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Abstract

Shortcut collision attacks are an important field of operation in IT security. These attacks are that
important because they not only show weaknesses in algorithms but in a further consequence they also
give insight into how to make them more secure. One characteristic of shortcut collision attacks is that
they often need a long time to compute due to their high computational complexity. New generation
GPUs are offering an attractive way to reduce the computational time significantly.

This thesis evaluates how suitable GPUs are in general to solve that sort of problems. It also offers
a set of techniques that show how to implement these kinds of algorithms efficiently on GPUs. As an
illustration of these techniques computational intensive parts of a shortcut collision attack on SHA-1 are
implemented as a case study. It shows that although GPUs cannot unfold their full potential on that sort
of problems a significant speedup is achieved in comparison to conventional CPU implementations.





Kurzfassung

Kollisionsattacken stellen ein wichtiges Einsatzgebiet in der IT Sicherheit dar. Diese Attacken sind
bedeutend weil sie einerseits Schwachstellen in Algorithmen aufzeigen und andererseits auch wichtige
Erkenntnisse liefern um diese Algorithmen sicherer zu machen. Ein Merkmal von Kollisionsattacken
ist, dass sie oftmals aufgrund ihrer hohen Komplexität eine lange Zeit zur Berechnung brauchen. Neue
Generationen von GPUs stellen eine sehr attraktive Alternative dar, um die Berechnungsdauer dieser
Probleme signifikant zu reduzieren.

Diese Arbeit versucht zu bewerten wie geeignet GPUs im generellen sind, um Probleme dieser Art
zu lösen. Es werden verschiedene Techniken vorgestellt, die Lösungswege aufzeigen, um diese Art von
Algorithmen effektiv auf GPUs zu berechnen. Um diese Techniken zu illustrieren wurden rechnerisch
intensive Teile einer Kollisionsattacke auf SHA-1 als Fallstudie implementiert. Obwohl GPUs bei dieser
Art von Problemen nicht ihr volles Potenzial ausspielen können, zeigt die Fallstudie doch deutlich, dass
GPU Implementationen gegenüber herkömmlichen CPU Implementationen große Vorteile in Sachen
Berechnungsdauer aufweisen.
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Chapter 1

Introduction

Most people in the industrialized parts of the world are living in ”information-driven” societies. Infor-
mation in general influences and affects them in their every-day life, and therefore it stands to reason that
this information needs to be protected. Responsible for this protection in general is cryptography, which
was already used in ancient times. Although in contrast to today almost only to hide information.

Today cryptography is used for a lot of different applications. One set of tools is called hash algo-
rithms and is responsible for two important applications called message authentication and modification
detection. It goes without saying that these mechanisms have to be ”secure”, and for hash algorithms an
important security criterion is collision resistance. [MvOV96] A collision attack on these hash algorithms
should be computational infeasible, but recently many of the most used Hash Algorithms such as SHA-
1 [oST02] or MD5 [Riv92b] have been broken by a series of attacks. Although in the case of SHA-1 the
complexity to find an actual collision is too high, existing collision attacks may lay the foundation for
more powerful attacks.

New techniques in collision search attacks are pushing the complexities of these attacks into a direc-
tion where a computation of a collision seems possible. For example, the currently best known collision
attack on SHA-1 has a complexity somewhere around 260 which is too high to solve on a single standard
computer. However it puts it in the range of different other approaches, such as distributed computing1

or general-purpose computing on graphics processing units or short GPGPU. Collision attacks on cryp-
tographic hash functions are very often expansive in a computational point of view. State of the art CPUs
offer a lot of computational power, but the time required to find collisions on modern day hash functions
is high anyhow.

An alternative to conventional CPUs for complex and time intensive computations is on the rise for
a while now. This alternative is commonly known as GPGPU and uses a GPU or a combination of CPU
and GPU to solve problems of general purpose. These GPUs are generally equipped with a high number
of processing kernels and are capable to run thousands of threads in parallel. Not long ago the usage
of these GPUs was somewhat limited because of the absence of an API which provides developers with
tools to conveniently access the GPU. The only way to communicate with GPUs was trough graphical
APIs, such as OpenGL [SGI92] or DirectX [Cor09].

In 2006 ATI presented a low level interface called CTM [AMD06] (Close to metal) to access the
GPU directly. Competitor NVIDIA was not far behind and introduced CUDA [NVI09a] (Compute Uni-
fied Device Architecture) in February 2007, which provides developers with a C like API and is therefore

1A distributed computing system consists of a certain number of computers which are typically connected through a network.

1



2 1. Introduction

arguable easier to use than CTM. For the first time these tools made it possible to use the computational
power of modern day graphic cards directly to solve problems in a fraction of time compared to state of
the art CPUs. Because of their often high complexity, collision attacks are suited very good to implement
on GPGPUs.

One big problem though is the non-deterministic program flow in combination with unpredictable
memory access patterns which is common in most collision attacks. Up till now and very probably also in
the near future all the GPUs have a SIMT (Single Instruction Multiple Thread) architecture. This archi-
tecture is not suited to deal with non-deterministic program flows. There are different limitations which
more or less all can be traced back to the SIMT architecture of the GPUs. For this purpose certain de-
sign strategies were developed to counter these limitations, or at least try to minimize the limiting factors.

A variation of the currently best attack of SHA-1 in view of complexity is used as a case study to
show different approaches and to conquer the above mentioned problems. Also, the difference between
an ”ideal” implementation without any limitations at all and the developed approaches was measured
to see what would be possible if GPUs would have a more suitable architecture like MIMD (Multiple
Instruction Multiple Data).

1.1 Terms and Acronyms

In this thesis the following terms and acronyms are used:

MDC Message detection code
MAC Message authentication code
NIST National institute of standards and technology
NSA National security agency
GPGPU General-purpose computing on graphics processing units
SIMD Single instruction multiple data
MIMD Multiple instruction multiple data
SIMT Single instruction multiple thread
Warp A group of a number of threads
SM Streaming multiprocessor
TPC Thread processing cluster

Table 1.1: Terms

1.1.1 Symbols

In this thesis the following symbols are used:

⊕ Bitwise XOR operation
∧ Bitwise AND operation
∨ Bitwise OR operation
¬ Bitwise complement operation
<< or ROLn Bitwise rotation to the left in a n-bit variable

Table 1.2: symbols



Chapter 2

Hash Functions

Cryptographic hash functions provide an effective way to protect large quantities of information with
the help of a short hash value generated by a hash algorithm. A hash function takes an input value of
arbitrary length and computes an output value of fixed length, called hash value. [Pre94]

The applications for hash algorithms can be categorized into two main fields of application:

• Message authentication.

• Modification detection.

Message authentication codes (MACs) take as input a message and a secret key. The first application
area of a message authentication code is data integrity. Data integrity assures that the data has not been
modified by an unauthorized person or process. The second application area is data origin authentication.
Data origin authentication is used to authenticate messages. [MvOV96, p. 323]

The second application is called modification detection code (MDC). Modification detection codes
are used in many areas. Typical examples would be the creation of digital signatures, or checksums over
downloaded files. [MvOV96, p. 323]

2.1 Requirements of Hash Functions

Cryptographic hash functions have to fulfill certain properties. It is important to mention that there is a
distinction between security requirements and constructive requirements [MvOV96, pp. 323 - 324].

2.1.1 Constructive Requirements

• easy to compute
The hash value y of a given input value x is easy to compute.

• compression
The hash function computes a hash value y from a given input value x with an arbitrary length to a
fixed length.

3



4 2. Hash Functions

2.1.2 Security Requirements

• preimage resistance
It must be computationally infeasible to find an input value x for a given hash value y, h(x)=y. In
other words the hash function must be a one way function.

• 2nd preimage resistance
It must be computationally infeasible to find a second input value z for a given input value x that
both compute the same hash value, h(z)=h(x).

• collision resistance
It must be computationally infeasible to find two arbitrary input values x and z which compute the
same hash value, h(z)=h(x).

• near collision resistance
It should be hard to find any two input values x and z such that h(x) and h(z) only differ in a small
number of bits.

There are also additional requirements in certain cases. For example in the case of the SHA-3 candi-
dates which are discussed in detail in Section 2.2.4. Also requirements like memory consumption, code
size and the simplicity of the algorithms structure are taken into account.

2.2 Iterated Hash Functions

Most cryptographic hash functions are iterated hash functions with a so called Merkle-Damgård [Mer79,
pp. 13–15] [Mer90, Dam90] construction which is shown in Figure 2.1. The message is split into several
blocks with fixed length. These blocks are computed separately. Each block serves as input to an internal
function E.

Figure 2.1: General structure of an iterated hash function as Merkle-Damgård construction
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There are different methods to compute the compression function itself. The most prominent methods
are:

Davies-Meyer mode is shown in Figure 2.2 and can be defined asHi = Emi(Hi−1)⊕Hi−1. [MvOV96,
pp. 340 - 341]

E

H
i-1

H
i

m
i

Figure 2.2: Davies-Meyer mode

Miyaguchi-Preneel mode is shown in Figure 2.3 and can be defined asHi = Eg(Hi−1)
(mi)⊕Hi−1⊕

mi. [MvOV96, pp. 340 - 341]

E
Hi-1

Hi

mi

g

Figure 2.3: Miyaguchi-Preneel mode

Matyas-Meyer-Oseas mode is shown in Figure 2.4 and can be defined as Hi = Eg(Hi−1)
(mi) ⊕

mi. [MvOV96, pp. 340 - 341]

E
Hi-1

Hi

mi

g

Figure 2.4: Matyas-Meyer-Oseas mode

On the last block a so called message padding is performed. For example the message padding of
SHA-0 and SHA-1 is processed in the following way. The input values have a fixed length of 512-bits.
First they are split into 512-bit blocks. At the end of the last message block a ”1” followed by ”0”s
followed by a 64-bit integer is padded. The 64-bit integer value describes the full length of the message.
Therefore the length of the input message is limited by 264. [oST02]



6 2. Hash Functions

2.2.1 The MD4 Family

Members of the so called MD4 family are by far the most commonly used hash functions today. The
MD4 [Riv92a] algorithm was published in the year 1990 by Ronald L. Rivest. MD4 had also a main
influence on the development of MD5 [Riv92b], HAVAL [ZPS93] , RIPEMD [BDP97] and the SHA
family which is described in Sections 2.2.2 and 2.2.3. Figure 2.5 shows the most prominent members of
the MD4 Family.

Figure 2.5: Members of the MD4 family

2.2.2 SHA-0 and SHA-1

The SHA family is a group of hash algorithms developed by the National Institute of Standards and
Technology (NIST) and the National Security Agency (NSA). SHA-0 [Nat93] was published in the year
1993. Two years later the algorithm was replaced by SHA-1 [oST02]. SHA-0 and SHA-1 are iterated
hash algorithms which process blocks of 512-bits and produce a hash value of 160 bit.

The core function of the hash algorithm itself consists of two parts:

• Message expansion

• State update

Message Expansion

In the message expansion the 512-bit message block is split into 16 32-bit segments (M0,M1,M2, ...M15)
called message words. The function expands these 16 message words Mi to 80 message words Wi. The
difference between SHA-0 and SHA-1 consists only of the left rotation in the message expansion as
shown in Equation 2.2. [oST02]
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Figure 2.6: State update function of SHA-0 and SHA-1

For Sha-0:

Wi = Mi, ∀i, 0 ≤ i < 16

Wi = Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16, ∀i, 16 ≤ i < 80 (2.1)

For Sha-1:

Wi = Mi, ∀i, 0 ≤ i < 16

Wi = ROL1(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16), ∀i, 16 ≤ i < 80 (2.2)

State Update Function

After the message expansion the expanded message W is used to update the so called chaining variables
(Ai, Bi, Ci, Di, Ei) in 80 steps (i = 0, 1, ..., 79).

A(i+1) = ADD(W (i), ROL5(A
(i), f (t)(B(i), C(i), D(i)), E(i),K(t)) (2.3)

B(i+1) = A(i)

C(i+1) = ROL30(B
(i))

D(i+1) = C(i)

E(i+1) = D(i)

The state update function has 80 steps and four different rounds which are shown in Table 2.1.
Figure 2.6 shows how the chaining variables (Ai, Bi, Ci, Di, Ei) are updated at each step. The con-
stant variables K(t) are added in every step and they are different for each round. The initial value IV
(Ai, Bi, Ci, Di, Ei) is also a set of constants. After the four rounds chaining variables are added to the
initialized value feed-forward. This process reiterates as long as all 512-bit blocks are computed. The
final value is than called hash value or message digest. [oST02]
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Table 2.1: The different rounds of the state update function

STEPS ROUND BOOLEAN f(B,C,D)

1-20 1 IF (B ∧ C) ∨ (¬B ∧D)
21-40 2 XOR B ⊕ C ⊕D
41-60 3 MAJ (B ∧ C) ∨ (B ∧D) ∨ (C ∧D)
61-80 4 XOR B ⊕ C ⊕D

2.2.3 SHA-2

SHA-2 [oST02] was introduced in the year 2002 and consists of SHA-256, SHA-384, SHA-512. These
three algorithms have longer hash values as their predecessors. Also some implementation details are
different to the SHA-0 and SHA-1 algorithms but the underlying design principles are similar. In Ta-
ble 2.2, the maximum message size, the block size, the word size and the message digest size for all
members of the SHA family are shown.

Table 2.2: Secure hash algorithm properties [oST02]

ALGORITHM MESSAGE SIZE BLOCK SIZE WORD SIZE MESSAGE DIGEST SIZE

SHA-0 < 264 512 32 160
SHA-1 < 264 512 32 160

SHA-256 < 264 512 32 256
SHA-384 < 2128 1024 64 384
SHA-512 < 2128 1024 64 512

2.2.4 SHA-3

In 2007 NIST issued a international competition, similar to the AES competition [FIP01, NBB+] in 1998,
to develop a new secure hash standard until 2012 called SHA-3. The need for a new secure hash standard
resulted from the fact that recently big advances in cryptanalysis of hash algorithms were made [Nat09b].
Chapter 3 will show different attacks on SHA-1 which created the need for a new secure hash standard.
Sixty-four different algorithms were submitted to NIST in October 2008. 51 algorithms out of the 64
met the minimum acceptance criteria to be accepted as first round candidates. In comparison to the AES
competition with 21 submissions [RD99] this is a huge advancement, at least in view of quantity.

For round two, NIST announced 14 candidates:

• BLAKE [AHMP08]

• Blue Midnight Wish [GKK+08]

• CubeHash [Ber08]

• ECHO [BBG+08]

• Fugue [HHJ08]

• Grøstl [GKM+08]
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• Hamsi [zK08]

• JH [Wu08]

• Keccak [BDPA08]

• Luffa [CSW08]

• Shabal [BCCM+08]

• SHAvite-3 [BD08]

• SIMD [LBF08]

• Skein [FLS+08].

NIST announced 5 candidates for round three:

• BLAKE [AHMP08]

• Grøstl [GKM+08]

• JH [Wu08]

• Keccak [BDPA08]

• Skein [FLS+08].

The email announcement states that none of the second round candidates were clearly broken. One
criterion is also the performance of the algorithms. Also an important criterion is that all the finalists
display a clear round structure. [oST10]

Table 2.3 shows important milestones for the hash algorithm competition:

Table 2.3: Milestones of the preliminary timeline for the SHA-3 hash algorithm competi-
tion [oST02]

YEAR, QUARTER DESCRIPTION

2008 4Q Submission deadline for new hash functions
2009 2Q Announcing first round candidates
2010 3Q Announcing the finalists
2012 2Q Address public comments, and select the winner

A detailed classification of all candidates can be found in [FFG09].
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Chapter 3

Collision Attacks

3.1 Generic Attacks

Generic attacks are not dependent on design principles of the attacked algorithms. These attacks work at
the basis of mathematical rules and can be applied to all algorithms and functions [MvOV96, p. 369]. In
the following two sections two generic attacks are described in detail.

3.1.1 Brute Force

Brute Force is a way to break an algorithm by initializing an exhaustive search. For a successful col-
lision attack on SHA-0 the complexity is 2160 because only 2160 different hash values exist. Because
of the requirements of hash functions described in Section 2.1 it must be computationally infeasible to
accomplish such an exhaustive search.

3.1.2 Birthday Attack

The birthday paradox has its name from the observation that if there are 23 people in a room then there
is a probability of more than 50% that at least two of them have the same birthday. The mathematical
principal behind the birthday paradox can be used to create a collision attack called birthday attack. For
the birthday attack only the output length of the hash value is of importance, so it can be applied to every
hash function in the same manner regardless of the hash functions internal structure.

One of the first applications of the birthday attack, and probably the most well-known, was published
by Yuval[Yuv79]. The main observation is that if one is randomly drawing members from a set with n
elements the probability is very high that the same element will be picked twice after O(

√
n) attempts.

This means, that for collision attacks on hash algorithms with a message digest size of n a collision
can be found with a complexity of 2n/2. For example in the case of SHA-0 and SHA-1 this results in a
complexity of 280. [MvOV96, p. 369]

11
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Algorithm for the birthday attack:

• Pick a message x (preferable a meaningful message)

• compute y = h(x) and safe y in an array

• alter x to x′ and compute y′ = h(x′)

• compare y′ with all elements in the array

• if no match is found put y′ into the array and compute new y′

3.2 Attacks on the MD4 Family

Another view on the MD4 family tree shown in Figure 3.1 depicts that most members are already broken.

Figure 3.1: Members of the MD4 family which are broken are marked with an X

• MD4 broken in 1996 [Dob96]

• MD5 broken in 2004 [WFLY04]

• HAVAL-128 broken in 2004 [WFLY04]

• RIPEMD broken in 2004 [WFLY04]

• SHA-0 broken in 2004 [BCJ+05] (Paper published 2005)

• SHA-1 theoretically broken in 2005 [WYY05b]

3.3 Cryptanalysis of SHA-0 and SHA-1

Collision attacks on the SHA family have a long history. SHA-0 and SHA-1 are probably the most at-
tacked and assessed hash algorithms at all. Due to the fact that SHA-0 has a simpler structure in the
message expansion compared to SHA-1, SHA-0 was the first choice of cryptographers to attack. The
first theoretically successful attack on SHA-0 was published 1998, five years after its introduction, and
is described in Section 3.3.1. In 2004 the first near collisions in SHA-0 were found which are described
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in Section 3.3.2. After extending previous attacks described in Section 3.3.3, the big breakthrough was
in 2005 when the first collision on SHA-0 was found and also SHA-1 was theoretically broken. Sec-
tion 3.3.4 describes the attack on SHA-0, and Section 3.3.5 describes the attack on SHA-1. The last and
most promising attack in view of finding a real collision in SHA-1 is described in Section 3.3.7 and is
also the subject of the case study discussed in Section 6.

3.3.1 Differential Collisions in SHA-0 (Chabaud Joux)

Chabaud and Joux presented the first collision attack on SHA-0 [CJ98]. Three algorithms were es-
tablished called SHI1, SHI2 and SHI3. Each one of these three algorithms has marked similarities to
SHA-0 but each of these three algorithms simplifies several implementation details. From that it follows
that each one of these three algorithms has another run-time leading to a collision as shown in Table 3.1.

Table 3.1: Algorithms and their complexity

NAME COLLISION COMPLEXITY DESCRIPTION

SHI1 128 ADD function is replaced by XOR, f(if)
and f(maj) are replaced by f(xor)

SHI2 220 ADD function is replaced by XOR
SHI3 244 f(if) and f(maj) are replaced by f(xor)

SHA-0 261

To fully understand the attack of Chabaud and Joux some terms have to be defined first:

• local collisions
A local collision is a collision consisting of six steps. It is a fact that SHA-0 has local collisions
that can be started at any step. These local collisions are responsible for creating full collisions of
the algorithm.

• differential path
A differential path describes the differences between two variables. The differential path is used
in the attack to describe local collisions. For a full 80-step collision the differential path describes
several local collisions that lead to a full collision. It is possible that these paths which describe
the local collisions have overlaps in some cases. Table 3.2 shows a differential path for 6 steps that
leads to a local collision.

• disturbance vector
A disturbance vector is a vector where the bits are set if a local collision is starting at that point.
For the case of SHA-0 it is sufficient to use an 80 bit vector to mark the starting points of the local
collisions. Another observation is that the first 16 variables determine the remaining 64. From
that it follows that there are only 16 bit to choose freely which leads to 216 different disturbance
vectors in total. The complexity of the collision search is dependent on the Hamming weight1 of
the disturbance vector.

1The Hamming weight describes the number of bits which are set.
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Table 3.2: A 6-step local collision in SHA-0 / SHA-1 [CJ98]

∆M ∆A ∆B ∆C ∆D ∆E

i 2j 2j 0 0 0 0
i+1 2j+5 0 2j 0 0 0
i+2 2j 0 0 2j+30 0 0
i+3 2j+30 0 0 0 2j+30 0
i+4 2j+30 0 0 0 0 2j+30

i+5 2j+30 0 0 0 0 0

Basic Attack Strategy

Chabaud and Joux defined three algorithms. Each of them similar to SHA-0, but several nonlinear parts
were replaced with linear parts. Therefore it is easier to produce collisions in these algorithms than in
the real SHA-0. In the final collision attack Chabaud and Joux attempt that the defined algorithms ”play
together” which is shown in Section 3.3.1.

SHI1

Here Chabaud and Joux took the compression function from SHA-0 with two changes. First the ADD
function is replaced by XOR. Second the f(if) and the f(maj) functions are replaced by the f(xor) func-
tion.

A(i+1) = XOR(W (i), ROL5(A
(i), f (t)(B(i), C(i), D(i)), E(i),K(i)))

In the compression function only the ADD function, the f(if) and the f(maj) functions are not linear.
With these changes the whole compression function is a linear function. At this time they lose sight of
the fact that the vector W is computed by the message expansion. Only with this premises it is possible
to assume that it is allowed to change every bit on W . The fact that everything in this model is linear
makes it possible to get a differential path which leads very easy to a full collision. Now a disturbance
vector of 80 entries is build. Every ”1” in the vector signifies that on this position W (i)

j is negated. This
works only for the first 75 steps because it is not possible to correct disturbances after step 80. In the
case that the five zeros at the end on the error vector must hold, there are only 128 possible inputs left.

SHI2

Compared to SHI1, f(if) and f(maj) remain unaffected. Only the ADD function is changed like in SHI1.
It can be shown that in some cases f(if) and f(maj) compute the same outputs as the f(xor) function which
is used in SHI1. The goal is to change the inputs so that f(if) and f(maj) act as the f(xor) from SHI1,
in other words the functions f(if) and f(maj) behave like f(xor). These changes raise the complexity
because f(if) and f(maj) behave like a f(xor) with a certain probability. With all these new conditions it
is possible to find a full collision on SHI2 with a complexity of about 220.

SHI3

Once again the compression function from SHA-0 is taken. f(if) and f(maj) are replaced by f(xor). The
ADD function stays unchanged. The problem here is that a carry effect can appear in the disturbances.
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The goal is to prohibit this carry effect. A helpful observation is that no carry can appear at bit position
31. Another observation is that if a bit flips from 0 to 1 it must be corrected with a flip from 1 to 0 (a
bit-flip from 1 to 0 acts equal). With these changes it is possible to find a full collision on SHI3 with a
complexity of 244.

SHA-0

Here the procedure to prevent a carry in the SHI3 function and the procedure to simulate the ADD
function in SHI2 must play together. With these changes it is possible to find a full collision on SHA-0
with a complexity of 261. The achieved complexity of 261 is better than the results achieved by a birthday
attack, which is described in Section 3.1.2.

3.3.2 The First Near Collisions of SHA-0

Eli Biham and Rafi Chen published a collision attack [BC04] on SHA-0 which is based on the fact that
many bits of a given message are so called neutral bits. The attack is based on the attack of Chabaud
and Joux [CJ98] which is described in Section 3.3.1. Biham and Chen present a 65-round collision with
a complexity of 229 and a near collision of the full 80-round function where only 18 bits differ with a
complexity of 240. Furthermore, they present an attack on an 82-round SHA-0 which has a complexity
of 243 and a full 80-round attack with a complexity of 256.

Definition of Neutral Bits

To explain the work of Biham and Chen the following definitions are needed:

• δr
δ describes the expected differences in the chaining variable A in each round based on the differ-
ence of M and M ′ which is called ∆. A pair of messages confirms to δr if Ai⊕A′i = δi for every
i ∈ {1, ..., r}.

• neutral bit
The bit on position i ∈ {0, ...511} is a neutral bit in relation to M and M ′ if it conforms to δr
before and after flipping the bit in M and M ′ on position i.

• pair of neutral bits
The pair of bits i and j are a neutral pair of bits in relation to M and M ′ if they conform to δr
before and after flipping any subset of the bits in M and M ′.

• set of neutral bits
The set of bits S ⊆ {0, ..., 511} is a neutral set of bits in relation to M and M ′ if all pairs of
messages conform to δr before and after flipping any subset of the bits in M and M ′.

• set of 2-neutral bits
The set of bits S ⊆ {0, ..., 511} is a 2-neutral set of bits in relation to M and M ′ if every bit in S
is neutral and every pair of bits in S is neutral.

Basic Attack Strategy

Biham and Chen used the fact that many bits in the message are neutral bits. Some techniques were
developed to find a big set of neutral bits to find a collision.
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Finding 2-neutral Sets of Bits of M and M ′

First the neutral bits in the message pairM andM ′ must be found. For this purpose on every bit position
i ∈ {0, ...511} the condition of the neutral bit must be tested. The 2-neutral set of bits is then the
maximal subset of bits that the following condition fulfills. The subset is built up at all neutral bits which
in combination with all other neutral bits conforms to δr. Biham and Chen observed that about 1/8
of the found pairs confirm to δr. In the concrete case a near collision of a full SHA-0 needs 243 pairs
(243 ∗ 2−3 = 240) because the expected complexity of a near collision is about 240.

Finding better 2-neutral Sets of Bits of M and M ′

In order to find a message pair with a larger 2-neutral set of bits which conforms to δr the given message
pair is modified. The given message pair is modified in a way that the probability that the new message
pair still fulfills the condition of δr is maximized. If a new message is found that confirms to δr and has
a larger set of 2-neutral bits as the previous message the previous message is replaced by the generated
message.

Collision Search

The first work that must be done is to increase the rounds that confirm to δr. To achieve that, the given
pair must be modified with the methods in the previous section. When a big enough 2-neutral bit set is
found it is possible to find a near collision of the full SHA-0 with a complexity of 240 where only 18 bits
differ. Furthermore a full collision on an 82 step SHA-0 can be found with a complexity of 243.

3.3.3 Update on SHA-1 (Rijmen Oswald)

This paper published by Rijmen and Oswald [RO05] extends the approach from Chabaud and Joux [CJ98]
which is presented in Section 3.3.1. Chabaud and Joux exploit the weaknesses of the message expansion
function in SHA-0. In SHA-1 this weakness no longer exists. For this reason it was necessary to find
a better searching algorithm. Rijmen and Oswald use algorithms and methods of the coding theory to
improve their attack. Furthermore they also analyzed other linear approximations for f(if) and f(maj).

Basic Attack Strategy

The problem is to find input values where the linear model and the original hash algorithm have an equal
behavior. In other words the differences in the linear model correspond to the differences in the real
SHA-1 model. The Hamming weight should be as small as possible because there is a relation between
the complexity and the Hamming weight. In other words as lower the Hamming weight is as lower is the
complexity to find a collision. From this it follows that a codeword with a low Hamming weight must be
found.

Finding a Better Linear Approximation

The replacement of f(if) and f(maj) by f(xor) is not optimal. On this account a better linear approxima-
tion must be found. The main advantage of the replacement by f(xor) is that all 80 steps are equal. The
disadvantages are that in certain cases the probability that an output bit flips, in the approximation and
in the real case, especially in f(if) is opposite and unlike other linear functions. f(xor) for example has a
height diffusion rate. Other linear approximations of f(if) and f(maj) that deliver better probabilities are
shown in Table 3.3.
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Table 3.3: The probability that the output bit changes its value when the input bits are changed ac-
cording to the input difference, for MAJ and IF and for all linear approximations [RO05]

OUTPUT FLIP PROBABILITY

δ f(if) f(maj) linear functions
xy ⊕ x̄z xy ⊕ xz ⊕ yz x y z x⊕ y x⊕ z y ⊕ z x⊕ y ⊕ z

000 0 0 0 0 0 0 0 0 0
001 1/2 1/2 0 0 1 0 1 1 1
010 1/2 1/2 0 1 1 1 0 1 1
011 1 1/2 0 1 1 1 1 0 0
100 1/2 1/2 1 0 0 1 1 0 1
101 1/2 1/2 1 0 1 1 0 1 1
110 1/2 1/2 1 1 0 0 1 1 0
111 1/2 1 1 1 1 0 0 0 1

Finding Codewords

For SHA-0 it is easier to find codewords with low Hamming weight as for SHA-1. For SHA-0 the search
space can be limited so that it is possible to find the best codeword with a complexity of 216. In the case
of SHA-1 the complexity to find the best codeword is too high for computation. On this account Rijmen
and Oswald use a 53-step version of SHA-1 that delivers better results than the Birthday Attack.

3.3.4 Efficient Collision Search Attack on SHA-0 (Wang et al.)

In this paper Wang et al. describe a new technique to find full collisions on SHA-0 [WYY05c] with a
complexity of 239. Equal techniques can be used to find near collisions on SHA-0 with a complexity of
233. Also for the collision attack of SHA-1 [WYY05b] with a complexity of 269 these techniques can be
used.

Basic Attack Strategy

Wang et al. introduce a nonlinear model for the first 20 steps. To achieve that, they use message
modification techniques that are described later. The other 60 steps have a linear characteristic with a
high probability shown in Figure 3.2. For the fact that the first 20 steps are not linear Wang et al. are
able to disregard several conditions from the disturbance vector which is shown in Table 3.4.

Figure 3.2: Shows the nonlinear- and the linear part of the model
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Table 3.4: The three conditions on the disturbance vector [Wan97]

CONDITION PURPOSE

1 bit in disturbance vector = 0 in position:
75,76,77,78,79

to produce the full collision in
the last step

2 bit in disturbance vector = 0 in position: -
5,-4,-3,-2,-1

to avoid truncated local colli-
sions in first few steps

3 no consecutive ”1”s in the first 17 positions to avoid an impossible collision
path due to a property of IF

Disturbance Vector

In the attack that Chabaud and Joux [CJ98] published in the year 1998, three conditions on the distur-
bance vector were given (see Table 3.4). The new attack only requires that condition 1 must hold (This
condition must hold because it is not possible to correct differences after step 80). In that fact Wang et
al. were able to find disturbance vectors with lower Hamming weight. This has a positive effect on the
search complexity. There are two additional conditions on M depending on the disturbance vector:

Mi+1,7 = ¬Mi,2

Mi+2,2 = ¬Mi,2 (only for round 3)

All messages with an index higher than 15 are generated from the lower ones. Therefore the condi-
tions can be recalculated to the first 16 message words. Hence, these conditions can be easily fulfilled.

Message Modifaction Techinques

Message modification techniques are used to correct the message words to that effect that the conditions
on the message words are fulfilled. First it is necessary to find a differential path that leads to a collision.
Second it is necessary to find conditions that this differential path is valid. Third the message modification
itself, described below, to fulfill all conditions in the first 20 steps.

• Basic message modification techniques
Basic message modification techniques can be deployed for the first 16-steps because it is possible
to change the first 16 message words directly by changing A on the current position i. There are
several ways to satisfy a condition on the message words. First if it is allowed, the bit can be
flipped directly. The second alternative is to flip the bit that stands on the position i− 1 and hope
that a carry appears. The third option is to flip the bit on position i− 5 on the previous A.

• Advanced message modification techniques
For the steps higher than 16 it is not possible to flip the bit directly because the message words are
computed from the first 16 message words (M0,M1, ...,M15). Wang et al. correct the conditions
by correcting A16. For example the condition on A18,32 is not fulfilled, they satisfy the condition
by applying basic message modification techniques on A16,22.

Complexity Analysis

Because the advanced message modification works up to step 20 and disturbance vectors were found
with a lower Hamming weight the complexity to find a full collision on SHA-0 can be reduced to 239.
The lowest search complexity for a full collision on SHA-0 at this time was 256 which was found from
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Figure 3.3: a two-block collision

Biham et al. [BCJ+05]. The fact that the complexity to find a full collision on SHA-0 is 239 makes it
possible that a collision can be found on a standard computer in a few days.

3.3.5 Finding Collisions in the Full SHA-1

The basic strategy behind the attack is pretty similar to the attack on SHA-0 described in Section 3.3.4.
Because of that fact only the differences are covered in this section.

Disturbance Vector

As mentioned before in the case of SHA-0 an 80-bit vector is used as disturbance vector. For SHA-1
this 80-bit vector is not sufficient anymore. Because of the rotation in the message expansion 16 32-bit
variables are needed instead of 16 1-bit variables to describe the whole search space. This results in a
search space as large as 2512. To search the entire space would not be an easy task. Therefore, Wanget
al. use heuristics to reduce the search space and search only in areas that likely contain vectors with low
hamming weight. The remaining space is at about 238, which is a huge improvement compared to 2512.
In order to create an attack which is more efficient than the birthday attack, the hamming weight of the
disturbance vector has to be less than 27. This is only possible if the conditions shown in Table 3.4 are
removed.

Collision Search

The fact that the conditions in Table 3.4 are not valid anymore for the given disturbance vectors, com-
plicates the construction of a valid differential path, so two near collisions are used to form a collision.
These two-block collisions are constructed in the sense, that the differences erase each other. Figure 3.3
illustrates the assembly of such a multi-block or in this case a two-block collision. M0 and M

′
0 produce

h1 and δh1 = h
′
1 − h1

Message Modifaction Techinques

The same message modification techniques are used as described in Section 3.3.4 with the exception that
advanced message modification can be applied up to step 22. Later Wang et al. claimed [WYY05a]
(results unpublished) to apply message modification up to step 25 using another differential path and
additional message modification techniques.

Complexity Analysis

These techniques led to the first attack which has a lower complexity than the birthday attack. With the
help of message modification techniques and early stopping it is possible to find near collisions with
a complexity of 268. The near collision on the second message block can be derived with the same
complexity as the first near collision. Because of that fact the complexity of the full collision is just
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increasing by a factor of two. From that it follows that the overall complexity to produce a full collision
is 269. According to unpublished results [WYY05a] Wang et al. were able to decrease the complexity
to about 263.

3.3.6 The Amplified Boomerang Attack

The presented attack [JP07] is an adapted version of the amplified boomerang attack on block ci-
phers [KKS00], which is again based on the boomerang attack proposed by Wagner [Wag99].

The Boomerang Attack

To completely understand the amplified version of the boomerang attack the original boomerang at-
tack [Wag99] itself has to be explained first. Basically the boomerang attack is a differential attack
which uses a structure of four plaintexts and certain differentials that are applied to the plaintexts and
the internal states of the decryption/encryption phase of these given plain-texts. Figure 3.4 shows the
structure of the attack which is explained as follows:

1. Choose an input pair Xi, Xj where Xj = Xi ⊕∆0

2. Encrypt the pair and half way through using E0 and get Yi and Yj with the relation Yj = Yi ⊕∆1

3. Encrypt Yi and Yj using E1 which results in Zi and Zj

4. Generate Zk and Zl through Zk = Zi ⊕∆1 and Zl = Zj ⊕∆1

5. Decrypt Zk and Zl using E1 which results in Yk and Yl which results into the relations Yk =
Yi ⊕∆0 and Yl = Yj ⊕∆0

6. Compute relation between Yk and Yl:
Yj = Yi ⊕∆1, Yk = Yi ⊕∆0, Yl = Yj ⊕∆0

Yk = Yi ⊕∆0

Yk = Yj ⊕∆1 ⊕∆0

Yk = Yl ⊕∆0 ⊕∆1 ⊕∆0

Yk = Yl ⊕∆1

Yk = Yl ⊕ ∆1 determines the relation Xk = Xl ⊕ ∆0. Because of this relations it is possible to
distinguish E from random permutations.

Adapting the Boomerang Attack to Attack Hash Functions

Because of the fact that there is no decryption in hash functions the boomerang attack can’t be applied
directly. The so called amplified boomerang attack [KKS00] however can be applied to attack hash
functions with certain adaptations. The adaptations and the subsequent attack are described in [JP07].
The basic idea is to apply so called auxiliary differential paths, which work good for a certain number
of steps, to a main differential path to reduce the overall work factor. The principals of the boomerang
attack are now used to attach the auxiliary differential paths to the main differential path. Figure 3.5
shows the structure of the adapted version of the attack.
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Figure 3.4: Structure of the boomerang attack

Like in the original attack a plaintext pair is chosen with a differential ∆ which is the main differential
path. In addition to the main differential path an auxiliary path is applied to the message pair. As
mentioned before this path is only ”good” for a limited number of steps, and therefore covers only the
early and the middle steps of the compression function. This attack only succeeds if the main differential
path contains all the conditions needed for each auxiliary path that is applied to the main differential
path. In order to build such a differential path Joux and Peyrin use a path generator proposed in [CR06].

Complexity Analysis in View of SHA-1

According to unpublished results [WYY05a] the best known attack Wang et al. were able to apply,
was message modification up to step 25. With the new techniques presented above it should be possible
that messages conform to the differential path up to step 28 which means that 5 additional constrains
on the message are fulfilled. Hence the overall complexity decreases by a factor of 32 if various other
conditions could be met.
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Figure 3.5: Structure of the amplified boomerang attack adapted to attack hash functions

3.3.7 Clustered Truncated Differentials and Fast Collision Search

The method presented in [Rec09] and [MR] is an advancement of message modification and is at the
time of writing this thesis the best known attack on SHA-0 and SHA-1. To find a collision on SHA-1
using this methods, there was also a distributed computer effort [MRR09] launched which is suspended
at the time. A variant of this attack is implemented in the case study which is described in Chapter 6

Equations

To find a pair of colliding messages, which is conforming to a certain characteristic, equations have
to be solved which are bound to this characteristic. Because of the fact that in every step the state
update function is computed, which adds diffusion to the input message, equations in later steps are in
general harder to solve than equations in earlier steps. One way to solve equations is through message
modification which is described in Section 3.3.4.

Message Modification Patterns

In the attack two different message modification patterns are used. The differentiation is between short
patterns and long patterns which are explained in the paragraphs 3.3.7 and 3.3.7. In general long patterns
are able to solve equations of higher steps than short patterns. This advancement comes with a price in
view of degrees of freedom. There are also certain limitations connected with the usage of these patterns.
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Short Patterns: Short patterns are affecting equations between the steps 17 and 22. There are no
short patterns known for equations in steps later than 22. In general a small weight difference is injected
into the message pair. This difference propagates through the state update function and flips a relevant
equation bit with a high probability. In addition the probability that an already solved equation changes its
state to not valid, is very low. Figure 3.6 shows the structure of short patterns. The difference introduced
at a certain step, requires the re-computation of all the steps up to the step of the targeted equation.
Short patterns have a big advantage over long patterns in view of degrees of freedom. Compared to long
patterns short patterns require much less degrees of freedom.

step r-s

p 1m ≤

p 1e ≤
step r

2 order

differential

nd

s stepsi

bit in equation

Figure 3.6: Short pattern

Long Patterns: Long patterns are based on the principles of short patterns. As mentioned in Sec-
tion 3.3.7 more degrees of freedom are used compared to short patterns to force a local collision. These
patterns can be used to fulfill equations between the steps 23 and 30. The differences which are in-
troduced in the earlier steps reappear because of the message expansion in later steps. They solve the
targeted equation with a high probability. Equally to short patterns the equations which are already
solved remain untouched with a high probability. Figure 3.7 shows the structure of long patterns.

step r-s

p 1m ≤

p 1e ≤
step r

pattern

s stepsi

bit in equation

Figure 3.7: Long pattern
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Finding Characteristics

As mentioned before solving equations in higher steps with the help of long patterns requires a lot de-
grees of freedom. In consequence to this the remaining search space is not big enough to perform a
full search. Therefore different characteristics are used for a full search. In the attack described in Sec-
tion 3.3.5 Wang et al. constructed the used characteristic by hand. To run a full search it is therefore
necessary to create a tool which is able to automatically generate different characteristics. This problem
is targeted in the paper [CR06] by Cannière and Rechberger.

In general they construct characteristics by adding conditions to a characteristic as long as the work-
factor2 of the characteristic is improving. This process consists of two important components:

• The conditions have to be consistent and have to propagate.

• There has to be a determination which conditions to add.

Finding Collisions

Applying the tools discussed in the sections above the estimated complexity should be in the range of
about 260. This is the best estimated complexity for collision attacks on SHA-1 at the time. Also a
complexity of 260 is getting in range of a computation.

2The workfactor of a characteristic is the required effort that two messages follow the characteristic



Chapter 4

Stream Processors

In general stream processors try to fill the gap between special-purpose processors and general-purpose
processors. [KDR+03] Particularly for real-time media applications special-purpose processors are bet-
ter suited than general-purpose processors because they are able to fulfill the in general high performance
demands of media applications better. However the big disadvantage is that special-purpose processors
are not flexible in their programming or at least limited in their flexibility. [KRD+03]

General-purpose processors on the other hand are highly flexible, but their architectures are in gen-
eral not very well suited for the special demands of typical media applications. [KRD+03] They are in
general optimized to reduce data latency and reuse data, which results in much more complex data and
instruction delivery systems on the chip. In contrast to stream processors general-purpose processors
devote only a fraction of the space available on the chip to the actual computation. [Pet09] For example
on the Itanium 2 processor only 6.5% of the die is dedicated to ALUs and their registers. [NCBF+02]

An application which is suited for a stream processor often fulfills the following three characteris-
tics: [KDK+01]

• There is always a huge amount of data parallelism involved because the data elements are highly
independent.

• For each data element a high number of operations is typically performed resulting in a high
latency tolerance.

• There is almost no reuse of global data.

Not long ago stream processors were almost only used in media applications. This changed dras-
tically in the last years because on one hand GPUs are now commonly used in many PCs and on
the other hand manufacturers now provide APIs to program these GPUs to compute problems of gen-
eral purpose. Two prominent applications using GPUs for example would be folding@home [Fol] and
seti@home [ACK+02].

25
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Figure 4.1: The stream programming model explained on the example of an MPEG-2 I-Frame
encoder

4.1 Stream Programming Model

To fully understand the mechanisms and the structure of stream programs, first a clear terminology has
to be defined. For that purpose the so called stream programming model is the tool of choice. The basic
concept of the stream programming model is to arrange an application into kernels and streams to expose
concurrency and locality. It is easy to see that this structure is well suited for stream architectures with a
high number of ALUs. [Rix02]

A Kernel is basically a small program which is applied to every element in the input stream. In view
of the kernel each input element is independent and all operations are performed locally. Therefore the
computation of these elements can be done in parallel. Each Kernel has an input-stream and an output-
stream. Normally data which is generated by the kernel locally, by computing the elements in a stream,
doesn’t need to be referenced by other stream elements or kernels. [Rix02] However in some cases the
programmer has some kind of shared memory to his disposal which makes it possible to share local data
of different stream elements within a kernel. With a few exceptions kernels are only allowed to access
data from input streams or output streams. [KRD+03]

Streams are records or fields of data which are serving as input and output to a kernel. A stream
element can be a primitive data type, such as an integer or a float, but can also be a whole data struc-
ture. [KRD+03]

Figure 4.1 shows the principles of the stream programming model as an exemplary MPEG-2 I-
frame encoder. ”Video frames”, ”Luminance reference”, ”Chrominance reference” and ”Compressed
bitstream” are container for global data. ”Input Image” is the first stream which is fed into the kernel
”Convert”. The ”Convert” kernel itself produces data streams which are again fed into other kernels.
At the end the different kernels are streaming their produced values back into the global data contain-
ers. [KRD+03]
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4.2 Additional Terminology

4.2.1 Scatter and Gather

Although communication between the individual streams should be minimized, in some cases it can
be advantageous. Sometimes for performance sake, it is helpful if a kernel has access to other cells
than the one currently being processed. Especially in the case of data communication on GPUs gather
and scatter are two types of communication worth mentioning. If a kernel, which currently processes a
stream element, needs information from other stream elements it gathers information from other parts of
memory. Scatter occurs if a kernel processing a stream element distributes information to other parts of
the memory. [PF05]

4.2.2 SIMD

SIMD stands for single instruction multiple data, which means that these architectures issue the same
instruction for different data elements. Often stream architectures are structured in a way that a certain
number of ALUs are building a SIMD cluster. Within the cluster all ALUs compute the same instruction.
SIMD cluster are normally independent, which means that different SIMD cluster are often able to
compute different instructions at the same time. [NVI09c]

4.3 The Imagine Stream Processor

The Imagine stream processor was developed at Stanford and at MIT from 1996 to 2001 and is basically
a load and store architecture for streams. 48 arithmetic units organized in 8 arithmetic clusters act as
workhorses for the processor and are able to obtain a computational performance of 20 gflops. [Rix02]
Imagine is a programmable stream processor which is controlled by a host processor and is able to ex-
ecute applications directly with the help of streams and kernels. Figure 4.2 pictures the Imagine stream
architecture.
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Figure 4.2: The imagine architecture [Rix02]
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The main stream instructions are:

• Load transfers streams from the DRAM to the SRF

• Store transfers streams from the SRF to the DRAM

• Send transfers streams from the network to the SRF

• Cluster op computes the kernels in the given cluster and writes the output streams back into the
SRF

The so called SRF (stream register file) is responsible for storing and loading streams which are gen-
erated by the kernels. The host processor issues stream instructions to the stream controller which when
ready issues them to the 8 arithmetical clusters. The arithmetical clusters compute the given instructions
in SIMD fashion. [KDK+01]

4.4 The Cell Multiprocessor

The cell processor was introduced in the year 2005 and is a collaboration of IBM, Sony and Toshiba. The
motivation to develop this multiprocessor originated from the fact that traditional architectures would not
be able to deliver the computational power necessary for their needs in the near future. One of the goals
was to create a multiprocessor which was able to achieve about 100 times the processing power of the
PlayStation2. [KDH+05] Outstanding performance especially on game and multimedia platforms, real-
time response to user and network, applicability to a wide range of platforms and support for introduction
in 2005 were also main objectives for the cell processor. [CRDI07]

The Cell architecture shows strong similarities to a CPU/GPU setup in an architectural view. In
general the Cell processor consists of a Power Processing Element (PPE) and eight synergistic processor
elements (SPEs) connected through a coherent on-chip element interconnect bus (EIB) shown in Fig-
ure 4.3. The PPE basically takes over the role of the CPU and the SPEs can be compared to the thread
processors on the GPU. One big advantage of the cell architecture is that the EIB is on chip in compari-
son to the pci-express bus. [KDH+05]

In view of computational power one SPE has a peak performance of 25.6 Gflops. Therefore the
whole theoretical computational power of the SPEs is 204.8 Gflops. Compared to GPUs which were
released approximately at the same time, the Cell processor has a very similar computational capability
than the top of the line GPUs in 2005. Figure 4.6 shows benchmarks of GPUs and the cell multiprocessor.
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Figure 4.3: Architectural overview of the cell multiprocessor

4.5 GPGPU

For many years now programmers use GPUs to compute problems of general purpose. In general GPUs
offer high performance not only in view of computational power but also in view of memory throughput.
For a long time these capabilities were hard to access due the fact that GPUs were formally designed to
process graphical data and not data of general purpose. As computer graphics applications became more
and more demanding, for example to compute 3D Data, the structure of GPUs grew also more flexible.

4.5.1 Historical vs. Modern

The following sections show an overview of the technical developments of GPUs over time.

Traditional Graphics Pipeline

Figure 4.4 shows a traditional graphics pipeline which existed in the depicted structure in principle for
the last 20 years. Every function had its own processor for the computation. [NVI06]

Structure of the traditional graphics pipeline: [NVI06]

• Vertex: In the first step the GPU receives vertex data from the CPU. The vertex shader, who
evolved from so called ”Transform and Lighting”1, transforms the 3D position of the vertex into
the 2D screen position. They are also responsible for coloration and position properties.

• Triangle: The next step is the is the ”triangle stage”, where primitives such as triangles, lines or
points are generated from the vertices.

1Transform converts spatial coordinates into a 2D view. Lighting is responsible for the coloration of objects due to the
influence of lighting objects.
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• Pixel: The primitives are then converted into pixel fragments by the ”pixel” unit. After further
processing the pixel fragments are written into the frame buffer.

• ROP: The ROP (Raster Operation) stage is responsible for checking visibility, transparency and
anti-aliasing.

• Memory: The final processed pixel is sent to the frame buffer memory for scan-out and display to
the monitor.

Vertex

ROP

Pixel

Memory

TriangleTriangle

Figure 4.4: Classic graphics pipeline

Modern Graphic Pipeline

With the introduction of NVIDIAs 8000 series and AMDs HD 2000 series the setup of the traditional
graphics pipeline changed drastically. The graphics pipeline model is replaced with a so called ”Unified
Pipeline and Shader Design” which is shown in Figure 4.5. [YG07]
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Figure 4.5: Unified pipeline and shader design

This approach changes the standard sequential flow into a loop oriented flow. Data is fed into the
shader core, which processes it and writes the outcome into the registers, where it can be again fed into



4.5. GPGPU 31

the shader core and so on. [NVI06] A comparison between this architecture and the classical graphics
pipeline design shows that the unified shader core is much better suited for general purpose computing be-
cause all ALUs are programmable and therefore are able to compute different types of programs. [YG07]

4.5.2 Comparison of GPUs and CPUs

It is interesting to see how GPUs and CPUs evolved over time in view of computational capabilities and
bandwidth capabilities. Figure 4.6 shows clearly that in view of raw computational power stream pro-
cessor architectures are superior to general-purpose processors. It’s a fact that the computational power
of the imagine stream processor and the cell multiprocessor aligns with the computational power of state
of the art GPUs, at the time of their launch. Therefore, it stands to reason that the superior computational
capabilities of stream processors compared to general purpose processors is due to the architectural dif-
ferences.

Table 4.1 clearly shows that the gap between GPUs and CPUs widens over time in view of com-
putational capabilities shown in Figure 4.6. This is probably because of the fact that stream processors
compared to traditional multi-purpose processors are a relatively young field of application. Due to this
fact there is probably more room for improvement in the field of stream processors which explains the
increasing ratio shown in Table 4.1

An interesting observation is that although given similar premises between bandwidth capabilities
shown in Figure 4.7 and computational capabilities, the ratio between GPUs and CPUs in view of band-
width capabilities is fairly constant as Table 4.1 shows.

Table 4.1: Ratio GPUs/CPUs in view of bandwidth and computational power

Ratio GPUs/CPUs
Year Gflops Bandwidth
2004 14 11
2006 20 8
2007 13 12
2008 26 11
2009 39 6

4.5.3 Theoretical Performance Capabilities

It is possible to theoretically compute the performance of GPUs in view of Gflops by knowing the ALU
frequency, the number of ALUs and how much operations the architecture itself can compute in one
clock cycle. Equation 4.1 shows how to compute the theoretical performance of a GPU.
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Gflops = #ALUs ∗ALUclockrate ∗ possible instructions per clock cycle (4.1)

For example the NVIDIA GTX 260:
ALU frequency: 1242 MHz
Number of ALUs: 192
Instructions per clock cycle: 3 (MADD (2 flops) and MUL (1 flop))
Gflops = 1.242 * 192 * 3 = 715.392 Gflops

Another example would be the ATI HD 4870:
ALU frequency: 750 MHz
Number of ALUs: 800
Instructions per clock cycle: 2 (MADD (2 flops))
Gflops = 0.75 * 800 * 2 = 1200 Gflops

It is very important to state that these numbers are only theoretical and cannot be directly translated
into real performance. In the case of NVIDIA for example the extra MUL operation is not always avail-
able, as Section 6.3.4 shows.

4.5.4 Gflops and Bandwidth Comparison

Figure 4.6 shows that the performance measurements of ATI and NVIDIA in view of Gflops follow a
very similar path. This indicates that both manufacturers are at a close distance to each other in view of
their technical progress. It can also be seen that the trendlines of ATI and NVIDIA shown in Figure 4.6
follow a similar path which falls into line of the previous statement.

Very interesting to see is also that the two stream processors, Imagine described in Section 4.3 and
Cell described in Section 4.4, exhibit similar benchmark results than the GPUs which were current at the
time.

The exact numbers for Figure 4.6 are given in Appendix A

Figure 4.7 shows that the bandwidth measurements of ATI and NVIDIA in view of Gflops follow a
very similar path. It can also be seen that the trend lines of ATI and NVIDIA shown in Figure 4.7 follow
a similar path. This correlates with the trend of the performance capabilities of ATI and NVIDIA. The
exact numbers for Figure 4.7 are given in Appendix A
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Chapter 5

Cuda

CUDA stands for Compute Unified Device Architecture and is basically a general purpose parallel com-
puting architecture. It uses CUDA capable GPUs to solve computationally complex problems. [NVI09c]
Many design decisions regarding the case study in Section 6 only make sense in conjunction of hardware
capabilities and hardware limitations of the GPU and of CUDA itself. Therefore a basic introduction of
the concept and a detailed description of the key components in view of the case study are given in this
section. Regarding terminology from now on the GPU is also referred to as ”device” and the CPU is also
referred to as ”host”. The whole system is built-up on a layered structure shown in Figure 5.1. On top
are the application layers which are based on the different driver APIs. [NVI09a]
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Figure 5.1: The CUDA architecture

The CUDA architecture itself consists of the following four key components [NVI09a]:

• User-mode driver, which provides a device-level API for developers. (1)

• PTX instruction set architecture (ISA) for parallel computing kernels and functions. (2)

35



36 5. Cuda

• OS kernel-level support for hardware initialization, configuration, etc. (3)

• Parallel compute engines inside NVIDIA GPUs. (4)

5.1 Architectural Differences Between GPU and CPU(Data Caching
vs. Data Processing)

Due to different fields of applications, GPUs and CPUs have fundamentally different hardware structures.
A typical CPU devotes a large amount of space to data caching and flow control as can be seen in
Figure 5.2. For a typical GPU however, data caching and flow control are two tasks which are relatively
easy to perform. The fact that on a GPU data elements are computed in parallel by the same program
or more precisely by the same instructions, (see Section 5.3.3) is responsible that flow control is not
that sophisticated for GPUs than for CPUs. Also typical applications for GPUs have high arithmetic
intensities, which in assistance to high parallelism leads to the effect, that memory access latency can
easily be hidden due to calculations instead of data caching. [NVI09a]

Control

ALU ALU

ALUALU

Cache

DRAM DRAM

CPU GPU

Figure 5.2: Sample GPU space and CPU space on the die

5.2 Device and Host Communication

Host and device are communicating through the PCI express interface, which in a nutshell is a general
purpose I/O interconnect, for a wide variety of computing platforms. PCI express works as a point-to-
point connection and provides a very high-speed interconnect. Each PCI express link contains a certain
number of lanes and is therefore variable in view of bandwidth capabilities[Int02]. The GeForce 200
series from NVIDIA for example uses PCIe 2.0 x16. PCIe 2.0 is designed to transfer 500 MB/s per lane,
which multiplies up to 8 GB/s for the x16 (16 lanes) configuration [PCI07, Int04]. Figure 5.3 shows the
basic architecture of a general purpose desktop with a PCI express interconnect.

5.3 Architectural Overview of CUDA Capable GPUs

As of now the G80, G90, GT200 and Fermi are the only CUDA capable GPUs. In principal all different
GPUs have a similar architectural structure. They are all based on the uniform shader architecture, which
is described in Section 4.5.1.
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5.3.1 Streaming Multiprocessor

On the GPU all the units are divided into so called streaming multiprocessors. On the G80, G90 and
GT200 architecture a streaming multiprocessor consists always of 8 thread processors, one warp sched-
uler, shared memory and constant memory. Figure 5.4 shows the architecture of the streaming multipro-
cessor. In the case of G80 and G90 two streaming multiprocessors form a so called thread processing
cluster (TPC). The GT200 architecture is very similar in that way, with the exception, that 3 stream-
ing multiprocessors form one TPC [NVI09c]. The Fermi architecture is different in regard that each
streaming multiprocessor consists of 32 thread processors and two warp schedulers. Also the streaming
multiprocessors are no longer bundled into TPCs. [NVI09b] The structure of the streaming multiproces-
sors may differ between Fermi and the other CUDA capable GPUs, but in general they are all built-up
upon the same principal.

5.3.2 Memory Model

Threads have access to different types of memory. Each type of memory has different characteristics and
different advantages. These memory spaces include local memory, global memory, constant memory,
texture memory, shared memory and registers. A basic distinction between all types is in ”off-chip mem-
ory” and ”on-chip memory” as shown in Figure 5.5. In general, ”off-chip memory” has a much slower
access rate than ”on-chip memory”.

Global memory and texture memory are the biggest memory spaces, and have also with local mem-
ory the greatest access latency. Followed by constant memory, shared memory and registers. [NVI10b,
pp. 19-20]
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Table 5.1 shows the various attributes of the different memory types which are described in detail in
the following.

Global Memory

Global memory resides in the device memory and is accessed via 32-, 64-, or 128 byte transactions. A
warp accesses the global memory in such a manner that it coalesces the memory access of the threads
into a number of memory transactions. The number of transactions is dependent on the size and the
distribution of the requested memory addresses. Dependent on these two criteria, the memory access is
more or less efficient. Only if the requested data is naturally aligned the operation is executed in one
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Table 5.1: Attributes of the different memory spaces

MEMORY LOCATION CACHED ACCESS SCOPE LIFETIME

ON/OFF CHIP

Register On n/a R/W 1 thread Thread
Local Off only com. cap. 2.0 R/W 1 thread Thread
Shared On n/a R/W All threads in block Block
Global Off only com. cap. 2.0 R/W All threads and host Host allocation

Constant Off Yes R All threads and host Host allocation
Texture Off Yes R All threads and host Host allocation

single global memory instruction. [NVI10c, p. 86]A detailed description of coalesced memory accesses
is given in Section 5.5.7

Local Memory

Like global memory, local memory resides also in device memory. The main difference is that the com-
piler decides when variables are put into local memory space. [NVI10c, p. 87]

There are three main reasons for this to happen:

• Arrays are indexed at runtime and not at compile time.

• Large structures or arrays which would occupy to much register space.

• A kernel uses more registers than available.

Shared Memory

Shared memory resides on the chip. Therefore its access is much faster than the access of local- and
global memory. It is expected to be a low-latency memory. Shared memory is partitioned into 16 equally
sized memory banks which can be accessed at the same time. If two or more addresses of a memory
request fall into the same memory bank, the memory access has to be serialized to avoid any bank
conflicts. The bank with the highest count of accessed addresses determines the number of necessary
memory request and subsequently the decrease in bandwidth. [NVI10c, p. 10, p. 86]

Constant Memory

Constant memory is located in the device memory but its access is speeded up by caching it into the con-
stant cache. The constant cash is residing on-chip and is therefore a low-latency memory space. [NVI10c,
p. 86, p. 143]

Registers

Each thread has its own set of registers which cannot be shared with other threads. The number of
available registers for each thread is determined by the number of threads running on the same streaming
multiprocessor and vice versa. [NVI10c, p. 86, p. 143]
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5.3.3 Single Instruction Multiple Thread (SIMT)

Each streaming processor is designed to execute a large number of threads in parallel. To compute and
schedule these threads, the streaming multiprocessor implements a new concept called single instruc-
tion multiple thread or short SIMT. The SIMT concept is similar to the single instruction multiple data
(SIMD) concept, because both architectures execute a single instruction on a certain number of pro-
cessing elements. SIMT differs from SIMD in a way that it is possible for the programmer to write
thread-level parallel code as well as data-level parallel code. Also SIMT instructions specify the branch-
ing and execution behavior on thread level in contrast to SIMD, where the software has to handle the
SIMD width. [NVI10c]

5.3.4 Warps and Thread Blocks

On a streaming multiprocessor, threads are always grouped in so called warps. For devices with compute
capability 1.x each warp consists of 32 threads which are executed in parallel. All threads in a warp
have the same start program address. Each thread has its own instruction address counter and register
state. Therefore, a thread is able to branch and compute instructions independently within a warp. When
a streaming multiprocessor is executing a block, it partitions the block into individual warps. On the
streaming multiprocessor the block size is always a multiple of 32. In special cases, such as coalesced
memory accesses, the term half-warp is also important to know. A half-warp consists always of 16
threads. The first 16 threads of a warp are building the first half-warp. The last 16 threads are building
the second half-warp. [NVI10c]

5.3.5 Multithreading

Each streaming multiprocessor contains the execution context of each thread and subsequently each
warp. Therefore switching the execution context of the warps has no cost for the multiprocessor. At every
instruction issue time, the warp scheduler selects a warp with active threads and issues the next instruction
for those threads. From that it follows that the number of warps, and in further consequence the number
of blocks a streaming multiprocessor is able to hold, is limited by the hardware itself. [NVI10c]

5.4 CUDA API

5.4.1 Versioning and Compute Capability

The compute capability of a CUDA capable GPU is defined by a minor- and a major revision number.
GPUs with the same core architecture have the same major revision number. The minor revision number
defines improvements within the same core architecture. [NVI10c, p. 14]

5.4.2 Kernel

At the beginning the program is always executed on the host. At a certain point in the program, the host
administrates a so called kernel invocation. The kernel invocation is the entry point to the device and has
always the following structure:

kernel<<<dimGrid, dimBlock>>>(...)
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While dimGrid describes the size, or more precisely the number of blocks in the grid, dimBlock
describes the number of threads within a block. [NVI10c, p. 7]

5.4.3 Thread Structure

In order to fully utilize the GPU, it is necessary to run a really high number of threads at the same time.
To work with that many threads efficiently the CUDA API provides a grouping mechanism. Figure 5.6
shows how the threads are arranged. Always a certain number of threads are building one block. Again,
a certain number of blocks are building one grid. Furthermore, each thread has a unique and consecutive
ID within a block called thread ID. The threadIdx Vector, which contains the thread ID, is composed of
three components. Therefore, threads can be identified as one-dimensional, two-dimensional or three-
dimensional vectors. Figure 5.6 for example depicts a two-dimensional thread block of size (Dx, Dy).
Each thread within a block is running on the same streaming multiprocessor. This is an important fact
because it is the only way to efficiently and safely use the on-chip shared memory. The limitation to
the same streaming multiprocessor also restricts the number of threads in a block. GPUs with different
compute capabilities have also a different number of threads one block is able to contain. The exact
numbers are given in Section 5.5.2. [NVI10c, pp. 8-10]

Block (0,0) Block (1,0) Block (2,0) Block (3,0)

Block (0,1) Block (1,1) Block (2,1) Block (3,1)

Grid

Thread (1,0) Thread (2,0) Thread (3,0)

Thread (0,1) Thread (1,1) Thread (2,1) Thread (3,1)

Block (1,1)

Thread (0,0)

Thread (0,2) Thread (1,2) Thread (2,2) Thread (3,2)

Figure 5.6: Structure of the grid, the blocks and the threads

5.4.4 Compiler

Normally, the source code which is compiled with nvcc is a combination of host and device code. The
basic workflow of nvcc is to separate the host code from the device code. The host code can be compiled
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with any complier because it is entirely executed on the host. Device code is either written in PTX or in
CUDA C and is further compiled into binary code. [NVI10c, pp. 15-16]

5.4.5 Heterogeneous Programming

As mentioned in Section 5.4.2, the kernel invocation is the entry point to the device. The fact that host
and device are two physically separated entities makes it possible that after the kernel invocation the host
part of the program executes in parallel on the CPU. To facilitate this concurrent execution on host and
device, the following functions have to be asynchronous:

• Kernel launches.

• Functions which perform memory transactions and are suffixed with the keyword Async.

• Functions which perform device to device memory transactions.

• Functions which set memory.

It has also to be mentioned that if a synchronous function is called, control is not returned to the
host thread until the device finishes its execution. Host and device maintain their own memory space in
DRAM, addressed to as host memory and device memory. [NVI10c, pp. 11-12, p.34]

5.5 Hardware Limitations

To comprehend all the design decisions made in the case study, it is paramount to understand the hard-
ware limitations concerning the used device. In this section an overview of the most crucial limitations
in view of computation efficiency is given.

5.5.1 Memory Latency

Memory latency describes the number of clock cycles needed for a warp to be ready to execute its next
instruction. To cover up all latencies, and achieve full utilization of the streaming multiprocessor, it
is necessary that the warp scheduler has always an instruction ready to issue for another warp and for
any clock cycle during the latency period. In other words full utilization is achieved if the latency of
each warp is hidden by other warps. The number of instructions required to fully hide latency depends
on the instruction throughput. The reason for a warp not being ready to execute its next instruction is
almost always that the instruction’s input operand or input operands are not available at this point in time.

It is also possible that latency occurs although all operands reside in registers and are therefore by
nature low-latency because of their on-chip nature. This type of latency is always caused by register
dependency. The latency equals the execution time of the previous instruction, which is dependent on
the instruction itself.

If at least one input operand resides in off-chip memory, the latency is between 400 and 800 clock
cycles. The number of warps required to achieve full utilization in that case, is dependent on the ker-
nel code. The ratio between instructions with on-chip memory operands and instructions with off-chip
memory operands determines the number of warps required for full utilization. This ratio is commonly
called the arithmetic intensity of the program.
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The following formula calculates the number of warps necessary to fully hide latency:

W =
l

ai ∗ ii
(5.1)

• W is the number of active warps necessary on the streaming multiprocessor

• l is the latency of input operand residing on off-chip memory

• ai is the arithmetic intensity of the program

• ii equals the required clock cycles to issue one arithmetic instruction. For devices with compute
capability 1.x ii is 4. For devices with compute capability 2.0 ii is 2.

Other common reasons a warp is not ready to execute its next instruction, are memory fences and
synchronization points. A synchronization point can cause a streaming multiprocessor to idle, if only one
active block is executed on the streaming multiprocessor. It helps to have two or more active blocks on the
streaming multiprocessor, because synchronization points affect only warps within the block. [NVI10c,
pp. 82 - 83]

5.5.2 Constraints in View of Available Registers and Shared Memory

The number of warps and blocks a streaming multiprocessor is able to host for a given kernel are depen-
dent on the following criteria:

Execution Configuration of a Function Call

The execution configuration specifies the size and the dimensions, of the grid and the blocks, which will
be used to compute the function on the device. [NVI09c, p. 111]

Memory Recourses of the Device and Subsequently of the Streaming Multiprocessor

The general specifications of devices and their streaming multiprocessors are dependent on the compute
capability of the device itself. For example the maximum x-dimension or y-dimension of a grid is 65535
for all so far existing devices. On the other hand the maximum threads a streaming multiprocessor is
able to host is 768 for compute capability 1.0 and 1.1, 1024 for compute capability 1.2 and 1.3 and 1536
for compute capability 2.0. [NVI10c, p. 83, p. 140]

Resource Requirements of a Kernel

The number of warps and blocks a streaming processor is able to host and process for a given kernel
is dependent on the recourses (registers and shared memory) of the streaming multiprocessor itself and
the recourses used by the kernel. If to execute one block, a kernel uses more registers or more shared
memory than available, the kernel will fail to launch. [NVI10c, p. 78-83]
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The total number of warps Wblock in one block is as follows:

Wblock = ceil(
T

Wsize
, 1) (5.2)

• T is the number of threads per block.

• Wsize is the warp size.

• ceil(x, y) equals x rounded up to the nearest multiple of y.

The total number of registers Rblock allocated for one block is as follows:

For devices of compute capability 1.x:

Rblock = ceil(ceil(Wblock, GW ) ∗Wsize ∗Rk, GT ) (5.3)

For devices of compute capability 2.0:

Rblock = ceil(Rk ∗Wsize, GT ) ∗Wblock (5.4)

• GW is the warp allocation granularity, equal to two for compute capability 1.x only.

• Rk is the number of registers used by the kernel.

• GT is the thread allocation granularity, equal to 256 for devices of compute capability 1.0 and 1.1,
512 for devices of compute capability 1.2 and 1.3 and 64 for devices of compute capability 2.0.

The total amount of shared memory Sblock in bytes allocated for a block is as follows:

Sblock = ceil(Sk, GS) (5.5)

• Sk is the amount of shared memory used by the kernel in bytes.

• GS is the shared memory allocation granularity, which is equal to 512 for devices with compute
capability 1.x and 128 for devices with compute capability 2.0.
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5.5.3 Constraints in View of Shared Memory Usage

Shared memory is a special type of on-chip memory and can only be used in computational mode and
not in graphics mode.

Its advantages compared to other types of memory are:

• Fast on-chip memory with low latency.

• Can be accessed in form of an array in contrast to registers.

• Its values can be shared between different threads within a block.

To use all these advantages and achieve high bandwidth certain access criterions must be adhered.
Shared memory is segmented into n equally sized memory banks, which can be accessed in parallel.
For devices with compute capability 2.0 n is 32, which represents the number of threads in a warp. For
devices with compute capability 1.x n is 16, which represents the number of threads in a half-warp. The
n memory requests are only executed simultaneously if each thread in a warp or half-warp accesses ele-
ments in the n different banks, or all threads access the same element.

If x addresses of a memory request fall into the same bank the requests for this bank have to be
serialized into x separate memory transactions. The bank with the highest x determines the bandwidth
of the whole transaction and causes a so called x-way bank conflict.

To avoid or at least minimize bank conflicts it is important to know how memory addresses map to
memory banks and how to schedule these memory requests optimally. Shared memory banks are orga-
nized in such a manner that consecutive 32-bit words are assigned to consecutive memory banks. Each
memory bank has a bandwidth of 32-bits per clock cycle. To avoid bank conflicts it is often advantages
to align and pad the memory. [NVI10c]

5.5.4 Register Spillage

Normally auto-variables reside in register space. In the following cases the compiler likely places these
variables into local memory:

• Arrays for which the compiler cannot determine that they are indexed with constant quantities at
compile time.

• Large structures or arrays which would consume too much register space

• Any variable if the kernel uses more registers than available

Local memory is an off-chip memory and therefore has the same high latency and low bandwidth as
global memory accesses. It has the same requirements as global memory in view of coalesced memory
access. One difference between local memory and global memory is however that local memory is or-
ganized in such a manner that consecutive 32-bit words are accessed by consecutive thread IDs. These
memory accesses are therefore fully coalesced as long as all threads n a warp access the same relative
address. For example the same index in an array or the same member in a structure.

One way to find out if auto-variables or a memory structure is placed into local memory is to inspect
the PTX code. Even if the inspection of the PTX code reveals that no placement into local memory has
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taken place it is not a guarantee that in subsequent compilation phases the compiler might still do that.
To get information of the local memory usage of the cubin object, it is possible to instruct the compiler
to report the total local memory usage after the compilation.

Another crucial point is that the arithmetic intensity of the program changes with the register spillage
and therefore full utilization of the device is not guaranteed anymore. [NVI10c, p. 87-88]

5.5.5 Loop Unrolling

By default the compiler unrolls small loops with a known number of iterations. To control loop unrolling
of any given loop the #pragma unroll directive is used. For small loops which are called often and/or
run through often, loop unrolling can result in reducing execution time. [NVI10c, p. 131]

5.5.6 Thread Divergence

All threads within a warp have to execute the same instruction in order to compute all instructions in
parallel. If within a warp different instructions have to be computed at the same time, the computation
happens sequentially. This is called thread divergence because the execution of different instructions
at the same time always requires branching in the code. These divergence problems have a significant
impact on the computational time. [FSYA07]

Control flow instructions like if, switch, do, for and while are able to significantly alter the instruc-
tion throughput and in further consequence the execution time by causing threads of the same warp to
follow different execution paths. This is called thread divergence and has the effect that all different
execution paths have to be serialized. After all different execution paths complete their tasks the threads
converge back to the same execution path. The worst case scenario would be if all threads within a warp
diverge and their paths had to be serialized. Such a scenario would result in a significant increase of
execution time.

One possibility to avoid divergence for if and switch statements is branch predication. By using
branch predication all instructions are evaluated and therefore there is no divergence for these statements.
All instructions are provided with a per-thread predicate which is set true or false based on the controlling
condition. All instructions are getting issued for execution but only those who are marked with a true
predicate are getting evaluated. The compiler replaces a branch instruction with a predicated instruction
only if the number of instructions controlled by the branch condition is less or equal to 7 for warps that
are likely to diverge and 4 otherwise. [NVI10c, pp. 92 - 93]
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5.5.7 Coalesced Memory Access

Global memory and local memory are the two types of memory which profit from coalesced memory ac-
cess. If certain access requirements are fulfilled the device is able to coalesce loads and stores for threads
of a half warp for devices with compute capability 1.x and threads of a warp for devices with compute
capability 2.0 to one memory transaction. Figure 5.7 depicts the coalescing of a half warp, which consist
of 16 threads, with 4-byte words. In this case the global memory is aligned in 64-byte rows. [NVI10b,
pp. 19 - 26]

64 byte aligned segment

Half warp of threads

128 byte aligned segment

Figure 5.7: Coalesced sequential address that fall within two 128-byte segments

The requirements for coalesced memory access are dependent on the compute capability of the de-
vice:

• For devices with compute capability 1.0 and 1.1 coalesced memory access is possible if the k-th
thread in a half warp accesses the k-th element in a segment which is aligned to 16 times the size
of the elements accessed.

• For devices with compute capability 1.2 and 1.3 coalesced memory access is possible for any
access pattern which fits into a segment size of 32 bytes for 8-bit words, 64 bytes for 16-bit words,
or 128 bytes for 32- and 64-bit words

• For devices with compute capability 2.0 memory access is coalesced into the minimum number of
L1-cache-line-sized aligned transactions necessary to satisfy all threads.

In view of the case study in Chapter 6 especially access criterions of devices with compute capability
1.3 are of prime importance. The size of the aligned memory segment is always 32 bytes for 8-bit data,
64 bytes for 16-bit data and 128 bytes for 32-, 64- and 128-bit data.

The exact procedure for memory transactions of devices with compute capability 1.3 is as follows:

• Find the thread with the lowest thread ID which is active in the half warp.

• Find memory segment by inspecting the requested address of the given thread

• Mark all active threads requesting memory within the same segment

• Execute the transaction and mark all serviced threads as inactive.

• Repeat until all threads in the half warp are serviced.
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Effects of Misaligned Accesses

Misaligned accesses have the consequence that requested data resides in two segments as shown in Fig-
ure 5.8.

64 byte aligned segment

Half warp of threads

128 byte aligned segment

Figure 5.8: Misaligned sequential address that fall within two 128-byte segments

To get all the requested data, two transactions are necessary for devices with compute capability 1.2
and 1.3 and 16 transactions are necessary for devices with compute capability 1.0 and 1.0. Figure 5.8
shows the bandwidth development of two devices with different offsets.
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Effects of Strode Accesses

If the access pattern displays a stride access performance can degrade as higher the stride is. This kind
of access pattern occurs often in the case of multidimensional data or multidimensional matrices. Fig-
ure 5.10 depicts an access pattern with a stride of two.

64 byte aligned segment

Half warp of threads

128 byte aligned segment

Figure 5.10: A half warp accessing memory with a stride of 2

As shown in Figure 5.10 a stride of 2 results in a single transaction, but half of the elements are not
used which also cuts the bandwidth in half. The behavior of the bandwidth with increasing strides can
be seen in Figure 5.11.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10111213141516

E
ff

e
ct

iv
e

 b
a

n
d

w
id

th
in

G
B

/s
 

Stride 

GTX 280

GTX 8800

Figure 5.11: Bandwidth of memory access with an increasing stride



50 5. Cuda



Chapter 6

Case Study

In principal the reason for the case study is to determine if GPUs are suitable to efficiently solve prob-
lems displaying structures typical to shortcut collision attacks. It is of importance to define efficiently
in this context. On one hand efficient could mean that an attack is computed faster on a GPU as on a
CPU. On the other hand efficient could mean that the implementation of a typical shortcut attack is able
to fully or at least almost fully utilize the GPU. Both points of view are eligible and will be addressed in
the following sections.

As case study serves a variant of the at the time most efficient short cut collision attack on SHA-1
regarding complexity, which is described in Section 3.3.7. This attack features typical structures present
in most collision attacks and is therefore also a suitable representative for other attacks.

6.1 General Considerations

The first step is to decide which type of platform is a good choice for the case study. In principal ATI,
NVIDIA and the Cell Multiprocessor are the three platforms which are widespread enough to be consid-
ered as candidates. All three are based on the stream programming model and are therefore in principal
suitable. As Figure 4.6 in Section 4.5.4 depicts the Cell Multiprocessor was introduced in the year 2005
and is therefore at least in view of computational power not competitive against state of the art GPUs
from ATI and NVIDIA. In contrast to ATIs Stream, NVIDIAs CUDA is a very widespread and com-
monly used tool. Therefore CUDA is the platform of choice for this case study.

A typical collision attack works in a manner that it computes one or more steps at a time. After
that it checks conditions and reacts accordingly to their evaluation. After the evaluation further steps are
computed or the algorithm finishes. This results in a non-deterministic behavior in view of program flow.
On stream processor architectures this results in thread divergence as described in Section 5.5.6.

Another problem is that due to the non-deterministic behavior also memory read and memory write
accesses occur randomly. Random memory accesses in CUDA especially in global memory and local
memory are a problem in view of memory throughput as shown in Section 5.5.7.

There are different strategies to address these problems. The following sections show three differ-
ent approaches. Each approach has its own structure and design principle. Therefore the benefits and
tradeoffs are different also. Important is to find out the ”efficiency” of each particular approach. Also
the limitations and their impact on the efficiency are very important to know. One important goal of this
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case study is to provide guidelines. These guidelines can provide assistance to which strategy is suitable
for which sort of problem.

6.2 Technical Specifications and Benchmarks

On the host side the used CPU is based on Intel’s Nehalem architecture which was introduced in Novem-
ber 2008 [Int10a]. The exact model is ”Core i7-920” which has 4 cores and a clock speed of 2.66 GHz.
The device is a NVIDIA GeForce GTX 295 which is a dual-GPU graphics card and contains two in-
dependent PCBs or printed circuit boards. Each board contains a GT200b GPU and 896 MB GDDR3
memory. Table 6.1 shows the technical specifications of the NVIDIA GeForce GTX 295.

Table 6.1: Technical specifications of the NVIDIA GeForce GTX 295 graphics card

GeForce GTX 295
Fabrication Process 55 nm
CUDA Cores 480 (240 per GPU)
Number of multiprocessors 30
Graphics Clock 576 MHz
Processor Clock 1242 MHz
Memory Clock 999 MHz
Standard Memory Config 1792 MB GDDR3 (896MB per GPU)
CUDA Capability 1.3
Constant memory 64 KB
Shared memory per multiprocessor 16 KB
Registers available per multiprocessor 16K 32-bit registers (64 KB total)
Warp size 32
Maximum number of threads per block 512
Maximum number of resident blocks per multiprocessor 8
Maximum number of resident warps per multiprocessor 32
Maximum number of resident threads per multiprocessor 1024

The specifications of the GPU have a high impact on the implementation itself. One important
key figure is the occupancy rate which describes the ratio between the number of warps residing on a
streaming multiprocessor and the maximum number of warps residing on a streaming multiprocessor.
The number of resident warps is dependent on the register usage, the shared memory usage of a single
thread and the number of threads per thread-block. Devices with compute capability 1.3 such as the
GeForce GTX 295 are able to host up to 1024 threads per streaming multiprocessor. To achieve full
occupancy, one thread is allowed to use only 16 32-bit registers and 32 byte of shared memory. A
”low” occupancy rate is not necessary equal to a ”low” performance. The necessary occupancy rate to
achieve full performance is dependent on the arithmetic intensity of the program which is described in
Section 5.1.
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6.3 Cost-Performance Ratio

It is clear that different setups of GPUs and GPUs produce different results. For example a setup of a
high-end CPU with a low-end GPU would produce a much lower performance ratio in contrast to a setup
of a low-end CPU with a high-end GPU. From that it follows that the conducted benchmarks have also
to be viewed with this cost factor in mind.

There are many different approaches to calculate the costs of GPUs and CPUs. One approach would
be to compare the power consumption of these devices. Another would be to compare acquisition costs.
For the purpose of the case study the acquisition costs were chosen. This decision was made mainly
because of the fact that these costs are accessible before the point of acquisition whereas the costs for
power consumption are only accessible at execution time and only with additional equipment.

Another problem is which components to take into account. The motherboard can be seen as a basis
for the CPU and the GPU. Both CPU and GPU make use of fast outside memory which in case of the
GPU is placed on the graphics card. In case of the CPU this outside memory is the main memory. So
the components chosen to calculate the cost ratio are the graphics card on the side of the GPU and the
CPU in combination with the main memory on the side of the CPU. Also the necessary periphery like
the casing or the hard-disk has to be taken into account. The costs of the parts, which can not be assigned
to the CPU or the GPU, are split in half and added to each side.

At the time of purchase the acquisition costs of the components used in the case study were as
follows:

• Graphics card: 440C

• CPU: 275C

• Main memory: 120C

• Motherboard: 242C

• Periphery: 230C

On the side of the CPU this totals in 631C. On the side of the GPU this totals in 676C. This results
in a performance-cost ratio of approximately 0.93. So for the best performance ratio of 37 calculated
in Section 6.9.2, the cost-performance ratio would be 34.5. One important fact is that motherboards are
able to support several graphics cards which benefits the side of the GPU.

6.3.1 Benchmarking Methods

Benchmarks are conducted in two different ways. One way is to conduct benchmarks with the so called
”NVIDIA Compute Visual Profiler”. The other way is to use the CUDA built-in timer functions. List-
ing 6.1 shows the necessary functions to measure the execution time of a kernel. The timer functions are
self-explanatory. Important is also to call the cudaThreadSynchronize() routine after the kernel call.
Because of the non-blocking nature of the CUDA kernels statements after the kernel invocation can be
computed before the kernel finishes its computation.
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1 unsigned i n t timer ;
2 cutCreateTimer(&timer ) ;
3 cutStartTimer (timer ) ;
4
5 kernel<<<dimGrid , dimBlock>>>(... ) ;
6
7 cudaThreadSynchronize ( ) ;
8 cutStopTimer (timer ) ;
9 printf ( ” E x e c u t i o n t ime : %f ms\n ” , cutGetTimerValue (timer ) ) ;

10 cutDeleteTimer (timer ) ;

Listing 6.1: CUDA timer

6.3.2 Dual Issue

To fully utilize the capabilities of the GPU an understanding of how instructions are issued and computed
is paramount. Each streaming multiprocessor has the help of so called special function units or short
SFUs. The special functions units are among other things able to perform so called MUL1 instructions.
For that reason the processing cores of the GeForce GTX 200 GPUs are able to perform dual-issue of
multiply-add operations or short MAD2 and MUL operations by using the streaming processors MAD
unit to perform a MAD operation and using the SFU to perform a MUL operation in one clock cycle.
Benchmark tests conducted in Section 6.3.4 however show that the extra MUL operation is not always
available [NVI08].

6.3.3 Theoretical Benchmarks

The first approach to compare the performance ability of GPUs and CPUs are theoretical benchmarks.
With regard to theoretical benchmarks of GPUs and CPUs in general, Section 4.5.4 gives a good view
over a certain timespan. For the actual used device the theoretical benchmarks are as follows:

• NVIDIA GeForce GTX 295: 1.242 * 3 * 240 = 894 Gflops per GPU (MUL and MAD)

• NVIDIA GeForce GTX 295: 1.242 * 2 * 240 = 596 Gflops per GPU (MUL or MAD)

• NVIDIA GeForce GTX 295: 1.242 * 1 * 240 = 299 Gflops per GPU (integer operations or only
floating-point operations which are not MUL or MAD)

• Intel Core i7-920: 42.56 Gflops [Int10b]

6.3.4 Synthetic Benchmarks

An alternative option is, to conduct so called synthetic benchmarks, to compare the performance ability
of GPUs and CPUs. In the case of CPUs synthetic benchmarks are a very well explored field. Prominent
members of synthetic benchmarks for CPUs are Dhrystone [Wei84] and Whetstone [CW76]. Neither
Dhrystone nor Whetstone are able to benchmark GPUs. The available tools which benchmark GPUs
and CPUs in a comparable manner are immature in a sense that they produce results which are not very
plausible given the results in Section 6.3.3 and 6.3.5

1MUL: c = a * b
2MAD: c = a * b + a
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The fact that synthetic benchmarks are important in view of the case study gave the reason to self-
conduct benchmarks. As mentioned in Section 6.3.3 the NVIDIA GeForce GTX 295 has different bench-
marks dependent on the instructions it has to compute. The first basic classification is to differentiate
between integer computation and floating-point computation. A further classification is to distinguish
between multiplications, additions, bitwise operations and the special cases MUL and MAD. Listing 6.2
shows the complete function for the floating-point-addition benchmark.

In line one there is an allocation of shared memory. This allocation in combination with the instruc-
tions in line 6 and 15 is just to ensure that the compiler is not optimizing the other instructions out of the
function. The instruction #pragma unroll in line 9 is responsible to unroll the loop to ensure that there
is no instruction overhead due to loop iterations. The sole purpose of the loop in line 10 is to focus the
main computational load on the benchmark instructions.

The benchmark instruction itself is shown in line 12. It consists of two ”simple” floating-point oper-
ations which according to Table 6.2 requires two instructions to compute. Table 6.2 also shows that these
kind of instructions reach about 280 Gflops which is close to the theoretical benchmark of 299 Gflops
shown in Section 6.3.3.

Listing 6.3 shows the operations to benchmark the MAD capabilities of the device. Results in Ta-
ble 6.2 show that for the multiplication and the addition only one instruction is issued. Data in the table
also shows that there is an increase in speed of ”only” 72% where there should be an increase of 100%.
Because of the fact that NVIDIA itself doesn’t disclose all necessary data it is not possible to evaluate
the exact reason for this discrepancy.

As mentioned in Section 6.3.2 GeForce GTX 200 GPUs are able to compute an extra MUL operation
with the help of the SFUs. Table 6.2 shows that in about 51% of all cases the extra MUL instruction can
be performed by the SFU which results in a ”peak performance” of 606 Gflops.

With regards to the case study additions and bitwise integer operations are of most importance. Ac-
cording to Table 6.2 the integer benchmark function displays similar behavior than the ”simple” floating-
point benchmark function. This is can be explained because the SFU is only available for MUL opera-
tions and the streaming processors MAD units can’t be applied either.

Table 6.2: Synthetic benchmarks for one GPU of the NVIDIA GeForce GTX 295 graphics card

method gputime instr ops / instr / instr / Gips Gflops
lcycle lcycle op

kflopMAD() 16993.8 4500712 4 2.01 0.50 264.84 482.06
kflopMULMAD() 10209.2 4466397 3 2.00 0.67 437.49 601.81

kflopMULMADMAD() 13517.9 6694860 4 2.99 0.75 495.26 606.01
kflop() 14609.5 4499789 2 2.01 1.01 308.00 280.37
kiop() 14759.8 4470882 2 2.00 1.00 302.91 277.51

kiopMULMAD() 77355.9 22494684 4 10.06 2.51 290.79 105.90
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1 s h a r e d f l o a t result [BLOCK_SIZE ] ;
2
3 g l o b a l vo id kflop ( )
4 {
5
6 f l o a t a = result [ t h r e a d I d x . x ] ;
7 f l o a t b = 1.01f ;
8
9 #pragma u n r o l l

10 f o r ( i n t i = 0 ; i < 1024 ; i++)
11 {
12 a = b + a + b ;
13 }
14
15 result [ t h r e a d I d x . x ] = a+b ;
16 }

Listing 6.2: kflop()

1 a = b * a + b ;

Listing 6.3: kflopMAD()

1 a = b * a + b ;
2 a = a * b ;

Listing 6.4: kflopMULMAD()

1 a = b * a + b ;
2 a = a * b ;
3 a = a * b ;

Listing 6.5: kflopMULMADMAD()

1 a = b & a + b ;

Listing 6.6: kiop()

1 a = b * a + b ;
2 a = a * b ;
3 a = a * b ;

Listing 6.7: kiopMULMAD()

A complete listing of all benchmark functions is shown in Appendix A.1
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6.3.5 Application Based Benchmarks

In the implementation of the attack the state update is the most computational intensive part. The state
update function has a very simple structure and therefore can be easily optimized for GPU usage. Mea-
suring unit is the computation of one message block.

The benchmark ratio between CPU and GPU presents a rough indication in a sense that it can be
seen as an upper bound for the three different approaches of the case study. It is also a strong indicator
how well suited the GPU architecture is in general to solve problems which present that kind of structure.

The first consideration is the memory consumption of the implementation:

• W: 16 32-bit variables

• Chaining variables: 5 + 1 32-bit variables

The memory requirements for the algorithm itself are 22 32-bit variables. The compilation flag –
ptxas-options=-v shows the memory consumption per thread. For an occupancy rate of 1, which means
that 32 warps are active, the maximum number of registers a thread is able to use is 16. A lower occu-
pancy rate does not necessarily result in lower performance. The occupancy rate however is one of the
indicators how effectively memory latencies can be hidden. Further details are given in Section 5.5.1.

SHA-1 GPU Implementation With Registers

A native approach is to put all variables into the registers. Table 6.3 shows that one thread needs 24
32-bit registers. At a block size of 512 the occupancy rate is 0.5 which means that 16 warps are active on
a streaming multiprocessor. One key figure is the ratio between the GPU implementation and the CPU
implementation which is at about 60. Also important are the 277 Giops which are equal to the synthetic
benchmark results in Section 6.3.4. This, and the fact that Gops and Giops are very similar, indicates
that the implementation uses its hardware capabilities nearly optimal.

Table 6.3: Key data about a SHA-1 GPU implementation running on the NVIDIA GeForce GTX
295 with the help of registers

regs / time gpu instructions active occupancy ratio Gops Giops
thread micro sec warps

24 13016 3947598 16 0.5 60 303.30 277.36
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SHA-1 GPU Implementation With Shared Memory

To decrease the register usage per thread it is possible to transfer some variables into the shared memory.
The first approach is to put the chaining variables into the shared memory. As Table 6.4 shows 3 registers
can be saved by using the shared memory. The 289,84 Gops indicate that there is no idle time for the
streaming processors itself. A Giops count of 160,02 on the other hand shows that the implementation
is not ideal in sense of runtime. The data in Table 6.4 also shows that this implementation needs approx-
imately 66% more instructions than the implementation in Section 6.3.5 uses. This is probably be due
to shared memory load and store operations. It is also the reason why the Gops count is nearly optimal
while the Giops count drops significantly.

The second approach is to put W into shared memory. Table 6.4 shows that 11 registers can be saved
due to putting W into the shared memory. The usage of ”only” 13 registers per thread would imply a full
occupancy rate only taking the register usage into account. On the other hand the amount of memory each
thread uses in the shared memory space is 64 bytes. With 16KB in total available in the shared memory
this results in 256 active threads per streaming multiprocessor. 256 active threads are the equivalent of 8
warps and an occupancy rate of 25%. Normally it would be a problem to hide memory latency with an
occupancy rate of only 25%. In this case there is no usage of global memory and therefore no latency to
hide. Table 6.4 depicts also that the Giops in both cases are similar. The slight discrepancy is probably
due to the instruction overhead of using more shared memory. Two results are bracketed. This is because
in that case the visual profiler produced obviously wrong results. The reasons for the wrong results could
not be determined.

Table 6.4: Key data about different SHA-1 GPU implementations running on the NVIDIA GeForce
GTX 295 with the help of shared memory

function regs / time gpu instructions shared mem / active ratio Gops Giops
thread micro sec block warps

shared cv 22 22559.5 6538576 10264 16 34.57 289.84 160.02
shared W 13 11752.2 (540790) 16344 8 32.87 (46.02) 152.99

SHA-1 GPU Implementation With Local Memory

Another way to reduce the register usage per thread is the usage of local memory. Local memory is
part of the global memory space. In order to sustain the maximum instruction throughput the arithmetic
intensity has to be high enough to mask memory latencies. Table 6.5 shows the key data of the same
SHA-1 implementation as described in Section 6.3.5 but each time with a different number of registers
used. Figure 6.1 shows a steady increase in Giops conformal to the increase of register usage. The same
Figure also shows that at a usage of 21 registers the implementation reaches the maximum instruction
throughput. This happens because of the fact that at the usage of 21 registers and three local memory
variables the arithmetic intensity in combination with the occupancy rate is high enough to mask laten-
cies in local memory accesses.
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Table 6.5 also shows that the number of instructions increases steady with additional usage of local
memory. This explains also the gap between Gops and Giops. Because of the fact that the case study
has the same structure with regards to the most computational intensive parts, it stands to reason that its
runtime behavior follows the same path as pictured in Table 6.5 and Figure 6.1.

Table 6.5: Key data about different SHA-1 GPU implementations running on the NVIDIA GeForce
GTX 295 with the help of local memory

regs / time gpu local lmem instructions ai necessary ratio Gops Giops
thread micro sec mem access warps

4 194514 4564 24512352 6189953 0.76 132.00 4 31.82 18.56
5 185109 4220 23035744 6090700 0.79 126.07 4 32.90 19.50
6 162988 4036 21091104 5838013 0.83 120.42 5 35.82 22.15
7 115373 2012 13272992 5360213 1.21 82.54 7 46.46 31.29
8 99402 1904 11707392 5165749 1.32 75.54 8 51.97 36.32
9 83533 1664 9973696 4958770 1.49 67.04 9 59.36 43.22
10 61952 1336 7729120 4700359 1.82 54.81 13 75.87 58.27
11 54852 1336 7231424 4615204 1.91 52.23 14 84.14 65.81
12 47329 1320 6608480 4517139 2.05 48.77 16 95.44 76.27
13 44892 1316 6404128 4481474 2.10 47.63 17 99.83 80.42
14 42151 1304 6147040 4442793 2.17 46.12 18 105.40 85.64
15 38016 1288 5853696 4398958 2.25 44.36 20 115.71 94.96
16 35420 1264 5550464 4357054 2.35 42.46 22 123.01 101.92
17 29505 1228 5174720 4315736 2.50 39.97 26 146.27 122.35
18 25611 1088 4627584 4277083 2.77 36.06 30 167.00 140.96
19 21205 912 3829952 4216835 3.30 30.28 37 198.86 170.24
20 16176 700 2900480 4143420 4.29 23.33 48 256.15 223.17
21 13121 472 1971008 4080908 6.21 16.10 59 311.02 275.13
22 12976 256 1061312 4013249 11.34 8.82 60 309.28 278.21
23 12886 4 16480 3940656 717.35 0.14 60 305.82 280.16

Interpretation of Results

In general it is best to only use registers if possible. High register usage often results into low occupancy
rates. This is negligible if there is no latency to hide. The usage of shared memory is also low latency but
results in additional instructions. These additional instructions are probably the result of additional load
and store instructions. The usage of local memory or global memory is only advisable if the arithmetic
intensity is high enough to hide the occurring latency.

6.4 General Implementation Considerations

There is an existing implementation of the attack which runs very efficient on CPUs. The program runs
as a single thread. The first thing to do is to convert the sequential program flow into a parallel program
flow. There are many different ways to do this. One solution is to give each thread a different data set to
compute. Another solution is to give each thread a step to compute. Both scenarios are implemented in
the following sections.
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Figure 6.1: Different runtime behavior dependent on register usage per thread and usage of local
memory per thread

6.4.1 Preparation of Input Data

The different messages are forming the input data. Each message is composed of 16 32-bit message
words. The message words with the lower indices are ”fixed”. There are no degrees of freedom in the
”fixed” message words. In other words, all fixed message words are similar for each data set. Implemen-
tation wise it makes sense that the ”fixed” message words are stored into constant memory.

The part of the input data which is not fixed determines the number of different data sets the algo-
rithm has to compute. For example if 32 bits in the input message are not ”fixed” the algorithm has to
compute 232 different input messages.

For the two approaches described in Section 6.6 and Section 6.7 the degrees of freedom determine the
thread structure. The distribution of the input data has also an influence on the efficiency of the algorithm.
Tests showed that the best results are achieved when the input message is similar as long as possible in
one thread block. That means that the message word with the highest index which is not ”fixed” deter-
mines the number of threads one thread block contains. The ”not fixed” message words with the second
and third highest indices determine the grid structure. The remaining ”not fixed” message words are
handled by the host in a way that the host starts a separate kernel for each possible remaining variation
of the input message.

In case of the approach described in Section 6.8 the distribution of input data differs from the two
other approaches. Also for that case, the distribution of the input data has no effect on the runtime of the
algorithm.
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6.4.2 Development Environment

As operating system served Microsoft Windows 7 in the 32-bit version. Microsoft Visual Studio 2008
with its Visual C++ compiler served as platform for the host code. It is possible that different versions of
the CUDA compiler produce different results in terms of runtime. All benchmarks were conducted with
the CUDA compiler in the 3.0.14 version.

Also some compiler flags are important for the efficient and correct computation:

• -maxrregcount (sets the maximum number of registers one thread has at his disposal)

• -arch=sm 13 (the code is compiled for devices with compute capability 1.3)

6.5 Precomputed Values Approach (CPU)

The Precomputed values approach on the CPU has a very straightforward implementation structure. This
boils down to a few principles:

• Precomputation of values. (For example W[17] = S1(W[14] xor W[9] xor W[3] xor W[1]) instead
of W[step] = S1(W[step-3] xor W[step-8] xor W[step-14] xor W[step-16]) ).

• Avoidance of function calls on instructions which are often executed

Tests showed that this implementation runs about two times faster than an implementation where
these principals were ignored. A more detailed elaboration of the runtime behavior of these implemen-
tations is given in Section 6.9

6.6 Precomputed Values Approach (GPU)

Such a ”CPU performance optimized” code generally executes also very well on GPUs. One important
condition for the implementation to run well on a GPU is that all threads follow the same path. Collision
search attacks in general exhibit a non-deterministic behavior. In case of a multi-threaded environment it
means that each thread follows an own path dependent on certain conditions. Different paths viewed on
a deeper more hardware oriented level mean that the hardware has to issue different instructions for the
threads. In CUDA different instructions in a warp at the same time equals serialization of computation.
Figure 6.2 shows a possible scenario for diverging threads. Furthermore it is very likely that each thread
has a different runtime.

6.6.1 Different Runtime Problem

It is very likely that threads have different runtimes. This is because of the fact that steps are computed
dependent on the input data. Figure 6.3 shows the same algorithm with different input data. One box
represents a computation of one step with the evaluation of the corresponding conditions. Each column
represents a thread in a warp. In a single threaded environment each box would be computed in serial.
The number of steps that have to be computed would be identical for the two input data-sets.

In CUDA the runtime of the algorithm is different for each data set. The total runtime of the warp
is equal to the runtime of the thread which finishes last within the warp. As Figure 6.3 depicts the
algorithms runtime, with input data 1, is two times as long as the algorithms runtime with input data 2.
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Figure 6.2: Same cycle different instructions⇒ divergence⇒ sequential computation

Runtime 1input data

Runtime input data 2

Figure 6.3: Different runtime behavior dependent on input data

6.6.2 Divergence Problem

As mentioned before CUDA capable GPUs are based on a SIMT architecture. Always 32 threads are
grouped into a so called warp. In order to execute all instructions in parallel these threads have to execute
the same instruction. The worst case scenario would be if every thread in the active warp computes a
different instruction. As a result of that all threads would execute their instructions in serial. In the case
of the CPU optimized approach the runtime behavior is tightly bound on how much the threads diverge
in average. Also important is how sophisticated the hardware mechanisms are to join divergent threads
together if possible.

Because of the diverging threads the hardware has to serialize certain computations. This results on
one hand into idle threads and on the other hand in a different over all runtime behavior. Figure 6.4
shows the same algorithm with different input data. One box represents a computation of one step with
the evaluation of the corresponding conditions. Each column represents a thread in a warp. In a single
threaded environment each box would be computed in serial. The amount of steps that have to be com-
puted is similar for the two input data-sets.
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In CUDA the runtime of the algorithm is different for each data set. The total runtime of the warp
is equal to the runtime of the thread which finishes last within the warp. As Figure 6.4 depicts the
algorithms runtime with input data 1 is four times as long as the algorithms runtime with input data 2.

Runtime 1input data

Runtime input data 2

Figure 6.4: Different divergence behavior dependent on input data

6.6.3 Implementation Principles

There are different implementation principles which have a big impact on the overall runtime.

Distribution of the Input Data

As mentioned in Sections 6.6.1 and 6.6.2 the runtime of the algorithm and the degree of how much the
threads diverge is dependent on the input data. In the case of CUDA, SIMT is just limited to threads
within the same warp. This means that if possible the input data for threads of the same warp should be
chosen in such a manner that the computational load is as uniformly distributed as possible.

In the case study the degrees of freedom in W determine the input data. Tests showed that the com-
putational load is most uniform when the input data is chosen in such a manner that W is similar within
a warp as long as possible. In concrete terms this means that W15 determines the size of the block.
Furthermore W0 till W14 is similar in each block and therefore also in each warp.

Memory Usage

The number of registers a thread uses determines the occupancy of the streaming multiprocessor. The
occupancy rate again has a big influence on how good the hardware is able to hide latencies of global
memory accesses. A big advantage of this approach is that the threads access the global memory only at
the beginning and at the end of the computation. Therefore the occupancy rate has almost no impact on
the runtime because of the fact that there is almost no latency to hide.

For this approach the best results are achieved when all variables are placed into registers. In this
specific case the implementation needs 36 32-bit registers per thread. This results in an occupancy rate
of 25% for devices with compute capability of 1.x and 50% for devices with compute capability 2.x.
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Compared to variables, constants can be stored in three different ways. Constants can be stored in
register, shared memory and constant memory. Tests showed that the usage of the constant memory
achieves the best results. The better results compared to register usage are probably due to the fact that if
using the registers all constants have to be loaded separately into the registers from the global memory.
With the usage of shared memory the ”separate load disadvantage” would no longer be applicable. The
usage of shared memory on the other hand has the tendency to generate additional instructions on the
hardware. Therefore the use of constant memory is the best choice for constants

For variables, which are similar for each thread within a block, it has proven to be effective to load
the values into the shared memory first. After they are stored into the shared memory the values can be
distributed to the registers. This has the big advantage that each thread has to load only one value from
the global memory.

6.6.4 Benchmarks and Limitations

The advantages are that this approach doesn’t need any local or global memory with the exception at
the start and the end of the algorithm. Therefore memory latency is not an issue. Another advantage is
that all values in in the code which can be precomputed are precomputed. This means that there is no
additional computational overhead.

A disadvantage is that thread divergence is an issue. For the instance of the case study there is a
38% loss of efficiency. Benchmarks showed that this approach provides an average ratio of about 37 in
comparison to the fastest CPU implementation. A more precise analysis is given in Section 6.9.

6.7 Parameterized Approach

The basic idea of the parameterized Approach is to avoid thread divergence by trying to uniform the
instructions as much as possible. The key for this approach to work is to decouple the input data entirely
from the instructions. That means the threads only compute the same instructions over and over again,
without knowing which step, dataset or condition they are computing (see Figure 6.5).

Figure 6.5: Decoupling data from instructions⇒ almost no divergence, but additional control flow.

6.7.1 Different Runtime Problem

A big problem which still remains is that it is not predictable how much steps each thread has to com-
pute until he has completed his task. As also mentioned in Section 6.6 if one thread in the warp takes a
very long time to finish the other threads have to wait until this particularly thread finishes its computa-
tion. One possible scenario would be to give each thread more than one data set to compute. Because
of the fact that the time to compute one data set should be random the overall time consumption of
threads within a warp has to be more uniform. Figure 6.6 shows the thought behind this idea. The first
scenario depicts an approach where each thread is responsible for one input data set. The second sce-
nario shows an approach where each thread has a couple of input data sets to compute. With only five
data sets per thread the overall execution time is not that much shorter. It is easy to imagine though that
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with increasing the input data sets per thread the overall ratio in view of execution time is also increasing.

The worst case scenario would be if one thread gets always the data sets which take the longest time to
compute. In this case the overall execution time would be equal to the execution time of the first scenario.

Runtime each thread one data set

..
.

..
.

..
.

..
.

..
.

..
.

Runtime each thread several data sets

Figure 6.6: Two different execution patterns

For an implementation without divergence the second scenario has with the exception of the worst
case scenario always the better overall execution time.

6.7.2 Divergence Problem

In the case of this implementation there are two possibilities for divergence to occur. First, for steps 15
and below message expansion is not an issue. Second, each step has a different number of conditions to
check. The checking of the conditions is not computationally intensive. Therefore the focus in sense of
runtime is on the message expansion.

Test showed that divergence occurs more often for scenarios where threads compute more than one
input data set. This is probably because of the divergence in the message expansion. Furthermore the
computational overhead due to divergence outweighs the benefits. Therefore the first execution pattern
shown in Figure 6.6 was chosen for the implementation. For other attacks this behavior may be different
and execution pattern two may be better suited.
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6.7.3 Memory Usage

This implementation uses registers, shared memory, constant memory and local memory. The constant
memory is used for the lookup tables. One big problem is that the evaluation of the active step is only
possible at runtime. This means that the arrays which hold W and A are also indexed at runtime de-
pendent on the currently active step. Per definition CUDA can only place arrays into register space if
their indices are determined at compile time. In the case of a runtime determination of the indices the
compiler spills the values of the arrays into local memory. Local memory resides on global memory and
is therefore high latency. Furthermore because of the random accesses the memory transactions are not
coalesced. The consequences of non-coalesced memory accesses are described in Section 5.5.7

Another problem is that the arithmetic intensity is too low to hide all memory latencies. To measure
the impact on the computational time this approach was implemented in three different ways. The first
implementation uses only local memory. In other words the compiler spills out both arrays to the local
memory. The second implementation uses shared memory for the array which holds the values of W .
The third implementation uses shared memory for the array which holds the values of A. Because of the
fact that A is more often accessed the third implementation has the best efficiency. A fourth possibility is
to put A and W into the shared memory space. As mentioned in Section 6.3.5 shared memory accesses
are producing additional instructions. Tests showed that the third implementation delivered the best
results in view of runtime. This is because the arithmetic intensity for this case is high enough to hide
the occurring latencies due to memory accesses of W .

6.7.4 Benchmarks and Limitations

One limitation is the register spillage because of the indexing at runtime. Another problem is that thread
divergence cannot be entirely avoided. Also there is additional overhead because certain values can only
be computed at runtime which normally could be precomputed.

Benchmarks showed that this approach provides an average ratio of about 9 in comparison to the
fastest CPU implementation. For the instance of the case study there is a 65% loss of efficiency. A more
precise analysis is given in Section 6.9.

6.8 Kernel Scheduled Approach

The third approach avoids thread divergence completely for the computational intensive parts. This is
possible by dividing the different steps into autonomous kernels. Each kernel has a list of data sets for
which he is responsible at a certain time. The principal is shown in Figure 6.7. More precisely the list
only consists of the starting addresses of the individual data sets.

A kernel scheduler which is controlled by the host thread is responsible to handle the kernel invoca-
tions. The kernel scheduler always looks which kernel has the largest amount of data sets to compute.
This kernel is than invocated by the kernel scheduler.
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Figure 6.7: No divergence, but many load and store instructions from global memory⇒ memory
latency

6.8.1 Implementation Principles

At the beginning always a so called initial kernel has to be computed. The initial kernel creates all the
data sets necessary for the computation. The data sets are stored in the global memory. Figure 6.8 shows
how the memory and the address lists are arranged after the computation of the initial step.
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Figure 6.8: Arrangement of addresses and memory after the computation of the initialization ker-
nel

After the initialization the address list with the starting step is the only one which contains addresses.
The kernel scheduler than starts this kernel which computes the step or steps and stores the addresses
into the corresponding address lists. After that a thread synchronization is called to ensure all threads are
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finished before the kernel scheduler chooses the next kernel to execute.

The kernel scheduler always checks which kernel has the most threads to compute and invokes it. Af-
ter a couple of kernel invocations a typical state is that every address list contains a number of addresses
as shown in Figure 6.9. The kernel scheduler invokes kernels as long as there are addresses stored in the
address lists.

There are two scenarios in which the computation is completed. One scenario is if there are no ad-
dresses left at all to compute. This would mean that no data set fulfills the required conditions. The
second scenario is if all addresses are stored into the last step. All these data sets fulfill the conditions up
to the last step.
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Figure 6.9: Arrangement of addresses and memory after the computation of a few kernels

6.8.2 Memory Usage

The only way to share data between different kernels is to use the global memory. This has the huge dis-
advantage that the implementation cannot benefit from faster memory spaces like for example the shared
memory space. For global memory accesses to be performant certain requirements have to be fulfilled.

One important point is the arithmetic intensity which is described in Section 5.5.1. The arithmetic
intensity of this implementation is very low. This basically means that the streaming multiprocessors
often have to wait until certain values are available for further processing.

Another problem is that global memory accesses are many times slower if they are not coalesced.
After a few runs of the kernel scheduler the addresses of the data sets are almost randomly distributed
across the address lists of the different kernels. For this reason it is impossible to create coalesced
memory accesses for this approach.
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6.8.3 Runtime Analysis

The initial kernel takes a big part of the overall execution time. This is because of the fact that all known
values have to be written into the data structure. The arithmetic intensity for this kernel is particularly
low because there is almost no computation. As a point of reference, the parameterized approach needs
about the same time for the entire computation as the initial kernel.

Although this approach has the longest execution time it should be mentioned that if memory struc-
tures will change in the future it could very well be the fastest approach. This is because of the fact that
there is no thread divergence in the computational intensive parts and also only little computation over-
head because of the kernel scheduler. Also the fact that the threads are very lightweight, and therefore
fast to create, supports this theory.

6.8.4 Benchmarks and Limitations

In general there is only one limitation present for this approach. All the variables necessary have to
be loaded from and stored to the global memory for the computation of each step. Also there is no
coalescing of the memory accesses possible.

Benchmarks showed that this approach provides an average ratio of about 1 in comparison to the
fastest CPU implementation. For the instance of the case study there is a 98% loss of efficiency. A more
precise analysis is given in Section 6.9.

6.9 Comparison of the Different Approaches

There are 2 CPU implementations and 3 GPU implementations which are compared in the following.
The second CPU implementation is a result of the fact that in order to get representative results, the
influence of the computational overhead regarding the parameterized approach has to be known.

6.9.1 Memory Usage

The memory usage of the different kernels is an important key figure. Different devices have a different
amount of memory at their disposal. For that reason the memory consumption of a thread or a kernel
contributes also to the runtime of the algorithm. It is very likely that the ratio between achieved Gflops
and theoretically possible Gflops changes with different devices. Table 6.6 shows the consumption of
registers, shared memory, constant memory and local memory. The first value in the shared memory
column is the memory which is allocated in the source code. The second value in the column is because
of the parameters a kernel passes. The constant memory is divided into memory banks. The first value
in the column shows memory bank 1. The second value in the column shows memory bank 2.

Noticeable is that the kernel from the ”precomputed values approach” uses significantly more reg-
isters than the other kernels. This kernel has not much latency to hide therefore the higher usage of
registers has almost no effect on the runtime. There is also no significant usage of shared memory.

Interesting to see is that the ”parameterized approach” uses local memory. The usage of local mem-
ory is due to register spillage of the W array. Also interesting is that only 13 registers are used. This is
because of the register spillage of W and the usage of shared memory for A.
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The kernels of the ”kernel scheduled approach” all use a relatively low number of registers. All
kernels which compute steps use less than 17 registers which results in a full occupancy rate. The only
kernel which uses more than 16 registers is the initialization kernel.

Table 6.6: Memory usage of threads and kernels

Approach Kernel Register Shared Constant Local
name usage memory Memory memory

Precomputed values app1KernelCollision 28 96 568
approach (GPU) 16 108
Parameterized app2KernelCollision 13 6752 3568 48

approach (GPU) 16 20
Kernel scheduled app3KernelCollisionStepInitialize 17 36 3568
approach (GPU) 16 4
Kernel scheduled app3KernelCollisionStep12 14 24 3568
approach (GPU) 16 8
Kernel scheduled app3KernelCollisionStep13 14 13 24 3568
approach (GPU) 16 12
Kernel scheduled app3KernelCollisionStep15 16 15 4132 3568
approach (GPU) 16 24
Kernel scheduled app3KernelCollisionStep17 11 6188 3568
approach (GPU) 16 48
Kernel scheduled app3KernelCollisionStep18 13 6188 3568
approach (GPU) 16 48
Kernel scheduled app3KernelCollisionStep19 11 6188 3568
approach (GPU) 16 48

6.9.2 Benchmarks

Figure 6.10 shows a benchmark comparison of all five implementations. Dependent on the input data the
ratio varies. The measurements show clearly that the occurring differences in runtime are marginal.

The ratio is calculated by taking the runtime of the fast CPU implementation dividing it through the
runtime of the measured implementation. The ratio is a better performance indicator than the execution
time. This is because of the fact that the GPU and the CPU used in the benchmarks are ”similar”. Sim-
ilar in a sense, that they were purchased at the same time and also similar in sense of their ”hardware
generations”. The fast CPU implementation was chosen as a reference value because it is fastest existing
CPU implementation. The ratio now shows how many times faster or slower the other implementations
compute the algorithm.

Table 6.7 shows the different execution time ratios between the implementations. The ratios were
computed with the help of the mean values of a series of measurements which are shown in Figure 6.10.
The order of computation is always columns through rows.

One essential ratio is the ratio between the ”precomputed values approach (CPU)” and the ”precom-
puted values approach (GPU)”. This ratio compares the fastest CPU implementation with the fastest
GPU implementation. Table 6.7 shows that the GPU implementation is in average about 37 times faster
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Figure 6.10: Benchmark comparison for a series of measurements

than the CPU implementation. With regards to the benchmark measured in Section 6.3.5 this means that
the ”precomputed values approach (GPU)” works at about 62% of efficiency.

Also interesting is the ratio between the ”parameterized approach (CPU)” and the ”parameterized ap-
proach (GPU)”. The ”parameterized approach (GPU)” avoids divergence better than the ”precomputed
values approach (GPU)”. Therefore it might be a good alternative for attacks which have a high number
of diverging paths. Table 6.7 shows that the GPU version is about 22 times faster than the CPU version.
Compared with the ”precomputed values approach (CPU)” it is about 9 times faster. A ratio of 9 is not
that high compared to the ratio of the ”precomputed values approach (GPU)”. Measurements however
showed that the register spillage in this case slows down the execution at about a factor of 2. With the
possibility that in future versions of the compiler the register spillage does not occur anymore this im-
plementation would be in range of the ”precomputed values approach (GPU)” in sense of efficiency for
this implemented attack.

A look at the ratio between ”precomputed values approach (CPU)” and ”kernel scheduled approach
(GPU)” shows that GPU implementation and CPU implementation have nearly the same execution times.
This implementation avoids divergence completely for the computational intensive parts and should
therefore be very effective. The problem is that the arithmetic intensity is that low that the occurring
latency cannot be nearly hidden. Therefore this implementation is simply no viable substitute for exist-
ing CPU implementations. In future generations of devices the memory accesses might be a lot faster. In
consequence of this, this implementation might compute more efficiently.
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Table 6.7: Execution time ratios between different implementations

Precomputed Parameterized Precomputed Parameterized Kernel
values approach values approach scheduled

app. (CPU) (CPU) app. (GPU) (GPU) app. (GPU)
Precomputed values 1.00 0.43 37.16 9.24 1.12

approach (CPU)
Parameterized 2.34 1.00 86.88 21.60 2.62

approach (CPU)
Precomputed values 0.03 0.01 1.00 0.25 0.03

approach (GPU)
Parameterized 0.11 0.05 4.02 1.00 0.12

approach (GPU)
Kernel scheduled 0.89 0.38 33.15 8.24 1.00
approach (GPU)

6.10 Concluding Remarks

For an efficient implementation of a differential shortcut collision search, the best possible outcome
would be to take the advantages of each part and combine these three approaches. In a broad sense
the kernel scheduled approach is an extended version of the precomputed values approach. They are
basically based on the same principles with the exception that the kernel scheduled approach avoids the
divergence problem because of the memory pools. The parameterized approach takes a whole different
path and suffers from computational overhead which is not present in the other two approaches.

In general it can be said that GPUs are very promising substitutes for CPUs in view of shortcut
collision attacks. There are a few limitations such as memory latency and SIMT which hinder better
results. It is also a fact that GPUs perform better when they have to compute floating point operations
instead of integer operations. All in all the advantages outweigh the disadvantages. The fact that the
fastest GPU implementation is about 37 times faster than the fastest CPU implementation underlines the
previous statement.



Chapter 7

Outlook

Streaming processors are around for a while now. For a long time they were overshadowed by the tra-
ditional CPUs. With the rapidly growing gaming industry a new field of exploration emerged. The high
demand on processing power for graphics processing was responsible that GPUs were developed to sup-
port and relieve the CPU. Over time the requirements on GPUs became more and more complex. In
consequence of that also the structure of the GPUs became more complex. This development is respon-
sible for the possibility to use these GPUs for general purpose processing. In the foreseeable future this
process of development will continue.

For CPUs there is also an interesting development to detect. For a long time CPUs had only one
processing core. One main effort of the manufacturer was to increase the clock rate of this core. With
clock rates growing higher, cooling became more and more an issue. As a consequence of this CPUs
with more than one core were produced. Looking at the development now, the number of cores in CPUs
is increasing steadily, while the clock rates don’t change that much over time.

Looking at the fact that GPUs grow more complex in their structure and CPUs are getting more cores
or kernels, it is noticeable that these two fields of operation grow more and more together. It seems likely
that in the future these two fields of operation will merge together.

7.1 Ideas for Future Work

CUDA with its associated GPUs is a relatively young field of exploration. Therefore the hardware at this
time has different limitations which influence the efficiency of a program. The implemented approaches
in the case study can be seen as design patterns for other implementations of collision attacks. There is
also the fact that GPUs get a more complex structure with every generation. Limitations such as memory
latency and SIMD won’t possibly be there for later generations of devices. In consequence the efficiency
of the implementations will rise in the future.
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Chapter 8

Concluding Remarks

The findings presented in this thesis clearly state that streaming processors are very suitable to solve
shortcut collision attacks on SHA-1. Furthermore due to their similar structure shortcut collision attacks
on other hash algorithms are also very suitable to compute with a high degree of certainty. Results of
the case study show that two out of three implemented approaches achieve better results in respect of
runtime compared to ”traditional” CPU implementations. What has to be highlighted, is that the fastest
GPU implementation is about 37 times faster than the fastest CPU implementation

Due to their non-deterministic runtime behaviors it stands to reason that shortcut collision attacks
cannot be solved on today’s GPUs without losses in efficiency. Although a 40% loss in efficiency seems
to be a lot at first glance it is negligible in contrast to the overall performance gain.

Results in the case study show also that each implemented approach has its benefits and its limita-
tions regarding to the features the used hardware provides. Overall it can be said that the precomputed
values approach will work very efficiently for attacks which display a ”homogeneous path behavior” for
different data sets. The parameterized approach will work very efficiently when the path behavior is not
so homogeneous for different data sets.

In view of the high complexity, in sense of runtime, most shortcut collision attacks display, using
GPUs for the computation is a good way to reduce computation time. It also gives cryptographers a
viable alternative to distributed computing efforts.

In conclusion can be said that the gain in performance outweighs the higher development effort by
far which is certainly necessary to implement a collision attack on GPUs.
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Appendix A

Benchmarks GPU CPU

Tables A.1, A.2 and A.3 list the exact data which was used to compile Figure 4.6 and Figure 4.7 in
Section 4.5.4

Table A.1: The exact benchmark data of NVIDIA GPUs

NVIDIA
Model Codename Release Date Bandwidth (GB/s) Gflops
Ti 500 NV20 Oct-01 8 [har10b] 10 [har10b]

Ti 4600 NV25 Feb-02 10.4 [har10b] 16 [har10b]
FX5950 ULTRA NV38 Oct-03 30.4 [har10b] 29 [har10b]

6800 ULTRA N45 Mar-05 33.6 [har10b] 75 [har10b]
7800 GTX G70 Jun-05 38.4 [har10b] 200 [har10b]
7900 GTX G71 Mar-06 51.2 [har10b] 301 [har10b]
8800GTX G80 Nov-06 86.4 [NVI08] 518 [NVI08]

9800 GTX G92 Apr-08 70.4 [NVI10a] 648 [NVI10a]
GTX 280 GT200 Jun-08 141.7 [NVI08] 933 [NVI08]

Fermi GF100 Mar-10 192 [Nat09a] 1500 [Nat09a]

Table A.2: The exact benchmark data of ATI GPUs

ATI
Model Codename Release Date Bandwidth (GB/s) Gflops

8500 R200 Aug-01 8.8 [har10a] 12 [har10a]
9800 XT R360 Dec-03 23.4 [har10a] 43 [har10a]

X 850 XT PE R480 Dec-04 37.8 [har10a] 102 [har10a]
X 1950 XTX R580+ Jul-06 64 [har10a] 374 [har10a]
HD 2900 XT R600 May-07 105.4 [har10a] 474,88 [har10a]

HD 3870 RV670XT Nov-07 72 [har10a] 496 [har10a]
HD 4870 RV7770XT Jun-08 115.2 [Nea08] 1200 [AMD10a]
HD 5870 CypressXT Sep-09 153.6 [AMD10b] 2720 [AMD10b]
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Table A.3: The exact benchmark data of Intel CPUs

Intel
Model Codename Release Date Bandwidth (GB/s) Gflops

Pentium 4 EE Prescott Feb-04 3.2 [Int01] 7,5 [Tom04]
X6800 E Conroe Jul-06 10.7 [Int07a] 18,8 [Tom07]
QX6800 Kentsfield Jun-07 8.5 [Int07b] 38,7 [Tom07]

QX9770 E Yorkfield Mar-08 12.4 [Int09a] 47,4 [Tom07]
i7-975 E Bloomfield May-09 25.6 [Int09b] 72 [Tom09]

A.1 Synthetic Benchmarks GPU CPU

The following listings show the complete source code of the synthetic benchmarks described in Sec-
tion 6.3.4

1 g l o b a l vo id kflop ( )
2 {
3
4 f l o a t a = result [ t h r e a d I d x . x ] ;
5 f l o a t b = 1.01f ;
6
7 #pragma u n r o l l
8 f o r ( i n t i = 0 ; i < 1024 ; i++)
9 {

10 a = b+a+b ;
11 }
12
13 result [ t h r e a d I d x . x ] = a+b ;
14 }

1 g l o b a l vo id kflopMAD ( )
2 {
3
4 f l o a t a = result [ t h r e a d I d x . x ] ;
5 f l o a t b = 1.01f ;
6
7 #pragma u n r o l l
8 f o r ( i n t i = 0 ; i < 1024 ; i++)
9 {

10 a= b*a+b ;
11 a= b*a+b ;
12 }
13
14 result [ t h r e a d I d x . x ] = a+b ;
15 }

1 g l o b a l vo id kflopMULMAD ( )
2 {
3
4 f l o a t a = result [ t h r e a d I d x . x ] ;
5 f l o a t b = 1.01f ;
6
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7 #pragma u n r o l l
8 f o r ( i n t i = 0 ; i < 1024 ; i++)
9 {

10 a = b * a + b ;
11 a = a * b ;
12 }
13
14 result [ t h r e a d I d x . x ] = a+b ;
15 }

1 g l o b a l vo id kflopMULMADMAD ( )
2 {
3
4 f l o a t a = result [ t h r e a d I d x . x ] ;
5 f l o a t b = 1.01f ;
6
7 #pragma u n r o l l
8 f o r ( i n t i = 0 ; i < 1024 ; i++)
9 {

10 a = b * a + b ;
11 a = a * b ;
12 a = a * b ;
13 }
14
15 result [ t h r e a d I d x . x ] = a+b ;
16 }

1 g l o b a l vo id kiop ( )
2 {
3
4 unsigned i n t a = result [ t h r e a d I d x . x ] ;
5 unsigned i n t b = t h r e a d I d x . x ;
6
7 #pragma u n r o l l
8 f o r ( i n t i = 0 ; i < 1024 ; i++)
9 {

10 a = b & a + b ;
11 }
12
13 result [ t h r e a d I d x . x ] = a+b ;
14 }
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1 g l o b a l vo id kiopMULMAD ( )
2 {
3
4 unsigned i n t a = result [ t h r e a d I d x . x ] ;
5 unsigned i n t b = t h r e a d I d x . x ;
6
7 #pragma u n r o l l
8 f o r ( i n t i = 0 ; i < 1024 ; i++)
9 {

10 a = b * a + b ;
11 a = a * b ;
12 a = a * b ;
13 }
14
15 result [ t h r e a d I d x . x ] = a+b ;
16 }
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