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Abstract

The brain is the most complex system in the human body and under-

standing its function and structure is of high scientific interest as reflected

by several ongoing multinational scientific efforts. “Connectomics”, based on

diffusion MRI, assesses the structure of the brain as a network graph and

provides new insights of the topological organisation of healthy and patho-

logical brains. However, network reconstruction involves several steps, such

as segmentation, parcellation, registration, fiber orientation estimation, and

fiber tracing - all of them with a high degree of parametrization. This thesis

investigated the impact of different combinations of state-of-the-art tractog-

raphy algorithms, diffusion weighted acquisition and parcellation schemes

on structural connectivity and derived network measures. Additionally, the

intra- and inter-subject variability was tested and the meaningfulness of the

structural connectivity map validated by 8 major white matter bundles. This

work showed that at least 100,000 fibers have to be generated to obtain a

connected structural connectivity network which is reliable for further anal-

ysis. A high intra-subject but a moderate inter-subject reproducibility was

found and group-wise studies are only meaningful with parcellation scales of

83 and 129 brain regions. In general, the selection of the number of nodes had

the most substantial impact on the network measures, but also the tracing

algorithm. In conclusion, measures of structural connectivity are highly de-

pended on acquisition and processing and therefore not comparable between

studies.

High-resolution diffusion MRI in combination with a probabilistic multi fiber

orientation model yields most connections but comes at the cost of increased

scan as well as calculation time.

In contrast, conventional DTI acquisition with FACT fiber tracing is fast

and has the least false positive connections, which is preferable for clinical

structural connectivity studies.
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Kurzfassung

Das Gehirn ist das komplexeste System im menschlichen Körper und das

Verständnis über seine Funktion und Struktur ist von großem

wissenschaftlichen Interesse, was auch durch verschiedene laufende multina-

tionale wissenschaftliche Versuche verdeutlicht wird. “Connectomics”,

basierend auf Diffusions-MRI, beschreibt die Struktur des Gehirns als einen

Netzwerkgraphen und liefert somit neue Einblicke in die topologische Or-

ganisation von gesunden und pathologischen Gehirnen. In die Rekonstruk-

tion eines Netzwerks sind jedoch zahlreiche Schritte involviert wie Segmen-

tierung, Parzellierung, Registrierung, Schätzung der Faserrichtungen und

“Fiber-Tracking” - allesamt mit einem hohen Grad der Parametrisierung. In

dieser Arbeit wurden die Einflüsse verschiedener Kombinationen von state-of-

the-art Tracktographie-Algorithmen, diffusionsgewichteten Datenakquirierun-

gen und Parzellierungschemata auf die strukturelle Konnectivität und die

daraus abgeleiteten Netzwerkmaße untersucht. Zusätzlich wurde die inter-

subjektive und intrasubjektive Variabilität getestet und die Sinnhaftigkeit

der strukturellen Konnektivitätskarten anhand von 8 bekannten Faserbün-

deln validiert. Diese Arbeit zeigte, dass mindestens 100 000 Fasern rekon-

struiert werden müssen, um ein vollständig verbundenes strukturelles Net-

zwerk zu erhalten, welches Voraussetzung für weitere Analysen ist. Eine

hohe intrasubjektive und eine moderate intersubjektive Reproduzierbarkeit

wurde festgestellt und es zeigte sich, dass Gruppenstudien nur mit einer

Parzellierungsskalierung von 83 oder 128 Hirnarealen sinnvoll sind. Im All-

gemeinen hat die Anzahl der Knoten den wesentlichsten Einfluss auf die

Netzwerkmaße, aber auch der Tracktographie-Algorithmus beeinflusst diese.

Abschließend kann gesagt werden, dass die Maße der strukturellen Konnek-

tivität sehr stark vom Akquirierungsschema und von der Verarbeitung ab-

hängen und daher ein Vergleich zwischen einzelnen Studien nicht möglich ist.

Die hochaufgelösten Diffusions-MRIs in Kombination mit probabilistischen

Mehrfaser-Orientierungsmodellen führten zu den meisten Verbindungen, sie
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gehen jedoch mit einer Erhöhung der Scanzeit sowie der Berechnugszeit ein-

her. Im Gegensatz dazu ist die gewöhnliche DTI-Datenakquirierung in Kom-

bination mit dem FACT-Fiber Tracking Algorithmus sehr schnell und weist

zudem die geringste Anzahl an falsch positiven Verbindungen auf. Daher ist

diese für klinische Studien vorzuziehen.
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1. Introduction

The brain is the most complex organ in the human body. It contains more than 100

billion neurons linked together with about 1015 connections. It is like a majestic forest

in which no road, no trail can penetrate and no sunbeam can find a path through it

[67]. It is not surprising that scientists designate the brain not only as the most complex

organ, they designate it as the most complex object in the universe. Astonishing that

this majestic forest fits in a container with a capacity less than one and a half litre and

even more astonishing that this forest makes us what we are: how we think, how we

behave and how we act. At present, the function of the human brain as well as the

organisation of the white matter bundles (connections) is poorly understood. The main

knowledge of neuronal connections is based on post-mortem fiber dissection studies. In

2005 Patrick Hagmann and Olaf Sporns had the idea to describe the compelx human

brain as a network with nodes and edges and considered this as Connectome [59][57].

A new research area was born, Connectomics. This research area opened new doors to

gain new insights in the organisation, structure and function of the brain as well as to

understand and early detect diseases of the nervous system such as amyotrophic lateral

sclerosis (ALS) or multiple sclerosis (MS). Since then, several research projects have

been founded all over the world like “Developing Human Connectome Project (DHCP)”

in Europe or “Human Connectome Project” in America.

In the course of these projects three different approaches were established for describing

the human brain as a network. In the first approach, the functional connectivity, the

activity of the brain is mapped to detect functional clusters. This is done with EEG or

functional MRI. The second approach, the molecular connectivity, maps the molecular

connection between neurons. Mapping the structural connectivity is the third approach.

This method maps the structural white matter pathways connecting the different cortical

areas of the brain. A link established by these three approaches will enable a increased

understanding of the function of the human brain.
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In the last approach, also known as structural Connectome, diffusion weighted MRI has

become increasingly important. At present, this technology is the only one allowing the

in-vivo study of structural neuronal connections in the human brain. The whole process

for mapping the structural connectivity is complex. A T1w MRI is necessary for par-

cellation of the brain in known anatomical areas, which serve as nodes in the network.

Furthermore dwMRI is necessary for reconstructing the white matter bundles, which

serve as edges in the graph and connect the segmented cortical areas. One fundamental

problem is that a gold standard in the neuroscience community for mapping the struc-

tural connectome is missing. For each single processing step several different approaches

exist. Different combinations of these methods influence the accuracy of the resulting

structural connectome. Several works investigate these influences. For instance, the

effects of gray matter parcellation [1], tractography algorithm [49] and reproducibility of

the structural connectome itself [58] and corresponding network measures [58][25] were

investigated. However, most of the studies found in literature investigate the impacts

on thresholded or binarized structural connectivity matrices. At present it is not clear

which connections in the generated structural connectivity matrix do also exist in the

human brain and which are artificial generated from the used methods. Therefore, in

contrast to previous studies the connectivity matrices in this thesis are not thresholded

or binarized. The aim of this thesis is to investigate the impact of every step on the

raw connectivity matrices as well as on the corresponding network measures. Therefore,

four questions will be answered. (1) How do different acquisition schemes influence the

structural connectivity and network measures? (2) How does the number of nodes in-

fluence the results of structural connectivity? (3) Has the fiber tracing algorithm and

the number of reconstructed fibers an impact on the structural connectivity and on

network measures? (4) Which combinations of the used methods are most robust and

reproducible?

In order to answer these questions different MRI datasets from two healthy subjects

regarding spatial resolution, number of gradient directions and different b-values are

acquired. The influence of number of nodes on network measures is investigated using 5

different scales form 83 up to 1015 brain regions (LOUSANNE - atlas). Three different

tractography algorithms (fiber assignment by continuous tracing [65], euler’s method [15]

and a deterministic approach based on constrained spherical deconvolution [34]) are used

for evaluation and the number of reconstructed fibers are changed from 25 000 up to 650

000. The intra-subject as well as the inter-subject variability is tested for all different

combinations to analyse the robustness and variability. In a last step the information
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differences contained in the resulting structural connectivity matrices are evaluated for

8 well known white matter pathways using a manually defined structural connectivity

matrix.
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2. Background

2.1. Diffusion weighted MRI

2.1.1. Introduction

Diffusion weighted MRI is a magnetic resonance imaging technique that provides macro-

scopic information of water diffusion in tissue. This imaging technique is based on the

quantification of the arbitrary motion of water molecules. The measured water diffu-

sion contains information of axonal orientation and local microstructures of the tissue.

This information can be voxelwise reconstructed using methods such as diffusion tensor

or constrained spherical deconvolution. Following the main orientations of the axonal

orientations from one voxel to the other an axon bundle, also called fiber tract, can be

reconstructed. These fiber tracts are represented as trajectories and make it possible to

study white matter pathways and the structural connectivity of the human brain.

2.1.2. Diffusion

In diffusion weighted MRI the intrinsic diffusion of water is measured. The diffusion of

each water molecule is driven by thermal fluctuations of the substance of interest and

follows a random walk (figure 1). This process is known as Brownian motion [30].
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Figure 1: Brownian motion of a single water molecule. The black line illustrates the

random walk of the molecule from the red to the green location. The blue

arrow illustrates the mean displacement.

A mathematical description of the Brownian motion was derivated by Albert Einstein

in 1905. He found out that particles always cover the same mean squared displacement

in a given time period and asserted this as the basic quantity (equation 1) [60].

D =
〈∆r2〉

2n∆t
(1)

where D is the diffusion coefficient, n is the number of dimensions, 〈∆r2〉 is the mean squared displace-

ment and ∆t the diffusion time.

Several years later Jean Perrin verified Einstein’s relation and additionally he figured

out that the particle displacement exactly followed random laws. On this account the

statistical distribution of particle displacement in one direction can be described by a

Gaussian distribution [60].

P (∆r,∆t) =
1

√

(2πD∆t)3
exp

(

−∆r2

4D∆t

)

(2)

where ∆t is the diffusion time, ∆r is the particle displacement and D is a diffusion coefficient.

As previously described, the reasons for diffusion of water molecules are thermal fluctua-

tion in the substance of interest. A constant random motion of molecules in all directions

is known as isotropic diffusion. This is, for example, the case for water molecules in re-

gions of the cerebral spinal fluid (CSF).

In white matter myelinated axons highly hinder the diffusion of water molecules in the

prependicular direction whereas it is nearly free in the parallel direction. In this case

the water molecule has a preferred diffusion direction which is parallel to the myelinated

5



axons. This is known as anisotropic diffusion and quantitatively characterized by the

apparent diffusion coefficient ADC. In diffusion MRI the ADC is measured in the human

brain to characterize the structure and orientation of the axon bundles [21][2].

2.1.3. Diffusion weighted MRI

The most common utilized diffusion weighed MRI sequence is the Stejskal-Tanner se-

quence (figure 2).

90◦Pulse 180◦Pulse Signal

RF

Gz

Gy

Gz δ
∆

TE

Figure 2: Stejskal Tanner sequence

The idea behind this sequence is to control the diffusion weightening by using two gra-

dient pulses (blue gradients in figure 2). Along an applied gradient, spins precess with

different frequencies. This leads to a local phase shift of all spins and therefore to a

dephasing of the magnetization across the sample. The local phase shift is inverted by

the 180◦ RF-pulse. A second gradient pulse inverts this local phase shift and the mag-

netization in the sample rephases. In stationary spins the induced phase shift cancels

out completely and no signal attenuation occurs. In case of diffusion, the spins change

their location owing to Brownian motion. As a result of this location change, the spins

experience different gradient strengths. This leads to a different phase shift and the

spins in the sample do not refocus completely and cause a signal attenuation [2] [10]. In

an isotropic environment the signal attenuation due to diffusion can be described by

6



S = S0e
−bD (3)

where S0 is the signal of the baseline image acquired without diffusion sensitizing gradient, D is the

constant diffusion coefficient and b is the diffusion weighting factor.

The diffusion weighting factor allows to control the signal attenuation. A larger diffusion

weighting factor leads to a higher signal attenuation and therefore a lager diffusion

weighting. This coefficient depends on several factors and will be modified for different

DWI images:

b = γ2δ2G2

(

∆−
δ

3

)

(4)

where γ is the gyromagnetic ration (42, 576MHzT−1 for protons), G is the magnitude of the diffusion

gradient, ∆ is the time difference between the two diffusion sensitizing gradient pulses and δ is the

duration of the diffusion sensitizing gradient pulses [10].

In case of anisotropic diffusion the diffusion coefficient has to be replaced by the apparent

diffusion coefficient D and therefore equation 3 has to be re-written [42].

S = S0e
−bgTDg (5)

where g is the normalized diffusion sensitizing gradient vector.
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2.1.4. Diffusion Tensor

The diffusion tensor D is a common method for describing the local Gaussian water

diffusion in three dimensions. It is a 3x3 symmetrical (Dij = Dji) covariance matrix

(equation 6). The diagonal terms of the diffusion tensor describe the diffusion variances

along the physical axes x,y,z and the off-diagonal terms the covariances. The physical

axes are defined by the orientation of the MRI scanner [55].

D =







Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz






(6)

The direction of the water diffusion in a voxel can be determined by calculating the

eigenvectors (e1, e2, e3) of the diffusion tensor. The eigenvalues (λ1,λ2,λ3) of D describe

the strength of the diffusion in the direction of the corresponding eigenvector [2].

The CSF of the human brain is an isotropic environment and therefore the diffusion of

water molecules is free in all directions. In this case the diffusion is equal in all direc-

tions and the diffusion tensor D consists of only diagonal terms with equal magnitude

(λ1 = λ2 = λ3). The diffusion ellipsoid is spherically shaped with a diameter of size D

(figure 3(a)).

The white matter of the human brain is a highly anisotropic environment. Thus, water

molecules diffuse in a preferred orientation, described by the major eigenvector of the

diffusion tensor. In this case the diffusion ellipsoid is elliptically shaped and the diffusion

tensor consists of nine non zero elements (figure 3(c)). The direction of the eigenvectors

can be aligned with the physical axes x,y,z using a rotation matrix and therefore the

diffusion tensor has only diagonal elements which are the eigenvalues (figure 3(b)) [55].
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(a) (b) (c)

Figure 3: Relationship between diffusion ellipsoid and Diffusion Tensor in case of

isotropic (a) and anisotropic (b) (c) environment.

2.1.5. Orientation Distribution Function - ODF

The previously described diffusion tensor model estimates the orientation of axons very

well if they are aligned homogeneously within a voxel. A recent study show that more

than 90% of the measured voxels in the human brain contain kissing, crossing or merging

fibers [39]. This leads to heterogeneities which are not accounted by the simple diffusion

tensor model. The diffusion tensor approach leads to inadequate and unreliable fiber

orientation estimation (figure 4) [39][16]. Therefore, more complex models such as the

Orientation Distribution Function are necessary. This is a probabilistic model which

describes the orientation of fibers present in a voxel with a continuous function of the

unit sphere, the so-called fiber orientation distribution function (ODF). More precisely,

the ODF, mathematically represented as F (θ, φ) in spherical coordinates, contains two

types of information. First the orientation (θ, φ) of the fibers within a voxel and second

the corresponding volume fraction. The volume fraction indicates the number of fibers

aligned with the distinct orientation of the fibers related to the maximum number of

fibers within a voxel. For the case that two orientational fiber populations are present

within a voxel (figure 4(g)) the ODF is simply the sum of two dirac delta functions aligned
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with the distinct fiber orientation (θ, φ) and weighted with the volume fraction. The

ODF is typically represented in the basis of spherical harmonics (the reader is referred

to section 3.4.2.2 for further details on Spherical Harmonics (SH) and calculating the

ODF) [40][36].

x

y

(a)

x

y

(b)

x

y

(c)

x

y

λ1

λ2

(d)

x

y

λ2

λ1

(e)

x

y

λ2

λ1

(f)

x

y

(g)

x

y

(h)

x

y

(i)

Figure 4: DTI compared to ODF within a voxel. Figures (a) to (c) show the original

fibers within the voxel. Figures (d) to (f) illustrate the estimated diffusion

tensor and figures (g) to (i) show the fiber orientation distribution function.

Only in figure (e) the diffusion tensor describes the underlying fiber direction

correctly whereas the ODF estimates the true fiber direction correctly. In figure

(h) the volume fraction is identical whereas in figure (g) the volume fraction

is 1/4 in x direction F1(θ1, φ1) and 3/4 in y direction F2(θ2, φ2) resulting in an

ODF F (θ, φ) = 1/4F1(θ1, φ1) + 3/4F2(θ2, φ2).
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2.2. Main white matter pathways in the human brain

About 50% of the human brain consist of white matter and is underlying the outer

cortex of gray matter (see figure 5) and consists mainly of myelinated axons bundled

into fascicles or fiber tracts [5]. The fascicles form a complex network linking different

areas of the cerebral matter allowing to carry nerve impulses between neurons of this

region for communication [53].

The white matter pathways or fascicles are classified into association, projection and

commissural fibers (figure 5) [13]. The important fascicles of each category and their

corresponding cortical connections are described in the following subsection. On the

basis of this fascicles the generated connectivity matrices in section4 are evaluated.

Figure 5: Frontal section of the human brain and the three types of fiber bundes: As-

sociation fibers (red), commissural fibers (green) and projection fibers (blue).

Modified image taken from[5].

2.2.1. Association fibers

Fascicles or fiber bundles connecting cortical areas of the same cerebral hemisphere are

referred to as association fibers. Two different kinds of association fibers exist: The long

association fibers and the short association fibers. The first type connects different lobes

within the same hemisphere while the latter one connects the adjacent gyri. This type

of fiber is the most numerous in the human brain [13].
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2.2.1.1. Long Association fiber: Superior Longitudinal Fasciculus (SLF)

The Superior Longitudinal Fasciculus is a lateral white matter fiber tract consisting

of short and long fiber bundles. The SLF connects regions in the frontal lobe with pari-

etal, occipital and temporal lobes and is present in the right and left hemisphere. The

SLF is subdivided into three major fiber tracts [13][53][12]

• Long direct fiber tract - Arcuate Fasciculus (AF)

• Anterior indirect fiber tract - Horizontal segment of the SLF

• Posterior indirect fiber tract - Vertical segment of the SLF

The AF of the left hemisphere plays a major role in language processing and is addi-

tionally involved in verbal working memory. The AF in the right hemisphere is included

in the aspect of language semantic and in visuospatial processing [12].

The cortical areas connected by the three major fiber tracts of the AF are listed in table 5

in Appendix A. The AF is very heterogeneous and shows an extreme left lateralization

whereby in most human brains the AF in the right hemisphere connects only the caudal

middle frontal gyrus with the middle temporal gyrus. Damages in the AF can cause

different types of aphasia [54][29][13].

2.2.1.2. Long Association fiber: Uncinate Fasciculus (UF)

The Uncinate Fasciculus is a bidirectional, ventral associative white matter tract that

connects cortical regions of the frontal cortex with the anterior temporal lobe [53]. The

UF is typically considered to be part of the extended limbic system. The exact function

of the UF is unknown but previous studies [14][26] have indicated that it is involved in

language, emotion and memory processing [13]. The cortical areas connected by the UF

are summarized in table 6 in Appendix A [53].

2.2.1.3. Long Association fiber: Inferior Fronto-occipital Fasciculus (IFOF)

The Inferior Fronto-occipital Fasciculus is a long ventral associative white matter tract

connecting posterolateral temporal, occipital and parietal lobes to the frontal lobe [52].

A recent study identified two layers of the IFOF by combining DTI tractography with
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fiber dissection. The first layer terminates in the inferior frontal gyrus and is superfi-

cial and anterosuperiorly directed. The second one is the deep and ventral layer and is

further subdivided into three parts [68]:

• posterior component

• middle component

• anterior component

The cortical regions connected by the two layers of the IFOF [68][52] are listed in table 7

in Appendix A. Recent studies suggest that the IFOF plays a role in the semantic system

[52] in reading, visual processing and attention [64].

2.2.1.4. Long Association fiber: Inferior Longitudinal Fasciculus (ILF)

The Inferior Longitudinal Fasciculus is a white matter fiber bundle and connects the

occipital regions with the anterior part of the temporal regions. The ILS can be subdi-

vided into three segments, a dorsal component, a ventral component and a direct Li-Am

component. The cortical place of origin and the cortical termination areas of these three

subcomponents are summarized in table 8 in Appendix A. The ILF is involved in visual

recognition and semantic language processing [28].

2.2.1.5. Long Association fiber: Middle Longitudinal Fasciculus (ML)

The Middle Longitudinal Fasciculus is a mid-size associated white matter fiber bun-

dle that passes through the entire superior temporal lobe and the inferior parietal lobe

[56]. The ML originates in the temporal pole of the superior temporal gyrus and ter-

minates in the angular gyrus of the inferior parietal lobe [22]. The connected cortical

areas are listed in table 11 in Appendix A. The function of the ML is rather moderately

understood but recent studies suggest that the MF could play a role in functions as

language and attention [22][56].

2.2.1.6. Short Association fibers

Short association fibers are also referred to as U-fibers. They lie directly beneath the gray
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matter and connect two adjacent gyri. Today little is known about the exact anatomic

location, the number and also the function of these fibers but it is known that humans

with leukodystrophie have less U-fibers than healthy people. A list of known U-fibers

can be found in table 9 in Appendix A [74] [11].

2.2.2. Projection fibers

The projection fibers run vertically within the white matter and connect the cortex with

the brainstem and spinal cord structures for transferring sensory and motor information

[9]. They are classified into two categories: corticofugal or efferent projection fibers and

corticopedal or afferent projection fibers. Corticofugal fibers carry nerve pulses from

the cortex to the basal nuclei, brainstem and spinal cord while corticopedal fibers carry

pulses from the thalamus to the cortex [75].

2.2.2.1. Fornix

The Fornix is a projection white matter fiber tract connecting the hippocampus with

the anterior thalmic nucleus, the mammillary body and the hypothalamus. The afferent

fibers of the fronix arise in the septal and hypothalamic nuclei and terminate in the

hippocampus. Table 10 in Appendix A lists the cortical structures connected by the

Fornix. The Fornix is part of the limbic system and appears to be necessary in memory

function [50][13].

2.2.2.2. Mammillo-thalamic tract

The Mammillo-thamlamic tract ist a short white matter tract that connects the mammil-

larly bodies with the anterior and dorsal nuclei of the thalamus. The Mammillo-thalamic

tract belongs to the limbic system. The Mammillo-thalamic tract forms, together with

other fibers of the medial forebrain bundle, a circuit between the hypothalamus and

limbic structures of the midbrain. This important circuit connects visceral perceptions

to emotion [50].
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2.2.3. Commissural fibers

Commissural fibers run horizontally within the white matter crossing the midline and

connecting two corresponding cortical regions of the human brain. This type of fiber is

necessary for communication and information transport between the two hemispheres.

The main part of the commissural fibers is the corpus callosum [75] [9].

2.2.3.1. Corpus Callosum

The Corpus Callosum is the most important commissure fiber tract. It is the largest

white matter bundle of the human brain consisting of about 250 million axons. The

Corpus Callosum is generally divided into four parts: rostum, genu, body and splenium

and connects the corresponding cortical areas of the left and right cerebral hemispheres

(table 12 [74] in Appendix A). It allows transferring motor, sensory, and cognitive infor-

mation between the two hemispheres [13].

2.3. Structural Connectome

Patric Hagmann[59] and Olaf Sporns[57] simultaneously and independently of one an-

other introduced the term connectome in 2005 for describing the brain connectivity.

They were the first to describe the structure of the brain by a comprehensive map. The

nodes of this map represent the cortical areas of the human brain and the edges rep-

resent the white matter pathways which connect the neurons of the different cortical

areas. An example comprehensive map is shown in figure 6(a). The term connectome

is often referred to as the wiring diagram of our brain. Over the past few years various

technologies were developed for mapping the connectome. Electron or light microscopy

are used for mapping cellular connectivity at the microscopic scale. With this technology

it was possible to map the first full structural connectome of the roundworm C. elegans,

which consists of 300 neurons and is illustrated in figure 6(b) [41][48]. These 300 neurons

are, compared to the 100 billion neurons in the human brain, manageable to map. New

high-throughput serial electron microscopes (ATUM) were developed, which provides

the opportunity to map 30nm slides of the human brain [45]. These new technologies

open a new era in mapping the first full human structural connectome. With this era

new challenges come such as saving and processing the amount of data (1 Petabyte for

1mm3 brain tissue) [72].
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(a) (b)

Figure 6: Human structural connectome (a) (image taken from [32]) and full structural

connectome of the worm c.elegans (b) (image taken from [48])

At the mesoscale level neuroanatomical tracers in combination with histological section-

ing is used for tracing axonal projections. This technology is used in animals for example

in macaque monkeys to study structures which are also available in the human brain

[27][3].

At the macroscopic level imaging techniques such as diffusion weighted imaging offer

the opportunity to observe the connectional anatomy in brains of living humans. This

non-invasive tracing technology is of great interest to neuroscientists. They explore the

connectivity maps created by this technology for a better comprehension of impacts of

neurological disease on the brain structure. Furthermore, the structural change of the

brain over the progression of a neurological disease such as MS or ALS can be observed.

The results of this observation can give new knowledge and a better understanding of

these diseases. However, not only diseases can be studied, the structural connectome

enables us also to study the structure of human healthy brains for a better understanding

of their function.

2.3.1. Creating the structural human Connectome with Diffusion MRI

An overview of the workflow for processing the multi-resolution structural connectomes

from diffusion weighted MRI datasets is illustrated in figure 7. It is a 5 step procedure: In

the first step (1) a morphological T1-weighted and a diffusion weighted MRI are acquired.

The acquired morphological T1w MRI is used to segment the brain and identify the white
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matter, gray matter and the CSF (2). In a third processing step (3a) the segmented

cortical surface from step (2) is subdivided into well-known anatomical parcels which

serve as nodes for the structural connectome. These anatomical parcels are further

subdivided into smaller non-anatomical ROIs for high resolution connectomes(3b). In a

fourth step a model (e.g. diffusion tensor) is estimated for each voxel of the raw dwMRI

representing the main diffusion direction. Subsequently, whole brain tractography is

applied, using the information of the fitted diffusion model, to reconstruct the white

matter bundles. The white matter mask segmented in step (2) serves as seed point

mask. In the last step (5) the anatomical parcels (3a,3b) are registered on the diffusion

space. After successful registration the defined ROIs (3a,3b) are combined with the

tractography results (4) to compute the connection weight between each pair of ROIs.

The result is a structural connectivity matrix of the whole brain [32]. The first three steps

form the morphological stream, step 4 the diffusion stream and step 5 the connectome

stage. For a detailed description of these 5 steps the reader is referred to section 3 of

this thesis.

Figure 7: Flowchart of extracting the human structural connectom taken from [32]. (1)

T1w and dwMRI acquiring; (2) Whole brain segmentation; (3) Parcellation of

the brain in 66 anatomical ROIs (3a) and 998 non-anatomical ROIs (3b); (4)

Whole brain tractography; (5) Combining results (3a,3b) and (4) for computing

the structural connectome of the entire brain
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2.3.2. Overview of existing Structural Connectome pipelines

Since the introduction of the term Connectome by Patric Hagmann and Olaf Sporn, a

lot of research has been done in this field to improve mapping of the structural brain

connectivity. This leads to an increase of new reconstruction algorithms for each indi-

vidual processing step. However, each of these algorithms has its own advantages and

disadvantages and was usually developed for a particular case. Therefore, using the same

raw dataset but a different algorithm leads to different results, which makes it hard to

compare results of their studies with equivalent studies of other research groups. On this

account several pipelines were developed to standardize the workflow and make results

from different research projects more comparable. At present four connectome mapping

pipelines are available: Connectome Mapping Toolkit (CMTK 1) [19], A pipeline tool-

box for analyzing brain diffusion images (PANDA 2) [17], MR Connectome Automated

Pipeline (MRCAP 3) [31], MRI Graph Reliability Analysis and Inference for Connec-

tomics (MIGRAINE 4) [62]. These pipelines combine the most state of the art processing

tools for creating the structural connectome. An overview of the general requirements

of these pipelines is summarized in table 1.

Table 1: Overview of general information of the available structural connectivity

pipelines

General Information CMTK PANDA MRCAP MIGRAINE

Software Open Source Open Source Open Source Open Source

Program language Python Matlab JAVA JAVA,Phyton

Operating system Linux 32bit & 64bit
Linux 32bit & 64bit,

MAC
Windows, MAC, Linux Windows, MAC, Linux

Input Data Format DICOM & NIFTI DICOM & NIFTI NIFTI NIFTI

Parallel Computing YES YES YES YES

Underlying Framework LONI,NIPYPE PSOM JIST, MIPAV JIST, LONI

Computation Time ≥12h ≥12h ≥8h ≥12h

Support
Online discussion

forum, active support

community

Online discussion

forum, mailing list and

technical support by

the developer

e-mail e-mail

1https://github.com/LTS5/cmp
2http://www.nitrc.org/projects/panda/
3https://www.nitrc.org/projects/mrcap/
4https://github.com/openconnectome/m2g/
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3. Materials and Methods

In the following section, the methods used for generating the connectivity matrix of

a human brain are described in detail. The connectome mapping toolkit5 was chosen

as pipeline, because it is the only pipeline which allows mapping the connectome at

multiple-scales. Furthermore, it offers the greatest variety of state-of-the-art tractogra-

phy methods [19].

3.1. Data acquisition

The MRI datasets from two healthy subjects (age 32 and 25 years) were acquired at the

Medical University of Graz with a 32 channel head coil on a SIEMENS Magnetom Tim

Trio 3T system. From each subject 8 diffusion weighted images with different resolu-

tion, b-values and number of gradient directions were acquired. The important imaging

parameters were summarized in table 2. Additionally, a high resolution morphological

T1-weighted MRI was acquired from each subject in a matrix of 224x256x176 voxels of

1mm isotropic resolution.

3.2. Creating the structural Connectome

As previously described and illustrated in figure 7 (section 2.3.1) the process of estimating

the structural connectivity networks from the acquired data involves several steps. In

general, the process can be characterized by 3 streams or stages. The first stream is the

morphological stream.

5https://github.com/LTS5/cmp
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Table 2: Overview of general imaging parameters of the acquired diffusion weighted MRI

Imaging

Parameter
Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8

Sequence
Standard-

EPI
Standard-

EPI
Standard-

EPI
Standard-

EPI
Standard-

EPI
Standard-

EPI
Standard-

EPI

Readout-
segmented

EPI

Resolution 2x2x3mm 2x2x3mm 2x2x3mm 2x2x3mm 2x2x3mm 2x2x3mm 2x2x3mm 1,5mm iso

b-value 1000s/mm2 1000s/mm2 1000s/mm2 2000s/mm2 3000s/mm2 4000s/mm2 1000s/mm2 1000s/mm2

Averages 2 2 2 2 2 2 2 1

Gradient

directions
12 12 12 12 12 12 64 12/20

Echo time 95ms 95ms 125ms 125ms 125ms 125ms 86ms 76ms

Repetition

time
6700ms 6700ms 8100ms 8100ms 8100ms 8100ms 6200ms 11700ms

Acquisition

time
4min11s 4min11s 4min36s 4min36s 4min36s 4min36s 13min26s 26min50s

Acquisition

Matrix
114x114x50 114x114x50 114x114x50 114x114x50 114x114x50 114x114x50 114x114x50 160x160x83
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3.3. Morphological Stream

The acquired T1w image constitutes the basis for the morphological stream. In this

stream the white matter as well as the different gray matter structures of the brain are

identified. The gray matter structures, such as the cortical gyri, thalamus and brain

stem, will later on serve as nodes for the connectome. The white matter is the basis for

tractography. The first stage of the morphological stream is the segmentation stage.

3.3.1. Segmentation

In this stage the brain is extracted from the skull and segmented into white matter, gray

matter and subcortical areas and the white matter and pial surfaces are reconstructed.

The results of this process will serve as basis for the subsequent parcellation stage.

For this segmentation process the recon-all command of Freesurfer6 was used. This

segmentation process is a complex procedure and therefore broken down into 5 sub-

steps:

1.Non-unifom intensity correction

The measured signal intensities in the T1w image are not uniform for homogeneous tis-

sue, because of RF-coil uniformity, eddy currents and dielectric resonance effects. Thus,

the signal intensities of the same tissue type vary as a function of their spatial locations

[20]. The automated segmentation method in Freesurfer assumes a homogeneous in-

tensity for each specific tissue type. Thus, this non-uniformities in the T1w image were

corrected using the non-parametric-non-uniform-intensity-normalisation method [69] im-

plemented in the nu correct tool from the Montreal Neurological Institute (MNI)7.

2.Talairach transformation

In the second step, the intensity corrected images were transformed into the Talairach

space via an affine transformation (see section for further details on affine transformation)

[20]. The Talairach space, also known as talairach atlas, is a 3 dimensional standardized

coordinate system. The idea of this atlas is that distances between known anatomic

structures (landmarks) are proportional to the brain size. By using this relationship the

brain structures can be mapped independently from differences in size and shape into a

standardized grid. The origin of this coordinate system is the anterior commissure [71].

6freesurfer.net/
7http://www.bic.mni.mcgill.ca/software/distribution/
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Bringing the anatomical structures into a common coordinate system serves as basis for

the subsequent segmentation process. The transformation matrix was determined using

the talairach registration procedure developed by the Montreal Neurological Institute

and implemented in the talairach avi script of Freesurfer. This procedure uses a gradi-

ent descent algorithm at multiple scales to estimate the 12 transformation parameters

by maximizing the correlation between the individual volume and an average volume

composed of a large number of previously aligned brains [20].

3.Skull stripping

In the third step, the skull and non-brain tissue were removed from the intensity corrected

images using a hybrid skull stripping algorithm [66]. In order to get robust and good

results this method combines two different types of algorithms, the watershed approach

and the deformable surface approach.

Watershed approach

The aim of the watershed approach is to segment the surface of the brain volume which

will serve as initialization for the subsequent deformable surface approach. The main

idea of this approach is representing the gray-level image as a topographical relief. Thus,

voxel intensities are interpreted as high information, where bright voxels represent hills

and dark voxels correspond to valleys. Now every local minimum in the relief (valley) is

filled with water. In points where water from different basins meets, a barrier is built.

Now the boarders of the valleys are known and each valley represents a segmented part

in the image.

In T1w MRI white matter is bright and surrounded by darker gray matter and even

darker CSF. Therefore, white matter represents a hill whereas CSF is dark and represents

a valley. Since the aim of the watershed algorithm is segmenting different valleys the

T1w MRI was inverted. Afterwards the watershed algorithm is applied starting from the

white matter and non-brain tissue resulting in two basins, the brain and non-brain tissue

(CSF,skull, eyes, etc.). Given the fact that the watershed algorithm is just intensity

based and incorporates no geometrical information same parts of the brain can still be

removed and parts of non-brain tissue can be preserved. Therefore, a second algorithm

based on geometrical information, the active contour algorithm, was used to find the

true brain boundary [66][33].

Active contour model
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The active contour model incorporates geometrical information and describes the contour

of an object by a parametric curve, the so-called snake. This snake is iteratively deformed

by different kind of forces until equilibrium is reached between these forces. Is this the

case the desired boundary is achieved and the contour of the object is estimated. The

active contour model can be mathematically expressed as:

∀p ∈ P S(p, 0) = S0(p) (7)

∀(p, t) ∈ P ×R+
δS(p, t)

δt
= F(x, t) (8)

where S0 is the initial contour or snake, P is the parameter space and F(x, t) is the local force applied

to the surface S at location x = S(p, t)

The active contour model implemented in Freesurfer models the brain surface with a

icosahedron consisting of 10 242 vertices. The initial contour or surface template is the

segmented result of the watershed algorithm. The following three different forces are

responsible for the deformation process

• Atlas based force FA: This force ensures that the snake holds the brain shape by

using geometric information of a brain atlas.

• Intrinsic curvature reducing force FS: This force ensures smoothness of the snake

by penalizing high local curvatures.

• MRI-based force FMRI : This force ensures that the snake is drawn toward the true

brain boundary by denoting volume intensities from the T1w image.

The deformation of each vertex can be expressed as follows:

xt+1

k = xt
k + [FS(x

t
k, t) + FM(xt

k, t) + FA(x
t
k, t)]δt (9)

where xt
k is the k-th vertex of the icosahedron at the timestep t, xt+1

k is the k-th vertex of the icosahedron

at the next timestep and δt the time between two steps defined in Freesurfer with 0.5

If the forces are in equilibrium, the coordinates of the vertexes do not change anymore

and the brain was successfully extracted from the skull [66].
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4.Automated subcortical segmentation

Once the brain was extracted from the skull, the subcortical areas were segmented

using the automatic subcortical segmentation proposed by Fischl [6] and implemented

in Freesurfer. This segmentation method is based on the Bayesian approach and the

probability of a segmentation W given the observed image I is

p(W |I) ∝ p(I|W )p(W ) (10)

where p(W|I) is the probability of a segmentationW given the observed image I, p(I|W) is the conditional

probability and p(W) is the prior probability of the segmentation

This method has the advantage that a-priori information can be incorporated in the

segmentation process. However, the variability of the subcortical regions in the brain

generates the problem that no common a priori information as well as conditional prob-

ability p(I|W ) can be defined. Therefore, an atlas is used which allows them to vary

with the location. The introduction of an atlas needs a transformation which maps the

image coordinates on atlas coordinates. This is done by an affine transformation matrix

L. Once this transformation is known, the a priori information can be estimated. This

a priori information has two forms. Firstly, a global spatial information provided by the

atlas and the transformation L is used to express the probability p(W (r) = c) that a

class ci occurs at a specific location in the atlas. The classes represent brain areas e.g.

the amygdala and were manually defined in a large dataset. Secondly, spatial relation-

ships between neighbouring regions or classes are incorporated like for example that the

“posterior amygdala is frequently superior to anterior hippocampus, but never inferior

to it”[6]. With the knowledge of the a priori information and the relationship L between

native space and atlas space equation 10 can be re-written:

p(W |I, L) ∝ p(I|W,L)p(W ) (11)

By considering the noise at each voxel and by assuming that it is independent from other

voxels in the image, the conditional posteriori probability p(I|W,L) can be re-written:

p(I|W,L) =
∏

r∈R

p(I(Lr)|W (r)) (12)

were r is the location in the native image space, and R is the image domain
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The prior probability of the full segmentation can be expressed as follows:

p(P ) ∝
∏

r∈N

p(W (r))
K
∏

i=1

p(W (ri)|W (r), ri) (13)

were N is the neighbour of a class, r is the central voxel of a class and ri is the location of the neighbour

By combining equation 12 and 13 the segmentation class at each location can be com-

puted by maximizing the conditional posterior probability [6].

W (r) = argmax
c

p(W (r) = c|W (ri), I(L(r)), ri) =

= p(I(L(r))|W (r) = c)p(W (r) = c)
K
∏

i=1

p(W (ri)|W (r) = c, ri)
(14)

In figure 8 the segmented cortical areas are shown.

Figure 8: Slice of the human brain showing the segmented subcortical areas. Image taken

from8

.

5.Surface construction

In the last step, the white matter surface and pial surface were generated from the

successfully segmented regions. The white matter surface is the border between the

segmented gray matter and white matter and the pial surface is the boarder between

gray matter and cerebrospinal fluid. The surfaces are reconstructed by detecting the

plane of least variance for every voxel [20].

8http://de.slideshare.net/yashika54/working-with-freesurfer-rois-surfernmrmghharvardedu
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3.3.2. Parcellation

Once the surface model of the brain is segmented, neuroanatomical regions can be as-

signed to this model. This process is called parcellation of the brain. The automatic

parcellation approach proposed by Fischl and implemented in Freesurfer was used for

labelling the cortical sulci and gyri. This is a probabilistic process based on the Bayesian

approach and incorporates two kinds of information, geometrical information from the

cortical surface model and neuroanatomical convention from a training set. The training

set contains 40 manually labelled T1wMRI. The atlas used in this parcellation process

was the Desikan-Killiany atlas composed of 34 anatomical areas for each hemisphere.

The procedure for labelling a parcel is the same as the segmentation of the subcortical

areas (see 4.Automatic subcortical segmentation). Here again, the location of a parcel

P(r) is computed by maximizing the conditional posterior probability [23][7].

P (r) = argmax
c

p(P (r) = c|P (ri),G(f(r)), ri) =

= p(G(f(r))|P (r) = c)p(P (r) = c)
K
∑

i=1

p(P (ri)|P (r) = c, ri)
(15)

where K is the number of vertices, r is the loaction in native space, f is the affine transformation matrix

or atlas function and c are the 34 classes in each hemisphere

The result is a fully parcelled brain shown in figure 9

Sub-parcellation

The brain was further subdivided into 998, 446, 217, 112 brain regions or parcels using

the Lausanne atlas. The same transformations used for the Deskian-Killiany atlas and

described above were used for the Lausanne atlas to maintain the topographical condi-

tions of mapping. The Lausanne atlas was developed by a group of Swiss researchers

[32]. They used a two-phase heuristical approach to further subdivide the 66 anatom-

ical regions, called parcels p, of the averaged Desikan-Killiany template brain into 998

equally sized non-anatomical regions, called ROIs. In the first phase the surface size of

a ROI was calculated according to the whole brain size. Afterwards the number of ROIs

for each parcel was calculated according to the surface area of the parcel. For each parcel

p region growing was started until the desired surface area was reached. This was the

first ROI of the parcel p. A second ROI was generated by starting region-growing at a

point near to the first ROI. This process was repeated until the desired number of ROIs
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within a parcel was reached. Once a parcel was fully covered with ROIs, the centre of

gravity was calculated for each ROI and the region-growing was started simultaneously

for all ROIs in the parcel resulting in compact and equally sized regions. Merging always

2 or 3 regions of the higher resolution template brain results in a new template brain

with 446, 217 and 112 regions. Adding up the 17 subcortical structures segmented in

step 4 of the segmentation process described previously results in 1015, 463, 234, 129

and 83 parcells at each scale (figure 9) [32][46].

(a) (b) (c)

(d) (e)

Figure 9: Cortex parcellation at 5 different scales using Desikan-Killiany and Lausanne

atlas: (a) 83 regions, (b) 129 regions, (c) 234 regions, (d) 463 regions, (e) 1015

regions

3.3.3. Registration

Registration is a standard preprocessing step for determining a transformation matrix

that aligns images from different imaging spaces to a target space. Two different imag-

ing spaces are part of the connectome mapping procedure: the morphological space for

determining the white matter mask and the cortical and subcortical brain areas and the
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diffusion space for determining the white matter pathways. For a successful construc-

tion of the connectivity matrix the voxel on position (x,y,z) of T1w image must contain

the same anatomical location of the brain as the voxel of the diffusion weighted image.

Therefore, the results of the morphological stream are linearly registered to the diffusion

space, or more precisely to the b0 image, which serves as reference space. The linear reg-

istration is represented by an affine transformation matrix. This transformation matrix

A provides 12 degrees of freedom (DOF) including translation(3DOF), rotation(3DOF),

shearing(3DOF) and scaling(3DOF).

vtar = Avscr (16)

The aim of the registration process is to find the transformation matrix which best

fits the source image to the target image. This can be mathematically be defined as

minimizing the misalignment between the source and target image using a cost-function

C.

argmin
A

C(Isrc, Itar) (17)

where C is the correlation ratio, A the transformation matrix, Isrc the source image and Itar the target

image

Finding the minimum cost value (equation 17) is a very time consuming step for high-

resolution images (1mm isotropic resolution) and therefore multi-resolution optimization

procedures are used. This technique subsamples the original images to 8,4 and 2 mm

and determines the affine matrix by starting the minimizing procedure for the largest

resolution. The determined parameters serve as initial parameters for the next higher

resolution and the procedure is repeated until the resolution of the target image is

reached [38][37].

The registration was done using FSL9 tool FLIRT (FMRIB’s Linear Image Registra-

tion Tool) which determines the registration matrix using the multi-resolution approach

described above. The source, target and registered image are illustrated in figure 10

9http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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(a) (b) (c)

Figure 10: The source T1w image (a) in the morphological space, the target b0 image

(b) in the diffusion space and the registered T1w image (c) in the diffusion

space

3.4. Diffusion Stage

The diffusion stage is the second stream in the connectome procedure. It is necessary

for determining the white matter pathways in the brain. These white matter pathways

will later on serve as edges in the structural brain network.

3.4.1. Preprocessing

Diffusion weighted images are known to suffer from geometrical distortions. The two

major sources are eddy currents and subject motion.

3.4.1.1. Motion correction

In diffusion weighted MRI different gradient directions are necessary for estimating the

underlying diffusion direction of water molecules. A movement of the subject’s head

during the acquisition process leads to a different brain position in the acquired image.

This means that the same slice of the head contains different brain locations for different
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gradient directions. The aim of the motion correction process is aligning all acquired

diffusion weighted images so that they contain the same anatomical location in each

voxel. Only on this condition the diffusion direction of the water molecules can be

estimated in a correct way.

Motion correction was done by registering the different diffusion weighted images onto

the b0 image using the MCFLIRT method of FSL10. This method determines an affine

registration for every diffusion weighted image as described in section 3.3.3.

3.4.1.2. Eddy current correction

During image acquisition a change in magnetic field occurs from rapid switching on/off

the strong diffusion weighting gradients. This change in magnetic field induces eddy

currents in the gradient coils of the MRI scanner. These eddy currents in turn produce

a time-dependent magnetic field which acts against the origin gradient field and thereby

modifies the sampled trajectory in k-space. This leads to geometric distortions in the

reconstructed diffusion weighted image [4].

The eddy current distortions were corrected by registering the diffusion weighted images

onto the b0 image using FSLs eddy correct tool11. The method of this tool determines

a linear affine transformation matrix as explained in section 3.3.3.

In figure 11 the acquired dw image and the corrected image are shown.

10http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
11http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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(a) (b)

Figure 11: Raw diffusion weighted image (a) and result after motion and eddy-current

correction (b)

3.4.2. Estimation of the diffusion direction in each voxel

For a successful reconstruction of the white matter pathways in the brain, the diffusion

direction of water molecules is determined. Several different approaches exist for de-

scribing this diffusion process within a voxel. Within this thesis two different techniques

are used, the most common diffusion tensor model and the fiber orientation distribution

function.

3.4.2.1. Estimation of the diffusion tensor

The linear least squares method is the most common method for estimating the dif-

fusion tensor from raw diffusion data. This estimation method minimizes the error

between the measured signal Sk and S0e
−bgk

TDgk in the L2 norm (equation 18) [47].

min
D

N
∑

k=1

∥

∥

∥
Sk − S0e

−bgk
TDgk

∥

∥

∥

2

2

(18)

where D is the diffusion tensor, Sk is the measured signal along a gradient direction, S0 is the signal

obtained from the baseline image, b is the diffusion weighting factor and gk the normalized diffusion

gradient vector
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As mentioned before the diffusion tensor has 6 independent components. This means

for solving equation 18 at least six measurements Sk along six non-collinear gradient

directions gk and also one baseline image (b = 0) are necessary. A system of six equations

can be devised with these measurements [44].

S1 = S0e
−bg1

TDg1

S2 = S0e
−bg2

TDg2

...

S6 = S0e
−bg6

TDg6

(19)

For each individual gradient direction the apparent diffusion coefficient (ADC) can be

calculated and the equation system 19 can be expressed in terms of ADCs:

ADC1 = ln(S0/S1)/b = g1
TDg1

ADC2 = ln(S0/S2)/b = g2
TDg2

...

ADC6 = ln(S0/S6)/b = g6
TDg6

(20)

This equation system can be rewritten in matrix-vector-notations. The diffusion tensor

is therefore represented by a six element column vector d [44]

d = [Dxx, Dyy, Dzz, Dxy, Dxz, Dyz]
T (21)

The diffusion gradient encoding matrices from each of the six measurements (i) are

represented as a six element row-vector Hi and combined into a large 6x6 H matrix

[44].

H =













g2x1 g2y1 g2z1 2gxy1 2gxz1 2gyz1

g2x2 g2y2 g2z2 2gxy2 2gxz2 2gyz2
...

g2x6 g2y6 g2z6 2gxy6 2gxz6 2gyz6













(22)

The calculated apparent diffusion coefficients (ADC) from each individual measurement

are expressed in an ADC-vector Y [44]

32



Y = [ADC1, ADC2, . . . , ADC6]
T (23)

The data for each acquisition can be expressed as: [44]

Y = Hd (24)

With exactly six diffusion gradient directions, d can be exactly determined analytically

from equation 24 by multiplying both sides of equation 24 by the inverse of H [44].

(H−1H)d = Id = H−1Y (25)

In general, more than six gradient directions are acquired to reduce the influence of noise

in the estimation procedure. The diffusion gradient matrix is not a square matrix any-

more and therefore no true inverse H−1 exists. Equation 24 can be solved by calculating

the pseudoinverse of H [44].

HΨ = (HTH)−1HT (26)

Now the linear least squares fit of the diffusion tensor can be calculated by multiplying

both sides of equation 24 with the pseudoinverse of H[44]

HΨHd = Id = HΨY (27)

This estimation was done for each voxel in the acquired diffusion weighted images.

3.4.2.2. Estimating the fiber orientation distribution function

The fiber orientation distribution function was estimated using the constrained spheri-

cal deconvolution method introduced by J.D Tourinier and implemented in the Software

MRTRIX12 [35].

In this model, the orientation of fibers within a voxel is described as a function of the unit

sphere using spherical harmonics [36]. Spherical harmonics (SH), in general indicated

12http://www.brain.org.au/software/mrtrix/
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by Y m
l , define an orthonormal basis over the sphere S. The following parametrization is

used [70]:

s = (x, y, z) = (sinθcosϕ, sinθ, sinϕ, cosθ) (28)

where s is a location on the unit sphere (therefore r = 1), θ is the elevation angle and ϕ is the azimuthal

angle

The basis functions Y m
l are defined as [70][51]:

Y m
l =

√

2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cosθ)exp(imϕ) (29)

where l denotes the order, m = −l..., 0, ... + l is the phase factor and Pm
l are the associated Legendre

polynomials

Figure 12 shows the SH basis function Y m
l for l = 0,1,2 [70].

Figure 12: SH basis function for l = 0,1,2. Modified picture taken from [70].

Since Y m
l are basis functions any spherical function can be expressed as a linear combi-

nation of these basis functions [51]
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f(θ, ϕ) =
∞
∑

l=0

l
∑

m=−l

cml Y
m
l (θ, ϕ) (30)

where f(θ, ϕ) is a user-defined function, cml are coefficients of the SH series and Y m
l (θ, ϕ) are SH basis

functions.

As previously mentioned, the basic idea of this method is to describe the orientation of

fibers present in a voxel as a linear combination of spherical harmonics, the so-called

fiber orientation distribution function. In order to achieve this, it is assumed that all

fibers in the brain have identical diffusion characteristics. This means that the diffusion

profiles measured from two independent fiber populations in the brain are identical in

all aspects. Thus, the dw signal profile measured from one single fiber population can

be represented as an axially symmetric response function R(θ) in spherical coordinates.

The measured signal S(θ, ϕ) from a voxel containing several different fiber populations

can therefore be represented as weighted sum of the rotated response function so that

they are aligned with their respective orientation [36].

S(θ, ϕ) =
∑

i

fiAiR(θ) (31)

where S(θ, ϕ) is the diffusion weighted signal attenuation in spherical coordinates, fi is the volume

fraction of the i-th fiber population within a voxel, Ai is the operator representing a rotation onto the

direction (θi, ϕi) and R(θ) is the axially symmetric response function

Equation 31 can be further expressed as convolution of the fODF with the response

function over the unit sphere (figure 13):

S(θ, ϕ) = F (θ, ϕ)⊗R(θ) (32)
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Figure 13: Principle of constrained spherical deconvolution: image taken from [36].

The voxel contains two fiber populations, represented by the dotted line,

with different orientations (θ1, φ1) and (θ2, φ2) but identical volume fractions

f1 = f2 = 1/2. The continuous line represents the signal attenuation profile

S(θ, ϕ). The sum of the signal attenuation profiles weighted by their volume

fractions results in the measured diffusion weighted signal profile S(θ, φ). This

is equal to the convolution of the axially aligned response function R(θ) with

a fiber orientation distribution function F (θ, ϕ)

From equation 32 it becomes apparent that the fiber orientation distribution can be esti-

mated by performing spherical deconvolution of the response function from the diffusion

weighted signal attenuation profile. Before the spherical deconvolution can be performed,

the signal attenuation profile and the response function must be estimated.

Signal attenuation profile modelling using SH:

The diffusion weighted MRI signal is acquired using different gradient directions ap-

plied over a sphere. The first step in modelling the signal attenuation profiles is the

parametrization of the gradient directions using equation 28. After parametrisation the

signal can be expressed as a linear combination of basis functions Y m
l (θ, ϕ) in spherical

coordinates [40].

S(θ, ϕ) =
L
∑

l=0

m=l
∑

m=−l

cml Y
m
l (θ, φ) (33)

where cml is the harmonic series coefficient, Y m
l (θ, φ) are the SH basis functions and S(θ, ϕ) is the

measured signal attenuation in spherical coordinates

Furthermore, equation 33 can be expressed as a linear system using matrix-vector nota-

tion. This results in the following equation [40]:
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s = Bc+ ǫ (34)

where s is the diffusion weighted signal vector of size ns×1, ns denotes the number of gradient directions,

B is a matrix of size ns × nc containing the spherical harmonic basis functions, c is the harmonic series

coefficient vector of size nc × 1 and epsilon is the noise vector

This equation can be rearranged to determine the spherical harmonic coefficients c of

the signal attenuation. For this linear equation no exact solution exists due to the noise

in the acquired dataset. Therefore, a linear least squares approach was used [40].

ĉ = B−1s (35)

Response function estimation:

The spherical deconvolution method requires an important preprocessing step, the es-

timation of the response function. This process involves several steps. At first the

diffusion tensor was estimated from the raw dw data using a least squares approach. For

each voxel in the white matter mask the fractional anisotropy was calculated. In voxels

with a FA-value higher than 0.7, the diffusion is highly anisotropic and one can further

assume that these voxels contain only single fiber populations. Thus, these voxels serve

as basis for the response function estimation process. In each of these voxels the major

eigenvector was calculated from the diffusion tensor. The direction of the eigenvector

was used to estimate the rotation matrix, which is necessary to align the response func-

tion with the z-axis. This rotation matrix was then applied to the dw encoding scheme.

Now the SH coefficients of each voxel can be calculated applying the spherical harmonic

transformation. Finally, all estimated SH coefficients in voxels with a FA value > 0.7

were averaged resulting in the response function illustrated in figure 14 [34][19].
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Figure 14: Estimated response function using voxel with a FA value > 0.7

Once the SH coefficients from the dw signal attenuation profile are estimated for each

voxel and the response function is determined. The SH coefficients of the fODF can

be obtained for every voxel using spherical deconvolution. In the spherical harmonics

framework equation 32 can be reduced to a simple matrix multiplication.

f = R−1c (36)

where f is the spherical harmonic coefficient vector of F (θ, φ) with size nc×1, c is the spherical harmonic

coefficient vector of S(θ, φ) with size nc × 1 and R is the rotational harmonic matrix of R(θ) with size

nc × nc

The estimated fODF now describes the distribution of fiber orientation present in a voxel.

This serves as basis for the following fiber reconstruction method in section 3.4.3.3.

3.4.3. White matter tractography

White matter tractography is a virtual reconstruction method for representing white

matter tracts as three-dimensional trajectories. The simplest reconstruction methods

are line propagation methods, also known as deterministic streamline fiber tractography.

Within this thesis three of the most known deterministic tractography algorithms were

used.
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3.4.3.1. Fiber Assignment by Continuous Tracking

The first tractography algorithm used in this thesis was the Fiber Assignment by Con-

tinuous Tracking (FACT) technique introduced by S.Mori [65] and implemented in the

Diffusion Toolkit13 (DTK) [61]. This method is based on the diffusion tensor model and

assumes that the main eigenvector of the diffusion tensor coincides with the underlying

fiber direction and is constant within a voxel. The output of this method is a 3D tra-

jectory that best approximates the white matter tract [65].

In this approach fiber tracking is bidirectionally started at a random point within a

seed-voxel. All voxels in the segmented Freesurfer white matter mask with a FA-value

higher than 0.1 served as seed-voxels. From this initialization point the tracking is pro-

ceeded according to the direction of the principle eigenvector of the diffusion tensor until

it reaches the voxel’s boundary. At this point the tracking direction is changed to the

direction of the major eigenvector of the neighbouring diffusion tensor. Equation 37

describes the resulting trajectory [65][42].

x1 = x0 + sv (37)

where x1 is the point where the tract intersects the voxel boundary, x0 is the initial point, s is the

continuously variable step size and v is the principle eigenvector of the diffusion tensor.

This procedure is schematically illustrated in figure 15.

13http://trackvis.org/
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Figure 15: Principle of the fiber assignment by continuous tracking (FACT) approach.

The fiber is reconstructed (green line) in a step-wise process, starting at point

x0 and following the direction of the principle eigenvector of the diffusion

tensor (red line) until the voxel’s boundary is reached. At this point the

tracking direction changes to the direction of the principle eigenvector of the

new voxel. This step is repeated until the end voxel is reached or a termination

criterion is fulfilled.

The fiber trajectory was reconstructed step by step by repeating the whole procedure

again and again. Tracing was stopped if one of these two termination criteria was fulfilled

[19]:

• FA-value < 0.1

• change in direction is higher than 60◦

3.4.3.2. Streamline Propagation using Euler’s method

The second tractography algorithm used in this thesis was the euler’s line propagation

method introduced by T.E.Conturo [15] and implemented in MRTRIX14. This method

is also based on the diffusion tensor model. In this approach fiber tracking is bidirec-

tionally started from an initial point within a seed-voxel. As before all voxels within the

white matter mask with a FA-value higher than 0.1 served as seed-voxels. In contrast

14http://www.brain.org.au/software/mrtrix/
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to the previously described FACT method, the tracts are reconstructed following the

principle eigenvector of the diffusion tensor for a fixed step length, the so-called step

size. Furthermore, the diffusion tensor is not estimated from each voxel in advance. It is

estimated at every considered point via tri-linear interpolation of the 8 nearest neighbour

voxels from the raw diffusion data. Therefore, the direction of the principle eigenvector

can change within a voxel in contrast to the former FACT method where it is constant

over the whole voxel [15]. The new point of the reconstructed trajectory is calculated as

follows:

x1 = x0 + hv (38)

where x1 is the end point of the tract, x0 is the initial point, h is the fixed step size and v is the

principle eigenvector of the diffusion tensor at point x0

In the next step, the end point x1 of the trajectory serves as start point and the process

is repeated. Figure 16 shows a schematic representation of this technique.

Figure 16: Principle of euler’s method. The fiber is stepwise reconstructed by starting

at point x0 and following the direction of the principle eigenvector of the

diffusion tensor (red line) for a fixed step length h, in this case 1/2 voxel

length. At this point x1 the new diffusion tensor is estimated from the tri-

linearly interpolated raw-diffusion signals. Now the trajectory (green line)

follows the major eigenvector of the diffusion tensor at this point. This step

is repeated until the end voxel is reached or a termination criterion is fulfilled.
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A discrete fiber trajectory is obtained by repeating the whole procedure until one of the

following termination criteria was fulfilled [19]:

• FA-value < 0.1

• Radius of curvature between two steps is greater than 2mm

• Voxel outside the white matter mask is reached

3.4.3.3. Streamline Propagation using Newton-Raphson method

The third tractography algorithm used in this thesis was a line propagation method

based on the fiber orientation distribution function. This algorithm was introduced by

JD Tournier [35] and implemented in MRTRIX15.

In this method fiber tracking is bidirectionally started from an initial point within a

seed-voxel. All voxels within the white matter mask with a FA-value higher than 0.1

and an ODF amplitude higher than 0.2 served as seed voxels. From this initial point x0

the trajectory is stepwise reconstructed following the main peak of the fiber orientation

distribution function fODF closest to the current direction, for a defined length h. The

new point x1 of the reconstructed trajectory is calculated as follows [35]:

x1 = x0 + hv (39)

where x1 is the end point of the tract, x0 is the initial point, h is the fixed step size and v is the

direction estimated from the fODF at point x0

The main peak of the fODF closest to the current direction is determined using a Newton-

Raphson optimization algorithm. The Newton-Raphson algorithm is an iterative method

for finding an extremum of a given function f(x). In case of a maximum, the first

derivative of f(x) is zero and the second derivative of f(x) is negative. Therefore, the

iterative process for finding the maximum x of a given function f(x) can be expressed as

follows [35]:

xn+1 = xn −
f ′(xn)

f ′′(xn)
(40)

15http://www.brain.org.au/software/mrtrix/
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where xn+1 is the next point of the iterative process, xn is the current point, f’(x) is the first derivative

of f(x) and f”(x) is the second derivative of f(x)

Typically after five steps (n = 5), convergence is reached and the peak of the fODF

is estimated for the next tracing step. In figure 17 the principle of this algorithm is

schematically illustrated [35].

Figure 17: Principle of fiber tracking method. A fiber is stepwise reconstructed by start-

ing at point x0 and following the direction of the main peak of the fiber orien-

tation distribution for a fixed step length h, in this case 1/2 voxel length. At

this point x1 the new direction is estimated from the fODF by identifying the

nearest peak. Now the trajectory (green line) follows the estimated direction

at this point x1 again for 1/2 voxel reaching point x2. This step is repeated

until the end voxel is reached or a termination criterion is fulfilled.

A discrete fiber trajectory is obtained by repeating the whole procedure until one of the

following termination criteria is fulfilled [19]:

• FA-value < 0.1

• Fiber orientation distribution amplitude < 0.1

• Voxel outside the white matter mask is reached
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3.4.4. Tractography Postprocessing and Parameters

For all three tractography algorithms identical tracking parameters were used. The

step size h was adjusted in percentage of the voxel size to make diffusion datasets with

different spatial resolution comparable. The number of reconstructed fibers was adjusted

from 25 000 up to 650 000 fibers. In table 3 the used parameters are summarized.

Table 3: Overview of tracking parameters used

Number of fibers Step size

[103] [Voxel length]

25, 50, 100 1/10, 1/2, 1

175, 350, 650

Furthermore, the globally reconstructed fiber tracts were post processed using a cut-off

filter. The idea behind this filter is to eliminate spuriously reconstructed fibers. All

reconstructed fibers shorter than 20mm and longer than 400mm were assumed to be

non-anatomical and therefore excluded [19].

3.5. Connectome Stage

In the last step the connectivity matrix C is estimated by combining the registered

cortical and subcortical regions R with the reconstructed fibers. Every row-element

Ci and column-element Cj of the connectivity matrix corresponds to one segmented

region R. Therefore, the resulting connectivity matrix has a size of 83x83 for the lowest

resolution and 1015x1015 for the highest resolution.

In order only fibers which arise as well as terminate in one of these regions can be

assigned to an anatomical connection and an entry in the connectivity matrix. On

this account the two endpoints of each fiber tract are calculated and checked if both

of them lie within one of these regions R. Is this the case the corresponding cell Cij in

the connectivity matrix is increased by one, otherwise the fiber tract is rejected. This

procedure is repeated for all fiber tracts resulting in a weighted connectivity matrix

illustrated in figure 18
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Figure 18: Weighted connectivity matrix

3.6. Connectome Comparison

As briefly mentioned in the background section of this thesis, the resulting structural

connectivity matrix can be seen as a network with edges and nodes. Thus, different

network measures and statistics can be applied to identify similarities and differences in

the organization of neural networks in groups of subjects.

3.6.1. Pearson Correlation

The simplest valid measure for comparing individual connectivity matrices globally is

the Pearson correlation coefficient. If x and y are the elements of two connectivity

matrices of size N by N, the Pearson coefficient can be calculated using equation 41.

Since the connectivity matrix is symmetrical only half of the matrix elements are taken

into account for calculation [46].

R(x, y) =

∑

i=1:N

∑

j=i:N

(xij − x̄)(yij − ȳ)

√

∑

i=1:N

∑

j=i:N

(xij − x̄)2
∑

i=1:N

∑

j=i:N

(yij − ȳ)2
(41)

x̄ =

∑

i=1:N

∑

j=i:N

xij

N(N + 1)/2
and ȳ =

∑

i=1:N

∑

j=i:N

yij

N(N + 1)/2
(42)
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The group of Paulo Rodrigues shows that computing the Pearson correlation coefficient

between the connectome matrices of the same subject is an indicator for the robustness

of the methods used for generating the structural connectome. Thus, equation 41 is also

used for checking the robustness of the methods used [58][46].

3.6.2. Network measures of brain connectivity

Two types of network measures are available, local network measures which describe

features of a single node and global network measures which characterize the topology

of a network at once. In this thesis global graph properties of the weighted connectivity

networks were calculated for all acquisition schemes as well as for all tracking parameters

of each subject using the Matlab brain connectivity toolbox [63]. More precisely, the

network efficiency, characteristic path length, network density and average node degree

were considered. In figure 19 the key measures of network topology are illustrated.

Figure 19: Key measures of network topology. Measures of centrality are based on node

degree (green), measures of functional integration are based on shortest path

lengths (red), measures of functional segregation are based on triangle counts

(blue)

Before calculating the network properties the self-self connections, which means node

i is connected to itself, are removed and the resulting connectivity map is normalized

to make the connectivity maps resulting from different tracking algorithms and fiber

numbers comparable.

3.6.3. Weighted average node degree

The node degree is a basic and important network measure and sometimes termed as

nodal strength [8]. The degree of a node i indicates the number of edges connecting
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to this node i. This is equivalent to the number of neighbouring nodes of node i. The

weighted node degree is given by the sum of all neighbouring edge weights and was

calculated with equation 43.

kw
i =

∑

j∈N

wij (43)

where kwi is the weighted degree of the node i and wij is the weight (probability) of connecting node i

with node j in the network.

The degree of all nodes, also called degree distribution, is an important marker of network

resilience and development. A node with a high degree is interacting structurally or

functionally with many other nodes of the network. The mean of all node degrees is

most commonly used by the neuroscience community as a measure of network density

or total “wiring cost” of the network [63].

3.6.4. Weighted characteristic path length

The characteristic path length is the most commonly used measure of functional inte-

gration. A path represents a route of information flow between pairs of brain regions.

The length of a path characterizes the potential for functional integration between brain

regions. A shorter path represents a stronger potential for functional integration than a

longer path. The shortest weighted path length of a network is the sum of the inverse

edge weights connecting two regions i and j (equation 44). A higher edge weight between

region i and j implies a stronger association and therefore a shorter path [63].

dwij =
∑

auv∈giw↔j

f(wuv) (44)

where f is an inverse map from weight to length and giw ↔ j is the shortest weighted path between i

and j.

The characteristic path length of the brain network is the average shortest path length

between all pairs of nodes and was calculated using equation 45.
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Lw =
1

n

∑

i∈N

∑

j∈N,j 6=i

dwij

n− 1
(45)

where Lw is the weighted characteristic path length, n the number of nodes in the network and dij is

the shortest weighted path length (distance) between nodes i and j as defined in equation 44

The characteristic path length is primarily influenced by long paths. In a disconnected

network the paths between disconnected nodes have an infinite length whereby the char-

acteristic path length also becomes infinite. This means that the characteristic path

length is no longer a meaningful measure of integration for disconnected networks [63].

3.6.5. Weighted global efficiency

The weighted global efficiency is, in addition to the weighted characteristic path length,

a further measure of functional integration. It is calculated by averaging the inverse

shortest path length of a network. Disconnected nodes which have an infinite path

length have a global efficiency of zero. This means that the global efficiency compared

to the characteristic path length yields meaningful results for disconnected networks

[63].

Ew =
1

n

∑

i∈N

∑

j∈N,j 6=i

(dwij)
−1

n− 1
(46)

where Ew is the weighted global efficiency, n is the number of nodes in the network and dwij is the

shortest weighted path length (distance) between nodes i and j as defined as follows

The global efficiency of a network is another indicator for functional integration. The

higher the efficiency between nodes, the more information can be carried between these

two nodes [63].

3.6.6. Network density

The density is the most simplistic measure of network structures and is also called connec-

tivity of a network. The network density provides a first indication of how well-connected

a network is. A network density of 1 means that all potential edges exists and all nodes
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of the network are connected. However, in biological networks only a small fraction of

connections exists (range 10-40%) [43]. The network density is defined as the proportion

of non-zero edges to the number of potential connections in the network(equation 47)

[63].

κ =
E

n(n− 1)
(47)

where κ is the network density, E is the number of non-zero edges in the network and n is the number

of nodes in the network

3.7. Evaluation of the structural connectivity matrix

Till now it still remains unclear which connections in the structural connectivity ma-

trix are really existent in the human brain and which are erroneously generated during

the complex mapping procedure. Therefore, the resulting connectivity matrices were

evaluated by using two types of manually defined structural connectivity matrices. A

so-called “FP-matrix” which contains spurious connections and a so-called “Anatomic

valid matrix” which contains connections from 8 well known white matter bundles. A

connection was defined as artificial if it connects a region from the left temporal lobe

with a region from the right frontal lobe or vice versa (figure 21). The anatomic valid

matrix was generated with the help of a literature research. In the course of this re-

search the cortical and subcortical regions connected by 8 well known fiber bundles were

identified and entered as corresponding edges into the structural connectivity matrix.

Fiber bundles of different neuroanatomical nature were chosen to include connections at

different levels of difficulty.

• Association fibers: Superior Longitudinal Fasciculus (SLF), Uncinate Fasciculus

(UN), Inferior Fronto-occipital Fasciculus (IFOF), Inferior Longitudinal Fasciculus

(ILF), Middle Longitudinal Fasciculus (ML), U-fibers (Ufibers)

• Projection fibers: Fornix (Fornix)

• Commissural fibers: Corpus Callosum (CC)

The resulting anatomic valid matrix is illustrated in figure 20.
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Figure 20: Cortical and subcortical connections of the main white matter pathways in the

right hemisphere (Region 1-41) and the left hemisphere (Region 42-83). Cor-

pus Callosum (CC), Middle Longitudinal Fasciculs (MLF), Inferior Longitu-

dinal Fasiculus (ILF), UFibers, Superior Longitudinal Fasciculus (SLF), Un-

cinate Fasciculus (UF), Inferior Fronto-occipital Fasciculus (IFOF), Fornix.

Figure 21: Structural connectivity matrix of defined false positive connections (red dots).

FP are connections from the frontal lobe in the right hemisphere to the tem-

poral lobe in the left hemisphere and vice versa.
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4. Results and Discussion

In this chapter the results of this thesis are reported and discussed. The first section

shows the results of every step in the processing pipeline. The streamline statistics which

are a first indication of how well the tracts were reconstructed are demonstrated and

discussed in section two. Section three shows the differences in global network measures

resulting from different methods or settings in the processing pipeline. The robustness

and reproducibility of the used methods are discussed in section four. In the last section

the accuracy of the three fiber tracing algorithms are evaluated.

In this chapter several shortcuts will be used. The shortcut “ss1/10”means a step size of

one tenth of the voxel length of the diffusion dataset, “ss1/2”means a step size of half of

the voxel length and “ss1” a step size of one voxel length. Furthermore the term“FACT”

corresponds to the Fiber Assignment by Continuous Tracking method (section 3.4.3.1),

“EUL”denotes Euler’s Streamline Propagation method (section 3.4.3.2) and“CSD”refers

to the Streamline Propagation based on CSD (section 3.4.3.3).

4.1. Pipeline Results

In this section the results of every individual stage of the connectome mapping process

are presented in detail.

4.1.1. Results of the morphological Stream

The first results of the morphological stream are the segmented pia matter and the

white matter. The area between pia matter and white matter was used for parcellation

resulting in 66, 112, 217, 446 and 998 cortical areas and additionally 17 subcortical areas.

Figure 22 shows the results of the morphological stream of subject 2.
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Figure 22: Results of the morphological stream from subject 2. First row shows the acquired T1w MRI. In the second row
the segmentation results form Freesurfer are shown. The red line corresponds to the segmented pia matter and
the blue line represents the boarder between gray and white matter. The last three rows show the segmented
cortical and subcortical areas in the 5 different scales in the sagittal, coronal and axial slice.
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4.1.2. Results of the Diffusion Stream

Figure 23 shows the results of the diffusion stream of subject 2 using different methods.

Figure 23: Results of the diffusion stream. The term“All streamlines”means all stream-

lines generated from the tractographie algorithm and“usable fibers”are fibers

which connect two cortical areas and are longer than 20mm and shorter than

400mm. The red arrows indicate artificial fibers resulting from the used trac-

tography algorithm.
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4.1.3. Results of the Connectome Stream

The connectivity matrices were calculated by combining the results of the diffusion

stream with the results of the morphological stream. This leads to 5 connectivity matri-

ces in different scales. Figure 24 shows the results of the connectome stream for dataset

1 of subject 2.

In figure 25 a part of the Arcuate Fasciculus connecting the superior temporal gyri with

the pars opercularis in the left hemisphere is illustrated in all five resolutions. This

image shows that the registration procedure used to combine the results of the morpho-

logical stream with the results of the diffusion stream works well for all resolutions. All

connections are still preserved in all resolutions.

(a) (b) (c)

(d) (e) (f)

Figure 25: Part of the Acurate Fasciculus connecting the superior temporal gyri

with the pars opercularis in the left hemisphere. Reconstructed Ar-

cuate Fasciculs of subject 2 (a) and connected cortical areas with

83 (b),129 (c),234 (d),463 (e),1015 (f) parcellated regions
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Figure 24: Connectivity matrices in five different scales calculated by combining the registered results of the morphological
stream with the results of the diffusion stream.

55



4.2. Streamline Statistics

The first indication of how well a streamline algorithm worked was the number of valid

fibers. A fiber is valid if it connects two cortical areas and therefore only these fibers

contributed to the calculation of the structural connectivity matrices. The number of

valid fibers, also referred to as usable fibers, was counted for each tractography algorithm

and dataset. The influence of the number of reconstructed fibers was considered by

calculating the mean and standard deviation of the valid fibers for each method. The

results are listed in table 4.

As can be seen in table 4, the standard deviation of the number of fibers is very low,

thus the number of usable fibers is independent from the number of seed points used

for tractography. The number of valid fibers is about 50% for the FACT approach, 75%

for the CSD approach and 77% for the EUL approach and very consistent over different

datasets. The FACT approach generates 25% more spurious fibers compared to the CSD

and EUL approach. In figure 23 some of these spurious fibers are shown (red arrow).

One reason for this high drop in valid fibers is that the FACT algorithm uses no type

of interpolation and therefore noisy voxels have a high influence on the reconstruction

result. Furthermore, the continuously varying step size of this approach has two major

disadvantages. First it can lead to an overshoot in highly curved regions leading to

artificial fibers and second the angle threshold (60◦) can be a limitation factor leading

to fragmentary fibers.

Another interesting observation was that the number of valid fibers increases by 10%

for increasing the spatial resolution from 2x2x3mm to 1.5mm isotropic (dataset 8) for

subject 2 and by 5% for subject 1 using the CSD approach. On the one hand the

decreasing voxel size leads to a lower SNR, noticeable in a drop of valid fibers for the

FACT approach, and on the other hand it leads to a decreased influence of partial volume

effects leading to more valid connections. It seems that the CSD approach is most robust

against noise, whereas the advantage of lower partial volume effects gets compensated

with the disadvantage of the lower SNR for the EUL approach. The influence of the

partial volume effects is illustrated in figure 26.

The influence of the number of gradient directions is negligible for DTI approaches but

highly significant for the CSD approach. Increasing the number of diffusion gradients

leads to a spherical harmonic model of a higher order. On the one hand this makes

it possible to reconstruct crossing fibers within a voxel but on the other hand it is

even more likely to connect regions which are anatomically not linked. Thus, the drop
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in valid connections is likely due to the higher complexity of the model. Thus, these

results cannot be directly compared with the results in the subsequent sections because

for further calculations only the valid fibers are used and spurious connections are not

considered anymore.

Figure 26: Influence of the partial volume effects on the tractography results. In regions

near the white-gray matter boundary or in small white matter tracts partial

volume effects play a critical role in fiber reconstruction. The red arrows

indicate some of these locations.
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Table 4: Summary of streamline statistics. The term“Total”means the number of gener-

ated fibers and“Usable”denotes the number of usable fibers. Since the numbers

of fibers used for tractographie are adjusted (see table 3) the term“Mean usable”

denotes the mean and standard deviation of the different numbers of fibers.

Tractography Subject 1 Subject 2

Total

[×103]

Valid

[×103]

Usable

[%]

Mean Usable

[%]

Total

[×103]

Usable

[×103]

Usable

[%]

Mean Usable

[%]

Dataset 1

FACT 93,4 51,4 55 54, 9 ± 0, 40 96,4 42,9 44,5 44, 3 ± 0, 60

EUL ss1/10 100 77,0 77,0 77, 5 ± 1, 00 100 77,6 77,6 77, 7 ± 0, 14

EUL ss1/2 100 79,1 79,1 79, 1 ± 0, 45 100 80,0 80,0 80, 0 ± 0, 11

EUL ss1 100 80,3 80,3 80, 3 ± 0, 13 100 82,5 82,5 82, 3 ± 0, 08

CSD ss1/10 100 78,2 78,2 78, 3 ± 0, 11 100 74,5 74,5 74, 5 ± 0, 19

CSD ss1/2 100 79,2 79,2 79, 3 ± 0, 10 100 76,1 76,1 76, 1 ± 0, 21

CSD ss1 100 79,3 79,3 79, 2 ± 0, 10 100 76,8 76,8 76, 7 ± 0, 15

Dataset 2

FACT 93,8 50,3 53,7 53, 6 ± 0, 50 98,7 46,7 47,3 47, 0 ± 0, 60

EUL ss1/10 100 77,2 77,2 77, 5 ± 0, 40 100 78,4 78,4 78, 4 ± 0, 21

EUL ss1/2 100 79,4 79,4 79, 4 ± 0, 30 100 79,9 79,9 79, 8 ± 0, 15

EUL ss1 100 81,0 81,0 80, 9 ± 0, 16 100 82,0 82,0 82, 2 ± 0, 10

CSD ss1/10 100 78,2 78,2 78, 2 ± 0, 40 100 73,4 73,4 73, 2 ± 0, 58

CSD ss1/2 100 79,6 79,6 79, 4 ± 0, 20 100 75,2 75,2 75, 2 ± 0, 05

CSD ss1 100 79,9 79,9 79, 9 ± 0, 10 100 75,4 75,4 75, 8 ± 0, 20

Dataset 3

FACT 94,6 51,1 54,1 53, 7 ± 0, 60 99,1 49,3 49,7 49, 4 ± 0, 60

EUL ss1/10 100 76,8 76,8 76, 9 ± 0, 14 100 76,9 76,9 76, 7 ± 0, 13

EUL ss1/2 100 78,8 78,8 78, 8 ± 0, 21 100 79,6 79,6 79, 6 ± 0, 12

EUL ss1 100 80,8 80,8 80, 8 ± 0, 14 100 80,2 80,2 79, 9 ± 0, 14

CSD ss1/10 100 78,1 78,1 78, 3 ± 0, 20 100 73,9 73,9 73, 9 ± 0, 30

CSD ss1/2 100 79,5 79,5 79, 5 ± 0, 14 100 75,3 75,3 75, 0 ± 0, 25

CSD ss1 100 79,6 79,6 79, 6 ± 0, 12 100 75,6 75,6 75, 6 ± 0, 12

Dataset 4

FACT 88,6 50,8 57,3 57, 2 ± 0, 51 97,6 51,7 53,0 52, 6 ± 0, 40

EUL ss1/10 100 76,4 76,4 76, 3 ± 0, 12 100 76,3 76,3 76, 4 ± 0, 18

EUL ss1/2 100 77,2 77,2 77, 2 ± 0, 15 100 76,7 76,7 76, 7 ± 0, 10

EUL ss1 100 77,8 77,8 77, 9 ± 0, 12 100 78,2 78,2 78, 0 ± 0, 12

CSD ss1/10 100 79,9 79,9 79, 9 ± 0, 70 100 74,2 74,2 74, 3 ± 0, 16

CSD ss1/2 100 80,0 80,0 80, 0 ± 0, 11 100 74,6 74,6 74, 4 ± 0, 16

CSD ss1 100 78,6 78,6 78, 4 ± 0, 65 100 74,6 74,6 74, 3 ± 0, 25

Dataset 5

FACT 84,7 46,7 55,1 55, 0 ± 0, 50 95,1 49,8 52,3 52, 2 ± 0, 48

EUL ss1/10 100 75,2 75,2 75, 2 ± 0, 10 100 74,2 74,2 74, 2 ± 0, 18

EUL ss1/2 100 77,2 77,2 77, 0 ± 0, 20 100 74,2 74,2 74, 1 ± 0, 10

EUL ss1 100 78,2 78,2 78, 1 ± 0, 20 100 75,7 75,7 75, 7 ± 0, 26

CSD ss1/10 100 78,0 78,0 77, 9 ± 0, 10 100 72,8 72,8 72, 9 ± 0, 15

CSD ss1/2 100 78,1 78,1 78, 2 ± 0, 16 100 72,6 72,6 72, 6 ± 0, 06

CSD ss1 100 77,1 77,1 77, 0 ± 0, 26 100 73,1 73,1 73, 1 ± 0, 10

Dataset 6

FACT 81,6 45,6 55,9 55, 8 ± 0, 51 93,1 51,9 55,7 55, 7 ± 0, 51

EUL ss1/10 100 77,2 77,2 77, 3 ± 0, 10 100 75,5 75,5 75, 3 ± 0, 22

EUL ss1/2 100 78,3 78,3 78, 4 ± 0, 30 100 75,2 75,2 75, 2 ± 0, 10

EUL ss1 100 78,7 78,7 78, 6 ± 0, 35 100 76,3 76,3 76, 3 ± 0, 14

CSD ss1/10 100 78,2 78,2 78, 3 ± 0, 10 100 72,4 72,4 72, 4 ± 0, 14

CSD ss1/2 100 78,5 78,5 78, 5 ± 0, 20 100 72,3 72,3 72, 0 ± 0, 15

CSD ss1 100 76,9 76,9 76, 9 ± 0, 06 100 71,8 71,8 71, 9 ± 0, 25

Dataset 7

FACT 97,7 54,3 55,6 55, 1 ± 0, 50 99,9 46,9 47,0 46, 9 ± 0, 60

EUL ss1/10 100 75,5 75,5 75, 5 ± 0, 14 100 78,7 78,7 78, 6 ± 0, 10

EUL ss1/2 100 77,2 77,2 77, 2 ± 0, 25 100 80,5 80,5 80, 5 ± 0, 18

EUL ss1 100 80,7 80,7 80, 8 ± 0, 10 100 83,0 83,0 83, 0 ± 0, 17

CSD ss1/10 100 68,5 68,5 68, 4 ± 0, 15 100 67,2 67,2 67, 2 ± 0, 20

CSD ss1/2 100 69,8 69,8 69, 9 ± 0, 20 100 69,3 69,3 69, 2 ± 0, 10

CSD ss1 100 69,7 69,7 69, 7 ± 0, 10 100 69,5 69,5 69, 4 ± 0, 18

Dataset 8

FACT 86,1 44,9 52,3 52, 1 ± 0, 19 87,8 39,7 45,2 44, 8 ± 0, 30

EUL ss1/10 100 73,5 73,5 73, 4 ± 0, 10 100 75,6 75,6 75, 4 ± 0, 12

EUL ss1/2 100 74,7 74,7 74, 8 ± 0, 10 100 77,5 77,5 77, 6 ± 0, 09

EUL ss1 100 78,7 78,7 78, 9 ± 0, 10 100 81,0 81,0 81, 1 ± 0, 05

CSD ss1/10 100 85,1 85,1 85, 1 ± 0, 06 100 89,9 89,9 89, 7 ± 0, 20

CSD ss1/2 100 87,6 87,6 87, 5 ± 0, 10 100 91,0 91,0 91, 7 ± 0, 10

CSD ss1 100 88,2 88,2 88, 1 ± 0, 10 100 91,8 91,8 91, 7 ± 0, 10
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4.3. Network Measures

As previously mentioned, the structural connectivity matrix models the human brain as

a network. It is a direct mathematical way of characterizing its complex architecture.

From this point of view, a wide range of graph-theoretical properties can be used to

study global organizational principles or pathologies of the human brain network. One

fundamental question which is addressed within this section is how sensitive these net-

work measures are to different acquisition schemes and tractographie approaches. More

precisely, the sensitivity of common network measures which are the network density,

average nodal degree, global efficiency and characteristic path length were evaluated us-

ing three different tractography approaches (CSD, EUL and FACT) and eight different

acquisition schemes (table 2). Furthermore, the influence of the number of reconstructed

fibers as well as the influence of the number of network nodes (brain areas) on these five

network measures was analyzed. It is important to note that the network measures were

calculated from the unthresholded weighted structural connectivity matrices and not as

usually by using adjacency matrices. This has three reasons: First the creation of an

adjacency matrix needs a preprocessing step for eliminating artificial fibers. This is gen-

erally done by setting a threshold and eliminating edges with a connection strength lower

than the adjusted threshold. The choice of the “right” threshold varies highly in different

studies from eliminating 10% up to 80% of the edges. Second, a previous study [58] has

shown that the variability in the resulting adjacency matrix is about 20% higher than in

unthresholded weighted connectivity matrices. Third, the weighted connectivity matrix

considers the strength of a connection and therefore it is more sensitive to pathological

changes.

All structural connectivity matrices were normalized before calculating the network mea-

sures to make results from different subjects, datasets and tractography methods better

comparable.

4.3.1. Network Density

The first topological network measure considered was the network density. The network

density is the simplest measure and characterizes the number of inter-regional connec-

tions. The evaluation of the influences on the network density was subdivided into two

parts: The influence of fiber count and the influence of the number of brain regions.

Influence of fiber count
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In the first instance, we analyzed the influence of the number of reconstructed fibers on

the network density. Since the results were very consistent over the two subjects, the

mean network density as a function of the number of reconstructed fibers was plotted in

figure 33.

Figure 27: Network density plotted as a function of the number of reconstructed fibers

averaged over both subjects. Each subfigure represents the calculated network

density of the structural connectivity matrices resulting from one dataset (for

further acquisition details for each dataset see table 2).

The density of all studied networks is low. This means that brain regions are only con-

nected to few other brain regions. In a first step we will consider only the results in the

first diagram. As one can see the network density is very similar for the EUL and CSD

approach but differs significantly for the FACT approach. The FACT approach uses a

continuously varying step size which can lead to an overshoot in highly curved regions.

Furthermore, in regions where two different white matter bundles e.g. Cingulum and

Corpus Callosum are directly adjacent, the high step size can lead the trajectory to go

astray from the first bundle (Cingulum) to the second bundle (Corpus Callosum)(see

figure 28(c)). Dataset 1 was acquired with only twelve diffusion gradient directions.

Thus, only a spherical harmonic model of second order can be used for the CSD ap-

proach. A second order model can, similarly to the diffusion tensor model, only describe

the fiber population within a voxel by one direction. As both algorithms are discrete
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streamline propagation approaches with a fixed step size the resulting fiber tracts are

similar and thus the network density is also similar. These differences in performance of

the tractography are demonstrated by means of the Cingulum in figure 28. As one can

see the Cingulum is reconstructed in fragments using the FACT approach and it is well

and also very similarly reconstructed using the CSD or EUL approach. This confirms

the decrease in network density for FACT compared to the two other approaches.

(a) (b) (c)

Figure 28: Differences in performance of the used tractography algorithm demonstrated

on the reconstructed Cingulum. The Cingulum bundle is well reconstructed

using the EUL-approach (a) and CSD-approch (b) and reconstructed in frag-

ments using the FACT approach (c). The red arrows indicate locations where

an overshoot occurs in reconstruction.

Furthermore, figure 27 shows that the tractography settings have a significant influence

on the network density. An increase in step length from 1/10 to 1/2 leads to an increase

in network density of 4%. This increase in density has two reasons. First the higher

step size fans out the bundles near the white gray matter boundary resulting in more

connections. Second a higher step size can cause the trajectory to go astray. This is

for example the case for reconstructing the Cingulum. The Cingulum lies directly above

the Corpus Callosum. If the step size is too high, an overshoot can occur so that the

trajectory reaches an adjacent voxel of the Corpus Callosum bundle and continuous on

this way. This is illustrated in figure 29. Therefore, care should be taken using a higher

step size, because not all edges are anatomical. For further discussion about anatomical

and false positive connections see the subsequent section 4.5.1.
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(a) (b) (c)

Figure 29: Infuence of the step size demonstrated on the reconstructed Cingulum. The

EUL approach was used for tracing and a step size of 1/10 voxel length in (a),

a step size of 1/2 voxel length in (b) and a step size of voxel length in (c).

The red arrows indicates artificial tract fibers because of an overshoot.

In addition an increase in the network density can be observed for every used tractogra-

phy approach by increasing the number of fibers. The way of a reconstructed trajectory

is mainly influenced by the seed point. Since it is not known where a fiber starts within

a voxel, the seed points are chosen randomly within a voxel. As it is schematically

presented in figure 30 a different seed point location leads to a different trajectory. Fur-

thermore, the figure reveals that if the seed point is chosen too close to the boundary,

the fiber can not be reconstructed. Increasing the number of fibers is related with an

increase in the number of seed points within a voxel. Therefore, more different trajecto-

ries were reconstructed connecting different cortical areas. This explains the increase in

network density.
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Figure 30: Schematic representation of the influence of the seed point location on the

reconstructed fiber tracts. Three different locations lead to three different

fiber tracts.

Figure 31 shows this influence of the seed point on fiber tracts reconstructed in the brain

of subject 1. A fiber count of 25 000 means that one trajectory is reconstructed from

every white matter voxel and thus a fiber count of 100 000 means that 4 trajectories are

reconstructed per voxel. The red arrow indicates a position where the location of the

seed points is crucial for correct streamline reconstruction.
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Figure 31: Influence of the number of fibers used for tractography on the network density.

The more fibers are used the denser is the network. Red arrow indicates a

position where the number of seed points is crucial

Taking a look now at the further diagrams in figure 27, one can observe that the network

density is very similar in networks resulting from the same dw imaging modalities (dia-

gram 1 to digram 3). The change in b-value (dataset 3 to dataset 6) leads to a significant

drop of the network density, but the trends are the same for all methods. On the one

hand an increase of the b-value leads to a higher diffusion weighting and therefore to a

more precise estimation of the diffusion direction but on the other hand the higher dif-

fusion weighting leads to a higher signal attenuation and therefore to a drop in signal to

noise ratio. The signal attenuation for a given b-value is given by exp(−bD). The largest

diffusivity is about 1·10−3mm2/s along a homogeneously aligned fiber bundle [24]. Thus,

the signal attenuation for b = 1000 mm2/s (dataset 3), b = 2000 mm2/s (dataset 4), b

= 3000 mm2/s (dataset 5) and b = 4000 mm2/s (dataset 6) is Sb1000 = exp(−1) = 0.37,

Sb2000 = exp(−2) = 0.14, Sb3000 = exp(−3) = 0.05 and Sb4000 = exp(−4) = 0.02. There-

fore, the diffusion weighting signal for a b-value of 4000 mm2/s is only 2% of the non

diffusion weighting signal. Furthermore, the SNR is 20 times lower in acquired datasets
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using a b-value of 4000mm2/s compared to a b-value of 1000mm2/s. Due to this high

drop in SNR, the noise becomes a limiting factor for fiber tracing, especially for long

fibers. This explains the drop in network density by increasing the b-value.

An increase in the gradient direction from 12 to 64 (dataset 7) allows to describe the

fiber population within a voxel with a spherical harmonic model of eighth order for the

CSD approach. This higher order model can resolve crossing and kissing fibers within a

voxel (figure 32) resulting in a denser network. The increased number of gradient direc-

tions shows no change in the network density for the two tractography models based on

diffusion tensor. This is obvious, because a diffusion tensor always describes the diffusion

within a voxel with a single direction. Thus, an increase in gradient directions only leads

to an increase in SNR.
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Figure 32: Spherical harmonic model of eighth order for 64 gradient directions on the left

side and spherical harmonic model of order two for 12 gradient directions on

the right side. The higher order model allows resolving crossing and kissing

fibers within a voxel. Thus, fibers can go in different directions through a

voxel connecting more cortical areas than the model of second order.

In figure 27 we see that an increase in the spatial resolution (dataset 8) leads to an

increase in the network density for all methods. As already shown in figure 26 in the

previous section, an increase in the spatial resolution is beneficial in regions where partial

volume effects prevent the fiber tracing. Partial volume effects occur if different tissue

types are present within a voxel. This is for example the case in the gray-white matter

boundary or in regions where tracts are very thin. This decrease in voxel size allows

to reconstruct thin tracts much better than for a higher voxel size and it leads to an

increase in cortical connections and therefore to a denser connectome. However, it comes
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with lower SNR and longer acquisition times.

Influence of the number of regions

In a second step, the influences of the number of regions on the network density were

analyzed. Here again, all results were very consistent over both subjects, and therefore

the averaged network density as a function of the number of nodes is illustrated in

figure 33. Since the previously explained performance differences of the tractography

algorithms remain the same for different scales, only the impacts of the nodal scale are

discussed.

Figure 33: Network density plotted as a function of network nodes averaged over both

subjects. Each subfigure represents the calculated network density of the

structural connectivity matrices resulting from one dataset (for further ac-

quisition details for each dataset see table 2).

The network density in general decreases with increasing number of nodes resulting

in sparse matrices at the highest scale. This shows that white matter bundles in the

human brain only connect a few regions. Furthermore, the white matter bundles are

very compact and terminate only in a small cortical area. Therefore, an increase in the

number of nodes leads to many unconnected regions. This is illustrated in figure 34 using

as example a part of the Corpus Callosum. This part connects the precentral gyrus of the

left hemisphere with the precentral gyrus of the right hemisphere. As can be seen in this

figure, this fiber bundle connects only two region at all scales. Thus, many disconnected
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nodes exist resulting in a sparse structural connectivity network and in a drop of the

network density. The network density is only 3 to 4% and therefore reduces the statistical

power of a group-wise study. However, this example in figure 34 demonstrates one

beneficial effect of using a higher nodal scale. Due to the smaller cortical area it is more

sensitive to pathological changes and allows a more precise localisation.

Figure 34: Influence of number of nodes on the network density demonstrated with a

part of the Corpus Callosum (b). This part of the Corpus Callosum connects

the precentral gyrus of the left hemisphere with the precentral gyrus of the

right hemisphere (c). In every resolution the part of the Corpus Callosum is

only connected by a single region of the precentral gyrus.

It is important to note that the network density has a high influence on all subsequent

network measures. Therefore, results from different tractography algorithms as well as

from different datasets can not be compared directly, but under consideration of the

network density.

4.3.2. Nodal Degree

The second network measure considered is the average nodal degree. The nodal degree

is strongly associated with the network density and describes the number of connected

neighbouring nodes averaged over all nodes. The evaluation of the influences on the

average nodal degree was subdivided into two parts: The influence of fiber count and

the influence of the number of brain regions.
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Influence of fiber count

In a first step, the impact of the fiber count on the nodal degree of the structural

connectome was investigated. The average nodal degree as a function of the fiber count

averaged over both subjects is illustrated for all methods and datasets used in figure 35.

Since the trends are the same for different connectome scales, the average nodal degree

is only illustrated here for scale 83.

Figure 35: Average nodal degree of the structural network plotted as a function of the

number of reconstructed fibers averaged over both subjects. Each subfigure

represents the calculated average nodal degree of one dataset (for further

acquisition details for each dataset see table 2). Note the different scales on

the y-axis

Considerations in the first diagram (dataset 1) show that the average nodal degree is

similar in networks generated with the EUL or CSD approach and lower in networks

generated with the FACT approach. A higher nodal degree indicates a higher commu-

nication between network nodes. Therefore, a higher average nodal degree is always

accompanied with a denser connectome. As already described in detail in the previous

section, the density in structural networks generated with the EUL or CSD approach

is significantly higher than in networks generated with the FACT approach and conse-

quently the nodal degree is also higher. The same can be observed in networks generated

with a higher step size and fiber count.
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Networks generated from datasets acquired with similar imaging modalities (dataset 2

and 3) show similar results. The average nodal degree decreases by 3% in networks gen-

erated from higher b-value. As explained previously, the noise is a limitation factor for

tractography and long fiber tracts were not longer reconstructed leading to a lower num-

ber of connections between brain regions. Furthermore, the nodal degree in networks

generated from the high resolution dw MRI (dataset 8) is significant higher. Again,

this is due to lower partial volume effects, which allows the reconstruction of small fiber

tracts leading to new connections which are absent in other datasets.

Influence of the number of regions

Additionally the impact of the number of regions on the nodal degree of a network is

analyzed. Here again, the nodal degree was averaged over both subjects. The results

for every dataset and method as a function of the number of nodes are illustrated in

figure 36.

Figure 36: Average nodal degree of the network plotted as a function of network nodes

averaged over both subjects. Each subfigure represents the calculated av-

eraged nodal degree of one dataset (for further acquisition details for each

dataset see table 2).

As can be seen in figure 36, the trends of the average nodal degree are similar over

all datasets. Since the differences in the average nodal degree resulting from different
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tractography methods and datasets were already discussed above, only the differences

of different scales are considered now.

An increase of the number of nodes means that one parcel of the lowest resolution is

subdivided into a few parcels leading to a higher scale. Since the original connection

between the two parcels still remains, a subdivision always leads to an equal or higher

number of connections. For example a tract which branches out near the gray-white

matter boundary terminates in the whole parcel. Therefore, a subdivision of this parcel

is accompanied by an increase in the nodal degree or number of edges. This is illustrated

for a part of the Inferior Front-occipital Fasciculus in figure 37. One may now expect

that the average nodal degree for all generated structural connectivity networks should

increase. This is the case until a scale of 234 nodes. At higher scales the average nodal

degree decreases. This can be observed for all different combinations in figure 36. The

drop in the nodal degree is caused by a combination of two effects, first by averaging

over all nodes in the network and second by the sparsity of the network. As previously

demonstrated, the network density is about 3% for the highest scale, which means that

970 000 edges had a nodal degree of zero. Due to the averaging process these zero

edges overshadow the increase of the nodal degree. This highlights additionally that the

number of nodes has a great influence on the network indices.
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Figure 37: Influence of number of nodes on the nodal degree. Illustrated on a part of

the Inferior Fronto-occipital Fasciculus

4.3.3. Characteristic Path Length

The next network measure investigated was the characteristic path length. The path

length describes the shortest way to reach a node in the network and is therefore strongly

associated with the network density. The characteristic path length is the mean of the

shortest path length of a network. The evaluation of the influences on the characteristic

path length was subdivided into two parts: The influence of fiber count and the influence

of the number of brain regions.

Influence of fiber count

At first, the impact of the fiber count on the characteristic path length of the structural

connectivity network was investigated. Here again, the averaged char. path length

over both subjects is illustrated as a function of the fiber count in figure 38. Since the
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results are similar over different connectome scales the characteristic path length is only

illustrated for scale 83.

Figure 38: Characteristic path length of the network plotted as a function of the number

of reconstructed fibers of subject 2. Each subfigure represents the calculated

char. path length of one dataset (for further acquisition details for each

dataset see table 2). Note the different scales on the y-axis

The characteristic path length serves as indicator for a connected network. Only if every

node in the network has at least one connection to another node, the characteristic

path length is a meaningful measure, otherwise it is infinite. Since the 83 cortical and

subcortical regions at the lowest scale are from anatomical origin with a known function,

a connected structural network should exist. Considerations about figure 38 show that

for most approaches a connected network only exists if at least 100.000 fibers were used

for fiber tracing. This again is due to the low number of seed points and the used seeding

strategy. Our observations show that in most cases the entorhinal cortex in the left or

right hemisphere is not connected. This is a small cortical area located in the medial

temporal lobe. One known connection to this area is the Cingulum. Since it is a small

white matter bundle, partial volume effects play a major role in the reconstruction,

leading to an early termination for low resolution datasets as illustrated in figure 39.

Furthermore, it is conspicuous that the structural networks generated with the FACT-

approach are only connected networks if a high-resolution dwMRI (dataset 8) or 650.000
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fibers are used (figure 40). In dataset 5 and 6 no tracing-algorithm was able to create a

connected structural network due to the low SNR.

Figure 39: Cingulum reconstructed using EUL-approach and dataset 6 in figure (a),

dataset 7 in figure (b) and dataset 8 in figure (c)

Influence of the number of regions

In a second step, the influences of the number of regions on the char. path length of the

structural network were analyzed. Here again, all results were very consistent over both

subjects, and therefore the averaged char. path length as a function of the number of

nodes is illustrated in figure 33.
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Figure 40: Characteristic path length of the network plotted as a function of network

nodes of averaged over two subjects. Fiber count used for reconstruction was

650.000. Each subfigure represents the calculated char. path length of one

dataset (for further acquisition details for each dataset see table 2). Note the

different scales on the y-axis

Structural networks generated with FACT show in general a higher char. path length

than networks generated with EUL and CSD. Furthermore, the char. path lengths of

EUL and CSD are very consistent. The char. path length is mainly influenced from

“long” connections, which can in this case be interpreted as weak connections consisting

of only a few tracts. If a few of these weak connections exist, the char. path increases

dramatically. Therefore, it seems that structural connectivity matrices created with

FACT algorithm have more weak connections than the networks generated with the

other two approaches. Furthermore, in figure 40 it is recognizable that the char. path

length is much lower using a high-resolution dw MRI (dataset 8). This means that net-

works generated with this dataset provide more balanced edges than networks generated

from other datasets. As before, the char. path length for dataset 5 and 6 is infinity,

because of the low SNR not all long fiber tracts were reconstructed correctly.

As shown above, an increase in the number of network nodes leads to an increase in the

nodal degree. Therefore, connections between two nodes were split up leading to a lower

connection strength or weight. On the basis of this increase of weak connections in the

structural network, the char. path length increases with a higher nodal scale.
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Figure 40 indicates that structural networks generated with high-resolution dwMRI

(dataset 8) are connected networks until a scale of 463 nodes, whereas structural net-

works generated with conventional dwMRI (dataset 1-7) are only connected networks

until a scale of 234. The only exceptions are networks generated with the multi-direction

fiber tracking approach (CSD). Here again, this is due to the fact that crossing and

kissing fibers can be reconstructed leading to a denser and well-connected structural

connectome.

4.3.4. Global Efficiency

The last network measure considered was the global network efficiency. The global

efficiency is the inverse char. path length averaged in the structural network. Here, the

evaluation of the influences on the global efficiency of a structural connectivity network

was subdivided into two parts: The influence of fiber count and the influence of the

number of brain regions.

Influence of fiber count

At first, the impact of the fiber count on the global efficiency of a structural connectivity

network was investigated. Once again, the results were very consistent over both subjects

and the averaged global efficiency as a function of the number of fibers is shown in

figure 41.
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Figure 41: Global efficiency of the network plotted as a function of the number of re-

constructed fibers averaged over both subjects. Each subfigure represents the

calculated global efficiency of one dataset (for further acquisition details for

each dataset see table 2). Note the different scales on the y-axis

The global efficiency of a structural network is mainly influenced by short paths. Short

paths are, in this context, strong connections between a pair of nodes. When taking a

look at diagram 1 in figure 41, it can be seen that structural networks generated with the

FACT approach are most efficient. This has two reasons. Firstly, the network density

in FACT networks is much lower compared to the CSD and EUL networks leading to

stronger connections or higher weights. Secondly, as has already been observed for the

char. path length, the networks for CSD and EUL are more balanced regarding the edge-

weight. This means that these networks have many moderate edge weights, and only few

strong and weak edges. The networks generated with EUL and CSD approach have a

similar efficiency. The drop in the global efficiency for networks generated with a higher

step-size is a result of the increased network density. As noted above, a higher network

density means more edges and therefore a lower weight between edges. Increasing the

number of fibers does not have a substantial impact on the global efficiency. This is

obvious because the strongest and densest connections were already reconstructed with

a low number of seed fibers.

If we take a look now at the results using similar dwMRI datasets (diagram 2,3), similar

trends can be observed. Thus, the global efficiency is a very robust network measure. A
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decrease in the global efficiency can be observed for using higher b-value dwMRI (dia-

gram 4-6). Noticeable is the drop in efficiency if a dataset with more diffusion gradient

directions (dataset 7) is used in combination with a CSD approach for generating the

structural connectome. This multi-direction fiber model creates a much denser con-

nectome with about twice as much edges compared to networks generated with other

approaches. By using the same number of fibers, the edges in this network are much

weaker, which explains the drop.

As seen before for the path length, the efficiency of the structural networks generated

from high-resolution dwMRI is slightly lower than for networks generated from conven-

tional dwMRI. This indicates a more balanced connectome regarding the edge-weight,

with many moderate connections and only a few weak and strong connections.

Influence of the number of regions

In a second step, the influences of the number of regions on the global efficiency of

the structural network were analyzed. All results were again very consistent over both

subjects, and therefore the averaged global efficiency as a function of the number of

nodes is illustrated in figure 33.

Figure 42: Global efficiency of the network plotted as a function of network nodes aver-

aged over both subjects. Each subfigure represents the calculated global net-

work efficiency of one dataset (for further acquisition details for each dataset

see table 2).
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As can be seen in figure 42, the trends of the average nodal degree are similar over all

datasets. Since the differences in the global efficiency of structural networks resulting

from different tractography methods and datasets were already explained above, only

the differences over different scales are considered.

An increase in the number of nodes is accompanied by an increase in the number of

edges within a network. Holding the strength of network constant, which is in this

context the number of fibers, and increasing the number of nodes simultaneously the

strength between the edges decreases. The result is an increase in the global efficiency

of a network. This explains the drop in network efficiency which can be observed in

figure 42. This curve progression shows as well that the number of nodes has a major

impact on network measures. This should be considered when comparing network indices

from different studies.

4.4. Robustness

Since the aim of structural connectivity is to study similarities and differences in groups

of subjects it is essential that the methods used for estimating the structural connectivity

matrices are robust and that the results are reproducible. Otherwise, the variability in

the structural connectivity matrices occurring from inexact mapping methods or acqui-

sition schemes can highly influence the accuracy of studies or even alter results in group

comparisons. Therefore, the intra-subject as well as the inter-subject variability of the

raw connectivity matrices was evaluated for each tractography method.

4.4.1. Intra-subject variability

The intra-subject variability describes the variability of the structural connectivity in

the same subject. It was tested in a two step-procedure.

4.4.1.1. Same scans processed twice

In the first step, the eight acquired datasets were processed twice for both subjects

in order to evaluate the robustness of the complex processing pipeline. As the same

dataset is used, one may expect that the same structural connectivity matrices would

result. In order to check this, the Pearson correlation coefficient between each entry
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of the two resulting raw connectivity matrices was calculated. The resulting correlation

coefficients of subject 1 as a function of the number of nodes and tractography algorithm

are illustrated in figure 43.

Figure 43: Intra-subject variability processing the same dataset of subject 1 twice as a

function of the number of nodes and tractography algorithm. Each sub-

figure shows the results for one acquired dataset (see table 2 for further

explanations).

Figure 44 shows the resulting correlation coefficients as a function of the number of nodes

and tractogrpahy algorithm of subject 2. This offers the same trends for the correlation

coefficient as for subject 1.
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Figure 44: Intra-subject variability processing the same dataset of subject 2 twice plotted

as a function of the number of nodes and tractography algorithm. Each

subfigure shows the results for one acquired dataset (see table 2 for further

explanations).

The resulting connectivity matrices from reprocessing the same datasets are highly cor-

related, but not exactly the same. This is due to the fact that the seed points for

tractography are placed randomly within a voxel. As previously shown in figure 30, this

has an influence on the reconstructed fibers and also on the generated structural connec-

tome. The correlation coefficient decreases linearly with increasing number of regions

and ranges between 0.993 for the lowest scale (83 regions) and 0.945 for the highest

scale (1015 regions) with corresponding p-values < 0.01. This is obvious, because at

the highest scale the parcels have a surface of 1.5cm2 and therefore the influence of the

randomly placed seed points is much higher compared to lower scales. The FACT algo-

rithm shows the highest stability for all datasets. A drop in the correlation coefficient

occurs if the gradient directions are increased from 12 to 64 using the CSD approach

for fiber tracing. This is due to the randomly placed seed points, which have a much

higher influence on crossing fibers, because they can go two or more ways rather than

one within a voxel. As may be expected, increasing the number of gradient directions

has no influence on the repeatability for the two DTI approaches. Furthermore, a small

drop in the correlation coefficient can be observed for higher step sizes. This is due to the

fact that the reconstructed fibers fan out near the white-gray matter boundary leading

81



to a higher variability. Dataset 8 with the highest spatial resolution shows the highest

correlation coefficient but in general all used methods are very stable for all datasets,

with a minimal correlation coefficient r of 0.947.

4.4.1.2. Same subject scanned twice

Since the processing pipeline is very stable regarding reproducibility, the influence of

the acquisition method was analyzed in a second step. Therefore, the same subject was

scanned twice with exactly the same imaging parameters. Additionally, a third MRI was

acquired with different imaging parameters (see table 2 for further details), which may

be an issue if researchers pool together differently acquired diffusion datasets. The three

acquired datasets for each subject were processed independently resulting in 3 connec-

tivity matrices. As before, the Pearson correlation coefficient between the connectivity

matrices for every possible combination (dataset 1 and dataset 2, dataset 2 and dataset

3, dataset 1 and dataset 3) was calculated resulting in 3 diagrams for each subject.

Influence of fiber count

Since the trends remain the same for different scales, the influence of fiber count on the

repeatability is only shown for scale 83 in figure 45 for both subjects.

Figure 45: Pearson correlation coefficient plotted as a function of number of fibers and

different tractography algorithms. First row shows results from subject 1 and

second row from subject 2.
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The number of fibers has no considerable impacts on the reproducibility. One should take

care when comparing these results with the results of section 4.2, because for calculating

the Pearson correlation only valid fibers can be used. In this context the FACT-algorithm

is the most stable approach for different imaging parameters. This means that the

connections which are reconstructed using the FACT approach are very robust. In

contrast, the CSD-approach seems to be less robust, because the spherical harmonic

coefficients are directly estimated from the raw-diffusion signal and therefore noise has

the most influence.

An increase in the step-length leads to a higher correlation coefficient and therefore to a

higher reproducibility for both fixed step size approaches. A longer step size means that

the trajectory reaches the termination point faster and thus the chance to go astray is

lower compared to a smaller step size.

Influence of the number of regions

Figure 46 shows the calculated Pearson correlation coefficient as a function of the number

of brain nodes for both subjects.

Figure 46: Pearson correlation coefficient plotted as a function of number of nodes for

different tractography algorithms. First row shows results from subject 1 and

second row from subject 2.

The results in figure 46 also show a high correlation for every pair of resulting connectivity

matrices. The correlation-coefficient ranges from 0.87 for the lowest scale to 0.68 for
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the highest scale with a p-value < 0.01. Comparing these results with the results of the

previous section (figure 43 and 44) a high drop in the correlation coefficient can be found.

This is due to the disturbances of the MR acquisition, noise, susceptibility artefacts and

head motion of the patient. These factors have a great impact on the streamline results

leading to different tracts through the brain. It is obvious that the variability increases

with increasing number of brain regions because at the highest scale (1015 regions) small

deviations of the streamline trajectories lead to different connections of brain regions.

Here again the FACT approach is the most robust and the CSD approach is the least

robust method but generally all methods are very robust over all scales.

4.4.2. Inter-subject variability

The inter-subject variability describes the variability of the structural connectivity over

different subjects. It is already known from several post mortem studies that brain size,

locations of the cortical regions and cortex folding structure is not equal over subjects.

For a group-wise comparison it is a very important condition that the variability between

the structural connectomes is lower than the sensitivity of a pathological disease in order

to get meaningful results. Therefore, inter-subject variability was analyzed by calculating

the Pearson correlation coefficient between the raw connectivity matrices of the two

subjects. This was done for every acquired dataset in all scales as well as for different

numbers of reconstructed fibers to establish which shows the lowest variability.

Influence of fiber count

Figure 47 shows the inter-subject variability for each dataset as a function of the number

of reconstructed fibers. Since trends remain the same over different scales the results are

only shown for scale 83.

84



Figure 47: Correlation coefficient plotted as a function of the number of reconstructed

fibers for 83 brain regions. Each subfigure shows the resulting inter-subject

variability for every acquired dataset (see table 2 for further explanations)

The number of reconstructed fibers did not considerably influence the correlation coef-

ficient. The correlation coefficient is similar using datasets with the same spatial reso-

lution, same b-value and same number of diffusion gradients. This is illustrated in the

first three diagrams of figure 47. An increase in the b-value (dataset 3 to dataset 6)

implicates a lower SNR. As a consequence noise affects the reconstructed fibers and the

correlation coefficient decreases.

An increase in the number of diffusion gradients from 12 (dataset 1,2,3) to 64 (dataset

7) results on the one hand in a drop of 5% in the correlation coefficient for the two DTI

approaches and on the other hand in a rise of 5% in the correlation coefficient for the

CSD approach. This increase is obvious because a spherical harmonic model of order

eight was taken, which reconstructs kissing and crossing fibers very well and therefore

reduces the inter-subject variability.

A significant increase in the correlation coefficient can be observed in the high resolution

dwMRI (dataset 8) for the CSD and EUL approach. A higher resolution implicates

lower partial volume effects and therefore small tracts can be reconstructed pretty well

in both subjects leading to a lower inter-subject variability.

Influence of the number of regions
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Figure 48 shows the inter-subject variability for each dataset as a function of the number

of reconstructed fibers.

Figure 48: Correlation coefficient plotted as a function of the number of brain regions.

Each subfigure shows the resulting inter-subject variability for every acquired

dataset (see table 2 for further explanations)

In figure 48 it is shown that the correlation-coefficient decreases with increasing number

of nodes, from 0.65 for the lowest scale down to 0.08 for the highest scale. As previously

described, the connectivity matrices generated from high resolution dwMRI (dataset 8)

show the highest correlation. When comparing these correlation coefficients with the

previously calculated intra-subject correlation coefficients a high drop of 30-50% can be

observed. This high drop can be explained by biological fluctuation of the brain. No

brain equals another and the variability between subject 1 and 2 with regard to the brain

size, shape and volume as well as the variability of the cortex folding structure is shown

in figure 49. These fluctuations often lead to the case that the same white matter tract

originates or terminates in one of the neighbouring nodes of these subjects. This leads to

different structural connectivity matrices and therefore to a decrease in the correlation

coefficient. A lower intra-subject than inter-subject variability is an important condi-

tion for group-wise studies, otherwise the instability of the used methods can pretend

significant differences in the structural connectivity of these groups but of course a low

variability is preferable.
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The EUL-method shows similar results compared to the CSD-method. The FACT ap-

proach shows the lowest inter-subject correlation and therefore the highest inter-subject

variability. This can be explained by a much lower network density, as previously shown.

As a consequence a lower number of samples (edges) can be included in the correlation

calculation. Furthermore, a lower network density implicates a higher edge strength.

Thus, a variability of an edge with higher strength has a higher influence on the corre-

lation coefficient.

Furthermore, the resulting correlation coefficients show that group-wise studies are only

meaningful with 83 and 129 brain regions. For a higher number of nodes the high inter-

subject variability can become a limiting factor and may influence the statistical results.

In addition, noise in the acquired data can overshadow differences in group studies at

higher scales. However, the use of higher number of nodes increases the sensitivity and

therefore allows to study the branching of one single bundle (figure 25). The use of a high

number of nodes makes sense if one is interested in studying the structural connectivity

in a single subject. In addition, it may be meaningful for multi-scale group studies. This

means making a group-wise comparison between patient and controls in the lowest scale

(83 regions). If an affected subnetwork can be found, a higher resolution can be taken

to localize the pathology more precisely.
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(a) (b)

(c) (d) (e) (f)

Figure 49: Biological fluctuations in brain size, shape and cortex folding structure be-

tween subject 1 (a) and subject 2 (b). Variation of the parcellated inferior

parietal cortex of subject 1 and subject 2 for 83 (c) (d) and 129 brain regions

(e) (f)

4.5. Anatomic Validation

In the previous section it was shown that the choice of tractography algorithm and dif-

fusion weighted dataset has a major influence on network measures. On this account

the choice of the “right”method becomes even more important for all kinds of structural

connectivity studies. But what approach is the best in an anatomical reasonable way?

In order to establish this we proposed a method to evaluate parts of the structural con-

nectivity matrix. This method makes it possible to compare the information differences

contained in the structural connectivity matrices using different approaches. The results

are shown in this subsection.

88



4.5.1. Valid anatomic connections

In a first step, the quality of the reconstructed fiber bundles was evaluated for each

tractography approach and dataset. In figure 50 the eight reconstructed white matter

bundles which were taken for the evaluation process are shown.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 50: Reconstructed white matter bundles from dataset 8 of subject 1 using the

CSD approach. Reconstructed Corpus Callosum (a), Superior Longitudinal

Fasciculus (b), Unicate Fasciculus (c), U-fiber (d), Fornix (e), Inferior Lon-

gitudinal Fasciculus (f),Inferior-fronto Occipital Fasciculis (g), Middle Longi-

tudinal Fasciculus (h)

Each generated structural connectivity matrix was compared with the manually defined

valid structural connectome matrix. The result is a new structural connectivity matrix

containing only connections of those eight fiber bundles. This anatomic valid structural

connectivity matrix is illustrated in figure 51 for three different approaches.
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(a) (b) (c)

Figure 51: Valid connections in the structural connectome generated with the FACT

approach (a), EUL approach (b) and CSD approach (c)

Afterwards the number of found connections in each valid structural connectivity matrix

was counted. The results for subject 1 are illustrated in figure 52 and the results for

subject 2 in figure 53.

Figure 52: Number of valid anatomical connections in the structural connectivity ma-

trices of subject 1 as a function of the fiber count and tractography method.

Each subfigure represents the results of one dataset (for further acquisition

details for each dataset see table 2). Note the different scales on the x-axis
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Figure 53: Number of valid anatomical connections in the structural connectivity ma-

trices of subject 2 as a function of the fiber count and tractography method.

Each subfigure represents the results of one dataset (for further acquisition

details for each dataset see table 2). Note the different scales on the x-axis

Considerations in the first diagram (dataset 1) of both subjects show that about 30%

more valid connections were reconstructed with the EUL and CSD approach than with

the FACT approach. This is consistent with the findings in the network density. The

differences in performance of the used tractography methods are clearly illustrated in

figure 51. The U-fibers, which are the simplest and shortest fiber bundles, as well as

the Corpus Callosum, which is also a very simple and dense fiber tract, were pretty well

mapped with all three approaches. The first significant differences were found in the

three highly curve-shaped bundles Fornix, Superior Longitudinal Fasciculus and Uni-

cate Fasciculus. The Fornix was successfully reconstructed with the EUL and CSD

approach leading to 8 edges in the structural network, whereas only two edges are found

in the network generated with the FACT approach. Furthermore, the SLF reconstructed

with the CSD approach connects 14 pairs of cortical areas, the SLF reconstructed with

the EUL approach connects 12 pairs of cortical areas and the SLF reconstructed with

the FACT approach connects only 2 pairs of cortical areas. For the UF 14 edges were

found in the structural networks reconstructed with the EUL or CSD-approach and only

8 edges were found using the FACT approach. The results of these three bundles show

the weaknesses of the FACT approach. As this tractography algorithm uses a continu-
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ously varying step size firstly an overshoot occurs in these highly curved regions leading

to an inaccurate fiber trajectory and secondary the angle threshold condition is violated

leading to an early termination.

The last three bundles which are the Inferior-fronto Occipital Fasciculus, the Middle

Longitudinal Fasciculus and the Inferior Longitudinal Fasciculus are very long and com-

plex bundles. On their path through the brain, they cross and kiss many other bundles

and therefore they represent a great challenge for tractography approaches. The results

in figure 51 shows that the CSD approach maps these bundles most precisely resulting

in the most edges followed by the EUL approach and the FACT approach.

If a higher step size is used for tractography, the number of valid anatomic connections

increases slightly. This again is due to the fact that the higher step size fans out the

fibers near the gray-white matter boundary leading to more cortical connections. The

biological fluctuations of the two subjects are also evident in the results. In subject 2

10% more fibers were found on average than in subject 1. However, the trends of valid

connections are very consistent over both subjects.

Similar to the network measures the number of valid anatomic connections is very con-

sistent over the first 3 datasets. A drop in valid connections of 15% can be observed

looking from dataset 3 to dataset 6. Once again, this drop occurs due to the decreasing

SNR in the acquired dataset. According to this low SNR only short tracts were recon-

structed well. These short tracts make up more than 90% of the existing edges in the

structural network mapped with dataset 6.

As shown in digram 7 in figure 53 the number of valid connections increases significantly

by 25% using a complex tractography method in combination with 64 diffusion gradient

directions. In contrast to the other DTI models, this model reconstructs kissing and

crossing fibers and contains information in the structural connectivity which is absent in

the structural connectivity networks mapped with the DTI approaches. On the basis of

these findings the CSD-approach seems to be a powerful tool for studying the structural

connectivity in human brains. These findings are in accordance with the findings in

network density.

Furthermore, the number of anatomic connections increases by about 15% for all trac-

tography approaches using a higher spatial dwMRI (dataset 8). Again, a higher spatial
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resolution means a lower influence of partial volume effects and therefore a denser connec-

tome. These high-resolution dw datasets can be powerful if one is interested in studying

the structural connectivity of small or thin bundles in the human brain. However, it

is important to note that the scanning time increases dramatically for these datasets,

which can be a limiting factor in group-wise studies.

4.5.2. False positive connections

Each generated structural connectivity matrix was compared with the manually defined

false positive matrix resulting in a new structural connectivity matrix containing only

false positive connections. The number of these false positive connections was counted

and the results for subject 1 are illustrated in figure 54 and the results for subject 2 in

figure 55.

Figure 54: Number of false positive connections in the structural connectivity matrices

of subject 1 as a function of the fiber count and tractography method. Each

subfigure represents the results of one dataset (for further acquisition details

for each dataset see table 2). Note the different scales on the y-axis.
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Figure 55: Number of false positive connections in the structural connectivity matrices

of subject 2 as a function of the fiber count and tractography method. Each

subfigure represents the results of one dataset (for further acquisition details

for each dataset see table 2). Note the different scales on the y-axis

The first interesting observation in this analysis was that the number of false positive

connections is much lower in structural connectivity matrices resulting from the FACT

approach than in the structural networks resulting from the other two approaches. This

demonstrates the strength of the FACT approach. Furthermore, an increase in the

spatial resolution is accompanied by an increase in false positive connections for all

methods. This has two reasons. The first reason is that the impact of diffusion noise

is higher according to the lower voxel size. The second reason is that the fiber tracts

cross much more voxels during the reconstruction process. Therefore, the chance to go

astray is much higher. In all structural connectivity networks mapped with a higher

step size an increase in false positive edges can be observed. It is important to note that

an increase in step size leads to a higher branching of the white matter bundles, which

on the one hand leads to a denser network but on the other hand increases the chance

for an overshoot resulting in artificial edges. This is demonstrated in figure 56 using the

example of the Unicate Fasciculus.
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Figure 56: Infuences of the step size demonstrated on the Unicate Fasciculus. Left row

illustrates the Unicate Fasciculus reconstructed with the CSD approach using

a step size of 1/10 voxel length. The right row shows the Unicate Fasciculus

reconstructed with the CSD approach using a step size of one voxel length.

Red arrow indicates an artificially generated fiber occurring from an overshoot

because of the high step size.

In addition, structural connectivity networks created from dataset 7 using a multi-

direction approach (CSD) contains much more false positive edges than structural net-

works created from single-direction approaches (DTI). In multi-direction models the

trajectories can go two or more ways within a voxel. The trajectory is determined by

using the closest direction to the current direction, which can result in the choice of a

wrong branch which is illustrated in figure 57.

95



(a) (b)

(c) (d)

Figure 57: Artificially generated fibers from the CSD approach using a spherical har-

monic model of order eight (dataset 7)

This evaluation of information contained in the structural connectivity network shows

once again that no “best mapping method” exists. On the one hand using higher com-

plex models in combination with a high number of diffusion gradient directions allows

the reconstruction of complex fiber bundles, which are absent in simple DTI approaches.

But on the other hand the number of false positive connections increases dramatically

due to the complexity of the model. Therefore, a strategy of estimating and eliminat-

ing such false positive connections is necessary if one uses this type of combination for

group-wise studies. Otherwise, these wrong connections can pretend differences in these

groups which do not exist in the human brain. The same can be noticed for structural

connectivity networks mapped from high-resolution diffusion weighted datasets.
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Furthermore, the analysis shows that the FACT approach estimates the least number of

false positive connections, which is preferable for structural connectivity studies. How-

ever, this should be interpreted with care, because many connections, especially long

complex connections, are absent in these structural connectivity matrices. Therefore,

pathologies which may be exist in these complex bundles may not be recognized.
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5. Conclusion

The aim of this thesis was to investigate the impacts of network indices derived from

the human structural brain network and four research questions should be answered.

(1) How do different DWI acquisition schemes influence the structural connectivity and

network measures? (2) How does the number of nodes influence the results of structural

connectivity? (3) Has the fiber tracing algorithm and the number of reconstructed fibers

an impact on the structural connectivity and on network measures? (4) Which combi-

nations of the used methods are most robust and reproducible? For these investigations

structural connectivity maps were generated from dwMRI datasets acquired from two

healthy subjects. The network indices were calculated from the weighted structural con-

nectivity matrices.

In a first step, the influence of different tractography approaches and their settings was

analyzed. It was shown that the choice of the tractography method in combination

with different step size settings has a great influence on the structural connectivity net-

work and the corresponding network measures. The major impact was determined on

the network density. It is already known from previous studies that the network density

strongly affects network indices and these effects were confirmed in this thesis. Structural

connectivity networks generated with the FACT algorithm show the lowest density and

average nodal degree but the highest efficiency. The networks generated using the mul-

tiple fiber direction model (CSD-approach) show the highest density and nodal degree

but the lowest efficiency. The network indices derived from the structural connectivity

matrices that were generated using the EUL-approach are between them. In general, an

increase in step size led to a denser but less efficient structural network.

In a second step, the impacts of different diffusion MRI acquisition schemes on the

structural connectivity networks were investigated. An increase in spatial resolution

from 2x2x3mm3 to 1.5mm isotropic resulted in a denser (5%) but less efficient structural
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connectome. Increasing gradient directions from 12 to 64 showed no variation in network

measures for the two DTI approaches but a severe change for the ODF approach. The

density increased by 20% for the structural connectomes. Furthermore, the networks

generated with DTI approaches were more efficient than networks generated with the

ODF approach.

In order to analyse the information content in the structural connectivity networks re-

sulting from different combinations of tractography algorithms and dwMRI a “valid”

structural connectivity matrix was introduced. This “valid” matrix contains anatomical

edges of 8 well known white matter bundles. The analyses showed that the struc-

tural networks derived from the two single-direction tractography approaches (EUL and

FACT) generally contain less valid connections than the multi-direction tractography

approach. However, the CSD-approach generated more false positive connections than

the two other approaches. An increase in spatial resolution of the dw MRI led to a more

precise reconstruction of white matter bundles especially of thin bundles. As a result

the structural connectome was denser with an increase of 15% in valid connections.

Furthermore, the impact of fiber count used for tractography was investigated. Our

investigations revealed an increase of 4% in network density and nodal degree when

increasing the fiber count from 25 000 to 650 000 whereas the global efficiency remained

constant. In order to obtain an anatomical structural network, which means that every

brain region is at least connected with one other brain region, at least 100 000 fibers

were necessary.

To study similarities and differences in the structural connectivity of the human brain

it is essential that the methods are robust and the results are reproducible. Therefore,

the intra-subject as well as the inter-subject variability of the raw connectivity matri-

ces was evaluated for each used method. In general all methods used are robust and

the results were reproducible. The lowest inter-subject and intra-subject variability was

found between structural connectivity matrices generated from high-resolution diffusion

weighted datasets. The two DTI based approaches show a lower intra-subject variability

than the complex ODF based approach but a higher inter-subject variability, because

crossing and kissing fibers cannot be traced.

In a last step, the influence of the number of nodes on the structural connectivity net-

works was investigated. Increasing the nodes resulted in a sparser structural connectome

with a density of 4% at highest parcellation scale (1015 nodes). Thus, the number of
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nodes has the greatest influence on the structural connectivity network of all investi-

gated methods. Furthermore, the intra-subject as well as the inter-subject variability

increased with the number of nodes. The higher number of nodes allows to study the

branching of a white matter bundle in the human brain but due to the significantly

higher variability it is not well suited for group-wise studies. However, in combination

with lower resolution it may be powerful for assessing pathologies in cortical areas or

white matter bundles.

In summary, this thesis demonstrated that structural connectivity networks of the human

brain are highly sensitive to different acquisition and parcellation schemes as well as

tractographic algorithms. Therefore, care should be taken when comparing network

indices between studies. A comparison must always be done with reference to the nodal

scale and density of the networks. Furthermore, the findings of this thesis indicate that

at present neither a “best mapping approach” nor a “superior dwMRI scheme” exists.

Each combination of dwMRI, tractography algorithm and parcellation scheme has to be

carefully and individually chosen according to the type of the connectivity study. If the

main interest is in studying long complex bundles, the CSD approach in combination

with a high number of gradient directions is preferable. The high resolution dwMRI is

more suitable for studying thin bundles in the structural network of the human brain. In

group-wise studies the high-resolution dwMRI in combination with the CSD approach

will deliver the best results, but the scan time increases dramatically from 5 min to 30

min, rendering clinical usage virtually impossible. For studying neurological diseases

the FACT approach in combination with conventional DTI acquisition is recommended

because of its high reproducibility. The investigations showed that the higher nodal scale

makes sense in a multi-scale approach for assessing the location of the pathology step

by step by increasing the number of nodes.
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Appendices

A. White matter pathways and the corresponding

cortical areas in Freesurfer

Table 5: Three primary fiber bundles of the superior longitudinal fasciculs and the con-
nected cortical areas. The number in the bracket characterize the cortical-region
in the left hemisphere of the Desikan-Killiany atlas

Fiber tract Cortical Area1 Cortical Area2

Posterior indirect fiber
tract

Posterior middle temporal
gyrus(71)

Angular gyrus (60)

Superior temporal
gyrus(73)

Angular gyrus(60)

Anterior indirect fiber
tract

Inferior parietal
cortex(60)

inferior frontal
gyrus(43,46,47)

Inferior parietal
cortex(60)

Ventral precentral
gyrus(51)

Supplementary Long
direct fiber tract

Inferior temporal
gyrus(70)

Ventral prcentral
gyrus(51)

Inferior temporal
gyrus(70)

Caudal middle gyrus(50)

Inferior temporal
gyrus(70)

Pars triangularis(46)

Middle temporal
gyrus(71)

Ventral prcentral
gyrus(51)

Middle temporal
gyrus(71)

Caudal middle gyrus(50)

Middle temporal
gyrus(71)

Pars triangularis(46)

Primary Long direct fiber
tract

Middle temporal
gyrus(71)

Ventral prcentral
gyrus(51)

Middle temporal
gyrus(71)

Pars opercularis(47)

Superior temporal
gyrus(73)

Ventral prcentral
gyrus(51)

Superior temporal
gyrus(73)

Pars opercularis(47)
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Table 6: The connected cortical areas of the Uncinate Fasciculus. The first number in the
bracket characterize the cortical-region in the right hemisphere and the second
number the cortical-region in the left hemisphere of the Desikan-Killiany atlas

Cortical Area1 Cortical Area2

Temporal Pole(28,69)
Medial orbitofrontal cortex(4,45)

Latteral orbitoforntal cortex(1,42)

Anterior portion of the superior
temporal gyri (32,73)

Medial orbitofrontal cortex(4,45)

Latteral orbitoforntal cortex(1,42)

Anterior portion of the middle
temporal gyri (30,71)

Medial orbitofrontal cortex(4,45)

Latteral orbitoforntal cortex(1,42)
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Table 7: The connected cortical areas of the Inferior fronto-occipital fasciculs. The first
number in the bracket characterize the cortical-region in the right hemisphere
and the second number the cortical-region in the left hemisphere of the Desikan-
Killiany atlas

Component Cortical Area1 Cortical Area2

superficial and dorsal
subcomponent

Pars Triangularis(5,46)

Superior parietal
lobule(18,59)

occipital extrastriate
cortex (21,23,24,62,64,65)

Superior temporal gyrus
(32,73)

Fusa (25,66)

Pars Opercularis(6,47)

Superior parietal
lobule(18,59)

occipital extrastriate
cortex (21,23,24,62,64,65)

Superior temporal gyrus
(32,73)

Fusa (25,66)

Posterior Component
Middle frontal
gyrus(7,9,48,50)

Superior parietal
lobule(18,59)

occipital extrastriate
cortex (21,23,24,62,64,65)

Fusa (25,66)

Dorsolateral-prefrontal
cortex(6,7)

Superior parietal
lobule(18,59)

occipital extrastriate
cortex (21,23,24,62,64,65)

Fusa (25,66)

Middle Component Superior parietal
lobule(18,59)

middle frontal
gyrus(7,9,48,50)

lateral orbitofrontal
cortex(1,42)

Anterior Component Basal orbito-frontal
cortex(4,45)

Fusa (25,66)

occipital extrastriate
cortex (21,23,24,62,64,65)
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Table 8: The connected cortical areas of the Inferior Longitudinal Fasciculus. The first
number in the bracket characterize the cortical-region in the right hemisphere
and the second number the cortical-region in the left hemisphere of the Desikan-
Killiany atlas

Component Cortical Area1 Cortical Area2

dorsal component

Lateral occipital
cortex(23,64)

Temporal pole(28,69)

Medial cuneal
cortex(21,62)

Temporal pole(28,69)

ventral component

Posterior fusiform
area(25,66)

Temporal pole(28,69)

parahippocampal
gyrus(26,67)

Temporal pole(28,69)

Li-Am component
Mesial posterior lingual

cortex(24,65)
Amygdala(41,82)
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Table 9: The cortical areas connected by the short association fasciculus. The first num-
ber in the bracket characterize the cortical-region in the right hemisphere and
the second number the cortical-region in the left hemisphere of the Desikan-
Killiany atlas

Cortical Area1 Cortical Area2

superior parietal gyrus(18,59)

Postcentraler gyrus(16,57)
Angular gyrus(19,60)
Pre-cuneus(20,61)

Superior occipital gyrus(23,64)
Middle occipital gyrus(23,64)
Supramarginal gyrus(17,58)

Cingulate gyrus(15,56)
Pre-cuneus(20,61)

Superior frontal gyrus(8,49)

Superior frontal gyrus(8,49)
Precentral gyrus(10,51)

Inferior frontal gyrus(2,5,6,43,46,47)
Middle frontal gyrus(7,9,48,50)

Middle frontal gyrus(7,9,48,50)
Inferior frontal gyrus(2,5,6,43,46,47)

Precentral gyrus(10,51)

Inferior frontal gyrus(2,5,6,43,46,47) Precentral gyrus(10,51)

Precentraler gyrus(10,51) Postcentraler gyrus(16,57)

Postcentraler gyrus(16,57) Supramarginal gyrus(17,58)

Angular gyrus(19,60)
Middle occipital gyrus(23,64)
Supramarginal gyrus(17,58)

Cuneus(21,62)
Lingual gyrus(24,65)

Superior occipital gyrus(23,64)
Middle occipital gyrus(23,64)

Fusiform gyrus(25,66)
Inferior occipital gyrus(22,63)
Middle occipital gyrus(23,64)

Superior occipital gyrus(23,64) Middle occipital gyrus(23,64)

Inferior occipital gyrus(22,63) Middle occipital gyrus(23,64)

Superior temporal gyrus(32,73)
Middle temporal gyrus(30,71)
Supramarginal gyrus(17,58)

Inferior temporal gyrus(29,70) Middle temporal gyrus(30,71)

Lateral fronto-orbital gyrus(1,42) Middle fronto-orbital gyrus(4,45)
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Table 10: The cortical areas connected by the Fornix. The first number in the bracket
characterize the cortical-region in the right hemisphere and the second number
the cortical-region in the left hemisphere of the Desikan-Killiany atlas

Cortical Area 1 Cortical Area 2

Hippocampus(40,81)

Mammillary body (35,76)

Hypothalamus (not labeled)

Anterior thalamic nucleus (35,76)

Entorhinaler cortex(27,68)

Mammillary body (35,76)

Hypothalamus (not labeled)

Anterior thalamic nucleus (35,76)

Table 11: The cortical areas connected by the Middle Longitudinal Fasciculus (MLF).
The first number in the bracket characterize the cortical-region in the right
hemisphere and the second number the cortical-region in the left hemisphere
of the Desikan-Killiany atlas

Cortical Area 1 Cortical Area 2

Temporal pole (28,69) Angular Gyrus (19,69)
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Table 12: Cortical areas of the left and right hemisphere connected by the corpus cal-
losum. The number in the bracket characterize the cortical-region in the
Desikan-Killiany atlas

Cortical Area left hemisphere Cortical Area right hemisphere

superior parietal gyrus(59) superior parietal gyrus(18)

cingulate gyrus(53-56) cingulate gyrus(12-15)

superior frontal gyrus(49) superior frontal gyrus(8)

medial frontal gyrus(48,50) medial frontal gyrus(7,9)

precentral gyrus(51) precentral gyrus(10)

postcentral gyrus(57) postcentral gyrus(16)

pre-cuneus(61) pre-cuneus(20)

cuneus(62) cuneus(21)

lingual gyrus(65) lingual gyrus(24)

superior occipital gyrus(62) superior occipital gyrus(21)

medial occipital gyrus(64) medial occipital gyrus(23)
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