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Boundary algebra of a GL2-web 1 Introduction

1 Introduction

The introducing section of this work is mainly based on ideas taken from Zelevin-
sky [2007] and Fomin et al. [2007][§ 1].

This thesis deals with the connection of a specific algebraic structure (bound-
ary algebra) with the geometric and combinatorial properties of triangulations.
Although the term cluster algebra itself is not mentioned below, it is worth giv-
ing a brief and informal description, as it is the underlying topic of all further
considerations.

Definition 1.1 (Cluster algebra). Cluster algebras are constructively defined
commutative rings equipped with a distinguished set of generators (cluster
variables) grouped into overlapping subsets (clusters) of the same finite cardi-
nality.

At this point it is necessary to mention that the unusual feature of cluster algebras
is that both generators and algebraic relations among them are not given from the
outset but are produced by an iterative process of seed mutations. These muta-
tions can also be described by matrices.
Among these algebras one finds coordinate rings of many algebraic varieties that
play a role in representation theory1 or the study of total positivity2 for example.
Since its inception by Fomin and Zelevinsky and especially after their second paper
concerning the finite type classification Fomin and Zelevinsky [2003], the theory of
cluster algebras has found a number of exciting connections and applications. One
of them are quiver representations3, which provide a whole amount of essential
settings such as quivers, potentials or boundary algebras used in this thesis.
A cluster algebra is built around a combinatorial scaffolding formed by exchange
matrices which are related to each other by matrix mutations. A basic observa-
tion by Goncharov4 showed that this kind of structure arises, when one considers
signed adjacency matrices associated with triangulations of an orientated surface
containing vertices at a fixed set of marked points are obsereved. More specifically,
matrix mutations arise as transformations of signed adjacency matrices that cor-
respond to flips of triangulations.
For a (german) introduction to the connection between polygons and cluster alge-
bras, it is recommended to read Baur [2011].

1Barot [2015]
2Fomin [2010]
3Derksen et al. [2010]
4V.V.Fock and Goncharov [2009]

July 2015 TU Graz 3



Boundary algebra of a GL2-web 1 Introduction

Nice results due to cluster algebras (of finite type) and combinatorial and geo-
metric structures are stated for generalized associahedrons (a kind of polytope) in
Chapoton et al. [2002].

The used notion of GLm-webs is a special case of ideal webs which appear in
this unpublished5 work of Goncharov. For a further description and discussion
(online) about ideal webs the reader is recommended to have a look at Williams
[2014].

5Goncharov describes ideal webs at the workshop Integrability and Cluster Algebras: Geom-

etry and Combinatorics in August 2014 held by Institute for Computational and Experimental
Research in Mathematics (ICERM) at Brown University in Rhode Island, United States. A video
of his lecture is available online A.B.Goncharov [2014]

July 2015 TU Graz 4



Boundary algebra of a GL2-web 2 General settings

2 General settings

The first part of the thesis deals with the construction of a boundary algebra,
starting with a regular convex n-gon. We will consider a triangulation of this
polygon and define a GLm-web of this triangulation. By using a structure called
dimer on this web, we can construct a quiver. This leads to a so-called dimer
algebra and finally to a boundary algebra of the GLm-web of the n-gon.

2.1 GL2-web

Already well known is the definition of the triangulation of a n-gon:

Definition 2.1 (triangulation). A triangulation of a regular convex polygon is
a subdivision of the n-gon into triangles, where each pair of segments intersect
in one of the vertices of the polygon at most.

Remark. A triangulation consists of the n− edges of the n-gon and n−3 diagonals
of the polygon. Furthermore it is a maximal collection of non-crossing diagonals.

Remark. A special case of triangulation is the so called fan triangulation, where
each diagonal of the triangulation contains the same vertex of the polygon.

The next step is to define a special kind of partition of each triangle of an
arbitrary triangulation of the polygon:

Definition 2.2 (GLm-web). For a triangle t, we create a web by dividing it
with three times m − 1-lines parallel to the sides of the triangle, where each
two of them intersect on the sides. We do this for every triangle and connect
the parallel lines. The result is called a GLm-web.

Figure 1 is an example of a GLm-web.
This thesis deals with the GL2-web of the polygon that is created by connecting

the midpoints of each triangle of the triangulation of the n-gon.
So from now on let m = 2.

2.2 Dimer

We apply the following procedure to each triangle of the triangulation, cf. Figure 2:
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Boundary algebra of a GL2-web 2 General settings

Figure 1: This is a Gl4 web of the fan triangulation of a pentagon

Figure 2: Construction of a dimer for each triangle of a triangulation.

• Put black points on the midpoints of the original sides of the triangle and
another one inside the inner triangle of the GL2-web.

• Put a white point into every other triangle.

• Two points are connected if they differ in color and the points belong to the
same triangle or their according triangles have least one side in common.

The resulting object is called dimer, Figure 3 shows a dimer (of a GL2-web) of
a fan triangulation of a pentagon.

July 2015 TU Graz 6
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Figure 3: Dimer of a fan triangulation of a pentagon

Remark. Note that the resulting graph is bipartite and splits the original polygon
into several areas.

2.3 Quiver

By using the property that the graph is bipartite we want to define an algebraic
structure on this dimer. This is done by a so called quiver.

Definition 2.3 (Quiver). A quiver is a quadruple Q = (Q0;Q1; s; t), where Q0

is the set of vertices, Q1 is the set of arrows and s; t are two maps Q1 → Q0,
assigning the starting vertex and the terminating vertex to each arrow.
A quiver Q is finite if Q0 and Q1 are finite sets.

The following step of the construction is based on the same idea used by Baur
et al. [2014] for a different type of graph.

The idea is to put a vertex in each area of the dimer that is bounded by the
sides of the original polygon and edges between the white and black points. Then
each adjacent area is connected by an arrow such that the white point of the dimer
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Boundary algebra of a GL2-web 2 General settings

is on the left hand side of the arrow, shown in Figure 4.
We will also use the notion dimer for the associated quiver as the two determine
each other.

Figure 4: The white point of the dimer is on the left hand side of the arrow

The resulting graph is a quiver, in general denoted by Q.
In order to define dimer algebras, we need to introduce the notion of a quiver

with faces. Given a quiver Q, we write Qcyc for the set of oriented cycles in Q (up
to cyclic equivalence).

Definition 2.4 (Quiver with faces). A quiver with faces is a quiver Q =
(Q0;Q1; s; t) together with a set Q2 of faces and a map

∂ : Q2 → Qcyc,

which assigns to each F ∈ Q2 its boundary ∂F ∈ Qcyc.

We will always denote a quiver with faces by the same letter Q, regarded now as
the tuple (Q0;Q1; s; t;Q2). Again a quiver is called finite if Q0,Q1 and Q2 are finite
sets.
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Definition 2.5 (Dimer model with boundary). A (finite, oriented) dimer model
with boundary is given by a finite quiver with faces Q = (Q0;Q1; s; t;Q2)
where Q2 is written as disjoint union Q2 = Q+

2 ∪Q−

2 , satisfying the following
properties:

(a) the quiver Q has no loops, i.e. no 1-cycles, but 2-cycles are allowed,

(b) all arrows in Q1 have face multiplicity 1 (boundary arrows) or 2 (internal
arrows),

(c) each internal arrow lies in a cycle bounding a face in Q+
2 and in a cycle

bounding a face in Q−

2 ,

(d) the incidence graph of Q at each vertex is connected.

Note that Q+
2 and Q−

2 are the set of all cycles which are oriented counterclockwise
and clockwise respectively.

2.4 Dimer algebra and boundary algebra

The upcoming section mainly contains ideas of Baur et al. [2014][p.11-13].

Definition 2.6 (Natural potential W ). Let Q = (Q0, Q1, Q2) be the quiver
with faces, which leads to a dimer model with boundary. Then there exists a
natural potential W by the usual formula

W := WQ :=
∑

γ∈Q+

2

γ −
∑

γ∈Q−

2

γ

defined up to cyclic equivalence.

Remark (Differentiation of W ). Let ∂W be the derivative with respect to all
internal arrows α in Q. That means, that if α is part of the positive cycle q and
the negative cycle p as shown in Figure 5 the equation

∂W

∂α
: p = q

⇔ ∂α(W ) = 0

⇔ p
α
∼= q
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Figure 5: α is part of a positive cylce q and a negative cycle p.

holds. These relations are so-called F-term relations. In this thesis we use the last
notation for relations obtained by the natural potential W (with respect to the
corresponding arrow).

From that we receive a dimer algebra which is defined as given:

Definition 2.7 (Dimer algebra). Let Q = (Q0, Q1, Q2) be a dimer model with
boundary and let W and ∂W be defined as above. Then the dimer algebra
ΛQ is defined as

ΛQ := ❈Q/∂W .

Elements of this algebra are linear combinations of the paths of the quiver.
The multiplicative operation in this algebra is composition of paths.

As usual, we write e to denote an idempotent of an algebra and in the path
algebra ❈Q, let ei be the trivial path of length zero at vertex i. It is an idempotent
of ❈Q. Define

eb := e1 + . . .+ et

July 2015 TU Graz 10
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where 1, . . . , t are the boundary vertices of the quiver.

Remark. As part of the main result (Theorem 3.1) we will show that in the case
of the quiver of the GL2-web of an n-gon, t = 2n, because Q has 2n points on its
boundary.

Definition 2.8 (Boundary algebra). The boundary algebra of a dimer model
Q with boundary is the spherical subalgebra consisting of linear combinations
of paths which have starting and terminating points on the boundary of the
quiver (i.e. one of the idempotent elements e1, . . . et):

B := ebΛQeb,

where ΛQ is the dimer algebra of Q.

Remark. A dimer algebra is a special case of an algebra defined by a quiver Q with
commutation relations, that is a quotient ❈Q/I, where the ideal I is generated
by {pi− qi : i ∈ I} for paths pi and qi with the same start and end points for each
i ∈ I. Any of those algebras has a couple of elementary properties, in detail:

(a) every path in Q gives a non-zero element of ❈Q/I.

This is an immediate corollary of a stronger property that builds on the observation
that commutation relations define a natural equivalence relation ∼ on the set of
paths in Q, generated by requiring that p ∼ q if p has a sub-path pi and q is
obtained from p by replacing pi with qi, for some i ∈ I. Then, secondly,

(b) the equivalence classes of ∼ form a basis of ❈Q/I.

Note that any equivalence class p of paths does determine a well-defined element
p + I of ❈Q/I and these elements evidently span ❈Q/I. To see that they are
independent, observe that there is a well-defined algebra ❈(Q/ ∼) with base given
by the set of equivalence classes of ∼, multiplication given by concatenation where
possible and zero otherwise, linearly extended. The natural map

π : ❈Q → ❈(Q/ ∼) : p 7→ p

has each pi − qi, for i ∈ I, in its kernel and therefore induces a map π : ❈Q/I →
❈(Q/ ∼), which is the inverse map p 7→ p+ I.

Remark. It is obvious that the boundary algebra has a base containing infinitely
many elements, because a path composed with a cycle gives a new element. This
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procedure can be repeated an arbitrary number of times. The important observa-
tion is, that every element can be described by 3n-elements as claimed in Theorem
3.1.

In general 2-cycles (with non-boundary arrows) are not of interest. They will
occur because of the definitions of the dimer and the quiver. They can be omitted
by using the relations obtained by the natural potential W :
Let α and β be a 2-cycle between the vertices k and l as shown in Figure 6.
Furthermore, let p and q be those paths between k and j and j and k respectively,
that exist because of the structure of our dimer algebra. By using the relations

Figure 6: 2-cycle α and β in the dimer algebra.

obtained by the natural potential W we get

α
β
∼= q

β
∼= p

β
α
∼= p

α
∼= q

and hence α and β can be omitted.
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2.5 First result

Definition 2.9 (chordless cycle). A chordless cycle of a quiver Q is a cycle such
that the full subquiver on its vertices is also a cycle.

Proposition 2.10. Let Q be the quiver of the GL2-web of a triangulation. Let k be
an arbitrary vertex of Q. Then, up to ∂W , γ1 = γ2 for any two chordless cycles
γ1 , γ2 starting at k.

Proof. First note that Q has 2n vertices. We label them anticlockwise so that the
vertices of Q near the vertices of the polygon have odd numbers. We will use the
special structure of the reduced quiver of the GL2-web of a triangulation. This
structure is stated at Remark 4.2 in case of the fan triangulation and is also true
for any triangulation, as Section 5.1 shows that a flip does not change the number
of incoming or outgoing arrows for any vertex.
So every odd vertex 2k+1 is starting and terminating point of a unique chordless
cycle u2k+1. The remaining vertices shall be considered in two different cases
because the number of occurring cycles differs between inner vertices and boundary
vertices.

(1) Let ik be an inner vertex. The relevant part of the quiver (containing all
chordless cycles at ik) is shown in Figure 7. The outgoing arrows α1,α2 and
the incoming arrows β1, β2 are part of the chordless cycles γ1, . . . , γ4,

γ1 = α1p1β1

γ2 = α2p2β1

γ3 = α2p3β2

γ4 = α1p4β2

where p1, . . . , p4 are paths of at least length 1.
Using the relation obtained by the natural potential W for the arrows α1,α2

and β1 yields

γ1 = α1p1β1

α1∼= α1p4β2 = γ4

γ1 = α1p1β1

β1

∼= α2p2β1 = γ2

γ2 = α2p2β1

α2∼= α2p3β2 = γ3

and hence to

γ1 ∼= γ2 ∼= γ3 ∼= γ4

July 2015 TU Graz 13
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Figure 7: Part of the quiver containing ik and all chordless cycles at ik.

which had to be shown. These (equivalent) short cycles will be denoted by
uik .

(2) Contrary to the first case, one incoming and one outgoing arrow of the even
boundary vertex is on the boundary, so one of the cycles (e.g. γ4) does not
exist. The remaining three cycles are equivalent by the same argument as
above and the chordless cycles at 2k are denoted by u2k.

By Proposition 2.10, all chordless cycles at a given vertex are equal and hence
it makes sense to refer to any one of them as the cycle at this vertex.

Definition 2.11 (Short cycle u). The chordless cycle uj at vertex j (j =
1, . . . , 2n or j = i1, . . . , in−3 respectively) is called short cycle at vertex j.

July 2015 TU Graz 14
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Remark (Notation in remaining sections). The informal notation use the natu-
ral potential W instead of the exact description use the relations obtained by the
natural potential W will be used to enhance the readability of this thesis.

July 2015 TU Graz 15



Boundary algebra of a GL2-web 3 Main result

3 Main result

This section deals with the description of the boundary algebra for arbitrary large
n, starting with any triangulation of the n-gon. The later sections will deal with
several steps that are necessary to prove the claimed general properties of the al-
gebra.

Consider the following quiver Γ(n) on 2n vertices 1, 2, . . . , 2n and 3n arrows

xi : i− 1 7→ i for i = 1, . . . , 2n
z2i : 2i 7→ 2i− 2 for i = 1, . . . , n

where we reduce mod 2n, shown in Figure 8.

Figure 8: Part of B of a n-gon.

For i = 1, . . . , n let

u2i := x2i+1x2i+2z2i+2

u2k+1 = x2k+2z2k+2x2k+1

be the chordless short cycles at the boundary (according to Definition 2.11).
Recall that B = ebΛQeb is the boundary algebra obtained from the quiver of a
GL2-web of a triangulation of an n-gon, where eb = e1 + . . .+ e2n denotes the sum
of all idempotents.

July 2015 TU Graz 16



Boundary algebra of a GL2-web 3 Main result

Theorem 3.1 (Main Theorem). The quiver of B is isomorphic to Γ(n) subject
to the following relations (writing compositions of paths from left to right),
for i = 1, . . . , n:

x2i+1x2i+2z2i+2 = z2ix2i−1x2i

un−3
2i x2i+1x2i+2 = z2iz2i−2 . . . z2i+4

︸ ︷︷ ︸

n−1 factors

.

Furthermore the element

t :=
n∑

i=1

x2i−1x2iz2i +
n∑

i=1

x2iz2ix2i−1

is central.

Remark. This notation will be used for comfort:

x2z = zx2 (for every even vertex),

where x2 is an informal notation of the concatenation of 2 successive arrows x.
Sometimes the informal notation u for a short cycle u2k is used.

July 2015 TU Graz 17
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4 Boundary algebra of a fan triangulation

The goal of this chapter is to show, that the fan triangulation for every n-gon leads
to the same boundary algebra B. To get an idea of the generial case, we start with
the quadrilateral and the pentagon first.

4.1 Boundary algebra for small n

For the 2 smallest non-trivial n-gons (n = 4, 5) we will repeat similar steps within
this section: Starting with the GL2-web of the fan triangulation (where without
loss of generality each diagonal contains vertex 1), the dimer is constructed and
reduced to get rid of the existing 2-cycles. After drawing the associated quiver,
the boundary algebra is obtained and it can be seen that indeed it has the claimed
structure.

Remark. As before, we will often use the word dimer for the associated quiver,
too.

4.1.1 Quadrilateral

For this case every single step is shown, especially the act of reducing. Start with
the dimer of the quadrilateral following the construction described above (Figure
9).

Figure 9: Dimer of a fan triangulation of a quadrilateral

Now the quiver is obtained by putting a vertex in each region and connecting
adjacent regions by an arrow. Through this 2-cycles occur, if two regions share
more than one (in our case two) edges of the dimer (see the vertices in circles in
the figure below). The original dimer can be reduced by consolidating the points
which are marked in Figure 10. This reducing step can be done for every n-gon,
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as often as two regions share more than one edge of the dimer. After reducing,
the quiver Q in Figure 11 remains and the boundary algebra ebΛQeb has to be
described in detail. The boundary vertices are numbered from 1 up to 8 and the
single internal vertex is marked by i1. The arrows x1, . . . x8 and z4, z1 are already
those, which are claimed in the main theorem in the previous section. Generally,
z2i is defined as the path of minimal length from vertex 2i to vertex 2i− 2, so the
remaining two paths z6 and z2 are defined to be the concatenation

z6 = γδ

z2 = αβ

writing paths from left to right.

Figure 10: Original quiver of the quadrilateral

What remains to be shown, concerning the structure of the algebra, is that the
elements x and z give a basis of the algebra. This means, that every element of the
algebra (linear combinations of paths from any vertex 1, . . . , 8 to another vertex
on the boundary) can be described as a combination of concatenations of these
elements. Table 1 shows this feature for several paths with starting vertex 1. In
analogy one can show that every path of the boundary algebra is a concatenation
of these twelve arrows.

Next, the relations

un−3
2i x2i+1x2i+2 = z2iz2i−2 . . . z2i+4

︸ ︷︷ ︸

n−1 factors
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Figure 11: Reduced and labelled quiver of the quadrilateral

are proved. For this the corresponding paths from 8 to 2 are considered first.
Secondly the paths from 6 to 8. The relations for the paths 4 to 6 and 2 to 4 can
be shown analogously.
We consider the path z8z6z4 from 8 to 2:

z8 γδ
︸︷︷︸

z6

z4.

Now, using the relation defined by β for the path z8γ:

z8γ
β
∼= x1x2α

is obtained and hence

z8 γδ
︸︷︷︸

z6

z4
β
∼= x1x2αδz4

and by using the relation for α

δz4
α
∼= βx1x2,

July 2015 TU Graz 20



Boundary algebra of a GL2-web 4 Boundary algebra of a fan triangulation

starting vertex sink vertex path by basis elements
1 2 x2

1 3 x2x3

1 4 x2x3x4 or equivalently x2z2z8z6
1 5 x2x3x4x5 or eq. x2z2z8z6x5

1 6 x2x3x4x5x6 or eq. x2z2z8
1 7 x2x3x4x5x6x7 or eq. x2z2z8x7

1 8 x2x3x4x5x6x7x8 or eq. x2z2

Table 1: Paths from 1 to every other vertex.

and this equation means

z8 γδ
︸︷︷︸

z6

z4 = x1x2αβ
︸ ︷︷ ︸

u8

x1x2 = u8x1x2

which proves the claim.
Similarly, we consider the path z6z4z2 from 6 to 8 with

γδ
︸︷︷︸

z6

z4 αβ
︸︷︷︸

z2

δ
∼= γδx5x6

︸ ︷︷ ︸

u5

γβ

γ
∼= γβz8γβ
z8∼= x7x8z8

︸ ︷︷ ︸

u6

x7x8.

So the relation (here in a loose notation)

z3 = ux2

holds for the quadrilateral case.

4.1.2 Pentagon

Starting with the quiver that can be obtained from the dimer of the fan trian-
gulation of the pentagon and splitting the reduction step into 2 parts, illustrates
the idea of the proof for the general case: The first step of reducing the dimer
is shown in Figure 13, because of the 2-cycles which occur between the points of
the marked parts on the left hand side of the pentagon. Therefore it is possible
to reduce the dimer whenever two faces have more than one edge (defined by the
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black and white points of the dimer) in common by replacing every subgraph of
the form shown on left hand side in Figure 12 to the form shown on the right hand
side.

Figure 12: Replace the subgraph on the left hand side to the subgraph of the right
hand side. (The number of edges incident with the white points may vary).

We have already shown how this follows from the relations of the potential W
(see Section 2.4, in particular, Figure 6) . Note that this is the same reduction step,
that can be conducted for the quadrilateral (i.e.n− 1-gon) as well. The resulting
dimer can be reduced a second time (see Figure 14), because the faces above and
under the marked points both have two edges in common. (This step didn’t occur
for the quadrilateral, because it only depends on the new triangle (1, 4, 5) (i.e.
(1, n− 1, n)) of the triangulation of the pentagon.) Hence one obtains the quiver
shown in Figure 15. Using the notation of Figure 15, we now define z8, z6, z2 as
follows:

β1β2 =: z8, (a path from 8 to 6 via i2)

γ1γ2 =: z6, (a path from 6 to 4 via i1)

α1α2α3 =: z2, (a path from 2 to 10 passing through i1, i2)

and so, z2k is a generator of the paths from 2k to 2k − 2 for k ∈ [1, 5], reducing
mod 10 if necessary.

Consider the path z10z8z6z4 from 10 to 2. By the natural potential W it can
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Figure 13: First reduction step of pentagon is indicated.

Figure 14: Second step of reduction is indicated.

be seen that

γ2z4
α1∼= α2α3x1x2

β2γ1
α2∼= α3x1x2α1

z10β1

α3∼= x1x2α1α2
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Figure 15: Labeled quiver of the pentagon.

and thus we obtain

z10z8z6z4 ∼= x1x2α1α2α3x1x2α1α2α3
︸ ︷︷ ︸

u2
10

x1x2

and in informal notation

z4 = u2x2

as claimed.
For the path from 8 to 2 it has to be shown that the equation also holds. The
equations for the remaining paths 2k to 2k + 2 can be shown analogously.

As shown in Proposition 2.10, all chordless cycles starting at vertex k are
equivalent up to ∂W .

α2β2γ1 ∼= γ2z4α1 = ui1

β2γ1α2
∼= α3z10β1 = ui2 .
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Consider the path z8z6z4z2 from 8 to 10

z8z6z4z2 = β1β2γ1 γ2z4α1
︸ ︷︷ ︸

ui1

α2α3

Using the relations of the natural potential W :

z10β1

α3∼= x1x2α1α2

α2α3x1x2

α1∼= γ2z4

z4α1

γ2
∼= x5x6γ1

γ2x5x6

γ1
∼= α2β2

we obtain

z8z6z4z2 ∼= β1β2γ1ui1α2α3

∼= β1 u2
i2
α3.

Since chordless cycles can be shifted along arrows they contain, we have

β1 u2
i2
α3 = u2

8β1α3

and furthermore using the relation

β1α3

z10∼= x9x10

for the path z10 yields

∼= β1 u2
i2
α3 = u2

8x9x10 = u2x2

both in formal and informal notation.
The same idea can be used to show this equality for the other paths mentioned
above.

Remark. ?? For an arrow γ = i → j, the relation

uiγ = γuj

holds.
We use the chordless cycle ui = γp where p is an appropiate path. Hence

uiγ = γpγ = γ(pγ) = γuj

as pγ = uj is a chordless cycle at vertex j.
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4.2 Quiver of a fan triangulation

Before describing the boundary algebra, the structure of the quiver of the fan
triangulation of an n-gon for arbitrary n has to be determined.

Proposition 4.1. Let QF be the reduced dimer model of a fan triangulation of an
n-gon, n ≥ 3. Then QF has the following form:
It consists of 2n vertices on the boundary, labelled anticlockwise by 1, . . . , 2n, and
n− 3 internal vertices labelled i1, . . . , in−3.
Furthermore it has 2n+ 2 arrows between the boundary vertices

xk : k − 1 → k(taking endpoints mod 2n)

y4 : 4 → 2

y2n : 2n → 2n− 2,

and the following internal arrows (where at least the source or the sink is an
internal vertex):

α0 : 2 → i1 αn−3 : in−3 → 2n

αk : ik → ik+1 1 ≤ k < n− 3

βk−1 : ik → 2k + 2 1 ≤ k ≤ n− 3

γk : 2k + 4 → ik 1 ≤ k ≤ n− 3

Proof. The proof is done by induction. We consider the fan where all k diagonals
meet at vertex 1. The quivers of the quadrilateral and pentagon (as shown above)
have the claimed structure.
Let the described structure be true for n fixed and consider the dimer of the fan
triangulation of the n+1-gon. Observe that the same reduction steps can be done
for the dimer of the n+1-gon as for the n-gon, because the only difference between
the two triangulations is the additional triangle between 1, n and n + 1 , which
does not change the dimer of the former n-gon. Figure 16 only shows the relevant
part of the reduced dimer, i.e. the new part obtained from increasing the number
of vertices of the polygon.
The white point W1 exists after reduction for the n-gon.
As the indicated points in Figure 16 show, it is possible to reduce the new web,
because the two faces I and II lead to 2-cycles (as they share two sides with the
neighbored region), using the relations which follows by the relations of the natural
potential W (see Figure 12 . This leads to the reduced dimer shown in Figure 17,
where the new quiver (according to the construction rules) is drawn, too. It has
the claimed structure.
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Figure 16: New part of the dimer of the n+ 1-gon.

Remark. Note that the quiver has a nice structure: Every internal point has exactly
two incoming and two outgoing arrows, and there is always an oriented triangle
αkβkγk for 1 ≤ k < n−4 (see Figure 18). This observation is useful for proving the
claimed properties of the boundary algebra. Furthermore the boundary vertices
with even numbers have two incoming and two outgoing arrows too, whereas the
boundary vertices with odd numbers only have one incoming and one outgoing
arrow, xk and xk+1 respectively.

4.3 Boundary algebra of a fan triangulation

Knowing the structure of the quiver of a fan triangulation in detail, it‘s possible
to describe the boundary algebra of the n-gon.
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Figure 17: Part of reduced dimer and quiver of n+ 1-gon.

Definition 4.2. We define paths z2, . . . , z2n as follows:

z2k := γk−2βk−3 for k = 3, . . . , n− 1 (1)

z4 := y4 (2)

z2 := α0α1 . . . αn−3 (3)

z2n := y2n. (4)

We show that every path between two boundary vertices of QF can be expressed
as a composition of xi’s and z2k’s.

Lemma 4.3. The xi, i = 1, . . . , 2n together with the z2k, k = 1, . . . , n as defined in
4.2 generate the boundary algebra of the dimer of the fan triangulation.
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Proof. It is trivial that all xi for i = 1, . . . , 2n and z4 , z2n as defined in (2) and
(4) respectively are generators of the boundary algebras, as they are single arrows.
Moreover there are no arrows between 2k and 2k − 2 for k = 3, . . . , n − 1 (see
Proposition 4.1) and so a path between these two boundary vertices must contain
of the composition of at least two arcs, as definied in (3).
It remains to show that z2 as defined in (1), is a generator for paths from 2 to
2n. For this, consider the path from 2 to 2n. Let δ1 be a generator in the dimer
algebra for the paths from 2 to ik−1 and δ2 be a generator in the dimer algebra for
the paths from ik+1 to 2n.
We claim that the path

Figure 18: Extract of the path algebra of the n-gon.

δ1αk−1αkδ2

is a generator of the paths from 2 to 2n.
If αk−1 was not part of the generator, then the only possibility would be that the
arrow from ik−1 to 2k is part of the generator as this is the only other outgoing
arrow from ik−1. Now there exist two different cases:
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1.) The arrow from 2k to 2k + 1 is part of the generator.
Then the generator contains the arrow from 2k + 1 to 2k + 2 and by the
relation for γk−1 obtained from the natural potential W the equivalence

βk−1x2k+1x2k+2

γk∼= αk−1βk

and hence αk−1 is part of the path from 2 to 2n.

2.) The path from 2k to 2k + 1 is not part of the generator.
The only possibility is, that we have a path which ends in ik−1 again and
hence contains a cycle. This is a contradiction to the required property for
a generator.

So αk−1 is part of a generator of the path from 2 to 2n.
Analogous ideas applied for αk guaranty that it is part of a generator and hence
z2 as defined in (1) is a generator.

Now it is clear that the boundary algebra is generated as claimed, because every
path can be described by the generators xi and zk for i = 1, . . . 2n and k = 1, . . . , n
and linear combination of these generators.

Before the main result of this section is stated a notation that has been used
for the description of the boundary algebra shall be recalled:

Remark. The cycle u2k+1 for k ∈ [1, n− 1] is defined as follows

u2k+1 = x2k+2z2k+2x2k+1

and additionally

u1 = x2z2x2n

u2k = x2k+1x2k+2z2k+2 = z2kx2k−1x2k

where the last equation holds because of Proposition 2.10.

The last (and main) step of this section is to show, that the relations between
the arrows, stated in the previous section are fulfilled for the boundary algebra
of the fan triangulation of a polygon. Let Λ be the dimer algebra of QF and let
eb =

∑2n
k=1 eb.

Proposition 4.4. The boundary algebra ebΛeb satisfies the following relations:

I.) un−3
2k x2k+1x2k+2 = z2kz2k−2 . . . z2k+4 for k = 1, . . . , n

II.) x2k+1x2k+2z2k+2 = z2kx2k−1x2k.
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Proof. Show the first kind of relations by splitting it into 2 cases:

1.) The relation holds for the case k = n.

2.) The relation holds for k ∈ [1, n− 1].

Case 1.): We consider

z2nz2n−2 . . . z6z4.

Using the natural potential for α0, we have

β0z4
α0∼= α1α2 . . . αn−3x1x2.

Using the relations for αi, i = 1, . . . , n − 3 on βiγi, resp. to z2nγn−3, we obtain a
path containing repeated cycles,

x1x2(α0 . . . αn−3)x1x2

and since the cycle u2 = α0 . . . αn−3x1x2 can be shifted along x1x2, the last path
is equal to

un−3
2n x1x2.

Case 2.):
Figure 19 shows the considered path. Again, consider the path z2k . . . z2z2n . . . z2k+4.

Similarly to the argumentation in the first case, using the relation obtained
from the natural potential W for the path αn−3

z2nγn−3
∼= x1x2α0α1 . . . αn−4

and then recursively for the paths αn−4 up to αk (using that we can shift cycles
along paths) yields

z2k . . . z2k+4

α0∼= z2k . . . z2u
n−k−3
2 α0α1 . . . αk−1βk−1.

Iterating this, we get the equivalence

z2kz2k−2 . . . z4z2z2n . . . z2k+4
∼= γk−2u

(n−k−3)+(k−1)
ik−2

αk−2αk−1βk−1
∼= γk−2u

n−4
ik−2

αk−2αk−1βk−1.

Replacing γk−2αk−2 in z2k . . . z2k+4 thus produces

u
n−4x2k+1x2k+2

2k γk−1αk−1βk−1.

The last three arrows in this path form u2k+2 and we can shift it to the front of
the path (which is then equivalent to u2k) to get the desired result

un−3
2k x2k+1x2k+2.

Thus the main result for the GL2-web of a fan triangulation for arbitrary large
n has been proven .
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Figure 19: Path z2k . . . z2k+4 from 2k to 2k + 2.
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5 Flips in boundary algebras

This section starts with the definition of a diagonal flip of a triangulation and then
shows, that such a flip does not change the structure of the boundary algebra itself.
As already shown the boundary algebra of the fan triangulation has the structure
given in Theorem 3.1. Together with the main result of this section (Theorem 5.2),
this proves that all boundary algebras arising from GL2-webs of triangulations of
an n-gon are isomorphic to each other.

Definition 5.1 (Diagonal flip of triangulation.). For a triangulation a diagonal
flip is defined as follows. Let (l, j) be a diagonal of the triangulation of the
n-gon. Then two triangles l,j,k and l,j,i belong to the triangulation. A flip,
as shown in Figure 20,

Figure 20: Diagonal flip of a triangulation.

is the removal of the diagonal (l, j) replacing it by the diagonal (i, k).

July 2015 TU Graz 33



Boundary algebra of a GL2-web 5 Flips in boundary algebras

5.1 Quadrilateral case

There is one unique possibility for a diagonal flip of the quadrilateral. Figure 11
has already shown the quiver obtained by the fan triangulation which contains the
diagonal (1, 3). On the other hand, the quiver of the GL2-web of the triangulation
containing the diagonal (2, 4) is shown in Figure 21. Set

Figure 21: Flip changes the quiver.

z′8 := β′γ′

z′4 := δ′α′.

Then z′8z
′

6z
′

4 is a path from 8 to 2.
Using the relations obtained by the natural potential W and the equivalence

of cyles shown in Proposition 2.10, we get

u6 = z′6δ
′γ′ = x′

7x
′

8β
′γ′

β′α′

z′
2∼= x′

1x
′

2

and finally obtain

z′8z
′

6z
′

4 = u8x
′

1x
′

2.
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Similarly we get the relation z3 = ux2 for all even vertices. So there is a one-to-one
map z2k 7→ z′2k and (obviously) xk 7→ x′

k from the associated quiver of the original
fan triangulation to the quiver of the flipped quadrilateral. This idea can be used
for the general case as well.

5.2 General flip

Note that a diagonal flip is always a local operation that only changes the structure
around vertices corresponding to the edges of the quadrilateral.

Theorem 5.2. Let Q be the quiver of the GL2-web of the fan triangulation of an
n-gon, let Q′ be the quiver of the GL2-web of an arbitrary triangulation of the
n-gon, with ΛQ and ΛQ′ the corresponding dimer algebras and eb respectively
eb′ the sum of the boundary idempotents for Q and for Q′ respectively. Then
there is an isomorphism

ebΛeb ∼= eb′ΛQ′eb′ .

induced by

xk 7→ x′

k for k ∈ [1, 2n] (5)

z2k 7→ z′2i for k ∈ [1, n]. (6)

Remark. At this point several trivial (and useful) statements needed in the proof
of Theorem 5.2 are stated.

1.) If the basis elements xk, z2k of ebΛeb are in one to one correspondence to the
basis elements x′

k,z
′

2k in eb′ΛQ′eb′ , then the path algebras are isomorphic.

2.) The pleasant feature of a diagonal flip is, that only the local transformation
of the flip has to be considered, because it is a local operation on the n-gon
and hence it does not change the rest of the triangulation and hence of the
associated quiver.

3.) A well known result in combinatorics is, that every triangulation of a polygon
can be reached from any starting triangulation by application of finitely many
flips.

Proof. The proof will be done by induction. Starting with the boundary algebra
obtained by the quiver of the GL2-web of the fan triangulation of the polygon,
which is already known (see Lemma 4.3) we will show as induction step, that
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we can determine the generators of the boundary algebra for the triangulation
obtained after flipping one diagonal and prove the statement for this situation.
The previous section already showed how a diagonal flip changes the quiver of the
quadrilateral.
Let QF be the quiver of the GL2-web of the fan triangulation of the n-gon and
ebΛQF

eb be its boundary algebra. By Lemma 4.3 it is known that the xi, i =
1, . . . , 2n together with the z2k, k = 1, . . . , n generate the boundary algebra of the
dimer of the fan triangulation.
As induction basis, we have to show that there is a isomorphism as claimed if a
flip of a diagonal of the fan triangulation is performed.

First notice that x′

k := xk remain basis elements in the flipped boundary al-
gebra, because a diagonal flip does not change the boundary of the quiver of the
triangulation. Therefore the first part of the isomorphism, stated in (5) holds.
Thus the only thing left to be shown is that the second part of the claimed iso-
morphism (6) for the z2k is true too.
Without loss of generality consider the flip of the quadrilateral 1,2i+1, 2j+1 and
2k + 1 and the path z2 (which is the path from 2 to 2n).

Remark.

• Of course, in case of a fan triangulation for every diagonal the equations
2i + 1 = 2j − 1 ↔ i = j − 1 and 2k + 1 = 2j + 3 ↔ k = j + 1 hold. As we
want to use this argument in the induction step (general case of a flip) too,
we will use the general notation of a flip right at the beginning.

• If we are able to show that our definition of z′2 is a generator for paths from
2 to 2n in the new boundary algebra, then the same argument works for any
other path containing an arrow of the quadrilateral (1, 2i+ 1, 2j + 1, 2k+ 1)
too as the proof is independent of renaming the vertices.

Figure 22 shows how a flip changes the structure of the quiver. The path from
2 to 2n on the left hand side (which is of QF ) is generated by

z2 := γ1αβγ2.

as seen in previous chapter.
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Figure 22: Flip of diagonal (1, 2j+1) to (2i+1, 2k+1) changes the dimer algebra.

So the basis element z2 in ebΛQF
eb is γ1αβγ2 .

Now consider the the boundary algebra, which is obtained by the quiver Q′ of the
GL2-web of the triangulation where the diagonal (1, 2j + 1) has been flipped to
(2i + 1, 2k + 1) (on the right hand side of figure 22). The new basis elements are
x′

k = xk and z′2k where z′2k is a generator for paths from 2k to 2k − 2.
Claim:

γ1γ
′γ2 =: z′2. (7)

Proof of the Claim. Because the flip does not change the rest of the arrows (apart
from the ones inside of the quadrilateral (1, 2i + 1, 2j + 1, 2k + 1)), γ1 and γ2 are
still used in the generator for paths from 2 to 2n. We will proof the claim by
contradiction.

The generator for paths from 2 to 2n must contain an arrow of the newly
arising quadrilateral, otherwise, the path would already have existed in the original
triangulation, a contradiction to γ1αβγ2 being a generator for paths from 2 to
2n for the original algebra. Note that γ′ is an arrow of the new quadrilateral
contained in the generator for paths from 2 to 2n, if there was another arrow of
this quadrilateral used in the generator, it would have to be α′ or β′. Consider
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first the case where β′ is used. If the path of the generator continued using α′, it
would contain a cycle (γ′β′α′), a contradiction to it being a generator. So assume
the path continues with β′′: as it would have to end in γ2, it would still contain a
cycle (starting with β′).
So assume α′ is used in the generator, if the predecessor of α′ is β′, the path
contains the cycle γ′β′α′, a contradiction. If the predecessor of α′ is α′′, we use the
fact that the path start with γ1 and hence contains a cycle ending with α′ (before
using γ′), again a contradiction.

So if γ′ is contained in the generator, no other arrow in the new quadrilateral
is used.

Assume now that γ′ is not used in the generator. Then at least one of the
arrows α′′, γ′′, β′′, α′ or β′ have to be used in the generator.

β′. This is the main case and the other ones can be reduced to it. If β′ were part
of the generator from 2 to 2n, then the path would have to return to the
vertex from where γ2 starts. Thus there would bea cycle u,a contradiction
to being a generator.

α′′. If α′′ were part of the generator, then by using the natural potential W for
α′, this part of the path would be equivalent to γ′β′. This case has already
been discussed.

α′. If α′ were part of the generator a cycle would appear in the path, because
the heads of γ1 and of α′ are the same.

β′′. If β′′ were part of the generator, then either α′′ or β′ would have to be part
of the generator too, which both cannot be the case.

γ′′. Finally, if γ′′ were part of the generator, the path containing γ1, γ
′′ and γ2

must contain either a cycle containing γ′′, or another arrow of the quadrilat-
eral, as the requirement on the path (starting with γ1 and ending up with
γ2) gives no further posibility. Both cases are a contradiction to being a
generator.

Hence we have seen that every path from 2 to 2n factors through z′2 = γ1γ
′γ2.

The same argument can be applied for every z′2k by renaming the quadrilat-
eral.
Each generator, which does not contain an arrow of the quiver of the flipped
quadrilateral, remains, z′2k = z2k.

It is clear that the relations (x′)2z′ = z′(x′)2 hold in B(µQF ) by Proposition
2.11.
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It is straightforward to check the relations

(u′)n−3(x′)2 = (z′)n−1.

There are basically two possibilities:

(i) A product of the form (z′)n−1 contains all arrows of the new quadrilateral
exactly once.
In this case, the product (z′)n−1 of the corresponding z’s also contain all six
arrows of the (original) quadrilateral. These six arrows amount to

(u′)2 = u2.

All other arrows involved in (z)n−1 remain unchanged in (z′)n−1.
Hence the two paths are both equal to x2 = (x′)2.

(ii) A product of the form (z′)n−1 contains 4 (or 5 arrows) of the new quadrilat-
eral, e.g. γ′β′β′′γ′′ (e.g. β′β′′γ′′α′′α’).
The corresponding product zn−1 then contains 5 (or 4) arrows of the original
quadrilateral e.g. α1β1β3β2α2 (e.g. β3β2α2α3). All other arrows appear in
both (z′)n−1 and in zn−1.
Consider the case with 5 arrows in the new quadrilateral, in notation of
Figure 22 we have

β′β′′γ′′α′′α′ ∼= β′uα′ ∼= uβ′α′ ∼= uγ2x1x2γ1

and in B(QF ), we have

β2α2α3
∼= γ2x1x2γ1α1α2α3

∼= uγ1x1x2γ1.

Hence we have shown the result for a flip of the quiver of the fan triangulation
QF :

B(QF ) ∼= B(µQF ),

where µ denotes the flip of a arbitrary diagonal.

We will now do an induction on the number of diagonal flips t: For the induction
step, we use that we can reach any triangulation of an n-gon by a finite number
of diagonal flips. So let Q be the quiver of an arbitrary triangulation, and

Q = µtµt−1 . . . µ1QF ,
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where µ1, . . . , µt are t flips of diagonals starting with the quiver of the fan trian-
gulation QF .

By induction hypothesis, we know that

B(µt−1 . . . µ1QF ) ∼= B(QF ),

and it remains to show that

B(µtµt−1 . . . µ1QF ) ∼= B(µt−1 . . . µ1QF ).

We use Figure 22 again, as it also works in general case.
Every element of

B′′ := B(µtµt−1 . . . µ1QF )

containing the subpaths γ1 and γ2 can be written as an element of

B′ := B(µt−1 . . . µ1QF )

analogously as in the induction basis, by replacing α1β1 with γ′. It remains to
consider the effect of flips on elements of of B′ containing γ3. Assume we have
such a path starting at 2 that is a generator for B′. It may pass through α1α2 i.e.
be of the form γ1α1α2γ3. But then we can use the relation w.r.t. α3, to see that
this is equivalent to a path not involving any arrows of the quadrilateral. Hence
mutating the diagonal t does not change this path. An analogous argument works
for paths involving the arrow outside the quadrilateral predecessing β3. So we get
an isomorphism on the level of paths between B′ and B′′.

The relations hold, as described in the case of B(µQF )-
Furthermore, the relations

I.) (un−3
2n+1)

′(x2)′ = (zn−1)′

II.) (x2)′z′ = z′x′x′

hold for e′bΛQ′e′b by the same arguments as in the induction step.

Corollary 5.3. Consider the boundary algebra of Γ(n) subject to the relations from
Theorem 3.1 (i.e. B). Then the element t

t :=
n∑

i=1

x2i−1x2iz2i +
n∑

i=1

x2iz2ix2i−1

is a central element of this algebra.

Proof. The element t is a sum of cycles. The element t is the sum of all chordless
cycles for all vertices and hence commutes with every element of Γ(n)..

So, as already shown, the structure of the boundary algebra of a quiver QF ,
we receive the general result stated in Theorem 3.1 by using Theorem 5.2.

July 2015 TU Graz 40



Boundary algebra of a GL2-web 6 Conclusions

6 Conclusions

Starting with the GL2-web of the fan triangulation of a regular polygon and using
geometric ideas and the structure of quivers, the dimer D leads to a finite quiver
Q and from this a dimer algebra ΛQ = kQ/∂W and finally the boundary algebra B
was obtained.
In the thesis, this construction was first realized for the quadrilateral and the
pentagon to give an idea about the structure of the boundary algebra. The main
result is the description of the boundary algebra, cf. Theorem 3.1. The strategy
for proving this was to first establish the result for fan triangulations and then to
show that the boundary algebra is invariant under flips of diagonals.

Although the result of isomorphic boundary algebras for arbitrary triangu-
lations of an n-gon does not help answering interesting questions in informatics
concerning flip distances, it proves a nice new property of GL2-webs. It would be
also interesting to study the boundary algebras of the quiver obtained by a dimer
of a GLm-webs of a triangulation for m ≥ 3 and associated categories of modules.
In particular to see whether such categories have a cluster category structure.
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