creating a checkpoint looks as shown in listing 5.10.

Listing 5.10: GDB checkpoints

(gdb) info checkpoint

1 process 11004 at 0x40065c , file gdb_checkpoint_debugging_test

.c, line 24

* 0 process 11003 (main process) at 0x40066d , file

gdb_checkpoint_debugging_test.c, line 29

The checkpoint command creates two different system-processes and GDB switches

between the processes. This approach is great for local debugging, but has the

CHAPTER 5. IMPLEMENTATION DETAILS 62

disadvantage that it is not supported by remote GDB sessions using GDBserver.

However this approach is not of any use for the IMF .

Another feature that has been introduced to GDB recently is called reverse

debugging. Using this feature GDB records every single CPU instruction and its

effective side-effects. If the user wants to restore a former state of the application

he can go back step-by-step.

Internally GDB needs to be aware of all available instructions for the current

CPU architecture and all its side effects. The drawback is, that this is a heavily

architecture dependent feature but GDB already implements this feature for various

architectures including: linux x86, linux x86-64, linux arm (pre alpha) and some

others.

Figure 5.4 shows a single recorded mov instruction. The side-effect of the mov

operation is that the value of the target register gets overwritten. The recording is

done before the instruction is executed and yields a ReplayRecord which contains a

list of changed memory regions and registers with its values before the instruction is

executed. The ReplayRecords are created for every single instruction and are linked

together to form a list of changes. If the tester wants to go back to a former process

state the changes are applied in reverse order as recorded in the ReplayRecords

beginning at the last. So if the mov operation needs to be undone, the recorded

value for ax is written to ax, the program counter is set correctly and the process

state is restored.

mov ax, bx

target source

Replay record
Memory changes: -
Register changes:
 ax = 0x000011FF

... next instruction

Figure 5.4: Single instruction recorded by the GDB reverse debugging feature

Another advantage of this approach is that the ReplayRecords can be exported

and read by an analyser discussed in 5.3 to discover various overflows and other

vulnerabilities.

CHAPTER 5. IMPLEMENTATION DETAILS 63

5.2.7.2 The Core-Dump

As discussed, GDB is able to export the ReplayRecords. This is done by performing

a core dump. The core dump is divided in various segments where the current state

of the process is saved. One of these sections is dedicated to save the ReplayRecords.

To be able to read core dump files using C#, the wrapper library libbfd.net has been

developed around the native libbfd library. The class hierarchy is shown in figure 5.5.

The heart of the wrapper library is the GDBCoreDump class, it uses the BfdStream

to select a particular segment in the core dump file and interprets its content as

GDBProcessRecordSection which contains all register and memory changes grouped

by the associated instruction, using the native wrapper. The analysers described

in 5.1 and 5.3 make heavy use of this feature to detect overflows and unauthorized

data access.

BfdStream
Public Class

Registers
Public Class

GDBCoreDump
Public Class

GDBCoreDumpSection
Public Abstract Class

GDBProcessRecordSecti...
Public Class

InstructionDescription
Public Class

MemoryChange
Public Class

RegisterChange
Public Class

1

*

1

1

1

1
1

1

1

*

*

Figure 5.5: libbfd.net class hierarchy

5.3 The Analyser Engine

The Analyser Engine has already been introduced in 5.1. This chapter will focus

on its configuration and internals.

CHAPTER 5. IMPLEMENTATION DETAILS 64

5.3.1 Configuration

The configuration is similar to the configuration of the Fuzzer Engine but not that

large. An example configuration is shown in listing A.2.

The Include tags have the same functionality as for the Fuzzer Engine. The

included paths can be referenced in the rest of the configuration file. The next two

values (RegisterTypeResolver and RegisterFile) haven’t appeared so far and are ar-

chitecture dependent. Because every architecture has different register names and

register numberings for registers that have the same function, the RegisterTypeRe-

solver has the ability to resolve target independent register names (e.g. Program-

Counter) to target specific register names (e.g. eip or rip). The RegisterFile in

contrast contains all available registers for a specific architecture in increasing or-

der. This information is needed by the analysers because some of them analyse

ReplayRecords and reference the registers only by their numbers.

The rest of the configuration is straight forward and adds specific analysers to

the engine, which are executed in the same order as they are specified when running

the analyser.

5.3.2 Analysers

Program error analyser(analyzers/program error) - Analyses the log-files for ob-

vious program-crashes and also writes some additional informations like: stop rea-

son, exit status and exit address to the resulting log-file. The information is read

from the errorlog files.

Saved register analyser(analyzers/saved registers) - As shown in figure 2.6 regis-

ters, return addresses and function parameters are saved on the stack. This analyser

uses the core dump file to find memory writes which overwrite values on stack (e.g.

return address or saved ebp) using the stack frame info file.

Heap overflow analyser(analyzers/simple heap overflow) - This analyser uses

the core dump file and all recorded dynamic memory allocations (if available) to

find simple heap overflows. Currently it is only possible to find heap overflows

where the write operation goes out of bound and the target area is not associated

with another buffer or the write operation goes to unallocated memory, resulting in

write access errors. If a buffer is overflowed and the write operation goes to another

allocated buffer the heap overflow is not detected because from the analysers point

of view it looks like a valid write operation.

CHAPTER 5. IMPLEMENTATION DETAILS 65

Memory zone analyser(analyzers/memory zones) - To be sure that the target ap-

plication does not write in a specific, very critical memory section, a tester can

define so called red-zones. Every write-access to red-zones gets logged in the error-

log. This analyser scans through the core dump and logs all memory writes that

go to red-zones. On the other hand it provides so called white-zones, where only

memory write operations in the specified zone are allowed.

5.4 Summary

During the research of this thesis an In-Memory Fuzzer (further referenced as IMF)

was created. It is the implementation of a Snapshot Restoration Mutation based

fuzzer. Generally, the architecture is split into two parts: the fuzzer engine and

the analyser engine. The fuzzer engine collects data by fuzzing the target device or

target application and the analyser engine inspects the generated data afterwards.

This approach has the advantage that the analysers can be adopted afterwards with-

out rerunning the fuzzing process. The objectives of this fuzzer are to fulfil all the

requirements defined in 4.3. To implement this feature set from scratch an enormous

effort is required, therefore IMF heavily reuses existing components without com-

promising the usability or feature set. The current implementation builds on GDB

and its capabilities. As discussed in chapter 4 the Snapshot Restoration Mutation

method requires a mechanism to create a process snapshot and restore it afterwards.

This is achieved by using GDB’s reverse debugging feature. This feature records

all executed CPU instructions and its side effects. To restore a process’ state the

recorded instructions are executed in the reverse order. At the end of every fuzzer

run the recorded instructions are saved to disk (along with other log output) and

can be used later in the analysis phase.

The following list shows all requirements and how they are fulfilled with the

created implementation:

• Modularity and expandability: This requirement is covered by various imple-

mentation aspects. IMF uses XML configuration files where the implementa-

tion for every single component can be exchanged. This goes hand in hand

with the fact that IMF builds on C# using the .NET/MONO framework,

therefore it requires zero effort to include new libraries and exchange existing

components with custom implementations. For the data generation compo-

nent this approach even goes a step further. For the purpose of creating custom

data generators a simple scripting engine has been created which dynamically

CHAPTER 5. IMPLEMENTATION DETAILS 66

compiles C# style code. So, the data generator logic can be directly written

in the configuration file (or also in external XML files).

• Portability: The fuzzer logic is entirely written using the C# programming

language and therefore is available for all operating systems where the .NET-

or MONO framework is available.

• Flexibility and Small in size: GDB can basically operate in two modes: a local

mode and a remote mode. For embedded devices with only little memory

it is possible to only run a small stub (GDBserver) and a remote control

application on the device. The stub only receives commands and executes

them, all processing is done on the host device. If the device has enough

resources it can also run the full-blown fuzzer setup locally.

• Speed: The speed of the fuzzing process heavily depends on the hardware

under test. Remote fuzzing setups are slower than local fuzzing setups, but

no general prediction concerning fuzzing speed is possible.

• Usability: Depending on the available information for the application under

test the tester needs moderate reverse engineering skills. To ease this process

external tools like IDA or OllyDbg can always be integrated in the fuzzing

workflow seamlessly.

• Improve results with additional information: IMF or more precisely GDB has

the capability to load external symbol tables for a release-build-binary without

any debugging symbols attached. External tools can be used to regenerate as

much information from the binary or other sources as possible and can be

integrated in the fuzzing process to ease the hook point detection or argument

discovery.

Chapter 6

Results

6.1 Application Tests

This chapter contains fuzzing test-results for four applications with known vulnera-

bilities. The selection criteria for the test applications are as follows: A test appli-

cation should be runnable on embedded devices and should contain known vulnera-

bilities. The existence of vulnerabilities can be determined by using various security

related websites, e.g. CVE - Common Vulnerabilities and Exposures[3] The errors

are reconstructed using IMF to illustrate the functioning of the toolkit.

6.1.1 HTEditor

• URL: http://hte.sourceforge.net

HTEditor is an editor/viewer/analyser application. Various security related

websites claim that this application contains a stack-based buffer overflow

related to command-line arguments. The application was fuzzed using multiple

data-generator patterns but the fuzzer was not able to monitor any unexpected

behaviour on various architectures.

• Test setup: HTEditor uses a local only setup as shown in listing B.1. The

application is executed directly by the GDB sub process. It fuzzes the first

command line argument argv[1] with randomly generated data and increasing

length starting at 3000 bytes. The length gets extended by 1000 bytes on every

fuzzing round.

• Fuzzed parameter: argv[1]

• Fuzzing rounds: 1000

67

http://hte.sourceforge.net

CHAPTER 6. RESULTS 68

• Data length: 3000 - 1000000 Bytes

6.1.2 CoreHttp

• URL: http://corehttp.sourceforge.net/

CoreHttp is a lightweight web server used on embedded systems.

• Fuzzed parameter: Incoming request buffer, which is directly taken from

the HTTP-request.

• Test setup: CoreHttp uses a remote control setup as shown in listing B.2.

The application gets executed by the remote control application on the remote

side. The fuzzer connects to the remote side using the GDBserver. The fuzz

target is the http-server’s receive buffer parentsprock->buffer. This buffer

requires special handling and therefore can not be resolved using the variable

fuzz target specifier. It uses the addressOf (&) operator to resolve the address

of the buffer. The data generator again produces random, printable and null

terminated data starting at a length of one byte up to a length of 2000 bytes.

The size gets increased by 100 bytes on every fuzzing round.

• Fuzzing rounds: 21 (cancelled due to incoming data length restrictions)

• Data length: 1 - 2000 Byte, increasing data-length

The test-results are shown in table 6.1. The data shows that saved registers can

be overwritten, therefore a classical stack-smashing attack can be performed.

Round Date-length Result
1 - 6 0 - 500 Byte No analyser detected any issues
7 - 8 600 - 700 Byte Stack frame analyser: Saved registers got overwrit-

ten, stack based buffer overflow.
9 - 21 800 - 2000 Byte Program error analyser: A segmentation fault was

detected
Stack frame analyser: Saved registers got overwrit-
ten, stack based buffer overflow.

Table 6.1: Test results for CoreHttp

http://corehttp.sourceforge.net/

CHAPTER 6. RESULTS 69

6.1.3 3Proxy

• URL: http://www.3proxy.ru/

3Proxy is a proxy server, which is also suited for embedded devices.

For the first fuzzing attempt the following parameters where selected:

• Test setup: 3Proxy again uses a remote control setup as shown in listing

B.3. The fuzz target is the request-line buffer for the proxy server. The first

fuzzing attempt does not clearly show the source of the error, therefore another

attempt was performed with a modified fuzz-region as shown in listing B.4

• Fuzzed parameter: Incoming request buffer from the receive method

• Fuzzing rounds: 60

• Data length: 1 - 6000 Byte, increasing data-length

The test results are shown in table 6.2. Fuzzing round 21-56 result in a segmen-

tation fault, this can have various causes. Either a pointer in the method-under-test

gets overwritten and dereferenced later on, or a sub method produces the error.

Round Date-length Result
1 - 21 0 - 2000 Byte No analyser detected any issues
22 - 56 2000 - 5600 Byte Program error analyser: A segmentation fault was

detected
57 - 60 5700 - 6000 Byte Program error analyser: A segmentation fault was

detected
Stack frame analyser: Saved registers got overwrit-
ten, stack based buffer overflow. (rbp, rbx, r12, rip)

Table 6.2: Test results for 3Proxy, first attempt

Using GDB in interactive mode shows that a sub method produces this error,

therefore the fuzzing configuration is adapted and a second fuzzing attempt, using

the inner method, is performed with the following parameters:

• fuzzed parameter: Incoming request buffer from the inner method.

• fuzzing rounds: 77

• data length: 1 - 7700 Byte, increasing data-length

The results are shown in table 6.3. They show that starting with round 22 (as it

was for the previous attempt) saved registers get overwritten, which enables a stack

smashing attack again.

http://www.3proxy.ru/

CHAPTER 6. RESULTS 70

Round Date-length Result
1 - 21 0 - 2000 Byte No analyser detected any issues
22 - 77 2000 - 7700 Byte Stack frame analyser: Saved registers got overwrit-

ten, stack based buffer overflow. (rbp, rip)

Table 6.3: Test results for 3Proxy, second attempt

6.1.4 ProFTPD

URL: http://www.proftpd.org/

ProFTPD is a highly configurable FTP server available on various platforms.

Security related websites report some vulnerabilities concerning the ’Controls’ mod-

ule of ProFTPD [5]. The region to fuzz is entered once a Unix socket connects to the

module. A socket cannot be handed over from one application to another, therefore

the fuzzer needs a way to trigger the module using a Unix socket and combine the

in-memory fuzzing capabilities with the Unix socket fuzzing capabilities. Analysing

the configuration file in listing B.5 reveals the following advanced structures:

• Predefined fuzzers: The configuration predefines fuzzers which can be used in

multiple places later on. The predefinition is required because a single Unix

socket cannot be opened multiple times, but needs to be fuzzed with multiple

triggers.

• Pre conditions: The configuration defines two pre conditions or two actions

that are executed before the fuzzing process is started but after the connec-

tion has been established: fuzz helper/delay - delays the further fuzzer

execution by the specified time. This gives the victim time to start-up and

prepare for requests. fuzzer/predefined - uses the predefined fuzzer and

specifies a custom data generator (included from an external file and shown in

listing B.5). It triggers the hook-point, but the socket need to remain open or

the current session is lost.

• Multiple fuzzing channels: In the fuzz description area of the configuration

two different fuzz locations with different types of fuzzers are defined. They

are invoked in every fuzzing round (according to the trigger value) in the same

order as they are specified in the configuration file.

Test results: The results of this test are that the fuzzed argument reqarglen

is controlled by the attacker. A standard stack smashing attack can be performed

where the fixed sized request buffer gets overflowed with attacker supplied data.

http://www.proftpd.org/

CHAPTER 6. RESULTS 71

6.2 Performance Test

Another important aspect besides the functionality is the performance aspect. Be-

cause there is not a single suite with the same functionality, no inter-framework

comparison can be made. But because the GDBConnector supports multiple modes

they can be compared, and as shown in this section, this comparison yields inter-

esting results.

As discussed in section 5.2.1 the GDBConnector supports a local and a remote

mode. It is obvious that the remote mode is slower, but as a result of how the reverse

debugging feature is implemented the performance values are worse than expected

as shown in table 6.4.

GDBserver Local GDB
Time Time per instruction Time Time per instruction

Program run 50s 0.78ms/Instr. 2.2s 0.034ms/Instr.
Snapshot restoration 18s 0.28ms/Instr 2.0s 0.031ms/Instr.

Table 6.4: Performance results

The results are based on a region with about 64000 instructions and show that

using the GDBserver mode is about 16-times slower than using GDB in local mode.

This leaves much room for improvement as discussed in chapter 7.

6.3 Known Issues

Beside the fact that using the remote mode is significantly slower than using the

local mode as described in section 6.2 some other issues exist.

Using GDBs reverse debugging feature to implement a snapshot/restore capa-

bility has the drawback that GDBs memory usage grows with every executed in-

struction. Therefore GDB sets a hard limit for executed instructions with a default

value of 200000. This limit can be changed by the tester but just the existence of

this limit tells us that this GDB feature is not suitable to test whole program flows

or large methods. Another problem concerning the limit for executed instructions

are loops. If a loop runs long enough, every limit is reached.

Currently a huge effort is required for applications where no debugging symbols

or source code are available, to isolate regions of interest and to define fuzz-targets.

CHAPTER 6. RESULTS 72

The Corelan team[29] has built a simple trace application, to follow the users input

through the complete application. To ease the process of identifying the regions of

interest, an enhanced version of this Tracer is required.

6.4 Summary

The results show the trend that most exploitable vulnerabilities are stack-based

buffer overflows. Heap-based buffer overflows are hard to detect in practice and

require a more in-depth analysis of the memory allocation and memory write opera-

tions. If the problem of limited maximum executed instructions, and the problem of

finding errors (preferably buffer overflows) in sub-methods, as discussed in chapter

7, was solved, then it would even be possible to test whole program flows. Currently

the test area limits to a relatively small code area but especially the ProFTPD test

shows the flexibility and capabilities of the IMF framework.

Chapter 7

Conclusion and Future Work

This thesis reviews common testing methods and groups them by the information

that is required to apply the test-method. The following groups were introduced:

White-Box-, Grey-Box- and Black-Box-Testing. Each testing method is a assigned

to one of these groups by their required knowledge of the program-internals (e.g.

method boundaries, method parameters, layout of data structures, stack layout,...).

White-Box-Testing methods have all program internals available including access to

the source code. Black-Box-Testing methods in contrast have only the information

they can observe and Gray-Box-Testing methods additionally use reverse engineering

tools and externally supplied information to gather as many program internals as

possible. Most of the methods, regardless of which group they are assigned to, do

not test the functionality of the application as a whole, they only test small parts or

modules. Only the automated testing approach tests the application from a users

point of view but this method is not applicable because it requires too much time

and too many resources.

After the discussion of currently available and well established testing methods

this thesis focuses on the distinction of the terms bug, vulnerability and exploit. A

bug is a software behaviour that was not intended by the developer but they do not

necessarily compromise the system-security. One or more bugs form a vulnerability

but the vulnerability is not dangerous as long as no exploit code exists. So, the real

threats are vulnerabilities with existing exploit code. The bugs are categorised into

three groups: Off-by-One-Error, Buffer-Overflows and Integer-Overflows. Most of

the bugs are located in the Buffer-Overflow group, which also offers the greatest

exploit flexibility. While the other groups may only enable other failures but are

not directly exploitable, the Buffer-Overflow category may enable the attacker to

execute arbitrary code. Buffer overflows can further be grouped into: Stack-Based

73

CHAPTER 7. CONCLUSION AND FUTURE WORK 74

and Heap-Based. Stack-based buffer overflows provide a reliable entry point for

arbitrary code because the stack layout is almost the same for all applications on

a specific architecture. Heap-based buffer overflows, in contrast are hard to detect

and hard to exploit because the heap structure is not fixed.

With all this knowledge another testing method called fuzzing or fuzz-testing is

introduced. The main concept of fuzzing is to put a high load of data (malformed and

valid data) on the target device or the target application and inspect the response.

If the application or device responses unexpectedly the fuzzer records the input

data for later verification and continues the fuzzing process. Afterwards the tester

examines the recorded input data and tries to recreate the response. A deeper

analysis of the behaviour may enable the tester to exploit the failure on the target

application or device.

The main part of this thesis focuses on a different approach to fuzz-testing called

In-Memory Fuzzing. Once approaching closed source or proprietary protocols and

file formats, other fuzzers may require a lot of reverse engineering to rebuild the

protocol- and file-structures. An in-memory fuzzer does not need to know the struc-

ture, it focuses only on the underlying code, the methods and especially its param-

eters. It hooks before and after relevant methods and changes the variables of the

method-under-test before it is called, restores the original program state afterwards

and tests the method again.

Two different implementation approaches were discussed: the Mutation Loop

Insertion and the Snapshot Restoration Mutation method. When it comes to the

implementation of one of the methods I discovered that the requirements for both

methods were nearly the same. Both need access to the applications memory space

and need to insert code or hook at specific hook-points. Debuggers fulfil all the

requirements and are best suited to implement a custom in-memory fuzzer. None of

the currently available frameworks can be used in production environments because

all of the available fuzzers are either proof-of-concept implementations or never

left pre-alpha stage. The best results were achieved using the Corelan In-Memory

Fuzzer, but the implementation is based on the PyDbg-debugging framework, which

is only available for Windows.

During the research of this thesis an In-Memory Fuzzer (further referenced as

IMF) was created. It is the implementation of a Snapshot Restoration Mutation

based fuzzer. The objectives of this fuzzer are to fulfil all the requirements: Modu-

larity and expandability, Portability, Flexibility, Small in size, Speed, Usability and

Improve results with additional information. Enormous effort is required to imple-

CHAPTER 7. CONCLUSION AND FUTURE WORK 75

ment all components from scratch, therefore IMF reuses existing components and

uses GDB as its debugger backend. The following list shows all requirements and

how they are fulfilled with the created implementation:

• Modularity and expandability: IMF is built using C# and the .NET/MONO

framework. This enables a highly modular design and requires zero additional

effort to include new libraries. For configuration IMF uses XML configuration

files where the implementation for every single component can be specified.

For data generation IMF even goes a step further and provides a scripting

engine where new data generator logic can be directly written in the XML

configuration file.

• Portability: .NET framework is available for Windows operating systems and

MONO is a highly portable framework and can be used on various architec-

tures, therefore IMF can be used on all operating systems where the .NET or

MONO framework is available.

• Flexibility and Small in size: Out of the box IMF is highly flexible concerning

its footprint. This is accomplished by the integration of GDB which can

basically operate in two modes: a local mode and a remote mode. With the

local mode a full-fledged GDB and IMF installation is used on the target

device which provides the highest possible speed. For devices with only little

memory and resources the remote mode can be used where only a small stub

(GDBserver) and a remote control application runs on the target device. The

stub only receives commands from the fuzzer on the host device and executes

them. If even more flexibility is required a tester always has the possibility to

create a custom target connector and therefore has full control of the footprint

on the target device.

• Speed: The speed of the fuzzing process highly depends on the hardware under

test and its available resources. The only general assumption that can be made

here is that remote fuzzing setups are slower than local setups.

• Usability: One of the primary design goals of IMF is usability but, depending

on the available information of the application under test, in-memory fuzzing

is a highly complex testing method. Therefore at least moderate reverse engi-

neering skills are required. External tools like IDA or OllyDbg can always be

used to ease this process.

CHAPTER 7. CONCLUSION AND FUTURE WORK 76

• Improve results with additional information: Often additional information for

an application is provided in the form of source code, debugging symbols or

any other documentation by the vendor or third-parties. GDB provides the

capability to attach provided information to binary files out of the box. For

other connectors where GDB is not involved IMF provides the capability to

use this extra information.

Some applications with known vulnerabilities and suitable for embedded systems

have been selected to test with IMF :

• HTEditor: An editor/viewer/analyser application.

• CoreHttp: A lightweight web server used on embedded systems.

• 3Proxy: A proxy server, which is also suited for embedded systems.

• ProFTPD: A highly configurable FTP server available for various platforms.

The test cases show the flexibility of the IMF framework and the results confirm

the assumption that most exploitable vulnerabilities are stack-based buffer overflows.

This does not mean that heap-based buffer overflows do not exists but they are hard

to detect in practice and require a more in-depth analysis.

The current implementation only supports a single target connector with multiple

modes. Future enhancements might therefore include new connectors, for example

to directly communicate with emulators like QEMU. Using GDBs reverse debugging

feature to implement the snapshot/restore capability has the drawback that GDB’s

memory usage grows with every executed instruction. Therefore GDB sets a hard

limit for executed instructions. This limit can be changed, but future work may take

alternatives into account and may use the reverse debugging feature only for in-depth

analysis of an application. Another drawback of the current implementation is that

e.g. stack-based buffer overflows are only visible to the fuzzer if they occur in the

outer stack-frame. If they occur in any sub method the application may crash but

the fuzzer cannot determine the cause of the crash because it has no information on

the inner stack-frame. Future enhancements may take this issue into account.

Appendix A

Sample Configuration Files

Listing A.1: Basic sample fuzzer configuration file

<Fuzz >

<Include >config_paths.xml </Include >

<TargetConnection >

<Connector >general/gdb </Connector >

<Config key=" gdb_exec ">{[gdb_exec]}</Config >

<Config key=" gdb_log">stream:stderr </Config >

<Config key=" gdb_max_instructions " >4000000 </ Config >

<Config key=" target">run_local </Config >

<Config key="file">{[test_source_root]}corehttp </Config >

<Config key=" run_args ">{[test_source_root]}/../ chttp.conf </Config >

</TargetConnection >

<FuzzDescription >

<RegionStart >source|http.c,19</ RegionStart >

<RegionEnd >source|http.c,83</ RegionEnd >

<FuzzLocation >

<Trigger >start </Trigger >

<StopCondition >count |1000 </ StopCondition >

<FuzzerType >fuzzer/in_memory </FuzzerType >

<FuzzerArg name=" data_region">cstyle_reference_operator|parentsprock ->

buffer </FuzzerArg >

<FuzzerArg name=" data_type">fuzzdescription/single_value </FuzzerArg >

<DataGenerator >datagen/random_bytes </ DataGenerator >

<DataGenArg name=" minlen">1</DataGenArg >

<DataGenArg name=" maxlen ">2000</ DataGenArg >

<DataGenArg name=" lentype">increase |100</ DataGenArg >

<DataGenArg name="type">PrintableASCIINullTerminated </ DataGenArg >

</FuzzLocation >

</FuzzDescription >

<Logger >

<Destination >{[log_root]}</ Destination >

<UseLogger name=" datagenlogger" />

<UseLogger name=" connectorlogger" />

<UseLogger name=" stackframelogger" />

<UseLogger name=" remotepipelogger">

<PipeName >logmem_pipe </PipeName >

</UseLogger >

</Logger >

</Fuzz >

77

APPENDIX A. SAMPLE CONFIGURATION FILES 78

Listing A.2: Example analyser configuration

<Analyze >

<Include >config_paths.xml </Include >

<RegisterTypeResolver name=" registertypes/x86_64" />

<RegisterFile >{[register_root]}x86 -64. registers </ RegisterFile >

<FuzzLogPath >{[log_root]}</ FuzzLogPath >

<ErrorLog >{[log_root]} errorlog.xml </ErrorLog >

<AddAnalyzer name=" analyzers/program_error" />

<AddAnalyzer name=" analyzers/saved_registers" />

<AddAnalyzer name=" analyzers/simple_heap_overflow" />

<AddAnalyzer name=" analyzers/memory_zones">

<WhiteZone >0 x602010 :0x60201F </WhiteZone >

<RedZone >0 x600000 :0x700000 </RedZone >

</AddAnalyzer >

</Analyze >

Listing A.3: Example config paths.xml file

<Options >

<Path name=" gdbserver_exec ">/opt/gdb/bin/gdbserver </Path >

<Path name=" gdb_exec">/opt/gdb/bin/gdb </Path >

<Path name=" log_root ">./log/</Path >

<Path name=" test_source_root ">./src/</Path >

<Path name=" register_root ">../ registers/</Path >

<Path name=" lib_logmem ">../ liblog_memory_allocations.so </Path >

</Options >

Appendix B

Test Setup Configuration

B.1 HTEditor

Listing B.1 shows the fuzz configuration used to produce the test-results in 6.1.1.

Listing B.1: HTEditor fuzzer configuration

<Fuzz >

<Include >config_paths.xml </Include >

<TargetConnection >

<Connector >general/gdb </Connector >

<Config key=" gdb_exec ">{[gdb_exec]}</Config >

<Config key=" gdb_log">stream:stderr </Config >

<Config key=" gdb_max_instructions " >4000000 </ Config >

<Config key=" target">run_local </Config >

<Config key="file">{[test_source_root]}ht </Config >

<Config key=" run_args">dummyarg </Config >

</TargetConnection >

<FuzzDescription >

<RegionStart >source|main.cc ,262</ RegionStart >

<RegionEnd >source|main.cc ,380 </ RegionEnd >

<FuzzLocation >

<Trigger >start </Trigger >

<StopCondition >count |1000 </ StopCondition >

<FuzzerType >fuzzer/in_memory </FuzzerType >

<FuzzerArg name=" data_region">variable|argv [1]</ FuzzerArg >

<FuzzerArg name=" data_type">fuzzdescription/pointer_value </FuzzerArg >

<DataGenerator >datagen/random_bytes </ DataGenerator >

<DataGenArg name=" minlen ">3000</ DataGenArg >

<DataGenArg name=" maxlen " >1000000 </ DataGenArg >

<DataGenArg name=" lentype">increase |1000 </ DataGenArg >

<DataGenArg name="type">PrintableASCIINullTerminated </ DataGenArg >

</FuzzLocation >

</FuzzDescription >

79

APPENDIX B. TEST SETUP CONFIGURATION 80

<Logger >

<Destination >{[log_root]}</ Destination >

<UseLogger name=" datagenlogger" />

<UseLogger name=" connectorlogger" />

<UseLogger name=" stackframelogger" />

<UseLogger name=" remotepipelogger">

<PipeName >logmem_pipe </PipeName >

</UseLogger >

</Logger >

</Fuzz >

B.2 CoreHttp

Listing B.2 shows the fuzz configuration used to produce the test-results in 6.1.2.

Listing B.2: CoreHttp fuzzer configuration

<Fuzz >

<Include >config_paths.xml </Include >

<RemoteControl >

<Host >hostname </Host >

<Port >8899 </Port >

<Exec trigger =" immediate">

<Cmd >{[gdbserver_exec]}</Cmd >

<Arg >--wrapper </Arg >

<Arg >env </Arg >

<Arg >LD_PRELOAD ={[lib_logmem]}</Arg >

<Arg >LOG_MEM_PIPE=logmem_pipe </Arg >

<Arg > --</Arg >

<Arg >:1234 </Arg >

<Arg >{[test_source_root]}corehttp </Arg >

<Arg >{[test_source_root]}/../ chttp.conf </Arg >

</Exec >

</RemoteControl >

<TargetConnection >

<Connector >general/gdb </Connector >

<Config key=" gdb_exec ">{[gdb_exec]}</Config >

<Config key=" gdb_log">stream:stderr </Config >

<Config key=" gdb_max_instructions " >4000000 </ Config >

<Config key=" target">extended -remote hostname :1234 </ Config >

<Config key="file">{[test_source_root]}corehttp </Config >

</TargetConnection >

<FuzzDescription >

<RegionStart >source|http.c,19</ RegionStart >

<RegionEnd >source|http.c,83</ RegionEnd >

<FuzzLocation >

<Trigger >start </Trigger >

<StopCondition >count |1000 </ StopCondition >

<FuzzerType >fuzzer/in_memory </FuzzerType >

<FuzzerArg name=" data_region">cstyle_reference_operator|parentsprock ->

buffer </FuzzerArg >

APPENDIX B. TEST SETUP CONFIGURATION 81

<FuzzerArg name=" data_type">fuzzdescription/single_value </FuzzerArg >

<DataGenerator >datagen/random_bytes </ DataGenerator >

<DataGenArg name=" minlen">1</DataGenArg >

<DataGenArg name=" maxlen ">2000</ DataGenArg >

<DataGenArg name=" lentype">increase |100</ DataGenArg >

<DataGenArg name="type">PrintableASCIINullTerminated </ DataGenArg >

</FuzzLocation >

</FuzzDescription >

<Logger >

<Destination >{[log_root]}</ Destination >

<UseLogger name=" datagenlogger" />

<UseLogger name=" connectorlogger" />

<UseLogger name=" stackframelogger" />

<UseLogger name=" remotepipelogger">

<PipeName >logmem_pipe </PipeName >

</UseLogger >

</Logger >

</Fuzz >

B.3 3Proxy

Listing B.3 shows the fuzz configuration used to produce the test-results for the first

attempt in 6.1.3.

Listing B.3: 3Proxy (first attempt) fuzzer configuration

<Fuzz >

<Include >config_paths.xml </Include >

<RemoteControl >

<Host >hostname </Host >

<Port >8899 </Port >

<Exec trigger =" immediate">

<Cmd >{[gdbserver_exec]}</Cmd >

<Arg >--wrapper </Arg >

<Arg >env </Arg >

<Arg >LD_PRELOAD ={[lib_logmem]}</Arg >

<Arg >LOG_MEM_PIPE=logmem_pipe </Arg >

<Arg > --</Arg >

<Arg >:1234 </Arg >

<Arg >{[test_source_root]}3proxy </Arg >

<Arg >{[test_source_root]}/../ cfg/3proxy.cfg.sample </Arg >

</Exec >

</RemoteControl >-->

<TargetConnection >

<Connector >general/gdb </Connector >

<Config key=" gdb_exec ">{[gdb_exec]}</Config >

<Config key=" gdb_log">stream:stderr </Config >

<Config key=" gdb_max_instructions " >4000000 </ Config >

<Config key=" target">extended -remote hostname :1234 </ Config >

<Config key="file">{[test_source_root]}3proxy </Config >

</TargetConnection >

APPENDIX B. TEST SETUP CONFIGURATION 82

<FuzzDescription >

<RegionStart >source|proxy.c,873</ RegionStart >

<RegionEnd >source|proxy.c,878 </ RegionEnd >

<FuzzLocation >

<Trigger >start </Trigger >

<StopCondition >count |100</ StopCondition >

<FuzzerType >fuzzer/in_memory </FuzzerType >

<FuzzerArg name=" data_region">variable|req </FuzzerArg >

<FuzzerArg name=" data_type">fuzzdescription/pointer_value </FuzzerArg >

<DataGenerator >datagen/random_bytes </ DataGenerator >

<DataGenArg name=" minlen">1</DataGenArg >

<DataGenArg name=" maxlen " >20000</ DataGenArg >

<DataGenArg name=" lentype">increase |100</ DataGenArg >

<DataGenArg name="type">PrintableASCIINullTerminated </ DataGenArg >

</FuzzLocation >

</FuzzDescription >

<Logger >

<Destination >{[loge_root]}</ Destination >

<UseLogger name=" datagenlogger" />

<UseLogger name=" connectorlogger" />

<UseLogger name=" stackframelogger" />

<UseLogger name=" remotepipelogger">

<PipeName >logmem_pipe </PipeName >

</UseLogger >

</Logger >

</Fuzz >

For the second attempt only the hook points are adapted as shown in listing

B.4.

Listing B.4: 3Proxy (second attempt) fuzzer configuration

.

.

<FuzzDescription >

<RegionStart >source|proxy.c,873</ RegionStart >

<RegionEnd >source|proxy.c,878 </ RegionEnd >

.

.

.

</FuzzDescription >

.

.

APPENDIX B. TEST SETUP CONFIGURATION 83

B.4 ProFTPD

Listing B.5 shows the fuzz configuration used to produce the test-results shown in

6.1.4. Listing B.6 shows the associated data generation script.

Listing B.5: ProFTPD fuzzer configuration

<Fuzz >

<Include >config_paths.xml </Include >

<RemoteControl >

<Host >hostname </Host >

<Port >8899 </Port >

<Exec trigger =" immediate">

<Cmd >{[gdbserver_exec]}</Cmd >

<Arg >--wrapper </Arg >

<Arg >env </Arg >

<Arg >LD_PRELOAD ={[lib_logmem]}</Arg >

<Arg >LOG_MEM_PIPE=logmem_pipe </Arg >

<Arg > --</Arg >

<Arg >:1234 </Arg >

<Arg >{[test_source_root]}proftpd </Arg >

<Arg >-n</Arg >

<Arg >-d 8</Arg >

</Exec >

</RemoteControl >

<TargetConnection >

<Connector >general/gdb </Connector >

<Config key=" gdb_exec ">{[gdb_exec]}</Config >

<Config key=" gdb_log">stream:stderr </Config >

<Config key=" target">extended -remote hostname :1234 </ Config >

<Config key="file">{[test_source_root]}proftpd </Config >

</TargetConnection >

<!-- Some Fuzzer types can only be instantiated once and need to be used as

PreCondition AND as a

FuzzLocation afterwards.

Define the Fuzzers here , name them and use them as pre condition and fuzz

location

-->

<DefineFuzzer >

<Id>proftpd_socket </Id>

<FuzzerType >fuzzer/unix_socket </ FuzzerType >

<FuzzerArg name=" socket_file ">/opt/proftpd -vulnerable/var/proftpd/proftpd.

sock </FuzzerArg >

<FuzzerArg name=" enable_scripting ">1</FuzzerArg >

<FuzzerArg name=" script_lang">CSharp </FuzzerArg >

<FuzzerArg name=" script_code">

#ref Mono.Posix

#import Mono.Unix

#import System.IO

#endheader

if(HookType () == UnixSocketHookType.AfterSocketCreation)

{

// Associate the socket with a local file ,

APPENDIX B. TEST SETUP CONFIGURATION 84

//the server inspects the socket file and checks its permission

string sockFile = "/tmp/tmp.sock";

if(File.Exists(sockFile))

{

Console.WriteLine (" sockfile: ’{0}’ already existing , unlinking",

sockFile);

File.Delete(sockFile);

}

Console.WriteLine (" Binding unix socket to: ’{0}’", sockFile);

fuzzLocation.Connection.UnixSocket.Bind(new UnixEndPoint(sockFile));

Console.WriteLine (" Setting sock file ’{0}’ protection", sockFile);

new UnixFileInfo(sockFile).Protection = Mono.Unix.Native.FilePermissions

.S_IRWXU;

}

</FuzzerArg >

</DefineFuzzer >

<!-- Tries to send some data to the victim regardless of the position , to

reach the

start of the area of interest and the end. It can be seen as a test run.

It has quite the same structure than a Fuzz Location , but the pre

condition is only invoked once.

Multiple PreCondition can be specified , they are invoked in the same

order as they appear in the

configuration file.

-->

<PreCondition >

<FuzzerType >fuzz_helper/delay </FuzzerType >

<Delay >2000 </Delay >

</PreCondition >

<PreCondition >

<FuzzerType >fuzzer/predefined </FuzzerType >

<FuzzerArg name="id">proftpd_socket </FuzzerArg >

<DataGenerator >datagen/scripted </ DataGenerator >

<DataGenArg name=" enable_scripting ">1</DataGenArg >

<DataGenArg name=" script_lang">CSharp </DataGenArg >

<DataGenArg name=" script_file">script_datagen_mod_ctrls.cs </ DataGenArg >

<DataGenArg name=" scriptval_generate_valid_data ">1</DataGenArg >

</PreCondition >

<FuzzDescription >

<RegionStart >source|ctrls.c,532</ RegionStart >

<RegionEnd >source|ctrls.c,545</ RegionEnd >

<FuzzLocation >

<Trigger >start </Trigger >

<StopCondition >none </ StopCondition >

<FuzzerType >fuzzer/in_memory </FuzzerType >

<FuzzerArg name=" data_region">variable|reqarglen </FuzzerArg >

<FuzzerArg name=" data_type">fuzzdescription/single_value </FuzzerArg >

<DataGenerator >datagen/scripted </ DataGenerator >

APPENDIX B. TEST SETUP CONFIGURATION 85

<DataGenArg name=" enable_scripting ">1</DataGenArg >

<DataGenArg name=" script_lang">CSharp </DataGenArg >

<DataGenArg name=" script_code">

#import System.IO

#endheader

int val = 100;

if(IsValueSet (" last_val "))

val = (int)GetValue (" last_val ") + 10;

SetValue (" last_val", val);

using(MemoryStream sink = new MemoryStream ())

{

StreamHelper.WriteInt32(val , sink); // status

SetData(sink.ToArray ());

}

</DataGenArg >

</FuzzLocation >

<FuzzLocation >

<Trigger >start </Trigger >

<StopCondition >none </ StopCondition >

<FuzzerType >fuzzer/predefined </FuzzerType >

<FuzzerArg name="id">proftpd_socket </FuzzerArg >

<DataGenerator >datagen/scripted </ DataGenerator >

<DataGenArg name=" enable_scripting ">1</DataGenArg >

<DataGenArg name=" script_lang">CSharp </DataGenArg >

<!-- On process snapshot restoration the file descriptor is also restored

to its previous position

-->

<DataGenArg name=" script_code">

SetData(new byte [10]);

</DataGenArg >

</FuzzLocation >

</FuzzDescription >

<Logger >

<Destination >{[log_root]}</ Destination >

<UseLogger name=" datagenlogger" />

<UseLogger name=" connectorlogger" />

<UseLogger name=" stackframelogger" />

<UseLogger name=" remotepipelogger">

<PipeName >logmem_pipe </PipeName >

</UseLogger >

</Logger >

</Fuzz >

Listing B.6: ProFTPD data generation script

#import System.IO

#endheader

using(MemoryStream sink = new MemoryStream ())

{

StreamHelper.WriteInt32 (0, sink); // status

StreamHelper.WriteUInt32 (1, sink); // number of arguments

APPENDIX B. TEST SETUP CONFIGURATION 86

if(IsValueSet (" scriptval_generate_valid_data ") &&

(string)GetValue (" scriptval_generate_valid_data ") == "1")

{

StreamHelper.WriteUInt32 (100, sink); //data length

//Write 100 bytes of data , no overflow

byte[] data = new byte [100];

sink.Write(data , 0, data.Length);

}

else

{

uint lastLength = 100;

if(IsValueSet (" last_length "))

lastLength = (uint)GetValue (" last_length ");

// increase the length of data

lastLength += 50;

SetValue (" last_length", lastLength);

byte[] data = new byte[lastLength]; //data

Random r = new Random ();

r.NextBytes(data);

StreamHelper.WriteUInt32(lastLength , sink);

sink.Write(data , 0, data.Length);

}

SetData(sink.ToArray ());

}

List of Figures

1.1 White-Box testing scheme . 4

1.2 Unit testing scheme . 4

1.3 Black-Box testing scheme . 7

1.4 Grey-Box testing scheme . 8

1.5 Binary-auditing overview . 9

2.1 From bugs to vulnerabilities and exploits 12

2.2 Off-by-One Error . 12

2.3 General functional principal of a buffer overflow 13

2.4 Simplified virtual memory layout of current operating systems run-

ning on the x86-architecture . 14

2.5 Stack layout . 15

2.6 Smashed stack frame . 17

2.7 Heap space allocation . 18

2.8 Allocated memory blocks with headers and links 18

2.9 Overflowed heap layout . 19

2.10 Two’s complement vs. decimal representation 20

3.1 Fuzzing overview . 27

3.2 Network Protocol Fuzzer overview . 33

4.1 Basic In-Memory Fuzzing scheme . 40

4.2 Mutation Loop Insertion scheme[27] 41

4.3 Snapshot Restoration Mutation scheme[27] 42

4.4 Corelan In-Memory Fuzzing Tracer workflow 46

5.1 Architectural overview of IMF . 49

5.2 Fuzz-Description and Fuzz-Location class hierarchy 57

5.3 Basic class diagram of the GDBConnector 61

87

LIST OF FIGURES 88

5.4 Single instruction recorded by the GDB reverse debugging feature . . 62

5.5 libbfd.net class hierarchy . 63

List of Tables

2.1 Base-Pointer offsets[13] . 16

6.1 Test results for CoreHttp . 68

6.2 Test results for 3Proxy, first attempt 69

6.3 Test results for 3Proxy, second attempt 70

6.4 Performance results . 71

89

Listings

1.1 Unit-test example . 5

1.2 SQL-injection sample . 6

2.1 Simple heap header[17] . 18

2.2 Straight forward integer overflow example[21] 22

2.3 Integer overflow example 1 output[21] 23

2.4 Integer overflow example 2 output[21] 23

2.5 Integer overflow example 3 output[21] 23

3.1 Honggfuzz start command . 28

3.2 Environment fuzzing test target application 29

3.3 Simple environment fuzzing . 29

3.4 Use of ltrace to track environment variable accesses 29

3.5 Replacement library for getenv[11] 30

3.6 Call application with and without LD PRELOAD 31

3.7 Example HTTP-Response . 35

3.8 Example Request URL . 36

3.9 Command Injection Vulnerability[27] 36

4.1 C-example demonstrating the drawback of the Mutation Loop Inser-

tion method . 40

4.2 Sample Tracer log output . 46

5.1 Sample call of the Support Library 53

5.2 Output of the Support Library . 53

5.3 Remote Control protocol specification 54

5.4 Remote Control EXEC -data structure 54

5.5 Remote Control EXEC response data structure 55

5.6 Remote Control PROC response data structure 55

5.7 Remote Control PROC response data structure 56

5.8 Remote Control integration . 56

5.9 Remote Control integration . 60

90

LISTINGS 91

5.10 GDB checkpoints . 61

A.1 Basic sample fuzzer configuration file 77

A.2 Example analyser configuration . 78

A.3 Example config paths.xml file . 78

B.1 HTEditor fuzzer configuration . 79

B.2 CoreHttp fuzzer configuration . 80

B.3 3Proxy (first attempt) fuzzer configuration 81

B.4 3Proxy (second attempt) fuzzer configuration 82

B.5 ProFTPD fuzzer configuration . 83

B.6 ProFTPD data generation script . 85

Bibliography

[1] Boomerang. A general, open source, retargetable decompiler of machine code

programs. Available online at: http://boomerang.sourceforge.net/.

[2] Codan. Available online at: http://wiki.eclipse.org/CDT/designs/

StaticAnalysis.

[3] Common vulnerabilities and exposures. Available online at: http://cve.

mitre.org/.

[4] Gdb: The gnu project debugger. Available online at: http://www.gnu.org/

software/gdb/.

[5] Proftpd exploit. Available online at: http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2006-6170.

[6] Pydbg. Available online at: http://code.google.com/p/paimei/.

[7] Sunit. The mother of all unit testing frameworks. Available online at: http:

//sunit.sourceforge.net/.

[8] Kent Beck. Simple smalltalk testing: With patterns, 1989. Available online at:

http://www.xprogramming.com/testfram.htm.

[9] MITRE Corporation. CVE - Apple/Iphone OS/Security Vulnerabili-

ties Published In 2011. Available online at: http://www.cvedetails.

com/vulnerability-list/vendor_id-49/product_id-15556/year-2011/

Apple-Iphone-Os.html.

[10] MITRE Corporation. CVE - Google/Android/Security Vulnerabilities

Published In 2011. Available online at: http://www.cvedetails.com/

vulnerability-list/vendor_id-1224/product_id-19997/year-2011/

Google-Android.html.

92

http://boomerang.sourceforge.net/
http://wiki.eclipse.org/CDT/designs/StaticAnalysis
http://wiki.eclipse.org/CDT/designs/StaticAnalysis
http://cve.mitre.org/
http://cve.mitre.org/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6170
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6170
http://code.google.com/p/paimei/
http://sunit.sourceforge.net/
http://sunit.sourceforge.net/
http://www.xprogramming.com/testfram.htm
http://www.cvedetails.com/vulnerability-list/vendor_id-49/product_id-15556/year-2011/Apple-Iphone-Os.html
http://www.cvedetails.com/vulnerability-list/vendor_id-49/product_id-15556/year-2011/Apple-Iphone-Os.html
http://www.cvedetails.com/vulnerability-list/vendor_id-49/product_id-15556/year-2011/Apple-Iphone-Os.html
http://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/year-2011/Google-Android.html
http://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/year-2011/Google-Android.html
http://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/year-2011/Google-Android.html

BIBLIOGRAPHY 93

[11] Ludovic Courts. Inspecting getenv(3) calls. Available online at: http://www.

mail-archive.com/nix-dev@cs.uu.nl/msg02516.html.

[12] Inc. Fortify Software. Rats. Available online at: https://www.fortify.com/

ssa-elements/threat-intelligence/rats.html.

[13] Stephen J. Friedl. Intel x86 function-call conventions - assembly view. Available

online at: http://unixwiz.net/techtips/win32-callconv-asm.html.

[14] Hex-Rays. Ida - the interactive disassembler. Available online at: http://www.

hex-rays.com/products/ida/index.shtml.

[15] Immunity Inc. Spike. Available online at: http://immunityinc.com/

resources-freesoftware.shtml.

[16] Ponemon Institute. Second annual cost of cyber crime study, 2011. Avail-

able online at: http://www.arcsight.com/collateral/whitepapers/2011_

Cost_of_Cyber_Crime_Study_August.pdf.

[17] Felix Lindner. A heap of risk. Available online at: http://www.h-online.

com/security/features/A-Heap-of-Risk-747161.html.

[18] Microsoft. Fxcop. Available online at: http://msdn.microsoft.com/en-us/

library/bb429476.aspx.

[19] Microsoft. Virus alert about the win32/conficker worm, 2008. Available online

at: http://support.microsoft.com/kb/962007/en-us.

[20] P. Oehlert. Violating assumptions with fuzzing. Security Privacy, IEEE, 3(2):58

– 62, march-april 2005.

[21] Phrack. Basic integer overflows. Available online at: http://www.phrack.

org/issues.html?issue=60&id=10.

[22] Noam Rathaus and Gadi Evron. Open Source Fuzzing Tools. Syngress Publish-

ing, 2007.

[23] Oleh Hex-Rays SA. Ida - interactive disassembler. Available online at: http:

//www.hex-rays.com/products/ida/index.shtml.

[24] Securiteam. Spikefile. Available online at: http://packetstormsecurity.

org/files/download/39625/SPIKEfile.tgz.

http://www.mail-archive.com/nix-dev@cs.uu.nl/msg02516.html
http://www.mail-archive.com/nix-dev@cs.uu.nl/msg02516.html
https://www.fortify.com/ssa-elements/threat-intelligence/rats.html
https://www.fortify.com/ssa-elements/threat-intelligence/rats.html
http://unixwiz.net/techtips/win32-callconv-asm.html
http://www.hex-rays.com/products/ida/index.shtml
http://www.hex-rays.com/products/ida/index.shtml
http://immunityinc.com/resources-freesoftware.shtml
http://immunityinc.com/resources-freesoftware.shtml
http://www.arcsight.com/collateral/whitepapers/2011_Cost_of_Cyber_Crime_Study_August.pdf
http://www.arcsight.com/collateral/whitepapers/2011_Cost_of_Cyber_Crime_Study_August.pdf
http://www.h-online.com/security/features/A-Heap-of-Risk-747161.html
http://www.h-online.com/security/features/A-Heap-of-Risk-747161.html
http://msdn.microsoft.com/en-us/library/bb429476.aspx
http://msdn.microsoft.com/en-us/library/bb429476.aspx
http://support.microsoft.com/kb/962007/en-us
http://www.phrack.org/issues.html?issue=60&id=10
http://www.phrack.org/issues.html?issue=60&id=10
http://www.hex-rays.com/products/ida/index.shtml
http://www.hex-rays.com/products/ida/index.shtml
http://packetstormsecurity.org/files/download/39625/SPIKEfile.tgz
http://packetstormsecurity.org/files/download/39625/SPIKEfile.tgz

BIBLIOGRAPHY 94

[25] Michael Sutton and Adam Greene. The art of file format fuzzing.

Available online at: http://www.blackhat.com/presentations/bh-usa-05/

bh-us-05-sutton.pdf.

[26] Michael Sutton, Adam Greene, and Pedram Amini. In memory fuzz poc. Avail-

able online at: http://fuzzing.org/.

[27] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute Force Vul-

nerability Discovery. Addison-Wesley Professional, 2007.

[28] Robert Swiecki. Honggfuzz. Available online at: http://code.google.com/

p/honggfuzz/.

[29] Corelan Team. Corelan inmemory fuzzing. Available online at: http://www.

corelan.be/index.php/2010/10/20/in-memory-fuzzing/.

[30] Oleh Yuschuk. Ollydbg. Available online at: http://www.ollydbg.de/.

http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-sutton.pdf
http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-sutton.pdf
http://fuzzing.org/
http://code.google.com/p/honggfuzz/
http://code.google.com/p/honggfuzz/
http://www.corelan.be/index.php/2010/10/20/in-memory-fuzzing/
http://www.corelan.be/index.php/2010/10/20/in-memory-fuzzing/
http://www.ollydbg.de/

	Introduction
	Common Testing Methods
	White-Box Testing
	Unit Testing
	Frameworks
	Example

	Code Review
	Tools

	Black-Box Testing
	Manual Testing
	Automated Testing

	Grey-Box Testing
	Binary Auditing

	Summary

	Vulnerabilities
	From Bugs to Vulnerabilities
	Off-by-One Error
	Buffer Overflow
	Stack-Based Buffer Overflow
	Exploiting the stack-based buffer overflow

	Heap-Based Buffer Overflow
	Exploiting the heap-based buffer overflow

	Integer Overflow
	What is an Integer?
	What is an Integer-Overflow
	Exploiting Integer-Overflows

	Summary

	Fuzz-Testing in General
	Why Another Testing Methodology?
	How Fuzzing Works, a General Overview
	Fuzzer Classification
	Local Fuzzers
	Command-line Fuzzers
	Environment Fuzzers
	File Fuzzers

	Remote Fuzzers
	Network Protocol Fuzzers
	Web-application Fuzzers

	Data Generation
	Brute-Force Data Generation
	Intelligent Data Generation

	Summary

	In-Memory Fuzzing
	Problems of Other Fuzzing Techniques
	How In-Memory Fuzzing Works
	Mutation Loop Insertion
	Snapshot Restoration Mutation
	Implementation Aspects

	Requirements
	Existing Frameworks
	Summary

	Implementation Details
	Architectural Overview
	The Fuzzer Engine
	Configuration
	Bootstrapping the Fuzzer
	Support Library
	Remote Control
	Defining Fuzz-Descriptions and Fuzz-Locations
	Data Generators
	GDB
	Process Snapshots and Restoration
	The Core-Dump

	The Analyser Engine
	Configuration
	Analysers

	Summary

	Results
	Application Tests
	HTEditor
	CoreHttp
	3Proxy
	ProFTPD

	Performance Test
	Known Issues
	Summary

	Conclusion and Future Work
	Sample Configuration Files
	Test Setup Configuration
	HTEditor
	CoreHttp
	3Proxy
	ProFTPD

	List of Figures
	List of Tables
	Listings
	Bibliography

