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als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
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and Dr. Eranda Dragoti-Çela, the second examiner in the audit committee.

I also thank all my fellow students for all the common time and support. In particular
I thank Elisabeth Gaar for everything and especially for the fruitful cooperation in solving
exercise sheets and preparing for exams during our studies.

Last but not least I would like to thank my mother, my father and my brother as well
as all my friends for their comprehensive support and motivation during my education and
in my private life. I do not go too far by saying that without their support I would not be
where I am today.

5





Abstract

Scientific research in the area of mathematically orientated scheduling problems has started
about sixty years ago by seminal papers by Johnson and Bellman. In the last decade
developing scheduling algorithms for distributed computing systems has become a centre
of interest for practical applications of scheduling problems. However, most of the applied
scheduling models for distributed computing systems do not fully make use of existing
mathematically orientated scheduling theory developed within the last sixty years. The
goal of this thesis is to help bridging the gap between mathematically orientated scheduling
theory and applied scheduling models for distributed computed systems.

In the thesis we first give a definition of cloud computing which is a specialised form
of distributed computing. Then we present some important features that appear in cloud
computing that are worth to be modelled in mathematically orientated scheduling models.
These features include objectives like the energy consumption or the reliability as well as
restrictions like the immediate start condition or the consideration of several different
computational resources. We continue with a short review of the literature on cloud
computing where we highlight differences in the literature on applied scheduling models
and mathematically orientated scheduling models, respectively. Thereafter we present a
new energy model in which the energy consumption is calculated based on the cores of a
processor. Then we give an overview of existing literature on energy efficient scheduling
algorithms. Finally, we propose a scheduling model which combines the immediate start
condition with the objectives of minimising the total flow time and the energy consumption.
For the special cases with a single processor or with equal-work jobs algorithms with
running time O(n log n) are suggested where n denotes the number of jobs. For the general
case, the complexity status of minimising the total flow time while respecting an upper
limit on the consumed energy remained open.
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Kurzfassung

Wissenschaftliche Forschung im Bereich von mathematisch orientierten
Schedulingproblemen wird seit den anfänglichen Arbeiten von Johnson und Bellman
vor etwa sechzig Jahren betrieben. Innerhalb der letzten zehn Jahre rückte die
Entwicklung von Scheduling Modellen für verteilte Rechensysteme in den Mittelpunkt des
Interesses für praktische Anwendungen von Schedulingproblemen. Allerdings verwenden
derzeit die meisten angewandten Schedulingmodelle für verteilte Rechensysteme nicht die
gesamte zur Verfügung stehende mathematisch orientierte Schedulingtheorie, die innerhalb
der letzten sechzig Jahre entwickelt wurde. Ziel dieser Arbeit ist es, einen Beitrag zu
leisten angewandte Schedulingmodelle für verteilte Rechensysteme und mathematisch
orientierte Schedulingtheorie näher zusammenzubringen.

Wir starten mit einer Definition von Cloud Computing, einem Spezialfall von
verteiltem Rechnen. Danach führen wir einige wichtige Eigenschaften von Cloud
Computing-Systemen an, für die eine Miteinbeziehung in mathematische Modelle
wichtig erscheint. Beispiele für solche Eigenschaften sind etwa Zielfunktionen
wie der Energieverbrauch oder die Zuverlässigkeit, als auch Restriktionen wie
die unverzügliche Startbedingung oder die Berücksichtigung mehrerer verschiedener
rechnerischer Ressourcen. Danach befassen wir uns mit Unterschieden zwischen
Literatur über angewandte Schedulingmodelle bzw. über mathematisch orientierte
Schedulingtheorie. Wir präsentieren ein neues Energiemodell, in dem der Energieverbrauch
eines Prozessors auf Basis des Energiebedarfs der Kerne des Prozessors berechnet
wird. Dann geben wir einen kurzen Literaturüberblick über existierende Literatur
von energieeffizienten Schedulingalgorithmen. Schließlich schlagen wir ein neues
Schedulingmodell vor, das die unverzügliche Startbedingung erfüllt und als Zielfunktionen
den Total Flow sowie den Energieverbrauch berücksichtigt. Für den Spezialfall
eines Einmaschinenproblems sowie für den Spezialfall für Jobs mit gleichem
Bearbeitungsvolumen werden Algorithmen mit Laufzeit O(n log n) angegeben wobei n die
Anzahl der Jobs bezeichnet. Der Komplexitätsstatus des allgemeinen Problems, in dem
der Total Flow minimiert werden soll sodass eine obere Schranke des Energieverbrauchs
nicht überschritten wird, bleibt offen.
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1 Introduction

Scheduling theory is about assigning limited resources to tasks over time with the goal of
optimising one or more objective functions. Scientific research in this area started about
sixty years ago by seminal papers by Johnson [28] and Bellman [13]. The first main
applications of scheduling problems have stemmed from the area of manufacturing. For
example machines in a workshop (resources) should be assigned to operations in a workshop
(tasks) such that the time to complete all tasks is minimised. In the last decades a lot of
research concerning scheduling theory has been done including topics as complexity theory,
integer programming and stochastic programming.

By the time personal computers started to permeate, new applications in service arose.
Managing take-offs and planning landings at an airport or timetabling are examples of
applications in service. See for example the textbook of Pinedo [36] for scheduling with
applications in both manufacturing and services.

With the rapid development of computers in the last decades many new application
areas arose. One of them is scheduling in distributed computing systems. An example
of a scheduling problem in this area is to assign processors to tasks to minimise the
total completion time of the tasks or to minimise the required energy consumption of
the processors.

To face the challenge of scheduling tasks in distributed computing systems, a lot of
effort has been put into research and a huge number of new scheduling algorithms has been
developed. However, there is still a big gap between research focussing on theoretical and
mathematically orientated scheduling theory and research on applied scheduling models in
distributed computing systems. This means that on the one hand researchers who work
in the area of applied scheduling do not use all the theory developed by researchers in the
area of theoretical scheduling models and on the other hand only very few theoretically
orientated scheduling researchers work on scheduling models for distributed computing
systems. The textbook of Drozdowski [21] is an example of how mathematically orientated
scheduling theory can be used for scheduling models in parallel and distributed computing
systems.

The aim of the present thesis is to make an attempt to help bridging the gap between the
theoretical and the applied scheduling research. To that end we study and analyse several
forms of the energy consumption as an objective function and deal with some features
of scheduling problems in distributed computing. Afterwards classical mathematical
scheduling problems are extended by these features and are then studied.

This thesis is organised as follows. In Section 2, we introduce the concept of
cloud computing, which is a specialised form of distributed computing. We restrict our
considerations to cloud computing in this thesis, which has become a very important area
of distributed computing in the last years.

In Section 3 we provide some basic mathematical definitions which will be needed later
in the thesis.

Section 4 gives a short overview of objective functions, job characteristics and other
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restrictions which may appear in a model of a cloud computing system. We highlight their
role in mathematical scheduling theory and cloud computing. Finally the commonly used
α | β | γ notation is extended for our purposes.

In Section 5 we present a short review of differences between the literature in theoretical
and in applied scheduling theory, respectively. We highlight possible difficulties that
mathematicians have to face when studying literature on applied scheduling models for
distributed computing systems. Finally we consider two simple energy models from the
literature and point out that these models behave contradictory.

Having observed a contradicting behaviour with simple energy models, a more complex
energy model is proposed in Section 6. In this model, the calculation of the energy
consumption of a processor is based on the energy consumption of the cores of the processor.
For the special case of identical jobs, the trade-off between the energy consumption and
the total flow is studied. Furthermore we point out why this energy model might be to
complex to be applied in distributed computing systems.

The rest of the thesis is focussed on scheduling problems for which both the energy
consumption and the total flow time should be optimised. Section 7 gives an overview over
existing mathematical literature.

In Section 8 we consider several scheduling models that focus on on-demand scheduling.
On-demand scheduling is modelled by the immediate start condition, which forces each
job to start its execution immediately when it becomes available. Considered scheduling
problems are bi-criteria optimisation problems with the energy consumption and the total
flow as objective functions. We study both the problem version of determining all Pareto
optimal schedules as well as the problem version of minimising the total flow such that
a given upper limit on the consumed energy is not exceeded. For the special cases with
a single processor or with equal-work jobs algorithms with running time O(n log n) are
suggested for both problem versions where n denotes the number of jobs. The complexity
status for the general case remained open.

Finally, in Section 9 we present our conclusions and some open problems.
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2 Modelling: New Features in Distributed

Computing

In this thesis we will focus uniquely on cloud computing, which is an important specialised
form of distributed computing. Cloud computing had a major influence on both business
and academic fields in the last few years and is therefore worth to be intensively studied.
In this section we provide a description of those components of a cloud computing system,
which are relevant for this thesis. It turns out that in the setting of distributed computing
scheduling problems arise which differ from traditional mathematical scheduling problems.

2.1 About Cloud Computing

Cloud computing is still an emerging field. Its definition, attributes and characteristics
will evolve over time. The currently most accepted definition of cloud computing systems
was given by the National Institute of Standards and Technology (NIST) in [33]. It reads
as follows:

“Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g. networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction. This cloud model is composed of five essential characteristics, three
service models, and four deployment models.”

In the following the essential characteristics, service models and deployment models
mentioned above are explained in more detail. The explanations are again directly taken
from the NIST document [33] as for definitions of this type rephrasing does not make sense.

Essential Characteristics (from [33]):

“On-demand self-service. A consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed automatically
without requiring human interaction with each service provider.

Broad network access. Capabilities are available over the network and
accessed through standard mechanisms that promote use by heterogeneous
thin or thick client platforms (e.g. mobile phones, tablets, laptops, and
workstations).

Resource pooling. The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and
virtual resources dynamically assigned and reassigned according to consumer
demand. There is a sense of location independence in that the customer
generally has no control or knowledge over the exact location of the provided
resources but may be able to specify location at a higher level of abstraction
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(e.g. country, state, or datacentre). Examples of resources include storage,
processing, memory, and network bandwidth.

Rapid elasticity. Capabilities can be elastically provisioned and released, in
some cases automatically, to scale rapidly outward and inward commensurate
with demand. To the consumer, the capabilities available for provisioning often
appear to be unlimited and can be appropriated in any quantity at any time.

Measured service. Cloud systems automatically control and optimise
resource use by leveraging a metering capability at some level of abstraction
appropriate to the type of service (e.g. storage, processing, bandwidth, and
active user accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and consumer of the
utilised service.”

Service Models (from [33]):

“Software as a Service (SaaS). The capability provided to the consumer
is to use the provider’s applications running on a cloud infrastructure. The
applications are accessible from various client devices through either a thin
client interface, such as a web browser (e.g. web-based email), or a program
interface. The consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems, storage, or even
individual application capabilities, with the possible exception of limited user
specific application configuration settings.

Platform as a Service (PaaS). The capability provided to the consumer is to
deploy onto the cloud infrastructure consumer-created or acquired applications
created using programming languages, libraries, services, and tools supported
by the provider. The consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems, or storage, but has
control over the deployed applications and possibly configuration settings for
the application-hosting environment.

Infrastructure as a Service (IaaS). The capability provided to the consumer
is to provision processing, storage, networks, and other fundamental computing
resources where the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The consumer does not
manage or control the underlying cloud infrastructure but has control over
operating systems, storage, and deployed applications; and possibly limited
control of select networking components (e.g. host firewalls).”

Deployment Models (from [33]):

“Private cloud. The cloud infrastructure is provisioned for exclusive use by
a single organisation comprising multiple consumers (e.g. business units). It
may be owned, managed, and operated by the organisation, a third party, or
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some combination of them, and it may exist on or off premises.
Community cloud. The cloud infrastructure is provisioned for exclusive

use by a specific community of consumers from organisations that have
shared concerns (e.g. mission, security requirements, policy, and compliance
considerations). It may be owned, managed, and operated by one or more
of the organisations in the community, a third party, or some combination of
them, and it may exist on or off premises.

Public cloud. The cloud infrastructure is provisioned for open use by the
general public. It may be owned, managed, and operated by a business,
academic, or government organisation, or some combination of them. It exists
on the premises of the cloud provider.

Hybrid cloud. The cloud infrastructure is a composition of two or more
distinct cloud infrastructures (private, community, or public) that remain
unique entities, but are bound together by standardised or proprietary
technology that enables data and application portability (e.g. cloud bursting
for load balancing between clouds).”

The three service models differ in their degree of abstraction and their level of control
a customer has. The IaaS service model is seen as the least abstract model but offers the
highest level of control to customers. On the other hand, the SaaS service model is seen as
the most abstract model, but offers the lowest level of control to customers. These aspects
can be visualised in the so-called cloud computing stack as depicted in Figure 1 .

IaaS

PaaS

SaaS

L
ev
el

of
A
b
st
ra
ct
io
n L

evel
of

C
on

trol

Figure 1: Cloud computing stack

Customers get access to their SaaS, PaaS or IaaS products through a network. For
example, in case of SaaS a customer may use a software through a network when needed
or in case of IaaS a customer may get access to a server that is located somewhere else
through a network.
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A cloud computing system has a lot of components and a lot of aspects play a role.
In this thesis we will not explain all of these components and we will not mention all of
the aspects which are relevant for cloud computing systems. Instead we will concentrate
on features which appear in scheduling models for cloud computing systems, see Section
4. Some of these features have not been addressed in traditional mathematical scheduling
theory so far. For further information about cloud computing see the textbook of Buyya
et al. [18] for more information.

The classification of the service models into SaaS, PaaS and IaaS is widespread. The
SaaS service model is that service model out these three, where a customer has the least
opportunities to manage or control the underlying cloud infrastructure. As a consequence
all of this is done by the cloud computing system itself, so there is the greatest potential for
optimisation by the cloud computing system in the SaaS service model [24]. It is important
to emphasise that general statements about any of these three service models are difficult
and should be treated with caution since these statements depend also on the particular
situation and the boundaries between these models are often fluid. Nevertheless we will
restrict our considerations to the SaaS service model in this thesis.

Cloud computing offers many advantages for customers. Companies can run their
programs and can store a huge amount of data in the cloud. The usage of pay-as-you-go
options are much cheaper for companies than to provide and maintain all the software
and hardware resources in their own buildings. In addition, since all the data is stored in
the cloud, backing up and restoring is much easier in the cloud setting than on physical
devices. On the other hand, companies should be aware that they may get vulnerable if
they store sensitive data in the cloud computing network.

There is a lot of research ongoing in the wide field of cloud computing by applied
computer scientists. Current research includes energy efficient scheduling, fault-tolerance
as well as economic and ecological aspects of clouds. Leading researchers in this area are
for example Buyya, Zomaya, Xu or Li. On the other hand, there exists far less literature
containing mathematical models of cloud computing systems. However, researchers have
studied important mathematical models which cover features of cloud computing systems.
These features include widespread and important objective functions for clouds such as
energy consumption, reliability or the total flow time. See Section 4 for more information.
Contributions to the study of such theoretical mathematical scheduling models have been
given by researchers including Albers, Trystram, Pruhs, Bansal and others.

2.2 From the Cloud Computing System to the Mathematical
Model

We consider the situation when customers make use of SaaS products. Examples for SaaS
products are Google Apps, Office 365 or salesforce.com. Note that for Office 365 it is not
one-hundred-percent clear if they offer a SaaS or a PaaS product. The boundaries are, as
mentioned before, often fluid.

Throughout the usage of SaaS-products many jobs occur that have to be executed on
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a computer (which is also called a server) in order to serve the customers. These jobs
are typically any types of processes, which may occur for instance while downloading a
video, saving data or using a search engine. These jobs require hardware where they can
be executed on. The hardware is provided by a cloud computing provider, for example
through a data centre. A data centre is a facility that is used to house servers and associated
components. We consider these hardware components abstractly as machines. Jobs are
executed in the data centre on these machines. After the execution of these jobs the
customers can finally be served.

In general these jobs arrive at random times at the data centre, since customers consume
SaaS products at random times. In addition job characteristics such as the processing
volume (number of instructions which have to be done to finish the job) or the due date
(point of time at which the customer wants the job to be finished) are also not known in
advance. However, through historical analysis, predicting techniques or a combination of
both of them it is possible to obtain estimators of these job characteristics, see for example
[34]. Due to this we assume that job parameters such as the processing volume, the release
time and the due date are given. Of course it is important that the job characteristics are
well estimated, since all further calculations depend on the used estimators. In this thesis
we assume that we are given sufficiently good estimators and therefore we will not consider
this aspect in the rest of this thesis.

The general mathematical scheduling model will be of the following form. Imagine the
situation for a scheduler in a data centre as described above. We assume that we are given
n jobs to be executed on m machines. For each job j, job characteristics such as the release
time rj, the due date dj and/or the processing volume wj are assumed to be given (due to
available historical analysis/ predicting techniques). The scheduling problem then consists
of choosing an execution speed sj for each job, such that all problem specific restrictions
are satisfied and such that a given objective function is optimised. We will provide more
details on an mathematical scheduling model for cloud computing in Section 3 and the
sections to follow.

Differences that Occur for the PaaS and IaaS Service Models

Finally, we highlight some differences for a scheduler when the underlying service model is
either PaaS or IaaS. In the SaaS service model there are more variables in the scheduling
model than in the PaaS or the IaaS service model. As an example we consider a customer
consuming a SaaS product and assume that the customer is downloading a video through
a cloud computing network. To download the video a number of jobs have to be executed
in a data centre. In this case, the scheduler can decide which job is executed on which
machine at which speed (as long all as restrictions on the jobs are satisfied). Consider now
a customer consuming a PaaS or IaaS product. As an example we assume that a customer
is renting some CPUs through a cloud computing network. In this case there is significantly
less room for optimisation for the scheduler. The scheduler has to choose suitable servers
of the data centre to serve the customer. But besides this decision there are not many
other decisions to make. In order to compare this example with the example of the SaaS
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product above, assume that the customer runs some applications on these servers. There
arise jobs which need to be executed in order to run the applications. These jobs have now
to be scheduled on the corresponding CPUs. This means that the scheduler does not make
a decision on which machine the jobs are executed. Furthermore the scheduler has very
limited control (or mostly even no control at all) at which speed the jobs are executed,
since the customer has almost all the control of the rented CPUs, see also Figure 1.

As a consequence, there is the most space for optimisation in the SaaS model. The
resulting drawback is that these scheduling problems get more complex since there are more
decisions to make. On the other hand, an advantage is that good scheduling algorithms
may lead to significantly better results than straightforward algorithms achieve.
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3 Basic Definitions

The purpose of this section is to introduce basic definitions and notations for scheduling
problems which are relevant for this thesis.

3.1 Mathematical Scheduling Model for Scheduling Problems
in Cloud Computing Systems

In general n jobs j = 1, . . . , n have to be executed on m machines Mi for i = 1, . . . ,m.
To execute a job, a scheduler has to choose on which machine the job has to be executed.
Furthermore a scheduler has to choose the time when the execution of a job should be
started and at which speed the job should be executed. The following definitions are based
on [1], [17] and [39].

Definition 1. For each job j, we define the following parameters:

• The release time rj denotes the time at which job j becomes available.

• The processing volume wj denotes the amount of work that has to be done to finish
job j. In cloud computing the unit of the processing volume of a job is measured in
million instructions (MI) [24].

• The due date dj denotes the time at which job j should be finished.

In this thesis we consider a machine as a processor that can run at different execution
speeds. We assume that the execution speed is constant throughout the execution of
each job, but different jobs can have different execution speeds. Note that this means in
particular that it is not allowed to stop the execution of a job and continue it at a later
point of time (in other words we do not allow preemption).

Definition 2. For each job j, we introduce the following variables:

• The execution speed sj denotes how much work can be done per time unit. In cloud
computing the unit of the execution speed of a job is measured in million instructions
per seconds (MIPS) [24].

• The execution time tj denotes the time needed to execute the job. In cloud computing
the unit of the execution time of a job is measured in seconds [24]. The connection
between wj, sj and tj is then defined by

tj =
wj
sj
. (3.1)

Note that equation (3.1) also makes sense in terms of the measurement units:

tj =
wj
sj

←→ seconds =
million instructions

million instructions per second
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• The completion time Cj denotes the time when the job is finished.

• The unit penalty Uj is defined by

Uj :=

{
0 if Cj ≤ dh

1 otherwise
. (3.2)

• The tardiness Tj is defined by Tj := max{0, Cj − dj}.

Definition 3. We define the following objective functions:

• The makespan Cmax := max{C1, . . . , Cn}

• The total completion time
∑n

j=1Cj

• The total flow time
∑n

j=1 Fj, for Fj := Cj − rj

• The number of delayed jobs
∑n

j=1 Uj

• The total tardiness
∑n

j=1 Tj

Definition 4. A schedule is for each job an allocation of a time interval to a machine.
A schedule is called feasible if no two time intervals overlap and if it meets a number of
problem-specific characteristics. A schedule is called optimal if it is feasible and minimises
a given objective criterion.

Definition 5. A Gantt chart is a graphical representation of a feasible schedule. Each
job will be represented by a box. The length of the box corresponds to the execution
time, the height of the box corresponds to the execution speed and the area of the box
corresponds to the processing volume. Each machine is represented by a horizontal band.
The Gantt chart is two-dimensional. The time horizon (measured in seconds) is presented
in x-direction and the computation speed (measured in MIPS) is presented in (measured
in seconds) y-direction. Note that each machine has its own execution speed scale. If a
job is allocated to a certain machine, the box of this job is drawn on the horizontal band
of the machine in the Gantt chart.

An example of a Gantt chart is depicted in Figure 2.
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Figure 2: Example of a Gantt chart with five jobs. The release times are given by r1 =
0, r2 = 10, r3 = 60, r4 = 80, r5 = 100 and the processing volumes (area of the boxes) are
given by w1 = 800, w2 = 600, w3 = 350, w4 = 400, w5 = 750. It is assumed that the
executions of all jobs are started exactly at the corresponding release times. The execution
times are chosen as t1 = 80, t2 = 40, t3 = 70, t4 = 40, t5 = 50 and the execution speeds are
chosen as s1 = 10, s2 = 15, s3 = 5, s4 = 10, s5 = 15.

We will also consider scheduling problems with two objective functions in this thesis.
Therefore we give some basic definitions on bi-criteria optimisation problems (optimisation
problems with two objective functions). The definitions and notations are taken from [22].

Definition 6 (Pareto optimality). Consider a bi-criteria optimisation problem with
objective functions f1 and f2. The set of feasible solutions is denoted by X . A feasible
solution x ∈ X is called Pareto optimal or efficient if there is no other x′ ∈ X such that
f1(x′) ≤ f1(x) and f2(x′) ≤ f2(x) holds with at least one inequality being strict. The set
of all Pareto optimal solutions is called the efficient set.

In what follows we denote by f1 and f2 two given objective functions and by X the
feasible set, which is the set of feasible solutions.

Since we consider two objective functions, we can study the following four types of
optimisation problems:

(i) Given two parameters γ1 and γ2, find an x ∈ X that minimises γ1f1 + γ2f2.

(ii) Given an upper bound U2 on f2, find an x ∈ X that minimises f1 such that f2 ≤ U2.
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(iii) Given an upper bound U1 on f1, find an x ∈ X that minimises f2 such that f1 ≤ U1.

(iv) Find the Pareto optimal set.

3.2 Extension of the Classical α | β | γ Notation

In scheduling literature, the α | β | γ notation (introduced by Lawler et al. in [25]) is widely
used to classify scheduling problems. We briefly describe below the parts of this notation
which are needed in this thesis.

• The α− field specifies the machine environment. We will include α = 1 if we consider
a scheduling problem with one machine. If we include α = Pm for m ∈ N and m ≥ 2,
then we consider a scheduling problems with m identical machines. The symbol P
highlights that all considered machines are identical.

• The β− field specifies the job environment. This field contains information about the
values wj, dj and rj. If this field contains the string

”
wj = 1“, then all jobs have the

same processing volume which is assumed to be equal to 1 without loss of generality.
On the other hand, if the field contains the string

”
wj“, the processing volumes of

the jobs are arbitrary. Similar notation is used for dj and rj. The only exception is
that if neither the string

”
dj“ nor a string of the form

”
dj = d“ appears in this field,

this indicates that no due dates are considered in the corresponding problem. This
then corresponds to dj =∞ for all jobs.

• The γ- field specifies which objective function is considered. For example, we include

”
γ = Cmax“ or

”
γ =

∑n
j=1 Uj“, if we want to minimise the makespan or the number

of delayed jobs respectively.

In this thesis we will also consider bi-criteria scheduling problems of the types
(i) - (iv) introduced above. To have a compact notation for these problems, we extend
the α | β | γ notation from above. To denote a problem of type (i), we include a string
of the form

”
(γ1f1 + γ2f2)“ into field γ. A problem of type (ii) or (iii) is denoted by

including the correspond upper-bound restriction in field β and the corresponding
objective function into field γ. Finally, to denote a problem of type (iv), we include
a string of the form

”
(f1, f2)“ into field γ.

We will consider new properties of scheduling problems in Section 4. To include this
new features in the α | β | γ notation we will extend the α | β | γ classification further in
Section 4.3.
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4 Features in Distributed Computing

A cloud computing system is very complex and involves a lot of technologies. Furthermore
it may need to satisfy several goals at once. This means that in order to formulate a
complete mathematical model of a cloud computing system there are a huge number of
possible restrictions and many different objective functions to consider. Many of these
restrictions and objective functions have not been studied from a mathematical point of
view so far.

In this section we describe several classes of objective functions and restrictions that
are typical for cloud computing systems.

4.1 Objective Functions in the Context of Cloud Computing

4.1.1 Energy Consumption

One of the most important objective functions to consider in the context of cloud computing
is the energy consumption. Providers of large cloud services consume many megawatts to
operate their data centres. Examples are Google with over 1, 120 GWh or Microsoft with
over 600 GWh. This energy usage results in electricity bills of about $67 million and $36
million for Google and Microsoft for 2010 [38]. The energy usage is expected to increase
further in the next years. By 2012, data centres that power internet-scale applications
consumed about 1.3% of the worldwide electricity supply and this fraction is predicted to
reach 8% by 2020 [23]. These aspects highlight the importance of the criterion of energy
consumption.

In the literature there is no generally accepted energy model that describes the energy
usage of a server or a whole data centre in mathematical terms, see Section 5 for a further
discussion. A number of different energy models have been proposed in the literature. So
far no consensus has been obtained on a common or best model. In the following we discuss
two models from the literature. The first one is more mathematically orientated and the
second one comes from the applied computer science literature.

Model 1: The first energy model has mostly been studied by mathematicians, see for
example [1]. Given a processor that can run at different speeds, we consider n jobs
1, . . . , n with processing volumes wj > 0 for 1 ≤ j ≤ n. If the processor runs at
execution speed sj > 0 to execute job j, then the execution time tj is given by
tj =

wj
sj

. The power consumption of processor running at speed s is given by sαj for

α > 1. The energy consumption of job j is then calculated by integrating the power
consumption over time. Therefore the energy consumption can be calculated as

n∑
j=1

∫ tj

0

sαj dτ =
n∑
j=1

tjs
α
j =

n∑
j=1

wjs
α−1
j . (4.1)

Model 2: The second energy model is a linear model considered mainly by computer
scientists, see for example [35]. For a given server, the CPU utilisation level is denoted
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by U ∈ [0, 1], the power consumed by a fully utilised CPU is denoted by Pmax and
the fraction of consumed power when the CPU is idle is denoted by k. Then the
power consumption P (U) is calculated as

P (U) = kPmax + (1− k)PmaxU. (4.2)

To obtain the energy consumption, we have to integrate P (U) over time. This model
is motivated according to experiments that indicates that the power consumption
depends mainly and linearly on the utilisation level U , see [14], [19] and [26] for
example.

4.1.2 Reliability

Another important objective function in cloud computing systems is the reliability. This
objective function measures how

”
reliable“ the considered cloud service for the customers

is. For example, it can happen in real world cloud computing systems, that the execution
of a job gets aborted due to hardware failures, software faults or resources removal. As a
consequence of these incidents, the customer will not be satisfied since the submitted jobs
may finish delayed or even not at all. This is of course also a problem for the cloud service
provider, because unsatisfied customers are not good for the business.

There exist several mathematical reliability models in the literature. One of them [27]
is presented in the following.

We are given a set of jobs J = {1, . . . , n} and a set of m uniform machines
M = {M1, . . . ,Mm}. Each job j requires wj instructions to be completed. Machine Mi

computes τ−1
Mi

operations per time unit and has a probability of failures according to an
exponential distribution with failure rate λMi

. In this model it is assumed that failures
on different machines occur independently from each other. The execution time of job j
on machine Mi is given by tj,Mi

= wjτMi
. The mapping π : J → M assigns each job

to a machine on which the job should be executed. Let J (Mi, π) := {j | π(j) = Mj}
denote the set of jobs assigned to machine Mj under mapping π. The execution time
of machine Mi, which is the amount of time the machine is executing a job, is then
given by tMi

(π) :=
∑

j∈J (Mi,π) tj,Mi
. Then the probability that machine Mi executes

all its jobs without failure is given by PMi
(π) := exp (−λMi

tMi
(π)) because we assume

an exponential distribution of the failure rate. Since failures occur independently on
different machines, the probability that all jobs on all machines execute without failure
is given by P(π) := exp (−

∑m
i=1 λMi

tMi
(π)). In this model, optimising the reliability

corresponds to maximising P(π) which corresponds to minimising the reliability index
rel(π) :=

∑m
i=1 λMi

tMi
(π).

4.1.3 Other Objective Functions

Applied computer scientists use the term performance when they classify how
”
good“ the

cloud computing systems operates. A closer look at papers in this area shows that many
authors do not specify what performance means exactly in their work. Performance can
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be a single objective or include several aspects as reliability, energy efficiency or scalability
at once [29]. We now give a list of objective functions which can be considered as a
performance measurement.

• Total number of delayed jobs
∑n

j=1 Uj

• Makespan Cmax

• Total completion time
∑n

j=1 Cj

• Total flow time
∑n

j=1 Fj

• Total tardiness
∑n

j=1 Tj

All of these objective functions lead to optimisation problems in minimisation form. The
objective functions listed above have already been investigated in mathematical scheduling
theory. The following objective functions are typical for applied literature on cloud
computing and are taken from [12].

• Performance efficiency: The amount of resources used under stated conditions.
Resources can include software products or hardware components.

• Time behaviour: The degree to which the response, processing times and throughput
rates of a product or system, when performing its functions, meet requirements.

• Capacity: The degree to which the maximum limits of a product or system parameter
meet requirements.

4.2 Typical Restrictions for Models of Cloud Computing
Systems

4.2.1 Different Computational Resources

In order to execute a job in a cloud computing system, jobs require different kinds of
computational resources. In this thesis we just consider the CPU as a computational
resource. The performance of a CPU is measured in million instructions per second
(MIPS). From a computer science point of view, we can interpret the formula tjsj = wj
which was introduced in (3.1) as follows. The execution time tj measures the time in
seconds which is needed to execute job j. The executing speed sj measures the performance
of the processor respectively the CPU and is measured in MIPS. Finally, the processing
volume wj denotes how much CPU resource is required to finish job j or equivalently how
many instructions have to be done to finish job j. The processing volume wj can therefore
be measured in million instructions (MI).

Besides CPU there are many other computational resources which can be included
instead or in addition. Examples for other types of computational resources are memory,
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disk or network. As mentioned before we do not consider other computational resources
than the CPU in this thesis. We just point out that including further types of
computational resources is one option to obtain more general models.

4.2.2 Immediate Start in the Presence of Abundant Resources

In a cloud computing system, a huge number of computational resources are brought
together through a network. As a consequence, the cloud computing provider can offer
big amounts of computational resources to the customers at almost any point of time.
We say that there are abundant computational resources available in the system (see
for example [30]). There are options for customers to monitor the execution process.
Customers get unsatisfied if their execution takes too much time or if the start of the
execution is postponed by the system. So it is in the service provider’s interest to make use
of the available abundant resources and to start the execution of arriving jobs immediately.
This motivates the following definition.

Definition 7 (Immediate Start Condition). We say that a scheduling problem takes into
account the immediate start condition, if the execution of every job is started immediately
at its release time.

4.2.3 Virtual Machines

Virtualisation is one important technological concept of cloud computing. This concept
plays a role when jobs have to be executed on machines. Virtualisation allows to build
virtual machines on a physical server. This means that a virtual machine occupies a part
of the computational resources of the underlying server and can then itself be considered
as a machine. There can be several virtual machines on one physical machine (occupying
distinct computational resources), but it is not possible that one virtual machine occupies
computational resources of different servers. When a job needs to be executed to serve a
customer, the job is executed on a virtual machine which itself is running on a physical
machine in the data centre.

If we consider the aspects of building virtual machines, the model becomes more
complex. The scheduler then in addition has to create virtual machines on the physical
machines.

4.3 Further Extension of the α | β | γ Notation to the Cloud
Computing Case

Having already introduced and extended the classical α | β | γ notation in Section 3, we
further extend our α | β | γ notation from Section 3 to the cloud computing case.

The following notation goes beyond the classical notation, but will be needed in the
context of this thesis.
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• imst: If the field β includes the string
”
imst“, a scheduling problem with the

immediate start condition is studied. This means that the execution of every job
has to be started at its release time.

• energy: The string
”
energy“ stands for the total energy consumption of all jobs.

We will use the following energy formula in the rest of the thesis:

energy =
n∑
j=1

wjs
α−1
j

– If a string of the form
”
energy ≤ E“ appears in the β- field, the notation

indicates that the total energy consumption of all jobs is restricted to an upper
bound E.

– If a string of the form
”
energy“ appears in the γ- field, the notation indicates

that the total energy consumption is the objective function in this problem.
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5 Short Review of the Literature on Cloud

Computing

The purpose of this section is to highlight the differences between the literature on
mathematically oriented scheduling theory and on applied scheduling models for cloud
computing systems, respectively. Furthermore some possible difficulties a mathematician
has to face when studying literature on applied scheduling models in cloud computing
systems are described.

• Lower degree of abstraction: Scheduling models in the literature on
mathematically orientated scheduling are usually of high abstraction. However,
scheduling models in the literature on applied scheduling models for cloud computing
systems are usually significantly less abstract. For example, applied scheduling
models for cloud computing systems take into account technical aspects of hardware
or network systems and often do not propose a mathematically well-defined
scheduling model. A mathematician might not be familiar with these technical
aspects and this therefore makes it more difficult for a mathematician to get familiar
with the literature on applied scheduling models for cloud computing systems. As
a consequence it becomes difficult to make an attempt to provide an accurate
mathematical model for the scenario the applied people are interested into.

• Definitions: Mathematicians are used to work with exact and well defined
definitions. However it turned out that it is very often the case in literature on
applied scheduling models for cloud computing systems that not all terms are defined
in a way a mathematician is used to. For example, the term

”
performance“ appears

in almost every paper dealing with applied scheduling models for cloud computing
systems as a measurement of how good scheduling a cloud computing system works,
but the term

”
performance“ has different meanings in different situations and only a

few papers give a definition what
”
performance“ means exactly in the corresponding

situation.

• Energy model: As already mentioned in Section 4.1.1, the energy consumption
is one of the most important objective functions to consider in cloud computing.
However there is no general agreement about a formula for the energy consumption.
In many papers that consider the energy consumption as an objective function, no
formulas for the calculation of the energy consumption are presented. It is not
always clear how exactly the authors of these papers get to numbers for the energy
consumption in the evaluation part of these papers.

5.1 Comments on the Energy Consumption

We now compare the two models for the energy consumption that are briefly introduced
in Section 4.1.1. Our aim is to highlight the difficulty of choosing a proper energy
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consumption formula. To that end we will consider versions of the two models and
compare the optimal strategies that lead to optimal solutions depending on the chosen
energy-consumption-objective function. We will see that one optimal strategy consists of
executing all jobs at the lowest possible speed whereas the other optimal strategy consists of
executing all jobs at the highest possible speed. So the optimal strategies behave completely
contrary to each other.

Model 1: We consider the energy model as proposed in the first model in Section 4.1.1.
We are given n jobs j for j = 1, . . . , n with processing volume wj for each job j. The
execution speed of job j is given by sj =

wj
tj

. The power consumption for job j at

a given time is given by sαj and the energy consumption is obtained by integrating
the power consumption over time. No restrictions are considered in this model. The
total energy consumption is given by the formula

n∑
j=1

(∫ tj

0

sαj dτ

)
=

n∑
j=1

tjs
α
j =

n∑
j=1

wjs
α−1
j . (5.1)

It is clear that the two strategies are completely contradictory.

Model 2: Now we consider a linear energy model as proposed in the second model in
Section 4.1.1. In this model jobs should be executed on a machine and the energy
consumption is a linear function of the utilisation level. The power consumption of
job j for j = 1, . . . , n is given by

P (Uj) = α + γjUj,

where Uj ∈ [0, 1] denotes the CPU utilisation level while job j is executed and α and
γj are system dependent parameters. The processing volume of job j is denoted by
wj (measured in MI) and the capacity of the machine by ψ (measured in MIPS). The
capacity of a machine denotes how many instructions per second the machine is able
to perform if the CPU utilisation level is 100%. In this model the execution time of
job j is given by

tj =
wj
ψUj

.

Again, the energy consumption is calculated by integrating the power consumption
over time:

n∑
j=1

(∫ tj

0

(α + γjUj) dτ

)
=

n∑
j=1

(
tjα +

γjwj
ψ

)
= α

n∑
j=1

tj +
n∑
j=1

γjwj
ψ

= α
n∑
j=1

wj
sj

+
n∑
j=1

γjwj
ψ

It is clear that an optimal strategy consists of executing jobs at highest possible
speed.
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We have now presented two simple energy models with a different approach of modelling
the energy consumption. In the first model it is optimal to execute jobs at their lowest
speed, but in the second model it is optimal to execute them at their highest speed. We
note again that both formulas for the energy consumption have been considered in the
literature (see [1] for the first model and [14], [19], [26] for the second model). The fact
that the two strategies are completely contradicting is an indication that none of the two
formulas for the energy consumption is complex enough to describe the energy consumption
sufficiently good. This is one reason why empirical energy consumption models are often
preferred to to theoretically justified energy consumption models [24].
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6 Core Based Energy Models

In Section 5.1 we have seen that there exist different energy models in the literature that
can lead to quite different scheduling strategies. This fact is taken as a motivation to
consider more complex energy models in order to obtain a more realistic energy model.
We consider a new and more complex energy model in the following. This model was
developed with the help of Peter Garraghan [24].

We consider a processor consisting of a given number γ of identical cores. In what
follows we introduce the notation needed to formulate core based energy models. In this
section, we just consider problems with one processor. For this reason the considered
machine is denoted by M (so we omit the index). The cores of processor M are denoted by
Γ1, . . . ,Γγ. We consider in the following a fixed job j with release time rj and processing
volume wj. In order to execute j, each core Γk completes a certain fraction of job j. We
call the fraction of job j that is executed on core Γk the job-fraction of j on Γk. We denote
the processing volume of the job-fraction of j on Γk by wj,k and we require 0 ≤ wj,k ≤ wj
for 1 ≤ k ≤ γ and

∑γ
k=1 wj,k = wj. The job-fraction of j on Γk is assumed to be executed

at constant speed sj,k on core Γk (but job-fractions of different jobs on Γk may be executed
at different execution speeds). In particular we do not allow preemption, so the execution
of a job-fraction cannot be suspended and resumed later. We allow a core to execute
job-fractions of several jobs at the same time. At every point of time, the execution speed
of a core is given by the sum of all execution speeds of job-fractions executed at this time.
It is assumed that an upper bound smax of the execution speed of a core is given in this
model. For a fixed point of time t, the execution speed of j on M at time t is denoted
by sj(t) and the execution speed of the job-fraction of j on Γk at time t is denoted by
sj,k(t). The relation between the execution speed on M and the execution speed on the
cores Γ1, . . . ,Γo is given by

sj(t) =
∑

cores Γk that execute
a job-fraction of j

at time t

sj,k(t). (6.1)

It also assumed that a common lower bound on the execution speeds of the jobs is given by
smin. Note that smax is a bound on the execution speeds of the cores, whereas smin is a lower
bound on the execution speeds of jobs. We denote the execution time and completion time
for job-fraction j on core Γk by tj,k =

wj,k
sj,k

and Cj,k. The relation between the completion

time of job j on M and the completion time of the job-fractions on the cores is given by
Cj = max1≤k≤γ Cj,k. The execution time for job j is given by the difference between Cj
and the first time at which a job-fraction of j is executed on a core. We assume that for
each job j all job-fractions become available at time rj. In this section we will consider
only models that include the immediate start condition, so we have

rj + tj,k = Cj,k 1 ≤ j ≤ n, 1 ≤ k ≤ γ and rj + tj = Cj 1 ≤ j ≤ n.

If at a certain point of time a core is executed at execution speeds s, then power
consumption of the core at this time is given by s3. The energy consumption of a core is
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calculated by integrating the power consumption over time. The energy consumption of
M is given as the sum of the energy consumption of all cores.

Before we move on, we consider a simple example.

Example 1. Consider a machine M with two cores Γ1 and Γ2. The following three jobs
have to be executed:

job release time processing volume
1 r1 = 0 w1 = 4
2 r2 = 4 w2 = 12
3 r3 = 5 w3 = 9

We execute jobs 1, 2 and 3 as depicted in the following:

job executing cores
processing volume

of job fractions
execution speed
of job fractions

execution time
of job fractions

1 Γ1 w1,1 = 4 s1,1 = 0.5 t1,1 = 8
2 Γ1,Γ2 w2,1 = 8, w2,2 = 4 s2,1 = 1, s2,2 = 2 t2,1 = 8, t2,2 = 2
3 Γ1,Γ2 w3,1 = 5, w3,2 = 4 s3,1 = 0.5, s3,2 = 0.5 t3,1 = 10, t3,2 = 8

A graphical representation in a Gantt chart of this solution is depicted in Figure 3.
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Figure 3: Gantt chart of an instance for a core based scheduling problem

The proposed core based energy model is quite general. In order to study the trade-off
between energy consumption and performance in more detail it is natural to consider a
simplified model at first. This is the purpose of the following section.
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6.1 A Core Based Energy Model with Identical Jobs

6.1.1 Model assumptions

We consider a machine M consisting of γ identical cores. There are given n jobs with
rj = 0 and wj = 1 for 1 ≤ j ≤ n. We will present a model that minimises the energy
consumption such that a given bound R on the response time is not exceeded. In order to
execute a job j we need to define a strategy of how job j is divided into job-fractions to
be executed on cores Γ1, . . . ,Γk. In this model, we choose all job-fractions to have equal
size, so we require

wj,k =
wj
γ

=
1

γ
1 ≤ j ≤ n, 1 ≤ k ≤ γ. (6.2)

Now we can formulate the model as follows:

Problem 1.

T (R) := minimise

γ∑
`=1

n∑
j=1

(Cj − Cj−1)

(
1

γ

n∑
k=j

1

Ck

)3

(6.3)

subject to
n∑
j=1

Cj ≤ R (6.4)

smin ≤
1

Cj
j = 1, . . . , n (6.5)

1

γ

n∑
j=1

1

Cj
≤ smax j = 1, . . . , n (6.6)

0 = C0 ≤ C1 ≤ . . . ≤ Cn (6.7)

Since all jobs are identical, we can consider jobs in increasing order of their completion
time, which is done in constraint (6.7). The variable C0 is introduced to formulate the
objective function in (6.3) in a more convenient way. Since rj = 0 and according to
the immediate start property, we have tj = Cj. Furthermore the execution speed of a
job-fraction of job j executed on a core is given by 1

γCj
. The execution of all job-fractions

is started at time 0, so at the beginning there is the most work to do. So constraint (6.6)
ensures that at each point of time each core is not executed at higher speed than smax. The
execution speed of a job is given by 1

Cj
according to (6.1) and therefore constraint (6.5)

ensures that each job is executed at a minimum speed of smin. constraint (6.4) bounds the
response time

∑n
j=1Cj from above by R. Next we explain the objective function (energy

consumption) in (6.3). Between times C0 = 0 and C1 all jobs are executed. Therefore the
execution speed of each core in this time interval is given by 1

γ

∑n
k=1

1
Cj

. As a consequence

the power consumption in this time interval on one core is given by
(

1
γ

∑n
k=1

1
Cj

)3

and the
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energy consumed in this time interval on all cores is therefore given by

γ∑
`=1

(C1 − C0)

(
1

γ

n∑
k=1

1

Cj

)3

.

Between times C1 and C2 all jobs but job 1 are executed. Therefore the execution speed
of each core in this time interval is given by 1

γ

∑n
k=2

1
Cj

. As a consequence the power

consumption in this time interval on one core is given by
(

1
γ

∑n
k=2

1
Cj

)3

. Therefore the

total energy consumption between times C0 = 0 and C2 on all cores is therefore given by

γ∑
`=1

(C1 − C0)

(
1

γ

n∑
k=1

1

Cj

)3

+ (C2 − C1)

(
1

γ

n∑
k=2

1

Cj

)3
.

Iterating this argument over all of these time intervals leads to the formula given in (6.3).

6.1.2 Trade-Off between Energy Consumption and Performance

In this section we will study the trade-off in Problem 1 between the energy consumption
and the performance. Therefore we analyse the trade-off function T defined in (6.3) on the
feasible set

X := {(C0, C1, . . . , Cn) | constraints (6.4) to (6.7) are satisfied}.

We note that Problem 1 is a special convex parametric optimisation problem. There
exist general results on convex parametric optimisation problems in the literature (see for
example [6]). In the following we will analyse the trade-off between energy consumption
and performance in detail by making use of the special properties of the problem under
investigation and not by relying on the general theory of parametric programming as in this
manner a better insight will be provided. Theorem 6.1 summarises the results obtained
from our analysis.

Theorem 6.1. The set

I := {R ∈ R | Problem 1 has an optimal solution for the response time bound R}

is non-empty if and only if
γsmax ≥ nsmin. (6.8)

If (6.8) holds then we have I = [Rmin,∞) and Rmin ≤ Rmax with

Rmin :=
n2

γsmax

and Rmax :=
n

smin

.
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Function T is strictly monotonic decreasing and strictly convex on [Rmin, Rmax],
continuous in Rmax and constant with value

T (Rmax) =
n3 (smin)2

γ2

on [Rmax,∞).
An optimal solution C∗0 , C

∗
1 , . . . , C

∗
n for Problem 1 with response bound R ∈ I satisfies

n∑
j=1

C∗j =

{
R for R ∈

[
Rmin, Rmax

]
Rmax for R ∈

[
Rmax,∞

) .

An optimal solution for Problem 1 with response bound Rmin is obtained by

C0 = 0 and Cj =
n

γsmax

for 1 ≤ j ≤ n.

The corresponding objective function value is given by

T (Rmin) = n (smax)2 .

Remark 1 (Interpretation of γsmax ≥ nsmin). The condition γsmax ≥ nsmin in Lemma
6.3 for the non-emptiness of I can be interpreted as follows. The left side γsmax denotes
the maximal available CPU resources on the machine including all cores. The right side
nsmin is the value of minimal required CPU resources to execute all n jobs when they are
executed at their lowest execution speed. The inequality therefore ensures that there are
enough resources available to execute all jobs.

The proof of Theorem 6.1 is divided into several lemmas that are presented in the
following.

Lemma 6.1. Function
∑γ

`=1

∑n
j=1 (Cj − Cj−1)

(∑n
k=j

1
Cj

)3

is strictly convex on X and

can be written as a sum of terms of the form

γ

Cj1Cj2
with j1, j2 ∈ {1, . . . , n},

such that each variable C1, . . . , Cn is contained in the denominator of at least one term.

Proof. Obviously it is sufficient to show the convexity of
∑n

j=1 (Cj − Cj−1)
(∑n

k=j
1
Cj

)3

since
γ∑
`=1

n∑
j=1

(Cj − Cj−1)

(
n∑
k=j

1

Cj

)3

= γ
n∑
j=1

(Cj − Cj−1)

(
n∑
k=j

1

Cj

)3

.

36



By use of C := (C0, C1, . . . , Cn) we define f(C) :=
∑n

j=1 (Cj − Cj−1)
(∑n

k=j
1
Ck

)3

. For

C ∈ X we have C0 = 0 and we can therefore write f(C) as

f(C) = C1

( n∑
k=1

1

Ck

)3

−

(
n∑
k=2

1

Ck

)3
+C2

( n∑
k=2

1

Ck

)3

−

(
n∑
k=3

1

Ck

)3
+. . .+Cn

(
1

Cn

)3

.

We consider now a fixed summand of the form

C`

( n∑
k=`

1

Ck

)3

−

(
n∑

k=`+1

1

Ck

)3
 (6.9)

for ` ∈ {1, . . . , n−1} and define a` :=
(∑n

k=`
1
Ck

)3

and b` :=
(∑n

k=`+1
1
Ck

)3

. By expanding

we see that a` and b` are sums of terms of the form 1
CfCgCh

for, without loss of generality,

Cf ≤ Cg ≤ Ch. Each term that appears in b` also appears in a`, therefore a` − b` is a
sum of terms of the form 1

C`CfCg
with C` ≤ Cf ≤ Cg. Note that the variable C` must be

contained in the denominator. Note also that all the signs of these terms are positive. As
a consequence the summand C`(a` − b`) in (6.9) is a sum of terms of the form 1

CfCg
with

C` ≤ Cf ≤ Cg. Note that the last summand in f(C), namely Cn

(
1
Cn

)3

, is also of this

form (for ` = n) and therefore the objective function f(C) is a sum of terms of this form
too. All terms 1

C2
1
, . . . , 1

C2
n

are contained in the sum, which proves the second statement of

the lemma.
Functions 1

CfCg
are convex for 0 < Cf ≤ Cg. Note that the strictly convex function

1
C2
n

is contained in the sum. Therefore f(C) is strictly convex on X as a sum of convex
functions with at least one strictly convex summand.

Lemma 6.2. Consider the optimisation problem

min
n∑
j=1

Cj

s.t.
n∑
j=1

1
γCj

≤ smax

smin ≤ 1
Cj

1 ≤ j ≤ n

Cj ≤ Cj+1 1 ≤ j ≤ n− 1,

with γsmax ≥ nsmin. Then an optimal solution is given by

Cj =
n

γsmax

1 ≤ j ≤ n. (6.10)

Proof. Due to γsmax ≥ nsmin, the solution in (6.10) is feasible. Since the objective function
is continuous and the feasible set is non-empty and compact, there is an optimal solution.
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We consider an optimal solution C∗1 , . . . , C
∗
n. If this solution is not as in (6.10), then there

are j1, j2 such that

C∗j1 <
n

γsmax

< C∗j2 ,

because otherwise constraint
∑n

j=1
1

γC∗j
≤ smax is not satisfied or C∗1 , . . . , C

∗
n is not an

optimal solution. It is easy to see that there exists values δ1 and δ2 with δ2 > δ1 such that

C∗j1 < C∗j1 + δ1 < C∗j2 − δ2 < C∗j2

and
1

C∗j1
+

1

C∗j2
=

1

C∗j1 + δ1

+
1

C∗j2 − δ2

holds. But then solution C ′1, . . . , C
′
n with

C ′j :=


C∗j for j 6= j1, j2

C∗j1 + δ1 for j = j1

C∗j2 − δ2 for j = j2

is also feasible with a smaller objective function value which contradicts the optimality of
C∗1 , . . . , C

∗
n.

Lemma 6.3. The set

I := {R ∈ R | Problem 1 has an optimal solution for the response time bound R}

is a left-bounded and right-unbounded interval [Rmin,∞). The interval is non empty if and
only if γsmax ≥ nsmin. In this case we have

Rmin =
n2

γsmax

and the objective function value for Problem 1 with response Rmin is given by

TR(Rmin) = n (smax)2 .

The optimal solutions for T (Rmin) is obtained for

Cj =
n

γsmax

with 1 ≤ j ≤ n respectively.

Proof. The feasible set X is compact and the objective function in (6.3) is continuous. As
a consequence Problem 1 has a feasible solution if and only if there is an optimal solution
for Problem 1. Considering constraint (6.5) and (6.6), it is easy to see that γsmax ≥ nsmin

is necessary for feasibility. From now on we assume γsmax ≥ nsmin. It is obvious that it
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follows for R1, R2 ∈ I with R1 < R2 that Problem 1 with response bound R3 ∈ (R1, R2)
has a feasible (and therefore also an optimal) solution. As a consequence I is an interval.

Lemma 6.2 implies that I 6= ∅ and

min
R∈R

I =
n2

γsmax

= Rmin.

Furthermore it follows from Lemma 6.2 that for Problem 1 with response bound Rmin an
optimal solution is given by

Cj =
n

γsmax

1 ≤ j ≤ n and C0 = 0.

The optimal objective function value for Problem 1 with response bound Rmin is given by

T (Rmin) = γ

(
n

γsmax

)(
n

γ

γsmax

n

)3

= n (smax)2 .

It is easy to see that I is right-unbounded which completes the proof.

Lemma 6.4. We assume γsmax ≥ nsmin. Let

Rmax =
n

smin

as before. Then the following statements hold:

1. We have Rmin ≤ Rmax. So Rmax ∈ I = [Rmin,∞) holds.

2. An optimal solution C∗0 , C
∗
1 , . . . , C

∗
n for Problem 1 with response bound

R ∈ [Rmin, Rmax] satisfies
∑n

j=1C
∗
j = R.

3. T is strictly monotonic decreasing on [Rmin, Rmax].

4. An optimal solution C∗0 , C
∗
1 , . . . , C

∗
n for Problem 1 with response bound R ∈ [Rmax,∞)

satisfies
∑n

j=1C
∗
j = Rmax. T is constant on [Rmax,∞), more precisely

T (R) = T (Rmax) =
n3 (smin)2

γ2
for R ∈ [Rmax,∞)

holds.

Proof. Due to γsmax ≥ nsmin we obtain

Rmin =
n2

γsmax

≤ n

smin

= Rmax,

which proves Statement 1.
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In order to prove Statement 2, we consider an optimal solution C∗0 , C
∗
1 , . . . , C

∗
n for

Problem 1 with response bound R ∈ [Rmin, Rmax] and assume
∑n

j=1 C
∗
j < R. If C∗j = 1

smin

for 1 ≤ j ≤ n (i.e. all constraints in (6.5) are actually equalities), then we have
∑n

j=1 C
∗
j =

Rmax which contradicts our assumption. As a consequence, there exists an index j′ with

j′ = arg max
1≤j≤n

{j | C∗j <
1

smin

}.

We define a new solution C̃0, C̃1, . . . , C̃n by

C̃j :=

{
C∗j for j 6= j′

C∗j′ + min{ 1
smin
− C∗j′ , R−

∑n
h=1 C

∗
h} for j = j′.

Note that C̃j′ > C∗j′ and that the solution C̃0, C̃1, . . . , C̃n is feasible by construction. Lemma
6.1 states that the objective function for Problem 1 can be written as a sum of terms of
the form γ

Cj1Cj2
such that each index out of {1, . . . , n} appears in at least one denominator.

In particular, the objective function is strictly monotonic decreasing in each component.
As a consequence the objective function value for C̃0, C̃1, . . . , C̃n is strictly better than
the objective function value for C∗0 , C

∗
1 , . . . , C

∗
n which yields a contradiction. This proves

Statement 2.
Now we consider R1, R2 ∈ [Rmin, Rmax] with R1 < R2. We denote an optimal solution

for Problem 1 with response bound R1 by C
(1)
0 , C

(1)
1 , . . . , C

(1)
n . As before, there exists j′′

with

j′′ = arg max
1≤j≤n

{j | C(1)
j <

1

smin

}.

We define a new solution C
(2)
0 , C

(2)
1 , . . . , C

(2)
n by

C
(2)
j :=

{
C

(1)
j for j 6= j′′

C
(1)
j′′ + min{ 1

smin
− C(1)

j′′ , R2 −
∑n

h=1C
(1)
h } for j = j′′.

Inequality C
(2)
j′′ > C

(1)
j′′ is satisfied and C

(2)
0 , C

(2)
1 , . . . , C

(2)
n is feasible for Problem 1. In

Problem 1 with response bound R2, the objective function value for C
(1)
0 , C

(1)
1 , . . . , C

(1)
n is

larger than the objective function value for C
(2)
0 , C

(2)
1 , . . . , C

(2)
n . This proves T (R1) > T (R2)

for R1 < R2 and R1, R2 ∈ [Rmin, Rmax], so Statement 3 is proven.
Finally, we consider R ∈ [Rmax,∞). We denote an optimal solution for Problem 1

with response bound R by C
(3)
0 , C

(3)
1 , . . . , C

(3)
n . Due to the constraint in (6.5), we obtain∑n

j=1 C
(3)
j ≤ n

smin
= Rmax. It follows that T is constant on [Rmax,∞). Using the same

argument as above it can be shown that
∑n

j=1C
(3)
j = Rmax. As a consequence, C

(3)
j = 1

smin

holds for 1 ≤ j ≤ n and the objective function value is given by

T (R) = T (Rmax) = γ
1

smin

(
1

γ
nsmin

)3

=
n3 (smin)2

γ2
,

which shows Statement 4.
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Lemma 6.5. We consider positive real numbers a1, . . . , an, b1, . . . , bn, a positive constant
K and λ ∈ [0, 1]. We assume that

∑n
j=1

1
aj
≤ K and

∑n
j=1

1
bj
≤ K. Then the inequality

n∑
j=1

1

λaj + (1− λ)bj
≤ K

holds.

Proof. Due to the convexity of the mapping x 7→ 1
x
, we obtain for j ∈ {1, . . . , n} the

inequality
1

λaj + (1− λ)bj
≤ λ

aj
+

1− λ
bj

.

By summing up we get

n∑
j=1

1

λaj + (1− λ)bj
≤ λ

n∑
j=1

1

aj
+ (1− λ)

n∑
j=1

1

bj
≤ λK + (1− λ)K = K.

Lemma 6.6. The trade-off function T is strictly convex on [Rmin, Rmax] and continuous
in Rmax.

Proof. If γsmax < nsmin holds, then I = ∅ and there is nothing to show. So we assume
γsmax ≥ nsmin in the following. We consider R1, R2 ∈ [Rmin, Rmax] with R1 < R2 and
λ ∈ (0, 1) and prove T (λR1 + (1 − λ)R2) < λT (R1) + (1 − λ)T (R2). To prove this, we

consider optimal solutions C(1) := (C
(1)
0 , C

(1)
1 , . . . , C

(1)
n ) and C(2) := (C

(2)
0 , C

(2)
1 , . . . , C

(2)
n )

for Problem 1 with response bounds R1 and R2 respectively. Since T is strictly monotonic
decreasing on [Rmin, Rmax], the considered optimal solutions C(1) and C(2) differ in at least
one component. The solution λC(1) + (1 − λ)C(2) is feasible for Problem 1 with response
bound λR1 + (1− λ)R2 due to the following:

• Considering constraint (6.4), if
∑n

j=1C
(1)
j ≤ R1 and

∑n
j=1C

(2)
j ≤ R2 then we have

n∑
j=1

λC
(1)
j + (1− λ)C

(2)
j ≤ λR1 + (1− λ)R2.

• Considering constraint (6.5), if C
(1)
j ≤ 1

smin
and C

(2)
j ≤ 1

smin
for 1 ≤ j ≤ n, then we

also have

λC
(1)
j + (1− λ)C

(2)
j ≤

1

smin

for 1 ≤ j ≤ n.

• Considering constraint (6.6), if
∑n

j=1
1

C
(1)
j

≤ γsmax and
∑n

j=1
1

C
(2)
j

≤ γsmax, then by

Lemma 6.5 we also have
n∑
j=1

1

λC
(1)
j + (1− λ)C

(2)
j

≤ γsmax.
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• Considering constraint (6.7), if C
(1)
0 ≤ C

(1)
1 ≤ . . . ≤ C

(1)
n and C

(2)
0 ≤ C

(2)
1 ≤ . . . ≤

C
(2)
n , then we also have

αC
(1)
0 + (1− α)C

(2)
0 ≤ αC

(1)
1 + (1− α)C

(2)
1 ≤ . . . ≤ αC(1)

n + (1− α)C(2)
n .

So λC(1) + (1 − λ)C(2) is indeed feasible for Problem 1 with response bound
λR1 + (1− λ)R2 and therefore we have

T (λR1 + (1− λ)R2) ≤ f(λC(1) + (1− λ)C(2))

< λf(C(1)) + (1− λ)f(C(2)) = λT (R1) + (1− λ)T (R2).

In the second inequality we have used Lemma 6.1 and the fact that C(1) and C(2) differ in
at least one component. This proves the strict convexity of T on [Rmin, Rmax].

In order to show that T is continuous in Rmax we show that T is convex on [Rmin,∞).
Therefore we consider λ̃ ∈ [0, 1] and R̃1, R̃2 ∈ [Rmin,∞) with R̃1 ≤ R̃2. Using the same
arguments as above we obtain

T (λ̃R̃1 + (1− λ̃)R̃2) ≤ λ̃T (R̃1) + (1− λ̃)T (R̃2),

which proves the convexity of T on [Rmin,∞) and as a consequence the continuity of T in
Rmax. Note that we do not obtain strict convexity since the optimal solutions for Problem 1
with response bounds R̃1 and R̃2 might be identical.

Putting all lemmas together we obtain a proof for Theorem 6.1.

6.2 Some Notes on Core Based Energy Models for More
Complex Job Instances

In Section 6.1 we have studied the trade-off between the energy consumption and the total
flow time in detail for the special case of identical jobs. However, the assumption that all
jobs are identical is normally too restrictive for applications in cloud computing.

In order to obtain a core based energy model that is suitable to be applied in cloud
computing systems, the model should model the following features:

• The release times and the processing volumes of the jobs should be arbitrary.

• The immediate start condition should be satisfied. In order to make it possible to
start jobs almost at their release time, a scheduling algorithm is required to be very
fast.

• The model should take into account at least one further objective (for example the
total flow time). The reason for that is that a scheduling model that minimises only
the energy consumption tends to execute jobs as slowly as possible in order to save
energy which is typically not wanted in practical applications.
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We now consider again the core based energy model proposed in Section 6.1. By
considering the corresponding convex programming formulation in Problem 1, it seems to
be unlikely that it is possible to obtain a more general core based energy model that meets
the features from above. So the contribution of this section is the insight that analytically
more complex energy models may lead to insurmountable difficulties. This impression
got reinforced by a discussion with Peter Garraghan [24] who confirmed that the energy
consumption is seen as difficult to handle analytically and that for this reason empiric
energy models are often preferred in the literature on applied scheduling models for cloud
computing systems.

For this reason we put our focus back on Model 1 for the energy consumption as
proposed in Section 5.1. In Section 7 we give a short literature overview on energy efficient
scheduling algorithms and in Section 8 we propose scheduling models that take into account
(some of) the features from above.
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7 Known Results on Energy Efficient Scheduling

Algorithms

In Section 4.1.1 the high importance of the energy consumption as an objective function for
distributed computing systems has already been pointed out. The aim of this section is to
present an overview of existing energy efficient algorithms. There are several survey papers
by Albers [1], [2] and [3]. The last one is an introductory survey which is less formal than
the others. In the context of energy efficient scheduling, there are basically two techniques
to reduce the energy consumption:

• Power-down mechanisms : A system is considered to have one active state and
several low-power states (for example standby or sleeping mode). When an active
system is idle, one can decide whether to transit the system into a low-power state
(for example standby or sleeping mode) or to keep the system active. The energy
costs for transitioning the system into a low-power state are usually negligible, but
transitioning the system back into the active state incurs a significant amount of
energy. The goal is to find a state transition schedule that minimises the energy
consumption.

• Speed scaling: Nowadays sold microprocessors are usually able to operate at variable
speed. Typically, higher speed results in better performance but requires more energy.
The goal is to use the full speed spectrum of a processor in order to save energy.

7.1 Results for Speed Scaling Problems with a Single Objective
Function

Due to the focus of this thesis, we will only list papers which deal with the speed scaling
issue. An algorithm for a speed scaling problem must make two decisions at any given
time:

• A job scheduling policy must determine which job to be scheduled next.

• A speed scaling policy must determine how fast to execute the selected job.

In practical applications, one is usually interested in minimising the energy consumption
together with a certain Quality of Service (QoS) measure. In general these objectives are
in opposition. This means that a higher QoS requires a higher energy consumption in most
applications.

Early theoretical investigations into this class of problems were initiated by Yao F.,
Demers and Shenker in their initial paper [40] in 1995. They considered a scheduling
problem with n jobs on a single processor. For each job j a release time rj, a due
date dj and a processing volume wj are given. If a job is executed at speed s, it takes
wj
s

time units to complete the jobs. If the processor is executed at speed s, the power
consumption is assumed to be given by P (s) = sα (they assume α ≥ 2) and the energy
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consumption is then given by integrating the power consumption over time. They allow
preemption, so the execution of a job can be suspended and resumed later. The goal
is to minimise energy consumption such that every job meets its deadline constraint (so
the QoS measure is deadline feasibility). For the offline version of this problem, their
presented algorithm YDS (named after the three authors) yields an optimal solution. A
straightforward implementation of YDS requires O(n3) time. In 2005, Li, Yao A. and Yao
F. [31] presented a new algorithm for the same problem with running time O(n2).

The online version of this problem was also studied in [40] by Yao F., Demers and
Shenker. In the online version, one learns about wj and dj when job j becomes available.
The competitive ratio of an online algorithm is defined as the worst-case ratio between the
cost of the solution found by the online algorithm and the cost of an optimal solution.
For a solid introduction to the area of online algorithms see e.g. the text book by Borodin
and El-Yaniv [15]. Two simple online heuristics, Average Rate and Optimal Available,
were proposed. In [40], they show that Average Rate computes a feasible schedule and the
competitive ratio r of Average Rate is bounded by αα ≤ r ≤ 2α−1αα for any α ≥ 2.

In [9], Bansal, Kimbrel and Pruhs showed that Optimal Available has a competitive
ratio of exactly αα. It can be concluded that Average Rate typically outperforms Optimal
Available in terms of running time, but Optimal Available outperforms Average Rate
in terms of competitiveness. Also in [9], a new online heuristic BKP (named after the
three authors) was proposed. They showed that a competitive ratio of 2

(
α
α−1

)α
eα can

be achieved for algorithm BKP. It can be concluded that algorithm BKP outperforms
algorithm Optimal Available in terms of competitiveness for sufficiently large α.

7.2 Bi-Criteria Problems of Minimising Total Flow and Energy

Early research on energy efficient algorithms typically used QoS measures involving
deadlines. In [37], Pruhs, Uthaisombut and Woeginger initiated the study of the bi-criteria
problem of minimising average response time (the QoS measure in this case) and energy
consumption. They consider the offline problem of scheduling n jobs on one machine
with given release dates ri, processing volumes wi and a given energy bound E. Execution
speed, power consumption and energy consumption are modelled in the same way as above.
Preemption is assumed to be allowed. The goal is to minimise the total response time such
that the total energy consumption does not exceed E.

They first studied the equal work case, where wj = 1 for all j can be assumed without
loss of generality. They considered the two job scheduling policies First-Come-First-Serve
(FCFS) and Shortest-Remaining-Processing-Time (SRPT). The job scheduling policy
FCFS non-preemptively schedules jobs according to the order that they arrive. SRPT
is a preemptive job scheduling policy that always runs the job with the least remaining
work that has been released but not completed. We note that the problem for the unit
work case can be denoted by 1 | pmtn, wj = 1, energy ≤ E |

∑
Cj using our notation.

For the equal work case, it is easy to see that both scheduling policies
First-Come-First-Serve (FCFS) and Shortest-Remaining-Processing-Time (SRPT) behave
identically and are optimal job scheduling policies. As a consequence, one can restrict the
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consideration to schedules where no jobs are preempted and such that C1 < . . . < Cn
is satisfied. This observation is used in [37] to find an optimal solution for the unit work
problem by determining an optimal solution for the following convex programming problem:

min
n∑
j=1

Cj

s.t.
n∑
j=1

1
tα−1
j

≤ E

Cj−1 + tj ≤ Cj 1 ≤ j ≤ n
rj + tj ≤ Cj 1 ≤ j ≤ n
−tj ≤ − 1

E
1

α−1
1 ≤ j ≤ n.

(7.1)

We note that the last restriction in (7.1) follows from the first restriction and is used to
ensure tj > 0 for all j. By use of the Karush-Kuhn-Tucker conditions (see for example [32]
or [16]) they developed an efficient algorithm that determines an optimal solution. In their
approach, they first determine an optimal schedule for the case of a sufficiently large energy
bound. Then they decrease the energy bound and show that there are only polynomially
many energy levels at which the corresponding schedule changes and explain how to find
the new optimal schedule. When the energy bound is decreased to E, the optimal schedule
is determined. The algorithm has a running time of O(n2 logL), where L is the range
of possible energies divided by the precision that they desire. They also point out that
the approach of their algorithm is problematic for the generalised problem with arbitrary
processing volumes as the energy optimal schedule is not a smooth function of the energy
bound E. Thus a new approach is required for the general case.

Very recently Barcelo showed in his PhD thesis [11] that both the problems
1 | pmtn, wj, energy ≤ E |

∑
Cj as well as 1 | pmtn, wj = 1, energy ≤ E |

∑
vjCj are

NP-hard.
In contrast it was noticed in [37] that the algorithm for the unit work case can be used to

obtain an approximate algorithm for the general problem 1 | pmtn, wj, energy ≤ E |
∑
Cj

that is O(1
ε
)-approximate given an additional factor of (1 + ε)α energy.

Albers and Fujiwara [4] initiated combining the objectives energy consumption and
flow time into the single objective of energy consumption plus flow time. They considered
problem 1 | wj = 1 | (

∑
Fj + energy) in both online and offline version. For the offline

version of problem 1 | wj = 1 | (
∑
Fj + energy) they obtain an algorithm that solves the

problem in O(n3 log(ρ)), where ρ is the inverse of the desired precision. For the online
version of problem 1 | wj = 1 | (

∑
Fj + energy) they obtain an approximation algorithm

with a competitive ratio that is bounded by 8.22e
(

3+
√

5
2

)α
. They also showed that there

is no online algorithm that achieves a bounded competitive ratio for the online version
of problem 1 | wj | (

∑
Fj + energy). In more detail, they showed that for the online

version of problem 1 | wj | (
∑
Fj + energy), the competitive ratio of any deterministic

online algorithm is Ω(n1− 1
α ).

Bansal, Pruhs and Stein [10] continued this line of research and considered scheduling
models that allow preemption. They proposed an algorithm that achieves a competitive
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ratio of 4 for the online version of problem 1 | pmtn, wj = 1 | (
∑
Fj + energy). They also

considered the problem with arbitrary work and weighted flow time plus energy. For ε > 0,
they define

γ̃ := max

(
2,

2(α− 1)

α− (α− 1)1− 1
α−1

)
and µε := max

(
1 +

1

ε
, (1 + ε)α

)
.

In [10] they provide an online algorithm for the online version of problem
1 | pmtn, wj | (

∑
vjFj + energy) with competitive ratio γ̃µε.

A big step forward was achieved by Bansal, Chan and Pruhs in 2009. In [7] they initiated
the study of abitrary power functions. (See also [8] for the extended and improved journal
version.) Work previously to [7] and [8] focused mainly on power consumption functions
of the form sα for α > 1 (often α = 3 was chosen according to the well known cube-root
rule). In [7] and [8] they consider far more general power consumption functions. We
briefly summarize the results of the more general paper [8] in the following. In [8], the
power consumption function P is defined on its domain D and is required to satisfy just
the following conditions:

• The domain D of P consists of an arbitrary collection of discrete points (possibly
empty) and a collection of disjoint intervals.

• Power consumption function P is nonnegative on D.

Using a power consumption function that satiesfies the conditions from above, Bansal et al.
proposed an algorithm for the online version of problem 1 | pmtn, wj | (

∑
Fj + energyg)

that is 3-competitive. The string “energyg” points out that a general power consumption
function (that meets the conditions from above) is used to calculate the energy
consumption. The obtained 3-competitiveness is remarkable since previously no guarantee
independent of α was known even for the special case of P (s) = sα.

Results that further improve the work of Bansal, Chan and Pruhs from above were
established by Andrew, Wierman and Tang [5]. In [5] they propose an algorithm that
is (2 + ε)-competitive under arbitrary non-negative and unbounded power consumption
functions for arbitrary ε > 0. Further, [5] highlight that their competitive ratio is tight in
two senses:

• For any power function, there is an instance of arriving jobs such that the algorithm
proposed in [5] is a factor of arbitrarily close to 2 worse than optimal.

• For any scaling algorithm, there is a power function such that the competitive ratio
under that power function is arbitrarily close to 2.

We note that in particular the tightness-result above makes the work of [5] very
important. However, there exist other papers that beat the competitive ratio of [5] for
some special values of α (see [20] for example).
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8 Optimising Energy Consumption and Total Flow

Time including On-Demand Scheduling

This section contains the main original contribution of this thesis from the algorithmic
point of view.

We consider the scheduling problem 1 | imst, wj, energy ≤ E |
∑
Cj where for each job

j there is given its work amount wj. The jobs arrive over time and have to be started
immediately at their release times. The goal is to minimise the total flow time such that
a given energy limit E is not exceeded.

We have to schedule the jobs in order of their release times. So the only remaining
decision a scheduler has to make is to choose the execution time tj for every job j, or
equivalently, to choose the speed sj of processing job j,

sj =
wj
tj
. (8.1)

As we work with Model 1 as the energy model in this thesis (see Section 5.1), the energy
Ej consumed by job j is

Ej =

∫ rj+tj

rj

sαj dτ = tjs
α
j =

wαj

tα−1
j

= wjs
α−1
j

for α > 1. We then get
n∑
j=1

Ej =
n∑
j=1

wjs
α−1
j

for the total energy consumed by all jobs. An energy limit for the total energy consumed
by all jobs is given by E, so that

n∑
j=1

wjs
α−1
j ≤ E

has to be satisfied. An upper bound on the job execution time is incurred by the length of
the available interval that cannot be exceeded as this would postpone the next job:

tj ≤ rj+1 − rj,
where for notational convenience we set rn+1 = ∞. By use of (8.1), we obtain a lower
bound `j on the execution speed:

wj
sj
≤ rj+1 − rj or equivalently sj ≥

wj
rj+1 − rj

=: `j

We assume
n∑
j=1

wj`
α−1
j ≤ E,

because otherwise the problem would be infeasible. We start with the single machine case.
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8.1 1 | imst, wj, energy ≤ E |
∑
Cj

For the case of different processing volumes wj and on a single machine we may assume
r1 < r2 < . . . < rn. If there are two jobs with equal release times, then the problem
is infeasible since it would not be possible to satisfy the immediate start condition.
The mathematical programming formulation for problem 1 | imst, wj, energy ≤ E |

∑
Cj

is given by

min
n∑
j=1

Cj

s.t.
n∑
j=1

wjs
α−1
j ≤ E

sj ≥ `j 1 ≤ j ≤ n.

(8.2)

According to the immediate start condition we have Cj = rj + tj. The objective
function

∑n
j=1 Cj =

∑n
j=1 tj +

∑n
j=1 rj is equivalent to

∑n
j=1 tj =

∑n
j=1

wj
sj

since
∑n

j=1 rj is

a constant. Therefore the formulation in (8.2) is equivalent to

min
n∑
j=1

wj
sj

s.t.
n∑
j=1

wjs
α−1
j ≤ E

sj ≥ `j 1 ≤ j ≤ n.

(8.3)

In order to solve problem 1 | imst, wj, energy ≤ E |
∑
Cj we present an algorithm that

solves the optimisation problem in (8.3). The following lemma is essential for the algorithm.

Lemma 8.1. The execution speeds s∗1, . . . , s
∗
n are optimal for problem (8.3) if and only if

there exist sets J1,J2 ⊆ {1, . . . , n} with J1 ∪ J2 = {1, . . . , n} and J1 ∩ J2 6= ∅ such that
the following conditions are satisfied:

(i) ∀j ∈ J1 : s∗j = `j

(ii) ∀j ∈ J2 : s∗j > `j

(iii) ∀j1, j2 ∈ J2 : s∗j1 = s∗j2

(iv) ∀j1 ∈ J1,∀j2 ∈ J2 : s∗j1 ≥ s∗j2

(v)
∑n

j=1 wjs
∗
j
α−1 = E

We will prove Lemma 8.1 by use of the Karush-Kuhn-Tucker conditions (KKT). For a
general introduction to the KKT-conditions see the widely spread textbooks [32] and [16]
for example. In the following we present related results that can directly applied to the
convex programming formulation in (8.3). These results were taken from [16].

49



Definition 8 (KKT conditions). Let f0 and f1, . . . , fm be convex and differentiable
functions. We consider the problem

min
x∈Rn

f0(x)

s.t. fi(x) ≤ 0 i = 1, . . . ,m.

For this problem, the Karush-Kuhn-Tucker conditions hold if there exists (x̃, λ̃) ∈ Rn×Rm

with λ̃T = (λ̃1, . . . , λ̃m) such that

∇f0(x̃) +
m∑
i=1

λ̃i∇fi(x̃) = 0

fi(x̃) ≤ 0 i = 1, . . . ,m (8.4)

λ̃i ≥ 0 i = 1, . . . ,m

λ̃ifi(x̃) = 0 i = 1, . . . ,m (8.5)

are satisfied. The values λ̃i for i = 1, . . . ,m are called Lagrange multipliers. Condition
(8.4) ensures feasibility and condition (8.5) is called complementary slackness condition.

Theorem 8.1 (Sufficient KKT conditions). Let f0 and f1, . . . , fm be convex and
differentiable functions. Consider the problem

min
x∈Rn

f0(x)

s.t. fi(x) ≤ 0 i = 1, . . . ,m.

If there exists (x∗, λ∗) ∈ (Rn,Rm) such that (x∗, λ∗) satisfies the KKT conditions, then x∗

is an optimal solution.

Theorem 8.2. Let f0 and f1, . . . , fm be convex and differentiable functions and let x∗ be
an optimal solution for the problem

min
x∈Rn

f0(x)

s.t. fi(x) ≤ 0 i = 1, . . . ,m.

If there exist x̃ ∈ Rn with fi(x̃) < 0 for 1 ≤ i ≤ m, then there exists (x∗, λ∗) ∈ (Rn,Rm)
such that (x∗, λ∗) satisfies the KKT conditions. The condition fi(x̃) < 0 for 1 ≤ i ≤ m is
known as Slater’s condition in the literature.

Now we prove Lemma 8.1.

Proof of Lemma 8.1. At first we assume that we are given J1,J2 ⊆ {1, . . . , n} with J1 ∪
J2 = {1, . . . , n} and J1 ∩ J2 = ∅ such that s∗1, . . . , s

∗
n satisfy the conditions (i) - (v) of
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Lemma 8.1. We will construct Lagrange multipliers λ∗0, λ
∗
1, . . . , λ

∗
n such that λ∗0, λ

∗
1, . . . , λ

∗
n

and s∗1, . . . , s
∗
n satisfy the KKT conditions. Then by Theorem 8.1 the optimality of s∗1, . . . , s

∗
n

will follow.
For problem (8.3) the KKT conditions are given by

−wj
s2
j

+ λ0

(
wj(α− 1)sα−2

j

)
− λj =0 j = 1, . . . , n (8.6)

n∑
j=1

wjs
α−1
j − E ≤0 (8.7)

`j − sj ≤0 j = 1, . . . , n (8.8)

λ0, λj ≥0 j = 1, . . . , n (8.9)

λ0

(
n∑
j=1

wjs
α−1
j − E

)
=0 (8.10)

λj(`j − sj) =0 j = 1, . . . , n (8.11)

Because of conditions (i), (ii) and (v) the execution speeds s∗1, . . . , s
∗
n satisfy the feasibility

conditions (8.7) and (8.8). According to (v), we have
∑n

j=1 wjs
α−1
j − E = 0 and therefore

also condition (8.10) is satisfied. In order to show that the other conditions are satisfied
as well, we make a case distinction between jobs in J1 and J2.

Case job j ∈ J2: Since all jobs in J2 have the same execution speed according to (iii),
we can define s̃ := s∗j for j ∈ J2. We have s̃ > `j, so we have to set λ∗j := 0 for j ∈ J2

in order to satisfy condition (8.11). Then condition (8.6) reads for j ∈ J2 as

−wj
s̃2

+ λ0

(
wj(α− 1)s̃α−2

)
=

wj
s̃2︸︷︷︸
>0

−1 + λ0 (α− 1)s̃α︸ ︷︷ ︸
>0

 = 0.

Therefore we have to set λ∗0 := 1
(α−1)s̃α

> 0 in order to satisfy (8.6). By now condition

(8.9) for j ∈ J2 is already satisfied. Note that rn+1 = ∞ implies n ∈ J2, so λ∗0 is
well-defined in any case.

Case job j ∈ J1: We already know that conditions (8.7),(8.8) and (8.10) are satisfied.
Using λ∗0 = 1

(α−1)s̃α
from the previous case, condition (8.6) reads for j ∈ J1 as

−wj
`2
j

+ λ∗0
(
wj(α− 1)`α−2

j

)
− λj = −wj

`2
j

+
1

(α− 1)s̃α
(
wj(α− 1)`α−2

j

)
− λj

=
wj
`2
j︸︷︷︸
>0

(
−1 +

(
`j
s̃

)α)
− λj = 0.
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According to (i) and (iv) we have
(
`j
s̃

)α
≥ 1 and therefore we can choose

λ∗j :=
wj
`2j

(
−1 +

(
`j
s̃

)α)
≥ 0 which satisfies conditions (8.6) and (8.9). Since

`j − s∗j = 0, also the last condition (8.11) is satisfied for j ∈ J1.

This means that s∗1, . . . , s
∗
n together with λ∗0, λ

∗
1, . . . , λ

∗
n satisfy the KKT conditions and

therefore s∗1, . . . , s
∗
n is an optimal solution for problem (8.3).

Now we prove the other direction and assume that s∗1, . . . , s
∗
n is an optimal solution

for problem (8.3). We define the sets J1 := {j ∈ {1, . . . , n} | s∗j = `j} and
J2 := {j ∈ {1, . . . , n} | s∗j > `j}. It follows that J1∪J2 = {1, . . . , n} and J1∩J2 6= ∅ holds.
We have to show that also the properties (i) - (v) are satisfied. By definition of J1 and J2

properties (i) and (ii) are satisfied. Furthermore it is easy to see that
∑n

j=1 wjs
∗
j
α−1 = E

holds. If to the contrary
∑n

j=1 wjs
∗
j
α−1 < E, we can increase the value of an arbitrary s∗j by

a sufficiently small value such that we stay feasible and obtain a strictly better objective
function which contradicts the optimality of s∗1, . . . , s

∗
n. As a consequence also property (v)

holds.
Next we consider the case if s∗j = `j holds for j = 1, . . . , n. In this case we have

J1 = {1, . . . , n} and J2 = ∅ which clearly satisfy conditions (i) - (v) since there is nothing
to show for (iii) and (iv). For this reason we can assume from now on that there exists
j′ ∈ {1, . . . , n} with s∗j′ > `j′ .

Since
∑n

j=1wjs
∗
j
α−1 = E and s∗j′ > `j′ we have

∑n
j=1wj`

∗
j
α−1 < E. As a consequence

there exists ε > 0 such that, by defining s′j := `j + ε, the inequality
∑n

j=1wjs
′
j
α−1 < E

holds. As a consequence s′j, . . . , s
′
j is strictly feasible and Slater’s condition is satisfied.

Theorem 8.2 states that there exists λ∗0, λ
∗
1, . . . , λ

∗
n such that λ∗0, λ

∗
1, . . . , λ

∗
n together with

s∗1, . . . , s
∗
n satisfy the KKT conditions. Now we need again a case distinction between jobs

in J1 and J2.

Case job j ∈ J2: Since `∗j − sj < 0, it follows from (8.11) that λ∗j = 0 for j ∈ J2. Using
λ∗j = 0 in (8.6), we know that there exists λ∗0 ≥ 0 such that

−wj
s∗j

2 + λ∗0
(
wj(α− 1)s∗j

α−2
)

=
wj
s∗j

2︸︷︷︸
>0

(
−1 + λ∗0(α− 1)s∗j

α
)

= 0

holds for all j ∈ J2. This equation can only be satisfied if all values s∗j for j ∈ J2

have the same value s̃. Therefore property (iii) is satisfied and we have

λ∗0 =
1

(α− 1)s̃α
. (8.12)
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Case job j ∈ J1: Considering (8.6) for j ∈ J1, we get

−wj
`j

2 + λ∗0
(
wj(α− 1)`j

α−2
)
− λ∗j = −wj

`2
j

+
1

(α− 1)s̃α
(
wj(α− 1)`j

α−2
)
− λ∗j

=
wj
`2
j︸︷︷︸
>0

(
−1 +

(
`j
s̃

)α)
− λ∗j = 0.

Since λ∗ ≥ 0 according to (8.9) it follows that(
`j
s̃

)α
≥ 0

and since s∗j = `j for j ∈ J1 we obtain s∗j ≥ s̃ for j ∈ J1. This implies property (iv).

We have now shown that all properties (i) - (v) are satisfied which finishes the proof.

Let us apply Lemma 8.1 to see how an optimal solution of problem
1 | imst, wj, energy ≤ E |

∑
Cj looks like in a Gantt chart. For an optimal solution

s∗1, . . . , s
∗
n, all jobs j ∈ J1 satisfy s∗j = `j. According to (8) and by use of t∗j =

wj
s∗j

we

have
`j =

wj
rj+1 − rj

= s∗j ⇔ t∗j = rj+1 − rj.

This means that in an optimal solution all jobs j ∈ J1 fully occupy the available time
window [rj, rj+1]. We note that job n is always in set J2 since rn+1 = ∞. On the other
hand, all jobs j ∈ J2 do not occupy their available time window [rj, rj+1], but are all
executed at the same speed according to Lemma 8.1.(iii). Jobs in J1 are executed at
higher speed than jobs in J2. See Figure 4 for an example.

The characterisation of Lemma 8.1 gives us the main tools to present an algorithm
for solving problem (8.3). The algorithm starts by checking

∑n
j=1wj`

α−1
j ≤ E. If this

inequality is satisfied, there exists a feasible and therefore also an optimal solution. If
this is not satisfied, the problem is infeasible. After the feasibility check, all jobs are
declared as non-frozen and the execution speeds are all set to infinity s1 = . . . = sn =∞.
These values are not feasible, since

∑n
j=1wjs

α−1
j ≤ E is not satisfied. The algorithm then

decreases the values sj of all non-frozen jobs at the same rate. If for a job j′ the equation
sj′ = `j′ gets satisfied, job j′ will be frozen and the value sj′ remains fixed until the end
of the algorithm. This procedure is repeated until

∑n
j=1wjs

α−1
j = E holds (in this case

s1, . . . , sn is optimal according to Lemma 8.1). Pseudocode can be found in Algorithm 1.

It is easy to see that Algorithm 1 can be implemented to run in O(n log(n)) time. Lines
1 to 5 can be done in O(n). Before entering the loop in line 6, we introduce a new list
of jobs ordered decreasingly according to the lower bounds `j which requires O(n log(n))
time. By use of this list lines 7 to 9 can be done in O(1) time in one iteration. Since there
are at most n iterations, lines 6 to 10 can be done in O(n) time. Everything together leads
to a running time of O(n log n) for Algorithm 1.
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Figure 4: Example of a Gantt chart of an optimal schedule with sets J1 = {2, 4} and
J2 = {1, 3, 5}. Jobs in J1 fully occupy their available time window and have a higher
execution speed than jobs in J2. All jobs in J2 are executed at the same speed.

Algorithm 1 Optimal execution speeds for problem 1 | imst, wj, energy ≤ E |
∑
Cj

Input: processing volumes w1, . . . , wn, release times r1 < . . . < rn, energy bound E
Output: optimal execution speeds s1, . . . , sn or message that the problem is infeasible
1: Set `j :=

wj
rj+1−rj for j = 1, . . . , n

2: if
∑n

j=1wj`
α−1
j > E then // Check feasibility

3: Return: “problem infeasible”
4: end if
5: Set s1 = . . . = sn =∞,J1 := ∅ and J2 := {1, . . . , n} // Initialisation

6: loop // Iteratively determine values sj

7: Reduce the values sj for j ∈ J2 until event A or event B occurs.
8: Event A: There is a job j′ ∈ J2 with sj′ = `j′ . Move job j′ from J2 to J1. Repeat.
9: Event B:

∑n
j=1 wjs

α−1
j = E. Return: s1, . . . , sn.

10: end loop
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8.2 Pm | imst, wj = 1, energy ≤ E |
∑
Cj

Now we are going to study the problem with m ≥ 2 machines and equal processing volumes.
We assume n > m, because if n ≤ m we can execute each job on a different machine and
the problem becomes trivial. Renumber the jobs such that r1 ≤ . . . ≤ rn is satisfied. We
assume that there is no j ∈ {1, . . . , n − m} such that rj = rj+1 = . . . = rj+m, because
otherwise the immediate start condition cannot be satisfied and the problem is infeasible.

In order to solve the problem Pm | imst, wj = 1, energy ≤ E |
∑
Cj, we take a two step

approach. In the first step, we decide which job should be executed on which machine.
Afterwards, in the second step, we decide at which execution speeds the jobs are executed.
Clearly, the optimal strategy in the second step depends on the realisation of the first step.
We start with introducing a suitable notation.

Definition 9. Given jobs j1, . . . , j` which are executed on machine Mi one after the other
in this order, we write (j1, j2, . . . , j`)Mi

. The tuple (j1, j2, . . . , j`)Mi
is called job sequence

on Mi or just job sequence.

Recall that in the first step we have to assign the jobs 1, . . . , n to the machines
M1, . . . ,Mm in a suitable way. Consider such an assignment and denote the jobs assigned
to machine Mi by j

(i)
1 , . . . , j

(i)
ki

(with j
(i)
1 ≤ . . . ≤ j

(i)
ki

) respectively. Then we can identify
the assignment of jobs 1, . . . , n to machines M1, . . . ,Mm by the m-tuple of job sequences(

(j
(1)
1 , j

(1)
2 , . . . , j

(1)
k1

)M1 , . . . , (j
(m)
1 , j

(m)
2 , . . . , j

(m)
km

)Mm

)
.

Definition 10. Let
(

(j
(1)
1 , j

(1)
2 , . . . , j

(1)
k1

)M1 , . . . , (j
(m)
1 , j

(m)
2 , . . . , j

(m)
km

)Mm

)
denote an m-tuple

of job sequences that corresponds to an assignment of jobs 1, . . . , n to machines
M1, . . . ,Mm. We call such a m-tuple of job sequences optimal, if an optimal solution
in the second step based on this m-tuple of job sequences is an overall optimal solution for
problem Pm | imst, wj = 1, energy ≤ E |

∑
Cj over all m-tuples of job sequences that can

be chosen in the first step.

Therefore we need to find an optimal m-tuple of job sequences in the first step and to
choose, based on the optimal m-tuple of job sequences, the optimal execution speeds in
the second step to solve problem Pm | imst, wj = 1, energy ≤ E |

∑
Cj.

We first explain how to solve the problem in step two given an optimal m-tuple of job
sequences.

Lemma 8.2. Let
(

(j
(1)
1 , j

(1)
2 , . . . , j

(1)
k1

)M1 , . . . , (j
(m)
1 , j

(m)
2 , . . . , j

(m)
km

)Mm

)
be an optimal

m-tuple of job sequences which has been chosen in the first step. Then the problem in
the second step, calculating the optimal execution times, can be formulated by

min
n∑
j=1

1
sj

s.t.
n∑
j=1

sα−1
j ≤ E

sj ≥ `j 1 ≤ j ≤ n.

(8.13)
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The lower bounds on the execution speeds are given as follows

`
j
(i)
h

:=
1

r
j
(i)
h+1
− r

j
(i)
h

for 1 ≤ h < ki and `
j
(i)
ki

:= 0.

Proof. An optimal m-tuple of job sequences specifies which jobs are executed on which
machines. This specifies for every job a time window in which the job has to be executed.
The stated lower bounds on the execution speeds as well as formulation (8.13) follow.

It follows from Lemma 8.2 that the problem in the second step is actually a problem
of the form 1 | imst, wj = 1, energy ≤ E |

∑
Cj. As a consequence the problem in the

second step can be solved with the same techniques used in Section 8.1. Algorithm 2 is a
modification of Algorithm 1 and solves the problem in the second step.

Algorithm 2 Optimal execution speeds for the second step problem of
Pm | imst, wj = 1, energy ≤ E |

∑
Cj

Input: processing volumes w1, . . . , wn,
release times r1 ≤ . . . ≤ rn with rj+m − rj > 0 for j = 1, . . . , n−m,

optimal m-tuple of job sequences
(

(j
(1)
1 , j

(1)
2 , . . . , j

(1)
k1

)M1 , . . . , (j
(m)
1 , j

(m)
2 , . . . , j

(m)
km

)Mm

)
Output: optimal execution speeds s1, . . . , sn or message that the problem is infeasible
1: Set `

j
(i)
h

:= 1
r
j
(i)
h+1

−r
j
(i)
h

for 1 ≤ i ≤ m and 1 ≤ h < ki and `
j
(i)
ki

:= 0

2: if
∑n

j=1 `
α−1
j > E then // Check feasibility

3: Return: “problem infeasible”
4: end if
5: Set s1 = . . . = sn =∞,J1 := ∅ and J2 := {1, . . . , n} // Initialisation

6: loop // Iteratively determine values sj

7: Reduce the values sj for j ∈ J2 until event A or event B occurs.
8: Event A: There is a job j′ ∈ J2 with sj′ = `j′ . Move job j′ from J2 to J1. Repeat.
9: Event B:

∑n
j=1 s

α−1
j = E. Return: s1, . . . , sn.

10: end loop

Having solved the problem in the second step, we now consider the problem of how to
determine an optimal m-tuple of job sequences. The answer is given by Theorem 8.3.

Theorem 8.3. An m-tuple consisting of the job sequences

(1,m+ 1, 2m+ 1, 3m+ 1, . . .)M1

(2,m+ 2, 2m+ 2, 3m+ 2, . . .)M2

...
(m, 2m, 3m, 4m, . . .)Mm .

(8.14)

is an optimal m-tuple of job sequences.
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Theorem 8.3 states that alternatively assigning the jobs to machines M1, . . . ,Mm

respectively yields an optimal m-tuple of job sequences. In order to prove Theorem 8.3 we
need three lemmas at first.

Lemma 8.3. Consider problem P2 | imst, wj = 1, energy ≤ E |
∑
Cj. There exists at least

one optimal 2-tuple of job sequences satisfying the following property:

Job 1 and job 2 are assigned to machine M1 and machine M2 respectively. (T)

Proof. Consider an optimal 2-tuple of job sequences T that does not satisfy (T). If in T
job 1 is assigned to machine M2 and job 2 is assigned to machine M1, we can simply switch
the roles of M1 and M2 to obtain an optimal 2-tuple of job sequences satisfying (T). So we
can assume that both jobs 1 and 2 are assigned to the same machine in T . We may assume
without loss of generality that both jobs are assigned to machine M2 (because otherwise
we can again simply switch the roles of M1 and M2). But now we can simply move job 1
from machine M2 to machine M1 to obtain a new 2-tuple of job sequences T ′. Denote the
convex programming formulations as in (8.3) that correspond to T and T ′ by (P ) and (P ′)
respectively. It is clear that the formulations are identical except that the lower bound of
job 1 in (P ′) is smaller or equal than the lower bound of job 1 in (P ). As a consequence
the optimal objective function value of (P ′) is smaller or equal than the optimal objective
function value of (P ). So T ′ is an optimal 2-tuple of job sequences with property (T).

Lemma 8.4 below will be used to prove Lemma 8.5. The same notation is used in the
formulation of both lemmas.

Lemma 8.4. Given rhy ≤ rjx < rjx+1 ≤ rhy+1 and Ẽ > 0. Consider the following two
convex programs:

(P1) min 1
sjx

+ 1
shy

(P2) min 1
sjx

+ 1
shy

s.t. sα−1
jx

+ sα−1
hy

= Ẽ s.t. sα−1
jx

+ sα−1
hy
≤ Ẽ

sjx ≥ 1
rjx+1

−rjx
sjx ≥ 1

rhy+1
−rjx

shy ≥ 1
rhy+1

−rhy
shy ≥ 1

rjx+1
−rhy

We assume that (P1) has a feasible solution. Then the optimal objective function value of
(P2) is smaller or equal than the optimal objective function value of (P1).

Proof. Replace the variables sjx and shy by s′jx := 1
sjx

and s′hy := 1
shy

to obtain two

equivalent convex programs:

(P ′1) min s′jx + s′hy (P ′2) min s′jx + s′hy

s.t.
(
s′jx
)1−α

+
(
s′hy

)1−α
= Ẽ s.t.

(
s′jx
)1−α

+
(
s′hy

)1−α
≤ Ẽ

0 < s′jx ≤ rjx+1 − rjx =: ux,x+1 0 < s′jx ≤ rhy+1 − rjx =: ux,y+1

0 < s′hy ≤ rhy+1 − rhy := uy,y+1 0 < s′hy ≤ rjx+1 − rhy =: uy,x+1
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Programme (P1) is equivalent to (P ′1) and (P2) is equivalent to (P ′2). As a consequence it
is sufficient to show that the optimal objective function value of (P ′2) is smaller or equal
to the optimal objective function value of (P ′1). By defining ε := rhy+1 − rjx+1 we have
ux,x+1 + ε = ux,y+1 and uy,y+1 − ε = uy,x+1. The feasible set of (P ′1) is compact and
non-empty, so there exists an optimal solution for programme (P ′1). Let s∗jx and s∗hy denote
an optimal solution for (P ′1). Since we have by assumption uy,y+1 ≥ ux,x+1, we can assume
without loss of generality that s∗jx ≤ s∗hy . By choice of

δ := min{
s∗hy − s

∗
jx

2
, ε}

we obtain δ ≥ 0, s∗jx ≤ s∗jx+δ ≤ s∗hy−δ ≤ s∗hy as well as s∗jx+δ ≤ ux,y+1 and s∗hy−δ ≤ uy,x+1.
Note that the objective function value for (P ′2) for s′jx = s∗jx + δ and s′hy = s∗hy − δ is the
same as the optimal objective function value for (P ′1). In order to show the feasibility of
s∗jx + δ and s∗hy − δ for (P ′2) it remains to show that

(
s∗jx + δ

)1−α
+
(
s∗hy − δ

)1−α
≤ Ẽ

holds. This inequality follows, since the function s 7→ s1−α is convex and monotonic
decreasing, from

(s∗jx + δ)1−α − (s∗jx)
1−α

(s∗jx + δ)− s∗jx
≤

(s∗hy)
1−α − (s∗hy − δ)

1−α

s∗hy − (s∗hy − δ)

and as a consequence from(
s∗jx + δ

)1−α
+
(
s∗hy − δ

)1−α
≤ s∗jx + s∗hy = Ẽ.

Lemma 8.5. Consider problem P2 | imst, wj = 1, energy ≤ E |
∑
Cj. A 2-tuple consisting

of the job sequences
(1, 3, 5, . . .)M1 and (2, 4, 6, . . .)M2 (8.15)

is an optimal 2-tuple of job sequences.

Proof. Consider an optimal 2-tuple of job sequences

T := ((j1, . . . , jk1)M1 , (h1, . . . , hk2)M2)

and denote the corresponding convex programming formulation from Section 8.1 by (P ).
According to (T), we can assume that j1 = 1 and h1 = 2. To avoid technical case
distinctions, we introduce

”
dummy jobs“ j∞ and h∞ with release times rj∞ = rh∞ = ∞

which are assigned to machines M1 and M2 respectively.

58



The extension of T by these dummy jobs is denoted by

T∞ := ((j1, . . . , jk1 , j∞)M1 , (h1, . . . , hk2 , h∞)M2) .

The reason why we introduced the dummy jobs is that now in T∞ each job j for 1 ≤ j ≤ n
has at least one successor on the corresponding machine. As a consequence there will be
less technical cases to consider.

Assume that T has not the form as in (8.15). Then there exists a job jx on a machine
Mi′ such that jx + 1 = jx+1 holds. This means that jobs jx and jx + 1 are executed one
after the other on machine Mi′ . We choose jx minimal with this property. Note that jx ≥ 2
holds. By the choice of jx there exists a job hy such that both hy+1 and hy are executed
on the other machine, i.e. machine Mi′′ with i′′ ∈ {1, 2} and i′ 6= i′′ and such that rhy ≤ rjx
and rhy+1 ≥ rjx+1 holds. Note that job hy+1 might be a dummy job.

We now construct a new 2-tuple of job sequences T ′∞. The job sequences in T ′∞ for
machines Mi′ and Mi′′ are changed from those in T∞ according to the following scheme:

(. . . , jx−1, jx, jx+1, jx+2, . . . , j∞)Mi′
changes to (. . . , jx−1, jx, hy+1, hy+2, . . . , h∞)Mi′

(. . . , hy−1, hy, hy+1, hy+2, . . . , h∞)Mi′′
changes to (. . . , hy−1, hy, jx+1, jx+2, . . . , j∞)Mi′′

Denote the m-tuple of job sequences that is obtained by removing all dummy jobs from
T ′∞ by T ′. So we have

T ′∞ =
(

(. . . , jx−1, jx, hy+1, hy+2, . . . , hk2 , h∞)Mi′
, (. . . , hy−1, hy, jx+1, jx+2, . . . , jk1 , j∞)Mi′′

)
T ′ =

(
(. . . , jx−1, jx, hy+1, hy+2, . . . , hk2)Mi′

, (. . . , hy−1, hy, jx+1, jx+2, . . . , jk1)Mi′′

)
.

We now prove that T ′ is also an optimal 2-tuple of job sequences. Denote the convex
programming formulation obtained by T ′ by (P ′). The only thing that differs between (P )
and (P ′) are the lower bounds on the execution speeds of jobs jx and hy. In (P ), we have

`jx =
1

rjx+1 − rjx
and `hy =

1

rhy+1 − rhy
,

and in (P ′) these lower bounds are given by

`′jx =
1

rhy+1 − rjx
and `′hy =

1

rjx+1 − rhy
.

Lemma 8.4 implies that the objective function value of (P ′) is at least as good as the
objective function value of (P ). Therefore T ′ is also an optimal 2-tuple of job sequences.
If T ′ has not the form as in the theorem, then again there exists a machine and a job j′x,
such that both j′x and j′x + 1 are both assigned to this machine. As a consequence of the
construction of T ′ the inequality j′x > jx is satisfied. That means that if we iteratively
construct new optimal 2-tuples of job sequences as above, we obtain an optimal 2-tuple
that is identical to the 2-tuple as stated in (8.15).
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Finally we can prove Theorem 8.3, the main result of this section.

Proof of Theorem 8.3. Consider an optimal m-tuple of job sequences T . If T is not as in
(8.14) there exists a job j assigned to a machine Mi′ such that j is assigned to a different
machine Mi′′ in (8.14). We choose j minimal with this property. Consider the problem
P2 | imst, wj = 1, energy ≤ E |

∑
Cj with machines Mi′ and Mi′′ and with exactly the jobs

which are in the job sequences of Mi′ and Mi′′ in T . Lemma 8.5 states that assigning jobs
to machines Mi′ and Mi′′ alternatively is an optimal 2-tuple of job sequences. Denote these
job sequences by SMi′

and SMi′′
. Replacing the job sequences of machines Mi′ and Mi′′

in T by SMi′
and SMi′′

respectively yields a new m-tuple of job sequences T ′ that is also
optimal. If T ′ is not as in (8.14), then there exists a job j′ assigned to a different machine
than in (8.14). By construction of T ′ the inequality j′ > j holds. That means that if we
iteratively construct new optimal m-tuples of job sequences as above, we obtain an optimal
m-tuple of job sequences that is identical to (8.14).

8.3 Pm | imst, wj, energy ≤ E |
∑
Cj

It turns out that assigning jobs according to the Round Robin technique as in
Theorem 8.3 does not lead to an optimal m-tuple of job sequences for problem
Pm | imst, wj, energy ≤ E |

∑
Cj in general. A counterexample is provided in Example 2.

Example 2. We consider a problem of the form Pm | imst, wj, energy ≤ E |
∑
Cj

with n = 4 and m = 2. The release times and the processing volumes are given by
r1 = 0, r2 = 1, r3 = 2, r4 = 3 and w1 = w3 = w4 = 6, w2 = 1 respectively. The energy
bound is given by E = 37. We consider the following 2-tuples of job sequences:

T1 := ((1, 3)M1 , (2, 4)M2) and T2 := ((1, 4)M1 , (2, 3)M2)

Note that T1 has the same form as in (8.14). We now apply Algorithm 1 to T2:

1. We start with s1 = s2 = s3 = s4 =∞,J1 = ∅ and J2 = {1, 2, 3, 4}.

2. We have s1 = s2 = s3 = s4 =∞,J1 = ∅ and J2 = {1, 2, 3, 4}.

• Event A: max{ w1

r4−r1 ,
w2

r3−r2 ,
w3

∞ ,
w4

∞ } = {6
3
, 1

1
, 0, 0} = 2

• Event B: 37 =
∑4

j=1wjs
2 ⇔ 37 = 6 · s2 + 1 · s2 + 2 · 6 · s2 ⇒ s =

√
37
19

Since 2 >
√

37
19

, event A occurs.

3. We have s1 = s2 = s3 = s4 = 2,J1 = {1} and J2 = {2, 3, 4}.

• Event A: max{ w2

r3−r2 ,
w3

∞ ,
w4

∞ } = {1
1
, 0, 0} = 1

• Event B: 37 = w1 · 22 +
∑4

j=2 wjs
2 ⇔ 37 = 6 · 22 + 1 · s2 + 2 · 6 · s2 ⇒ s = 1
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Figure 5: Gantt chart of an optimal solution for the problem in the second step based
on T2.

In this case both events occur and the algorithm is done. The optimal execution speeds
are given as s∗1 = 2, s∗2 = s∗3 = s∗4 = 1 and the optimal objective function value is given
by
∑4

j=1
wj
sj

= 6
2

+ 1
1

+ 6
1

+ 6
1

= 16. See Figure 5 for a graphical representation in a

Gantt chart of this solution.

Now we consider T1. In order to use the minimum amount of energy to execute job 1,
we have to execute job 1 at the lowest possible execution speed. Since the jobs executed
on machine M1 are 1 and 3, a lower bound on the execution speed of job 1 is given by
w1

r3−r1 = 6
2

= 3. So we have to execute job 1 with an execution speed of at least 3. But the

energy consumption for job 1 executed at speed 3 is already w1 · 32 = 6 · 32 = 54, which is
bigger than E = 37. This means that the problem in the second step based on the 2-tuple
of job sequences T1 is infeasible. As a consequence T1 cannot be an optimal 2-tuple of job
sequences.

8.4 1 | imst, wj | (energy,
∑
Cj)

In this section we study the trade-off between energy and the total completion time for
the single machine problem with different processing volumes and the immediate start
condition. As in Section 8.1 we assume r1 < r2 < . . . < rn.

At first we determine for which energy bounds E there is an optimal solution for problem
1 | imst, wj, energy ≤ E |

∑
Cj.
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Lemma 8.6. The set

I := {E ∈ R | problem 1 | imst, wj, energy ≤ E |
∑

Cj has an optimal solution} (8.16)

is a closed, left-bounded and right-unbounded interval. Define Emin := min I and denote by
C(Emin) the optimal objective function value for problem 1 | imst, wj, energy ≤ Emin |

∑
Cj.

Then the point (Emin, C(Emin)) is called extreme point and is given by

(Emin, C(Emin)) =

(
n∑
j=1

wj`
α−1
j ,

n∑
j=1

wj
`j

)
.

Proof. Considering (8.3), the set of feasible solutions is closed and bounded (and
therefore compact) and the objective function is convex. As a consequence problem
1 | imst, wj, energy ≤ E |

∑
Cj has a feasible solution if and only if it has an optimal

solution. It follows that I is an interval and it is easy to see that I is also right-unbounded.
Since the energy function

∑n
j=1 wjs

α−1
j is strictly monotonic increasing in each argument,

the lowest energy consumption is obtained by sj = `j. These execution speeds lead to the

value Emin =
n∑
j=1

wj`
α−1
j . With Emin as an upper bound, there is only one feasible solution

that is obtained by sj = `j. As a consequence this solution is also optimal and we obtain
C(Emin) =

∑n
j=1

wj
`j

. From above it is clear that I is left-bounded by Emin and closed.

We explain in the following how Algorithm 1 can be modified to solve problem
1 | imst, wj | (energy,

∑
Cj).

Consider two given upper bounds of the energy consumption E1 and E2 with E1 < E2.
Denote by S1 (S2) an instance for problem 1 | imst, wj, energy ≤ E |

∑
Cj with release

times r1, . . . , rn and processing volumes w1, . . . , wn and upper bound for the energy
consumption E1 (E2). Consider an optimal solution for instance S2 determined by
Algorithm 1. According to Lemma 8.1 the jobs in this optimal solution can be divided
into two sets J1 and J2 such that the execution speeds of jobs in J1 reach their lower
bounds and such that all execution speeds of jobs in J2 are equal. In order to solve the
problem for instance S1, we do not need to run Algorithm 1 from the very beginning.
It is sufficient to enter the loop in Algorithm 1 with the optimal execution speeds for
instance S2, the sets J1 and J2, and the energy bound E1. In other words, if we solve
problem 1 | imst, wj, energy ≤ E |

∑
Cj for a given instance with energy bound E, then

the algorithm solves all the problems with a higher energy bound “along the way”. For this
reason we are able to solve problem 1 | imst, wj | (energy,

∑
Cj) with the same techniques

that are used in order to solve problem 1 | imst, wj, energy ≤ Emin |
∑
Cj. In the following

this process is explained in more detail.
In order to solve problem 1 | imst, wj, energy ≤ Emin |

∑
Cj, Algorithm 1 initialises all

execution speeds with infinity. We will use the notation s
(k)
1 , . . . , s

(k)
n to denote the values

of the execution speeds after k iterations of the loop in Algorithm 1. Similarly, we write
J (k)

1 and J (k)
2 for the jobs which are in set J1 and J2 after iteration k. So at the moment

62



we have s
(0)
1 = . . . = s

(0)
n = ∞, J (0)

1 = ∅ and J (0)
2 = {1, . . . , n}. Now we decrease the

execution speeds until the highest lower bound `(1) := max1≤j≤n `j is reached. At this

point in the algorithm, the execution speeds are given by s
(1)
1 = . . . = s

(1)
n = `(1). This is

an optimal solution for problem 1 | imst, wj, energy ≤ E(1) |
∑
Cj with

E(1) =
n∑
j=1

wj`
(1)α−1

.

It follows that for E ∈ [E(1),∞) in problem 1 | imst, wj, energy ≤ E |
∑
Cj, the sets J (0)

1

and J (0)
2 characterise an optimal solution (in the same way as J1 and J2 do in Lemma 8.1).

As a consequence such an optimal solution s1, . . . , sn satisfies s1 = . . . = sn =: s. Since
the energy bound is always reached in an optimal solution, we obtain

∑n
j=1wjs

α−1 = E.
As a consequence, we have

s =

(
E∑n
j=1wj

) 1
α−1

and the optimal objective function value C(1)(E) for E ∈ [E(1),∞) is given by

C(1)(E) =
1

s

n∑
j=1

wj =

(∑n
j=1wj

)1+ 1
α−1

E
1

α−1

. (8.17)

Equation (8.17) implies that the trade-off curve is a strictly monotonic decreasing and
convex function for E ∈ [E(1),∞).

Having decreased all execution speeds to `(1), we add all jobs j with `j = `(1) to J (1)
1

and add all other jobs to J (1)
2 . All execution speeds of jobs in set J (1)

1 remain the same

until the end of the algorithm. The execution speeds of jobs in J (1)
2 however are decreased

to the value `(2) := max
j∈J (1)

2
`j. So after the second iteration, we have s

(2)
j = `(2) for

j ∈ J (1)
2 and s

(2)
j = `(1) for j ∈ J (1)

1 . The execution speeds s
(2)
1 , . . . , s

(2)
n are optimal for

problem 1 | imst, wj, energy ≤ E(2) |
∑
Cj with

E(2) :=
∑
j∈J (1)

1

wj`
(1)α−1

+
∑
j∈J (1)

2

wj`
(2)α−1

.

An optimal solution s1, . . . , sn for E ∈ [E(2), E(1)] satisfies sj = `(1) for j ∈ J (1)
1 and all sj

for j ∈ J (1)
2 are identical to a value s̃ such that

E =
∑
j∈J (1)

1

wj`
(1)α−1

+
∑
j∈J (1)

2

wj s̃
α−1.

We obtain

s̃ =

E −∑j∈J (1)
1
wj`

(1)α−1∑
j∈J (1)

2
wj

 1
α−1

.
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As a consequence the optimal objective function value C(2)(E) for E ∈ [E(2), E(1)] is given
by

C(2)(E) =
1

`(1)

∑
j∈J (1)

1

wj +
1

s̃

∑
j∈J (1)

2

wj

=
1

`(1)

∑
j∈J (1)

1

wj +

 ∑
j∈J (1)

2
wj

E −
∑

j∈J (1)
1
wj`(1)α−1

 1
α−1 ∑

j∈J (1)
2

wj. (8.18)

Similar as before, equation (8.18) implies that the trade-off curve is a strictly monotonic
decreasing and convex function for E ∈ [E(2), E(1)]. Note that the trade-off function is
continuous in E(1) since

C(2)(E(1)) =
1

`(1)

∑
j∈J (1)

1

wj +

 ∑
j∈J (1)

2
wj∑n

j=1wj`
(1)α−1 −

∑
j∈J (1)

1
wj`(1)α−1

 1
α−1 ∑

j∈J (1)
2

wj

=
1

`(1)

∑
j∈J (1)

1

wj +

 ∑
j∈J (1)

2
wj

`(1)α−1∑
j∈J (1)

2
wj

 1
α−1 ∑

j∈J (1)
2

wj

=
1

`(1)

n∑
j=1

wj =

(∑n
j=1 wj

)1+ 1
α−1

(∑n
j=1wj`

(1)α−1
) 1
α−1

= C(1)(E(1)).

These arguments can be repeated for each iteration in the loop of Algorithm 1. The
obtained results are summarised in the following theorem.

Theorem 8.4. Consider problem 1 | imst, wj | (energy,
∑
Cj). The domain

I = {E ∈ R | problem 1 | imst, wj, energy ≤ E |
∑

Cj has an optimal solution}

of the trade-off function is a closed, left-bounded and right-unbounded interval. The
trade-off function is a piecewise convex, strictly monotonic decreasing function with k ∈
{0, . . . , n} breakpoints that is continuous in all breakpoints.

8.5 Pm | imst, wj = 1 | (energy,
∑
Cj)

We know from Section 8.2 that once an optimal m-tuple of job sequences
is chosen, problem Pm | imst, wj = 1, energy ≤ E |

∑
Cj becomes a problem

of the form 1 | imst, wj = 1, energy ≤ E |
∑
Cj. For this reason problem

Pm | imst, wj = 1 | (energy,
∑
Cj) can be solved with the same techniques as problem

1 | imst, wj | (energy,
∑
Cj). Corollary 8.1 is therefore an immediate consequence of

Theorem 8.4.

64



Corollary 8.1. Consider problem Pm | imst, wj = 1 | (energy,
∑
Cj). The domain

I = {E ∈ R | problem 1 | imst, wj, energy ≤ E |
∑

Cj has an optimal solution}

of the trade-off function is a closed and right-unbounded interval. The trade-off function is
a piecewise convex, strictly monotonic decreasing function with k ∈ {0, . . . , n} breakpoints
that is continuous in all breakpoints.
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9 Conclusions and Open Problems

In this thesis we considered scheduling problems that arise in cloud computing systems.
We have introduced a new feature of scheduling models, the so-called immediate start
property. This property is natural for cloud computing systems, as a customer usually
expects that the execution of submitted jobs is started immediately.

We also studied various models of the energy consumption which belongs to the most
important objectives in today’s and future cloud computing systems. We highlighted that
there exist different energy models in the literature which can lead to (totally) contrary
optimal scheduling strategies. This suggests that the energy models considered in the
literature are not capable of modelling all aspects of the energy consumption. Taking
this as a motivation, we proposed a new and more complex energy model that is based
on the energy consumption of each core of the processor. Using this energy model, we
studied the scheduling problem of minimising the energy consumption such that a given
bound on the total flow time is not exceeded. For the case of equal jobs, we have shown
that the corresponding trade-off curve is convex and monotonic decreasing. However, the
underlying convex programming formulation of this problem is already quite complex, even
for the case of equal jobs. Keeping in mind that in cloud computing systems the executions
of jobs should be started (almost) immediately, it is necessary that scheduling algorithms
operate as fast as possible. As a consequence the core based energy approach might be
unsuitable, since the higher complexity of the model may make it difficult to obtain fast
scheduling algorithms.

Furthermore we provided a short literature overview of scheduling models that minimise
total flow and energy consumption. We also considered scheduling problems with the
immediate start property and with the goal of minimising the total flow time for a given
amount of available energy. These scheduling models are more likely to meet practical
requirements than the core based energy models from above. We studied both the problem
version of determining all Pareto optimal schedules as well as the problem version of
minimising the total flow such that a given upper limit on the consumed energy is not
exceeded. We present an overview of obtained results in the table below.

problem complexity reference

1 | imst, wj, energy ≤ E |
∑
Cj O(n log n) Section 8.1

Pm | imst, wj = 1, energy ≤ E |
∑
Cj O(n log n) Section 8.2

Pm | imst, wj, energy ≤ E |
∑
Cj open -

1 | imst, wj | (energy,
∑
Cj) O(n log n) Section 8.4

1 | imst, wj | (energy,
∑
Cj) O(n log n) Section 8.5

Probably the most obvious open question that arises from this thesis is to decide
for problem Pm | imst, wj, energy ≤ E |

∑
Cj whether there exists a polynomial time

algorithm or whether the problem is NP-hard. Another fruitful area for further research
results by including the immediate start property into the speed scaling problems studied
in the literature. This includes scheduling problems with other objective functions than
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energy consumption or total flow (reliability or makespan for example). In addition one can
consider scheduling models that include other computational resources than CPU (memory,
disk or network for example). Finally, building virtual machines on a processor has not
been modelled in a mathematical way before to the best of our knowledge and is therefore
another new research direction.
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