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Abstract

Due to growing demand for computer generated graphical content, proce-

dural modeling has become an important topic in the gaming and movie

industry. Creating vast amounts of content by hand requires excessive

amounts of manual labor. Using a procedural rule set, entire worlds can be

generated by a computer. However, the traditional CPU-based derivation

of a large city can take multiple hours, making rapid design iterations

impossible. In this work, we investigate different strategies to execute pro-

cedural modeling on graphics processors using CUDA. We compare a

persistent threads megakernel approach to simple kernel calls and different

rule queuing strategies. Along these lines, we explore the trade-off between

precompiling an entire rule set and interpreting a rule set online.
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Kurzfassung

Aufgrund der steigenden Nachfrage an computergenerierten Inhalten ist

prozedurale Modelierung ein wichtiges Thema für die Spiele- und Filmin-

dustrie geworden. Das Erstellen großer Mengen digitaler Inhalte benötigt

viel Handarbeit. Mit einem prozeduralen Regelsatz können ganze Welten

vom Computer erstellt werden. Allerdings kann das Ableiten eines sol-

chen Regelsatzes, zum Beispiel für eine grosse Stadt, mit CPU-basierten

Methoden mehrere Stunden dauern, was schnelle Designentscheidungen

unmöglich macht. In dieser Arbeit untersuchen wir verschiedene Strategien,

um prozedurale Modellierung mittels CUDA auf einem Graphikprozessor

auszufüren. Wir vergleichen sowohl einen Persistent Megakernel Ansatz

mit einfachen Kernelaufrufen als auch verschiedene Strategien zur Eintei-

lung der Abfolge der Regelableitung. Weiters erforschen wir die Vor- und

Nachteile des Einsatzes von vorkompilierten Regelsätzen gegenüber zur

Laufzeit interpretierten Regeln.
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1. Introduction

In this work, we investigate a variety of rule derivation methods for pro-

cedural generation of architecture in particular and other miscellaneous

geometric shapes. We are building on the foundations laid out by Stein-

berger, Kenzel, Kainz, J. Müller, et al. [2014], focusing on the drawbacks

of their approach. They relied solely on precompilation of rules, and the

implementation heavily involved dynamic memory allocation, which is

know to be slow on the GPU [Steinberger, Kenzel, Kainz, and Schmalstieg,

2012].

1.1. Motivation

Generating graphical content in an automated fashion has become increas-

ingly important during the last decade. Many recent computer games offer

vast open virtual worlds, where the player can freely explore the environ-

ment. In the latest version of Grand Theft Auto, for example, the area is not

1



1. Introduction

limited to a single city, but also includes its surroundings, multiple square

kilometers of content. A player is free to explore these worlds, walking, driv-

ing or even flying. In big movie productions, like Roland Emmerichs ”2012”,

huge scenery of cities are shown and destroyed within seconds. Those are

examples of extensive use of digitally created content, which requires vast

amounts of manual labor to produce. By automating content creation as

much as possible, artists can spend more of their time on elements relevant

to narrative and gameplay, rather than on creating peripheral scenery.

1.2. Procedural Modeling

Procedural modeling is the process of constructing 3D models by describing

the construction process in a set of rules. It is even possible to generate

them on the fly [Steinberger, Kenzel, Kainz, J. Müller, et al., 2014], rather

than having an artist do all the work by hand and loading the models

into memory before they can be used. The task of creating reoccurring,

parameterizable objects like houses or trees is well suited for this kind of

modeling. Rules for model production can be defined in a shape grammar.

Starting from an initial set of shapes, these rules iteratively add detail to the

scene. After fully evaluating such a rule set, the geometry, which describes

the entire scene, is ready for rendering. However, grammar derivation for

thousands of buildings can take many hours on a conventional CPU, even

with several cores and a high clock rate.

2



1.3. Organization of this Work

One way to increase performance is parallelization. Parallelizing tasks and

algorithms has gained much popularity with the introduction of general

purpose GPU computing. With many cores on a single chip, the performance

of a GPU is unmatched by any CPU, assuming a suitable parallelizable

task. Procedural geometry generation is such a task, which can be, if done

carefully, parallelized and computed efficiently on a GPU.

1.3. Organization of this Work

As will be discussed in chapter 2 on related work, various attempts of map-

ping this challenging task to a graphics processor have already been made.

In chapter 2.1, we will give an overview of the kind of shape grammar used

for defining rules to construct buildings procedurally. Chapter 4 describes

two techniques of controlling the GPU rule evaluation process in more detail.

The two approaches used are launching several successive kernels for each

derivation step and deriving the entire scene using a single kernel launch in

a persistent threads megakernel method. Another aspect of rule derivation

is investigated in chapter 5: Precompiling rules and interpreting rule sets.

While precompiled rule sets are expected to be faster in the derivation

process, they do not offer the same flexibility to change rule sets quickly. In

chapter 6, we discuss how the generated geometry data is rendered using

three different methods: conventional non-instanced rendering, instanced

rendering using special (hardware accelerated) OpenGL draw calls and

a hybrid method we call software instancing. Implementation details are

3



1. Introduction

discussed in chapter 7. We describe the rule derivation process and give

small code samples. After setting the scene in the previous chapters, the

results of the investigation of the aforementioned techniques are presented

in chapter 8. We evaluate five different test scenes on all possible combi-

nations of derivation methods, rendering techniques and task scheduling

approaches. Contrarily to our expectations, the precompiled rule derivation

process did not work as well as expected for all test scenarios. It turns out

that rule interpretation at run time also has its benefits in some cases.

In chapters 9 and 10, open research questions, future work and conclusions

drawn from our findings are presented. Code samples, rule sets and more

detailed result tables can be found in the appendix.

4



2. Related Work

2.1. Shape Grammars

Our grammar incorporates several concepts from split grammars [Wonka

et al., 2003] and is loosely based on CGA [P. Müller et al., 2006], which

is a sequential grammar, allowing spatial distribution of components. It

is currently the most widely used grammar for procedural architecture

modeling. CGA is based on Stiny’s work on shape-grammars [G. Stiny, 1975]

and set-grammars [G. Stiny, 1982]. Furthermore, it uses split operations

for facade modeling as proposed Wonka et al. [2003] and transformation

operations similar to L-systems [Prusinkiewicz et al., 1990].

In this work, we focus on the basic concepts behind rule scheduling, thus

we use a simplified version of CGA. Our grammar does not support context

sensitive rules or snap lines, similar to the grammar used by GPU Shape

Grammars [Marvie et al., 2012].

5



2. Related Work

2.2. Split Grammars

Split grammars, introduced by Wonka et al. [2003], are specialized set gram-

mars, which impose restrictions on the allowed shapes and operations to

make the grammar simple enough for automated derivation, but sufficiently

expressive to allow the modeling of many different objects.

A split grammar builds on the notion of shapes and set grammars. A shape

can be defined [George Stiny, 1980] as follows:

Definition 2.2.1 A shape is a limited arrangement of straight lines in three-

dimensional Euclidean space.

Split grammars operate on a set of basic shapes, which can have attributes, can

be parameterized and labeled. These basic shapes form the core buildings

blocks of split grammars. Examples for the geometry represented with

basic shapes are boxes, spheres, cylinders or rectangles. The parameters

of these basic shapes define their extent, their position or orientation. A

label associated with the shape is often called symbol. This can either be a

terminal symbol ∈ T or a non-terminal symbol ∈ N.

A grammar can be defined as a set of production rules R on a set of symbols

U, using the following definition similar to the one given by Wonka et al.

[2003]:

6



2.2. Split Grammars

Definition 2.2.2 A grammar G = (N, T, R, I) consists of the non-terminal sym-

bols N ⊆ U, the terminal symbols T ⊆ U, a set of initial symbols (axioms) I ⊆ N

and a set of rewriting rules (productions) R ⊆ U ×U∗.

A rule a −→ B in a grammar is applicable to a non-terminal symbol a ∈ N,

replacing it with B, whereas B can be any combination of non-terminals

∈ N and terminals ∈ T.

In a set grammar, the production process works on an active set of symbols.

Initially, the active set consists of all axioms. During production, any non-

terminal symbol from the active set of symbols is chosen and a fitting rule

is executed on this symbol. The symbols generated by that rule are put back

into the active set of symbols. This process continues, until there are only

terminal symbols left in the active set.

In the case of shape grammars, the production process works on shapes.

Rules thus describe geometry operations on the input shape, generating

any number of new shapes. For a grammar to be a split grammar, only two

kinds of rules are allowed [Wonka et al., 2003]:

• Split rules: A split rules splits a shape into multiple shapes, covering

the exactly same volume as the input shape.

• Conversion rules: A conversion rules replaces a shape by zero to

multiple shapes, where the generated shapes must be contained in the

volume of the input shape.

7



2. Related Work
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(a) A Simple Split Grammar (b) Result of the rule set (a)

Figure 2.1.: A split grammar operates on a set of shapes, each associated with a symbol.

Rules (a) replace one shape by a group of other shapes. Using split grammars,

more complex objects can be generated from very simple rules.
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2.3. Procedural Modeling

These restrictions allow for a simple grammar derivation, as rules can only

influence a constrained volume, as shown in Figure 2.1. Furthermore, every

shape can be treated independently of the other shapes in the active set.

This allows for a fully parallel production process. CGA, and consequently

our grammar as well, do not have these restrictions, and shapes can also

increase in size, be moved or extruded.

2.3. Procedural Modeling

Approaches augmenting the functionality and usefulness of shape grammars

exist on more general non-terminal symbols [Krecklau et al., 2011] and mesh

refinement [Havemann, 2005].

Apart from grammar based approaches to the procedural generation of ge-

ometry, other methods can be used to obtain high quality models [Lefebvre

et al., 2010; Lin et al., 2011; Merrell et al., 2011].

Parallel grammar derivation has been investigated in various approaches

which differ greatly in their strategy. Deriving L-systems on CPU clusters

has been done by Yang et al. [2007]. Considering the inherent parallelism of

the algorithm, CPU clusters seem to be a good idea. However, when using a

GPU, the results are already in the memory of the graphics card, which is

obviously more convenient for rendering.

9



2. Related Work

A recent L-system generator for the GPU has been proposed by Lipp et al.

[2010]. In their work, they used multiple kernel launches to implement

iterative rewriting of L-systems. Using a single thread per symbol without

sorting the symbol stream has some drawbacks. First, memory accesses

can become problematic, if symbol sizes are not coherent. Second, thread

divergence, which is the effect of threads taking distinct execution paths,

results in different times the threads need to finish their work. On a GPU,

where it is desirable to have as many threads occupied as possible at any

point during run time, this effect causes some threads to wait on others

which might take longer. This drastically impacts performance. And third,

the management overhead for keeping track of where to store symbols

quickly becomes a dominant factor. Thus, for context sensitive grammars,

the derivation process was even slower on a GPU than on a CPU.

Shader based derivation of split grammars has been proposed and investi-

gated by Lacz et al. [2004], Magdics et al. [2009] and Marvie et al. [2012]. The

method by Lacz et al. uses a render-to-texture loop and imposes the main

workload of the algorithm on sorting intermediate symbols—similar to the

overhead found in L-system generator by Lipp et al. The method Magdics

et al. also requires several rendering passes. It tries to prevent divergence

by using a different shader for each output symbol. In our evaluation, we

incorporate an approach inspired by their work, efficiently grouping output

symbols and launching individual kernels for each symbol type.

The approach by Magdics et al. avoids multi-pass rendering by using a fixed

size stack. Using a fixed size stack has multiple drawbacks. First, recursion

10



2.4. GPU Task Scheduling

depth is limited. Second, stack elements might be spilled to slow global

GPU memory. Third, parallelism is limited to the number of axioms. And

fourth, divergence can play a crucial role, if objects do not have identical

structure.

An approach focusing on parallelizing grammar derivation for procedural

modeling of architecture has been published by Steinberger et al. [2014].

The PGA (Parallel Generation of Architecture) grammar is based on CGA

[P. Müller et al., 2006] and uses a software scheduling GPU framework

[Steinberger, Kainz, et al., 2012]. To avoid divergence, their approach groups

shapes, which are to be processed by the same rule. Additionally, they draw

parallelism from the rule itself. PGA compiles the entire rule set to achieve

high performance rule derivation. Our work builds on PGA, focusing on its

major drawbacks and analyzing different rule scheduling strategies.

2.4. GPU Task Scheduling

Ever since the CPU became capable of switching from one task to another

at runtime, scheduling has become an important aspect of operating a

computer [Tanenbaum, 2007]. Keeping the processing units busy to achieve

peak performance is getting more complex with graphics processors and

other stream co-processors being able to do massively parallel computation.

Since the amount of parallelism that can be achieved with this kind of

processors is much higher than on a general purpose CPU, conventional
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scheduling strategies can not simply be adopted, which is why GPU task

scheduling is an active field of research.

When launching compute kernels with NVIDIA CUDA, a thread block

scheduler chooses the threads to be executed on each multi-processor

[NVIDIA, 2011]. As proposed by Fung et al. [2007], this could be improved

by dynamic warp formation. Warps are units of 32 threads used by the

hardware scheduler on an NVIDIA GPU.

Since the availability of CUDA 5.0 and hardware with compute capability 3.5,

dynamic parallelism is supported [NVIDIA, 2012], which allows to launch

new kernels from an already running one. As reported by Steinberger,

Kenzel, and Schmalstieg [to appear] an implementation based on dynamic

parallelism is slower than traditional CPU controlled kernels.

Launching compute kernels one after the other does not only suffer from

overhead stemming from copying data back and forth between the CPU

and the GPU, but also impacts performance negatively, when waiting on

divergent threads to finish, until the next computation can be started. This

is why Aila et al. [2009] propose a persistent thread execution model, where

threads are kept running in a loop and are provided with new data to

process without having to stop the running kernel and launch a new one.

A good overview of persistent thread approaches is given by Gupta et al.

[2012].

GPU computing was initially intended for one task at a time. To be able

to process different problems at once, Hargreaves [2005] developed the

12



2.4. GPU Task Scheduling

ubershader, which calls different subroutines from a switch statement de-

pending on the input. This approach has also been implemented in compute

architectures like CUDA, where it is called a megakernel. The combination

of the persistent thread and the megakernel technique is sometimes called

persistent megakernel.

The behavior of a megakernel system is tremendously influenced by the

thread granularity. Scheduling single threads can lead to thread divergence

and does not allow to exploit GPU compute features like inter-thread

communication via local shared memory. In some approaches [Parker et al.,

2010; Tzeng et al., 2010], the tasks that can be scheduled have a minimal size

of one warp, whereas others schedule whole blocks of threads [Chatterjee

et al., 2011]. Previous work [Steinberger, Kainz, et al., 2012] even supports

both. This research revealed that the performance suffers severely, if tasks

of different thread sizes are scheduled simultaneously.

Sophisticated queuing of work items is essential for efficient software

scheduling. Simultaneous access allowing quick transfer of data to and

from the queues is necessary, as is load balancing for occupying all available

worker threads. This has been implemented by Cederman et al. [2008],

Chen et al. [2010] and Chatterjee et al. [2011]. Other techniques aiding

performance include dynamic priorities [Steinberger, Kainz, et al., 2012] or

message passing for synchronization [Luo et al., 2010; Stuart et al., 2009;

Xiao et al., 2010].
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3. Operators in Shape Grammars

To ease the process of writing rules, they are usually composed of operators.

Operators can be seen as basic geometric transformations executed in se-

quence to form a rule. Our grammar supports the transform-only operators

Translate, Rotate, and Scale and generative transformations that produce

more shapes than existed before the transformation. Those operators are

Repeat and Subdivide. Furthermore, we support two operations that change

the dimension of a shape: the Extrude operator, applied to a quad, generates

a box. The ComponentSplit operator, applied to a box, generates quads,

representing the six faces of the box. To support stopping conditions in

recursive rule definitions, we introduced an IfSizeLess operator, which stops

rule derivation if an input shape has a size less than a specified value.

Finally, we support the GenerateTerminal and the DiscardTerminal operator.

The former calculates the geometry or simply copies the scaled model ma-

trix (details on the implementation in chapter 7) With this set of operators,

geometric descriptions of architecture can be articulated. For instance, the

third rule in Figure 2.1(a), splitting shape T into five shapes, can be modeled

as a combination of two Subdivide operators. All the operators mentioned
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3. Operators in Shape Grammars

above are described in more detail in sections 3.1.1, 3.1.2, 3.1.3, 3.1.4 and

3.1.5.

To implement the supported operators to run efficiently on the GPU, parallel

execution needs to be considered in the implementation. Using CUDA, a

single thread can be launched for every shape in the active set, applying

the rule associated with the shape’s symbol. Despite the great potential for

parallel execution in split grammars, traditional GPU stream processing

approaches are not well suited to fulfill the derivation process efficiently

because work loads are highly irregular in split grammars, leading to thread

divergence. Since our grammar descends from split grammars, this problem

needs to be considered.

To avoid thread divergence, a scheduling system based on rule queuing can

be set up to keep up the occupancy of a GPU [Steinberger, Kenzel, Kainz, J.

Müller, et al., 2014]. The results of this rule scheduling paradigm are promis-

ing, as this system allows to generate whole cities in real time. However, the

aforementioned work only focuses on a single strategy to schedule rules:

The entire GPU is occupied with a persistent threads approach [Aila et al.,

2009]. Symbols of equal type are collected in queues, while worker threads

draw elements from these queues. All rules have to be available at compile

time, requiring a full recompile when altering the rule set. In this work, we

investigate alternative methods to schedule shape grammars on the GPU.

We investigate the benefits and downsides of scheduling whole rules, which

can consist of several operators in one rule, versus scheduling work for

each operator individually, which from the scheduling system’s point of
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3.1. Operator Descriptions

view treats every operator as an individual rule. On the other hand, we

investigate the trade-off between compiling entire rule sets and interpreting

the provided rule set during runtime.

3.1. Operator Descriptions

The operators supported by our grammar are described in the following

sections. Since C++ template parameters do not allow to use the floating

point data type, parameters are specified as integers and multiplied by 0.001

when fed to the rule derivation engine. Table 3.1 shows a list of supported

operators. The rotation parameters have to be specified in degrees. The axis

parameter takes an integer between zero and two for the X, Y and Z axis.

3.1.1. Transform-Only Operators

• Translate takes three parameters for the x, y and z coordinate and the

successive rule to place a shape on the desired spot in the scene. In

the example in listing 3.1 below, the input shape is moved by 0.2 on

the x axis, 0.35 on the y axis and 4.2 on the z axis.

Listing 3.1: Translate Operator

1 translate <200, 350, 4200, CallRule <Successor >>
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3.1. Operator Descriptions

Figure 3.1.: Translate moves a shape to a position in the scene

• Rotate takes three parameters for the x, y and z coordinate and the

successive rule to rotate a shape around the three axes. An example

usage can be seen below, where the input shape is rotated 5 degrees

on the x axis, 3.5 degrees on the y axis and 42 degrees on the z axis.

Listing 3.2: Rotate Operator

1 rotate <5000, 3500, 42000, CallRule <Successor >>

Figure 3.2.: Rotate turns a shape around the three axes

• Scale takes three parameters for the x, y and z coordinate and the

successive rule to scale the input shape to the desired extents on the

respective axis. In the example below, the input shape will have the

extents 0.1, 7.36 and 4.9. The scale operator sets the size of the shape
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3. Operators in Shape Grammars

in an absolute fashion, since this information is stored in a vector of

three floats during the derivation process.

Listing 3.3: Scale Operator

1 scale <100, 7360, 4900, CallRule <Successor >>

Figure 3.3.: Scale changes the size of a shape

3.1.2. Generative Operators

• Repeat takes two parameters, a successive symbol and a shape and

produces as many new shapes with the width specified by the second

parameter as fit into the original shape. The operator can work on

either of the other two dimensions. An example usage of the repeat

operator can be seen in listing 3.4.

Listing 3.4: Repeat Operator

1 repeat <X, 200, CallRule <Successor >>
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3.1. Operator Descriptions

Applied to a box with width 8, this call will output four new boxes

with a width of two (and the remaining extents according to the

input shape), which all have the symbol ”Successor” as its successive

symbol.

Figure 3.4.: Repeat generates new shapes within the old one as many times as they fit in

• Subdivide takes a varying amount of parameters and successive sym-

bols plus the input shape. The first parameter is again the axis which

the operation is applied to. The remaining parameters specify the

relative width/height/depth for the newly generated shapes and their

successive symbol, which can be different for each shape. The symbol

can also be the same for every output shape, but has to be specified as

many times as there are output shapes.

Listing 3.5: Subdivide Operator
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3. Operators in Shape Grammars

1 subdivide <Y,

2 SubdivParam <500, CallRule <Successor1 >,

3 SubdivParam <500, CallRule <Successor2 >>>

Applied to a box with the height of four, Subdivide will produce two

boxes with the height of two (and the remaining extents according to

the input shape). The successive symbols of the two resulting boxes

will be ”Successor1” and ”Successor2”, respectively.

Figure 3.5.: Subdiv replaces a shape with smaller instances

3.1.3. Dimension-Change Operators

• ComponentSplit takes an input shape and generates as many new

shapes of lower dimension as are needed to represent the faces of
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3.1. Operator Descriptions

the original shapes. Our implementation supports only the splitting

of a box into six quads. The operator needs to be provided with six

successive symbols (which may be all the same).

Listing 3.6: Component Split Operator

1 compsplit <CSP <CallRule <Bottom >,

2 CSP <CallRule <Top >,

3 CSP <CallRule <Right >,

4 CSP <CallRule <Left >,

5 CSP <CallRule <Back >,

6 CSP <CallRule <Front >>>>>>>>

Figure 3.6.: ComponentSplit splits a cube into its six faces

• Extrude needs an axis and a distance as parameters and converts a

quad into a cube by setting the extent of the shape to the specified

value at the requested axis.

Listing 3.7: Extrude Operator

1 extrude <Z, 5000, CallRule <Successor >>
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3. Operators in Shape Grammars

Figure 3.7.: Extrude adds height to a two dimensional shape

3.1.4. Conditional Operators

• IfSizeLess takes an axis, a distance and two successive symbols as

parameters. If the size of the processed shape at the given axis is

less than the value specified, the third parameter is taken as the next

symbol. The fourth parameter will be the successive symbol if the

condition evaluates to false. In the example below, the input shape

will be generated if its size on the x-axis is less than 2.0.

Listing 3.8: Conditional Size Operator

1 ifSizeLess <X, 2000, GenerateTerminal , DiscardTerminal >
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3.1. Operator Descriptions

Figure 3.8.: IfSizeLess executes the next operator only if the condition evaluates to true

3.1.5. Terminal Operators

• GenerateTerminal This operator does not take any parameters. It

will call a method appropriate for the input shape that will be fed to

it. Depending on the chosen rendering method, GenerateTerminal will

perform one of the following computations: Calculate vertices, normals

and indices when using non-instanced rendering or simply apply a

scale transformation according to the size parameter of the shape. A

counter is incremented using the atomicAdd CUDA operation to get

an index into the buffer on the graphics card, where the data will be

stored.
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3. Operators in Shape Grammars

• DiscardTerminal does not need any parameters either. This operator

simply returns from the execution method right away, thus discarding

the input shape.
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4. GPU Task Scheduling

4.1. Iterative Production

The most straight forward way to tackle shape grammar evaluation is

starting a single thread for each symbol in the currently active set. This

is similar to the approach by Lipp et al., 2010. As mentioned before, this

method has the drawback of extensive thread divergence. Inspired by the

approach by Laine et al., 2013, we avoid thread divergence, providing

individual queues for each rule. Before running the rule evaluation, we

allocate a queue for each rule on the GPU. We then insert the axioms

into the per-rule queues. After querying the queue fill rates, we start an

individual kernel for each queue, launching just as many threads as there

are elements in each queue. Each thread fetches one element from the queue

and executes the rule associated with it. During rule evaluation, new shapes

are generated, which are again inserted into the respective queues. Terminal

shapes are placed into a separate set of arrays, for which no rule evaluation

is taking place. These arrays are later used for rendering. After all kernel
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Figure 4.1.: Using an individual queue for each rule, we provide an iterative shape rewriting

algorithm, which does not suffer from divergence. At first all axioms are being

placed in the queues. Then, we read the queue fill rate back to the CPU before

launching just enough threads to process all queued shapes. We continue this

process, until there are only terminal shapes left.

launches are completed, we read the queue fill rates from the GPU and

again launch kernels to evaluate rules for all shapes currently being held

by all queues. We continue this process until all non-terminal shapes have

been processed and all queues reach an empty state. Shapes currently being

queued represent the current active set. This process is visualized in Figure

4.1.

Using this approach, all threads within one kernel evaluate the same rule,

executing the same set of instructions. Thus, no thread divergence occurs

and execution is efficient on the GPU hardware. While this approach is

set up easily, deriving a whole rule set requires many kernel launches.
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Additionally, the queue fill rates need to be read back from the GPU before

a new set of kernels can be launched. This step cannot be avoided, as the

number of threads to be launched needs to be known.

4.2. Persistent Megakernel Production

As an alternative way to tackle shape grammar evaluation on the GPU,

we use a persistent threads approach as proposed by Aila et al. [2009].

We again use a single queue per rule. But instead of launching a new

kernel for every rule production, we run threads in an a loop. In every loop

iteration, each thread draws a shape from one of the queues and executes its

associated rule. If new shapes are being generated, we add them back into

the respective queues. As shapes are being drawn from and inserted into

the queues concurrently, we use a flag per queue element to avoid errors

due to read-before-write dependencies [Steinberger, Kainz, et al., 2012]. All

threads continue in their loop, until all queues are empty and no thread

is still evaluating a rule. To avoid thread divergence, we force all threads

within a block to draw shapes from the same queue in every iteration. This

setup is outlined in Figure 4.2.

A persistent megakernel setup avoids synchronization with the CPU and

does not have any kernel launch overhead. On the downside, all rules must

be compiled into the same kernel. As kernels are optimized as a whole, the

characteristics of the most resource-hungry rule determines the efficiency
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Figure 4.2.: As alternative rule derivation algorithm, we use a persistent megakernel setup.

Worker blocks are running in a loop. At the beginning of each loop iteration,

they draw a new set of shapes from one of the queues and evaluate the

associated rules, before inserting the generated shapes back into the queues.

The kernel is kept alive until all non-terminal shapes have been processed.

of all others. Furthermore, the persistent setup requires a more complex

queuing strategy to avoid errors due to read-before-write dependencies. As

our grammar does not introduce any priority between rules, shapes can

be drawn from any queue at the beginning of each iteration. To avoid idle

threads, we circle through all queues in a round-robin fashion and only

draw shapes from a queue, if there are enough items in the queue to provide

all threads in the block with work.

30



5. Rule Derivation

To aid the description of our rule scheduling algorithm, we define the

following scheduling entitites:

Definition 5.0.1 A procedure is an entity being scheduled by the rule derivation

engine. It has several properties describing its behavior, for example, an ID and the

number of threads that simultaneously execute the procedure. When a procedure is

scheduled, a method is called to run the code defined within the procedure.

Definition 5.0.2 A Shape is a data structure for capturing the geometric descrip-

tion of a basic shape. For a box, the information used to describe it geometrically is

the following:

• The size – extents on the x, y and z axis

• The model matrix transforming the shape from its own coordinate system

to world coordinates in the final scene

In addition to the geometric information, we store the following data to be

able to distinguish between different shapes and associated rules:
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• A type ID defining what kind of shape will be generated (for example, a box,

a quad, a sphere, etc).

• Additionally, in the case of interpreted rule derivation, a symbol ID is stored

to identify which shape belongs to which rule. This is not necessary when

using the precompiled method.

5.1. Precompiled Rules

The goal of the precompiled rule set approach is to leave as many decisions

as possible to the compiler. For this approach, we require the complete rule

set to be specified beforehand. This includes all rules, their parameters, and

outputs. The only information not required in advance are the axioms. All

computations and branch decisions that are not input dependent need only

be executed once, so we perform them at compile time. Thus, at runtime, all

operators can be executed without any additional information. No lookups

to rule tables or symbol translations are needed.

The anticipated result is that this method achieves the best possible per-

formance, when compared to approaches that can adjust their behavior to

different rule sets during runtime. Precompiled rules lose the flexibility of

changing the rule set at run time and need significantly longer compile

time. Usually, the performance gain from precompiling a rule set would be

leveraged in production systems, such as games, once the design phase is

finished and no interactivity is needed anymore.
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Precompiled rule sets are evaluated in a ”one rule at a time” fashion by our

software. This means that several operators can be chained together in a

rule, which forms the procedure to be called by the scheduler. While this

approach has low scheduling overhead, it may not exploit all options for

parallelism. The same operators are likely to be used in different rules and

could be executed efficiently in parallel. However, the scheduler only knows

about rules, thus it treats all rules as different. Moreover, the complexity

of such a precompiled rule set can increase quickly. This circumstance not

only imposes high requirements on the quality of the compiler, but also, if

not implemented carefully, results in very high compile times, which may

hardy be tolerable for production use.

5.2. Interpreted Rules

Interpreting rules at runtime gives flexibility when designing new objects at

the cost of performance. With this approach, rule sets can be imported from

file or created interactively, possibly with a rule editing tool—ideally with a

graphical user interface.

In the interpreted mode, our solution evaluates rule sets in a ”one operator at

a time” fashion. This means that every rule is broken apart into its operators

and intermediate shapes are generated. These shapes are handed over to

the scheduler. To determine how operators are strung together to rules for

the currently used rule set, we generate a dispatch table. This table holds
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for each (intermediate) symbol the operator to be executed, its required

parameters and the successor symbols. During runtime, whenever a thread

starts the evaluation for a certain shape, it fetches all parameters from the

dispatch table and executes the requested operations. To avoid divergence,

we keep one queue per operator. When a new shape is generated, we

look up which operator should be called for it next and insert it into the

respective queue. Our solution implements the operators defined in the

grammar as procedures, which can be called by the software scheduler

to organize execution of the procedures for the queued symbols on the

processing units.

The major advantage of interpreted rule sets is the ability to alter the rule set

during run time, allowing for efficient prototyping and immediate feedback.

Another advantage of interpreted rules is that the scheduler is now exposed

to all available parallelism: shapes to be executed by the same operator can

be grouped, even if they are used in completely unrelated rules.
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6. Rendering Methods

Rendering is done in three different ways using OpenGL. Those variants are

instanced and non-instanced rendering and a hybrid form we call software

instancing. More details on the implementation are given in section 7.2 and

a performance comparison can be seen in chapter 8.

6.1. Non-Instanced Rendering

The non-instanced rendering method is the conventional way of render-

ing geometry. At the end of the rule derivation process, the GenerateTer-

minal operator calculates the vertices, normals and indices which will be

rendered by the draw method of the memory manager. When a lot of new

geometry is produced every frame, this approach is not the best way to go

because a lot of data has to be moved down the graphics pipeline. As will

be show in the results chapter, if the scene gets complex, tenth of millions

of vertices will be produced.
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6.2. OpenGL Instanced Rendering

Instanced rendering uses a feature of OpenGL to render instances of

basic shapes several times with one draw call. This has three advantages:

First, during terminal evaluation, less data has to be written to slow global

memory, as only the matrices need to be copied. Second, less storage is

required between generation and rendering. And third, during rendering,

less data needs to be read, saving memory bandwidth. However, even

though this method is hardware accelerated, the number of vertices of the

basic shapes is rather low. According to the hardware vendors, the overhead

associated with rendering small objects using instancing is higher than just

rendering non-instanced geometry. Thus, rendering is actually slower using

instancing.

6.3. Software Instanced Rendering

Software instancing is a hybrid form of rendering, which was imple-

mented to take advantage of both previously mentioned techniques. First,

the geometry for all terminal shapes is generated once and stored in a buffer

on the graphics card. Then during rule derivation, only the transformation

matrices have to be calculated and stored in memory—as in the case of

instanced rendering.
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The rendering speed should not suffer from overhead, since we are using

the same rendering technique like in the non-instanced version, whereas the

generation time of the geometry should be about the same as in OpenGL

instancing.

The negative aspect of software instanced rendering is it’s memory consump-

tion, which is as high as both previously described techniques together.
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Our implementation is written in CUDA and C++ and makes heavy use of

templates. It consists of four major components. A rendering framework,

a memory manager handling the allocation of memory on the graphics

card and coordinating the flow of control between geometry generation and

drawing, the rule derivation engine and a test case definition.

The rendering framework is responsible for setting up a window and an

OpenGL rendering context. The Renderer class is provided with a camera

class that takes parameters to set up a viewing frustum. Furthermore, an

input handler class needs to be specified to process mouse and keyboard

events. After everything is set up, the render loop method can be started.

For every frame, the events generated in the window are passed to the

registered input handler, which takes an appropriate action, if an event

occurs that is defined to be worth of an action. For example, a mouse drag

after a ”left mouse button down” event will trigger an action to move

the camera. After the state of the renderer has been updated according to
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the processed events, the render method is responsible to call all methods

required to update the screen content. After activating one of the shaders,

the memory manager either initiates the (re)generation of the geometry by

starting the rule derivation engine and then calls the draw method or draws

the previously created geometry right away.

The memory manager takes care of the graphics buffers for the geometry

and OpenGL draw calls. There are two classes named MeshInstanced and

MeshNonInstanced. Only one of them is compiled into the executable

according to the test case definition. The classes are responsible for allocating

the required graphics memory for the generated geometry. Depending on

the rendering method, either memory for vertices, normals and indices is

allocated, or, in the case of one of the instanced rendering methods, space for

the root shapes and transformation matrices is requested from the OpenGL

driver. Since no interactive rule editing is supported by our implementation1,

the rule set is processed and loaded into the memory of the graphic card

once if the interpretation method is chosen. We call this process dispatch table

initialization. In the precompiled version, this is not necessary, as the rule set

is already incorporated in the binary by the compiler. When everything is

set up (this happens only once when the program is started), the memory is

mapped to CUDA and the derivation engine is kicked off. Since these classes

hold the reference to the geometry data, they implement the draw method.

1A rule editor is left for future work, as it is not necessary for the investigation of

derivation strategies
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Geometry is either rendered using instancing (glDrawElementsInstanced)

or conventional indexed rendering (glDrawElements).

The derivation engine is the component, which executes all rules and

where the final geometry calculation takes place. It is written entirely in

CUDA. According to the test case definition, queues are set up and the

chosen technique for either separate kernel launches or a megakernel is

executed. For the interpretation of rules, all operators are implemented as

procedures, which are a generic interface to the scheduling mechanism.

This is why we also call this procedure-per-operator method. When using

a precompiled rule set, a procedure is scheduled for every rule making

this the procedure-per-rule method. Several operators that make up a rule,

are executed sequentially by one thread. After the production is launched,

an init procedure is executed, which the axiom shapes are fed to. In the

procedure-per-rule method, new rules are enqueued via a subroutine called

CallRule at the end of every rule if the derivation process does not hit

a terminal symbol. This CallRule subroutine is necessary to form chains

of operators in one rule. It provides the same C++ class interface like an

operator, but instead of altering a shape’s properties, it passes it on to the

next rule and enqueues this rule, to let the scheduler know that it is ready

for execution. When the rules should be interpreted, a new procedure is

scheduled after every operator. This is done via a dispatcher switch, which

looks up the successive symbol information, which is stored with the rule

information in the dispatch table, by using the current shape’s symbol id
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as an index into that table. More details on the rule derivation engine are

presented in section 7.1 of this chapter on rule derivation.

The test case definition consists of three parts. First, the production

rules have to be defined in a separate header file (see appendix A). From

those rules, the precompiled code or the dispatch table for interpretation is

generated. Second, an appropriate initial procedure has to be defined. This

init procedure takes care of feeding the axioms to the start rules, from where

the shapes get passed on from operator to operator until they hit a terminal.

A code sample for initialization is listed the appendix (Appendix B.2, B.3).

The third part of the test case definition consists of parameters controlling

which derivation method to use, which scheduling technique and which test

case to run. This is simply a header file containing preprocessor switches

and variable definitions.

7.1. Rule Derivation

The rule derivation engine is the main component of our implementation.

Once everything is set up by the memory manager, the chosen kernel

technique is launched and the init procedure (see B.2, B.3) is called. This

procedure can be executed by multiple threads simultaneously to allow the

construction of separate buildings in parallel. Each of the instances spawns

an axiom shape directly on the GPU, so no extra data has to be copied.

42



7.1. Rule Derivation

As defined at the beginning of chapter 5, the procedure is the interface to

the scheduling system. For the precompiled version, there is one procedure

class (listing 7.1), whereas for the interpreted method, every operator is a

procedure (listing 7.2). The former calls the out() method of the operator

passed as template parameter, which subsequently calls the operator sub-

routine and the latter calls the operator code in the execute() method of the

procedure.

Listing 7.1: Rule procedure used in precompiled mode

1 template <typename Shape , typename Operator >

2 class RuleT : public :: Procedure

3 {

4 public:

5 typedef Operator Head;

6 typedef Shape ExpectedData;

7 static const int NumThreads = 1;

8 static const bool ItemInput = true;

9 static const int symbol_count = Operator :: symbol_count;

10

11 template <int symbol_offset , typename RuleSet >

12 __host__ __device__ static void initDispatchTable(Rule* tbl)

13 {

14 Operator :: template initDispatchTable <symbol_offset , Shape , RuleSet >(tbl);

15 }

16

17 template <int symbol_offset , typename RuleSet >

18 __host__ __device__ static int getSymbol ()

19 {

20 return Operator :: template getSymbol <symbol_offset , RuleSet >();

21 }

22

23 template <class Q, class Sync >

24 static __device__ __inline__ void

25 execute(int threadId , int numThreads , Q* queue , ExpectedData*
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26 data , uint* shared)

27 {

28 uint out_param = 0;

29 Operator ::out(*data , queue , out_param );

30 }

31

32 static std:: string name() { return typeid(RuleT).name (); }

33 };

When interpreting code, the parameters for the operation to be executed

have to be fetched from the dispatch table first. This is done in the execute()

method of the procedure before calling the subroutine that does the actual

transformation. In the precompiled version, the parameters do not have to

be fetched, as they are already known at compile time and therefore put in

their place in advance.

Listing 7.2: Operator procedure used in interpreted mode

1 template <int x, int y, int z, class Next >

2 class translate

3 {

4 public:

5 typedef Next Tail;

6 static const int symbol_count = Next:: symbol_count + 1;

7

8 template <class Shape , typename Q>

9 __device__ __inline__ static void out(Shape& shape , Q* q, int unused)

10 {

11 typename translateOperator <Shape , Next , int >:: InputParameters p;

12 p.x = x * 0.001f;

13 p.y = y * 0.001f;

14 p.z = z * 0.001f;

15 translateOperator <Shape , Next , int >:: execute(p, shape , q, unused );

16 }
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7.1. Rule Derivation

17

18 template <int symbol_offset , typename Shape , typename RuleSet >

19 __host__ __device__ static void initDispatchTable(Rule* tbl);

20

21 template <int symbol_offset , typename RuleSet >

22 __host__ __device__ static int getSymbol ()

23 {

24 return symbol_offset + symbol_count - 1;

25 }

26 };

To implement a shape, we store its type, size and the model matrix (and the

symbol ID in the interpreted method). All operators, except the terminal

operators, only alter these attributes, which is all the information needed

to produce the geometry data. Using the non-instanced rendering method,

GenerateTerminal calculates, according to the type of the shape, the vertex

attributes and stores them in an OpenGL buffer, which is mapped to CUDA

before the generation process starts. If instanced rendering is used, all

that is left to do for the GenerateTerminal operator, is to store the model

matrix in the OpenGL buffer. See appendix B.1 for a code sample of the

GenerateTerminal operator.

The precompiled method is implemented using the template meta-programming

paradigm. All rule sequence decisions are made by the compiler according

to the rule definitions, which creates instances of rules and operator chains

at compile time. The rule definitions are written in C++ template code. In

the example as shown in listing 7.3, the input shape is rotated and then split

into four smaller boxes. One of them will be discarded by the IfSizeLess
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operator, one will be generated in its position after the split and two will be

moved a little. The result can be viewed in figure 7.1. Further rule sets used

for generating the results presented in chapter 8 are listed in appendix A.

Listing 7.3: Sample Rule Set

1 struct RuleB : RuleT <Box , IfSizeLess <X, 200,

2 DiscardTerminal , GenerateTerminal > > {};

3 struct RuleA : RuleT <Box , translate <0, 567, 0, GenerateTerminal > > {};

4

5 struct StartRule : RuleT <Box , rotate <45000 , 45000, 0, subdivide <X,

6 SubdivParam <270, CallRule <RuleA >,

7 SubdivParam <160, CallRule <RuleB >,

8 SubdivParam <300, CallRule <RuleA >,

9 SubdivParam <270, CallRule <RuleB > > > > > > > > {};

10

11 typedef RuleSet <RS<StartRule , RS <RuleA , RS<RuleB > > > > TheRules;

Figure 7.1.: Simple rule set splitting a box into four smaller ones and discarding one
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7.1. Rule Derivation

We use the template code not only to generate the operator chains for the

precompiled method, but also to fill the dispatch tables for the interpreted

case. However, the compile process in the interpreted case does not involve

the generation of GPU code, only the CPU code generating the dispatch

table. Thus, a full runtime adjustment of the rule set could easily be achieved

using a custom parser. With an interactive editor incorporating this parsers,

a rule set could be edited and a dispatch table uploaded to the GPU at run

time.

An array of operators in the dispatch table resulting from the rule set above

(7.3) would look like in listing 7.5. This array, consisting of rule entries (7.4),

is loaded into CUDA memory and used in the dispatch switch (appendix

B.4), which is called every time before a new operator is enqueued. This

method gets the next entry in the dispatch table by using the symbol ID,

stored in the shape that is passed as a parameter, as an index. The symbol

ID gets adjusted by every operator after its transformation is done, right

before the shape is handed over to the dispatcher switch. After determining

the operator code of the rule in next entry, the switch statement enqueues

the appropriate operator and passes on the shape data structure. In case an

operator does not have a successor, for example, in case of the GenerateTer-

minal, DiscardTerminal, or IfSizeLess operator, the successor ID is set to -1,

as shown in listing 7.5.

Listing 7.4: Dispatch Table Entry

1 struct Rule

2 {

3 unsigned char operatorCode;
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4 unsigned int numberOfParameters;

5 float parameters[MAX_NUM_PARAMETERS ];

6 unsigned int predecessor;

7 unsigned int numberOfSuccessors;

8 int successors[MAX_NUM_SUCCESSORS ];

9

10 };

Listing 7.5: Dispatch Table Example

d r u l e s [ 0 ] . opCode : 13

d r u l e s [ 0 ] . successor [ 0 ] : −3

d r u l e s [ 1 ] . opCode : 7

d r u l e s [ 1 ] . successor [ 0 ] : −2

d r u l e s [ 2 ] . opCode : 9

d r u l e s [ 2 ] . successor [ 0 ] : −1

d r u l e s [ 3 ] . opCode : 1

d r u l e s [ 3 ] . successor [ 0 ] : 1

d r u l e s [ 4 ] . opCode : 9

d r u l e s [ 4 ] . successor [ 0 ] : −1

d r u l e s [ 5 ] . opCode : 19

d r u l e s [ 5 ] . successor [ 0 ] : 4

d r u l e s [ 6 ] . opCode : 3

d r u l e s [ 6 ] . successor [ 0 ] : 3

d r u l e s [ 7 ] . opCode : 17

d r u l e s [ 7 ] . successor [ 0 ] : 6

The precompiled code does not use a dispatch table. This is why there is the
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CallRule class at the end of each rule. All operators in a rule get executed by

a thread, until it hits a CallRule, where the shape is fed to the next rule and

enqueued for scheduling. This class imitates the behavior of an operator

by doing the enqueuing instead of transformation calculations in the out()

method. A code snipped illustrating this mechanism is shown in listing

7.6.

Listing 7.6: CallRule class

1 template <class RuleT >

2 class CallRule

3 {

4 public:

5 static const int symbol_count = 0;

6 template <typename Shape , typename Q>

7 __device__ __inline__ static void out(Shape& s, Q* q, int unused)

8 {

9 q->template enqueue <RuleT >(s);

10 }

11 };

7.2. Rendering Methods

7.2.1. Non-Instanced Rendering

Non-instanced rendering is the traditional rendering method drawing gener-

ated vertex data with the glDrawElements OpenGL call. In the initialization

phase buffers for vertices, normals and indices are allocated. Before each run
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of the rule dervation engine, these memory regions are mapped to CUDA.

The GenerateTerminal operator calculates the vertex, normal and index data

and stores it in the supplied buffers (a code snippet is supplied in appendix

B.1). After the derivation is completed, the memory segments have to be

unmapped from CUDA before glDrawElements can be used.

7.2.2. OpenGL Instanced Rendering

We call this method also hardware instanced memory, because the OpenGL

calls can be accelerated by the graphics processor.

In the initialization, the rule derivation engine is invoked once for every

shape type (box, quad, etc) that has to be rendered in non-instanced mode.

Small buffers are provided to store vertex, normal and index data for one

instance of every shape.

The rule derivation engine is supplied with buffers for the transformation

matrices, which have to be mapped and unmapped from CUDA for every

run of the generation process. The GenerateTerminal operator only applies

the scale transformation and stores the matrix. Very little computation and

memory accesses are done, making this method faster in terms of geometry

generation time.

Once generation is finished, the generated shapes of the initialization, we

call them root shapes, are drawn by a call of the glDrawElementsInstanced

OpenGL funtion. This functionis called only once for every shape type
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with a parameter how many instances should be drawn. The index into the

matrix buffer is supplied via OpenGL vertex attribuges.

7.2.3. Software Instanced Rendering

Like in the other instancing method, the non-instanced geometry generation

is invoked once in the initialization phase. Instead of generating only one

instance per shape type, as many boxes, quads, etc, are generated as there

will be transformation matrices produced by the GenerateTerminal operator.

Since we are not supporting stochasticity, the numbers are known a priori.

The rule derivation process is the same like in OpenGL instancing. Only

the transformation matrices are calculated and stored. The time it takes for

deriving a set of rules should therefore be the same.

The transformation matrices are not supplied to the shader as vertex at-

tributes, like in the hardware accelerated version, but in a shader storage

buffer object—SSBO. During shader execution, the instance ID of the current

shape is calculated by dividing the vertex ID by the number of vertices of

the shape to be rendered. This instance ID is used to fetch the matrix from

the SSBO in the vertex shader.

Each of the three implemented techniques has its advantages and disad-

vantages. OpenGL and software instancing benefit from optimized vertex

rendering hardware, which results in higher frame rates, if little data changes

from one frame to the next. The OpenGL and the software instancing benefit
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from the reduced memory bandwidth cost, but both have their down sides.

OpenGL suffers from overhead involved in the instancing and software

instancing has very high initial memory requirements. Another effect has

been observed while testing, which may be taken into account positively.

The OpenGL instancing, even though slower than the conventional vertex

rendering, does not fluctuate in the frame rate, depending on the content of

the visible scene. In non-instanced rendering, frame rates seem to depend

on the amount of content that can be culled. When only little of the scene is

visible on screen, frame rates are clearly higher. However, the frame rates

when using glDrawElementsInstanced stay the same, which indicates that

culling does not work as efficiently using instanced rendering. It is not

known if this effect may be an implementation issue of the used graphics

hardware or not.
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8.1. Testing Environment

The results of the tests presented in this section were carried out on a system

with an Intel Core i7-4771 CPU at 3.5 GHz, 16 GB of main memory and a

NVIDIA Geforce GTX TITAN graphics card with 6 GB VRAM.

As this thesis focuses on the rule derivation process, only rudimentary

shaders have been applied to visualize the produced geometry. The absence

of visually appealing rendering, as well as other features not relevant for

this thesis, like optimizing the number of objects that need to be generated

or ignoring geometry that need not be regenerated for every frame, is the

topic of future work.

We compare twelve different configurations, which are variations of interpre-

tation and precompilation, instanced, non-instanced and software instanced

rendering, as well as iterative rewriting and persistent megakernel pro-

duction. We applied these variations to five different rule sets, which are
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described in more detail in their respective sections of this chapter: Houses

8.2.1, Detailed Houses 8.2.2, Many Rules Houses 8.2.3, Single Menger-Sierpinski

8.2.4, Multi Sierpinski 8.2.5.

8.2. Test Cases

Table 8.1 offers an overview of the properties of the five rule sets, which

were used to conduct the tests for the procedural modeling approaches we

introduced in previous chapters. Further details, test results and example

views are presented in the following subsections.

Table 8.1.: Test Scene Statistics

Houses D. Houses M. R. Houses Single M.S. Multi M.S.

Rules 9 25 90 5 15

Operators 11 30 110 4 12

Terminals 748800 3.03 M 71500 1.92 M 1.52 M

Vertices 17.97 M 72.65 M 1.72 M 46.1 M 27.65 M

Indices 26.96 M 108.98 M 2.57 M 69.1 M 41.47 M

The statistics that were sampled to measure the performance are as fol-

lows:

• The generation time t in milliseconds, which is the time that the

rule derivation process needed to calculate the geometry and fill the
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buffers.

• The frames per second (fps) gives an overview of the rendering per-

formance

• mspf is the reciprocal value of fps and shows the milliseconds it took

to render one frame

• DRAM load shows how many times a memory access was made

during the derivation (given in millions)

• DRAM store displays the write operations in millions that were done

by the rule derivation engine

8.2.1. Houses Test Case

The houses rule set A.1 is rather simple. It generates the floors of a house

and adds a variable number of windows in each floor wall. Depending on

the initial dimensions of the axioms, as many windows as fit in the width

and depth are produced. We are repeating this step as many times as a

floor fits into the height of the axioms. The top of each floor is either used

as ceiling or roof. To produce a heavy workload, we generate a grid of 48

x 48 instances of such a simple house by feeding this number of axioms

to the pipeline. The production process is started in parallel by starting a

thread with the init procedure for each axiom. Table 8.2 shows the average

performance statistics, while detailed numbers of each applied technique

can be found in table 8.3.
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8. Results and Evaluation

Table 8.2.: Houses Average Results

Avg t Avg fps Avg mspf Avg load Avg store

19.04 153.29 7.93 3.60 31.65

Figure 8.1.: The Houses testcase shows a scene of 48× 48 simple house models.
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8.2.2. Detailed Houses Test Case

The Detailed House rule set should reflect the modeling power of shape

grammars as well as constitute a test with a medium amount of different

rules. In a real world scenario, house models would be much more detailed

in terms of geometric detail and the use of textures. The Subdivide operator

(listing 3.5) makes up most of the rules (appendix A.2), dividing the axiom

into floors, doors, windows and walls. To put a heavy load on the graphics

card for testing, an 80 x 80 grid of houses is generated. Table 8.4 shows

the average performance statistics, while detailed numbers of each applied

technique can be viewed in table 8.5.

Table 8.4.: Detailed Houses Average Results

Avg t Avg fps Avg mspf Avg load Avg store

78.35 38.18 31.87 16.38 131.94

Figure 8.2.: The Detailed Houses dummy picture
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8.2.3. Many Rules Houses Test Case

The purpose of the Many Rules Houses test case (A.3) is to investigate the

qualities of the scheduling approaches implemented in this work. The rule

set of the simple house used in the Houses test (8.2.1) is replicated ten times

to generate a total of 90 different rules. Those have to be treated by the

scheduler as different entities which, if precompiled rule derivation is used,

can not be merged for parallel execution as the scheduler views them as

completely unrelated rules. To identify the ten different rule sets, each house

is produced with a height descending from ten floors to one floor as can be

seen in figure 8.3. Furthermore, to put some workload on the graphics card,

those ten rule sets are utilized on 200 axioms in parallel. The complexity of

this rule set is also reflected in the compile time, which can take up to 16

minutes on the used machine (8.1). Table 8.6 shows the average performance

statistics, while detailed numbers of each applied technique can be viewed

in table 8.7.

Table 8.6.: Many Rules Houses Average Results

Avg t Avg fps Avg mspf Avg load Avg store

3.20 1452.46 0.81 0.56 3.83
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8. Results and Evaluation

Figure 8.3.: Many Rules Houses showing 20 derivations of 10 different rule sets.

8.2.4. Single Menger-Sierpinski Test Case

This test scene shows a Menger-Sierpinski’s cube with five levels of recursion.

The rule set defines the steps to construct one level of the cube, resulting

in twenty boxes. At the end of each stage, the IfSizeLess operator checks

the side length of its input shape. If it is less than the specified value, the

rule derivation continues with last recursion stage. If the boxes are still big

enough, a proxy rule directs the path of execution back to the start of the

rule set. (see appendix A.4 for a complete code listing). This proxy rule is

needed because we use C++ template code for rule definition which has to

be defined in reversed order, starting with the last rule. The compiler can

only generate code from what it has already processed. So to jump back

from the end of the rule set, it needs a known piece of code to create an

instance from. Table 8.8 shows the average performance statistics, while

detailed numbers of each applied technique can be viewed in table 8.9.
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Table 8.8.: Single Menger-Sierpinski Average Results

Avg t Avg fps Avg mspf Avg load Avg store

44.91 58.62 20.79 6.39 73.21

Figure 8.4.: Single Menger-Sierpinski shows one deep Sierpinski Cube at recursion depth 5.
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8.2.5. Multi Menger-Sierpinski Test Case

For the Multi Menger-Sierpinski test case, we have turned down the number

of recursions to three. The three recursion levels are not truly defined

recursively like in the previous test case (8.2.4). Each level of recursion is

written out by hand in the code (see A.5). By doing so, we increase the

number of different rules for the scheduler. Therefore it sees the rules for

different stages of the recursion as separate procedures, which impacts

scheduling decisions. With this rule set, we generate a reasonable amount

of computation and scheduling workload and are still able to generate a lot

of geometry to stress the rendering pipeline. Table 8.10 shows the average

performance statistics, while detailed numbers of each applied technique

can be viewed in table 8.11.

Table 8.10.: Multi Menger-Sierpinski Average Results

Avg t Avg fps Avg mspf Avg load Avg store

27.00 101.04 12.05 3.51 43.16
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8.3. Evaluation

Figure 8.5.: Multi Menger-Sierpinski consists of 12× 12 Sierpinski Cubes at recursion depth

3.

8.3. Evaluation

Overall, we can observe that persistent megakernel production seems to

work a little faster on average than iterative production. Instancing al-

ways increases performance of the derivation process. If instancing is used,

precompiled rule sets are generally better than interpreted rule sets. If in-

stancing is not used, terminal generation dominates performance, for which

the interpreted rule sets are slightly faster, as they are able to merge the

terminal operators.

When looking at the raw generation times, we can observe that the fastest

method can generate 153.9 million terminals per second (MTPS) in the

Houses test case, 66.71 MTPS in the Many Rules Houses test case, 141.5

MTPS in the Detailed Houses test case, 224.3 MTPS in the Single Menger-

Sierpinski test case and 234.2 MTPS for the Multi Sierpinski rule set with

the used hardware (section 8.1).
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8.3.1. Rule Derivation

Surprisingly, in the non-instanced variant, interpreted rule evaluation was

faster than precompiled, achieving an overall faster average rule evaluation

by 24%. In the instanced variant, the relationships are reversed, with precom-

piled outperforming interpreted by 59% on average (hardware and software

instancing combined). In almost all instanced tests, compiled could generate

the geometry faster. These are very interesting results, as precompiled is

only significantly faster, when there is less memory traffic involved, due to

the use of instancing. We can only assume that the interpreted evaluation

can catch up in the non-instanced variant because all terminal operators

are collected in the same queue. Thus, the terminal generation itself is

highly efficient in comparison to the precompiled rule derivation, where the

terminal generation is mixed with other operations. Thus, the interpreted

version generates more homogeneous memory access patterns and over-

all runs faster in this case. This is also reflected by the lower number of

DRAM stores in the interpreted non-instanced versions when comparing

interpreted to percompiled. In the instanced variants, these numbers are

reversed. Most of the memory access of the interpreted evaluation is due to

dispatch table lookups and intermediate symbol generation, thus slowing

down the generation process.

In the Many Rules Houses test case, which differs from the other tests

significantly because it has more than three times as many rules than the

other tests, interpreted rule derivation is fastest in every execution configu-
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ration. This can be explained by the procedure per operator paradigm of

the interpretation method. The 90 different rule sets consist of the same

operators. So while the precompiled approach has to handle 90 different

queues, the relatively few queues to hold the operators in the interpreted

method fill up nicely. Furthermore, because the same operators get executed

repeatedly, very homogeneous memory access patterns emerge, fostering

performance.

8.3.2. Task Scheduling

When comparing our iterative production implementation against the persis-

tent megakernel approach, one can observe that the persistent megakernel

implementation is on average 5% faster than the iterative production. So,

interestingly, there is no generalizable pattern visible, as to when iterative

production works better at first. When having a closer look, we can see

that for the Many Rules Houses rule set, where there are significantly more

procedures to schedule and less memory access involved, the megakernel

approach outperforms iterative production by more than a factor of two

and is 126.8% faster (both instancing methods combined) on the interpreted

method, where all operators are procedures and can be merged in the

same queue for execution. The iterative production gives best results for the

combination of precompiled and instanced methods in four out of the five

cases.

Having a look at the scheduling diagrams (full listing in appendix C), we
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8. Results and Evaluation

can see that the utilization of the multi-processors on the graphics card is

higher when using the persistent megakernel (PMK) approach ( figure 8.7).

The occupancy of the processing units strongly depend on the rule set. This

supports the theory that not all computing tasks are suitable for massively

parallel execution and that the optimal utilization of the hardware is heavily

dependent on the sequence of operations. Furthermore, the chart 8.6 shows

the delay caused by the round trip from the GPU to the CPU between the

separate kernel launches (KLS) in the iterative production approach.

When comparing the plots 8.7 and 8.8, the characteristic variation in op-

erations in the interpreted(IRD) stands out, while the execution paths are

much more uniform in the precompiled (PRD) version.

The difference in memory access patterns, which has a large impact on

performance, when comparing instanced (HIR) to non-instsanced rendering

(NIR), is clearly visible, when comparing charts 8.8 and 8.9. The rule Cross-

bar is a terminal rule and occupies the processors for a significant amount

of time.
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Figure 8.6.: Detailed Houses Test Case Configuration: IRD KLS NIR
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Figure 8.7.: Detailed Houses Test Case Configuration: IRD PMK NIR
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Figure 8.8.: Detailed Houses Test Case Configuration: PRD PMK NIR
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Figure 8.9.: Detailed Houses Test Case Configuration: PRD PMK HIR
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8.3.3. Rendering

In all examples, the generation time in the instanced variant was between

three to five times lower than the non-instanced variant. The highest differ-

ence was achieved in the Detailed Houses test case, which generates a vast

amount of geometry with relatively few rule evaluations per terminal. This

fact is clearly visible when we have a look at the number of DRAM stores.

When looking at the rendering times, we see that conventional non-instanced

rendering always outperforms hardware instanced rendering, because on

the one hand the hardware has been optimized for this kind of rendering,

and on the other hand, there is an overhead involved in instancing.

What the numbers in the result tables do not tell, is that the performance of

non-instanced rendering is dependent on the amount of visible content in

the scene. When a lot of vertices have to be rendered, the frame rate drops

significantly. When using hardware instancing, the frame rate stays constant

whether or not the scene is filled with a great number of objects to draw.

This leads to the conclusion that culling mechanisms have a significant

impact on non-instanced rendering. The behavior of hardware instancing

with the almost constant frame rate may be an implementation detail of the

used graphics card.

The implementation of the software instancing approach was an interesting

experiment to overcome the overhead of the OpenGL version. As can be seen

from the numbers in the result tables, this method combines the benefits

75



8. Results and Evaluation

of both, instanced and non-instanced rendering. Unfortunately it comes at

a price. This method consumes by far the most amount of memory since

both the vertex data and the transformation matrices need to be stored for

every terminal. But since the vertices need to be generated only once in the

initialization phase, this data is already present in the graphic cards mem-

ory and does not involve expensive write operations anymore. Bandwidth

requirements are therefore reduced to a relatively low amount for the trans-

formation matrices. Therefore software instancing achieves the rendering

speeds of the non-instanced version and the rule derivation times of the

instanced method. If the software instancing approach can be improved,

which can be investigated in future research, this rendering method is the

most suitable one for procedural modeling. Another possibility would be to

improve the OpenGL instancing implementation to achieve the frame rates

of conventional vertex rendering.
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9. Future Work

Since the focus of this thesis is the evaluation of different rule scheduling

strategies, we omitted the implementation of features which only affect

appearance and not performance. These features include textured rendering,

auxiliary scenery like roads, water, vegetation and varying elevation of the

ground. Also the support of imported off-line generated models would make

the scene more lively. Furthermore, a randomization of input parameters, so

the generated shapes do not all look alike, would be essential for producing

realistic scenes. For the testing setup of our implementation, the use of boxes

and quads was sufficient. To build more realistic housing procedurally, many

more shapes could be implemented, like cylinders, cones and wedges. We

plan to add these features in the future.

Two advanced rendering techniques would be interesting to see in a future

release of our implementation. One is the implementation of a level of detail

mechanism to produce simpler shapes of buildings that are far away with

less detail visible, which increases performance significantly [Steinberger,

Kenzel, Kainz, Wonka, et al., 2014]. The other technique that would be
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worth researching is a frame to frame coherence. This mechanism is used

to determine what has changed in the currently visible scene, so expensive

derivation steps can be saved if only little has changed from one frame to

the next [Steinberger, Kenzel, Kainz, Wonka, et al., 2014].

A rule editor to specify interpreted rules at run time would be beneficial to

the usability of our solution, as writing rules off-line is not very intuitive,

especially for generating complex models. Such an editor would ideally

support writing rules in an already established shape grammar and could

even support using a rule database, so users can import and export model

descriptions like it is already done for conventional 3D models.

An interesting feature to implement is proper use of instanced rendering.

While in our case it was enough to render instances of basic shapes to prove

that instanced rendering is desirable when constantly generating geometry

every frame, to save bandwidth, the vertex data for basic shapes is far to

low to justify the instancing overhead for the rendering alone. Rendering

instances of fully generated objects with a reasonable amount of vertex data

would use the full potential of instanced rendering.

Last but not least, an important aspect of CGA is context sensitivity. In our

implementation this was deliberately left for future investigation, since the

complex matter of rule interdependency is out of scope of this work. With

this feature it would be possible to specify high level conditions like for

example ”generate a door, if the current floor is the ground floor”.
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10. Conclusion

We have shown in this work that scheduling of rule derivation work load

on a GPU in the context of grammar based procedural modeling has several

aspects influencing performance that have to be considered carefully.

First, decision making can be offloaded to the compilation stage in order to

avoid expensive branching at run time. While this works out well in general,

the amount of parallelization that can be achieved, which is higher in the

interpreted approach in our implementation, is key to high performance.

Second, the proper utilization of GPU programming paradigms, while

being partly platform dependent, as we focus primarily on NVIDIA CUDA

technology, is essential in order to avoid wasting precious resources.

Third, the amount of data being moved when generating geometry on the

fly ought not to be underestimated, which is why the use of instanced ren-

dering is the preferred method to render massive amounts of procedurally

generated models.
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10. Conclusion

Furthermore, when applying excessive template programming, the quality

of a decent compiler is not to be underestimated, as is the consideration

how code generation (especially its memory consumption) will respond to

chaining templates together recursively.

Apart from the main topic, the derivation of grammar based procedural

modeling rules, the comparison of the three different rendering methods has

been insightful. Especially the hybrid software instancing looks promising,

if it’s obstacles can be mitigated.
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Appendix A.

Test Rule Sets

A.1. Houses Rule Set Code

Listing A.1: Houses Rule Set

1

2 #pragma once

3

4 #include "operators.cuh"

5

6 struct Roof : RuleT <Quad , extrude <Z, 100, GenerateTerminal > > {};

7

8 struct Window : RuleT <Quad , DiscardTerminal > {};

9

10 struct Ground : RuleT <Quad , DiscardTerminal > {};

11

12 struct WallTile : RuleT <Quad , extrude <Z, 100, GenerateTerminal > > {};

13

14 struct WindowTile : RuleT <Quad , subdivide <Y,

83



Appendix A. Test Rule Sets

15 SubdivParam <250, CallRule <WallTile >,

16 SubdivParam <500, CallRule <Window >,

17 SubdivParam <250, CallRule <WallTile > > > > > > {};

18

19 struct FacadeTileX : RuleT <Quad , subdivide <X,

20 SubdivParam <250, CallRule <WallTile >,

21 SubdivParam <500, CallRule <WindowTile >,

22 SubdivParam <250, CallRule <WallTile > > > > > > {};

23

24 struct FacadeX : RuleT <Quad , repeat <X, 500, CallRule <FacadeTileX > > > {};

25

26 struct Floor : RuleT <Box , compsplit <CSP <CallRule <Ground >,

27 CSP <CallRule <Roof >,

28 CSP <CallRule <FacadeX >,

29 CSP <CallRule <FacadeX >,

30 CSP <CallRule <FacadeX > ,

31 CSP <CallRule <FacadeX > > > > > > > > > {};

32

33 struct StartRule : RuleT <Box , repeat <Y, 1000, CallRule <Floor > > > {};

34

35 typedef RuleSet <RS<StartRule , RS <Floor , RS<FacadeX , RS<FacadeTileX ,

36 RS <WallTile , RS <WindowTile , RS<Window , RS<Roof ,

37 RS <Ground > > > > > > > > > > TheRules;

A.2. Detailed House Rule Set Code

Listing A.2: Detailed House Rule Set

1

2

3 #pragma once

4

5 #include "operators.cuh"

6
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7 struct Ground : RuleT <Quad , rotate <180000 , 0, 0,

8 extrude <Z, 5, GenerateTerminal > > > {};

9

10 struct Glass : RuleT <Quad , DiscardTerminal > {};

11

12 struct FlatRoof : RuleT <Quad , extrude <Z, 5, GenerateTerminal > > {};

13

14 struct Roof : RuleT <Quad , extrude <Z, 100, GenerateTerminal > > {};

15

16 struct Crossbar : RuleT <Quad , extrude <Z, 25, GenerateTerminal > > {};

17

18 struct WindowA : RuleT <Quad , subdivide <Y,

19 SubdivParam <450, CallRule <Glass >,

20 SubdivParam <100, CallRule <Crossbar >,

21 SubdivParam <450, CallRule <Glass > > > > > > {};

22

23 struct Window : RuleT <Quad , subdivide <X,

24 SubdivParam <450, CallRule <WindowA >,

25 SubdivParam <100, CallRule <Crossbar >,

26 SubdivParam <450, CallRule <WindowA > > > > > > {};

27

28 struct WallTile : RuleT <Quad , extrude <Z, 25, GenerateTerminal > > {};

29

30 struct WindowTile : RuleT <Quad , subdivide <Y,

31 SubdivParam <250, CallRule <WallTile >,

32 SubdivParam <500, CallRule <Window >,

33 SubdivParam <250, CallRule <WallTile > > > > > > {};

34

35 struct FacadeTileX : RuleT <Quad , subdivide <X,

36 SubdivParam <250, CallRule <WallTile >,

37 SubdivParam <500, CallRule <WindowTile >,

38 SubdivParam <250, CallRule <WallTile > > > > > > {};

39

40 struct FacadeX : RuleT <Quad , repeat <X, 400, CallRule <FacadeTileX > > > {};

41

42 struct GroundFacadeX : RuleT <Quad , repeat <X, 500, CallRule <FacadeTileX > > > {};

43
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44 struct Floor : RuleT <Box , compsplit <CSP <CallRule <Ground >,

45 CSP <CallRule <Roof >,

46 CSP <CallRule <FacadeX >,

47 CSP <CallRule <FacadeX >,

48 CSP <CallRule <FacadeX > ,

49 CSP <CallRule <FacadeX > > > > > > > > > {};

50

51 struct Inner : RuleT <Box , repeat <Y, 1000, CallRule <Floor > > > {};

52

53 struct BalkonyScope : RuleT <Box , DiscardTerminal > {};

54

55 struct Outer : RuleT <Box , scale <50, 2000 , 50,

56 translate <0, -1000, 0, GenerateTerminal > > > {};

57

58 struct TopDivZ2 : RuleT <Box , subdivide <Z,

59 SubdivParam <150, CallRule <BalkonyScope >,

60 SubdivParam <700, CallRule <Inner >,

61 SubdivParam <150, CallRule <BalkonyScope > > > > > > {};

62

63 struct TopDivZ1 : RuleT <Box , subdivide <Z,

64 SubdivParam <150, CallRule <Outer >,

65 SubdivParam <700, CallRule <BalkonyScope >,

66 SubdivParam <150, CallRule <Outer > > > > > > {};

67

68 struct TopDivX : RuleT <Box , subdivide <X,

69 SubdivParam <150, CallRule <TopDivZ1 >,

70 SubdivParam <700, CallRule <TopDivZ2 >,

71 SubdivParam <150, CallRule <TopDivZ1 > > > > > > {};

72

73

74 struct DoorTile : RuleT <Quad , subdivide <Y,

75 SubdivParam <25, CallRule <WallTile >,

76 SubdivParam <725, CallRule <Glass >,

77 SubdivParam <250, CallRule <WallTile > > > > > > {};

78

79 struct Door : RuleT <Quad , subdivide <X,

80 SubdivParam <250, CallRule <WallTile >,
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81 SubdivParam <500, CallRule <DoorTile >,

82 SubdivParam <250, CallRule <WallTile > > > > > > {};

83

84 struct FoH : RuleT <Quad , subdivide <X,

85 SubdivParam <350, CallRule <FacadeTileX >,

86 SubdivParam <300, CallRule <Door >,

87 SubdivParam <350, CallRule <FacadeTileX > > > > > > {};

88

89 struct GroundFloor : RuleT <Box , compsplit <

90 CSP <CallRule <Ground >,

91 CSP <CallRule <FlatRoof >,

92 CSP <CallRule <GroundFacadeX >,

93 CSP <CallRule <GroundFacadeX >,

94 CSP <CallRule <FacadeX > ,

95 CSP <CallRule <FoH > > > > > > > > > {};

96

97 struct Top : RuleT <Box , scale <2000, 4000, 2000,

98 translate <0, 500, 0,

99 CallRule <TopDivX > > > > {};

100

101 struct StartRule : RuleT <Box , subdivide <Y,

102 SubdivParam <250, CallRule <GroundFloor >,

103 SubdivParam <750, CallRule <Top > > > > > {};

104

105 typedef RuleSet <RS<StartRule , RS<Floor ,

106 RS <FacadeX , RS<FacadeTileX , RS<WallTile ,

107 RS <WindowTile , RS<Window , RS <Roof ,

108 RS <Ground , RS<WindowA , RS<Crossbar ,

109 RS <Glass , RS<GroundFloor , RS <FoH ,

110 RS <Top , RS <Door , RS <FlatRoof , RS<DoorTile ,

111 RS <GroundFacadeX , RS <TopDivX , RS <Inner ,

112 RS <Outer , RS<TopDivZ1 , RS<TopDivZ2 , RS<BalkonyScope

113 > > > > > >

114 > > > > > > > > >

115 > > > > > > > > > >

116 > TheRules;
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A.3. Many Rules Houses Rule Set Code

Listing A.3: Many Rules Houses Rule Set

1 #define House(N) \

2 struct Roof##N : RuleT <Quad , extrude <Z, 100,

3 GenerateTerminal > > {}; \

4 struct Window ##N : RuleT <Quad , DiscardTerminal > {}; \

5 struct Ground ##N : RuleT <Quad , DiscardTerminal > {}; \

6 struct WallTile ##N : RuleT <Quad , extrude <Z, 100,

7 GenerateTerminal > > {}; \

8 struct WindowTile ##N : RuleT <Quad , subdivide <Y,

9 SubdivParam <250, CallRule <WallTile ##N>,

10 SubdivParam <500, CallRule <Window ##N>,

11 SubdivParam <250, CallRule <WallTile ##N> > > > > > {}; \

12 struct FacadeTileX ##N : RuleT <Quad , subdivide <X,

13 SubdivParam <250, CallRule <WallTile ##N>,

14 SubdivParam <500, CallRule <WindowTile ##N>,

15 SubdivParam <250, CallRule <WallTile ##N> > > > > > {}; \

16 struct FacadeX ##N : RuleT <Quad , repeat <X, 500,

17 CallRule <FacadeTileX ##N> > > {}; \

18 struct Floor ##N : RuleT <Box , compsplit <

19 CSP <CallRule <Ground ##N>,

20 CSP <CallRule <Roof##N>,

21 CSP <CallRule <FacadeX ##N>,

22 CSP <CallRule <FacadeX ##N>,

23 CSP <CallRule <FacadeX ##N> ,

24 CSP <CallRule <FacadeX ##N> > > > > > > > > {}; \

25 struct StartRule ##N : RuleT <Box , repeat <Y, 1000, CallRule <Floor ##N> > > {};

26

27 House (9)

28 House (8)

29 House (7)

30 House (6)

31 House (5)

32 House (4)

33 House (3)
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34 House (2)

35 House (1)

36 House ()

37

38 #define HouseRuleDef(N) RS<StartRule ##N, RS<Floor##N,

39 RS <FacadeX ##N, RS<FacadeTileX ##N,

40 RS <WallTile ##N, RS<WindowTile ##N,

41 RS <Window ##N, RS<Roof##N, RS <Ground ##N

42

43 typedef RuleSet <HouseRuleDef (), HouseRuleDef (1), HouseRuleDef (2),

44 HouseRuleDef (3), HouseRuleDef (4),

45 HouseRuleDef (5), HouseRuleDef (6),

46 HouseRuleDef (7), HouseRuleDef (8) ,

47 HouseRuleDef (9)

48 > > > > > > > > >

49 > > > > > > > > >

50 > > > > > > > > >

51 > > > > > > > > >

52 > > > > > > > > >

53 > > > > > > > > >

54 > > > > > > > > >

55 > > > > > > > > >

56 > > > > > > > > >

57 > > > > > > > > > > TheRules;

A.4. Single Menger-Sierpinski Rule Set Code

Listing A.4: Single Menger-Sierpinski Rule Set, Recursion Level 5

1

2 #define RECURSION_STOP 30

3

4 struct ZDiscard2 : RuleT <Box , subdivide <Z,

5 SubdivParam <333, GenerateTerminal ,
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6 SubdivParam <333, DiscardTerminal ,

7 SubdivParam <333, GenerateTerminal > > > > > {};

8

9 struct SubY2 : RuleT <Box , subdivide <Y,

10 SubdivParam <333, GenerateTerminal ,

11 SubdivParam <333, CallRule <ZDiscard2 >,

12 SubdivParam <333, GenerateTerminal > > > > > {};

13

14 struct YDiscard2 : RuleT <Box , subdivide <Y,

15 SubdivParam <333, CallRule <ZDiscard2 >,

16 SubdivParam <333, DiscardTerminal ,

17 SubdivParam <333, CallRule <ZDiscard2 > > > > > > {};

18

19 struct LastStage : RuleT <Box , subdivide <X,

20 SubdivParam <333, CallRule <SubY2 >,

21 SubdivParam <333, CallRule <YDiscard2 >,

22 SubdivParam <333, CallRule <SubY2 > > > > > > {};

23

24 struct StartRuleProxy {};

25

26 template <>

27 template <typename Shape , typename Q>

28 __device__ __inline__ void

29 CallRule <StartRuleProxy >::out(Shape & s, Q *q, int unused );

30

31 template <>

32 template <int symbol_offset , typename RuleSet >

33 __host__ __device__ __inline__ int CallRule <StartRuleProxy >:: getSymbol ();

34

35 struct ZDiscard : RuleT <Box , subdivide <Z,

36 SubdivParam <333, CallRule <StartRuleProxy >,

37 SubdivParam <333, DiscardTerminal ,

38 SubdivParam <333, CallRule <StartRuleProxy > > > > > > {};

39

40 struct SubZ : RuleT <Box , subdivide <Z,

41 SubdivParam <333, CallRule <StartRuleProxy >,

42 SubdivParam <333, CallRule <StartRuleProxy >,
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43 SubdivParam <333, CallRule <StartRuleProxy > > > > > > {};

44

45 struct YDiscard : RuleT <Box , subdivide <Y,

46 SubdivParam <333, CallRule <ZDiscard >,

47 SubdivParam <333, DiscardTerminal ,

48 SubdivParam <333, CallRule <ZDiscard > > > > > > {};

49

50 struct SubY : RuleT <Box , subdivide <Y,

51 SubdivParam <333, CallRule <SubZ >,

52 SubdivParam <333, CallRule <ZDiscard >,

53 SubdivParam <333, CallRule <SubZ > > > > > > {};

54

55

56 struct StartRule : RuleT <Box ,

57 IfSizeLess <X, RECURSION_STOP , CallRule <LastStage >,

58 subdivide <X, SubdivParam <333, CallRule <SubY >,

59 SubdivParam <333, CallRule <YDiscard >,

60 SubdivParam <333, CallRule <SubY > > > > > > > {};

61

62 template <>

63 template <typename Shape , typename Q>

64 __device__ __inline__ void

65 CallRule <StartRuleProxy >::out(Shape & s, Q *q, int unused)

66 {

67 q->template enqueue <StartRule >(s);

68 }

69

70 template <>

71 template <int symbol_offset , typename RuleSet >

72 __host__ __device__ __inline__ int CallRule <StartRuleProxy >:: getSymbol ()

73 {

74 return StartRule ::getSymbol <

75 RuleSet :: template findSymbolOffset <StartRule >::value , RuleSet >();

76 }

77

78 typedef RuleSet <RS<StartRule , RS<SubY , RS <YDiscard , RS <SubZ ,

79 RS <ZDiscard , RS <LastStage , RS<SubY2 ,
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80 RS <YDiscard2 , RS<ZDiscard2 > > > > > > > > > > TheRules;

A.5. Multi Menger-Sierpinski Rule Set Code

Listing A.5: Multi Menger-Sierpinski Rule Set, Recursion Level 3

1 // level 3 ------------------------------------------------

2 struct ZDiscard3 : RuleT <Box , subdivide <Z,

3 SubdivParam <333, GenerateTerminal ,

4 SubdivParam <333, DiscardTerminal ,

5 SubdivParam <333, GenerateTerminal > > > > > {};

6

7 struct SubZ3 : RuleT <Box , subdivide <Z,

8 SubdivParam <333, GenerateTerminal ,

9 SubdivParam <333, GenerateTerminal ,

10 SubdivParam <333, GenerateTerminal > > > > > {};

11

12 struct SubY3 : RuleT <Box , subdivide <Y,

13 SubdivParam <333, CallRule <SubZ3 >,

14 SubdivParam <333, CallRule <ZDiscard3 >,

15 SubdivParam <333, CallRule <SubZ3 > > > > > > {};

16

17 struct YDiscard3 : RuleT <Box , subdivide <Y,

18 SubdivParam <333, CallRule <ZDiscard3 >,

19 SubdivParam <333, DiscardTerminal ,

20 SubdivParam <333, CallRule <ZDiscard3 > > > > > > {};

21

22 struct StartRule3 : RuleT <Box , subdivide <X,

23 SubdivParam <333, CallRule <SubY3 >,

24 SubdivParam <333, CallRule <YDiscard3 >,

25 SubdivParam <333, CallRule <SubY3 > > > > > > {};

26

27

28 // level 2 ------------------------------------------------
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29 struct ZDiscard2 : RuleT <Box , subdivide <Z,

30 SubdivParam <333, CallRule <StartRule3 >,

31 SubdivParam <333, DiscardTerminal ,

32 SubdivParam <333, CallRule <StartRule3 > > > > > > {};

33

34 struct SubZ2 : RuleT <Box , subdivide <Z,

35 SubdivParam <333, CallRule <StartRule3 >,

36 SubdivParam <333, CallRule <StartRule3 >,

37 SubdivParam <333, CallRule <StartRule3 > > > > > > {};

38

39 struct SubY2 : RuleT <Box , subdivide <Y,

40 SubdivParam <333, CallRule <SubZ2 >,

41 SubdivParam <333, CallRule <ZDiscard2 >,

42 SubdivParam <333, CallRule <SubZ2 > > > > > > {};

43

44 struct YDiscard2 : RuleT <Box , subdivide <Y,

45 SubdivParam <333, CallRule <ZDiscard2 >,

46 SubdivParam <333, DiscardTerminal ,

47 SubdivParam <333, CallRule <ZDiscard2 > > > > > > {};

48

49 struct StartRule2 : RuleT <Box , subdivide <X,

50 SubdivParam <333, CallRule <SubY2 >,

51 SubdivParam <333, CallRule <YDiscard2 >,

52 SubdivParam <333, CallRule <SubY2 > > > > > > {};

53

54

55 // level 1 ------------------------------------------------

56 struct ZDiscard : RuleT <Box , subdivide <Z,

57 SubdivParam <333, CallRule <StartRule2 >,

58 SubdivParam <333, DiscardTerminal ,

59 SubdivParam <333, CallRule <StartRule2 > > > > > > {};

60

61 struct SubZ : RuleT <Box , subdivide <Z,

62 SubdivParam <333, CallRule <StartRule2 >,

63 SubdivParam <333, CallRule <StartRule2 >,

64 SubdivParam <333, CallRule <StartRule2 > > > > > > {};

65
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66 struct SubY : RuleT <Box , subdivide <Y,

67 SubdivParam <333, CallRule <SubZ > ,

68 SubdivParam <333, CallRule <ZDiscard >,

69 SubdivParam <333, CallRule <SubZ > > > > > > {};

70

71 struct YDiscard : RuleT <Box , subdivide <Y,

72 SubdivParam <333, CallRule <ZDiscard >,

73 SubdivParam <333, DiscardTerminal ,

74 SubdivParam <333, CallRule <ZDiscard > > > > > > {};

75

76 struct StartRule : RuleT <Box , subdivide <X,

77 SubdivParam <333, CallRule <SubY >,

78 SubdivParam <333, CallRule <YDiscard >,

79 SubdivParam <333, CallRule <SubY > > > > > > {};

80

81 typedef RuleSet <RS<StartRule , RS<SubY , RS<SubZ , RS <YDiscard , RS <ZDiscard ,

82 RS <StartRule2 , RS <SubY2 , RS<SubZ2 , RS <YDiscard2 , RS<ZDiscard2 ,

83 RS <StartRule3 , RS<SubY3 , RS <SubZ3 , RS<YDiscard3 , RS<ZDiscard3 >

84 > > > > > > > > > > > > > > > TheRules;
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Source Code Examples

B.1. GenerateTerminal Code Example

Listing B.1: GenerateTerminal Operator for a Quad

1 template <typename Q>

2 __device__ __inline__ static void out(Quad &shape , Q *q, int unused)

3 {

4 if (d_instanced)

5 {

6 unsigned int instanceIndex =

7 atomicAdd (( unsigned int *)& d_instanceCounter[QUAD], 1);

8 math:: float4x4 scaleMat = math:: float4x4 ::scale(shape.getSize ());

9 d_model_matrices[QUAD][ instanceIndex] =

10 transpose(shape.getModel4 () * scaleMat );

11 }

12 else

13 {

14 unsigned int vertexIndex;
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15 vertexIndex = atomicAdd (( unsigned int *)& d_vertexCounter , 4);

16 #ifdef INSTANCED

17 if(vertexIndex / 4 > current_shapetype_max_instances)

18 {

19 return;

20 }

21 else

22 {

23 #endif

24 unsigned int index;

25 index = atomicAdd (( unsigned int *)& d_indexCounter , 6);

26

27 math:: float4 *vertices = d_vertices;

28 math:: float3 *normals = d_normals;

29 unsigned int *indices = d_indices;

30

31 math:: float4x4 model = shape.getModel4 ();

32 math:: float3 halfExtents = shape.getHalfExtents ();

33

34 // generate a front facing quad (z == 0)

35 vertices[vertexIndex] =

36 model * math:: float4(-halfExtents.x, halfExtents.y, -halfExtents.z, 1);

37 vertices[vertexIndex + 1] =

38 model * math:: float4(halfExtents.x, halfExtents.y, halfExtents.z, 1);

39 vertices[vertexIndex + 2] =

40 model * math:: float4(halfExtents.x, -halfExtents.y, halfExtents.z, 1);

41 vertices[vertexIndex + 3] =

42 model * math:: float4(-halfExtents.x, -halfExtents.y, -halfExtents.z, 1);

43

44 normals[vertexIndex] =

45 normalize(cross(( vertices[vertexIndex + 1] -

46 vertices[vertexIndex ]). xyz(), (vertices[vertexIndex + 2] -

47 vertices[vertexIndex ]). xyz ()));

48 normals[vertexIndex + 1] = normals[vertexIndex ];

49 normals[vertexIndex + 2] = normals[vertexIndex ];

50 normals[vertexIndex + 3] = normals[vertexIndex ];

51
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52 unsigned int baseIndex = vertexIndex;

53 indices[index ++] = baseIndex;

54 indices[index ++] = baseIndex + 1;

55 indices[index ++] = baseIndex + 2;

56 indices[index ++] = baseIndex;

57 indices[index ++] = baseIndex + 2;

58 indices[index ++] = baseIndex + 3;

59 }

60 #ifdef INSTANCED

61 }

62 #endif

63 }

B.2. Precompiled Init Procedure Code Example

Listing B.2: Init Procedure for Precompiled Method

1 class PrecompiledInitProc

2 {

3 public:

4 static const bool reuseInit = false;

5 template <class Q>

6 __device__ __inline__ static void init(Q *q, int id, int frame)

7 {

8 Box box;

9 box.setModel(math::identity <math::float4x4 >());

10 box.setPosition(math:: float3 (0.0f, 0.0f, 0.0f));

11 box.setSize(math:: float3(INITIAL_WIDTH ,

12 INITIAL_HEIGHT ,

13 INITIAL_WIDTH ));

14 q->template enqueueInitial <StartRule >(box);

15

16

17 }
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18 };

B.3. Interpreted Init Procedure Code Example

Listing B.3: Init Procedure for Interpretation Method

1 class InterpretedInitProc

2 {

3 public:

4 static const bool reuseInit = false;

5

6 template <class Q>

7 __device__ __inline__ static void init(Q *q, int id, int frame)

8 {

9

10 SymbolWrapper <Box > box;

11 box.symbol = TheRules :: symbol_count - 1;

12 box.setModel(math::identity <math::float4x4 >());

13 box.setPosition(math:: float3 (0.0f, 0.0f, 0.0f));

14 box.setSize(math:: float3(INITIAL_WIDTH ,

15 INITIAL_HEIGHT ,

16 INITIAL_DEPTH ));

17 enqueueInitialProc <Box , Q, TheRules >(box , q);

18

19 }

20 };

B.4. Dispatcher Switch Code Example

98



B.4. Dispatcher Switch Code Example

Listing B.4: Dispatcher Switch

1 template <typename RuleSet , typename Shape , typename Q>

2 __device__ bool enqueueNextProc(SymbolWrapper <Shape >& target , Q* q)

3 {

4 Rule rule = d_rules[target.symbol ];

5

6 switch (rule.operatorCode)

7 {

8 case RuleSet :: template findProcId <

9 OperatorRuleCompSplit <Shape , RuleSet > >::value:

10 q->template enqueue <OperatorRuleCompSplit <Shape , RuleSet > >(target );

11 break;

12 case RuleSet :: template findProcId <

13 OperatorRuleExtrude <Shape , RuleSet > >::value:

14 q->template enqueue <OperatorRuleExtrude <Shape , RuleSet > >(target );

15 break;

16 case RuleSet :: template findProcId <

17 OperatorRuleSubdivide <Shape , RuleSet > >::value:

18 q->template enqueue <OperatorRuleSubdivide <Shape , RuleSet > >(target );

19 break;

20 case RuleSet :: template findProcId <

21 OperatorRuleRepeat <Shape , RuleSet > >::value:

22 q->template enqueue <OperatorRuleRepeat <Shape , RuleSet > >(target );

23 break;

24 case RuleSet :: template findProcId <

25 OperatorRuleTranslate <Shape , RuleSet > >::value:

26 q->template enqueue <OperatorRuleTranslate <Shape , RuleSet > >(target );

27 break;

28 case RuleSet :: template findProcId <

29 OperatorRuleRotate <Shape , RuleSet > >::value:

30 q->template enqueue <OperatorRuleRotate <Shape , RuleSet > >(target );

31 break;

32 case RuleSet :: template findProcId <

33 OperatorRuleScale <Shape , RuleSet > >::value:

34 q->template enqueue <OperatorRuleScale <Shape , RuleSet > >(target );

35 break;

36 case RuleSet :: template findProcId <
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37 IfSizeLessOperatorProcedure <Shape , RuleSet > >::value:

38 q->template enqueue <

39 IfSizeLessOperatorProcedure <Shape , RuleSet > >(target );

40 break;

41 case RuleSet :: template findProcId <

42 OperatorRuleTerminal <Shape > >::value:

43 {

44 q->template enqueue <OperatorRuleTerminal <Shape > >(target );

45 break;

46 }

47 case RuleSet :: template findProcId <OperatorRuleDiscard <Shape > >::value:

48 {

49 q->template enqueue <OperatorRuleDiscard <Shape > >(target );

50 break;

51 }

52 default:

53 printf("Error: unknown operator %d\n", rule.operatorCode );

54 return false;

55 }

56 return true;

57 }
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Scheduling Diagrams

C.1. Detailed House Test Case
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Figure C.1.: Detailed Houses Test Case Configuration: IRD KLS HIR
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Figure C.2.: Detailed Houses Test Case Configuration: IRD KLS NIR
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Figure C.3.: Detailed Houses Test Case Configuration: IRD PMK HIR
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Figure C.4.: Detailed Houses Test Case Configuration: IRD PMK NIR
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Figure C.5.: Detailed Houses Test Case Configuration: PRD KLS HIR
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Figure C.6.: Detailed Houses Test Case Configuration: PRD KLS NIR
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Figure C.7.: Detailed Houses Test Case Configuration: PRD PMK HIR
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Figure C.8.: Detailed Houses Test Case Configuration: PRD PMK NIR
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Figure C.9.: Houses Test Case Configuration: IRD KLS HIR
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Figure C.10.: Houses Test Case Configuration: IRD KLS NIR
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Figure C.11.: Houses Test Case Configuration: IRD PMK HIR
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Figure C.12.: Houses Test Case Configuration: IRD PMK NIR
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Figure C.13.: Houses Test Case Configuration: PRD KLS HIR
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Figure C.14.: Houses Test Case Configuration: PRD KLS NIR
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Figure C.15.: Houses Test Case Configuration: PRD PMK HIR
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Figure C.16.: Houses Test Case Configuration: PRD PMK NIR
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Figure C.17.: Multi Sierpinski Test Case Configuration: IRD KLS HIR
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Figure C.18.: Multi Sierpinski Test Case Configuration: IRD KLS NIR
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Figure C.19.: Multi Sierpinski Test Case Configuration: IRD PMK HIR
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Figure C.20.: Multi Sierpinski Test Case Configuration: IRD PMK NIR
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Figure C.21.: Multi Sierpinski Test Case Configuration: PRD KLS HIR
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Figure C.22.: Multi Sierpinski Test Case Configuration: PRD PMK HIR
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Figure C.23.: Multi Sierpinski Test Case Configuration: PRD PMK NIR
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Figure C.24.: Single Sierpinski Test Case Configuration: IRD KLS HIR
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Figure C.25.: Single Sierpinski Test Case Configuration: IRD KLS NIR
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Figure C.26.: Single Sierpinski Test Case Configuration: IRD PMK HIR
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Figure C.27.: Single Sierpinski Test Case Configuration: IRD PMK NIR
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Figure C.28.: Single Sierpinski Test Case Configuration: PRD KLS HIR
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Figure C.29.: Single Sierpinski Test Case Configuration: PRD KLS NIR
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Figure C.30.: Single Sierpinski Test Case Configuration: PRD PMK HIR
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Figure C.31.: Single Sierpinski Test Case Configuration: PRD PMK NIR
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