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Abstract 

Rapid and accurate collection of data is very important in cases of emergency. 

Therefore, mobile data acquisition is a key issue for acceptance of a mobile information 

system. Handwriting recognition for acquiring data shows some problems on 

recognition accuracy and also on usability. 

In this thesis, we focus on handwriting recognition on mobile devices for data 

acquisition in the context of health care, specifically done by paramedics in ambulance 

cars. The aim of this thesis was to increase the overall performance of handwriting 

recognition, focusing on recognition accuracy, speed, error correction and usability of 

the user interface by using solid usability engineering methods. 

Based on real-life experiences, the thesis reports improvements on accuracy and 

usability of handwriting recognition archived by adaptation the results of handwriting 

recognition engine.  

Despite these results, the end user studies showed that the virtual keyboard is still the 

preferred method compared to handwriting recognition for data acquisition on a PDA. 

This is possibly due to the wide availability of the QUERTY/QUERTZ keyboard.  

Interestingly, participants with a computer usage of more than 30 hours a week prefer 

the virtual keyboard significantly more than the other participants. 
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Kurzfassung 

Schnelles und genaues Sammeln von Daten bei Notfällen ist sehr wichtig. Dadurch ist 

mobile Datenerfassung ein Hauptthema für die Akzeptanz eines Mobilen Information 

Systems. Handschrifterkennung zeigt hier einige Probleme in der 

Übersetzungsgenauigkeit und in der Bedienbarkeit. 

Der Fokus dieser Arbeit liegt auf Handschrifterkennung auf mobilen Geräten zur 

Datenerfassung im Berech des Gesundheitswesens, speziell im Rettungswesen. Das Ziel 

dieser Arbeit war die Verbesserung der Gesamtperformance der Handschrifterkennung 

durch Verbesserung der Erkennungsrate, der Eingabegeschwindigkeit, der 

Fehlerkorrektur und der Verbesserung der Bedienbarkeit der Benutzerschnittstelle durch 

solide usability-engineering Methoden. 

Die Arbeit liefert Verbesserungen der Erkennungsrate und der Benutzbarkeit des 

Systems durch Anpassung der Resultate, welche die Handschrifterkennung liefert, 

basierend auf Erfahrung aus der echten Anwendung des Systems. 

Trotzdem zeigt die Endbenutzerstudie, dass die virtuelle Tastatur gegenüber der 

Handschrifterkennung bevorzugt wird für Datenerfassung auf einen PDA. Dies kann 

möglch sein durch die Weiterverbreitung des QWERTZ Tastatur Layouts.  

Interessanterweise bevorzugen Teilnehmer, welche Computer mehr als 30 Stunden pro 

Woche verwenden, die virtuelle Tastatur signifikant eher als die anderen Teilnehmer. 
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1. Introduction and Motivation for Research 

In cases of emergency, rapid and accurate collection of the patients’ data and 

documentation of the rescue operation is important. Promptly, accurately recorded and 

well communicated vital data of patients can make the difference between life and death 

(Holzman, 1999). 

A possible solution can be a mobile application on a lightweight handheld device 

(Baumgart, 2005, Chittaro et al., 2007). Recording data to a network based information 

system in the field of work optimizes communication. For purposes of administration, 

the data is directly recorded to the information system, which also saves money. 

 

FERK Systems implemented an information system called FEDAS RD for emergency 

services. There is also a mobile application, FEDAS.mobil RD included.  

One developer tested the application in real-life and identified the data acquisition as the 

weak point of the system. 

 

Emergencies are usually in difficult physical and mental situations; therefore, special 

attention to the design of information technology for emergencies has to be taken into 

consideration (Klann et al., 2008). 

Data acquisition should have as little disruptive effect on the work of an emergency 

responder or paramedic as possible. Extensive text entry to mobile devices has to be 

avoided – less is more (Holzinger and Errath, 2007). 

 

FERK System made the assumption, that people in health care rather prefer 

documenting medical data with handwriting. Therefore, handwriting recognition could 

be an important point for acceptance of a mobile information system. 

 

A study shows that entering data into a mobile device via a stylus is slower, more 

erroneous and less satisfactory for end users than entering via a QWERTY layout 

keyboard (Haller et al., 2009). On the other hand, using a stylus is more accurate and 

faster than using a finger in touch based interfaces (Holzinger et al., 2008). 
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A specific study evaluating a PDA-Based Interface for Ambulance Run Reporting 

shows good results for acquiring data via virtual keyboard, while acquiring data with 

handwriting recognition showed some problems on recognition accuracy as well as 

usability problems (Chittaro et al., 2007). 

Motivated by this work, the focus of this thesis is on improving the usability of data 

acquisition based on handwriting recognition. We defined our main goal in reaching the 

best possible user satisfaction, working on the following parts: 

 Input speed 

 Low error rate 

 Easy correction of errors 

 Simple to enter data 

 

The beginning of the thesis, Chapter 2, shows theoretical background and related work 

relevant to the topic. 

In Chapter 3, the development process of the handwriting recognition dialogs is 

described, including possible improvements of speed and accuracy of handwritten data 

acquisition. 

 

Chapter 4 describes the experiment for the evaluation of the developed dialogs. This 

includes a description of the experiment application and the description of the 

experimental setting. The results of the experiment are shown in Chapter 5.  

 

Finally, Chapter 6 to 8 concludes the thesis by discussing the results, giving a 

conclusion and an outlook for future work. 

 

Chapter 9 describes the final implementation of the developed prototypes. 
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2. Theoretical Background and Related Work 

2.1. Mobile Text Input 

Mobile text input is divided into two main paradigms,  

 Pen-based input (handwriting) 

 Keyboard based input (typing) 

While pen-based input produces handwritten characters which need to be recognized by 

handwriting recognition algorithm, keyboard based input is directly readable to a 

computer (ASCII characters).  

(MacKenzie and Soukoreff, 2002) 

 

Because of the limited capabilities of mobile devices, there has been a number of 

different text input techniques developed. Green defines tradeoffs between several 

issues for developing new text input innovations from the view of Hardware and 

Software development.  

 Input Speed 

 Accuracy 

 Physical form factor 

 Learning time 

 Cost 

(Green et al., 2004) 

2.2. PDA – Personal Digital Assistant 

A PDA is a mobile device with an interface that basically consists of a LCD touch 

screen with a resolution of 240 x 320 pixels. The interaction between the user and the 

system is mostly done with a stylus or a pen.  

There are also buttons on the PDA, but the more comfortable way to interact with the 

system is via the touch screen. 

Pascoe defined the most comfortable and secure method to hold a PDA (Figure 1). 

(Pascoe et al., 2000) 
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Figure 1: Most comfortable grip for one-handed operation (on the left, right-handed person; on the right, 

left-handed person) (Pascoe et al., 2000) 

2.3. Mobile Interface Design 

Due to smaller screens, different screen format compared to desktop screens (e.g. 4:3 on 

CRT monitor) and the changing environment where a mobile device is used, it is very 

important to design an interface of a mobile device in a different way than an interface 

on a desktop PC. 

Using a mobile device whenever and wherever it is needed changes the requirements for 

the interface. While in an office, the light would be more or less the same, it is very 

variable for mobile devices because of mobility. 

Also the user’s attention in an office might be higher than for example in a car.  

(Chittaro, 2006) 
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Zwick, Schmitz and Kühl defined some basic design guidelines for small screens.  

Touch screen 

 Because there is no tactile feedback from the touch screen, the eyes and so the 

attention of the user has to remain on the screen.  

Instant Feedback 

 In order to get a feeling of directly manipulating and controlling the system, 

each interaction by the user should result in real time feedback. 

 Delays between interaction and corresponding feedback interrupt the dialog 

between the user and the device. This can force the user to enter their input 

again.  

Natural Mapping 

 Functions like Save, Confirm or Next should be placed on the right side of the 

screen, while functions like Cancel or Back should be placed on the left. 

Location on the screen 

 Certain functions should have a fixed place within the whole application. This 

should help the user to develop a routine in the use of the system. 

Text 

 Basically, the text must be easily legible and therefore it has to be as clear, large 

and visible as possible.  

 Italic text should be avoided because the slanted letters cause problems with the 

pixel grid of small screens. 

 Bold text style is legible, if the letter spacing is sufficient. 

Icons 

 Icons allow fast non-verbal communication between the system and the user and 

are therefore very useful. To avoid confusion, icons should have the same 

meaning within the system.  

 The icons’ size depends on the form of interaction between the system and the 

user. E.g. tipping with stylus requires smaller icons while tipping with a finger 

requires bigger icons 

(Zwick et al., 2005) 
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2.4. Resolving Recognition Based Input Problems 

Schomaker defined different types of error: 

 Cancelled material: User started writing a word, stops writing and starts 

scribbling over it 

 Discrete noise: Dots caused by the unintended dropping of the pen on the touch-

screen 

 Badly formed shapes, which are illegible for humans and algorithms. 

 Legible by humans but not legible for algorithms. 

 Correct words but unsolicited: User writes a correct word, but was not 

prompted to do so. 

 Device generated errors: E.g. Random noise 

(Schomaker, 1994) 

 

Recognition systems are in general prone to errors – so are handwriting recognition 

systems. Errors will occur, therefore, the system has to be designed to deal with errors. 

This is done by three means: 

 Discovery 

 Mediation 

 Toolkit level support 

(Mankoff et al., 2000) 

2.4.1. Discovery 

In this phase, the system should discover that the first choice of the list of possible 

results returned by the recognition engine is incorrect. This phase does not correct the 

result, but invokes some mediation techniques. (E.g. ambiguous choices in possible 

results) 

(Mankoff et al., 2000) 
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2.4.2. Mediation 

If the discovery process identified that the first choice is not the correct result, the 

mediation process selects the correct interpretation for the input. To do this, there are 

several strategies.  

- Repetition 

- Choice 

- Automatic mediators 

- Meta-mediation: deciding when and how to mediate 

- The need of a toolkit support for mediation 

Minimizing user interaction is worthwhile. Redemption, Choice and automatic 

mediators are the major strategies. 

(Mankoff et al., 2000) 

 

Repetition 

Repetition is when the user has to do at least one more interaction over the normal 

input.  

If the input is interpreted incorrectly, the user has to delete the wrong result and input it 

again until the result is correct. There are alternative input methods for these cases, too, 

for example with a virtual keyboard. 

Also partial correction of some incorrect letters within a recognized word and undo of a 

wrong recognition belongs to repetition. 

This technique requires effort by the user. 

(Mankoff et al., 2000) 

 

Choice 

This technique gives the user a list of possible interpretations of the input. The user has 

to select the correct interpretation. 

This technique also requires effort made by the user. 

(Mankoff et al., 2000) 
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Automatic mediators 

The best solutions are automatic mediators. In this case, the system automatically 

selects an interpretation of the user’s input without requiring any interaction from the 

user. There are three classes of automatic mediators, thresh-holding, rules and historical 

statistics. 

2.4.3. Toolkit level support 

Systems benefit from toolkits which provide mediators. The toolkit does not only 

provide mediators, moreover, they get adapted. Processed mediators will be informed if 

their interpretation was accepted or rejected. 

(Mankoff et al., 2000) 

2.5. German language 

The German written language consists of 26 basic characters, 3 Umlauts and one more 

special character, 10 numbers and punctuation marks. The 26 basic characters and 3 

Umlauts can be written in upper and lower case. 

 A…Z 

 a…z 

 ä, ö, ü 

 Ä, Ö, Ü 

 0…9 

 , . : ; ! ? 
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2.6. The QWERTY layout keyboard 

The QWERTY keyboard was invented with touch-typing, mechanical machines, in 

1874 (Kölsch and Turk, 2002).  

Two years later, the first typewriter was published with the QWERTY layout keyboard. 

Later the “m” was placed on the position of the “ö” on a German keyboard or on the 

position of the “;” on an English keyboard (Noyes, 1998).  

1905 the QWERTY layout keyboard was referred to as the standard and universal 

keyboard in an international meeting (Noyes, 1983). 

1966, the QWERTY system became an international standard (Noyes, 1998).  

 

The idea behind the layout was to place letters which frequently fell together in different 

quadrants to avoid mechanical problems where the type bars clashed when reverting to 

their resting position. The layout was intended for “hunt and peck” not for touch typing 

(Noyes, 1983). 

2.7. The nature of handwriting 

Handwriting is the result of a sequence of strokes, while one stroke is the drawing 

between the point from which the pen or stylus goes down to the point from which the 

pen or stylus goes up again. One character after another character is entered. Upper case 

letters consist of two strokes in average, lower case letters of one in average. (Tappert et 

al., 1990) 

 

Handwriting is very individual to every person. Even for humans, handwritten 

characters are very hard to identify. Individual accuracy of nine humans identifying 

isolated hand written characters ranged from 94.9% to 96.5% in a study in 1960. 

(Neisser and Weene, 1960) 
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2.8. Handwriting Recognition 

Réjean Plamondon, defines handwriting recognition as follows: 

 “Handwriting recognition is the task of transforming a language represented in its 

spatial form of graphical marks into its symbolic representation.”  

(Plamondon and Srihari, 2000) 

 

Basically, there are two ways to recognize handwriting recognition – Offline and Online 

Handwriting Recognition.  

In Offline Handwriting Recognition only the completed writing is available. It belongs 

to Optical Character Recognition (OCR). 

Online Handwriting Recognition is done while a user is writing. In this case, the order 

of the strokes as well as the order of the symbols drawn is available. 

(Gader et al., 1997, Plamondon and Srihari, 2000, Strenge, 2005, Tappert et al., 1990)  

 

Mobile Handwriting Recognition is realized with Online Handwriting Recognition.  

2.8.1. Data Pre-Processing 

The raw data of the user’s handwriting which is gathered from the touch-screen gets 

preprocessed before the final recognition process tries to recognize the drawing.  

 

Guerfali and Plamondon divide pre-processing into three groups: 

 Reduction of information: The aim of this step is to reduce data for 

recognition, and therefore reduce time spent on recognition. This step consists of 

o Filtering: Removes duplicate data points; therefore the number of points 

is decreased. 

o Dot reduction: Reduces dots (e.g. dot in “i”) to a single point 

 Elimination of imperfections: Imperfections can occur with touch-screens 

because of hardware problems. The data points get corrected by  

o Smoothing: Average a point with previous neighbour points 

o Wild point reduction: This can eliminate occasional points produced by 

hardware. 
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o Hook removal: Removing problem making hooks at the beginning and 

the end of strokes 

o Component connection: If there are unwanted pen lifts, the two strokes 

will be connected 

 Normalization: Normalization reduces the effect of handwriting variations. This 

is done by  

o Base drift correction: Taking the writing to a horizontal level 

o Normalization of size: Resizes the writing to a standard size 

o De-skewing: Correction of the slant of words, cursive writing. 

(Guerfali and Plamondon, 1993, Tappert et al., 1990) 

 

Similar to Guerfali, Tappert divides pre-processing into 

 Noise Reduction: (Figure 2) 

o Smoothing 

o Filtering 

o Wild point correction 

o De-hooking 

o Dot reduction 

o Stroke connection 

 Normalization: 

o De-skewing 

o Baseline drift correction 

o Size normalization 

o Stroke length normalization 

(Tappert et al., 1990) 
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Figure 2: Example of pre-processing (Tappert et al., 1990) 

Strenge defines the processes as follows: 

 Data Acquisition (Datenerfassung): During input, samples are taken and 

stored in short intervals. These samples could consist of position of the stylus, 

the intensity of pressure on the touch-screen and the angle of the stylus to the 

surface of the touch-screen. 

 Preparation (Vorverarbeitung): The collected data will be scaled into uniform 

size and errors will be removed before recognition. The most common methods 

are noise reduction (for example, if the user touches the touch-screen with a 

finger during writing with the stylus unintended), scaling (each letter is scaled to 

a defined size) and normalization (e.g. redundant points will be removed) 

At the end of preparation, the input is divided into segments. In the best case, 

one segment represents one letter (Figure 3). This figure also shows the problem 

with many possibilities for segmentation 

 Classification (Klassifizierung): Recognition is performed in this stage. One or 

more segments are put together, building a class. The recognition engine then 

translates the classes to letters. 

 Composition (Komposition): The recognized letters are put together to words 

and sentences. 

(Strenge, 2005) 
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Figure 3: Example of segmentation (Plamondon and Srihari, 2000) 

 

Segmentation can be done externally and internally. While internal segmentation is 

done by preprocessing, external segmentation is done by the user, by writing isolated 

characters. (Tappert et al., 1990) 

 

The captured data will be classified as ASCII Symbols. There are several methods, 

which belong to two distinct families of classification:  

 Structured and Rules-Based Methods 

o Fuzzy Rules 

 Statistical Methods 

o Markov Modeling (Hidden Markov Modeling) 

o Based on Neural Networks 

(Plamondon and Srihari, 2000), (Strenge, 2005) 

2.8.2. Recognition based on Fuzzy Rules 

(Holzinger et al., 2010) 

Because of the fuzzy nature of human handwriting, it makes sense to adapt the well 

known fuzzy logic technique for this purpose (Gader et al., 1997).  

Rather than strictly classifying data as in digital logic, fuzzy logic allows degrees of 

membership in multiple categories so that fuzzy rules may have a continuous, rather 

than stepwise, range of truth of possibility. Therefore non-identical handwritten 
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numerals, from identical or different users, can be approximated using fuzzy logic for 

fast and robust handwriting recognition (Shi and Li, 2002). 

2.8.3. Recognition based on Neural Networks 

(Holzinger et al., 2010) 

The methods based on Neural Networks were driven by the emergence of portable, pen 

based computers. A typical approach is to combine an artificial neural network (ANN), 

as a character classifier, with a context-driven search over segmentation and word 

recognition hypotheses (Yaeger et al., 1998). 

2.8.4. Based on Markov Modeling 

(Holzinger et al., 2010) 

The methods using HMM (Marti and Bunke, 2002) are based on the arcs of skeleton 

graphs of the words to be recognized. An algorithm applied to the skeleton graph of a 

word extracts the edges in a particular order, which is transformed into a 10-

dimensional feature vector. Each of these features represents information about the 

location of an edge relative to four reference lines, the curvature and the degree of the 

nodes incident to the considered edge.  

Training of the HMM is done by use of the Baum-Welch algorithm, while the Viterbi 

algorithm is used for recognition (Bunke et al., 1995), (Xue and Govindaraju, 2006). 

2.9. Metrics 

The following two metrics define words per minute; the only difference is the starting 

metric. 

 Equation 1: Words per Minute by MacKenzie 

wpm 
cpm

5
 

 wpm Words per Minute 

 cpm Characters per Minute, including punctuations and spaces 

(MacKenzie et al., 1994) 
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 Equation 2: Words per Minute by Lewis 

5

60*cps
wpm   

 wpm Words per Minute 

 cps Characters per Seconds, including punctuations and spaces 

(Lewis, 1999) 

 

Two standard measures for accuracy are Word Error Rate (WER) and Character Error 

Rate (CER). They are generated by two texts, the presented text and the transcribed text. 

In the “no error case”, the two texts are the same. Each difference between the two texts 

is either an insertion (I), deletion (D) or a substitution (S). 

(Read, 2007) 

Equation 3: Word Error Rate (Read, 2007) 

N

DIS
WER

)( 


 
 

 N Total number of words 

 

Equation 4: Character Error Rate (Read, 2007) 

N

DIS
CER

)( 
  

 N Total number of characters 

2.10. Handwriting Recognition Acceptance (Accuracy) 

The most important parameter for the acceptance for Handwriting Recognition is the 

accuracy. 

People rate an accuracy of 90% to 95% to be a very poor recognition rate. Users will 

accept accuracy above 97% (3 wrong recognized out of 100 inputs). (LaLomia, 1994) 
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2.11. Usability Evaluation Techniques 

There are two main categories for usability evaluation techniques. These techniques try 

to ensure that a prototype or implementation fits the defined usability requirements. 

 Usability Inspection Methods 

 Usability Test Methods 

(Holzinger, 2005) 

 

Figure 4 shows the detailed techniques of the two categories. 

 
Figure 4: Usability Evaluation Techniques (Holzinger, 2005) 

2.11.1. Cognitive Walkthrough 

(Holzinger, 2005) 

This technique is an inspection method and no end-user is urgently required. The team 

of analysts consists of software developers and usability specialists. Also end-users may 

be part of the analysts but this is not mandatory. 

A full functional prototype and some tasks are required.  

Each analyst goes through the system, simulating the tasks. The cognitive process of the 

user gets analyzed.  

After simulating, the analysts discuss each task.  
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Because an end-user is not mandatory, this technique can be used at any point during 

the development process. A fully functional prototype gets analyzed, therefore, 

problems and errors in the interaction between user and the system can be found. 

2.11.2. Field Observation 

(Holzinger, 2005) 

This technique is a test method and is carried out with end-users in real situations.  

The user has to perform defined tasks at his work place. Observers take notes of the 

scenario in a non-intrusive way to enable the user to perform the tasks without 

diversions. 

Statistical data should be logged by the system without disturbing the user. 

2.12. Prototyping 

 
Figure 5: Example of Low-Fi – High-Fi Prototyping (Holzinger et al., 2005) 

 

Prototypes are developed and created to evaluate the basic functionality of a system. In 

the special case of usability engineering, the basic functionality of the user interface is 

created and evaluated. 

(Holzinger, 2004) 
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2.12.1. Low-Fidelity Prototyping 

(Holzinger, 2004) 

Low-Fi prototypes are very early prototypes of user interfaces. They are realized with 

paper mock-up.  

With paper mock-up it is easy to create experimental drafts of interfaces on paper. 

These prototypes are user interfaces drawn on paper. They could be discussed and 

changed very simple.  

The amount of time and resources to create such a prototype is very low – therefore, 

they are a very effective way of creating experimental interfaces.  

 

Low-Fi prototypes are proper for Usability Inspection Methods (Chapter 2.11). 

2.12.2. High-Fidelity Prototyping 

(Holzinger, 2004) 

High-Fidelity prototypes are implemented prototypes with full functionality. They are 

built in later stages in the development process when the development of the user 

interface is nearly finished. 

Changes of these prototypes cost more time and money, because a programmer’s 

expertise is needed to make changes.  

 

High-Fi prototypes are proper for Usability Testing Methods (Chapter 2.11). 

2.13. Spiral Model 

The Spiral Model is an iterative development model. The Spiral Model (Boehm, 1986) 

was developed by Boehm (Boehm, 1986) based on experiences with refinements with 

the waterfall model (Royce, 1970). 

 

The waterfall model is a non-iterative development model, while the spiral model is an 

iterative development model.  
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Basically, the development itself is the sum of iterations or also called circles. Each 

circle addresses the same steps. Each iteration addresses the same four steps, causing 

costs and increasing the progress of the whole project. (Figure 6) 

- Determine objectives, alternatives and constraints 

- Evaluate alternatives, identify and resolve risks 

- Develop and verify next-level product 

- Plan next phase 

 

 
Figure 6: Spiral Model by Boehm (Boehm, 1986) 
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2.14. Development Process 

 
Figure 7: The System Lifecycle (Read et al., 2004) 

 

The System Lifecycle (Figure 7) was used to design a novel writing interface for 

children. (Read et al., 2004) 

2.15. Handwriting Recognition 

2.15.1. Lipi Toolkit 

(Madhvanath et al., 2007) 

(Sourceforge) 

 

Lipi Toolkit (LipiTK) is an open source, platform independent toolkit for online 

handwriting recognition. The core toolkit contains a generic algorithm for recognizing 

isolated handwritten shapes. 

The toolkit consists of a core toolkit and an IDE. 

 

The core toolkit contains a generic algorithm to recognize isolated handwritten shapes. 

These algorithms are generic pre-processing algorithms. A PCA (Subspace-based 

Classification) and a Nearest-Neighbour (Dynamic Time Warping) algorithm are used 

for recognition. 

 

The IDE is a program, which helps to define/alter shapes.  
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Characters are defined as a number of classes. For each class, there are n shapes. Each 

shape is a possible handwritten representation of a class.  

 

There are sets of shapes available for download on the homepage and with the LipiTK 

IDE it is possible to alter or add new shapes to the given shapes. 

 

2.15.2. Decuma  

Decuma is a powerful online handwriting recognition system by the ZI Corporation. 

This handwriting recognition is the default handwriting recognition system used by the 

Nintendo DS.  

 

The handwriting recognition system only supports non-joint letter recognition, but this 

system is special not because of the recognition engine itself, but because of the 

innovative user interface  

 

There is also a SDK for Decuma available, but this SDK is very expensive. After some 

email and phone discussions there were no indications for some discount. 
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Figure 8: Demonstration of Decuma’s user interface 

 

2.15.2.1. User Interface 

The user is writing letters, upper or lower case, on the green line. (Figure 8; 1) 

Blue lines are strokes drawn by the user. (Figure 8; 3, 6, 9) 

 

After finishing drawing, the stroke will be recognized. The result of the recognition will 

be displayed in black lines at the position of the drawing. (Figure 8; 9) 

 

If there are wrongly inputted letters or wrongly recognized letters, the user can correct 

this by simply writing over the wrong letter. (Figure 8; 6) 

 

Deleting wrong letters or words is done by drawing a line from right to left over the 

letter(s) which should be deleted. (Figure 8; 3, 4) 
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The special thing about this handwriting recognition is, as written above, the unique 

user interface, which gave us hints for developing ideas and features.  

Also the fact that correcting single letters instead of whole words is much easier and 

more comfortable for the user makes this system appealing.  

2.15.3. Calligrapher 

Calligrapher is a powerful handwriting recognition system developed by Phatware. It 

recognizes 

- joint words, non-joint letters 

o cursive style 

o printed letters (upper and lower case) 

o cursive and printed letters mixed 

The recognition is based on dictionaries, but also other words could be recognized. 

The basic recognition has implemented fuzzy logic and neural networks.  

(Phatware, 2002) 

 

Calligrapher’s neural nets and the classification of Calligrapher are static and 

Calligrapher will therefore not adapt to recognition based on the users’ handwriting. 

(Strenge, 2005) 

 
Figure 9: Best recognition results at letter size 80 points (Phatware, 2002) 

 

There is a SDK for Calligrapher with an adequate price available. This SDK gives the 

opportunity for configuring Calligrapher, changing the timeout after which recognition 

starts and changing the results returned by the engine. 
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2.16. Improving recognition accuracy 

One way to improve recognition accuracy is by decreasing the possible alternatives and 

therefore making discrimination easier. This could be done by designing interfaces 

where only restricted subsets will be accepted, for example, accepting only numbers in 

an input field (Frankish et al., 1995).  

Also avoidance of high confusable pairs like “r” and “v”, “O” and “0” and “I” and “l” 

would increase accuracy (Frankish et al., 1995).  

 

In a study they formed the hypothesis that recognition accuracy should decrease if the 

size of the symbol sets increases. (Chang and MacKenzie, 1994) 

If the symbol set contains only lower letters (26 letters), the recognition accuracy should 

be better than when using a symbol set of upper and lower case letters (52 letters). 

 

They tested two handwriting recognizers, both with lowercase and with upper/lowercase 

 Microsoft® character recognizer Pen for Windows® 

 CIC’s HandwriterTM 3.3 

 

 
Figure 10: User interface of the study’s software (Chang and MacKenzie, 1994) 

 

To determine the recognition accuracy, the user interface was designed in a way that the 

text which should be entered is displayed on the screen and below the text each 

character is written in a separate section.  
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Figure 11: Comparison of the four conditions for entry speed and recognition accuracy  

(MS = Microsoft, CC = CIC, LC = Lowercase, UL = Upper+Lower) (Chang and MacKenzie, 1994) 

 

The hypothesis was confirmed. Figure 11 shows that the recognition accuracy for 

Upper+Lower was lower than the accuracy for the smaller set of only lower case letters 

– while the writing speed (words per minute) shows hardly any difference. 

2.17. PDA-Based Interface for Ambulance Run Reporting 

(Chittaro et al., 2007) 

A study motivated to improve effectiveness of rescue applications by creating an easy-

to-use mobile system was done in 2007 by Chittaro in Italy. It focuses on design and 

evaluation of a mobile application, replacing the traditional ambulance run sheet which 

is filled out by first responders for each patient in the field of work or during transport. 
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2.17.1. Prototype 

The traditional run sheet’s size is DIN A4 (210mm x 297 mm). Because of the small 

size of the PDA’s screen, the run sheet has to be divided into sub sections. With the 

navigation bar, it is possible to scroll to every section. 

 

The input fields are classified into 

 Numeric fields 

o Free numeric field 

o Pre-printed numeric fields 

 Textual fields 

 Multiple-choice fields 

 Mutually-exclusive choice fields 

 Graphical fields 

 Mixed-type fields 

2.17.2. Evaluation Procedure 

Before starting, the user gets information and instructions about the usage of 

 Touch screen and stylus 

 Organization of the user interface 

 Tips for entering data via handwriting recognition 

 Usage of automatic word completion of virtual keyboard 

 

During the tasks, the users were allowed to ask questions. 

 

The users were asked to perform a task, entering data of a real rescue operation. They 

got a sheet of paper with a textual description and a photograph of an operation. The 

description of the operation contained all necessary data for filling out the run sheet on 

the PDA. This was neither an explicit text copy task nor a text creation task (MacKenzie 

and Soukoreff, 2002).  

 

For text entry, handwriting recognition and input via virtual keyboard were used. For 

handwriting recognition, Phatware Calligrapher was used and configured for entering 
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entire written Italian words. For input via virtual keyboard, the virtual keyboard of 

Windows Mobile with word completion was used. 

 

After the task, a questionnaire about features liked or disliked had to be filled out by the 

user. 

2.17.3. Evaluation Results 

 

Table 1: Participants of the user evaluation 

Number of participants 6 

Gender 4 male 2 female 

Profession First responder 

Age 23 – 50 

Average age 37.5 

Experiences with PDA None 

 

Table 2: Evaluation results for handwriting recognition and virtual keyboard 

 Median Variance

Entering numeric values (virtual keyboard) (0=Hard, 9=Easy) 8.7 0.3

Writing text using the on-screen virtual (0=Hard, 9=Easy) 7.2 1.8

Writing text using handwriting recognition (0=Hard, 9=Easy) 3.8 6.6

 

Entering data with handwriting recognition proved to be difficult for the users. Most of 

the entered data was not recognized correctly. The space on the screen for writing was 

too small. All in all, the handwriting recognition was not very satisfying and figured out 

a usability problem. 
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3. Materials and Methods 

3.1. Development Process 

An experimental incremental developing model was requested. 

 

It was clear that the waterfall model (Royce, 1970) is not the right software 

development process for our project.  

Prototyping is needed for our project, therefore, we decided to develop within 

iterations – analogue to the circles in the spiral model(Boehm, 1986).  

 

 
Figure 12: Draft of a possible development process 

 

We worked out a draft development process (Figure 12). This process included 

 Identification of already completed work 

 Analyse – Find basics for input components 

 Prototyping (Lo-Fi and High-Fi Prototyping) 

 Evaluation (Cognitive Walkthrough, Field Observation) 

 Repeat points above until evaluation is satisfying 

 

The System Life Cycle (Figure 7) which was used for the development of a handwriting 

recognition based writing interface for children is an example for a development process 

in a similar project. (Read et al., 2004) 
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Combined with our draft development process with the System Life Cycle (Figure 7), 

the key steps of the System Life Cycle are as follows: 

 

 
Figure 13: The development process for the project as a flow chart 
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Step Output Participants 

Analysis Issues for next iteration (F),(H),(P),U,S 

Design Design of the prototype U,S 

Prototype Finished Prototype (U),S 

Evaluation Results of evaluation (U),S 

Final  

Implementation 

Object orientated and Coding 

standard conform implementation 
U,S 

F… Mr. Ferk, U… Mr. Unger, S… Mr. Schlögl, H… Mr. Holzinger, P… Mr. Peischl 

Table 3: The development process, output and participants of the steps 

3.1.1. Analysis 

The findings from previous circles (prototypes) are discussed and the issues for the next 

iteration are decided.  

Also picking up new ideas and their possible implementation and improvements are 

discussed.  

 

Normally, these discussions are done by Mr. Unger and Mr. Schlögl, but when 

discussing ideas, Mr. Ferk also joins the discussions.  

There were also meetings with all participants to decide next key issues in the project. 

 

If the analysis of the results of evaluation concludes that the functionality of the last 

prototype achieves the requirements, the next will be the final implementation. 

3.2. Design 

In this step, ideas and issues from the analysis are given a design for implementation.  

This consists of the design of the user interface and basic design of the software.  

The rough design of the user interface is done by drawing a draft version on paper and 

discussing the draft.  

 

After this step the overall tasks for realizing the prototype are clear.  
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3.2.1. Prototype 

3.2.1.1. Low-Fi Prototype 

At the beginning, these prototypes were created on paper by hand and with Microsoft 

Visio (e.g. Figure 16). After the basic design of the interface was completed, the Low-Fi 

Prototypes were created by manipulating screen shots with graphic design software like 

GIMP (e.g. Figure 20).  

 

3.2.1.2. High-Fi Prototype 

Every time the basic design of the user interface changed and some approaches of the 

Low-Fi prototypes have to be evaluated in full functionality (with handwriting 

recognition), the High-Fi prototype was extended.  

3.2.2. Evaluation 

High-Fi Prototypes are evaluated in at least one of the following three different ways 

(2.11.1 Cognitive Walkthrough): 

 Evaluation by the developers (Mr. Unger, Mr. Schlögl) 

 Evaluation by colleagues and friends (for example colleagues at the office of 

FERK Systems) 

 Evaluation in real situations (Austrian Red Cross) 

 

To get a more independent evaluation, colleagues at the office of FERK Systems are 

asked to complete several tasks. 

 

To get an independent evaluation, tasks are performed by people within the Health Care 

System (for example, colleagues). 
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Figure 14: Evaluation as Cognitive Walkthrough in Real Life Situations 

3.2.3. Final Implementation 

This is the final step of the development process. Based on the findings of the 

prototypes, a final Object Orientated Design is created.  

The final implementation will not be a further development on a prototype. The 

implementation has to start from the beginning and must be in FERK SYSTEMS coding 

standard (FERK-Systems, 2005, FERK-Systems, 2007).  
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3.3. Consistent Colour Scheme 

A consistent design is a very important factor for user satisfaction. Therefore, a 

consistent colour scheme was defined.  

 

There are three main action types in our input dialogs: 

 Input actions 

 Command actions 

 Navigation actions 

 

There is a main colour for every action type. A brighter version of this main colour is 

used for unused elements, a darker colour for actual used elements.  

 

For the buttons, there are three states defined: 

 Enabled: The functionality of the button is enabled. 

 InUse: The button changes to this state if the button is pressed or the 

functionality of the button is active (e.g. Upper Case Button).  

 Disabled: The functionality of the button is disabled 

3.3.1. Input actions 

Input actions are actions which change the result field. Green is the main colour for 

these actions.  

All handwriting input areas are green, as well as buttons for “New Line”, “Space” and 

“Backspace”. 

 

Bright version of green:  Red 99, Green 227, Blue 99  
   

Dark version of green: Red 57, Green 130, Blue 57  

Table 4: Input action colours 
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Elements: 

Button

(Enabled, Focused, InUse, Disabled)
Description 

   

Backspace – Deletes the character to the left of 

the cursor position 

   

New Line – Inserts a new line at the current 

cursor position 

 

Space – Inserts a blank space at the current 

cursor position 

 

Area for handwriting drawings 

Table 5: Input action elements 

3.3.2. Command actions 

Then main colour for command buttons is blue. These are actions which change the 

dialog appearance, without changing data within the edit field or positioning the cursor. 

 

Bright version of blue:  Red 148, Green 166, Blue 198  
   

Dark version of blue: Red 76, Green 85, Blue 102  

Table 6: Command action colours 
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Elements: 

 
 

OK Button – commits changes and 

closes input dialog 

 
 

Cancel Button – cancels changes 

and closes input dialog 

 Unroll – Shows more lines of multi 

line text edit field, hides input 

components 

 

 

Enroll – Shows standard lines of 

multiline text edit field, shows input 

components 

   

Upper Case Button – Changes to 

Upper Case Mode 

   

Keyboard Button – Shows Virtual 

keyboard 

Table 7: Command action elements 
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3.3.3. Navigation actions 

These are actions, which move the cursor position. Their main colour is orange. 

 

Bright version of orange:  Red 255, Green 182, Blue 115  
   

Dark version of orange: Red 191, Green 137, Blue 86  

Table 8: Navigation action colours 

Elements: 

 

Left Button – Navigates the cursor position one 

to the left 

 

Right Button – Navigates the cursor position 

one to the right 

Table 9: Navigation action elements 

 

In early prototypes these buttons were also included but it was decided to remove them 

because positioning the cursor in the text is not a common action compared to pressing 

space or deleting a letter.  

Removing these buttons also decreased the number of buttons and therefore simplified 

the user interface. 

 

Positioning the cursor in the text is realized by placing the cursor directly by using the 

stylus within the text. 

3.4. “Keyboard” Input 

The given virtual keyboard of Microsoft Windows Mobile is not very comfortable. It is 

small and hard to read. 

Moreover it is not possible to filter the buttons, which are displayed on the keyboard. 

Only displaying the letters that are actually needed would be a better solution, for 

example, inputting a name only requires letters from a to z and special German letters in 

upper and lower case, as well as the character “-“ for double names. 
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We defined some input dialogs for entering data 

 numbers 

 text 

 

The main goal of these input dialogs is to show only the buttons on the keyboard which 

are needed, e.g. for typing in an amount of money, only the numbers 0…9, +, - and 

comma/dot are needed. 

 

Figure 15 shows some of these prototypes, special for a few kinds of numbers. 

Figure 16 shows a prototype to input a name or a street name. Instead of the confusing 

“Shift” button (for upper case letters), upper and lower case letters are displayed. 

 

The prototypes on Figure 15 and Figure 16 are Low-Fi Prototypes, designed with 

Microsoft Visio, and never got implemented, because we focused on handwriting 

recognition. 
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Figure 15: (a) “keyboard-dialogs“ for  

(a) phone number, (b) zip code, (c) number, (d) house number 
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Figure 16: “keyboard-dialog“ for entering a street name or a name 

3.5. Basic Handwriting Recognition Prototypes 

3.5.1. Lipi Toolkit 

We developed a small prototype in Microsoft Visual C (Figure 17). It was only for 

testing the performance of Lipi TK.  
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Figure 17: Simple prototype for testing Lipi Toolkit 

 

This prototype had hardly any functionality; only numbers (one after another) could be 

recognized. 

 

The prototype was tested on a notebook with an Intel Core Duo and 2.0 GHz – the 

performance was disastrous.  

It took two seconds to recognize the “3” even though the set of shapes which could be 

recognized counted only ten shapes (“0”..”9”). 

We also tried to recognize letters – on the same notebook it took seven seconds to 

recognize a letter. 

 

The CPU of a PDA is about 400MHz. Therefore, it is impossible to use Lipi TK for our 

input dialogs. 
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3.5.2. Calligrapher 

We developed a simple Prototype (Figure 18) for typing in text with calligrapher. With 

this prototype, the user was able to input data by handwriting somewhere on the screen 

of the PDA. 

 

An important parameter for Calligrapher SDK is the used timeout. This timeout means 

the elapsed time after the user stops drawing on the screen. After this timeout, the 

recognition starts.  

This timeout is very important because a letter or a word consists of at least one stroke, 

but there is no maximum of strokes (e.g. letter “L” consists of one stroke, while “T” 

consists of two strokes). 

 

The prototype shows that Calligrapher SDK returns a list of possible recognized letters 

or words with a probability. Also the number of strokes is provided. 



 

42 

 
Figure 18: Simple Calligrapher Prototype 
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Calligrapher has a good word recognition performance with the help of dictionaries but 

lacks the ability to enter words that are not included in the dictionary. This is especially 

problematic when trying to enter names. But if users input a word, which seems to be a 

word in the dictionary, Calligrapher will recognize this word, although the user wants 

another word to be recognized. Therefore, sometimes it is impossible to input correct 

words, especially names.  

 

Moreover, if words are falsely corrected, it is difficult to implement a powerful user 

interface to correct the error, either the whole word will be deleted, requiring entering 

the word again or the wrong letters have to be corrected. 

 

We tried to define separate dictionaries for each of our fields, which can be entered: 

 Names, 12.415 common German names 

 Surnames, 43.531 common Surnames 

 

We also wanted to define dictionaries for cities and streets, but when we defined names 

and surnames, we saw that this will not solve the whole problem. Entering a name 

which is similar to a name in our dictionary caused Calligrapher to recognize the wrong 

name. 

3.5.3. Decision for a Handwriting Recognition Engine 

LipiTK would be the cheapest alternative, because it is free and open source, but the 

performance (recognition time) of the recognition is not very good. 

 

The SDK of Decuma is very expensive, and there were no discounts, therefore it was 

out of discussion to choose Decuma. 

 

The Calligrapher SDK is available for an adequate price. Moreover, the study by 

Chittaro (Chittaro et al., 2007) which motivated us for this work on handwriting 

recognition was also done with Calligrapher. 

 

Therefore, Calligrapher SDK was chosen. 
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3.6. Guided Handwriting Input Dialog 

The idea of the following input dialogs was to display separate handwriting input 

sections for inputting different data. The user is guided through the dialog by having 

separate sections for each part of time (SS:MM) and date (DD:MM:YYYY). 

 

The user has to input the whole value for each section at once, e.g. to input the year 

2009 the user has to write all four letters into the year section. 

 

We thought of one big advantage designing such dialogs – it should be easy for the user 

to correct incorrectly recognized dates and times. Errors are simply corrected by re-

writing the values in the corresponding section. 

 

In the next step, we found a second big advantage of these separated sections for 

handwriting input. It is possible to reduce possibilities of valid values for each input 

section. This would give better recognition results (MacKenzie and Chang, 1999). We 

did these by using self-defined dictionaries which are loaded into Calligrapher. We 

defined special dictionaries for each of these separate input sections with the following 

contents: 

 

o Section Day: “1” … “31” 

o Section Month: “1” … “12”, Jänner, Jän; Februar, Feb; März; April; 

Mai; Juni; Juli; August, Aug; Oktober, Okt; November, Nov; Dezember, 

Dez 

o Section Year: “1800” … “2100” (we defined this as valid years)  

o Section Hours: “0” … “23” 

o Section Minutes: “0” … “60” 
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Figure 19: Very early drawn prototypes for guided handwriting input dialogs. (1) shows the dialog for 

entering a date, (2) for entering a time. 

 

To get a maximum surface for handwriting input, each section was stretched to its 

maximum. Left-handed users will have the same surface as right-handed users for 

drawing their handwriting into the sections. 

 

The headers (in Figure 19; Tag, Monat, Jahr, Minuten, Sekunden) got removed due to 

serve left-handed users in better way.  

Instead of the headers, the placeholders for the data (TT, MM, JJJJ, and SS) are placed 

on the left side of each input section (Figure 20).  

Moreover, recognized data is shown instead of the placeholders for each section. 

(Figure 20) 
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Figure 20: Prototypes for guided handwriting input dialog for date.  

(1) shows the dialog for date input at the start. (2) shows the filled dialog for date input. (3) shows dialog 

time input at the start. (4) shows filled time input dialog. 
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3.7. Guided Date Handwriting Input Dialog with Century Button 

We found that the input of the year is the most critical part, because the possibility of a 

recognition error on a word with the length of 4 is higher than on a word with length 

one or two. 

Moreover, the input of day and month is more limited by a dictionary than the input of a 

year. 

 

Therefore, we developed a special solution for inputting a date. Valid years are in the 

range of 1900 and 2099.  

 

 
Figure 21: Guided handwriting dialog for imputing a date with century button.  

(1) Dialog at the start, (2) Dialog filled with data 

 

The century part (first two numbers) of a year is represented by two buttons (Century 

Buttons).  

At the start, the “20”-Century-Button is activated, the year part of the result-edit-field is 

“20JJ” (Figure 21, (1)). This is, because we thought that years starting with “20” are 

more often inputted than years started by “19”. 
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To change the century, the user only has to tip on the required century button. 

 

Because of the constant colour scheme, the active century button is coloured in the 

darker version of green. 

3.8. Character Recognition Dialogs 

Due to problems described in Chapter 3.5.2 with recognizing whole words, there was 

the idea for character recognition. One character after another will be inputted.  

Therefore, if a letter is recognized wrongly, the user has the chance to delete it 

immediately with one click on the backspace button, without any other interaction.  

This is more comfortable and not as time consuming as pointing the cursor within a 

wrongly recognized word, deleting the wrongly recognized part and replacing it with 

the correct letter(s). 

 

As described in Chapter 2.8.1, there is external and internal segmentation (Tappert et 

al., 1990). Segmentation could be a possible error source; therefore, it could lead the 

recognition to better accuracy if the segmentation is done externally, by the user, 

writing separate characters. 

 

Written in Chapter 2.16, decreasing the number of alternatives lead to better recognition 

accuracy. Therefore, the set of valid letters has to be restricted to upper or lower case 

letters. 

Upper case letters are bigger and consist of two strokes in average, while lower case 

letters are smaller and consist of one stroke in average (Chapter 2.7).  

Therefore, only lower case letters are allowed to input by the user. 

 

To input upper case letters, some interaction by the user via the interface has to be done. 

In the following chapters there are some approaches to do so. 
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3.8.1. Dialog 

All input dialogs should fit the constant colour scheme and, most important, their 

appearance should be the same. 

 

Therefore, we defined the position of some basic components (Figure 22) 

 Headline Section, the name of the field which will be edited 

 Result Section, the recognized letters will be displayed within an Edit Field 

 Command Section, command buttons are displayed in this area (Show 

Keyboard, Space, Backspace, New Line, Left/Right Button) 

 Writing Section, user will draw the handwriting in this area 

 Closing Section, OK and Cancel button will close the dialog (with or without 

saving the changes) 

 

 
Figure 22: Basic component positioning 

 

The position of the command section was chosen between Result Section and Writing 

Section, because during an evaluation (Cognitive Walkthrough) we found out, that users 



 

50 

are checking the recognized letters during typing, and therefore, the view of the user is 

focused on the upper part of the screen. 

 

The OK and Cancel buttons within the Closing Section are placed in the other way than 

the design guidelines would recommend (Confirm Button on the right side) (Zwick et 

al., 2005). Due to design guidelines of FERK Systems, the Confirm button is placed 

left, whereas the Cancel button is placed on the right hand side. 

3.8.2. Text with Upper/Lower Case Button 

This dialog was the first approach to give the user the possibility to choose upper or 

lower case letters to input and decide the case by a button. 

 

This approach is derived from a Nokia 6120 Navigator’s (Nokia) SMS input. The 

decision whether it is an upper or lower case letter is done by a button. There is also the 

possibility to type in text in printed letters (only upper case letters). 

 

The flow and functionality of this button is shown in Figure 23. 
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Figure 23 Flow Chart of the Upper-Lower Button Functionality 
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3.8.3. Text with Upper/Lower Case Area 

In this dialog, the Writing Section is parted into two pieces by a horizontal line 

(Figure 24). Letters, with first stroke started within the upper part, will be displayed as 

upper case letters in the Result Section – starting within the lower part, they will be 

displayed as lower case letters. 

 

 
Figure 24: Text Input with Upper/Lower Case Area 

 

In the best case, the user does not move his/her hand and the stylus to the upper or lower 

section and lets the hand remain in the middle area. Also inputting printed letters (only 

upper case letters) is possible. 

3.8.4. Text with Upper/Lower Case Space Button 

The basic idea of this dialog is that the user can write wherever he/she wants within the 

writing area.  
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If there is a need for distinction between upper and lower, it can be decided after writing 

a word.  

 

There are two space buttons on the dialog (Figure 25).  

 

 
Figure 25: Text Input with Upper/Lower Space Button 

 

If the user clicks on the space button with the upper case arrow, the first letter of the 

word just inputted will change to upper case and a space will be added. 

If the user clicks on the normal space button, only a space will be added.  

 

This dialog allows very fast writing, because the user does not have to change the 

position of the stylus, except when he wants to change the first letter of an inputted 

word.  

 

This method gives the user the chance to decide if fast writing (without capital letters) 

or correct writing (with capital letters) is preferred or needed. 
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The negative side of this dialog is the fact, that no words in printed letters can be 

inputted (shortcuts, abbreviations) and the way to get a capitalized word might be 

confusing at the beginning. 

3.8.5. Problem with upper case solution 

One of the solutions in the previous two Chapters was thought to be the best solution for 

inputting upper case letters. Therefore, two tasks inputting text to the system, one with 

the upper space button solution and one with the upper/lower case area dialog were 

performed by six first responders. They were watched during the tasks. 

The users had problems with the upper/lower case area because it was unnatural to them 

changing position for the beginning of a character. 

The solution with the upper space button was very confusing to the users because of 

changing the first letter of a word after writing the word. 

There were problems with both solutions, therefore, a new solution for the upper/lower 

case problem had to be found. 

3.8.6. Text with Upper Case Button 

This solution is very similar to the upper/lower case button solution in Chapter 3.8.2. 

The difference is that in this solution there is only an upper case button, it never 

switches to a lower case button. 

 

Normally, the upper case button is displayed in Enabled Status ( ). The recognized 

letters will be displayed as lower case letters in the input field. 

Clicking on the upper case button changes the button to InUse Status ( ). This gives 

the user the information that the letter recognized next will be displayed as upper case 

letter in the input field.  

After recognizing one letter, the button switches back to Enabled Status and the letter 

recognized next will be displayed as lower case letter.  

Clicking on the upper case button before recognizing the next letter will switch the 

button back to InUse Status. Now all the following letters recognized will be displayed 

as upper case letters, until clicking on the button again. 
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Figure 26: Flow chart of the functionality of the upper case button 
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3.8.7. Multiline Text 

This dialog is based on the single line letter handwriting recognition dialog. The text 

field’s height is increased to display three lines of text, and two additional buttons are 

added to the given dialog (Figure 25).  

These new buttons are a new line button (adding a new line to the text), and the 

en/unroll button, to view more than 3 lines of the text box. (Figure 27) 

 

 
Figure 27: Multi Line Text Input 

 

If the user wants to place the cursor somewhere in the multi line text (which is outside 

the view of the three line input field), he clicks on the unroll button, and the text size of 

the input field will increase and fill the screen. The Command Section (except the 

un/enroll button) and the Writing Section gets hided. The unroll button changes to the 

enroll button. 

After that, the user positions the cursor with the stylus.  

To get back to writing, the user clicks on the enroll button. The size of the input field 

goes back to three lines, the Command and Writing Section is displayed and the enroll 

button changes to unroll button. 

The cursor remains on the changed position and is displayed in the input field.  
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3.8.8. Back Door 

There is also a Back Door in the interface, if a user can not type in a letter with 

handwriting recognition. In this case, the user clicks on the keyboard button ( ). 

The virtual keyboard will be displayed () and the user can enter the letter. After entering 

the letter, the virtual keyboard is hidden (also by clicking on  while the keyboard is 

displayed). 

 

The Back Door is implemented for all dialog types (Text, Numbers, Time and Date). 

 

 
Figure 28: Back Door, the virtual keyboard 

3.8.9. Final Text Component 

The final text input component is a result of all the other prototypes and of the iterations 

which were done within the project.  

 

The basic layout of the dialog is realized as it is described in Figure 22. Only the 

command section has changed. 
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The buttons for navigation actions to navigate to the left or to the right were removed, 

because of the decision that placing the cursor within the text has to be done by placing 

the cursor with the stylus.  

Therefore, the buttons for input actions and command actions are bigger and easier to 

hit. 

The Writing Section also changed. Phatware defines the best recognition results for 

letters which have a height of 80px (Figure 9), which is presented as the brighter area 

(Figure 29, Figure 30). 

 

The user is called to pay attention to the Result Section (input field) to check if the 

written letter is recognized correctly. There is no need for the eyes of the user to be 

focused on the writing, because the user knows how to write letters anyway. Moreover, 

because of the Adaptive Timeout (Chapter 3.9), the user is able to write fluently and 

does not have to wait until the recognition starts.  

 

 
Figure 29: Final Multi Line Text Dialog 
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Figure 30: Final Single Line Text Dialog 

3.8.10. Numbers, Date, Time 

Due to a constant design of the dialogs, these dialogs are based on the Final Text 

Dialogs. Buttons which are not needed are not deleted from the dialog, they are still 

there, but disabled.  

Every dialog has the same appearance, but for these dialogs, the button space, new line 

and upper case are disabled. 

 

For entering numbers, date and time, the Calligrapher is configured with special 

dictionaries, containing only numbers and for entering the numbers “+”, “-“ and “,”. 

 

Wrong dates or times (e.g. 25:74 or 31.02.1993) cannot be inputted to the system - the 

system avoids this. 
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Figure 31: The final dialog for entering numbers 

 

3.8.10.1. Date and Time Dialog 

At these dialogs, the input field is filled with a mask, TT.MM.JJJJ for date and SS:MM 

for time.  

Each inputted number replaces the placeholder next to the cursor.  
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Table 10: Example of entering a date 

Input field Inputted number or interaction 

|TT.MM.JJJJ 2 

2|T.MM.JJJJ 5 

25.|MM.JJJJ 0 

25.0|M.JJJJ 3 

25.03.|JJJJ  
25.0|M.JJJJ 2 

25.02. |JJJJ 2 

25.02.2|JJJ 0 

25.02.20|JJ 1 

25.02.201|J 0 

25.02.2010|  

 

 
Figure 32: Final date and time dialog 

3.9. Adaptive Timeout 

Letters could consist of more than just one stroke (e.g. a handwritten “l” consists of one 

stroke, while an “F” consists of three strokes), therefore it is very important to increase 
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the speed and satisfaction of the user is to optimize the time between the ending of the 

last stroke of a letter and the start of the recognition. 

But when has the user finished inputting strokes for one letter? Groner describes a 

symbol completed if a specified time elapses after the end of the most recent stroke 

(Groner, 1966).  

The elapsed time after the last stroke of a letter we call timeout.  

 

It is impossible to define a general timeout, because of users’ different speed of writing 

letters, e.g. a user who writes fast will be slowed down by the system, if the timeout is 

set too high, whereas a user who writes slowly could not be able to input letters which 

consist of more than one stroke because of a timeout too short. 

Therefore, we developed a variable timeout, which automatically fits the user.  

 

The most important data for calculating the timeout is the passed time between two 

strokes (TBS, Time Between Strokes), if a letter consists of more than one stroke. 

The letter “F”, for example, consists of three strokes, therefore two times between the 

strokes can be measured (Figure 34), while the letter “S” consists of only one stroke 

(Figure 33). 

 

 
Figure 33 Letter “S”consists of one stroke 
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Figure 34 Letter “F” consists of three strokes 

 

The following formula calculates the optimized timeout: 

 

Equation 5: Optimized timeout calculation if there is an actual TBS 

100
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T is the resulting timeout;  

s1 is the actual average TBS (for a new user, it is an initial value);  

s2…sn are the last n measured TBS;  

X  is a factor; 

n numbers of measured TBS, maximum 10 

 

Equation 6: Optimized timeout calculation without actual TBS 
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T is the resulting timeout;  

s1…sn are the last 10 measured TBS;  

X  is a factor; 

n numbers of measured TBS, maximum 10 
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The system automatically stores the last 10 measured TBS. Thus, , the system adapts the 

TBS to the new speed of writing if the user does not use the common stylus or biro for 

writing and the speed of writing changes (greater or smaller TBS). 

3.10. Correction Intervention 

Calligrapher Handwriting Recognition does not adapt recognition to users handwriting 

because of static Fuzzy-Neuronal Nets (Strenge, 2005).  

This is a possible problem for users with weird handwriting. We found out about this 

problem by watching a user trying to type in an “a”. Figure 36 shows the way the user 

tried to write his “a”. These letters are called Wrong-Recognized-Letters. 

 

 
Figure 35: Handwritten “a”, Calligrapher recognizes an “a” 

 

 
Figure 36: Wrongly-Recognized-Letter; Handwritten “a”, Calligrapher recognizes “ir” 

 

In this case, there is no direct solution because of the static Neuronal Nets no adaptation 

of the handwriting recognition to the user’s writing is possible. 

 

Basically, the handwriting recognition engine returns a list of possible results with its 

possibilities (weights). Henceforth, such a result list is called a schema. 

For example: 

u 52 

n 47 

k 37 

M 35 

A 22 
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This means that the inputted letter is an “u” with a possibility of 52%, a “n” with a 

possibility of 47% … 

 

Each user has to accomplish a calibration process when using the system for the first 

time. (3.11, Calibration). In this process, the system knows which letter has to be 

inputted by the user. If the recognition does not return the expected letter as first choice, 

we know that the user’s handwritten letter was recognized wrongly. Because of the 

knowledge of which letter was expected, the recognized schema can be stored. 

E.g. Expected Result: a 

u 52 

n 47 

k 37 

M 35 

A 22 

This example means, that this is a Wrong-Recognized-Letter, its schema and expected 

result will be stored as an “a”.  

After the calibration process, there are schemas stored, if there were letters causing 

problems (like Figure 36). 
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Figure 37: Correction Interventions as flow chart 

 

During writing, the schemas (received from handwriting recognition engine) will be 

compared to the data which are collected in the calibration process. 

 

“Valid Letter?” in Figure 37 compares the inputted letter’s highest weight with the 

average weight of the letter for this user. If the weight of the inputted letters is not less 

than the average weight of this letter for this user, there is a definite correctly 

recognized letter found. 

If the weight of the inputted letter’s highest weight is less than the average of the letter 

for this user, the schema will be compared to the stored schemas. 
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Comparing the inputted schema to the stored schemas (“Valid Schemas?”, Figure 37) is 

divided into  

 Checking validity of a schema 

 Calculating the average deviation. 

This is done for each stored schema. 

 

The validity of the inputted schema to a stored schema is checked the following way: 

If the inputted schema consists of 

 one letter, it is NOT VALID 

 two letters, two letters have to be within the compared stored schema, to become 

VALID, which means 2/2 (2 conformities out of 2 possibilities) are required 

 three letters, 2/3 are required 

 four letters, 3/4 are required 

 five letters, 3/5 are required 
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After checking the validity of the inputted schema, there are 0…n valid schemas. To 

find out the least deviant stored schema, the average deviation for each of them to the 

inputted schema is calculated. 

To calculate the average deviation, the difference of the weights of the same letter in the 

inputted schema and compared stored schema will be summed up and will be divided 

by the count of same letters. 

For example: 

inputted 

schema 

 Comparison 

schema 
Deviation 

u 52 k 41 4 

n 47 M 35 0 

k 37 n 31 16 

M 35 h 26  

A 22 m 22  

Validity: 3/5  VALID  

Average Deviation: 
(16+0+4)/3 

= 6 

Figure 38 comparing two schemas and calculating an average deviation 

 

The whole process returns the schema’s resulting letter of the schema with the minimal 

average deviation. 

The returned resulting letter will be set on top (in front of the others) of the list which 

was returned by the handwriting recognition. 

3.11. Calibration 

The key issue of the calibration is to find out data of the user about each letter which 

can be inputted. 

After the calibration, the system knows the following data of the user:  

 Average weight for each letter which definitely identifies a letter 

 Schemas of Wrong-Recognized-Letters (see Chapter 3.10) 

 Optimized Timeout 

To get there, the user has to input each letter at least 2 times. 
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The first problem is that the system needs to know which letter the user has to input. 

Therefore, the system orders the user to input the letters, one after another (Figure 39). 

 

 
Figure 39: Screen during calibration 

 

The set of letters which are calibrated consists of all German lowercase letters: 

 “ä”, “ö”, “ü” 

 “a”…”z” 

 “ß” 

The system orders the user to input the letters exactly in this order. The letters “ä”, “ö”, 

“ü” are chosen as the first letters because they consists at least of 2 strokes each letter. 

Therefore, after these three letters there is already an adapted average timeout for the 

user calculated. The 30 letters are added to LIST, 10 times (Figure 40 (1)).  

Each letter has to be inputted by the user at least two times and usually 10 times (except 

the user inputs a wrong letter). 

 



 

70 

Before we decided to use the solution that the letters are displayed in alphabetical order 

there was another thought to avoid wrong inputs by the user. 

Many people are used to the alphabet, therefore the user might be writing without 

looking on the screen to see which letter is requested. 

The other solution was to display the letters in a random way. 

But this solution was not used, because of the fact that if the user inputs a text to the 

system, the letter which comes next is also known to the user. 

Therefore, it is no problem that the user knows that after an “a” comes a “b” in the 

alphabet. 
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Figure 40: Calibration as flow chart 
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The decision “Enough valid data for LETTER?” (Figure 40 (2)) find out if enough valid 

data for the given letter is already inputted: 

Valid letter means that the letter which was requested by the system to input by the user 

has the highest weight in the resulting list of the handwriting recognition.  

Valid enough in the context of Figure 40 (2) means: 

 2/2: 2 valid recognitions out of 2 tries 

 2/3: 2 valid recognitions out of 3 tries 

 3/4: 3 valid recognitions out of 4 tries 

 3/5: 3 valid recognitions out of 5 tries 

 4/6: 4 valid recognitions out of 6 tries 

 5/7: 5 valid recognitions out of 7 tries 

 6/8: 6 valid recognitions out of 8 tries 

 6/9: 6 valid recognitions out of 9 tries 

 

If the highest weighted letter of the resulting list of the recognition engine is not equal 

to the letter requested by the system, the inputted schema with the expected result will 

be stored to SCHEMA_LIST (Figure 40 (3)). 

 

After each entry in LIST (Figure 40, LIST Empty?) was processed, data for the user 

about 

 For each letter the weights with which a letter is recognized (therefore the 

average weight) 

 List of schemas which represent Wrong-Recognized-Letters 

is stored. 

 

But what if the user writes a wrong letter, e.g. the system requests an “s”, but the user 

writes a “c”? – Therefore, all saved schemas are checked: 

If the highest weighted letter of a stored schema compared to the average weight of this 

letter for this user is valid, the schema will be deleted, and the resulting letter of this 

schema will be added to LIST once again. (Figure 40, SCHEMA valid?) 

After checking all stored schemas, all elements of LIST will be ordered to input once 

again (if there are not enough valid inputs of this letter for the user). 
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For example: 

Saved Schema, resulting letter “c”  Valid data for “s” 

s 98  90, 94 

5 30  Average 92 

 

In this example, “c” will be set on LIST once again, because “s” with its weight 98 is 

greater than the average weight for “s” 92. 

3.12. Continuous Calibration 

Similar to the adaptive calibration (Chapter 3.11) a continuous calibration during 

normal text input is done. 

 

Because of free text entry at this point, the system does not know if inputted letters are 

right or wrong. 

We solved the problem the following way: 

The system remembers interactions and its concerned letter while the user is inputting 

data (writing) in a queue of the size 10. Interactions are 

 Deleting of a letter 

 Writing a letter 

 

If an inputted letter will not get deleted within the next 10 inputted letters, it is assumed 

that the letter was recognized correctly. 

Therefore, every time, a new letter gets inputted, the interaction with its concerned letter 

is added to the queue. 

If an interaction and its letter fall out of the queue, it will be checked if this letter was 

deleted within the last 10 interactions.  

If the letter was not deleted, the weight of the inputted letter will be added to the 

weights of this letter for the user. 

If the letter was not deleted, and the letter was a Wrong-Recognized-Letter, its schema 

will be added to the list of schemas for the user. 
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On closing the dialog, the steps above will be performed for remaining inputted letters, 

because on closing the dialog, the letters should be correct inputted letters. 

3.13. Other Interventions on recognition results 

3.13.1. Continuous adaptation of the set of valid results 

As written in Chapter 2.16, keeping the set of alternatives which are valid results for the 

recognition as small as possible, will increase the recognition accuracy. Therefore, 

during writing there are three possible input states where results of the following 

categories are valid 

 State All: numbers , letters and symbols 

 State Text: letters and symbols 

 State Number: numbers, “+”, “-“, “.”, “,” 

 

At the beginning of a word or number, the input state is set to State All.  

If the first recognized result is a number, the input state switches to State Number, and 

until the next space or punctuation mark, only numbers and some symbols are valid 

results.  

If the first recognized result is a letter, it switches to State Text. 

If the first result is a symbol, the input state will remain on State All. 

 

So it is not possible to write a number within a word or a letter within a number. 
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3.13.2. Confusable Pairs 

To deal with highly confusable pairs Chapter 2.16, we implemented some 

functionalities. Confusable pairs are identified as 

 “r” “v” 

 “t” “f” 

 “2” “z” 

 “5” “s” 

 “O” “0” “o” 

 “9” “g” “q” 

 

Every time, the user deletes a character with Backspace ( ), the system saves this 

character until the next interaction by the user. If the next interaction is an input, the just 

deleted character is ignored, if it is the highest ranked result in the recognition list. 

 

This functionality is based on the assumption that the user acts on wrongly recognized 

characters as follows: 

1. Points the cursor after the wrongly recognized character (if it is not already 

there) 

2. Press Backspace button 

3. Inputs the character once again 

 

3.13.3. “O” and “0” (zero) 

This is a special case which occurs when the user wants to input a capitalized “o” or a 

“0” (zero) as first character of a word or number. 

The “O” and the “0” look very similar on the screen. Because it is the first character 

inputted, the input state (see Chapter 3.13.1) would be State All. Therefore, “o” and “0” 

is a valid result. 

The functionality to solve the “O” – “0” problem is displayed in the flowchart in 

Figure 41. 
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Figure 41: Flowchart of the functionality to solve the “O”-“0” problem 
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4. Experiment 

4.1. Prototype Application 

4.1.1. Hardware 

The device used for the prototype was an Asus MyPad A626 PDA. This device is 

equipped with an anti-glare touch screen display.  

For typing on the touch screen, a stylus in the shape of a biro is used. Table 11 contains 

the technical specifications of this device.  

 

Table 11: Specification of the PDA used for the experiment 

CPU Marvell XScale, 312MHz 

Operating System MS Windows® Mobile™ 6 

Memory 256MB Flash ROM and 64 MB SDRAM 

Display 3.5" Brilliant TFT LCD  

65k full-colours, anti-glare 

16-bit display QVGA,  

240x320 px 

touch screen 

Weight 158g 

Physical dimensions 117 mm x 70.8 mm x 15.7cm 
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Figure 42: Used PDA with the text input Dialog 

4.1.2. Software 

The developed prototype for text input dialog is algorithm for optimized timeout and 

correction interventions described in Chapter 3.8.9, Chapter 3.9, Chapter 3.10 and 

Chapter 3.11 were the basic component of the experiment software.  

There is also a text input dialog with a virtual keyboard implemented. 

 

The application stores statistical data of the whole experiment.  

 Each interaction by the user, e.g. inputting a character or using a button. For 

each of these, a timestamp is also stored. 

 Time Between Strokes, Optimized Timeout, to view the adaptation to the user’s 

speed 

 Correction Interventions and Correction of confusable pairs, the originally 

recognized character and the finally displayed character is stored 
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The FACTOR for Equation 5, Equation 6, calculating the optimized timeout is set to 

200 within the experiment. At the beginning, there are no TBS stored in the TBS queue; 

therefore 300 will be used as the initial TBS.  

This means that the first timeout for each user is calculated with Equation 6 resulting in 

a timeout of 600 milliseconds. 

 

The flow of the screens: 

 Welcome Screen 

 Description of the keyboard input followed by the dialog with virtual keyboard 

input (dialog to get familiar to the dialog, free text input) 

 Description of the experiment for keyboard input followed by the dialog 

 Description of the calibration and the calibration 

 Description of the handwriting input dialog followed by the handwriting dialog 

input (dialog to get familiar to the dialog, free text input) 

 Description of the experiment for handwriting input followed by the dialog 

 Good-Bye Screen 

 

The experiment application is designed in a way that the user can cancel the experiment 

at any time. 
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Figure 43: Screenshot of the virtual keyboard and handwriting dialog 

4.2. Participants 

Basically, participants in the experiment should work within health care. E.g. doctors, 

nurses, students of medicine and paramedics. In Austria, the bigger part of emergency 

medical services is done by the Red Cross. Paramedics of the Red Cross are 

professionals and volunteers.  

Because there are volunteers in health care too, everyone could be a potential 

participant. 

Because of the fact that nearly everyone is familiar to a QWERTY keyboard layout two 

elderly people were also asked to perform the tasks of the experiment.  

 

The users were also asked to fill out a background questionnaire (Table 12). 
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Table 12: Results of the Background Questionnaire 

 Min Max Average 

Age 20 85 33.76 

Uses PC for … Years 0 25 12.38 

Uses PC … hours a week 0 60 30.62 

  

Gender 

Male 11 

Female 10 

Optical Aid 

Glasses 10 

Contact Lenses 2 

None 9 

Handedness 

Right Hander 20 

Left Hander 1 

Experiences with Mobile Devices (Touch screen) 

iPhone 4 

Samsung Mobilephone with Touchscreen 2 

HTC Diamond 2 1 

LG Mobilephone with Touchscreen 1 

Blackberry 1 

PDA 1 

Other Mobile Phone with Touchscreen 1 

None 10 

 

11 Participants use a PC ≤ 30 hours a week, while 10 participants use a PC more than 

30 hours a week. 
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4.3. Experimental Settings 
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Figure 44: Flow Chart of the Experiment 

 

The real life environment would be a seat in an ambulance car, documenting the rescue 

operation. To avoid negative effects on the work done by paramedics, the experiment is 

done at the base of the ambulance service in a quiet room. 

The real life environment of a car is simulated there by sitting on a chair without 

armrests. 

Simulating the environment of the experiment gives almost the same result as the 

experiment in real life (Kjeldskov et al., 2004) 

 

Basically, the experiment application consists of two main parts, virtual keyboard and 

handwriting recognition.  
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Within these parts, there is a phase where the user can input words on his own, to get 

used to the system. This phase is not limited in time. The user can interact with the 

dialog as long as is needed in order to be familiar with it. 

 

To measure accuracy, the experiment’s tasks have to be text copy tasks (MacKenzie and 

Soukoreff, 2002), where the text which has to be inputted by the user is given. The user 

is asked to type in exactly this text. 

This text consists of 13 German words (94 characters without spaces, 106 with spaces): 

 

Dialyse ist ein Blutreiningungsverfahren, das bei 
Nierenversagen als Ersatzverfahren zum Einsatz kommt. 

 

This text has to be inputted to the handwriting dialog and to the keyboard dialog in the 

experiment phase. 

 

At the end of the experiment, the user has to fill out a feedback formulary, giving 

information about his subjective feelings about the system. 

 

 
Figure 45: Participant during experiment in real life 
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5. Results 

5.1. Optimized Timeout 

 
Figure 46: Adaptation of the timeout for each user 

 

Figure 46 shows the development of the timeout for each user during the experiment. 

The values on the y-axe are the optimized timeout for each user, the x-axe shows the 

number of changing optimized timeout. 

The figure shows, that the timeout for most of the users is between 200 and 250. The 

algorithm adapts the timeout to slow writers and for fast writers, which is shown by 

high timeout of one of the users. 
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Also adaptations to each user during writing are done, the figure shows that, for 

example, on User 19 the writing speed increases and decreases – just the way the user is 

writing. 

5.2. Accuracy 

Table 13: Accuracy with virtual keyboard [%] 

Overall ≤ 30 weekly usage > 30 weekly usage 

Median Variance Median Variance Median Variance 

99.1 6.28 100 11.5 99.06 1.44 

 

Table 14: Recognition accuracy of handwriting recognition [%] with interventions 

Overall ≤ 30 weekly usage > 30 weekly usage 

Median Variance Median Variance Median Variance 

89.25 34.3 91.43 30.20 88.00 37.34 

 

Table 15: Recognition accuracy of handwriting recognition [%] 

Overall ≤ 30 weekly usage > 30 weekly usage 

Median Variance Median Variance Median Variance 

84.66 57.6 86.99 79.15 83.33 38.21 

 

The 85 year old participants have an accuracy of 89.2% for inputting text with the 

virtual keyboard and a recognition accuracy of 80.1% with interventions and 65.6% 

without interventions. 

The 68 year old participants have an accuracy of 100% for inputting text with the virtual 

keyboard and recognition accuracy of 95% with interventions and 90.8% without 

interventions. 
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5.3. Writing Speed 

For the calculation of the accurate words per minute, the following formula is used: 

 

Equation 7: Accurate words per minute 

100

*
_

accuracywpm
wpmaccurate   

 

Table 16: Writing speed in words per minute for virtual keyboard 

Overall ≤ 30 weekly usage > 30 weekly usage 

Median Variance Median Variance Median Variance 

13.17 27.7 12.88 29.46 13.43 18.29 

 

Table 17: Writing speed in accurate words per minute for virtual keyboard 

Overall ≤ 30 weekly usage > 30 weekly usage 

Median Variance Median Variance Median Variance 

13.00 27.43 12.88 30.52 13.10 18.63 

 

Table 18: Writing speed in words per minute for handwriting recognition 

Overall ≤ 30 weekly usage > 30 weekly usage 

Median Variance Median Variance Median Variance 

8.44 4.59 8.11 5.37 8.71 1.95 

 

Table 19: Writing speed in accurate words per minute for handwriting recognition 

Overall ≤ 30 weekly usage > 30 weekly usage 

Median Variance Median Variance Median Variance 

7.47 4.56 7.43 6.47 7.75 2.05 

 

 

The 85 year old participants wrote 2.87 words per minute with the keyboard and 2.82 

wpm with handwriting recognition.  

The 68 year old participants wrote 4.88 wpm with the keyboard and 4.17 wpm with 

handwriting recognition.  
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Figure 47: Speed and accuracy of keyboard input for participants using computer ≤ 30 hours  

 

 
Figure 48: Speed and accuracy of handwriting recognition for participants using computer ≤ 30 hours a 

week 
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Figure 49: Speed and accuracy of keyboard input for participants using computer > 30 hours  

 

 
Figure 50: Speed and accuracy of handwriting recognition for participants using computer > 30 hours a 

week 
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5.4. User Questionnaire 

Table 20: Overall results of user questionnaire 

Overall Median Var

Keyboard 

Inputting Data (+4=easy, -4=difficult) 3.0 2.6 

Correction of wrong inputted data (+4=easy, -4=difficult) 4.0 2.8 

Handwriting 

Inputting Data (+4=easy, -4=difficult) 2.0 4.9 

Correction of wrongly inputted/recognized data (+4=easy, -4=difficult) 3.0 1.4 

Did the recognition slow down your writing (+4=no, -4=yes) 0.5 9.2 

 

I would prefer (+4=handwriting, -4=keyboard) -2.5 7.9 

Basic Information 

Use of colour is (+4=useful, -4=useless) 2.0 2.5 

The handwriting recognition positively surprised me (+4=yes, -4=no) 2.5 7.1 

Characters on the PDA are easy to read (+4=yes, 4=no) 4.0 3.9 
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Table 21: Results of user questionnaire for weekly usage of computer ≤ 30 hours and above 

Weekly computer usage [hours] Median 

(<=30) 

Var 

(<=30) 

Median 

(>30) 

Var 

(>30)

Keyboard 

Inputting Data 3.5 1.4 3.0 3.7 

Correction of wrongly inputted data 4.0 1.7 3.5 4.5 

Handwriting 

Inputting Data 2.5 4.2 0.5 3.8 

Correction of wrongly inputted/recognized data 4.0 0.5 2.5 1.8 

Did the recognition slow down your writing 2.5 8.4 -0.5 8.2 

 

I would prefer -1.5 2.0 -2.5 4.9 

Basic Information 

Use of colour  2.0 2.5 1.5 2.6 

The handwriting recognition positively surprised 

me 

4.0 7.7 0.0 4.7 

Characters on the PDA are easy to read 4.0 4.6 4.0 3.2 
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6. Discussion 

Writing a text with a virtual keyboard by tipping with a stylus on the virtual keys of the 

keyboard gives an overall median accuracy of 99.1%, variance 6.28. As written in 

(Holzinger et al., 2008), the use of a stylus is very accurate. The speed was overall 

median of 13.17 words, variance 27.7. (Table 16, Table 13) 

Participants using a computer more than 30 hours a week write faster than participants 

with computer usage ≤ 30, but surprisingly there are also more errors (Table 16, 

Table 13, Figure 47 Figure 49). Six of 9 participants of the group using a computer for 

more than 30 hours a week made at least one mistake, whereas 5 of 11 made at least one 

mistake in the other group. 

 

 

Compared to the virtual keyboard, the speed and the accuracy of the handwriting 

recognition are lower. The overall median accuracy was 89.25%, variance 34.3 

(Table 14). This does not reach 97%, which accuracy will be accepted by the user 

(LaLomia, 1994).  

The overall median speed was 8.44, variance 4.59, which is nearly 5 words per minute 

slower than the virtual keyboard input. (Table 18) 

Focusing once again on the two groups (usage of computer ≤ 30 hours a week and 

above), the accuracy of the group ≤ 30 is median 91.43, variance 30.20 whereas the 

median accuracy of the group > 30 is 88.00, variance 37.34. This is a difference of more 

than 3%. (Table 14) 

The group > 30 was writing faster as the group ≤ 30 (Median 8.71 wpm, variance 5.37; 

median 8.1 wpm, variance 1.95). 

Figure 48 and Figure 50 show the speed and accuracy of the handwriting recognition. 

The gap between the measured wpm and the accurate wpm is bigger for the group > 30 

than for the other group.  

The median values of the accurate words per minute nearly give the same writing speed 

for both groups (Table 19). 
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Maybe, people using a computer very frequently (more than 30 hours a week) get more 

and more used to write also e.g. notes on the computer instead of taking notes on a sheet 

of paper. There are hardly any letters written in handwriting. Maybe there is a link 

between more frequent usage of computers and writing faster, but handwriting more 

illegible or unreadable.  

 

 

There were hardly any problems with data acquisition via virtual keyboard; the 

background questionnaire shows this with a median value of 3.0, variance 2.6. Also 

correction of wrongly inputted characters was very easy for the participants. (Table 20) 

 

The handwriting recognition was rated to be rather easy by the group ≤ 30 (Median 2.5, 

variance 4.2), whereas it was rated neutrally by the other group (Median 0.5, variance 

3.8). The correction of wrongly input data was rated to be very easy by the group ≤ 30 

(Median 4.0, variance 0.5) and to be rather easy by the other group (Median 2.5, 

variance 1.8). (Table 21) 

 

Generally, the participants would prefer the keyboard input (Median -2.5, Variance 7.9) 

but they were positively surprised by the handwriting recognition (Median 2.5, Variance 

7.1). (Table 20) 

 

The data acquisition via handwriting recognition was rated to be rather hard (Median 

3.9, Variance 6.6) and the data input via keyboard to be quite easy (Median 7.2, 

Variance 1.8) in (Chittaro et al., 2007), on a scale where 0 means hard and 9 easy. Our 

results (4 to -4 scale) transformed to the other scale show the improvement in data 

acquisition with handwriting recognition.  
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Table 22: Comparison between Chittaro study and our study 

 Chittaro Study Our Study 

Median Var Median Var 

Writing text using handwriting (0=hard, 9=easy) 3.8 6.6 6.5 5.19

Writing text using virtual keyboard (0=hard, 9=easy) 7.2 1.8 7.5 2.69

 

 

One participant was over the 97% accuracy gap for acceptance of handwriting 

recognition with an accuracy of 99.22%. Anyway, the user felt that the handwriting 

recognition would slow him down (-4) and definitely would prefer the virtual keyboard 

(-4).  

 

 

There were no problems or confusions about the dialogs or the data acquisition, neither 

in the case of handwriting recognition nor in the case of the virtual keyboard. 

Corrections of wrongly recognized or inputted characters caused no problems to the 

user. 

 

The two elderly people were included in this study in order to obtain data concerning 

participants who never used a computer or a mobile device before. For these two 

participants, there is hardly any difference between the input speed via virtual keyboard 

and handwriting recognition (Figure 47, Figure 48; User 18 and 21). 

The handwriting recognition accuracy of the 68 year old participant was 95%, compared 

to median accuracy; it is a very high value. 

The difference in speed between handwriting and the virtual keyboard for the 

participants (except the two elderly people) is very high, while for the elderly people the 

speed is nearly the same.  

The results of these participants are interesting; however, it is not of practical relevance, 

since there are hardly any people left – at least amongst people able to volunteer as a 

first responder – without experience on computer keyboards. Today, children get used 

to work with computers, at home playing computer games, surfing the internet or at 

school. 
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7. Conclusion 

Compared to the “Ambulance Run Reporting” study (Chittaro et al., 2007), our 

developments improved the usability of  acquiring data with handwriting recognition. 

 

Calibration, Continuous Calibration and Correction Intervention as well as other 

interventions on results delivered by the handwriting recognition engine achieved 

improvements of nearly 5% in recognition accuracy. 

 

Because of choosing character recognition instead of word recognition, we were able to 

improve the accuracy and the usability of correction of recognition errors. 

 

The optimization of the timeout creates an adaptation to the user, so that slow 

handwriting and fast handwriting is supported. The statistics recorded during the 

experiment show the steady adaptation (Figure 46), but it was rated very neutral by the 

participants in the feedback questionnaire (Table 20: Overall results of user 

questionnaire). 

 

The user questionnaire at the end of the experiment, asking about the subjective feeling 

of the user about the handwriting recognition shows the improvement of the usability on 

acquiring data with handwriting recognition. 
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8. Future Work 

Although much research in the field of handwriting recognition has been done, 

recognition algorithms do not achieve the high prospects of the users.  

Handwriting is very individual to every person and identifying characters for humans is 

still very hard (Neisser and Weene, 1960).  

 

This thesis showed operations on the result of a recognition engine. Replacing the 

engine used in this thesis’ experiment (Calligrapher) with a better recognition engine 

with higher accuracy can improve the result on accuracy. 

Because of typing in characters one by one, a word completion feature could be added 

to the final implementation. Less is more (Holzinger and Errath, 2007).  

 

 

In the last years, mobile devices and the usage of such devices changed very fast. 

Nowadays, many people, especially younger people are connected to social networks 

like Facebook not only with their laptop or PC, but also with their mobile phones – 

smart phones.  

This smart phones’ user interface is a touch screen. Data acquisition is mostly realized 

with improved, intelligent virtual keyboards.  

Intelligent keyboards e.g. with implementation of a regional error correction (Kwon et 

al., 2009) connected with tactile feedback for touch screen widgets (Koskinen et al., 

2008) could improve performance and usability of virtual keyboards on small screens. 

 

 

Handwriting is taught from elementary school on and nearly everyone learns 

handwriting at school. Therefore, handwriting recognition was a very important 

technology for input interfaces of mobile computers.  

Nowadays, children get used to the QWERTY layout keyboard from elementary school 

on. Now, interface designers can assume that nearly everyone is experienced in using a 

QWERTY layout keyboard. 
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Because of the higher user acceptance of current uncomfortable virtual keyboards 

compared to handwriting recognition, future developments and projects should focus on 

data acquisition based on intelligent, comfortable virtual keyboards. 

 

(Holzinger et al., 2010) 
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9. Final Implementation 

9.1. Development Environment 

The development environment was the eMbedded version of Microsoft Visual C++. 

The Microsoft® eMbedded Visual C++ 4.0 tool is a desktop environment for creating 

applications and components for Windows CE. The programming language is C++. 

(Microsoft, 2010) 

9.2. Specifications 

The final implementation was designed together with Manfred Unger, following Object 

Orientated Design methods (Herold et al., 2005) and guidelines of FERK Systems. 

 

Basically, design guidelines of FERK Systems were higher prioritised than clean object 

orientated design, because the final implementation should be designed and 

implemented for easy and fast adaptations by developers at FERK Systems. 

 

The code has to be written in coding standard of FERK Systems (FERK-Systems, 2007, 

FERK-Systems, 2005). 

To generate a documentation of the implementation, the code is documented with 

doxygen as well (Sourceforge, 2010a). 

 

Basically, the final implementation should be a library which can be included in a 

project and an input dialog of the library is called by just one line of code. 

9.3. Design and Implementation 

Figure 51 shows the UML Design diagram. 

 

The cores of the class diagram are the two dialog classes, CFHandwritingDialog and 

CFHandwritingCalibrationDialog, which are both subclasses of CDialog, the 

CFWritePanel and the Singleton CFPersonData. 
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9.3.1. CFHandwritingDialog 

This dialog class consists of the input field (CFEdit), the CFButtonControlBar which 

places the control bar buttons (Keyboard, Space, Backspace, New Line and UpperCase). 

The other buttons for En/Unroll and OK and Cancel are direct members of the class.  

Also the Write Area (CFWritePanel) is a member of this class. The functionality of the 

ONCLICK events of all the buttons, also the buttons of CFButtonControlBar are 

implemented in this class. 

Buttons are type of class CFBitmapButton. 

 

The interface, to call this dialog is represented as a static method 

static int DoDialog(CWnd *apParentWnd, int aDialogType, CString aCaption, 

CString *aData, CString aPersonData) 

 *apParentWnd: Pointer to the parent window 

 aDialogType: Type of dialog 

o DIALOG_TYPE_TEXT 

o DIALOG_TYPE_MULTILINE_TEXT 

o DIALOG_TYPE_NUMBER 

o DIALOG_TYPE_DATE 

o DIALOG_TYPE_TIME 

 aCaption: The caption of the dialog 

 aData: Data for the input field. The result is also stored to this parameter 

 aPersonData: The filename of the Person’s user profile 

This method will initialize and show the dialog.  

9.3.1.1. CFHandwritngCalibrationDialog 

This dialog class consists of two buttons (OK, Cancel, type of class CFBitmapButton) 

and the writing is (CFWritePanel). 

Therefore, also the workflow of the calibration is implemented in this class; an object of 

the class CFCalibrationRecognitionHandler is a class member, too.  
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The interface to call this dialog is similar to CFHandwritingDialog a static method: 

static int DoDialog(CWnd *apParentWnd, CString *aData, CString aPersonData) 

 *apParentWnd: Pointer to the parent window 

 aPersonData: The filename of the Person’s user profile 

9.3.2. CWritePanel 

CWritePanel handles all the functionality belonging to handwriting.  

This class displays the writing area on the screen. When the user is writing within this 

writing area, the class draws the writing to the screen. After recognition, the writing 

area will be cleaned of the writing. 

 

The drawn handwriting is also stored in this class. TBS is measured here, too and the 

optimized timeout is calculated here. 

The call of the handwriting recognition thread is in this class. After the handwriting 

recognition has finished, the results can be retrieved in the method OnRecResult. 

 

In OnRecResult, the retrieved data is interpreted. 

In case of the CFHandwritingDialog, the method InterpretResult (static method in 

CFFunction) interprets the result of the handwriting recognition (Chapter 3.10, 

Correction Intervention). After that other inventions are made to the results 

(Chapter 3.13, Other Interventions on recognition results).  

After this step, the result is sent via keyboard event to the Text field on the 

CFHandwritingDialog. We used keyboard events, because the handling with, for 

example, marked text is done by the operating system.  

The retrieved data is also stored to CFPersonData for continuous calibration 

(3.12Continuous Calibration). 

 

If the parent dialog is CFHandwritingCalibrationDialog, the OnRecResult handles the 

result for Calibration (Chapter 3.11, Calibration) with the help of 

CFCalibrationRecognitionHandler. 
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9.3.3. CFPersonalData 

This class, implemented as Singleton (Herold et al., 2005) and contains the personal 

data of a user, which contains  

 the queue of TBS,  

 for each letter the weight of correctly recognized letters 

 schemes of wrongly recognized letters 

 temporary data for continuous calibration 

 

Calling the GetInstance() method of the singleton with the filename of the user-profile-

file will load the user-profile to the Singleton. 

 

On closing the dialog, the Singleton object will be destroyed, but before this is done, the 

user data is stored back to the user-profile-file. 

 

 



 

101 

 
Figure 51: Class diagram of the final implementation
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9.4. Usage of the Library 

The interface of the library is defined by two method calls. 

9.4.1. Handwriting Dialog 

Static method call: 

CFHandwritingDialog::DoDialog(ParentWindow, DialogType, Caption, Data, 

PersonData) 

 

 ParentWindow: Pointer to the parent window (e.g. this) 

 DialogType: Decide which dialog is called 

o Text Dialog:  

CFHandwritingDialog::DIALOG_TYPE_TEXT 

o Multiline Text Dialog: 

CFHandwritingDialog::DIALOG_TYPE_MULTILINE_TEXT 

o Number: 

CFHandwritingDialog::DIALOG_TYPE_NUMBER 

o Date: 

CFHandwritingDialog::DIALOG_TYPE_DATE 

o Time: 

CFHandwritingDialog::DIALOG_TYPE_TIME 

 Caption: The caption of the input field 

 Data: Delivering of the initial data of the dialog. The resulting data is also 

written to this parameter 

 PersonData: File name of the user-profile file 

9.4.2. Calibration Dialog 

Static method call: 

CFHandwritingCalibrationDialog::DoDialog(ParentWindow, PersonData) 

 

 ParentWindow: Pointer to the parent window (e.g. this) 

 PersonData: File name of the user-profile file 
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9.5. Test Scenario 

To ensure, that the functionality of the prototypes described and developed in Chapter 3 

is correctly implemented in the final implementation, a test scenario was developed. 

The main parts of the test scenario are testing… 

 Basic dialog functionality (functionality of buttons and data input) of 

o Text dialog 

o  Date dialog 

o Time dialog 

o Number dialog 

 Correction Intervention (Chapter 3.10) 

 Other Interventions (Chapter 3.13) 

 Continuous Calibration (Chapter 3.12) 

 Adaptive Optimized Timout (Chapter 3.9) 

 

The final implementation includes writing statistical files for the test scenario. To check 

the correctness of the interventions, the originally recognized results of the handwriting 

recognition engine and the finally displayed letter of each interaction as well as the 

cause of the intervention is saved to statistic file. 

This logging function is implemented in #ifdef blocks, writing statistic files can be 

enabled and disabled. 

9.5.1. Terminology 

Liggesmeyer defines Failure, Fault and Error as follows: 

 Failure (Fehlverhalten): Failures only can be identified dynamically when 

using a product, identifying unexpected functionality of the product. 

 Fault, Defect (Fehler, Defekt): Faults are static errors in the code of a program, 

for example an incorrect implementation of a method/function. 

 Error (Irrtum): Errors are mistakes done by programmers if some 

methods/functions are used in a wrong way, and therefore results a incorrect 

result. 

(Liggesmeyer, 2009) 
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9.5.2. External Test Case Document 

For test cases, an external document is created, which archives the specifications 

standard test protocol document of FERK Systems. This specifications includes the 

following: 

 I. Headline of the test case (Überschrift des Testfalls): This includes the title 

and a short description of the test case. 

 II. Description of the test case (Testfallbeschreibung): This describes 

hypothesis, if the functions of the test scenario are implemented correctly. 

 III. Test progress (Testverlauf): Describes the steps of the test scenario in 

detail. 

 IV. Resume (Resumee): Describes the result of the test case. The hypothesis 

could archive correct, partly correct or not correct. Partly correct and not correct 

requires further explanation. 

9.5.3. Stage 1: Calibration 

The test scenario starts with the calibration dialog executing the process of calibration 

(Chapter 3.11). In this calibration phase, 0…n letters causing problems are identified.  

9.5.4. Stage 2: Input of letters causing problems 

For each of these 0…n letters, the user is asked by the system to input each letter 5 

times to the text input dialog (for each there is an instruction and text input dialog). In 

each step also a continuous calibration should be done in the background by the system. 

9.5.5. Stage 3: Date input 

In this stage, the correct functionality of the date input dialog is tested. 

The user has to input the date “25.03.2010” and has to change it to “25.02.1983”. The 

system should act like Table 23 shows. 

 



 

105 

Table 23: Interaction by the user and the result shown in the input field inputting a date 

Input field Inputted number or interaction 

|TT.MM.JJJJ 2 

2|T.MM.JJJJ 5 

25.|MM.JJJJ 0 

25.0|M.JJJJ 3 

25.03.|JJJJ 2 
25.03.2|JJJ 0 
25.03.20|JJ 1 
25.03.201|J 0 
25.03.2010|  
25.03.201|J  
25.03.20|JJ  
25.03.2|JJJ  
25.03.|JJJJ  
25.0|M.JJJJ 2 

25.02.|JJJJ 1 

25.02.1|JJJ 9 

25.02.19|JJ 8 

25.02.198|J 3 

25.02.1983|  

 

9.5.6. State 4: Time Input 

Also the correct functionality of the time dialog is tested. 

The user has to input the time “10:19” and has to change it to “11:11”. The system 

should act like Table 24 shows. 
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Table 24: Interaction by the user and the result shown in the input field inputting a time 

Input field Inputted number or interaction 

|SS:MM 1 

1|S:MM 0 

10:|MM 1 

10:1|M 9 

10:19|  
10:1|M  
10:|MM  
1|S:MM 1 
11:|MM 1 
11:1|M 1 
11:11|  

 

9.5.7. Stage 5: Text Input 

The text input scenario tries to challenge problems with confusing pairs (Frankish et al., 

1995) (e.g. “r” and “v”, “O” and “0”). The given text has to be inputted exactly: 

 

 Zu Ostern:  
 01 Allegro 
 02 Andante 
 03 Scherzo 
 04 Allegro Vivace 
 

9.5.8. Stage 6: Input of letters causing problems 

Scenario from Stage 2 is repeated. 
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14. Commented References 

CHANG, L. & MACKENZIE, I. S. 1994. A comparison of two handwriting recognizers 

for pen-based computers. Proceedings of the 1994 conference of the Centre for 

Advanced Studies on Collaborative research. Toronto, Ontario, Canada: IBM 

Press. 

 

This study compares two commercial handwriting recognizers (Microsoft Pen for 

Windows, CIC Handwriter) on a 640x480 LCD screen, testing each recognizer in 

Lowercase and Upper-Lower case mode. 

16 volunteer subjects attended the experiment, entering characters provided by the 

software in four sessions. Each session contained entering data for each of the four 

conditions (each recognizer Lowercase and Upper-Lower case mode). 

Due to learning, subjects increases in writing speed in the four sessions, while there was 

no significant effect on recognition accuracy. 

For each recognizer, the lowercase mode yield to better recognition result. 

 

 

CHITTARO, L., ZULIANI, F. & CARCHIETTI, E. 2007. Mobile Devices in 

Emergency Medical Services: User Evaluation of a PDA-Based Interface for 

Ambulance Run Reporting. 

 

This study describes the design and evaluation of an easy-to-use mobile system for 

Ambulance Run Reporting.  

The traditional run sheet for reporting a case of emergency is implemented to a PDA 

based mobile system. The data acquisition was done via the virtual keyboard and 

handwriting recognition (Calligrapher).  

Part of the experiment was also an user questionnaire, where the participants rated data 

acquisition with the virtual keyboard much better than input with handwriting 

recognition. The space for writing was too small and most of the entered data was not 

recognized correctly. The handwriting recognition figured out a usability problem. 
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The weak point of the user evaluation is the number of participants, because only 6 

participants (first responders) were attending the evaluation. 

 

 

LALOMIA, M. 1994. User acceptance of handwritten recognition accuracy. Conference 

companion on Human factors in computing systems. Boston, Massachusetts, 

United States: ACM. 

 

This study tries to find out how high handwriting recognition accuracy has to be to find 

it useful for people.  

Participants were writing specified text to a system, which immediately interprets the 

input with randomly occurring errors. The randomly generated accuracy ranged from 

90% to 99%. After reviewing the errors, the participants rated acceptability. 

Recognition accuracy over 97% was acceptable. 


