
Design and Evaluation of Tutorials

on Mobile Devices

MASTER THESIS

at

Graz University of Technology

Institute for Software Technology (IST),
Graz University of Technology

A-8010 Graz, Austria

submitted by

Angelika More

Graz, 31 March, 2014

Advisor:
Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Design und Evaluierung von

Tutorials auf Mobilen Geräten

MASTERARBEIT

an der

Technische Universität Graz

Institut für Softwaretechnologie (IST),
Technische Universität Graz
A-8010 Graz, Österreich

vorgelegt von

Angelika More

Graz, 31. März 2014

Diese Arbeit ist in englischer Sprache verfasst.

Begutachter:
Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Abstract

The importance of mobile devices (e.g. smart phones and tablets) is increasing. Therefore,
the possibility for the usage of the technology of teaching and learning has emerged. The
Android application Pocket Code developed at the Technical University of Graz takes
this possibilities to arrange a platform for acquiring programming skills in a playful way.
Underage persons are the target group for this application. During the work for this thesis,
tutorial prototypes for this application were developed. After an introduction to Android,
the Catrobat Project, Development Methodologies, and Usability, di�erent theories for the
creation of tutorials were examined. With the �ndings of the theoretical work, an approach
for a tutorial was developed. Also di�erent applications with tutorials are analyzed and are
used as inspirational resources. Furthermore, evaluation methodologies were elaborated. In
this work the evaluation methods of Heuristic Evaluation, Cognitive Walkthrough, System
Usability Scale, Emocards, A/B Tests, and the Thinking Aloud Method are presented in
detail. In addition, an evaluation concept for a future usability evaluation is arranged in
this work.

V

Kurzfassung

Mobile Geräte (z.B. Smartphones und Tablets) werden immer wichtiger. Dadurch entsteht
die Möglichkeit diese Technologie für die Lehre und das Lernen zu verwenden. Die Android
Applikation Pocket Code wird an der Technischen Universität Graz entwickelt und bedient
sich dieser Möglichkeiten um eine Plattform für die Aneignung von Programmierkenntnis-
sen zu bieten. Minderjährige Personen sind die Zielgruppe dieser Applikation. Im Laufe
dieser Arbeit wurden Prototypen eines Tutorials für diese Applikation entwickelt. Nach ei-
ner Einführung über Android, das Catrobat Projekt, Entwicklungsmethoden, und Usability,
wurden verschiedene Theorien für die Erstellung von Tutorials ausgearbeitet. Mithilfe die-
ser Theorien wurde ein Ansatz für ein Tutorial entwickelt. Es sind auch andere Programme
mit Tutorials analysiert worden, die als Inspiration für das erstellte Tutorial dienen. Au-
ÿerdem wurden im Zuge dieser Arbeit Evaluierungsmethoden ausgearbeitet. Hier werden
die Methoden von der Heuristischen Evaluierung, dem Kognitiven Durchlauf, der System
Usability Skala, der Emocards, der A/B Tests und der Thinking Aloud Methode im Detail
besprochen. Zusätzlich wurde ein Konzept für eine zukünftige Usability Evaluierung im
Laufe dieser Arbeit erstellt.

VII

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Acknowledgements

Special thanks go to Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany of the University of
Technology Graz and the Catrobat Team for the encouragement and the opportunity to do
this thesis.

Big thanks go to Rony Glabonjat, Claudia Kaplaner and Nadja Lauritsch for their
reviewing work. I also want to thank Manuela Lobnig for many discussions and the support
during some di�cult moments.

Last but not least, I want to thank everyone who supported me while writing this
thesis.

Angelika More

i

ii

Contents

Abstract V

Acknowledgements i

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Introduction to Android . 1

1.1.1 Application Structure . 2
1.1.2 Activities . 4
1.1.3 Services . 5
1.1.4 Content Providers . 7
1.1.5 Technical Approach for Creating a Tutorial 7

1.2 Introduction to the Catrobat Project . 8
1.3 Introduction to Development Methodologies 9

1.3.1 Extreme Programming . 9
1.3.2 Test Driven Development . 12
1.3.3 Clean Code . 12

1.4 Introduction to Usability . 14
1.5 Overview . 15

2 Theories for a Tutorial 17
2.1 Challenges . 17

2.1.1 Story Development . 18
2.1.2 Tutor Development . 20
2.1.3 Engagement . 21
2.1.4 Guidelines . 22

2.2 Educational Purposes . 24
2.3 Inspiration for a Tutorial . 24

2.3.1 Scratch . 25
2.3.2 Wario Ware D.I.Y. 26
2.3.3 Alice . 27
2.3.4 Kodu . 29

2.4 Gami�cation . 30
2.4.1 De�nition . 30
2.4.2 Fantasy . 31

iii

2.4.3 Goals . 31
2.4.4 Feedback and Guidance . 31
2.4.5 Progressive Disclosure . 32
2.4.6 Time Pressure . 32
2.4.7 Rewards and Punishments . 32
2.4.8 Stimuli . 33

2.5 Mobile Learning . 33
2.5.1 De�nition . 34
2.5.2 Learning Principles . 34
2.5.3 Learnability . 36
2.5.4 Adaptive Learning . 36
2.5.5 Serious Games . 38

2.6 Implementation in Pocket Code . 38
2.6.1 First Prototype . 38
2.6.2 Second Prototype . 42
2.6.3 Tooltip Implementation . 42

2.7 Chapter Summary . 43

3 Types Of Tutorials 45

3.1 Manuals . 46
3.2 Help Buttons/Tooltips . 46
3.3 Training Challenges . 47
3.4 Chapter Summary . 54

4 Evaluation Methodologies 55

4.1 Heuristic Evaluation . 58
4.1.1 Basic Concepts . 58
4.1.2 Adaption for Underage Participants 60

4.2 Cognitive Walkthrough . 61
4.2.1 Basic Concepts . 61
4.2.2 Adaption for Underage Participants 62

4.3 System Usability Scale . 62
4.3.1 Basic Concepts . 62
4.3.2 Adaption for Underage Participants 63

4.4 Emocards . 63
4.4.1 Basic Concepts . 63
4.4.2 Adaption for Underage Participants 65

4.5 A/B Test . 65
4.5.1 Basic Concepts . 65
4.5.2 Adaption for Underage Participants 66

4.6 Thinking Aloud Method . 66
4.6.1 Basic Concepts . 66
4.6.2 Adaption for Underage Participants 67

4.7 Metrics . 67
4.8 Applying for a Tutorial . 69

4.8.1 Results from Previous Evaluation . 69
4.9 Chapter Summary . 70

iv

5 Conclusion and Future Work 71

A Cognitive Walkthrough Form 73

B System Usability Scale Template 75

C Background Questionnaire 77

Bibliography 79

v

vi

List of Figures

1.1 Android Distribution March 2014 [AndroidDevelopersDashboard, 2014]. . . 2
1.2 Android Activity Lifecycle [AndroidActivities, 2014]. 5
1.3 Android Service Lifecycle [AndroidServices, 2014]. 6
1.4 Usability Attributes [Nielsen, 1994]. 14

2.1 Scratch with Step by Step Introduction [Scratch, 2014]. 25
2.2 Wario Ware D.I.Y. Tutorials Screens [Wario Ware D.I.Y, 2014]. 26
2.3 Alice Tutorial Selection [Alice, 2014]. 27
2.4 Alice Tutorial Screen [Alice, 2014]. 28
2.5 Kodu Tutorial Selection [Kodu, 2014]. 29
2.6 Kodu Tutorial Screen [Kodu, 2014]. 30
2.7 Tutors for the First Prototype. 39
2.8 Design of Tutor for the Second Prototype. 42

3.1 Design for Tooltips in Pocket Code in the Main Menu. 47
3.2 Tooltips in the Project Menu. 47

4.1 Emocard [Agarwal and Meyer, 2009]. 64

vii

viii

List of Tables

1.1 Android File Structure [AndroidProjectManagement, 2014]. 3
1.2 Extreme Programming Principles [Beck and Andreas, 2004]. 11
1.3 Extreme Programming Practices [Beck, 2000]. 12

2.1 Question Categories [Baecker et al., 1991]. 19
2.2 In�uence Factors for Engagement in Software [Prensky, 2001]. 22
2.3 Rewards and Punishment in Games [Hallford and Hallford, 2001], [Gazzard,

2011], [Juul, 2009]. 33
2.4 Several Technologies for Adaption [Brusilovsky, 1998]. 37
2.5 XML-Elements for the Tutorial. 40

3.1 Examples for Help Systems [Baecker, 2002]. 46

4.1 Evaluation Phases [Balagtas-Fernandez and Hussmann, 2009]. 55
4.2 Aspects for Usability Testing with Underage Participants [Larkin, 2002]

[Hanna et al., 1997]. 58
4.3 Basic Heuristics [Molich and Nielsen, 1990] [Nielsen and Molich, 1990] [Ko-

rhonen and Koivisto, 2006]. 60
4.4 Basic Heuristics for Underage Participants. [Alsumait and Al-Osaimi, 2009]. 61
4.5 Emotions in an Emocard [Agarwal and Meyer, 2009] [Desmet, 2000] [Stickel

et al., 2011]. 65
4.6 Usability Metrics [Kelleher and Pausch, 2005] [Grossman et al., 2009] [Har-

rison, 1995] [Wong et al., 2003]. 68

ix

x

Chapter 1

Introduction

An aspect for the usability of a mobile application is the availability and the support of
tutorials. The more complex an application is, the more is the need of help for the user.
In the past, a lot of research happened on usability, creating tutorials, teaching, learning
with computer systems, and therefore, methodologies were examined.

Usability for mobile applications is similar to usability for general software on non-
mobile devices. There are aspects which distinguish mobile from non-mobile, for example
smaller screen sizes, the mobility, and the variety of applications.

Furthermore, we are adapting the information about usability on mobile devices and
mobile applications. The purpose is to develop a tutorial according to the concepts found
in literature and evaluate it with a usability test. The basic concepts for tutorial design,
learnability, and educational factors are discussed. Moreover, these concepts are applied
to the Android application Pocket Code which is developed at the Technical University
of Graz. Throughout this work a design for a tutorial and an evaluation concept were
created. Also the teaching purpose and the work on integrating tutorials are discussed. So
the concepts of learning with mobile devices are presented and are set in context with the
support of tutorials instead of human help.

After an introduction on Android, the Catrobat project, the used development method-
ologies, usability, theories for tutorials, and the usage in learning are discussed. Further-
more, di�erent tutorials, as well as evaluation methods, are presented.

1.1 Introduction to Android

Android is the open source operating system developed by Google for mobile devices. The
operating system is based on a Linux kernel. It is also a platform for creating mobile
applications. All over the world, millions of mobile devices are equipped with an Android
version. The Android applications are distributed over the Google Play Store. Android also
o�ers the possibility to install custom made applications on the device. It is fast growing
and the newest release is Android 4.4. [AndroidDevelopers, 2014]

1

2 Chapter 1. Introduction

Since 2008 several Android versions were released. In Figure 1.1, a diagram about the
distribution of the used Android versions is presented (March 2014). The leading versions
are Jelly Bean (Android 4.1) and Gingerbread (Android 2.3). [AndroidDevelopersDash-
board, 2014]

The application can be optimized depending on the major share of users for the Android
version. This concludes with the challenge in developing for Android devices to provide
support for all relevant platforms and devices. [AndroidDevelopers, 2014]

Figure 1.1: Android Distribution March 2014 [AndroidDevelopersDashboard, 2014].

1.1.1 Application Structure

Android applications are programmed in Java. The code is compiled with the Android
SDK Tools and runs on devices with the Android operating systems. The applications
run on the device in their own security sandbox. In the multi-user Linux system the ap-
plications are handled as di�erent users. Every application gets a unique Linux user ID,
and grants access to speci�c resources used by the application. Android takes care of the
process management. So it starts a process for an application and stops it if it is not
needed anymore. The code of the application runs in di�erent processes. Furthermore,
the application gets explicit permissions for the access to resources (e.g. the SD card, the
contact list). The permissions and the activities are de�ned in the AndroidManifest.xml.
Every application can start a component of another application. This is a unique property
of the Android system design. An Android application consists of four di�erent compo-
nents, which have di�erent purposes and lifecycles. These components are Activities (a
single screen with a user interface, see Section 1.1.2), Services (run in the background and
execute long running operations, see Section 1.1.3), Content Providers (manage shared
application data, see Section 1.1.4), and Broadcast Receivers (respond to system wide an-
nouncements, e.g. battery is low). Activity, Services and Broadcast Receivers are started
by an asynchronous message called Intent. This Intent binds the components to each other
during runtime. The Content Provider is started by request from the Content Resolver.
So all the transactions are called over this component. The components have to be de-
clared in the Android Manifest.xml. Furthermore, permissions and minimum API Level
are speci�ed in the manifest. [AndroidFundamentals, 2014]

Every Android project has the same �le structure. The project consists of folders and
�les described in Table 1.1. [AndroidProjectManagement, 2014]

1.1. Introduction to Android 3

Folder/Files Description

src In this folder, all source �les for the application are stored.

bin The folder contains all the compiled �les including the apk -
�le.

gen Here, the generated �les of the ADT (Android Development
Tools) can be found. For example the R.java �le.

assets This folder is empty by default. It can be used to store raw
asset �les. The �les included are compiled into the apk -�le.
Further this �les can be used with the help of the class Asset
Manager.

res In this folder, application resources (e.g. layouts, drawables,
string values) are stored.

res/anim The folder concludes XML-�les which are compiled into an-
imated objects.

res/color XML-�les describing colors are put into this folder.

res/drawable The folder consists of bitmap �les (e.g. png, jpg), 9-patch
image �les, and XML-�les describing drawable objects.

res/layout XML-�les which are compiled into a screen layout are saved
here.

res/menu In this folder, there are XML-�les which describe application
menus.

res/raw The objects in this folder are raw assets. The di�erence to
the assets folder is the access to the �les. The �les are called
with a resource identi�er.

res/values The XML-�les included in this folder are compiled to di�er-
ent kinds of resources. The type of the resource is declared
by the XML-element type and is placed in the R.java �le.

res/xml Di�erent XML-�les which de�ne various application compo-
nents are put here.

libs Private libraries are put in this folder.

AndroidManifest.xml This �le de�nes the application and every component. Fur-
thermore, the permissions, API levels, external libraries,
and others are declared in this �le.

project.properties This �le contains project speci�c settings, for example build
targets.

Table 1.1: Android File Structure [AndroidProjectManagement, 2014].

4 Chapter 1. Introduction

These were only the basic components, but there are still further ones for an Android
application. So in the following sections the components Activities, Services, and Content
Providers are described in more detail.

1.1.2 Activities

An Activity is a basic part of an Android application and provides the user interface. An
application consists of many di�erent Activities. The Main Activity is the starting point of
the application. This Activity has to be declared in the AndroidManifest.xml as the Main
Activity. Out of theMain Activity other Activities are started. The Activities are managed
like a stack. This means when an Activity is started, it gets on top of the stack. When
the user is �nished with the Activity it gets pushed, and the previous Activity is in the
focus again. This procedure is handled over callback methods which can be overwritten in
every Activity. The Activity receives the callback methods depending on the state change
of the Activity. An Activity can have three states, Resumed, Paused, and Stopped. In
the Resumed state the current Activity is in focus. If the Activity has the state Paused,
another Activity is in focus of the user, and the paused Activity is still visible. The Activity
is still attached to the Window Manager, and is only killed with very low memory. In the
Stopped state, another Activity is in focus of the user and the stopped Activity is totally in
the background. The Activity is not attached to the Window Manager, and is killed when
there is a need of memory for another action. The state changes are part of the Activity
lifecycle presented in Figure 1.2. Here, you can �nd the callback methods and the paths
an Activity can take between states. The available callback methods are discussed in the
following. [AndroidActivities, 2014]

onCreate() This method is called when the Activity is launched or the Activity is selected
after it was detached from the Window Manager. [AndroidActivities, 2014]

onStart() This method is called after the onCreate() or the onRestart() method is �n-
ished, and the Activity is coming back to focus. So it becomes visible to the user. [An-
droidActivities, 2014]

onResume() This method is called after the onStart() or the onPause() method is �n-
ished. After onPause() the paused Activity is resumed. [AndroidActivities, 2014]

onPause() This method is called when another Activity is created. The current Activity
is paused, and its state is saved. [AndroidActivities, 2014]

onStop() This method is called when the Activity is stopped, and gets detached from
the Window Manager. [AndroidActivities, 2014]

onDestroy() This method is called when the Activity gets �nished by the system. [An-
droidActivities, 2014]

1.1. Introduction to Android 5

Figure 1.2: Android Activity Lifecycle [AndroidActivities, 2014].

1.1.3 Services

Another component of an Android application, introduced here, is Services. These com-
ponents have to be started explicitly by other components. A Service in an Android
application performs long running operations which run in the background, for example
network transactions and playing music. This component does not provide a user inter-
face. The Service has to be declared in the Android Manifest. A Service can have two
states, Started and Bound. The Started state is reached if another component, for example
an Activity, starts the Service. The Service runs even if the Activity, which started it, is
destroyed. When the operation of the Service is done, it stops itself. The Bound state is
reached if another component, for example an Activity, binds the Service to it. This allows
the Activity to interact with the Service. The Service runs as long as it is connected to
the other component. The lifecycle of an unbind and bind Service is presented in Figure
1.3. [AndroidServices, 2014]

6 Chapter 1. Introduction

Figure 1.3: Android Service Lifecycle [AndroidServices, 2014].

The Service is handled over callback methods which are discussed in the following
paragraphs. [AndroidServices, 2014]

onCreate() This method is called when startService() or bindServices() methods are
executed by another component to create the Service. [AndroidServices, 2014]

onStartCommand() This method is called after the onCreate() method is �nished, and
the Service is started. The onCreate() method is triggered by the
startService() method of the calling component. [AndroidServices, 2014]

onBind() This method is called after the onCreate() is �nished, and connects the client
to the Service. The onCreate() method is triggered by the bindService() method of the
calling component. [AndroidServices, 2014]

onUnbind() This method is called when a client gets disconnected from the Service.
[AndroidServices, 2014]

onDestroy() This method is called when the Service is stopped by itself or a client.
[AndroidServices, 2014]

1.1. Introduction to Android 7

1.1.4 Content Providers

Content Providers work as the interface between data and the application. Furthermore,
Content Providers manage the access of shared data to separate the data from the code.
The data in one process is connected to running code in another process. The data is
presented as tables in the Content Provider similar to a relational database. With the
help of a Content Resolver, it is possible to query the data in the Content Provider. In
an application, other components (e.g. Activities) always have read and write access to
the Content Provider. An access from a di�erent application is by default not allowed.
Nevertheless, it is possible to de�ne a permission to get access to the Content Provider.
Furthermore, a Content Provider can be created from scratch for every purpose needed.
[AndroidContentProviders, 2014]

1.1.5 Technical Approach for Creating a Tutorial

Here, we introduce one approach which is used to create a tutorial. This approach is used
for the examples in Pocket Code presented later in this thesis. The basic idea to create a
tutorial for an Android application is to create an overlay on top of the actual application.
The overlay is invisible to the user. On this overlay, graphical presentations are drawn, for
example, a tutor and text explain the basic concepts. The overlay is created by extending
the Android class SurfaceView, and implements SurfaceHolder.Callback. The SurfaceView
provides a drawing view which is integrated in the view hierarchy.

The bene�t in using this class is the control of the format of the view (e.g. changing the
size of the view). The purpose of the SurfaceHolder interface is to get access to the layer
itself. By integrating the interface in a class, there is a need to implement the following
methods of the SurfaceHolder interface:

� surfaceChanged(): This method is called after the surface has changed.

� surfaceCreated(): This method is called after the surface is created.

� surfaceDestroyed(): This method is called before the surface is destroyed.

By default, the surface is behind the window holding the SurfaceView. Here, we want
to have the SurfaceView on top of the Activity which is holding the SurfaceView. The
Surface is z-ordered, and can be set on top with the method
setZOrderOnTop().

The SurfaceView has to be �lled with graphics and instructions. So it is necessary
to draw on the view. Therefore, the method onDraw() from the class View has to be
overridden. It is also intended to provide the actual functionality of the application. So to
provide the clickability, for example a button, the method dispatchTouchEvent() from the
class View has to be overridden.

This is the basic part behind the idea of creating a tutorial for an Android application
used for this thesis. Yet another challenging part is to automatically get the positions for
the objects on the surface and give them their own logic. Further in this thesis, designs of
prototypes and approaches for the implementation, which use this concept, are presented.

8 Chapter 1. Introduction

1.2 Introduction to the Catrobat Project

The Catrobat Project [Catrobat, 2014] is a FOSS (free and open source software) project
started at the Technical University of Graz. It contains a visual programming language
called Catrobat. The programming language is optimized for mobile devices. Catrobat and
the software developed are inspired by the Scratch [Scratch, 2014] project of the Lifelong
Kindergarten Group at the MIT Media Lab.

The Catrobat team is working on a mobile application for the Catrobat language on the
Android operating system among other platforms (e.g. iOS,WindowsPhone). The Android
application is called Pocket Code. Pocket Code works on mobile phones with Android 2.3
and higher. Here, we will focus on the Android application. The application is still in
development and it is released in the Google Play Store. The purpose of the project is
to give primary kids and teenagers an easy possibility to learn programming without any
previous knowledge about programming. The main target group of the released version
are male teenagers. Versions for other target groups are planned in the future. The project
team is working on designs for other target groups. The approach for teaching the basic
programming concepts is simple. The programming statements are represented in block
form. The available blocks are designed in a �Lego� brick style and the users can put
them together to an executable program. The Catrobat programs can be created, and are
directly executed in Pocket Code. The programs can be uploaded, and are published to
the community website, where other users are able to download and reuse the programs.
The work�ow of Pocket Code is complex, and new users have to �nd their way to the �rst
program by exploration. The Catrobat team is working on di�erent approaches to make
the access to Pocket Code easier for new users. In the following the main screens of the
application is shown and brie�y explained.

The start screen of the An-

droid application Pocket Code is
shown.

The overview of the project with
all objects is here visible.

Menu to create scripts, looks,
and sounds for an object is pre-
sented.

1.3. Introduction to Development Methodologies 9

View to combine bricks together
to a script.

Overview of the brick categories
(control, motion, sound, looks,
and variables).

Overview of the looks of an ob-
ject. Also new looks can be cre-
ated here.

List of the sounds of an object.
Furthermore, new sounds can
be added.

Overview of all projects created.

1.3 Introduction to Development Methodologies

In the Catrobat team, as well as during developing for this thesis, di�erent software develop-
ment methodologies were used. The methodologies Extreme Programming (Section 1.3.1),
Test Driven Development (Section 1.3.2), and Clean Code (Section 1.3.3) are discussed in
detail in the following sections.

1.3.1 Extreme Programming

The development methodology Extreme Programming is an agile method. It was created
to �t the needs of small teams in the process of software development. It works on the
assumption, the developers do not know all the requirements. [Beck, 2000]

10 Chapter 1. Introduction

New functions are developed, integrated, and tested iteratively. Therefore, a �rst func-
tioning prototype is available very fast. Extreme programming consists of values, prin-
ciples, and practices. These points are explained in detail in the following. [Beck and
Andreas, 2004]

Values There are four basic values in Extreme Programming, communication, simplicity,
feedback, and courage. The �rst value is communication. The development team has to
communicate with each other constantly. So there is also a constant information exchange
between the developers and the customer. The second value is simplicity. In each iteration
the team works on ful�lling speci�c requirements. So this value covers the implementation
of the simplest solution for the current problem. The next value is feedback. It covers
getting concrete feedback to a task. It also supports realizing the wishes of the customer
and furthermore, creating what the customer wants. The last value is courage. The
developers should have the courage to communicate if something is not realizable in the
current iteration. [Beck, 2000]

Principles Extreme Programming contains several principles which are the connection
between the values mentioned before and the practices explained further on. These prin-
ciples are explained in Table 1.2. [Beck and Andreas, 2004]

Principle Description

Humanity Software is developed by humans. Therefore, Extreme Pro-
gramming supports a pleasant environment for the develop-
ers.

Economics A software has to be �nancial e�cient.

Mutual Bene�t Also the developed software has to have bene�ts for devel-
opers and customers.

Improvement During the development process, code is changed and im-
proved several times. The �rst solution is never optimal.

Diversity Di�erent skills in the development team o�er di�erent ap-
proaches. A variety of opinions are welcome for a better
product.

Re�ection Constant re�ection of the approach leads to a better solution.

Flow The software should be runnable at any time of the process.

Opportunity Di�culties in the development process should be taken as an
opportunity for further improvements.

Redundancy Any redundancies should be avoided to ensure a good prod-
uct.

Failure No failures should happen after releasing the product.

Quality Quality has to be provided at any time of the development
process.

1.3. Introduction to Development Methodologies 11

Principle Description

Baby Steps With small and quick steps the team can be �exible. So the
developers can adapt to any circumstances very quickly.

Accepted Responsibil-
ity

The developers have to take their responsibilities actively. So
just allocating randomly responsibilities should be avoided.

Table 1.2: Extreme Programming Principles [Beck and Andreas, 2004].

Practices The development process of Extreme Programming contains several practices.
These practices are explained in detail in Table 1.3. [Beck, 2000]

Practice Description

Planning Game It is a process of planning the next release. Therefore, the
costs for the implementation are estimated. In the planning
process developers and customers are involved.

Small Releases The releases should be as small as possible. So the time for
an iteration is decreased.

Metaphor When creating user stories, a common vocabulary is needed
to avoid misunderstandings between developers and cus-
tomers. Therefore, a metaphor is used which both groups
understand.

Simple Design The simplest solution is implemented. Preparations for a
future functionality are avoided. So everything which is im-
plemented, is wanted of the customer.

Testing In every iteration, tests are written for the current imple-
mentation. An approach to write tests is the Test Driven
Development. This approach is discussed in detail in Section
1.3.2.

Refactoring In each iteration of the developing process, the code is refac-
tored. The code does not have to be perfect at the beginning.
So the software gets always improved.

Pair Programming The developers program always in pairs. They share one
computer. So one developer is actually coding and the other
one is thinking along. The roles are changed regularly. The
knowledge exchange is improved with this method.

Collective Ownership Activities are assigned to the whole team, not to a single
person. Furthermore, there is no single person who knows
everything. So everyone in the team knows everything.

Continuous Integra-
tion

The single components are integrated continuously to a func-
tioning system in small time intervals. So errors are uncov-
ered early in the process.

12 Chapter 1. Introduction

Practice Description

40 Hour Week Overtimes should be avoided. So the developers do not get
frustrated with their work.

On Site Customer The customer has direct impact on the goal of an iteration.
The user stories are created with the customer. Therefore,
the customer has to be available at all time.

Coding Standards The development team is following a speci�ed coding stan-
dard. So the developers can be used in di�erent areas of the
process.

Table 1.3: Extreme Programming Practices [Beck, 2000].

1.3.2 Test Driven Development

Test Driven Development is a software developing method which is often combined with
agile development. A bene�t of writing the tests �rst is that developers do not write
the tests after the programming under time pressure. There are tests for code which
the developers have no knowledge about. Also more tests are written with this approach
compared to the number of tests written after the development. Furthermore, the tests
can help building the design of the software. So the developers have to think about the
users when writing tests. The process of writing tests �rst happens in small iterations.
First step is to write a test case for the functionality which is implemented next. The
�rst run has to fail because the tested code is not written yet. In the next step the code
for the new functionality is written. In the last step the code is refactored, for example,
deleting redundancies and inserting abstractions. This step will be repeated for every new
code fragment written. The use of Test Driven Development needs tools for continuous
integration, build automation, test development, and test automation. [Beck, 2002]

1.3.3 Clean Code

The term Clean Code de�nes a software methodology. The methodology describes a way to
write code which is easily understandable for other programmers. So the written software
is also easily maintainable. Therefore, adding or changing functionality can be done in a
shorter amount of time. An overall rule of this methodology is the so called Boy Scout Rule.
This rule simply says to check in cleaner code than you checked out. For the implementation
of Clean Code, several more principles have to be followed. In the following, some of the
principles are explained. [Martin, 2009]

Meaningful Names The �rst principle is the usage of meaningful names. This means
the names for variables, methods, �les, and so on get a name which describes the intention
of the described element. Therefore, the naming process is a challenging part. It needs
descriptive skills which is not easy for everyone to do. With practice and keeping this
principle in mind, better code can be produced. [Martin, 2009]

1.3. Introduction to Development Methodologies 13

Functions This principle handles the usage of functions. A big part is to make the
functions small and they should contain only one thing to execute. Furthermore, the usage
of functions support the developer in not repeating code. Therefore, the functions are
easier to name and to read. The process of creating small functions according to this
principle is iterative by re�ning, renaming, and refactoring code. [Martin, 2009]

Comments The next principle is about the usage of comments. Comments are an easy
way to describe the purpose of the code. Unfortunately, this is hard to maintain. Only add
comments to the code if really necessary (e.g. copyright information, to do information,
and warnings of consequences). With the principles mentioned before, the code should be
explaining itself. So comments can be a sign of bad code. So before writing a comment,
check if there is a way to rewrite the code. [Martin, 2009]

Formatting The next principle handles the formatting of the code. The purpose of this
principle is to support the readability and furthermore, the maintainability of the written
code. With the right use of indention and new lines the reading �ow for other developers
is provided. Therefore, a coding standard for the application is useful for the developers
to have a common formatting. [Martin, 2009]

Objects and Data Structures Another principle is about objects and data structures.
The purpose is to make aware the importance of hiding data or behavior. The approach
is to hide the data and expose the behavior. Therefore, data structures can be extended
with new functions easily but additional data structures are hard to realize. In case it is
intended to create new data structures objects should be preferred. [Martin, 2009]

Error Handling The next principle contains the error handling. Errors and exceptions
can always occur during runtime. Therefore, it is important to include error handling. On
the other hand, the code should not be dominated by error handling. If it is hard to see
the purpose of a code because of an overload of try-catch sequences, a refactoring of the
code is needed. The code should be robust and clean at the same time. The insertion
of exceptions in the code can provide it and furthermore, a detailed error message helps
�nding the source of the error. [Martin, 2009]

Boundaries This principle handles the boundaries to other software. In case third party
libraries or subsystems from other developers are integrated into your software, the bound-
aries between the components have to be kept clean. The boundaries are crucial to the
software because every change in the code can take a�ect on the boundaries. Therefore,
there should be just a few positions in the code which have direct access to the libraries.
Also the maintenance is easier with this approach. [Martin, 2009]

Unit tests The next principle is about testing. The test should also be kept clean.
Therefore, it is supported by the methods of Test Driven Development presented before
(Section 1.3.2). Tests support the ability of �exibility, maintainability, and reusability of
the code. [Martin, 2009]

14 Chapter 1. Introduction

Classes Another principle for clean code is the creation of classes. Classes should be
kept small. This means a class has few responsibilities. So there is only one reason to
change. Furthermore, the classes get more cohesive. So with providing a high value of
cohesion the classes are getting small. This behavior is supported by the help of instances
and abstract classes. [Martin, 2009]

1.4 Introduction to Usability

Usability is an important factor for software and describes the quality of use. Usability
engineering is an iterative process to provide usability for software. Therefore, the term
usability was de�ned by the International Organization for Standardization (ISO) in 1998.
The ISO standard 9241-11 describes the extend to which a product can be used by speci�ed
users to achieve speci�ed goals in a speci�ed context using three aspects, e�ectiveness,
e�ciency, and satisfaction. The e�ectiveness is de�ned as tasks which are completed by
the user without any errors. The relation between the resources needed and the completed
tasks of the user is called e�ciency. The term satisfaction means positive and negative
feedback relating to the use of the software. [ISO9241-11, 1998]

This de�nition is very general and can be implemented on di�erent �elds of use, for
example software and mobile devices. Over the years di�erent de�nitions were created.
One well known de�nition was described in [Nielsen, 1994].

This de�nition uses the system acceptability as a basis for the de�nition. As shown in
Figure 1.4, system acceptability is divided into several attributes. In this context, usability
is one attribute which is divided into a total of six further ones, including the attributes
of the ISO standard. These attributes are e�ectiveness, e�ciency, and satisfaction as al-
ready explained before which are now extended with learnability, memorability, and errors.
Learnability describes the ease of use for new users of a system. An easy memorable work-
�ow of tasks is the attribute memorability. The rate of appearing errors is summarized in
the term errors as the last attribute. [Andrews, 2014]

Figure 1.4: Usability Attributes [Nielsen, 1994].

1.5. Overview 15

Usability is not only applicable on desktop applications. It is also important on mobile
devices. Therefore, the de�ned usability principles have to be adjusted to the special
requirements of a mobile device. The main di�erences in the mobile context are the
connectivity, the screen size, the display resolution, the processing capability, and the data
entry methods. First, the mobile context is here de�ned as the context in which a mobile
device is used. This context can vary because of the mobility provided. So the location
and the surrounding environment are providing potential distractions for the users. This
distractions are hard to include into usability evaluations, but have e�ect on the usability.
The next di�erence is the connectivity. For mobile applications the availability of an
internet connection has to be taken into account. A wireless or a mobile network connection
is in most cases available, but the strength of the signal and the speed can be crucial for
usability in applications which need an internet connection. Therefore, it is an in�uence
on the usability. Furthermore, there are many mobile devices with di�erent screen sizes on
the market. The usability of an application on a tablet with ten inches screen is di�erent
to the usability on a smaller screen of a smart phone. The resolution of mobile devices has
a variety from low (e.g. 640*480 pixels) to a high pixel count (e.g. 2560*1600). This factor
can in�uence the presentation of the application and so the usability can be di�erent.
The processing power of mobile devices is getting close to classical computers, but still
needs consideration. A crucial point is the direct impact of the processing on the battery.
So for a good usability, this factors have to be taken into account. Mobile devices also
provide di�erent input possibilities than desktop computers. Therefore, design decisions,
which may reduce input speed and increase errors (e.g. small buttons), are important for
applications, which get input data from the user, as well as impact the usability. [Zhang
and Adipat, 2005]

1.5 Overview

Previously, introductions were given about the basic concepts included in this thesis.
Therefore, an overview of the Android developing platform, the Catrobat Project, the de-
velopment methods used, and usability is given.

The basic elements of an Android application are introduced. These elements are Activ-
ities, Services, and Content Providers and were discussed in detail. Therefore, the sections
include the lifecycle and the routine of creating, starting, pausing and stopping these com-
ponents. Furthermore, the Catrobat Project and its visual programming language Catrobat
was introduced. In this context, the Android application developed in the Catrobat Project
is presented. The application is called Pocket Code. It is referenced as a further example
in the thesis and is the basis for the created tutorial. The introduction chapter includes
summaries to the development methodologies used in the Catrobat Project as well as for the
implementation for the created prototypes. So the concepts of Extreme Programming, Test
Driven Development, and Clean Code are explained. Furthermore, usability was de�ned.
Besides, the origin of the term and the aspects included were discussed. These aspects are
e�ectiveness, learnability, e�ciency, memorability, errors, and satisfaction.

In the next chapter, theories for creating a tutorial are discussed. Furthermore, the
basic challenges in the creation of a tutorial are presented. This includes best practices in
creating a story and tutors. Also guidelines and ways to engage the users to the application
are presented. Besides, the inspirational resources for a created tutorial are explained with
their advantages and disadvantages (Scratch, Wario Ware D.I.Y., Alice, and Kodu).

16 Chapter 1. Introduction

Also the purpose in the �eld of education is presented and the principles of Gami�ca-
tion are de�ned additionally. The term is de�ned and later in the section the basic game
elements used to implement Gami�cation (fantasy, goals, feedback, guidance, progres-
sive disclosure, time pressure, rewards, punishments, and stimuli) are discussed. Another
theory which is presented is mobile learning. The term is de�ned and further learning
principles, adaptive learning, and serious games are set in context with mobile learning.

In the last section details about the prototypes for Pocket Code are presented in detail
and the concepts of the implementations are shown. Furthermore, this thesis includes the
presentation of prototype designs developed for the Android application Pocket Code. The
purpose for the approaches of a tooltip system and a guided tutorial are discussed.

In the last chapter, evaluation methods and metrics are presented and are put into prac-
tical context. Therefore, the evaluation methodologies of Heuristic Evaluation, Cognitive
Walkthrough, System Usability Scale, Emocards, A/B Tests, and Thinking Aloud Method
are discussed in detail and �nally di�erent metrics are de�ned (e.g. error rate, completion
time, performance, and success rate). In the last section a proposal for a usability test is
put together.

Chapter 2

Theories for a Tutorial

An application should have a simple structure and good usability. However, a simple
structure is not always possible because of a complex content. In most cases, a complex
context results in a complicated work�ow within the application. Therefore, the inclusion
of a tutorial is advantageous to resolve the complexity for the user. There exists a lot
of software with little or no help. Of course, there are applications which the users can
instantly use. Games are examples for this variety of complexity. There are several classic
games without any instructions, for example popular games are Tetris, Pacman and Super
Mario. [Andersen et al., 2012]

With huge progress in technology, software and games got more complex. The use
of software is not that simple anymore. Depending on the content of the application the
work�ow can get very complicated. So the �rst contact of the user with the application
can get frustrating. A tutorial can support the user in getting to know the structure, and
teach the e�ective use of the application. The outcome is an easier handling of the software
than without any further instructions. Besides, the usability is increased. Further in this
chapter, the di�erent challenges in creating a tutorial (Section 2.1), the inspiration for a
tutorial in Pocket Code (Section 2.3), the educational purpose of tutorials (Section 2.2),
the term Gami�cation (Section 2.4), mobile learning (Section 2.5), and the approach of
the tutorial in Pocket Code (Section 2.6) will be pointed out and discussed.

2.1 Challenges

In the �eld of mobile applications, tutorials are not very common. The usefulness of a
tutorial depends on the complexity of the application. The user gets frustrated easily and
stops using the application. An application like Pocket Code is very complex and without
any knowledge hard to use. The variety of alternative mobile applications is a reason for
engaging the user to a speci�c application. Therefore, it is important to have a tutorial
to show the user how it can be used, so that the user will not consider alternatives. It is
also a tool to motivate the user to learn more about it. The instant feedback and risk-free
environment, which can be provided in a tutorial, invite the user to explore and experi-
ment with the application. In addition, it stimulates the curiosity, supports the learning
experience, and perseverance. Already in the early stages of software development, the
topic of tutorials was explored. In [Vanderlinden et al., 1988], the increase of learnability
with the presence of a tutorial was discovered. The ideas were based on classical computer
systems. These basic concepts are also adaptable for mobile applications.

17

18 Chapter 2. Theories for a Tutorial

The availability of tutorials is a present topic in software development, for example, in
games tutorials are a tool to learn the gameplay. The frustration of the user in �nding
out how the game works is minimized. Also the engagement and retention for the game is
established. The concept is adaptive to other software products like mobile applications.
The special features and limitations for mobile devices have to be taken into account.
[Andersen et al., 2012] [Kirriemuir, 2002]

In the following sections, the basic challenges of creating stories (Section 2.1.1), tutors
(Section 2.1.2), the engagement of the users to the software (Section 2.1.3), and guidelines
for creating tutorials in applications (Section 2.1.4) are discussed in detail.

2.1.1 Story Development

One challenging part is to create a story and a sequence of steps to motivate the user and
to avoid boredom. There are no explicit design rules, so the developers have to base their
ideas on intuition, experience, and similar software to extract adaptable design guidelines.
The need for help within an application is based on questions of the user which can appear
during the interaction with the user interface. Examples for these questions are "What
can I do with this tool?" and "What does this mean?". With the identi�cation of such
questions, a help system can be developed. Further, the answers should be included in the
application, either directly in the systems (e.g. as a navigation area to answer questions
how to get to a speci�c action) or within a help system (e.g. a tutorial where the questions
are asked and answered by an animated tutor). [Silveira et al., 2001]

For creating documentation, help, and tutorials, the used material can be viewed as
material for answering questions of the users which may appear when using the software.
The questions can be summarized in categories. The categories found in Table 2.1 are
relevant for identifying the content of a tutorial, independent from the type of the tutorial.
[Baecker et al., 1991]

Category Description

Identi�cation This category contains the explanation of the current object ("What
is this?"). So users know the term for an object within the appli-
cation. For example the tutorial explains the concept of a brick in
Pocket Code.

Transition This category includes an easily memorable path to the current task
("Where have I just come from?"). So the users can reproduce
the task on their own after �nishing the tutorial. Especially on
mobile devices, a task includes accessing di�erent screens within the
work�ow. For example, in Pocket Code, it would be adding a brick
to the script of a project.

Orientation This category describes a navigation for the user and where in the
application the current task is available ("Where am I?"). So the
position of a speci�c action can be retraced by the user.

Choice This category consists of an overview of the available options ("What
can I do now?"). The options are clearly represented in the user
interface.

2.1. Challenges 19

Category Description

Demonstration This category contains the explanation of the purpose of a speci�c
tool ("What can I do with this?"). So the purpose of a tool is ex-
plicitly de�ned. For example the tutors show the usage of a speci�c
tool, like how to add a brick to a Pocket Code project.

Explanation This category includes detailed illustrations of a speci�c action
("How do I do this?"). The purpose of an action is presented in
practice to the user. For example a tutor explains the concept of a
brick to the user.

Feedback This category describes a response from the system about the ex-
ecuted actions ("What is happening?"). So the user is always in-
formed about progress, errors and tasks. For example the user gets
verbal feedback of a tutor.

History This category consists of a possibility to track the steps to the cur-
rent position in the system ("What have I done?"). For example,
in case of an erroneous behavior, the user knows which sequence of
actions it caused.

Interpretation This category explains the reason for the action ("Why did that
happen?"). So the user can follow the purpose of the current task.

Guidance This category includes illustrations of the following steps the user
should do ("What should I do now?"). So the user does not get stuck
in performing a task and gets help when it is needed. For example
the a tutor guides the user step by step through the application.

Table 2.1: Question Categories [Baecker et al., 1991].

These categories support the process of creating help components in a tutorial and
how they are structured. The most important points are covered by giving answers to the
previous question categories in Table 2.1. There are also issues which concern the �eld a
help component should be sensitive about.

Four aspects for tutorials are relevant for the design, presence of tutorials, context
sensitivity, freedom of the user, and availability of additional help. With these aspects
a comparison between applications can be achieved. These aspects are discussed in the
following sections. [Andersen et al., 2012]

Presence of Tutorials

One characteristic factor for tutorials is the availability, whether there is a tutorial imple-
mented or not. Of course this factor is obvious, but it has to be considered for testing the
user interface of a software. The presence of a tutorial is important because it supports the
ability to engage users to the application. The a�ect on a software can be simply tested by
comparing these two versions (with and without tutorial) of the software with each other,
for example by executing an A/B Test. [Andersen et al., 2012]

20 Chapter 2. Theories for a Tutorial

Context Sensitivity

The aspect of context sensitivity means, the help of the tutorial is presented to the user
when it is needed within the context of the application. So the information is always
related to the current visible state of the user interface. Therefore, the instructions are
more e�ective than presented out of the context. Furthermore, the content of the tutorial
should be independent from the user. This means that the same help is always displayed for
every user. Also the context should be sensitive about what happens in the user interface.
The interface reacts on some input from the users, for example, a hint text appears when
hovering over a button. In case of creating user pro�les within the application, the collected
user data should be taken into account. Depending on the pro�le the help content varies.
For example the users preferences and history of interaction, like di�erent designs for boys
and girls. Other in�uences are the tasks executed by the user. The system creates the
help content depending on the current task (e.g. with a wizard). The challenge is the
extraction of the current task in a complex system. [Andersen et al., 2012] [Silveira et al.,
2001]

Freedom of the User

The idea behind the aspect of freedom of the user in the application is based on the
concept of letting the users get to know the application mechanics on their own. So the
users can also practice their abilities in a save environment. The degree of restricting the
user to speci�c actions is relevant in order to avoid possibility of the user to make major
mistakes when following a tutorial. A tutorial guides the user through a set of tasks. In
these tasks the restrictions can vary, for example, in a guided tutorial the user can get
exact instructions at the beginning and gets more freedom over time. This means, at the
beginning, the tutorial blocks other actions than the intended action from the user. So the
basic mechanisms are shown and can be practiced without the fear of failing. Moreover, it
also supports the engagement of the user to the application. [Andersen et al., 2012]

Availability of Help

This aspect handles the type of access to help. The additional help can be accessed on
demand. In this approach a tutorial is not automatically started at the �rst start of
software. Instead it has to be activated explicitly by the user. The appearance of the help
can be di�erent. For example the user presses a button and gets information for the speci�c
situation instantly. Another example would be to open a user manual, documentation, or
a tutorial sequence to get help to solve a task. This aspect supports the retention of the
user with the application. [Andersen et al., 2012]

2.1.2 Tutor Development

In a tutorial, the task of informing and guiding the user can be done by a tutor. The role
of the tutor has to be designed as well. In tutoring systems, a tutor can be used to teach
and guide users through the application. A tutor in a tutorial can play di�erent roles, like
an expert, a motivator or a mentor. The main di�erence between these roles are found in
the presentation in the tutorial. The presentation is split up into image, voice, animation,
and a�ection. [Baylor and Kim, 2005]

2.1. Challenges 21

Also the learning strategies have to be considered. So by implementing an one on one
learning approach, the expert tutor is created. Therefore, the tutor is simulated as an
intelligent agent who can provide knowledge. An expert tutor gives the user direct hints
and gestures for ful�lling speci�c tasks. The tutor is an authoritative �gure. The voice
is monotone, the speech is formal, and is detached from emotion. The tutor is designed
similarly to a teacher. The main task for the tutor is to give information to the user.
Another learning strategy is the approach of learning with a co-learner. This approach is
build on the idea that knowledge results from a building process. Therefore, the task of
the tutor is to motivate and support the user in the learning process. A tutor, who is used
as a motivator, has attributes which are similarly to the target users. So it is easier for
the user to connect with the tutor than with a more distant tutor like the expert version.
Therefore, the help of the tutors is expressed enthusiastically and is mixed with colloquial
sentences. So a conversation is simulated between the tutor and the user. Furthermore,
emotions, like frustration, confusion and enjoyment, are communicated. The main task
for the tutor is the motivation and encouragement of the user to further process with the
application. A tutor, used as a mentor, guides the user through the application instead of
direct instructions. The tutor tries to challenge the user and therefore, encourage the user
to �nd a solution for a task. The tutor is not authoritarian and works collaboratively with
the user. The design of the tutor is less formal than the expert tutor but more mature than
the motivator. The main task for the tutor is in between of the expert and the motivator
tutor, it is the information distribution and encouragement of the user. [Baylor and Kim,
2005] [Aimeur and Frasson, 1996]

2.1.3 Engagement

Another challenge for a tutorial is to engage users to a speci�c application. Current tech-
nology of mobile phones is used to solve this challenge. In this case, a mobile application
also brings the advantage to be available anytime and anywhere. It is also a bene�t to
provide a whole environment for the games. [Mitchell and Smith, 2004]

For example in Pocket Code you have the possibility to create and deploy your own
program and it is also possible to download and play games from other users. Some
in�uential factors of engagement are summarized in Table 2.2. The implementation of
these factors into software can increase the level of engagement. Furthermore, in tutorials
this can be realized easily. [Prensky, 2001]

In�uence Factor Description

Enjoyment and Pleasure It is supported with the fun the users have by using the soft-
ware. Fun is used as a motivator. So with the amusement
with the usage of an application the users are ambitious
to solve speci�c tasks. Besides, the user is relaxed and the
learning experience is not perceived as such.

Passionate Involvement This factor covers the characteristic of play in software.
The in�uence on the engagement is based on the concept
of learning in a playable way. Furthermore, the involvement
of the user is supported and the user wants to go on and
learn more things.

22 Chapter 2. Theories for a Tutorial

In�uence Factor Description

Structure It is created by giving the user rules within the tutorial.
These basic set of rules de�nes the limits, in which the user
acts. So di�erent users have to take the same sequence of
actions to reach a speci�c goal. The rules make the experi-
ences in the application fair and still challenging. Without
rules users can do whatever they like and get bored very
fast.

Motivation It is supported by giving users goals to reach. Without a
goal users loose their motivation in using the application
because there is nothing to achieve.

Feedback The learning experience is provided with feedback for the
user. With goals the motivation is supported and by get-
ting feedback the users learn what they achieved and if they
reached the goal. It is also important if some circumstances
are changing. Furthermore, the software gives positive and
negative feedback about the actions.

Grati�cation The users gets something for winning or defeating for ex-
ample an opponent. The reward for the user is used as a
motivator to go further. The rewards can also be applica-
ble to give the users con�dence in their actions. So they
know the right path is taken to reach the next goal.

Creativity It is supported by creating their own problem solving tac-
tic. There is not one single strategy to go through the
application. Therefore, the user has to �nd their own way
to succeed the challenges.

Table 2.2: In�uence Factors for Engagement in Software [Prensky, 2001].

2.1.4 Guidelines

Beyond the aspects to engage the user to an application, also ful�lling guidelines for cre-
ating a tutorial can support the developing process. In [Grabler et al., 2009], the following
guidelines for creating tutorials are suggested:

� Step by Step: When learning a new task, users tend to split up the task by their
own judgment into a sequence of simple steps. For example a sequence of instructions
in a tutorial should be used to teach a user one speci�c task.

� Succinct: The steps should be as short as possible. Every step, which is not neces-
sary, can be eliminated. The steps should not be repeated to avoid boredom of the
user.

� Annotations: Graphical tips like arrows and highlighted positions support the un-
derstanding of the user of the instruction.

� Text and images: The combination of text and images help to increase the e�ect
of the instructions on the users. It is more e�ective than just text or just images.

2.1. Challenges 23

� Grid-based layout: The layout of the tutorial should clearly de�ne the sequence of
steps. Furthermore, images and text should be placed near to the described objects
in a grid-based layout.

The design of the tutorial has a big in�uence on user acceptance of the application.
The presentation of the tutorial supports the application in guiding the user to learn more
about it. Unfortunately, it is also possible to achieve the contrary e�ect.

In [Adams, 2011], the following tips for creating an instruction set are presented. Be-
sides, the user gets engaged to the application. The �rst tip is "Do not force the player to
take the tutorial!". The idea behind this approach is not to bore the user with things they
already know. In case the user is already familiar with the concept of the application there
is no need to bother them with a mandatory tutorial. The most important part is to give
the user the opportunity to stop or skip the tutorial. So there are no annoying instructions
for users at the beginning of the application. The next tip for creating a good tutorial is
"Do not make the player read a lot!". This concept is based on the interaction between the
tutorial and the users. It is important that users do not have to read a long text to get the
information needed. It is also not helpful to let users navigate through a various number
of screens with only text on it. Of course, without any instructions a tutorial does not
make any sense. The best way is to keep the instructions short and let the user try out the
instructions. The next advice for a good tutorial is "Provide a good description of buttons
and menu items!". This advice is related to describing buttons or menu items with terms
which are clearly to the user. A negative example would be a reference to a Send button
but there is no button which is labeled with the term in the application. If using icons
for buttons the concept behind the buttons has to be introduced, so the users understand
the function of the button. Furthermore, it is essential to always describe menu items
with the whole path to it. For example click on menu X and the submenu Y. Therefore,
misunderstandings are not possible. The next advice is "Do not leave steps out!". The idea
is to avoid skipping instructions where they are needed. Of course, if a sequence of tasks
was already mentioned before in the tutorial there is no need to explain the same things
again. The important part is to give all necessary information to the users, so they do not
get stuck at some point. However, how detailed a tutorial is, depends on the complexity
of the application which is described. When leaving some steps out, create an additional
possibility to give information to the user. Even for information the users should already
know. For example after �nishing the tutorial, the program should provide help buttons to
the users. So there is a way to give short tips how to proceed in the application. The next
tip for creating a good tutorial is "Do not punish the user for mistakes!". This concept
is based on the idea to reset the tutorial after users make a mistake. So they have to go
through a lot of instructions all over again. In this case, they would be annoyed and the
frustration level rises. Therefore, do not make the punishment too hard. In a tutorial,
the users should be in a save environment. In the best case, the users are set back not
very far in the sequence of the tutorial and they get information about what was wrong.
The last tip for a good tutorial is "Let the users abort the tutorial!". The idea behind
this tip is to always give the user the opportunity to stop the tutorial at any time. Also
provide a possibility to skip some lessons if there are more than one task to ful�ll in the
tutorial. [Adams, 2011]

24 Chapter 2. Theories for a Tutorial

The guidelines are very general and depend on the speci�c application because it is hard
to �nd a clear pattern for every application. Also the length of a tutorial is not clearly
de�ned, but it depends on the purpose of the application as well as on the complexity of
the material which is brought to the user.

2.2 Educational Purposes

In the educational area, di�erent approaches to bring learning material to the users, are
tried out. The attempt of using game elements in combination with mobile devices and
the di�erences to the common teaching styles are discussed further on.

The traditional teaching style with one person (e.g. teacher) telling everything to a
group of other people (e.g. students) is not e�ective. The reason is that every user has
a di�erent speed of learning. So with a traditional learning style just a few people are
reached with the learned material. The rest is either challenged or bored. In the best case,
the teaching style is personalized for every user depending on their learning speed. The
personal needs of every person can be met and the success in learning is maximized. The
big problem with personalized learning is the demand of manpower. A teaching style in
between these two constraints has to be found. Before designing and creating a tutorial,
the behavior of the users have to be analyzed. Therefore, the learning process is divided
into three phases. In the �rst phase, the task has to be explained in an appropriate form.
So the user understands it easily, remembers the sequence and rehearses it by performing
tasks. The user can learn by trial and error in a secure environment of the tutorial. In
the second phase, the initial errors are detected and the users learn the right procedure to
perform the tasks. In the third phase, the users get more freedom and become familiar with
the task. The time a user needs for each phase is di�erent from person to person. [Harrison,
1995]

Besides, the learning process and the theoretical background in learning, there have
been some interesting �ndings in the use of mobile devices discussed. For example the
One Laptop Per Child Organization made an interesting experiment with kids in Ethiopia.
They gave tablets to children and observed their behavior with this unknown technology.
The surprising result was that the children learned by themselves how to use them. [Talbot,
2012]

With the usage of mobile devices and applications, a new approach for teaching can
be evolved. In literature, educational games were created and analyzed based on the
learning e�ect on students. The lessons learned out of educational games can be adapted
for applications on mobile devices. Even with a design according to all common design
rules it is hard to create software which meets the needs of di�erent persons. In school
teachers can react on the preferences of their students, but in software this is a challenging
part to develop. Therefore, the concepts of Gami�cation and mobile learning are presented
later on.

2.3 Inspiration for a Tutorial

There are several programs with the purpose of simplifying the programming process and
to teach programming. In this context, we are interested in the approach to explain the
work�ow and the usage of the programs. These programs are used as an inspirational
resource for creating a tutorial for Pocket Code.

2.3. Inspiration for a Tutorial 25

Furthermore, the implementation, advantages, and disadvantages can be analyzed on
already existing examples. So the basic concepts are extracted from the existing tutorials
and can be adapted for mobile applications. Here, we are going to discuss the following
programming environments:

� Scratch [Scratch, 2014], details follow in Section 2.3.1.

� Wario Ware D.I.Y. [Wario Ware D.I.Y, 2014], details follow in Section 2.3.2.

� Alice [Alice, 2014], details follow in Section 2.3.3.

� Kodu [Kodu, 2014], details follow in Section 2.3.4.

2.3.1 Scratch

Scratch is a visual programming language including a development environment developed
by the Lifelong Kindergarten Group at the MIT Media Lab. The user can program stories,
interactive games, and animations within the developing environment of Scratch. The
programs can be shared with other users over the website. It has been developed since
2007 and the current version is 2.0. The release of Scratch 2.0 replaced the desktop
programming environment with a web-based environment. So the software is platform
independent and the major purpose is to teach the concepts of programming. The main
target group are kids but it is also suitable for teenagers and adults. In the program,
objects are created and the behavior, look and, sound is customized with the code of the
users. In Scratch, there are blocks which represent code fragments. With these blocks, it
is possible for example to change the look of the object. Furthermore, the basic control
structures of programming languages are included (e.g. loops, if-statements). Please see
Figure 2.1 to take a look on the user interface. Before Scratch 2.0, there were only online
manuals and so called Scratch cards. A Scratch card explains a speci�c task in Scratch
(e.g. how to change the color). Since Scratch 2.0, there is an additional step by step
introduction available. In ten steps, a simple program is created to show the user the basic
usage. [Scratch, 2014]

Figure 2.1: Scratch with Step by Step Introduction [Scratch, 2014].

26 Chapter 2. Theories for a Tutorial

The advantages and disadvantages of Scratch are:

� The usage of Scratch is simple. A program can be put together by dragging and
dropping of the programming elements needed.

� A complex project idea is hard to realize. The reason is the more complex a project
is the more complex the scripts get. Therefore, the whole project gets hard to read.

� The programming structures (e.g. loops) are visible.

� Suitable for people of all ages.

� Scratch can be used for projects in di�erent contexts, not only for computer science
topics.

2.3.2 Wario Ware D.I.Y.

Wario Ware D.I.Y. is a game for the handheld game console Nintendo DS. The game
consists of about 90 mini games. The characteristic of the game is the possibility to create
your own mini games. These games can be shared and downloaded on the website. Also
the tutorial at the beginning is very detailed. So after starting the game a tutor shows
and tells the way through the �rst steps. Also the user can try out simple prede�ned mini
games to see the possibilities. There is a simple story behind the tutorial. The story is that
the user is a new programmer in the company of Wario. Therefore, the user has to start
creating games or taking some teaching lessons from the tutors. In three lessons, the users
is taught the main functionality of how to create a mini game within a guided tutorial. It
is designed with tutors, who guide the users step by step through the tutorial. In every
lesson, the user gets more freedom and has to do more steps on his own. In Figure 2.2, you
can �nd screenshots of a tutorial lesson in Wario Ware D.I.Y. [Wario Ware D.I.Y, 2014]

Figure 2.2: Wario Ware D.I.Y. Tutorials Screens [Wario Ware D.I.Y, 2014].

2.3. Inspiration for a Tutorial 27

The advantages and disadvantages of Wario Ware D.I.Y. are:

� The ease of use.

� Only point and tap are available for user actions. For example button clicks are not
programmable.

� A detailed introduction which covers the basic concepts for creating games.

� Di�erent templates are available.

2.3.3 Alice

The Alice Project is a multi-university project. Among others, the Carnegie Mellon Uni-
versity is a big contributor to the project. Alice is a programming environment for creating
3D animations. In the programming environment, the user can create stories, interactive
games, and videos for the web. It is a free available teaching tool and shows the users
the concepts of object-oriented programming. In Alice 3D objects are available to insert
into an virtual world and the task is to program the behavior of the objects. The user can
drag and drop the components of the program (e.g. if-statement) and put them together
to a runnable animation. There is also a tutorial implemented in Alice 2.3. The tutorial is
divided into four lessons. Please see Figure 2.3 for the dialog to select one of the lessons.
The steps in the tutorial are presented on notes which are on top of the Alice environment.
In Figure 2.4 the tutorial in Alice is displayed. [Alice, 2014]

Figure 2.3: Alice Tutorial Selection [Alice, 2014].

28 Chapter 2. Theories for a Tutorial

In the �rst lesson, the tutorial is explained and a quick tour through the development
environment is given. Also a simple routine is programmed on an ice skater example. In the
second lesson, the creation of objects and how to create methods are presented on a bunny
example. In the third lesson, the user is taught how to create responses on mouse and
keyboard events with a penguin example. In the last lesson, the user learns how to create
customized scenes for the programs on top of a spaceship example. On the website, there
are also screen capture videos and textual manuals available for further help. By following
these tutorials, the basic concepts of programming in Alice and the Alice programming
environment is introduced. On top of this, the users should be able to create their own
projects. [Alice, 2014]

Figure 2.4: Alice Tutorial Screen [Alice, 2014].

The advantages and disadvantages of Alice are:

� The programming elements can be dragged and dropped into the script.

� The programmed sequences are visible to the user.

� There is no need to learn a special syntax.

� The main purpose of the software is teaching.

2.3. Inspiration for a Tutorial 29

2.3.4 Kodu

The Kodu Game Lab is a programming environment developed by Microsoft Research.
The main purpose is to provide an environment to create games without any programming
knowledge for PC and XBox360. The target group are primarily kids. A program can be
created with simple mouse clicks by creating objects and giving them attributes. There
are several tutorials to provide an easy access into programming. In di�erent lessons, the
usage is presented to the user. In a step by step procedure, the user creates �rst games.
So the user can learn the functionality by going through the tutorial courses. For example
one tutorial covers the object creation (creating an apple and a gaming agent, a so called
Kodu). Besides, in the tutorial the concepts of programming the Kodu agent to eat the
apple is described. In another tutorial, the user is shown how to add and change the
background, as well as the usage of scores for the created games. In Figure 2.5 and Figure
2.6 screenshots of the tutorial selection and presentation are shown. Furthermore, there
are several examples. The created games can also be shared in a community and other
games can be downloaded. [Kodu, 2014]

Figure 2.5: Kodu Tutorial Selection [Kodu, 2014].

The advantages and disadvantages of Kodu are:

� Programs can be created with a keyboard or a gamepad because Kodu is available
for PC and XBox360.

� Introduction lessons are available.

� The environment is in 3D.

� The programming fragments (e.g. loops) are hidden.

30 Chapter 2. Theories for a Tutorial

Figure 2.6: Kodu Tutorial Screen [Kodu, 2014].

2.4 Gamification

Gami�cation is a procedure to make a special context more appealing to users. Therefore,
typical gaming elements are used in a non-gaming context. This is done for a better
engagement of the user to the application. Furthermore, complex tasks which otherwise
can be stressful or boring to the user get solved in a fun way. In the following sections,
this term and the basic elements are discussed in more detail.

2.4.1 Definition

The term Gami�cation �rst appeared in digital media and is often referred to other terms
like "funware" or "productivity games". Meanwhile, the term Gami�cation is a well known
term in the �eld of games. Gami�cation is the term for using design elements in non-
gaming contexts, which are typically used for games. Gami�cation correlates to games
and is distinguished into playing and playfulness. The de�nition is build on gameful design
and therefore, the use of game design elements. A gami�ed application consists of gaming
elements. [Deterding et al., 2011]

The main reason for using Gami�cation is to increase the engagement of the user to
the application. There are di�erent further reasons why games are bene�cial for learning.
Games a�ord an abstract way to gain experience which cannot be achieved by just reading
a book. The users interact with the software and make decisions to achieve progress.
[Grappiolo et al., 2011]

2.4. Gami�cation 31

Games o�er the opportunity to play di�erent roles and make experiences from di�erent
points of view without any serious consequences (e.g. learning di�erent con�ict solutions).
For tutorials, there are several gaming elements which can be used. Further, the gam-
ing elements fantasy, goals, feedback, disclosure, time pressure, rewards, and stimuli are
discussed in more detail in the next sections. [Li et al., 2012]

2.4.2 Fantasy

Fantasy is a feature which can be easily transferred to di�erent user interfaces. In an
application, fantasy is the ability to create a mental image of physical objects in the mind
of the users. Fantasy happens only in the mind of the users. So objects and situations,
which are not real, are created. Therefore, the user can connect emotionally with the game.
Fantasy splits up into emotions and metaphors. Besides, an emotional factor is created and
a metaphor can help the users by learning to use the application. This means a similar
concept can be implemented on di�erent applications. So the users already know the
handling. For example a �oppy disc icon symbolizes a save function. Fantasy supports the
process of satisfying the emotional need of the users. This process is di�cult to implement
because di�erent users have di�erent needs. So a good middle way has to be found. One
way is to realize the fantasy of the target group and another way is to provide several
presentations for di�erent user groups. [Li et al., 2012] [Malone, 1982]

2.4.3 Goals

A challenging activity is the need of having a goal with an unknown outcome. This means
the users should be uncertain about reaching the goal. On the other hand, the users
should also be uncertain about not reaching the goal. Therefore, it is more enjoyable
and the users do not get bored. However, the users should get feedback about their
progress in achieving a goal. One approach for making a goal uncertain to reach is to
implement multiple level goals. Furthermore, common approaches are implemented in
keeping score and creating time pressure. Clear goals are important to give the users
a de�nition of the tasks. Goals also help the users to understand the assignment. The
goals should be presented early but at an appropriate time and they should also be clearly
de�ned. The feature of incentives gives the user an additional motivating factor in the
learning environment. So the performance is measurable and can be compared to others.
[McNamara et al., 2010] [Sweetser and Wyeth, 2005] [Li et al., 2012] [Malone, 1982]

2.4.4 Feedback and Guidance

Typically in games the feedback comes instantly to the user. So the user is informed at any
time about the progress. Furthermore, the system should help the user in case of erroneous
behavior. The feature of giving the user feedback is an important construct for learning.
On the one hand giving the user reassurance, while on the other hand providing critical
comments and help messages. In�uences on feedback in the learning process are timing
(immediate or delayed), content (error feedback or explanatory feedback), and delivery-
method (visual or auditory). The user should always have the feeling to have control over
the character, the actions, and the environment in the game. The immediate feedback to
the user is important for the progress in the game. Therefore, the players are aware of
their current status. [Sweetser and Wyeth, 2005] [McNamara et al., 2010] [Li et al., 2012]

32 Chapter 2. Theories for a Tutorial

2.4.5 Progressive Disclosure

The game should provide an increase of the skills. So it is ensured the task matches the
skills of the users. The application should challenge the user in a way the users do not
get the feeling it is impossible to accomplish. For example a tutorial can help novice
users at the beginning and gives just hints to expert users. The user should concentrate
on the game, so the game should provide incentives to keep the players busy. The users
should have the possibility to start the game without any previous knowledge. Every skill
needed can be learned within the game. Furthermore, the learning phase should be also
interesting. The feature of varying the task di�culty can be critical. If the di�culty is too
high the user gets frustrated and quits using the application. If the di�culty is too low the
user gets bored and has the same e�ect of exiting the application. So an optimal level of
challenge for the user has to be provided. [McNamara et al., 2010] [Li et al., 2012] [Sweetser
and Wyeth, 2005]

2.4.6 Time Pressure

Time makes tasks more di�cult and more challenging for the users. The users get the
task to complete a set of tasks within a speci�c time range. As a reward, it is possible to
gain extra points for completing in time. The ratio between number of tasks and the time
range has to be set at a point where it is challenging for the user but not impossible to
accomplish. [von Ahn and Dabbish, 2008] [Li et al., 2012]

2.4.7 Rewards and Punishments

Rewards act as a motivation for the user, e.g. to gain points or unlock levels. In contrast
to rewards, there are also punishments for the user in the game. The punishments have to
be used carefully. It can have the e�ect of frustrating the user. So it is possible to destroy
the engagement to the application by an excessive use of punishments. It can be a tool
for learning with a small degree of punishment to show the user erroneous actions. There
are di�erent types of rewards and punishments in games identi�ed. These rewards and
punishments are found in Table 2.3. [Hallford and Hallford, 2001] [Gazzard, 2011] [Juul,
2009]

Reward/Punishment Description

Rewards of Glory This type of reward does not have an impact on the
gameplay. These rewards give the user a positive expe-
rience. An example for such a reward are coins which
can be collected. There is no forwarding of the level
progression but the users get the possibility to compare
their score with others.

Rewards of Sustenance This type of reward is an extension of the rewards of
glory. For example when collecting a de�ned number
of coins the user can gain extra lives. So these rewards
extend the possible time for playing the game without
restarting.

2.5. Mobile Learning 33

Reward/Punishment Description

Rewards of Access This type of reward allows the users to access new
locations or resources which were locked before in the
game. The rewards have no further use in the game.
An example for such a reward is a key to unlock a door
within the game.

Rewards of Facility This type of reward enables the user to do tasks in the
game which were not able before.

Energy Punishment The user has an energy bar which is decreased when
performing a false move.

Life Punishment For making a mistake in the game one life is taken
from the user.

Game Termination Pun-
ishment

Some actions in the game are punished with terminat-
ing the game.

Setback Punishment This punishment brings the user back to a speci�c
point. For example the user has to play one level from
the beginning.

Table 2.3: Rewards and Punishment in Games [Hallford and Hallford, 2001], [Gaz-
zard, 2011], [Juul, 2009].

2.4.8 Stimuli

Stimuli provide a higher engagement of the user to the game. This is done by appealing
the user with high quality graphic and sounds. So it is a pleasure for the user to play the
game. The game experience should be deep. Furthermore, the users should feel involved
in the game. The application should provide platforms for the communication between
users. The feature of control provides in�uence of the user on the environment. So the
environment can be personalized by the user and is dependent on the choices of the user.
For example, the goals vary depending on the success of the user in the game. The feature
of the environment de�nes the design of the application. [McNamara et al., 2010] [Sweetser
and Wyeth, 2005] [Li et al., 2012]

2.5 Mobile Learning

Over the past years, mobile platforms have found their way into the everyday life. The
main purposes of mobile phones are telephoning, texting, and playing games. So there is a
new interest in the learning behavior with mobile devices. In this thesis, primarily mobile
phones and tablets are referred to mobile learning devices. Other mobile devices, like the
Nintendo DS, are not considered in the following.

34 Chapter 2. Theories for a Tutorial

2.5.1 Definition

On top of the basic concepts of e-learning, the term mobile learning (m-learning) was
de�ned. The one de�nition of m-learning which is used in this thesis is: "The use of
mobile devices to provide access to learning content and information resources is called
m-learning." [DeGani et al., 2010] [De�nitionforMobileLearning, 2014]

Of course there are several advantages and disadvantages for learning with mobile
devices and learning games. In [Mitchell and Smith, 2004] the following are identi�ed:

� The learning objects may not be equivalent to the gaming objectives.

� The focus on winning and completing can distract from the actual learning goal.

� The learning material may not be adaptable.

� The game cannot reach every target group (e.g. male and female have di�erent
preferences).

� The learning games are too easy or di�cult and therefore, it decreases motivation.

� M-learning eliminates the lack of interest and con�dence.

� It reduces training time because of an easy access for the users.

� The learning material is processed visually.

� It provides a risk-free environment for learning.

� Can be adapted to di�erent learning speeds and styles.

� Supports cognitive learning and decision making.

The possibilities for mobile learning expand with the available features of mobile de-
vices, like GPS, Bluetooth, and motion sensors. For example with the GPS feature, the
position of the user can be used within the application. So the application gets more in-
teractive with this feature. Furthermore, the users feel as a part of the learning experience
and it also in�uences the learning e�ect by making it more sustainable. [Lavin-Mera et al.,
2009]

In the following sections, detailed information about learning principles (Section 2.5.2),
adaptive learning (Section 2.5.4), learnability (Section 2.5.3), and serious games (Section
2.5.5) are presented.

2.5.2 Learning Principles

Including principles of learning into applications, as well as in games, is a challenging
part. For creating educational software, four learning principles are identi�ed, these are
the active and critical learning principle, the design principle, the semiotic principle, and
the semiotic domain principle. These principles are discussed in the following. [Gee, 2003]

2.5. Mobile Learning 35

Active Learning Principle

The learning environment encourages an active and critical learning experience of the
student. The users should feel like an active agent in a positive learning experience. The
actions and decisions of the users take e�ect in the user interface. So the users have
in�uence on the design of the application. For a deep learning, the user has to be engaged
to the application. Therefore, the users can create a new identity in which they are
committed to. The users get challenged in the application and so the users do not get
bored. The problems should be ordered in a way which brings the user from easy solvable
problems to complex tasks. The learning experience rises if the di�culty level changes.
The challenges encourage users to go further and have the feeling that the task is hard but
doable. So there is a progress visible for the user. They also get the chance to practice
new skills and develop the ability to automate the newly learned skill. With this approach,
the application can control the learning pace for the user. [Gee, 2004] [Gee, 2003] [Mitchell
and Savill-Smith, 2004]

Design Principle

The design of the application supports the learning experience on a visual level. The users
should be able to customize the style of learning and it should also be possible to change
the style. So the best way for the user to learn content is achieved. The users should get
the feeling to manipulate objects in the application, for example the user is able to control
a robot. With this, the e�ectiveness of the actions is increased. The manipulation helps
the users to reach the goals. Sandboxes support the learning process by putting users
into situations which imitate the real application. So the users can learn, but cannot do
anything wrong quickly. [Gee, 2004] [Gee, 2003] [Mitchell and Savill-Smith, 2004]

Semiotic Principle

The use of a multiple sign system (e.g. images, words, symbols) is important to represent
the learning material in an appealing representation. The capability of processing textual
information out of context is poorly integrated in the human mind. In an application,
the information, which is needed, should be accessible when the user can apply it ("Just
in Time") or when the user has the feeling he/she needs help ("On Demand"). [Gee,
2004] [Gee, 2003] [Mitchell and Savill-Smith, 2004]

Semiotic Domain Principle

At some point the user has to apply the learned material on the speci�c domain and
further, the users have to adapt it to other domains. The best way of learning is to give
users the overall picture because then the users will understand how it �ts into the actual
application. When the user learns a new skill, it should not be out of context. Otherwise,
the user gets bored quickly and the learning process is not e�ective. So when introducing
a new skill to the users, there should be a relation to the application. A set of related skills
can be summarized within a strategy. [Gee, 2004] [Gee, 2003] [Mitchell and Savill-Smith,
2004]

36 Chapter 2. Theories for a Tutorial

2.5.3 Learnability

In the process of creating an application, usability is one factor to evaluate the user inter-
face. One aspect of usability is the ability to learn how to handle the application. This
aspect is called learnability and is also correlated to the use of tutorials in software. A tu-
torial supports the learnability factor. The term learnability is de�ned in di�erent contexts
(e.g. linguistics, mathematics). In software development, learnability means a system is
easy to learn by the user and it is also part of the initial learning curve. [Nielsen, 1994]

In this thesis, this de�nition is used and is related to information design. So the learn-
able information has to match �ve factors. It has to be memorable, logical, reconstructable,
consistent, and visual. For memorable information, the human memory has big in�uence
on the learning experience. The memory is connected to associativity. Many checklists
and procedural lists are hard to remember and decrease the learnability. The user has to
go back to the starting point to remember the executed task. Learning material, which
is perceived as logical, should be presented step by step to the user. There is just the
information which is needed for the task. The learned material is reconstructable if the
concept can be performed without referring to a speci�c sequence of actions (e.g. the folder
structure in MS Windows and in a command line interface). The information has to be
consistent in the use of terms, phrases, and style. The visual presentation of information
is also a tool to increase learnability. [Haramundanis, 2001]

Nevertheless, learnability strongly depends on the experience of the user. The level of
experience with computers and mobile devices, quality of domain knowledge, and the expe-
rience with similar applications are relevant criteria. The learning process is distinguished
into three phases, initial learning, extending learning, and learning as a function of experi-
ence. The initial learning process means that users have no knowledge about the context
of the application and they have to learn the usage of it. The extending learning process
covers that users have knowledge about the context and only need to get familiar with the
instructions in the speci�c applications. In this case, a step by step tutorial can be boring
for an experienced user. So it is important to give the user the possibility of stopping or
forwarding the tutorial. The learning as a function of experience process is the middle way
of the initial learning and the extended learning. The user has no domain knowledge but
has knowledge about a similar system. So the user has a general understanding of which
tools and functions are available. For instance, a user of Scratch will �nd their way through
Pocket Code more easily than a user without previous experiences. [Grossman et al., 2009]

2.5.4 Adaptive Learning

The approach of adaptive learning is introduced in this section. Here, we de�ne adaptive
learning as the ability to adapt the software to the learning requirements of the user. For
example Pocket Code is an application with the basic idea to show kids and teenagers the
concepts of computational programming (e.g. conditions, iterative, loops). In order to o�er
the users an attractive environment, they should be motivated to create and share their own
projects. Furthermore, the users are taught programming skills in a game-based way. The
complexity of learning to write programs in Pocket Code is very high. Also understanding
the work�ow and the relationship between the programming fragments are challenging
for the user without help. So learning to program from scratch through exploration is
frustrating and not e�ective. For example a tutorial is useful to teach the basic steps in a
playful way. So the users can adapt the material learned with the application for further
use. [Torrente et al., 2009]

2.5. Mobile Learning 37

The interactivity is important to get a personalized experience. This is an approach to
let users learn on their own but also give them the possibility to get answers on ambiguities
without the need of a human teacher. The main aspect for this approach is the capability
of the user to adapt the concepts. The adaptation in learning depends on di�erent aspects,
for instance the level of prior knowledge and learning styles, as well as the combination of
several aspects. [Torrente et al., 2009]

Adaptive user interfaces are not necessarily a bene�t. User interfaces do not appear
to the users in the same way as designers intend to. There is always the possibility, the
interface is not comprehensible and does not give the user the feeling of control. The users
cannot build adequate mental models of the system. In some domains, the understanding
of the system design model does not need to be known by the user for su�cient ease of
use. [Paymans et al., 2004]

In literature, there are several technologies how to implement the adaption in a system.
According to [Brusilovsky, 1998], these approaches can be found in Table 2.4.

Name Description

Curriculum Sequencing The sequence of tasks is according to the preferences
of the user. So it helps the user to �nd an individ-
ual path of tasks through the information. Further-
more, it is distinguished between knowledge and task
sequencing. The di�erence is the sequence based on
the topic or the task to be learned.

Intelligent Analysis of User So-
lutions

This approach deals with actions and solutions of
problems provided by the user. So the user gets feed-
back about the solutions (e.g. what was wrong, what
was incomplete).

Interactive Problem Solving
Support

The goal is to provide interactive help for the user.
Depending on the user, the help can be a hint for the
next step or even execute the next step for the user.
So the actions of the users have to be watched and it
needs to be saved at which level the user needs help.

Example Based Problem Solv-
ing

This approach saves examples from previous experi-
ences of the user and this examples are used by stu-
dents to solve a speci�c problem. The system suggests
which previous example is relevant.

Adaptive Presentation The visual presentation is based on the preferences of
the users (e.g. expert users get more detail informa-
tion than novice users).

Adaptive Collaboration Support Here, the preferences of di�erent users are collected
to be combined into a collaborating group.

Table 2.4: Several Technologies for Adaption [Brusilovsky, 1998].

38 Chapter 2. Theories for a Tutorial

2.5.5 Serious Games

In �rst instance, the purpose of games is to entertain. Typical elements of games can
be used in education, like presented in the previous sections. Similar to Gami�cation,
where gaming elements are used to make a non-gaming content more appealing to a user,
serious games combine entertainment with non-entertainment factors like education. The
principles are adaptable for the combination of gaming elements with other contents (e.g.
advertising, simulation, and politics). For education, the aspects are for example teaching,
training, and informing. The idea behind is to give a motivating platform for learning a
speci�c topic to the user. Furthermore, games give users the possibility to interactively
take actions and make decisions that impact the content. Users also have the opportunity
to practice their knowledge on a secure virtual environment. [Hakulinen, 2011] [Grappiolo
et al., 2011] [Barbosa and Silva, 2011]

The challenging part of designing a serious game is �nding the balance between serious
objectives with fun and interactive elements. The design process can be split up into the
following steps: [Cha�n and Barnes, 2010]

� Identify the target purpose (e.g. education).

� Identify measurable objectives which can be achieved (e.g. solve a puzzle).

� Create a metaphor to connect the purpose to the objectives (e.g. a brick is a pro-
gramming block).

� During creating the metaphor de�ne the instructions to meet the purpose (e.g.
putting several bricks into a script).

� Prepare support for the users to achieve the objectives (e.g. tutorials).

� Create a prototype.

� Test the e�ectiveness of the game (e.g. with a usability test).

2.6 Implementation in Pocket Code

During the work for this thesis, prototypes for a guided tutorial and a tooltip system
were developed. Here, the basic structure of all prototypes is presented. Further, a simpler
version of a tutorial in the form of a tooltip system was created. The �rst tutorial prototype
was developed on the basis of a younger target group than on the second tutorial prototype.
Furthermore, the lessons learned from creating the �rst prototype were helpful to create
the tutorial for a target group of teenagers. The design for user interface of the second
prototype is later presented in Section 3.3. Also the visual presentation of the tooltip
system is shown in Section 3.2. In the following sections details about the implementation
of the prototypes are presented.

2.6.1 First Prototype

The �rst prototype of a guided tutorial for Pocket Code was intended for a target group of
children at an age between 8 and 14 years. Therefore, the tutors were created as cartoon
animals (cat and mouse). In Figure 2.7 the tutors are shown.

2.6. Implementation in Pocket Code 39

Figure 2.7: Tutors for the First Prototype.

The tutorial has to be started explicitly by the user. In the �rst dialog the users can
choose which lesson of the tutorial they want to take. The lessons, the behavior, and the
words for the tutors are saved in an XML-�le. The �le consists of the elements presented
in Table 2.5.

XML-Tag Description

<LessonCollection> This element is the root element of the XML-�le. It con-
sists of one <LessonArray> and the <CurrentLesson> of
the tutorial.

<LessonArray> This element contains several <Lesson> elements which
can be chosen by the users after activation. A <Lesson>

is activated after �nishing the previous one.

<Lesson> This element includes <LessonName>, <LessonContent>,
<LessonID>, and <CurrentStep> which are described in
the following in detail.

<LessonName> This element contains the name of the lesson which is
further presented in the user interface.

<LessonContent> This element contains the tasks for the tutors. The dif-
ferent tasks are described in the following.

<LessonID> This element is a unique id for the lesson.

<CurrentStep> This element describes the current position of the user
in the lesson. So the user can go forward and backward
within a lesson.

<CurrentLesson> The value describes how far the user is with taking the
tutorial lessons. So the lessons are activated one after
another.

<TaskAppear> This task makes the tutor appear at a speci�c position.
Therefore this element consists of a <TutorType>, the
horizontal, and vertical coordinates.

<TaskDisappear> This task makes the given tutor disappear from the user
interface. Furthermore, it consists of the <TutorType>.

<TaskSay> This task has the function to make the tutor speak. It
consists of the <TutorType> and a <message>.

40 Chapter 2. Theories for a Tutorial

XML-Tag Description

<TaskFlip> This task lets the tutor �ip in the opposite direction.
Therefore, it consists of the <TutorType>.

<TaskWalk> This task makes the tutor walk from one position to an-
other. Besides, it consists of the <TutorType> and the
coordinates of the position to walk to.

<TaskJump> This task handles the ability of the tutor to jump to an-
other position. Therefore, it consists of the <TutorType>
and the coordinates for the new position.

<TaskSleep> This task de�nes the time the tutor does nothing. It con-
tains the TutorType and the time to wait in milliseconds.

<TaskNotification> This task is a noti�cation for which the execution
of the tutorial is waiting. So it consists of a
<NotificationType> and <NotificationString>. For
example the user has to tap on a button before the tuto-
rial moves further to the next step.

<TutorType> This element de�nes which tutor executes the correspond-
ing task. CATRO or MIAUS are a valid value.

<message> The text entered in this element is shown to the user. It
is shown to the user in a bubble and it appears letter per
letter.

<NotificationType> This element de�nes which noti�cation is active. There-
fore, the tutorial is waiting for an input from the user.

<NotificationString> This element provides additional information for the
<TaskNotification>.

Table 2.5: XML-Elements for the Tutorial.

In Listing 2.1 there are concrete examples for the use of the XML-�le for the tutorial.
The listing is a minimal example. So every task is only used once.

2.6. Implementation in Pocket Code 41

<?xml version=" 1 .0 " encoding="UTF−8" standalone="yes " ?>
<org . catrobat . catroid . tutorial . LessonCollection>

<LessonArray>
<org . catrobat . catroid . tutorial .Lesson>

<LessonName>Erste S ch r i t t e</LessonName>
<LessonContent>

<org . catrobat . catroid . tutorial . tasks .TaskAppear>
<TutorType>CATRO</TutorType>
<x>60</x>
<y>55</y>

</org . catrobat . catroid . tutorial . tasks .TaskAppear>

<org . catrobat . catroid . tutorial . tasks .TaskSay>
<TutorType>CATRO</TutorType>
<message> Here i s the text f o r the tuto r . </message>

</org . catrobat . catroid . tutorial . tasks .TaskSay>

<org . catrobat . catroid . tutorial . tasks .TaskFlip>
<TutorType>CATRO</TutorType>

</org . catrobat . catroid . tutorial . tasks .TaskFlip>

<org . catrobat . catroid . tutorial . tasks .TaskWalk>
<TutorType>CATRO</TutorType>
<walkToX>50</walkToX>
<walkToY>70</walkToY>

</org . catrobat . catroid . tutorial . tasks .TaskWalk>

<org . catrobat . catroid . tutorial . tasks .TaskJump>
<TutorType>CATRO</TutorType>
<newX>50</newX>
<newY>70</newY>

</org . catrobat . catroid . tutorial . tasks .TaskJump>

<org . catrobat . catroid . tutorial . tasks .TaskSleep>
<TutorType>CATRO</TutorType>
<SleepTime> 100 </SleepTime>

</org . catrobat . catroid . tutorial . tasks .TaskSleep>

<org . catrobat . catroid . tutorial . tasks .TaskDisappear>
<TutorType>CATRO</TutorType>

</org . catrobat . catroid . tutorial . tasks .TaskDisappear>

<org . catrobat . catroid . tutorial . tasks .TaskNotification>
<NotificationType>BRICK_CATEGORY_DIALOG</NotificationType>
<NotificationString>1</NotificationString>

</org . catrobat . catroid . tutorial . tasks .TaskNotification>

</LessonContent>
<LessonID>0</LessonID>
<CurrentStep>0</CurrentStep>

</org . catrobat . catroid . tutorial .Lesson>
<CurrentLesson>0</CurrentLesson>

</LessonArray>
</org . catrobat . catroid . tutorial . LessonCollection>

Listing 2.1: Concrete XML-Example.

42 Chapter 2. Theories for a Tutorial

2.6.2 Second Prototype

This prototype is based on the experiences made with the �rst prototype. In cooperation
with designers from the Catrobat team, a new design was created. Furthermore, the target
group was changed to young teenagers aged between 12 and 16 years.

At a �rst execution of the application, the guided tutorial starts automatically. So the
�rst lesson is mandatory to show the users the basic concepts. In case the users are already
familiar with Pocket Code, a possibility to skip the beginning lesson is available.

On the contrary to the �rst prototype, only one tutor is used for guiding the user
through the tutorial. The character of the tutor is developed as a teaching agent. In
Figure 2.8 the design of the created tutor is presented. The second prototype for the
tutorial is still in development when �nishing this thesis.

Figure 2.8: Design of Tutor for the Second Prototype.

The creation of the story and the sequence of actions of the tutor are saved in a XML-
�le like in the �rst prototype presented before. The tutorial is planned to be split up into
two phases. The �rst phase is a mandatory lesson every user has to take at the �rst start
up of Pocket Code. The second phase is to work with the application. The usage can be
done with or without a tutorial depending on the personal decision. The design for the
mandatory lesson is presented in Section 3.3 in detail.

2.6.3 Tooltip Implementation

The idea for a simple tooltip system came up because of the need of a tutorial. Therefore,
short textual messages appear on the user interface when activated. So the user gets an
idea what a speci�c element (e.g. a script item) does. The user can activate the tooltips
by clicking on a button in the title bar. When activated, every important element of the
user interface gets an additional question mark button. By clicking on the question mark,
a tooltip for the corresponding element shows up. It disappears after a second click on
the button. A detailed presentation of the implemented tooltip system is shown in Section
3.2. The tooltips are drawn on top of the application on a SurfaceView like the tutorials
presented before. The position of the tooltips are computed out of the position of the
corresponding element. So there is no need to save the positions. The messages are stored
in the resources of the Android application. Thus the texts are easy accessible for the
application.

2.7. Chapter Summary 43

2.7 Chapter Summary

In this chapter, di�erent theories about the creation and the usage of tutorials are pre-
sented. The challenges of creating stories and tutors are explained in detail. So a sequence
of steps is created and the users do not get bored when going through the tutorial. There-
fore, di�erent aspects are important, for example, the demonstration of tool handling,
navigation within the application, and guidance of the tutor. A tutor can be created with
di�erent characteristics, for example, like a teacher. The bene�t of the e�ort of creating a
story and tutors is to engage the users to the application. Besides, factors like enjoyment,
creativity, and grati�cation have to be satis�ed to get an optimal engagement level for
the users. Also some guidelines and best practices, for creating a tutorial, are introduced.
Moreover, some inspirational resources were presented in this chapter (Wario Ware D.I.Y.,
Scratch, Alice, Kodu). Here, the approaches of the presented applications for a tutorial
were analyzed and also the advantages and disadvantages were identi�ed. Furthermore,
the idea of using tutorials as a teaching tool was explained.

Therefore, teaching styles and learning processes were analyzed. Also the term of
Gami�cation was de�ned. In this context, gaming elements, like fantasy, goals, feedback,
progressive disclosure, time pressure, rewards, and punishments, were identi�ed. Also the
term mobile learning was de�ned which includes learning principles, a de�nition of adap-
tive learning, and the concept of learnability. At the end of the chapter, implementation
details about the prototypes, which were developed for Pocket Code, are presented. The
considerations of the di�erent theories had in�uence on the prototype development. The
most important part is the structure of the tutorial in the background. Therefore, a XML-
structure was used to arrange the lessons. The content for the tutorial lessons and the
tooltips are presented later in this thesis.

44 Chapter 2. Theories for a Tutorial

Chapter 3

Types Of Tutorials

For software products, an important part of the development is to give support to the
end users. This support can be presented in di�erent forms. Here, we focus on help and
tutorial systems. The goal of these systems is to give the user a possibility to learn the
necessary tasks for an e�ective use of the application. Furthermore, the content of the
application can be communicated. Here, we start with a simple documentation, going over
tooltips, and come to more complex training challenges. The design of the prototypes for
the Android application Pocket Code, which have already been introduced in the previous
chapters, will be presented.

First, an overview on help and tutorial systems in general will be given. In literature,
di�erent presentations of help systems were analyzed. In [Baecker, 2002] �ve examples
for creating documentation and helping systems are explained brie�y. These examples are
summarized in the following (Table 3.1).

Name Description

Screen Linking In this method, the computer system of the user is connected
to another computer system with a human supporter. So the
supporter watches over the user and follows the steps visually.
This method is primarily used in support services. It can also
be used for live demonstrations and teaching tasks. Questions
and problems are discussed on demand via chat or telephone.
This approach is an abstract version of the face-to-face teach-
ing style.

Visual Streaming In this method, information is transferred as audio, video,
slides and live demonstrations in a web interface. So the in-
formation can be presented to an unlimited number of people
around the world. In a split screen, the data is divided, e.g.
in a slide presentation with keywords, a demonstration screen
and a chat system which are included in one browser window.

Animated Icons In this method, animated icons are the key objects. Icons are
small and easily recognizable for the user. The meanings of
the icons have to be clear and universal. By adding animation
to the icons a dynamic visual representation is added (e.g.
adding a textual hint about the use of the icon).

45

46 Chapter 3. Types Of Tutorials

Name Description

Screen Capture This method uses a tool to record the whole screen. The
purpose is to document the steps for a speci�c task in a visual
way. The capture is taken from the interaction of an expert
user with the software. Text, sounds, and animations can be
added to the capture for a better understanding. The range of
use is demonstration, explanation, and guidance for the user.

Structured Web Video
Systems

This approach is used for demonstration within a documen-
tation system. A speci�c task is presented in a video which
is embedded in a website. The videos are in a hierarchical
structure. The user can watch the videos in the hierarchical
order consecutively or jump just to single videos (e.g. a "how
insert a picture" video).

Table 3.1: Examples for Help Systems [Baecker, 2002].

In the next sections, we want to go in detail with tutorial systems for mobile devices.
Methods and guidelines for creating tutorials were developed in �rst instance for classical
computer software systems. They are also relevant but have to be adapted to the special
needs of mobile devices (e.g. smaller screens). Furthermore, the relevance of an appropriate
design has to be considered.

There are di�erent presentations of tutorials. Here, three approaches are discussed in
detail with examples implemented in Pocket Code.

3.1 Manuals

This tutorial method is mentioned for completeness. It is the classical way to distribute
information about software. Manuals are usually just text (and screenshots) and describe
the main functions of software. This method is easy to realize and is used in practice very
often in di�erent forms. A manual is reactive, this means users tend to only look into a
textual tutorial when they fail to perform a task correctly. In case of a simple written
document, the user has to read a lot and switch between the software and the manual
which leads to an interruption in the working �ow of the users. For mobile applications,
this approach is not suitable and disadvantageous because it is annoying for the user to
change between screens on a mobile device. [Ames, 2001]

3.2 Help Buttons/Tooltips

A simple and easy way to give users information are help buttons and tooltips. On demand,
the user can show and hide the additional information. So the information is always
available on every screen, if needed. The information has to be short and descriptive for
the speci�c element or screen.

3.3. Training Challenges 47

A prototype of this design was developed for Pocket Code. In the design for the Pocket
Code tooltip system, a question mark button in the action bar is added. With the button in
the action bar, the tooltips are activated and deactivated. If the tooltip system is active in
the current activity screen, the available tooltip buttons will appear next to the described
element. With clicking on one of the buttons, a bubble with a short description of the
function is shown. In Figure 3.1 and Figure 3.2 are screenshots of this design. So the user
is able to turn information on and o� as needed.

This approach just gives little information to the user. They have to walk through the
application on their own and learn the work�ow by exploration. The tooltips should be
a support if the user is stuck at some point. One further approach for the use of such a
system could be a combination with a guided tutorial.

Figure 3.1: Design for Tooltips in Pocket Code in the Main Menu.

Figure 3.2: Tooltips in the Project Menu.

3.3 Training Challenges

Another approach to create a tutorial is the concept of training challenges. Therefore, users
get the chance to learn the game play within a save environment. This training ground
can be expanded by mentors or tutors which guide the user through the training.

48 Chapter 3. Types Of Tutorials

During the work for this thesis, a prototype of such a tutorial system for Pocket Code
was created. In Pocket Code, it is planned to create a mandatory beginner lesson to
present the basic concepts to the users. The beginner lesson should also motivate the users
to further use the application and become eager to know more about the functions and
features of it. Further, there will be lessons to deepen the knowledge, if needed, integrated
in the Pocket Code interface. It should include several lessons and in each lesson the level
of di�culty is raised. This means that in the beginning lesson, every step is explained in
detail and the user is told what to do next. In the further lessons of the tutorial, the users
have to make more steps on their own. In case to avoid boredom, such a tutorial should
have a story which addresses the target group.

Such a tutorial is in development for Pocket Code. In the following, the design for a
starting lesson is presented which was created in cooperation with the Catrobat team.

Start screen of the tutorial. The
user starts the lesson by clicking
on the start button.

A starting animation is pro-
cessed.

The tutor introduces himself
and gives instructions to the
user for the next steps.

The prede�ned program is
played. The user has to touch
the rocket to go further.

As a result of the touch event
the UFO explodes.

The tutor gives instructions to
the user about what happens
next.

3.3. Training Challenges 49

The user gets information about
the composition of a Pocket

Code project.

The user has to draw a new ob-
ject.

The user should press the Next

button to �nish the drawing.

The next instructions for the
user are presented.

The user has to look at the co-
ordinate axes and con�rm with
a button click.

The user needs to enter the po-
sition of the new object.

A new rocket is inserted at the
given coordinates.

After clicking on the rocket, the
tutor appears and explains the
next step.

The user has to enter another
set of coordinates to make the
object move.

50 Chapter 3. Types Of Tutorials

The object is now able to �y af-
ter a tap of the user.

The next UFO explodes. The next step is to change the
background.

The tutor explains where to �nd
the available backgrounds.

The user has to select the back-
ground button to continue.

The tutor explains the composi-
tion of the background.

Detailed description of sounds
and backgrounds are presented.

Further explanation about
scripts are given to the user.

Further instructions for the user
are presented.

3.3. Training Challenges 51

The user has to click on scripts
to go further.

The script view is presented. By clicking on background the
user can change it.

The user has to select the source
of the background.

A background image has to be
selected.

The new background is set and
the user gets feedback of the tu-
tor.

Further instructions are pre-
sented to the user.

The tutor explains how to add
a new object to the project.

The user has to click on the but-
ton for adding an object.

52 Chapter 3. Types Of Tutorials

The user has to enter a name for
the new object.

The created object has to be se-
lected for the next step.

Further instructions are ex-
pressed by the tutor.

The tutor gives the instruction
to create a new sound.

The user has to click on scripts
to go further.

Explanation of the prede�ned
bricks are presented.

Information about every brick is
explained.

Further instructions are pre-
sented.

The user has to add a sound to
the script.

3.3. Training Challenges 53

Detailed description to the cat-
egory screen is shown.

Detailed information about the
categories Control and Motion

are brought to the user.

Detailed information about the
categories Sound and Looks are
brought to the user.

The user has to select the cate-
gory Sound to go further.

The Start Sound brick has to be
selected.

Instructions and explanations
by the tutor are shown.

The new inserted brick has to be
selected.

A new sound has to be inserted. The source for the new sound
has to be clicked.

54 Chapter 3. Types Of Tutorials

The sound is selected by the
user.

The sound is inserted into the
project and the tutor gives last
comments.

Final instructions in the lesson
are shown.

The lesson is �nished with this
screen.

3.4 Chapter Summary

In this chapter, types of tutorials are discussed. Therefore, some examples were presented
(e.g. screen linking, visual streaming, and screen capture). Furthermore, concrete exam-
ples, which were implemented on the base of the Android application Pocket Code, were
introduced. So the design of a tooltip system and a guided tutorial are shown which were
created in cooperation with the Catrobat team. Besides, guidelines and in�uential factors
helped when creating the prototypes. Furthermore, the di�erences in the approaches were
clari�ed. A guided tutorial with training lessons is applicable because of the complexity of
the work�ow of the application. Therefore, the implementation takes a lot of e�ort. So a
faster solution for providing help to the users is the tooltip system. A combination out of
both types are possible. Here, these prototypes show the possibilities and further work is
done in the Catrobat project.

Chapter 4

Evaluation Methodologies

Usability evaluation covers the discovery of possible usability problems in a user interface.
Furthermore, evaluation helps �nding ways to solve these problems. The process of an
evaluation can be split up into four general phases, preparation, collection, extraction, and
analysis phase. These phases and a short description can be found in Table 4.1. [Balagtas-
Fernandez and Hussmann, 2009]

Phase Description

Preparation
Phase

In this phase, the preparation of the application for logging is done.
Therefore, the information, which is needed for an appropriate eval-
uation, is recorded. The main task for the evaluator is to decide
which information is relevant for the usability evaluation, for ex-
ample, metrics about e�ciency.

Collection Phase In this phase, data of the users is collected. This data includes us-
ability problems, for example, implementing a logging functionality
within the application to monitor the users actions.

Extraction Phase This phase handles the preparation of the collected data for further
analysis, for example, converting the collected material into a XML-
�le.

Analysis Phase The data is analyzed referring to the problems of the users with the
interface in the current evaluation phase, for example, processing
the information in a visual presentation like a graph.

Table 4.1: Evaluation Phases [Balagtas-Fernandez and Hussmann, 2009].

The evaluation process includes the use of methodologies to gather information about
the application. Here, we focus on the evaluation of usability. In the �eld of usability,
there are di�erent methodologies to evaluate software. Depending on the purpose of the
evaluation, four categories can be identi�ed: [Ellis and Dix, 2006]

� Explorative: The purpose of this category is to evaluate the usage of software and
the state of the art of similar software. The evaluation is done before the interface
is developed, for example, software logging and observational studies.

55

56 Chapter 4. Evaluation Methodologies

� Predictive: The purpose of this category is to predict the success of the software
in practice. The evaluation estimates the quality of an interface in advance. This is
done after a design is developed and before the implementation is done, for example
action analysis.

� Formative: The purpose of this category is to get information to improve the in-
terface design. The evaluation is done during the developing process. So problems
in the interface are identi�ed and can be eliminated. For example Heuristic Evalua-
tion (Section 4.1), Thinking Aloud Method (Section 4.6) and Cognitive Walkthrough
(Section 4.2).

� Summative: The purpose of this category is to evaluate the overall quality of the
interface. The evaluation is done after the developing process. The performance of
the users with the interface is evaluated, for example, questionnaires, System Usability
Scale (Section 4.3), and A/B Tests (Section 4.5).

Here, we focus on formative and summative evaluation methods. For evaluating the
e�ectiveness of a tutorial design, there are di�erent methods possible. In the case of
usability, there are the following evaluation methods which are discussed in detail in this
thesis:

� Heuristic Evaluation: This informal method consists of usability experts which
review the elements of an interface under usability principles. Details are explained
in Section 4.1. [Nielsen and Molich, 1990]

� Cognitive Walkthrough: This method is used to analyze the problem solving
behavior of the users by simulating the process. In this process, the goals and memory
content of the users should lead to the predicted next step in the process. Details
are explained in Section 4.2. [Lewis et al., 1990]

� System Usability Scale: This technique uses a questionnaire to gather information
about the application under test. This information is assessed with a numerical value.
Details are explained in Section 4.3. [Brooke, 1996]

� Emocards: This method is used to measure information about the emotional side
of the users. With the usage of a so called Emocard, a value on a scale of pleasure
and arousal is determined. Details are explained in Section 4.4. [Desmet, 2000]

� A/B Test: This testing method is used to compare two or more interfaces with
each other. The users are split up into groups. Furthermore, each user group gets to
evaluate one interface. Details are explained in Section 4.5. [Crook et al., 2009]

� Thinking Aloud Method: For this method the users have to speak out their
thoughts loudly during the test. Details are explained in Section 4.6. [van Someren
et al., 1994]

These evaluation methods can also be used for the evaluation with a younger target
group. For the execution of usability test with children and teenagers the methodologies
have to be adjusted. Therefore, the aspects in Table 4.2 have to be considered. [Larkin,
2002] [Hanna et al., 1997]

57

Aspect Description

Detailed Planning The test room should be decorated in a way the test
users feel comfortable. Also make sure the users are
familiar with the input methods. For example let the
user get to know the device with some simple tasks.
Furthermore, change the sequence of the tasks. So it
is provided that the last tasks vary and the results are
not compromised through the lack of concentration of
the users at the end of the testing period.

Carefulness About Legal Issues While the developing process of the evaluation materi-
als for young users make sure to check legal issues. So
the evaluation is assured against child labor laws. Fur-
thermore, the parents should sign a legal agreement.

Age Appropriate Test Design The vocabulary in the testing material should meet the
users knowledge. If the users have problems reading
or understanding words the facilitator should help the
users.

Possibility for Feedback Prepare the possibility for giving feedback to the tested
application. For younger participants it is easier to
give verbal feedback than writing it down. The facili-
tator can motivate the users to explain their problems
with the software. So not only positive feedback is
collected.

Age Appropriate Language Depending on the users age, the attention span dif-
fers. So make sure the tasks are adjusted accordingly.
Also include breaks for a test period over 45 minutes.
Otherwise the concentration of the users is lost.

Knowledge of Participants The topics in the application under test should meet
the expert knowledge of the young users.

Explanation of Purpose The participant has to feel comfortable in the testing
environment. So it is necessary to explain the reason of
the test in detail and also use an easily understandable
language, appropriate for the test users. Therefore,
prepare an introduction script. Also some small talk
at the beginning supports to break the ice between
the facilitator and the test persons. Furthermore, try
to build appropriate expectations of the assignment.
For example the test users do not expect a �nished
software under test.

58 Chapter 4. Evaluation Methodologies

Aspect Description

Usage of the Results The results of a usability evaluation with children or
teenagers might be hard to implement. Besides, check
the methodology against what you expect to get from
the evaluation.

Table 4.2: Aspects for Usability Testing with Underage Participants [Larkin, 2002]
[Hanna et al., 1997].

In the following sections the evaluation methodologies are discussed in detail. Further-
more, a proposal for adapting these methods for a younger target group is presented.

4.1 Heuristic Evaluation

The analytical evaluation method compares user interfaces against prede�ned guidelines
and heuristics. This method is called Heuristic Evaluation. It is useful for a summative
evaluation with a complete application and is also applicable for a formative evaluation
with a prototype. This evaluation method and the adaption for underage participants are
presented in the following sections. [MacFarlane and Pasiali, 2005]

4.1.1 Basic Concepts

The Heuristic Evaluation method analyzes user interfaces under the perspective of usability
experts. So the evaluators assess the interface with positive and negative feedback. The
so called heuristics are general usability principles and design guidelines. The experts take
these heuristics for evaluation. In this context an expert is a person who is trained with
the Heuristic Evaluation method. It is important that the expert has expertise knowledge
about usability and the scope of the application. The experts do not have to be domain
experts. [MacFarlane and Pasiali, 2005]

A basic set of a usability heuristic consist of the points presented in Table 4.3. [Molich
and Nielsen, 1990] [Nielsen and Molich, 1990]

Heuristic Name Description

Information Appearance The interface should only contain relevant information. Ir-
relevant information should be hidden as long as it is not
needed. Besides, the order of the information should be log-
ical and intuitive for the user. For example a design which
uses only upper-case letters does not �t this principle.

Clearness Text in the user interface should be unambiguous for the
user. System speci�c terms should be avoided or explained
before they are used. For example initial phrases for a
search of a telephone number should be expressed in the
point of view of the user. So a phrase could be "Enter the
name for which you want the telephone number" instead of
just "Enter name".

4.1. Heuristic Evaluation 59

Heuristic Name Description

Minimal Memory Load The short time memory of a human user is limited. So
instructions given to the user should be presented shortly
before they are needed. A set of complex commands should
be split up into several simple commands.

Consistency Phrases, actions, and situations should be accessible in a
consistent way over the whole application. For example a
telephone number should always refer to the same phrase
or abbreviation. Furthermore, the user understands the
terminology. For example the navigation is consistent, log-
ical, and minimalistic. Also the control keys are consistent
and follow standard conventions.

Feedback The application should keep the user informed about the
current status. Also the user should get feedback within a
short time after an action.

Exits In case the user gets to an unwanted screen accidentally,
the user should always have a possibility to exit a current
state. This exit points should be clearly marked.

Shortcuts For experienced users there should be shortcuts, which are
not visible to novice users. So the user can skip time con-
suming initiation steps.

Error Messages The error messages should be defensive, precise and con-
structive. So the messages do not criticize the user for
the mistake and give the blame to the system. Therefore,
an error message should describe the cause of the problem
precisely and give the user a constructive proposal for a
solution of the problem. For example the phrase "illegal"
should not be in an error message.

Fast Start Up The sessions can be started quickly. There is no long wait-
ing time for the user after starting the application, like a
long loading time. Furthermore, within the work�ow, wait-
ing times can be annoying for users.

Interruptions Interruptions in the gameplay do not reset the whole game.
The user can continue the process. Especially applications
on mobile devices have to be available anytime and any-
where. Therefore, it is very frustrating for the user to start
all over after a session.

Multimedia Presentation Audio-visual representation supports the game. It is more
appealing to users when utilizing the available possibilities
to present information.

60 Chapter 4. Evaluation Methodologies

Heuristic Name Description

Screen Layout The screen layout is e�cient and visually pleasing. Also
the functions provided by the devices are included in the
application (e.g. GPS connection, internet connection).

Clear Goals The software provides clear goals and supports the goals,
created by the users.

Progress The user sees the progress in the game. They can compare
the results to previous sessions and results of other users.

Rewards The users are rewarded for achieving goals. Rewards sup-
port the motivation of the users and create challenges.

Table 4.3: Basic Heuristics [Molich and Nielsen, 1990] [Nielsen and Molich, 1990]
[Korhonen and Koivisto, 2006].

For the Heuristic Evaluation, the design of the user interface can be available in form of
verbal description, paper-mockup, working prototype or a running system. The evaluators
have to work independently from each other. At the end, the problems found by the
evaluators are collected. The problems get weighted with the average severity rate over all
rates given by the evaluators. [Nielsen and Molich, 1990]

The advantages and disadvantages of the Heuristic Evaluation are:

� The evaluation is easy to proceed with low costs.

� The technique is intuitive.

� It can be applied during the development process. So problems are identi�ed early
in the process and can be eliminated.

� The method identi�es major and minor problems.

� The Heuristic Evaluation can ignore domain speci�c problems.

4.1.2 Adaption for Underage Participants

The Heuristic Evaluation method uses experts to assess problems with user interfaces.
The �ndings of this evaluation are problems in the applications. For example, application
designs for children should be evaluated also by children. The problems found by adult
evaluators are di�erent to underage evaluators because there is a discrepancy in the focus
on what is good or bad in an interface for di�erent age groups. [MacFarlane and Pasiali,
2005]

The concept of Heuristic Evaluation has to be extended to �t the needs of underage
users. Also the results of the evaluation depend on the knowledge, expertise, and skills
of the evaluators. The heuristic introduced by [Nielsen and Molich, 1990] can be adapted
easily. The heuristics have to be de�ned in detail to meet the requirements of Heuristic
Evaluation with underage participants. Additionally to the heuristics mentioned before,
the heuristics in Table 4.4 are applicable. [Alsumait and Al-Osaimi, 2009]

4.2. Cognitive Walkthrough 61

Heuristic Name Description

Attractive Screen Layout The screen layout is e�cient, readable, memorable
and attractive to children.

Appropriate Hardware Devices The devices used for the evaluation are suitable for
the age group of the participants. So the participants
do not need to learn special skills to use the device
(for example the users know how to handle a smart
phone).

Challenges The underage participants should be able to solve the
tasks and reach the goals. The users do not get frus-
trated when performing actions in the software.

Fantasy The software uses the imagination of the users. So
there is an individual interpretation of the context.
It also supports the engaging of the participants to
the application.

Curiosity The software includes surprises, humor, and topics
interesting for the users. So the underage participants
are intended to be curious what happens next.

Table 4.4: Basic Heuristics for Underage Participants. [Alsumait and Al-Osaimi,
2009].

4.2 Cognitive Walkthrough

The evaluation method presented in this section focuses on providing exploratory learning
within the user interface, and it is called Cognitive Walkthrough. This method assesses the
ability of the system to guide an untrained user. Therefore, a detailed description of the
users and the application is needed. So an expert walks through the application from the
perspective of the described user. This evaluation method and the adaption for children
are presented in the next sections. [Mano and Campos, 2006]

4.2.1 Basic Concepts

The evaluation method is a usability inspection method. The Cognitive Walkthrough
method analyzes the user interface under the aspect of exploratory learning. There is
no previous training for the use of the application. The evaluation method is based on the
theory of exploratory learning from [Polson and Lewis, 1990]. Before starting with this
technique some factors have to be de�ned. First, a general description of the users and
their knowledge has to be set. The next factor to be de�ned is a description of one or more
representative tasks. The last preparation is a list of the correct actions to complete the
tasks, which were de�ned before. [Polson and Lewis, 1990] [Lewis et al., 1990] [Mano and
Campos, 2006]

62 Chapter 4. Evaluation Methodologies

For the execution of a Cognitive Walkthrough the system description or prototype has to
include a complete navigation. The tasks de�ned are executed by usability experts during
the evaluation under the point of view of the described typical user. For example the
procedure simulates the steps executed by the user with no previous experience about the
interface. During the evaluation process an evaluator tries to capture some aspects about
the behavior of the users, like ease of access, system response, and goals. The developers ask
the experts several questions on how easy the actions could be found and executed in the
interface for the evaluation of the ease of success. Furthermore, questions about the system
response and its adequacy are brought to the developers. So with the Cognitive Walkthrough
the discrepancies between the developers view and the users view on a user interface are
exposed. An example form for the evaluation with Cognitive Walkthrough is described in
Appendix A for one task. The questions in the form have to be ranked according to the
percentage of users who are expected to have problems with the interface. [Lewis et al.,
1990] [Mano and Campos, 2006] [Rieman et al., 1995]

The advantages and disadvantages of the Cognitive Walkthrough are:

� The technique identi�es task-oriented problems.

� The method supports the �nding of user goals and assumptions.

� The Cognitive Walkthrough can be applied during the development process. So prob-
lems are identi�ed early in the process and can be eliminated.

� The application is not tested by actual users.

� The technique may ignore general and recurring problems.

4.2.2 Adaption for Underage Participants

The most important factor for the execution of a Cognitive Walkthrough for a young target
group like children and teenagers is the users description. The challenging part for the
evaluators is to put themselves into the mind of an underage test user. So the evaluators
identify problems with the interface which are relevant for the target group.

4.3 System Usability Scale

This method is a simple approach to assess the usability of an application and is called
System Usability Scale. In the following the basic concepts and the adaption for underage
participants are discussed in detail.

4.3.1 Basic Concepts

The System Usability Scale (SUS) is a simple approach to assess the usability of a system.
The usability is dependent on its de�nition. As suggested in the ISO standard ISO 9241-11,
a usability measurement should cover the e�ectiveness (the quality of completing tasks in
the system), the e�ciency (the amount of resources consumed by performing tasks) and the
satisfaction (subjective perception of the user). The measurement for the SUS is processed
with a ten item scale. With these ten items, an overview of subjective measurements is
created. Please see Appendix B for a template of the scale. [Brooke, 1996]

4.4. Emocards 63

The SUS is used after the user had the chance to test the system, which is evaluated.
So the immediate response of the user can be captured with the scale. The SUS result
is a comparable score between 0 and 100. Therefore, each item in the scale gets a score
between 0 and 4. The item score with odd numbers (1,3,5,7,9) starts with 0 on the left
side and ends with 4 on the right sight. The item score with even numbers (2, 4, 6, 8, 10)
starts with 4 on the left side and ends with 0 on the right sight. The sum of all item scores
is multiplied with the factor 2.5 to get an overall value. [Brooke, 1996]

The advantages and disadvantages of the System Usability Scale are:

� The approach is simple and easy doable.

� The results give a clear statement about usable or not usable.

� The scores should not be interpreted as a percentage value. It is necessary to nor-
malize the score for a good interpretation.

� The SUS only concentrates on one scale, the ease of use of an application.

4.3.2 Adaption for Underage Participants

The use of the SUS with a young target group, like children and teenagers, needs a mod-
i�cation of the questions in the questionnaire. So the target users can understand and
evaluate the application but the content of the questions stays the same. Therefore, ad-
ditional explanations have to be provided. This can be done by a facilitator during the
evaluation or in a written form directly on the questionnaire.

4.4 Emocards

The decision of a user about a good or bad software is not only a rational one. Human
beings are driven by emotion and these emotions have e�ects on their behavior. Therefore,
this aspect is also important regarding the usage of user interfaces. The challenge is to
collect information about the emotions users have. Emocards are a possibility to measure
emotions. It is a non verbal approach. It can be executed with low costs and can be easily
combined with usability testing. This evaluation method and the adaption for underage
participants are discussed in the following sections. [Agarwal and Meyer, 2009]

4.4.1 Basic Concepts

Measuring emotions in a usability test is a di�cult problem which can be assessed with the
help of Emocards. Emocards are a tool to measure emotions without any verbal actions
by the user. The assessment can be done quickly with low costs and the faces do not
need explanation. An Emocard consists of sixteen cartoon-like faces. On one card, there
is a male as well as a female face and they represent distinct emotions. The faces are a
combination out of the dimensions of pleasure and arousal, as presented in Figure 4.1 and
Table 4.5. A desirable result for a user interface would be a high value of pleasure and
a high value in arousal. The test users get to �ll out an Emocard right after �nishing a
task. Furthermore, there is no written explanation on the Emocard. So the users do not
know the exact meaning of the faces. Therefore, the users have to choose one of the faces
which �ts their emotional state after executing each task best. [Desmet, 2000] [Agarwal
and Meyer, 2009] [Stickel et al., 2011]

64 Chapter 4. Evaluation Methodologies

Figure 4.1: Emocard [Agarwal and Meyer, 2009].

Cartoon Faces Emotion

The faces illustrate the excited emotional state. It is the
highest value in arousal with a neutral value of pleasure
after the use of the application.

The faces show the excited pleasant emotional state. So
the user is happy and calm after using the application.

The faces symbolize the average pleasant state. This is the
highest value in pleasure with a neutral arousal.

The faces illustrate the calm pleasant emotional state. So
the user is relaxed after the use of the application.

The faces show the calm emotional state. It illustrates the
lowest value in arousal with a neutral value of pleasure.

The faces illustrate the calm unpleasant emotional state.
This means the user is bored and frustrated after the use
of the application.

The faces show the average unpleasant emotional state.
This is the lowest value of pleasure with a neutral value
of arousal. So the experience of using the application is
stressful and upsetting.

4.5. A/B Test 65

Cartoon Faces Emotion

The faces symbolize the excited unpleasant emotional state.
This means the user is stressed and tense after using the
application.

Table 4.5: Emotions in an Emocard [Agarwal and Meyer, 2009] [Desmet, 2000]
[Stickel et al., 2011].

The advantages and disadvantages of the Emocards are:

� The approach is easy and can be executed with low costs.

� Only emotions are measured. So there is just an indirect evaluation of the interface.

� It is a non verbal approach, so the test users do not have to talk.

� The results are a value on a two dimensional scale regarding pleasure and arousal.

� The cartoon faces can be misinterpreted by the users.

4.4.2 Adaption for Underage Participants

The adaption for a young target group like children and teenagers is easily done. The
cartoon faces are easy to understand for every age group. There is always the possibility to
create faces which are more appealing to the target group. So there is less misunderstanding
in the evaluation and the results are more signi�cant.

4.5 A/B Test

The testing method called A/B Test is used in di�erent �elds besides computer science
(e.g. medicine, agriculture, and advertising). The amount of data, which is gained during
testing, has to be analyzed. The concept of the testing method and the analysis is presented
in the following chapters. [Crook et al., 2009]

4.5.1 Basic Concepts

A simple form of controlled experiments are A/B Tests. In the test, two variants are
presented to a set of users. A randomly generated subset of users gets variant A and the
other subset gets variant B. In relation to tutorials, an example for an A/B Test would
be to give one group of users the application with a tutorial and the other one without
a tutorial. A high amount of data is generated with this testing method to compare the
results. Therefore, an evaluation criterion (e.g. error rate, e�ciency) has to be de�ned.
This criterion is the base for the comparison. An important factor for the evaluation is
the number of test users. In most cases, an A/B Test needs about 16-20 test users to get
signi�cant results. The results get more signi�cant with even more test users. [Crook et al.,
2009]

66 Chapter 4. Evaluation Methodologies

An A/B Test can be designed in two di�erent ways. The �rst approach uses inde-
pendent measures. This approach is also known as Between Groups Experiments. Two
groups of test users get the same tasks but uses di�erent interfaces to solve the tasks. The
second approach uses repeated measures. This approach is also known as Within Groups
Experiments. Therefore, only one group of test users is needed. The test users perform
the same task on both variants of the user interface. For example some users perform the
tasks �rst on variant A and then on variant B. The other users �rst perform the tasks on
variant B and then on variant A. [Andrews, 2014]

The advantages and disadvantages of an A/B Test are:

� A lot of objective and quantitative data is collected.

� Di�erent designs are compared to each other.

� The number of test users has to be signi�cant for the statistically analysis.

� The results do not include information about the reasons why things are not working.

� The facilitators have to be experts.

4.5.2 Adaption for Underage Participants

There is no need for special modi�cation of this method. The evaluation method of A/B
Tests can be applied to di�erent target groups.

4.6 Thinking Aloud Method

The Thinking Aloud Method gives a group of test users typical tasks to proceed with the
application under test. During the test, the users have to bring their thoughts into speech.
So direct feedback on the interface is produced. [van Someren et al., 1994]

The basic concepts and an adaption for underage participants are described in the
following sections.

4.6.1 Basic Concepts

The Thinking Aloud Method is founded in the �eld of psychological research. The method
was developed on top of the older introspection method. The idea behind the method is
to observe the actions the observant is aware of. So for the Thinking Aloud Method the
users under test have to verbalize their actions, feelings, and experience with the software.
The challenge of the facilitators is to observe and promote the user with speaking out
their thoughts. So the users talk about the current actions, readings, confusion, decisions,
and questions which may appear. The main purpose is to collect data about the user
interface. [van Someren et al., 1994]

4.7. Metrics 67

The advantages and disadvantages of the Thinking Aloud Method are:

� The method detects many usability problems.

� The method uncovers the reason for the problems.

� A small number of test users are applicable (3 to 5 users).

� The method can be used early in the development process.

� The speed of the users is decreased by the method.

� The behavior of the users can be changed by the process.

� No data about performance is collected.

� It is time consuming.

4.6.2 Adaption for Underage Participants

For the use of the Thinking Aloud Method with children and teenagers, the basic concepts
can be used. The challenge with young users is to motivate them to speak about their
actions. Also during the testing, the facilitators have to assure constant speaking of the
users. So for example with quiet children the facilitators have to ask questions to get the
necessary information to the interface directly, instead of only asking to speak out their
thoughts. Usually, underage participants do not have any experience with usability testing
or the Thinking Aloud Method. So prior to the test, the test participants should get an
introduction and an example test to get comfortable with the method. [van Kesteren et al.,
2003]

4.7 Metrics

There are several metrics which can be implemented into a usability evaluation. A selection
of metrics can be found in Table 4.6. Depending on the purpose of the evaluation, the
metrics are implemented.

Metric Description

Error Rate Three types of errors are distinguished (skipped
steps, incorrect selections, incorrect actions). For
every type, a rate is calculated.

Elapsed Time The measurement starts when the user opens a part
of the application (for example the tutorial) and ends
with �nishing it.

Number of Requests for Help Every help request to the facilitator is counted.

Task Completion Rate Percentage of optimal task completion with help, e.g.
a manual or a tutorial.

Task Completion Rate without
Help

Percentage of task completion without help.

68 Chapter 4. Evaluation Methodologies

Metric Description

Task Completion Ability of task completion within a speci�c time
range.

Error Decrease Decrease within a time interval of the errors made
by the user.

Overall Completion Time Time needed for successful task completion.

Completion Time within a
Time Interval

Task completion for speci�c tasks within a time in-
terval.

Quality of Work Quality of work performed during a task, as scored
by judges.

Success rate The success rate of commands after being trained.

Commands Increase The increase in commands used over certain time
interval.

Complexity Increase The increase in complexity of commands over time
interval.

Known Commands The percentage of commands known by the user.

Used Commands The percentage of commands used by the user.

Think Time Decrease The decrease in average think times over certain time
interval.

User Comments The number of learnability related user comments.

Help Commands The decrease in help commands used over certain
time interval.

System Feedback The metric covers the availability and quality of the
system feedback.

Consistency The metric covers the degree of consistency within
the user interface.

Performance E�ciency of completing the tasks.

User Like This metric is a subjective value for each user and
describes the general appeal of the application.

Internationalization The ability to provide the user interface in di�erent
languages. So the applications have a bigger poten-
tial user group.

Table 4.6: Usability Metrics [Kelleher and Pausch, 2005] [Grossman et al., 2009] [Har-
rison, 1995] [Wong et al., 2003].

4.8. Applying for a Tutorial 69

4.8 Applying for a Tutorial

In the future a usability test for the implemented tutorial is planned. Here, an approach
is presented which considers the �ndings of this thesis. At the beginning of the usability
test a simple questionnaire is �lled out by the test persons. In this questionnaire, person
speci�c data is collected. Therefore, information about age, sex, education, experience
with mobile devices, and experiences with usability tests are gathered. In Appendix C, a
questionnaire for the background information is presented.

Furthermore, the Thinking Aloud Method is combined with an A/B Test. The results
of the test with and without a tutorial are going to be compared. So we can make a
statement about the e�ects of the tutorial of the application. The experiment contains
four aspects which were presented earlier in this work. These aspects are the presence of
a tutorial, the context sensitivity, the freedom of use, and the availability of help. The
�rst variable, presence of a tutorial, is easy to realize with an A/B Test. One group gets
Pocket Code with a tutorial and another without it. So the users group without a tutorial
are forced to learn the usage via trial and error. The second variable, context sensitivity,
evaluates the retention of the users. Context sensitivity means that the tutorial describes
for example one feature shortly and afterwards the user has to try it out. The opposite
would be to give the users a lot of information until they start working on their own. The
third variable, freedom of use, evaluates the impact on the user by restricting the available
actions. The last variable, availability of help, is to evaluate if the users would search for
help to solve problems. After every task the test persons are confronted with an Emocard.
So the user de�nes the emotional state after the speci�c task. At the end of the test, the
test persons have to �ll out the System Usability Scale. Therefore, one value for the overall
usability is identi�ed. This combination of methods can be executed with a future tutorial.
In the following section, the results of a previous evaluation is presented. This evaluation
is based on the prototype described before.

4.8.1 Results from Previous Evaluation

In the past, the members of the Catrobat project already executed a usability test with
the Thinking Aloud Method. Background information, speci�c questions about Pocket
Code, and the opinion of the participants were collected besides the usability issues. The
evaluation also included a prototype of a tutorial. The prototype was not implemented
in Pocket Code. The facilitators used a �ash animation for the simulation of a tutorial in
Pocket Code. The purpose was to eliminate usability problems in the design of the tutorial.
A detailed analysis of the results of the evaluation are not �nished until the end of this
thesis.

The feedback of the participants was positive. Therefore, the questionnaire about the
content of Pocket Code showed that the participants memorized the information which was
presented in the tutorial. Also the participants articulated the usefulness of the tutorial.
Furthermore, the major part of the test users felt to be able to create programs on their own
in Pocket Code. The assumption of too much text of the tutor was con�rmed. The most
important lessons learned from the evaluation were the preparation of clearly formulated
texts for the tutor and the inclusion of a Back button in the tutorial. So there is a
navigation available for the users in the tutorial. Furthermore, the design has to be more
appealing. Critical statements on the design were desired. Therefore, these points can be
included in further development of the tutorial.

70 Chapter 4. Evaluation Methodologies

4.9 Chapter Summary

In this chapter di�erent evaluation methodologies were discussed. In detail the method-
ologies of Heuristic Evaluation, Cognitive Walkthrough, System Usability Scale, Emocards,
A/B Test, Thinking Aloud Method, and measurable metrics were explained. Furthermore,
the adaption of these methods for children and teenagers were discussed.

The Heuristic Evaluation method evaluates a user interface under prede�ned usability
heuristics. The evaluation is processed by usability experts. The result of the evaluation is
positive and negative feedback for the user interface tested. The method is easy and cheap
to execute but there is a possibility that the method does not identify domain speci�c
problems.

The Cognitive Walkthrough method evaluates the ability to guide the user through the
application. Therefore, a detailed description of the tasks and the users have to be de�ned.
During the evaluation, aspects like ease of use and system response are assessed. So tasks
oriented problems are identi�ed.

The System Usability Scale method evaluates a user interface with a ten item question-
naire. Each item gets a score. The sum of all scores is multiplied by a factor and results in
an overall value. So the result is a clear statement about the usability of the user interface.

The Emocards method measures the aspect of emotions of the users during handling
the user interface under test. Therefore, the users have to identify the emotional state
after every task.

The Thinking Aloud Method motivates the users to speak out their thoughts during
the usage of the user interface under test. So direct feedback is created.

Measurable metrics can be implemented in a usability test additionally. Therefore,
problems with the user interface are exposed and documented with concrete numbers.
Examples for such metrics are error rate, task completion time, and number of used com-
mands.

At the end of the chapter, a proposal for the implementation of a usability evaluation
is presented. Besides, a combination out of Thinking Aloud and A/B Tests is created.
Also after every task the emotions should be measured with Emocards. In the evaluation
recommendation a System Usability Scale after the experiment is included. Furthermore,
results of a previous evaluation were presented.

Chapter 5

Conclusion and Future Work

The usability of a software is an important factor to measure regularly during the devel-
oping process. Therefore, a higher user engagement can be achieved. Good usability takes
a positive e�ect on the impression, an application makes on the user group. This assump-
tion is also applicable on applications for mobile devices. Complex applications like Pocket
Code need some time for the users to get familiar with the work�ow. So a tutorial can
support the starting phase. This thesis identi�es di�erent aspects and challenges of the
development of a tutorial for a mobile device using the example of the Android application
Pocket Code.

As a result of the research, di�erent approaches for a tutorial were created (guided
tutorial and a tooltip system). Also the relation to the term Gami�cation is examined
and the bene�ts have in�uenced the design decisions. Furthermore, there is also a relation
to mobile learning. In considering di�erent learning phases the tutorial can be optimized.
This concludes in the results that there are no exact de�nitions or guidelines on how to
create a good tutorial. A decision on which approach is better for an application can only
be made with the help of an evaluation. There are several evaluation methodologies, some
of them were presented in this thesis. The advantages and disadvantages of every method
have to be deliberated whether it can deliver useful results or not. Here, an approach for
a usability evaluation was put together. So a combination of methods is chosen for the
evaluation.

The approach can be used for the Catrobat Project for further evaluations. Further-
more, evaluations have to take place several times during the developing process within
appropriate intervals. So changes are implemented early in the development stage. An
application for an underage target group implemented by adults can build up a gap be-
tween the expectations of the young users and the adult developers. So to close this gap
it is very important to question the target group and get valuable feedback to improve the
tutorial. In the best case, this involvement supports the success and the acceptance of the
application and its tutorial.

71

72 Chapter 5. Conclusion and Future Work

Appendix A

Cognitive Walkthrough Form

1. Description of the immediate goal of the user.

2. Description of the next action the user should take.

(a) Is the availability of the action obvious? Why/why not?

(b) Is the relation of the goal with the action obvious? Why/why not?

3. How will the user process the description of the action?

(a) Are there any problems occurring? Why/why not?

4. How will the user associate the description with the action?

(a) Are there any problems occurring? Why/why not?

5. Are the other actions available less appropriate? For each, why/why
not?

6. How will the user perform the action?

(a) Are there any problems occurring? Why/why not?

73

74 Appendix A. Cognitive Walkthrough Form

7. Are there occurring timeouts? If yes, how much time elapsed until time-
out? Why/why not?

8. While executing the action, how was the system response?

(a) How far got the progress towards the goal? Why/why not?

(b) Can the user access the needed information in the system response?
Why/why not?

9. Is the user able to form a modi�ed goal? If any, describe it.

(a) Is it obvious that the goal should change? Why/ why not?

(b) If the task is completed, is the completion obvious? Why/why not?

Appendix B

System Usability Scale Template

Strongly disagree Strongly agree

1. I think that I would like to
use the system frequently. 1 2 3 4 5

2. I found the system unnec-
essarily complex. 1 2 3 4 5

3. I thought the system was
easy to use. 1 2 3 4 5

4. I think that I would need
the support of a technical per-
son to be able to use this sys-
tem.

1 2 3 4 5

5. I found the various func-
tions in this system were well
integrated.

1 2 3 4 5

6. I thought there was too
much inconsistency in this
system.

1 2 3 4 5

75

76 Appendix B. System Usability Scale Template

7. I would imagine that most
people would learn to use this
system very quickly.

1 2 3 4 5

8. I found the system very
cumbersome to use. 1 2 3 4 5

9. I felt very con�dent using
the system. 1 2 3 4 5

10. I needed to learn a lot of
things before I could get going
with this system.

1 2 3 4 5

Appendix C

Background Questionnaire

General Information

Gender:

Age:

Education

School:

Grade:

Use of Mobile Devices

Do you have your own mobile devices (smart phone, tablet)?

How long do you use the mobile devices per day?

Which operating system is on your mobile device (Android, Windows, iOS)?

Experience with Usability Tests

Have you participated in a usability test before?

If yes, what kind of study was that?

77

78 Appendix C. Background Questionnaire

Bibliography

[Adams, 2011] Adams, E. (2011). The designers notebook: Eight ways to make a bad tuto-
rial. http://www.gamasutra.com/view/feature/134774/the_designers_notebook_

eight_.php. Last accessed on 2014-03-03.

[Agarwal and Meyer, 2009] Agarwal, A. and Meyer, A. (2009). Beyound usability: Evalu-
ating emotional response as an integral part of the user experience. CHI EA '09 CHI '09
Extended Abstracts on Human Factors in Computing Systems, Pages 2919-2930, New
York, USA.

[Aimeur and Frasson, 1996] Aimeur, E. and Frasson, C. (1996). Analyzing a new learning
strategy according to di�erent knowledge levels. Computers and Education, Volume 27,
Issue 2, September 1996, Pages 115�127.

[Alice, 2014] Alice (2014). Alice. http://www.alice.org. Last accessed on 2014-03-03.

[Alsumait and Al-Osaimi, 2009] Alsumait, A. and Al-Osaimi, A. (2009). Usability heuris-
tics evaluation for child e-learning applications. iiWAS 09 Proceedings of the 11th In-
ternational Conference on Information Integration and Web-based Applications and Ser-
vices, Pages 425-430.

[Ames, 2001] Ames, A. L. (2001). Just what they need, just when they need it: An
introduction to embedded assistance. SIGDOC 01, October 21-24, 2001, Santa Fe, New
Mexico, USA.

[Andersen et al., 2012] Andersen, E., O'Rourke, E., Liu, Y.-E., Snider, R., Lowdermilk,
J., Truong, D., Cooper, S., and Popovic, Z. (2012). The impact of tutorials on games
of varying complexity. In CHI 12: Proceddings of the SIGCHI conference on Human
Factors in computing systems, New York, NY, USA.

[Andrews, 2014] Andrews, K. (2014). Human-computer interaction - course notes. http:
//courses.iicm.tugraz.at/hci/hci.pdf. Last accessed on 2014-03-03.

[AndroidActivities, 2014] AndroidActivities (2014). Android developers activities. http:

//developer.android.com/guide/components/activities.html. Last accessed on
2014-03-03.

[AndroidContentProviders, 2014] AndroidContentProviders (2014). Android develop-
ers content providers. http://developer.android.com/guide/topics/providers/

content-providers.html. Last accessed on 2014-03-03.

[AndroidDevelopers, 2014] AndroidDevelopers (2014). Android developers. http://

developer.android.com/. Last accessed on 2014-03-03.

79

http://www.gamasutra.com/view/feature/134774/the_designers_notebook_eight_.php
http://www.gamasutra.com/view/feature/134774/the_designers_notebook_eight_.php
http://www.alice.org
http://courses.iicm.tugraz.at/hci/hci.pdf
http://courses.iicm.tugraz.at/hci/hci.pdf
http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/
http://developer.android.com/

80 Bibliography

[AndroidDevelopersDashboard, 2014] AndroidDevelopersDashboard (2014). Android de-
velopers dashboard. http://developer.android.com/about/dashboards/index.

html. Last accessed on 2014-03-03.

[AndroidFundamentals, 2014] AndroidFundamentals (2014). Android developers fun-
damentals. http://developer.android.com/guide/components/fundamentals.html.
Last accessed on 2014-03-03.

[AndroidProjectManagement, 2014] AndroidProjectManagement (2014). Android project
management. http://developer.android.com/tools/projects/index.html. Last ac-
cessed on 2014-03-03.

[AndroidServices, 2014] AndroidServices (2014). Android developers services. http://

developer.android.com/guide/components/services.html. Last accessed on 2014-
03-03.

[Baecker, 2002] Baecker, R. (2002). Showing instead of telling. Proceedings of ACM SIG-
DOC 2002, 10 -16.

[Baecker et al., 1991] Baecker, R., Small, I., and Mander, R. (1991). Bringing icons to
life. Proceeding CHI '91 Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 1-6.

[Balagtas-Fernandez and Hussmann, 2009] Balagtas-Fernandez, F. and Hussmann, H.
(2009). A methodology and framework to simplify usability analysis of mobile ap-
plications. IEEE/ACM International Conference on Automated Software Engineering
2009.

[Barbosa and Silva, 2011] Barbosa, A. and Silva, F. (2011). Serious games - design and
development of oxyblood. ACE '11: Proceedings of the 8th International Conference on
Advances in Computer Entertainment Technology.

[Baylor and Kim, 2005] Baylor, A. L. and Kim, Y. (2005). Simulating instructional roles
through pedagogical agents. International Journal of Arti�cial Intelligence in Education,
Volume 15 Issue 2, April 2005, Pages 95-115.

[Beck, 2000] Beck, K. (2000). Extreme Programming Explained: Embrace Change First
Edition. Addison Wesley.

[Beck, 2002] Beck, K. (2002). Test Driven Development by Example. Addison Wesley.

[Beck and Andreas, 2004] Beck, K. and Andreas, C. (2004). Extreme Programming Ex-
plained: Embrace Change Second Edition. Addison Wesley.

[Brooke, 1996] Brooke, J. (1996). Sus - a quick and dirty usability scale. Jordan and
Thomas and Weerdmeester and McClelland. Usability Evaluation in Industry. London:
Taylor and Francis.

[Brusilovsky, 1998] Brusilovsky, P. (1998). Adaptive educational systems on the world-
wide-web: A review of available technologies. WWW-Based Tutoring Workshop at 4th
International Conference on Intelligent Tutoring Systems, San Antonio.

http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/tools/projects/index.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html

Bibliography 81

[Catrobat, 2014] Catrobat (2014). Catrobat. http://developer.catrobat.org. Last
accessed on 2014-03-03.

[Cha�n and Barnes, 2010] Cha�n, A. and Barnes, T. (2010). Lessons from a course on
serious games research and prototyping. FDG 2010, June 19-21, Monterey, CA, USA.

[Crook et al., 2009] Crook, T., Frasca, B., Kohavi, R., and Longbotham, R. (2009). Seven
pitfalls to avoid when running controlled experiments on the web. KDD 09, June 28-July
1, 2009, Paris, France, ACM.

[De�nitionforMobileLearning, 2014] De�nitionforMobileLearning (2014). Mobile learning
de�nition. http://emerginged.com/adlmobile/definitions_9.html. Last accessed
on 2014-03-03.

[DeGani et al., 2010] DeGani, A., martin, G., Stead, G., and Wade, F. (2010). Mobile
learning shareable content object reference model (m-scorm) limitations and challenges.
Tribal Education Ltd.

[Desmet, 2000] Desmet, P. (2000). Emotion through expression: Designing mobile tele-
phones with an emotional �t. Report of Modeling the Evaluation Structure of KANSEI,
3, 1003-110.

[Deterding et al., 2011] Deterding, S., Dixon, D., Khaled, R., and Nacke, L. (2011). From
game design elements to gamefulness: De�ning gami�cation. MindTrek 11, September
28-30, 2011, Tampere, Finland.

[Ellis and Dix, 2006] Ellis, G. and Dix, A. (2006). An explorative analysis of user evalu-
ation studies in information visualisation. Proceedings AVI 2006 Workshop on Beyond
time and errors: novel evaluation methods for Information Visualization (BELIV '06),
pages 1�7. ACM Press, Venice, Italy.

[Gazzard, 2011] Gazzard, A. (2011). Unlocking the gameworld: The rewards of space and
time in videogames. http://gamestudies.org/1101/articles/gazzard_alison. Last
accessed on 2014-03-03.

[Gee, 2003] Gee, J. P. (2003). What Video Games Have To Teach Us About Teaching and
Literacy. Palgrave Macmillan, New York.

[Gee, 2004] Gee, J. P. (2004). Learning by design: Games as learning machines. Interactive
Educational Multimeda, number 8, April 2004, pp 15-23.

[Grabler et al., 2009] Grabler, F., Agrawala, M., Li, W., Dontcheva, M., and Igarashi, T.
(2009). Generating photo manipulatioin tutorials by demonstration. ACM Transactions
on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2009, Volume 28, Issue 3.

[Grappiolo et al., 2011] Grappiolo, C., Cheong, Y.-G., Togelius, J., Khaled, R., and Yan-
nakakis, G. N. (2011). Towards player adaptivity in a serious game for con�ict resolution.
2011 Third International conference on Games and Virtual Worlds for Serious Applica-
tions.

[Grossman et al., 2009] Grossman, T., Fitzmaurice, G., and Attar, R. (2009). A survey of
software learnability: Metrics, methodologies and guidelines. In CHI 09: Proceedings of
the 27th international conference on Human Factors in Computing Systems, New York,
NY, USA.

http://developer.catrobat.org
http://emerginged.com/adlmobile/definitions_9.html
http://gamestudies.org/1101/articles/gazzard_alison

82 Bibliography

[Hakulinen, 2011] Hakulinen, L. (2011). Using serious games in computer science educa-
tion. Koli Calling '11 Proceedings of the 11th Koli Calling International Conference on
Computing Education Research, Pages 83-88.

[Hallford and Hallford, 2001] Hallford, N. and Hallford, J. (2001). Swords and circuitry:
A designers guide to computer role playing games. Roseville, CA, Prime Publishing.

[Hanna et al., 1997] Hanna, L., Risden, K., and Alexander, K. (1997). Guidelines for
usability testing with children. Magazine interactions Interactions Homepage archive
Volume 4 Issue 5, Sept./Oct. 1997, Pages 9-14 ACM New York, NY, USA.

[Haramundanis, 2001] Haramundanis, K. (2001). Learnability in information design. SIG-
DOC 01, Santa Fe, New Mexico, USA.

[Harrison, 1995] Harrison, S. M. (1995). A comparison of still, animated, or nonillustrated
on-line help with written or spoken instructions in a graphical user interface. CHI 95
Mosaic of Creativity.

[ISO9241-11, 1998] ISO9241-11 (1998). Ergonomics requirements for o�ce work with vi-
sual display terminals (vdt). Part 11: Guidance on usability.

[Juul, 2009] Juul, J. (2009). Fear of failing? the many meanings of di�culty in videogames.
In B. Perron and M.J.P. Wolf, The Video Game Theory Reader 2, New York, Routledge.

[Kelleher and Pausch, 2005] Kelleher, C. and Pausch, R. (2005). Stencils-based tutorials:
Design and evaluation. CHI 2005, April 2-7, 2005, Portland, Oregon, USA.

[Kirriemuir, 2002] Kirriemuir, J. (2002). The relevance of video games and gaming consoles
to the higher and further education learning experience. Techwatch Report TSW.

[Kodu, 2014] Kodu (2014). Kodu. http://fuse.microsoft.com/projects/kodu. Last
accessed on 2014-03-03.

[Korhonen and Koivisto, 2006] Korhonen, H. and Koivisto, E. M. I. (2006). Playability
heuristics for mobile games. MobileHCI 06, September 12-15, 2006, Helsinki, Finland.

[Larkin, 2002] Larkin, S. (2002). Usability junior - how to run a successful usability test
with children. http://www.stcsig.org/usability/newsletter/0201_usabilityjr.

html. Last accessed on 2014-03-03.

[Lavin-Mera et al., 2009] Lavin-Mera, P., Torrente, J., Moreno-Ger, P., Vallejo-Pinto,
J. A., and Fernandez-Manjon, B. (2009). Mobile game development for multiple de-
vices in education. iJET - Volume 4, Special Issue 2, IMCL 2009, October 2009.

[Lewis et al., 1990] Lewis, C., Polson, P., Wharton, C., and Rieman, J. (1990). Testing a
walkthrough methodology for theory-based design of walk-up-and-use interfaces. Pro-
ceeding CHI '90 Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, Pages 235-242.

[Li et al., 2012] Li, W., Grossman, T., and Fitzmaurice, G. (2012). Gamicad: A gami�ed
tutorial system for �rst time autocad users. UIST 12, Cambridge, Massachusetts, USA.

http://fuse.microsoft.com/projects/kodu
http://www.stcsig.org/usability/newsletter/0201_usabilityjr.html
http://www.stcsig.org/usability/newsletter/0201_usabilityjr.html

Bibliography 83

[MacFarlane and Pasiali, 2005] MacFarlane, S. and Pasiali, A. (2005). Adapting the
heuristic evaluation method for use with children. Proceedings of Interact Workshop
on Child-Computer Interaction: Methodological Research, Rome, 28-31.

[Malone, 1982] Malone, T. W. (1982). Heuristics for designing enjoyable user interfaces:
Lessons from computer games. ACM CHI 63-68.

[Mano and Campos, 2006] Mano, A. and Campos, J. C. (2006). Cognitive walkthroughs
in the evaluation of user interfaces for children. In proceeding of: Interacção 2006, Actas
da 2a. Conferência Nacional em Interacção Pessoa-Máquina.

[Martin, 2009] Martin, R. C. (2009). Clean Code: A Handbook of Agile Software Crafts-
manship. Pearson Education, Inc.

[McNamara et al., 2010] McNamara, D. S., Jackson, G. T., and Graesser, A. (2010). In-
telligent tutoring and games (itag). Gaming for Classroom-Based Learning: Digital Role
Playing as a Motivator of Study, Chapter 3.

[Mitchell and Savill-Smith, 2004] Mitchell, A. and Savill-Smith, C. (2004). The use of
computer and video games for learning. Learning and Skills Development Agency.

[Mitchell and Smith, 2004] Mitchell, A. and Smith, C. S. (2004). The use of computer and
video games for learning. The Learning and Skills Development Agency.

[Molich and Nielsen, 1990] Molich, R. and Nielsen, J. (1990). Improving a human-
computer dialogue. Communications of the ACM, Volume 33 Issue 3, March 1990 Pages
338-348.

[Nielsen, 1994] Nielsen, J. (1994). Usability Engineering. Morgan Kaufmann.

[Nielsen and Molich, 1990] Nielsen, J. and Molich, R. (1990). Heuristic evaluation of user
interfaces. CHI '90 Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, Pages 249-256.

[Paymans et al., 2004] Paymans, T. F., Lindenberg, J., and Neerinex, M. (2004). Usability
trade-o�s for adaptive user interfaces: Ease of use and learnability. IUI 04, January 13-
16, 2004, Madeira, Funchal, Portugal.

[Polson and Lewis, 1990] Polson, P. and Lewis, C. (1990). Theory-based design for easily
learned interfaces. Human Computer Interaction, 5, 191-220.

[Prensky, 2001] Prensky, M. (2001). Digital Game-Based Learning. McGraw-Hill: New
York.

[Rieman et al., 1995] Rieman, J., Franzke, M., and Remiles, D. (1995). Usability evalua-
tion with the cognitive walkthrough. CHI Companion 95, Denver, Colorado, USA.

[Scratch, 2014] Scratch (2014). Scratch. http://scratch.mit.edu. Last accessed on
2014-03-03.

[Silveira et al., 2001] Silveira, M. S., de Souza, C. S., and Barbosa, S. D. (2001). Semiotic
engineering contributions for designing online help systems. SIGDOC 01, October 21-24,
2001, Santa Fe, New Mexico, USA.

http://scratch.mit.edu

84 Bibliography

[Stickel et al., 2011] Stickel, C., Holzinger, A., and Felfernig, A. (2011). Measuring emo-
tions: Towards rapid and low cost methodologies. RecSys'11 Workshop on Human
Decision Making in Recommender Systems position statement, Chicago, IL, 2011.

[Sweetser and Wyeth, 2005] Sweetser, P. and Wyeth, P. (2005). Game�ow: A model for
evaluating player enjoyment in games. ACM Computers in Entertainment, Vol. 3, No.
3, July 2005.

[Talbot, 2012] Talbot, D. (2012). Given tablets but no teachers ethiopian
children teach themselves. http://www.technologyreview.com/news/506466/

given-tablets-but-no-teachers-ethiopian-children-teach-themselves/. Last
accessed on 2014-03-03.

[Torrente et al., 2009] Torrente, J., Moreno-Ger, P., Fernandez-Manjon, B., and del
Blanco, A. (2009). Game-like simulations for online adaptive learning: A case study. In
Edutainment 2009: The 4th International Conference on E-Learning and Games, Ban�,
Canada.

[van Kesteren et al., 2003] van Kesteren, I., Bekker, M., Vermeeren, A., and Lloyd, P.
(2003). Assessing usability evaluation methods on their e�ectiveness to elicit verbal
comments from children subjects. IDC '03 Proceedings of the 2003 conference on Inter-
action design and children, Pages 41 - 49, ACM New York, NY, USA.

[van Someren et al., 1994] van Someren, M. W., Barnard, Y. F., and Sandberg, J. A. C.
(1994). The Thinking Aloud Method: A Practical Guide to Modelling Cognitive Pro-
cesses. Academic Press, London.

[Vanderlinden et al., 1988] Vanderlinden, G., Cockling, T., and McKita, M. (1988). De-
signing tutorials that help users learn through exploration. Professional Communication
Conference. IPCC 88 Conference Record. On the Edge: A Paci�c Rim Conference on
Professional Technical Communication.

[von Ahn and Dabbish, 2008] von Ahn, L. and Dabbish, L. (2008). Designing games with
a purpose. Communications Of ACM 51, 8, 58-67.

[Wario Ware D.I.Y, 2014] Wario Ware D.I.Y (2014). Wario ware d.i.y. http://www.

wariowarediy.com. Last accessed on 2014-03-03.

[Wong et al., 2003] Wong, S. K., Nguyen, T. T., Chang, E., and Jayaratna, N. (2003).
Usability metrics for e-learning. OTM Workshops 2003, LNCS 2889, pp. 235-252, 2003,
Springer Verlag Berlin Heidelberg.

[Zhang and Adipat, 2005] Zhang, D. and Adipat, B. (2005). Challenges, methodologies,
and issues in the usability testing of mobile applications. International Journal of
Human-Computer Interaction Volume 18, Issue 3, 2005.

http://www.technologyreview.com/news/506466/given-tablets-but-no-teachers-ethiopian-children-teach-themselves/
http://www.technologyreview.com/news/506466/given-tablets-but-no-teachers-ethiopian-children-teach-themselves/
http://www.wariowarediy.com
http://www.wariowarediy.com

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction to Android
	1.1.1 Application Structure
	1.1.2 Activities
	1.1.3 Services
	1.1.4 Content Providers
	1.1.5 Technical Approach for Creating a Tutorial

	1.2 Introduction to the Catrobat Project
	1.3 Introduction to Development Methodologies
	1.3.1 Extreme Programming
	1.3.2 Test Driven Development
	1.3.3 Clean Code

	1.4 Introduction to Usability
	1.5 Overview

	2 Theories for a Tutorial
	2.1 Challenges
	2.1.1 Story Development
	2.1.2 Tutor Development
	2.1.3 Engagement
	2.1.4 Guidelines

	2.2 Educational Purposes
	2.3 Inspiration for a Tutorial
	2.3.1 Scratch
	2.3.2 Wario Ware D.I.Y.
	2.3.3 Alice
	2.3.4 Kodu

	2.4 Gamification
	2.4.1 Definition
	2.4.2 Fantasy
	2.4.3 Goals
	2.4.4 Feedback and Guidance
	2.4.5 Progressive Disclosure
	2.4.6 Time Pressure
	2.4.7 Rewards and Punishments
	2.4.8 Stimuli

	2.5 Mobile Learning
	2.5.1 Definition
	2.5.2 Learning Principles
	2.5.3 Learnability
	2.5.4 Adaptive Learning
	2.5.5 Serious Games

	2.6 Implementation in Pocket Code
	2.6.1 First Prototype
	2.6.2 Second Prototype
	2.6.3 Tooltip Implementation

	2.7 Chapter Summary

	3 Types Of Tutorials
	3.1 Manuals
	3.2 Help Buttons/Tooltips
	3.3 Training Challenges
	3.4 Chapter Summary

	4 Evaluation Methodologies
	4.1 Heuristic Evaluation
	4.1.1 Basic Concepts
	4.1.2 Adaption for Underage Participants

	4.2 Cognitive Walkthrough
	4.2.1 Basic Concepts
	4.2.2 Adaption for Underage Participants

	4.3 System Usability Scale
	4.3.1 Basic Concepts
	4.3.2 Adaption for Underage Participants

	4.4 Emocards
	4.4.1 Basic Concepts
	4.4.2 Adaption for Underage Participants

	4.5 A/B Test
	4.5.1 Basic Concepts
	4.5.2 Adaption for Underage Participants

	4.6 Thinking Aloud Method
	4.6.1 Basic Concepts
	4.6.2 Adaption for Underage Participants

	4.7 Metrics
	4.8 Applying for a Tutorial
	4.8.1 Results from Previous Evaluation

	4.9 Chapter Summary

	5 Conclusion and Future Work
	A Cognitive Walkthrough Form
	B System Usability Scale Template
	C Background Questionnaire
	Bibliography

