
Aggregated Parallel Coordinates

Multi-Dimensional Information Visualisation
in Race Car Engineering

Majda Osmić





Aggregated Parallel Coordinates

Multi-Dimensional Information Visualisation
in Race Car Engineering

Master’s Thesis

at

Graz University of Technology

submitted by

Majda Osmić

Institute for Information Systems and Computer Media (IICM),
Graz University of Technology

A-8010 Graz, Austria

21 May 2015

© Copyright 2015 by Majda Osmić

Advisor: Ao.Univ.-Prof. Dr. Keith Andrews





Aggregierte Parallelkoordinaten

Multidimensionale Informationsvisualisierung im Motorsport

Diplomarbeit

an der

Technischen Universität Graz

vorgelegt von

Majda Osmić

Institut für Informationssysteme und Computer Medien (IICM),
Technische Universität Graz

A-8010 Graz

21. Mai 2015

© Copyright 2015, Majda Osmić

Diese Arbeit ist in englischer Sprache verfasst.

Begutachter: Ao.Univ.-Prof. Dr. Keith Andrews





Abstract

In race car engineering, specialised simulation software is used to derive a car setup and a driving
strategy for optimal performance during a race. Such software simulations generate complex, high-
dimensional datasets with a large number of records. To explore such datasets, a corresponding visuali-
sation tool is required.

This thesis is the result of cooperation between the AVL’s Racing department and Graz University
of Technology. The main goal was to build a visualisation tool optimised for exploration of datasets
produced by the AVL’s race car simulation software. Since the complexity of these datasets emerges both
from high-dimensionality, as well as the hierarchical structure of the dimensions, several techniques for
visualising multi-dimensional and hierarchical data were explored. While some existing techniques are
appropriate for visualising particular subsets of the produced data, none of them provide an appropriate
mechanism for visualising the hierarchy of dataset dimensions.

“Aggregated Parallel Coordinates” is an extension of the standard parallel coordinates technique,
which. aside from an effective way to visualise high-dimensional data, supports visualisation and ex-
ploration of hierarchies within the dataset dimensions. As part of this thesis, an aggregated parallel
coordinates visualisation was implemented as a WPF user control library, which can be added to any
WPF application. It provides a comprehensive set of interactions, consisting both of features found in
many parallel coordinates implementations, and some unique features especially designed to enhance the
process of visual exploration of race car simulation data. The software is already being used as a part of
AVL’s race car simulation data visualisation tool called SimBook.





Kurzfassung

Spezialisierte Simulationsprogramme werden im Motorsport verwendet, um die Fahrzeugeinstellung und
Rennstrategie zu ermitteln, die während des Rennens am effizientesten sind. Derartige Softwaresimula-
tionen generieren große, komplexe Datenmengen. Zur Verarbeitung dieser Datensätze ist eine entspre-
chende Visualisierung erforderlich.

Diese Diplomarbeit ist in Zusammenarbeit zwischen AVL Racing und der Technischen Universität
Graz entstanden. Hauptziel war es, ein Visualisierungsprogramm zu entwickeln, welches für die Un-
tersuchung, der aus Simulationen erhaltenen Datensätze, optimiert ist. Da sich die Komplexität solcher
Datensätze aus der hohen Zahl an Dimensionen sowie der hierarchischen Struktur ebendieser ergibt,
wurden verschiedene Techniken zur Visualisierung von mehrdimensionalen und hierarchischen Daten
untersucht. Obwohl einige der bereits vorhandenen Methoden zur Abbildung bestimmter Bereiche der
erhaltenen Daten geeignet sind, bietet keine eine passende Darstellung von den Hierarchien der Dimen-
sionen dieser Datensätze.

Die “aggregierten Parallelkoordinaten” sind eine Erweiterung der Standard-Parallelkoordinaten, wel-
che, neben einer effektiven Möglichkeit zur Visualisierung von hochdimensionalen Daten, auch die Dar-
stellung und Untersuchung von Hierarchien innerhalb der Datendimensionen erlaubt. Als Teil dieser Ar-
beit wurde die entsprechende Visualisierung in Form einer WPF Programmbibliothek entwickelt. Diese
bietet eine umfangreiche Palette an Methoden aus bereits bestehenden Parallelkoordinaten Implemen-
tierungen, sowie einzigartiger Funktionen, die speziell entwickelt wurden, um den Prozess der visuellen
Untersuchung von Simulationsdaten aus dem Motorsport zu optimieren. Die Software, die im Rahmen
dieser Diplomarbeit entstanden ist, kommt bereits als Teil einer Visualisierungssoftware namens Sim-
Book bei AVL zum Einsatz.





Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly marked all material which has been quoted either literally
or by content from the used sources.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angege-
benen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnom-
menen Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift





Contents

Contents ii

List of Figures iv

List of Tables v

List of Listings vii

Acknowledgements ix

1 Introduction 1

2 Race Car Simulation 3
2.1 Race Car Vehicle Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Complexity of the Simulation Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Information Visualisation 9
3.1 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Visualising Hierarchical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Node-Link (Explicit) Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Space-Filling (Implicit) Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Visualising Multi-Dimensional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Scatter Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Table Lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Chernoff Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.4 Star Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.5 Small Multiples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Parallel Coordinates 33
4.1 Common Interactive Features and Extensions . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Handling Large Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Data Exploration and Analysis with Parallel Coordinates . . . . . . . . . . . . . . . . . 41
4.4 Variations of Parallel Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Three-Dimensional Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.3 Parallel Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

i



4.5 Software Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.1 GGobi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.2 XDAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.3 OECD Statistics eXplorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.4 ParallAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.5 Parallel Coordinates in WPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Aggregated Parallel Coordinates 57
5.1 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Dimension Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Application of APC in SimBook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Performance Optimisation 73
6.1 Initial Implementation and Performance Problems . . . . . . . . . . . . . . . . . . . . . 74
6.2 Optimisation Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1 Replacing Heavy-Weight Shape By Light-Weight Geometry . . . . . . . . . . . 76
6.2.2 Reducing The Number of Render Calls . . . . . . . . . . . . . . . . . . . . . . 76
6.2.3 Layers and Bitmap Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Selected Details of the Implementation 87
7.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Aggregated Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3 Sliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 Outlook 97

9 Concluding Remarks 99

A User Guide 101
A.1 Loading the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.2 Using and Customising the Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.3 Exporting the Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.4 Changing the Application Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B Developer Guide 111
B.1 Using Aggregated Parallel Coordinates as a Library . . . . . . . . . . . . . . . . . . . . 111

B.1.1 Loading the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.1.2 Customising The Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.1.2.1 Creating and Using a Record Context Menu . . . . . . . . . . . . . . 113
B.1.2.2 Visualising and Applying Hamiltonian Permutations . . . . . . . . . . 115

B.1.3 Exporting the Plot to an SVG File . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.2 Extending Aggregated Parallel Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 116

B.2.1 Testbed Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.2.2 AggregatedParallelCoordinates Project . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 123

ii



List of Figures

2.1 Camber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Toe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Minard’s Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Walker Tree Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 File System Navigator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Cone Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Hyperbolic Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Market Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Info Sky Cobweb Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 Information Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9 Scatter Plots Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 Dimension Embedding in a Scatter Plot . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11 Table Lens Focal Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.12 Table Lens Implementation in the OECD eXplorer . . . . . . . . . . . . . . . . . . . . 25
3.13 Mapping Data to Chernoff Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.14 Observing Changes in Dataset Records With Chernoff Faces . . . . . . . . . . . . . . . 26
3.15 Star Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.16 Comparison Between Star Plots and Bar Charts . . . . . . . . . . . . . . . . . . . . . . 29
3.17 Scatter Plot Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Parallel Coordinates Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Filtering Records in Parallel Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Finding All Axis Adjacencies in Parallel Coordinates . . . . . . . . . . . . . . . . . . . 36
4.4 Parallel Coordinates with Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Parallel Coordinates with Different Opacities . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Hierarchical Parallel Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7 Edge Bundling in Parallel Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.8 Parallel Coordinates with Semi-Transparent Bands . . . . . . . . . . . . . . . . . . . . 40
4.9 Exploration of Financial Data with Parallel Coordinates - Part 1 . . . . . . . . . . . . . 42
4.10 Exploration of Financial Data with Parallel Coordinates - Part 2 . . . . . . . . . . . . . 43
4.11 Exploration of Financial Data with Parallel Coordinates - Part 3 . . . . . . . . . . . . . 43
4.12 Exploration of Financial Data with Parallel Coordinates - Part 4 . . . . . . . . . . . . . 44
4.13 Exploration of Financial Data with Parallel Coordinates - Part 5 . . . . . . . . . . . . . 44

iii



4.14 Exploration of Financial Data with Parallel Coordinates - Part 6 . . . . . . . . . . . . . 45
4.15 Three-Dimensional Parallel Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.16 Curves in Parallel Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.17 Parallel Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.18 Parallel Coordinates in GGobi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.19 Parallel Coordinates in XDAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.20 Parallel Coordinates in OECD Regional eXplorer . . . . . . . . . . . . . . . . . . . . . 52
4.21 Parallel Coordinates in ParallAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.22 ParallAX Axis Orderings Dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.23 Parallel Coordinates in WPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Agregated Parallel Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Axis Sliders With Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Local Axis Range Selection in the APC . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 Record Selection in the APC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Axis Context Menu in the APC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.6 Axis Drag and Drop Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.7 Aggregated Dimension Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.8 Different Types of Axes in the APC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.9 Axis Highlighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.10 Unfolding the Agregated Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.11 Folding Back to an Aggregated Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.12 Typical Race Car Simulation Dataset Visualised With APC . . . . . . . . . . . . . . . . 67
5.13 SimBook Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.14 Comparison Between the Setup Table and Parallel Coordinates View in SimBook . . . . 70
5.15 Corner Analyser Detail View with the APC in SimBook . . . . . . . . . . . . . . . . . . 71
5.16 The Connected Parallel Coordinate Views in SimBook . . . . . . . . . . . . . . . . . . 71

6.1 Rendering Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 CLR Heap Graph of the Initial Implementation . . . . . . . . . . . . . . . . . . . . . . 84
6.3 CLR Heap Graph of Optimised Implementation . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Parameter Data Structure Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2 The Class Hierarchy of the Logical Axis Implementation . . . . . . . . . . . . . . . . . 90
7.3 The Class Hierarchy of the Visual Axis Elements . . . . . . . . . . . . . . . . . . . . . 91
7.4 Filtering a Single Record on Several Axes . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1 Demo Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.2 Parsing Failed Error Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.3 Generate Random Dataset Dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.4 Generate Random Dataset Error Message . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.5 Dimension Overview Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.6 Plot Settings Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.7 Panel Docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.1 Testbed Project Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.2 AggregatedParallelCoordinates Project Overview . . . . . . . . . . . . . . . . . . . . . 119

iv



List of Tables

2.1 Different Portions of a Typical Race Car Simulation Dataset . . . . . . . . . . . . . . . 8

A.1 Overview of User Interactions Supported by the APC Plot . . . . . . . . . . . . . . . . 105

B.1 Dependency Properties Exposed by the UserControl . . . . . . . . . . . . . . . . . . . . 114

v



vi



List of Listings

6.1 XAML Code of the Initial APC Implementation . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Style Definition of AxisPointConnection Objects in the Initial APC Implementation . . . . . 76
6.3 Renedering of AxisPointConnection in the Optimised APC Implementation . . . . . . . . . 77
6.4 Initial Implementation of AppearDefault Method . . . . . . . . . . . . . . . . . . . . . . . 78
6.5 Color Property Defined in RecordProperty . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.6 Optimised Implementation of AppearDefault Method . . . . . . . . . . . . . . . . . . . . 79
6.7 Handling the Changes in Visual Represantion in AxisPointConnection . . . . . . . . . . . . 79
6.8 Selective Record Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.9 Layerd Canvas in the Optimised APC Implementation . . . . . . . . . . . . . . . . . . . 82
6.10 Bitmap Caching of Canvas Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1 Record Filtering When an Upper Slider Moves Down . . . . . . . . . . . . . . . . . . . 93
7.2 The Implementation of Hide Method in RecordProperty . . . . . . . . . . . . . . . . . . . 93
7.3 Record Filtering When an Upper Slider Moves Up . . . . . . . . . . . . . . . . . . . . 94
7.4 The Implementation of Show Method in RecordProperty . . . . . . . . . . . . . . . . . . . 95
B.1 Declaration of the DoDragDrop Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.2 Passing the Parameter Payload With DoDragDrop Method . . . . . . . . . . . . . . . . . . 113
B.3 Reference to the AggregatedParallelCoordinatesPlot User Control in the APC Testbed . . . . 113
B.4 Static Definitinon of Default Visual Properties . . . . . . . . . . . . . . . . . . . . . . . 115
B.5 Event Handler Implemementation for a Selected Record Context Menu Item . . . . . . . 115

vii



viii



Acknowledgements

First and foremost, I would like to thank my parents and my sister for all their help and support over the
years of my studies.

I would like to thank Gerhard Schagerl for providing me an opportunity to work and write my thesis
at the AVL Racing. I especially wish to thank Catrin Schlager, whose advice and help during the time
I spent working and writing this thesis have been invaluable to me. Furthermore, I would like to thank
Jörg Schlager for his advice on performance optimisation of my software. For providing me with good
literature on vehicle dynamics I have to thank Guillermo Pezzetto. I also have to mention my colleague,
Thomas Gerstorfer, who has reviewed my chapter on race car simulation.

For all the help during the implementation of the practical part of my thesis, for providing me with a
LaTeX skeleton for this thesis, as well as for the endless hours spent correcting the draft versions of this
work, I would like to thank my advisor, Keith Andrews.

Special mention goes to my friends, Ilija Šimić and Aniko Toth, who have taken the time to review
individual chapters of this work.

Majda Osmić
Graz, Austria, May 2015

ix



x



Chapter 1

Introduction

“The beginning is the most important part of the work.”

[Plato]

One of the main objectives in race car engineering is finding a vehicle configuration which can
achieve optimal performance during a race. Since a large variety of factors influence the behaviour
of a car on a race track, software simulations are used extensively to support this highly complex task.
Chapter 2 provides a short overview of some of the car components which can be fine-tuned to correspond
to the demands of the driver and the race track. Based on this overview, the complexity of the datasets
produced by race car simulation software is explained.

Making sense of the data can be very difficult without an appropriate visualisation. In information
visualisation, the capacity of the human visual perception system to notice changes in size, colour, and
shape is utilised to convey abstract information. Finding a suitable visual representation depends highly
on the type of data being visualised. Furthermore, interaction with the data plays an important role in
the process of visual exploration. Chapter 3 provides an overview of interaction techniques commonly
used in many information visualisation systems. Since the datasets produced by race car simulations are
high-dimensional, and a certain hierarchical structure is present within the dimensions of these datasets,
some of the techniques commonly used to visualise both of these data types are described.

Parallel coordinates are a multi-dimensional data visualisation technique. Each dimension in the
dataset is represented by an axis, but, rather than placing the axes orthogonally, like in scatter plots, the
axes are ordered in parallel to each other. Using this approach, an arbitrary number of dimensions can be
visualised. The values of individual data points are mapped to a corresponding position on each axis. The
data points which belong to the same record in the dataset are connected by polylines, which span across
the axes. This visualisation technique is discussed in detail in Chapter 4. Special attention is given to
the interactive features commonly implemented in parallel coordinates visualisations. When visualising
datasets with a large number of records, the display tends to become cluttered by overlapping polylines.
An overview of techniques for handling this problem is provided. This chapter also gives an example of
an exploratory data analysis with parallel coordinates. Furthermore, several extensions of the standard
parallel coordinates techniques are described, and an overview of four software applications containing
parallel coordinates visualisation is given.

When supported by a set of appropriate interactive features, parallel coordinates provide an effective
way to visualise and explore high-dimensional datasets. However, standard parallel coordinates cannot
deal with hierarchical structure within the dimensions of the dataset. “Aggregated parallel coordinates”
is an extension of the standard parallel coordinates technique, which is capable of visualising hierarchies
within the dataset dimensions. Chapter 5 describes the implemented parallel coordinates visualisation,
with a focus on “dimension aggregation”, the feature which enables navigation through the hierarchical

1



2 1. Introduction

structure of the dataset dimensions. An overview of how aggregated parallel coordinates are used in
SimBook, AVL’s tool for visual exploration of race car simulation data, is also provided.

The software was implemented in WPF, using Microsoft .NET framework version 4.0, and C] as the
programming language. Since race car simulation datasets tend to contain a large number of records, the
performance and responsiveness of the visualisation was of high importance. Chapter 6 explains how
the initial implementation in WPF was done and what performance problems were met. The causes of
these problems are described in detail, and the steps taken in order to solve them are explained. Other
important details of the implementation are discussed in Chapter 7.

Chapter 8 gives an overview of some of the features which were not implemented due to the time
limitations. Furthermore, several ideas for new interactive features which could enhance the process of
visual data exploration with aggregated parallel coordinates are also presented.

Since aggregated parallel coordinates are implemented as a WPF user control library, a simple
demonstration tool was also built as part of this thesis, in order to provide a way to demonstrate the
capabilities of the visualisation. A user guide for this demo application is given in Appendix A. The
developer guide in Appendix B explains how the user control library can be included into, and be used as
a part of, other WPF applications. Additionally, a short overview of the code structure is also provided
for those who wish to extend the current implementation.



Chapter 2

Race Car Simulation

“I was doing fine until about mid-corner when I ran out of talent.”

[Unknown author]

Car racing is a challenging and competitive sport, requiring high physical and mental capabilities of
the driver, and relying heavily on the design and setup of the vehicle. Based on the type of the vehicle
and the track, car racing can be divided into many different categories, such as formula racing (Formula
1, GP2, etc.), touring car racing (WTCC, DTM, etc.), stock car racing (NASCAR racing series), rallying,
off-road racing, and others. Independent of the category, the goal is to complete the pre-defined track in
the fastest possible time.

Racing vehicles are designed and manufactured according to the rules and guidelines of the specific
racing category. Fédération Internationale de l’Automobile [2015] (FIA), the governing body for motor
sport worldwide, defines strict technical regulations regarding the dimensions of the vehicle, its weight,
materials used in construction, fuel system, power unit, braking system, wheels, tyres, electronic and
software systems, safety mechanisms, etc. Although all vehicles in the specific racing category have the
same basic components and characteristics, the performance of the vehicle on the track varies based on
the adjustments and fine-tuning of the individual car components.

“The overall technical objective in racing is the achievement of a vehicle configuration,
acceptable within the practical interpretation of the rules, which can traverse a given course
in a minimum time (or at the highest average speed) when operated manually by a driver
utilising techniques within his/her capabilities.” [W. F. Milliken and D. L. Milliken, 1995,
page 3]

Before every racing event, race car engineers adapt the setup of the car to the track, to the expected
weather conditions, and to the driver’s driving style [Khan, 2007] . Deriving a racing strategy and a
car setup to achieve optimal performance for a given race track is not a simple task. Teams are allowed
to spend only a very limited amount of time on the track before the main racing event, during which
both the car’s and driver’s performance can be tested. In modern race car engineering, special software
solutions which simulate the behaviour of the racing car on the circuit are used before the race to test
how tuning different vehicle components affects the overall lap time. This allows teams to focus more on
the driver’s performance during the testing sessions.

In order to achieve a better understanding of the input and output parameters of a typical race car
simulation, Section 2.1 provides a short overview of some of the vehicle parameters which can be fine-
tuned and the effect of changing their values on the car’s performance. This is followed, in Section 2.2,
by a discussion of the complexity of the datasets produced by such simulations.

3



4 2. Race Car Simulation

2.1 Race Car Vehicle Dynamics

Smith [1978] defines vehicle dynamics as

“... the study of the forces which affect wheeled vehicles in motion and of the vehicle’s
responses, either natural or driver induced, to those forces.”

The most important aspects of vehicle dynamics in car racing are acceleration, braking, cornering, top
speed, and vehicle handling [Smith, 1978].

Acceleration is influenced at high speeds by the engine power, and at low speeds by traction limits
on the drive wheels [Gillespie, 1992]. Power-limited acceleration, along with top speed, is pre-defined
by the vehicle design. Traction-limited acceleration, on the other hand, can be controlled by setting-up
tyres so that the optimal amount of friction between the tyre and the road is achieved. The term “vehicle
handling” refers to the responsiveness of the vehicle to the drivers input (steering). The behaviour of a
vehicle in curves (corners) is, among others, related to handling, and is usually measured by the under-
steer or over-steer gradients [Gillespie, 1992]. Handling and cornering performance can be adapted to
the requirements of the track and the driver’s preferences by fine-tuning tyre setup, suspension system,
gearbox, differential, brakes, and aerodynamics [Khan, 2007]. The main components in more detail are:

• Tyres
Tyres are the primary source of forces which influence the control and the stability of the vehicle
[W. F. Milliken and D. L. Milliken, 1995]. The grip achieved by tyres together with the car balance
dictate the speed at which the car is able to drive around a track corner. The contact area between
the tyre and the road depends on the camber angle, that is the angle between the vertical axis of
the wheels and the vertical axis of the vehicle, as seen in Figure 2.1. When the vehicle enters a
curve, the camber angle decreases making the contact area between the tyre and the road larger.
Changing the camber angle has a direct influence on the tyre grip. Similarly, changing the angle
between the horizontal axis of the vehicle and the horizontal axis of the tyres (toe) influences the
tyre grip and the slip angle (the angle between the direction in which the tyre is rolling and the
direction in which the tyre is pointing). Changing the tyre pressure also affects the vehicle’s cor-
nering performance by affecting the tyre stiffness, friction, etc. [Khan, 2007].

• Suspensions
The suspension system is the link between the vehicle’s body and its tyres, and has an enormous
influence on the motion behaviour of the vehicle. It provides vertical compliance, so the wheels
can follow uneven roads, maintain the proper steer and camber attitudes, react to the forces pro-
duced by tyres, resist roll of the chassis, and keep the tyres in contact with the road [Gillespie,
1992]. The suspension system includes springs, dampers, anti-roll bars, and suspension geome-
try. Among others components, springs control the rate at which the suspensions deflect during
vehicle cornering. Spring stiffness can be varied in order to control handling and the transmission
of vibrations [Khan, 2007]. Anti-roll bars are springs added to the front and rear of the vehicle
in order to provide resistance to roll movement. Their stiffness can be changed in order to adapt
the amount of steering necessary to pass a corner. Dampers, along with the springs, control the
amount of transferred oscillation, thus also influencing vehicle handling.

• Brakes
Adjusting the amount of hydraulic pressure applied to the front and the rear brake components
is necessary in order to control braking efficiency. Brake bias indicates the relative amount of
pressure applied to the front brake components, and is usually expressed in percentages. A brake
bias of 52 indicates that 52% of the brake pressure is applied to the front, and 48 % to the rear



2.1. Race Car Vehicle Dynamics 5

Figure 2.1: From the front: the negative camber angle of the left wheel makes it lean towards the
axle. The right wheel has a positive camber angle, and it leans away from the axle.
[Image created by the author.]

Figure 2.2: From above: both wheels have a positive toe (“toe in”) since they point towards the
centreline of the vehicle. [Image created by the author.]



6 2. Race Car Simulation

brake components [iRacing, 2015]. Apart from the driver’s personal preferences, the optimal brake
balance also depends on the track, because brake efficiency changes depending on whether the car
is moving on a flat surface, uphill, or downhill [Khan, 2007].

• Aerodynamics
The downforce created by the aerodynamic properties of the car increases the loads on the tyres
(which is normally limited by the vehicle’s weight), pressing the car more towards the surface. This
has a direct influence on the cornering performance of the vehicle [Katz, 1995]. The aerodynamic
downforce also induces aerodynamic drag (friction) which decreases vehicle’s maximum possible
acceleration and speed. The aerodynamic forces exhibited on the vehicle have to be balanced
depending the track type. On tracks with more sharp corners, downforce needs to be increased,
whereas high-speed tracks with more straight segments call for less downforce in order to reduce
drag. The downforce can be controlled by varying the front and rear wing angles, and the distance
of the chassis from the road (ride height) [Khan, 2007].

When fine-tuning a racing vehicle, many more components, in addition to the ones described above,
have to be considered. Describing all of them is out of the scope of this work. However, the overview
above should suffice to grasp both the complexity of such an endeavour, as well as the complexity of a
typical dataset produced by race car simulations.

2.2 The Complexity of the Simulation Dataset

In most racing categories, the track is a closed path consisting of straight segments, followed by curves,
which are again followed by straight segments. The challenge of car racing on such a track is to:

“... increase speed at maximum rate (accelerate) out of each turn and continue to the point
where, with maximum braking (deceleration), the speed can just be brought down to the
maximum speed of the next corner.” [W. F. Milliken and D. L. Milliken, 1995]

As seen from the short overview of vehicle dynamics provided in Section 2.1, the number of variables
influencing the car’s behaviour both on straight segments of the track as well as the curves is enormous.
When using simulation software to test different car setups and their influence on the overall lap time,
the parameters of the setup and their variation range are given as input. Such input parameters include
tyre camber angle, spring stiffness, position of the front and rear wings, etc. The number of records in a
dataset produced by race car simulations depends on the number of input parameters, since the combi-
nations of different values of input parameters (different setup variations) are simulated. The simulation
output contains not only the time in which the car will complete the track with a given setup, but also
the calculated influence of the setup variations on the huge number of parameters affecting vehicle per-
formance, such as aerodynamic efficiency, tyre grip, and many others. Some of the calculated output
parameters are more relevant for the straight segments of the track, whereas others are more relevant for
vehicle cornering.

The corners of the track are usually divided into three segments: entry, mid, and exit. Since some
of the parameters influencing the vehicle’s cornering performance have different values in different seg-
ments of the corner, their values are calculated separately for every segment of every corner of the
track. In addition, parameters which have different values at the front and back, as well as the left and
right side of the vehicle, are also calculated separately. Thus, the complexity of datasets produced by
simulating changes in the car’s setup and their influence on the overall lap time is not only caused by
high-dimensionality, but also by the fact that many dimensions cannot be observed independently, since
a certain hierarchical dependency structure is present. Table 2.1 shows a typical dataset produced by race
car simulations containing different types of parameters, both with and without hierarchy dependencies.



2.2. The Complexity of the Simulation Dataset 7

Depending on the number of input parameters, these datasets can also contain a large number of records,
especially in cases where every possible variation of one parameter is simulated with every possible
variation of all other parameters.

An essential requirement for a visualisation tool designed for use with the kind of datasets described
above is identifying and grouping the dimensions (parameters) and presenting them in a meaningful way.
The user has to be able to navigate easily through the list of parameters. Apart from separating input
parameters (the setup of the car components) from output parameters, parameters specific to corners,
and those specific to straight parts of the track have to be easily identifiable. A visualisation of the track,
including its straights, corners, and corner segments (entry, mid, and exit) should be provided in order to
give visual feedback as to which specific parts of the track are selected.



8 2. Race Car Simulation

No. ... CamberFL CamberFR CamberRL CamberRR ToeFL ToeFR ToeRL ToeRR Lap Time ...
1 1.6 3.1 1.8 3.2 2.7 1.5 5.3 -0.61 98.1238
2 2.8 2.5 2.6 2.4 3.6 2.6 4.1 -0.32 99.3412

... ... ...

1000 1.3 4.2 3.1 3.8 5.1 3.8 2.6 -0.49 98.9615

(a) Portion of a typical race car simulation dataset showing two input parameters (camber and toe) defined
separately for all 4 vehicle wheels, as well as one output parameter (lap time).

No. ... Top Speed Top Gear RideHeight C1 RideHeight C2 ... RideHeight C20 RideHeight C21 ...
1 287 5 5.28 3.21 7.28 9.53
2 292 7 6.31 9.30 3.56 4.81

... ... ...

1000 291 6 8.75 6.32 4.85 3.21

(b) Portion of a race car simulation dataset showing two types of output parameters: general param-
eters (top speed and top gear), and a single parameter (ride hight) with separate table entries for
every corner of the track.

No. ... Handling C1Entry Handling C1Mid Handling C1Exit ... Handling C21Mid Handling C21Exit ...
1 -0.2 -0.3 -2.0 -0.3 -0.8
2 -2.8 -1.1 -1.0 -0.1 -0.3

... ... ...

1000 -0.5 -0.7 -0.6 -0.9 -0.9

(c) Portion of a race car simulation dataset showing an output parameter (handling) with table entries for
all three segments (entry, mid, and exit) of every corner of the track.

Table 2.1: A typical race car simulation dataset has a few hundred dimensions. Here, three sub-
sets of dimensions are shown for the same set of records. Table (a) shows a portion
of a dataset with 8 columns for input parameters CamberFL, CamberFR, CamberRL,
CamberRR, ToeFL, ToeFR, ToeRL, ToeRR, and one column for the output parameter
LapTime. The input parameters Camber and Toe are aggragate parameters, since each is
actually defined individually, once for each of the four wheels. Table (b) shows a portion
of the dataset with two types of output parameters: parameters with values referring to
the entire track (TopSpeed and TopGear), as well as one parameter (RideHeight) calcu-
lated for every corner of the track, meaning that RideHeight is an aggregate parameter
(dimension), containing as many subdimensions as there are corners on the track. Table
(c) shows yet another type of output parameter with even deeper dependency hierarchy,
since the values of one parameter (handling) are calculated for every segment (entry, mid,
and exit) of every corner of the track.



Chapter 3

Information Visualisation

“There are things known and there are things unknown, and in between are the doors of
perception. ”

[Aldous Huxley - The Doors of Perception]

Visual representation is a powerful way to communicate information. The human brain can process
images much faster than text, because the speed of consumption of written information is limited by the
sequential process of reading, while images can be consumed “as a whole” in one glance. Furthermore,
visual information is often culturally independent and does not rely on an individual’s knowledge of any
particular language [Matthew Ward, Grinstein, and D. Keim, 2010, Chapter 1].

Throughout history, humans have used pictures to convey information. The earliest known exam-
ples are cave paintings. Hieroglyphics and maps also appeared relatively early in human history. The
expanding knowledge of the world and the development of science contributed to the development of
different types of charts and other kinds of visualisations. One example is the Charles Minard’s map of
Napoleon’s march on Moscow, shown in Figure 3.1, which cleverly depicts the difference in the number
of soldiers who started the march and those who returned. Matthew Ward, Grinstein, and D. Keim [2010,
pages 6–15] and Andrews [2015, Chapter 3] provide an extensive overview of history of visualisation.

The appearance of computers has enabled not only more possibilities to visualise data, but also new
ways of gaining knowledge by means of interaction. Computer-based visualisations of data help people
carry out tasks more effectively [Munzner, 2014]. Card, J. D. Mackinlay, and Shneiderman [1999] define
visualisation as:

“The use of computer-supported, interactive, visual representation of data to amplify
cognition.”

Depending on the type of information that is being represented, the broad field of visualisation can
be divided in three main sub-fields [Andrews, 2015]:

• scientific visualisation,

• geographic visualisation, and

• information visualisation.

Example of typical scientific visualisations would include a drawing of a human bone, or a 3D model
of a car. Typical visualisations of geographical data are maps. In both of these visualisation sub-fields,
the visual representation is inherent in the data itself. Information visualisation, on the other hand,

9



10 3. Information Visualisation

Figure 3.1: Visual representation of the army size during the Napoleon’s march on Moscow. Line
thickness encodes the number of soldiers, whereas the colour indicates the movement
direction. The information about the temperature at specific locations is also present in
the lower part of the map.
[Image scan used with kind permission of Keith Andrews.]

focuses on visualising abstract datasets, whose visual representation cannot be directly derived from the
data. Such datasets include hierarchical structures, collections of documents, multivariate data, graphs,
and graph structures such as social networks.

The development and improvement of different kinds of sensors, recording methods, as well as the
de-creasing price of data storage, and increasing available computing power have lead to the appearance
of a phenomenon called Big Data. To make use of either captured or created data, a palette of visual-
isation, exploration and analysis mechanisms are necessary. The use of such mechanisms in analytical
reasoning is called visual analytics. D. A. Keim, Mansmann, et al. [2006] define visual analytics as:

“iterative process that involves collecting information, data preprocessing, knowledge
representation, interaction, and decision making”.

There are two sides to visual analytics: data analysis and information visualisation. Data analysis
refers to statistical methods and data mining algorithms which are applied “in background”. Information
visualisation provides visual representation and interaction in the user interface.

The two basic components of information visualisation are the visual representation and interaction.
Visual representation depends on the type of the data that is being visualised. In Section 3.1 the impor-
tance of interaction with the data is shortly discussed. Since the focus of this thesis is visualisation of
hierarchical and multi-dimensional data, an overview of some of the visualisation techniques for these
data types is provided in Sections 3.2 and 3.3.



3.1. Interaction 11

3.1 Interaction

The two essential parts of information visualisation are the visual representation and the interaction. In-
teraction enables navigating through the data, and manipulating the visual representation in order to gain
more insight into the dataset. Interaction is a necessity when exploring large amounts of data. Shnei-
derman [1996] emphasises the importance of interaction with the data during the process of knowledge
discovery in his Visual Information Seeking Mantra:

“Overview first, zoom and filter, then details-on-demand.”

Depending on the user’s intent in performing a specific interaction, Yi et al. [2007] define the follow-
ing categories of interaction techniques:

• Select - marking something as interesting
Marking one or several data items in order to keep track of them through the process of data
exploration is one of the most common interaction techniques. It is often used in combination with
other interactions.

• Explore - showing something else
Information visualisation systems often deal with large amounts of data which makes it almost
impossible to explore the entire dataset as a whole. Users often focus on one subset of data at a
time. Explore interactions allow transitions from one part of the dataset to another. One of the
most common “explore” interactions is panning. “Panning” achieves transition to different parts
of datasets by either moving the camera from one part of the scene to the next, or by moving the
scene while the camera stays still. Scroll bars, which are available in most software nowadays,
provide panning interaction by means of moving the camera.

• Reconfigure - showing a different arrangement
This interaction techniques supports viewing a dataset from a different perspective. This is an
important feature when it comes to exploring data in order to discover new patterns and gain new
insights. Occlusion of single data items is a common side-effect when visualising large amounts
of data. In this case, reconfiguring the data representation often makes previously occluded items
visible. Occlusion of a part of the dataset is often present in 3D visualisations (independent of
the size of the dataset). For this reason, most 3D visualisations allow users to reconfigure the
representation by moving the camera to a different position.

• Encode - showing a different representation
Encoding the information properly is another important aspect in visual data representation. Some
of the most common properties used to encode information are colour, line length, 2D position,
size, shape, and orientation. Encode interactions allow adjustment of the encoding according to the
user’s preferences and can help uncover different properties of the visualised dataset. Changing the
opacity of the displayed data often uncovers the distribution of the dataset. Apart from changing
visual properties of the displayed data items, one might change the way the data is represented.
Switching from a pie chart to a bar chart representation is an example of an encode interaction
which can change the user’s perception of the data.

• Abstract/Elaborate - showing more or less detail
These interactions allow viewing the data at different levels of abstraction. At specific stages of
the data exploration process, the user might want to view the dataset either as a whole or to focus
more on a particular subset. The most common abstract/elaborate interactions are simple zooming
or displaying a tool-tip when a particular data item is hovered over.



12 3. Information Visualisation

• Filter - showing something conditionally
Focusing only on the parts of the datasets which satisfy certain conditions is provided by the filter
interaction. Items which are filtered out, are either displayed in a different way, or are not dis-
played at all. With this interaction, users change the conditions under which certain data items
are displayed, rather than the perspective from which the data is viewed. Common filter interac-
tions include the value range of the displayed data, or selecting a limited number of categories to
visualise.

• Connect - showing related items
Many information visualisation tools include simultaneous views of the same data set in different
representations. The connect interaction helps users identify same single data item across several
representations. Typically, when a visual property of one item changes in one view, it also changes
in all other views. This interaction is also present in single views, for example when showing
related nodes.

• Undo/Redo
This interaction enables users to return the system into the state in which it was before applying
a certain interaction, or to repeat one or more interactions. Undo/redo is a technique found im
almost every software nowadays.

Information visualisation tools often deal with large amounts of data. Apart from implementing in-
teraction techniques suitable for exploring the specific datasets, information visualisation systems must
also provide reasonable responsiveness to user input. Depending on the visual representation, differ-
ent techniques for reducing the number of displayed data items exist. Displaying fewer visual items,
as well as employing multi-threading techniques to reduce the amount of time required to render the
visualisation, can help in making the software more responsive.

3.2 Visualising Hierarchical Data

A hierarchy can be defined as a group of elements (nodes) with parent-child relationships. Each hierarchy
consists of three types of elements:

• root: the single parentless element,

• leaf nodes: childless elements,

• inner nodes: elements with both a parent and one or more children.

Hierarchical data is very common, since hierarchies emerge in many different aspects of life. Ex-
amples of hierarchical data include family trees, organisational structures, file systems, etc. File system
explorers are one of the most common hierarchical data visualisations.

Hans Jörg Schulz, Hadlak, and Heidruno Schumann [2011] divide visualisation techniques for hier-
archical data based on whether the parent-child replationship is represented by nesting the child into the
parent, or by exploiting vertical adjacency of the elements. The two categories differ in the following
four design dimensions:

• dimensionality (2D or 3D),

• element (node) representation,

• edge representation,



3.2. Visualising Hierarchical Data 13

• layout.

The elements of a hierarchy are often represented by rectangles (or cuboids in case of 3D visuali-
sation), but common variations include circles and irregular convex polygons. Edges (the connections
between the elements in the hierarchy) can be represented explicitly, by drawing a line between the ele-
ments, or implicitly, by means of inclusion, overlap or adjacency. The elements of the visualisation are
layed-out using either subdivision or packing methods. In subdivided layouts, a certain amount of space
is assigned to one element, and this space is then divided and designated to each of the element’s chil-
dren. Packing works in exactly the opposite way: based on specific attributes, the elements are designed
with a size and a shape and packed, along with their siblings, into the parent’s space.

Hans Jörg Schulz [2011] started a visual bibliography of known tree visualisation techniques. At the
time of writing, the bibliography contained 283 techniques categorised by dimensionality (2D, 3D and
hybrid), edge representation (explicit, implicit and hybrid) and alignment (axis-parallel, radial or free)
[Hans Jörg Schulz, 2015]. Exploring all these techniques is out of the scope of this thesis.

Andrews [2015] categorises hierarchy visualisations by edge representation, differentiating between
node-link (explicit) and space-filling (implicit) trees. Based on this categorisation, Andrews [2015, Chap-
ter 5] provides a relatively extensive overview of the most important hierarchy visualisations. These are
summarised in the following text using the same categorisation method.

3.2.1 Node-Link (Explicit) Trees

In node-link (or explicit) trees, the connections between nodes are explicitly visualised. Walker [1990]
designed an algorithm to draw trees in node-link style, which runs in O(N) time, where N is the number
of tree nodes. This algorithm was later optimised by Buchheim, Jünger, and Leipert [2002]. As shown
in Figure 3.2, the root element is drawn on top of other elements, while children reside in layers beneath
the root. The same amount of space is allocated for each child at the lowest level.

A well-known example of an explicit tree hierarchy visualisation is File System Navigator (FSN),
shown in Figure 3.3. In FSN, the parent node is represented as a pedestal, and leaf nodes are drawn
on top of it. All child nodes are explicitly connected to the parent node. The height of the pedestals
conveys the overall size of the contained elements. US patent for this technique was filed on 23 March
1993, and issued on 18 June 1996 [Strasnick and Tesler, 1996]. FSN was made famous in 1993 through
its appearance in the movie “Jurassic Park”. Harmony Information Landscape (HIL) [Andrews, 1996]
applies a similar visualisation approach, but provides some additional features, which are not available in
the FSN. While in the FSN only forward and backward motion is possible, HIL supports free navigation
through the landscape in all directions. Furthermore, HIL can visualise hyperlink relationships between
single items (documents), in addition to hierarchical relationships.

Cone Trees [Robertson, J. D. Mackinlay, and Card, 1991] visualise hierarchies in 3D by ordering all
items at the same level of hierarchy in a circle, and connecting them to their parent and their children by
a line. This results in a cone-like structure, shown in Figure 3.4, which can be laid out either horizontally
or vertically. In Cone Trees, as in many 3D visualisations, the items which reside in the background can
be occluded by the items at the same level of hierarchy, which reside in the foreground. This problem
is solved by enabling cone rotation, an interaction which can be used to bring items to the foreground.
Shadows of cones and nodes are cast on the floor, to provide a 3D depth cue and convey additional
structural information about the hierarchy. The US patent for the Cone Tree technique was filed on 21
May 1993, and issued on 15 March 1994 [Robertson, J. Mackinlay, and Card, 1994].

Another radial node-link hierarchy visualisation is the Hyperbolic Browser [J. Lamping and R. Rao,
1994]. Linked items in the Hyperbolic Browser are laid out on a hyperbolic plane, which is then mapped
onto the unit disc for display. Such mapping results in more space being allocated to the focused portion
of hierarchy, while still displaying the entire context, as shown in Figure 3.5. US patent was filed on 14



14 3. Information Visualisation

Figure 3.2: Walker Tree [Walker, 1990] layout generated by the Hierarchical Visualising System
(HVS) [Andrews, Putz, and Nussbaumer, 2007]. The root element is drawn on top of
other elements, while children reside in layers beneath the root. The same amount of
space is allocated for each child at the lowest level. [Image used with kind permission of Keith
Andrews].

September 1994, and issued on 08 April 1997 [J. O. Lamping and R. B. Rao, 1997]. It won the CHI’97
Great Browse Off.

Munzner and Burchard [1995] developed an algorithm for laying out hierarchy items in 3D hyper-
bolic space, based on which Walrus [Hughes, Hyung, and Liberles, 2004] was later developed. A similar
visual effect is achieved by MagicEye [Kreuseler and Heidrun Schumann, 1999]. In this visualisation,
a layout is generated using the Reingold and Tilford [1981] or Walker [1990], which ist then mapped to
the suface of a hemisphere.

3.2.2 Space-Filling (Implicit) Trees

Space-filling (implicit), tree structures nest child nodes within the space allocated to their parent nodes.
The parent-child relationship is implicit, since no explicit edges are drawn. The size of the nested nodes
is often mapped to a metric such as size or weight.

A well-known space-filling hierarchy visualisation is the Tree Map, developed by Johnson and Shnei-
derman [1991]. In the original “slice and dice” tree map algorithm, the root rectangle is first sliced into
smaller vertical rectangles whose number corresponds to the number of children in each specific element,
after which alternating horizontal and vertical slicing is applied to child nodes. All child rectangles have
the same height, but a different width. The width of each element encodes its weight. This space alloca-
tion technique supports the ordering of elements, so that child nodes can be ordered alphabetically, for
example. The disadvantage of this approach, however, is that at deep levels of the hierarchy the child
nodes often degenerate to narrow strips. This problem is solved in a variation of Tree Maps called Squar-
ified Tree Maps and exemplified by Market Maps [Shneiderman and Wattenberg, 2001]. In Sqarified
Tree Maps, the aspect ratio of the rectangles is reduced, resulting in child rectangles having differing
height and width, as shown in Figure 3.6. This approach is aesthetically more pleasing, but does not



3.2. Visualising Hierarchical Data 15

Figure 3.3: File System Navigator (FSN) [Strasnick and Tesler, 1996] providing a landscape vi-
sualisation of file system hierarchy. The parent node is represented as a pedestal, and
leaf nodes are drawn on top of it. All child nodes are explicitly connected to the parent
node. The height of the pedestals conveys the overall size of the contained elements.
[Image used with kind permission of Keith Andrews.]



16 3. Information Visualisation

Figure 3.4: Cone Tree [Robertson, J. D. Mackinlay, and Card, 1991] hierarchy 3D visualisation.
All items at the same level of hierarchy are ordered in a circle, and connected to their
parent and their children by a line, which results in a cone-like structure. Each cone can
be interactively rotated in order to bring occluded items to the front. Shadows cast on
the floor provide a 3D depth cue and convey additional structural information about the
hierarchy. [Screenshot of Fluid Diagrams [Andrews, 2014] Cone Tree visualisation created by the author.]

Figure 3.5: Hyperbolic Tree [J. Lamping and R. Rao, 1994] hierarchy visualisation with 3418
nodes. Linked items in the are laid out on a hyperbolic plane. The entire hierarchy
is displayed at all times. More space is allocated to the items in focus, while still dis-
playing the entire context. [Screenshot of the Hyperbolic Tree implementation in Fluid Diagrams
[Andrews, 2014] created by the author.]



3.2. Visualising Hierarchical Data 17

support any ordering of the child items.

In space-filling tree visualisations, space is a valuable asset. Cushion Tree Maps [van Wijk and van
de Wetering, 1999] effectively increase the amount of available space, by simply not drawing borders
between rectangles. Shading is applied to the margins of the rectangle and the middle is kept bright,
which achieves the “cushion” effect.

Information Pyramids [Andrews, Wolte, and Pichler, 1997] is a 3D variation of the tree map tech-
nique. In Information Pyramids, the root element is displayed as a plateau upon which smaller plateaus
(child elements) reside. This approach results in a pyramid-like structure, which grows upwards as the hi-
erarchy is descended. The size of each plateau is proportional to the weight of its children. Leaf elements
are represented by icons in order to encode the type of the element, for example, files or documents.

In the above examples, the tree maps all use rectangles to represent nodes. Info Sky Cobweb Browser
[Andrews, Kienreich, et al., 2002], and later Voronoi Tree Map [Balzer, Deussen, and Lewerentz, 2005],
are two variations of the tree map technique, which do not divide the available space into rectangles, but
use Voronoi subdivision to assign space to child polygons, as shown in Figure 3.7.

Cheops [Beaudoin, Parent, and Vroomen, 1996] uses triangles to represent nodes at a given level of
hierarchy. This technique effectively reduces the amount of space necessary to display a portion of the
hierarchy by overlapping the nodes. Selecting one of them brings its parent and child nodes into focus.

Radial methods for implicit hierarchical data visualisation have also been proposed. In Information
Slices [Andrews and Heidegger, 1998], semi-circular discs are used to represent one or more levels of
hierarchy. The number of hierarchy levels depicted on a single disc can be changed interactively. The
amount of space allocated to each element at a given level of hierarchy corresponds to its weight. While
an overview of a part of the hierarchy is displayed in the left view, the content of the selected segment
is displayed in the right view, as shown in Figure 3.8. When a segment in the right view is selected, the
disc in left view is displayed as an icon, the disc from the right view moves to the left view, and a new
disc opens in the right view.

Sun Burst [Stasko and Zhang, 2000] is an extension of the Information Slices technique which uses
full discs instead of semi-discs. The root node is displayed in the centre of the disc, and is surrounded by
concentric circles, each of which represents one level of hierarchy. For each element at a given level of
hierarchy, a portion of the concentric circle is allocated. The angle of the allocated circle portion, as well
as its colour, can be mapped to attributes of the item, such as size or type. Three interaction techniques
were developed in order to support examination of smaller, peripheral items, which can appear when one
hierarchy level contains many items:

• Angular Detail: animated fan-out interaction causes the disc to shrink and move aside, leaving
space to display the contents of the selected item.

• Detail Outside: causes the disc to shrink but stay in the middle, while the elements of the selected
item are displayed in a ring around the inner disc.

• Detail Inside: causes the selected item to move to the centre of the disc, displaying it as a root
item, with its children displayed in concentric circles around it.



18 3. Information Visualisation

Figure 3.6: Market Map [Shneiderman and Wattenberg, 2001], an example of Squarified Tree
Maps. The rectangles representing the hierarchy elements have differing widths and
heights. This techniques supports efficient space allocation for deep hierarchies avoid-
ing narrow slices, but items cannot be ordered.
[ Screenshot of the MarketWatch [2015] created by the author.]



3.2. Visualising Hierarchical Data 19

Figure 3.7: Info Sky Cobweb Browser [Andrews, Kienreich, et al., 2002] visualisation of a file sys-
tem hierarchy. Hierarchy elements are represented by polygons instead of rectangles.
The space for child polygons is allocated using recursive Voronoi subdivision. [Image
used with kind permission of Keith Andrews.]

Figure 3.8: In Information Slices [Andrews and Heidegger, 1998], a user-defined number of hierar-
chy levels is displayed on a semi-circular disc. Selecting a disc segment in the left view
displays its content in the right view.
[Image used with kind permission of Keith Andrews.]



20 3. Information Visualisation

3.3 Visualising Multi-Dimensional Data

Multi-dimensional datasets usually come in the form of tables. Each column in a table represents one
data dimension, and each row, a data record. Matthew Ward, Grinstein, and D. Keim [2010, Chapter 7]
categorise visualisation techniques for multivariate data according to the graphical primitive used in the
rendering: points, lines, and regions.

In point-based visualisation techniques, n-dimensional data records are represented as points in k-
dimensional space. These techniques include:

• scatter plots and scatter plot matrices,

• force-based methods.

Line-based visualisation techniques join together points which belong to particular records in selected
dimensions using straight or curved lines. These techniques include:

• line graphs,

• parallel coordinates and Andrews curves (curved parallel coordinates),

• radial axis techniques (star plots, circular bar charts, circular area graphs, and circular bar graphs).

Region-based techniques rely on filled polygons to communicate the data values through their size, shape,
colour and other similar features. Some of these techniques are:

• bar charts or histograms,

• tabular displays (heatmaps, permutations or reorderable matrices, survey plots, and table lens),

• dimensional stacking.

Some features of the above mentioned techniques can be combined into hybrid techniques such as:

• glyphs and icons,

• dense pixel displays (hybrid between point-based and region-based methods).

This section provides an overview of some commonly used techniques: scatter plots, table lens, Cher-
noff faces (glyphs), and star plots. Scatter plot matrices are given as an example of the small multiples
technique. Parallel coordinates are described in more detail in Chapter 4.

3.3.1 Scatter Plots

Scatter plots, or simply XY plots, are used to visualise dataset values in two dimensions, whereby one
dimension is mapped to the horizontal axis and the other to the vertical axis. The patterns which arise
by plotting the records in two-dimensional space reveal the relationship between the given dimensions
[Yale, 1997]. As can been be seen from Figure 3.9a, an upward trend of data points in the scatter
plot indicates positive association, whereas a downward trend indicates negative association between the
dimensions (3.9b). Another common pattern which can be easily revealed by the scatter plot is clusters
of data records (3.9c). If there is no association between the records in two dimensions, the data points
will be scattered across the plot, as shown in Figure 3.9d.

When there are a large number of records, the patterns described above usually do not occur in the
entire dataset, but are apparent only in specific subsets and are not immediately visible in the display.



3.3. Visualising Multi-Dimensional Data 21

Interactive features implemented in most scatter plot visualisations allow exploration of the specific parts
of datasets. These features usually include zooming and axis scaling. Zooming allows dynamic selection
of a portion of the displayed data points and the display of the enlarged view with both axes automatically
scaled to conform to the value range of the displayed data. Axis scaling, on the other hand, enables the
selection of scaling of one or both axes. In order to make scatter plots usable with a large number of
records, Buering, Gerken, and Reiterer [2006] propose using fisheye distortion which allows focusing on
one part of the dataset while viewing the remaining data points in context.

Overlapping points is a common side-effect of visualising large amounts of data with scatter plots. A
general approach to solving this problem is making the data points semi-transparent in order to enable the
exploration of dataset density. Places in the graph where points overlap can also be marked by drawing
one larger point instead of several overlapping ones. A similar effect can be achieved by using different
shapes and/or colours to convey information about the density of the data at the given point in the scatter
plot [D. A. Keim, Hao, et al., 2010]. To overcome the problem of overlapping points, Ming et al. [2010]
propose the combination of binning and zooming. In their variation of scatter plots, the entire plot area
is divided into bins based on value ranges of x and y coordinates. In order to increase visibility, bins
cluttered by large numbers of overlapping data points are zoomed-in. Additionally, colour is used to
visualise the data density in each bin.

Matthew Ward, Grinstein, and D. Keim [2010, pages 238–239] list the following choices for visual
analysis of more than two dimensions using scatter plots:

• dimension subsetting: allowing selection of dimensions to display or implementing algorithms to
identify dimensions containing the most useful information,

• dimension reduction: transforming a dataset with high number of dimensions to a dataset with
a low number of dimensions using techniques such as principal component analysis (PCA )or
multi-dimensional scaling (MCS),

• dimension embedding: mapping dimensions to attributes such as colour, size, or shape of the data
points,

• multiple displays: showing several scatter plots, each of which contains some of the dimensions.

An example of dimension embedding can be seen in Figure 3.10. Multiple displays are discussed in
Section 3.3.5.

Even with these approaches, scatter plots can visualise only a limited number of dimensions. Owing
to this property, they are often used in combination with other visualisation methods as a synchronised
view providing more detailed insight into the data being explored. As such, scatter plots are an essential
part of many visual data exploration tools.

3.3.2 Table Lens

Table lens is a graphical extension to the common table or spreadsheet representation of multivariate
data. This visualisation technique was developed in 1994 [R. Rao and Card, 1995] by Xerox PARC. The
US patent was filed on 5 March 1996, and issued on 20 May 1997 [R. B. Rao and Card, 1997]. Table
lens makes use of a focus-and-context technique to manipulate the display of large tables, enabling users
to view more data records in a single screen than is possible with traditional tables. Depending on the
number of dimensions and records in the dataset, both columns and rows of the table can be focused or
displayed in context. As a result of the view distortion approach implemented in table lens, each cell can
be displayed in one of the four states (see Figure 3.11):



22 3. Information Visualisation

(a) An upward trend in data points indicates a
positive association between the dimensions.

(b) A downward trend in data points indicates a
negative association between the dimensions.

(c) Clusters of data points indicate groups of
records with similar values in these two di-
mensions.

(d) Scattered data points indicate no association
between dimensions.

Figure 3.9: Scatter Plots Patterns
[Images created by the author using the Online Scatter Plot Generator [Alcula, 2009]]



3.3. Visualising Multi-Dimensional Data 23

Figure 3.10: Scatter plot implementation in the OECD eXplorer [NComVA, 2014] showing the re-
lationship between the elderly dependency rate and the population of age 15–24 in
2012. Each data point in the scatter plot represents a country in the world. The size of
the data point is mapped to an additional dimension (total population), and the colour
is mapped to the selected percentile values of the elderly dependency rate. All dimen-
sion mappings (both axes, the size, and the colouring) can be selected dynamically by
the user. [Screenshot of the scatter plot in the OECD eXplorer [NComVA, 2014] taken by the author.]



24 3. Information Visualisation

Figure 3.11: The four table lens focal states: focal (C2), column-focal (C1 and C3), row-focal (A2,
B2, D2, E2), and non-focal (A1, B1, D1, E1, A3, B3, D3, E3). [Diagram created by the
author using Gliffy [Kohlhardt and Dickson, 2015]]

• focal: the cell is in focus along both axes,

• column-focal: the cell is in focus along vertical axis,

• row-focal: the cell is in focus along horizontal axis,

• non-focal: the entire cell is in context.

When the cell is not in focus, its value is represented graphically. The graphical representation
depends on the value type. Quantitative values are represented by a bar, where the length of the bar
indicates the record value in a given dimension. Categorical records, on the other hand, are represented
by a shaded, coloured and/or positioned swatch. In column-focal state, the graphical representation of
the cell is more detailed then in the non-focal state. If the cell is in focal state, the value of the cell is
displayed both graphically and textually.

Rao and Card [R. Rao and Card, 1995] discuss the following three interactive features of the table
lens visualisation:

• Zoom: increases the entire focus area without changing the number of focused cells,

• Adjust: changes the number of focused cells without changing the size of focus area,

• Slide: changes the location of the focus area.

An important feature, which any table lens implementation should provide, is record sorting based
on the values of the records in a given dimension [Pirolli and R. Rao, 1996]. In order to directly compare
the values of records in two (or more) dimensions, the users need to be able to rearrange the columns.
These two features along with the creation of new columns based on given formulas are inherited from
traditional spreadsheets. Figure 3.12 shows a table lens in which the values of approximately 400 records
are visualised in a relatively small area. In this case, focus is enabled only for rows.

3.3.3 Chernoff Faces

Based on the fact that people easily observe changes in facial expressions, Herman Chernoff [Chernoff,
1973] presented a method for representing multivariate data in a k-dimensional space (k ≤ 18) in which
each dimension of the dataset is mapped to an individual part of a human face. As shown in Figure 3.13,
eyes, eyebrows, nose, mouth, ears, and other parts of a human face, are used in Chernoff faces to represent
dataset dimensions. Different shapes, sizes, placements, and orientation of individual face parts represent
different values of records in given dimensions. For each data record, a new face is drawn, as shown in
Figure 3.14. Chernoff argued that given a sequence of faces, the user could easily recognise clusters



3.3. Visualising Multi-Dimensional Data 25

Figure 3.12: The table lens implementation in the OECD eXplorer [NComVA, 2014], showing 7
dimensions of statistical data for approximately 400 different countries in the world.
The values of 16 records, which are in focus, are shown as common table cells with
a bar in background, whose length provides additional information about the record
value in a given dimension. The values of all other records, which are not in focus, are
represented only by short bars. The colour of bars is a mapping to percentile values of
the elderly dependency rate. This mapping can be changed by the user in a separate,
connected view (not shown in this image). In this implementation, the rows can be in
either focal, or non-focal state, while the columns are always in focal state. [Screenshot
of the table lens implementation in the OECD eXplorer [NComVA, 2014] taken by the author.]



26 3. Information Visualisation

Figure 3.13: Mapping data to different parts of a human face. [Image created by the author.]

Figure 3.14: Three data records represented as Chernoff faces. The dimensions of the dataset are
mapped to eyebrow slant, length of nose, and mouth openness. By observing changes
in these facial attributes, the user can see how the values of the data records change in
each dimension. [Diagram created by the author using paint.net [dotPDN LLC, 2015].]

of points by grouping together similar faces. Apart from recognising clusters, Chernoff suggestged that
given a sequence of faces representing different variable values in time, users could easily recognise
significant changes in variable values based on eye-catching facial transformations.

In order to test the effectiveness of features in Chernoff faces, Morris, Ebert, and Rheingans [2000]
conducted a user study in which they tested faces with the following four features:

• small eyes,

• a specific face,

• inwardly slanting eyebrows, and

• a combination of small eyes and inwardly slanting eyebrows.

The study investigated how easily faces with these distinctive features are recognised by users when
placed among 5, 10, 25 or 50 other faces with different features. None of these features were perceived



3.3. Visualising Multi-Dimensional Data 27

pre-attentively. However, for longer viewing time (two seconds), eyebrow slant and the eye size were
perceived more easily than the other features.

Since different parts of a human face are perceived differently, one should carefully select which
dimensions are mapped to which facial features when visualising multivariate data with Charnoff faces.
Longer viewing time is necessary to recognise patterns even in small collections of Chernoff faces,
suggesting that this technique might not always be effective.

3.3.4 Star Plots

A star plot, also known as a radar chart, spider chart, cobweb chart, irregular polygon, polar chart,
or kiviat diagram [Wikipedia, 2014] is a multivariate data visualisation technique similar to parallel
coordinates. Instead of placing the axes in parallel, a minimum of three axes are ordered radially at
an equi-distant angle with the same point of origin. The records in the dataset are drawn as polylines
connecting each axis. The point where the segment of a polyline meets an axis is the value of the record
in that dimension. The closed polygonal line connecting all axes sometimes looks like a star, hence the
name "star plot".

In order to accurately compare the values of records across different dimensions, the user needs to
compare the lengths of the lines, which are originating from the centre of the plot and ending at the point
where the record’s value is mapped on the axis. However, since the axes are ordered radially and not
placed in parallel to one other, comparing the lengths of these lines is not easy. Furthermore, connecting
the polyline segments on radially ordered axes creates polygonal shapes, which encourages comparison
of areas enclosed by these shapes, rather than the line lengths. Larger areas in star plots indicate higher
data record values. However, the size and the shape of the areas depend on the scaling of the axes. Most
datasets do not have the same units and value range on every dimension, so visualising such datasets
with star plots can make it difficult to accurately read the values of some of the dimensions, as shown in
Figure 3.15. Another problem with star plots is that the overall visual impression is highly dependent on
the ordering of the dimensions, because different dimension orderings form different polygonal shapes.

A common variation of the star plot is created by shading or filling the polygonal area. In this case,
the user is supposed to compare the areas. However, accurately comparing areas is much more difficult
than comparing line lengths. In Figure 3.16, a star plot, filled star plot, and bar chart are used to visualise
the same dataset. This example shows that comparing lengths of bars in bar charts is much easier than
comparing lengths of lines in a star plot, or areas in a filled star plot.

3.3.5 Small Multiples

Small multiples is a technique in which several small visualisations of data are displayed side by side
at the same time in order to allow direct comparison of value changes in different slices of the dataset.
Tufte [2007, page 170] compares small multiples to frames of a film, describing them as:

“...a series of graphics, showing the same combination of variables, indexed by changes
in another variable”.

The essential part of the small multiples idea is consistency, which is achieved by using the same
context in each representation. The representation itself can be any form of map, chart, or graphic but its
size and scaling (that is, the context) must remain the same.

Tufte [2007, page 93] suggests that a large share of ink in a graphic should represent data and that
the changes in ink should correspond to the changes in data. This concept is called “data-ink”. Tufte
defines properties of well-designed small multiples as [Tufte, 2007, Page 175]:



28 3. Information Visualisation

Figure 3.15: Star plot visualisation showing 6 dimensions of data (mileage per gallon, number of
cylinders, displacement, horse power, acceleration, and origin) for 7 different cars.
All axes have the same scaling, which is in this case dictated by the “displacement”
dimension, whose maximum record value is 450. This makes it almost impossible to
accurately read the values of other dimensions, such as the number of cylinders, whose
maximum value is 8. Furthermore, closed polygonal lines formed by the radial axis
ordering encourage users to compare the areas instead of line lengths on each axis,
which might lead to an inaccurate interpretation of the plot.
[Chart created by the author using Microsoft Excel 2013 [Microsoft, 2015b] based on Auto MPG Data Set
[Lichman, 2013].]



3.3. Visualising Multi-Dimensional Data 29

(a) Star plot.

(b) Filled star plot.

(c) Bar chart.

Figure 3.16: Three visualisations of allocated budget and actual spending in seven project imple-
mentation stages. [Images created by the author using Microsoft Excel 2013 [Microsoft, 2015b].]



30 3. Information Visualisation

• inevitable comparative,

• deftly multivariate,

• shrunken, high-density graphics,

• usually based on a large data matrix,

• drawn almost entirely with data-ink,

• efficient in interpretation, and

• often narrative in content, showing shifts in the relationship between variables as the index variable
changes.

A common usage of small multiples are scatter plot matrices. By always displaying the same two
dimensions on one horizontal and vertical axes on all scatter plots in the matrix, while changing the
dimensions on the other axis, data values in different dimensions can be directly compared. Similarly,
if more than two dimensions are displayed in a scatter plot (by mapping their values to colour, size of
data points and other visual attributes) by keeping the same dimensions on all scatter plots the effects of
changing the values of an additional dimension can be observed. An example of such scatter plot matrix
is shown in Figure 3.17.

Scatter plot matrices are only one example of a small multiples view. Almost any kind of visualisation
can be displayed in the form of small multiples. However, the detail in such displays should be limited,
in order to make changes in the dataset visible.



3.3. Visualising Multi-Dimensional Data 31

Figure 3.17: Scatter plot matrix showing the changes in the elderly dependency rate (y axis) of the
population at ages 15–64 (x axis) over time. The data is available every three years
in the time span between 1991 and 2012. The context in all scatter plots (dimensions
mapped to the x and y axes, as well as colour and size of the data points) remains the
same, only the year varies. [Image created by the author based on screenshots taken from OECD
Regional eXplorer [NComVA, 2014]]



32 3. Information Visualisation



Chapter 4

Parallel Coordinates

“If you torture the data long enough, it will confess.”

[Ronald Coase, Economist]

The first known use of parallel instead of orthogonal axes stems from the French mathematician
d’Ocagne [1885] in his book “Parallel and Axial coordinates. A geometric transformation method and
a new graphical calculation procedure derived from the consideration of parallel coordinates”. How-
ever, d’Ocagne discussed only the mathematical and theoretical properties of parallel coordinates. As
a technique for visualising multi-dimensional data, parallel coordinates were first suggested by Alfred
Inselberg in 1959 [Inselberg, 2010, page xxiii], but the first research on this visualisation technique was
not done until 1978.

In parallel coordinates, dimensions of a dataset are visualised as axes placed in parallel to one other,
whereas records are visualised as polygonal lines (polylines) whose segments span between the axes.
The position of a polygonal line on the axis maps the value of a record in a given dimension. Since the
axes are placed in parallel to each other, an arbitrary number of dimensions can be visualised.

Positive correlations between two neighbouring dimensions in a dataset visualised with parallel co-
ordinates cause polyline segments to be drawn between the axes with no (or few) crossings. Negative
correlations, on the other hand, cause polyline segments to cross in the middle. This can be seen in
Figure 4.1. Note that dimensions can only be compared if they are placed next to each other.

4.1 Common Interactive Features and Extensions

Interaction with the visualisation is an essential part of every exploratory analysis. This section provides
an overview of the most common ways to filter, compare, and explore the details of a dataset visu-
alised with parallel coordinates. Furthermore, common extensions to the standard implementations are
described:

• Record Selection (Brushing)
Record selection interactions enable users to select a single record, or a specific subset of records in
the dataset. The terminology regarding such interactions is somewhat inconsistent in the literature.
Inselberg [2010] calls such interactions “querying”. The term “brushing” is also used [Hauser,
Ledermann, and Doleisch, 2002]. For consistency purposes, in the following text, the term “record
selection”, or simply “selection” will be used to refer to these interactions.

In most parallel coordinates implementations, one record in the dataset can be highlighted (tem-
porarily selected) simply by hovering over it with the mouse. When a single data record is high-
lighted, a label is usually displayed on each axis indicating the value of the selected record in that

33



34 4. Parallel Coordinates

Figure 4.1: Line segments which are largely parallel indicate a positive correlation between two
neighbouring dimensions, such as here between the first and the second axis. Cross-
ings, such as those between the second and the third axis, indicate negative correlation
between the two dimensions. Both parallel and crossing segments are present between
the third and fourth dimension indicating no obvious correlation, although subsets of
the data may be correlated. [Image created by the author.]

dimension. In most intuitive implementations, several records can be selected by left-dragging a
rectangle with the mouse over the area containing the records of interest. A single left-click selects
a single record and deselects all other records. A control-left-click toggles the selection of a single
record, adding it to, or removing it from the set of the currently selected records. A shift-left-click
adds a single record to the current set of selected records. The set of selected records is usually
displayed in a different, prominent colour. Sometimes, sets of records can be named, assigned a
colour, and saved for later use.

Hauser, Ledermann, and Doleisch [2002] present two additional techniques: angular selection and
smooth selection. With angular selection, the user selects the records of interest by specifying the
slope of the polyline segments between two axes. Smooth selection enables selection of records in
datasets based on the degree of interest. The user explicitly defines a record in a dataset which is
the centre of interest and this record is displayed in a specific colour. Based on spatial distance to
this record, other data records are drawn using the same base colour while applying different alpha
values. The closer a record is to the centre of interest, the higher its alpha value.

• Record Filtering
Filtering interactions enable users to filter out dataset records which are currently not of interest. A
common way of implementing this interaction is adding sliders at the top and bottom of each axis.
By moving these sliders, the user specifies the value range of records which are of interest. All
other records are usually deactivated or disabled. Disabled (deactivated) records are not removed
from the display, but are grayed out and displayed in the background, as shown in Figure 4.2.

The records in the dataset can also be filtered by changing the axis scaling. In most implemen-
tations, the axes are initially scaled so that one end is mapped to the maximum record value in
that dimension and the other one to the minimum. By increasing or decreasing the scaling of an
axis, the records are either removed or added to the display. A common way of implementing this



4.1. Common Interactive Features and Extensions 35

Figure 4.2: A parallel coordinates visualisation of a dataset with 6 dimensions and 1000 records
filtered using sliders at the top and bottom of the axes to display the records within the
specified value range. The disabled records are still visible, but are greyed out and in
the background. [Image created by the author.]

feature is to enable manual editing of the axis range by directly editing the range labels.

• Inverting an Axis
In Figure 4.1, the bottom of the axes map the minimum value of the dataset, and the top of the
axes map the maximum value. This ordering is arbitrary, and in most implementations each axis
can be inverted to reverse the order of records. This feature can be useful for dimensions where
smaller numerical values are considered “good”. For example, if car acceleration is expressed in
the number of seconds until a car reaches a certain speed, a smaller number of seconds means
higher acceleration. Inverting such axes provides consistency in interpretation, with “good” values
at the top of each axis.

• Re-Ordering Axes
Comparison between dimensions is only possible on neighbouring axes. For this reason, most
parallel coordinates implementations give the users the possibility to select their own axis order-
ing. Intuitive implementations allow grabbing an axis from one position and then dragging and
dropping it to a new position.

All permutations of axis ordering, in which every axis is adjacent to every other axis, can be
computed by representing the axes as vertices of a graph, and finding all distinct Hamiltonian
paths [Math Images, 2015], as shown in Figure 4.3. For an even number of axes (N = 2M), the
minimal number of permutations containing adjacencies for all pairs of axes is M. For an odd
number of axes (N = 2M + 1), the number of such permutations is M + 1 [Inselberg, 2010, page
389]. Some tools are able to compute these permutations and display them.

• Adding and Removing Axes
Dynamically adding and removing axes is another common feature in parallel coordinates, which
is usually implemented by adding or removing a dimension from a list of displayed axes and re-
freshing the parallel coordinates view. Some implementations even allow the addition of the same
axis several times, enabling users to compare one dimension with more than two other dimensions
in the same view. Furthermore, new axes can be added to the view by combining two or more



36 4. Parallel Coordinates

Figure 4.3: Six axes of a parallel coordinates plot are enumerated and represented as vertices in
a graph. There are three distinct Hamiltonian paths in such graph. The union of all
distinct Hamiltonian paths is a complete graph, in which every vertex is connected to
every other vertex. For 6 axes, the following three axis orderings (distinct Hamiltonian
paths) allow direct comparison between every axis in the plot: 126354, 231465, and
342516. [Image created by the author, based on figure 10.8 in Inselberg [2010].]

currently displayed dimensions. For example, dimensions A and B can be combined by computing
C =

√
A + B, thus yielding a new dimension.

• Displaying Histograms on Axes
As shown in Figure 4.4, histograms can be dynamically added to the axes in order to convey infor-
mation about the frequency of records in particular parts of the dataset. The number of histogram
bins can usually be selected by the user.

• Zooming
An important interactive feature is zooming in and out of specific parts of the parallel coordinates
visualisation. This allows detailed exploration of particular parts of the dataset and enables easier
record selection in larger datasets.

• Mean Line
To visualise the general data trend a mean value is calculated for each dimension. The mean line is
the polyline connecting the mean values of each dimension. It is usually made visually distinctive
from other polylines and can be dynamically turned on or off.

4.2 Handling Large Datasets

The usefulness of a parallel coordinates visualisation decreases with the increasing number of records in
the dataset, because the view tends to become cluttered by overlapping polylines. A simple approach to
solving this problem is to make the polylines semi-transparent. As can be seen in Figure 4.5, decreased
polyline opacity makes areas with many overlapping segments appear darker, thus forming visual clus-
ters, which reveal patterns in the dataset. However, this approach does not work for an arbitrary number



4.2. Handling Large Datasets 37

Figure 4.4: A parallel coordinates with histograms added to each axis to show the distribution of
record values in each dimension. [Image created by the author.]

of records, and the view will still become cluttered given a large enough dataset. One might argue that
the size of the dataset which can be effectively represented with parallel coordinates depends on the
available screen size, but even on larger screens the view can become cluttered when displaying a few
thousand records. Furthermore, large datasets tend to cause performance problems making filtering and
interaction with the data very difficult.

One way of dealing with large datasets is drawing only a part of the dataset. Ellis and Dix [2006]
discuss techniques for selecting random samples of the input data. However, a more common approach is
reducing clutter by grouping similar records together either visually or numerically (in the background).
Based on this idea, several different solutions have been proposed over the years. They differ not only
in the algorithms applied to group similar records together, but also in the way the grouped records are
displayed.

Ying–Huey, M.O. Ward, and Rundensteiner [1999] propose deriving a hierarchy of nested clusters,
based on which records are visualised in different levels of abstraction. The similarity between records
is measured by calculating the proximity between pairs of objects, after which a tree of nested clusters
of objects is built. Each depth level contains a single level of abstraction. The clusters are represented
in parallel coordinates as bands with high transparency at the top and bottom edges, which decreases
toward the middle of the band, as shown in Figure 4.6. The width of the band indicates the number of
records in the cluster for a given dimension.

Records in parallel coordinates do not necessarily have to be represented as polylines. Edge bundling
is the concept of drawing similar edges curved and bundled together in order to reduce visual clut-
ter. Zhou, Panpan, et al. [2013] divide the edge bundling techniques into three categories: cost-based,
geometry-based, and image-based. One of the cost-based techniques is energy minimisation, which
works by reducing the overall energy of a mathematical system. Zhou, Yuan, et al. [2008] applied this
technique to parallel coordinates by modeling the polylines as flexible springs and applying attractive
forces between them. Similar records are clustered together based on geometrical rather than numeri-
cal similarity, so polylines which are visually parallel and close to each other are curved and grouped
together, as shown in Figure 4.7.

Apart from edge bundling, McDonnell and Mueller [2008] discuss a variety of different rendering



38 4. Parallel Coordinates

(a) Overlapping polylines with full opacity clutter the display.

(b) Polylines with 30% opacity make the display appear less cluttered.

Figure 4.5: Making polylines semi-transparent is an effective way to visualise the density of data in
a parallel coordinate visualisation. [Image created by the author.]



4.2. Handling Large Datasets 39

Figure 4.6: A cluster in hierarchical parallel coordinates is displayed as a band with high trans-
parency at the top and bottom. The width of the band indicates the number of records
in the cluster for a given dimension. [Image created by the author, using paint.net [dotPDN LLC,
2015], based on Figure 3 in Ying–Huey, M.O. Ward, and Rundensteiner [1999].]

techniques to improve the parallel coordinate visualisations, such as: spline-based cluster rendering,
branched clusters, and using silhouettes, shadows and halos, as well as density plots to convey the dis-
tribution of the data within the clusters. Artero, de Oliveira, and Levkowitz [2004] discuss using density
and frequency plots to uncover clusters in crowded parallel coordinates visualisations.

G. Andrienko and N. Andrienko [2004] propose enhancing visual exploration of subsets of records by
displaying either class envelopes (semi-transparent bands), or ellipse plots on axes which provide all nec-
essary information about the distribution of attributes both in the entire dataset, and in the specific classes.
This approach can also be used to visualise clusters of data. An example of using semi-transparent bands
for visualising data which results from cluster analysis is shown in Figure 4.8.

Allowing users to select the level of detail is a concept which has been used by Zhou, Cui, et al.
[2009]. Their approach includes users observing the drawing and clustering process, which is executed
over a specific period of time. This process consists of two major components: polyline splatting and
segment splatting. In polyline splatting, whenever a new line is drawn, the neighbouring ones are en-
hanced and irrelevant ones are suppressed. Segment splatting consists of representing each polyline as
segments which are splatted with different speeds, colours and lengths. The user may pause and resume
the animation. The concept of using animation to convey statistical properties has also been explored by
Johansson, Ljung, et al. [2005].

As can be seen from the short overview given above, many different clustering algorithms can be
used to group together similar records in large datasets. In addition to the standard classification algo-
rithms such as k-nearest neighbours, approaches such as self-organising maps, fuzzy-logic, and special
approaches such as hierarchical and visual clustering (classifying based on geometrical properties) may
also be taken. The most trivial approach to displaying clustered records is colour-coding, but other meth-
ods, such as edge bundling and displaying class envelopes, may be more effective at de-cluttering the
view and conveying the information about the number of records in particular clusters. Interactive an-
imation of the rendering process can also be applied to help users discover patterns in large datasets.
Combinations of some of these techniques may also yield interesting results.



40 4. Parallel Coordinates

(a) The initial parallel coordinates display. (b) Parallel coordinates display after applying the
edge bundling technique.

(c) Parallel coordinates with bundled edges and cluster colouring.

Figure 4.7: The clutter in the initial parallel coordinates display (a) is reduced after applying the
edge bundling technique (b). In (c), polyline clusters are additionally coloured. [Images
extracted from Zhou, Yuan, et al. [2008], with kind permission of Huamin Qu.]

Figure 4.8: Transparent colour bands, or envelopes in parallel coordinates. On the left, the ranges
of object characteristics for the clusters of countries according to population density is
shown, while the right plot shows clusters according to age structure. [Image extracted from
G. Andrienko and N. Andrienko [2004], with kind permission of Gennady Andrienko.]



4.3. Data Exploration and Analysis with Parallel Coordinates 41

4.3 Data Exploration and Analysis with Parallel Coordinates

The success of the data exploration and analysis process often depends on how the user interacts with the
data. Certain exploratory skills are required, in order to reveal meaningful insights from a given dataset.
Inselberg [2010] provides several examples of data exploration and analysis with parallel coordinates.
This section describes the process of exploratory analysis of a financial dataset conducted by Inselberg
and four financial experts, as described in his book [Inselberg, 2010, Chapter 10].

The specific financial dataset contains the following dimensions:

• WEEK - quotes for 54 weeks in a year,

• MONTH - the 12 months of a year,

• YEAR - 9 years (1985 - 1993),

• BPS - British Pound Sterling quotes,

• GDM - German Dmark quotes,

• YEN - yen quotes,

• TB3M - interest rates for three months (expressed in percentages),

• TB30Y - interest rates for 30 years bonds (expressed in percentages),

• GOLD - price of gold (expressed in $/ounce), and

• SP500 - the American Standard and Poor’s 500 stock market index [Investopedia, 2015].

Figure 4.9 shows the parallel coordinates visualisation of the financial dataset in ParallAX [T. Avidan
and S. Avidan, 1999]. The available records for the years 1986 and 1992 are selected and compared. The
visualisation reveals that, in the year 1986, the yen had the greatest volatility, which can be seen by
comparing the value ranges among the three currencies in this year. Interest rates varied in the mid
range, and there was a gap in the price of gold. In the year 1992, the yen was stable, while the British
pound (BPS) was highly volatile. Both interest rates and the gold price were very low. Next, the data for
the year 1986 is isolated, and the low range of the prices of gold are selected, as shown in Figure 4.10.
It is immediately discovered that the price of gold varied in the lower range until the second week of
august, when it suddenly jumped and stayed high.

An interesting pattern shown by visualising the dataset in parallel coordinates is the relation between
the YEN and the TB3M dimension. As shown in Figure 4.11, there are many crossings in the area be-
tween the sixth and seven axis, which is caused by the negative correlation between the two dimensions.
By varying the values of other dimensions, it is discovered that there is also a positive correlation be-
tween YEN and the TB3M in the year 1990. This positive correlation is shown in Figure 4.12. The price
of gold in this year was in the low and mid range.

Based on the discovered pattern, the exploration was continued by examining the portion of the
dataset where the value of the yen is in the upper range. By isolating this portion of the dataset, further
interesting patterns were discovered. As shown in Figure 4.13, the negative correlation between the value
of the yen and interest rates matches the low price of gold, while the positive correlation between YEN
and TB3M matches the high price of gold. In other words, movements in currency exchange rates appear
to be related to the price of gold. To test this assumption, the upper range of gold price was isolated. This
time, the correlation between currencies BPS and GDM, is examined using the scatter plot visualisation.
As shown in Figure 4.14, the correlation between BPS and GDM forms an almost perfect straight line.
The slope of the line represents the exchange rate between GDM and BPS, which is constant when the



42 4. Parallel Coordinates

Figure 4.9: Parallel coordinates visualisation of financial data for the years 1985-1993. The data
for the years 1986 and 1992 is selected and represent in green and blue. In 1986, the
yen had the greatest volatility, interest rates varied in the mid range, and there was a
gap in the price of gold. In 1992, the yen was stable, while BPS was highly volatile.
Both interest rates and the price of gold were very low. [Screenshot of the parallel coordinates
visualisation in ParallAX [T. Avidan and S. Avidan, 1999] created by the author.]



4.3. Data Exploration and Analysis with Parallel Coordinates 43

Figure 4.10: The data for the year 1986 is isolated. The price of gold in 1986 was low until the
second week of August, when it suddenly jumped and stayed high. [Screenshot of the
parallel coordinates visualisation in ParallAX [T. Avidan and S. Avidan, 1999] created by the author.]

Figure 4.11: The negative correlation between the sixth and seventh axis is examined. When the
value of the yen was low, interest rates were high, and vice versa. [Screenshot of the
parallel coordinates visualisation in ParallAX [T. Avidan and S. Avidan, 1999] created by the author.]



44 4. Parallel Coordinates

Figure 4.12: Positive correlation between YEN and TB3M is present in the year 1990. [Screenshot of
the parallel coordinates visualisation in ParallAX [T. Avidan and S. Avidan, 1999] created by the author.]

Figure 4.13: The high value range of the YEN is isolated. The negative correlation between the
value of yen and interest rates goes together with a low price of gold, while the positive
correlation between YEN and TB3M goes together with a high price of gold. [Screenshot
of the parallel coordinates visualisation in ParallAX [T. Avidan and S. Avidan, 1999] created by the author.]



4.3. Data Exploration and Analysis with Parallel Coordinates 45

Figure 4.14: The high value range of gold prices are isolated, and the correlation between BPS and
GDM is shown in scatter plot. The slope of the almost perfect straight line formed
in the scatter plot indicates an almost constant exchange rate between GDM and BPS
when the price of gold is high. This establishes a trading guideline and suggests
a “behind-the-scenes manipulation of the gold market” [Inselberg, 2010, page 396].
[Screenshot of the parallel coordinates and scatter plot visualisation in ParallAX [T. Avidan and S. Avidan,
1999] created by the author.]



46 4. Parallel Coordinates

price of gold is high. This establishes a trading guideline and suggests a “behind-the-scenes manipulation
of the gold market” [Inselberg, 2010, page 396].

The process of exploratory analysis described above demonstrates how a parallel coordinates visual-
isation can be used to gain new knowledge and insight. Although such patterns are usually not obvious
at first glance, knowledge of the geometry of parallel coordinates, attention to detail, and the use of in-
teractive features may lead to stunning discoveries. Based on this, and the analysis of four other datasets,
Inselberg [2010, Chapter 10] derives the following guidelines for visual data exploration:

1. Do not let the picture intimidate you.

2. Understand the objectives.

3. Carefully scrutinise the data display for clues and patterns.

4. Good choices may be worth repeating.

5. Vary the value of one of the variables, while watching for interesting changes in the other variables.

6. Be sceptical about the quality of datasets with a large number of dimensions.

7. Test the assumptions and especially the “I am really sure of”s.

The sixth guideline is derived from an exploration of a dataset with 400 variables. After visualisation
with parallel coordinates, it was immediately discovered that many dimensions contained invalid data.
Furthermore, the repetitive visual patterns showed that many dimensions were simply repeated several
times in the dataset under different names. Although these guidelines were derived using parallel coor-
dinates, they can be also be relevant when exploring data with (a combination of) other methods.

4.4 Variations of Parallel Coordinates

The original idea of parallel coordinates, as introduced by Inselberg [2010], has been extended in many
ways. Extensions introduced in order to handle the problem of occlusion when visualising large datasets
were previously discussed in Section 4.2. The focus of this section are variations of parallel coordinates
which solve other problems associated with parallel coordinates. An overview of the most common
parallel coordinates variations was also provided by Hackl [2011, Chapter 3].

4.4.1 Three-Dimensional Displays

Johansson, Cooper, and Jern [2005] proposed using a three-dimensional variation of the standard parallel
coordinate implementation. In this variation, one axis is positioned in the centre of the view, while all
other axes are placed in three dimensional space around the central axis. Every axis is connected only
to the central axis. This approach enables easy exploration of relations between the axes, as shown in
Figure 4.15, since the user is able to simultaneously compare several dimensions to a single dimension
of interest. The dimension (axis) of interest can be changed using interactive features. Although an arbi-
trary number of dimensions can be visualised using this approach, Johansson, Cooper, and Jern [2005]
argue that the upper limit for the number of dimensions which can easily be perceived and distinguished
is between 15 and 20.



4.4. Variations of Parallel Coordinates 47

(a) Two-dimensional parallel coordinates. (b) Three-dimensional parallel coordinates.

Figure 4.15: In two-dimensional parallel coordinates, only adjacent axes can be compared. In (a),
the third axis can be directly compared only with the second and fourth axis. In three-
dimensional parallel coordinates (b), one axis is displayed in the centre of the view,
and all other axes are connected to it. Here, axis 3 can be directly compared to all
other axes. [Image created by the author based on Figure 1 in Johansson, Cooper, and Jern [2005], using
paint.net [dotPDN LLC, 2015].]



48 4. Parallel Coordinates

(a) Parallel coordinates with polylines. (b) Parallel coordinates with polycurves.

Figure 4.16: Using polylines to represent records in parallel coordinates visulisations can cause
polylines to cross on an axis. When polylines cross, it is almost impossible to tell
which segment belongs to which polyline (a). This problem can be solved using poly-
curves instead of polylines. In (b), crossing polycurves are visually kept apart simply
based on their curvature. [Image created by the author based on Figure 8 in Graham and Kennedy
[2003].]

4.4.2 Curves

The use of polycurves instead of polylines in parallel coordinates was previously mentioned in the con-
text of edge bundling, as a method for handling large datasets. Graham and Kennedy [2003] suggest
using polycurves to solve yet another problem associated with the standard parallel coordinates imple-
mentation. If polylines are used to represent the records, and two or more records have the same value
in one of the dimensions, the polylines will cross on the axis which represents that dimension. When
polylines cross on one axis, it is impossible to tell which segments belongs to which polylines. As shown
in Figure 4.16, this problem can be avoided by using polycurves. With this simple approach, the records
can be visually kept apart simply based on the curvature of the record representation.

4.4.3 Parallel Sets

Data categorisation was discussed as a method of dealing with large datasets in parallel coordinates along
with different methods of presenting the categorised data. In such parallel coordinates implementations,
the categories are used primarily to find an interesting subset of the dataset whose numerical values are
then explored in more detail. Real-world datasets often contain categorical data in which the number of
items belonging to a category plays a more important role than the numerical values of the items. Parallel
sets is a visualisation technique optimised for such datasets. Like in parallel coordinates, each dimension
is treated separately and is represented by an axis. The categories themselves are represented by boxes
[Kosara, Bendix, and Hauser, 2006]. The size of the boxes are scaled to the number of records belonging
to the category. The relations between the categories are represented by parallelograms between the axes.
The numerical values of individual records are not displayed. An example of a parallel sets visualisation
can be seen in Figure 4.17.

Large datasets can be displayed very effectively with parallel sets, because using the frequency infor-
mation reduces the number of objects which have to be displayed. Both performance and of cluttering
depend only the number of categories, which is generally small relative to the number of records in
the dataset. In their implementation of parallel sets, Kosara, Bendix, and Hauser [2006] provided the
following interactive features: selection, highlighting, interactive querying, filtering, and reordering of
dimensions and categories.



4.5. Software Applications 49

Figure 4.17: Categorical data visualised with parallel sets. Boxes on the axes represent the cat-
egories. Adjacent axes are connected with parallelograms. This (fictional) dataset
contains data about the gender of the passengers and the class in which they travel.
The parallelograms are colour-coded based on the categories represented on the first
axis, thus enabling better visual distinction between these two categories on the sec-
ond axis. [Image created by the author using paint.net [dotPDN LLC, 2015], based on Figure 3 in Kosara,
Bendix, and Hauser [2006].]

4.5 Software Applications

Since the invention of the parallel coordinates, this visualisation technique has become a popular com-
ponent of many visual data exploration tools. While the basic representation of the dataset in parallel
coordinates is similar across many tools, many of these tools differ in terms of interactivity and other fea-
tures. In this section, an overview of four commonly used parallel coordinates tools is provided: Ggobi,
XDAT, OECD eXplorer, and ParallAX. In addition to these three tools, an example implementation of
parallel coordinates in WPF is also described.

4.5.1 GGobi

GGobi is a free, open-source, general-purpose high-dimensional data visualisation tool [Cook and Swayne,
2007], [Swayne et al., 2006]. It is implemented in C. The GTK toolkit [The GTK+ Team, 2014] is used
to build the graphical user interface (GUI). Datasets can be imported either from .xml or .csv files. Sev-
eral multi-dimensional information visualisation techniques are supported in GGobi: scatter plot, scatter
plot matrix, parallel coordinates, bar chart, and time series. Each of these visualisations is displayed in
a separate view. The views are interconnected, which means that changes made in one visualisation are
automatically applied to all other visualisations.

The dimensions in GGobi parallel coordinates can be ordered either horizontally or vertically. As
shown in Figure 4.18, only the polylines and individual data points are displayed. The axes are not
drawn explicitly. The currently selected dimension is marked with a white rectangle surrounding the data
points. The dimensions can be re-ordered by dragging this rectangle to a new position. Record selection
is possible, but has to be explicitly activated using a menu option, which is available in a separate view.
After this interaction has been activated, only the records within the active dimension can be selected
by drawing a rectangle with a mouse over the data points. Selection of records by drawing a rectangle
over the polylines is not possible. When a different dimension is selected, the currently selected records
are automatically unselected, unless the “Persistent” option is active. In order to show the record values,
the “Identify” interaction has to be explicitly activated. Labels with the record values are then displayed
while hovering over a data point within the currently selected dimension.

GGobi provides only a limited set of interactions. Each interaction has to be explicitly activated



50 4. Parallel Coordinates

Figure 4.18: GGobi [Cook and Swayne, 2007] parallel coordinates visualisation of a dataset with
573 records and 5 dimensions. Each unique data point is visualised, along with poly-
lines connecting the data points to represent a single record of the dataset. The axes
are not drawn explicitly. The active dimension is marked by a white the rectangle
which surrounds the data points. Record selection, as well as the order implemented
interactions, are activated explicitly in a separate view (shown on the left). [Screenshot
created by the author.]

using a special menu, which is available in a separate view. While one interaction is activated, all other
interactions are disabled. This means, for example, that the axes cannot be reordered while the record
selection or identification is enabled, which is rather unintuitive.

4.5.2 XDAT

XDAT is a general-purpose, free, and open source visual exploration tool for multivariate data [Enguer-
rand de Rochefort, 2015]. It is implemented in Java [Oracle, 2015]. Datasets can be imported from text
files, and visualised in form of a table, scatter plot, or parallel coordinates.

The XDAT parallel coordinates visualisation is shown in Figure 4.19. Dimensions can be added
or removed from the view using the “Parameters” option, which is provided in the toolbar. The axes
can be re-ordered using drag-and-drop. Sliders provided at the top and the bottom of each axis can
be used to filter the records. Records which are filtered out, are simply removed from the view. The
context menu can be activated for each axis individually and provides a comprehensive set of features
for axis manipulation, such as axis inversion, scaling, hiding, filter resetting, etc. Single records can
be highlighted simply by hovering over the individual polylines. A selectable number of “ticks” can be
drawn on each axis, so users can identify value ranges.

A distinctive feature implemented in XDAT is manual record clustering. The set of currently active
records can be marked as a single cluster, for which a colour can be selected. By removing the current
portion of the dataset from the view using the sliders, and adding a new one, a new cluster can be defined.
An arbitrary number of clusters can be added. Single clusters can then be dynamically added or removed
from the view, thus enabling users to selectively explore different parts of the dataset.



4.5. Software Applications 51

Figure 4.19:
Parallel coordinates visualsation of a dataset with 200 records and 5 dimensions in
XDAT [Enguerrand de Rochefort, 2015]. Distinctive feature implemented in XDAT,
is manual clustering. The user can select a portion of the dataset using the sliders, and
mark the set of active records as a cluster, using the view on the right. An arbitrary
number of clusters can be defined. The user can select a different colour for each
cluster. [Screenshot created by the author.]

The scatter plot, parallel coordinates, and the table view in XDAT are partially connected. When
clusters are added or removed from the parallel coordinates plot, these changes are automatically applied
to the scatter plot visualisation. Records selected in any of the three views are automatically selected in
all other views. However, when records are filtered out in the parallel coordinates, they remain visible in
the scatter plot.

As seen from the overview given above, XDAT provides a standard set of interactions, which can
be accessed in a relatively intuitive way. Manual clustering is a feature which can further enhance
the process of visual exploration. However, the values of the selected records can be only seen in the
table representation, which forces user to constantly switch between the table and parallel coordinates
visualisation.

4.5.3 OECD Statistics eXplorer

The Organisation for Economic Co-operation and Development (OECD) provides a free, web-based
visual data exploration tool [NComVA, 2014], [Jern, 2009]. This tool is implemented in Flash [Adobe,
2015], and is optimised for use with regional statistics data. The visualisation is pre-loaded with the data
provided by the OECD, but users can load their own datasets from text files. It provides a comprehensive
set of interconnected visualisations: scatter plot, scatter plot matrix, table lens, data table, bar chart, time
bar chart, distribution plot, time graph, parallel coordinates and geographic map.

The parallel coordinates visualisation in the OECD eXplorer, shown in Figure 4.20, provides a stan-
dard set of interactive features. Sliders are available on the axes to filter the records. Axes can be inverted



52 4. Parallel Coordinates

Figure 4.20: The parallel coordinates visualisation in the OECD Regional eXplorer [NComVA,
2014] provides a standard set of interactions. A distinctive feature is the interactive
histograms. Clicking on a histogram bin causes all records mapped to the axis range
occupied by the selected bin to be selected. [Screenshot created by the author.]

using the button next to the axis label, or scaled by manually defining the value after clicking on any of
the labels which indicate the current minimum of maximum values of records. Using the “Settings” view,
the user can re-order the axes, change the opacity and other visual properties of the polylines, and add or
remove the histograms and the mean line. Multiple records can be selected either by clicking on the plot
area on which polylines cross, or by clicking on the histogram bins, which selects all records mapped to
the axis interval occupied by the selected bin.

When the sliders are moved across an axis, the polylines are not interactively filtered in and out, but
are only removed from the view once the slider is released. Furthermore, the selected records are not
labelled. Like in XDAT, users have to refer to the data table in order to view the exact values of selected
records.

4.5.4 ParallAX

ParallAX [T. Avidan and S. Avidan, 1999], shown in Figure 4.21, is a commercial data visualisation
tool developed by Alfred Inselberg. Datasets can be imported from text files with .DAT file extension, in
which records are separated by a line break, and elements between the records are separated by spaces.
Other data formats are not supported.

ParallAX provides a comprehensive set of record selection mechanisms, for which the term “query”
is used. Using the “New query” option which can be accessed from the “Query” menu, a new query set
can be created and assigned a colour. All records selected within a query set are then displayed in that
colour. Users can manipulate the record display within a query set using the following interactions:

• Pinch. When this interaction is activated by clicking on the “P” toolbar button, two arrows appear
on the screen, using which users can define a range of records of interest by moving the arrows
across the display.



4.5. Software Applications 53

• Interval. Similar to the pinch query, activating this interaction using the “I” button in the toolbar
causes two arrows to appear on the screen, above (or under) which a label is displayed, showing
the current value of the arrow’s position on the axis. This allows selection of records within a
particular value interval.

• Angle. Activating this interaction by clicking on the “A” button in the toolbar and then clicking on
an axis, allows users to define the angle range of interest between a selected axis and an axis on its
left, by moving the arrows which appear on the screen. This allows selection of only those records,
whose angle between the line segment and the first axis is within the specified angle range.

• Flip. Axes can be selected using the buttons underneath the axis lines containing the axis label and
inverted (flipped) by clicking on the appropriate button in the toolbar.

Users can define an arbitrary number of query sets, and combine them using conjunction, disjunction,
and complement operators. Records selected within one or more query sets can be isolated, allowing
exploration of records of interest without the displaying all other records. Despite having a different
name, the possibility to define query sets corresponds to the manual clustering feature in XDAT.

ParallAX implements the automatic calculation of axis orderings (so-called Hamiltonian paths) which
allow comparison between every pair of axes, as described in Section 5.1. In addition, users can define
their own axis orderings using the parameter panel in which the calculated orderings are displayed. This
panel is shown in Figure 4.22. ParallAX also provides a synchronised scatter plot view, and a clustering
mechanism which uses the nested cavity algorithm [Inselberg, 2010, page 406].

Although it provides a comprehensive set of features for visual data exploration, ParallAX is a rather
unintuitive tool. All interactions must be explicitly activated by clicking on an appropriate button in the
toolbar. To be able to use the provided features, users often need to refer to the manual.

4.5.5 Parallel Coordinates in WPF

Wlodek [2009] provides an example implementation of parallel coordinates using Microsoft’s WPF
[MSDN, 2015e] technology. The source code of this example is freely available for download [Wlodek,
2010]. Using the source code, a demo application can be compiled an executed.

The number of features in this parallel coordinates implementation is very limited. Datasets cannot
be imported from any sources. However, random datasets with 10, 30, 50, 100, or 200 records can be
generated. Figure 4.23 shows a visualisation of a generated dataset with 200 records and 6 dimensions.
In addition to the axes and polylines, which represent the dimensions and records of a dataset, record
values in every dimension are visualised with ellipses, which are drawn at the points where polylines
interesect with the axes. Single or multiple records can be selected simply by clicking on the polylines.
Selected records are highlighted and labels are drawn to indicate record’s value in each dimension. Every
axis can be zoomed in or out individually. Axes can be re-ordered using drag-and-drop. When a selected
axis is dropped over another axis, the two axes simply swap positions. An interesting feature, whose
usefulness is highly questionable, is the possibility to move all points up and down the axis.

As seen from the overview given above, this implementation cannot be used for visual exploration
of any datasets other than random ones generated by the application itself. Furthermore, it provides a
very limited set of interactions. However, the author’s intention was not to produce a usable application,
but to demonstrate how parallel coordinates can be implemented in WPF. The provided source code
was used as a starting point for implementing aggregated parallel coordinates visualisation described in
Chapter 5. The limitations of the Wlodek’s approach, and the steps taken in order to improve and extend
this implementation are explained in Chapter 6.



54 4. Parallel Coordinates

Figure 4.21: Parellel coordinates visualisation in ParallAX [T. Avidan and S. Avidan, 1999]. All
interactions have to be explicitly activated using the options in the menubar or the
icons in the toolbar. Sets of queries can be defined and assigned a colour, causing all
records selected within a set to be displayed in that colour. Here, two sets are defined
(blue and green). Query sets can be added or removed from display using the coloured
buttons at the bottom, or combined into a new set using boolean operators, which can
be accessed from the toolbar. Axis labels are represented as buttons. Clicking on an
axis button selects an axis, enabling the axis for manipulation, such as inversion.
[Screenshot created by the author.]



4.5. Software Applications 55

Figure 4.22: The Permutations panel in ParallAX showing a minimal set of axis ordering permu-
tations (so-called Hamiltonian paths) which allow comparison between all pairs of
axes. Users can view permutations and apply them to the current parallel coordinates
display. Additionally, users can define their own axis orderings by selecting the axis
labels from the left in a particular order. [Screenshot created by the author.]

Figure 4.23: The WPF parallel coordinates application implemented by Pitor Wlodek [Wlodek,
2009]. In this view, 200 records are visualised. Points where the polyline segments
intersect with the axis are indicated by drawing an ellipse. When a polyline is hovered
over, it is highlighted with a different colour and drawn thicker. The corresponding
ellipses on all axes are enlarged and show a tooltip with the current value. [Screenshot
created by the author.]



56 4. Parallel Coordinates



Chapter 5

Aggregated Parallel Coordinates

“ All animals are equal, but some animals are more equal than others. ”

[ George Orwell, Animal Farm ]

As described in Chapter 2, datasets produced by simulating the influence of different setups on a
car’s performance on a given racing track are extremely complex. These datasets contain a large number
of records and are high-dimensional. Some dimensions have a hierarchical structure, as they contain
parameters related to the overall performance, as well as those related to different segments of the track
(straights, corners, corner segments) and different parts of the vehicle (front, rear, left, right). The main
goal of this thesis was to explore the possibilities for visualisation and exploration of such datasets. The
parallel coordinates visualisation technique, described in Chapter 4, is an effective way of visualising
multi-dimensional data. However, standard implementations of parallel coordinates cannot deal with
dimension hierarchies in the dataset.

Aggregated Parallel Coordinates (APC) is a variation of parallel coordinates, developed at the AVL
Racing [AVL, 2015], as a part of this thesis. This technique deals with the hierarchical structure of
some dimensions in race car simulation datasets. It also provides filtering features especially designed to
better support visual data exploration of race car simulation datasets. This visualisation is implemented
in Microsoft .NET framework 4.0, with Windows Presentation Foundation (WPF) [MSDN, 2015e] as the
rendering sub-system, and C] as the programming language. The use of these technologies was required
by AVL. Visual Studio 2013 [Microsoft, 2015c] was used as the Integrated Development Environment
(IDE).

The implemented parallel coordinates plot is not intended to be used on its own, but in combination
with other visualisations. For this reason, it was developed as a library, which can easily be imported
into any WPF application. Aggregated Parallel Coordinates library is already being used as a part of
SimBook, a visualisation tool developed by AVL Racing. In addition to the parallel coordinates plot
itself, a simple WPF application, named APC Testbed, was also built as part of this thesis to serve as
a testbed and demo application. This application enables full interaction with the aggregated parallel
coordinates plot, and provides interface to all implemented features. The user guide for this application
can be found in the Appendix A.

In the following sections, an overview of the features implemented in APC is presented. Special
attention is given to dimension aggregation, the feature which enables visualisation of hierarchies within
dimensions of the dataset. This is followed by an overview of the integration of Aggregated Parallel
Coordinates into AVL SimBook.

57



58 5. Aggregated Parallel Coordinates

Figure 5.1: Aggregated parallel coordinates (APC). Standard features include axis inversion, fil-
tering records using the sliders, displaying histograms on the axis, and displaying the
mean line. [Image created by the author]

5.1 Main Features

The Aggregated Parallel Coordinates, shown in Figure 5.1, provides a series of features and interactions.
Some of these features are considered to be standard, since they are implemented in many other par-
allel coordinates visualisations, while others provide somewhat distinctive functionality. The following
interactive features are implemented in the APC:

• Record Filtering
The records in a race car simulation dataset represent values of a particular car setup. Since
the main task in visual analysis of race car simulation data is finding the optimal setup, filtering
is considered to be the most important interaction. This interaction is implemented by adding
sliders to the top and the bottom of each axis. Both sliders can be moved up and down the axis
independently. When a slider is moved, a label appears on top of it, showing the current numerical
value mapping of the slider’s position on the axis. The space between the upper and lower slider
works as a middle slider, and can be used to move the selected range along the axis, as shown in
Figure 5.2. During the sliding process, the mouse does not have to be directly over the slider, but
can be moved freely across the plot. For this reason, the active sliders are highlighted. The sliders
can be moved back to their initial position using the axis context menu, shown in Figure 5.5

The records can be also filtered by changing the axis scaling at a local and global level. When the



5.1. Main Features 59

Figure 5.2: The upper and lower sliders on the axes can be moved independently. The space be-
tween them acts as a middle slider, which can be used to move the selected value range
along the axis. When any of the sliders is activated, a label is added above or below the
slider. If the middle slider is being moved, both labels are visible. The label shows the
current numerical value of the slider position, and moves with the slider along the axis.
[Image created by the author]

axes are scaled at a global level, the same extreme (minimum and maximum) values are applied to
all axes. On a local level, an axis can be scaled by inserting the desired record range in one or both
extreme labels. Since records which do not belong to the user-selected range are automatically
removed from the view, this feature acts as a zoom interaction on a local level. The scaling of axes
can also be changed by right-dragging the mouse over the screen. Upon releasing the right mouse
button, the axes affected by the drawn rectangle are automatically scaled to the range correspond-
ing to the rectangle’s height, as shown in Figure 5.3. This filter interaction supports focusing only
on items in the selected range. The scaling can be reset using the axis context menu shown in
Figure 5.5.

• Record Selection
Two types of record selection are supported. A single record can be temporarily selected (high-
lighted) simply by placing a mouse over it. The highlighted polyline is then displayed in a different
colour, and the labels with values of the currently selected record are displayed over the record’s
position on each axis. A record can be permanently selected by control-clicking on the appropriate
polyline. Selection of multiple records is possible by left-dragging a rectangle over the polylines
which are to be selected. Control-clicking on an already selected record removes it from the set of
the currently selected records. Clicking on a blank area deselects all records. Record selection is
shown in Figure 5.4.



60 5. Aggregated Parallel Coordinates

Figure 5.3: By right-dragging the mouse, the affected axes are automatically zoomed to the selected
range. The scaling of the other axes is not affected. Records which are out of the
selected range are removed from the view. [Image created by the author]

Figure 5.4: APC supports record highlighting and (multiple) record selection. A single record is
temporarily selected (highlighted) as the mouse hovers over it, and it is displayed in red.
Vales of the highlighted record as displayed in labels on each axis. Other (permanently)
selected records are displayed in blue. [Image created by the author]



5.1. Main Features 61

Figure 5.5: The axis context menu supports removing the axis, flipping it, reseting the scaling and
moving the sliders to the initial positions. [Image created by the author]

• Record Context Menu
A record context menu, whose contents can be defined externally and passed to the Aggregated
Parallel Coordinates library, can be activated by right-clicking a particular record. When an item
in the context menu is selected, the particular application using the library is notified. When it
receives the notification about the selected item, the application can define what steps should be
taken. An example application of this context menu is discussed in Section 5.3.

• Relative Numerical Representation
Apart from the absolute numerical values, records can be represented relative to a specified record.
If relative numerical representation is enabled and no reference record has been explicitly defined,
the records are represented relative to the mean record. The record context menu can be used to
support selection of the reference record. The selected reference record is mapped to the zero
position on each axis, and all other records are then mapped relative to this value. This feature
is very useful when comparing vehicle setups, because knowing the absolute value is often not
as important as knowing by how much the value of a record in a given dimension changes when
applying one setup with respect to a selected setup. An example usage of this feature is also
described in Section 5.3.

• Adding/Removing Dimensions
Single or multiple dimensions can be dynamically added or removed from the view. Dimensions
can be added simply by using the implemented drag-and-drop. When an item is dropped on the
view, and the data passed along with the dropped object is a parameter of the dataset, an axis is
created and added to the view. Single or multiple axes can be removed from the view using the
axis context menu, shown in Figure 5.5.



62 5. Aggregated Parallel Coordinates

Figure 5.6: The axis for Parameter 1 has been selected for drag-and-drop. Its ghost representation
can be moved freely across the plot, while the original representation remains at the
same position. When the ghost is dropped, here to the right of the axis for Parameter 2,
the original representation is moved to that position. [Image created by the author]

• Re-ordering Axes
Drag-and-drop can be used to move axes across the plot and reorder the axes. When an axis
is selected for drag-drop operation, its “ghost” representation is created. The ghost axis can be
dragged freely over the view, as shown in Figure 5.6. The original axis representation remains in
the same position until the “ghost” is dropped on a different location. The view is then reloaded
with the new axis ordering.

APC can calculate the minimal number of axes orderings which enable comparison of each axis
to all the other axes, as described in Chapter 4. The calculated permutations are calculated in the
library and can be accessed externally by a particular application using the library, and applied on
demand.

• Axis Inversion
By default, minimum record values are mapped to the lower part of an axis, and maximum record
values are mapped to the upper part of an axis. This mapping can be inverted by using the arrow
button provided on top of each axis. Since these buttons can be removed from the view in order to
save space, axis inversion can also be done using the appropriate option in the axis context menu.

• Adding Histograms to the Axes
Histograms can be added to the axes in order to visualise the distribution of the dataset records on
the axis. The default number of histogram bins is 10, but this can be changed on demand.

• Displaying a Mean Line
A new (meta) record can be created based on the mean values of the currently displayed records.
This record can be visualised in form of a mean line, and dynamically added or removed from the
plot.



5.2. Dimension Aggregation 63

Figure 5.7: Parallel coordinates with an aggregated dimension. The middle axis is thicker than the
other ones, indicating that it is aggregated. The button underneath the axis can be used
to replace the existing aggregated axis with the axes contained within. [Image created by
the author]

• Changing the Polyline Opacity
The opacity of the displayed polylines in the APC can be changed on demand. As described in
Chapter 4, reducing the polyline opacity can be used in order to uncover visual clusters when
visualising datasets with a large number of records.

5.2 Dimension Aggregation

Hierarchies in parallel coordinates have previously been discussed only in the context of hierarchical
clustering of records, as a method for handling large datasets [Ying–Huey, M.O. Ward, and Runden-
steiner, 1999]. However, no known research has been conducted on visualising datasets with hierarchies
within dimensions.

APC was created to visualise datasets described in Chapter 2 by following the “Overview first, zoom
and filter, then detail-on-demand” [Shneiderman, 1996] principle. The “overview” is provided by aggre-
gating elements of a hierarchy into a single dimension. For example, if the dataset contains the same
parameter calculated for each corner of a circuit, these dimensions are aggregated and visualised as one
dimension. The aggregation is done by calculating the mean values of all records. Aggregated dimen-
sions are treated like any other dimensions. Filtering and other interactions can be applied in the same
way as on non-aggregated dimensions. However, aggregated dimensions are visually distinctive, and
provide additional interactions. As shown in Figure 5.7, an aggregated dimension has a thicker axis than
the other dimensions to indicate that it is a meta-dimension representing or “containing” two or more
dimensions.

Aggregated axes are not only marked by their thickness, but also by a button placed underneath
them. This “expand” button is used to replace the aggregated axis by its child axes. The child axes can



64 5. Aggregated Parallel Coordinates

Figure 5.8: Four different types of axes in aggregated parallel coordinates. The first axis does not
belong to any hierarchy. The second axis is an aggregated axis. It has a thicker body
and a button for expanding. The last two axes are child axes, which have been added to
the view by expanding an aggregated axis. The third axis does not contain any children
itself, and provides a button for collapsing back to the parent. The last axis is a child
axis that has its own children. This axis provides two buttons: one for collapsing back
to the parent, and one for expanding (replacing it by its child axes). [Image created by the
author]

be easily identified by a button underneath them, which enables aggregating, or “collapsing”, the axes
back. Any child axis can be an aggregated axis itself. Such child axes have a thick middle slider, and
provide buttons both for expanding and collapsing. As shown in Figure 5.8, there are four types of axes
in the aggregated parallel coordinates:

• axes that do not have a parent or a child,

• aggregated “root” axes with children but no parent,

• axes with a parent, but no children,

• axes with both parent and children.

Since axes can be freely moved across the plot, expanded axes which have the same parent do not
necessarily have to be located next to each other. Identifying which axes have the same parent is possible
by hovering over a “collapse” button, which will highlight the sibling axes, as shown in Figure 5.9. In
case a sibling axis was expanded even further, that is, replaced by its children, all its child axes are also
highlighted, since they would also be removed from the view if the “collapse” button is clicked.



5.2. Dimension Aggregation 65

Figure 5.9: Hovering over the “collapse” button highlights the axes that will be collapsed back by
clicking on it. This interaction provides easy identification of dimensions at the same
level of the hierarchy. [Image created by the author]



66 5. Aggregated Parallel Coordinates

Figure 5.10: The second axis in the left image is an aggregated axis. When the axis is expanded,
any scaling, orientation, and current slider values inherited by its child axes. [Image
created by the author]

Figure 5.11: When the child axes are collapsed, the minimum and maximum slider values of all
children are calculated. The sliders on the parent axis are then set to these values.
[Image created by the author]

When an aggregated axis is expanded, its child axes are added at the same position in the plot as the
aggregated axis. If the parent axis was inverted at the moment of expanding, all its children will also be
inverted. The children inherit any scaling and slider positions from the parent. This behaviour is shown
in Figure 5.10. In case the parent axis is collapsed, certain states will be taken derived from its children.
If the majority of children are inverted at the moment of collapsing, the aggregated axis will also be
inverted. In case the number of inverted children is the same as the number of non-inverted children, the
parent axis will have the same state as it had before collapsing. The minimum and maximum values of all
sliders on child axes are calculated, and the sliders of the collapsed parent are placed to the corresponding
position, as shown in Figure 5.11. The same applies when deriving scaling from child axes.

Based on the axis thickness and buttons provided under the axes, it can be easily determined whether
an axis is a child, a parent, or both. However, one cannot easily determine how deep the hierarchy is,
or at which level of hierarchy the displayed axes are. In datasets produced by race car simulations, a
typical hierarchy is a parameter with values calculated for every segment of every corner in a circuit. In
this case, the root axis is an aggregation of every corner in the circuit, and has as many children as the
circuit has corners. Since every corner of the circuit has three segments, every child parameter of the



5.2. Dimension Aggregation 67

Figure 5.12: A portion of a typical race car simulation dataset visualised with aggregated parallel
coordinates. The first dimension (Handling) is an aggregated dimension and represents
the root of a parameter hierarchy. Expanding this dimension replaces it with its child
nodes: Handling C1, Handling C2, and Handling C3 which, in this case, represent
three corners of the track. These three dimensions are themselves aggregated (meta)
dimensions, since they are created by calculating mean values of the three segments
(entry, mid, and exit) of corners 1, 2, and 3. Handling C2 Entry, Handling C2 Mid,
and Handling C2 Exit are the leaf elements of the parameter hierarchy and have been
added to the view by expanding dimension Handling C2. Although the hierarchy
level is not explicitly visualised, users can easily identify which level of hierarchy is
represented by an axis based on the parameter names. [Image created by the author]

root will be an aggregation of three axes: entry, mid and exit. Hence, the level of hierarchy of currently
displayed dimensions, as well as the child count, are both evident from the dimension naming, as shown
in Figure 5.12.

For those cases in which the level of hierarchy is not inherited from the data itself, an attempt was
made to encode the information about the current hierarchy level in the axis height. There were several
problems with this approach. Having axes of different heights in the same view affects the possibility
to compare the axes directly. If one record has the same value in adjacent dimensions, this would be
indicated by the straight line between the axes, provided that the axes have the same scaling and the
same height. This, and other similar patterns, cannot be identified as easily if the axes do not have the
same height. Furthermore, the axes heights would have to be significantly different in order to enable
easy identification of the hierarchy level. This would produce either very tall or very small axes when
visualising deep hierarchies.

Another possibility to encode the information about the hierarchy depth would be to use colour cod-
ing. This was not implemented, because colour coding is already used in AVL SimBook to encode other
kinds of information. Using different colour intensities to encode this information was also considered,
but not implemented, since it would make the comparison between the items in deep hierarchies diffi-
cult. Conveying information about the current hierarchy level within the parallel coordinates plot does
not seem possible without giving up on the advantages of its general properties. Connecting the parallel
coordinates plot to a separate hierarchy visualisation would be the only possibility to visualise the level
of hierarchy of the displayed axes.



68 5. Aggregated Parallel Coordinates

Figure 5.13: SimBook provides several different visualisations to support visual exploration of race
car simulation datasets. These visualisations include a small multiples representation
of corner segment values (top left), parallel coordinates (top middle), parameter tree
view (top right), track (right), setup table (bottom left), and scatter plot (bottom mid-
dle). Users can include, remove, resize, and reposition the views according to their
needs. [Image created by the author]

5.3 Application of APC in SimBook

SimBook is a tool developed by AVL Racing, which is especially designed for visual exploration of race
car simulation data. SimBook was developed independently but in parallel with this thesis, and many
details of its design are a result of research conducted as part of this thesis. As shown in Figure 5.13,
SimBook consists of the following basic panels:

• corner analyser,

• parameter tree,

• setup table,

• parallel coordinates, and

• scatter plot.

Each of these panels can be moved independently, docked at any position within the window, tabbed next
to other views, or displayed as a separate window. This enables customisable layout positioning which
can be adapted to screens of all sizes. Single views can be dynamically added, removed, or be hidden
from the layout.

The parameter tree view provides a hierarchical overview of all parameters within a dataset. At the
top level, parameters are sorted into two categories: input and output. Input parameters are part of the
car setup. The output parameters were calculated by the simulation based on the car setup. Output
parameters sometimes have hierarchical structure within the dimensions. This means, for example, that
the parameters which are calculated for all straight segments or all corners of the circuit are contained in
sub-categories within the tree view. Expanding a corner category, shows the segments of the corner.



5.3. Application of APC in SimBook 69

In the setup table, input parameters are displayed as rows, while columns represent different combi-
nations of the input parameters (setups). The setup table always contains at least two columns. The first
column represents a reference setup, while all other columns are optional setups. The last two rows of
the setup table show the time in which the car would finish one lap of the track with that setup, as well as
the difference to the lap time of the reference setup. Values within the setup column can be changed by
selecting an item from the drop-down menu in a corresponding table cell. Each setup is colour-coded.

If the parallel coordinates view is enabled, it is automatically populated with the input parameters.
The polylines corresponding to the currently selected reference and optional setups are displayed in the
appropriate colour. The polyline context menu can be used to change the reference, or any of the optional
setups. Changing the setup in the parallel coordinates view automatically changes its values in the setup
table. Although the setup table and the parallel coordinates both display the same information, there are
several advantages to using the parallel coordinates representation to select the reference and the optional
setups. One advantage is that all setups (not only the reference and the options) are displayed at the same
time. While the setup table visualises only the difference in the lap time between the reference and the
optional setups, parallel coordinates enable easy comparison of lap times for all setups, enabling the user
to easily identify and filter out the setups which result in too high lap times. Furthermore, the input set
can contain parameters which are directly dependant. One example are the setups with parameters that
have to have the same value for both the left and right side of the vehicle. Such parameters can be easily
identified in the parallel coordinates view, provided that they are placed next to each other. In the setup
table, on the other hand, it is possible to select one value for the left and a different one for the right
side of the vehicle, but such actions will result in an “invalid lap”. The same error will be shown in
case a selected combination of parameters is missing from the dataset, for whatever reason. This cannot
happen in parallel coordinates view, since only valid records are displayed. This behaviour is shown in
Figure 5.14. Using the setup table for setup selection is an advantage in case the user needs to explore
a particular setup, for which the input values are known. Furthermore, the setup table provides a good
overview of the absolute values of the currently selected setups.

Additional parameters (dimensions) can be added to the parallel coordinates panel, simply by drag-
ging the parameter from the tree view and dropping it on the plot. If the parameter containing sub-
dimensions is dropped on the panel, the parameter is displayed as an aggregated axis. Apart from the
complete input and output sets, parameters at any level of hierarchy can be individually added to the
view.

The Corner Analyser is a separate panel (see Figure 5.13), which uses a line chart matrix to represent
the values of parameters in different segments of the circuit corners. The matrix can contain up to 5
rows and columns of line charts. One parameter can be selected for each row, using the drop-down
menu on the left. A corner can be selected for each column. All the line plots within one row have
the same scaling. The parameters can be represented as absolute and relative values. In the relative
value representation, the reference setup has zero values and is displayed in the middle of the plot, while
the values of other setups show the difference with respect to the reference value. This enables direct
comparison between the entry, mid, and exit segments of different corners for a given parameter. In
the corner analyser, only the reference and optional setups are represented. For any selected corner, a
detail view can be displayed. The details are shown as parallel coordinates in a separate panel, by double
clicking on a plot. An example of a detail view panel is shown at the right side of the Figure 5.15. This
parallel coordinates plot contains three axes: entry, mid, and exit segments of the selected corner. An
axis which shows the overall lap time can be added to the plot, by clicking on the check box under the
plot. Furthermore, any other parameter can be added to the detail view using the drag-and-drop. If the
plot in the corner analyser is displaying the relative values, the detail view will also show the relative
values. Changing this setting in the corner analyser will automatically change the value representation in
the detail view. If the plot for which details are displayed uses absolute values, the detail view will apply
global scaling on the parallel coordinates. The scaling can be changed by clicking on the appropriate
check box under the plot. Just like the parallel coordinates panel with the input and other parameters,



70 5. Aggregated Parallel Coordinates

(a) In the dataset, the rear left and rear right suspensions
have the same value. If the same values are not se-
lected in the setup table view for both parameters,
the lap time entry is set to “invalid”.

(b) The parallel coordinates visualisation clearly
shows that the rear left and rear right suspensions
have the same values in all records of the dataset.

Figure 5.14: In the setup table, selecting a value combination which is not available in the dataset
causes an error. This cannot happen when selecting setups with parallel coordinates,
since only records available in the dataset are visualised.

[Images created by the author]

the detail view panel can also be used to change both the reference and the optional setups. The two
parallel coordinate panels are synchronised, which means that when one or more parameters are selected
in the detail view, the same parameters are automatically selected in the other parallel coordinates view,
as shown in Figure 5.16.

As seen from the overview given above, aggregated parallel coordinates allow easy setup filtering,
and provide an effective representation of the dataset hierarchies. This improves the process of visual
exploration of race car simulation data significantly. Many features in the APC were developed specif-
ically for use in SimBook. These features include the relative value representation, global axis scaling,
and polyline context menus. On the other hand, features like inverting axis or displaying histograms on
the axes, are available, but typically not used when exploring these datasets. Since race car simulation
datasets tend to contain thousands of records, special attention was given to performance optimisation of
APC. This is discussed in the next chapter.



5.3. Application of APC in SimBook 71

Figure 5.15: The Corner Analyser displays a line chart matrix for selected parameters in selected
corners. The “detail view” for every corner segment plot in the Corner Analyser is
provided in an additional parallel coordinates panel. [Image created by the author]

Figure 5.16: The parallel coordinates panels in SimBook are synchronised. Selecting a polyline in
one panel highlights it automatically in the other panel. Items which are filtered out in
one view are also filtered out in the other view. [Image created by the author]



72 5. Aggregated Parallel Coordinates



Chapter 6

Performance Optimisation

“Before software can be reusable it first has to be usable.”

[Ralph E. Johnson - Computer scientist]

Windows Presentation Foundation (WPF) was introduced as a part of .NET framework 3.0. WPF
is a library which provides a comprehensive set of features for building Windows client applications.
In its core, WPF has a resolution-independent, vector-based rendering engine. One of the most impor-
tant properties of WPF is the separation of application appearance and its behaviour. The appearance is
generally defined using Extensible Application Markup Language (XAML), while the behaviour is im-
plemented either in C] or Visual Basic. The connection between the appearance and the behaviour logic
is established by means of data binding. When the data is updated in the business logic, the changes are
automatically reflected to the appearance (provided that the appropriate notification event is triggered),
and vice versa.

To access the machine hardware, WPF uses Microsoft DirectX APIs. Depending on the available
graphics hardware, a WPF application can be rendered in three tiers [MSDN, 2015d]:

• Rendering tier 0 - The entire application is rendered in software.

• Rendering tier 1 - Hardware acceleration is used for rendering some graphic objects.

• Rendering tier 2 - Hardware acceleration is used for rendering most of the graphic objects.

Tiers 1 and 2 are supported with DirectX version 9.0 or higher. When supported, hardware acceleration
is used for most of the 2D rendering, as well as for 3D rasterisation and other 3D features.

WPF provides a large number of user interface elements. These elements can be used as they are
provided, combined with other elements, or extended according to the needs of the developer. Templates
can be defined for controls (user interface elements such as buttons), in order to override the default
appearance, or to define how custom-created controls should be presented. Groups of existing or custom-
made controls can be combined into a single control, called a user control. User controls can be built
as libraries and imported into other applications. The aggregated parallel coordinates (APC) plot was
created using WPF and C], and is implemented as a user control library.

The focus of this chapter is the performance of aggregated parallel coordinates. The first implemen-
tation of APC yielded very bad performance. Memory consumption was very high, and responsiveness
was low when visualising datasets with large number of records. In the following text, the first imple-
mentation of the plot is explained, and the causes of the low performance are identified. The steps taken
in order to improve the performance are explained in detail. This is followed by a short overview of the
achieved results.

73



74 6. Performance Optimisation

6.1 Initial Implementation and Performance Problems

In the early stages of implementation, research on any available parallel coordinates implementations
in WPF was conducted. The results were very limited, and the only implementation found was that
implemented by Wlodek [2009], which is described in Chapter 4. Since the source code of this imple-
mentation is available on GitHub [Wlodek, 2010], it was examined and taken as a starting point for the
implementation of the aggregated parallel coordinates.

Wlodek’s implementation was done in .NET framework version 3.5. It was implemented by extend-
ing the Control class, which is a base class for user interface elements whose appearance is defined by
a ControlTemplate [MSDN, 2015c]. By defining custom control templates, both the appearance and the
behaviour of each visual element (control) can be manipulated when certain events are triggered. In a
control template, the visual appearance (style) of the Chart control was defined as a Canvas (a control
which defines an area upon which child elements are placed) consisting of collections of axes, points and
lines. Styles are defined for ChartLine, Axis, ChartPoint, and other controls.

The aggregated parallel coordinates were initially implemented by following a similar principle. The
plot itself was implemented by deriving from UserControl. This class is used to declare a set of controls. It
consists of XAML code and a code-behind file (a file with extension .xaml.cs) [Moser, 2015]. The inital
XAML code for the aggregated parallel coordinates is shown in Listing 6.1. A top-level Grid element
defines a drawing area for the plot. Three collections of items were placed on top of it: a collection of
Axis objects, a collection of polylines (AxisPointConnection objects), and a collection of AxisPoint objects
to represent the data points. The code-behind contained the logic for resizing the plot, as well as the
logic for managing the collections of visual controls. Axis, AxisPoint, AxisPointConnection and other visual
elements were implemented by deriving from Control class and defining a Style within a ControlTemplate.
The Style for AxisPointConnection, shown in Listing 6.2, defined it as a Poyline shape, whose colour,
line thickness and position properties were set by data binding. The same approach was used for every
control.

While this approach works well with a small number of records on a relatively static chart, perfor-
mance issues appeared as soon as the filtering interaction was implemented and tested on a few hundred
records. The main reason for these issues was the number of times single visual objects were redrawn.
When using sliders to filter records, visual properties such as polyline colour and depth-index inside the
canvas were simultaneously changed on a large number of polylines. Slider properties such as posi-
tion, label margin, and label content were also updated with every slider movement. Furthermore, the
colour of the axis points was also changed for those points which were filtered-out. Thus, filtering the
records caused a large number of visual elements to be re-rendered several times, resulting in reduced
responsiveness to user interactions.

6.2 Optimisation Steps

As soon as the performance problems were detected, the collection of AxisPoint controls was removed
from the plot, since showing single points on axes takes many resources and is a redundant feature. This
minor optimisation improved memory consumption, as well as the application responsiveness when fil-
tering the records. However, the overall performance was still not satisfactory, even when rendering was
done in tier 2. Further analysis was required in order to detect the cause of the performance issues, based
on which a series of optimisation steps was implemented. These steps are described in the following
sections.



6.2. Optimisation Steps 75

<U s e r C o n t r o l x : C l a s s=" P a r a l l e l C o o r d i n a t e s . P a r a l l e l C o o r d i n a t e s P l o t "
xmlns=" h t t p : / / schemas . m i c r o s o f t . com / winfx / 2 0 0 6 / xaml / p r e s e n t a t i o n "
xmlns : x=" h t t p : / / schemas . m i c r o s o f t . com / winfx / 2 0 0 6 / xaml "
xmlns : mc=" h t t p : / / schemas . openxml fo rma t s . o rg / markup− c o m p a t i b i l i t y /2006

"
xmlns : d=" h t t p : / / schemas . m i c r o s o f t . com / e x p r e s s i o n / b l e n d /2008 "
mc : I g n o r a b l e =" d "
x : Name=" c o n t r o l "
>

<S c r o l l V i e w e r >

<Grid >

<Canvas Name=" c h a r t C a n v a s ">

< I t e m s C o n t r o l I t e m s S o u r c e=" { Bind ing ElementName= c o n t r o l , Pa th=Axes } ">

< I t e m s C o n t r o l . I t e m s P a n e l >

< I t e m s P a n e l T e m p l a t e >

<Canvas / >

</ I t e m s P a n e l T e m p l a t e >

</ I t e m s C o n t r o l . I t e m s P a n e l >

</ I t e m s C o n t r o l >

< I t e m s C o n t r o l I t e m s S o u r c e=" { Bind ing ElementName= c o n t r o l , Pa th= C h a r t P o i n t s } ">

< I t e m s C o n t r o l . I t e m s P a n e l >

< I t e m s P a n e l T e m p l a t e >

<Canvas / >

</ I t e m s P a n e l T e m p l a t e >

</ I t e m s C o n t r o l . I t e m s P a n e l >

</ I t e m s C o n t r o l >

< I t e m s C o n t r o l I t e m s S o u r c e=" { Bind ing ElementName= c o n t r o l ,
Pa th=A x i s P o i n t C o n n e c t i o n s } ">

< I t e m s C o n t r o l . I t e m s P a n e l >

< I t e m s P a n e l T e m p l a t e >

<Canvas / >

</ I t e m s P a n e l T e m p l a t e >

</ I t e m s C o n t r o l . I t e m s P a n e l >

</ I t e m s C o n t r o l >

</ Canvas >

</ Grid >

</ S c r o l l V i e w e r >

</ U s e r C o n t r o l >

Listing 6.1: The inital XAML code for aggreagated parallel coordinates. Grid defines a drawing
area for the plot. Three collections of items are drawn: Axes representing dataset
dimensions, AxisPointConnections representing dataset records, and ChartPoints

representing single data items.



76 6. Performance Optimisation

< S t y l e Ta rge tType=" {x : Type pc : A x i s P o i n t C o n n e c t i o n } ">

< S e t t e r P r o p e r t y =" Templa te ">

< S e t t e r . Value >

<C o n t r o l T e m p l a t e Ta rge tType=" {x : Type pc : A x i s P o i n t C o n n e c t i o n } ">

< P o l y l i n e
S t r o k e=" { Bind ing

R e l a t i v e S o u r c e ={ R e l a t i v e S o u r c e T e m p l a t e d P a r e n t } ,
Pa th=Colo r } "

S t r o k e T h i c k n e s s=" { Bind ing
R e l a t i v e S o u r c e ={ R e l a t i v e S o u r c e T e m p l a t e d P a r e n t } ,
Pa th=L i n e T h i c k n e s s } "

P o i n t s =" { Bind ing
R e l a t i v e S o u r c e ={ R e l a t i v e S o u r c e T e m p l a t e d P a r e n t } ,
Pa th= P o i n t s } " / >

</ C o n t r o l T e m p l a t e >

</ S e t t e r . Value >

</ S e t t e r >

</ S t y l e >

Listing 6.2: Style definitin for AxisPointConnection in the initial APC implementation. Here,
AxisPointConnection is defined as a polyline, whose stroke, stroke thickness and layout
is defined by data binding.

6.2.1 Replacing Heavy-Weight Shape By Light-Weight Geometry

The first step taken in order to optimise the performance of the aggregated parallel coordinates was
changing how the visual objects are drawn. The initial implementation consisted of controls with tem-
plates which were drawing objects such as Polyline, Rectangle, etc.. All these objects derive from the Shape

class, which is considered to be heavy-weight, since it provides features such as layout and event handling
[MSDN, 2015f]. The light-weight alternative to drawing 2D shapes is using Geometry and classes which
derive from it. These objects are considered to be light-weight, because they cannot be rendered auto-
matically when its properties change: they have to be explicitly drawn inside a DrawingContext. However,
because they are drawn explicitly, the system does not have to allocate resources for monitoring their
state. Since the visual elements in the aggregated parallel coordinates are always drawn in a same way
(for example, AxisPointConnections are always drawn as polylines), defining control templates is a redun-
dant feature. So, instead of deriving from the Control class, all visual elements (like AxisPointConnections)
derive from FrameworkElement class. This class is one level above Control in the inheritance hierar-
chy, and does not support templates. Custom FrameworkElement objects are drawn by overriding the
OnRender(DrawingVisual) method. This method is automatically called whenever InvalidateVisual() is called.
Inside the OnRender method, the elements are not drawn as Shape, but as Geometry objects. Geometry class
inherits from the Freeze class, which means that these objects can have a modifiable, and a read-only
(frozen) state. Modifiable objects have to be monitored by the system in order to update any unmanaged
resources owned by such objects. By calling the Freeze() method, the object is declared immutable. Im-
mutable objects are read-only, and their state cannot be changed, so the system does not have to spend
any resources monitoring changes made upon them. In the optimised implementation, AxisPointConnection

implements the OnRender method as shown in Listing 6.3.

6.2.2 Reducing The Number of Render Calls

The next step in performance optimisation was reducing the number of times the application is renders
visual objects. To better support interaction with other visualisations, the visual properties of each record
are defined in a class called RecordProperty, while the polylines themselves are drawn in the AxisPointConne



6.2. Optimisation Steps 77

p r o t e c t e d o v e r r i d e void OnRender ( DrawingContex t d r a w i n g C o n t e x t )
{

/ / . . . i n i t i a l c h e c k s
StreamGeometry geo = new StreamGeometry ( ) ;
us ing ( S t reamGeomet ryCon tex t c o n t e x t = geo . Open ( ) )
{
c o n t e x t . B e g i n F i g u r e ( _ p o i n t s [ 0 ] , true , f a l s e ) ;
c o n t e x t . PolyLineTo ( _ p o i n t s . Sk ip ( 1 ) . ToArray ( ) , true , t rue ) ;
}
geo . F r e e z e ( ) ;
d r a w i n g C o n t e x t . DrawGeometry ( nul l , new Pen ( R e c o r d P r o p e r t y . Color , R e c o r d P r o p e r t y .

L i n e T h i c k n e s s ) , geo ) ;

/ / . . . draw l a b e l s i f t h e i t e m i s h i g h l i g h t e d
}

Listing 6.3: AxisPointConnection in the optimised APC implementation overrides the OnRender

method of its parent FrameworkElement class. Polylines are drawn within StreamGeom

etryContext. By calling the Freeze() method, the StreamGeometryContext is declared
immutable, so system does not have to spend resources by monitoring property
changes on this object.

ction class. Whenever a record is hovered over, or filtered in or out, one of the three methods implemented
by RecordProperty is called: AppearInBackground(), AppearHighlighted(), or AppearDefault(). These methods set a
series of flags which define visual and other properties of the records, as shown in Listing 6.4. When the
setter of a property is called, the property value is updated and an OnPropertyChanged event is triggered,
as shown in Listing 6.5.

In the initial implementation, the style which was defined the appearance of the AxisPointConnection,
used data binding to retrieve the current value of any visual properties. Any changed properties were
identified by the property name, which is passed as a parameter, so triggering OnPropertyChanged("Color")

event, for example, would notify the system that the colour of the polyline was changed. The system
would then re-render the polyline with the new colour. Since automatic re-drawing is not possible in the
optimised implementation, the system does not have to be notified every time each property changes.
Instead, it is enough to notify the AxisPointConnection that re-drawing is necessary when the state of a
record changes. The optimised AppearDefault method is shown in Listing 6.6. Instead of calling the setter
of the properties, their fields are set directly, so that the properties do not trigger a property changed
event. The OnPropertyChanged("") event is triggered only after all flags and values have been set. An
empty string is passed instead of the name of the property. This notifies the listener that some property
has changed, but not which one. Inside AxisPointConnection, this event is handled as shown in Listing 6.7.
AxisPointConnection does not check the name of the changed property, it only sets internal parameters, such
as hit test visibility, according to the current state of the RecordProperty object, and calls InvalidateVisual(),
which triggers re-rendering of the affected polyline. So, instead of re-drawing the polyline six times, for
six properties set within the AppearDefault() method, this is done only once.

6.2.3 Layers and Bitmap Caching

Another significant reduction in the number of times each AxisPointConnection is redrawn was achieved
by placing the polylines into layers. Since displaying the filtered-out records in the background can
provide significant help in the process of visual exploration, not displaying the filtered-out records would
affect the usefulness of the plot. In order to solve this problem two layers of polylines are drawn:
one in the background, and one in the foreground. The polylines in the background are drawn as one
FrameworkElement consisting of many polylines. This means that, for example, clicking on the background



78 6. Performance Optimisation

p u b l i c vo id A p p e a r D e f a u l t ( )
{

L i n e T h i c k n e s s = D e f a u l t L i n e T h i c k n e s s ;
Co lo r = D e f a u l t C o l o r ;

i f ( ! _hasCus tomColor )
{

ZIndex = _ d e f a u l t Z I n d e x ;
}
e l s e
{

MAX_Z_INDEX++;
ZIndex = MAX_Z_INDEX;

}

I s M u l t i S e l e c t e d = f a l s e ;
I s I n B a c k g r o u n d = f a l s e ;
I s H i g h l i g h t e d = f a l s e ;

}

Listing 6.4: The initial implementation of AppearDefault method in RecordProperty class. Colour
and line thickness are set to default values. Depth index is set to maximum, and
flags indicating whether the record is multi-selected, in background or highlighted
are set to false.

p r i v a t e S o l i d C o l o r B r u s h _ c o l o r ;
p u b l i c S o l i d C o l o r B r u s h Colo r
{

g e t { re turn _ c o l o r ; }
p r i v a t e s e t
{

_ c o l o r = v a l u e ;
OnProper tyChanged ( " Co lo r " ) ;

}
}

Listing 6.5: The Color property definition within RecordProperty class. When the value of the
property is set, the OnPropertyChanged event is triggered, notifying the system that the
colour of the record has changed.



6.2. Optimisation Steps 79

p u b l i c vo id A p p e a r D e f a u l t ( )
{

_ l i n e T h i c k n e s s = D e f a u l t L i n e T h i c k n e s s ;
_ c o l o r = D e f a u l t C o l o r ;
i f ( ! _hasCus tomColor )
{

_z Index = _ d e f a u l t Z I n d e x ;
}
e l s e
{

MAX_Z_INDEX++;
_z Index = MAX_Z_INDEX;

}

_ i s M u l t i S e l e c t e d = f a l s e ;
_ i s I n B a c k g r o u n d = f a l s e ;
_ i s H i g h l i g h e d = f a l s e ;
OnProper tyChanged ( " " ) ;

}

Listing 6.6: The optimised implementation of AppearDefault method in RecordProperty class.
Instead of setting the properites themselves, their fields are set directly, thus avoiding
unnecessary triggering of OnPropertyChanged events each time a value of a property is
set. Instead, the OnPropertyChanged is triggered only once, after all values have been
set, thus notifying the system, that the visual appearance of the record has changed,
but without specifing which properties have changed.

p r i v a t e vo id Hand leRecordPrope r tyChanged ( o b j e c t sende r , P rope r tyChangedEven tArgs e
)

{
I s H i t T e s t V i s i b l e = ! R e c o r d P r o p e r t y . I s I n B a c k g r o u n d | | ! R e c o r d P r o p e r t y .

IsOutOfBounds ;
V i s i b i l i t y = ( R e c o r d P r o p e r t y . IsOutOfBounds | | R e c o r d P r o p e r t y . I s I n B a c k g r o u n d ) ?

V i s i b i l i t y . Hidden : V i s i b i l i t y . V i s i b l e ;
I n v a l i d a t e V i s u a l ( ) ;

}

Listing 6.7: The event handler for OnPropertyChanged event triggered within RecordProperty object.
The internal parameters are set according to the current state of RecordProperty object
without checking the name of the changed property.



80 6. Performance Optimisation

p r o t e c t e d o v e r r i d e void OnRender ( DrawingContex t d r a w i n g C o n t e x t )
{

i f ( R e c o r d P r o p e r t y . IsOutOfBounds | | V i s i b i l i t y == V i s i b i l i t y . Hidden | | _ p o i n t s .
Count < 2)

re turn ;
/ / o t h e r w i s e , draw t h e p o l y l i n e

}

Listing 6.8: The OnRender method of AxisPointConnection first checks if the record has been
fildered-out or removed from the view by changing the axis scaling. If so, the
method exits without rendering the record.

layer would not provide the information, about which polyline was affected by the click, but only that the
object itself was clicked. Since no interactions are performed upon the polylines in the background, the
only disadvantage of drawing all polylines in one object is the fact that rendering such a complex object
takes some time. However, this object only has to be re-rendered when:

• the size of the plot changes,

• the scaling of one or more axes changes,

• one or more axes are inverted,

• axes are added or removed from the view.

These events do not occur as frequently as slider movements do. The second layer, which is drawn in
the foreground, contains the same polylines as the background layer. These are drawn as single objects
in order to provide easy support for hit-testing. When an item is filtered out, InvalidateVisual() is called,
but the OnRender() method simply returns without drawing it, as shown in Listing 6.8. The item is drawn
again if and when it is filtered back in. So, instead of re-rendering AxisPointConnection every time it is
filtered in and out, one additional object consisting of all polylines is drawn in the background once,
while all AxisPointConnection objects are rendered only when they are filtered in.

This approach did not produce optimal results at first, since whenever single pixels were rendered,
several visual layers had to be processed. This problem was evident when moving a semi-transparent
“ghost axis” across the plot, or when drawing multi-select rectangles. Drawing several layers requires
many pixels to be rendered several times. While such “overlay” objects are drawn, all layers beneath
remain unchanged, so re-rendering all these complex layers beneath is not necessary. The problem of
redundant pixel rendering was solved by introducing bitmap caching.

The rendering performance of complex UIElement objects can be improved by creating a bitmap,
which is cached in video memory [MSDN, 2015a]. Instead of displaying the live control, a cached
image of the control is displayed as long as the visual object has not changed. The BitmapCache class has
three properties: EnableClearType, RenderAtScale, and SnapsToDevicePixels. The EnableClearType flag defines
whether the text within the bitmap is rendered with ClearType [MSDN, 2015b] on an opaque background,
or with grayscale antialisaing. The SnapsToDevicePixels flag has to be set whenever pixel-alignment within
the bitmap has to be done correctly, which is the case when rendering ClearType. RenderAtScale defines
the bitmap scaling. Changing the cached element itself, or any of the three bitmap properties, causes the
cache to be re-generated.

In order to make use of bitmap caching, the aggregated parallel coordinates plot is split six several
layers, as shown in Figure 6.1. All layers are declared as Canvas elements, and contain collections of
FrameworkElement objects. The elements are assigned to the layers depending on how frequently they
change. The first layer contains only the background polylines. The second layer contains the basic axis



6.2. Optimisation Steps 81

Figure 6.1: The aggregated parallel coordinates are rendered in six layers. Layers in the background
are re-drawn less frequently than the layers in the foreground. Apart from the final layer,
bitmap caching is used on every layer in order to reduce the number of times the items
are rendered. While transient items, such as multi-select rectangles, are being drawn in
the final (sixth) layer, all other layers are not re-rendered. Instead, the cached bitmap
image is displayed. [Image created by the author.]

elements, such as invert buttons and labels. The third layer contains active polylines (those that have
not been filtered out). The fourth layer contains any histograms. The fifth layer contains all axis sliders.
These five layers are cached separately. The last layer is reserved for transient elements such as ghost-
axes, zoom or multi-select rectangles. These elements are not persistent, so caching the layer in which
they are drawn is not necessary. The final XAML code for the aggregated parallel coordinates is shown
in Listing 6.9.

Bitmap caching is enabled by default, but can be turned off on demand. For this reason, the BitmapCa

cheMode is added to each layer in the code-behind, rather than in XAML. If the bitmap caching should
be used, it is set for first five rendering layers, otherwise, the cache mode is set to null, as shown in
Listing 6.10.



82 6. Performance Optimisation

<S c r o l l V i e w e r >

<Canvas Background=" White " AllowDrop=" True " Name=" p l o t C a n v a s ">

<Canvas Name=" b a c k g r o u n d P o l y l i n e C a n v a s " Canvas . Top=" 0 " Canvas . L e f t=" 0 "
I s H i t T e s t V i s i b l e =" F a l s e " AllowDrop=" True " / >

<Canvas Name=" a x i s B a s e E l e m e n t s C a n v a s " Canvas . Top=" 0 " Canvas . L e f t=" 0 ">

< I t e m s C o n t r o l I t e m s S o u r c e=" { Bind ing ElementName= c o n t r o l , Pa th=AxesElements } ">

< I t e m s C o n t r o l . I t e m s P a n e l >

< I t e m s P a n e l T e m p l a t e >

<Canvas / >

</ I t e m s P a n e l T e m p l a t e >

</ I t e m s C o n t r o l . I t e m s P a n e l >

</ I t e m s C o n t r o l >

</ Canvas >

<Canvas Name=" p o l y l i n e C a n v a s ">

<Canvas >

<!−− i t e m s c o n t r o l d e c l a r a t i o n . . . −−>

</ Canvas >

<Canvas Name=" h i s t o g r a m C a n v a s ">

<!−− i t e m s c o n t r o l code . . . −>

</ Canvas>

<Canvas Name=" s l i d e r C a n v a s ">

<!−− i t e m s c o n t r o l d e c l a r a t i o n . . . −−>

</ Canvas >

</ Canvas >

<Canvas Name=" o v e r l a y C a n v a s " Canvas . Top=" 0 " Canvas . L e f t=" 0 " / >

</ Canvas >

</ S c r o l l V i e w e r >

Listing 6.9: In the optimised APC implementation, the Canvas defining the area within which
the plot is drawn contains six layers. The first layer contains only the background
polylines. The second layer contains the basic axis elements, such as invert buttons
and labels. The third layer contains active polylines (those that have not been
filtered out). The fourth layer contains any histograms. The fifth layer contains
all axis sliders. These five layers are cached separately. The sixth and final layer is
reserved for transient elements such as ghost-axes, zoom rectangles, or multi-select
rectangles.



6.3. The Results 83

i f ( UseBitmapCaching )
{

b a c k g r o u n d P o l y l i n e C a n v a s . CacheMode = new BitmapCache ( ) ;

v a r ax i sBaseE lemen t sB i tmapCache = new BitmapCache ( ) ;
ax i sBaseE lemen t sB i tmapCache . Enab l eC lea rT ype = t rue ;
a x i s B a s e E l e m e n t s C a n v a s . S n a p s T o D e v i c e P i x e l s = t rue ;
a x i s B a s e E l e m e n t s C a n v a s . CacheMode = ax i sBaseE lemen t sB i tmapCache ;

v a r a c t i v e P o l y l i n e B i t m a p C a c h e = new BitmapCache ( ) ;
a c t i v e P o l y l i n e B i t m a p C a c h e . Enab l e C lea rTyp e = t rue ;
a c t i v e P o l y l i n e B i t m a p C a c h e . S n a p s T o D e v i c e P i x e l s = t rue ;
a c t i v e P o l y l i n e C a n v a s . CacheMode = a c t i v e P o l y l i n e B i t m a p C a c h e ;

/ / . . . t h e same f o r a l l o t h e r l a y e r s
}
e l s e
{

b a c k g r o u n d P o l y l i n e C a n v a s . CacheMode = n u l l ;
a x i s B a s e E l e m e n t s C a n v a s . CacheMode = n u l l ;
/ / . . .

}

Listing 6.10: By default, bitmap cahing is enabled and applied to five C a nv as layers.
For demostration purposes, bitmap caching can be disabled by setting the
UseBitmapCaching flag to false, in which case the CacheMode of all five layers is
set to null.

6.3 The Results

After applying the optimisation steps described above, both memory consumption, and responsiveness
of the application was vastly improved. In terms of responsiveness, the initial implementation of the
parallel coordinates plot would become almost unusable when visualising a dataset of 5000 records
in 5 dimensions. Moving a slider would cause a significant time delay between moving the mouse and
displaying the results of applying that filter. While the optimised implementation takes some time to load
5000 records in 5 dimensions, after all elements are loaded, the sliders can be moved freely along the
axis, almost without any lag. If a large number of records are filtered in, a certain lag can be experienced
while moving the slider back to its initial position on the axis, because at this point records are filtered
back in, which means that they have to be rendered again. However, filtering records out (which is the
most frequent interaction), does not cause any lag at all, since items which are filtered out are simply not
rendered. However, their shadows are visible in the background layer.

The memory consumption of the aggregated parallel coordinates implementation was vastly reduced
after applying the optimisation steps. In the first implementation, all visual elements were drawn as
custom controls, upon which templates were applied. With the points drawn on axes, a working memory
set of the executed code, as shown by the Windows Task Manager, for a plot with 1000 records in 4
dimensions, was 180 KB. Removing the points from the axes reduced the working set for the same
plot to 150 KB. This implementation was only drawing axes and polylines; other functionality (sliders,
axis labels, polyline labels, dimension aggregation, etc.) was not implemented at that stage. The final,
optimised, full-featured demo application (including the plot and a toolbar) has a working memory set
of 160 KB.

The major reduction of memory consumption was achieved by drawing the visual elements as
Geometry objects, instead of using the heavy-weight Shape. To demonstrate the difference in memory
consumption, memory allocation profiling was done on two versions of the aggregated parallel coordi-



84 6. Performance Optimisation

Figure 6.2: The CLR heap graph of managed memory allocated for 1000 AxisPointConnection objects
in the initial implementation. [Screenshot created by the author.]

nates. In the first version, the AxisPointCollection objects were drawn as Polyline objects. The second version
used Geometry objects. The rest of the code was kept the same. The profiling was done on a dataset
consisting of 1000 records in 4 dimension, using CLR Profiler [Microsoft, 2015a]. The overall amount
of allocated managed memory for the first implementation was 9.8 MB. As shown in Figure 6.2, 3.2
MB of memory were allocated for AxisPointConnection objects, 47% of which was used by the Polyline

objects, while 36% were used to keep track of the values such as the polyline thickness, its colour,
and other properties. For the optimised version, only 6.0 MB was allocated in total. As shown in Fig-
ure 6.3, in the optimised version only 897KB of managed memory was allocated for the same number of
AxisPointConnection objects. This reduction is caused both by the fact that the rendering data requires much
less space (430KB), and that the system has to keep track of fewer property values, since the Geometry

objects do not redraw themselves automatically when a value of a property changes.

During the optimisation process, drawing an additional layer of background polylines was imple-
mented in order to improve the responsiveness when filtering records. At a first glance, this might seem
as a waste of resources, since all the polylines are drawn twice. However, unlike active polylines, which
are all drawn as separate objects, background polylines are drawn in a single FrameworkElement. The
render data for such an object with 1000 polylines takes less than 250 KB of managed memory, while
drawing 1000 polylines in separate objects requires 1.5 MB. Since drawing several polylines inside one
object requires less memory than drawing several objects consisting of one polyline, an obvious question
to ask is whether it would be more efficient to also draw the layer with the active polylines within one
object. By implementing this approach, the entire object would have to be redrawn every time a record
is filtered in or out. Since rendering such complex object is time-consuming, the responsiveness of the
application would be reduced. Furthermore, drawing polylines within one complex object would make
it impossible to use built-in hit-testing, since the polylines would not be a part of visual tree. Hit-testing
in that case would have to be performed by adding an additional, invisible layer of polylines. A unique
colour would have to be assigned to each polyline, based on which polylines would be uniquely iden-
tifiable, which would be necessary in order to implement hit-testing. Applying this approach would, in



6.3. The Results 85

Figure 6.3: The CLR heap graph of managed memory allocated for 1000 AxisPointConnection objects
in the optimised implementation. [Screenshot created by the author.]

turn, require using additional memory, so the memory consumption would not be vastly decreased when
compared with the memory consumption of the currently applied approach.



86 6. Performance Optimisation



Chapter 7

Selected Details of the Implementation

“The details are not the details. They make the design.”

[Charles Eames, Designer]

In Chapter 6, a detailed description of how the aggregated parallel coordinates plot is drawn in
order to provide the optimal performance was given. In that context, the drawing of the polylines other
relevant details of implementation were explained. This chapter focuses on other important aspects of the
implementation. Special attention is given to the way dimension aggregation is implemented in the plot,
and how an existing data structure was extended to support this feature. The details of the implementation
of filtering using sliders are also discussed.

7.1 Data Structure

The data structure used in aggregated parallel coordinates is an extension of the data structure used in
AVL SimBook. The decision to use this structure was made in order to provide easier integration of
the aggregated parallel coordinates plot into SimBook, and avoid the overhead which would be created
by the conversion between different data structures. An overview of the data structure is provided in
the class diagram in Figure 7.1. The root of the structure is the Parameter class, which represents a
single dimension in the dataset. It holds the information about the name of the dimension, as well
as the values of each dataset record in that dimension. Each dimension of the dataset visualised in
SimBook is either one of the input parameters for which the influence of different combinations of
values on the vehicle performance was simulated, or an output parameter, whose values are a result of
the simulation. To differentiate between these dataset dimension types, the Parameter class is extended by
InputParameter and OutputParameter. The OutputParameter is extended by the CornerSpecificParameter and the
StraightSpecificParameter, in order to provide additional information in case a single dimension has been
calculated separately for corners or straight segments of the track. The CornerSegmentSpecificParameter

class extends the CornerSpecificParameter, and represents dimensions which are calculated for the segments
of the corners.

To support the dimension aggregation, the MeanValueParameter class was added to the above described
data structure. This class acts as a container for a collection of Parameter objects, which represent
the dimensions to be aggregated within one axis. It extends the Parameter class directly. When the
MeanValueParameter object is created, a new virtual dataset dimension is created, whose records are mean
values of records contained in the collection of Parameter objects. The collection of objects aggregated
in the MeanValueParameter can contain any Parameter type, including the MeanValueParameter itself. Such
logical structure enables creating parameters hierarchies of any depth.

87



88 7. Selected Details of the Implementation

Figure 7.1: The class diagram of the Parameter data structure. A parameter corresponds to a dimen-
sion in traditional parallel coordinates terminology. The root element contains general
information about a dimension, and the values of the dataset records in that dimension.
The extended classes provide additional information about specific dimensions found in
the datasets produced by race car simulations. The MeanValueParameter objects represent
aggregated dimensions, and are created based on a collection of child Parameter objects.
[Diagram created by the author using Visual Studio 2012.]



7.2. Aggregated Axes 89

7.2 Aggregated Axes

Aggregated parallel coordinates library accepts a collection of Parameter objects as a dataset to be vi-
sualised. For each Parameter object, the plot draws one axis. More specifically, for each Parameter

object, one Axis object is created. The Axis objects are logical, rather than visual, and are responsible
for creating all visual elements of an axis, and for calculating their position in the plot. If the dataset
passed to the plot contains any MeanValueParameter objects, instead of instantiating the Axis class, its
extension, AggregatedAxis is instantiated. This class represents the root of an aggregated axis hierarchy.
When a root axis is expanded, the ExpandChildren() method, which is implemented in the AggregatedAxis

class, checks the collection contained in its MeanValueParameter object. If the collection contains further
MeanValueParameter objects, an instance of AggregatedExpanded class is created, while for every other
Parameter, an ExpandedAxis object is created. As shown in Figure 7.2, the AggregatedExpandedAxis ex-
tends AggregatedAxis, while ExpandedAxis extends Axis directly. These two axis types both implement
the IExpanded interface. The AggregatedExpandedAxis represents dimensions in the dataset hierarchy
which have both a parent, and their own children. Since it extends AggregatedAxis, it has all function-
ality necessary to keep track of and expand its own children when required, and by implementing the
IExpanded interface, it also knows about its parent axis, to which it can be collapsed when necessary. The
ExpandedAxis objects represent leaf elements of the dimension hierarchy, and can only be collapsed to
their parent axis.

Instances of Axis hold a collection of objects created by instantiating classes which implement the
IAxisElement interface. An overview of these classes is shown in Figure 7.3. Every class which implements
the IAxisElement interface is responsible for drawing a specific part of the visual representation of axes. In
the base Axis class, instances of the following classes are created: InvertButton, BodyLine, Slider, ExtremeLabel

and Histogram. AggregatedAxis adds an ExpandButton object to the collection, after all other visual elements
are created and added to the collection. Furthermore, it overrides the AddMiddleSlider() method in order to
make sure that its visual representation contains an instance of the AggregatedAxisMiddleSlider instead of
the MiddleSlider. Both the ExpandedAxis and a AggregatedExpandedAxis add an instance of the CollapseButton

to the base collection of visual elements. The IAxisElement objects hold a reference to the Axis object to
which they logically belong. Based on the information contained in this reference, these objects are able
to draw themselves in the correct position in the plot. A reference to a corresponding instance of the Axis

class is also used to handle user interactions with the visual representation of an axis. For example, when
a user clicks on a collapse button, the CollapseButton object calls the Collapse() method provided by the
IExpanded interface implementation whose reference is held by the CollapseButton object. The Collapse()

method calls the CollapseChildren() method implemented by its parent axis.

7.3 Sliders

Record filtering in aggregated parallel coordinates is possible by moving either the upper, lower, or the
middle sliders. As already mentioned in Chapter 6, the visual properties of every record are defined in
a class called RecordProperty. This class contains the data about the current state of the record on the
plot, while the drawing of the record is performed elsewhere. Each record in the currently visualised
dataset has a unique ID. This ID is used to map the record to its own instance of the RecordProperty

class. For example, when the position of the upper slider of an axis moves down, the IDs of all records
positioned above the upper slider are retrieved from a list of records sorted by Y screen coordinate for
that axis. Using these IDs, the RecordProperty objects of all records to be filtered-out are retrieved, and the
AppearInBackgrond() method is called in order to set the visual properties of the records according to their
new, “in background” state.

Consider the state of a single record which is filtered-out on two axes, as shown in Figure 7.4.
After the record is filtered out on the first axis, its visual properties will be changed by calling the



90 7. Selected Details of the Implementation

Figure 7.2: The class hierarchy of the logical axis implementation. The root class is extended by
AggregatedAxis, which represents the root of a dimension hierarchy. The “leaf” dimen-
sions are represented by the ExpandedAxis. The AggregatedExpandedAxis represents dimen-
sions of the hierarchy which have both a parent and their own children. This class is
logically an aggregated axis, since it has its own children, but it also provides the same
functionality as ExpandedAxis, by implementing the IExpanded interface. [Diagram created by
the author using Visual Studio 2012.]



7.3. Sliders 91

Figure 7.3: The class hierarchy of visual axis elements. Each class is responsible for drawing the
visual representation of a specific part of a logical axis. All elements hold a reference
to the logical axis, through which visual elements gain access to all information they
require to draw themselves, as well as methods for handling user interactions. [Diagram
created by the author using Visual Studio 2012.]



92 7. Selected Details of the Implementation

Figure 7.4: The record displayed in the background is filtered out on both axes. Keeping track of all
axes on which the record has been filtered out is necessary in order to prevent filtering
the record back in when the slider on only one axis moves above the record’s position.
[Screenshot created by the author.]

AppearInBackground() method. When the slider on the second axis moves, the AppearInBackground() method
will be called again, but the representation will not change, since the record is already filtered out. In
order to prevent filtering the record back in when the slider on only one axis moves above the record’s
position, the RecordProperty has to keep track of which axes the AppearInBackground() method has been
called for.

One possibility for keeping track of the axes on which a record is filtered-out is simply adding a
counter, whose value is incremented whenever the record is filtered out on any axis, and decremented
when the record is filtered back in. The record would be filtered back in only in case the counter’s value
is set to 0. However, if for any reason a method which changes the value of the counter is called too
many or too few times, the counter will not show the real number of axes on which it is filtered out. To
avoid this problem, each axis is assigned a unique ID, based on which the RecordProperty object can keep
track of the axes on which a record is filtered out.

The unique ID is generated in the constructor of Axis as follows:

ID = Guid.NewGuid().ToString();

In C], the Guid structure is used to create a Globally Unique Identifier (GUID), which is a 128-bit integer.
Since this number is so large, producing two same GUIDs is very unlikely, which makes its usage for
unique identification appropriate.

The portion of code shown in Listing 7.1 is executed in UpperSlider class when the slider moves on
the axis. Using its reference to the logical Axis object, the UpperSlider can access the IDs of records stored
in a list, which is sorted according to the Y position of the record on the axis. The _lastVisibleIndex
variable is used to keep track of the index of first record in the sorted list which is not filtered out. So,
when the slider moves, starting from the last record that was filtered in, it takes every record from the
list, checks if it is positioned above the slider, and if so, it calls the Hide method for that record. If the
record is positioned below the slider, the _lastVisibleIndex is updated, so that the next time the slider is



7.3. Sliders 93

f o r ( i n t i = _ l a s t V i s i b l e I n d e x ; i < _ a x i s . S o r t e d A x i s P o i n t s . Count ; i ++)
{

v a r i d = _ a x i s . S o r t e d A x i s P o i n t s [ i ] ;
i f ( _ a x i s . Ax i sPo in tOrde rMapp ing [ i d ] . A x i s C o o r d i n a t e .Y < S l i d e r T i p P o s i t i o n .Y )
{

G l o b a l S e t t i n g s . LAP_PROPERTY_MAPPING[ i d ] . Hide ( r e f _ a x i s . ID ) ;
}
e l s e
{

_ l a s t V i s i b l e I n d e x = i ;
break ;

}
}

Listing 7.1: Portion of the code executed when the upper slider is moved down. Starting from
the index of the last record which was filtered in, the position of every record in
a list sorted according to vertical position on the axis is checked. If the record is
positioned above the slider, the Hide() method is called for that record. Otherwise,
the _lastVisibleIndex is updated, so that the next time the slider is moved down, the
loop can start from that index in the list, and not from the beginning. After updating
_lastVisibleIndex, the loop is broken.

p u b l i c vo id Hide ( r e f s t r i n g s e n d e r )
{

i f ( ! s e n d e r s . C o n t a i n s ( s e n d e r ) )
{

s e n d e r s . Add ( s e n d e r ) ;
i f ( ! I s I n B a c k g r o u n d )

Appear InBackground ( ) ;
}

}

Listing 7.2: The implementation of Hide method in RecordProperty. The ID of an axis on which
the record is filtered out, is passed as parameter. If the ID is not contained in a local
list, it is added to it, and the AppearInBackground method is called. Otherwise, the
reocrd has already been filtered out on that axis, in which case the method simply
exits without taking any action.



94 7. Selected Details of the Implementation

f o r ( i n t i = _ l a s t V i s i b l e I n d e x − 1 ; i >= 0 ; i −−)
{

v a r round = _ a x i s . S o r t e d A x i s P o i n t s [ i ] ;
i f ( _ a x i s . Rea lPo in tToOrderMapping [ round ] . Y >= S l i d e r T i p P o s i t i o n .Y)
{

G l o b a l S e t t i n g s . LAP_PROPERTY_MAPPING[ round ] . Show ( r e f _ a x i s . ID ) ;

}
e l s e
{

_ l a s t V i s i b l e I n d e x = i ;
break ;

}
}

Listing 7.3: Portion of the code executed when the upper slider is moved up. Starting from the
index of the last record which was filtered out, a list of records sorted according
to vertical position on the axis is traversed back, and the vertical position of each
record is checked. If the record is positioned below the slider, the Show() method is
called for that record. Otherwise, the _lastVisibleIndex is updated, after which the
loop is broken.

moved down, the loop can start from that index in the list, and not from the beginning.

The implementation of Hide method is shown in Listing 7.2. It accepts the ID of an axis as a parame-
ter, and checks if the collection of parameters held by the RecordProperty object already contains that ID.
If not, it adds it to the collection and, if the record is not already displayed in the background, it calls the
AppearInBackground() method. In case this method is called twice for a single record, it will recognise that
the record is already filtered out on that axis, and will simply exit.

When an upper slider moves up the axis, the code shown in Listing 7.3 is executed. Starting from the
index of the last record which was filtered out on an axis, the list of points sorted by the Y coordinate is
traversed backwards, and the Y coordinate of the current slider position is compared to the Y coordinate
of currently examined record. If a record is below the slider, the Show method will be called on a
corresponding RecordProperty object.

The implementation of the Show method is shown in Listing 7.4. Just like the Hide method, it accepts
the ID of an axis as the parameter, and checks if the ID is in the collection of axis IDs for which the record
has been filtered out. If the collection contains the axis ID, the ID is removed from the list. Only if the
collection is empty after removal, the record will be displayed as filtered-in by calling the AppearDefault()

method. If the ID is not present in the collection, the method has been called for a record which is not
filtered-out on that axis, in which case the method simply exits without changing the state of the record.



7.3. Sliders 95

p u b l i c vo id Show ( r e f s t r i n g s e n d e r )
{

i f ( _ s e n d e r s . C o n t a i n s ( s e n d e r ) )
{

_ s e n d e r s . Remove ( s e n d e r ) ;
i f ( _ s e n d e r s . Count == 0)
{

A p p e a r D e f a u l t ( ) ;
}

}
}

Listing 7.4: The implementation of Show method in RecordProperty. The ID of an axis on which
the record is filtered in, is passed as parameter. If the ID is contained in a local list,
it is removed from it. Otherwise, the reocrd is already been filtered in on that axis,
in which case the method simply exits without taking any action. The AppearDefault

method is called only if the local list is empty, that is, when the record has been
filtered in on all oaxes.



96 7. Selected Details of the Implementation



Chapter 8

Outlook

“The future is always beginning now.”

[Mark Strand - American poet.]

Aggregated parallel coordinates (APC) provide a set of basic features necessary for visual explo-
ration of multi-dimensional datasets with hierarchical dimensions. They are optimised for easy integra-
tion with SimBook, a software application used inside AVL Racing. The set of implemented features
support visual exploration of multivariate datasets produced by race car simulations. However, current
implementation lacks some common interactions, which were not implemented as a part of this thesis
due to time limitations.

The APC implementation does not support zoom interaction. Although axis scaling can be used in
order to zoom in or out of a single axis, this feature is used to filter out records which are not of interest,
and is not an appropriate replacement for the standard zoom interaction. Furthermore, the scaled axes
are not marked in any way, so users cannot know that any records have been removed from the current
view. Marking axes on which the scaling has been changed is another possible extension to the current
implementation.

Another useful extension to the current implantation would be keeping track of the user’s interac-
tions. In addition to adding support for undo/redo interactions, a list of performed interactions could
be visualised in a separate view. This would allow adding new filter interactions by enabling users to
combine previously applied filters using boolean operators.

When an aggregated axis is expanded, it is removed from the view, and its child axes are placed at
the position where the aggregated axis was. Simply reloading the display with a new set of axes might be
somewhat confusing to novice users. This problem could be solved by adding an animated transitions,
which would visualise the expanding process, thus effectively informing the user about how many new
axes are added to the view, and how the other axes are re-positioned in order to make room for the newly
added axes.

The records in race car simulation datasets have only numerical values. To add support for categorical
data, the data structure used in aggregated parallel coordinates would have to be extended. Furthermore,
this data structure currently provides dimension aggregation only by calculating the mean values of the
dataset records. Further extensions could add support for other ways of dimension aggregation, for
example, by calculating minimum, maximum, or median values of dataset records.

Another possibility to extend aggregated parallel coordinates is to implement some of the clutter re-
duction methods described in Chapter 4. This would improve the process of visual data exploration with
aggregated parallel coordinates even further. The implementation of edge bundling would be particularly
interesting.

97



98 8. Outlook

The overview given above describes some possibilities to improve and extend the currently imple-
mented aggregated parallel coordinates visualisation. Another example of future work would be con-
ducting usability studies. Testing how the implemented expand and collapse interactions are perceived
by novice users, as well as the visual distinctiveness of any aggregated axes would be particularly inter-
esting.



Chapter 9

Concluding Remarks

The main focus of this thesis was visualisation of race car simulation datasets. Chapter 2 provided an
overview of some of the factors which influence the behaviour of a car on a racing track. This was done in
order to illustrate the complexity of datasets produced by race car simulations, which were characterised
as both hierarchical and high-dimensional. Information visualisation, a type of visualisation which pro-
vides mechanisms for visual representation and exploration of abstract concepts, was described in Chap-
ter 3. Since interaction is one of the two important aspects of information visualisation, an overview was
given of interactive features commonly implemented in many visual data exploration tools. The second
aspect of the information visualisation, the visual representation, depends on the type of data being repre-
sented. Since race car simulation datasets contain both hierarchical and multi-dimensional relationships,
an overview of some of the most common techniques for visualising these two types of data was also
given in Chapter 3.

Parallel coordinates, one of the most effective technique for visualising multi-dimensional data, were
discussed in detail in Chapter 4. Common interactive features and extensions were presented, as well
as different methods for effective presentation of datasets with a large number of records. An example
was given of how parallel coordinates can be used to explore complex datasets, and of how applying
appropriate selection and filtering mechanisms can lead to discovery of new knowledge. Furthermore,
several extensions were described, which deal with specific problems inherent in the standard parallel
coordinates implementation. The chapter concluded with an overview of five software applications which
provide parallel coordinates visualisation.

Of all the described techniques for visualising multi-dimensional data, parallel coordinates seemed
to be the most effective way to represent race car simulation datasets. Since standard implementations do
not provide a mechanism for dealing with hierarchies within the dataset, aggregated parallel coordinates
(APC) were introduced. Chapter 5 described this extension in detail, with the main focus on “dimension
aggregation”, which is the unique feature introduced with aggregated parallel coordinates. It also showed
how this visualisation is used in combination with order methods, such as small multiples, scatter plots,
table representation, and tree views, to support the process of visual exploration of race car simulation
data.

Chapter 6 guided the reader through the steps taken to optimise the performance of the initial imple-
mentation. Among others, this chapter shows how the selection of proper rendering methods can have a
huge influence on the performance of the visualisations implemented in WPF. Other selected details of
implementation were provided in Chapter 7.

Aggregated parallel coordinates provide sufficient features to support the process of visual explo-
ration of race car datasets, and are already being used for this purpose within AVL Racing as part of
AVL SimBook. However, some common interactive features, like zooming, are still missing in the cur-
rent implementation. During the implementation process, a few new features were considered, but not
implemented due to time limitations. The most prominent new feature would be adding animated tran-

99



100 9. Concluding Remarks

sitions to visualise the process of dimension aggregation. Furthermore, minor extensions to the current
implementation would be required in order to fully support the representation of datasets which are not
generated by race car simulations.



Appendix A

User Guide

This guide is intended for users of the APC Testbed application, which was implemented as a part of this
thesis. As shown in Figure A.1, this application consists of the following visual modules:

• a toolbar, which, among others, provides controls to load a dataset,

• a list or tree-view of the dataset dimensions,

• a panel with controls for plot manipulation,

• the aggregated parallel coordinates plot.

The following sections provide information about how the APC Testbed can be used to import or
generate and visualise data with aggregated parallel coordinates. The implemented customisation options
are explained. Furthermore, this guide explains how the created visualisation can be exported to an SVG
file, and how the default application layout can be changed.

A.1 Loading the Data

The dataset can be loaded into the application either by importing it from a CSV file, or by generating
a random dataset. Two types of datasets can be imported: general hierarchical datasets, and AVL racing
datasets. If an AVL racing dataset is available to the user, it can be imported by clicking the “Import
racing dataset” button, after which a dialogue will open and the user can navigate through the file system
and select a CSV file to be imported. When importing such a dataset, a special parser is used to detect and
load hierarchies within the dataset. For other types of dataset, the “Import dataset” button can be used.
This causes the data to be parsed by a general CSV parser. Note that the aggregated parallel coordinates
plot can only represent numerical records. Categorical values in the dataset will be set to 0. If any of the
two parsers fails to parse the data, an error message is displayed, as shown in Figure A.2.

A random datasets can also be generated by clicking on the “Generate” toolbar button. The dialogue,
shown in Figure A.3 opens. In this dialogue, the following properties of the generated dataset can be
specified:

• The number of records in the generated dataset,

• The number of single dimensions (dimensions without a hierarchical structure),

• The number of nested dimensions (dimensions with a hierarchical structure).

If the number of nested dimensions is 1 or higher, the user can also select:

101



102 A. User Guide

Figure A.1: The APC Testbed, a demo application for aggregated parallel coordinates. The plot is
displayed in the middle. The toolbar enables importing or generating a dataset. The
panel on the left provides a list or tree view of the loaded dataset. The panel on the
right provides controls to manipulate the plot. [Screenshot created by the author.]

Figure A.2: The error message shown in case the imported data could not be processed by the
application. [Screenshot created by the author.]



A.2. Using and Customising the Plot 103

Figure A.3: The dialogue shown after clicking on the Generate toolbar button. The user can specify
the record and dimension count in the generated dataset, as well as properties of the
nested dimensions. [Screenshot created by the author.]

Figure A.4: The error message shown if the application cannot generate the specified dataset, which
can occur when generating very large hierarchies. [Screenshot created by the author.]

• The maximum hierarchy depth,

• The minimum number of children at a single hierarchy level,

• The maximum number of children at a single hierarchy level.

If the number of nested dimensions is set to 0, these fields are disabled. Note that generating deep
hierarchies with a large number of records can take a long time. If dataset generation fails, the error
message shown in Figure A.4 is displayed.

After the dataset has been successfully loaded, either by importing or by generating, the dimensions
of the dataset are visualised in the “Dimension Overview” panel. An example of a tree view visualisation
of a generated dataset with hierarchical dimensions is shown in Figure A.5.

A.2 Using and Customising the Plot

The aggregated parallel coordinates plot implements a series of interactions. Table A.1, provides an
overview of the mouse and keyboard controls which can be used to interact with the plot. For an overview
of the functionality implemented in the plot, please refer to Chapter 5.



104 A. User Guide

Figure A.5: The dimension overview for a generated dataset. [Screenshot created by the author.]



A.2. Using and Customising the Plot 105

Goal Interaction
Highlight single record Hover the mouse over a record’s polyline.
Select multiple records Draw a multi-select rectangle by keeping the left mouse button

pressed while dragging the mouse over the affected range.
Add single record to the set of
selected records

Control-left-click on an unselected record.

Remove single record from the
set of selected records

Control-left-click on a selected record.

Clear multiple record selection Left-click on an empty space anywhere on the plot.
Set the reference record Right-click on the record and select the appropriate context menu

option.
Move the axis sliders Left-click on the slider, and drag the mouse vertically with the

left mouse button pressed.
Invert single axis Left-click on the Invert button above the axis, or use right click

on the axis and select the “Invert” option from the context menu.
Change scaling of a single axis Enter the selected value range in the upper or lower axis extreme

value label.
Select scaling range of single or
multiple axes

Draw a zoom rectangle by keeping the right mouse button pressed
while dragging the mouse over the affected axes. The height and
position of the rectangle defines the new scaling.

Remove, reset scaling or slider
position of a single axis

Right-click on the axis and select the appropriate option from the
context menu.

Remove, invert, reset scaling or
reset sliders of multiple axes

While holding the Ctrl key pressed, select the axes by left-
clicking on them. When all axes are selected, use the right mouse
button click to show the context menu and select the appropriate
item.

Reset scaling on all axes Double-right-click on an empty space anywhere on the plot.
Move an axis to a different posi-
tion

Right-click on the invert button, axis body, any of the sliders or
axis label. Drag the mouse, while keeping the right mouse button
pressed, to the desired axis position. After releasing the mouse
button, the axis will move to the new location.

Expand an aggregated axis Click on the expand button under the axis.
Collapse the child axes Click on the collapse button under the axis.

Table A.1: Interactions supported by APC Testbed.



106 A. User Guide

The Settings Panel, shown in Figure A.6, provides an interface for customisation of the aggregated
parallel coordinates plot. The controls provided by the Settings Panel include:

• Changing the Numerical Value Representation
The numerical number representation can be changed by using the two radio buttons in the settings
panel. Currently, English and German number representations are supported.

• Use Bitmap Caching
Bitmap caching is enabled by default. Disabling the bitmap caching option results in rendering an
increased number of pixels, which may cause decreased responsiveness, especially when visualis-
ing a large number of records. Keeping this option enabled is recommended.

• Apply Global Scaling
Enabling this option applies global scaling on all axes.

• Remove Invert Buttons
The invert buttons are displayed by default, but can be removed on demand, in case axis inversion
(flipping) is not used frequently. Removing the invert buttons allocates more height to the axes,
which is a valuable asset when visualising a large number of records. When the buttons are not
displayed, axes can be inverted using the axis context menu.

• Show Mean Line
If this option is enabled, the mean values of all records in the dataset are calculated and a mean
line is added to the plot. The mean line is displayed somewhat thicker then the other lines, and has
a different colour.

• Show Relative Data
Enabling this option causes the plot to display relative instead of absolute numerical values of
records, based on a reference value. Enabling this feature, automatically enables displaying the
mean line, because the reference value is set to be the mean value by default. The reference record
can be selected using the record context menu within the plot.

• Rotate Axis Labels
If this option is enabled, the name labels of the axes are rotated to the right by 30◦.

• Show Histogram
Enabling this option adds histograms to each axis. The number of histogram bins can be changed
by using the provided text box. The minimum number of histogram bins is 1, and the maximum is
100.

• Change Line Opacity
By default, the polylines in the plot have full opacity. This can be changed using the provided
slider. Note that opacity is not updated while the slider is moved, but only upon release. The
current opacity value is shown in the label above the slider.

• Hamiltonian Permutations
Axes in the plot can be compared only in case they are displayed next to each other. The minimal
number of axis orderings which allow direct comparison of each axis with every other axis is
calculated by the application by finding all distinct Hamiltonian permutations, as described in
Chapter 4. These orderings are visualised in a tree view within the settings panel. Each root
element of the tree view represents one permutation of axis ordering. Expanding a permutation
element shows a list of axis names, as they are ordered in that permutation. A selected permutation
can be applied to the plot by clicking on the button below the tree view.



A.2. Using and Customising the Plot 107

Figure A.6: The Settings Panel provides controls which enable customisation of the aggregated
parallel coordinates plot. [Screenshot created by the author.]



108 A. User Guide

A.3 Exporting the Plot

The current plot can be exported as a Scalable Vector Graphics (SVG) file. After clicking on the “Save as
SVG” button, a dialogue will open, within which the user can select the location to which the file can be
saved. SVG files can be rendered by most web browsers, and support free scaling of the content, which
means that its contents can be displayed in any size, without affecting image quality.

A.4 Changing the Application Layout

The default application layout can be changed by manipulating the position and visibility of the Dimen-
sion Overview and Plot Settings panels. The panels can be moved simply by dragging them away from
their position. As shown in Figure A.7, when a panel is moved from its position, an additional control
appears over the application window, showing where the selected panel can be placed. The panels can
be placed vertically, on the left or the right side of the plot, or horizontally, above or below the plot. The
panels can also be displayed as tabs, within the plot view or as separate windows outside the applica-
tion’s window. Furthermore, one panel can be docked within the other panel, with the same positioning
possibilities as when its docked within the application’s window. Using the “unpin” icon displayed in
the panel’s top right corner, a panel can be hidden from the view. When a panel is hidden, it is displayed
as a small icon on the left or right side of the application window. The panel can be “pinned” back to the
layout at any time.

The two panels occupy a large amount of space within the application, which leaves less space for
displaying the plot. Using the above described docking functionality, the layout can be adapted to the
screen size available. The panels can be placed horizontally, if more width is required for displaying the
plot, or vertically, when the plot needs more height, or completely hidden from the view, when they are
not needed.



A.4. Changing the Application Layout 109

Figure A.7: Changing the application layout. When a panel is moved from its position, an ad-
ditional control appears over the application window showing at which positions the
selected panel can be docked. Placing the mouse over a part of this control draws an
outline rectangle showing how the panel will be docked. [Screenshot created by the author.]



110 A. User Guide



Appendix B

Developer Guide

This guide describes how the aggregated parallel coordinates can be used and extended. It is divided into
two parts. The first part is intended for developers who want to use the implemented visualisation as a
library, within another WPF application. The second part provides a short overview of the internal code
structure, and is intended for developers who have access to the source code and intend to change the
current implementation, or add a new functionality to it.

B.1 Using Aggregated Parallel Coordinates as a Library

Since the aggregated parallel coordinates plot was developed as a UserLibrary, it can be easily imported
into any WPF application. This guide explains how to import and use the aggregated parallel coordinates
library in a WPF application.

The following .dll files have to be added to the references of the WPF project in which the plot is to
be used:

• AggregatedParallelCoordinates.dll - contains the APC implementation

• Avl.ClouClient.Parameters.dll - contains the data parser and the Parameter hierarchy,

• Avl.ClouClient.Utilities.dll - contains utility classes used by the AggregatedParallelCoordinates.
dll.

After the required libraries are added to the project references, a reference to the aggregated par-
allel coordinates assembly has to be added to the namespace of the root XAML tag within which the
aggregated parallel coordinate plot is embedded as follows:

xmlns:apc="clr-namespace:AggregatedParallelCoordinates;assembly=
AggregatedParallelCoordinates"

Once the assembly reference has been added to the namespace, the parallel coordinates plot can be added
to the view as follows:

<apc:AggregatedParallelCoordinatesPlot/>

The code above will display an empty aggregated parallel coordinates plot.

111



112 B. Developer Guide

p u b l i c s t a t i c D r a g D r o p E f f e c t s DoDragDrop (
DependencyObjec t d ragSource ,
O b j e c t da t a ,
D r a g D r o p E f f e c t s a l l o w e d E f f e c t s

)

Listing B.1: Declaration of the DoDragDrop method. The first parameter identifies the object
which starts the drag-and-drop operation. The second parameter is the data payload.
The third paramereter identifies the allowed visual effects to be shown while
dragging the object.

B.1.1 Loading the Data

There are two ways to pass the data to the plot: by binding an Observable<Parameter> collection to the
DataItem dependency property, which is exposed by the AggregatedParallelCoordinatesPlot class, or by using
a drag-and-drop operation.

The DataItems property is declared as ObservableCollection<Parameter>. After the collection is populated
with Parameter objects, the parallel coordinates plot will add one axis for each object, and as many
polylines as there are record in the dataset. Any changes to the local reference of this collection will
automatically be taken over by the parallel coordinate plot, which means that if additional objects are
added or removed from the collection at runtime, these changes will automatically be processed by the
plot, and the appropriate axes will be added or removed from the view. Assuming the DataContext object
contains an ObservableCollection<Parameter> named PlotData, the following XAML will pass the collection
to the plot:

<apc:AggregatedParallelCoordinatesPlot DataItems="{Binding PlotData}"/>

The collection of Parameter objects can be created either by creating the objects manually, or by
parsing a CSV file. For CSV parsing, the ParameterParser implements the following method:

public static List<Parameter > Parse(string fullFilePath)

This method returns a list of Parameter objects, which will be set to null if the file cannot be parsed. If the
Parameter collection contains any MeanValueParameter objects, these objects will automatically be shown
as aggregated axes.

The second method of adding data to the plot, is by using drag-and-drop operations, which can
be started by calling the DragDrop.DoDragDrop method. The declaration of this method is shown in
Listing B.1. The second parameter to the method contains the data that is passed. The method is called
as shown in Listing B.2. The important part is setting the data of the DataObject with the name “Parameter”
and the Parameter object. When the ParallelCoordiante user control detects that an object is dropped, it will
check if a data object with the name “Parameter” is passed. If so, the parameter will be added to the
DataItems collection, and the plot will be reloaded with the new dataset. Note that both methods for data
passing can be combined. An initial dataset can be added to the view, by passing a collection of Parameter

objects. This collection can be updated at runtime either externally, by adding or removing items from
the collection, or within the plot, by dropping Parameter objects on it.

B.1.2 Customising The Plot

A series of dependency properties are exposed in order to provide access to the implemented func-
tionality. An overview of the exposed properties is provided in Table B.1. If any of the property val-



B.1. Using Aggregated Parallel Coordinates as a Library 113

p u b l i c vo id DoDragDrop ( O b j e c t s ende r , P a r e m e t e r p a r a m e t e r )
{

D a t a O b j e c t d a t a = new D a t a O b j e c t ( ) ;
d a t a . S e t D a t a ( " P a r a m e t e r " , p a r a m e t e r ) ;
DragDrop . DoDragDrop ( sende r , da t a , D r a g D r o p E f f e c t s . Move ) ;

}

Listing B.2: Implementation of the DoDragDrop method for a selected Parameter. A DataObject

is created with the name “Parameter” and a Parameter object to be dropped. This
DataObject is then passed as the second parameter to the DoDragDrop method.

<apc : A g g r e g a t e d P a r a l l e l C o o r d i n a t e s P l o t Name=" PCPlot "
ShowHistogram = " { Bind ing S e t t i n g s . ShouldShowHis tograms } "
His togramBinCount = " { Bind ing S e t t i n g s . His togramBinCount } "
D a t a I t e m s = " { Bind ing S e t t i n g s . P l o t D a t a , Mode=TwoWay} "
ApplySameScal ingOnAllAxes = " { Bind ing S e t t i n g s . ApplySameScal ing } "
A l l o w A x i s I n v e r s i o n = " { Bind ing S e t t i n g s . A l l o w A x i s I n v e r s i o n } "
Rota teAxisNameLabel = " { Bind ing S e t t i n g s . RotateNameAxes } "
ShouldShowMeanLine = " { Bind ing S e t t i n g s . ShowMeanLine} "
S t r i n g F o r m a t = " { Bind ing S e t t i n g s . C u r r e n t C u l t u r e S e l e c t i o n } "
U s e R e l a t i v e V a l u e s = " { Bind ing S e t t i n g s . U s e R e l a t i v e V a l u e s } "
Contex tMenuI tems = " { Bind ing S e t t i n g s . P o l y l i n e C o n t e x t M e n u I t e m s } "
Refe renceReco rd ID = " { Bind ing S e t t i n g s . S e l e c t e d R e c o r d I d } "
UseBitmapCaching = " { Bind ing S e t t i n g s . UseBitmapCaching } "
/ >

Listing B.3: AggregatedParallelCoordinatesPlot user control as referenced in the APC Testbed. Data
binding is used on all dependency properties, since the user can customise the plot
properties in a different view.

ues is changed at runtime, the plot will be reloaded with the new changes. An example of how the
AggregatedParallelCoordinatesPlot user control is used within the APC Testbed is shown in Listing B.3.

The default colours of visual elements, and the line thickness of polylines in selected and normal
states, are defined statically within the GlobalSettings class, as shown in Listing B.4. They can be accessed
and changed externally.

B.1.2.1 Creating and Using a Record Context Menu

As shown in Table B.1, a collection of MenuItems objects can be passed to the plot. These objects will be
shown in a context menu when a right-click is performed on a specific record in the plot. A MenuItem is
created as follows:

MenuItem item = new MenuItem();
item.Header = "Make me green";
item.Tag = 1;

The Tag property must be set, so that the menu item can be identified later. When an item in the
context menu is selected, a GlobalEventContextMenuItemSelected event will be triggered. This event is
defined as follows:

public class GlobalEventContextMenuItemSelected :
CompositePresentationEvent <ContextMenuSelectedItem >



114 B. Developer Guide

Name Type Description
DataItems ObservableCollection<Parameter> A collection of Parameter objects which

are to be visualised by the plot. The
default value is null.

ShowHistogram bool If set to true, histograms are added to
each axis. The default value is false.

HistogramBinCount int The number of histogram bins to be
shown. The default value is 10.

ApplySameScalingOnAllAxes bool If set, the same (global) scaling is ap-
plied to all axes. The default value is
false.

UseRelativeValues bool If set, the relative values are shown in-
stead of absolute. The default value is
false.

ReferenceRecordID int If the UseRelativeValues flag is set to
true, the record with this ID is used
as the reference value, and the values
of all other records are set relative to
the reference. The default value is -1,
which is the ID of the mean record cal-
culated by the plot.

AllowAxisInversion bool If set, invert button is added at the top
of each axis. The default value is true.

ShouldShowMeanLine bool If set, a polyline representing the mean
values of the current dataset is added to
the plot. The default value is false.

UseBitmapCaching bool If set, the plot will use bitmap caching
for performance optimization. The de-
fault value is true.

RotateAxisNameLabel bool If set, the axis name labels are rotated
by 30◦ to the right. The default value is
false.

StringFormat IFormatProvider Sets the language format for number
representation. The default value is
CultureInfo.CurrentCulture.

ContextMenuItems ObservableCollection<MenuItem> The collection of Menu I tem objects
which will be shown in a record con-
text menu.

Table B.1: Dependency properties exposed by the ParallelCoordinates user control.



B.1. Using Aggregated Parallel Coordinates as a Library 115

p u b l i c s t a t i c S o l i d C o l o r B r u s h HIGHLIGHTED_COLOR ;
p u b l i c s t a t i c S o l i d C o l o r B r u s h DEFAULT_COLOR;
p u b l i c s t a t i c S o l i d C o l o r B r u s h MULTISELECTED_COLOR ;
p u b l i c s t a t i c S o l i d C o l o r B r u s h IN_BACKGROUND_COLOR;
p u b l i c s t a t i c S o l i d C o l o r B r u s h MEAN_LINE_COLOR;
p u b l i c s t a t i c S o l i d C o l o r B r u s h SLIDER_DEFAULT_COLOR ;
p u b l i c s t a t i c S o l i d C o l o r B r u s h SLIDER_SELECTED_COLOR ;

p u b l i c s t a t i c S o l i d C o l o r B r u s h HISTOGRAM_FILL_COLOR ;
p u b l i c s t a t i c S o l i d C o l o r B r u s h LAYOUT_COLOR;
p u b l i c s t a t i c S o l i d C o l o r B r u s h AXIS_HIGHLIGHT_COLOR ;

p u b l i c s t a t i c double HIGHLIGHTED_LINE_THICKNESS ;
p u b l i c s t a t i c double DEFAULT_LINE_THICKNESS ;

Listing B.4: Static definitinon of default values of different visal properties within the GlobalSett

ings class.

p r i v a t e vo id O n I t e m S e l e c t e d ( C o n t e x t M e n u S e l e c t e d I t e m s e l e c t e d I t e m )
{

i n t r e c o r d I d = s e l e c t e d I t e m . Record Id ;
i n t t a g = s e l c t e d I t e m . Tag ;
R e c o r d P r o p e r t y l p = G l o b a l S e t t i n g s . RECORD_PROPERTY_MAPPING[ r e c o r d I d ] ;
i f ( t a g == 1)
{

l p . S e t D e f a u l t C o l o r ( Bur shes . Green ) ;
}

}

Listing B.5: Event handler implemementation for a selected record context menu item. The
ID of the record, and the tag of the context menu item are retrieved from the event
payload. Using these two parameters, the appropriate action can be performed upon
the record.

The payload for this event is a ContextMenuSelectedItem object. This object contains a tag, which uniquely
identifies which item in the context menu was selected, as well as the record for which the context menu
was shown. In order to handle the selection of an item in the context menu externally, one has to subscribe
to the GlobalEventContextMenuItemSelected event as follows:

GlobalEventContextMenuItemSelected.Instance.Subscribe(OnItemSelected);

OnItemSelected is an example of a delegate method which is executed when the event occurs. The
ContextMenuSelectedItem payload is passed to the delegate automatically when an event occurs. The menu
item tag and the polyline ID can be extracted from the payload. The polyline ID is the key of the selected
record in the Dictionary<int, RecordProperty> mapping. The RecordProperty mapping contains the visual
properties of the record polylines. So, assuming a context menu item “Make me green” was selected, the
delegate method can be implemented as shown in Listing B.5.

B.1.2.2 Visualising and Applying Hamiltonian Permutations

The aggregated parallel coordinates plot calculates the minimal number of permutations of axis orderings
which allows direct comparison between every pair of axes. Whenever these permutations change, the
AggregatedParallelCoordinates plot publishes the following event:



116 B. Developer Guide

public class GlobalEventHamiltonianPermutationChanged :
CompositePresentationEvent <Dictionary <int, List<string>>>

The payload of this event is a mapping of the permutation ID to the list of names of the axes ordered as
the axes are ordered in a permutation. The name of the axes are passed in order to support visualisation
of the permutations. To apply an ordering permutation, simply publish the event GlobalEventApplyHamilton

ianPermutationRequested , and pass the ID of the permutation as payload:

GlobalEventApplyHamiltonianPermutationRequested.Instance.Publish(id);

B.1.3 Exporting the Plot to an SVG File

The AggregatedParallelCoordinates user control can write the SVG file from the current representation. In
order to make use of this functionality, the GlobalEventSVGExportRequested event has to be triggered as
follows:

GlobalEventSVGExportRequested.Instance.Publish(pathToTheFileToWriteTo);

The payload of this event is of type string, and represents the path to the file in which the SVG repre-
sentation of the plot will be written if the path exists.

B.2 Extending Aggregated Parallel Coordinates

The APC Testbed demo application, as well as the user control library itself, were implemented using
Visual Studio 2013. The code provided as a part of this thesis contains, a .sln file. Opening this file in
Visual Studio 2013 will load all necessary modules. After the project has been successfully loaded, the
Solution Explorer panel will contain two projects:

• Testbed - contains the demo application code,

• AggregatedParallelCoordinates - contains the aggregated parallel coordinates user control code.

In the following sections, a walk-through of the code contained in these projects is provided, which
should give developers an idea of how each project is implemented. The knowledge gained by reading the
walk-through should provide a good starting point for extending both the plot and the demo application.

B.2.1 Testbed Project

The APC Testbed is implemented using the MVVM pattern [MSDN, 2015g]. The AvalonDock library
is used to provide the docking layout [Xceed, 2015]. The structure of this project is shown in Figure B.1.
The View consists of the following XAML files:

• MainWindow.xaml - defines the layout of the application using elements from the AvalonDock li-
brary,

• MenuView.xaml - defines the content of the toolbar,

• GenerateDatasetView.xaml - defines the content of the Generate Dataset dialogue,

• DimensionTreeView.xaml - defines the content of the Dimension Overview panel,



B.2. Extending Aggregated Parallel Coordinates 117

Figure B.1: The structure of the Testbed project as shown by the Visual Studio Solution Explorer.
[Screenshot created by the author.]

• PlotSettingsView.xaml - defines the content of the Plot Settings panel,

• PlotView.xaml - defines how the parallel coordinates plot is used by passing all necessary data.

When the application is started, each of these views instantiates its own ViewModel class in the code-
behind (the corresponding .xaml.csfile) , and sets its DataContext to that instance. The view objects are
only responsible for the visual representation of their contents. The ViewModel classes contain the code
that handles any changes in the view. All ViewModel classes have access to the classes in the Testbed.Model
namespace. Apart from the CSVParser and DataSetGenerator, the Model contains two singleton classes:
PlotDataHolder and TreeViewDataHolder. These two classes provide access to the resources shared between
the ViewModel objects. The following example demonstrates the communication between the View,
ViewModel, and Model objects when the “Import Dataset” toolbar button is pressed:

1. The view executes the ImportDatasetCommand which is defined within the MenuViewModel,

2. The delegate method which executes the ImportDatasetCommand in the MenuViewModel shows the
“Open File” dialogue.

3. After the user selects the .CSV file to be imported, the MenuViewModel calls the appropriate method
within the CSVParser, which belongs to the Model.

4. Assuming that the dataset is correctly parsed, the CSVParser returns a list of Parameter objects.



118 B. Developer Guide

5. The MenuViewModel passes the parsing results to the TreeViewDataHolder, which creates the tree view
hierarchy.

6. The DimensionTreeView observes the changes in the TreeViewDataHolder using the binding to the
DimensionTreeViewModel and loads the tree view item as soon as they are available in the TreeViewDa

taHolder.

In order to add new controls to the application, the View has to be modified either by extending
one of the already available visual modules, or by adding new ones. In case new modules are added, the
MainWindow.xaml should be modified in order to define the position of the visual module in the application
layout. A new ViewModel object has to be created, within which the changes in the displayed data and
user interactions are handled using data binding and the Command pattern.

B.2.2 AggregatedParallelCoordinates Project

The “AggregatedParallelCoordinates” project contains the full implementation of the aggregated parallel
coordinates plot. The structure of this project is shown in Figure B.2. The plot layout is defined in
the AggregatedParallelCoordinates.xaml file, while the code-behind is responsible for adding the visual
elements to the plot, resizing the plot to fit its contents, and handling the user interactions. When data
is added to the plot either using the drag-and-drop, or by passing a collection of objects through the
DataItems dependency property, the ReloadPlot method is executed. This method creates new visual
components, and resizes the plot to fit them.

For each Parameter object within the dataset, an Axis object is created. The Axis object is responsible for
creating and calculating the position of all necessary axis visual elements. The visual elements implement
the IVisualAxisElement interface, and extend the FrameworkElement object either directly or indirectly. While
the logical Axis is responsible for creating and positioning the visual elements, rendering is done by the
IAxisElement elements. The following classes implement this interface:

• InvertButton,

• ExtremeLabel,

• Body,

• Slider,

• CollapseButton,

• ExpandButton,

• Histogram

For each AggregatedParallelCoordinatesPlot object, one AxisContainer and one DataSetManager object is
created. The DataSetManager maintains information about the dataset as it is passed to the plot. AxisContai

ner, on the other hand, holds the collection of Axis objects, whose visual elements are currently displayed
in the plot. This class contains a custom implementation of the OnCollectionChanged event. By listening
to this event, the AggregatedParallelCoordinatesPlot monitors the state of the collection, in order to add or
remove axis visual elements from the view when necessary. Within the AggregatedParallelCoordinatePlot,
references to visual axis elements are distributed across several ObservableCollection instances, depending
on the layer (the Canvas object) in which they are drawn.

Apart from creating the visual axis elements, the logical Axis is also responsible for calculating the
position on the axis body of each dataset record within the dimension. An AxisPoint object is created for



B.2. Extending Aggregated Parallel Coordinates 119

Figure B.2: The structure of the AggregatedParallelCoordinates project, as shown by the Visual
Studio Solution Explorer. [Screenshot created by the author.]



120 B. Developer Guide

each record. These objects contain information about a single record, such as its value and its position
on the screen, and are mapped to the record ids.

For each record of the dataset, AxisPointConnection and RecordProperty objects are created. The
RecordProperty object holds the information about the visual properties of each record. A mapping of
RecordProperty objects to record IDs is created in the GlobalsSettings. This mapping is static, and is
created only once, no matter how many times AggregatedParallelCoordinatesPlot is instantiated. This is
done in order to share the information about the visual properties of records across several plots. Each
AxisPointConnection object contains a reference to a corresponding RecordProperty object. Apart from
that, each AxisPointConnection holds a reference to the AxisContainer. AxisPointConnection is derived
from FrameworkElement, and overrides its OnRender method in order to draw a polyline based on the
information about the position of the record points on the displayed axes, and the information contained
in the RecordProperty object. The polylines are re-renderd every time the axis count or the scaling of the
axes change, as well as when a visual property of a record changes (when a record is highlighted, for
example).

A collection of AxisPointConnection objects is stored in the AggregatedParallelCoordinatesPlot, and drawn
inside the corresponding activePolylineCanvas. The BackgroundPolyline is a visual object which is drawn
in the backgroundPolylineCanvas. This object is rendered as a set of polylines, one for each item in the
collection of AxisPointConnection objects. Re-rendering of these object is required only when the scaling
of the axes changes, or when new items are added to the plot. Since it is drawn in the background layer,
this object is covered by the items in the activePolylineCanvas, until the user starts filtering out records.
For this reason, the rendering priority of this object is low, so the AggregatedParallelCoordinatesPlot renders
it only when the application is in an idle state.

As previously mentioned, the AggregatedParallelCoordinatesPlot is also responsible for resizing the plot.
Whenever new visual elements are added or removed from the plot, the it calls the AdaptCanvasSize()

method implemented in the SizeManager class. This method calculates the distance and height of the axis
body based on the current plot size. If any of these two parameters is smaller than the defined minimum,
the plot is resized to fit all visual elements.

In addition to adding visual elements to the view and setting the plot size, the AggregatedParallelCoor

dinatesPlot is also responsible for handling user interactions, global events, and changes in dependency
properties. It overrides the following events:

• OnPreviewMouseLeftButtonDown,

• OnPreviewMouseLeftButtonUp,

• OnPreviewMouseRightButtonDown,

• OnPreviewMouseRightButtonUp,

• OnMouseMove,

• OnDragOver,

• OnDrop.

The following global events are defined in the GlobalEvents file:

• GlobalEventContextMenuItemSelected,

• GlobalEventSVGExportRequested,

• GlobalEventHamiltonianPermutationChanged,



B.2. Extending Aggregated Parallel Coordinates 121

• GlobalEventApplyHamiltonianPermutationRequested.

The GlobalEventHamiltonianPermutationChanged is triggered when the number of displayed axes
changes, in order to notify subscribers about the minimal number of axes permutations which allow
direct comparison between all axes. These permutations are calculated by the FindAdjacencyPermutations,
which is defined in the Utils class. AggregatedParallelCoordinatesPlot subscribes to the GlobalEventA

pplyHamiltonianPermutationRequested event in order to apply a permutation when requested externally.
The AggregatedParallelCoordinatesPlot also subscribes to the GlobalEventSVGExpor tRequired event,
and writes an SVG representation of the current plot state to a file whose path is passed as a pay-
load, when the event is triggered. The writing of the SVG file is done using the SvgWriter class. A
GlobalEventContextMenuItemSelected event is published when an item in the polyline context menu is
selected.



122 B. Developer Guide



Bibliography

Adobe [2015]. Flash. 2015. http://adobe.com/de/products/flashplayer.html (cited on page 51).

Alcula [2009]. Online Scatter Plot Generator. 2009. http : / / alcula . com / calculators / statistics /
scatter-plot/ (cited on page 22).

Andrews, Keith [1996]. “Browsing, Building, and Beholding Cyberspace: New Approaches to the Navi-
gation, Construction, and Visualisation of Hypermedia on the Internet”. PhD thesis. Graz University
of Technology, Austria, Sept. 1996. http://ftp.iicm.tugraz.at/pub/keith/phd/andrews- 1996-
phd.pdf (cited on page 13).

Andrews, Keith [2014]. Fluid Diagrams. 2014. http://projects.iicm.tugraz.at/fluiddiagrams/ (cited
on page 16).

Andrews, Keith [2015]. Information Visualisation: Lecture Notes. 2015. http://courses.iicm.tugraz.
at/ivis/ivis.pdf (cited on pages 9, 13).

Andrews, Keith and Helmut Heidegger [1998]. “Information Slices: Visualising and Exploring Large
Hierarchies Using Cascading, Semi–Circular Discs”. In: Late Breaking Hot Topic Paper, IEEE Sym-
posium on Information Visualization (InfoVis’98). (Reseach Triangle Park, North Carolina, USA).
Oct. 1998, pages 9–11. http://ftp.iicm.tugraz.at/pub/papers/ivis98.pdf (cited on pages 17, 19).

Andrews, Keith, Wolfgang Kienreich, et al. [2002]. “The InfoSky Visual Explorer: Exploiting Hierarchi-
cal Structure and Document Similarities”. Information Visualization 1.3/4 (Dec. 2002), pages 166–
181. ISSN 1473-8716. doi:10.1057/palgrave.ivs.9500023 (cited on pages 17, 19).

Andrews, Keith, Werner Putz, and Alexander Nussbaumer [2007]. “The Hierarchical Visualisation Sys-
tem (HVS)”. In: Proc. 11th International Conference on Information Visualization (IV ’07). (Zurich,
Switzerland). IEEE Computer Society, July 2007, pages 257–262. doi:10.1109/IV.2007.112 (cited
on page 14).

Andrews, Keith, Josef Wolte, and Michael Pichler [1997]. “Information Pyramids: A New Approach
to Visualising Large Hierarchies”. In: Late Breaking Hot Topics, Proc. IEEE Visualisation ’97 (Vis
’97). (Phoenix, Arizona, USA). Oct. 19, 1997, pages 49–52. http://ftp.iicm.tugraz.at/pub/papers/
vis97.pdf (cited on page 17).

Andrienko, Gennady and Natalia Andrienko [2004]. “Parallel Coordinates for Exploring Properties of
Subsets”. In: Proc. 2nd International Conference on Coordinated & Multiple Views in Exploratory
Visualization (CMV ’04). IEEE Computer Society, July 13, 2004, pages 93–104. ISBN 0769521797.
doi:10.1109/CMV.2004.13. http://carpex.usal.es:8080/anai/upload/andrienko2004.pdf (cited on
pages 39, 40).

Artero, Almir Olivette, Maria Cristina Ferreira de Oliveira, and Haim Levkowitz [2004]. “Uncovering
Clusters in Crowded Parallel Coordinates Visualizations”. In: Proc. IEEE Symposium on Informa-
tion Visualization (InfoVis 2004). (Austin, Texas, USA). IEEE Computer Society, Oct. 10, 2004,

123

http://adobe.com/de/products/flashplayer.html
http://alcula.com/calculators/statistics/scatter-plot/
http://alcula.com/calculators/statistics/scatter-plot/
http://ftp.iicm.tugraz.at/pub/keith/phd/andrews-1996-phd.pdf
http://ftp.iicm.tugraz.at/pub/keith/phd/andrews-1996-phd.pdf
http://projects.iicm.tugraz.at/fluiddiagrams/
http://courses.iicm.tugraz.at/ivis/ivis.pdf
http://courses.iicm.tugraz.at/ivis/ivis.pdf
http://ftp.iicm.tugraz.at/pub/papers/ivis98.pdf
http://worldcatlibraries.org/wcpa/issn/1473-8716
http://dx.doi.org/10.1057/palgrave.ivs.9500023
http://dx.doi.org/10.1109/IV.2007.112
http://ftp.iicm.tugraz.at/pub/papers/vis97.pdf
http://ftp.iicm.tugraz.at/pub/papers/vis97.pdf
http://www.amazon.com/exec/obidos/ASIN/0769521797/keithandrewshcic
http://dx.doi.org/10.1109/CMV.2004.13
http://carpex.usal.es:8080/anai/upload/andrienko2004.pdf


124 Bibliography

pages 81–88. ISBN 0780387791. doi:10.1109/INFOVIS.2004.68. http://vis.computer.org/vis2004/
dvd/infovis/papers/artero.pdf (cited on page 39).

Avidan, Tova and Shlomo Avidan [1999]. “ParallAX — A Data Mining Tool Based on Parallel Coordi-
nates”. Computational Statistics 14.1 (1999), pages 79–89 (cited on pages 41–45, 52, 54).

AVL [2015]. AVL Racing. 2015. https://www.avl.com/racing (cited on page 57).

Balzer, Michael, Oliver Deussen, and Claus Lewerentz [2005]. “Voronoi Treemaps for the Visualiza-
tion of Software Metrics”. In: Proc. ACM Symposium on Software Visualization (SoftVis 2005).
(St. Louis, Missouri, USA). ACM, May 14, 2005, pages 165–172. ISBN 1595930736. doi:10 .
1145 / 1056018 . 1056041. http : / / kops . uni - konstanz . de / handle / 123456789 / 6011 ; jsessionid =
DE2110778233D6A5656B3984D504BA00 (cited on page 17).

Beaudoin, Luc, Marc-Antoine Parent, and Louis C. Vroomen [1996]. “Cheops: a Compact Explorer
for Complex Hierarchies”. In: Proc. 7th IEEE Visualisation Conference (Vis ’96). (San Francisco,
California, USA). IEEE Computer Society, Oct. 1996, pages 87–92. doi:10.1109/VISUAL.1996.
567745. http://pages.infinit.net/lbeaudoi/cheops.html (cited on page 17).

Buchheim, Christoph, Michael Jünger, and Sebastian Leipert [2002]. “Improving Walker’s Algorithm to
Run in Linear Time”. In: Proc. 10th International Symposium on Graph Drawing (GD 2002). (Irvine,
California, USA). Lecture Notes in Computer Science. Springer, Aug. 26, 2002, pages 347–364. ISBN

3540361510. doi:10.1007/3-540-36151-0. http://dirk.jivas.de/papers/buchheim02improving.pdf
(cited on page 13).

Buering, Thorsten, Jens Gerken, and Harald Reiterer [2006]. “User Interaction with Scatterplots on Small
Screens – A Comparative Evaluation of Geometric–Semantic Zoom and Fisheye Distortion”. Trans-
actions on Visualization and Computer Graphics 12 (2006), pages 558–568. doi:10.1109/TVCG.
2006.187 (cited on page 21).

Card, Stuart K., Jock D. Mackinlay, and Ben Shneiderman [1999]. Readings in Information Visualiza-
tion: Using Vision to Think. Morgan Kaufmann, 1999. ISBN 1558605339 (cited on page 9).

Chernoff, Hermann [1973]. “The Use of Faces To Represent Points in K-Dimensional Space Graphi-
cally”. Journal of the American Statistical Association 68.342 (June 1973), pages 361–368. doi:10.
2307/2284077. http://lya.fciencias.unam.mx/rfuentes/faces-chernoff.pdf (cited on page 24).

Cook, Dianne and Deborah F. Swayne [2007]. Interactive and Dynamic Graphics for Data Analysis With
R and GGobi. Use R! Springer, 2007. ISBN 0387717617. http://ggobi.org/ (cited on pages 49, 50).

d’Ocagne, Maurice [1885]. Coordonnées parallèles et axiales : Méthode de transformation géométrique
et procédé nouveau de calcul graphique déduits de la considération des coordonnées parallèles.
Gauthier–Villars, 1885. https://archive.org/details/coordonnesparal00ocaggoog (cited on page 33).

DotPDN LLC [2015]. paint.net. 2015. http://getpaint.net/index.html (cited on pages 26, 39, 47, 49).

Ellis, G. and A. Dix [2006]. “Enabling Automatic Clutter Reduction in Parallel Coordinate Plots”. IEEE
Transactions on Visualization and Computer Graphics 12.5 (Sept. 2006), pages 717–724. doi:10.
1109/TVCG.2006.138 (cited on page 37).

Enguerrand de Rochefort [2015]. XDAT. 2015. http://xdat.org/index.php (cited on pages 50, 51).

Fédération Internationale de l’Automobile [2015]. F1 Technical Regulations. 2015. http://formula1.
com/inside_f1/rules_and_regulations/technical_regulations/ (cited on page 3).

Gillespie, Thomas D. [1992]. Fundamentals of Vehicle Dynamics. Society of Automotive Engineers,
1992. ISBN 1560911999 (cited on page 4).

http://www.amazon.com/exec/obidos/ASIN/0780387791/keithandrewshcic
http://dx.doi.org/10.1109/INFOVIS.2004.68
http://vis.computer.org/vis2004/dvd/infovis/papers/artero.pdf
http://vis.computer.org/vis2004/dvd/infovis/papers/artero.pdf
https://www.avl.com/racing
http://www.amazon.com/exec/obidos/ASIN/1595930736/keithandrewshcic
http://dx.doi.org/10.1145/1056018.1056041
http://dx.doi.org/10.1145/1056018.1056041
http://kops.uni-konstanz.de/handle/123456789/6011;jsessionid=DE2110778233D6A5656B3984D504BA00
http://kops.uni-konstanz.de/handle/123456789/6011;jsessionid=DE2110778233D6A5656B3984D504BA00
http://dx.doi.org/10.1109/VISUAL.1996.567745
http://dx.doi.org/10.1109/VISUAL.1996.567745
http://pages.infinit.net/lbeaudoi/cheops.html
http://www.amazon.com/exec/obidos/ASIN/3540361510/keithandrewshcic
http://dx.doi.org/10.1007/3-540-36151-0
http://dirk.jivas.de/papers/buchheim02improving.pdf
http://dx.doi.org/10.1109/TVCG.2006.187
http://dx.doi.org/10.1109/TVCG.2006.187
http://www.amazon.com/exec/obidos/ASIN/1558605339/keithandrewshcic
http://dx.doi.org/10.2307/2284077
http://dx.doi.org/10.2307/2284077
http://lya.fciencias.unam.mx/rfuentes/faces-chernoff.pdf
http://www.amazon.com/exec/obidos/ASIN/0387717617/keithandrewshcic
http://ggobi.org/
https://archive.org/details/coordonnesparal00ocaggoog
http://getpaint.net/index.html
http://dx.doi.org/10.1109/TVCG.2006.138
http://dx.doi.org/10.1109/TVCG.2006.138
http://xdat.org/index.php
http://formula1.com/inside_f1/rules_and_regulations/technical_regulations/
http://formula1.com/inside_f1/rules_and_regulations/technical_regulations/
http://www.amazon.com/exec/obidos/ASIN/1560911999/keithandrewshcic


Bibliography 125

Graham, Martin and Jessie Kennedy [2003]. “Using Curves to Enhance Parallel Coordinate Visuali-
sations”. In: Proc. 7th International Conference on Information Visualisation (IV 2003). (London,
UK). IEEE Computer Society, July 16, 2003, pages 10–16. ISBN 0769519881. doi:10.1109/IV.2003.
1217950. http://www.iidi.napier.ac.uk/c/publications/publicationid/2760350 (cited on page 48).

Hackl, Christian [2011]. “Parallel Coordinates – Exploratory Data Analysis with Parallel Coordinates
and the Multi-Dimensional Explorer”. Master’s Thesis. Institute for Information Systems and Com-
puter Media (IICM): Graz University of Technology, Mar. 15, 2011. http://ftp.iicm.tugraz.at/
pub/theses/chackl.pdf (cited on page 46).

Hauser, Helwig, Florian Ledermann, and Helmut Doleisch [2002]. “Angular Brushing of Extended Par-
allel Coordinates”. In: Proc. IEEE Symposium on Information Visualization (InfoVis 2002). (Boston,
Massachussets, USA). IEEE Computer Society, Oct. 28, 2002, pages 127–130. ISBN 076951751X.
doi:10 .1109 / INFVIS.2002.1173157. http://mediavirus.org/parvis/parvis_full.pdf (cited on
pages 33, 34).

Hughes, Timothy, Young Hyung, and David A. Liberles [2004]. “Visualising Very Large Phylogenetic
Trees in Three Dimensional Hyperbolic Space”. BMC Bioinformatics 5 (Apr. 2004), page 48. doi:10.
1186 /1471- 2105- 5- 48. http://caida.org/publications/papers/2004/bioinformatics/ (cited on
page 14).

Inselberg, Alfred [2010]. Parallel Coordinates, Visual Multidimensional Geometry and its Applications.
Springer Science + Business Media, 2010. ISBN 0387215077 (cited on pages 33, 35, 36, 41, 45, 46,
53).

Investopedia [2015]. Standard & Poor’s 500 Index - S&P 500. 2015. http://investopedia.com/terms/s/
sp500.asp (cited on page 41).

iRacing [2015]. Vehicle Setup Components. 2015. http://iracing.wikidot.com/components (cited on
page 6).

Jern, Mikael [2009]. “Collaborative Web-Enabled GeoAnalytics Applied to OECD Regional Data”. In:
Cooperative Design, Visualization, and Engineering. Edited by Yuhua Luo. Volume 5738. Lecture
Notes in Computer Science. Springer, 2009, pages 32–43. ISBN 3642042643. doi:10.1007/978-3-
642-04265-2_5 (cited on page 51).

Johansson, Jimmy, Matthew Cooper, and Mikael Jern [2005]. “3-Dimensional Display for Clustered
Multi-Relational Parallel Coordinates”. In: Proc. 9th International Conference on Information Vi-
sualisation (IV 2005). (London, UK). IEEE Computer Society, July 6, 2005, pages 188–193. ISBN

078039464x. doi:10.1109/IV.2005.1. http://webstaff.itn.liu.se/~jimjo/papers/IV05/paperIV05.
pdf (cited on pages 46, 47).

Johansson, Jimmy, Patric Ljung, et al. [2005]. “Revealing Structure Within Clustered Parallel Coordi-
nates Displays”. In: Proc. IEEE Symposium on Information Visualization (InfoVis 2005). (Minneapo-
lis, Minnesota, USA). Oct. 23, 2005, pages 125–132. ISBN 078039464X. doi:10.1109/INFVIS.2005.
1532138. http://ifs.tuwien.ac.at/~mlanzenberger/teaching/ps/ws07/stuff/Johansso-IV2005.pdf
(cited on page 39).

Johnson, Brian and Ben Shneiderman [1991]. “Tree–Maps: A Space–Filling Approach to the Visualiza-
tion of Hierarchical Information Structures”. In: Proc. IEEE Visualization ’91. San Diego, Califor-
nia, USA: IEEE Computer Society, Oct. 1991, pages 284–291. doi:10.1109/VISUAL.1991.175815.
https://cs.umd.edu/~ben/papers/Johnson1991Tree.pdf (cited on page 14).

Katz, Joseph [1995]. Race Car Aerodynamics - Designing for Speed. Bentley Publishers, 1995. ISBN

0837601428 (cited on page 6).

http://www.amazon.com/exec/obidos/ASIN/0769519881/keithandrewshcic
http://dx.doi.org/10.1109/IV.2003.1217950
http://dx.doi.org/10.1109/IV.2003.1217950
http://www.iidi.napier.ac.uk/c/publications/publicationid/2760350
http://ftp.iicm.tugraz.at/pub/theses/chackl.pdf
http://ftp.iicm.tugraz.at/pub/theses/chackl.pdf
http://www.amazon.com/exec/obidos/ASIN/076951751X/keithandrewshcic
http://dx.doi.org/10.1109/INFVIS.2002.1173157
http://mediavirus.org/parvis/parvis_full.pdf
http://dx.doi.org/10.1186/1471-2105-5-48
http://dx.doi.org/10.1186/1471-2105-5-48
http://caida.org/publications/papers/2004/bioinformatics/
http://www.amazon.com/exec/obidos/ASIN/0387215077/keithandrewshcic
http://investopedia.com/terms/s/sp500.asp
http://investopedia.com/terms/s/sp500.asp
http://iracing.wikidot.com/components
http://www.amazon.com/exec/obidos/ASIN/3642042643/keithandrewshcic
http://dx.doi.org/10.1007/978-3-642-04265-2_5
http://dx.doi.org/10.1007/978-3-642-04265-2_5
http://www.amazon.com/exec/obidos/ASIN/078039464x/keithandrewshcic
http://dx.doi.org/10.1109/IV.2005.1
http://webstaff.itn.liu.se/~jimjo/papers/IV05/paperIV05.pdf
http://webstaff.itn.liu.se/~jimjo/papers/IV05/paperIV05.pdf
http://www.amazon.com/exec/obidos/ASIN/078039464X/keithandrewshcic
http://dx.doi.org/10.1109/INFVIS.2005.1532138
http://dx.doi.org/10.1109/INFVIS.2005.1532138
http://ifs.tuwien.ac.at/~mlanzenberger/teaching/ps/ws07/stuff/Johansso-IV2005.pdf
http://dx.doi.org/10.1109/VISUAL.1991.175815
https://cs.umd.edu/~ben/papers/Johnson1991Tree.pdf
http://www.amazon.com/exec/obidos/ASIN/0837601428/keithandrewshcic


126 Bibliography

Keim, Daniel A., Ming C. Hao, et al. [2010]. “Generalized Scatter Plots”. Information Visualisation 9.4
(Dec. 2010), pages 301–311. doi:10.1057/ivs.2009.34. http://kops.uni-konstanz.de/bitstream/
handle/123456789/17475/Keim.pdf?sequence=1 (cited on page 21).

Keim, Daniel A., Florian Mansmann, et al. [2006]. “Challenges in Visual Data Analysis”. In: Proc. 10th

International Conference on Information Visualization (IV 2006). (London, UK). IEEE. July 5, 2006,
pages 9–16. ISBN 0769526020. doi:10.1109/IV.2006.31. http://bib.dbvis.de/uploadedFiles/87.pdf
(cited on page 10).

Khan, Suniya Sadullah [2007]. “Analysis of Simulation Techniques and Taguchi Methods as Applied to
Optimise the Setup of a Formula 3 Race Car”. Master’s thesis. Cranfield University, 2007 (cited on
pages 3, 4, 6).

Kohlhardt, Chris and Clint Dickson [2015]. Gliffy. Mar. 12, 2015. http://gliffy.com/ (cited on page 24).

Kosara, Robert, Fabian Bendix, and Helwig Hauser [2006]. “Parallel Sets: Interactive Exploration and
Visual Analysis of Categorical Data”. Transactions on Visualization and Computer Graphics 12.4
(2006), pages 558–568. doi:10.1109/TVCG.2006.76. http://kosara.net/papers/2006/Kosara_TVCG_
2006.pdf (cited on pages 48, 49).

Kreuseler, Matthias and Heidrun Schumann [1999]. “Information Visualization Using a New Focus+Context
Technique in Combination with Dynamic Clustering of Information Space”. In: Proc. 1999 Work-
shop on New Paradigms in Information Visualization and Manipulation (NPIVM ’99). (Kansas City,
Missouri, USA). ACM, Nov. 6, 1999, pages 1–5. ISBN 1581132549. doi:10.1145/331770.331772
(cited on page 14).

Lamping, John O. and Ramana B. Rao [1997]. “Displaying Node-Link Structure With Region of Greater
Spacings and Peripheral Branches”. 5619632. Apr. 1997. http://freepatentsonline.com/5619632.
html (cited on page 14).

Lamping, John and Ramana Rao [1994]. “Laying out and Visualizing Large Trees Using a Hyperbolic
Space”. In: Proc. 7th Annual ACM Symposium on User Interface Software and Technology (UIST
’94). (Marina del Rey, California, USA). ACM, Nov. 2, 1994, pages 13–14. ISBN 0897916573.
doi:10 . 1145 / 192426 . 192430. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
22.6827&rep=rep1&type=pdf (cited on pages 13, 16).

Lichman, M. [2013]. UCI Machine Learning Repository. 2013. https://archive.ics.uci.edu/ml/
datasets/Auto+MPG (cited on page 28).

MarketWatch [2015]. Map of the Market. 2015. http://marketwatch.com/tools/stockresearch/marketmap
(cited on page 18).

Math Images [2015]. Hamiltonian Path. 2015. http://mathforum.org/mathimages/index.php/Hamiltonian_
Path (cited on page 35).

McDonnell, K. T. and K. Mueller [2008]. “Illustrative Parallel Coordinates”. In: Proc. 10th Joint Eu-
rographics / IEEE – VGTC Conference on Visualization (EuroVis 2008). (Eindhoven, The Nether-
lands). Eurographics, May 26, 2008, pages 1031–1038. doi:10.1111/j.1467-8659.2008.01239.x.
http://www3.cs.stonybrook.edu/~mueller/papers/ktm-eurovis2008.pdf (cited on page 37).

Microsoft [2015a]. CLR Profiler for .NET Framework 4. 2015. http://microsoft.com/en-us/download/
details.aspx?id=16273 (cited on page 84).

Microsoft [2015b]. Excel. 2015. https://products.office.com/en-us/Excel (cited on pages 28, 29).

Microsoft [2015c]. Visual Studio 2013 Update 4. 2015. http://microsoft.com/en-us/download/details.
aspx?id=44921 (cited on page 57).

http://dx.doi.org/10.1057/ivs.2009.34
http://kops.uni-konstanz.de/bitstream/handle/123456789/17475/Keim.pdf?sequence=1
http://kops.uni-konstanz.de/bitstream/handle/123456789/17475/Keim.pdf?sequence=1
http://www.amazon.com/exec/obidos/ASIN/0769526020/keithandrewshcic
http://dx.doi.org/10.1109/IV.2006.31
http://bib.dbvis.de/uploadedFiles/87.pdf
http://gliffy.com/
http://dx.doi.org/10.1109/TVCG.2006.76
http://kosara.net/papers/2006/Kosara_TVCG_2006.pdf
http://kosara.net/papers/2006/Kosara_TVCG_2006.pdf
http://www.amazon.com/exec/obidos/ASIN/1581132549/keithandrewshcic
http://dx.doi.org/10.1145/331770.331772
http://freepatentsonline.com/5619632.html
http://freepatentsonline.com/5619632.html
http://www.amazon.com/exec/obidos/ASIN/0897916573/keithandrewshcic
http://dx.doi.org/10.1145/192426.192430
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6827&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6827&rep=rep1&type=pdf
https://archive.ics.uci.edu/ml/datasets/Auto+MPG
https://archive.ics.uci.edu/ml/datasets/Auto+MPG
http://marketwatch.com/tools/stockresearch/marketmap
http://mathforum.org/mathimages/index.php/Hamiltonian_Path
http://mathforum.org/mathimages/index.php/Hamiltonian_Path
http://dx.doi.org/10.1111/j.1467-8659.2008.01239.x
http://www3.cs.stonybrook.edu/~mueller/papers/ktm-eurovis2008.pdf
http://microsoft.com/en-us/download/details.aspx?id=16273
http://microsoft.com/en-us/download/details.aspx?id=16273
https://products.office.com/en-us/Excel
http://microsoft.com/en-us/download/details.aspx?id=44921
http://microsoft.com/en-us/download/details.aspx?id=44921


Bibliography 127

Milliken, William F. and Douglas L. Milliken [1995]. Race Car Vehicle Dynamics. Society of Automotive
Engineers, 1995. ISBN 1560915269 (cited on pages 3, 4, 6).

Ming, Hao C. et al. [2010]. “Visual Analytics of Large Multidimensional Data Using Variable Binned
Scatter Plots”. In: Proc. Visualization and Data Analysis (VDA 2010). (San Jose, CA, USA). Vol-
ume 7530. SPIE Proceedings. SPIE. Macmillan, Jan. 18, 2010. doi:10 . 1117 / 12 . 840142. http:
//www.inf.uni-konstanz.de/gk/pubsys/publishedFiles/MiDaSh10.pdf (cited on page 21).

Morris, Christopher J., David S. Ebert, and Penny L. Rheingans [2000]. “Experimental Analysis of
the Effectiveness of Features in Chernoff Faces”. In: Proc. 28th AIPR Workshop: 3D Visualization
for Data Exploration and Decision Making. Volume 3905. Society of Photo Optical, June 2000,
pages 12–17. ISBN 0819435171. doi:10.1117/12.384865. https://engineering.purdue.edu/~ebertd/
papers/Chernoff_990402.PDF (cited on page 26).

Moser, Christian [2015]. The Differences Between CustomControls and UserControls. 2015. http://
wpftutorial.net/customvsusercontrol.html (cited on page 74).

MSDN [2015a]. BitmapCache Class. 2015. https://msdn.microsoft.com/en-us/library/system.windows.
media.bitmapcache(v=vs.110).aspx (cited on page 80).

MSDN [2015b]. ClearType Overview. 2015. https://msdn.microsoft.com/en-us/library/ms749295(v=
vs.110).aspx (cited on page 80).

MSDN [2015c]. Control Class. 2015. https://msdn.microsoft.com/en- us/library/system.windows.
controls.control(v=vs.110).aspx (cited on page 74).

MSDN [2015d]. Graphics Rendering Tiers. 2015. https://msdn.microsoft.com/en-us/library/ms742196.
aspx (cited on page 73).

MSDN [2015e]. Introduction to WPF. 2015. https://msdn.microsoft.com/en-us/library/aa970268(v=
vs.110).aspx (cited on pages 53, 57).

MSDN [2015f]. Optimizing Performance: 2D Graphics and Imaging. 2015. https://msdn.microsoft.
com/en-us/library/bb613591(v=vs.110).aspx (cited on page 76).

MSDN [2015g]. WPF Apps With The Model-View-ViewModel Design Pattern. 2015. https://msdn.
microsoft.com/en-us/magazine/dd419663.aspx (cited on page 116).

Munzner, Tamara [2014]. Visualization Analysis and Design. A K Peters/CRC Press, 2014. ISBN 1466508914
(cited on page 9).

Munzner, Tamara and Paul Burchard [1995]. “Visualizing the Structure of the World Wide Web in 3D
Hyperbolic Space”. In: Proc. 1st Symposium on Virtual Reality Modeling Language (VRML 95).
(San Diego, California, USA). New York, NY, USA: ACM, Dec. 13, 1995, pages 33–38. ISBN

0897918185. doi:10.1145/217306.217311. http://graphics.stanford.edu/papers/webviz/webviz.
72dpi.pdf (cited on page 14).

NComVA [2014]. OECD Regional eXplorer. Oct. 17, 2014. http://stats.oecd.org/OECDregionalstatistics
(cited on pages 23, 25, 31, 51, 52).

Oracle [2015]. Java. 2015. http://java.com/en/ (cited on page 50).

Pirolli, Peter and Ramana Rao [1996]. “Table Lens As a Tool for Making Sense of Data”. In: Proc.
Workshop on Advanced Visual Interfaces (AVI’96). (Gubbio, Umbria, Italy). Gubbio, Italy: ACM,
May 27, 1996, pages 67–80. ISBN 0897918347. doi:10.1145/948449.948460. http://www2.parc.
com/istl/projects/uir/publications/items/UIR-1996-06-Pirolli-AVI96-TableLens.pdf (cited on
page 24).

http://www.amazon.com/exec/obidos/ASIN/1560915269/keithandrewshcic
http://dx.doi.org/10.1117/12.840142
http://www.inf.uni-konstanz.de/gk/pubsys/publishedFiles/MiDaSh10.pdf
http://www.inf.uni-konstanz.de/gk/pubsys/publishedFiles/MiDaSh10.pdf
http://www.amazon.com/exec/obidos/ASIN/0819435171/keithandrewshcic
http://dx.doi.org/10.1117/12.384865
https://engineering.purdue.edu/~ebertd/papers/Chernoff_990402.PDF
https://engineering.purdue.edu/~ebertd/papers/Chernoff_990402.PDF
http://wpftutorial.net/customvsusercontrol.html
http://wpftutorial.net/customvsusercontrol.html
https://msdn.microsoft.com/en-us/library/system.windows.media.bitmapcache(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.bitmapcache(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms749295(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms749295(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.control(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.control(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms742196.aspx
https://msdn.microsoft.com/en-us/library/ms742196.aspx
https://msdn.microsoft.com/en-us/library/aa970268(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/aa970268(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/bb613591(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/bb613591(v=vs.110).aspx
https://msdn.microsoft.com/en-us/magazine/dd419663.aspx
https://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://www.amazon.com/exec/obidos/ASIN/1466508914/keithandrewshcic
http://www.amazon.com/exec/obidos/ASIN/0897918185/keithandrewshcic
http://dx.doi.org/10.1145/217306.217311
http://graphics.stanford.edu/papers/webviz/webviz.72dpi.pdf
http://graphics.stanford.edu/papers/webviz/webviz.72dpi.pdf
http://stats.oecd.org/OECDregionalstatistics
http://java.com/en/
http://www.amazon.com/exec/obidos/ASIN/0897918347/keithandrewshcic
http://dx.doi.org/10.1145/948449.948460
http://www2.parc.com/istl/projects/uir/publications/items/UIR-1996-06-Pirolli-AVI96-TableLens.pdf
http://www2.parc.com/istl/projects/uir/publications/items/UIR-1996-06-Pirolli-AVI96-TableLens.pdf


128 Bibliography

Rao, Ramana B. and Stuart K. Card [1997]. “Method and System for Producing a Table Image Showing
Indirect Data Representations”. 5632009. May 1997. http://freepatentsonline.com/5632009.html
(cited on page 21).

Rao, Ramana and Stuart K. Card [1995]. “Exploring Large Tables with the Table Lens”. In: Proc. SIGCHI
Conference on Human Factors in Computing Systems (CHI’95). (Denver, Colorado, USA). ACM,
May 7, 1995, pages 403–404. ISBN 0897917553. doi:10.1145/223355.223745. http://sigchi.org/
chi95/proceedings/videos/rr_bdy.htm (cited on pages 21, 24).

Reingold, Edward M. and John S. Tilford [1981]. “Tidier Drawings of Trees”. IEEE Transactions on
Software Engineering 7.2 (Mar. 1981), pages 223–228. ISSN 0098-5589. doi:10.1109/TSE.1981.
234519. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.3559&rep=rep1&type=pdf
(cited on page 14).

Robertson, George G., Jock D. Mackinlay, and Stuart K. Card [1991]. “Cone Trees: Animated 3D Vi-
sualizations of Hierarchical Information”. In: Proc. SIGCHI Conference on Human Factors in Com-
puting Systems (CHI’91). (New Orleans, Louisiana, USA). ACM, May 1991, pages 189–194. ISBN

0897913833. doi:10.1145/108844.108883. http://www2.parc.com/istl/groups/uir/publications/
items/UIR-1991-06-Robertson-CHI91-Cone.pdf (cited on pages 13, 16).

Robertson, George G., Jock Mackinlay, and Stuart K. Card [1994]. “Display of Hierarchical Three-
Dimensional Structures With Rotating Substructures”. 5295243. Mar. 1994. http://freepatentsonline.
com/5295243.html (cited on page 13).

Schulz, Hans Jörg [2011]. “Treevis.net: A Tree Visualization Reference”. Computer Graphics and Ap-
plications, IEEE 31.6 (Nov. 2011), pages 11–15. doi:10.1109/MCG.2011.103 (cited on page 13).

Schulz, Hans Jörg [2015]. A Visual Bibliography of Tree Visualization. 2015. http://vcg.informatik.uni-
rostock.de/~hs162/treeposter/poster.html (cited on page 13).

Schulz, Hans Jörg, Steffen Hadlak, and Heidruno Schumann [2011]. “The Design Space of Implicit
Hierarchy Visualization: A Survey”. IEEE Transactions on Visualization and Computer Graphics
17.4 (Apr. 2011), pages 393–411. doi:10.1109 /TVCG.2007.7051. http://www.informatik.uni-
rostock.de/~hs162/pdf/tvsurvey.pdf (cited on page 12).

Shneiderman, Ben [1996]. “The Eyes Have It: A Task by Data Type Taxonomy For Information Visu-
alizations”. In: Proc. IEEE Symposium on Visual Languages (VL’96). (Boulder, Colorado, USA).
IEEE Computer Society Press, Sept. 3, 1996, pages 336–343. doi:10.1109/VL.1996.545307. https:
//cs.umd.edu/~ben/papers/Shneiderman1996eyes.pdf (cited on pages 11, 63).

Shneiderman, Ben and Martin Wattenberg [2001]. “Ordered Treemap Layouts”. In: Proc. IEEE Sym-
posium on Information Visualization (InfoVis 2001). (San Diego, California, USA). IEEE Computer
Society, Oct. 22, 2001, pages 73–78. doi:10.1109/INFVIS.2001.963283. https://cs.umd.edu/~ben/
papers/Shneiderman2001Ordered.pdf (cited on pages 14, 18).

Smith, Carroll [1978]. Tune To Win - The Art and Science of Race Car Development and Tuning. Aero
Publishers, 1978. ISBN 0879380713 (cited on page 4).

Stasko, John T. and Eugene Zhang [2000]. “Focus+Context Display and Navigation Techniques for
Enhancing Radial, Space-Filling Hierarchy Visualizations”. In: Proc. IEEE Symposium on Informa-
tion Visualization (InfoVis 2000). (Salt Lake City, Utah, USA). IEEE Computer Society, Oct. 2000,
pages 57–65. doi:10.1109/INFVIS.2000.885091. http://cc.gatech.edu/gvu/ii/sunburst/ (cited on
page 17).

Strasnick, Steven L. and Joel D. Tesler [1996]. “Method and Apparatus for Displaying Data Within a
Three-Dimensional Information Landscape”. 5528735. June 1996. http://freepatentsonline.com/
5528735.html (cited on pages 13, 15).

http://freepatentsonline.com/5632009.html
http://www.amazon.com/exec/obidos/ASIN/0897917553/keithandrewshcic
http://dx.doi.org/10.1145/223355.223745
http://sigchi.org/chi95/proceedings/videos/rr_bdy.htm
http://sigchi.org/chi95/proceedings/videos/rr_bdy.htm
http://worldcatlibraries.org/wcpa/issn/0098-5589
http://dx.doi.org/10.1109/TSE.1981.234519
http://dx.doi.org/10.1109/TSE.1981.234519
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.3559&rep=rep1&type=pdf
http://www.amazon.com/exec/obidos/ASIN/0897913833/keithandrewshcic
http://dx.doi.org/10.1145/108844.108883
http://www2.parc.com/istl/groups/uir/publications/items/UIR-1991-06-Robertson-CHI91-Cone.pdf
http://www2.parc.com/istl/groups/uir/publications/items/UIR-1991-06-Robertson-CHI91-Cone.pdf
http://freepatentsonline.com/5295243.html
http://freepatentsonline.com/5295243.html
http://dx.doi.org/10.1109/MCG.2011.103
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://dx.doi.org/10.1109/TVCG.2007.7051
http://www.informatik.uni-rostock.de/~hs162/pdf/tvsurvey.pdf
http://www.informatik.uni-rostock.de/~hs162/pdf/tvsurvey.pdf
http://dx.doi.org/10.1109/VL.1996.545307
https://cs.umd.edu/~ben/papers/Shneiderman1996eyes.pdf
https://cs.umd.edu/~ben/papers/Shneiderman1996eyes.pdf
http://dx.doi.org/10.1109/INFVIS.2001.963283
https://cs.umd.edu/~ben/papers/Shneiderman2001Ordered.pdf
https://cs.umd.edu/~ben/papers/Shneiderman2001Ordered.pdf
http://www.amazon.com/exec/obidos/ASIN/0879380713/keithandrewshcic
http://dx.doi.org/10.1109/INFVIS.2000.885091
http://cc.gatech.edu/gvu/ii/sunburst/
http://freepatentsonline.com/5528735.html
http://freepatentsonline.com/5528735.html


Bibliography 129

Swayne, Deborah F. et al. [2006]. GGobi Manual. Sept. 2006. http://ggobi.org/docs/manual.pdf (cited
on page 49).

The GTK+ Team [2014]. The GTK+ Project. 2014. http://gtk.org/ (cited on page 49).

Tufte, Edward R. [2007]. The Visual Display of Quantitative Information. 2nd edition. Graphics Press,
2007. ISBN 0961392142 (cited on page 27).

Van Wijk, Jarke J. and Huum van de Wetering [1999]. “Cushion Treemaps: Visualization of Hierarchical
Information”. In: Proc. IEEE Symposium on Information Visualization (InfoVis ’99). (San Francisco,
California, USA). IEEE Computer Society, Oct. 24, 1999, pages 73–78, 147. doi:10.1109/INFVIS.
1999.801860. http://www.win.tue.nl/~vanwijk/ctm.pdf (cited on page 17).

Walker, John Q. II [1990]. “A Node-Positioning Algorithm for General Trees”. Software – Practice and
Experience 20.7 (July 1990), pages 685–705. doi:10.1002/spe.4380200705. http://cs.unc.edu/
techreports/89-034.pdf (cited on pages 13, 14).

Ward, Matthew, Georges Grinstein, and Daniel Keim [2010]. Interactive Data Visualisation – Founda-
tions, Techniques and Applications. A.K. Peters, 2010. ISBN 1568814739 (cited on pages 9, 20, 21).

Wikipedia [2014]. Radar Chart. Oct. 17, 2014. http://en.wikipedia.org/wiki/Radar_chart (cited on
page 27).

Wlodek, Piotr [2009]. Parallel Coordinates in WPF. Apr. 6, 2009. http://pwlodek.blogspot.co.at/2009/
04/parallel-coordinates-in-wpf-part-1.html (cited on pages 53, 55, 74).

Wlodek, Piotr [2010]. WPF Parallel Coordinates Source Code on GitHub. Oct. 10, 2010. https://
github.com/pwlodek/CodeGallery/tree/master/src/ParallelCoordinatesDemo (cited on pages 53, 74).

Xceed [2015]. AvalonDock. 2015. https://avalondock.codeplex.com/ (cited on page 116).

Yale [1997]. Scatterplot. Yale University. 1997. http://www.stat.yale.edu/Courses/1997- 98/101/
scatter.htm (cited on page 20).

Yi, Ji Soo et al. [2007]. “Toward a Deeper Understanding of the Role of Interaction in Information Visual-
ization”. IEEE Transactions on Visualization and Computer Graphics 13.6 (Nov. 2007), pages 1224–
1231. doi:10.1109/TVCG.2007.7051. http:/cc.gatech.edu/~stasko/papers/infovis07-interaction.
pdf (cited on page 11).

Ying–Huey, Fua, M.O. Ward, and E.A. Rundensteiner [1999]. “Hierarchical Parallel Coordinates for Ex-
ploration of Large Datasets”. In: Proc. 10th IEEE Visualization Conference (Vis’99). (San Francisco,
CA, USA). IEEE Computer Society, Oct. 24, 1999, pages 43–508. ISBN 078035897X. doi:10.1109/

VISUAL.1999.809866. http://www-devel.cs.ubc.ca/~tmm/courses/533/readings/vis99_HPC.pdf
(cited on pages 37, 39, 63).

Zhou, Hong, Weiwei Cui, et al. [2009]. “Splatting the Lines in Parallel Coordinates”. In: Proc. 11th

Eurographics / IEEE – VGTC Conference on Visualization (EuroVis 2009). (Berlin, Germany). Eu-
rographics, June 10, 2009, pages 759–766. doi:10.1111/j.1467-8659.2009.01476.x. http://cse.
ust.hk/~huamin/euvis09_hong.pdf (cited on page 39).

Zhou, Hong, Xu Panpan, et al. [2013]. “Edge Bundling in Information Visualization”. Tsinghua Science
and Technology 18.2 (Apr. 2013), pages 145–156. doi:10.1109/TST.2013.6509098. http://vis.pku.
edu.cn/research/publication/tsinghuaSci&Tech13_edgeBundling.pdf (cited on page 37).

Zhou, Hong, Xiaoru Yuan, et al. [2008]. “Visual Clustering in Parallel Coordinates”. Computer Graphics
Forum 27.3 (Sept. 29, 2008), pages 1047–1054. doi:10.1111 / j .1467- 8659.2008.01241.x. http:
//www.cse.ust.hk/~huamin/eurovis08_zhou.pdf (cited on pages 37, 40).

http://ggobi.org/docs/manual.pdf
http://gtk.org/
http://www.amazon.com/exec/obidos/ASIN/0961392142/keithandrewshcic
http://dx.doi.org/10.1109/INFVIS.1999.801860
http://dx.doi.org/10.1109/INFVIS.1999.801860
http://www.win.tue.nl/~vanwijk/ctm.pdf
http://dx.doi.org/10.1002/spe.4380200705
http://cs.unc.edu/techreports/89-034.pdf
http://cs.unc.edu/techreports/89-034.pdf
http://www.amazon.com/exec/obidos/ASIN/1568814739/keithandrewshcic
http://en.wikipedia.org/wiki/Radar_chart
http://pwlodek.blogspot.co.at/2009/04/parallel-coordinates-in-wpf-part-1.html
http://pwlodek.blogspot.co.at/2009/04/parallel-coordinates-in-wpf-part-1.html
https://github.com/pwlodek/CodeGallery/tree/master/src/ParallelCoordinatesDemo
https://github.com/pwlodek/CodeGallery/tree/master/src/ParallelCoordinatesDemo
https://avalondock.codeplex.com/
http://www.stat.yale.edu/Courses/1997-98/101/scatter.htm
http://www.stat.yale.edu/Courses/1997-98/101/scatter.htm
http://dx.doi.org/10.1109/TVCG.2007.7051
http:/cc.gatech.edu/~stasko/papers/infovis07-interaction.pdf
http:/cc.gatech.edu/~stasko/papers/infovis07-interaction.pdf
http://www.amazon.com/exec/obidos/ASIN/078035897X/keithandrewshcic
http://dx.doi.org/10.1109/VISUAL.1999.809866
http://dx.doi.org/10.1109/VISUAL.1999.809866
http://www-devel.cs.ubc.ca/~tmm/courses/533/readings/vis99_HPC.pdf
http://dx.doi.org/10.1111/j.1467-8659.2009.01476.x
http://cse.ust.hk/~huamin/euvis09_hong.pdf
http://cse.ust.hk/~huamin/euvis09_hong.pdf
http://dx.doi.org/10.1109/TST.2013.6509098
http://vis.pku.edu.cn/research/publication/tsinghuaSci&Tech13_edgeBundling.pdf
http://vis.pku.edu.cn/research/publication/tsinghuaSci&Tech13_edgeBundling.pdf
http://dx.doi.org/10.1111/j.1467-8659.2008.01241.x
http://www.cse.ust.hk/~huamin/eurovis08_zhou.pdf
http://www.cse.ust.hk/~huamin/eurovis08_zhou.pdf

	Contents
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	1 Introduction
	2 Race Car Simulation
	2.1 Race Car Vehicle Dynamics
	2.2 The Complexity of the Simulation Dataset

	3 Information Visualisation
	3.1 Interaction
	3.2 Visualising Hierarchical Data
	3.2.1 Node-Link (Explicit) Trees
	3.2.2 Space-Filling (Implicit) Trees

	3.3 Visualising Multi-Dimensional Data
	3.3.1 Scatter Plots
	3.3.2 Table Lens
	3.3.3 Chernoff Faces
	3.3.4 Star Plots
	3.3.5 Small Multiples


	4 Parallel Coordinates
	4.1 Common Interactive Features and Extensions
	4.2 Handling Large Datasets
	4.3 Data Exploration and Analysis with Parallel Coordinates
	4.4 Variations of Parallel Coordinates
	4.4.1 Three-Dimensional Displays
	4.4.2 Curves
	4.4.3 Parallel Sets

	4.5 Software Applications
	4.5.1 GGobi
	4.5.2 XDAT
	4.5.3 OECD Statistics eXplorer
	4.5.4 ParallAX
	4.5.5 Parallel Coordinates in WPF


	5 Aggregated Parallel Coordinates
	5.1 Main Features
	5.2 Dimension Aggregation
	5.3 Application of APC in SimBook

	6 Performance Optimisation
	6.1 Initial Implementation and Performance Problems
	6.2 Optimisation Steps
	6.2.1 Replacing Heavy-Weight Shape By Light-Weight Geometry
	6.2.2 Reducing The Number of Render Calls
	6.2.3 Layers and Bitmap Caching

	6.3 The Results

	7 Selected Details of the Implementation
	7.1 Data Structure
	7.2 Aggregated Axes
	7.3 Sliders

	8 Outlook
	9 Concluding Remarks
	A User Guide
	A.1 Loading the Data
	A.2 Using and Customising the Plot
	A.3 Exporting the Plot
	A.4 Changing the Application Layout

	B Developer Guide
	B.1 Using Aggregated Parallel Coordinates as a Library
	B.1.1 Loading the Data
	B.1.2 Customising The Plot
	B.1.2.1 Creating and Using a Record Context Menu
	B.1.2.2 Visualising and Applying Hamiltonian Permutations

	B.1.3 Exporting the Plot to an SVG File

	B.2 Extending Aggregated Parallel Coordinates
	B.2.1 Testbed Project
	B.2.2 AggregatedParallelCoordinates Project


	Bibliography

