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Abstract

Modern cryptography is build upon the approach to design and develop
provable secure primitives. Hereby, a security proof is typically the reduction
from a problem P - related with the security of the candidate scheme, to a
well known problem P1 of e.g. a random oracle or a one-way function.

An authenticated encryption scheme (AE), is a symmetric primitive that
provides both – data privacy and data integrity. To identify a secure and robust
authenticated encryption scheme, the CAESAR competition was recently
announced. COPA is an AE composition scheme used in several CAESAR
candidates.

We consider COPA in the nonce-respecting setting, and derive a variant
of the scheme COPA, which we prove secure beyond the birthday bound.
For the proof, we use Patarin’s coefficient-H technique – a well known
technique for probable security of symmetric primitives. Furthermore, we
show the applicability of our results to the CAESAR candidates AES-COPA
and PRØST, where we increase the IND-CPA security bound from 264 to 283

encryption calls for AES-COPA and from 264(2128) to 283(2168) encryption
calls for PRØST-COPA, respectively.

Moreover, we studied the mode COPA in the CAESAR candidate schemes
Deoxys, Joltik and KIASU. Since COPA is used there in a slightly derivate
version, we established another separate proof for privacy and integrity.
Therefore, we can give first results on the conjecture of Jean et al., that
Deoxys, Joltik and KIASU achieve security beyond the birthday bound in
the nonce-respecting setting.

Keywords. Provable Security, CAESAR, Authenticated Encryption, COPA,
IND-CPA, INT-CTXT, Nonce, AES-COPA, PRØST, Deoxys, Joltik, KIASU
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1
Introduction

Confidential messages that shall be transmitted via an insecure channel
usually not only require confidentiality – such that only permitted entities
can decrypt these messages, but also authenticity of their respective sender,
in order to detect willful corruption of those messages. Such cases occur
frequently in the real world – for example if an entity A wants to send
an information M to an entity B, then we want data privacy to ensure that
A’s information remains confidential and additionally, we want integrity
and authenticity to ensure the information was send by entity A and not
modified during the transit.

Concerned with that problem, one could use an encryption scheme to trans-
mit information M via the insecure channel to entity B. However, consider
the following problem. A′s message contains the information Transfer
$100 to bank account X. Now, a malicious adversary E can’t read the
encrypted message, but it maybe just flips some bits to alter the message
to Transfer $500 to bank account X. The problem we are facing is that
an encryption scheme only provides privacy and no authenticity. Moreover,
an authentication scheme provides only authenticity, but no privacy. If we

1



Chapter 1. Introduction

want a secure data transmission, we need a scheme that provides both goals,
simultaneously.

An authenticated encryption scheme provides a secure and robust method to
fulfill both requirements. Syntactically, an authenticated encryption scheme
(AE ) is just a symmetric encryption scheme (SE ) that usually combines
a privacy-only scheme with an authentication scheme. Authenticated en-
cryption schemes can be divided into one-pass or two-pass schemes, where
the former achieves AE by implementing a dedicated design and the latter
combines a SE -scheme with an authentication scheme (F ). A two-pass
scheme is often realized by the generic composition paradigm introduced
by Bellare et al. in [BN00].

The framework of provable security defines security notions, that can be ap-
plied to the primitive being analyzed, to describe the security level achieved
by the primitive. Then, a security proof guarantees that there is no compu-
tationally limited adversary, that can perform these kind of attacks on the
primitive with a non-negligible probability. Modern cryptography is build
upon these design approach to guarantee security.

A privacy-only SE scheme is therefore secure if it achieves the notion of
IND-CPA or IND-CCA – indistinguishabillity under a chosen plaintext
or ciphertext attack. Moreover, an authentication scheme F is secure if it
achieves the notion of INT-PTXT or INT-CTXT – the integrity of plaintext
or ciphertext. Now, an AE -scheme is secure if it achieves IND-CCA, where
IND-CPA + INT-CTXT⇒ IND-CCA. In addition, an AE -scheme is robust if
it achieves the INT-RUP notion by Andreeva et al. defined in [ABL+

14a] – to
be secure under the release of unverified plaintext. More recently, especially
many candidates of the CAESAR competition specify online authenticated
encryption (OAE) – where the ith output bit only depends on the input bits
from 0 to i. Withal, the use of a nonce (i.e. number only used once) plays
a huge role in AE and the related security notions and proofs – where we
distinguish between nonce-ignoring and nonce-respecting adversaries.

Application of AE. Authenticated encryption is used in several networking
protocols of the internet protocol suite. There, it is used to encrypt and
authenticate data that is transmitted over a potentially insecure channel – to
provide data privacy and data integrity. In more detail, the Encrypt-then-Mac

2



approach is used in the protocol IPsec [Ken05], Encrypt-and-Mac is used
in SSH [Ylo06] and Mac-then-Encrypt is used in SSL/TLS [Die08]. Moreover,
NIST has standardized the AE-schemes GCM and CCM – which are used
in the above mentioned protocols.

Existing Designs and Standards. Before the CAESAR competition, there
exists several authenticated encryption modes – CWC [KVW04], CCM
[Dwo04], EAX [BRW04], IAPM [Jut00], OCB [RK14], GCM [MV04], which
are discussed in more detail in Section 4.3.1. Some of the mentioned AE-
schemes are standardized in ISO/IEC 19772:2009.

CAESAR Competition. CAESAR was announced to establish a portfolio
of secure and robust authenticated encryption schemes, which are available
for widespread adoption. The competition should empathize the general
cryptographic community, to gain more insight and knowledge about the
design and analysis of authenticated encryption schemes. Moreover, the
competition can be motivated by several recent attacks on TLS and Open
SSL like BEAST [DR11], CRIME [Kel02], POODLE [DMK14] or Heartbleed
[DKA+

14]. Additionally, Namprempre et al. [NRS14] show that sometimes
also standards can be written wrong and offer some vulnerabilities. At the
time this thesis was written, we stand between the first and second of four
rounds until the final portfolio will be established.

Related Work & Our Contributions. COPA [ABL+
13] was proposed at Asi-

acrypt 2013 as the first fully parallelizable online authenticated encryption
mode. Since then, COPA has been used in several CAESAR submissions to
achieve AE. COPA is supported with a security proof given in the design
document [ABL+

13]. Nevertheless, before the announcement of the CAE-
SAR competition, to our knowledge, no cryptanalysis nor variants of COPA
were published. In light of the CAESAR competition Ju proposed a forgery
attack on AES-Copa [Lu15]. To our knowledge, no other attack on con-
structions using COPA have been published. Most recently, Nandi [Nan15]
published an attack on COPA with non-multiple blocksize, reducing the
integrity security claim of COPA to 2n/3 queries. However, the approach to
construct a variant of COPA to achieve security beyond the birthday attack
is new. 33 out of the 48 remaining CAESAR candidates are supported by a

3



Chapter 1. Introduction

security proof. We aim to increase this number.

Our contribution, within this thesis, comprises the establishment of a se-
curity proof for a variant of the AE composition scheme COPA designed
by Andreeva et al. [ABL+

13]. COPA finds adaption in several CAESAR can-
didates – AES-Copa [ABL+

14b], Prøst [KLL+
14], Deoxys [JNP14b], Joltik

[JNP14c] and KIASU [JNP14d]. Our variant, further called COPA, makes
use of a nonce and limits the adversary to be nonce-respecting. In this
setting, we show that COPA achieves security beyond the birthday bound.
Furthermore, we analyze the application of COPA to the above mentioned
CAESAR candidates. Finally, we established a second proof for Deoxys,
Joltik and KIASU using the mode COPA – in a slightly different setting.

Outline. This thesis is organized as follows. In Chapter 2, we introduce
some basic mathematical concepts and cryptographic primitives used through-
out the thesis.
Chapter 3 gives an overview on symmetric cryptography. First, we introduce
some attack models, secondly we define symmetric primitives for encryp-
tion and authentication and finally we give an overview on cryptanalytic
attacks on symmetric primitives.
Moreover, in Chapter 4 we define authenticated encryption. We illustrate
different types of AE-modes like the generic composition paradigm and
give and overview of the candidates from the CAESAR competition.
The concepts of provable security are introduced in Chapter 5. We discuss
some security notions and give an overview of the most practical proving
techniques.
The main parts of this thesis are the proofs of COPA and its application
to the CAESAR candidates AES-Copa, Prøst, Deoxys, Joltik and KIASU
given in Chapter 6. First, we denote some online AE notions and give three
recently proposed attacks on OAE. Next, we describe the scheme COPA
and give an analysis on how to improve this mode. We perform a privacy
proof on COPA and give its application to AES-Copa, Prøst. Finally, we
introduce a second proof for the candidates Deoxys, Joltik and KIASU.
We conclude this thesis in Chapter 7 and give an outlook on further analy-
sis.

4



2
Mathematical Background

In this chapter, we introduce some mathematical basics used throughout
this thesis. Moreover, we present some cryptographic preliminaries. Readers
that are familiar with basic mathematics and cryptography can skip to
Chapter 3.

2.1. Probability Theory

A random variable inherits different values due to change (i.e. randomness),
where each value is assigned to a certain probability. The mathematical
function to describe a random variable with its associated probabilities is
the probability distribution.
An event E indicates the possible outcomes of an experiment. An elementary
event expresses exactly one outcome. Each event has a probability assigned
to it. A set has a uniform distribution if the probability for each element is
the same. We write

a $← A (2.1)

when we choose a value a uniformly at random from a set A.

5



Chapter 2. Mathematical Background

The probability of an event A is the likeliness that the event A occurs. The
probability is any value bound between Pr(A) ∈ [0, 1]. Hence, the probabil-
ity of event A is

Pr(A) =
|A|
|Ω| =

# f avorable events
# all events

. (2.2)

The probability that a single event A occurs is also called marginal probability.
The complementary probability of an event A

Prc = 1− Pr(A) (2.3)

is the case in which the event A does not occur.

If we have two sets A and B we call the union of those two sets A∪ B, where
the resulting value is in A or B. Furthermore, we call A ∩ B the intersection
of the sets A and B, where the resulting value must be in A and B. An event
A is independent (i.e. mutual exclusive) from an event B if the occurrence of
the event A does not influence the occurrence of B and vice versa. Otherwise
these events are dependent. In the literature independent events are often
called with replacement and dependent are called without replacement, which
just denotes if the sample space Ω (i.e. set of possible values) is reset after
each experiment or not.

Yet, the probability of two events A or B is

Pr(A∪ B) = Pr(A) + Pr(B) (2.4)

Pr(A∪ B) = Pr(A) + Pr(B)− Pr(A∩ B) (2.5)

where Pr(A ∩ B) denotes the joint probability and the events in (2.4) are
mutual exclusive and in (2.5) not.

2.1.1. Joint Probability

The probability that two events A and B occur at the same time is given
by

Pr(A∩ B) = Pr(A) ∗ Pr(B) (2.6)

Pr(A∩ B) = Pr(A|B) ∗ Pr(B) = Pr(B|A) ∗ Pr(A) (2.7)

where Pr(A|B) denotes the conditional probability and the events in (2.6)
are mutual exclusive and in (2.7) not.

6



2.1. Probability Theory

2.1.2. Conditional Probability

The probability that event A occurs given that event B already occurred is

Pr(A|B) = Pr(A∩ B)
Pr(B)

=
Pr(B|A) ∗ Pr(A)

Pr(B)
(2.8)

where the relation between Pr(A|B) and Pr(B|A) is given by the Bayes′

theorem.

2.1.3. Expected Value

The expected value of a random variable is the long-term average value
of an experiment. In more detail, it is the probability-weighted sum of all
possible values the random variable disposes. We denote the expected value
of a random variable X as

E[X] = x1px1 + x2px2 + · · ·+ xn pxn (2.9)

where for 1 ≤ i ≤ n: xi denotes the values X can attain, and pxi denotes
with what probability xi occurs. Additionally, the expected value holds the
property of linearity. Thus, the expected value of two random variables
X and Y is E[X + Y] = E[X] + E[Y], even if X and Y are not statistically
independent.

2.1.4. Markov’s Inequality

Markov’s inequality states an upper bound for the probability of a non-
negative function of a random variable X that is greater or equal to a positive
constant a. Then we can write the inequality as

Pr(X ≥ a) ≤ E[X]

a
. (2.10)

7



Chapter 2. Mathematical Background

2.2. Cryptographic Preliminaries

In this section, we define and introduce some cryptographic concepts and
basic primitives, respectively.

2.2.1. Cryptographic Concepts

We introduce the concepts of a nonce, initialization vector and a tweak.

Definition 1. (Nonce): A nonce is a unique value. It can be either a counter
(until it overflows) or a random value (need to store previous outcomes to detect
repetitions). When generating a nonce, one must ensure to never repeat itself.
Nonces can be used as IV.

Definition 2. (IV): An initialization vector is a fixed-size input to a cryptographic
primitive that can be random or any arbitrary number, depending on the crypto-
graphic primitive. An IV is publicly known (i.e. not secret).

Definition 3. (Tweak): A tweak can be any arbitrary number, secret or public
known, which serves as an additional input to a cryptographic primitive.

2.2.2. Cryptographic Primitives

In the following, we define some of the most basic cryptographic primitives
which serve as building blocks for higher level (or more complicated)
cryptographic primitives.

Definition 4. (Random Oracle): A random oracle [BR93] is a map from
R : {0, 1}∗ → {0, 1}∗, such that for every x, the bits of R(x) are selected uniformly
and independently.

Definition 5. (One-Way Function): A one-way function [MVO96] is a map
from f : {0, 1}∗ → {0, 1}∗, such that for every x in the domain of f , it is
easy to compute f (x), but for essentially every y in the range of f , it shall be
computationally infeasible (i.e. with negligible probability) to find a x such that
y = f (x).

8



2.3. Group and Field Theory

Pseudo Random Functions

Definition 6. (Random Function): A random function [MVO96] is a map from
f : {0, 1}n → {0, 1}n, such that for every argument x in the domain, f (x) gets
set with random and independent values from the range of f .

Definition 7. (Pseudo Random Function): A pseudo-random function [KL07] is
a efficient, length-preserving, keyed map from f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗,
such that a PPT distinguisher (Def. 11) can distinguish between f and a random
function, with only a negligible probability.

Pseudo Random Permutations

Definition 8. (Random Permutation): A random permutation [KL07] is a bijection
(i.e. one-to-one onto map) from p : {0, 1}n → {0, 1}n, such that for every argument
x in the domain, p(x) defines a random ordering of x.

Definition 9. (Pseudo Random Permutation): A pseudo-random permutation
[KL07] is a efficient, keyed map from p : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, such that a
PPT distinguisher (Def. 11) can distinguish between p and a random permutation,
with only a negligible probability.

2.3. Group and Field Theory

A group 〈G, •〉 is a set G together with an operation •. It must fulfill the
following conditions:

� Closure: ∀(a, b) ∈ G also the resulting value (a • b) ∈ G
� Associativity: ∀(a, b, c) ∈ G it must hold that (a • b) • c = a • (b • c)
� Identity Element: ∃i ∈ G such that ∀a ∈ G : a • i = i • a = a
� Inverse Element: ∀a ∈ G there ∃b = a−1 ∈ G such that a • b = b • a = i

A field F is defined as a group with some additional requirements. Defined
on the two operations (addition +, multiplication ·) it requires closure,
associativity, existence of an identity and an inverse element and additionally
defines:

9



Chapter 2. Mathematical Background

� Commutativity: ∀(a, b) ∈ F it must hold that a+ b = b+ a and a · b = b · a
� Distributivity: ∀(a, b, c) ∈ F it must hold that a · (b + c) = (a · b) + (a · c)

GF(2n). A Galois Field or finite field is a field with a finite number of
elements (i.e. order of the group is 2n) where each field element is evaluated
modulo n. A point in the GF(2n) can be represented interchangeably as: (i)
an abstract point in the field, (ii) an integer between 0..2n − 1, (iii) a n-bit
string an−1 . . . a1a0 ∈ {0, 1}n or (iv) a formal polynomial a(x) = an−1xn−1 +
· · ·+ a1x + a0 with binary coefficients.

Addition in GF(2n). To add two points a and b in the GF(2n) we just use
the bitwise xor (i.e. a⊕ b).

Multiplication in GF(2n). To multiply two points a and b in the GF(2n) we
need to select first a irreducible polynomial p(x) of degree n having binary
coefficients. Then, we regard both points a and b as polynomials and form
their product c(x) = a(x) ∗ b(x). Finally, we need to reduce c(x) using p(x)
by evaluating c(x) mod p(x).

A multiplication by two is computationally simple. If the first bit of a is
zero, then we just need to left-shift a by one bit (i.e. 2a = a � 1). If the
first bit is one, then we additionally need to add xn to the resulting a� 1.
Moreover, it is quite easy to multiply other small constants (e.g. 3a = 2a⊕ a,
5a = 2(2a)⊕ a or 7a = 2(2a)⊕ 2a⊕ a).

2.4. Advantage

We define Σ to be a finite alphabet (e.g. Σ = {0, 1}). Moreover, let Σ? be
the set of all strings that result from arbitrary joining elements from Σ. A
computational step would be some input x ∈ Σ? transforming to an output
y ∈ Σ?. Then, an algorithm A is a sequence of computational steps.

An adversary A is an algorithm, which transforms an input to an output.
We denote by AO the access of an adversary A to an oracle O, where O is a

10



2.4. Advantage

black box, that performs any computational steps. Likewise, we consider
algorithms as Turing machines. Now, an algorithm is called efficient and
runs in polynomial time if it fulfills the condition in Definition 10 and 11.

Definition 10. (Polynomial Time). Let A be an algorithm, then there exists a
n0 ∈N, c ∈ R and a polynomial p(n), where the time complexity of A is TA(n)
such that ∀n ≤ n0 : TA(n) ≤ c · p(n).

Definition 11. (PPT algorithm): A probabilistic polynomial-time algorithm is
an algorithm running in polynomial time that makes random coin tosses upon
execution and terminates for some input x after |p(x)| steps, for some polynomial
p.

Until noted otherwise, we assume all adversaries A and distinguishers D to
be PPT algorithms. The distinguishing-advantage of a D is given by

Adv(D) =
∣∣Pr[DO1 ⇒ 1]− Pr[DO2 ⇒ 1]

∣∣ (2.11)

where the distinguisher D has either access to oracle O1 or O2 and outputs
one or zero. The job of D is now to distinguish between these two oracles
– using only the outcome of either O1 or O2 . The advantage is normally
bounded by several parameters like the time t, the number of queries q to the
oracles, the length ` of those queries and the total length σ of the submitted
data. Moreover, the advantage can also be defined as the statistical distance
(i.e. total variation distance) between two probability distributions (e.g. X, Y).
Then, for a deterministic distinguisher D the distinguishing-advantage is
given by

Adv(D) = δ(X, Y) =
1
2 ∑

x

∣∣X(x)−Y(x)
∣∣ (2.12)

An adversary/distinguisher is successful if its advantage is non-negligible.
Hereby, a function ε(·) is called negligible if for every polynomial p(·) there
is an integer n0 ∈N such that

∀n ≥ n0 : ε(n) <
1

p(n)
(2.13)

Moreover, this means that ε(n) must be exponentially small for ∀n ≥ n0.
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3
Symmetric Cryptography

In this chapter, we give a short introduction to cryptography, mainly focused
on symmetric cryptography. We describe the most notable primitives for
encryption and authentication and end with some methods to analyze
symmetric primitives.

3.1. Preliminaries

Cryptography comes from the greek kryptós (i.e. hidden) and graphein (i.e.
writing) and is the science of secure communication in the presence of an
attacker. Therefore, the main goals of cryptography are

� Confidentiality or Privacy. Only authorized entities can read messages.
� Integrity. Detection of change in data due to an adversary or data corrup-

tion.
� Authentication. Confirmation of the identity of an entity.
� Non-Repudiation. Undeniable involvement in an action (e.g. signature).

13
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3.1.1. Cryptographic Security

In order to measure cryptographic security we categorize the security of a
cryptosystem into one of the following categories.

Information Theoretic Security
A cryptosystem achieves information theoretic security if it can not be bro-
ken even if the adversary disposes of unlimited computational power. This is
because the adversary simply doesn’t possess enough information to be able
to break the system which implies that such a system is cryptanalytically
unbreakable. A special case of information theoretic security is the term
introduced by Shannon, perfect secrecy.
An encryption scheme is perfectly secure, if and only if a ciphertext leaks
no information about the plaintext, except the length of the message. The
Vernam cipher or OTP (one-time pad) provides perfect secrecy.

C = M⊕ K (3.1)

Equation (3.1): One-time pad. The ciphertext is just a simple xor of the message and key.
It must hold that |M| = |K|. Furthermore, the key K is not allowed to be used twice and
must be perfectly random.

Complexity Theoretic Security
Complexity theoretic security builds upon complexity theory. Therefore, the
notion of Goldwasser and Micali about semantic security states: A cryptosys-
tem is semantically secure if any probabilistic polynomial time algorithm
given a certain ciphertext and the length of its message can not determine
any partial information about its plaintext with a non-negligible probabil-
ity higher than any other probabilistic polynomial time algorithm, given
only the length of the message. From another viewpoint this means, that
the knowledge of the length and any ciphertext (of an unknown message)
doesn’t reveal any partial information that can be feasibly extracted. Prov-
able security builds upon these statements.
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Cryptanalytic Security
The classical security approach is to build a cryptosystem, perform crypt-
analysis and if any flaw is found to go back to step one. In this case
cryptanalytic security means that a cryptosystems is secure against state-of-
the-art cryptanalytic attacks. Modern cryptography aims to achieve security
defined by the above mentioned categories.

3.1.2. Attack Models

An attack on a cryptosystem can be classified into the following attack
models, depending on the information an adversary can access. We start
with the weakest attack and continue with stronger attack models.

Known Ciphertext Attack. In this setting, an adversary has access only to
the ciphertext and no access to the plaintext. It is the most likely case in
any real world cryptanalysis, where the adversary tries to determine the
plaintext from the ciphertext. In order to succeed with such an attack the
adversary has usually some information about the plaintext (e.g. distribution,
format, language).

Known Plaintext Attack. In this attack, an adversary has access to a limited
number of plaintexts and their dedicated ciphertexts. An adversary tries to
decrypt following ciphertexts or determine the secret key, using the known
pairs.

Chosen Plaintext Attack. In this attack, an adversary can choose an arbi-
trary number of plaintexts which she submits to an encryption oracle and
receives it ciphertexts. This is a very strong attack, because the adversary
can choose any plaintext message she wants.

Moreover, in an adaptive-chosen plaintext attack the adversary is able to submit
any sequence of plaintext and after each step she has the ability to analyze
the ciphertext before choosing the next plaintext.
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Chosen Ciphertext Attack. In this setting, an adversary has access to both
plaintext and ciphertext and access to an encryption and decryption oracle.
This is the strongest kind of attack and only a few ciphers are secure against
such an attack. Moreover, we can refine this setting in the following ways.

� CCA1. A CCA1 attack is also called lunchtime attack, where an adversary
can make adaptive queries up to a certain point in time (e.g. during the
lunchtime of an user).
� CCA2. In this setting the adversary is allowed to submit any sequence of

ciphertexts and after each step, before submitting the next ciphertext to
observe and analyze its given plaintext.

Forgery. A forgery is the successful attempt that an adversary generates a
tag τ to a message m such that a verification algorithm Veri f y(m, τ) outputs
true for the case that the tag τ was not previously generated by a legitimate
tag generation algorithm Tag(m) = τ.

3.2. Encryption Schemes

An encryption scheme is a cryptographic construction that takes a message
(i.e. plaintext) M and a key K as input and outputs a ciphertext C. More
formally,

E : K× {0, 1}∗ → {0, 1}∗

where E is a function, key K is a non-empty set from {0, 1}k. The message
and ciphertext are of arbitrary length, but finite. We often denote an encryp-
tion scheme as EK(M) = C or E(K, M) = C, where M ∈ M, K ∈ K and
C ∈ C.
Encryption schemes can be classified into asymmetric and symmetric encryp-
tion schemes. In the former we have two keys, a public key kpub and a
private key kpriv and in the latter we have only one key, the secret key ksec.
In this thesis, we consider only symmetric-key encryption schemes.
A symmetric-key encryption scheme SE consists of three algorithms, one for
key generation, encryption and decryption. We write SE = (Key, Enc, Dec)
to denote such a triple.
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Algorithm 3.1: (Symmetric Key Algorithm) Key returns randomly a key from the
key space. EncK returns the encrypted message. DecK returns either the message or a
symbol ⊥.

Alg Key Alg EncK(M) Alg DecK(C)

K $← {0, 1}k return EK(M) return E−1
K (C)

return K

For correctness it must hold that ∀M ∈ M : DK(EK(M)) = M. Additionally,
we require that |E(K, M)| is at least |M| and thereby the ciphertext expansion
|E(K, M)| − |M| is a constant ω ≥ 0. Ideally, an encryption scheme is build
from a pseudo-random function and behaves like a random function (i.e. the
ciphertext should be close to be uniformly random from the set {0, 1}∗). In
case of a block cipher it should behave like a pseudo-random permutation.
An encryption scheme diminishes in security if the message is small (e.g.
yes/no) or gets repeated. Therefore, different types of encryption schemes
has been proposed.
A probabilistic encryption scheme (pE) is provided with a key and a plaintext
and by using internally generated randomness it outputs a ciphertext.
An IV-based encryption scheme (ivE) EIV

K : K×IV × {0, 1}∗ → {0, 1}∗ takes
as an additional input an initialization vector (IV), selected uniformly at
random and prepends it to the ciphertext.
As a third option there is a nonce-based encryption scheme (nE) proposed by
Rogaway [Rog04b]. It is syntactically the same to the ivE scheme, but takes
instead of a IV a nonce N. It is expected for a nE scheme to be secure as
long the nonce does not get repeated.
There are several ways for the construction of encryption schemes. Most
common is to build them from a block or a stream cipher.

3.2.1. Block Ciphers

A block cipher operates on a fixed input size n – the block size. Therefore,
the encryption scheme splits the message M into n-bit blocks (e.g. M =
M1||M2 · · ·M`, where |Mi| = n for each 1 ≤ i ≤ `). Moreover, a block cipher
is a function E : K× {0, 1}n → {0, 1}n, where K is a finite non-empty set
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and the message and ciphertext is split into block of size n. Nevertheless,
a block cipher is build from a permutation such that the encryption E
represents a permutation π and the decryption D represents the inverse
permutation π−1, respectively.
Even and Mansour [EM93] proposed a scheme building from a randomly
chosen permutation and a pre/post-whitening key. It is defined as

f (x⊕ K1)⊕ K2

Dunkelman et al. [DKS12] proved that this scheme attains the same security
even if only one key K is used. The most common principle is the iterated
approach where a round function fR is used and applied several times
on the same message (i.e. Mi = fRi(Mi−1)). An important subclass of the
iterated approach is the substitution permutation network, where for each
round a substitution in form of an SBox and afterwards a permutation over
all bit is applied. Another approach is the Feistel network, where the mes-
sage is split into two pieces L, R and each round consists of the following
two operations

Li+1 = Ri

Ri+1 = Li ⊕ F(Ri, Ki)

Luby and Rackoff [LR88] showed that if the F function is a PRF then one
can achieve a pseudo-random permutation after 3 rounds, and a strong PRP
after 4 rounds. Notable block ciphers are DES [FTC+

77], AES [DR98] or
Blowfish [Sch94].

Processing of Fractional Data
If the message is not a multiple of the block size n or less then one block,
then it must be preprocessed to be able to get encrypted by the block cipher.
We can divide encryption into length-preserving (i.e. encipherment) and
length-extending encryption.

10∗ Padding. This length-extending procedure just appends a single 1 and
as many 0’s as required to fill the last message block.
Ciphertext Stealing. This length-preserving approach works as follows:

1) Encrypt EK(Mn−1) = Xn−1 and split Xn−1 into a (Head || Tail), where
Head is of size of |Mn|. Head of En−1 will be Cn.

2) Encrypt EK(Mn||Tail) = Cn−1.
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Tag Splitting. This length-preserving approach was introduced by Fleis-
chmann et al. [FFL12] and works as follows:

1) Calculate a message checksum (or something related) τ =
⊕n

i=1 Mi
and split it into τ = τα||τβ. |τα| = n− |Mn|.

2) Encrypt EK(Mn||τα) = Cn||Tα.
3) Encrypt EK(τ) = Tβ||Z. Discard Z.
4) Tag T is T = Tα||Tβ.

XLS. eXtention by Latin Squares is an approach introduced by Ristenpart
et al. [RR07] and uses multi-permutations to achieve length-preserving
encryption. XLS is used in COPA for message with length greater than a
multiple of the block size (i.e. |M| > n). However, XLS was recently broken
by Nandi [Nan14], who also showed an attack on COPA, when XLS is used
[Nan15].

3.2.2. Tweakable Block Ciphers

A tweakable block cipher was first introduced by Liskov et al. [LRW02].
Additionally, to a plaintext M and a key K it takes a third input - a tweak T.
A tweakable block cipher provides a new permutation for each new tweak
T or key K. More formally,

E : K× T × {0, 1}n → {0, 1}n

where E is a function, K, T is from a finite, non-empty space, the key space
K and the tweak space T . We often write ET

K(M) = C or E(K, T, M) = C.
For correctness we demand ∀M ∈ M : DT

K(ET
K(M)). Moreover, |ET

K(M)|
is at least |M|. Notable tweakable block ciphers are the Hasty Pudding
cipher [Sch98], the XE/XEX construction by Rogaway [Rog04a] or Threefish
[FLS+10].

3.2.3. Stream Ciphers

A stream cipher is a symmetric cryptographic primitive that takes a plaintext
and a key stream to produce a ciphertext. Mostly, the pseudo-random key
stream is just xored to the plaintext. The keystream is generated from a
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short secret key (seed) which is input to a LFSR (Linear Feedback Shift
Register) or any other pseudo-random key generator. Stream ciphers can be
classified into synchronous and asynchronous designs, where in the former
the key stream is independent of the plaintext and ciphertext and in the
latter the key stream depends on several ciphertext bits. Notable stream
ciphers are RC4 [Riv87], Salsa20 [Ber08] or Scream [HCJ02].

3.3. Authentication Schemes

An authentication scheme is a cryptographic construction consisting of a
triple of algorithms, a key generation algorithm Key that returns a key K
uniformly at random from the key space K, a tag generation algorithm
Tag that takes a message M and the key K and produces a digest τ; and a
verification algorithm Veri f y that takes the same message M, key K, digest
τ and outputs whether the digest is legitimate (regarding the message) or
not.

Algorithm 3.2: (Authentication Algorithm) - Tag produces a digest from message M.
Veri f y verifies if τ is a valid tag and returns either > (i.e. success) or ⊥ (i.e. failure).

Alg Key Alg TagK(M) Alg Veri f yK(M, τ)

K $← K τ
$← T(K, M) b← V(K, M, τ);

return K return τ if b = 1 then return >
else return ⊥

Thus, such a scheme aims to provides integrity and authentication. The tag
algorithm Tag takes an arbitrary but finite length message M ∈ M and a
key K ∈ K and by producing a short (t-bit) digest τ ∈ {0, 1}t it ensures
that the message can not be altered, and the digest can not be produced by
anybody without knowledge of the key K. More formally,

T : K× {0, 1}∗ → {0, 1}t

The verification algorithm V takes the same inputs as the tag generation
algorithm and in addition takes also the produced tag τ ∈ {0, 1}t. It returns
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either > as a sign of a successful verification or a symbol ⊥ for failure. More
formally,

V : K× {0, 1}∗ × {0, 1}t → {⊥,>}

For correctness we require that ∀M ∈ M, τ ← TagK(M) : Veri f yK(M, τ) =
>.

3.3.1. Hash Functions

A hash function f (·) is a cryptographic primitive mapping an arbitrary
length message M to a fixed length digest τ. Ideally, it represents a one-way
function. Hence, the digest τ = f (M) should be efficient computable for any
M ∈ M but it should be infeasible to compute the inverse M = f−1(τ).
Moreover, it should be infeasible to change the message M without changing
the digest τ or to find two different messages M1, M2 with the same digest
τ1 = τ2. More formally,

f : {0, 1}∗ → {0, 1}n

A hash function is used to provide integrity of a message M. Due to the
recent SHA-3 competition we have a huge pool of well-analyzed cryp-
tographic hash functions (e.g. Keccak [BDPVA11], Skein [FLS+10], Grøstl
[GKM+

11], . . . ).

3.3.2. Message Authentication Codes

A message authentication code (MAC) is the most prominent way to imple-
ment an authentication scheme. It usually combines a hash function plus
some additional pre/post-processing using a secret key K to produce a
mac (i.e. tag, hash). Therefore, it provides integrity (using the hash func-
tion) and authenticity (due to the secret key). A MAC consists of the two
algorithms, Tag and Verify. The value mac is normally appended to the
message (M||mac) and send to the receiver. Notable message authentication
codes are HMAC [CBK97], PMAC [BR02] and VMAC [Kor07].
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Figure 3.1.: Summary. (left) A symmetric encryption scheme takes M and K and outputs C.
(middle) A tweakable encryption scheme takes additionally a tweak T as input.
(right) A MAC consists of two algorithms – Tag takes M and K and produces
T; Verify takes T and K and outputs either {>,⊥}.

3.4. Modes of Operation

A mode of operation is an algorithm, using a block cipher, to provide
confidentiality or even authenticity to an information system. A block cipher
is per se not able to encrypt more than one block of data. Therefore, a mode
of operation describes how to apply a block cipher to multiple blocks of data.
Often such modes of operation require an initialization vector (IV), that has
to be non-repeating and/or random. Furthermore, if the length of data is
not a multiple of the block size of the underlying block cipher then the last
block needs to be padded by some padding rule. The most known modes of
operation are ECB, CBC, CFB, OFB, CTR, where the most prominent ones
are described in more detail below. Some of the modes support parallelizable
encryption and decryption or even some error correcting properties.

Electronic Codebook Mode (ECB). It divides the message into blocks and
encrypts each block separately. Thus, it supports parallelizable encryption
and decryption and one bit change in the plaintext/ciphertext influences
only one block. More formally,

Ci = EK(Mi)
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for 1 ≤ i ≤ |M|/n. Decryption is exactly the inverse of encryption. Never-
theless, a big disadvantage of ECB is that it produces identical ciphertext
for identical plaintext blocks. Since no patterns are hidden it is not recom-
mended to use this mode.

Ciphertext Blockchaining Mode (CBC). The CBC mode xors the previous
ciphertext Ci−1 to the current plaintext Mi prior to each encryption. To
avoid identical ciphertext blocks for identical message blocks it uses a
non-repeating, random IV for the first ciphertext block. In this mode only
decryption is parallelizable. Only one bit change in a plaintext or IV changes
all the following ciphertexts. More formally,

C0 = IV, Ci = EK(Pi ⊕ Ci−1)

for encryption and for decryption

C0 = IV, Pi = DK(Ci)⊕ Ci−1

for 1 ≤ i ≤ |M|/n.

Counter Mode (CTR). In the CTR mode we turn the block cipher into
a stream cipher. Thus, using the block cipher EK and a counter ctr we
produce a key stream, which is than xored to the plaintext message M.
Furthermore, a nonce N is used to provide a unique counter for each block
where (nonce||ctr) is inputed to each block. CTR provides parallelizable
encryption and decryption. More formally,

Ci = Pi ⊕ EK(N||ctr)

for encryption and for decryption

Pi = Ci ⊕ EK(N||ctr)

for 1 ≤ i ≤ |M|/n. One bit change in the plaintext/ciphertext influences
only one bit in resulting output.
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3.5. Analysis of Symmetric Key Primitives

In this section, we give a short description of some attacks on the previously
introduced symmetric key primitives. In order to prove a scheme secure
one should have knowledge of the most basic state-of-the-art attacks on the
primitives used (i.e. to be able to protect against those attacks).

3.5.1. Generic Attacks

In a generic attack, we treat the symmetric key primitive as a black box. Then,
we analyze the in- and output values of this black box and try to find some
interesting behavior (e.g. non-uniform distribution of output values).

Brute Force. In a brute force attack an adversary tries all possible input
values (by searching through the whole input space) until she hits the correct
result. Exhaustive key search is one instance of a brute force attack, where
the adversary tries all possible key combinations to obtain a message from
a given ciphertext. The worst case runtime of such an attack is O(2n) for
some security parameter n (e.g. key-, hash-size). All primitives should be
designed with a large enough security parameter n to mitigate those kind
of attacks.

Distinguishing Attack. In a distinguishing attack an adversary tries to dis-
tinguish between an idealized model (e.g. random oracle) and the real world
model of the cryptographic primitive. She succeeds if she can distinguish
between those two worlds in less then brute force runtime (i.e. O(2n)).

Birthday Attack. A birthday attack exploits the mathematics behind the
birthday problem. Hence, an adversary tries to find a collision between
two different inputs x1, x2 to a function f (i.e. f (x1) = f (x2)). By randomly
selecting each input x to the function f , where each output is drawn with
the same probability (i.e. uniform), an adversary has (q

2) ≈ q2/2 possible

combinations by submitting q queries (e.g. for x1, x2
$← {0, 1}n we have

Pr(x1 = x2) ≈ 0.3 for q = 2n/2).
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Time/Memory Tradeoff. In a time-memory tradeoff attack [Hel80] an ad-
versary can reduce the execution time of the attack by increasing the memory
requirements. Hence, she trades one parameter in favor of the other by us-
ing precomputed tables to reduce the execution time. Typically, such an
attack consists of two phases – an offline phase (pre-computation) where
she explores the primitive and precomputed values in large tables; and an
online phase (real time) where she tries to attack the primitive using the
precomputed values.

3.5.2. Hash Function Attacks

Hash functions are the underlying primitives of an authentication scheme.
Consequently, a secure hash function should be indistinguishable from its
idealized version – a one way function. To be secure, a hash function has to
resist against the following type of attacks.

Figure 3.2.: Properties of a hash function. (left) Preimage resistance. (middle) 2nd-preimage
resistance. (right) Collision resistance.

Preimage. Given a hash value τ = f (M) it should be computationally
infeasible for any adversary A to find the message M. A hash function is
considered preimage resistant if a preimage attack has a time complexity of
O(2n).

Second Preimage. Given a message M1 and its hash τ1 = f (M1) it should
be computationally infeasible to find a second message M2 , M1 such that
f (M1) = f (M2). A hash function is considered 2nd preimage resistant if a
2nd preimage attack has a time complexity of O(2n).
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Collision. It should be computationally infeasible to find two messages
M1 and M2 such that M1 , M2 and f (M1) = f (M2). A hash function is
considered collision resistant if a collision attack has a time complexity of
O(2n/2).

3.5.3. Differential and Linear Cryptanalysis

In the following, we introduce differential and linear cryptanalysis one
of the most widely used techniques to analyze block ciphers and hash
functions.

Differential Cryptanalysis. This technique is based on a chosen-plaintext
attack and was discovered by Eli Biham and Adi Shamir in the late 1980s. It
studies the impact of differences in the input of a primitive with regards
to differences in the output of the primitive (i.e. a differential is a relation
between ∆in and ∆out). Primarily, a xor difference between two values is
used, but any other difference can be used too. A differential characteristic
denotes the path of a difference through several rounds of a cipher, that
hold with a certain probability. Then, an adversary tries to find and connect
several characteristics. Moreover, she needs to find an input value that
follows these characteristics. The main goal of differential cryptanalysis is
to exclude key-candidates that are not possible due to the propagation of
the differences. Additionally, in differential cryptanalysis there exists some
specialized attacks like impossible, truncated or high-order differential
cryptanalysis.

Linear Cryptanalysis. This technique is based on a known-plaintext attack
and was discovered by Mitsuru Matsui in 1992. Thereby, an adversary tries
to find affine approximations of a primitive. Linear cryptanalysis consists of
two parts. In the first step, an adversary tries to generate linear equations
from plaintext, ciphertext and key bits that have a high bias (i.e. probability
close to 0 or 1). The piling-up lemma [Mat94] is often used to construct
linear approximations. In the second step, she tries to conjecture possible key
bits by applying known plaintext-ciphertext pairs on the linear equations.

26



4
Authenticated Encryption

In this chapter, we introduce authenticated encryption (AE). AE is a sym-
metric encryption algorithm, which usually combines an encryption scheme
and an authentication scheme to achieve confidentiality, integrity and au-
thenticity simultaneously. In the following, we give a precise definition of
AE, illustrate different types of AE and give an overview of candidates of
the ongoing CAESAR competition.

4.1. Preliminaries

Loosely speaking, an authenticated encryption scheme is just a combination
of a confidentiality and authentication mode. Moreover, the need for a
secure authenticated encryption scheme arises from the observation that
the combination of an encryption and an authentication mode is often
difficult and error prone (e.g. implementation errors, nonce/IV restrictions,
key restrictions, . . . ).
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AE. An AE scheme is a triple Π = (Key, Enc, Dec) – a key generation
algorithm Key that outputs a key K from the key space K, an encryption
algorithm Enc that takes a message M as an input and outputs a ciphertext
C , which is normally a combination of a ciphertext C and a tag T to achieve
confidentiality, integrity and authenticity; and an decryption algorithm Dec
that takes the ciphertext C as input and outputs either the message M or a
rejection symbol ⊥ in case of an error.

Algorithm 4.1: (Authenticated Encryption Algorithm) Key returns randomly a key
from the key space. EncK returns the encrypted message. DecK returns either the message
or a symbol ⊥.

Alg Key Alg EncK(M) Alg DecK(C )

K $← {0, 1}k return EK(M) return DK(C )
return K

More formally,
E : K× {0, 1}∗ → {0, 1}∗

and
D : K× {0, 1}∗ → {0, 1}∗ ∪ {⊥}

where (E, D) are functions, K is from a non-empty finite set and M, C is of
arbitrary but finite length. We denote EK(M) = C or E(K, M) = C where
C = (C||T) as the encryption and DK(C ) = M/⊥ or D(K, C ) = M/⊥
as the decryption. We often also write E−1

K instead of DK . For correctness
we demand that ∀M ∈ M, EK(M) = C : DK(C ) = M. Moreover, |EK(M)|
must be at least |M|. In order to provide authenticity the encryption must
be length-increasing. Thus, the ciphertext expansion |EK(M)| − |M| is a
constant τ > 0.

AEAD. After analysis of existing AE schemes and emergence of new ones
it was realized that in many real-world applications (such as network
protocols) not all data needs to be encrypted – moreover it consists of
secret and non-secret parts, where it would be nice if the secret parts are
encrypted and both, the secret and non-secret parts get authenticated. From
this, the notion of authenticated encryption with associated data (AEAD)
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was introduced, where the non-secret part is called associated data. AEAD
is similar to AE, but takes additionally associated data as a third input.
The associated data is normally some header information that only needs
authentication and no privacy. More formally the notion of AEAD,

E : K× {0, 1}∗ × {0, 1}∗ → {0, 1}∗

and
D : K× {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥}

where we have the same parameters as in AE and additionally AD which
is of arbitrary but finite length and from the associated data space AD.
We denote EK(AD, M) = C or E(K, AD, M) = C where C = (C||T) as the
encryption and DK(AD, C ) = M/⊥ or D(K, AD, C ) = M/⊥ as the decryp-
tion. Again, for correctness we demand ∀M ∈ M, AD ∈ AD, EK(AD, M) =
C : DK(AD, C ) = M. Also, |EK(AD, M)| depends on |AD| and |M| and
must be at least |M|.

nAE. Nonce-based authenticated encryption is a specific subclass of AEAD
which takes as an additional security parameter a nonce. More formally,

E : K×N × {0, 1}∗ × {0, 1}∗ → {0, 1}∗

and
D : K×N × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥}

with the same parameters as AEAD and additional a fixed-length nonce
N from the finite and non-empty set N . We denote EK(N, AD, M) = C
or E(K, N, AD, M) = C as the encryption and DK(N, AD, C ) = M/⊥ or
D(K, N, AD, C ) = M/⊥ as the decryption. For correctness we demand
∀M ∈ M, AD ∈ AD, N ∈ N , EK(N, AD, M) = C : DK(N, AD, C ) = M.
|EK(N, AD, M)| depends on |AD| and |M| and must be at least |M|.

Properties of AE
In the following, we give some definitions related to AE schemes. Depending
on the construction (generic composition or dedicated AE scheme) an AE
scheme is either one pass or two pass.
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Chapter 4. Authenticated Encryption

Figure 4.1.: Classification of AE. (left) Authenticated Encryption. (middle) Authenticated
Encryption with Associated Data. (right) Nonce-based Authenticated Encryp-
tion with Associated Data.

Definition 12. (One Pass/Two Pass): In a one-pass scheme the message (and
associated data) is processed only once to produce a ciphertext and a tag value (i.e.
to achieve privacy and authenticity), where in a two-pass scheme it is processed
twice (e.g. in the first pass to produce a ciphertext and in the second pass to generate
a tag or vice versa).

For resource-restricted devices (e.g. RFID tags) with only a small buffer for
message/ciphertext storage AE schemes can be based on an online cipher
to mitigate these restrictions.

Definition 13. (Online AE): Online authenticated encryption requires the encryp-
tion and/or decryption process to behave like an online function, whereas in an
online function the output at position i depends only on the previously processed
inputs (e.g. outi = •i

j=1inj, where • is any operation).

Some AE schemes make use of nonces to achieve a higher security margin.
Thus, there exists two worlds – a nonce-reusing and a nonce-respecting
world where an adversary reuses or respects nonces, respectively.

Definition 14. (Nonce Reuse): In the nonce-reuse setting an adversary A is
allowed to reuse nonces to perform an attack.

Definition 15. (Nonce Respecting): In the nonce-respecting setting an adversary
A is not permitted to reuse a nonce to perform an attack.

Security and Robustness of AE. To achieve security and robustness an AE
scheme must accomplish the following properties. We consider an AE
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scheme secure if it provides data privacy (i.e. it is indistinguishable from an
ideal authenticated encryption scheme – IND-CPA) and is secure against
data forgery (i.e. it achieves ciphertext integrity – INT-CTXT). Moreover, we
say an AE scheme Π = (K, E ,D) is secure iff the IND-CPA + INT-CTXT
advantage is negligible for a nonce-respecting adversary A.
We consider an AE scheme robust if it provides security against nonce-
reusing adversaries and against the release of unverified plaintext. While
nonces should be non-repeating and/or random in general, it is often hard
to achieve these properties in the real world. This could be due to a reset
of the device or a simple buffer overflow of a counter used as nonce. As
mentioned above, resource-restricted devices often don’t even have the
possibility to provide the required resources to generate randomness or to
detect repeats.

Definition 16. (RUP): An AE-scheme is secure against the release of unverified
plaintext if any adversary A, that has access to oracles EK,DK,VK – an encryption,
decryption and verification oracle, has only a negligible probability to produce a
forgery.

RUP is a notion by Andreeva et al. [ABL+
14a] and describes the problem of

an online decryption function to release plaintext to a potential adversary A
before verifying the tag value. This is due to the online property – to release
plaintext as it comes from the decryption function. Moreover, a problem is
when the buffer-size on the decryption side is too small to store the plaintext
before receiving the tag.

Additionally, Rogaway et al. defined a notion called MRAE [RS06].

Definition 17. (Nonce MRAE): An AE-scheme is called MRAE if it maintains
security in case of nonce repetitions.

In such a scheme the reuse of a nonce affects privacy in such a way, that an
adversary A can detect repetitions of triples (N, AD, M) and authenticity
remains. However, a problem with MRAE is that it can per definition not be
online. Since for MRAE the ciphertext relies on every bit of input it can not
be online, whereas in an online cipher the ciphertext relies on the currently
processed input bits. Therefore, Fleischman et al. introduced a notion called
OAE [FFL12], which provides security for an online AE scheme up to the
longest common prefix (LCP) in case of a nonce-reuse.
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4.2. Types of AE

There are several different types of authenticated encryption schemes. In the
past, to construct an AE mode one just combined an encryption scheme and
an authentication scheme. Bellare and Namprempre [BN00] defined some
classification among AE schemes called generic composition. They defined
three different construction schemes to combine a SE scheme and a MAC.
Later on, dedicated AE schemes have gained popularity due to efficiency
reasons (they perform a one-pass over the message) and parallelizability is
only given in a one-pass scheme. Most recently, the CAESAR competition
was announced, which introduced constructions from a broad architectural
range. The majority of CAESAR candidates are block cipher or permutation
based. Nevertheless, there are some stream cipher based constructions and
some more exotic constructions like the compression function based OMD
[CMN+

14].

4.2.1. Generic Composition

The generic composition paradigm was introduced by Bellare and Nam-
prempre in 2000, where they showed that there are three ways to construct an
AE mode by combining a SE scheme and a MAC. Furthermore, they argued
that only Encrypt-then-MAC is generally secure. In 2013, Namprempre et al.
[NRS14] showed that this argumentation holds only for probabilistic AE (by
combining a pE + MAC), but is wrong for other constructions (e.g. nAE).

In the following, we introduce the three different composition schemes. Let
the triple Π = (Key, Enc, Dec) be an authenticated encryption scheme, with
SE = (Key′, Enc′, Dec′) an IND-CPA secure symmetric encryption scheme
and F : {0, 1}k × {0, 1}∗ → {0, 1}n a pseudo-random function. The key
generation algorithm Key is the same for all three schemes.

Alg Key

Ke ← Key′; Km
$← {0, 1}k; return Ke||Km
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Alg EncKe||KM
(M) Alg DecKe||KM

(C′||T)
C′ ← Enc′Ke

(M) M← Dec′Ke
(C′)

T ← FKm(M) if T = FKm(M) return M
return (C′||T) else return ⊥

Encrypt-and-Mac (E&M)
Encrypt-and-MAC is used in the secure shell (SSH) protocol. It is defined as
follows:

Encrypt-and-MAC achieves the following security notions (see Section 5.2
for details).

Security Achieved? Arguments

IND-CPA No Detection of repeats.

INT-CTXT No Modification of C′

s.t. Dec′Ke
(C′) is unchanged.

Mac-then-Encrypt (MtE)
Mac-then-Encrypt is used in the secure socket layer (SSL) and transport
layer security (TLS) protocol. It is defined as follows:

Alg EncKe||KM
(M) Alg DecKe||KM

(C)
T ← FKm(M) M||T ← Dec′Ke

(C)
C ← Enc′Ke

(M||T) if T = FKm(M) return M
return C else return ⊥

Mac-then-Encrypt achieves the following security notions.

Security Achieved? Arguments

IND-CPA Yes None.

INT-CTXT No Modification of C
s.t. Dec′Ke

(C) is unchanged.
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Encrypt-then-Mac (EtM)
Encrypt-then-Mac is used in the internet protocol security (IPsec) protocol.
It is defined as follows:

Alg EncKe||KM
(M) Alg DecKe||KM

(C′||T)
C′ ← Enc′Ke

(M) M← Dec′Ke
(C′)

T ← FKm(C
′) if T = FKm(C

′) return M
return C′||T else return ⊥

Encrypt-then-Mac achieves the following security notions.

Security Achieved? Arguments

IND-CPA Yes None.

INT-CTXT Yes None.

4.2.2. Block Cipher Based AE

The majority of CAESAR candidates are block cipher based and define an
authenticated encryption mode by performing some pre/post-processing
on each block iteration (e.g. using tweaks). Full round AES or some sub-
rounds of AES are the mostly used instances of the block cipher. The main
reasons to choose a block cipher as an underlying primitive is its efficiency
(for AES there exist instruction set extensions (AES-NI) – for Intel and
AMD processors), parallelizable implementations and block ciphers are well
known and well-analyzed primitives due to the AES competition. While
as a negative aspect, constructions using block ciphers (without nonces)
diminish in security due to the birthday problem, which leads to larger
block sizes.

4.2.3. Permutation Based AE

Another big fraction of CAESAR candidates is permutation based. Au-
thenticated encryption is achieved either by using a sponge function (e.g.
APE [ABB+

15]) or by using dedicated permutations and some pre/post-
processing. A mode using a dedicated permutation can be easily converted
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to a block cipher based mode by applying the Even Mansour scheme such
as it is done in Prøst [KLL+

14] or Minalpher [STA+
14]. Authenticated en-

cryption modes based on sponge functions benefit from the advantage that
by construction they are easily build to be inverse-free and online which
supports the usage of authenticated encryption in resource-constrained
devices such as RFID tags. Furthermore, sponge functions achieve security
up to 2c/2, with c the capacity part. Jovanovic et al. proved in their paper
[JLM14] that this bound can be extended to 2b/2, where b is the permutation
size.

4.3. CAESAR Competition

The Competition for Authenticated Encryption: Security, Applicability, Ro-
bustness [Ber] is an ongoing competition, which started in March 2014. The
aim of the competition is to select a portfolio of secure and reliable AE
schemes and for the cryptographic community to gain more insights into
AE like in the previous SHA-3 and AES competition. The CAESAR call for
submissions defines an AE scheme as follows.
An authenticated cipher defines five inputs and one output. Let s, p, k ≥ 1,
M ∈ {0, 1}∗ denote a variable-length plaintext, AD ∈ {0, 1}∗ denote a
variable-length associated data, SMN ∈ {0, 1}s denote a fixed-length secret
message number, PMN ∈ {0, 1}p denote a fixed-length public message
number and K ∈ {0, 1}k denote a fixed-length key. The output C ∈ {0, 1}∗
is a variable-length ciphertext which provides privacy and integrity. An
authenticated encryption scheme is a triple Π = (Key, Enc, Dec) – a key-
generation procedure, that returns a key choose uniformly at random from
the key spaceK, a deterministic encryption function EK(M, AD, SMN, PMN)
and its inverse a decryption function DK(C, AD, PMN). Moreover, the sig-
natures are defined as

E : {0, 1}∗ × {0, 1}∗ × {0, 1}s × {0, 1}p × {0, 1}k → {0, 1}∗

D : {0, 1}∗ × {0, 1}∗ × {0, 1}s × {0, 1}p × {0, 1}k → {0, 1}∗

For correctness we require that the message M and the secret message num-
ber SMN can be recovered from ciphertext C, associated data AD, public
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message number PMN and the key K. Nevertheless, it must hold that for ev-
ery input from its input space that DK(EK(M, AD, SMN, PMN), AD, PMN)
= {M, SMN} , ⊥. The support of a SMN and a PMN is not needed and
can therefore be 0-bits. There are different security requirements on each
input value as given in Table 4.1.

Table 4.1.: Requirements for the input values of an AE scheme for the CAESAR competition

Confidentiality Integrity

Plaintext yes yes
Associated data no yes
Secret message number yes yes
Public message number no yes

The CAESAR call for submission stated that every candidate needs to state
their advantage against the currently widely-used AES-GCM [MV04].

4.3.1. Current Authenticated Encryption Schemes

In the following, we give a short description of the current existing authen-
ticated encryption schemes.

CWC. CWC [KVW04] combines the CTR mode for data encryption with
an efficient polynomial Carter-Wegman MAC [CW79]. It is two-pass,
parallelizable and provable secure.
CCM. CCM [Dwo04] combines the CTRmode with CBC-MAC. It is two-pass,
non-parallelizable, provable secure and used in IEEE 802.11i, IPsec and
TLS.
EAX. EAX [BRW04] is a successor of CCM and combines CTR and OMAC. It
has the same properties as EAX, in addition it supports pre-processing of
AD and is online.
IAPM. IAPM [Jut00] was the first one-pass scheme. It is fully parallelizable
and provable secure.
OCB. OCB [RK14] is the successor of IAPM. It is fully parallelizable and
provable secure. OCB is also a CAESAR candidate [RK14].
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GCM. GCM [MV04] is the successor of CWC. Instead of the expensive integer
multiplications it operates in the binary galois field. It is fully paralleliz-
able and provable secure. GCM is the current mostly used AE scheme and
standardized by NIST. It is used in IPsec, SSH and TLS and included in
NSA’s Suite B for Cryptography.

4.3.2. First Round Candidates

There were 57 submissions as first round candidates. Table 4.2 lists the
candidates, where highlighted in red are submission are withdrawn and
highlighted in green are submissions that are considered in this thesis. In
Section 4.3.3 we give a classification and some statistics about the first round
candidates.

Table 4.2.: First Round Candidates
ACORN ++AE AEGIS AES-CMCC AES-COBRA
AES-COPA AES-CPFB AES-JAMBU AES-OTR AEZ
AVALANCHE Artemia Ascon CBA CBEAM
CLOC Calico Deoxys ELmD Enchilada
FASER HKC HS1-SIV ICEPOLE Joltik
Julius KIASU Ketje Keyak LAC
MORUS Marble McMambo Minalpher NORX
OCB OMD PAEQ PAES PANDA
POET1 POLAWIS PRIMATEs Prøst Raviyoyla
SCREAM SHELL SILC STRIBOB Sablier
Silver Tiaoxin TriviA-ck Wheesht YAES
iFeed[AES] π-Cipher

1 Only POET-G withdrawn.
Withdrawn, COPA-Variants, Indirect COPA-Variants.

4.3.3. Classification of CAESAR Candidates

Figure 4.2 gives a classification of the first round candidates. Thereby, we
omit the schemes that are already withdrawn from the competition. The
data for the statistics is based on the classification summary of Abed et al.
[AFL15b], the AE zoo [AKL+] and a visualization of Andreeva [AD]. For a
detailed classification of first round candidates we refer to [AFL15b].
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Figure 4.2.: Classification of First Round Candidates. (tl.) Different building blocks of AE,
where BC denotes a block cipher, P a permutation, SC a stream cipher, CF a
compression function and Dedicated a dedicated function, respectively. (tr.)
Online or Offline AE. (ml.) Parallelizability denoted for E/D. (mr.) Resistance
against nonce-reuse – completely denoted by Max, none as None or up to the
longest common prefix as LCP. (bl.) Existence of an inverse of E . (br.) Secure
for RUP.
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5
Provable Security

In this chapter, we introduce provable security. In detail, we define the
approach of reductionist security to generate a security proof under rea-
sonable assumptions. Moreover, we illustrate some well known notions
for security mainly based on the topic of authenticated encryption in the
symmetric key setting. Finally, we discuss different proof techniques and
introduce Patarin’s coefficient-H technique – used in our proofs for COPA
in Chapter 6.

5.1. Preliminaries

A cryptographic scheme should not resist only one particular attack, but
rather be resistant to a class of attacks (e.g. attacks that use limited resources).
In this setting, we cover not only currently known attacks, but also yet
unknown attacks – which may be discovered in the future. To overcome
this problem, one can use the approach of reductionist security. Reductionist
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security was established in the early 1980s and is based on complexity
theory. Thereby, a cryptographic scheme is called provable secure if there is a
formal description of its security requirements in an adversarial model with
clear assumptions on the computational resources of the adversary. Then
the proof of security states that an adversary, must satisfy those security
requirements (i.e. solve a certain problem) in order to break the security of
the cryptographic scheme. A security proof is then a polynomial reduction
to a well known problem.

Classical Approach to Provide Security to a Cryptographic Scheme
In the traditional setting, security of a cryptographic scheme was determined
to be secure against state-of-the-art cryptanalytic attacks. The approach to
design a cryprographic scheme was as follows:

1. Design/(Re-design) the scheme.
2. Perform cryptanalysis.
3. If flaw (i.e. break of scheme) – go to 1.

Provable Security Approach
The provable security approach (also called reductionist security) clearly defines
a class of adversaries C to break a abstract scheme S under a certain attack
modelM. The approach works in four steps:

1. Select a class of adversaries (e.g. computationally bound or with un-
limited resources).

2. Develop an abstract model of the cryptographic scheme (e.g. authenti-
cated encryption scheme).

3. Specify a security definition (e.g. IND-CCA, INT-CTXT).
4. Prove secure under reasonable assumptions, by the use of complexity

theory (e.g. a block cipher is a secure PRP).

More formally, select an adversary A ∈ C, derive a model of the scheme S
and choose an attack modelM. The proof must show that A can only break
the security of S in the model M if it is able to solve a certain problem
P , otherwise it is secure. Therefore, the problem P is often polynomially
reduced to a well known problem P1. P can be reduced to P1 if we can
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define a mapping between those two problems such that if we solve problem
P1, we also solve P . We denote a reduction as P ≤P P1 and say problem P
is polynomial reducible to problem P1. Now hardness of P implies hardness of
P1 (i.e. P ⇒ P1).
In order to prove a scheme S secure we derive a cryptographic assumption
P and reduce it to the security of the scheme S. As long as P holds S is
secure (i.e. P⇒ S). This is equal to

∀A ∃B : AdvS(A) ≤ AdvP(B)
or Pr[A breaks S] ≤ Pr[B breaks P]

Application to Asymmetric Cryptography. Provable security was first de-
veloped in the asymmetric cryptography setting. It is based on hard mathe-
matical problems like the hardness of the integer factorization problem or the
discrete logarithm problem.

Application to Symmetric Cryptography. Later on, symmetric cryptogra-
phy made also use of the provable security approach. Provable security is
in this setting based on the reduction to well known primitives (e.g. AES,
Keccak) in the standard model or to some idealized primitives (e.g. PRF,
PRP, One-way functions) in the ideal world model. In this thesis, we focus
only on provable security for symmetric cryptography.

5.1.1. Standard Model

Proofs are accomplished in an underlying model of computation. In the
standard model, the adversary A is only bound by the amount of time
and computational power that is available. Then, a cryptographic scheme
that can be proven secure in the standard model, if it uses only standard
complexity theoretic assumptions on the primitive. In general, security
proofs in the standard model are hard to accomplish. Therefore, a lot of
proofs assume idealized primitives. Nevertheless, proofs accomplished in
the standard model are stronger than proofs in ideal world model.
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5.1.2. Ideal World Model

The ideal world model, also called random oracle model was first introduced
by Bellare and Rogaway [BR93]. In this computational model, cryptographic
primitives are replaced by some idealized version of the primitive. Examples
for such idealized primitives are a one-way function or a random oracle. The
latter is just a theoretical black box, that returns for every different input
a string chosen uniformly at random from the output range. Many proofs
operate in this kind of computational model as otherwise it is hard to
achieve a security proof without the assumption of an idealized primitive –
as it is done in the standard model.

5.2. Notions of Security

In the following, we introduce some well known notions of security. The def-
inition of security (e.g. privacy, integrity or authenticity) of a cryptographic
scheme is given by a notion. A notion thereby represents what an adversary
has to achieve to break the scheme. Such security notions need to be defined
rigorously such that they can be used for a wide range of cryptographic
schemes.
First, we start with some general definitions and assumptions on security.
We fix an adversary A, which represents a PPT algorithm. A is computa-
tionally bounded in time, number of queries and length of these queries.
Moreover, we fix a distinguisher D, that has the same properties as A, but
tries to distinguish between two worlds. O denotes any oracle, $ denotes
the random oracle. We write DO and mean that D accesses oracle O. For
the following notions we refine the distinguishing attack.

Distinguishing Attack. D has access to an oracle O that can either be the
cryptographic scheme or an idealized version (e.g. the random oracle $).
In the beginning, the environment, which D interacts with, tosses a fair
coin to select a bit b. Following that, D submits its queries to either the
cryptographic scheme or the random oracle, depending on the outcome of
the coin toss for bit b. D succeeds if it can determine the value of b.
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The distinguishing-advantage is given by

Adv(D) =
∣∣Pr[DO1 ⇒ 1]− Pr[DO2 ⇒ 1]

∣∣
where the oracles O1,O2 represents the two worlds, that D wants to distin-
guish. The advantage Adv(q, `, t) is computational bound by the number of
queries q each with length `, and a total length of σ for all queries and runs
in time t. Furthermore, we assume that D does not submit any trivial query,
from which it already knows the answer (i.e. a query to a decryption oracle
E−1 with results from a previous query to an encryption oracle E ).

For the following security notions, we fix AE = (K, E , E−1) an authenti-
cated encryption scheme, where E denotes the encryption oracle and E−1

denotes the decryption oracle. When we use a nonce-respecting adversary
we assume that it never submits two queries with the same nonce N.

5.2.1. Privacy

For privacy we know four notions of security. While for the IND-CPA notion
D is not allowed to reuse nonces at any point, in the IND-CCA notions D is
allowed to reuse nonces for decryption queries.

IND-CPA. Is the notion for indistinguishability under a chosen-plaintext
attack. D has access to either the real encryption oracle E or a random
oracle $. Its advantage is given by

AdvIND-CPA
AE (D) =

∣∣Pr[DEK(·) ⇒ 1]− Pr[D$(·) ⇒ 1]
∣∣

where the probabilities are taken from the key K $← K, and random coins
of the random oracle $ or D, if any. By AdvIND-CPA

AE (q, `, σ, t), we denote
the maximal advantage taken over all IND-CPA adversaries that run in
time t and make at most q queries with ` the length in blocks for each
query and σ the total length of all queries.

IND-CCA1. Is the notion for indistinguishability under a non-adaptive
chosen-ciphertext attack. D has access to either the real encryption oracle
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E and decryption oracle E−1 or a random oracle $ and the decryption
oracle E−1. Its advantage is given by

AdvIND-CCA1

AE (D) =
∣∣Pr[DEK(·),E−1

K (·) ⇒ 1]− Pr[D$(·),E−1
K (·) ⇒ 1]

∣∣
where the probabilities are taken from the key K $← K, and random coins
of the random oracle $ or D, if any. By AdvIND-CCA1

AE (q, `, σ, t), we denote
the maximal advantage taken over all IND-CPA adversaries that run in
time t and make at most q queries with ` the length in blocks for each
query and σ the total length of all queries.

IND-CCA2. Is the notion for indistinguishability under an adaptive chosen-
ciphertext attack. D has access to either the real encryption oracle E and
decryption oracle E−1 or a random oracle $ and the decryption oracle
E−1. Its advantage is given by

AdvIND-CCA2

AE (D) =
∣∣Pr[DEK(·),E−1

K (·) ⇒ 1]− Pr[D$(·),E−1
K (·) ⇒ 1]

∣∣
where the probabilities are taken from the key K $← K, and random coins
of the random oracle $ or D, if any. By AdvIND-CCA2

AE (q, `, σ, t), we denote
the maximal advantage taken over all IND-CPA adversaries that run in
time t and make at most q queries with ` the length in blocks for each
query and σ the total length of all queries.

IND-CCA3. Is another notion for indistinguishability under an adaptive
chosen-ciphertext attack, whereas Shrimpton [Shr04] proves that an en-
cryption scheme achieving this kind of notion is an authenticated encryp-
tion scheme. It is similar to IND-CCA2 but with the difference that D in
the bogus world has only access to a decryption oracle that always returns
⊥. Then D has access to either the real encryption oracle E and decryption
oracle E−1 or a random oracle $ and a bogus decryption oracle ⊥(·) that
always returns Invalid (i.e. ⊥). Its advantage is given by

AdvIND-CCA3

AE (D) =
∣∣Pr[DEK(·),E−1

K (·) ⇒ 1]− Pr[D$(·),⊥(·) ⇒ 1]
∣∣

where the probabilities are taken from the key K $← K, and random coins
of the random oracle $ or D, if any. By AdvIND-CCA3

AE (q, `, σ, t), we denote

44



5.2. Notions of Security

the maximal advantage taken over all IND-CPA adversaries that run in
time t and make at most q queries with ` the length in blocks for each
query and σ the total length of all queries.

5.2.2. Integrity

There are two notions of security with regards to integrity.

INT-PTXT. Is a notion for integrity of plaintexts. A plays the game
INT-PTXTAAE (see Algorithm 5.1) and wins if its outputs True. Its ad-
vantage is given by

AdvINT-PTXT
AE (A) = Pr[INT-PTXTAAE ⇒ True]

where by AdvINT-PTXT
AE (q, `, σ, t), we denote the maximal advantage taken

over all INT-PTXT adversaries that run in time t and make at most q
queries with ` the length in blocks for each query and σ the total length
of all queries. A wins game INT-PTXTAAE if it successfully submits a
ciphertext C that decrypts to a valid message M , ⊥, where M was never
submitted to EK(·). Therefore, the notion states that it is computationally
infeasible for any A to generate such a C.

INT-CTXT. Is a notion for integrity of ciphertexts. A plays the game
INT-CTXTAAE (see Algorithm 5.1) and wins if its outputs True. Its advan-
tage is given by

AdvINT-CTXT
AE (A) = Pr[INT-CTXTAAE ⇒ True]

where by AdvINT-CTXT
AE (q, `, σ, t), we denote the maximal advantage taken

over all INT-CTXT adversaries that run in time t and make at most q
queries with ` the length in blocks for each query and σ the total length
of all queries. A wins game INT-CTXTAAE if it successfully submits a
ciphertext C that decrypts to a valid message M , ⊥, where C was never
outputted from EK(·). Therefore, the notion states that it is computation-
ally infeasible for any A to generate such a C. Since there is no limitation
on the submitted plaintext M, this notion is stronger than INT-PTXT.
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Algorithm 5.1: Game INT-PTXTAAE (left) and INT-CTXTAAE (right).
Game INT-PTXTAAE Game INT-CTXTAAE

procedure Initialize procedure Initialize

K $← K; S← ∅ K $← K; S← ∅

procedure Encrypt(M) procedure Encrypt(M)

C $← EK(M); S← S ∪ {M}; C $← EK(M); S← S ∪ {C};
return C return C

procedure Decrypt(C) procedure Decrypt(C)
M← E−1

K (C) M← E−1
K (C)

if (M , ⊥ and M < S) then if (M , ⊥ and C < S) then
win← True win← True

return win return win

procedure Finalize procedure Finalize

return win return win

5.2.3. Additional Security Notions

In this section, we describe some additional security notions used for the
proofs in Chapter 6. We first define the notion of MRAE, followed by
the OAE1 notion. Online authenticated encryption reduces memory usage
and latency for applications by processing the input as it arrives to the
encryption/decryption device. For the proof of COPA in Section 6.3.2 we
use the OAE1 notion.

MRAE. The notion of misuse-resistant authenticated encryption was
introduced by Rogaway and Shrimpton in [RS06]. They propose a notion
to achieve AE-security for an ivE-scheme, even if the IV gets reused.
Therefore, let Π = (K, E , E−1) denote an IV-based SE scheme. Then, the
MRAE-advantage of D is denoted as

AdvMRAE
Π (D) =

∣∣Pr[DEK(·,·,·),E−1
K (·,·,·) ⇒ 1]− Pr[D$(·,·,·),⊥(·,·,·) ⇒ 1]

∣∣
where the probabilities are taken from the key K $← K, and random coins
of the random oracle $ or D, if any. By AdvMRAE

Π (q, `, σ, t), we denote the
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maximal advantage taken over all MRAE adversaries that run in time t
and make at most q queries with ` the length in blocks for each query
and σ the total length of all queries. Furthermore, we denote the calls
to the encryption oracle as EK(IV, AD, M) and to the decryption oracle
as E−1

K (IV, AD, C). D is not allowed to query E−1
K with the results of a

previous query to EK.

OAE1. To provide a notion between strict nonce-respecting nAE and
nonce-reusing MRAE, Fleischman et al. introduced OAE1 in [FFL12].
Consider Π = (K, E , E−1) as an OAE1-scheme [AFL+

15a], where $OAE

returns a random online string of length |EK(M)|. Then, the OAE1-
advantage is given by

AdvOAE1

Π (D) =
∣∣Pr[DEK(·,·,·),E−1

K (·,·,·) ⇒ 1]− Pr[D$OAE(·,·,·),⊥(·,·,·) ⇒ 1]
∣∣

where the probabilities are taken from the key K $← K, and random coins
of the random oracle $ or D, if any. By AdvOAE1

Π (q, `, σ, t), we denote
the maximal advantage taken over all OAE1 adversaries that run in
time t and make at most q queries with ` the length in blocks for each
query and σ the total length of all queries. Encryption calls are denoted
as EK(N, AD, M) and decryption calls E−1

K (N, AD, C). Additionally, we
define the advantage of D distinguishing Π from an online permutation
OPerm. Then, the OPERM-CCA advantage is given by

AdvOPERM-CCA
Π (D) =

∣∣Pr[DEK ,E−1
K ⇒ 1]− Pr[Dπ,π−1 ⇒ 1]

∣∣
where the probabilities are taken from K $← K and π

$← OPermn, where
OPermn denotes the set of all length-preserving permutations π on
({0, 1}n)∗ and the ith output block of π(·) depends only on the input
from 1 to i.

In the following, we define the notions for SPRP and S̃PRP used in the
proofs in Section 6.3.2 and Section 6.6.2, respectively.

Definition 18. (Strong Pseudo Random Permutation): A strong pseudo-random
permutation on n-bits is a efficient, keyed map from p : {0, 1}k × {0, 1}n →
{0, 1}n, such that a PPT distinguisher can distinguish between p, p−1 and an ideal
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random permutation π, π−1, with only a negligible probability. π
$← Perm(n),

where Perm(n) denotes the set of all permutations on n-bits.

SPRP. We fix a SE -scheme EK(·), E−1
K (·) and let π(·), π−1(·) denote an

ideal random permutation. Then, we define the SPRP-advantage as

AdvSPRP
E (D) =

∣∣Pr[DEK(·),E−1
K (·) ⇒ 1]− Pr[Dπ(·),π−1(·) ⇒ 1]

∣∣
where the probabilities are taken from K $← K and π

$← Perm(n). More-
over, we define AdvSPRP

E (q, t) as the maximum advantage over all SPRP
adversaries A on E that run in time t and make at most q queries.

Definition 19. (Tweakable Strong Pseudo Random Permutation): A tweakable
strong pseudo-random permutation on n-bits is a efficient, keyed map from p :
{0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n, such that a PPT distinguisher can distin-
guish between p, p−1 and an ideal tweakable random permutation π̃, π̃−1, with

only a negligible probability. π̃
$← Perm(T , n), where Perm(T , n) denotes the set

of all mappings from T to permutations on n-bits.

S̃PRP. We fix a tweakable SE -scheme ẼK(·, ·), ẼK
−1

(·, ·) and let π̃(·), π̃−1(·)
denote an ideal tweakable random permutation. Then, we define the
S̃PRP-advantage as

AdvS̃PRP
Ẽ (D) =

∣∣Pr[DẼK(·,·),ẼK
−1

(·,·) ⇒ 1]− Pr[Dπ̃(·,·),π̃−1(·,·) ⇒ 1]
∣∣

where the probabilities are taken from K $← K and π̃
$← Perm(T , n).

Moreover, we define AdvS̃PRP
Ẽ (q, t) as the maximum advantage over all

S̃PRP adversaries A on Ẽ that run in time t and make at most q queries.

5.2.4. Others

Moreover, there are several other notions for the security of a cryptographic
schemes. For indistinguishability we often use IND-PRF to distinguish a
MAC from a PRF and IND-PRP to distinguish a block cipher from a PRP.
Moreover, there are notions for unforgeability of a MAC and non-malleability
of a SE -scheme.
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5.3. Relations between Notions

In Figure 5.1 we denote the relation between the notions for a symmetric
encryption scheme SE . More precisely, we show how the notions for privacy
(i.e. indistinguishability and non-malleability) and integrity (i.e. integrity of
plaintext/ciphertexts and weak/strong forgery) interact together. Therefore,
we denote A → B as implication between notions A and B and A 6→ B
as separation, respectively. For more details about the relations we refer to
[BN00].

Figure 5.1.: Relations between Notions for Symmetric Encryption.

It is easy to see that IND-CPA + INT-CTXT implies IND-CPA + INT-PTXT
since INT-CTXT is a stronger notion than INT-PTXT. Moreover, IND-CPA +
INT-CTXT implies IND-CPA and NM-CCA implies NM-CPA.

IND-CPA + INT-CTXT ⇒ IND-CCA2. In the following theorem, we show
that a symmetric encryption scheme that is IND-CPA secure and achieves
the notion of INT-CTXT also achieves IND-CCA2.

Theorem 1. Let SE = (K, E ,D) denote a symmetric encryption scheme and A
denote an IND-CCA2 adversary, then we can construct two adversaries – Actxt
and Acpa such that,

AdvIND-CCA2
SE (A) ≤ 2 ·AdvINT-CTXT

SE (Actxt) + AdvIND-CPA
SE (Acpa)

where A and Actxt runs in time t and makes qe queries to its encryption oracle
and qd queries to its decryption oracle and Acpa makes qe queries to its encryption
oracle.

We omit the proof in this thesis and refer to [BN00].
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IND-CCA3⇔ AE. Shrimpton [Shr04] proved that IND-CCA3 implies AE
and vice versa.

Theorem 2. Let SE = (K, E ,D) denote a symmetric encryption scheme and A
denote an IND-CCA3 adversary, then we can construct two adversaries – Actxt
and Acpa such that,

AdvIND-CPA
SE (Acpa) ≤ AdvIND-CCA3

SE (A)

AdvINT-CTXT
SE (Actxt) ≤ 2 ·AdvIND-CCA3

SE (A)
where A, Acpa and Actxt run in time t and make q queries of total length µ for
the first statement and A runs in time t′ = t + O(µ), makes q′ = q + 1 queries of
total length µ′ = µ + 1 for the second statement.

We omit the proof in this thesis and refer to [Shr04].

Theorem 3. Let SE = (K, E ,D) denote a symmetric encryption scheme and A
denote an IND-CCA3 adversary, then we can construct two adversaries – Actxt
and Acpa such that,

AdvIND-CCA3
SE (A) ≤ AdvIND-CPA

SE (Acpa) + q ·AdvINT-CTXT
SE (Actxt)

where A, Acpa run in time t and Actxt runs in time t′ = t + O(q) and all make q
queries of total length µ.

We omit the proof in this thesis and refer to [Shr04].

5.4. Proving Techniques

In order to get reliable, robust and especially secure cryptographic schemes
a designer has to provide a security proof under reasonable assumptions.
There are several different techniques to obtain a proof of security. Most
popular are the techniques such as polynomial reduction or game-based proofs.
However, there are also other techniques like a hybrid argument or Patarin’s
coefficient-H technique.
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5.4.1. Polynomial Reduction

As already mentioned in Section 5.1, in the case of polynomial reduction the
designer of a cryptographic scheme S reduces the security of S to a well
known problem P , where P is normally the representation of an idealized
cryptographic primitive (e.g. PRF, PRP, One-Way Function).

5.4.2. Game-based proofs

Another technique to obtain a security proof is to use game theory. There,
a security proof is based on game-playing. Bellare and Rogaway use this
technique quite often it their security proofs. In the following, we give
a short introduction to the game-based proof technique. For a detailed
description we refer to [BR04].
We denote a game G played by adversary A as GA, and the output of G as
GA ⇒ out. We assume that boolean flags are initialized to False, sets are
initialized to the empty set ∅ and games Gi, Gj are identical until bad, iff the
code of both games Gi, Gj only differs in statements after flag bad is set to
True.

Procedures. A game G consists of several procedures. In this thesis, pro-
cedures are denoted in capital writing style. Therefore, a game consists at
least of an Initialize and a Finalize procedure. Moreover, it can contain
additional procedures to handle queries of an adversary A. Now, G starts
by calling the procedure Initialize and the outputs of these operations
are input to A. Then, A executes and its oracle queries are handled via the
corresponding procedures in G. If A terminates, the output values of A are
input to the Finalize procedure.

Fundamental Lemma of Game-Playing. The fundamental lemma of game-
playing defines the basis behind every game-playing proof.

Lemma 1. Let Gi and Gj denote two games, that are identical until bad. Moreover,
let A denote an adversary. Then,

Pr[GAi ⇒ out]− Pr[GAj ⇒ out] ≤ Pr[GAj sets bad].
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We omit the proof in this thesis and refer to [BR04].

A proof of security is established in the following way. First, we define one
or more games, related with the security property to be proven. A game
can be seen as a challenge involving the adversary and oracles provided
by the environment. Then, an adversary is successful if she wins the game.
Additionally, using the fundamental lemma of game-playing, we can relate
games that are identically until bad.

5.4.3. Hybrid Argument

Besides the already mentioned paradigms, another technique is the usage
of the triangle inequality. In order to solve a problem P it is not always
convenient to reduce it straightforward to a problem P1 but sometimes
easier and better understandable to fellow cryptographers (e.g. verifier) to
reduce it over a series of other problems Pi to the final problem Pn. Then,
we use the triangle inequality to show that we achieve P ≤P Pn by showing
that P ≤P ∑i Pi ≤P Pn.

5.4.4. Patarin’s Coefficient-H Technique

The coefficient-H technique was introduced by Patarin in [Pat08] and re-
fined by Chen and Steinberger in [CS14]. It works as follows. Consider a
deterministic distinguisher D that has access to one or more oracles O. For
each of theses oracles we assign a world – the ideal world and the real world.
We denote the oracle for the ideal world as $ and for the real world as
E . Moreover, we define a view ν as a transcript of a set of queries from
the interaction with oracle E or $. In other words, a view ν is the set of
query-response tuples (i.e. ν = (Mi, Ci)

q
i=1, with 1 ≤ i ≤ q).

We partition views into good and bad views, where ν ∈ νgood ∪ νbad. Fur-
thermore, for each oracle O we define a probability distribution X such that
a view ν ∈ X, when the interaction of a query qi with oracle O yields this
view ν and the probability Pr(ν ∈ X) > 0.
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Then, the distinguishing advantage of D is defined as

∆(X, Y) =
∣∣Pr[DE ⇒ 1]− Pr[D$ ⇒ 1]

∣∣
where X, Y are the probability distributions of E and $ and ∆(X, Y) denotes
the statistical distance between those two sets. The statistical distance is
lower bounded by δ + ε, with 0 ≤ ε ≤ 1 if for all views ν ∈ νgood

Pr(ν(DE ) = ν)

Pr(ν(D$) = ν)
≥ 1− ε (5.1)

and for views ν ∈ νbad
Pr(ν(D$) ∈ ν) ≤ δ

We omit the proof for these statements in this thesis and refer to [Pat08] and
[CS14]. The idea behind this technique is that there are only a few views
that are more likely to appear in $ than in E – bringing the ratio (5.1) close
to one. These views are the bad views that are lower bounded by δ.

5.4.5. Tightness

First we give the definition of tightness and continue with some remarks on
how to achieve a tight reduction and what it means if we have a non-tight
reduction.
Consider a cryptographic scheme S . Related with the security proof is
the problem P that an adversary A has to solve in order to break the
cryptographic scheme. Furthermore, suppose A has access to oracle O that
fulfills the adversarial goal – specified by the security definitions of S . We
denote T as the time, and ε as the probability that A takes in order to get
a successful outcome. Additionally, we denote T′ as the time A needs to
solve P with success probability ε′. Then, a security reduction is called tight
if T′ ≈ T and ε′ ≈ ε. More or less it is called non-tight if T′ � T or ε′ � ε.
A tight proof is desirable – as then we can assume that breaking scheme S
is as hard as solving problem P . Nevertheless, it is not always possible to
achieve a tight reduction, whereas it is possible to apply a hybrid argument
to obtain a bound. The more loose the boundary is, the tightness gap grows
and also the Adv of any adversary grows.
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6
Provable Security of Submissions

to the CAESAR Competition

In this chapter, we state our results of this thesis. We have selected the AE
composition scheme COPA [ABL+

13], where we prove a variant of this
scheme COPA secure beyond the birthday bound. Moreover, we studied
the application of COPA to CAESAR candidates, that rely heavily on the
COPA design (i.e. AES-COPA [ABL+

14b], PRØST-COPA [KLL+
14], Deoxys

[JNP14b], Joltik [JNP14c] and KIASU [JNP14d]). For the former two can-
didates our proof in Section 6.3.2 can be applied without any restrictions.
However, for the latter three candidates we have developed an additional
proof given in Section 6.6.2 and 6.6.3.

6.1. Preliminaries

Modern cryptography is build upon provable secure cryptographic schemes.
33 out of the 48 remaining candidates of the CAESAR competition are
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supported with a security proof [AFL15b]. To justify the use of a CAESAR
candidate and to point out potential weaknesses these candidates need third-
party cryptanalysis and security proofs to show robustness in presence of a
potential adversary. Therefore, we use the framework of provable security to
provide such a proof to a variant of the AE scheme COPA – called COPA.
Our motivation for the choice of COPA was, that it features the first fully
parallelizable online authenticated encryption scheme – for encryption and
decryption. Furthermore, it offers nonce-misuse resistance, and therefore
providing security against IND-CPA attacks up to the birthday bound, even
if nonces get reused. The usage of doubling in the tweak values provides
COPA with the XE and XEX constructions of Rogaway [Rog04a] – for simple
and easy to analyze proofs. Additionally, it offers an exceptional software
performance and is up to 5 times faster than McOE-G [FFL12], TC1 or
TC3 [RZ11]. Moreover, COPA is used in several CAESAR submissions (e.g.
AES-COPA, PRØST-COPA, Deoxys, Joltik and KIASU).

6.1.1. Recent Attacks on OAE Schemes

In the following, we consider only online authenticated encryption schemes.
Most recently, there were some new attacks against OAE introduced. All
these attacks operate in the nonce-reusing setting. Hoang et al. [HRRV15]
proposed a trivial attack, by reducing the block size of the underlying block
cipher to a small number (e.g. n = 1). Reyhanitabar et al. proposed a more
involved attack called Chosen-Prefix Secret-Suffix Attack (CPSS) [RV14] and
Abed et al. introduced a similar attack called Chosen-Position Overwrite-Secret
Attack (CPOS) [AFL+

15a]. Since our candidate scheme COPA operates in
the nonce-respecting setting, these attacks doesn’t apply to our scheme.

6.2. COPA

In this section, we give a short description of COPA and its security bounds.
COPA is an AE composition mode introduced by Andreeva et al. [ABL+

13]
at Asiacrypt 2013 and builds upon the parallelizable online cipher COPE to
provide privacy and authenticity – authenticated encryption.
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6.2.1. Description of COPA

COPA takes as input an arbitrary but finite-length associated data AD
and message M, that are split into n-bit blocks (i.e. A = (A1 . . . Ad) and
M = (M1 . . . M`), where each |Ai| = |Mi| = n). For messages that are not a
multiple of the block length tag splitting is applied in case of |M| < n, and
XLS for the case of |M| > n. For associated data that is not a multiple of the
block length, the last A block is padded using the 10? padding. It outputs
a ciphertext C, split into ` × n-bit blocks C1 . . . C` and a tag T of length
|T| = n. The message and associated data processing is given in Algorithm
A.1 and Algorithm A.2 in Appendix A. Moreover, the encryption process is
illustrated in Figure 6.1 and 6.2.

Figure 6.1.: Message Processing for COPA.

Notation of COPA. In the following, we give the notation of COPA used
throughout this thesis. We denote every value as an instance of a query (e.g.
nonce N is denoted as Ni for query qi). Index i runs between 1 ≤ i ≤ q. For
vector values (i.e. values consisting of multiple blocks) we use the greek
letters α, β with an index for the query, to denote the position within the
vector (e.g. message M at position α is denoted as Mi,αi). Index αi runs
between 1 ≤ αi ≤ `i, with |Mi| = `i.

The tweak values of COPA are of the form

2a3b7cLi with Li = EK(0),
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Figure 6.2.: (left) Associated Data Processing. (right) Tag Generation for COPA.

where the masking values 2a3b7c are all distinct [Rog04a], with a, b, c ∈N.
Moreover, we denote tweaks of the top layer as ∆i,αi and tweaks of the
bottom layer as ∇i,αi . Additionally, we denote the input to the encryption
function in the top layer as� and the output of the encryption function in
the bottom layer as �, respectively. Then, we have

�i,αi = Mi,αi ⊕ ∆i,αi

and
�i,αi = Ci,αi ⊕∇i,αi .

Furthermore, the input to the encryption function in the bottom layer is
denoted as F and the output of the encryption function in the top layer is
denoted as E. This gives us

Fi,αi =

{
E−1

K (Ci,αi ⊕∇i,αi) if αi ≤ `i
E−1

K (Ti ⊕∇i,αi) if αi = `i + 1

and

Ei,αi =

{
Li ⊕Vi ⊕ Fi,αi if αi = 1
Fi,αi−1 ⊕ Fi,αi if αi > 1.

Finally, we define

Σi =
`i⊕

αi=1

Mi,αi

as the message checksum for the tag generation. Moreover, for the length
given in n-bit blocks we have |Ai| = di and |Mi| = |Ci| = `i and |Ti| = 1.
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Security Bounds of COPA. COPA achieves the following security bounds
for privacy

AdvIND-CPA
COPA[E] (t, q, σ, `) ≤ 39(σ + q)2

2n +AdvSPRP
E (t, 4(σ+ q))+

(`+ 1)(q− 1)2

2n

and for integrity

AdvINT-CTXT
COPA[E] (t, q, σ, `)≤39(σ+q)2

2n +AdvSPRP
E (t, 4(σ+q))+

(`+1)(q−1)2

2n +
2q
2n .

Recently, Nandi [Nan15] showed an attack on COPA, when XLS is used in
case |M| > n. Thereby, the security of COPA diminishes to

AdvIND-PRF
COPA[E](t, q, σ, `) ≤ 5.5q2

2n

and

AdvIND-CTXT
COPA[E] (t, q, σ, `) ≤ 2q3 + 6.5q2 + 10q + 1

2n .

For details about COPA we refer to the original paper [ABL+
13].

6.3. Nonce-Respecting Security of COPA

In this section, we state our results of the analysis of COPA. First, we analyze
different variants of COPA and give several attacks on these variants. Second,
we choose one promising candidate and state a security proof.

Definition 20. (COPA): COPA is a variant of COPA (i.e. one of the candidates
of Table 6.1) aimed to achieve beyond birthday bound security.

To improve the mode COPA, we introduce a variant of the original scheme –
to achieve beyond birthday bound security. In order to keep the performance
of the new variant comparable to COPA, the changes must be minimal and
not increase the run time of the algorithm by a large factor. Therefore, to
increase the security bound we use a nonce in the scheme and restrict the
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adversary A to be nonce-respecting. We can place the nonce at several possi-
ble positions in the construction of COPA. The most interesting candidates
are given in Table 6.1. There, we state the position to include the nonce Ni,
the security achieved by this variant (attacks are given in Section 6.3) and a
comment on the additional operations, if necessary.

Table 6.1.: COPA Candidates

Variant Security Comment

Ci,αi ⊕ Ni Appendix B.1 |Mi| ⊕ operations
Mi,αi ⊕ Ni Appendix B.2 |Mi| ⊕ operations
Mi,αi ⊕ Ni, Ci,αi ⊕ Ni Appendix B.3 2 ∗ |Mi| ⊕ operations
Fi,αo ⊕ Ni Appendix B.4 |Mi| ⊕ operations
Ei,αi ⊕ Ni Appendix B.4 |Mi‖⊕ operations
2a3b7cL⊕ Ni Appendix B.5 2 ∗ |Mi|+ |Ai| ⊕ operations
2a3b7cL||Ni Appendix B.6 |∆| = |∇| = 2n
�iαi ⊕ Ni, Ei,αi ⊕ Ni Appendix B.7 |Mi| ⊕ operations
Ni incl. in Ai 2n/2 Suggested in AES-COPA
Vi ⊕ Ni 2n/2 1 ⊕ operation
Vi,αi ⊕ 2α

i Ni 2n/2 |Mi| ⊕ operations + |Mi| doublings
Fi,αi ⊕ Ni,�i,αi ⊕ Ni 2n/2 2 ∗ |Mi| ⊕ operations
Li = EK(Ni) Section 6.3.2 No precomputation of ∆,∇

In the following, we give an attack on the candidate used in AES-COPA and
show that including the nonce in such a way doesn’t improve the security
bound in any way.

Proposition 1. Let E denote COPA, where a nonce N is added anywhere as
an associated data block in the AD-processing (e.g. prepend or append to AD).
Moreover, let D denote a distinguisher, then the advantage of D is

AdvIND-CPA
E (D) ≤

(q
2)

2n

where D runs in time t and makes at most q queries.
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Proof. The distinguishing attack here works as follows. Query the oracles
(EK or $) with qi : (Ni, Mi,αi , Mi,βi) to receive (Ci,αi , Ci,βi , Ti). Furthermore,
submit a second query qj : (Ni ⊕ δ, Mi,αi , Mi,βi) to receive (Cj,αi , Cj,βi , Tj).
Now a collision between Vi = Vj happens with probability Pr = (q

2)/2n.
If we are in the real world, where oracle EK represents COPA we have a
probability for a collision of Ci,αi = Cj,αj and Ci,βi = Cj,βi with Pr = 1, giving
a total probability of Pr = (q

2)/2n. Nevertheless, if we are in the ideal world,
where oracle $ responses for every query with a random string of length
|Mi,αi | the probability for a collision between the ciphertexts Ci,αi = Cj,αj

and Ci,βi = Cj,βi is Pr = 2(q
2)/22n. �

Attacks on Several COPA Candidates. Moreover, also some of the other
COPA variants show some vulnerabilities. In Appendix B, we give a list
of attacks to break the security of several variants as marked in Table 6.1.
All these distinguishing attacks are rather simple and break the security of
the variant with only two queries. Four of the mentioned variants achieve
the same security as COPA. Only for one variant, we haven’t found any
attack – and therefore selected it to perform a security proof, given in the
following.

6.3.1. Description of COPA

In the following, we give a short description of the candidate COPA we
have chosen to prove secure beyond the birthday bound. The candidate
COPA includes the nonce Ni in the tweak values ∆ and ∇, where Li =
EK1(Ni). Moreover, we use three different and independent keys - K1 for
the encryption of the nonce, K2 for encryptions in the message processing
and K3 for the encryptions in the associated-data processing. Moreover,
the associated data is processed via a PRF (i.e. Vi = PRFK3(Ni, Ai)). We
require, that the adversary A for COPA is nonce-respecting, as contrary
to COPA where A is nonce-reusing. Table 6.2 highlights the differences
between COPA and COPA .
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COPA COPA

A nonce-reusing nonce-respecting
Li EK(0) EK1(Ni)
Vi see Section 6.2.1 PRFK3(Ni, Ai)
K K K1, K2, K3

Table 6.2.: Main Differences between COPA and COPA .

Generalization of Security Proof of COPA to COPA. In the privacy proof
of COPA[ABL+

13], Andreeva et al. make use of the XE and XEX constructions
of Rogaway [Rog04a]. There, they introduce dummy masks for the message
and associated data processing of COPA, in order to replace XE and XEX
with random permutations. Furthermore, they show in Lemma 2 [ABL+

13],
that the PMAC1-like [Rog04a] associated data processing can be replaced by
a random function Φ. Our approach for the privacy proof of COPA follows a
similar pattern, where we define the associated data processing of COPA as
a PRF – which then gets replaced by a random function Φ and furthermore,
we replace the encryption functions with random permutations. Therefore,
the original privacy proof of COPA can be seen as a generalization of the
proof of COPA in Section 6.3.2.

6.3.2. Privacy Proof of COPA

In the following, we give the privacy proof for our selected candidate COPA.
Therefore, we use the OAE1 notion for privacy and the SPRP notion defined
in Section 5.2.3.

Theorem 4. Let Π = (E , E−1) denote the candidate COPA as defined in
Section 6.3.1. Moreover, let D be a distinguisher making at most q queries to
either E or $OAE and using time t then,

AdvIND-CPA
E (D) ≤

8(σ+q
3 )

(2n − q)2 + 2 ·AdvSPRP
E (2(σ + q), t′) + AdvPRF

F (q, t′).
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For the proof of Theorem 4 we apply Patarin’s Coefficient-H technique
defined in [Pat08] and refined by Chen and Steinberger [CS14]. In the fol-
lowing, we give an informal statement on how the proof of Theorem 4

works.

COPA uses three different and independent keys – K1 for the encryption
of the nonce Li = EK1(Ni), K2 for the encryptions in the top and bot-
tom layer of the message processing and finally K3 for the encryptions
in the associated data processing. We start by replacing the encryption
functions with SPRP’s (i.e. EK1 with π1, EK2 with π2), which adds us the
term 2 ·AdvSPRP

E (2(σ + q), t′) and the PRF processing of the associated data
with a random function Φ, adding the term AdvPRF

F (q, t′). These two value
should be close to zero (i.e. negligible) in case we use AES or any other
good SE -scheme as underlying primitive. Next, we define the good and
bad views and evaluate the probabilities of $OAE hitting a good and bad
view, and COPA hitting a good view.

Definition of Views. We define a view ν as

ν = (Ni, ADi, Mi, Vi, Li, Fi, Ci, Ti)
q
i=1

where σ = ∑
q
i `i denotes the length of length of all ciphertext values in one

view, and summed over all queries 1 ≤ i ≤ q

q

∑
i
|Mi + Σi| =

q

∑
i
|Fi| =

q

∑
i
|Ci + Ti| = σ + q.

In the ideal world we query the $OAE oracle and in the real world COPA. A
controls the input values Ni, Mi and ADi in both worlds (ideal and real) for
1 ≤ i ≤ q.

Real World. The values Vi, Li, Fi,αi , Ci,αi , Ti are generated as defined in Sec-
tion 6.2.1 and 6.3.1.

Ideal World. Here the values Ci,αi , Ti and Vi are generated independently
and uniformly at random. The generation of Li and Fi,αi is more involved.

� Li. The values Li are generated uniformly at random, but in such a way
that they are all distinct from each other (i.e. @i, j s.t. Li = Lj).
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� Fi,αi . The values Fi,αi are generated uniformly at random, but with the
condition that if �i,αi = �j,αj then Fi,αi = Fj,αj and similarly if�i,αi =�j,αj

then Ei,αi = Ej,αj . Moreover, if Fi,αi = �j,αi then Ej,αj = �i,αi . All these
conditions hold also for the vice versa case.

Definition of Bad Views. A view ν is called bad if it is from the set of νbad.
Views are added to νbad if they fulfill the conditions of a bad transcripts as
described below.

Bad Transcripts. We denote the input to the encryption function EK2(·)
as M and the output as C such that EK2(M ) = C . Then we call a view ν
a bad view, if any of the following conditions holds. We give an informal
explanation afterwards.

1. ∃(i, αi, ραi), (i, βi, ρβi), (j, αj, ραj), (k, βk, ρβk)
s.t. Mi,αi,ραi

= Mj,αj,ραj
∧Mi,βi,ρβi

= Mk,βk,ρβk

2. ∃(i, αi, ραi), (i, βi, ρβi), (j, αj, ραj), (k, βk, ρβk)
s.t. Ci,αi,ραi

= Cj,αj,ραj
∧ Ci,βi,ρβi

= Ck,βk,ρβk

where 1 ≤ i, j, k ≤ q, 1 ≤ αi, βi ≤ `i, 1 ≤ αj ≤ `j, 1 ≤ βk ≤ `k and
ραi , ρβi , ραj , ρβk ∈ {top, bot}, where top denotes the top layer and bot the
bottom layer, respectively. Furthermore, we limit that the collisions in the ith

query must be consecutive. This means that βi = αi + 1.

In words, i, j, k selects the query (qi, qj, qk). αi, βi, αj, βk denotes the position
(e.g. αi is between 1 and `i for query qi) and ραi , ρβi , ραj , ρβk defines if we
select a value from the top or bottom layer. Then, the first condition states
that we have no consecutive collision in the input values of any encryption
with any other input value of another query. Moreover, the second condition
states that we have no consecutive collision in the output values of any
encryption with any other output value of another query.

Nevertheless, if the F values can be generated randomly, and the bad
conditions (1 and 2) does not occur, then there won’t ever be a conflict
between those values.

Lemma 2. Bounding the probability of bad transcripts in the ideal world

Pr(ν(D$OAE
) ∈ νbad) ≤ δ
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where δ =
8(σ+q

3 )

(2n − q)2 .

Proof. The intuition behind this proof is to bound the probability of the $OAE

oracle to hit any view ν ∈ νbad. First, we define which values M and C can
attain. Then, we analyze with what probability one of the above mentioned
bad event occurs – for each of these values. We make a case distinction for
each value that M can attain:

� M =�i,αi = Mi,αi ⊕ ∆i,αi with 1 ≤ αi ≤ `i and 1 ≤ i ≤ q
� M =�i,`i+1 = Σi ⊕ ∆i,`i+1 with 1 ≤ i ≤ q
� M = Fi,αi with 1 ≤ αi ≤ `i + 1 and 1 ≤ i ≤ q

For each of these values we need to analyze with what probability two
consecutive collisions within the same query qi with two other queries qj, qk
occur. There are four different cases that we need to consider:

� (Mi,αi ⊕ ∆i,αi) = (Mj,αj ⊕ ∆j,αj) ∧ (Mi,βi ⊕ ∆i,βi) = (Mk,βk
⊕ ∆k,βk

)
� Fi,αi = Fj,αj ∧ Fi,βi = Fk,βk

� (Mi,αi ⊕ ∆i,αi) = Fj,αj ∧ (Mi,βi ⊕ ∆i,βi) = Fk,βk

� Fi,αi = (Mj,αj ⊕ ∆j,αj) ∧ Fi,βi = (Mk,βk
⊕ ∆k,βk

)

Furthermore, we make a case distinction for each value that C can attain:

� C = Ei,αi = EK2(Mi,αi ⊕ ∆i,αi) with 1 ≤ i ≤ `i
� C = Ei,`i+1 = EK2(Σi ⊕ ∆i,`i+1)
� C = �i,αi with 1 ≤ i ≤ `i + 1

Again for each of these values we analyze with what probability two con-
secutive collisions within the same query qi with two other queries qj, qk
occur. Yet, there are four different cases that we need to consider:

� EK2(Mi,αi ⊕ ∆i,αi) = EK2(Mj,αj ⊕ ∆j,αj) ∧ EK2(Mi,βi ⊕ ∆i,βi) =

EK2(Mk,βk
⊕ ∆k,βk

)
� (Ci,αi ⊕∇i,αi) = (Cj,αj ⊕∇j,αj) ∧ (Ci,βi ⊕∇i,βi) = (Ck,βk

⊕∇k,βk
)

� EK2(Mi,αi ⊕ ∆i,αi) = (Cj,αj ⊕∇j,β j) ∧ EK2(Mi,βi ⊕ ∆i,βi) = (Ck,βk
⊕∇k,βk

)

� (Ci,αi ⊕∇i,αi) = EK2(Mj,αj ⊕ ∆j,αj) ∧ (Ci,βi ⊕∇i,βi) = EK2(Mk,βk
⊕ ∆k,βk

)
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For every of the above mentioned cases we have to fix three queries qi, qj, qk

from a set of σ + q possible values. There, we have (σ+q
3 ) possible combina-

tions to fix these three queries – qi at position (αi, ραi), qj at position (αj, ραj)

and qk at position (βk, ρβk). Additionally, the last position (βi, ρβi) in query
qi gets also fixed while choosing qi. Moreover, the probability for a collision
of two�, E, F,� values is at most 1/(2n − q)2. Summing all together we get
our proposed bound. �

Now consider a good transcript ν ∈ νgood. The intuition behind the proofs of
Lemma 3 and 4 is to bound the probability that a previously selected view
ν ∈ νgood is hit by the $OAE oracle in the ideal world and the probability that
it is hit by COPA in the real world, respectively. Following that, we analyze
if the ratio between those probabilities is close to one.

Lemma 3. Bounding the probability of good transcripts in the ideal world

Pr(ν(D$OAE
) = ν) =

1
2n(σ+q)

∗ (2
n − q)!
2n!

∗ (2
n− ,bottom)!

2n!
∗ 1

2nq

where ,bottom≤ σ + q and denotes the number of distinct permutations of π2 in
the bottom layer.

Proof. In the ideal world, randomness comes from the ciphertexts Ci,αi and
tag values Ti and furthermore from the dummy Li, Vi and Fi,αi values. In the
following, we analyze the probability that the $OAE oracle hits any of these
values for a previously selected good view ν. The oracle $OAE generates the
ciphertext and tag values independently and uniform random from a set
of {0, 1}n. We have σ ciphertext and q tag values in one view ν. Then, the
probability to hit these values is 1/2n(σ+q), which gives us the first term.
The evaluation of the second, third and fourth term is more involved. To
evaluate the probability that the random oracle hits the previously selected
ν ∈ νgood it is sufficient to compute the fraction of oracles Ωcomp that could
result in this good view ν. By Ωall we denote the set of all oracles O for the
ideal world. Hence, we have

Ωπ1
comp

Ωπ1
all

=
(2n − q)!

2n!
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for the evaluation of the q distinct values Li = π1(Ni), where Ωπ1
all = 2n! is

the number of all possible permutations for π1 and Ωπ1
comp = (2n − q)! the

number of compliant oracles after q evaluations of Li. Moreover, we have

Ωπ2
comp

Ωπ2
all

=
(2n− ,bottom)!

2n!

for the evaluation of σ + q values of F, where Ωπ2
all = 2n! is the number

of possible permutations for π2. Ωπ2
comp = (2n− ,bottom)! is the number of

compliant oracles with ,bottom the number of distinct permutations of π2 in
the bottom layer. Finally, we have 1/2nq for the evaluation of q values of Vi,
where each Vi value is generated independently and uniformly random. �

We are left to bound the probability of a good transcript in the real world
(i.e. COPA).

Lemma 4. Bounding the probability of good transcripts in the real world

Pr(ν(DCOPA) = ν) =
(2n − q)!

2n!
∗
(2n− ,top − ,bottom)!

2n!
∗ 1

2nq

where ,top≤ σ + q and ,bottom≤ σ + q. ,top and ,bottom denotes the number of
distinct permutations of π2 in the top and bottom layer, respectively.

Proof. Here we use a similar approach to Lemma 3. In the real world,
randomness comes from the permutations π1, π2 and π3. In the following,
we analyze with what probability the output values of those permutations
is hit by COPA. To evaluate the probability that COPA hits the previously
selected ν ∈ νgood it is sufficient to compute the fraction of oracles Ωcomp
that could result in this good view ν. By Ωall we denote the set of all oracles
O for the real world. Hence, we have

Ωπ1
comp

Ωπ1
all

=
(2n − q)!

2n!

for the evaluation of the q distinct values Li = π1(Ni), where Ωπ1
all = 2n! is

the number of all possible permutations for π1 and Ωπ1
comp = (2n − q)! the
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number of compliant oracles after q evaluations of Li. Additionally, we have

Ωπ2
comp

Ωπ2
all

=
(2n− ,top − ,bottom)!

2n!

for the evaluation of σ + q values of C, T, where Ωπ2
all = 2n! is the number of

possible permutations for π2. Ωπ2
comp = (2n− ,top − ,bottom)! is the number

of compliant oracles with ,top the number of distinct permutations of π2 in
the top layer and ,bottom the number of distinct permutations of π2 in the
bottom layer respectively. Finally, the for the processing of the associated
data with the random function Φ we have 1/2nq for the evaluation of q
values of Vi, where each Vi value is generated independently from Φ. �

The ratio between a good view in the real world to a good view in the ideal
world is lower bounded by 1− ε. Using the probabilities of Lemma 3 and 4

we get

Pr(ν(COPA) = νgood)

Pr(ν($OAE) = νgood)
=

2n(σ+q)(2n− ,top − ,bottom)!
(2n− ,bottom)!

using(6.1)
≥ 2n(σ+q)(2n − σ− q− ,bottom)!

(2n− ,bottom)!

using(6.2)
≥ 2n(σ+q)

(2n− ,bottom)σ+q

=

(
2n

(2n− ,bottom)

)σ+q

≥ 1 ≥ 1− ε

with ε = 0.
,top≤ σ + q (6.1)

N!
(N − x)!

≤ Nx (6.2)

The statistical distance ∆($OAE, COPA) is now upper bounded by δ + ε.
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6.3.3. Integrity of COPA

Although, the security bound for privacy increases while using a nonce in
COPA, this behavior doesn’t apply for integrity. In the following, we show
an attack on the integrity of COPA.

Proposition 2. Let Π = (E , E−1) denote COPA as defined in Section 6.3.1.
Moreover, let D be a distinguisher making at most qe queries to E and qd queries to
either E−1 or ⊥ and using time t then,

AdvINT-CTXT
Π (D) ≤

(q
2)

2n

Proof. Our attack works as follows: We fix an associated data block AD, and
a message block M. Then, we query the encryption oracle EK with queries
qi : (AD, Ni, M), where Ni is always different. We observe, if Ti = Tj for any
two queries qi, qj. Now Ti = Tj if

∃i, j s.t. �i,`i+1 ⊕∇i,`i+1 = �j,`j+1 ⊕∇j,`j+1 (6.3)

where ∇i,`i+1 = 2`i−17EK1(Ni) and ∇j,`j+1 = 2`j−17EK1(Nj). The probability
for a collision of Ti = Tj, that satisfies Equation (6.3) holds with Pr = 1/2n.
For q queries, we have (q

2) choices to satisfy Equation (6.3). Following, that
we can query the verification oracle E−1

K with queries qi : (AD, Ni, Ci, Ti)
and qj : (AD, Nj, Cj, Tj), where Ti = Tj and get our forgery. �

6.4. Application to AES-COPA

AES-COPA is a CAESAR candidate by Andreeva et al. [ABL+
14b], that uses

the AE composition scheme COPA and as underlying block cipher AES. The
security claims by the designers are in either case – under a nonce-respecting
adversary or a nonce-reusing adversary given in Table 6.3.

In AES-COPA the nonce – if any – is append to the associated data. Our
attack in Section 6.3 shows that appending the nonce to the associated data
doesn’t improve the security bound. Nevertheless, our results of the scheme
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COPA can be applied to AES-COPA without any restrictions. Then, AES-
COPA would be secure against chosen plaintext attacks up to approximately
283 AES calls – instead of 264 in the current state.

Table 6.3.: Security Claims of AES-COPA [ABL+
14b], AES-COPA, PRØST-COPA [KLL+

14]
and PRØST-COPA for n = {128, 256}.

AES-COPA AES-COPA PRØST-COPA PRØST-COPA

Confidentiality of plaintext 264 283 264/2128 283/2168

Integrity of plaintext 264 264 264/2128 264/2128

Integrity of associated data 264 264 264/2128 264/2128

Integrity of PMN 264 264 - -

Security against key recovery 2128 - - -
Security against tag guessing 2128 - - -

† For integrity of COPA we conjecture that the security bound of COPA carries over.

6.5. Application to PRØST-COPA

PRØST is a CAESAR candidate by Kavun et al. [KLL+
14]. PRØST per se,

defines a strong permutation. To achieve AE, the PRØST-family uses the
constructions schemes OTR [Min14], COPA [ABL+

13] and APE [ABB+
15],

with PRØST as underlying primitive – either directly or via the single-keyed
Even-Mansour scheme. In this thesis, we only consider PRØST with the
mode COPA.

Description of PRØST-COPA-n. PRØST in the mode COPA is called
PRØST-COPA-n, where 2n represents the permutation size of the under-
lying permutation PRØST. n can be either 128 or 256 bits – resulting in a
security of 264 or 2128, respectively. PRØST-COPA-n uses the single-keyed
Even-Mansour construction to construct the block cipher needed in COPA.
It is defined on a 2n-bit key K such that P̃n,K : {0, 1}2n × {0, 1}2n → {0, 1}2n

or P̃n,K(x) = K ⊕ Pn(x⊕ K). In COPA the function EK(x) is then replaced
by P̃n,K(x).
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Application of COPA to Prøst-COPA-n. Again, PRØST-COPA-n appends
the nonce to the associated data, such as Aes-copa – which doesn’t improve
the security bound. Likewise, our results on COPA can be applied to Prøst

increasing the security bound from 264 to approximately 283, or from 2128 to
approximately 2168, respectively. Our results are stated in Table 6.3.

6.6. Deoxys/Joltik/KIASU

Deoxys, Joltik and KIASU are CAESAR candidates designed by Jean et al.
[JNP14b, JNP14c, JNP14d]. They build upon the TWEAKEY framework [JNP14a]
and the resulting blockciphers Deoxys-BC, Joltik-BC and KIASU-BC. Fur-
thermore, to achieve AE they use the modes COPA and OCB [RK14]. In this
thesis only the COPA variants are considered.

6.6.1. Description of Deoxys/Joltik/KIASU

Deoxys, Joltik and KIASU in the nonce-reusing mode COPA are called
Deoxys=, Joltik= and KIASU=. The structure of the candidates is the same,
only the underlying tweakable blockcipher differs. They take as input
an arbitrary but finite-length associated data A and message M, that are
separated into n-bit blocks (i.e. A = (A1 . . . Ad) and M = (M1 . . . M`),
where each |Ai| = |Mi| = n). For associated data and messages that are not
a multiple of the block length the last M/A block is padded using the 10?

padding. It outputs a ciphertext C, split into `× n-bit blocks C1 . . . C` and a
tag T of length |T| = n. The encryption process is illustrated in Figure 6.3
and 6.4.

Notation of Deoxys=, Joltik= and KIASU=. The tweak values are of the
form

(domain separator || N || ctr)

where we denote ∆i,αi as a top layer tweak and ∇i,αi as a bottom layer tweak
value for query qi at position αi. Furthermore, we denote again the output of
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Figure 6.3.: Message Processing for Deoxys=, Joltik= and KIASU=.

Figure 6.4.: (left) Associated Data Processing. (right) Tag Generation for Deoxys=, Joltik=

and KIASU=.

the encryption function in the top layer as E and the input to the encryption
function in the bottom layer as F. Thus, we have

Ei,αi = E
∆i,αi
K (Mi,αi) and

Fi,αi = D
∇i,αi
K (Ci,αi).

Finally, we define

Σi =
`i⊕

αi=1

Mi,αi

as the message checksum for the tag generation. Moreover, for the length
given in n-bit blocks we have |Ai| = di and |Mi| = |Ci| = `i and |Ti| = 1.
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6.6.2. Privacy Proof of Deoxys=/Joltik=/Kiasu=

For the proof of Deoxys=/Joltik=/Kiasu= we use the OAE1 notion for
privacy and the INT-CTXT notion for integrity and furthermore the S̃PRP
notion defined in Section 5.2.2 and 5.2.3.

Theorem 5. Let E denote Deoxys, Joltik or Kiasu in the mode COPA with EK(·, ·)
the TWEAKEY construction. Furthermore, let D be a distinguisher, that runs in time
t and makes at most q queries of total length σ to either E or $OAE, then

AdvIND-CPA
E (D) ≤ AdvS̃PRP

TWEAKEY(D1)

where D1 is another distinguisher that runs in similar time t′ ≈ t and makes at
least 2σ queries.

We start by giving an informal statement on how the proof of Theorem 5

works. First, we show that the tweak values ∆i,∇i are unique for every
query qi. Next, we replace the TWEAKEY encryption functions by S̃PRP’s and
show that Deoxys=, Jolitk= and Kiasu= achieves optimal security.

Lemma 5. The tweak values ∆i,αi and ∇i,αi of Deoxys=, Jolitk= and Kiasu= are
unique for each associated data ADi,αo and message block Mi,αi at any position αi

for any query qi up to 2|N| queries.

Proof. The tweak values consists of the concatenation of a domain separator,
a unique nonce and a counter (i.e. {∆i,αi ,∇i,αi} = (domain separator || N || αi)).
The probability for a collision of two tweak values is Pr(∆i,αi = ∆j,αj) =

Pr(∇i,αi = ∇j,αj) = Pr(∆i,αi = ∇j,αj) = 0 and for Pr(∆i,αi = ∆j,αi) =

Pr(∇i,αi = ∇j,αi) = 2−|N|, because after 2|N| the nonces repeat and we only
have to look at the same message/associated data block.

The nonces Ni are public known and under the full control of the adversary.
Nevertheless, it is not possible to create collisions between different mes-
sage/associated data blocks, for a fixed nonce Ni in a query qi, due to the
fact of different domain separators and counters (i.e. message ctr/associated
data ctr). �
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As the first step we replace the TWEAKEY encryption functions Ẽ
∆i,αi
K and Ẽ

∇i,αi
K

with S̃PRP’s. Such an replacement costs us AdvS̃PRP
TWEAKEY(2σ, t ≈ t′), where

we get for each input 2Ẽ function calls, that take time t′ ≈ t, resulting from
the additional operations (e.g. xor of intermediate values).

Lemma 6. Let E denote Deoxys, Joltik or Kiasu in the mode COPA with π̃
∆i,αi
K

and π̃
∆i,αi
K . Furthermore, let D be a distinguisher which runs in time t and makes

at most q queries to E or $OAE, then

AdvIND-CPA
E (q, σ, t) ≤ 0 + AdvS̃PRP

TWEAKEY(2σ, t′)

Proof. Without loss of generality we only need to look on encryptions in the
bottom layer of Deoxys=, Jolitk= or Kiasu=, due to the fact that D can only
observe ciphertexts Ci,αi and tag value Ti as response to its queries qi.

Now every π̃
∇i,αi
K returns a unique value from the set of {0, 1}n for each input

block Fi,αi for every query qi. In other words, every different (i, αi) results

in a new value. In the top layer π̃
∆i,αi
K generates random Ei,αi values, which

again generates random Fi,αi values. Then, a collision between Ci,αi = Cj,αj

occurs with probability Pr = (q
2)/2n, which is the same as for the $OAE

oracle. Therefore, D has a zero advantage to distinguish between E and
$OAE. �

The results of Lemma 6 proves Theorem 5.

6.6.3. Integrity Proof of Deoxys=/Joltik=/Kiasu=

We use the INT-CTXT notion for integrity. Our goal is to show that an
adversary A has only a negligible advantage to produce a forgery. Then,
the INT-CTXT-advantage of A is defined as

AdvINT-CTXT
E (A) = Pr[AE

±1
K (·,·,·) forges]

=
∣∣Pr[AEK(·,·,·),E−1

K (·,·,·) ⇒ 1]− Pr[AEK(·,·,·),⊥(·,·,·) ⇒ 1]
∣∣
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where the probabilities are taken from K $← K. Although, we are in a nonce-
respecting setting – A can reuse the nonce in a decryption query to generate
a forgery. Moreover, A is restricted to never submit to the decryption oracle
any trivial query, where it has previously obtained the answer from the
encryption oracle and vice versa. Nevertheless, A has full control over the
values Ni, Ai, Mi, Ci, Ti. It now tries to find a tag Tj = Ti, where any of the
values Ni, Ai, Mi, Ci is new. A forgery is successful, if the decryption oracle
returns something other than ⊥ for a query qi with new values.

Theorem 6. Let (E , E−1) denote Deoxys=, Joltik= or Kiasu=, with EK(·, ·) the
TWEAKEY construction. Moreover, let D be a distinguisher making at most qe queries
to E and qd queries to either E−1 or ⊥ and using time t then,

AdvINT-CTXT
E (D) ≤ 3 · qd

2n

Proof. We succeed with our forgery attempt, if we can submit a query qi
to the decryption/verification oracle E−1

K such that it returns something
other than ⊥ (i.e. the message Mi). Then, for each query qi A must fulfill
the following equation to produce a valid tag

F′i,`i+1 = Fi,`i+1

where F′i,`i+1 = π̃−1(Ti) and Fi,`i+1 =
⊕

i(π̃(Mi,αi))⊕ authi ⊕ π̃(Σi). π̃−1(·)

is the inverse of π̃
∇i,`i+1

K and π̃(·) = {π̃
∇i,αi
K , π̃

∆i,`i+1

K }. Now every π̃
∇i,αi
K

returns an unique value from the set of {0, 1}n for each input block Fi,αi for
every query qi, where we always have a new nonce Ni. For a decryption
query we may reuse nonce Ni. Then, if we consider one decryption query

� Ni is new: The decryption π̃−1(Ti) returns a random value, where
Pr(F′i,`i+1 = Fi,`i+1) = 1/2n.

� Ni is old: Since the adversary is nonce-respecting, there exist exactly
one encryption query with that nonce Ni. Now, the probability that
F′i,`i+1 = Fi,`i+1 for this encryption and decryption query is Pr = 1/2n.
Otherwise, Fi,`i+1 is new from the set 1/(2n − 1).

Then, the probability is at most max{1/2n, 1/2n + 1/(2n − 1)} ≤ 3/2n,
where summed over all decryption queries qd we have 3 · qd/2n �
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6.6.4. Security Bounds for Deoxys=/Joltik=/Kiasu=

In Table 6.4, we give the resulting security bounds for our proofs of Deoxys=,
Joltik= and Kiasu=. Jean et al. [JNP14b, JNP14c, JNP14d] conjectured, that
Deoxys=, Joltik= and Kiasu= achieve full security in the nonce-respecting
setting. With our results we can support this claim.

Table 6.4.: Security Bounds for Deoxys=, Joltik= and Kiasu= for n = {128}.

Deoxys= Joltik= Kiasu=

Confidentiality of plaintext 2128 2128 2128

Integrity of plaintext 2125 2125 2125

Integrity of associated data 2125 2125 2125

Integrity of PMN 2125 2125 2125
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7
Conclusion

In this thesis, we have analyzed COPA, a variant of the AE composition
scheme COPA. COPA was presented at Asiacrypt 2013 by Andreeva et al.
and features the first fully parallelizable online authenticated encryption
scheme. Moreover, Andreeva et al. provided a security proof in the nonce-
ignoring setting with security up to the birthday bound. In order to be
applicable to a wide range of applications, we introduce in this thesis a
variant of COPA, which we prove to be secure beyond the birthday bound
under the restriction of a nonce-respecting adversary.

The recently announced CAESAR competition tries to identify a portfolio of
secure and robust authenticated encryption schemes with associated data.
COPA is a AE composition scheme, used in several candidate submissions.
With the results achieved in this thesis, we serve in favor of the idea behind
the CAESAR to provide well analyzed and therefore secure and robust final
candidates.

In this thesis, we analyzed several candidates for their capability to achieve
higher security, than the original COPA scheme. Andreeva et al. proved
in their original paper [ABL+

13], that with the scheme COPA it is only
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possible to achieve birthday bound security - for both privacy and integrity.
Now, to achieve security beyond the birthday bound, we were forced to limit
the adversary to be nonce-respecting. Therefore, we were able to identify
several possible candidates (see Table 6.1). Nevertheless, we were able to
completely break most of them, using simple attacks. Furthermore, more
advanced candidates provided only up to the birthday bound security. But
beside all these problems, we were able to identify one candidate scheme,
that after further analysis, we could prove beyond birthday bound security.
For the proof of security, we used a specific technique – already used in
several other security proofs – Patatin’s coefficient-H technique. The results
of this proof, could be verbatim used in the candidates AES-COPA and
PRØST, in mode COPA. Therefore, we were able to increase the security
bound for IND-CPA from 264 to 283 encryption calls for AES-COPA and
from 264(2128) to 283(2168) encryption calls, respectively for PRØST-COPA.

The candidates Deoxys, Joltik and KIASU use the AE composition scheme
COPA in a slightly different variation – such that our proof of COPA
doesn’t apply. Therefore, we provide in this thesis an additional privacy
and integrity proof considering COPA is this slightly different setting. The
designers of Deoxys, Joltik and KIASU – Jean et al. already conjectured
beyond birthday bound security [JNP14b, JNP14c, JNP14d] – for an nonce-
respecting adversary. Within the proof in this thesis, we give first results
that this conjecture can be indeed true.

Since, the work of this thesis was limited in time we can provide with several
ideas to further improve these bounds and encourage fellow cryptographers
to use these results. Since an adversary can reuse nonces for decryption
queries in the INT-CTXT and IND-CCA notion the integrity bound of COPA
can not exceed the birthday bound. Due to the limited time, we could not
proof a bound for integrity of COPA. Moreover, one can probably improve
the security bound for privacy by using the constructions proposed by
Mennink at FSE 2015 [Men15]. In addition, one can refine our conditions
for bad views to provide with a higher privacy bound.
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A
Algorithms for COPA

In this chapter, we define algorithms COPA-Encrypt and COPA-Decrypt,
with their procedures AD for associated data processing, Tag for the tag
generation, Verify for the tag verification, E the encryption function of the
construction COPE and E−1 the decryption function of the construction
COPE.

We assume all variables to be initialized with zero. Furthermore, we as-
sume M, AD are multiples of the blocksize n. For the handling of arbitrary
message/associated data length we refer to [ABL+

13].
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Appendix A. Algorithms for COPA

Algorithm A.1: COPA-Encrypt

procedure COPA-Encrypt()
Input: E, K, A, M
Output: C, T

11 : L← EK(0)
12 : V ← AD(E, K, L, A)
13 : V ← V ⊕ L
14 : {C, S} ← E(E, K, V, L, M)
15 : T ← Tag(E, K, S, L, M)
16 : return C, T

procedure AD()
Input: E, K, L, A
Output: V

21 : ∆← 33L
22 : A1||A2 · · · Ad ← A, with |Ai| = n

for 1 ≤ i ≤ d
23 : for i = 1, . . . , d− 1 do
24 : Y ← Y⊕ EK(Ai ⊕ ∆)
25 : ∆← 2∆
26 : V ← EK(Y⊕ Ad ⊕ 3∆)
27 : return V

procedure Tag()
Input: E, K, L, S, M
Output: T

31 : M1||M2 · · ·M` ← M, with |Mi| = n
for 1 ≤ i ≤ `

32 : for i = 1, . . . , ` do
33 : Σ← Σ⊕Mi
34 : Σ← EK(Σ⊕ 2`−132L)
35 : T ← EK(Σ⊕ S)⊕ 2`−17L
36 : return T

procedure E ()
Input: E, K, V, L, M
Output: C, S

41 : ∆← 3L;∇ ← 2L
42 : M1||M2 · · ·M` ← M, with |Mi| = n

for 1 ≤ i ≤ `
43 : for i = 1, . . . , ` do
44 : Vi ← EK(Mi ⊕ ∆)⊕Vi−1
45 : Ci ← EK(Vi)⊕∇
46 : ∆← 2∆;∇ ← 2∇
47 : return C, V`
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Algorithm A.2: COPA-Decrypt

procedure COPA-Decrypt()

Input: E, E−1, K, A, C, T
Output: M or ⊥

11 : L← EK(0)
12 : V ← AD(E, K, L, A)
13 : V ← V ⊕ L
14 : {M, S} ← E−1(E−1, K, V, L, C)
15 : return Veri f y(E, E−1, K, S, L, M, T)

procedure AD()
Input: E, K, L, A
Output: V

21 : ∆← 33L
22 : A1||A2 · · · Ad ← A, with |Ai| = n

for 1 ≤ i ≤ d
23 : for i = 1, . . . , d− 1 do
24 : Y ← Y⊕ EK(Ai ⊕ ∆)
25 : ∆← 2∆
26 : V ← EK(Y⊕ Ad ⊕ 3∆)
27 : return V

procedure Verify()

Input: E, E−1, K, L, S, M, T
Output: M or ⊥

31 : M1||M2 · · ·M` ← M, with |Mi| = n
for 1 ≤ i ≤ `

32 : for i = 1, . . . , ` do
33 : Σ← Σ⊕Mi
34 : if S⊕ EK(Σ⊕ 2`−132L) =

E−1
K (T ⊕ 2`−17L) then

35 : return M
36 : return ⊥

procedure E−1()

Input: E−1, K, V, L, C
Output: M, S

41 : ∆← 3L;∇ ← 2L
42 : C1||C2 · · ·C` ← C, with |Ci| = n

for 1 ≤ i ≤ `
43 : for i = 1, . . . , ` do
44 : Vi ← E−1

K (Ci ⊕∇)
45 : Mi ← E−1

K (Vi ⊕Vi−1)⊕ ∆
46 : ∆← 2∆;∇ ← 2∇
47 : return M, V`
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B
Attacks on COPA Candidates

In this chapter, we give some sample queries for attacks on the COPA
candidates defined in Table 6.1. The following attacks are all distinguishing
attacks between EK, which represents the COPA candidate and the oracle
$, which responses with a random string of length |Mi,αi | for every new
query qi. Furthermore, consider for these attacks that αi = 1, always the
first position in the query qi and βi = αi + 1. Moreover, δ represents any
difference.

Then, submit to EK or $

� Attack 1. qi : (Ni, Mi,αi , Mi,βi) to receive (Ci,αi , Ci,βi , Ti) and
qj : (Ni ⊕ δ, Mi,αi , Mi,βi) to receive (Cj,αi , Cj,βi , Tj)
Verify if Ci,αi ⊕ Ci,βi = Cj,αi ⊕ Cj,βi .

� Attack 2. qi : (Ni, Mi,αi) to receive (Ci,αi , Ti) and
qj : (Ni ⊕ δ, Mi,αi ⊕ δ) to receive (Cj,αi , Tj)
Verify if Ci,αi = Cj,αi .
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� Attack 3. qi : (Ni, Mi,αi , Mi,βi) to receive (Ci,αi , Ci,βi , Ti) and
qj : (Ni ⊕ δ, Mi,αi ⊕ δ, Mi,βi ⊕ δ) to receive (Cj,αi , Cj,βi , Tj)
Verify if Ci,αi ⊕ Ci,βi = Cj,αi ⊕ Cj,βi .

� Attack 4. qi : (Ni, Mi,αi , Mi,βi) to receive (Ci,αi , Ci,βi , Ti) and
qj : (Ni ⊕ δ, Mi,αi , Mi,βi) to receive (Cj,αi , Cj,βi , Tj)
Verify if Ci,βi = Cj,βi .

� Attack 5. qi : (Ni, Mi,αi ⊕ Ni) to receive (Ci,αi , Ti) and
qj : (Ni ⊕ δ, Mi,αi ⊕ Ni ⊕ δ) to receive (Cj,αi , Tj)
Verify if Ci,αi ⊕ Ni = Cj,αi ⊕ Ni ⊕ δ.

� Attack 6. If |Mi,αi | = 2n
qi : (Ni, Mi,αi ||Ni) to receive (Ci,αi , Ti) and
qj : (Ni ⊕ δ, Mi,αi ||Ni ⊕ δ) to receive (Cj,αi , Tj)
Verify if Ci,αi ⊕ (0n||Ni) = Cj,αi ⊕ (0n||Ni)⊕ δ.

� Attack 7. qi : (Ni, Mi,αi , Mi,βi) to receive (Ci,αi , Ci,βi , Ti) and
qj : (Ni ⊕ δ, Mi,αi ⊕ δ, Mi,βi ⊕ δ) to receive (Cj,αi , Cj,βi , Tj)
Verify if Ci,βi = Cj,βi .
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