
Master’s Thesis

at

Graz University of Technology

submitted by

Milan Milinković

Cycle Finding Techniques for Hash Functions

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology

A-8010 Graz, Austria

February 28, 2011

c© Copyright 2011 by Milan Milinković

Assessor: Univ.-Prof. Dr. Ir. Vincent Rijmen
Advisor: Dipl.-Ing. Dr.techn. Florian Mendel

Abstract

Finding collision in a hash function is not a trivial task. Even if a serious leak
is found in the hash function, leading to the reduction of iterations before the de-
tection of the collision, enormous number of values need to be computed. Some
of the major problems are storing, indexing and searching such amount of values.
Introducing cycle finding techniques for finding the collision can be the solution
for this problem. They reduce needs for the storage size. The penalty for this
approach is an additional evaluation of the function and an increment of the time
complexity. These techniques use a property of the function defined over the finite
set. If the output value of the hash function deterministic evaluates the input value
of the next one, the trial must start cycling eventually. Various characteristics and
comparisons were investigated and proved by practical experiments and performed
on 1 bit version of RadioGatún hash function designed by Guido Bertoni et al. [6].
All theoretical and practical observations are mostly focused on the distinguished
point as well as Nivasch, Floyd and Brent methods.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Place Date Signature

Contents

List of symbols iii

1 Introduction 1

2 Cryptographic Hash Function 3
2.1 Introduction . 3
2.2 Classification of Hash Functions . 4

2.2.1 Manipulation Detection Code (MDC) 6
2.2.2 Message Authentication Code (MAC) 8

2.3 Iterated Hash Functions . 9
2.3.1 Weakness in Iterated Hash Functions 10

2.4 Types of Hash Functions . 12
2.4.1 Hash Functions Based on Block Cipher 12
2.4.2 A Custom Design Hash Function 15
2.4.3 Hash Functions Based on Algebraic Structures 15

2.5 Attacks on Hash Functions . 17
2.5.1 Attacks Independent of the Algorithm 18
2.5.2 Attacks Dependent on the Chaining 21
2.5.3 Attacks Dependent on the Underlying Block Cipher 22

2.6 Summary . 23

3 RadioGatún 25
3.1 Introduction . 25
3.2 Basic Description . 25
3.3 Structure of RadioGatún . 26
3.4 Performance . 28
3.5 Security of RadioGatún . 29
3.6 Summary . 29

4 Cycle finding algorithms 31
4.1 Introduction . 31

i

ii CONTENTS

4.2 Objectives . 32
4.3 Characteristics of Random Functions in Cycle Finding Algorithms . 32

4.3.1 Directed Parameters . 34
4.3.2 Cumulative Parameters . 34
4.3.3 Extremal Parameters . 35

4.4 Pollards Rho Integer Factorization 35
4.5 Cycle Detection Using Meet In the Middle Attack 36
4.6 Cycle Detection Methods . 39

4.6.1 Floyd’s cycle finding algorithm 39
4.6.2 Brent’s cycle finding algorithm 41
4.6.3 Sedgewick, et al.’s algorithm 44
4.6.4 Gosper’s algorithm . 44
4.6.5 Time Memory Trade-Off Cycle Algorithms 44

4.7 Summary . 51

5 Collisions in Cycle Algorithms 53
5.1 Introduction . 53
5.2 Objectives . 54
5.3 Finding Collisions Using Memoryless Algorithms 55

5.3.1 Collision in Brent’s algorithm 57
5.3.2 Finding Collision using Nivasch’s Stack-Based algorithm . . 58
5.3.3 Finding Collision Using Distinguished Points 60

5.4 Summary . 64

6 Analysis 67
6.1 Introduction . 67
6.2 General Property of Random Mapping in Cycle Algorithms 68

6.2.1 Performance of Different Input Size 68
6.2.2 Applying Meet in the Middle Method on Cycle Finding Algo-

rithm . 69
6.2.3 Collisions in Cycle Algorithms 70

6.3 Analysis of Cycle Finding Algorithms 72
6.3.1 Distinguished Point Parameters 72
6.3.2 Efficiency of Using Stack in Nivasch’s algorithm 78
6.3.3 Performance of Cycle Methods on Different Platforms 81

6.4 Summary . 83

7 Conclusion 85

References 89

List of symbols

c the internal state of a function
m a number of processors used
S a table for storing data
S[r] the location at position r in the table S
R a reduction function
F a step function
h a compression function
g a map function
gcd the greatest common divisor
l an average length of trial without distinguished

points
Θ the probability that the value has a distinguished

property
fs a function whose an evaluation depends on some

factor s
SP a start point of the chain
EP an end point of the chain
λ the length of the tail
µ the length of the cycle
ρ the length from the random start point to the

first repetition
〈xi〉 a sequence corresponds to the values x0, x1, x2...
log the logarithm of a number to a base 2
lg the logarithm of a number to a base 10
ln the logarithm of a number to a balse e
dxe the smallest integer not less than x
bxc the largest integer not greater than x

iii

iv LIST OF SYMBOLS

Chapter 1

Introduction

Hash function compresses an input string of arbitrary size (usually very large) to
the output of fixed size which can be used in different applications, for example, to
ensure the authenticity and data integrity of the message during the transmission
over an insecure channel. To be used in cryptographic applications, a function needs
to meet certain requirements. A hash function, as any other function, provides an
output value which corresponds to the input value. There are, of course, many
inputs that correspond to a single output but this is not easy to be determined.
For a hash function to be secured, it is necessary for it to be collision resistant and
one-way. If it is hard to find two different values that have the same hash value
than this function is considered collision resistant. In one-way function, it is easy
to generate a hash value from some arbitrary string, but it is hard to generate any
string from the given hash value.

Not getting into the structure, finding collision is usually related to the birthday
paradox. That is, for a possible n outputs an expectation that collision will be
found is after producing about

√
n distinct inputs. In its rough form, this means

that after applying a hash function, the output value will be stored in a table if it
is not already there. This kind of an attack is very hard to be produced in practice.
The biggest problem is the enormous need for the storage. Another problem is that
the time requirement for searching a certain element in the table is unaccepted due
to the large number of elements.

During the last couple of decades a number of algorithms, which don’t need
a large number of storage in order find the collision, was produced. In the same
way, the time looking into the table for the certain element is drastically reduced.
One class of algorithms which deal with this problem are cycle finding algorithms.
They exploit the fact that, if the function h is defined over some finite set then the
sequence x0, x1 = h(x0), x2 = h(x1), ... for a given initial value x0 must eventually
start cycling. Pollard rho integer factorization uses this structure of pseudo-random
walk in the group to find a factor of some integer. The same idea was used in

1

2 CHAPTER 1. INTRODUCTION

cycle finding algorithms but they do not exploit the group structure in which a
random walk of function h is defined. In fact, methods can be applied to any set
where iterated function h makes a random walk. Examples are Floyd’s [27] and
later, its improvement Brent’s algorithm [10]. They used fixed and small amount of
memory with a penalty of additional evaluation of function h. A slightly different
approach of the same problem was described by Hellman [30] and two years latter
improved by Rivest [20]. They introduced the distinguished point method that
drastically reduced the number of lookups in the table. Since then, this method
has been studied intensively and has experienced several variants. Introducing the
parallelization in some of these methods can be another field where these methods
can be accelerated and surely given a special treatment.

Detecting a cycle is just one part of the problem. The second part implies that,
after determining that the element is in the cycle, collision must be found. There
is no universal method that can be applied and it depends on the cycle finding
algorithm used and the additional information extracted. Just analyzing each of
these methods separately can give us the whole picture.

In order to ensure a random walk through the set, a random oracle in a form
of a hash function is introduced. The decision fell on RadioGatún hash function.
With the straightforward structure, changeable word size, easy implementation,
possibility of modification of the function for certain purpose RadioGatún hash
function can give analyzing and testing clear and simple.

Chapter 2

Cryptographic Hash Function

2.1 Introduction

A cryptographic hash function takes the message of arbitrary length as an input
and maps to the fixed length output string. Moreover, cryptographic hash function
protects against some attacks. The idea is to shift the protection of information
authenticity of arbitrary data length to the protection of authenticity of fixed data
length. The difference will be made depending on whether the protection of au-
thentication relays on secrecy or not.

Hash functions are mostly based on randomness. The randomness ensures
onewayness for the hash function. Most designs use block ciphers. However, in
[41] Lai and Massey showed that the security of the hash function depends on the
security of compression function. This as well as other properties described in this
chapter leads to the fact that constructing iterated hash function requires careful
design and implementation.

The best method to evaluate the hash function is to see which attacks are appli-
cable. It is also assumed that it is possible to perform an adaptive chosen plaintext
attack, where an adversary can freely choose the plaintext, ask for its hash value
and try to evaluate the plaintext with the same hash value. There are several meth-
ods that can be used. In this chapter the attack applicable to the particular hash
scheme will not be covered and the compression function is observed as the black
box.

In this chapter, the basic concept of cryptographic hash function is explained.
It also discusses about security issues related to hash functions, such as establishing
an authenticity and/or an integrity over an unsecure channel. It provides a set of
definitions, algorithms and schemes necessary for better understanding and gives
the wide picture of its functionality.

The remainder of this chapter is organized as follows: the chapter starts with

3

4 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTION

the basic classification of hash functions. After that iterated hash function as the
most common implementation is presented. Also different types of hash functions
are observed. At the end of this chapter the most common general attacks are
analyzed.

2.2 Classification of Hash Functions

A cryptographic hash function plays a central role in ensuring security properties
in applications. A hash function is usually related to the digital signature, message
integrity and authentication. It can also be used to produce pseudorandom numbers.
First time a hash function was introduced in [22] by Whitfield Diffie and Martin E.
Hellman in 1976. They used the hash function to ensure data integrity, signing a
”digest” of the message rather than the whole message. They presented the protocol
(aka Diffie-Hellman protocol) that generates a symmetric secret key. Until now,
many ideas have been proposed in order to meet different application requirements.
Nowadays, developers demand that the hash function in the application is fast
enough. Also, the design of hash function should be publicly known [58].

Hash function must have at least two following properties:

1. compression - for any message x of arbitrary length, function h maps to fixed
output length

2. easiness of computation - computation of function h is easy

This means that any function that has at least these two properties can be called
a hash function. Because of different requirements in applications, a hash function
usually has to have some additional properties. Hash functions are classified on the
highest level on two disjoint classes: unkeyed hash functions where output depends
only on the input message (Manipulation Detection Code or MDC) and keyed
hash functions where the output depends on the input message and the secret
key (Message Authentication Code or MAC). Depending on the requirements the
first one can be further divided into one-way hash function (OWHF) and collision
resistant hash function (CRHF) (see Figure 2.2).

In generall, applications that use hash functions require some of following three
properties:

first preimage resistance for a given hash value y = h(x), it is computationally
infeasible to find a value x′ such that h(x′) = y

second preimage resistance for a given value x it is computationally infeasible
to find a value x′ 6= x such that h(x) = h(x′)

2.2. CLASSIFICATION OF HASH FUNCTIONS 5

Hash function

Unkeyed Keyed

Modification detedtion
(MDCs)

Other applications

OWHF CRHF

Preimage resistant

2nd preimage resistant

Collision resistant

Message authentication
(MACs)

Other application

Figure 2.1: Classification of hash functions

Property Security

preimage resistance 2n

second preimage resistance 2n

collision resistance 1.2 · 2n/2

Table 2.1: Ideal security for different properties of n-bit hash functions

collision resistance it is computationally infeasible to find any two values x and
x′, x 6= x′ such that h(x) = h(x′)

Manipulation Detection Code is also known as modification detection codes or,
not so often used, message integrity codes (MICs) [44]. The main goal of MDC is
to ensure data integrity.

The hash function has an ideal security if the best known attack is a generic
attack. If someone can find the attack that has the complexity higher than the
ideal security for a given property, this hash function is considered broken. Still, it
can be used in some applications. The complexity of generic attacks on the hash
function is given in the Table 2.1.

one-way hash function (OWHF) is an unkeyed hash function that has the fol-
lowing properties: preimage resistance, second peimage resistance. It is also
known as weak one-way hash function

collision resistance hash function (CRHF) is an unkeyed hash function that
has the following properties: second preimage resistance, collision resistance.
It is also known as strong one-way hash function

If the function is one-way, it doesn’t guarantee that it is hard to find two inputs
with the same output. This is the reason why a collision resistance as a separated
property needs to be introduced.

6 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTION

Also, CRHF does not guarantee the preimage resistance by itself but in practice,
CRHR almost always has this additional property. Here, the term collision resis-
tance is not quite suitable because the collisions exist but it is hard to find them.
An alternative name collision intractable hash functions was proposed in [79] and
[78]. Another common used name is collision free hash function.

2.2.1 Manipulation Detection Code (MDC)

Manipulation Detection Code (MDC) (sometimes also called fingerprints, crypto-
graphic secure checksums, hash function and others) was originaly defined by Merkle
[45]. He described one-way hash function using a random block cipher.

One-Way Hash Function (OWHF)

Originally, OWHF was introduced by Diffie and Hellman in [22]. Before detailed
explanation of OWHF, one-way function in general should be defined. The function
h is a one-way if:

1. The design of the function h is public

2. For a given x, the computation of h(x) is easy

3. For a given y in the range of h, finding x such that h(x) = y is hard.

This definition is only informal. To make this definition formal one should
specify the distribution to select x and y. One should also specified the meaning of
”hard” and ”easy”. It must be taken into account that computing inverse function is
possible but only with a small range (e.g. exhaustive search). Many other definitions
are needed to make this definition formal and it is not a trivial task.

The first property does not need to be met if we want to call the function a
one-way hash function but, by avoiding this statement, we have a situation known
as security by obscurity which is against Kirchhoff’s principle1. The existence of
the one-way function is not proven but it is believed to be infeasible. It is still an
open question: do one-way functions exist? The following functions are just some
that are believed to be one-way:

• Factoring problem: f(p, q) = pq, where p and q are randomly chosen primes

• Discrete logarithm problem: f(p, q, x) = 〈p, q, gx(mod p)〉, where g is a gen-
erator of Z∗p and p is a prime number.

1Kirchhoff’s principle says that even if everything, except the key of the cryptosystem is publicly
known the system should be secure

2.2. CLASSIFICATION OF HASH FUNCTIONS 7

• Discrete root extraction problem: f(p, q, e, y) = 〈pq, e, ye(mod pq)〉, where p
and q are primes, y is in Z∗pq and e is in Zpq and co-prime with (p− 1)(q − 1)

• Subset sum problem: f(a, b) = 〈
∑n

i=1 aibi, b〉, where ai ∈ {0, 1} and n-bit
integer bi

Probably the best known usage of one-way function is for storing passwords.
Namely, instead of storing the password p in plain form, the value of one-way
function h(p) is usually used. Correctness of the password can be easily checked
and even the one who has access to the storage location cannot deduce the user’s
password. The definition of OWHF can be given in the following way:

Definition A function h that turns arbitrary input message length x into fixed
length output message digest is called one-way hash function (OWHF) if:

• Function h is a one-way function

• For a given x and h(x) it is hard to find x′ 6= x such that h(x) = x′

Collision Resistant Hash Function (CRHF)

A collision resistance hash function was mentioned for the first time in [16]. A
construction of such a function was proposed and proven that the collision is hard to
be found. The main motive why CRHF was introduced is to improve the security of
signature scheme and channel authentication. It is also suggested in [44] that MDC
should be CRHF if an adversary has a full control over an input of the hash function.
Because of the collision resistance property, CRHFs are harder to construct than
OWHFs and require an additional effort during its design.

Definition A collision resistance hash function is a function h that satisfied
following properties:

• The design of the function h is public

• An input value x can be of arbitrary length and an output value h(x) has a
fixed length

• For a given x, it is easy to compute h(x)

• It is computationally infeasible to find any pair x and x′ such that x 6= x′ and
h(x) = h(x′)

CRHFs are easier and much preferable to be used in a system than OWHF.
Collision resistance is required for digital signature to preclude the repudiation to
the sender. The reason is that there is no pre-conditions in selecting a message
x and it provides higher level of security. Without satisfying a collision resistance

8 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTION

property, an adversary can produce a message pair (x, x′) and let another party
sign a message x. Later on, an adversary can use another message x′ and clams
that another party signed it. Namely, a constraint in a system with OWHF is that
a message x cannot be chosen by a party who has a motive to break the system.
Because of that, many authors exclusivelly recommend usage of CRHF.

2.2.2 Message Authentication Code (MAC)

MAC algorithms ware introduced in the late seventies after the start of open re-
search in the field. In the beginning, a MAC was used in banking systems. MACs
have deployed an application that operates with electronic purses (such as Proton,
CEPS) and credit/debit (the EMV-standard). Also, MACs have been used to secure
Internet (e.g., IPSec, TLS) [59]. The first reference was given in 1972 by Simmons
at al. in [68].

Definition A Message Authenticate Code (MAC) is a function h with the fol-
lowing properties:

• The design of the function h is public and the only secret information is a key
k

• An input value x can be of arbitrary length and an output value hk(x) has a
fixed length

• For a given x and k it is easy to compute hk(x)

• Even if an arbitrary number of pairs is known (xi, hk(xi)) it is computationally
infeasible to compute any pair x, hk(x) for any input x 6= xi

The goal is that an eavesdropper who has an ability to change a message can’t
predict the MAC value. The security is based on the fact that it is computationally
infeasible to predict the MAC value for a given message without knowing the key.
MAC algorithm can be established only between mutually trusting parties. It re-
quires less storage and it is much faster than digital signature[58]. The disadvantage
is the fact that the management of symmetric keys is expensive.

CBC-MAC

The most popular MAC algorithm is CBC-MAC [56]. It is widely used in financial
applications and smart cards. It is based on block cipher derived from CBC mode
of operation. MAC key is used as a cipher key in each step of iteration (see section
2.3 for iterated hash function). CBC-MAC construction can be defined as iterated
hash function with the following compression function:

2.3. ITERATED HASH FUNCTIONS 9

Hi = Ek(Hi−1 ⊕ xi), 1 ≤ i ≤ n

Where Ek(x) is encryption of x using a key k. It is widely used with DES. Usually,
the initial value is zero (IV = H0 = 0). The final result is given using output
transformation g(Hn) = MACk(x). The output transformation g should avoid the
following forgeries [56]:

• For given MAC(x), follows that MACk(x||(x⊕MACk(x))) = MACk(x) using
one block x

• For given MAC(x) and MAC(x′) follows that MACk(x||(x′ ⊕MACk(x))) =
MACk(x

′) using one block x

• For given MAC(x), MAC(x||y), and MAC(x′) follows that MAC(x′||y′) =
MAC(x||y) if y′ = y ⊕MAC(x)⊕MAC(x′)

The possible solution is to perform processing on the last block using two keys.

g(Hn) = Ek1(Dk2(Hn))

where D denotes decryption. This approach requires extra computations and needs
an additional key but it is resistant on exhaustive search against DES. This solution
is known as ANSI retail MAC.

2.3 Iterated Hash Functions

Most hash functions are based on the compression function with a fixed size input.
An iterated hash function takes arbitrary input length that is successively processed
to fixed-length blocks. An arbitrary length input x = (x1x2...xn) is divided into l-
bit blocks xi. Input message usually needs extra bits to attain a length that is
multiple of a block length. Each compression function takes two inputs of lengths
m and l and produces an intermediate fixed-length outputs of length m. Denoting
Hi as intermediate result after i-th iteration, the general process of computing a
hash value with an input x = (x1x2...xn) is:

H0 = IV , Hi = f(Hi−1, xi), 1 ≤ i ≤ n, h(x) = g(Hn)

where H0 is a pre-defined initial value. Hi is usually called the chaining variable.
Sometimes, after the last output is given, an output transformation g is applied so
that it maps the l-bit value into m-bit result. Mostly, g is identity function.

An important condition in creating iterated CRHF was given by Damg̊ard [17]
and Merkle [45].

Theorem (Damg̊ard-Merkle) Let f be collision resistance function that maps
l-bit input to m-bit output (l > m). If unambiguous padding scheme is used the
following construction yields a CRHF:

10 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTION

H1 = f(0m+1||x1), Hi = f(Hi−1||1||xi) (i = 2, ..., n)

They proved that collision resistance property of compression function f leads to
collision resistance property of iterated hash function h.

One of the main facts in creating a secure iterated hash function h is how ”good”
the compression function f is. In other words, how should a function f be created
so that h satisfies certain properties? One of the answer to this question was given
in [41] by Lai and Massey. They gave necessary and sufficient conditions for com-
pression function f in order to obtain second preimage resistance for h.

Theorem (Lai-Massay) Suppose that a message contains at least two blocks.
Iterated hash function h with unambiguous padding scheme has ideal computational
security against second preimage attack with a fixed initial vector IV if and only if
its compression function f has ideal computational security against second preimage
attack for chosen Hi−1.

From security aspect, two important elements are involved: the padding scheme
and the initial vector. The padding scheme must be deterministic and unambiguous.
That is, there are no two different messages that can be padded to the same one.
At the end of padding part, the length of original message should be embedded.
The IV must be pre-defined and it is a part of hash function’s description. After
Damg̊ard [17] and Merkle[45] it is called MD-strengthening

2.3.1 Weakness in Iterated Hash Functions

These attacks concern the security of iterated hash function against generic attacks.
It turns out that the iterated hash function has a number of generic attacks whose
weakness does not lie in the poor design of compression function.

As it is already mentioned, a hash function takes the arbitrary amount of data.
One of the most natural ways to solve this problem is to divide the input value
into blocks and to proceed all blocks into some kind of iterated structure. This
solution was initially proposed by Merkle in [46]. Constructing the good design is
not an easy task. Schemes that have been used most often in hash functions are
Davies-Meyer and Miyaguchi-Preneel [47]. These two schemes usually give enough
security in most applications even though some weaknesses have been found.

Multicollisions in Iterated Hash Functions

Finding multicollisions in iterated hash functions can be done more efficiently than
it was believed. Joux [31] estimated that finding 2t collisions is only t times slower
than constructing 2 collisions.

Finding r-mulsticollisions in cryptographic hash function means finding the r-
tuple (m1,m2, ...,mr), r ≥ 2 for mi 6= mj, i 6= j, and i, j ∈ {1, 2, ..., r} where

2.3. ITERATED HASH FUNCTIONS 11

h(m1) = h(m2) = ... = h(mr). For a perfect random hash function finding
r-multicollisions requires r!1/r2n(r−1)/r operations [1]. Joux found a much faster
way to find multicollisions in an iterated hash function. After finding a t pairs
(b1, b

′
1), (b2, b

′
2), ..., (bt, b

′
t) where values in each pair produce the collision for the com-

pression function f , one can easily generate 2t massages of t blocks that generate
the same hash value. It can be done by using the input B = (B1, B2, ..., Bt) where
Bi is whether bi or b′i. That is, finding 2t multicollisions requires t · 2n/2 operations.

Using the advantage of r-multicollisions Joux found the way to improve the
attack on cascaded hash functions whose component functions have an ideal security.
Suppose that two iterated hash functions are given: h and g with nh and ng-bits
outputs respectively and that there is no better attack on these hash functions
than generic birthday attack. The large hash value can be construct concatenating
two output values (h(x)||g(x)). Joux claims that better generic attack exists on h||g
than 2(nh+ng)/2. Moreover, he found the attack on (h(x)||g(x)) that found a collision
with complexity of the order ng2

nf/2 + 2ng/2 if nf ≤ ng (respectively nf2
ng/2 + 2nf/2

if ng ≤ nf).
A similar situation is when one tries to construct preimages. The complexity

was believed to be 2(nf +ng). However, there is a much better attack that can find a
preimage of f ||g hash function with complexity of the order of ng2

nf/2 + 2nf + 2ng

if nf ≤ ng (respectively nf2
ng/2 + 2ng + 2nf if ng ≤ nf).

Attack on the Second Preimage

An ideal security of the hash function requires about 2n operations to brake second
preimage resistance. Dean showed [18] that in the iterated hash function, where it
is easy to construct fixed points for its compression functions, the second preimage
can be found much easier. He used the so called expandable messages to apply this
attack. An idea is to use sets of pairs of messages. They are used to construct
messages with the same hash values but different lengths. Instead of one block
someone can use more blocks, as long as the hash value is the same.

To find a second preimage someone can construct an expendable message and
connect it to the output hash value of the expendable message with the chaining
values of the message. When the desired hash value is found one can adjust the
expandable message and change the length to the length of the first part of original
message. This way, the new message will have the same length as the original one.
Using an expandable message one can produce messages length form k to 2k +k+ 1
blocks to find second preimage from the message m = (m0,m1, ...m2k+k). The total
complexity is k2n/2+1 + 2n−k+1. In the case of SHA-1, for a very long message of 260

bytes one can find a second preimage in 2106 rather than 2160 [43].
J. Kelsey et al. in [33] had a very similar approach for this problem. They showed

that even without finding fixed points it is possible to find the second preimage with

12 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTION

the less than 2n operations. For a long message of 2k blocks they managed to find
second a preimage with the work factor k2n/2 + 1 + 2n−k+1.

Length-Extension Attack

This attack is applied on Merkle-Damg̊ard scheme of iterated hash functions [24].
For a given hash function h, assume that an adversary knows the hash value h(x)
and the length |x|. An adversary can select the suffix s and compute h(x||s) without
knowing x. This can be done by padding the length of the message x||s and the
end. It is possible since an adversary already knows the length of x and he is free
to chose the content of s.

2.4 Types of Hash Functions

This section discusses about three types of MDC hash functions: hash function
based on block cipher, custom design hash function, hash function based on algebraic
structures (modular arithmetic, knapsack, lattice problems).

2.4.1 Hash Functions Based on Block Cipher

The usage of hash functions based on block cipher has historical and practical
reasons. The first reason is because DES was the first cryptographic primitive that
was widely available. It seems pretty natural for designers to use the potential of
this block cipher to construct a hash function. Another reason is the minimization
of the design and an implementation effort. A good hash function is hard to design
and designers can use security property of block cipher to construct it. Also existing
software and hardware implementation can be reused. One of the main advantages is
trust that can be transfered to the hash function. On the other hand, hash functions
based on a block cipher are not fast and efficient as these that have a custom design.
It must be also taken into account that using block ciphers additional problems in
hash functions may be created. They can expose some weaknesses that only occur
in hashing mode [59]. The usage of block ciphers in hash functions requires stronger
properties of block cipher. That is, certain properties of a block cipher that do not
affect the process of the encryption can cause some problems in hash functions. For
example, semi, weak and quasi weak keys can cause some problem [50, 38]. DES
can be exploited in differential cryptoanalysis of the hash function [61].

An encryption of the block cipher is defined as c = Ek(p) where p is a plaintext,
c is a ciphertext and k is a key. The size (in bits) of a plaintext is denoted by r and
of key by k. A hash rate of the hash function based on block cipher is defined as
the number of block inputs necessary for a single encryption. DES has 1 hash rate
of r = 64 bits and a key size k = 56 bits.

2.4. TYPES OF HASH FUNCTIONS 13

A difference will be made regarding the size of the result of the hash function.
Thus, three cases will be considered: when the size of the result is equal to the block
size (n = r), when the size of the result is equal to twice the block size (n = 2r)
and when the size of the result is greater than twice the block size (n > 2r). A
motive for a greater size of the result lays in the fact that the result of one block
size became too small to obtain resistance on collisions. An alternative approach is
to obtain a greater key size [57].

Result of Hash Function Equal to the Block Size

All schemes of this type have a hash rate 1. The first secure construction of this
type was given by Matyas et al. in [69]. It is known as Matyas-Meyer-Oseas scheme
and it has the form:

Hi = Es(Hi−1)(xi)⊕ xi

where s represent a compression function that maps a cipher space to the key space.
Another one, very similar to the previous one is Davies-Meyer scheme: It fits much
better in the case when the key size and block size are different [57]. The compression
function in the Davies-Meyer scheme compresses the n+ k bits into b bits and has
the form:

Hi = Exi
(Hi−1)⊕Hi−1

By making iterations using this scheme and combining them with MD-strengthening
one can construct a hash function that is known as Davies-Meyer hash function. It
was shown that using the block cipher whose properties have an ideal security and
if k ≥ n finding (second) preimage requires about 2n and collision 2n/2 encryption
[8].

The third variant is a Miyaguchi-Preneel scheme and it was proposed indepen-
dently by Preneel et al. [2] and Miyaguchi et al. [48].

Hi = Es(Hi−1)(xi)⊕ xi ⊕Hi−1

Preneel et al. in [55] identified 12 different security constructions and briefly
discussed about their security. Black et al. in [8] went a little further and proved
the security of these schemes.

14 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTION

Result of Hash Function Equal to Twice the Block Size

The goal of a double block size hash function is to increase security against collision
attacks. A collision attack in an ideal case needs approximately 2n/2 encryptions
and a second preimage attack 2n [57]. Probably the most famous examples are
MDC-2 and MDC-4. They required 2 and 4 block cipher operations per block for
hash input [44] or in other words MDC-2 and MDC-4 have 1/2 and 1/4 hash rate
respectively. They combine 2 or 4 Matyas-Meyer-Oseas schemes and produce a
double block length result. In original specification, when DES was used as a block
cipher, 128-bit output hash value is produced but any other block cipher can be
used. An MDC-2 scheme has a form:

T 1
i = Eu(H1

i−1)(xi)⊕ xi = LT 1
i ||RT 1

i

T 2
i = Eu(H2

i−1)(xi)⊕ xi = LT 2
i ||RT 2

i

H1
i = LT 1

i ||RT 2
i

H2
i = LT 2

i ||RT 1
i

where H1
0 and H2

0 are initial vectors IV1 and IV2 respectively. A hash value is
calculated concatenating the values H1

n and H2
n. It is also required that u(IV1) 6=

v(IV2).
The construction of MDC-4 consist of joining together two MDC-2 where outputs

of the first step (H2i−1 and H1i−1) are used as the inputs for the second step:

T1i = Eu(H1i−1)(xi)⊕ (xi) = LT1i||RT1i
T2i = Ev(H2i−1)(xi)⊕ (xi) = LT2i||RT2i

U1i = LT1i||RT2i
U2i = LT2i||RT1i

V 1i = Eu(U1i)(H2i−1) = LV 1i||RV 1i
V 2i = Eu(U2i)(H1i−1) = LV 2i||RV 2i

H1i = LV 1i||RV 2i
H2i = LV 2i||RV 1i.

The best known preimage attack on MDC-2 requires 263.3 compression function
evaluations [39]. In [65] an efficient collision attack on MD-4 with complexity less
than 3 MD-4 hash operations is presented.

Result of Hash Function Larger Than Twice the Block Size

Knutsen and Preneel proposed a scheme for a collision resistance compression func-
tion [37]. They proved the collision resistant security level equal to 2n/2, 23n/4 or
more and all this with rates larger than 1/2. The internal memory in this case
requires more than 2 or 3 blocks and an output transformation must be made [57].

2.4. TYPES OF HASH FUNCTIONS 15

2.4.2 A Custom Design Hash Function

This class of hash functions is designed to perform hashing operations. What is
common for all custom designed hash functions, is that designers knew the purpose
of the hash algorithm in advance with performance efficiency in mind. Most of
them are based on Davies-Meyer construction. Rivest suggested in [64] MD4. It
has optimal logic operations and integer arithmetic on 32-bit processors [57]. Design
principles of MD4 were subsequently used in the construction of other hash functions
such as SHA-1 and RIPEMD-160. After a serious leak was found in MD4, Rivest
designed MD5 [63] to replace it. There is no proof for security of custom design
hash functions and a chance for attacks always exists.

Boer and Bosselaers showed in [19] that compression function of MD5 is not
collision resistant. Namely, they have found a collision with distinct initial values
but the same input messages. Because of different initial values they can not be
used in Merkle-Damg̊ard method and do not have direct impact on applications.
Sometimes are also called pseudocollisions. Dobbertin has found the collision with
the same initial values but distinct input messages for the compression function
[23]. Initial value that Dobbertin has found is different than initial value in Merkle-
Damg̊ard specified by MD5 and this is the reason why it can implied a collision of
MD5.

X. Wang, D. Feng, X. Lai and H. Yu showed that MD5 can not be considered
a collision resistant function. Moreover, in August 2004. they published collisions
for MD4, MD5, HAVAL-128 and RIPEMD-128 [75]. Nowadays, MD5 is considered
broken. In [36] Klima demonstrated how a collision for any initial value on an
average PC can be found in less than a minute. The best known attack was found
in 2009. that uses only 220.96 to beak collision resistance of MD5 [76].

In February 2005. X. Wang, Y. L. Yin and H. Yu were presented an algorithm
that finds a collision in SHA1 with 269 hash operations [74]. This is significantly
less than 280 hash operations of the brute force birthday attack. De Canni‘ere et al.
in [11] gave the best known example of 70-step collision for SHA1.

2.4.3 Hash Functions Based on Algebraic Structures

This section shortly discusses about hash factions based on modular arithmetic. It
also shortly covers the hash functions based on knapsack problems. The last part of
this section is reserved for incremental hash functions. Some of these hash functions
are vulnerable to the insertion of a trapdoor. A trapdoor one-way function is a such
a function where it is hard to invert unless some secret information, also called a
trapdoor, is known. This allows someone to define parameters that can lead to the
collision and other vulnerabilities. An example for a trapdoor one-way function is
a factorization of a product of two large primes. Computing the product of two

16 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTION

large prime numbers is relatively easy but factoring them is (believed to be) hard
unless some additional information is known. This is the basis of an RSA algorithm.
Because of that, these parameters must be generated very carefully.

Hash Functions Based on Modular Arithmetic

An idea is to use a modular arithmetic in an iterated hash function as a basis for
a compression function. The security is based on the difficulty to solve some well-
know number theoretic problems. Some of these problems are discrete logarithm
problem and factorization problem. The advantage of hash functions designed in
this way is that a digest length is scalable, depending on the size of modulus. The
disadvantage is that homomorphic structure can be exploited as well as the fixed
point of modular arithmetic.

Hash functions based on modular arithmetic can be divided into two classes;
some that have provable reduction scheme and some that do not have provable
reduction to the underlying hard problem. Schemes without provable reduction
usually use factorization problem. It can be very practical in combination with
RSA as the digital scheme. Here, the following problem can be exposed: the party
that generates the modulus knows the factorization and has an advantage over other
parties. One of the solutions is to use trusted third party (TTP) to generate the
modulus.

Hash Functions Based on Knapsack Problems

In cryptography, the knapsack problem of dimension n and l(n) can be defined as
follows: For a given set A = {ai|i = 1, ..., n} where ai is a b-bit integer, and an s-bit
integer S find a subset A′ ⊆ A such that

∑
ai∈A′ aixi = S mod 2l(n). A knapsack

problem belongs to the well known NP-complete problems. The hardware and
software implementation are much faster than schemes based on number theoretic
problems. Nevertheless, the hard mathematical basis of almost all hash functions
based on knapsack problem have been broken. That brought a bad reputation of
the knapsack problem in cryptographic community.

Incremental Hash Functions

This type of hash function is relatively new. It was introduced 1994. by Bellare at
al. in [4] and has the following property: if the hash massage x is slightly changed
into the new message x′ then the computation of h(x′) should be proportional to
the amount of modification between x and x′. This hash function has found its pur-
pose in applications such as virus protection, broadcast networks, video surveillance
broadcasting [4] and memory checkers [25].

2.5. ATTACKS ON HASH FUNCTIONS 17

2.5 Attacks on Hash Functions

An attack on a cryptographic hash function means creating an algorithm capable
of violating one of the security properties of the hash function. For instance, if
a hash function is claimed to be collision resistant, a successful attack will be to
find any two distinct messages that have the same hash value. It is assumed that
the algorithm of the hash function is a public knowledge. It is also assumed that
it is possible to perform the, so called, adaptive chosen message attack, where an
adversary may choose messages and calculate a hash value and then try to find a
message with the same hash value. Several approaches for violating the security
hash functions will be presented in the rest of this section.

Preneel in [55] gave the classification of the known methods of attack on hash
functions. He proposed the following classification:

1. attacks independent of the algorithm,

2. attacks dependent on the chaining,

3. attacks dependent on an interaction with the signature scheme,

4. attacks dependent on the underlying block cipher,

5. high level attacks.

In the case of MDC an attack consists of finding preimage or two different values
with the same image. A special treatment will be taken for IV depending whether
the value of IV is different from the specified value. In [55] a distinguish was made
between:

Preimage an adversary tries to find a preimage for the given hash value

Second peimage an adversary tries to find a second preimage for a given hash
value

Pseudo-preimage an adversary tries to find a preimage for a given hash value
where IV 6= IV ′

Second pseudo-preimage an adversary tries to find a second preimage for a given
hash value where IV 6= IV ′

Collision an adversary tries to find two distinct values that have the same hash
value

Collision for differetn IV an adversary tries to find two distinct values that have
the same hash value where IV 6= IV ′

18 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTION

Pseudo collision an adversary tries to find a pair x and x′ for same IV and IV ′

such that hIV (x) = hIV ′(x
′)

2.5.1 Attacks Independent of the Algorithm

Attacks that belong to this class do not depend on the structure of the hash function.
These attacks do not analyze the algorithm of the hash function. They only depend
on the size of the hash value and on the size of the key in the case of MAC.
All calculations are assumed to have their output values uniformly distributed.
Examples of these attacks are: exhaustive key search, birthday attack, random
attack and pseudo attack.

Exhaustive Key Search

The key in the MAC function is used to make the algorithm secure. It is presumed
that an adversary has one or more pairs (x, hk(x)). An adversary then tries to find
a key that corresponds to a given pair. The key can be found examining the key
space. The relation between the plaintext and the hash value does not need to be
one-to-one. Sometimes more than one key, fitting the given pair (x, hk(x)), can be
found. However, by finding all possibilities for more than one pair (x, hk(x)), the
key can be determined uniquely.

As it shown in [55], the expected number of trials is given by

(1− 1
2r)
∑m

i=1
1

2r(i−1) <
1

1−2−r

where r is the length of hash value in bits and m is the number of pairs (x, hk(x)).
The upper bound of trials to identify the key is:

m+ 2k−1
1−2−r

where k is the key length in bits. Expected number of resulting key is given by

1 + 2k−1
2mr

This means that expected number of pairs (x, hk(x)) to determine the secret key is
about k

r
.

The time required for finishing exhaustive key search depends of the number of
possible keys (k), the time for performing the hashing using one candidate for the
key (t) and the number of processors used for finding the key (p). Each processor
will find about k/p keys and would take kt/p time to perform the hashing. On
average it is expected to find the key on the half way. This make the expectation
time to find the key kt

2p
.

2.5. ATTACKS ON HASH FUNCTIONS 19

The big part of the history of exhaustive key search is related to Data Encryption
Standard (DES) [52]. When DES has been announced it was considered controver-
sial mostly because of its short key. Deffie and Hellman in 1977. [21] made an
estimation that DES can be broken in a day using a machine of 20 million dollars.
In 1993., Wiener was presented a design of 1 million dollars machine for DES search
key. This machine consisted of 57, 600 chips, each capable to test a key every 10ns.
This lead to the fact that the expectation for finding a secret key was kt

2p
= 3.5

hours.
In 1998. Electronic Frontier Foundation built a machine whose main purpose

was a DES key search. The machine was made with the budget of 250, 000$ using
1, 856 custom chips each capable of testing 60 million keys per second. The machine
found a key in a little more than 2 days.

There are some well known suggestions for how to prevent exhaustive key search.
One of the methods that is usually suggested is to use sufficient long key. Increasing
the key length, the searching time kt

2p
becomes larger.

Birthday Attack

This attack is based on the birthday paradox. Namely, the probability that among
of groups of randomly chosen people at least two have birthday the same day is
more than 50%. It follows from

365
365
· 365−1

365
· · · 365−22

365
≈ 0.49 < 0.5

or, in general ∏
0≤i≤1.18

√
p
p−1
p
≈ 0.5

In other words, it is reasonable to expect a duplicate after about
√
p randomly

chosen elements. It is called a paradox because the number is significantly smaller
than we would expect. Translating this into cryptology, this means that if the
output of the hash function has p distinctive values, the expectation for two equal
hash values is about after

√
p randomly chosen inputs.

Some applications have problems related to this. They can be defined as follows:
if there are two groups and in each group are 17 randomly chosen persons, then the
probability that two people in two different groups have birthday on the same day
is more than 50%. General approach can be as follows: if there are two sets r1 and
r2 of randomly chosen values and if it is assumed that the hash value has r bits
output, the probability of finding a match between two sets r1 and r2 is about

P ≈ 1− e−
r1r2
2r

20 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTION

where r1, r2 are big values [53]. In special cases, when r1 = r2 = 2r/2 and r1r2 =
O(
√
r) the probability of a match is

P ≈ 1− 1/e ≈ 0.63.

One very important characteristic is that by slightly increasing either r1 or r2 the
success probability will be increased drastically. If r1 + r2 has to be minimized, it
can be easily calculated that r1 = r2 =

√
n. This is the reason why this attack is

sometimes called ”square root attack”.

Yuval in [77] exploited the birthday paradox to attack digital signature scheme
of Rabin. He showed that it is easier to find a collision for a one-way hash function
than to find a preimage of a second preimage of a specific value. The result is that
a signature scheme can be vulnerable to Yuval’s attack. This attack is applicable
on all unkeyed hash functions.

Yuval’s algorithm works the following way. Suppose that is given n-bit one-way
hash function. First, an adversary generates r1 hash values from the randomly
chosen plaintexts and stores them in a searching way. Usually, 2n/2 such values
are provided. After that, an adversary computes hash values from some another
randomly chosen plaintexts, which are different from the previous set of plaintexts.
After each computation an adversary checks if that value matches some of the values
in the store. This continues until a match is found. A match is expected after 2n/2

candidates.

Random Attack

In this attack an adversary choses a random plaintext and hopes that it will produce
the hash value equally to the genuine one. For an ideally secure hash function, the
probability that an adversary remains undetected is 1/2n where n is the number of
bits of the hash value. The efficiency of this attack depends on the strategy taken
after detecting the wrong result, the expected value of the successful attack and the
number of trials that can be performed [2].

The important characteristic of MDC is that it can be used off-line. This im-
plies that the number of hash values can be produced sufficient enough. On the
other hand, MAC can be used on-line and parallel and depends on several elements
described in [55]. First of all, an adversary is limited by the time he or she can
spend using the system with the same key as well as the speed needed to calculate
the hash value. The number of trials can be limited by the number of faulty results.
After this time has exceed an adversary has some kind of penalty that can be in the
form of waiting some period of time until the next trial. Also, an adversary can be
motivated by the benefit of a successful attack.

2.5. ATTACKS ON HASH FUNCTIONS 21

Pseudo Attack

Bakhtiari at al. have called this attack pseudo attack in [3] since the cryptanalyst
tries to find a pseudo key k̂ such that hk̂(x) = hk(x) where k is a real secret key.
For an adversary that knows the pseudo key in this way of impersonating another
user is allowed. Figuring out the pseudo key doesn’t automatically mean that an
adversary can generate a correct hash value for another plaintext. Even more, if an
adversary finds a pseudo key that generates correct hash values for t plaintexts it
does not necessary mean that this pseudo key will produce the correct hash value
for another plaintext.

2.5.2 Attacks Dependent on the Chaining

Chaining attacks are those which exploit the nature of iterated hash functions.
These attacks depend on some properties of the compression function f and the
focus of these attacks is more on the compression function f than on the whole
hash function.

Correcting-Block Chaining Attacks

Here, an adversary creates a new plaintext x′, correcting only one block in x, such
that h(x′) = h(x). Let us suppose that the compression function f : {0, 1}n+m →
{0, 1}n is given and the iterated hash function is defined as Hi+1 = f(Hi, xi), H0 =
IV . An adversary picks one of the input blocks xi and replaces it with another
block x′i without changing the output. Usually this means that an adversary tries
to find an input block value x′i such that f(Hi, xi) = f(Hi, x

′
i) = Hi+1. Sometimes

it is necessary for more than one block to be corrected but it doesn’t change the
essence of the problem.

Having the first/last block in the chain attacked is sometimes called correcting
first/last block attack. Hash functions based on modular arithmetic are extremely
vulnerable to this attack [55]. This attack can be used to find preimages, second
preimages as well as collisions. It can be avoided using per-block redundancy, but
it decreases the performance.

Meet-in-the-middle Chaining Attacks

Meet-in-the-middle is a known plaintext attack. It is a variation to the birthday
attack that uses space-time tradeoff. It tries to find a collision on the intermediate
result rather than the overall hash result. An adversary creates a r1 variations on
the first part of the plaintext and r2 variations on the second part of the plaintext.
Later on, by using values from the first variation going forward (Hi = f(Hi−1, xi))
and values from the second variations going backwards (Hi = f−1(Hi+1, xi+1)) an

22 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTION

adversary tries to match the same intermediate result. To be able to find a match,
the chaining mode must be invertible and allow the attacker to go backward.

Fixed Point Chaining Attack

The goal of this attack is to find a pair (Hi−1, xi) such that f(Hi−1, xi) = Hi−1. In
that case it is possible to insert an arbitrary number of blocks xi without changing
the hash value. This attack is only possible if the chaining variable can be forced
to be equal to Hi−1, which is called a fixed point. It can be done in the following
cases:

• large number of fixed point can be constructed. That is, for almost all values
of chaining variables Hi−1, one can find xi such that f(Hi−1, xi) = Hi−1.

• it can somehow be arranged that the chaining variable takes the fixed point
value.

• IV can be freely chosen. Then, one can chose IV for the fixed point.

This attack is also concerned in the case when an adversary can find k pairs
(Hi+l−1, xi+l), l = 0 . . . k − 1 such that f(Hi+l−1, xi+l) = Hi+l, 0 ≤ l < k − 1 and
f(Hi+k−2, xi+k−1) = Hi−1. The attack can be prevented by making redundancy to
the input block and embedding the plaintext length to the input, before performing
the last block. One of the scheme vulnerable to the fixed-point attack is Davies-
Meyer scheme pointed out in [49].

Differential Chaining Attacks

Primary, differential cryptanalysis was applied to block ciphers but it can also be
used on hash functions as well as on stream ciphers. It analyzes how differences in
the input affect the differences at the output. A chosen plaintext attack is usually
when an adversary choses a set of plaintexts trying to obtain desirable set of outputs.
Usually, an adversary searches for some statistical anomalies on an output. In case
of collisions the output difference should be zero. If the iterated hash function uses
the block cipher, depending on the mode of operations, an adversary can require
that the output difference is zero or equal to the input difference.

2.5.3 Attacks Dependent on the Underlying Block Cipher

The hash function based on block ciphers was discussed in the section 2.4.1. Some-
times even a well designed encryption algorithm can cause problems in the iterated
hash function. The problem lays in the fact that the algorithm is designed only

2.6. SUMMARY 23

with encryption/decryption in mind. However, an underlying problem can arise
when such block cipher is used in the round function of a hashing algorithm. The
block ciphers in a hash function require much stronger properties. Examples of such
problems are weak keys, key collisions, fixed points and complementation properties.

• complementation property : y = Ek(x) ⇔ ȳ = Eȳ(x̄) where x̄ denotes the
bitwise complement. It is one of the well-known properties of DES that reduce
the exhaustive key search by factor 2. It also allows making a trivial collision.
A linear transformation of the Matyas-Mayer-Oseas function that has the
compression function f(Hi−1, xi) = EHi−1⊕xi

(xi)⊕xi produces the same result
for xi and for x̄i.

• weak keys : Ek(Ek(x)) = x for all x. For example, DES has 4 weak keys. This
allows an adversary to easily create fixed point of compression function f in
only two steps. It is enough to use the same block input xi that contains
the weak key. The iterated block cipher with the semi-weak keys (DES has 6
semi-weak keys) has a similar property.

• fixed points : Ek(x) = x. Already explained in section 2.5.2. If a block cipher
behaves like a random mapping then it probably has a fixed point. Nev-
ertheless, finding the fixed point should be hard even if the adversary has
control over the plaintext or the key. For a poor design iterated hash function
producting fixed points is easy under some conditions.

• key collisions : Ek(x) = Ek′(x). If the block cipher behaves like a random
mapping, the key can be found using the birthday attack. To avoid such an
attack, the key should be sufficiently large. Even if such a threat exists the
good design of a hash function can make such an attack useless.

2.6 Summary

In this chapter, the most important security issues that are relevant to crypto-
graphic hash function were described. The basic design and requirements as well as
the attacks against hash functions were explained. The potential risk and counter-
measures for some of these were analyzed. The focus was on generic attacks where
the whole hash function or just the part of them is observed as the black-box. That
is, attacks that analyze the internal structure of functions were not discussed here.

24 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTION

Chapter 3

RadioGatún

3.1 Introduction

In this section RadioGatún hash function will be explained. It is a family of hash
functions proposed by Bertoni et al. in [6]. It compresses variables using iterated
applications of round functions. In general, it is divided in two pairs: belt and mill
are sometimes also called belt-and-mill structures. RadioGatún has been proven as
a hash function with good performance and it is extremely fast in hardware.

The rest of the chapter is organized as follows: after the basic description and
presentation of the structure of RadioGatún the performance and security overview
was given.

3.2 Basic Description

RadioGatún is derived from Panama, intended to improve design and correct prob-
lems in Panama [15]. It is based on alternating-input of Iterative Mangling Function
(IMF) with belt-and-mill structure. The concept of IMF structure is presented in
Figure 3.1. It uses the iterative model, processing the iterative fixed-size input
block, followed by the fixed number of rounds without inputs or outputs. The in-
put mapping maps the input block bits to the bits updating the internal state at
every round. The output is the fixed-size hash value. The length of the output is
adjusted consecutively applying the round function where the output block is taken
from mapping the internal state.

25

26 CHAPTER 3. RADIOGATÚN

0 raund raund raund raund raund... ...

Input Block Input Block Output Block Output Block

Figure 3.1: The structure of IMF

3.3 Structure of RadioGatún

The round function is the crucial part of any alternating-input IMF. The function-
ality of RadioGatún can be divided into two parts: the belt and the mill, and the
round function. The mill function is applied to the belt. It is an invertible, nonlin-
ear function. Bell function is an invertible, linear function and it is applied to the
belt.

The mill has 19 words denoted by a[i]. The belt has 13 stages each consisting
of 3 words denoted by b[i, j]. The input block consist of 3 words p[i]. The output
block consists of 2 words z[i]. The diagram of the round function R is given in the
Figure 3.2. An Algorithm 1 [6] defines the round function:

Algorithm 1 The Round Function R

1: (A,B) = R(a, b)
2: for all i do
3: B[i] = b[i+ 1 mod 13]
4: end for{Belt function: simple rotation}
5: for i = 0 to 11 do
6: B[i+ 1, i mod 3] = B[i+ 1, i mod 3]⊕ a[i+ 1]
7: end for{Mill to belt feedforward}
8: A = Mill(a) {Mill function}
9: for i = 0 to 2 do

10: A[i+ 13] = A[i+ 13]⊕ b[12, i]
11: end for{Belt to mill feedforward}

The round function R uses the mill function described in the Algorithm 2:
The input mapping that uses the input blocks to alter the internal state is

specified by the Algorithm 3:
The output mapping that takes the value from the internal state is specified by

the Algorithm 4:
RadioGatún has an internal state of 58 words of size lw bits. Using a different

value for lw RadioGatún is treated as another function. The round function treats

3.3. STRUCTURE OF RADIOGATÚN 27

Algorithm 2 The mill function

1: A = Mill(a)
{all indices should be taken modulo 19}
{x ≫ y denotes rotation of bits within x over y positions}

2: for all i do
3: A[i] = a[i]⊕ a[i+ 1]a[i+ 2]
4: end for{γ: non-linearity}
5: for all i do
6: a[i] = A[7i] ≫ i(i+ 1)/2
7: end for{π: intra-word and inter-word dispersion}
8: for all i do
9: A[i] = a[i]⊕ a[i+ 1]⊕ a[i+ 4]

10: end for{θ: diffusion}
11: A[0] = A[0]⊕ 1 {ι: asymmetry}

Algorithm 3 The mill function

1: (a, b)← 0
2: for i = 0 to 2 do
3: b[0, i] = p[i]
4: a[i+ 16] = p[i]
5: end for
6: return (a, b)

belt and mill parts differently. The mill is fed with 3 words from the input block
and 3 words from the belt in a linear way. Afterward, it is updated with a nonlinear
function. The belt uses the linear transformation and it is fed with 3 words from
the message block and 12 blocks from the mill in a linear way. The function defined
this way is invertible.

The input message is padded in an appropriate way and divided by 3-word
blocks. The initial state is 0 for all internal words. The 3-word input block is
injected and then the round function is applied. This is repeated until the whole
message is injected and then 16 blank round is processed. In the last phase the
infinite number of output blocks is produced by consecutively applying the round
function and taking 2-words block from the mill.

Algorithm 4 The output mapping F0

1: z[0] = a[1]
2: z[1] = a[2]
3: return z

28 CHAPTER 3. RADIOGATÚN

2

1

0

16 17 18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mill Function

Belt Function
Input Mapping

Input
Block

Belt

Mill

Figure 3.2: The RadioGatún round function

Windows (32 bits) VS 2005 Linux (x86 64) GCC 3.3.5.

SHA-1 90 91
SHA-256 65 80
Panama 480 288
RadioGatún[32] 120 175
RadioGatún[64] 55 270

Table 3.1: Software performance (MByte/sec)

3.4 Performance

A basic performance overview comparing RadioGatún to Panama, SHA-1 and SHA-
256 was given in [6].

The results from the software implementation taken from Dell Precision 670 with
Intel Xeon 3GHz, comparing the speed for hashing the long inputs, was given in
Table 3.1. It can been seen from the table that for lw = 32, which is supposed to be
secure as SHA-256, RadioGatún is two times faster. Worse results can be expected
in the case when short inputs are used, due to the fact that fixed length of blank
rounds and padding scheme become noticeable. Implementation in hardware is very
simple and shows extremely good performance. A more detailed explanation about
the optimization of hardware implementations, along with a comparison of some
experimental results with other hash functions, is given in [6].

3.5. SECURITY OF RADIOGATÚN 29

3.5 Security of RadioGatún

The design of RadioGatún was built as the improvement of Panama hash function.
Panama was designed in 1998. and had a big influence on many other designs
of hash functions. After breaking the Panama hash function in 2002. [62] the
serious problem in design was revealed. In 2007. a practical attack on Panama was
presented [14] which had unaccepted complexity of collisions and it is considered
broken. In 2006. RadioGatún that relays on underlaying Panama hash function
was introduced. RadioGatún did not have the weaknesses which Panama had. Up
to now RadioGatún is considered secure.

In the original paper the authors claim that RadioGatún has a security level
indicated by a capacity lc = 19lw where lw is a word length and it can be applied on
both collision and second-preimage attack. For the word length of 64 bits it gives
a capacity of 1216 bits. That is, taking the first lh bits of output stream it can be
used as a hash function with a lh-bits digest. Here, it must be noticed that taking
the hash value lh > lc the collision resistance depends on lc rather than lh. They
also claim that security level for both attacks is 29.5lw . Thus, the best attack is not
generic [7].

In [34] Khovratovich described two attacks but neither of them broke the se-
curity claim of RadioGatún. They found the collisions and second preimage using
meet-in-the-middle attack with complexity 218lw and 223.1lw respectively. Dmitry
Khovratovich also described another attack in [35] with complexity of 218lw .

Another attack was described in [9] applied on a 1-bit version of RadioGatún
and it managed to find a collision in 224.5 operations. However, it can not be applied
on other bit versions of RadioGatún. This attack still does not break security claim
but has the complexity less than the birthday paradox.

The best attack so far was presented in [28]. The attack presented in this paper
has a complexity of 211lw but as the other attacks it does not break the security
claim of RadioGatún.

3.6 Summary

The structure of RadioGatún is straightforward, enabling clear and simple analysis.
The simplicity does not imply that the hash function is not secure. What is more,
all well known attacks are not even close to break the security claim of RadioGatún.
The invertible characteristic ensures that meet-in-the middle attack can be imple-
mented and tested. Taking into account that the performance in the software as
well as the hardware implementation achieves enviable results, RadioGatún gives
us a good choice for hash function.

It has slightly weaker performance if short input message is used but in some

30 CHAPTER 3. RADIOGATÚN

situations it can be overcome, observing the internal state but not the output value.
Namely, the collision of two distinct inputs in RadioGatún hash function can be
found right after the input blocks. In other words, blank rounds and output blocks
that drastically reduce the search for the collision can be skipped. With this ap-
proach the problem with small inputs can be overcame.

Chapter 4

Cycle finding algorithms

4.1 Introduction

In this chapter several algorithmic techniques which apply the birthday paradox
on randomly chosen object are introduced. All algorithms are focused on detect-
ing periodicity in a sequence generated by iterating a fixed function. Most of the
techniques are possible to adjust in order to meet certain requirements. This is
very important since this class of functions has many applications where it can be
exploited. Some of these applications are: determining the cycle length of a pseudo-
random number generator, detecting an infinite loop and specially some algorithms
based on Pollard’s Rho method for integer factorization.

In general, all cycle finding algorithms can be defined in the following way.
Supposed that a function h from some finite set S to itself is given. Then, defining
the starting point x0 from S we generate the sequence xi+1 = h(xi) for i ≥ 1.
Because the set S is a finite, there must exist some i and j(6= i) such that xi = xj.
Also, xi+1 = h(xi) = h(xj) = xj+1. It is obvious that xi+2 = xj+2, xi+3 = xj+3 and
so on. If such a pair (i, j) can be found where i 6= j and xi = xj then it can be said
that the cycle is detected and that the object xi is in the cycle.

All methods were based on an assumption that the function h behaves more or
less randomly. Without that assumption the birthday paradox can not be applied.
For such defined function a collision is expected to be found after 2n/2 elements. It
can be simply assumed that the sequence of elements xi makes a loop and comes
back to some of the previous values. A special case is when this loop comes back to
the start value x0 and does not produce the collision which is also known as ”Robin
Hood” [72].

The remainder of this chapter is organized as follows: at the beginning Pollard’s
rho factorization algorithm is given as the main idea of cycle detection explanation.
Next, the chapter observes behaviors of random functions. The rest of the chapter

31

32 CHAPTER 4. CYCLE FINDING ALGORITHMS

explains other well known cycle detection algorithms.

4.2 Objectives

A set of methods that do not require a large amount of memory to detect the cycle
will now be presented. Here, detecting the cycle (what this chapter is about) should
not be mixed with finding the collisions (that is described in details in Chapter 5).
Some of them require minimal and constant amount of memory like Floyd’s and
Brent’s algorithm. For finding the cycle more memory can be used but detecting
the cycle can be more faster. In general, these methods store more previously
computed values and compare the new value with them. In this case, authors very
often refer on the time-memory tradeoff. All these methods exploit the behavior of
random functions. Analyzing the behavior the random function reveals interesting
and sometimes unexpected structures.

A short review is given on mathematical and historical aspects of the problem.
They exploited the group structure in which the function defines the random walk
(comparing to cycle finding algorithm which is applied on any set on which the
function defines the random walk). Even though they are not related to cycle finding
algorithms described in this chapter in all cases, they give a good theoretical base
on cycle detection.

4.3 Characteristics of Random Functions in Cy-

cle Finding Algorithms

The good behavior of any cycle algorithm depends of the function used in producing
the sequence of values. For a better overview, the behavior of random functions,
sometimes also called random mapping, must be presented. A good survey of the
random function is given in [26]. In the following, we will summarize the facts from
this paper. It gives a nice survey, statistic and definitions for basic terms related to
random functions.

Let h be a function from set S of n elements to itself. It can be observed as a
directed graph Gf whose elements are from {1,n} and edges are pairs (x, f(x))
for all x ∈ {1, ..., n}. As it was described earlier, starting from the node x0 and
applying the iteration a sequence x1 = h(x0), x2 = h(x1), ... will be given. Then the
node xj which has the value equal to one of x0, x1, x2, ..., xj−1 must be reached. In
the graphical representation, the path will be connected to the cycle. The length
of the path is called a tail length and is usually denoted by λ(x0) or simply λ. The
cycle length is then denoted by µ(x0) or just simply µ. The rho-length denotes the
length of the tail and the cycle together, i.e. ρ(x0) = ρ = λ+ µ.

4.3. CHARACTERISTICS OF RANDOM FUNCTIONS IN CYCLE FINDING ALGORITHMS33

A functional graph is set of disjoined connected components. Each connected
component is a set of trees connected to the same cycle. For instance, if there is a
function h(x) = x2 + 3 (mod 30) then the graphical representation is given as in
the Figure 4.1. This functional graph consists of four connected components. Each
of these connected components has a cycle of length 2.

0 3

20

13

10

22

23

7

8

2

28 25

529

1 4 19

14

26

6 9 24

21

11

12 27 18 15

Figure 4.1: A functional graph associated to the function h(x) = x2 + 3 (mod 30)

For a such defined graph expected values of several parameters which are in
interest of the random function are derived, i.e. the expectation of parameters of
random function, when n has the asymptotic form n→∞. In general, parameters
can be divided in two classes:

• direct parameters refer to properties depending on the graph itself (e.g. the
number of connected components)

• cumulative parameters refer to properties depending on some random point
in the graph (e.g. the expected tail length)

34 CHAPTER 4. CYCLE FINDING ALGORITHMS

4.3.1 Directed Parameters

connected component is obtained by grouping the points that can be reached
from one starting point and traveling through the graph in any direction.
Asymptotically, the number of connected components in functional graph is
1
2

log(n).

terminal point is a node which does not have a preimage. That is, for any termi-
nal node y a node x, such that h(x) = y, can not be found, or in other words,
a node which has a property that h−1(y) = ∅. Asymptotically, the number of
terminal nodes in the graph is n

e
.

image point is a node which is in the image of function h, i.e. nodes which have an
image. Asymptotically, the number of image points in the graph is (1−e−1)n.
The image point is the opposite of the terminal point.

k-th iterated image point is a point y, if and only if, there exists a point x in the
graph such that y = hk(x) where hk is a k consecutive application of function
h. It should be noted that if y is k-th iterated image point then (k-1)-th is also
iterated image point. Image point is just a special case of k-th iterated image
point. Asymptotically, the number of k-th iterated image points is (1 − τk)n
where τk is defined recursively by τ0 = 0, τk+1 = e−1+τk .

4.3.2 Cumulative Parameters

tail length as it was defined earlier is a length of the path from the start point to
the cycle obtained by iterating the function h. Asymptotically, for a random
start point the average tail length is given by

√
nπ/8.

cycle length is the number of nodes (or edges) in the cycle. An average cycle
length is equal to the average tail length and it is

√
nπ/8.

rho length is the length from the random start point to the first repetition. Thus,
the average rho length is

√
nπ/2.

tree size is a size of the tree, rooted on a cycle, which contains the start point.
The average size of this tree is n/3.

connected component size is the size of a connected component that contains
the start point. The average size of such connected component is 2n/3. This
implies that the large number of nodes in the functional graph is grouped in
one single component size, usually called giant component.

4.4. POLLARDS RHO INTEGER FACTORIZATION 35

predecessor’s size is a number of nodes that are iterated preimage of the start
point. That is, the tree rooted at the start point. The number of such nodes
are

√
πn/8.

4.3.3 Extremal Parameters

longest cycle in the random function is the expectation of the maximum cycle
length and it is c1

√
n where c1 ≈ 0.78248.

longest tail is the expectation of the maximum tail length in the random function
and it is c2

√
n where c2 ≈ 1.73746.

longest path is the expectation of maximum rho length in the random function
and it is c3

√
n where c3 ≈ 2.4149. It is interesting that c3 < c2 + c1 ≈ 2.5199.

This inequality tells that, with non zero asymptotic probability, the longest
cycle doesn’t correspond to the longest tail.

giant component as it was said earlier, for a random start point, an average
component size is 2n/3 and the average tree size is n/3. The expected size of
the longest tree is d1n where d1 ≈ 0.49 and the expected size of the longest
component is d2n where d2 ≈ 0.75782.

4.4 Pollards Rho Integer Factorization

This method was originally presented in [54] by Pollard. This method aims at
finding the factor of some integer n. The same idea was used in Floyd’s and Brent’s
algorithm in order to find a cycle in the sequence. It is a probabilistic method and
it does not guarantee success where the running time is not rigorous but it is very
effective in practice. One of the biggest advantage is that it uses only a small and
constant amount of memory.

Pollard’s algorithm generates the sequence through a group or semigroup until
the match is found. This sequence needs some additional properties. For any prime
factor p of n, the sequence modulo p must be also defined by a recursion formula.
This means that the function h must be selected carefully. It is a good practice to
choose polynomial function for h. Most often, it is defined as:

h(x) = x2 + c

where c is a constant.
For such a function the sequence h is defined by:

xi+1 = h(xi) (mod n)

36 CHAPTER 4. CYCLE FINDING ALGORITHMS

and let p be the nontrivial factor of n such that gcd(p , n/p) = 1. Then, the
sequence 〈xi〉 corresponds to the sequence 〈x′i〉 modulo p, where x′i = xi (mod p). If
the function h has only arithmetic operations (in our case, addition and squaring),
it can be computed x′i+1 directly from x′i. In this case, the sequence with modulo
p behaves as the bigger sequence of modulo n. For this reason, the sequence 〈x′i〉
return the same value as the sequence 〈xi〉.

The number of steps before the sequence 〈x′i〉 starts cycling is O(
√
p). Excep-

tionally good results are given if p is very small in comparison to n because the
sequence 〈x′i〉 in that case starts cycling much faster than 〈xi〉. In other words,
the sequence 〈x′i〉 starts cycling when two elements from the sequence 〈xi〉 have the
same modulo p. In Figure 4.2 an example of factorizing the number 1387 is shown
so that it has factors 19 and 73. A part (a) gives a sequence by producing the values
xi+1 = (x2

i − 1) (mod 1387) starting from 2. Solid arrows indicated the sequence
before the factor 19 was found. Dotted arrows indicate points whose values are not
reached. Values in the gray cycle are values that are stored. The solution was found
reaching the value 177 since gcd(1387, 63 − 177) = 19. A part (b) gives the same
sequence modulo 19. The cycle was detected since both 63 and 177 from (a) are
equivalent to 6 modulo 19. A part (c) gives the same sequence modulo 73.

Let λ′ be the index of the first repeated value in the sequence 〈x′i〉 and let µ′

be the length of the cycle of the same sequence. Then λ′ and µ′ are the smallest
number such that x′λ′+i = x′λ′+µ′+i where i ≥ 1. Thus, p|(xλ′+µ′+i − xλ′+i) and
gcd(xλ′+µ′+i − xλ′+i, n) > 1. In Algorithm 5 is a pseudocode of Pollard’s factoring
algorithm.

In the code the parameters x with the index i were used but the algorithm doesn’t
need to remember the previous values and it works only with the most recent value
of x. For that reason, the algorithm also works correctly if xi is substituted with
x. Once when y takes the value from xk for k ≥ µ′, y (mod p) stays in the cycle
all the time. At some point, k will be big enough so that the whole loop of the
cycle modulo p is made without changing the value of y. In the cycle modulo n will
be detected xi that takes the previous stored value of y modulo p with checking if
gcd(y − xi, n) has a nontriviral solution.

4.5 Cycle Detection Using Meet In the Middle

Attack

With minor changes, this attack can also be successfully applied on different cycle
finding techniques. Before the explanation of how it can be employed, the short
overview of the meet-in-the-middle attack in general needs to be given.

Meet-in-the-middle attack was firstly introduced in [21] by W. Diffie and M.

4.5. CYCLE DETECTION USING MEET IN THE MIDDLE ATTACK 37

Algorithm 5 Pollard rho method
Input: n, c
Output: d

1: i = 1;
2: xi = Random(0, n− 1);
3: y = xi;
4: k = 2;
5: while true do
6: i = i+ 1;
7: xi = (xi + c) (mod n);
8: d = gcd(y − xi, n));
9: if d 6= 1 and d 6= n then

10: return d;
11: else if i = k then
12: y = xi;
13: k = 2k;
14: end if
15: end while

Hellman. It is a special kind of an attack that can be applied on the function which
has its inverse. With the birthday attack an adversary tries to find two distinct
values that map to the same one. The meet-in-the-middle attack tries to find two
values so that forward mapping of the function applied on the first value gives the
same result as the inverse mapping of the function applied on the second value.
That is, two values going forward and backward are trying to meet each other in
the middle.

A very similar approach was explained in the Section 2.5.2. Unlike the birthday
attack that tries to violate the collision resistance, the meet-it-the-middle attack that
will be described here is mostly focused on the first preimage resistance property
of the function. The evaluation of the function h is given by y = hs(x) and the
function h is supposed to be invertible. The value s denotes an initial internal state
or some other value involved in the process of evaluation. If it is supposed that
the function h has a predefined initial state then the evaluation can be denoted by
y = h(x). After applying the function h on the parameter x, the state of the function
is changed. This internal state of the function h uniquely defines the output value
y and vice versa. That is, there is some bijective relationship between the output
internal state and the value y. For the meter of simplicity, the output value y can
be treated as the output state of the function h. For calculating the function h−1

the initial state has a very important role and it can not be predefined. So, the

38 CHAPTER 4. CYCLE FINDING ALGORITHMS

996 310

396

84

120

529

1053595

339

1186

177

814

1194

8

2

3

63

8
16

6

3

2

18

31

11

47

26

63

8

3

2

a) mod 1387 b) mod 19 c)mod 73

Figure 4.2: Pollard rho factorization of 1387

inverse of the function h is usually denoted as x = h−1
s (y). As for the function h,

the function h−1 has its own output internal state that is in a one to one relationship
with the value x and, also, for the matter of simplicity can be treated as the same
value.

Employing a cycle finding algorithm to find a value x′ such that y = h(x′) can
be given in the following way: for a given value y and predefined initial state the
iteration starts by choosing the random value x0. A certain criteria must exist,
dividing values into two disjoint sets, i.e. checks whether the first bit is zero or one.
This criteria can be used to decide whether the function h or h−1 will be performed.
For instance, if xi starts with 0 then xi+1 = h(xi) will be calculated. If xi starts
with 1 then an inverse function xi+1 = h−1

xi
(y) will be performed. This way, values

x0, x1, x2, ..., xi−1, xi, ..., xj−1, xj will be given where xj is the first occurrence of the

4.6. CYCLE DETECTION METHODS 39

value that has already been evaluated, for instance xi = xj. Without losing any
generality, let suppose that the value xi was gained by xi = h(xi−1) and the value
xj by xj = h−1

xj−1
(y). That is, they are both obtained from the same function but

from ”different directions”, h and h−1. In that case the value x′ = xi−1||xj−1 meets
the equation y = h(x′). On the other hand, if xi and xj are both obtained from
the same function h and both are from the ”same direction” (i.e. both obtained
from the function h or both obtained from the function h−1), it will be impossible
to conclude any predecessors of the value y. That is, if there is an equal chance in
the sequence that the function h and h−1 will be performed then the probability
that the value x′ such that y = h(x′) will be found using this method is 1/2.

The explanation by itself has only a rough form. It includes that there is an
enough space in the memory where all iterated values can be stored. The time and
the memory complexity are the same as in the exhaustive search. Hopefully, this
method can be integrated into any cycle finding algorithm in order to find preimage
of the function h. The main difference is that this method does not guarantee that
the preimage will be found. The pseudo code for the rough form is given by in an
Algorithm 6:

4.6 Cycle Detection Methods

All methods described here are applied to any final set on which the iterated function
is used to perform a random walk. They do not exploit the structure of the set where
the iterated function is defined and can be used in more general case. Some methods
go a little bit further and exploit some additional properties of the element. Such
methods are value-dependent where the value characteristic of a single element is
taken into account during the cycle detection. The price for that is using more
memory. In the following part of this section some cycle detection methods with
their basic characteristics will be presented.

4.6.1 Floyd’s cycle finding algorithm

According to [40] for a periodic sequence x0, x1, x2, ... there exists an i > 0 such
that xi = x2i. The smallest such i is in the interval [µ, µ+λ]. This fact is exploited
in Floyd’s cycle finding algorithm. This algorithm uses only a small and constant
amount of memory with the penalty in the running time. It creates two sequences,
xi and x2i for i = 0, 1, 2, ... until the match xi = x2i is found. It avoids to store the
whole sequence xi and remembers only two most recently evaluated values. This
algorithm is described in 7:

If λ ≥ µ then the collision will happen after λ iterations. If λ < µ the match
will be found after λ

⌈
µ
λ

⌉
iterations which is somewhere between µ and 2µ [13].

40 CHAPTER 4. CYCLE FINDING ALGORITHMS

Algorithm 6 Meet in the middle attack

Input: x0, iterated function h : G → G, for some finite set G, value y such that
y = h(x) for some x
Output: x′ such that h(x′) = y

1: create memory storage S
2: i = 0
3: x0 = RandomValue()
4: while true do
5: if found xj in S such that xj = xi then
6: if first bit of xi−1 6= first bit of xj−1 then
7: if first bit of xi−1 = 0 then
8: x′ = xi−1||xj−1

9: else
10: x′ = xj−1||xi−1

11: end if
12: break;
13: else
14: return null
15: end if
16: else
17: put xi in S
18: if first bit of xi = 0 then
19: xi+1 = h(xi)
20: else
21: xi+1 = h−1

xi
(y)

22: end if
23: i = i+ 1
24: end if
25: end while
26: return x′;

4.6. CYCLE DETECTION METHODS 41

Algorithm 7 Floyd’s algorithm

Input: x0, iterated function h : G→ G, for some finite set G
Output: i such that hi(x) = h2i(x)

1: x = h(x0);
2: y = h(x) = h2(x0);
3: i = 1;
4: while x 6= y do
5: i = i+ 1;
6: x = h(x);
7: y = h2(y);
8: end while

For a random function h, the length of µ and λ is the same and it is
√
nπ/8. In

each iteration there is one comparison and three evaluations. This means that the
expected number of iterations is 3

2

√
nπ/8 and the expected number of evaluations

is 9
2

√
nπ/8.

4.6.2 Brent’s cycle finding algorithm

One disadvantage of Floyd’s algorithm is that it uses three evaluations in each
iteration of the function h. Brent’s algorithm [10] modifies Floyd’s algorithm which
solves this problem. It requires only the copy of the original sequence that is used as
the mark to detect the cycle. The principle is quite similar to Pollards rho factoring
algorithm described in Section 4.4. It also uses two pointers and it tries to find the
smallest power of two 2k bigger than µ and λ. It uses a mark point, witch holds the
value x2k−1. In each new iteration it is checked if the mark point is equal to xi. If
the index i equals a power of two minus one, then the mark point is associated to
this value. This process is repeated until the match is found. The whole algorithm
is defined in Algorithm 8:

Expected number of iterations after the cycle is detected using Brent’s algorithm
is ≈ 1.9828

√
n. This number is two times higher than the number of iterations

using the Floyd’s algorithm, but uses less number of evaluations. Floyd’s algorithm
evaluates the function h three times per iteration and Brent’s uses only once. With
Brent’s algorithm runtime is reduced to about one third in evaluations. The price
for this reduction is the much higher number of comparisons. In some cases it can
be a serious drawback. There is a variant of Brent’s algorithm which gives a better
performance and has less number of comparisons. It is proven in [12] that if i is
the smallest index such that xi = xl(i)−1 then i satisfies 3

2
l(i) ≤ i ≤ 2l(i), where l(i)

42 CHAPTER 4. CYCLE FINDING ALGORITHMS

Algorithm 8 Brents’s algorithm

Input: x0, iterated function h : G→ G, for some finite set G
Output: i and j such that hi(x0) = hj(x0)

1: m = x0;
2: x = x0;
3: i = 0;
4: l = 1;
5: while true do
6: i = i+ 1;
7: x = h(x);
8: if x = m then
9: break;

10: end if
11: if i ≥ (2l − 1) then
12: m = x;
13: l = 2l;
14: end if
15: end while
16: return (i, j = l − 1);

is the larger power of two contained in the current index i. For instance, it can be
defined as l(i) = 2blg ic. Using this fact an improved version of Brent’s algorithms
can be constructed and it is described in an Algorithm 9.

There are also other variants of Brent’s algorithm. These variants are described
in [66] and [71]. The idea is to make p different units, U1, U2, ..., Up. At the be-
ginning, put x0 into each of them. After xi is computed it is checked whether this
value is already in one of p units. If it is already in one of them, a match is found.
Suppose that xj is stored in U1. This process is repeated until i ≥ αj for some fixed
α ≥ 1. Then the content of units is shifted from Uk+1 to Uk, for k = 1, ..., p−1 and
the value of xi is stored in Up. In [71] Taske experimentally showed that the best
result is for α between 3 and 4, and for p = 8. For α = 3 and p = 8 he showed that
expected number of iterations until the match is found of about 1.13 times worse
than the best possible solution. That is, it must be about 1.412

√
n iterations until

a match is detected.

4.6. CYCLE DETECTION METHODS 43

Algorithm 9 Improved Brents’s algorithm

Input: x0, iterated function h : G→ G, for some finite set G
Output: i and j such that hi(x0) = hj(x0)

1: m = x0;
2: x = x0;
3: i = 0;
4: l = 1;
5: while true do
6: i = i+ 1;
7: x = h(x);
8: if x = m then
9: break;

10: end if
11: if i ≥ (2l − 1) then
12: m = x;
13: l = 2l;
14: while i < (3

2
l − 1) do

15: x = h(x);
16: i = i+ 1;
17: end while
18: end if
19: end while
20: return (i, j = l − 1);

44 CHAPTER 4. CYCLE FINDING ALGORITHMS

4.6.3 Sedgewick, et al.’s algorithm

This algorithm is described in [67] and it attempts to optimize the worst case sce-
nario, using the fixed amount of memory. It uses a table of predefined size m.
Another input parameter is g. At the beginning the parameter d takes the value
1. In each iteration i, if i (mod dg) < d, we try to locate the value xi in the table.
If i is multiple of d, the pair (xi, i) is stored in the table. If the table is full, the
parameter d is doubled, and all values (xj, j) are removed where j is not a multiple
of d anymore. The assumption is that the table asymptotically reduce the worst
case search time, for instance, a hashing table or balanced tree.

Let ts denote the time needed to perform the search in the table and let th
denote the time needed to evaluate the iterated function h. Then the parameter g
can be defined as the function of ts, th and m such that algorithm running time is
th(µ+ λ)(1 +O(

√
ts/mth)).

4.6.4 Gosper’s algorithm

This algorithm was described in [42] and it is very useful, especially when a former
argument in the function h is not easy (or not possible) to substitute. For instance,
if the iterated function h is a pseudo random number generator that takes parameter
from the some iterative ”black box”. This algorithm guarantees that the repetition
will be detected before the third occurrence of any element.

Let x0 be the initial value and L be the maximum length of a cycle. Let also
m = dlgLe be the size of the table S where last m iteration values will be stored
and i will be the number of iterations of function h. In each step i it is checked if
the value hi(x0) is equal with some of the first k values in the table where s = dln ie
(s also can be observed as the number of bits necessary to represent i). If none
of the values matches, increase i for 1 and then store hi(x0) into S[r] where r is a
number of zero bits at the end of the binary representation of i. If the match is
found at position e then the loop length is 1 more than e + 2 bits of i − 2e+1. We
should be very carefully here due to the fact that if L is too small the algorithm will
not detect the loop. This algorithm has advantages in comparison to some other
algorithms because, without additional computation it gives us a correct length of
the loop.

4.6.5 Time Memory Trade-Off Cycle Algorithms

All algorithms described above do not use the full potential of the output value
property. They create values of the sequence in a restrictive way, performing only
the equality test or using as the input parameter for the function h. The question is
whether the property of values can be used to improve the cycle finding algorithm.

4.6. CYCLE DETECTION METHODS 45

Algorithm 10 Gosper’s algorithm

Input: x0, iterated function h : G → G, for some finite set G, L - the largest
possible period of the sequence
Output: i and j such that hi(x0) = hj(x0)

1: m = dlgLe;
2: create table S of size m
3: S[0] = x0;
4: i = 1;
5: z = h(x0);
6: while (i ≤ |G|) do
7: s = dln ie
8: for k = 0 to s− 1 do
9: if z = S[k] then

10: t = 1 + ((i− 2e+1)mod 2e+2)
11: return (i, j = i+ t)
12: else
13: i = i+ 1;
14: z = h(z);
15: r is number of last binary zeros of i
16: S[r] = z;
17: end if
18: end for
19: end while
20: return false;

46 CHAPTER 4. CYCLE FINDING ALGORITHMS

The answer is ’yes’. Additional properties can be very helpful and can be used to
establish a completely new approach of the problem.

Algorithms that will be presented in addition are distinguished point and Ni-
vasch’s method.

Nivasch’s Cycle Algorithm

Nivasch proposed an algorithm in [51] witch is one of the most efficient known
cycle detection algorithm on a single machine. Worst-case scenario of most other
algorithms for detecting the cycle in the path has much better performance [13]. It
ensures that this process will be terminated somewhere between xλ and xλ+2µ−1,
i.e., during the second cycle sequence iteration. This can be very useful when the
length of the cycle is small.

The idea is to construct a stack of already computed values in the way which
ensures cycle detection. The algorithm requires some ordering relation to be defined
over the whole set. Number of elements in the stack should be small in order to
ensure a good performance. The stack must guarantee that the smallest element
in the cycle will always be stored for detection during the second loop. In order
to achieve that, the stack is configured in the following way: initially, the stack is
empty. At iteration i, remove all elements (xj, j) from the stack where xi < xj. If
xj is found such that xi = xj then the process is terminated. From here it can be
directly calculated that the length of the cycle is i− j. Otherwise, put (xi, i) on the
top of the stack and continue calculating the next iteration, xi+1 = h(xi).

The stack configured in this way will detect the cycle in the second loop. During
the first loop, a minimal element of the cycle will be stored on the stack. This
element will not be removed anymore since this element is the minimal. During the
second loop when the path comes to the minimal element of the cycle, an algorithm
will recognize this minimal element and the cycle will be detected.

Flajolet in [26] explained that the expectation tail length (λ) is
√
πn/8. Also

expected length for the cycle (µ) is
√
πn/8 and for rho length (λ + µ) is

√
πn/2.

If we assume that the function h is a random mapping, the expected number of
evaluations until the minimum in the cycle occurs is µ + λ(1 + 1

2
) = 5

2

√
πn/8. In

[51] it was shown that the expected size of the stack in the step n is ln(n) and
stays below O(e ln(n)). In other words, the stack size stays small and the memory
requirement is not too expensive unless in very rare cases. This means that the
size of the stack can be estimated before the search starts and therefore can be
implemented as an array with modification of resizing in very special cases, when
number of entries overflows the size of the stack. Therefore, there is no need to
create or delete memory allocations of the stack; the new entry will only overwrite
the old value and only the stack size will be kept. Note that since elements in
the stack have relation ordering, the search can be realized with binary search

4.6. CYCLE DETECTION METHODS 47

algorithm. All algorithms above have a running time proportional to µ and λ.
When the iteration of the function comes into the cycle, detecting the cycle does
not depend on the λ anymore. Thus, this algorithm can be useful when the cycle is
small comparing to tail [51]. Also, it can directly output the cycle length without
additional computation. For some applications where this information is important
it can save us any additional efforts. In Algorithm 11 is given a pseudocode for a
Nivasch’s algorithm.

Algorithm 11 Nivasch’s algorithm

Input: x0, iterated function h : G→ G, for some finite set G
Output: i and j such that hi(x0) = hj(x0)

1: create stacks s which contains pairs (element, index)
2: set index j to −1
3: x = x0;
4: while true do
5: if j ≥ 0 then
6: find a smallest t ≤ j such that element(s, t) ≥ x
7: else
8: t = −1;
9: end if

10: if (t 6= −1) and element(s, t) = x then
11: break;
12: end if
13: i = i+ 1;
14: j = t+ 1;
15: if j > size(s) then
16: resize s;
17: end if
18: put (x, i) into s;
19: x = h(x);
20: end while
21: return (i, j =index(s, t));

Multi-stack algorithm In the second loop, the algorithm stops at a uniformly
random point in the cycle. Thus, it will be very important to reduce the number of
steps in the second loop, especially if the cycle is extremely large. Multiple stacks
in Nivasch’s algorithm give us a solution for this problem. A method increases a

48 CHAPTER 4. CYCLE FINDING ALGORITHMS

probability that algorithm stops closer to the beginning of the second loop. The
memory is increased but only by a constant factor and it has no effect on time
penalty per step.

In [51], the following procedure was proposed: for some integer k, the whole set
is divided into k disjoint classes. It is preferred that the cardinality of classes be
the same. For instance, the set can be divided according to the values of some bits
for a certain internal representation of elements. For each class a different stack is
created. Each new element is classified according to internal representation and put
into related stack, i.e., for each step i we assign the class the element xi belongs to
and then (xi, i) goes into a corresponding stack. This algorithm is also known as
multi-stack algorithm. After determining which class particular element belongs to,
the algorithm works on a single stack and this is the reason why the run time per
step does not change drastically. This algorithm works, since each stack has its own
minimal element after the first loop. The algorithm stops when, during the second
loop, one of the stacks detects a match. A pseudocode for Nivasch’s multi-stack
algorithm is shown in Algorithm 12.

If an assumption that the function h is random is taken into consideration, i.e.,
that all elements are distributed uniformly and independently, then the average
running time until the cycle is detected is λ+µ(1 + 1/(k+ 1)). Also, for k � µ+λ,
the expected amount of memory is O(k ln(µ+λ)) which is k times more than when
only one stack is used. A multi-stack algorithm can be a good solution when this
algorithm is performed on a single processor.

Distinguished Point Algorithm

Before explaining how distinguished point algorithm can be employed in detecting
the cycle, we introduce Hellman’s method [30] (sometimes also called Hellman’s
time-memory tradeoff). It was originally applied on a block cipher for a given
plaintext, h(x) = Ex(P). The method consists of two parts: precomputation phase
(also called off-line phase) and on-line phase. The idea is to precompute as much
pairs (x, h(x)) for a given plaintext P as possible. To reduce the memory storage
this is organized in the chain of fixed length.

In the off-line phase, m different keys are chosen. They are used as start points
(SP) of the chains. Each chain uses the start point as a key to compute the cipertext
C. This cipertext is then used to generate the new key in order to compute the
new cipertext and so on. Sometimes, it is necessary to use a reduction function R
to fit the length of the key. Then, the process of creating the chain looks like the
following: the first resulting key is given using the SP and the reduction function
R, k1 = Rh(SP). Next resulting key is given by k2 = Rh(k1) and so on. The
composition of h and R can be denoted as the new function F and it is called step-

4.6. CYCLE DETECTION METHODS 49

Algorithm 12 Nivasch’s multi-stack algorithm

Input: x0, iterated function h : G→ G, for some finite set G, number of stacks K,
function P : G→ [0, ..., K − 1]
Output: i and j such that hi(x0) = hj(x0)

1: create stacks s[0], ..., s[K − 1] which contains pairs (element, index)
2: set index i0, ..., iK−1 to −1
3: x = x0;
4: while true do
5: k = P (x);
6: if ik ≥ 0 then
7: find a smallest t ≤ ik such that element(s[k], t) ≥ x
8: else
9: t = −1;

10: end if
11: if (t 6= −1) and element(s[k], t) = x then
12: break;
13: end if
14: i = i+ 1;
15: ik = t+ 1;
16: if ik > size(s[k]) then
17: resize s[k];
18: end if
19: put (x, i) into s[k];
20: x = h(x);
21: end while
22: return (i, j =index(s[k], t));

50 CHAPTER 4. CYCLE FINDING ALGORITHMS

function F [29]. After t computations of step-function, the chain stops and the end
point (EP) is taken. For such computed end point, the pair (SP,EP) that uniquely
identify the chain is stored. The problem can be if two or more chains collide or if
the chain falls in a loop. The biggest reason for the first problem is the surjective
nature of a reduction function R that compresses the output values. The reduction
function can have two or more different values which are compressed to the same
output. As much as the number of chains arise, the probability that the collide may
occur is greater. Hellman solved this problem by using multiple tables where each
of them has a different reduction function.

In the on-line phase for the given cipertext C, one tries to figure out the corre-
sponding key. First, the reduction function on the cipertext, R(C), is applied and
checked if this value is the same as a certain end point of the chain. If not, the next
value is computed, F (R(C)), checked if it has the same value as a certain end point
of the chain, and so on. This is repeated at most t times. If the match is found
after i times then the key from the corresponding SP is reconstructed. Then, the
candidate for the key is k = F t−i−1(SP). Note that it does not necessarily mean
that this key is the right one. Therefore, the equation h(k) = C must be verified.
If the verification is positive, the key is found. Otherwise, another table must be
used and the whole procedure repeated.

Distinguished point is a variant of the Hellman’s method. It was introduced
in 1982 by Rivest [20]. In the on-line phase of Hellman’s method the majority of
time is spent on searching the corresponding value in the table. Rivest was able to
reduce the table access. He introduced the so called distinguished point that has
very simply criteria for recognition (e.g. first n bits are zeros). He put this values
at the end of the chain. This means that in the off-line phase the chain is computed
until some distinguished point or the chain reaches the maximum length of t. If the
chain reaches the maximum length, this chain is discarded. In the on-line phase, the
table does not need to be accessed after each step. Only when some distinguished
point is occurred we must check whether some stored end points match in the table.

The idea of distinguished point can also be used in detecting the cycle. Lets
now assume again that our iterated function is given by xi+1 = h(xi). First, the
distinguished criteria must be defined to be able to differ just particular elements
from the path. These elements are distinguished points. Secondly, enough memory
storage must be ensured. The amount of the memory storage can be precomputed if
the expected number of iterations is known before a collision occurs and probability
that a distinguished point is in the path. If it is necessary, m memory units are
used to store value of one element. Let n be the number of iterations until collision
occurs and Θ the probability that the value has a distinguished property. Then
the expected size of the memory storage is mn

Θ
. The algorithm works as follows: at

iteration i is checked if xi is distinguished point. If not, proceed with the calculation
of the new iterated value. On the other hand, if it is a distinguished point then an

4.7. SUMMARY 51

algorithm tries to find this value in the memory storage. If it is found, the cycle is
detected and the algorithm stops. If it is not there, put this value in the memory
storage and continue calculating the new iterated value. The pseudo-code for cycle
detection using distinguished point is given in an Algorithm 13:

Algorithm 13 Cycle Detection Using Distinguished Point

Input: x0, iterated function h : G→ G, for some finite set G
Output: i and j such that hi(x0) = hj(x0)

1: create memory storage S
2: x = x0;
3: i = 0;
4: while true do
5: if x is distinguished point then
6: if found (x, j) in S for some arbitrary j then
7: break;
8: else
9: put (x, i) in S

10: end if
11: end if
12: i = i+ 1;
13: end while
14: return (i, j);

4.7 Summary

In this chapter different cycle finding algorithms were described. In general, each of
them gives us some advantage in comparision to another algorithm in some aspects.
In other words, there is no universal algorithm that fits the best in any situation.
It all depends of the environment in which it runs. For instance, if we expect that
the length of the cycle can be small (iterated function doesn’t behave as as random
mapping), then it is not a good idea to use the distinguished point method. On the
other hand, if an iterated function behaves like a random mapping then Nivasch’s
stack based method as well as distinguished point method can be considered. It
must also be taken into account that these algorithms are value-dependent and can
not be used in every situation. All these facts give us conclusion that before applying
any cycle finding algorithms all advantages and disadvantages they provide must be
considered.

52 CHAPTER 4. CYCLE FINDING ALGORITHMS

Time memory trade-off algorithms require an additional amount of memory but
provide faster methods for cycle detection. In Nivasch’s algorithm the amount
of required memory stays below O(e ln(n)) but the expected number is ln(n). It
also gives the opportunity to estimate the size of the stack before the start of the
algorithm. Even if the size of this stack is relatively small it has to interact every
time when the new value is produced. On the other hand, the distinguished point
method must be able to allocate n

Θ
values where n is the number of iterations until

collision occurs and Θ the probability that the value has a distinguished property.
This is much more than Nivash’s method but the distinguished point method for
detecting the cycle avoids memory access after each new value and stores only with
the particular properties.

Detecting the cycle has a central role in the process of finding a collision. It
is not just important how fast the cycle is detected. What kind of information
particular method can provide must also be taken into consideration and this is the
issue that next chapter is dealing with. In this sense, detecting the cycle is just the
first step in the process of finding the collision.

Chapter 5

Collisions in Cycle Algorithms

5.1 Introduction

Cycle finding algorithm can be employed for finding a cycle but not for finding a
collision. Once, when the point in the cycle has been found another algorithm must
be used to find a collision. Which algorithm will be used depends on the nature of
initial method for finding the point in the cycle. This chapter considers the problem
of finding the collision in the cycle graph.

In the previous chapter several algorithms show how the cycle in the graph can
be detected. All these algorithms reveal the cycle in the graph but none of these
tell anything about the collision. In other words, once the cycle is detected two
points in the graph e1 and e2 must be found such that h(e1) = h(e2) = c. If the
start point is not in the cycle, then there must exist two points e1 and e2(6= e1)
making it possible to find a collision. Otherwise, when the start point is a part of
the cycle then it is not possible to find a collision directly but it is likely to find a
predecessor. Using different mask functions more predecessors for one initial point
can be found. If it can be ensured that by using several mask functions the path in
the graph stays in the cycle all the time, it is very likely that all predecessors of the
initial points are different.

The goal of collision search is to take a function h and find two distinct input
that produce the same output. The assumption is that the function h behaves
like a random mapping. The obvious method for finding a collision is to produce
xi, i = 1, 2, . . . and to check h(xi) for collision. Let n be the range of output for
function h. Then the probability that the collision is not found after k iterations is

(1− 1/n)(1− 2/n) . . . (1− k/n) ≈ e−k
2/(2n)

for a large n and k. The expected number of iterations before the collision occurs
is
√
πn/2 [26]. If an assumption was taken that the new value of h(xi) is stored

53

54 CHAPTER 5. COLLISIONS IN CYCLE ALGORITHMS

in constant time then this method finds a collision in O(
√
n) time and has O(

√
n)

storage access [72]. From such an algorithm the length of the tail and the cycle can
be read directly and also detecting the collision is instantly.

Due to the large complexity of storage access this method is not accessible.
There is a imbalance between the cost of storage and computations. While the
computation of 240 iterations is relatively cheap, the storage of at least 240 bytes
= 1TB is a still expensive. It is important to be aware that birthday attack can
be run memoryless with only a slight increase in the number of evaluations of hash
functions. From such an approach to the problem the length of the cycle and the
tail sometimes can not be read directly. The same goes for finding the collision and
thus an additional effort must be spend to get these information.

Another important characteristic of an attack is whether it can be run parallel
or whether it requires a sequential iteration. By sequential iteration, the speed
is limited by the frequency of CPU, FPGA or an integrated circuit [47]. Using
parallelization the speed of finding a collision can be sufficiently increased and the
only limitation is the attacker’s budget.

The remainder of this chapter is organized as follows: it describes the basis
idea of the finding collision in the cycle. It also gets more details about Nivasch’s
stack-based and distinguished point algorithms.

5.2 Objectives

Finding the cycle in the graph does not mean that the collision is found. After
the cycle is detected additional effort must be done to find such a collision. All
cycle-finding algorithms only reveals the point located in the cycle. For instance,
Nivasch stack base algorithm described in Section 4.6.5 finds the minimum element
in the cycle. This element by itself tells us nothing about the collision since the cycle
minimum xmin appears in the random position in the cycle. When one such point
is found in the cycle a way to find point e1 and e2(6= e1) must be obtained such that
h(e1) = h(e2). Different cycle finding algorithms have different properties and carry
different information. Depending on the nature of these information we can define
the strategy how to find the collision for the particular cycle finding algorithm. In
this chapter a set of solutions to reach a collision using cycle finding algorithms is
presented.

5.3. FINDING COLLISIONS USING MEMORYLESS ALGORITHMS 55

5.3 Finding Collisions Using Memoryless Algo-

rithms

There is a general concept for finding the collision. If there are 2n different outputs
(e.g. n bits outputs) of a hash function we expect to find the collision until approx-
imately 2n−1 comparations between distinct pairs. Distinct pairs can be chosen in
different ways. One can compute a hash value and then produce a lot of different
inputs for a hash function and compare all results with the chosen one. In this case
2n−1 hash values are expected to be produced until the collision is found (preimage
resistance). Birthday attack is nothing more than producing 2n−1 distinct pairs.
The only difference is that these pairs are chosen in another way. Namely, for a
chosen different k, if each element is compared to all other elements then it has
to be k(k − 1)/2 ≈ k2/2 distinct pairs which are compared. In our case for 2n/2

different elements it has (2n/2)2

2
= 2n−1 comparations. So, it can be said that if the

collision has to be found, someone needs to find 2n−1 distinct pairs but how these
pairs will be chosen is up to implementation.

The problem of collision search can arise when domain has less elements than
codomain. That is, the number of distinct input values is smaller than number of
distinct output values. Here, map function g which maps output value can be used.
Suppose that we have a hash function with the output of n bits. The output of the
hash function depends on the internal state c and input message that has nk bits.
This means y = h(c, x), where y is the output message, x is the input message and
c is the current state.

Let the internal state c be fixed for the first moment. An iterated function can
be created:

xi+1 = g(h(c, xi))

with the fixed initial value x0, where the function g maps n bits message to nk bits
message in deterministic way. Eventually two distinct messages xl and xm(6= xl)
must be found such that g(h(c, xl)) = g(h(c, xm)). This is called the simple collision.
If xl and xm are such that they also satisfy the equation h(c, xl) = h(c, xm) it is
called the real collision1. It is obvious that simple collision does not imply real
collision. If we found only the simple collision and not the real collision we change
the initial state c randomly and repeat the whole process again. We do this until
the real collision is found. This process is described using pseudo-language in an
Algorithm 14:

All algorithms can be used to find the length of the cycle µ but neither of them
tells us for sure the length of the tail λ. If the goal is to find the collision, this

1It should not be mixed with pseudo collision or pseudo key explained in sections 2.5 and 2.5.1.
To avoid this ambiguity new terms simple collision and real collision are introduced

56 CHAPTER 5. COLLISIONS IN CYCLE ALGORITHMS

Algorithm 14 Finding Collisions Using Memoryless Algorithms
Input: x0

Output: xm , xl and c such that h(c, xm) = h(c, xl)

1: repeat
2: c=random value();
3: m=0;
4: empty(table);
5: repeat
6: put xm into table;
7: m = m+ 1;
8: xm = g(h(c, xm−1))
9: until found xl in table such xl = xm; {found simple collision}

10: until h(c, xl1) = h(c, xm1) {found real collision}
11: return xm1 , xl1 , c

information is very important. When the length of the tail and the length of the
cycle is known then

h(xλ−1) = xλ = xλ+µ = h(xλ+µ−1) where xλ−1 6= xλ+µ−1

and that is the only place where a collision can be found.
Using one of the algorithms (e.g. Brent’s or Floyd’s) the point xt that lies in the

cycle can be detected. From here, it can be concluded that λ < t. The length of
the tail can be precisely determined in several different ways. In the following part
two approaches also described in [32] will be discussed.

Dichotomy search is a method where collision is guessed dividing each time in
two separated classes. If µ is known it is possible to see whether for some i xi
belongs to tail testing xi = xi+µ. If this equation is satisfied then xi belongs
to the cycle and i ≥ λ. In that case less than i times must be searched for the
index. Otherwise, i > λ and the search continues for some index greater than
i. Computing the sequence up to i+ λ requires O(λ+µ) computation. Thus,
finding the collision using dichotomy search has complexity O((λ+µ) log(λ+
µ)). This complexity is nothing better than a generic birthday method based
on quick sort algorithm.

Direct search solves one of the major problems in dichotomy search where some
overlapping parts is needed to compute several times. To avoid this drawback,
the following approach can be used: first computes xµ and then computes in
parallel two sequences. One sequence starts from x0 and another from xµ.
In each step the equation xi = xµ+i is checked for i = 0, 1, 2, When the

5.3. FINDING COLLISIONS USING MEMORYLESS ALGORITHMS 57

equation is satisfied for the first time then i = λ. Unless λ = 0, the collision
is recovered in O(λ+ µ) steps.

A direct search has better characteristics than a dichotomy search. It can be even
speed up if the algorithm uses some additional information that can be exploited. An
example for this is the distinguished point algorithm (see subsection 4.6.5) that gives
the sequence from x0 a possibility to avoid overlapping using the first distinguished
point before the collision. This algorithm stores distinguished points in order to
detect the cycle. After some period distinguished points are reached for the second
time and the cycle is detected. All stored distinguished points give the possibility to
allocate two distinguished points, one in the cycle and one in the tail, that precede
the collision point. This additional information drastically reduces the search for
the collision.

5.3.1 Collision in Brent’s Algorithm

The main purpose of Brent’s algorithm as any other cycle finding algorithm is to
detect the cycle. That is, during the design of the algorithm finding the collision
was not in mind. Some algorithms give additional information like the length of the
tail or the cycle. Brent’s algorithm does not give much additional information by
itself. So, the algorithm must be adjusted in order to find a collision. In Section
4.6.2 the basic concept of Brent’s cycle finding algorithm was described and in the
following will be presented how the collision can be found.

Once the trial comes into the cycle it stays in it all the time. Iterated func-
tion creates points x0, x1, x2, Among all points that Brent’s algorithm creates
(x0, x1, x2, ...) mark points x0, x1, x3, x7, ..., x2k−1, ... will be distinguished. At one
point, the new mark point x2k−1 will be created. If the size of the cycle is not bigger
than 2k+1 then in the next loop the mark point will be recognized and the cycle
will be detected. If the cycle is bigger than 2k+1 then the new point x2k+1−1 will be
marked and the trial continues. This will be repeated until the cycle becomes larger
than 2n+1 for some n > k. For such n the trial will make the whole loop without
creating a new mark point. In this case a cycle is detected.

The estimation of the cycle length is important. To achieve this we must track
the number of iterations. Let us denote the number of iterations by i when the
point x2k−1 is reached for the second time. Since the value 2k is known then the
cycle length is

µ = i− 2k − 1.

Suppose that the cycle is detected and the last mark point is x2k−1. In order to
increase the performance in the process of finding the collision we distinguish two
situations: µ ≤ 2k−1 − 1 and µ > 2k−1 − 1. In practice, the second case is the most

58 CHAPTER 5. COLLISIONS IN CYCLE ALGORITHMS

common. The process of finding the collision when µ ≤ x2k−1−1 can be seen as the
special case of the second one when the performance of the searching algorithm can
be increased.

In the first case an algorithm will mark only one point in the cycle and it is
x2k−1. This means that the previous mark point x2k−1−1 is out of the cycle and lies
somewhere on the tail. Two points must be found in order to allocate, one from
the tail and one from the cycle, that are equally distant from the collision. One
point is x2k−1−1 that belongs to the tail. To allocate the point in the cycle, starting
from the mark point, it must be stepped forward µ− (2k−1 mod µ) times. Stepping
together from these two points they must reach the same point and we can say that
the collision is found. Note that this scenario is rare and it has a small influence in
the general complexity of collision searching algorithm.

In another case when µ > 2k−1 − 1 it can not be said for sure that some of
previous mark points are not in the cycle. Thus, the search for the collision can not
begin from x2k−1−1 but from the start point. Note that the start point can be in
the cycle and finding the collision is not possible. Similar as in the previous case
two points must be recognized in order to find a collision. The first one is x0 and
the second one will be found from the last mark point. To allocate the second point
µ−(2k mod µ) times from the mark point must be stepped. Stepping together from
these two points they must eventually meet the collision if it exists. If we take that
the expected value for 2k mod µ is µ/2 then by using one processor the expected
work for finding the collision is

5
2

√
πn/2.

Using two processors the whole process can be made faster. The expected work
required in this case is:

√
2πn.

5.3.2 Finding Collision Using Nivasch’s Stack-Based Algo-
rithm

In the Section 4.6.5 Niasch’s algorithm was described. Expected number of itera-
tions until the collision has occurred is 2k/2 where k is cardinality of the range of
the function h. Here µ - the length of the cycle and λ - the length tail must be
distinguished. It is well known that 2k/2 = µ + λ. Assume that the value of h(xi)
is stored in the sorted list. When the new value of (xi) is evaluated it is compared
with the elements in sorted list starting from the maximum. The new value is put
on the stack and all elements from the stack that have the value greater than the
new one are deleted.

5.3. FINDING COLLISIONS USING MEMORYLESS ALGORITHMS 59

Lets denote x0 the start point and let xi = h(xi−1). To be able to find a collision
after the minimum in the cycle is found the number of iterations must be tracked.
That is, the pair (xi, i) should be put on the stack where i is the number of iterations
from the start point x0 to xi. The iteration of the function h will be repeated j
times when it turns out that xi = xj. Then the calculation of the cycle length
µ = j − i is easy. Also, it is already known that i is the number of steps until the
first time the minimum in the cycle is detected. If i > µ we start stepping from
the beginning (x0) otherwise we start from the xi. This process will be repeated
|i−µ| times. This part must be done sequentially. Then stepping two trials forward
together until they both hit the same point. This part can be done with parallel
processors. The goal is to find the points a and b such that h(a) = h(b), but a 6= b
is required. The work required for a single processor to find a collision is

2(λ+ µ) =
√

2πn

which give us complexity O(
√
n). The speed of finding the collision can be slightly

increased using two parallel processors. It can be used in the last phase when two
trials go together until they reach the same point. In this case the expected work
for finding the collision is

λ+ µ(1 + 1
2
) + λ = 2λ+ 3

2
µ = 7

4

√
πn/2

steps. This algorithm also guarantees that the minimum in the cycle will be found
somewhere between µ+λ and λ+ 2µ− 1 iterations, i.e. during the second iteration
through the cycle. This can be very useful if the length of the cycle (µ) is small
comparing to the tail (λ).

Using parallel processors is not always a good idea. Most of the work must
be done sequentially and only the last part when two trials go together can be
accelerated by using two processors. Also two processes must be synchronized after
each step. This means that in average 1

4

√
πn/2 iterations of the function h can be

saved. The main problem here is that one processor will wait until the another one
finds the minimum of the cycle. Two processors save 12.5% time comparing to case
when only one processor is used. This also means that 85.71% of time the second
processor will not do anything.

In the Section 4.6.5 partitioning technique was described as well as how the cycle
can be detected earlier if more stacks are used. But what does it really mean for
finding a collision? Suppose that there are k stacks in which the values of iterations
are stored. This leads to the fact that there is a great chance that the cycle is
detected much earlier. After the cycle is detected the process continues until the
collision point. That is exactly the same number of iterations as it was used in the
case with one stack and this is in average 2(λ + µ) =

√
2πn iterations. Using two

processors the process of finding the collision can be accelerated. For a fixed λ and
µ, the average running time for detecting the cycle is

60 CHAPTER 5. COLLISIONS IN CYCLE ALGORITHMS

λ+ µ(1 + 1
k+1

) = (2 + 1
k+1

)
√
πn/8.

After detecting the cycle the process continues in order to find a collision. It starts
with iterating the function 1

k+1

√
πn/8 times in average until it reaches two points

on tail and cycle equally distant from the collision point. It follows by k
k+1

√
πn/8

parallel steps in average after which the collision is detected. That is, an additional
number of iterations after the cycle is detected in order to find a collision is:

1
k+1

√
πn/8 + k

k+1

√
πn/8 =

√
πn/8

and it doesn’t depend on the number of stacks. Summing up all together (the
number of steps necessary for detecting the cycle and an additional number of steps
for detecting the collision) we come to the conclusion that an average number of
steps to detect the collision using Nivasch’s method with k stacks is:

(2 + 1
k+1

)
√
πn/8 +

√
πn/8 = (3 + 1

k+1
)
√
πn/8.

Using two processors can save the time for finding the collision in the manner
that

k
k+1

µ = k
k+1

√
πn/8

steps will be done in parallel manner. This is 1
4
(1 − 1

k+1
) less time than using one

processor. For a k = 2, 3, 4... it is respectively 16.67%, 18.75%, 20%... in average
less time for finding a collsion using two processors. As it can be seen, there is no
drastic difference between two and three processors in the process of finding the
collision. This difference is even smaller between three and four processors. It must
be said here that it does not matter how much stacks we define and how early
we detect the cycle, for a fixed λ =

√
πn/8 and µ =

√
πn/8, comparing with one

processor, time for finding the collsion using two or more processors cannot be saved
more than 25%. Still, most of the time the second processor does not work. More
pecisely, for a given k stacks the average waiting time for the second processor is
2k+4
k+1

√
πn/8.

5.3.3 Finding Collision Using Distinguished Points

The original Hellman attack is not considered to be a treat since the offline phase
takes the same time as an exhaustive search. The basic idea of using distinguished
point in the cycle method is to store a small number of values of the sequence so
such that these values can be easily checked afterward. In this way the repetition
can be simply detected. A distinguished point, as it was said earlier, is the value
that has easily checked property such as the first k bits are zeros. Going though the
pseudo-random walk, points with the distinguished property will be stored. When

5.3. FINDING COLLISIONS USING MEMORYLESS ALGORITHMS 61

pseudo-random walk starts cycling, the distinguished point will be stored for the
second time and the cycle will be detected.

Let x0 be the start point and define iterated function h as xi = h(xi−1). An
expected number of iterations until the collision is found is

√
πn/2. After this point

the process must continue until the next distinguished point. Then the distinguished
point for the second time will be detected. This means that the pseudo-random walk
started cycling and it must ”go backward” in order to reach the collision point.
Let us denote the distinguished point that is reached for the second time with xp,
distinguished point on the tail that preceded xp with xλ and distinguished point on
the cycle that preceded xp with xµ. If points on the tail and the cycle are denoted
with a and b respectively such that h(a) = h(b) then a lies somewhere between xλ
and xp, and b lies somewhere between xµ and xp.

��

� λ

� λ� � µ

��

� �

Figure 5.1: Finding a collision using a distinguished point method

62 CHAPTER 5. COLLISIONS IN CYCLE ALGORITHMS

Let l be an expected number of iterations between two distinguished points. For
instance, if the distinguished property is first k zeros then l = 2k. And let lλ be
a number of iterations from xλ to xp and lµ a number of iterations from xµ to xp.
Suppose that lλ > lµ without any loss of generality. Then starting from xλ and
stepping lλ − lµ times it will reach the point xλ′ that is equally far from xp as xµ.
What is more important, it is equally far from collision point. This means that
starting from xµ and xλ′ two trials must step forward together until they both hit
the same point. If only one processor is used then expected work to find a collision
is √

πn/2 + 3l.

Usually it is considered that when l � n and then the expected work required for
a single processor to find a collision is

√
πn/2.

The problem with the cycle method is exposed when the distinguished point
method does not have the mechanism to detect an infinite loop. That is, the dis-
tinguished point in the cycle is not found. Leave the cycle undetected, the process
will continue infinitely without detecting any distinguished points. Therefore, a
mechanism must be introduced for detecting the cycle that does not have any dis-
tinguished points. This problem is real if the distinguished point is chosen poorly
or the function h is not completely random. After some number of iterations with-
out success in finding distinguished point it starts to be suspicious and it can be
assumed that the process falls into a loop. Thus, the main difficulty is to choose
the length of easily distinguished property in order to get the right probability of
occurrence. If the length is too long, then the cycle may not be detected and the
algorithm fails. On the other hand, if the length is too short, then we need a huge
amount of values that have to be stored.

In [73] the maximum trail length without exceeds the distinguished point was
suggested. 1/l is the probability that the value has a distinguished property. That
is, the average length of a trail without distinguished point is l. Of course l can
be adjusted using a differently sized distinguished point. Nevertheless, no matter
how l is chosen it is always possible that a trail will fall into the infinite loop.
The suggested maximum trail length without a distinguished point is 20l after it
is supposed that the trail falls into an infinite loop. The probability of trails that
reach the length of 20l without a distinguished point is

(1− 1/l)20l = e−20.

The most obvious solution when the maximum trail length is reached is to start
from the beginning with a new start point. Another solution is to continue using
some other cycle detection method e.g. Nivasch’s or Floyd’s method. It guarantees
that the cycle will eventually be found. If the value with a distinguished property

5.3. FINDING COLLISIONS USING MEMORYLESS ALGORITHMS 63

is reached, the alternative method is discarded and continues with a distinguished
point method as before. Of course this can not be called a pure distinguished point
method because in special cases it employs an additional method to find the cycle.

One of possible solutions for detecting the cycle without leaving the original
distinguished point method is to redefine the distinguished property and start from
the last detected distinguished point. This redefining must be so that the points with
the new property are superset of the points with previously defined distinguished
point property. For instance, if the distinguished property is last k zeros, then the
new distinguished property can be defined as the last k−m0 zeros where 0 < m0 < k.
In this case, it is more likely to find a distinguished point with the new property.
Or, more precisely, there are in average 2m0 more distinguished points and the
probability that some of them are in the cycle is 2m0 times higher. Let suppose
that after changing the property of distinguished point to k −m0 zeros, the trial is
still into an infinitely loop. In this case the distinguished property can be redefined
as k − m1 last zeros where m0 < m1 < k. Eventually, the distinguished point
must be found and it guarantees that the cycle is detected. Since this solution is
only probabilistic in the sense that there is always a chance that the trail is not
in the infinite loop but the distinguished point is still not reached. Nevertheless,
if the point with original distinguished property with the k zeros is detected, the
method can be switched to an original setting again. However, the scenario that
random walk comes into infinite loop is very rare if the distinguished point method
is configured properly and has only a theoretical interest.

In Section 4.6.5 a distinguished point method for efficient parallelization of col-
lision search is described. It is distinguished in two cases: one when only small
number of collisions is required and the other, when a large number of collision is
necessary. An idea is to use more processors which share a single common list. Each
processor adds distinguished points with additional information and starts produc-
ing a new trial from a new starting point. It can be also considered that the trial
continues from the distinguished point but it has a drawback when a large number
of collisions is required. Namely, when a trial reaches a collision it falls into the
path when same distinguished points are detected over and over again. In the sin-
gle common list a starting point x0 and the length of the trial d must also be stored
in order to efficiently locate a collision. A collision is detected when a distinguished
point appears twice in a list or more precisely when one trial touches another trial.
From this point two trials will have the same path up to a distinguished point.
When this happens a collision is detected. If more collisions is required one must
continue until desired number of collisions is reached. A special case is when one
trial touches another trial in a starting point x0. This yields to the ”Robin Hood”
which does not produce the collision point [72].

Let m denote the number of processors used to find the collision. We know
that

√
nπ/2 is the expected number of points produced until the collision is found.

64 CHAPTER 5. COLLISIONS IN CYCLE ALGORITHMS

Using m processors means that each of them should produce
√
nπ/2

m

points in average. After the collision is found, it is expected to produce additional
l points until the next distinguished point. As in the case with one processor,
collision point must be located on both trials. The only difference is that one part
can be done in a parallel manner. Namely, it starts with one processor, beginning
by stepping the longer trial until it reaches the size of the shorter one. This part
must be done serially. After that, both parts step together until they reach a point
a and b(6= a) such that h(a) = h(b). This part can be done in parallel. In [73] the
computation was given in details where expected work for locating the collision is

√
πn/2

m
+ 2.5l

Another issue is the case when a large number of collisions is required. This is
especially useful when not every solution is desired. For instance, when an input
value is smaller than the output value. Then two different output values can use
compression function to produce two inputs with the same values which will even-
tually lead to the same distinguished point. That is, if two trials reach the same
distinguished point it does not imply that the collision is found. On the other hand,
the goal is to find two different inputs which have the same output. For this reason,
it is required to produce a large number of ”pseudo-collisions” until the real collision
is located. The algorithm is the same as when one collision is required except that
it continues until the real collision is found. Of course, there must be some kind of a
test that checks if the collision is desired or not. The similar problem occurs in [60]
by Quisquater and Delescaille where authors aimed to find a key collision for DES.
They used a compression function that maps 64-bit DES output text to the 56-bit
DES key. This means that only one of 28 DES collisions lead to the true collision
rather than pseudo-collision.

5.4 Summary

In this chapter methods for detecting the collisions using different cycle finding
algorithms were presented. More precisely, we analyzed the second part of this
method, the part after the cycle is detected. The focus was on the time memory
trade-off algorithms that are more suitable for the hash functions. For the slight
increase of memory they give a faster way of finding a collision.

In the analysis we also considered possibilities of parallelization. Unfortunately,
the parallelization can be done only for the limited number of steps, depending on
the method, and it has a sense to be executed only by a maximum of two processors.

5.4. SUMMARY 65

For some methods they don’t give enough acceleration for collision detection. This is
the case for distinguished point method and in some situations for Brent’s method.
In other methods like Nivash’s or Floyd’s after the cycle is detected the operation
continues from the start point. It guarantees that an expected parallel computation
will be done for 1

2

√
nπ
8

steps.
In the distinguished point method the case when the point with distinguished

property is not found in the cycle or it is not found for a long period was investigated.
In [73] it was suggested that this period is 20l where l is an average length of trial
without distinguished point. Two approaches for overcoming this problem were
presented. In Nivasch’s multi-stack algorithm is also considered how it affects on
detecting the collision. It turned out that multi-stack algorithms does not accelerate
the process of collision searching. Only with parallelization, when two processors
are included can some time for finding the collision be saved.

66 CHAPTER 5. COLLISIONS IN CYCLE ALGORITHMS

Chapter 6

Analysis

6.1 Introduction

Comparing practical results with theoretical expectation is always useful. In prac-
tice, creating any cryptographic component tends to have results very close to the-
oretical, but it is very hard or even impossible to set the sign of equality between
them. For that reason, we can just talk about how practical results are close to
theoretical. One of the main reasons is the fact that the pure random function
is very hard to be constructed. Hash function is a very common tool in the case
where the randomness is necessary. Very often, the value of the hash function is
considered to have property of randomness. Any deviation from the pure random
function leads to situation where generic attacks have better results than expected
[5]. In that sense, the pure random function in only a theory.

As in the exhaustive search, finding collision using cycle algorithms depends in
general on randomness of the hash function onto which it is applied. On the other
hand, the performance of particular algorithm highly depends on the choice of its
parameters. There are no strict regulations how these parameters should be used.
However, with adjusting mask function, input size as well as distinguished point
size in distinguished point algorithm or the number of stacks in Nivasch’s algorithm
someone can manipulate with a memory complexity, a processing complexity of a
success rate.

In this chapter, we present the analysis of cycle finding algorithms. They are
applied on a 1-bit version of RadioGatún hash function with a 58-bits output. It
ensures fast collision detection. Analysis with different parameters is confirmed by
experimental results. It can give us a much realistic picture of how some attacks
are treated.

The remainder of the chapter is organized as follows: after an environment in
which tests are performed is defined a general property of the random function in

67

68 CHAPTER 6. ANALYSIS

cycle algorithm is explained. Then, with more detail for specified algorithms a set
of tests is ran in order to observe the behavior for each of them.

6.2 General Property of Random Mapping in Cy-

cle Algorithms

This section generalizes the concept of random mapping in the cycle algorithm
without getting deeper in any of the particular methods. It explains the function-
ality of the cycle algorithm as the method independent of external factors such as
memory or time complexity. Also, different approaches and important parameters
have been observed such as meet-in-the-middle attack applied on cycle algorithm
or how different size of the parameter in the random function affects finding a col-
lision. The common characteristic is that they can be applied on a cycle algorithm
independently from the chosen method used for this purpose.

6.2.1 Performance of Different Input Size

Different size of the input affects on the time and the memory expectation. Applying
this on iterated function can be treated as the mask function that has the smaller
input than the output. More details about different input size were explained in
Section 5.3. Applied as the iterated function in the cycle finding algorithm, in some
cases, it can decrease the needs for the storage but at the same time increases the
computation time. Depending on the input size, the memory requirements as well
as the computation time can vary. Since this experiment compares performance, all
results depend on the hash function implementation.

An experimental comparison shows that long inputs are processed 16 times faster
than short inputs. The size of one block is considered one input, that is, 39 words
size. The padding scheme that fits the input of multiple block size is not processed.
Padding scheme has a drastic influence in the hashing of small inputs. This differ-
ence will be even bigger if padding scheme is taken into account. The reason why
this difference is so big lies in the fact that input blocks follows 16 blank iterations.
The Figure 6.1 shows how the hashing speed depends on the input size. The input
is a multiply of block size and the padding process is not considered. Both figures
show how blank iterations are influenced by the speed of hashing. Tested on 64 bit
Inter Pentium(R) Dual-Core E5300 2.60 GHz with 2M cache and 4GB RAM under
Debian Linux Kernel 2.6.30 an average speed of RadioGatún [32] is about 290 MB/s
and 550 MB/s for RadioGatún[64] for a big input. The speed of one block is 17.5
MB/s for 32 bit version and 35 MB/s for 64 bit version using the same environment
which is about 16 times slower than for the big input.

6.2. GENERAL PROPERTY OF RANDOM MAPPING IN CYCLE ALGORITHMS69

Figure 6.1: The speed of RadioGatún[32] (left) and RadioGatún[64] (right) for small
inputs

Another drawback is the padding scheme which takes significant processor time
when the input is small. The Figure 6.2 shows how the speed of hashing using
RadioGatún is changing by taking different size of inputs. The small inputs is
taken and all irregularity behavior of the graph are shown depending on the input
size. Two big things can be seen from the graph: 13 small ”cliffs” on each 3 word
size input and the big ”hills” on each 39 word size input. These clearly describe
the internal structure and the hashing process. Namely, in order to increase the
performance two different functions for hashing data are possible. Input data must
be separated by three words. The padding scheme is done in the way that, at the
end, it is multiplied of three and then the hashing function takes three by three
words. This is the smallest unit that can be hashed at once. Hashing data this way
is slow. For that reason, it takes the whole block of 39 words and hashes it ”at
once”. In other words, input data is divided in blocks of 39 words. The last one is
multiply of three. Since the hashing block is much faster of hashing three by three
words, the significant increase when the input reaches the size that is multiple of 39
can be noticed in the graph .

6.2.2 Applying Meet in the Middle Method on Cycle Find-
ing Algorithm

In order to be able to perform meet-in-the-middle attacks on a certain function, it
should be possible to be computed in a backward direction from the given value. It
is believed that reaching all zeros initial state value going in a backward direction
is not less difficult than reaching the target state from the starting initial point [6].
The invertible nature of the round function in RadioGatún gives the possibility of

70 CHAPTER 6. ANALYSIS

application in meet-in-the-middle strategies.
In the Section 4.5 the basic idea of the meet-in-the-middle attack was given as

well as the explanation of how it can be applied in the cycle finding algorithm in
general. Using different time-memory trade off techniques will not change the ex-
pectation for finding the collision. The only difference is that instead of an usual
iterated function the inverse function with the criteria that decides in which ”direc-
tion” the iterated function should be used can be applied as well.

The meet-in-the-middle strategy in the cycle finding algorithm has one very
important advantage. It can be used not just for creating one preimage of the given
value but for finding multiple preimages too. From the same image value y and
starting each time from different values different collisions can be found. Namely,
suppose that using the explanation from the Section 4.5 starting from the random
value x1

0 the collision such that x1 = x1
i−1||x1

j−1 and y = h(x1) was reached. Suppose
further that a different started random value x2

0 leads to the collision that gives
the solution x2 = x2

i−1||x2
j−1 such that y = h(x2) and so on. This can be continued

depending on how much preimages are needed. This means that at the end different
values x1, x2, ..., xn will be calculated that after applying the function h on them the
same output value y is produced. From the experimental results of the preimage
value using one bit version of RadioGatún in the Table 6.1 two preimage results are
presented. More results continuing the execution of meet-in-the-middle method or
changing the internal state of RadioGatún can be found.

image
1011001011110000011000110101100101000110110100000111100101

preimages
11000010000001101010001010100110001010101111110100101011111111111111
11111111110110111110010101011110110110000010111011001001101001101100
11111111100011100111111010011000100110100101001000010001001111111111
11111111110110101100111010001110100011111010111011110100011101010010

Table 6.1: Preimage values given using meet-in-the-middle method

6.2.3 Collisions in Cycle Algorithms

Before we start to perform different tests it is necessary to see how RadioGatún
corresponds to basic expectations. The internal state of RadioGatún is directly
controlled by the input block. In the last input, three words are injected into Mill
and Belt parts which is then transformed regarding functions defined in standard
RadioGatún specification. Since in internal state the Mill as well as the Belt part
are included and are both updated from the same input block, consequently, the

6.2. GENERAL PROPERTY OF RANDOM MAPPING IN CYCLE ALGORITHMS71

generic attack has the security that corresponds to a 58 word size. This means that
the expectation to find the collision is 1.17 ·229 ≈ 229.23. Experimental results shows
that RadioGatún can be broken after 229.20 operations in average, corresponding
very closely to the given specification.

Similar to the subsection 6.3.1 the behavior of the expectation for the collision
can be tested. Even if the expected collision length is confirmed practically, this
does not necessary mean that the whole distribution corresponds unambiguously.
Different segments of the distribution was taken and, for each of them, the test
result is compared with the expected values. Table 6.2 shows results obtained by
the samples of 100 collisions.

Collision property Region (log2) Theoretical (log2) Experimental (log2)

29.23 26-27 26.5764 26.5683
29.23 27-28 27.5677 27.5773
29.23 28-29 28.5504 28.5356
29.23 29-30 29.5156 29.4992
29.23 30-31 30.4479 30.4482
29.23 31-32 31.3119 31.2838

Table 6.2: Expectation of collision compared with experimental results

The role of different input size in finding collisions in the cycle finding algorithm
was already discussed in the Section 5.3. Using a smaller input size for the iter-
ated random function causes a decrease in memory requirements. Since the simple
collision, by itself, is not a satisfying solution, the process must be repeated until
the real collision is found. On the other hand, it increases the number of iterations.
This causes that an additional time is needed for the real collision.

Suppose that the output size of the random function has a length n and the input
value takes the size of k < n. Approximately 1.17 · 2k/2 iterations are needed before
the trial starts cycling. This will produce a simple collision but not necessarily a
real collision. If this collision is not the desired one, the process should be repeated
using a different starting point each time until the real collision is reached. As it
was discussed earlier, to find the real collision 2n−1 comparisons was needed to be
created. In the process of finding one simple collision about 2k−1 comparisons are
involved. If l is the number of simple collisions that are found before at least one
real collision is found, then

l2k−1 ≥ 2n−1.

This means that the expectation to find the first real collision is after

l = 2n−k

72 CHAPTER 6. ANALYSIS

tries. This leads to the next observation. The number of iterations until the real
collision is found is

2n−k2k/2 = 2n−k/2

6.3 Analysis of Cycle Finding Algorithms

Theoretical expectations do not coincide always with the experimental results. It is
necessary beside the theoretical results to be observed how the cycle finding algo-
rithms behave in practice. It gives us a much wider picture of how a particular algo-
rithm uses its memory and processor resources. By comparing different algorithms
and their characteristics all advantages and disadvantages must be considered.

Not every algorithm is suitable for each situation and for that reason each one
must be treated differently. They also use the resources in different way and, because
of that, there is no universal analysis for all algorithms. In the most cases, they
must be analyzed separately and a different approach must be constructed for each
of them. The correct prediction of the result is crucial in the process of analyzing. It
gives us the starting facts which need to be confirmed by the experimental results.

6.3.1 Distinguished Point Parameters

The effectiveness of the distinguished point method mostly depends on how param-
eters are chosen. Choosing appropriate parameters has a central role in the mem-
ory/processing efficiency. There is no strict rule how they should be chosen. There
are only suggestions. The distinguished point method is probabilistic method and
it does not guarantee cycle detection. That is, no matter how good distinguished
point parameters are chosen, there is always a theoretical chance that this method,
in its rough form, does not give us a collision. Analyzing the behavior of the distin-
guished point method can give us a more realistic expectation. The great impact on
the success of the distinguished point method has the function used in the process
of iterations. Here, all experiments are applied on RadioGatún hash function which
is supposed to behave as random. In practice, not all functions are random. They
behave as quasi-random or have some special characteristics such as extremely small
cycles. In this case, these results can not be considered accurate and, what is more,
the distinguished point method is not the best choice.

The Number of Distinguished Points

Changing parameters in the distinguished point method affects the performance of
the method. One of the most important parameters is how to choose the distin-
guished point and how long it should be. Making the distinguished point shorter

6.3. ANALYSIS OF CYCLE FINDING ALGORITHMS 73

takes the penalty in the number of the memory accesses, the storage for the data is
getting bigger and the searching for data is getting slower, especially in the worst
case scenario. Longer distinguished points cause an extra computation time and
higher possibility that the trial comes into an infinitely loop. Consequently, calcu-
lating the right prediction is important. Thus, here, the number of distinguished
point in the cycle will be computed. In the following computation, various expec-
tation regarding the number of distinguished points in the cycle will be calculated
and compared with the practical experiments.

In order to achieve some of these expectations, a theoretical background must
be set up. The number of distinguished points depends on the path length. That
is, it is related to the expectation of collision occurence. The probability that the
collision occurres in time k is:

P (col = k) = 1 · (1− 1

n
)(1− 2

n
) . . . (1− k − 1

n
)
k

n

P (col = k) =
n!

(n− k)!nk
k

n

where n is the number of all possible outputs. Using Stirling’s approximation for
n! it follows that

P (col = k) =

√
n

n− k

(
n

n− k

)n−k
e−k

k

n

In the Figure 6.3 the probability distribution of the path length until the collision
is reached is given. If we know the path length, we can give the expectation for this
particular case. This is given by the formula

E(Xµ
DP) = (µ+ λ)/2d

where 2d is the number of distinguished points. The same can be applied on a
certain arbitrary path length. The only difference is that instead of µ + λ will be
the new symbol that represents this arbitrary path length. The expected number
of distinguished points is easy when the length is known. A more complicated
evaluation takes place when the length is not known. Then in the equation the
random variable that represent the path length must be included.

Estimation of the Length Between Two Distinguished Points

There is also one behavior that can be changed using the different parameters in
distinguished point method. This is the length between two distinguished points
sometimes also known as a chain length. First the probability that the distinguished

74 CHAPTER 6. ANALYSIS

Figure 6.2: Hashing speed for different input size

Figure 6.3: Probability distribution of the first collision appearance

6.3. ANALYSIS OF CYCLE FINDING ALGORITHMS 75

point is reached after k steps must be estimated. It must be also taken an assump-
tion that inside this k steps the cycle will not be detected, otherwise a loop will
be infinite. In [70] some interesting evaluations of the distinguished point method
applied on DES were given. To be able to define the distribution the probability
that the distinguished point is reached for the first time in exactly l steps must be
computed first. The probability that the distinguished point does not occur in less
than l steps is:

P (d ≥ l) =

(
1− 2n−d

2n

)(
1− 2n−d

2n − 1

)(
1− 2n−d

2n − 2

)
. . .

(
1− 2n−d

2n − (l − 1)

)

=
l−2∏
i=0

(
1− 2n−d

2n − i

)
The denominator is decreased each time since the probability of making the cycle
in the chain is excluded. Since we have in practice that i � n, an approximation
i = l−1

2
can be taken which gives the equation:

P (d ≥ l) ≈

(
1− 2n−d

2n − l−2
2

)l−1

To compute the probability that the collision occurred in exactly l steps P (d ≥
l)− P (d ≥ l + 1) needs to be calculated or it can be simply defined as:

P (d = l) ≈

(
1− 2n−d

2n − l−2
2

)l−1
2n−d

2n − l + 1

The given equation describes the distribution of the chain length. In order to
compare the practical results with the theoretical expectation some results from
[70] were taken. The interval in the graph is divided in m parts [t0, t1 − 1], [t1, t2 −
1], [t2, t3 − 1]...[tm−1, tm − 1]. For some parts the expectation of the chain length
is then calculated and compared to practical results. The average chain length
between ti and ti+1 is given by:

lti,ti+1
=

∑ti+1−1
l=ti

lP (ρ = l)∑ti+1−1
l=ti

P (ρ = l)

This is not very accurate for analyzing and it must be transformed in a differnt
form. So,

ti+1−1∑
l=ti

P (d = l) = P (d ≥ ti)− P (d ≥ ti+1)

76 CHAPTER 6. ANALYSIS

A nominator is a little bit harder to transform in an acceptable form. The following
formula can be used:

ti+1−1∑
l=ti

lP (d = l) =

ti+1−1∑
l=ti

l(P (d ≥ l)− P (d ≥ l + 1))

=

ti+1−1∑
l=ti

l

(
l−2∏
i=0

(
1− 2n−d

2n − i

)
−

l−1∏
i=0

(
1− 2n−d

2n − i

))

≈
ti+1−1∑
l=ti

l

(1− 2n−d

2n − ti+1+ti−1
2

)l−2

−

(
1− 2n−d

2n − ti+1+ti−1
2

)l−1

=

ti+1−1∑
l=ti

l
(

(1− x)l−2 − (1− x)l−1
)

where x = 2n−d

2n− ti+1+ti−1

2

. This gives us the following

ti+1−1∑
l=ti

l
(

(1− x)l−2 − (1− x)l−1
)

= (1− x)ti−2(ti +
1− x
x

)− (1− x)ti+1−2(ti+1 − 1 +
1

x
)

This means that the average chain length for the given interval is

lti,ti+1
=

(1− x)ti−2(ti + 1−x
x

)− (1− x)ti+1−2(ti+1 − 1 + 1
x
)

P (d ≥ ti)− P (d ≥ ti+1)

Using this equation can be practically tested the chain length.
First the probability of the chain length for the fixed distinguished point property

will be tested. The setting is adjusted such that the distinguished point has the
length 20 bits and the input value has the length 58. For each observer region 100
examples was taken. Table 6.3 contains the results of the observation.

The expectation of the chain length for various distinguished point property is
considered in the next test. A wider region was taken to be seen if theoretical results
correspond to experimental results. Table 6.4 can be used for comparing the given
results.

This practical results confirms the theoretical expectations in the sense that the
chain length doesn’t have just the expected length in general but also the expected
length for the certain region. In this way we confirmed that results coincides in the
whole region of the probability distribution.

6.3. ANALYSIS OF CYCLE FINDING ALGORITHMS 77

DP property Observer region (log2) Theoretical (log2) Experimental (log2)
20 16-17 16.5799 16.6129
20 17-18 17.5749 17.5512
20 18-19 18.5648 18.5478
20 19-20 19.5445 19.5377
20 20-21 20.5039 20.5037
20 21-22 21.4260 21.4183
20 22-23 22.3001 22.3202

Table 6.3: The chain length for the fixed distinguished point property

DP property Observer region (log2) Theoretical (log2) Experimental (log2)
14 12-16 14.2318 14.1883
16 14-18 16.2317 16.2342
18 15-20 18.2317 18.2328
20 18-22 20.2317 20.2241
22 20-24 22.2317 22.2213
24 22-26 24.2317 24.2147

Table 6.4: Observation of the chain length for the various distinguished point prop-
erties

Influence of Parameters in Time/Memory Complexity

Calculating time/memory complexity in the distinguished point method can be
done only in the conjunction with different parameters. First of all, these pa-
rameters consider the length of the output and the distinguished point property.
So, time/memory complexity will be observed when different parameters of distin-
guished point methods vary. Here, all calculations were taken under the assumption
that the iterated function has a random mapping. Of course, all expectations will
be experimentally confirmed by a set of tests.

A memory requirements, is directly related with the expectation number of the
distinguished points. This means that the size of the memory grows linearly, depend-
ing on the number of distinguished points. The expected number of distinguished
points for the given path length was explained earlier. This gives us the expected
memory requirements for the given path

(n− d)
√
πn/2

since it is not necessary to store data which describes a distinguished property.

78 CHAPTER 6. ANALYSIS

6.3.2 Efficiency of Using Stack in Nivasch’s algorithm

Unlike the distinguished point method, the amount of the memory in the Nivasch’s
method depends on the value order in the path. In this part the behavior of the
stack occupation using the Nivasch’s method will be investigated. The subsection
5.3.2 already discussed about the various expectations. In [51] an expectation of the
stack size for a random function was defined. First, we will test how RadioGatún
responds as the function with the random mapping on the following expectation:

• the stack size at the time n has an expectation ln(n) +O(1)

• the stack size at the time n is almost surely > δ ln(n) for any constant δ < 1

• the maximum stack size up to time n is almost surely < δ ln(n) for any con-
stant δ > e

A test applied on RadioGatún hash function gives us the results represented in
the Table 6.4. The test ran 100 executions of Nivash’s algorithm. Upper line can
be seen as a bound of the memory requirements. If the memory is static it needs
to be estimated before the execution of iterated function. The experiment that
made on 100 examples shows that an expected memory occupation at the time n is
ln(n) + 0.5148.

In the same subsection (5.3.2) the case when more than one stack is used to
store data was given. The question is what benefits can give us this approach of
using the Nivasch’s method? As discussed earlier, the number of iterations stays
the same in the process of finding the collision since, after the minimum value in
the cycle is allocated, iteration must be continued until the collision. That gives
that in any case 2(λ + µ) iterations need to be performed. So, even if the number
of iterations stays unchanged, the situation with the memory units, that need to
support multiple stacks, becomes more complicated.

Let us suppose that there are k stacks used to accomplish Nivasch’s multiple
stack algorithm. At the time n each stack will process in average n/k values. In
other words, using the function with the random mapping the Nivasch’s multiple
stack algorithm will have the following expectation:

• the stack size at the time n has an expectation ln(n/k) + O(1). The size of
all stacks at time n has an expectation k(ln(n/k) +O(1))

• the stack size at the time n is almost surely > δ ln(n/k) for any constant
δ < 1.

• the maximum stack size up to time n is almost surely < δ ln(n/k) for any
constant δ > e.

6.3. ANALYSIS OF CYCLE FINDING ALGORITHMS 79

Figure 6.4: Stack occupation in Nivasch’s method. The behavior of the stack size
is compared with en expected stack size (lower line) and the upper bound of stack
size (upper line).

From here it can be seen that even the cycle detection using multiple stacks is
much more effective, the memory requirements for a such approach are much more
demanding. Figure 6.5 gives results from the Nivasch multiple stacks method com-
pared to their expectations. As for the single stack the sample was taken from 100
executions of Nivash’s multiple stack algorithm. The smooth line represents the ex-
pected stack size in time n. Taking the sample an experimental result shows that the
expected stack size at time n when k = 4 distinct stacks are used is k ln(n/k)+2.15.
Taking the results from the single stack algorithm and comparing them to the re-
sults of the multi-stack algorithm the conclusion that the expectation stays into the
appropriate theoretical frame results can be given.

Very often the performance of the distinguished point and Nivasch’s method is
compared. Choosing the method that fits the best depends mostly on the environ-
ment. Distinguished point method in general requires detecting the cycle which is
more faster than the Nivasch’s method but in the case when the function is not
random, i.e. where the function makes small cycles, the Nivasch’s method can be a
good choice.

If it is necessary to decrease the memory storage in the Nivasch’s method, it can
be done by taking only the point with certain property into account. It is similar
as to the distinguished point method but, instead of comparing to all previous

80 CHAPTER 6. ANALYSIS

Figure 6.5: The average and the real memory occupation of the Nivasch’s multi-
stack algorithm

stored values, a stack is used as in the Nivasch’s method. Changing the Nivasch’s
method this way makes it lose a very important characteristic; this method is no
longer deterministic in the way that it does not guarantee the cycle detection in
any possible situation and it becomes probabilistic. However, if it is dealing with
the random function and if parameters are chosen correctly then the chance that
the cycle stays undetected is almost zero. An interesting thing is that using this
approach does not change an average number of iterations until the cycle is detected
and stays unchanged as in the original Nivasch’s method. In both cases it is in
average 5

2

√
πn/8 iterations. Consequently, the expectation for the collision is also

unchanged and it is 7
4

√
πn/2 iterations in average.

The amount of saved memory can be adjusted. Suppose that the property is
taken so that it is expected that the appropriate value is taken after each k steps
in average. It can be observed as one of the stack in the multiple stack variant of
Nivasch’s method. Then in the time n it is expected that the size of the stack is
ln(n/k) + O(1). If it is needed that the stack size is decreased for p then k = ep

should be chosen. Interestingly, it does not depend on the time n. It gives the
conclusion that for any value of n, the stack size will be, in average, smaller for
k in comparison to the usual stack of Nivasch’s method. However, the cost for
decreasing the memory is high since k depends on p exponentially. The reason
for this must be very convincing and justified, for example in the device with very
limited memory size. One of the major advantages of using this approach is that

6.3. ANALYSIS OF CYCLE FINDING ALGORITHMS 81

the need for memory access is drastically decreased. It reduces the memory access
in average k times.

6.3.3 Performance of Cycle Methods on Different Platforms

Comparing the structure of the Microsoft Windows and Linux operating system
family is a common topic in the personal computer industry. They both went
through various versions and advanced in order to satisfy the needs of their users.
While Microsoft Windows operating system is focused on the sales market, the Linux
has the status of being the most prominent free software operating system. They
all expand their market on a variety of other devices such as embedded systems.
The most interesting fact here is that they are constructed on different philosophies
and they very often have different solutions and algorithms for solving the same
problems. This leads to the clue that they may have different execution time for
the same task.

Cycle finding methods including the structure of the hash function consist of
primitive functions and simple algorithms. They are executed very fast on both
platforms but even the slightest difference in the performance can have very impor-
tant meaning when the process of the whole method is considered. The memory
management is another issue, but it is only actual when the method that is used the
memory efficiently is observed, such as Nivasch of distinguished point method. How-
ever, storing and finding data depends on the sorting algorithm. Thus, to be able
to better explain possible differences, before the method is compared on different
platforms, sorting solution chosen for some a particular method must be explained
shortly. In the distinguished point method the hash table with chaining list for
storing data is used. It establishes a relatively fast algorithm for finding data and
constant time for adding a new element. The balanced tree instead of the chaining
list can be also considered as a possible solution since the load factor is large. In the
Nivasch’s method the sorted list is used. New element is always compared with the
top one. If the new element is smaller it is compared with the next one and so on
until the element with the biggest value is reached. At he first glance, it seems very
trivial and inefficient but this algorithm makes sense since the smallest elements are
at the bottom of the list and they are accessed very rarely. On the other hand the
top of the list is changed very often and it is reasonable that the search starts from
the above.

For the comparison test environment Windows 7 and Debian Linux Kernel
2.6.30. distribution are taken. These both run on 64 bit Intel Pentium(R) Dual-
Core CPU E5300 2.60 GHz with 2M Cache and 4GB RAM. Both opereting systems
use Intel C++ Compiler 11.1 which performance is optimized for Intel processors.
Figure 6.6 shows test results applied on different algorithms. The test applied after
50 collisions for each method. The settings, such as the start point and mask func-

82 CHAPTER 6. ANALYSIS

Figure 6.6: Graphical representation of results taken from Table 6.5

tion, is also the same for each method. The number of iterations and computations
in each of observed algorithms were tested. Note that the number of iterations
does not need to be the same as the number of computations. For instance, in the
Floyd’s algorithm in one iteration three computations of the function are included.
The process of detecting the collision using cycle finding techniques can be divided
in three phases: the first phase is detecting the cycle; the second phase is the part
after the cycle is detected and where the process must be done sequentially; the
third phase is after which the collision is found and it can be done in parallel. In
the Table 6.5 the test results are given. The last two columns are durations. They
shows how much time is needed for particular method to find a collision. Methods
are tested on both operating systems. Note that tests are performed on software im-
plementation and that results depend on it. This means that tests relay on another
implementation can lead to different results.

Simple testing of the RadioGatún hash function, so that the output of one
execution is an input of the next one, shows that, under the Linux environment
it is approximately 5 − 6% faster than under Windows. Note that 1 bit version
without blank and output round function was using and that the result is taken
directly as the internal state after the input round functions. It turns out that
the distinguished point method and Nivasch’s method are about 5.44% and 6.08%
slower on Windows environment. It also shows that the Floyd and Brent methods

6.4. SUMMARY 83

are about 5% slower in Windows than in Linux environments.

Cycle Additional Parallel Time Time
Algorithm detection computation computation Linux Win

(log2) (log2) (log2) (minute) (minute)

Brent 29.837 27.601 26.959 61.186 64.25
DP 29.252 18.468 17.822 26.24 27.67
Floyd 30.345 27.315 62.71 65.84
Nivasch 29.450 27.710 26.445 42.75 45.35

Table 6.5: Collision test results using different cycle finding algorithms on 1 bit
version of RadioGatún

6.4 Summary

All tests in this chapter used RadioGatún hash function. In general, all of them can
be also applied on any other function. The aim of this analysis is to demonstrate
different cycle method techniques. Different theoretical analysis was presented for
various cycle finding techniques. Thus, the results are not so important and they
are here only to prove our expectation. They are used to confirm the property of
RadioGatún hash function observed from different aspects. What is more important,
here are used methods to find collisions and their performances in order to be able to
choose the appropriate one in certain situations. Various models allow predictions
of some abnormalities in the function and need corrections in the early stage. So,
the situation where the theoretical prediction induces the practical expectation is
always suggested.

In this chapter a parallelization is presented and were experimentally shown its
affect on each methods. It can be applied only on the last stage of the collision
search and for different methods it has a different influence. Floyd’s algorithm has
the longest parallel computation, mostly since it does not require any additional
computation after the cycle is detected. The shortest parallel computation is in
a distinguished point method which, in average, is not bigger than the distance
between two distinguished points.

The Nivasch’s multiple stack algorithm does not reduce the number of com-
putations drastically. What is more, the only sensible way of using multiple stack
algorithm is when two processors are involved, since this allows the final part of com-
putation to be done in parallel. Also, this chapter also experimentally shows, that
the stack in Nivasch’s multi stack algorithm has an expectation of k(ln(n/k)+O(1))
where k is the number of stacks. It gives us a possibility to define the number of

84 CHAPTER 6. ANALYSIS

stacks in order to reduce the memory requirement but, since it grows exponentially,
it does not give a nice performance.

Chapter 7

Conclusion

Representing and analyzing different cycle finding techniques arises one question.
Which one is the best? This primarily depends on circumstances and environments.
If it is assumed that an iterated function behaves like a random function then
distinguished point method can be a good choice. If the environment is set so
that the memory has a very limited capacity then Nivasch’s method with controlled
stack can solve this problem. On other hand, if the iterated function does not
behave like a random function and has some abnormal characteristics (i.e. often
creates short cycles) then, for sure, the distinguished point is not a good choice since
it is a probabilistic method and does not guarantee that the cycle (and therefore
the collision) will be detected. In short, a universal answer on this question does
not exist and it depends on many factors.

To be able to make a good choice, the time complexity for finding the collision
needs to be calculated. It requires additional effort. Namely, when the cycle is
detected the process must continue until it reaches the collision point. This task
is not always trivial. How fast the collision will be found after detecting the cycle
depends mostly on the information the particular method provides. If the method
keeps track of previously reached points (such as the distinguished method point
and sometimes Brent’s method) then finding the collision after the cycle is detected
can be relatively fast. On other hand, methods such as Nivasch’s, Floyd’s or in most
cases Brent’s do not carry any useful information which lead to significant reduction
of iterations after the cycle is detected. Further research can go in this direction,
in the modification of these methods so that the part after the cycle is detected is
reduced. Producing some information can be used in the iteration process that does
not need to start from the initial value but from some points close to the collision.

Here, an implementation of the most important cycle finding techniques was
performed and experimental results, that confirmed possibilities and effectiveness,
were presented for the purpose of finding the collision. All results and expectations
are used to show generic attacks on 1 bit version of RadioGatún hash function

85

86 CHAPTER 7. CONCLUSION

but it can be also applied on any other hash function or just function in general
without changing algorithms. Although all methods can not be used in any situation
and each of them has certain advantages when compared to other algorithms, in
the case when a random function with a sufficient amount of memory is involved
distinguished point method has the overall performance. The distinguished point
method finds collisions with 38% iterations less than when Nivasch’s method is used.
Also it has 57% and 58% iterations less then when Brent’s or Floyd’s method is used
respectively. The main power of the distinguished point method lies in the fact that
after the cycle is detected the number of remaining steps, before the collision is
located, is small, unlike in other methods where the iteration must continue mainly
from the beginning. The second big advantage (especially when it is compared to
Nivasch’s method) is that it does not need to search for data in a look-up table all
the time.

Before any analysis was set, we had calculated different expectations for any cycle
finding algorithm we observed. We went a little more further and gave some collision
expectations in cycle algorithms. In Brent’s algorithm, which is an advanced variant
of Floyd’s algorithm, we differentiate two cases µ ≤ 2k−1 − 1 and µ > 2k−1 − 1
where in the first case, the collision can be found faster. In Nivasch’s algorithm
with k stack using one processor, an average number of iterations to find a collision
is 2(λ + µ) =

√
2πn and it does not depend of parameter k. Only by using two

processors the time can be saved in the sense that k
k+1

µ = k
k+1

√
πn/8 steps can be

done in parallel. Nevertheless, using parallel computation more than approximately
25% of time can not be saved. This lead to thinking whether introducing the
parallelization in this method makes sense. Another doubt is introducing the parallel
computation into cycle finding technique in the distinguished point method. The
length of parallel computations in average is not more than the chain length and
it depends on the distinguished point property. This is significantly less than the
number or steps required for the cycle detection. Thus, introducing parallelization
in this method must have a very good reason.

Choosing parameters in distinguished point method (like different properties for
distinguished points) were used for testing the behavior of the hash function. In
this case, RadioGatún hash function was used. More precisely, the distance from
two distinguished points was used to test the randomness of the hash function.
The probability distribution was established based on different distinguished point
properties and observed regions. The average chain length for different regions was
tested and compared with theoretical expectations. This comparison can tell us
more about randomness of a hash function as well as the prediction of memory
requirements before the collision is found. The size of memory in Nivasch’s method
was also analyzed. Since the size of the memory is not continuous and varies after
each step a good prediction was necessary. For this purpose the size of the memory
was analyzed and it has been showed at the time n the memory occupation is

87

ln(n) + 0.5148 in average but not more than e ln(n). This is useful when we need
to predict the size of memory before the process for detecting the collision starts.

Implementations and tests for all algorithms are done as the software solution.
Further applications and analysis can go in the direction where these methods are
realized as hardware solution. Then, working with a small memory size can be a
very important factor. Also detecting the cycle and finding the collision in it does
not need to be strictly related to random functions. Thus, investigating cycle finding
techniques on non-random functions can also be an interesting challenge.

88 CHAPTER 7. CONCLUSION

Bibliography

[1] Jean-Philippe Aumasson. Faster multicollisions. In INDOCRYPT, pages 67–
77, 2008.

[2] J. Vandewalle B. Preneel, R. Govaerts. Cryptographically secure hash func-
tions: an overview. ESAT Internal Report, 1989.

[3] S. Bakhtiari, R. Safavi-naini, and J. Pieprzyk. Practical and secure message
authentication. In In Series of Annual Workshop on Selected Areas in Cryp-
tography (SAC), pages 55–68, 1995.

[4] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptogra-
phy: The case of hashing and signing. In CRYPTO, pages 216–233, 1994.

[5] Mihir Bellare and Tadayoshi Kohno. Hash function balance and its impact on
birthday attacks. In EUROCRYPT, pages 401–418, 2004.

[6] Guido Bertoni, Joan Daemen, Gilles Van Assche, and Michaël Peeters. Ra-
diogatún, a belt-and-mill hash function. NIST - Second Cryptographic Hash
Workshop, August 24-25, 2006.

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The
road from panama to keccak via radiogatún. In Helena Handschuh, Stefan
Lucks, Bart Preneel, and Phillip Rogaway, editors, Symmetric Cryptography,
number 09031 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2009.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[8] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of
the block-cipher-based hash-function constructions from pgv. In CRYPTO,
pages 320–335, 2002.

[9] Charles Bouillaguet and Pierre-Alain Fouque. Analysis of the collision resis-
tance of radiogatúnusing algebraic techniques. In Selected Areas in Cryptogra-
phy, pages 245–261, 2008.

89

90 BIBLIOGRAPHY

[10] Richard P. Brent. An improved monte carlo factorization algorithm. BIT,
20:176–184, 1980.

[11] Christophe De Cannière, Florian Mendel, and Christian Rechberger. Collisions
for 70-step sha-1: On the full cost of collision search. In Selected Areas in
Cryptography, pages 56–73, 2007.

[12] Henri Cohen. A course in computational algebraic number theory. Springer-
Verlag New York, Inc., New York, NY, USA, 1993.

[13] Henri Cohen and Gerhard Frey, editors. Handbook of elliptic and hyperelliptic
curve cryptography. CRC Press, 2005.

[14] Joan Daemen and Gilles Van Assche. Producing collisions for panama, instan-
taneously. In Alex Biryukov, editor, FSE, volume 4593 of LNCS, pages 1–18.
Springer, 2007.

[15] Joan Daemen and Craig S. K. Clapp. Fast hashing and stream encryption with
panama. In FSE, pages 60–74, 1998.

[16] Ivan Damg̊ard. Collision free hash functions and public key signature schemes.
In EUROCRYPT, pages 203–216, 1987.

[17] Ivan Damg̊ard. A design principle for hash functions. In CRYPTO, pages
416–427, 1989.

[18] Drew Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton
University, 1999.

[19] Bert den Boer and Antoon Bosselaers. Collisions for the compression function
of md5. In EUROCRYPT ’93: Workshop on the theory and application of
cryptographic techniques on Advances in cryptology, pages 293–304, Secaucus,
NJ, USA, 1994. Springer-Verlag New York, Inc.

[20] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[21] W. Diffie and M. Hellman. Exhaustive cryptanalysis of the nbs data encryption
standard. Computer, 10(6):74–84, June 1977.

[22] Whitfield Diffie and Martin E. Hellman. New directions in cryptography invited
paper, 1976.

[23] Hans Dobbertin. Cryptanalysis of md5 compress. Technical report, In Rump
Session of EuroCrypt ’96, 1996.

BIBLIOGRAPHY 91

[24] Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley &
Sons, Inc., New York, NY, USA, 2003.

[25] Marc Fischlin. Incremental cryptography and memory checkers. In EURO-
CRYPT, pages 293–408, 1997.

[26] Philippe Flajolet and Andrew M. Odlyzko. Random mapping statistics. In
EUROCRYPT, pages 329–354, 1989.

[27] Robert W. Floyd. Nondeterministic algorithms. J. ACM, 14(4):636–644, 1967.

[28] Thomas Fuhr and Thomas Peyrin. Cryptanalysis of radiogatún. In FSE, pages
122–138, 2009.

[29] Tim Güneysu, Andy Rupp, and Stefan Spitz. Cryptanalytic time-memory
tradeoffs on copacobana. In GI Jahrestagung (2), pages 205–209, 2007.

[30] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions
on Information Theory, 26(4):401–406, 1980.

[31] Antoine Joux. Multicollisions in iterated hash functions. application to cas-
caded constructions. In CRYPTO, pages 306–316, 2004.

[32] Antoine Joux. Algorithmic Cryptanalysis. Chapman & Hall/CRC, 2009.

[33] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for
much less than 2n work. In EUROCRYPT, pages 474–490, 2005.

[34] Dmitry Khovratovich. Two attacks on radiogatún. In INDOCRYPT, pages
53–66, 2008.

[35] Dmitry Khovratovich. Cryptanalysis of hash functions with structures. In
Selected Areas in Cryptography, pages 108–125, 2009.

[36] Vlastimil Klima. Tunnels in hash functions: Md5 collisions within a minute.
Cryptology ePrint Archive, Report 2006/105, 2006.

[37] L. Knudsen and B. Preneel. Enhancing the security of hash functions using
non-binary error correcting codes. IEEE Transactions on Information Theory,
48(4):2524–2539, September 2002.

[38] Lars R. Knudsen. New potentially ’weak’ keys for des and loki (extended
abstract). In EUROCRYPT, pages 419–424, 1994.

92 BIBLIOGRAPHY

[39] Lars R. Knudsen, John Erik Mathiassen, Frédéric Muller,
and Søren S. Thomsen. Cryptanalysis of md2. J. Cryptol., 23(2):72–
90, 2010.

[40] Donald E. Knuth. The art of computer programming, volume 2 (3rd ed.):
seminumerical algorithms. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[41] Xuejia Lai and James L. Massey. Hash functions based on block ciphers. In
Advances in Cryptology - EUROCRYPT’92 Proceedings, pages 55–70. Springer-
Verlag, 1993.

[42] H. Rich Schroeppel M. Beeler, R. William Gosper. In Hakmen, Al Memo 239,
page 64. Massachusetts Institute of Technology, Artificial Intelligence Labora-
tory, 1972.

[43] Krystian Matusiewicz. Analysis of Modern Dedicated Cryptographic Hash Func-
tions. PhD thesis, Macquarie University, 2007.

[44] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[45] Ralph C. Merkle. One way hash functions and des. In CRYPTO, pages 428–
446, 1989.

[46] Ralph Charles Merkle. Secrecy, authentication, and public key systems. PhD
thesis, Stanford University, Stanford, CA, USA, 1979.

[47] Ilya Mironov. Hash functions: Theory, attacks, and applications. Technical
report, Microsoft Research, Silicon Valley Campus, november 2005.

[48] S. Miyaguchi, M. Iwata, and K. Ohta. New 128-bit hash function. In Proc. 4th
International Joint Workshop on Computer Communications, pages 279–288,
1989.

[49] Shoji Miyaguchi, Kazuo Ohta, and Masahiko Iwata. Confirmation that some
hash functions are not collision free. In EUROCRYPT, pages 326–343, 1990.

[50] Judy H. Moore and Gustavus J. Simmons. Cycle structure of the des for keys
having palindromic (or antipalindromic) sequences of round keys. IEEE Trans.
Software Eng., 13(2):262–273, 1987.

[51] Gabriel Nivasch. Cycle detection using a stack. Inf. Process. Lett., 90(3):135–
140, 2004.

BIBLIOGRAPHY 93

[52] National Institute of Standards and Technology. FIPS PUB 46-3: Data En-
cryption Standard (DES). U.S. DEPARTMENT OF COMMERCE/National
Institute of Standards and Technology, October 1999.

[53] Kazuo Ohta and Kenji Koyama. Meet-in-the-middle attack on digital signature
schemes. In AUSCRYPT, pages 140–154, 1990.

[54] J. M. Pollard. A monte carlo method for factorization. Bit, 15:331–334, 1975.

[55] B. Preneel. Analysis and Design of Cryptographic Hash Functions. Thesis
(ph.d.), K. U. Leuven, Leuven, Belgium, January 1993.

[56] Bart Preneel. Cryptanalysis of message authentication codes. In ISW, pages
55–65, 1997.

[57] Bart Preneel. Cryptographic primitives for information authentication - state
of the art. In State of the Art in Applied Cryptography, pages 49–104, 1997.

[58] Bart Preneel. Hash functions and mac algorithms based on block ciphers. In
IMA Int. Conf., pages 270–282, 1997.

[59] Bart Preneel. The state of cryptographic hash functions. In Lectures on Data
Security, pages 158–182, 1998.

[60] Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision
search? application to des (extended summary). In EUROCRYPT, pages
429–434, 1989.

[61] Vincent Rijmen and Bart Preneel. Improved characteristics for differential
cryptanalysis of hash functions based on block ciphers. In FSE, pages 242–248,
1994.

[62] Vincent Rijmen, Bart Van Rompay, Bart Preneel, and Joos Vandewalle. Pro-
ducing collisions for panama. In FSE, pages 37–51, 2001.

[63] R. Rivest. The md5 message-digest algorithm, 1992.

[64] Ronald L. Rivest. The md4 message digest algorithm. In CRYPTO, pages
303–311, 1990.

[65] Yu Sasaki, Yusuke Naito, Noboru Kunihiro, and Kazuo Ohta. Improved colli-
sion attacks on md4 and md5. IEICE Transactions, 90-A(1):36–47, 2007.

[66] Claus P. Schnorr and Jr. Hendrik W. Lenstra. A monte carlo factoring algo-
rithm with linear storage. Mathematics of Computation, 43:289–311, 1984.

94 BIBLIOGRAPHY

[67] Robert Sedgewick, Thomas G. Szymanski, and Andrew Chi-Chih Yao. The
complexity of finding cycles in periodic functions. SIAM J. Comput., 11(2):376–
390, 1982.

[68] G.J. Simmons. How to insure that data acquired to verify treaty compliance
are trustworthy. Proceedings of the IEEE, 76(5):621–627, May 1988.

[69] C.H. Mayer. J. Oseas S.M. Matyas. Generating strong one-way functions with
cryptographic algorithm. IBM Technical Disclosure Bulletin, 27, 1985.

[70] François-Xavier Standaert, Gaël Rouvroy, Jean-Jacques Quisquater, and Jean-
Didier Legat. A time-memory tradeoff using distinguished points: New analysis
& fpga results. In CHES, pages 593–609, 2002.

[71] Edlyn Teske. A space efficient algorithm for group structure computation.
Math. Comput., 67(224):1637–1663, 1998.

[72] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with
application to hash functions and discrete logarithms. In ACM Conference on
Computer and Communications Security, pages 210–218, 1994.

[73] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with
cryptanalytic applications. J. Cryptology, 12(1):1–28, 1999.

[74] X. Wang, Y. Yin, and H. Yu. Collision search attacks on sha1, February 2005.

[75] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for hash
functions md4, md5, haval-128 and ripemd, 2004.

[76] Tao Xie and Dengguo Feng. How to find weak input differences for md5 collision
attacks. Cryptology ePrint Archive, Report 2009/223, 2009. http://eprint.

iacr.org/.

[77] Gideon Yuval. How to swindle rabin. Cryptologia, 3:187–189, 1979.

[78] Y. Zheng, T. Matsumoto, and H. Imai. Connections among several versions of
one-way hash functions, 1990.

[79] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. Duality between two
cryptographic primitives. In AAECC, pages 379–390, 1990.

