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Abstract

In this treatise the new data flow programming framework RTBlocks which supports short-term
algorithm development for mobile devices is introduced. Currently the framework exists in two
programming languages: MATLAB and Java. A simple workflow for developing algorithms in
MATLAB and targeting the Android OS is provided. For proof-of-concept two fundamental
frequency (F0) estimation algorithms and two voice activity detection (VAD) algorithms are
implemented. The real practical value of the framework is demonstrated by integrating third
party libraries which are written in C or C++.



Kurzfassung

Im Zuge dieser Arbeit wird das neu entwickelte datenfluss-orientierte Programmierframework
RTBlocks vorgestellt, welches den Entwicklungsprozess von Kurzzeit-Algorithmen für mobile
Plattformen unterstützt. Das Framework ist zur Zeit in zwei verschiedenen Programmier-
sprachen verfügbar: MATLAB und Java. Weiters wird ein kompletter Entwicklungsprozess
vorgestellt, beginnend beim Designen von Algorithmen mit MATLAB bis hin zur Implemen-
tierung der Algorithmen für Android OS. Für die Evaluierung des Frameworks werden zwei
Algorithmen zur Bestimmung der Grundfrequenz und zwei Algorithmen zur Sprechpausenerken-
nung implementiert. Weiters wird die Flexibilität des Frameworks durch die Integrierung von C
und C++ - Softwarepaketen von Drittanbietern gezeigt.
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1 Introduction

1.1 Motivation

Voice and speech education have a long history. Many tools where developed to increase the
learning curve and support both, trainers and trainees. Most of these tools require sufficient
education in linguistics and phonetics.

The project RAPF targets the development of speech analysis and training tools for every-
one (see appendix section II). The main goal of this project is a wearable device which provides
live feedback for different speech features. One major topic of the project is converting a MAT-
LAB high level algorithm design into device specific code for mobile platforms. This can be
a time-consuming and error-prone procedure. The new real-time block processing framework
(RTBlocks) simplifies this step by hiding complexity, providing the same code base for different
target platforms and unifying the implementation procedure for different programming lan-
guages. The main goal of the framework is to run signal processing algorithms on the Android
OS (Google [2012]) as well as on all other targets which can execute Java byte code.

1.2 Overview

This document is structured as follows: In the current chapter a short overview of speech analysis
algorithms, the prototype’s target platform and related libraries and applications is given. The
design and implementation of RTBlocks are discussed in chapters 2 and 3. Details about the
framework usage are outlined in chapter 4. The result of the work is summarized in chapter 6.

1.3 Speech Analysis

In Rabiner [2007, page 3] a complete speech processing chain is described, from speaker’s message
formulation to message understanding by a listener. Depending on the type of application, digital
speech processing can support any of those steps. The complete speech processing chain is shown
in figure 1.1, application types for digital speech processing are shown in figure 1.2.

Speech analysis is one of the key tasks for many digital speech processing applications. In
Rabiner [2007, pages 19 - 22] a simple speech production source/system model for sampled
speech signals is explained. It mainly consists of an excitation generator and a linear system.
The source/system model is shown in figure 1.3. More advanced speech models are described in
Furui [2001, page 28] and Marshall and Sicuranza [2006].

Short-term speech analysis assumes that the speech model parameters change slowly and can be
assumed as constant within short time intervals.

Many applications require real-time processing : The system must guarantee response within a
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Fig. 1.2 The Speech Chain: from message, to speech signal, to understanding.

For example the message could be represented initially as English text.

In order to “speak” the message, the talker implicitly converts the text

into a symbolic representation of the sequence of sounds corresponding

to the spoken version of the text. This step, called the language code

generator in Figure 1.2, converts text symbols to phonetic symbols

(along with stress and durational information) that describe the basic

sounds of a spoken version of the message and the manner (i.e., the

speed and emphasis) in which the sounds are intended to be produced.

As an example, the segments of the waveform of Figure 1.1 are labeled

with phonetic symbols using a computer-keyboard-friendly code called

ARPAbet.1 Thus, the text “should we chase” is represented phoneti-

cally (in ARPAbet symbols) as [SH UH D — W IY — CH EY S]. (See

Chapter 2 for more discussion of phonetic transcription.) The third step

in the speech production process is the conversion to “neuro-muscular

controls,” i.e., the set of control signals that direct the neuro-muscular

system to move the speech articulators, namely the tongue, lips, teeth,

1The International Phonetic Association (IPA) provides a set of rules for phonetic tran-
scription using an equivalent set of specialized symbols. The ARPAbet code does not
require special fonts and is thus more convenient for computer applications.

Figure 1.1: The image shows a complete speech chain as described in Rabiner [2007, page 3].It includes all
important parts between producing and perceiving speech, from the message formulation in the
brain of the talker to the creation of speech to the message understanding by the listener. It also
includes hints about the required band width required for transmitting the information.

1.2 Applications of Digital Speech Processing 15

Another major speech application that has long been a dream

of speech researchers is automatic language translation. The goal of

language translation systems is to convert spoken words in one lan-

guage to spoken words in another language so as to facilitate natural

language voice dialogues between people speaking different languages.

Language translation technology requires speech synthesis systems that

work in both languages, along with speech recognition (and generally

natural language understanding) that also works for both languages;

hence it is a very difficult task and one for which only limited progress

has been made. When such systems exist, it will be possible for people

speaking different languages to communicate at data rates on the order

of that of printed text reading!

1.2.4 Other Speech Applications

The range of speech communication applications is illustrated in

Figure 1.6. As seen in this figure, the techniques of digital speech

processing are a key ingredient of a wide range of applications that

include the three areas of transmission/storage, speech synthesis, and

speech recognition as well as many others such as speaker identification,

speech signal quality enhancement, and aids for the hearing- or visually-

impaired.

The block diagram in Figure 1.7 represents any system where time

signals such as speech are processed by the techniques of DSP. This

figure simply depicts the notion that once the speech signal is sampled,

it can be manipulated in virtually limitless ways by DSP techniques.

Here again, manipulations and modifications of the speech signal are
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Fig. 1.6 Range of speech communication applications.

Figure 1.2: The image (taken from Rabiner [2007, page 13]) shows different types of speech applications. It
includes areas of speech transmission and storage, speech synthesis, speech recognition, speaker
verification and identification, speech enhancement and aids for handicapped.22 The Speech Signal
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Fig. 2.2 Source/system model for a speech signal.

simulation of sound generation and transmission in the vocal tract

[36, 93], but, for the most part, it is sufficient to model the produc-

tion of a sampled speech signal by a discrete-time system model such

as the one depicted in Figure 2.2. The discrete-time time-varying linear

system on the right in Figure 2.2 simulates the frequency shaping of

the vocal tract tube. The excitation generator on the left simulates the

different modes of sound generation in the vocal tract. Samples of a

speech signal are assumed to be the output of the time-varying linear

system.

In general such a model is called a source/system model of speech

production. The short-time frequency response of the linear system

simulates the frequency shaping of the vocal tract system, and since the

vocal tract changes shape relatively slowly, it is reasonable to assume

that the linear system response does not vary over time intervals on the

order of 10ms or so. Thus, it is common to characterize the discrete-

time linear system by a system function of the form:

H(z) =

M∑

k=0

bkz
−k

1 −
N∑

k=1

akz
−k

=

b0

M∏

k=1

(1 − dkz
−1)

N∏

k=1

(1 − ckz
−1)

, (2.1)

where the filter coefficients ak and bk (labeled as vocal tract parameters

in Figure 2.2) change at a rate on the order of 50–100 times/s. Some

of the poles (ck) of the system function lie close to the unit circle

and create resonances to model the formant frequencies. In detailed

modeling of speech production [32, 34, 64], it is sometimes useful to

employ zeros (dk) of the system function to model nasal and fricative

Figure 1.3: This image (taken from Rabiner [2007, page 21]) shows a simple speech production model. The
excitation generator models the different sound generation modes of the vocal tract. The model
of the vocal tract tube simulates the signal shaping by a discrete-time time-varying linear system.
For small time intervals the vocal tract model can be approximated by a time-invariant system
function. See Rabiner [2007, page 21 ff.] for further details.
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1.4 Related Work

certain time period (Ben-Ari [1990]). Global estimation approaches are not possible for this
kind of applications.

Mobile speech analysis and embedded speech analysis add further constraints, most often related
to performance, energy limitations and difficult environmental conditions. Basic considerations
for embedded speech analysis are listed in Sinha [2010].

Nowadays, the advance of smartphones offers rich and cheep development and prototyping envi-
ronments for mobile speech analysis. Real-time problems for the Android OS on mobile devices
are evaluated in Mongia and Madisetti [2010].

The main algorithm design environment for the current project is MATLAB. An introduction
to speech processing with MATLAB and many practical examples are given in McLoughlin
[2009]. The target platform for the current project is the Samsung Galaxy Nexus (GT-I9250),
which uses Google’s Android operation system and the Dalvik virtual machine (VM) (Google
[2012]). This implies Java as main programming language and C / C++ for special purposes.
Android’s high speed computation engine Renderscript (Guihot [2012]) is not used to keep the
code operation system independent.

1.4 Related Work

In this section, related libraries and applications are noted without any claim to completeness.
Many ideas and concepts of these software packages served as a first draft for RTBlocks. To
demonstrate the flexibility of the framework, some parts of the introduced software packages are
directly integrated in RTBlocks.

1.4.1 Acoustic Phonetics Laboratory Software

Transcriber is used to create orthographic transcriptions of audio records. It supports hierar-
chical annotation layers, speaker lists and much more. Transcriber is written in Tcl/Tk with C
extensions and is open source (Audiotranskription Transcriber [2011]). Orthographic transcrip-
tions can serve as reference signals for voice activity detection (VAD).

PRAAT is designed especially for phonetic speech analysis. It is open source, written in C /
C++ and includes numerous analysis algorithms (Boersma and Weenink [2011]).

WaveSurfer is an audio editor for acoustic phonetic researcher. It is written in Tcl/Tk and open
source (Sjőlander and Beskow [2010]).

1.4.2 Sound Processing Standard and API for Plugin Development

Linux audio developer’s simple plugin api (LADSPA) is a linux standard for handling audio
filters and effects (Furse et al. [2000]). It is written in C, cross platform and licensed under the
GNU Lesser General Public License (LGPL).
Disposable soft synth interface (DSSI) extends the plugin system by instrument bindings (Can-
nam et al. [2010]).
The successor of these two standards is LADSPA version 2 (LV2) (Harris et al. [2009]). A
competitor standard is Steinberg’s Virtual Studio Technology (VST) which mainly has the same
features.
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1.4.3 Frameworks and Libraries

MATLAB is one of the most popular numerical computing environments for audio research
purposes. It is cross-platform, has numerous toolboxes and has been developed by MathWorks.
An important extension for MATLAB is Simulink, which is used for modeling and analyzing
dynamical systems (MathWorks [2011a]). For automatic code generation the toolboxes Simulink
CoderTM, MATLAB CoderTM or the Embedded Coder

®

can be used. Open source alternatives to
MATLAB are Octave (Eaton et al. [2012]) and Python with special extension packages like SciPy
(Jones et al. [2012]), NumPy (Oliphant [2007]) and matplotlib (Hunter [2012]).Well known speech
and audio processing toolboxes for MATLAB are the VOICEBOX (Brookers [2011]), PsySound3
(Cabrera et al. [2007]), MIRtoolbox (Lartillot et al. [2008]), COLEA (Loizou [2003]) and GLOttal
Analysis Toolbox (GLOAT) (Drugman [2012]).

With the Android Developer Tools (ADT) Google provides a complete framework for Android
software development. The Android Software Development Kit (SDK) is the core part of the
framework (Android SDK [2012]). It includes all required parts for developing and debugging
Java applications for Android. The Android Native Development Kit (NDK) provides an mech-
anism for integrating C and C++ code within applications (Android NDK [2012]). The Android
Accessory Development Kit (ADK) is designed for building and integrating hardware accessories
for Android (Android ADK [2012]).

CMU Sphinx is a collection of speech recognition and modeling libraries developed at Carnegie
Mellon University (Walker et al. [2004]). Besides real-time speech recognition it includes several
speech analysis algorithms, acoustic hidden markov models (HMMs), n-gram statistical models
and others. Current releases include a full featured version, written in Java, and a mobile
version, written in C.

FFTW is a fast and often used Discrete Fourier Transform (DFT) library, developed at the
Massachusetts Institute of Technology (MIT) (Frigo and Johnson [2005]). It is written in C
and released under the GNU General Public License (GPL). The latest versions include various
extensions for co-processors and special processor architectures as well as great cross compiling
support. Another DFT library which is written in pure Java is JTransforms (Wendykier [2011]).
It is open-source, supports multi-threading and implements one, two and tree-dimensional fast
fourier transform (FFT) calculations.

FFmpeg is an audio and video processing library collection, licensed under the LGPL and the
GPL. It includes the audio/video codec library libavcodec and is designed for cross-platform
usage (FFmpeg [2012]). A fork library collection of FFmpeg is Libav, which has similar features
(Libav [2012]).

Modular Audio Recognition Framework (MARF) is a collection of natural language processing
(NLP) algorithms. It supports many audio formats and implements several algorithms for
filtering, speech feature extraction and classification. MARF is highly modular and extensible,
written in Java and open source (Mokhov [2008]).

Sound Object (SndObj) is an object oriented framework for audio processing. It includes many
algorithms for audio production and analysis. SndObj is open source, cross-platform and written
in C++ (Lazzarini [2000]).

Sound eXchange (SoX) is a command line tool for audio conversion and manipulation. It is
cross-platform, written in C and open source. SoX provides many features for recording, editing
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1.5 Conclusion

and analyzing audio and speech sounds (Bagwell and Norskog [2012]).

Pure data (PD) is a graphical data flow programming language for real-time data processing
applications. It is cross-platform, written in C and open source (Puckette [1996]). Functional
AUdio STream (FAUST) is a signal programming language especially useful for generating audio
plugins for e.g. LADSPA or PD (Orlarey et al. [2012]).

1.4.4 Android Applications for Speech Analysis

Google Play is the main web store for android applications. Several developers offer software
packages via it’s free web site https://play.google.com/store. Amazon is an alternative
supplier for Android applications. A few Android applications for speech analysis are mentioned
in this section, without any claim to completeness.

The user idroidbot offers several microphone signal analysis applications, like real-time FFT (iS-
pectral) and real-time spectrogram (iGram). Another supplier for real-time audio recording and
analysis applications is NAND MOBILE who also provides limit free versions. The applications
Spectrogram from the user CactusMonkey, SpectrogramOne from Simplecode.com and Simple-
Spectrogram from MusicalSoundLab are other spectrograph applications which mainly provide
the same features.

Mixed Bit provides an application called Speech Trainer which immediately replays recored
audio parts. It is designed for supplying pronunciation training.

Peter Meijer ’s application The vOICe for Android converts live video streams into audio streams
which model the surrounding area. The main idea is to replace the visual sense by the sense of
hearing, which might be useful for visually challenged people.

1.5 Conclusion

With MATLAB a sufficient high level development environment for speech analysis algorithms is
provided. Application development for Android using Java or C++ is supported by ADT. With
extension libraries like MATLAB Coder C++ reference implementations of algorithm parts can
be directly extracted from MATLAB scripts. The extracted code can be integrated within a
Java application skeleton using the Android NDK.

MATLAB scripts which should be automatically converted to C++ code must be carefully
designed. The redesign of complex MATLAB algorithms for automatic code generation could
require more effort than manual implementation may do.

To ease the implementation and verification of short-term audio processing algorithms for An-
droid the new framework RTBlocks combines several concepts and supports different methods
for converting MATLAB code to Android applications. The current technical possibilities are
extended by the new framework to speed-up and improve these time-consuming and error-prone
steps.
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2 RTBlocks Design

The main purpose of this section is to answer the question: “Why is there another framework
for audio processing required?”. The motivation is outlined in section 2.1, features are described
in section 2.2, programming languages, target platforms and supported algorithm types are
discussed in the sections 2.3, 2.4 and 2.5.

2.1 Motivation

The design of speech analysis algorithms usually starts with a mathematical description. If the
theoretical evaluation leads to sufficient results, a high level implementation of the algorithms
will be used to verify the initial assumptions. If the expectations are not fulfilled, the process
will start all over again. These algorithms may include global estimation approaches and will be
based on assumptions or limitations regarding the signal’s characteristics. MATLAB is a widely
used scripting environment for modeling and testing of speech algorithms (McLoughlin [2009]).

In most cases, the algorithm design and the related high level implementation must be ad-
justed and re-evaluated to deal with constant audio streams. A common representation of such
streaming applications is the graphical data flow block processing diagram.

MATLAB can generate standalone executables, so one may stop the design process here. The
design of embedded systems, wearable devices, advanced systems, and similar applications re-
quires further implementation steps. These steps usually include the conversion to a compiled
language like C, C++ or Java, or even to a data flow language like VHDL and Verilog. Complex
systems are difficult to convert using automatic conversion tools (Muelleger [2008], Vikstroem
[2009]). Even if the tools are getting better and better (Nyrenius and Ramstroem [2011]), this
final implementation step requires great effort and is error-prone. Often MATLAB scripts must
be adapted for automatic conversion because not all programming constructs are allowed and
not all MATLAB functions are supported by the conversion tools yet. Manual conversion of
specific parts or even of whole systems is still required.

RTBlocks supports converting the high level design into a data flow block design by hiding the
data stream functionality, block connections and data pagesize differences from the programmer.
To ease the final implementation step there are a high level version in MATLAB’s scripting
language and a compilable version in Java available for all important framework parts. Both,
the MATLAB and the Java version of a certain implementation can be tested in an unique
MATLAB test bench. The integration of automatic generated C or C++ code from MATLAB
scripts is supported by using the Android NDK and the Java native interface (JNI).

Figure 2.1 shows a common fundamental frequency (F0) estimation algorithm block diagram,
the structure of the MATLAB high level design and the related implementation using RTBlocks.
Converting the block diagram to the MATLAB high level design is an intermediate step which
can be skipped in most cases.
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WHILE  getPage
proc 1.1
proc 1.2

FIFO PUSH
WHILE getPage

proc 2.1
proc 2.2
...

Source

proc 1.1
proc 1.2

proc 2.1
proc 2.2

debug

debug

output F0

LP
x[n]

Buffer

Average

+

- Windowing
(Hanning) 1/T0

F0

Matlab World RTBlocks Framework

Signal Processing World

Figure 2.1: Three different representations of the same algorithm: The “top level represenation” of a common
F0 estimation algorithm is shown as graphical block diagram (top part of the image). Such block
processing systems can be implemented by nested loops as outlined in the left lower part of the
image. High level implementations based on nested loops or even graphical block diagrams itself
can be implemented in MATLAB or Java using the RTBlocks framework (lower right part of
the image). This “low level implementation” directly reflects the graphical block diagram if the
algorithms and implementation steps are well designed.

2.2 Features

The main features of the RTBlocks framework are:

• Cross platform algorithm implementation support; tested for MATLAB, OpenJDK Java
virtual machine (JVM), Dalvik JVM

• Short framework training period, easy to use

• Direct mapping between graphical data flow block processing diagrams and implementa-
tion code

• Support for connecting blocks with different page sizes

• Multi-threading support

• 32 bit and 64 bit data width

The current project includes a smartphone prototype with Android OS and Dalvik JVM. Since
Java is the recommended programming language for most Android applications (Ableson et al.
[2012]), it is chosen as the main target for the RTBlock framework. Furthermore Java is known
by the slogan “write once, run anywhere” (Sun [2012]), so all platforms which can execute the
JVM can be targeted.

– 8 – October 1, 2012 Rev.: 1.0



Christoph Klug
RTBlocks

2.3 Programming Languages

2.3 Programming Languages

Three different programming languages are used:

MATLAB is used for algorithm design and the block processing representation. A RTBlocks
version for MATLAB exists.

Java is used as implementation language, which is recommended from Google as main program-
ming language for android application development (Ableson et al. [2012]). A RTBlocks
version and Android specific extensions exit. Android offers the Android SDK for appli-
cation development and verification.

C/C++ is used by many third party libraries and for algorithms with excessive pointer arith-
metic. For the MATLAB version of RTBlocks simply MEX files and MEX build scripts
are used. For the Java version of RTBlocks the C/C++ integration is done by the JNI.
Android offers additional build scripts and cross-compiling tools for Dalvik JVM. These
tools are bundled together to the Android NDK.

2.4 Target Platforms

Both, non-mobile and mobile target platforms for prototypes are evaluated. The main differences
are discussed in this section.

Non-Mobile High Performance Platforms: The main representatives of this targets are com-
mon desktop PCs. Power or performance issues usually do not appear. These platforms are
also suitable for algorithm development and verification. Common integrated development
environments (IDEs) like like MATLAB and Eclipse for Java can be used.

Mobile and Low Performance Platforms: Wearable platforms, smartphones and embedded sys-
tems are better suitable for applications used in everyday life. Most of this platforms have
significant limitations compared to non-mobile platforms. These limitations have to be
considered during the whole algorithm design process. Furthermore, many mobile plat-
forms lack in debugging capabilities. By using the Java version of RTBlocks, mobile and
non-mobile platforms share the same code base and therefore can be tested in common
Java IDEs until platform-specific parts are added. This reduces development time and
error-proneness of the implementation step.
In this context, laptops have similar features compared to common desktop PCs so they
are not viewed as mobile platforms.

2.5 Supported Data Types

RTBlocks supports all short-term analysis algorithms. Multi-dimensional data arrays must be
linearized. All data is stored in 32-bit single-precision or 64-bit double-precision IEEE 754
floating point format(IEEE 754-2008 [2012]). This ensures close coupling between Java and
MATLAB due MATLAB is based on the same numerical format.
The major drawback of Java is that Java neither supports pre-processor macros nor generic
primitive arrays for adjusting the bit size for different target platforms. To overcome this
restriction the Java core implementation of all blocks uses double-precision. A Python script is
provided to extract the single-precision version of the framework.
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2.6 Source-Filter-Sink Concept

RTBlocks defines three structural elements, namely source blocks, filter blocks and sink blocks.
All elements are derived from a common base block. Each block represents a processing step
of an algorithm or a block of a graphical data flow block processing diagram. Blocks of the
framework are implemented by classes.

2.6.1 Block Categories

Base Blocks: Short-term processing blocks behave more or less all the same way: A data page
with a certain page size is taken from the input port, is buffered, modified and the result
is supplied to the following processing blocks. The execution of the algorithms is triggered
by the input data: If data is available, the block is executed. Class names of this block
type have the prefix RTBlock .

Source Blocks: Blocks which provide data from another source than the input port are called
source blocks. By definition these blocks define a blocking main execution method named
run (...). Class names of this block type have the prefix RTSource. If the execution is
triggered by the input port rather than by the run (...) method, the block is not a source
block even if data is obtained from a foreign source.

Filter Blocks: Filters are simply blocks which have the same input and output page size. Class
names of this block type have the prefix RTFilter .

Sink Blocks: Sinks does not need to have the same input and output page size. It is also possible
that blocks of this kind have others blocks connected to their output port. Class names of
this block type have the prefix RTSink .

2.6.2 Block Ports

In graphical block designs, blocks are connected by directed lines. Data is only transferred from
the starting point to the endpoint of the connection. Each block defines a single connection
endpoint, but several connection starting points.

In RTBlocks connections are not separate data channel classes: They are represented by the
elements’ interconnections. Each block defines a method called addSink(...) for connecting one
or several following elements to the current block. All blocks connected by this method are
processed in parallel.

Blocks can have connected sub-blocks. By default sub-blocks are called before the data is
processed by the current block, but this predefined behavior can be altered individually. Each
block defines a method called addFilter(...) for connecting one or several sub-elements to the
current block. All blocks connected by this method are processed in series.

2.7 Data Processing Flow

Data in RTBlocks is processed per page. If a source block has enough data, the connected sub-
blocks and following blocks (sinks) are triggered. Each triggered block stores the data page in an
internal first in first out (FIFO) buffer. When enough data is collected in the internal buffer, the
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block itself calls it’s sub-blocks, processes the data and triggers it’s connected following blocks.
Figure 2.2 shows a simplified data flow chart of a single block processing step.

 Filter::
RTBlock

 Filter::
RTBlock

Buffer Page

Get Next Page

Process Page

Process
Filter Sub-Blocks

Process
Sink Sub-Blocks

RTBlock RTBlock RTBlock

 Filter::
RTBlock

Page Input

Page Output

Page Input

Figure 2.2: Data processing steps for each block: If enough data is available, the block reads out a single data
page from the input buffer and triggers connected blocks. Connected filter blocks are processed
in series, the result is returned to the block. When all filter blocks are processed, the block’s own
processing routine is executed. Then the result is passed to all connected sink blocks.

2.8 Graph Representation

Simple connected block structures can be represented by hierarchical tree structures with linked
nodes. If more than one source is provided or blocks with more than one parent are used, the
structure will be represented by directed acyclic graphs (Thulasiraman and Swamy [1992]).

2.8.1 Traversals

Traversal functions describe the way of accessing and processing each graph node. Currently
the traversal functions are included in the nodes and triggered by parent nodes. The initial
trigger is generated by the source blocks. Several traversal exits:

Initialization: All blocks need to be initialized before any processing can be done. If the root is
initialized, all children will also be initialized.

Finalization: When all data is processed cleanup routines are called.

Processing: If enough data is available, the sources will start the processing traversals. The
traversals stop at blocks which do not have enough available output data.

The applied traversal starts at the top node, recursively moves down the tree or graph structure
and renders the left nodes before the right ones. Left nodes are added before right ones. Figure
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2.3 shows a simple graphical block design of an audio streaming application and related graph
structure.

LP
x[n]

HP

Average

+

-

Amplify

x[n]

Microphone

Loudspeaker

File Out

(a) Block Diagram

Microphone

LP

HP

Subtract Average

Amplify

Loudspeaker

File Out

(b) Graph Structure (Tree)

Figure 2.3: The image outlines two different graphical representations of a simple amplification algorithm:
On the left side the algorithm is shown as block diagram, on the right side the same algorithm is
shown as tree or graph structure. When thinking in terms of trees or graphs rather than in terms
of block processing diagrams algorithm implementations can be generalized using basic concepts
of graph theory (Thulasiraman and Swamy [1992]).
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3 RTBlocks Implementation

This section describes main implementation considerations for the framework, important blocks
and the mathematical background of the implemented algorithms.

3.1 Base Class

All implemented processing blocks are derived from one single base class named RTBlock. This
class is a ready-to-use filter or sink block and an abstract class for source blocks. Several pro-
gramming hooks are implemented - methods, which are called on important data flow positions.
The class RTBlock includes the base functionality of all processing blocks:

• Buffering input data

• Calling connected blocks in the initialization phase, processing phase and finalization phase

• Setting and obtaining block parameters like page sizes or block names

• Applying simple consistence and error checks

Functionality is added by extending the base block using class derivation. Methods which are
provided for extending the base functionality are called hooks. Any of these hooks as well as the
base processing methods can be extended or replaced. An reduced unified modeling language
(UML) diagram of the base class is shown in figure 3.1. The call sequence of the programming
hooks is shown in figure 3.2: When a block executes all attached filter or sink blocks it triggers
the main process method of these blocks. When a block executes it’s initialization, data path
flushing or finalization method, it also triggers the related methods of the attached filter or sink
blocks.
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 Block Creation

Programming Hooks

 Block Execution

 Block Ports

 Block Properties

 Block Info

 Block Name Info

 Block Properties

Graph Structure Info
Block Ports

RTBlock : <<interface>> IRTBlock

name : String
title : String

source : RTSourceInfo
sink : RTSinkInfo

top : Object

filters : ArrayList<IRTBlock>
sinks : ArrayList<IRTBlock>
parent : Object

getInfo () : String

<<create>> RTBlock ()
init (parent : IRTBlock, data : Object) : IRTBlock

setTitle (title : String) : IRTBlock
getTitle () : String
getName () : String

getPagesizes () : double[]
setPagesizes (sink_pagesize : int, source_pagesize : int) : IRTBlock

getSinkInfo () : RTSinkInfo
getSourceInfo () : RTSourceInfo

addFilter (filters : IRTBlock[]) : IRTBlock
addSink (filters : IRTBlock[]) : IRTBlock

run_ () : IRTBlock

flush_ () : IRTBlock
finalize_ () : IRTBlock

process_ (y : double[]) : IRTBlock

processBlock (y : double[]) : double[]
processPreInput (y : double[]) : double[]
processPostInput (y : double[]) : double[]
processBlockPreFilter (y : double[]) : double[]
processBlockPreSink (y : double[]) : double[]
processBlockPostSink (y : double[]) : double[]

...

...

Figure 3.1: The image shows the most important parts of the base class for the RTBlocks framework in an
UML class diagram. The class properties contain several categories: basic block informations
like the block name and block title ( Block Name Info ); common block properties like source page

size and sink page size ( Block Properties ); structural information like the parent block, the top

most block and attached filters and sinks ( Graph Structure Info/Block Ports ); Each category

contains methods for setting and retrieving the related data. Furthermore methods for block
creation and initialization ( Block Creation ), for block processing ( Block Execution ) and for

extending the block’s functionality ( Programming Hooks ) are provided. The main method for

adding functionality is processBlock(...).
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processBlock

HOOK processBlockPreFilter

HOOK processBlockPreSink

HOOK processBlockPostSink

process LIST of Filters

process LIST of Sinks

  Filter::
RTBlock

 Filter::
RTBlock

  Sink::
RTBlock

  Sink::
RTBlock

Programming Hooks
process

HOOK processPreInput

COPY to FIFO

HOOK processPostInput

CALL processBlock

INHERENT 
processBlock

Figure 3.2: The dataflow digram of a block for a single processing step is split into three parts: The main
part process is the top routine for data processing. It is invoked by the parent block, copies data
into the internal FIFO buffer, calls hooks and the core execution routine for page processing
(processBlock). The page processing routine itself contains again several hooks for extending
the base functionality of blocks. It calls all attached filter blocks in series and all attached sinks
in parallel.
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3.1.1 Basic Processing Methods

The base class defines five main methods which are used to add functionality:

init(...): Blocks need to be initialized before any data processing is done. If blocks are inter-
connected only the initialization method of the root block will be called manually. The
initialization methods of all connected child blocks are called automatically.

run (...): This method is implemented by source blocks. Data processing is started by invoking
the run method of the root block.

process(...): This method is triggered by the parent of a block or by the run method. The main
purpose of this method is to push input pages to the internal FIFO buffer and to call the
programming hooks. If enough data is available, the internal data manipulation method
processBlock(...) will be called.

processBlock(...): This is the main data manipulation and data distribution method. The base
implementation of this method simply passes input pages to the attached filters and sinks.
Most blocks implement their data processing algorithms by extending this method.

finalize (...): Cleanup functionality goes here. If a block is finalized, the finalization method of
all connected blocks will be called recursively. Unlike the Java build-in finalization method
this method must be manually invoked.

3.1.2 Programming Hooks

The base class defines several programming hooks for adding functionality or altering the base
behavior of the block. These programming hooks are:

processPreInput(...): This method is called before the input data page is pushed to the block’s
FIFO buffer. All page size checks are done afterwards. The output page size of this
method must be the same as the specified input page size of the block but the input page
size can differ from it. This programming hook should only be used if none of the others
are sufficient.

processPostInput(...): This method is called right after the input data page is pushed to the
block’s FIFO buffer. The main purpose of this method is program debugging and data
verification.

processBlockPreFilter(...): This method is called before the attached filters are processed. The
method must not change the data page size. The page size of the processed data is the
same as the output page size of the block.

processBlockPreSink(...): This method is called before the attached sinks are processed. The
method must not change the data page size. The page size of the processed page is the
same as the output page size.

processBlockPostSink(...): This method is called after all attached sinks are processed. It is
mainly used for debugging and performance measurements.

The call sequence of the programming hooks is shown in figure 3.2.
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3.2 Block Overview

Currently about 40 different blocks are implemented and tested, ranging from simple filters to
complex speech analysis algorithms. This section outlines block instantiation and important
blocks, categorized by their functionality.

3.2.1 Block Instantiation

An abstract block factory is automatically generated by a Python script (see abstract factory
design pattern in Gamma et al. [1995]). By using the factory pattern platform specific blocks as
well as different implementations of the same functionality can easily be instantiated according
to the different target systems without changing the core implementation of the algorithms.

3.2.2 Data Stream Manipulation

Complex algorithms often use different data page sizes or different data step sizes. Furthermore
the block structure may change during runtime. In this section special block purposes for these
problems are outlined.

Page size changes will easily be done by the base block RTBlock if different input and output
page sizes are used. Input data is pushed in the internal FIFO buffer. If enough samples
are available output pages are popped and processed until too few samples are in the
buffer. Beside the base block most derived blocks also allow page size changes.

Port extensions are used for complex systems. This can be done simply by inserting the base
block RTBlock at a certain data flow position. The passing data can be modified by the
filter port and measured by the sink port of the inserted base block.

Placeholder are often used if algorithms are modified during runtime or certain block imple-
mentations are not currently available on specific platforms. By inserting the base block
RTBlock the system implementation can be completed even if not all required blocks are
implemented or tested.

Overlapped pages are used to change the default step size of one page. This functionality is
implemented by RTSink OverlappedFrames.

Upsampling is often used to reduce the analytical error of algorithms. This functionality is
implemented by RTSink Upsampling .

3.2.3 Data Sources

Source blocks provide streaming data from data sources which are foreign to the system. All
these blocks implement the outer processing loop method called run (...).

Reading data from a microphone is implemented by the RTSource Microphone block. Micro-
phones are one of the most important data sources for speech processing applications.
The block reads a data page from the microphone interface and triggers all connected
processing blocks. When all blocks are finished, the source block waits until the next page
is provided by the microphone interface. If the processing step takes too long input data
will be lost.
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Reading data from a file is implemented by the blocks RTSource Wavread and RTSource Pcmread .
Currently only 8 kHz sampling frequency, single channel, 16 bit short value samples, and
the byte order “big endian” is supported.

Reading data from a buffer is implemented by RTSource FromBuffer . The data buffer must
be filled before the run (...) method of this source can be executed .

3.2.4 Data Sinks

Generally speaking, data sinks are used for communicating signal processing results. Cur-
rently RTBlocks implements methods for saving data to volatile and non-volatile storage,
for visualizing and for replaying audio.

Replaying sound is implemented by the RTSink Loudspeaker block. Java does not have a great
native audio input/output support which means that this block is platform-dependent.

Writing data to a file is implemented by RTSink ToWavFile and RTSink ToPcmFile. Cur-
rently only 8 kHz sampling frequency, single channel, 16 bit short value samples and the
byte order “big endian” is supported.

Writing data to a buffer is implemented by RTSink ToBuffer . The data is stored in an internal
buffer and can be read back during or after executing the system. This block may cause
an “out of memory” exception if the algorithm tries to store too much data in the buffer.

Displaying data is implemented by RTSink Plot . The data is stored in a FIFO buffer and plot-
ted as a x-t diagram. MATLAB already contains several functions for plotting. RTBlocks
for Java provides two different plotting methods, one based on JFrame and one on OpenGL.
JFrame is not designed for Android, so RTBlocks for Android adds another plotting class
based on AndroidPlot (AndroidPlot [2011]). The OpenGL version is designed to run on
both, non-mobile and mobile devices.

3.2.5 Data Filtering

Several different signal filter algorithms are implemented, ranging from linear and nonlinear
filters to statistical analysis filters. This section provides a short filter block overview.

A low pass finite impulse response (FIR) filter is implemented by the
RTFilter LowpassFir block. This block realizes a direct form FIR structure (see Oppen-
heim [1999, page 367]). The example implemenation uses a cutoff frequency of 500 Hz and
a sampling frequency of 8 kHz. The filter output is calculated by

y[n] =

K∑

k=0

bk · x[n− k] (3.1)

where x[n] is the input at sample position n, K the filter order, y[n] the filtered signal and
bk the kth filter coefficient. Figure 3.3 shows the signal flow diagram of the implemented
FIR structure.
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x[n]

z-1 z-1 z-1

y[n]

b[0] b[1] b[2] b[K-1] b[K]

Figure 3.3: The images shows the implemented FIR filter structure as signal flow diagram. The filter coef-
ficients b[k] for specific filters are calculated with MATLAB. The RTBlocks test bench ensures
the correct implementation of the filter structure.

The filter coefficients bk are calculated by

bk = b[k] = h[k] · w[k] (3.2)

h[k] =
sin(2π fcfsk)

πk
= 2

fc
fs
· sinc(2fc

fs
k) (3.3)

w[k] = 0.62− 0.48 ·
∣∣∣∣
k

K
− 0.5

∣∣∣∣+ 0.38 · cos
(

2π

(
k

K
− 0.5

))
0 ≤ k ≤ K (3.4)

where h[k] is the impulse response of the ideal time-discrete filter at sample position k,
fc the desired cutoff frequency of the low pass filter, and fs the sampling frequency. To
convert the ideal filter to an FIR filter the impulse response is windowed by a Modified
Bartlett-Hanning window function with finite impulse response (Oppenheim [1999]): w is
the time-discrete window function, and K is the filter order. The FIR filter coefficients
are stored in b[k]. The window coefficients and the FIR filter coefficients are calculated by
the MATLAB scripts barthannwin.m and fir1.m. The direct form I (DF1) and the direct
form II (DF2) of FIR filters lead to the same result (Oppenheim [1999]). Figure 3.4 shows
the window function and the designed filter.

High Pass infinite impulse response (IIR) filtering is implemented by the block
RTFilter HighpassIir . It uses a transposed DF2 second order section (SOS) structure, a
sampling frequency of 8 kHz, a stop band frequency of 15 Hz, a passband frequency of
25 Hz, a stop band attenuation of 80 dB and an allowed passband ripple of 1 dB. The
frequency bands for the filter design are shown in figure 3.5, the signal flow graph of the
implemented filter is shown in figure 3.6. The filter coefficients are calculated with MAT-
LAB’s Filter Design Toolbox by the scripts fdesign.m, design.m and dfilt.df2tsos (Math-
Works [2011b, Signal Processing Toolbox, fdesign.highpass, dfilt.df2tsos]) which apply the
bilinear transform and the Butterworth approximation and the conversion to the trans-
posed SOS filter structure (Oppenheim [1999, page 439 ff.]). The basic structures for IIR
filters are described in Oppenheim [1999, page 354 ff.].

Hanning windowing (Oppenheim [1999, page 468]) is implemented by the block
RTFilter Hanning . The data page is multiplied by the window function w[n] to reduce
the windowing influence and to put more weight on samples which are located around the
page center. The window function w[n] is defined by:

w[n] =





0.5 ·
[
1− cos

(
2πn
N−1

)]
0 ≤ n ≤ (N − 1)

0 otherwise
(3.5)

where N is the data page size.
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(b) Magnitude and Phase Response of the Designed Low Pass Filter

Figure 3.4: The image shows the impulse response of the “Modified Bartlett-Hanning window function” with
finite impulse response (left upper corner), its magnitude squared Fourier transform (right upper
corner), and the magnitude and phase response of the designed low pass filter. The filter is
designed with an order of 40 or 41 coefficients, a sampling frequency of 8000 Hz, and a cutoff
frequency of 500 Hz. The design leads to a linear phase filter and a constant group delay of
N−1
2Fs

= 2.5ms.

Median filtering (Pitas and Venetsanopoulos [1990, page 63 ff.]) is implemented by the RTFilter Median
block. The median filter simply returns the observation which separates the higher half
from the lower half ordered data samples. For odd window length N the result is equals the
kth order statistic where k = N/2 + 0.5. This filter is especially useful for noise reduction
and outlier removal. Further details about median filtering of speech signals are described
in Rabiner and Schafer [1978, page 158 - 161].

Center clipping (Rabiner and Schafer [1978, page 151 ff.]) is provided by the RTFilter CenterClip
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(b) Magnitude and Phase Response for the High Pass Filter

Figure 3.5: The image shows the filter design specifications in an frequency response diagram (a) and the
filter design result as magnitude and phase response diagram (b) for a high pass filter with a stop
band frequency of 15 Hz, a passband frequency of 25 Hz, a stop band attenuation of 80 dB, an
allowed passband ripple of 1 dB and the sampling frequency of 8000 Hz.
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g[0] b[0,0]

b[0,1]

b[0,2]

z-1

- a[0,1]

- a[0,2]

z-1

1/a[0,0] g[1] b[1,0]

b[1,1]

b[1,2]

z-1

- a[1,1]

- a[1,2]

z-1

1/a[1,0] g[K] b[K,0]

b[K,1]

b[K,2]

z-1

- a[K,1]

- a[K,2]

z-1

1/a[K,0] g[K+1]

Figure 3.6: The image shows the transposed SOS filter structure as described in Oppenheim [1999, pages
365 - 366]. If all sections of the cascade are stable, the whole filter is stable. The transposed
DF2 form implements the zeros first and then the poles which leads to less quantization errors
in finite-precision digital implementations.
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block. All samples below a certain limit are suppressed:

y[n] =

{
x[n] |x[n]| > kl ·max(|x[i]|) 0 ≤ i < K, 0 < kl ≤ 1

ks · x[n] otherwise
(3.6)

where x[n] are the input samples, y[n] are the filtered samples, and K is the data page
size. The current center clipping block uses a limit gain kl of 0.5 and a suppression factor
ks of 1

5 . In figure 3.7 the transfer function of the block and an example center clipping
step is shown.

Auto-correlation function (ACF) is implemented by the RTFilter Xcorr block. The block
computes the unbiased ACF as described in MathWorks [2011b, section xcorr: cross cor-
relation]:

rxx[m] =





1
N−|m| ·

N−m−1∑
n=0

xn+m · x∗n m ≥ 0

rxx[−m] otherwise

(3.7)

The lower symmetrical part of the correlation is discarded to provide same input and
output page size. For fast calculation the FFT based algorithm described in Oppenheim
[1999, page 746] is used.

Bilateral filtering is a non-linear data-dependent filter method which uses two Gaussian filter
kernels. The filter was originally designed for edge preventing denoising, filtering and
joining images. A detailed description is given in Paris et al. [2009]. The filter was also
successfully tested for sound denoising Matsumoto and Hashimoto [2009]. Figure 3.8 shows
a common audio filtering process using bilateral filtering. The block RTFilter Bilateral
implements a brute force bilateral filter algorithm for speech enhancement:

y[n] = k[n] ·
n+dM/2e∑

i=n−bM/2c
x[i] · c(|n− i|) · g(|x[n]− x[i]|, n) (3.8)

k[n] =




n+dM/2e∑

i=n−bM/2c
c(|n− i|) · g(|x[n]− x[i]|, n)



−1

(3.9)

c[dn] = e
− d2n

2·σ2n (3.10)

g[dx, n] = e
− (kx[n]·dx)2

2·σ2x (3.11)

kx[n] = (max(x[i]) ·M)−1 n− bM/2c ≤ i ≤ n+ dM/2e (3.12)

where x[n] is the speech input at position n, M the spatial filter size, k[n] the filter nor-
malization factor, c[dn] the Gaussian weight function for spatial distances dn, g[dx, n] the
Gaussian weight function for the amplitude distance dx and kx[n] the amplitude normal-
ization factor for the filter kernel calculation.

To avoid critical scaling of the Gaussian weight function for spatial distances a dynamic a
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(a) Transfer Function of the RTFilter CenterClip Block.
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(b) Applied Center Clipping (Input and Output Signals).

Figure 3.7: The block RTFilter CenterClip implements the center clipping transfer function shown in (a).
Signal parts with an amplitude lower than a certain limit are attenuated but still available at the
output. The impact of this nonlinear filter is shown in (b).
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range compression function can be added:

g[dx, n]′ = tanh(e
− (·dx)2

2·σ2x ) (3.13)

tanh(x) =
ex − e−x

ex + e−x
(3.14)

where the tangens hyperbolicus function tanh is used to compress the dynamic range of
the Gaussian weight function g[dx, n]′. See appendix sections K.2.2 and K.3.7 for more
details.
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(b) Filtering A Noisy Step Signal
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(c) Filtering Compound Noisy Sinus Signals

Figure 3.8: The image shows an example for bilateral filtering of time series. Small signal derivations are
smoothed, huge signal edges are preserved, as shown in (b). The filter kernel must be re-calculated
for each input signal which leads to significant computational effort. To overcome the problem
of too high signal delay introduced by this calculation the filter can be parallelized.

Automatic gain control (AGC) is an important filter for real environment audio applications.
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A very simple version of AGC is implemented by the block RTFilter AutomaticGainControl :

y[n] = x[n] · k[n] (3.15)

m[n] = max(|x[n−m]|) 0 ≤ m < M (3.16)

k[n] =





m−1max m[n] > mmax

m[n]−1 mmin ≤ m[n] ≤ mmax

m−1min m[n] < mmin

(3.17)

where x[n] is the input and y[n] the output at sample position n, k[n] is the gain factor,
and m[n] the moving absolute maximum value for a certain window M . The gain limits
are specified by m−1min and m−1max.

Amplitude spectrum: Returns the absolute values of the FFT spectrum calculated over one
data page. This block is implemented by RTFilter AbsFFT . Figure 3.9 demonstrates the
implemented block behavior.

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1
Input Signal x[n]

0 20 40 60 80 100 120
0

5
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15

20

25    
(Shifted) Output Signal y = |FFT(x)|       

           

Figure 3.9: The image shows the amplitude spectrum for a noisy signal based on two overlapped sinus signals,
calculated by the block RTFilter AbsFFT. RTBlocks for MATLAB uses the MATLAB’s build-in
FFT algorithm, RTBlocks for Java uses the pure Java DFT library JTransforms (Wendykier
[2011]), and RTBlocks for Android uses FFTW (Frigo and Johnson [2005]), cross-compiled and
optimized for Samsung Galaxy Nexus GT-I9250.

Mean subtraction: Subtracts the mean value, calculated over one data page:

y[n] = x[n]− x (3.18)

x =

N∑
x[i]
i=0

N
(3.19)
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where x[n] is the input signal of the current page for sample position n, x the average of
the current page, N the page size and y[n] is the related output signal.

This block is implemented by RTFilter SubtractMean.

Normalization: Divides all samples by the maximum of the current data page.

y[n] =
x[n]

xmax
(3.20)

xmax = max(|x[i]|) 0 ≤ i < N (3.21)

where x[n] is the input signal of the current page for sample position n, xmax the maximum
amplitude value of the current page, N the page size and y[n] is the related output signal.

This block is implemented by RTFilter Normalize.

Moving average: Returns the moving average of the data samples. The data page size of the
block does not influence the results.

y[n] = x[n] (3.22)

x[n] =

n−M∑
x[i]

i=n

M
(3.23)

where x[n] is the input signal of the current page for sample position n, x[n] the moving
average value, M the average window size and y[n] is the related output signal. To simplify
the implementation the average window is not centered around the current sample position
n.

This block is implemented by RTFilter MovingAverage.

Signal delay: Delays the input data for certain samples:

y[n] = x[n− nd] (3.24)

where x[n] is the input at sample position n, nd is the integer delay value and y[n] is the
related output sample.

This block is implemented by RTFilter Delay .

Signal gain: Multiplies the input samples by a certain constant gain:

y[n] = k · x[n] (3.25)

where x[n] is the input at sample position n, k is the constant gain factor and y[n] is the
related output sample. This block is implemented by RTFilter Gain.

Signal’s dynamic range compression: Limits the input signal to ±1 by a certain transfer func-
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tion. Currently four different transfer functions are available:

yclamp =





−1 x ≤ −1

x −1 < x < 1

1 x ≥ 1

(3.26)

ytanh = tanh(x) (3.27)

ytanh tanh = k0 · tanh(tanh(x)) =
1

tanh(∞)
· tanh(tanh(x)) (3.28)

yatan = k1 · atan(x) =
1

atan(∞)
· atan(x) (3.29)

where x is the input signal and yclamp, ytanh, ytanh tanh and yatan are the output signals for
the selected transfer function. The different transfer functions are shown in figure 3.10.
The block implements a memoryless system as described in Oppenheim [1999, page 18].

This block is implemented by RTFilter DynamicCompression.
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Figure 3.10: The image shows the different transfer functions for dynamic range compression which are
included in RTBlocks. The implemented block is a memoryless system which means it does not
introduce any signal delay.

Absolute value calculation: Returns the absolute values of the input samples:

y[n] = |x[n]| (3.30)

where x[n] is the input signal at sample position n and y[n] the related output signal. This
block is implemented by RTFilter AbsoluteValue.
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3.2.6 Speech Analysis

The main purpose of the RTBlocks dataflow programming framework is the implementation of
speech analysis algorithms. Currently two VAD and two F0 algorithms are implemented, each
within its own block. Standard filter implementations as described in section 3.2.5 are reused,
algorithm specific parts are added. Each speech analysis algorithm groups a complex RTBlocks
networks together to a single RTBlock class. A short description of the blocks is provided in
this section. Further details about the algorithms are explained in the appendix section III.

Multi-feature pattern matching VAD as described in Benyassine et al. [1997] is in imple-
mented by RTSink Rapf VadG729B . The base VAD step calculates four speech features at
each frame: Linear prediction (LP) spectrum, full-band energy, low-band energy and zero-
crossing rate. Long-term energy and global threshold concepts are used to avoid possible
algorithm deadlocks. The reference implementation proposed in Benyassine et al. [1997]
is embedded within RTBlocks by using the JNI extension. Figure 3.11 shows a simplified
block digram of the VAD block.

+
WindowingLPx[n] Buffer

Average
-

Signal Parameter
Estimation

Pattern Matching
(Diff, Hyperspace)

BufferAverage

Hangover Scheme
(Smoothing)

resetvad

noise path

signal path

VAD

Short-Term Energy

Signal Parameter Estimation

LP Energy

Energy

Zero-Crossing
Rate

LP Spectrum

Long-Term Energy

anti-glitch
Threshold

Figure 3.11: The image is taken from K.3.4 where a detailed review of the VAD algorithm introduced in
Benyassine et al. [1997] is provided. The algorithm is based on multi-feature extraction, pattern
matching and a hangover scheme for smoothed VAD results.

Variance based VAD as described in the appendix section K.3.7 is implemented by
RTSink VadFromBilateral in a simplified and real-time capable version. The core algo-
rithm calculates the amplitude variance for a single frame. A simple VAD decision can be
formed by applying a constant or variable threshold. More advanced concepts may include
the signal curve of the amplitude variance, hangover schemes or plausibility checks. The
core implementation of the algorithm is shown in figure 3.12.

A simple ACF based F0 is implemented by RTSink Rapf F0Xcorr01 . The algorithm searches
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+
Windowing
(Hanning)

LP
(Bilateral)

x[n] Buffer

Average
-
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VAD

Energy

k
Maximum

Filter
|x|

Figure 3.12: The image shows the simplified version of the variance based algorithm introduced in “RAPF
Preliminary Algorithm Study” (see appendix section K.3.7). Energy based post-processing is
omitted to decrease the computational effort and to calculate the result in real-time. The core
feature of the algorithm is the bilateral pre-processing step which also is the most complex part
of the implementation. Parallel implementation is possible to speedup the calculation.

the ACF for strong peaks next to the main correlation peak. A simplified version of the
algorithm is shown in figure 3.13. A detailed description of this algorithm is provided in
L.3.1.

LPx[n] Buffer

Average

+

- Windowing
(Hanning)

Correlation
Skip/Blend
(mainpeak)

ArgMax
T01/T0F0

Figure 3.13: The image is taken from “RAPF Preliminary Algorithm Study” (see appendix section L.3.1).
It shows a simple ACF based F0 estimation algorithm. Complex post-processing methods are
omitted to keep the implementation simple and fast. If the F0 is within a certain range the
algorithm leads to good estimation results, outside this range the estimation tends to fail. See
appendix section L.4 for further details.

Robust F0 estimation as described in de Cheveigné and Kawahara [2002] is implemented by
RTSink Rapf F0Yin. Several extensions to the ACF and distance function (DF) lead to
a more robust F0 estimation. The algorithm’s C implementation of CMU Sphinx is used
by RTBlocks through the JNI interface. A detailed review of the algorithm is provided in
the appendix section L.3.6.

3.3 Code Generation for Different Target Platforms

Platform specific code can be generated automatically or implemented manually. Automatic
code generation with MATLAB is discussed in section 3.3.1, Java code generation is described
in section 3.3.3.
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3.3.1 Automatic Code Generation

Most high level implementations of speech algorithms are done with MATLAB. MATLAB
Simulink models, Embedded MATLAB code or even MATLAB scripts can be converted to
C code, C++ code or program libraries. Therefore Simulink CoderTM, MATLAB CoderTM or
the Embedded Coder

®

can be used. The convesion results do not require the matlab compiler
runtime (MCR) on the target platform (MathWorks [2011b]). Automatic code generation is
discussed in e.g. Nyrenius and Ramstroem [2011] and Vikstroem [2009], MATLAB compilers
for C code generation are reviewed in Muelleger [2008].
Generated code may be used directly, as code base or as reference implementation. Code gen-
eration for Android is not directly supported. Nevertheless C or C++ libraries can be compiled
using Android’s native development kit (NDK) and accessed through the JNI.

3.3.2 Cross Platform Real-Time Plotting

MATLAB integrates most important plotting functionalities which are used for RTBlocks. Java
provides the application programming interface (API) Swing for graphical user interactions
and visualizations (Hoy et al. [2003]). The core functionality of MATLAB for plotting one-
dimensional time series is re-implemented in RTBlocks, based on Swing. Because Swing is not
available on Android, RTBlocks for Android provides a separate plotting package based on the
library androidplot (AndroidPlot [2011]).

The Swing and androidplot versions for plotting time series are not optimized for performance.
RTBlocks provides another cross-platform plotting package which is optimized for fast time se-
ries plotting. It has limited user interaction functionality and is based on OpenGL ES (Khronos
Group [2012]). The consecutively numbered time values are stored in a single vertex buffer ob-
ject (VBO), the amplitude values are stored in one or more VBOs. Besides the standard plotting
functionality the package provides continuous plotting with specified FIFO buffer length, multi-
series plots and multi-axes plots. The FIFO buffer for the amplitude values can be placed in
the graphics processing unit (GPU) memory to support modern smartphones with lower central
processing unit (CPU) performance. In this case most controlling and processing parts for the
FIFO buffer are done by the implemented Shader Programs. A general description of OpenGL is
given in Wright et al. [2011], a detailed description of the OpenGL Shader Language (GLSL) is
provided in Rost [2006]. The block diagram in figure 3.14 outlines the distribution of the FIFO
buffer between the CPU and the GPU.
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Figure 3.14: The image shows the distribution of the FIFO buffer between the CPU and the GPU for con-
tinuous time series plots. In (a) the FIFO buffer is placed on the GPU memory. It consists
of indexable VBOs which are rendered as a single circular buffer and concatenated by a single
vertex for each VBO transition. The transformation matrix M controls the rendering of the
data onto a two dimensional plane. The buffer update routines and the rendering routines must
be synchronized to avoid losing data. In (b) the FIFO buffer is placed in the system’s memory
and controlled by the CPU. Only one VBO is used for passing the amplitude data to the ren-
dering pipeline. In both cases a separate VBO is used to store the time values. This buffer is
increased as needed.

3.3.3 Java Code Generation

MATLAB does not generate Java code without MCR, which is not designed for embedded or
mobile devices. Therefore all implemented Blocks exist in both, MATLAB and Java program-
ming language. Both uses 32 bit or 64 bit double precision floating point calculations. Further
extensions are added to support Android specific elements: Especially input and output blocks
like recording from microphone and data plotting differs from the standard JVM versions. Due
to CPU limitations the fast FFTW library (Frigo and Johnson [2005]) is used to speedup FFT
and ACF calculations. The library is cross-compiled for Samsung Galaxy Nexus which has an
advanced risc machine (ARM) CPU, a floating point unit (FPU) and single processing multi
data (SIMD) capabilities. By cross-compiling the used algorithms can be processed in real-time.
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3.3.4 Conclusion

To provide a good base for fast algorithm development the framework includes many different
source, filter and sink blocks for both, MATLAB and Java. The blocks are functional identical
which supports implementing MATLAB designs for Android. By enclosing processing networks
into a single block complex parts can be reused like any other block. C and C++ can be
integrated by using the JNI. With this method the framework can benefit from the strengths of
different programming languages as well as from MATLAB’s automatic code generation.
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The basic design flow from algorithm design to mobile implementation using RTBlocks is ex-
plained in this chapter.

4.1 Algorithm Block Structures

The basic structure consists of only one single data source or several synchronized data sources.
This is a common scenario for streaming applications and sufficient in most cases. If no multi-
threading block except from microphone input and loudspeaker output is required, the high level
design can be easily implemented in MATLAB.

The advanced structure enables using more than one non-synchronized data sources. Multi-
threading, data joining and similar concepts are included. This structure is hard to debug and
not easy to design and integrate within MATLAB.

4.2 Algorithm Design Flow

A simple and straight-forward design flow for RTBlocks based algorithm design and evaluation
is shown in figure 4.1. In this section the design phases are explained by the step-by-step
implementation of a frame based mean subtraction algorithm.

Rev.: 1.0 October 1, 2012 – 33 –



RTBlocks
4 RTBlocks Usage

Christoph Klug

Java JVM
Block Processing

Matlab
Block Processing

Matlab Script

Algorithm Description

Java Dalvik
Block ProcessingDesign Verification

Matlab 
Testbench

Java 
Testbench

Android App

Figure 4.1: The image shows a simple design flow for RTBlocks based algorithms. Starting at the algorithm
description, a MATLAB high level implementation is required. The algorithm needs to be con-
verted to a block processing structure. Therefore the RTBlocks for MATLAB is implemented.
From the high level implementation and the bock processing implemenation a test bench which
is the base test bench for all further implementation steps can be extracted. Then the Java ver-
sion of the algorithm needs to be implemented. Therefore the RTBlocks for Java is provided.
The implemented blocks can be individually tested and compared against the MATLAB blocks.
Finally Android specific parts are added. Many Android specific blocks are already provided by
RTBlocks for Android.

4.3 Example Implementations

4.3.1 Example: Mean Subtraction Algorithm

An algorithm should be implemented which reads data from an audio file, splits the data into
non-overlapped frames, subtracts the amplitude’s mean value for each page and stores the result
in another audio file. The dataflow diagram of this task is shown in figure 4.2.

Buffer

Average

+
-

File OutFile In

Figure 4.2: The image shows a simple mean subtraction system, which contains the data source, the buffer
which converts continuous data samples into data pages, the mean subtraction stage and the data
sink.

The main algorithm stage is the subtraction of the mean value, which should fulfill following
equation:

y[n,m] = x[n,m]− xm 0 ≤ n < N (4.1)

xm =

N−1∑
n=0

x[n,m]

N
(4.2)
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where x[n,m] is the input sample at page m and sample offset n, N is the page size, and xm is
the mean amplitude value for page m.

A possible high level implementation for MATLAB is shown in the following listing:

1 % read data from file

2 [ x , fs ] = wavread( filename_in );

3

4 % split data into non-overlapped frames

5 x = buffer( x , framesize );

6

7 % for each frame: subtract average

8 av = sum( x , 1 ) / framesize;

9 y = x - repmat( av , size( x , 1 ) , 1 );

10 %...alternative: y = bsxfun( @minus , x , av );

11

12 % save data to file

13 wavwrite ( y( : ) , fs, filename_out );

The scripts wavread.m and wavwrite.m are used for reading and writing audio data. For split-
ting data into non-overlapped frames the script buffer.m is used.

A slower, but more Java-like implementation uses a loop to calculate and subtract the aver-
age for each data page:

1 % read data from file

2 [ x , fs ] = wavread( filename_in );

3

4 % split data into non-overlapped frames

5 x = buffer( x , framesize );

6

7 % for each frame: subtract average

8 y = zeros ( size ( x ) );

9 for i = 1 : size( y , 2 )

10 page = x( : , i );

11 av = sum ( page ) / framesize;

12 y( : , i ) = page - av;

13 end

14

15 % save data to file

16 wavwrite ( y( : ) , fs, filename_out );

The next step is converting the MATLAB implementation into a streaming application, us-
ing RTBlocks. The MATLAB version for the task might look as follows:

1 %block for reading data from file

2 source = RTSource_Wavread();

3 source.setFilename( filename_in );

4 source.setPagesizes( framesize_in , framesize_out );

5

6 %block for average subtraction

7 filter = RTFilter_SubtractMean01();

8

9 %block for saving data to file

10 sink = RTSink_ToWavFile01();

11 sink.setFilename( filename_out );
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12

13 %interconnect

14 source.addFilter( filter );

15 source.addSink( sink );

16

17 %process data

18 source.init().run_().flush_().finalize_();

The blocks RTSource Wavread and RTSink ToWavFile01 are used for reading and writing au-
dio data. Mean subtraction is implemented by the block RTFilter SubtractMean01. The block
is derived from RTBlock and overwrites it’s processing method processBlock(...):

1 function y = processBlock( obj , y )

2 % average subtraction

3 % av = sum( y ) / obj.sink.pagesize;

4 av = sum( y ) / length( y );

5 y = y - av;

6

7 % process connected filters and sinks

8 y = obj.processBlock@RTBlock( y );

9 end

The Java version of this application looks very similar to the MATLAB implementation:

1 // block for reading data from file

2 IRTSource_Wavread source = new RTSource_Wavread();

3 source.setFilename( filename_in );

4 source.setPagesizes( framesize_in , framesize_out );

5

6 // block for average subtraction

7 IRTBlock filter = new RTFilter_SubtractMean01();

8

9 // block for saving data to file

10 IRTSink_ToWavFile sink = new RTSink_ToWavFile01();

11 sink.setFilename( filename_out );

12

13 // interconnect

14 source.addFilter( filter );

15 source.addSink( sink );

16

17 // process data

18 source.init().run_().flush_().finalize_();

The Java version of mean subtraction uses special array utilities which reduce the gap between
MATLAB vector operation functions and Java vector operations functions. The overwritten
processing method processBlock(...) is shown in the following listing:

1 @Override

2 protected double[] processBlock( double[] y ) {

3 // average subtraction

4 // double av = ArrayUtils.sum( y ) / obj.sink.pagesize;

5 double av = ArrayUtils.sum( y ) / y.length;
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6 y = ArrayUtils.SubtractInplace( y , av );

7

8 //process connected filters and sinks

9 y = super.processBlock( y );

10 return y;

11 }

If different target platforms or different block versions are expected, blocks should be instantiated
by the factory rather by using new :

1 // create bock factory (’new’ is only used to simplify the demonstation code)

2 IRTBlockFactory fact = new RTBlockFactory();

3

4 // block for reading data from file

5 IRTSource_Wavread source = fact.createStandardRTSource_Wavread();

6 source.setFilename( filename_in );

7 source.setPagesizes( framesize_in , framesize_out );

8

9 // block for average subtraction

10 IRTBlock filter = fact.createStandardRTFilter_SubtractMean();

11

12 // block for saving data to file

13 IRTSink_ToWavFile sink = fact.createStandardRTSink_ToWavFile();

14 sink.setFilename( filename_out );

15

16 // interconnect

17 source.addFilter( filter );

18 source.addSink( sink );

19

20 // process data

21 source.init().run_().flush_().finalize_();

The MATLAB version serves as a reference implementation for the Java version. The veri-
fication of the Java implementation can be done by comparing the output files or by direct
instantiation of the Java blocks within MATLAB scipts. The Java implementation shown above
can be used for JVM or Android’s Dalvik VM.

4.3.2 Example: Simple ACF based F0 Algorithm

Complex algorithms can be constructed by interconnecting basic blocks rather than implement-
ing all parts from scratch. If the block networks are enclosed within basic block classes and all
ports are connected appropriately, the new processing systems can be used like any other blocks.
This step is called grouping and is recommended for most algorithm implementations.

Figure 4.3 outlines one of many possible RTBlocks realizations for the ACF based F0 estimation
algorithm shown in figure 3.13. The input page size and the step size of the system can be
adjusted by modifying the enclosing block. Page size changes are forwarded to the top most
block. If the algorithm is carefully designed the changes are propagated to all related children.
The output page size is fixed to one sample per calculation iteration. Step size changes are di-
rectly handled by RTSink OverlappedFrames. Decreasing the step size leads to more calculation
iterations per input page.
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RTSink_Rapf_F0Xcorr

RTFilter_LowpassFir

RTFilter_SubtractMean

RTFilter_Xcorr

RTBlock

RTSink_OverlappedFrames  

RTSink_F0FromXCorr

RTFilter_Hanning

Virtual Input Port

Sink Port

Filter Port

Figure 4.3: The image shows the RTBlocks implementation of the simple ACF based F0 estimation algo-
rithm. It implements the algorithm shown in block diagram L.6 (see section 3.2.6). The imple-
mentation is formed by simply interconnecting standard filters and sinks, adding an algorithm
specific F0 extraction block (RTSink F0FromXCorr) and grouping the network together to the
new block RTSink Rapf F0Xcorr.

4.3.3 Example: Speech Analysis System

A complete speech analysis system exists of at least one audio source, several feature extraction
parts and a one or several feature representations. Figure 4.4 shows a very simple speech analysis
system: Audio is recorded from a microphone and amplified by a simple automatic gain control
block. VAD, F0 estimation and input data storage are connected in parallel to the audio source.
Input data and estimated features are plotted as time series. By adding or removing blocks the
influence of specific processing steps can easily be evaluated.
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4.4 Conclusion

Figure

RTSource_Microphone RTFilter_AutomaticGainControl

RTSink_Plot RTSink_Plot

RTSink VadFromBilateral RTSink_ToPcmFile

RTSink_Plot

RTSink_Rapf_F0Xcorr

Figure 4.4: The image shows the RTBlocks implementation of a simple speech feature extraction system.
Core blocks of the framework connected together, different page sizes can be used. By adding or
removing blocks the influence of specific processing steps can be evaluated.

4.4 Conclusion

The framework supports the design of simple and complex audio processing systems. By dividing
complex algorithms into smaller blocks or grouping networks together to single blocks imple-
mented parts can easily be verified, tested and reused. Once the system architecture is settled,
computational expensive parts can be encapsulated and replaced by faster implementations.
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5 RTBlocks Verification

Unit tests for all blocks which are described in chapter 3 guarantee the correct behavior of the
framework. For each RTBlocks version an own test bench is provided. Most MATLAB and Java
parts can be used within the MATLAB test bench. The Java versions of blocks can also be used
within the Java test bench. An Android test bench is provided which deals with all smartphone
specific parts. Additionally the GUI based remote control for the Android test bench can be
integrated in MATLAB.

In this section test results are discussed for the speech analysis algorithms of section 3.2.6. The
discussion includes several plots of test runs which are executed within the different test benches.

5.1 Overview

In RAPF Preliminary Algorithm Study (see appendix section III) several speech analysis algo-
rithms are reviewed, implemented and tested. RTBlocks includes four very different implemen-
tations to cover a large area of possible implementation methods. Extensive preprocessing and
post-processing methods are switched off to simplify the algorithms and to ease the real-time
implementation and verification. Global estimations like signal amplitude normalization are
avoided. The algorithms computational effort can be lowered by increasing the step sizes of the
algorithms according to the target performance capabilities. If the step sizes are changed, the
affected algorithms must be re-evaluated to ensure their correct behavior.

5.2 G729B Based VAD Algorithm

The reference implementation of the G729B as described in Benyassine et al. [1997] is used
to extract a VAD signal. This algorithm is wrapped by the block RTSink Rapf VadG729B
as discussed in section 3.2.6. The ANSI-C code is accessed from MATLAB by using it’s mex
extension and by Java by using the JNI. By definition the page size is fixed to 80 samples. A
step size equals 1/3 of the page size leads to reasonable results. The test signal is formed two
concatenated sentences of two different male speakers, taken from the TIMIT database (Garofolo
et al. [2011]): “If necessary to replace both halves on grill, sear cuts and allot extra time” and
“Don’t ask me to carry an oily rag like that”. The MATLAB high level implementation as
discussed in the appendix section K.3.4 is used as reference signal. Both, the MATLAB and
the Java version of the RTBlocks implementation lead to equal VAD signals compared to the
reference signal. The resulting VAD plots are shown in figure 5.1. The related MATLAB
script for the unit test is provided in the appendix section A. The same test executed as Java
standalone application and embedded within the Android test bench is shown in figure 5.2 and
figure 5.3. The Android test bench can be directly controlled using the touch screen of the
smartphones. Another method which is used for testing is the remote control of the test bench
from a connected computer. The control software on the computer is based on a Python script
which can unlock the smartphone, install, start and stop applications, simulate graphical user
inputs and take screen snapshots of the smartphone (see appendix section E). The control script
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can be used from within MATLAB if the scripts are compiled to Java byte code with the Jython
compiler or the Jython Interpreter is used from within MATLAB (Jython [2012]).
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Figure 5.1: The image shows the graphical representation of the unit test for the G729B VAD implementa-
tion. The top most plot is the input signal which is formed of the TIMIT sentences “If necessary
to replace both halves on grill, sear cuts and allot extra time” and “Don’t ask me to carry an
oily rag like that” (Garofolo et al. [2011]). The reference signal (second top most plot) is calcu-
lated by the reference implementation based on the results of the “RAPF Preliminary Algorithm
Study” (see appendix section A). The implementations based on RTBlocks for MATLAB and
on RTBlocks for Java are shown in the plots at the lower end of the image. All algorithms are
invoked from within the MATLAB test bench.
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Figure 5.2: The image shows the G729B VAD test executed from the Java test bench. The top most plot is the
input signal, the plot on the lower end is the VAD result. RTBlocks provides simple interactive
plot analyzing tools like replaying the whole signal or just a signal segment, scaling the y axes,
searching and marking plotted points and displaying information about selected points. For the
current work the plot library is extended by a PDF export tool based on the open source library
iText (iText Software Corp and 1T3XT BVBA [2012]).
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5.3 Variance Based VAD Algorithm

Figure 5.3: In this image the Android test bench for RTBlocks is shown. To decrease the response time of
the application the test bench is started with the OpenGL based plot library (right frame). The
top most plot shows the input signal, the second plot shows the VAD result. The plot at the
lower end of the frame is not used. the left frame contains the toolbox buttons for controlling
tests. Buttons can be added, removed or re-assigned as needed. The lower part of the toolbox
contains a rotating OpenGL triangle which indicates when the system works as expected. The
middle frame contains a scrollable list box where all implemented tests are listed. The top most
line of the frame is a text input field. Tests are invoked by clicking on the related list item or by
typing the test name. The latter method is used from the remote Python script to invoke specific
tests.

5.3 Variance Based VAD Algorithm

A pure Java VAD is the variance based algorithm introduced in the RAPF Preliminary Algorithm
Study (see appendix section K.3.7) and reviewed in section 3.2.6. The algorithm uses a page
size equals 500 samples and a step size equals 1/16 of the page size. The test signal is the
same as described in section 5.2. The reference signal is formed by the MATLAB high level
implementation and compared against the RTBlocks versions for MATLAB and Java. Both
versions lead to the same VAD signals compared to the reference implementation. The results
are shown in figure 5.4, the related unit test scripts are provided in the appendix section B. he
same test executed as Java standalone application and embedded within the Android test bench
is shown in figure 5.5 and figure 5.6.
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Figure 5.4: The image shows the graphical results of the unit test for the variance base VAD. The input
signal is shown at the top most plot, the reference signal is shown in the second plot. The
algorithm for the reference signal is proposed in the “RAPF Preliminary Algorithm Study” (see
appendix section B). The third and fourth plots are the RTBlocks implementations for MATLAB
and Java.
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Figure 5.5: This image shows the variance based VAD, executed in the Java test bench.
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5.3 Variance Based VAD Algorithm

Figure 5.6: This image shows the variance based VAD, executed in Android test bench.
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5.4 Xcorr Based F0 Estimation Algorithm

The correlation based F0 estimation algorithm described in section 3.2.6 is wrapped by the RT-
Blocks class RTSink Rapf F0Xcorr01 . The block used a page size of 1600 samples and a step size
equals 1/9 of the page size. The implementations are tested with the down-sampled phonetically
balanced sentence “The source of the huge river is the clear spring” (IEEE Recommendation
[1969]). Neither for the F0 result of the RTBlocks MATLAB version nor of the RTBlocks Java
version significant numerical differences were observed. The F0 results of the implementations
are shown in figure 5.7, the unit test script is provided in the appendix section C. The same test
executed as Java standalone application and embedded within the Android test bench is shown
in figure 5.8 and figure 5.9.
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Figure 5.7: The image shows the graphically results of the unit test for the correlation based F0 estimation
algorithm. The reference signal is calculated by the algorithm proposed in “RAPF Preliminary
Algorithm Study” (see appendix section L.3.1). The first plot shows the test signal, which is
the phonetically balanced sentence “The source of the huge river is the clear spring” (IEEE
Recommendation [1969]). The second plot includes the reference F0 estimation result and the
RTBlocks implementations for MATLAB and Java.
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5.5 Yin F0 Estimation Algorithm
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Figure 5.8: This image shows the graphically result of the unit test for the correlation based F0 estimation
algorithm, executed in the Java test bench.

Figure 5.9: This image shows the correlation based F0 estimation result, executed executed in the Android
test bench.

5.5 Yin F0 Estimation Algorithm

The CMU Sphinx implementation includes the F0 estimation algorithm described in de Cheveigné
and Kawahara [2002]. This algorithm is wrapped by the block RTSink Rapf F0Yin as discussed
in section 3.2.6. The block uses a page size of 1600 samples and a step size equals 1/9 of the
page size. The reference signal is formed by the MATLAB implementation of the RAPF Pre-
liminary Algorithm Study (see appendix section L.3.6). The test signal is the same as described
in section 5.4. The reference implementation, the RTBlocks MATLAB implementation and the
RTBlocks Java version produce the same F0 results, no significant numerical differences were
observed. The resulting F0 plots are shown in figure 5.10. The related MATLAB script for the
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the unit test is provided in the appendix section D. The same test executed as Java standalone
application and embedded within the Android test bench is shown in figure 5.11 and figure 5.12,
respectively.
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Figure 5.10: This image shows the graphically results of the unit tests for the YIN F0 estimation implemen-
tations. The first plot shows the test signal, the second plot shows the F0 estimations.
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Figure 5.11: The image shows the YIN F0 estimation result for RTBlocks, calculated in the Java test bench.
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5.6 Raspberry Pi Test Platform

Figure 5.12: The image shows the YIN F0 estimation result for RTBlocks, calculated in the Android test
bench.

5.6 Raspberry Pi Test Platform

RTBlocks is designed for cross platform usage. Beside the JVM of a full featured desktop
PC and the Dalvik VM of a Smartphone with Android operation system the Raspberry PI
Model B platform is used to test the framework (Raspberry Pi Foundation [2012]). The single-
board computer has 2 USB ports, an Ethernet port, a 700 MHz ARM CPU core, a Broadcom
VideoCore IV GPU and 256 megabyte RAM, which are shared between the CPU and the GPU.
The energy consumption is about 700 mA or 3.5 Watt. It features the OpenJDK version 6
(Oracle Corporation [2012]), the OpenGL ES 2.0 API (Khronos Group [2012]) and contains a
FPU.

The RTBlocks Java version is used to test the framework on the Raspberry Pi hardware. Fig-
ure 5.13 shows the test arrangement, the command line test bench, the variance based VAD
algorithm and the correlation based F0 estimation algorithm (see section 3.2.6 for algorithm
details). Without further optimizations real-time processing of those algorithms is not possible
on low-performance systems like this.
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Figure 5.13: Test arrangement using the Raspberry Pi single-board computer (Raspberry Pi Foundation
[2012]): The computer in the left lower corner is placed on the monitor surface and con-
nected to the monitor by a high definition multimedia interface (HDMI) connector. The left
upper corner shows the correlation based F0 estimation result, the right upper corner shows
the variance based VAD result. The command line test bench and the export toolbox for the
plots are shown in the right lower corner. The RTBlocks Java version is used which does not
have any hardware optimizations, but is highly portable. Due to the lack of hardware optimized
algorithm parts and the low performance processor of the Raspberry Pi real-time computation
of the algorithms is not possible.

5.7 Conclusion

The different test benches provided by the framework make the evaluation of block implemen-
tations very easy. Test results of the Android test bench can be read out by MATLAB or Java
by pulling files from the device or by communicating via a TCP port. When the same code base
for the JVM and the Android Dalvik VM is used, tests must be applied only once.

The different implementations all leads to the same calculation results. Global estimations must
be avoided or approximated for real-time applications.

It was shown that speech analysis is principally possible on modern smartphones with Android.
Complex algorithms tend to require high computational effort and often consume very much
energy. In real environments these are critical points for continuous operation applications.
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6 Discussion and Conclusion

This chapter provides a short summary of the work, reviews the evaluation and gives an outlook
for further steps.

6.1 RTBlocks for Matlab, Java and Android

The new framework RTBlocks supports the design and implementation of short term speech
analysis algorithms for both, mobile and non-mobile target platforms. Currently about 40
different blocks are implemented and tested, from basic input and output blocks to simple
FIR and IIR filters to ready-to-use speech analysis systems. RTBlocks eases the conversion of
MATLAB high level algorithm implementations to target specific code. Android was chosen as
primary operation system for mobile targets, so RTBlocks is available for MATLAB, Java and
Java for Android. The latter adds Android specific parts to the base Java implementation. A
MATLAB test bench is provided which can be used to verify any implemented block, regardless
whether blocks are implemented in MATLAB or Java or both. This reduces possible error
sources. Further test benches are provided by RTBlocks for Java and RTBlocks for Android.

Different use cases of the framework are verified, including MATLAB and Java real-time imple-
mentations of simple and complex algorithms, implementation and verification of speech analysis
algorithms for smartphones, usage of third party libraries and algorithms written in C or C++,
hardware accelerated processing and cross-compilation of third party libraries, fast OpenGL
based plotting of time series signals on both, non-mobile and mobile devices and many more.

RTBlocks for Java and RTBlocks for Android share the same code base which obviates the need
for unit tests for Android block implementations in most cases. Nevertheless, a test bench for
Android is provided and tested on the Samsung Galaxy Nexus (GT-I9250) smartphone. The
test bench can be controlled by interacting with the simple graphical user interface manually on
the smartphone or remotely from a connected host computer.

The implementation and verification of complex VAD and F0 algorithms based on RTBlocks
shows the benefits of the framework: Implementation time and error-proneness is reduced signif-
icantly. For intelligent designs the implemented blocks directly reflect the underlying graphical
block designs of algorithms. The design flow for RTBlocks based implementations is intended to
stop at any phase if the requirements are fulfilled: Many aspects of algorithms can be evaluated
based on MATLAB high level implementations. To test real-time capabilities of algorithms the
usage RTBlocks for MATLAB is sufficient. Standalone systems for full featured platforms can
be directly extracted from MATLAB. For systems with limited processor performance the Java
version of RTBlocks provides a counter part to each MATLAB block. New blocks are derived
from a single base block which implements important core functionality for creating and execut-
ing short term analysis systems. Java utilities for vector math, signal processing and plotting
are implemented to reduce the gap between MATLAB source code and Java source code. The
Android extensions for RTBlocks provide a good working base for implementing speech analysis
algorithms on smartphones.
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6.2 Further Work

Currently, the framework only supports targets which execute Java byte code. The most im-
portant mobile devices, which can execute Java byte code, are smartphones with the Android
operation system. To cover a larger field of platforms a C++ version of RTBlocks will be
implemented.

The framework is designed as a part of the RAPF project which includes estimating and re-
porting important speech features in real-time in everyday life (see appendix section II). At the
moment only a few basic speech features are calculated (VAD, F0 estimation). One of the next
steps of the project will be the integration of more basic features like speaking rate, relative
loudness and others. Besides basic features the final application should include features of a
higher level of abstraction, like articulation and speaker intelligibility.

Currently, only methods for reporting results are implemented, like visual feedback (plotting)
and audio feedback (replaying results). Especially for real-time reporting during conversations,
more advanced feedback methods are required which do not distract the conversation. A possible
method is haptic feedback, like controlling the vibration of a smartphone based on selected
feature limits.
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A G729B Based VAD

1 %% read input data

2 filename = ’/mnt/sdcard/m01_8000Hz.wav’;

3 [x, fs] = wavread(filename);

4

5 %normalize input data

6 x=x/max(abs(x));

7

8 %% get reference signal

9 ENABLE.DENOISE_ITERATIONS = 0;

10 ENABLE.USE_POSTPROCESSING = 0;

11 vad_ref = getVAD( [x;zeros(80*3,1)], fs , ’g729b’ , ENABLE );

12

13 %% matlab rtblock version

14 %...rtblock source

15 source=RTSource_FromBuffer01();

16 source.setBuffer(x);

17

18 %...rtblock vad extractor

19 vad_extractor_matlab=RTSink_Rapf_VadG729B01();

20 vad_extractor_matlab.setStepsizeInSamples(80/3);

21

22 %...rtblock buffer sink

23 sink=RTSink_ToBuffer01();

24

25 %...interconnect

26 source.addSink(vad_extractor_matlab);

27 vad_extractor_matlab.addSink(sink);

28

29 %...process

30 source.init().run_().flush_().finalize_();

31

32 %...get result

33 vad_est_matlab = sink.getBuffer();

34

35 %% java rtblock version

36 %...rtblock source

37 source=RTBlocks.Standard.RTSource_FromBuffer01();

38 source.setBuffer(x);

39

40 %...rtblock vad extractor

41 vad_extractor_java=RTBlocks.Rapf.RTSink_Rapf_VadG729B01();

42 vad_extractor_java.setStepsizeInSamples(80/3);

43

44 %...rtblock buffer sink

45 sink=RTBlocks.Standard.RTSink_ToBuffer01();

46

47 %...interconnect

48 source.addSink(vad_extractor_java);

49 vad_extractor_java.addSink(sink);

– iv – October 1, 2012 Rev.: 1.0



Christoph Klug
RTBlocks

50

51 %...process

52 source.init().run_().flush_().finalize_();

53

54 %...get result

55 vad_est_java = sink.getBuffer();

56

57 %% crop following zeros

58 N=length(vad_ref);

59 vad_est_matlab = vad_est_matlab(1:N);

60 vad_est_java = vad_est_java(1:N);

61

62 %% get diff

63 ndiff_matlab = sum(abs(vad_ref - vad_est_matlab’));

64 ndiff_java = sum(abs(vad_ref - vad_est_java’));

65 fprintf(’differences: ref vs. rtblocks@matlab: %d samples\n’,ndiff_matlab);

66 fprintf(’differences: ref vs. rtblocks@java: %d samples\n’,ndiff_java);

67

68 %% plot result

69 figure(’Name’,’G729B based VAD (Reference Implementation vs. RTBlocks

Version)’);

70 subplot(4,1,1); plot(x); title ’Input Signal’;

71 subplot(4,1,2); plot(resample2unique(vad_ref,x),’r’);

72 title ’VAD Refererence Signal’; ylim([0,1.1]);

73 subplot(4,1,3); plot(resample2unique(vad_est_matlab,x),’g’);

74 title ’RTBlocks VAD (Matlab Version)’; ylim([0,1.1]);

75 subplot(4,1,4); plot(resample2unique(vad_est_java,x),’b’);

76 title ’RTBlocks VAD (Java Version)’; ylim([0,1.1]);

77

78 %% store

79 [~,fname]=fileattrib(’~/temp/evalRTBlockG729B01.pdf’);

80 format_fig(gcf,’LineWidth’,4,’FontSize’,20,’Position’,[0 0 1 1]);

81 export_fig(fname.Name, gcf);
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B Variance Based VAD

1 %% read input data

2 filename = ’/mnt/sdcard/m01_8000Hz.wav’;

3 [x, fs] = wavread(filename);

4

5 %normalize input data

6 x=x/max(abs(x));

7

8 %% get reference signal

9 ENABLE.USE_NORM=0;

10 ENABLE.USE_POSTPROCESSING = 0;

11 ENABLE.DENOISE_ITERATIONS = 0;

12 SETTINGS.BILAT_N = 1;

13 vad_ref = getVAD( x, fs , ’bilat’ , ENABLE , SETTINGS);

14

15 %% matlab rtblock version

16 %...rtblock source

17 source=RTSource_FromBuffer01();

18 source.setBuffer(x).setPagesizes(512,512);

19

20 %...rtblock f0 extractor

21 vad_extractor=RTSink_Rapf_VadBilateralV01();

22 vad_extractor.setStepsizeInFrames(1/16);

23

24 %...rtblock buffer sink

25 sink=RTSink_ToBuffer01();

26

27 %...interconnect

28 source.addSink(vad_extractor);

29 vad_extractor.addSink(sink);

30

31 %...process

32 source.init().run_().flush_().finalize_();

33

34 %...get result

35 vad_est_matlab = sink.getBuffer();

36

37 %% java rtblock version

38 %...rtblock source

39 source=RTBlocks.Standard.RTSource_FromBuffer01();

40 source.setBuffer(x).setPagesizes(512,512);

41

42 %...rtblock f0 extractor

43 vad_extractor_java=RTBlocks.Rapf.RTSink_Rapf_VadBilateralV01();

44 vad_extractor_java.setStepsizeInFrames(1/16);

45

46 %...rtblock buffer sink

47 sink=RTBlocks.Standard.RTSink_ToBuffer01();

48

49 %...interconnect
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50 source.addSink(vad_extractor_java);

51 vad_extractor_java.addSink(sink);

52

53 %...process

54 source.init().run_().flush_().finalize_();

55

56 %...get result

57 vad_est_java = sink.getBuffer();

58

59 %% crop following zeros

60 N=length(vad_ref);

61 vad_est_matlab = vad_est_matlab(1:N);

62 vad_est_java = vad_est_java(1:N);

63

64 %% get diff

65 ndiff_matlab = sum(abs(vad_ref - vad_est_matlab’));

66 ndiff_java = sum(abs(vad_ref - vad_est_java’));

67 fprintf(’differences: ref vs. rtblocks@matlab: %d samples\n’,ndiff_matlab);

68 fprintf(’differences: ref vs. rtblocks@java: %d samples\n’,ndiff_java);

69

70 %% plot result

71 figure(’Name’,’Variance based VAD (Reference Implementation vs. RTBlocks

Version)’);

72 subplot(4,1,1); plot(x); title ’Input Signal’;

73 subplot(4,1,2); plot(resample2unique(vad_ref,x),’r’);

74 title ’VAD Refererence Signal’; ylim([0,1.1]);

75 subplot(4,1,3); plot(resample2unique(vad_est_matlab,x),’g’);

76 title ’RTBlocks VAD (Matlab Version)’; ylim([0,1.1]);

77 subplot(4,1,4); plot(resample2unique(vad_est_java,x),’b’);

78 title ’RTBlocks VAD (Java Version)’; ylim([0,1.1]);

79

80 %% store

81 [~,fname]=fileattrib(’~/temp/evalRTBlockVadBilateral01.pdf’);

82 format_fig(gcf,’LineWidth’,4,’FontSize’,20,’Position’,[0 0 1 1]);

83 export_fig(fname.Name, gcf);
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C ACF Based F0

1 %% read input data

2 filename = ’/mnt/sdcard/m116_8000Hz.wav’;

3 [x, fs] = wavread(filename);

4

5 %normalize input data

6 x=x/max(abs(x));

7

8 %% get reference signal

9 ENABLE.DENOISE_ITERATIONS = 0;

10 f0_ref = getF0( x, fs , ’xcorr1’ , ENABLE );

11

12 %% matlab rtblock version

13 %...rtblock source

14 source=RTSource_FromBuffer01();

15 source.setBuffer(x).setPagesizes(1600,1600);

16

17 %...rtblock f0 extractor

18 f0_extractor_matlab=RTSink_Rapf_F0Xcorr01V01();

19 f0_extractor_matlab.setStepsizeInFrames(1/9);

20

21 %...rtblock buffer sink

22 sink=RTSink_ToBuffer01();

23

24 %...interconnect

25 source.addSink(f0_extractor_matlab);

26 f0_extractor_matlab.addSink(sink);

27

28 %...process

29 source.init().run_().flush_().finalize_();

30

31 %...get result

32 f0_est_matlab = sink.getBuffer();

33 f0_est_matlab = f0_est_matlab(3:end);

34

35 %% java rtblock version

36 %...rtblock source

37 source=RTBlocks.Standard.RTSource_FromBuffer01();

38 source.setBuffer(x).setPagesizes(1600,1600);

39

40 %...rtblock f0 extractor

41 f0_extractor_java=RTBlocks.Rapf.RTSink_Rapf_F0Xcorr01V01();

42 f0_extractor_java.setStepsizeInFrames(1/9);

43

44 %...rtblock buffer sink

45 sink=RTBlocks.Standard.RTSink_ToBuffer01();

46

47 %...interconnect

48 source.addSink(f0_extractor_java);

49 f0_extractor_java.addSink(sink);
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50

51 %...process

52 source.init().run_().flush_().finalize_();

53

54 %...get result

55 f0_est_java = sink.getBuffer();

56 f0_est_java= f0_est_java(3:end);

57

58 %% crop following estimation

59 N=length(f0_ref);

60 f0_est_matlab=f0_est_matlab(1:N);

61 f0_est_java=f0_est_java(1:N);

62

63 %% get diff

64 max_diff_matlab = max(abs(f0_ref’ - f0_est_matlab));

65 max_diff_java = max(abs(f0_ref’ - f0_est_java));

66 fprintf(’differences: ref vs. rtblocks@matlab: %f\n’,max_diff_matlab);

67 fprintf(’differences: ref vs. rtblocks@java: %f\n’,max_diff_java);

68

69 %% plot result

70

71 lw=3;

72 figure(’Name’,’Correlation based F0 Estimation: (Reference Implementation vs.

RTBlocks Version)’);

73 subplot(2,1,1); plot(x); title ’Input Signal’;

74 h2=subplot(2,1,2); hold on; title ’F0 Signals’;

75 set(findall(gcf,’Type’,’line’),’LineWidth’,lw)

76 h1=plot(f0_ref,’r’,’LineWidth’,lw*3);

77 plot(f0_est_matlab,’b’,’LineWidth’,lw*2);

78 plot(f0_est_java,’Color’,[0 0.5 0],’LineWidth’,lw*1);

79 ylabel(’Frequency [Hz]’);

80 legend(’F0 Reference’, ’RTBlocks F0 Estimation, Matlab Version’,...

81 ’RTBlocks F0 Estimation, Java Version’, ’Location’, ’SouthEast’);

82

83 %% store

84 [~,fname]=fileattrib(’~/temp/evalRTBlockF0Xcorr01.pdf’);

85 format_fig(gcf,’FontSize’,20,’Position’,[0 0 1 1]);

86 format_fig(h2,’MarkerSize’,15,’MarkerLineWidth’,2, ...

87 ’MarkerSpacing’, 5);

88 export_fig(fname.Name, gcf);
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D YIN’s F0

1 %% read input data

2 filename = ’/mnt/sdcard/m116_8000Hz.wav’;

3 [x, fs] = wavread(filename);

4

5 %normalize input data

6 x=x/max(abs(x));

7

8 %% get reference signal

9 ENABLE.DENOISE_ITERATIONS = 0;

10 f0_ref = getF0( [x ; zeros(1600,1)], fs , ’yinSphinx’ , ENABLE );

11 f0_ref = f0_ref(3:end);

12

13 %% matlab rtblock version

14 %...rtblock source

15 source=RTSource_FromBuffer01();

16 source.setBuffer(x).setPagesizes(1600,1600);

17

18 %...rtblock f0 extractor

19 f0_extractor_matlab=RTSink_Rapf_F0YinV01();

20 f0_extractor_matlab.setStepsizeInFrames(1/9);

21

22 %...rtblock buffer sink

23 sink=RTSink_ToBuffer01();

24

25 %...interconnect

26 source.addSink(f0_extractor_matlab);

27 f0_extractor_matlab.addSink(sink);

28

29 %...process

30 source.init().run_().flush_().finalize_();

31

32 %...get result

33 f0_est_matlab = sink.getBuffer();

34 f0_est_matlab = f0_est_matlab(5:end);

35

36 %% java rtblock version

37 %...rtblock source

38 source=RTBlocks.Standard.RTSource_FromBuffer01();

39 source.setBuffer(x).setPagesizes(1600,1600);

40

41 %...rtblock f0 extractor

42 f0_extractor_java=RTBlocks.Rapf.RTSink_Rapf_F0Yin01();

43 f0_extractor_java.setStepsizeInFrames(1/9);

44

45 %...rtblock buffer sink

46 sink=RTBlocks.Standard.RTSink_ToBuffer01();

47

48 %...interconnect

49 source.addSink(f0_extractor_java);
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50 f0_extractor_java.addSink(sink);

51

52 %...process

53 source.init().run_().flush_().finalize_();

54

55 %...get result

56 f0_est_java = sink.getBuffer();

57 f0_est_java= f0_est_java(5:end);

58

59 %% crop following estimation

60 N=min([length(f0_ref), length(f0_est_matlab), length(f0_est_matlab)]);

61 f0_ref=f0_ref(1:N);

62 f0_est_matlab=f0_est_matlab(1:N);

63 f0_est_java=f0_est_java(1:N);

64

65 %% get diff

66 max_diff_matlab = max(abs(f0_ref’ - f0_est_matlab));

67 max_diff_java = max(abs(f0_ref’ - f0_est_java));

68 fprintf(’differences: ref vs. rtblocks@matlab: %f\n’,max_diff_matlab);

69 fprintf(’differences: ref vs. rtblocks@java: %f\n’,max_diff_java);

70

71 %% plot result

72

73 lw=3;

74 figure(’Name’,’Correlation based F0 Estimation: (Reference Implementation vs.

RTBlocks Version)’);

75 subplot(2,1,1); plot(x); title ’Input Signal’;

76 h2=subplot(2,1,2); hold on; title ’F0 Signals’;

77 set(findall(gcf,’Type’,’line’),’LineWidth’,lw)

78 h1=plot(f0_ref,’r’,’LineWidth’,lw*3);

79 plot(f0_est_matlab,’g’,’LineWidth’,lw*2);

80 plot(f0_est_java,’b’,’LineWidth’,lw*1);

81 ylabel(’Frequency [Hz]’);

82 legend(’F0 Reference’, ’RTBlocks F0 Estimation, Matlab Version’,...

83 ’RTBlocks F0 Estimation, Java Version’, ’Location’, ’SouthWest’);

84

85 %% store

86 [~,fname]=fileattrib(’~/temp/evalRTBlockF0Yin01.pdf’);

87 format_fig(gcf,’FontSize’,20,’Position’,[0 0 1 1]);

88 format_fig(h2,’MarkerSize’,15,’MarkerLineWidth’,2, ...

89 ’MarkerSpacing’, 5);

90 export_fig(fname.Name, gcf);
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E Python Control Script for Android Testbench

1 ’’’

2 Created on Aug 29, 2012

3

4 @author: chklug

5 ’’’

6 from rtblocksControl import RTBlocksControl

7 import sys

8

9 def startActivity(control=None):

10 #start activity

11 activity = ".Test.Activities.Tests4MasterThesisGL01"

12 print "starting activity..."

13 if not control:

14 control = RTBlocksControl()

15 control.connectDevice()

16 control.unlockDevice()

17 control.startActivity(None, activity)

18 print "activity started."

19 return control

20

21 def stopActivity(control):

22 #stop activity

23 control.stopActivity()

24 print "done."

25

26 def startTest(control, testname):

27 print "starting test %s" % testname

28 control.startTest(testname)

29

30 def main(args=None):

31 #android RTBlocks testbench contrl

32 control = None

33

34 #RTBlocks tests

35 testnames = ("Test_RapfVADG729B_stepsize1d3",

36 "Test_RapfVADBilateral_stepsize1d16",

37 "Test_RapfF0Yin_stepsize1d9",

38 "Test_RapfF0Xcorr01_stepsize1d9")

39

40 #RTBlocks test execution time (sec, upper limit)

41 delays = (10, 50, 5, 5)

42

43 #run tests

44 for test_idx, testname in enumerate(testnames):

45 filename = "./generated/%s.png" % testname

46 my_delay = delays[test_idx]

47

48 #start activity

49 control = startActivity(control)
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50

51 #start test

52 startTest(control, testname)

53

54 #delay

55 print "sleeping for %d seconds" % my_delay

56 control.sleep(my_delay)

57 control.screenShot(filename)

58

59 #stop activity

60 stopActivity(control)

61

62 #done

63 print "done"

64

65 if __name__ == "__main__":

66 main(sys.argv)
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Project Design Documents

Rhetorical Acoustic Phonetic Feedback
Device (RAPF)

Christoph Klug

————————————–

Graz, October 1, 2012

The goal of this project is a wearable device which should support people with language difficul-
ties during conversations, phone talks or speakings. A seamless integrated device can provide
additional feedback about speech properties.

Another goal of this work is the vision that voice education can be seamlessly integrated into
daily routines. Nowadays human supported lessons as well as special computer programs are
required to train the required skills of e.g. hearing impaired people, so that they are able to
tune their voice in an accurate way. The training has to be repeated regularity. The proposed
wearable acoustic phonetic feedback device can act as a bridge between two training sessions.
I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources, and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.

– xvi – October 1, 2012 Rev.: 1.0



Christoph Klug RTBlocks

F Introduction

In this chapter the motivation for the project is described.

F.1 Motivation

Hearing impaired people often have problems with controlling the pitch and volume of their
voice. This problems can lead to feelings like insecurity, unhappiness and otherness. Other
language difficulties lead to similar problems.

With computer programs and human support they can train to tune their voice in an accurate
way. The training has to be repeated regularity.

The proposed device can act as a bridge between two training sessions.
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G Design

In this chapter both, the project management and the technical project design are described.

G.1 PID

Project Initiation Form (PID)

Project Title: RAPF

Project Background: Hearing-impaired persons may have problems with
keeping their voices in an accurate pitch and volume.
Other language difficulties are also very common. This
device gives such people feedback about the acoustic
phonetics of their voices.

Project Benefits: A wearable real-time feedback device will help hearing
impaired persons and persons with language difficul-
ties to deal with their problems during conversations.
This device also can support common speech training
sessions.
NOTE: None-profit-project!

Project Objectives: A mechanical, visual and/or acoustical feedback
should be provided when the voice of the device wearer
doesn’t match the acoustic phonetic constraints. The
device should be seamless integrated into a common
outfit. An alternative would be the implementation as
smartphone application.

Project Deliver-
ables:

A prototype for the feedback device.

This project will include:

• Design, simulations and a prototypes.

• The exploration and implementation of the acoustic phonetic pa-
rameter extraction algorithms are the central tasks.

• Simple context recognition, echo canceler and voice-to-speaker
affinity recognition may be added, if required.
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G.2 Basic Design

This project will not include:

• No extensive software/driver bundle would be designed.

• Hardware implementations of the algorithms are restricted to the
basic phonetic speech features. Additional evaluation remains in
software.

• Hardware may be only explored within Matlab context. The stan-
dalone prototype is optional.

• The product itself also is an optional part.

Success Criteria: A robust concept and a working prototype (laboratory
environment).

Constraints: Real-time, noisy environments, acoustic speech fea-
tures, linguistic speech features, feedback channel

Key Assumptions: The focus is on low-cost, low-power consumption and
wearability (⇒usage of simple algorithms).

Project Manager: Christoph Klug

Project Sponsor: Christoph Klug
Table G.1: Project Definition Form [PID]

G.2 Basic Design

G.3 Application Specific Hardware

Audio data is captured and filtered by a wearable device. From the data both, the context and
the acoustic parameters are derived. If the acoustic parameters don’t match the parameter set
related to the determined context, feedback is provided (e.g. vibrator as mechanic feedback,
sound as acoustic feedback or special visual feedback).
The wearable device should be able to integrate seamless in a common outfit. If it is possible,
it would be integrated in a necklet (figure G.2) or a bracelet.
Therefore both, the amount of sensors and the size of the control unit have to be minimized.
Further the overall power consumption and the source voltage are basic parameters which have
to be considered for a real product.
A rude block-diagram of the product is given in figure G.3.
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Figure G.1: Design Phase: Not more than 50 to 75 percent of the control unit’s resources should be allocated.
We have 13 IO pins in the base design, so three IO ports would be required (3 · 8 = 24 pins).
Such a device is way too huge for a product so significant reductions have to be considered. The
goal is to use just eight pins for the control unit.

Figure G.2: A possible package for the device could be a necklet or a bracelet. Seamless integration is
very important to get acceptance for the product. (The body silhouette is taken from http:

// www. openclipart. org )
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G.4 Data Acquisition

G.4 Data Acquisition

The main idea is to capture audio data from two microphones: One microphone measure the
reflected audio signal (figure G.3), the second one should measure the voice from the bone
conduction (body vibrations). With this data the acoustic phonetic parameters of the speaker’s
voice should be determined. Adaptive filters are probably required to extract the speech data
from the noisy signals (figure G.4).

Sensor 
Position

Device 
WearerConversational 

Partner

Figure G.3: The main idea is to capture the reflected audio signal. Audio-channel estimations shouldn’t be
necessary in this step. Nevertheless by adding a single actor (simple SMD piezo buzzer) these
estimations can be done. Also the feedback vibrator itself maybe produces a silent, but suitable
sound for channel estimations.
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Multipath Propagation, 
Echo

Conversational 
Partner’s Voice

Additional Noise 
Sources

Bone 
Conduction

Figure G.4: The main challenge of the project is to estimate the correct audio signal. Adaptive filters and at
least two sensors are required for this. In the worst case scenario the second microphone (bone
conduction measurement) needs to be placed at the back of the neck.

G.5 Smartphone Device

When using a common smartphone, all required peripheral equipment is provided. The final
product could be delivered as smartphone application.

G.6 Feedback Mechanism

Modern technology offers several kinds of feedback-mechanism. One possibility is a visual feed-
back, using VGA-integrated glasses. Another method is mechanic feedback by a vibrator like
used in mobile phones. In respect of cost constraints (low-cost product) the vibrator feedback
would be preferred. Additional acoustic feedback provides a huge range of possibilities, from
simple replay of recorded audio signals (sound signals or spoken information) towards to the
replay of the current voice with exaggerated changes of the actual critical parameters.

G.7 Context Recognition

Depending on the actual situation, the proper acoustic phonetics differs in several parameters.
Simple context recognition based on given sensor data is required:

Single person context: The device has do guess location, activity and/or actual rule of the
device’s wearer.

• Examples for activities: Sing (drop data), sleep (drop data), phone (accept data),
converse (accept data)
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G.8 Product Components

• Examples for location: Home, sleeping room, cinema, discotheque

• Examples for wearer’s rule: Group member/speaker (presentation parameter set),
group member/listener (drop data/whisper parameter set), ...

Two person’s context: The device has to guess who is speaking and what kind of conversation
it is.

• Possible speaker: device wearer (accept data), conversational partner (drop data),
both (drop data)

• Kind of conversation: talk in a whisper (whisper parameter set), normal conversation
(conversation parameter set), quarrel (conversation parameter set)

G.8 Product Components

G.8.1 Smartphone Application

When targeting smartphones only software needs to be delivered. Additional input/output
extensions like a neck-microphone or professional haptic feedback devices are optional.

G.8.2 Application Specific Hardware

The whole product should fit onto a tiny Printed Circuit Board (PCB) with very few input/out-
put connectors. Figure G.5 shows a possible PCB composition.

Figure G.5: For seamless integration a very small device is necessary. Battery and feedback vibrator are
very big components and will lead to serious space problems. Also the control device would need
some external parts (filters and amplifiers).

G.8.3 Product Packages

The device should be wearable without attracting much attention. When targeting smartphones
no additional packing is required. Figure G.6 shows a possible package for an application specific
hardware.
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Figure G.6: The preferred package considers the case if a microphone at the back of the neck is required.
An alternative package would be a bracelet with two microphones for the air-transmitted audio
signal and one microphone for the bone-transmitted signal.
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H Introduction

H.1 Motivation

Voice training became a major problem in voice and speech research disciplines. Medical pur-
poses due to voice disorders, linguistic usage due to public speaking training or educational
training are only a few examples where voice analysis and voice training are essential parts. Ed-
ucation, training and analysis of someone’s voice is nowadays supported by assessment sheets,
audio or video recordings or even voice measurement and visualization tools. Most of these tools
require a sufficient education in linguistics and phonetics and therefore are restricted in their
application fields. Reliable voice measurement and feedback tools tend to be very expensive
because they are not designed for home-usage. This work is based on the vision that voice
education can be seamlessly integrated into daily routines.

To come one step closer to this dream, reliable real-time speech analysis as well as linguistic
speech feature extraction and evaluation need to be automatized. In Anderson [1977] both, a
linguistic and a technical point of view are provided.

The chosen starting point for solving the technical tasks of the problem is the discussion of
different speech analysis algorithms for two important speech features: Fundamental frequency
(F0) estimation and voice activity detection (VAD). The results are summarized in this work.

H.2 Overview

This document is structured as follows: In section H.3, a brief summary of the history of speech
processing as well as related current technological achievement are given. Speech data gathering,
storage and suitable preparation for further analysis and used databases are discussed in chapter
I and chapter J. Algorithm comparison and evaluation are provided in chapter K and chapter
L. Finally, the results of the work are summarized in chapter M.

H.3 Related Work

Acoustics, the science of sound, has a long history. A specialized technical area of this huge
research field deals with speech acoustics and speech processing. In this section some important
historical experiments and some current research results are mentioned.

H.3.1 History

One of the first motivation for doing research in speech processing and communication was
the goal of building mechanical models which emulate human verbal communication capabili-
ties (Juang and Chen [1998]). An early attempt of this type is proposed in Kempelen [1791].
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Among others, Wheatstone, Faber, Bell, Paget and Riesz followed this early approach of physi-
cally based source-tract modeling for speech production.

Helmholtz, Miller, Koenig and others invented an alternative approach in the 20th century, syn-
thesizing vowels by mathematical sinusoidal models (Schroeder and Rossing [2007]).

For more than 100 years, research in speech signal processing was founded on these two models.
Today, research in speech processing has gone far beyond the simple models due to the advances
in mathematical tools, computers and application fields.

A particularly important instrument for speech analysis is the sound spectrograph, originally
developed at the Bell Telephone Laboratories around 1945. Nowadays the speech spectrogram is
one of the most important analysis and visualization tools in speech processing.

H.3.2 State of the Art

Mainstream products like smartphones, navigation systems, hearing aids, digital cameras and
lots of others require signal processing capabilities. Requirements like low price, energy effi-
ciency, robustness and high-speed or high-bandwidth capabilities boosted the development of
digital signal processors (DSPs) and field programmable gate arrays (FPGAs), which generated
huge fields of applications in the last decade.

In Manfredi et al. [2008] the authors acknowledged the importance of the new possibilities. They
implemented a portable voice-monitoring device on a digital signal processor (DSP) platform
under a clinical perspective. The analysis of important voice quality features (e.g. F0, jitter...)
should support patients carryover therapy goals outside the clinical environment. The real-time
feedback is highly limited, which made off-line analysis necessary.

An earlier study (Howard et al. [2005]) evaluated the benefits of a real-time display providing
more features (e.g. spectrogram, spectrum, spectral ratio, acoustic pressure waveform...). Ex-
periments are designed for two singing teachers, aiming benefits for learning vocal skills. They
introduced a real-time software system called WinSingad, which cannot only support singing
education, but is also useful for clinical purposes.

In Heckmann et al. [2011] the authors are discussed the benefits using auditory and visual
processing instead of traditional speech features extraction. The usage of image processing tech-
niques are mentioned to solve common speech processing problems, like speech vs. non-speech
discrimination, source separation or automatic speech recognition (ASR).

A user-friendly voice analysis tool called BioVoice is evaluated for clinical purposes in Manfredi
et al. [2009]. The system estimated only a few features, focusing robustness and automatic eval-
uation with very view user settings. The results are compared to a common commercial voice
analysis tool which performed quantitative acoustic assessment of voice quality (Kay Elemetrics
Corp. [1994]).

Jung et al. [2010], Staworko and Rawski [2010], Min [2009] and Hong and Yusoff [2008] focused
on speech feature extraction algorithms designed for field programmable gate arrays (FPGAs).
Several performance improvements are reported, which is a great step towards real-time capa-
bility of resource-intensive algorithms. Another, conceptually similar approach is presented in
Dixon et al. [2009],
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I Transcription and Annotation of Speech

I.1 Introduction

For evaluation of speech analysis methods more information is required than spoken language can
provide. Orthographic and phonetic transcriptions of spoken language are basic steps towards
enhanced speech analysis. Popular phonetic datasets like the acoustic-phonetic continuous speech
corpus (TIMIT) provides both, phonetically and lexically transcribed speech (Garofolo et al.
[2011]).

I.2 Speech Transcription and Speech Annotation

Orthographic notation is based on grammatic orthography rules of a certain language. Ortho-
graphic transcription is a way less time-consuming than phonetic transcription. Unam-
biguous assignments of speech sounds to related orthographic signs are often not possible
(Hall [2000, page 2]).

Phonetic notation is the visual representation of speech sounds. The most common used pho-
netic alphabet is the International Phonetic Alphabet (International Phonetic Association
[2011]). An huge overview of phonetic symbols and phonetic notation systems is given in
Pullum [1996].

I.2.1 Transcription and Annotation Software

Many software tools exist for supporting speech annotation, orthographic and/or phonetic tran-
scription and acoustic-phonetic analysis. Based on Hartung [2006] the following tool set is proved
to cover the linguistic requirements of this work:

• Transcription and annotation software: F4, Transcriber (Audiotranskription F4 [2011],
Audiotranskription Transcriber [2011])

• Audio meta-data database software: European distributed corpora project linguistic an-
notator (ELAN) (Max-Planck-Institute [2011], Sloetjes and Wittenburg [2008])

• Acoustic phonetic analysis software: PRAAT (Praat [2011])

Some Matlab and Java based extensions of ELAN enable additional search-and-extract capabil-
ities as well as special import and export features.

I.3 Discussion and Conclusion

Speech database creation and maintenance can be well-supported by suitable software tools. As
it is expected that non-technical researchers and end-users make use of the database, convenient
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handling is important. Providing information about speech samples and corresponding meta-
data via a single graphical user interface, using a well-defined human readable database format
and sticking to well-established software will meet this requirement, which will be considered in
the follow-on project.

– xxx – October 1, 2012 Rev.: 1.1



Christoph Klug RAPF

J Speech Data

J.1 Introduction

Widespread types of speech records are very important for the development and test of robust
speech feature algorithms. This requires recording and conditioning of field specific speech
samples as well as the usage of common acoustic phonetic speech databases. On the other hand,
gathering and conditioning speech acts is highly labour-intensive, so restriction to special speech
acts are necessary.

J.2 Political Speech Databases

Political speech acts seem to be well-suited for field tests of many algorithms for speech analysis.
The audio records are available online so no significant legally restricts are expected. Many
textual transcripts are provided which support the conditioning. The algorithms can be tested
with the voice of men and women, using different speech acts, with different background noise
and with different emotional influences.

J.2.1 Online Resources

Austrian parliament live streams are recorded from Austrian Parliament [2011], German par-
liament live streams are recorded from German Parliament [2011]. Germany provides a well-
organized video archive where speeches can be reviewed.

J.2.2 Recording Audio Streams

Audio tracks are extracted from recorded video streams. Mplayer (MPlayer [2011]) is used for
both, recording and extraction.

J.2.3 Discussion and Conclusion

Live streams don’t support very high speech quality, especially if the speech samples are au-
dio tracks of online video streams. Low quality and low sampling rates are essential problems.
Another drawback is the lack of the absolute speech energy information. This feature is only
reliable if the whole recording path is well-known. Background noise and speech interjections
are very common during public speeches. Orthographic transcriptions, if available, are provided
in a “cleaned” form: no interjections are documented, slips of the speaker’s tongue are dropped
and malpositions of words are corrected. Therefore fully automated conditioning of the audio
data with the corresponding orthographic information is not part of this work.

Even if field tests of the algorithm are very important, the development and evaluation of speech
analysis algorithm require a ground truth signal for the different speech features, which is not
available from live stream recordings. Thus, additional speech databases are used.
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J.3 PTDB

The Signal Processing and Speech Communication Laboratory of Graz University of Technology
(SPSC Lab) provides different speech corpora free of charge for research purposes. Laryngograph
signals are extremely useful for evaluation of pitch determination algorithms (PDAs), VAD
algorithms and speaking rate (SR) algorithms. The pitch tracking database from Graz University
of Technology (PTDB-TUG) provides audio recordings from 20 English native speakers, reading
sentences from the existing TIMIT database (see section J.4). Beside the laryngograph signals
extracted pitch trajectories are provided as reference (Pirker et al. [2011]).

J.4 TIMIT

The TIMIT database (Garofolo et al. [2011]) is a hand-verified collection of phonetically and
lexically transcribed sentences, spoken from American English speakers, including different sexes
and dialects. This database of read speech is especially designed for acoustic phonetic studies
and for ASR tasks.

J.5 Noise Database

Tests in realistic environments usually are time-consuming or cost expensive. To simulate realis-
tic environments in the laboratory, background noise can be added to clean speech audio tracks.
One source of different noise records is proposed in Johnson and Shami [1993], where natural
and synthetic noise types are available for free.
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K Voice Activity Detection

K.1 Introduction

Many speech analysis techniques need the knowledge about the boundaries where speech is
present or no speech is present. This information can be provided from external sources or can
be estimated beside base calculations within an algorithm. Misjudgments of the speech/non-
speech parts usually introduce errors and lead to incorrect feature calculation results, which
makes the speech/non-speech detection itself a very important feature for speech analysis and
for further speech processing methods.

K.1.1 Problem Definition

As present in Grimm and Kroschel [2007], speech/non-speech detection is an unsolved problem
in speech processing affecting numerous applications. Grimm and Kroschel defines the VAD
problem as detecting the presence of speech in a (noisy) signal. Assuming additive noise, VAD
algorithms have to distinguish between two cases:

H1 : x = n + s (K.1)

H0 : x = n (K.2)

where the hypotheses H1 and H0 indicate if speech is present or not, n is the noise, s the speech
signal itself, and x the noisy speech signal assuming only additive noise is present.
Usually voiced speech sounds and noise can be distinguished according to their different signal
characteristics. Unfortunately, this is not always the case for unvoiced speech sounds, which
may have time-domain and frequency-domain characteristics similar to white noise. As a result
of this similarity in many cases only voiced/unvoiced sound detection is applied (Yang et al.
[2010a]).
Most VAD algorithms fail in noisy environments. Recent researches address this weakness by
analyzing noise-robust features.

K.1.2 Applications

Speech coding, speech enhancement and speech recognition are listed in Grimm and Kroschel
[2007, page 2] as the most important VAD applications in speech processing. A brief description
of these applications is presented in this section.

Speech Coding

The compression of digital speech data is called speech coding, VAD is required for high compres-
sion efficiency. The concept of dual-mode speech coding splits the signal in speech and non-speech
parts. Non-speech parts are compressed with another codec which usually allows significant de-
crease of the required bit-rate. Standardized examples using dual-mode speech coding are the
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ITU-T Recommendation G.729 Annex B (Benyassine et al. [1997]) and the ETSI AMR speech
coder (ETSI 301 708 [1999]). Figure K.1 shows the block diagram of a dual-mode speech codec.

Voice Activity Detection. Fundamentals and Speech Recognition System Robustness 3

Figure 1. Speech coding with VAD for DTX. 

2.2 Speech enhancement 

Speech enhancement aims at improving the performance of speech communication systems 
in noisy environments. It mainly deals with suppressing background noise from a noisy 
signal. A difficulty in designing efficient speech enhancement systems is the lack of explicit 
statistical models for the speech signal and noise process. In addition, the speech signal, and 
possibly also the noise process, are not strictly stationary processes. Speech enhancement 
normally assumes that the noise source is additive and not correlated with the clean speech 
signal. One of the most popular methods for reducing the effect of background (additive) 
noise is spectral subtraction (Boll, 1979). The popularity of spectral subtraction is largely due 
to its relative simplicity and ease of implementation. The spectrum of noise N(f) is estimated 
during speech inactive periods and subtracted from the spectrum of the current frame X(f)
resulting in an estimate of the spectrum S(f) of the clean speech: 

|)(||)(||)(| fNfXfS −=  (1) 

There exist many refinements of the original method that improve the quality of the 
enhanced speech. As an example, the modified spectral subtraction enabling an over-
subtraction factor α and maximum attenuation β for the noise is given by: 
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Figure K.1: Dual mode speech coding for DTX, presented in Benyassine et al. [1997].

Speech Enhancement

Speech enhancement mainly focuses on suppression of background noise, where it is assumed
that only additive noise is present. In Boll [1979] the author describes an algorithm based
on spectral subtraction: During non-speech periods, the noise-spectrum is estimated, which is
subtracted from the spectrum of the noisy speech signal frames:

|S(f)| = |X(f)| − |N(f)| (K.3)

where S(f) is the current frame of the de-noised spectrum of the speech signal, X(f) is the
noisy signal spectrum and N(f) the estimated noise-spectrum.

Speech Recognition

The automatic conversion of spoken words to a written lexical representation is called speech
recognition. The performance of the conversation is highly influenced by the quality of the
speech signals and how good the training environment matches the test conditions (if a learn-
ing technique is applied). Pre-processing steps which drop non-speech frames or apply speech
enhancement methods lead to an essential increase of the recognizer’s performance. Figure K.2
shows an example of the feature extraction part of a typical speech recognition system, using
spectral noise reduction and non-speech frame-dropping.
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K.2 Algorithm Overview
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Figure 3. Feature extraction with spectral noise reduction and non-speech frame-dropping. 
Figure K.2: Typical feature extraction system for speech recognition in noisy environments, proposed in

Grimm and Kroschel [2007, page 5].

K.2 Algorithm Overview

This section presents a overview of a few VAD methods. The block diagram in figure K.3
describes the three main steps of common VAD algorithms:

1. Pre-processor (feature extraction)

2. Basic extractor (decision module)

3. Post-processor (decision smoothing)
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According to their application requirements, many different approaches of VAD algorithms ex-
ists. Three classes according to their type of application can be distinguished:

1. Basic VAD algorithms, mainly designed for simple and fast implementation.

2. VAD algorithms which are designed for highly noisy environments.

3. Compound VAD algorithms which are reliable for a wide range of environmental condi-
tions.

K.2.1 Basic VAD Algorithms

The algorithms described in this section extract different signal features from short-time signal
frames. Applying a rectangular window w(m), the short-time signal xn(m) for frame n can be
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obtained in a pre-processing step:

xn[m] = x[m] · wrectangular[n−m] 0 ≤ m ≤ N − 1 (K.4)

wrectangular[m] =

{
1 0 < m < (N − 1)

0 otherwise
(K.5)

Usually overlapped frames with fixed frame-size and fixed step size are used, so for each frame
n = {0, 1T, 2T, ...} the step size can be defined as 1 ≤ T < N, T = const. Within a single frame
the signal parameters are assumed to be constant.
Phase effects, injected by rectangular windowing, can be avoided using other window functions.
Common speech window functions (beside the rectangular window wrectangular) are the Hamming
window wHamming and the Hanning window wHanning:

wHamming[n] =





0.54 + 0.64 · cos
{[

2n
N−1 − 1

]
π
}

0 ≤ n ≤ (N − 1)

0 otherwise
(K.6)

wHanning[n] =





0.5 ·
[
1− cos

(
2πn
N−1

)]
0 ≤ n ≤ (N − 1)

0 otherwise
(K.7)

Advantages and disadvantages of the different window functions are discussed in Boersma [1993].

VAD Based on Short-Time AMs

The voiced/unvoiced decision is based on the short-term energy of each frame:

En =

N−1∑

m=0

x2n[m] (K.8)

Problems with huge window length and high amplitudes are observed, so the Average Magnitude
Functions (AMs) are frequently used to characterize the short-term energy (Yang et al. [2010a]):

AMn =
N−1∑

m=0

|xn[m]| (K.9)

Voiced/Unvoiced decision Hn in Jawale [2009] is based on comparison of the energy related value
(En or AMn) against a single, constant threshold:

Hn =

{
1 AMn > η

0 otherwise
(K.10)

min(AMvoiced) ≤ η ≤ max(AMnoise) (K.11)

where Hn = 1 indicates the presence and Hn = 0 the absence of voice for frame n. Overlapping
areas between voiced speech band energy and noise speech band energy make a satisfying choice
of the constant threshold value η very difficult.

VAD Based on Short-Time Average ZCR

The number of times a signal crosses the horizontal axis (zero level) is denoted as zero -crossing
rate (ZCR) . The average short-term ZCR (Zn) can be calculated by counting the amount of
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times the sign of two consecutive signals changes:

Zn =
1

2

N−1∑

m=0

|sgn[xn[m]]− sgn[xn[m− 1]]| (K.12)

sgn[x] =

{
1 x ≥ 0

−1 otherwise
(K.13)

In cases of voiced speech sounds signal energy is concentrated in a low frequency region. The
energies of unvoiced and noisy frames tend to distribute over the whole frequency range or even
to be concentrated in higher frequency regions. So low ZCRs indicate the presence of voiced
speech sounds, whereby unvoiced parts may have higher ZCR values.
In Jawale [2009] a double threshold method is applied, which is an algorithm based on markers
where different thresholds for start points and stop points of voiced speech portions and backward
- searching are used to determine the speech bounds. Usually additional hangover schemes can
increase the reliability of this technique.

VAD Based on Short-Time AMDF

Simple VAD algorithms are very often based on calculation of short-term auto-correlation func-
tion (ACF) values (Yang et al. [2010a]). To decrease the computational effort, the average
magnitude difference function (AMDF) can be calculated instead:

AMDFn[k] =

N−1−k∑

m=0

|xn[m]− xn[m+ k]| (K.14)

xn[m] = x[n+m]wrectangular[n] (K.15)

where xn[m] is the speech signal and wrectangular[n] a rectangular window function according to
equation K.5. For strictly periodic signals with period Np, the difference dm = x[m]− x[m+ k]
becomes zero for k = 0,±Np,±2Np.... In case of voiced speech signals a significant minimum
can be observed at the corresponding points. To remove the influence of the lag k, the window
length for w[n] can be adapted and the AMDF rewritten as (Yang et al. [2010a]):

AMDF ′n[k] =
N−1∑

m=0

|x′n[m]− x′n[m+ k]| (K.16)

x′n[m] = x[n+m]w′[n] (K.17)

w′[n] =

{
1 0 ≤ n ≤ N + k − 1

0 otherwise
(K.18)

K.2.2 VADs for Noisy Environments

Claiming reliable results even within noisy environments require algorithms based on more
robust mathematical methods. Typical approaches of algorithms designed for such conditions
are presented here.
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VAD Based on LRT

A two-hypothesis test using the Bayes Classifier for selection of the class with the largest posterior
probability P (Hi|x) is presented in Sohn et al. [1999]:

P (H1|x)
H1

>
<
H0

P (H0|x) (K.19)

P (H1|x)

P (H0|x)

H1

>
<
H0

P (H0)P (H1|x)

P (H1)P (H0|x)
= η (K.20)

where x is the feature vector of the noisy speech signal and η defines a decision threshold.
Different calculation principles of P (Hi|x) defines a huge set of VAD algorithms.

VAD Based on LTSD

Ramirez et al. assume in Ramirez et al. [2004a] that important information for speech/non-
speech discrimination can be obtained from the signal spectrum magnitude. The long-term
spectral envelope (LTSE) estimates a spectral envelope from long-term speech windows:

LTSEN (k, l) = max {X(k, l + j)}j=+N
j=−N (K.21)

where x(n) is the noisy signal and X(k, l) is the k-th amplitude spectrum bin for frame l. N
defines the order of the LTSE. Calculating the so called long-term spectral divergence (LTSD),
a decision rule can be formulated related to the spectral divergence of speech and noise:

LTSDN (l) = 10 · log10
(

1

NFFT

NFFT−1∑

k=0

LTSE2(k, l)

N2(k)

)
H0

>
<
H1

η (K.22)

where N(k) is the average noise spectrum magnitude for band k.

In figure K.4 the effect of the long-term window length N is explained, using an 8 kHz input
signal, decomposed into overlapping frames with a time-shift of 10 ms. The optimum window
length according to the classification error is shown in figure K.5. Finally in the paper a sub-
optimal LTSD window length of N=12 at NFFT=256 is used.

– xxxviii – October 1, 2012 Rev.: 1.1



Christoph Klug
RAPF

K.2 Algorithm Overview

Figure K.4: The influence of the LTSD window length, visualized using speech / non-speech LTSD probability
distribution (Ramirez et al. [2004a]).
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Figure K.5: The optimum of the LTSD window length can be estimated using speech and non-speech detection
error, plotted as a function of the LTSD window length N (Ramirez et al. [2004a]).
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VAD Based on Bilateral Filtering

Moving computational complexity from the basic extractor to the preprocessing step can be
very helpful as many VAD techniques are only useful if specific signal-conditions are fulfilled.
Instead of dealing with difficult conditions in the main feature extraction step, the signal may
be translated to representations which are easier to analyze. Regarding to the mean square
error criterion, a linear filter may be applied if the noise is stationary, additive and Gaussian
(optimum filter). Realistic environments differ from this assumption quite often, which makes
the usage of non-linear filtering very useful.

Here an edge-preserving low-pass filter is applied, which leads to a de-noised, non-blurred signal.
In image-processing, this idea follows the concept of filtering the spacial domain and the tonal
domain with a single filter, as proposed in Lee [1983] (sigma-filter) and in Tomasi and Manduchi
[1998] (bilateral filter). Many investigations are made to make the non-separable 2-D filter more
efficient (Che and Miao [2010]; Guarnieri et al. [2006]; Gunturk [2011]; Igarashi et al. [2010];
K. et al. [2011]; Mattoccia et al. [2011]; Pham and van Vliet [2005]; Porikli [2008]; Villalpando
et al. [2011]; Yang et al. [2009, 2010b]; Yu et al. [2010]).
In Matsumoto and Hashimoto [2009] the filter is analyzed for sound-denoising.

For image processing, the bilateral filter result y(r) at pixel r is defined as (Tomasi and Manduchi
[1998], Matsumoto and Hashimoto [2009]):

y(r) =
1

k(r)

∫ ∞

−∞

∫ ∞

−∞
x(u) · c(r,u) · s(x(r), x(u)) du (K.23)

k(r) =

∫ ∞

−∞

∫ ∞

−∞
c(r,u) · s(x(r), x(u)) du (K.24)

where k(r) is the weight factor for the filter kernel, r and u are coordinates within the image,
x(r) and x(u) are the photometric values at the related coordinates, c(r,u) is the geometric
closeness between point r and point u, and s(x(r), x(u)) is the photometric closeness between
the pixel values (photometric values) x(r) and x(u).

Usually a Gaussian function is used for the geometric closeness c(r,u) as well as for the photo-
metric closeness s(x(r), x(u)):

c(r,u) = e
− 1

2

(
d(r,u)
σd

)2

(K.25)

s(a,b) = e
− 1

2

(
δ(a,b)
σδ

)2

(K.26)

d(r,u) = d(r− u) = ||r− u|| (K.27)

δ(a,b) = δ(a− b) = ||a− b|| (K.28)

where d(r,u) is the Euclidean distance between r and u, and δ(a,b) a photometric distance
measurement. Beside the size of the filter kernel, the behaviour of the filter is controlled by the
geometric spread parameter σd and the photometric spread parameter σδ.
For visualization purposes a filtering-process of a gray-value image is shown in figure K.6.

For audio processing, the equations are reduced to 1-D space: The 2-D coordinates r and u are
replaced by time-indices of the speech signal, x(t) is the speech signal itself, and instead of the
photometric distance measurement δ(a,b) simply the difference between two signal amplitude
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( 4  (b) (c) 

Figure 1: (a) A 100-gray-level step perturbed by Gaussian noise with 0 = 10 gray levels. (b) Combined similanity weights c((, x)s(f((), f(x)) for a 
23 x 23 neighborhood centered two pixels to the right of the step in (a). The range component effectively suppresses the pixels on the dark side. (c) The 
step in (a) after bilateral filtering with g,. = 50 gray levels and U d  = 5 pixels 

2.1 Example: the Gaussian Case 
A simple and important case of bilateral filtering is 

shift-invariant Gaussian filtering, in which both the close- 
ness function c ( < ,  x) and the similarity function s(4, f) are 
Gaussian functions of the Euclidean distance between thCir 
arguments. More specifically, c is radially symmetric 

where 
d(E,x) = 4 E  - x) = IIE - XI1 

is the Euclidean distance between E and x. The similarity 
function s is perfectly analogous to c: 

1 .(E,.) = e - 5  

is a suitable measure of distance between the two intensity 
values 4 and f. In the scalar case, this may be simply the 
absolute difference of the pixel difference or, since noise 
increases with image intensity, an intensity-dependent ver- 
sion of it. A particularly interesting example for the vector 
case is given in section 5. 

The geometric spread a d  in the domain is chosen based 
on the desired amount of low-pass filtering. A large U d  

blurs more, that is, it combines values from more distant 
image locations. Also, if an image is scaled up or down, U d  

must be adjusted accordingly in order to obtain equivalent 
results. Similarly, the photometric spread a, in the image 
range is set to achieve the desired amount of combination 
of pixel values. Loosely speaking, pixels with values much 
closer to each other than U, are mixed together and values 
much more distant than ur are not. If the image is amplified 
or attenuated, or must be adjusted accordingly in order to 
leave the results unchanged. 

Just as this form of domain filtering is shift-invariant, 
the Gaussian range filter introduced above is insensitive to 
overall additive chang& of image intensity, and is therefore 

unbiased: if filteringf(x) produces h(x), then the same filter 
applied to f(x) + a  yields h(x) +a,  since S(f(t) + a ,  f(x) + 
a) = S(f(E) + a -  (f(x) +a))  = S(f(t) - f(x)). Of course, 
the range filter is shift-invanant as well, as can be easily 
verified from expressions ( 3 )  and (4). 

3 Range Versus Bilatleral Filtering 
In the previous section we combined range filtering with 

domain filtering to produce bilateral filters. We now show 
that this combination is essential. For notational simplicity, 
we limit our discussion to black-and-white images, but 
analogous results apply to multiband images as well. The 
main point of this section is that range filtering by itself 
merely modifies the gray map of the image it is applied to. 
This is a direct consequence of the fact that a range filter 
has no notion of space. 

Let v(4)  be the frequency distribution of gray levels in 
the input image. In the discrete case, v( 4) is the gray level 
histogram: 4 is typically an integer between 0 and 255,  and 
v($) is the fraction of image pixels that have a gray value 
of 4. In the continuous case, ~ ( 4 )  d 4  is the fraction of 
image area whose gray values are between 4 and 4 + d4. 
For notational consistency, we continue our discussion in 
the continuous case, as in the previous section. 

Simple manipulation, omitted for lack of space, shows 
that expressions (3) and (4) for the range filter can be com- 
bined into the following: 

r m  

h = /o 4~(4, f) d4 (7) 

where 
s (4 ,  f) 4 4 )  

T ( 4 ,  f) = -iF-------- J, 4 4 ,  f) v(d) d4 

independently of the position x. Equation (7) shows range 
filtering to be a simple transionnation of gray levels. The 
mapping kernel r(4,  f) is a density function, in the sense 
that it is nonnegative and has unit integral. It is equal 
to the histogram v(4) weighted by the similarity function 
s centered at f and normalized to unit area. Since r is 

84 1 

Figure K.6: Bilateral filtering, using Gaussian kernel functions (Tomasi and Manduchi [1998]): The left
plot shows a part of a gray-value image represented in a Cartesian coordinate system where the
pixel intensity is assigned to the height coordinate. The middle plot is a 23x23 pixel filter kernel,
calculated for a center-pixel of the left plot. The right plot shows the filtered image.

values can be taken:

δ̃(x(t0), x(t1)) = |x(t0)− x(t1)| (K.29)

If sufficient speech-enhancement can be assumed, very simple VAD techniques may be applied,
based on e.g. zero-crossing rate, signal energy or sub-band energy, or even on spectral features,
statistical features, and many others. Another very common method is to analyze the speech
characteristics itself and to use human speech specific features, as discussed in Espi et al. [2010].
Bilateral filtering, combined with spectral subtraction de-noising is assumed to improve most
algorithm results, especially in noisy conditions.
Even if bilateral filtering is provided for all proposed algorithms of this paper by the evaluation-
framework, only one VAD algorithm is designed and evaluated especially based on this speech
enhancement method (see section K.3.7).

K.3 Implementation

Some VAD algorithms are implemented and evaluated with Matlab. The Matlab-scripts are
well-structured and well-documented, so only the main steps of the algorithms provided here.

The algorithms are chosen according to aspects like real-time capabilities, level of awareness,
implementation availability, complexity level, reliability of the results in noisy environments and
if their usage is suitable.

K.3.1 LTSD Algorithm

The algorithm proposed here is related to the method presented in Ramirez et al. [2004b]. It is
basically designed to detect speech within noisy environments. The basic steps of the algorithm’s
data stream are outlined in the pipeline diagram in figure K.7.

The basic components of the VAD are the N-order LTSE and the related LTSD, calculated
according to equations K.21 and K.22. The noise spectrum N(k) is calculated for each frame l
as follows:
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+

LTSELTSD
Hangover
Scheme

Noise 
Spectrum

Buffer

VAD
Buffer

Threshold
Calculation

Windowing
(Hanning)

LPx[n] De-Noising
(MMSE)

Buffer

Average
-

Edge 
Detector

d/dt

VAD
Decision

Figure K.7: Basic steps of the VAD related to Ramirez et al. [2004b] and Babu et al. [2009]. Pre-processing
includes: Low pass filtering (LP), speech enhancement (De-Noising-MMSE using Brookers
[2011] implementation of speech enhancement, proposed in Ephraim and Malah [1984]), splitting
the signal into frames and applying a Hanning window function (Buffer, Windowing). Basic
feature calculation is based on LTSE and LTSD. Post-processing involves: thresholding ( cd ),
applying a simple hangover scheme (Hangover Scheme), detecting changes in the LTSD course
(d/dt, Edge Detector) and the final speech/non-speech decision (VAD-Decision).

N(k, l) =

{
α ·N(k, l − 1) + (1− α) ·NK(k) if speech pause is detected

N(k, l − 1) otherwise
(K.30)

NK(k) =
1

2K + 1

K∑

j=−K
X(k, l + j) (K.31)

where NK(k) is the average spectrum magnitude at frame k, calculated over a K-frame neigh-
borhood.

Post-Processing

The LTSDN (l) calculated in equation K.22 is compared to an adaptive threshold value γ:

γ =





γ0 E ≤ E0

γ0−γ1
E0−E1

E + γ0 − γ0−γ1
1−E1/E0

E0 < E < E1

γ1 E ≥ E1

(K.32)

where E0 and E1 are the background noise energy values for clean and noisy conditions. The
optimum thresholds for clean and noisy conditions (γ0, γ1) can be obtained experimentally.

To protect word-endings from misclassification as non-speech, a hangover scheme corrects the
speech/non-speech classification. In low-noise environments (LTSDN (l) > LTSD0), the hangover-
scheme is disabled to improve the decision accuracy. Additional improvements can be gained by
analyzing the time derivation of the LTSD signal.
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K.3.2 PARADE Algorithm

An algorithm especially designed for conditions where non-stationary noise is present is proposed
in Ishizuka et al. [2010]. The periodic and aperiodic parts are extracted and related to each other.
The speech/non-speech decision is based on the observation that the power of voiced speech is
centered around their harmonic components. The main steps of the algorithm’s data stream are
outlined in the pipline diagram in figure K.8.

Buffer

Average

+
LPx[n] FFT

|X|2

F0 Estimation

PAR

Likelihood
(Ratio Test)

Hangover Scheme VAD

power spectrum

periodic power

aperiodic power

-

Figure K.8: The main steps of the algorithm proposed in Ishizuka et al. [2010] are: Signal conditioning
and framing (LP, Buffer, Average), calculating the periodic and aperiodic power components by
usage of FFT (FFT, |x|2, F0 Estimation, PAR) and statistical analysis (Likelihood Ratio Test).
Post-processing is formed by a hangover Scheme to deal with unvoiced speech components which
are located near to voiced speech components (Hangover Scheme).

Basic Extractor

The basic feature extraction is related to the algorithm proposed in Boersma [1993] (see section
L.3.2). The ACF used in the harmonic noise ratio (HNR) algorithm cancels the influence of
additive white Gaussian noise. However, significant errors still may be introduced by colored
noise. This weakness is addressed here by analyzing the power of the harmonic and non-harmonic
components instead of the ACF signal itself.
It is assumed that the speech signal x(n) can be split into periodic parts xp(n) and aperiodic
parts xa(n):

x(n) = xp(n) + xa(n) (K.33)

A further assumption includes the additivity of the power of periodic and aperiodic parts in the
frequency domain:

|X(i, k)|2 = |Xp(i, k)|2 + |Xa(i, k)|2 (K.34)
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where |X(i, k)|2, |Xp(i, k)|2 and |Xa(i, k)|2 represent the short-term power of the signal x(n),
the periodic parts xp(n) and the aperiodic parts xa(n) at frame i for the frequency bin k,
respectively. Substituting p(i) for the short-term power, equation K.34 can be rewritten as

p(i) = pp(i) + pa(i) (K.35)

p(i) =
1

NFFT

NFFT−1∑

k=0

|X(i, k)|2 (K.36)

where pp(i) and pa(i) are the short-term power of the periodic and aperiodic part of the signal,
respectively.

The calculation of the periodic energy pp(i) is calculated with an approximation similar to a
comb filter (Smith [2007]):

pp(i) =

v(i)∑

m=1

pp,m(i) (K.37)

pp,m(i) = η · |Xp(i, [m · f0(i)]|2 (K.38)

(K.39)

where f0(i) is the F0 of the periodic component at frame i, v(i) is the number of it’s harmonics,
pp,m(i) is defined as the power of a sinusoid corresponding to the mth harmonic component and
η is a constant form factor (see Ishizuka et al. [2010]).
The average power of aperiodic speech components are assumed to have uniform distribution
over the whole frequency spectrum, which is also fulfilled at dominant frequencies:

pa(i) =
1

NFFT

NFFT−1∑

k=0

|Xa(i, k)|2 =
1

v(i)

v(i)∑

m=1

|Xa(i, [m · f0(i)])|2 (K.40)

Putting all together the speech energy can be written as

p(i) = η

v(i)∑

m=1

|X(i, [m · f0(i)])|2 + (1− ηv(i))pa(i). (K.41)

p̂a(i) =

p(i)− η
v(i)∑
m=1
|X(i, [m · f0(i)])|2

1− ηv(i)
(K.42)

p̂p(i) = p(i)− p̂a(i) = η

v(i)∑
m=1
|X(i, [m · f0(i)])|2 − v(i)p(i)

1− ηv(i)
(K.43)

where p̂a(i) and p̂p(i) are the final estimations for the power of periodic and aperiodic compo-
nents, respectively. The short-term power p(i) is calculated according to equation K.36 whereby
F0 can be calculated by any PDA as well as by using the numerator of equation K.43:

f̂0(i) = arg max
f0(i)




v(i)∑

m=1

|X(i, [m · f0(i)])|2 − v(i)p(i)


 (K.44)

where f̂0(i) is an estimation for F0 at frame i (Nakatani and Irino [2004], Nakatani et al. [2008]).
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Post-Processing

The assumptions and approximations used in section K.3.2 may lead to systematical errors. To
take these errors into account, the speech/non-speech decision is based on the likelihood derived
from the error distributions of the periodic and aperiodic components.
A joint probability density function based on the segmental signal power p(i), the estimated
periodic power component p̂p(i) and the estimated aperiodic power component p̂a(i) defines the

likelihood L of a speech segment:

L(Hi) = p(p(i), p̂a(i), p̂p(i)|Hi) = p(p̂a(i), p̂p(i)|Hi, p(i)) · p(p(i)|Hi) (K.45)

where Hi may be 0 or 1. Remark that p(p(i)|Hi) is a constant term and can be dropped for
further calculations.
Non-speech segments (marked with Hi = 0) are assumed to have no periodic components (p(i) =
pa(i)). The error of this assumption can be calculated with

εa(i) = p(i)− p̂a(i) = p̂p(i) (K.46)

For speech segments (marked with Hi = 1) the calculation error can be approximated with

εp(i) = p(i)− p̂p(i) = p̂a(i) (K.47)

Assuming that the error distributions of εa(i) and εp(i) follows Gaussian distributions (mean
and standard derivation are 0, α · pa(i) ≈ α · p̂a(i), α > 0 and β · pp(i) ≈ β · p̂p(i), β > 0), the
likelihood for a speech period can be formulated as:

p(p̂a(i), p̂p(i)|Hi, p(i)) ≈ p(εp(i)|Hi = 1, p(i) = pp(i)) (K.48)

≈ 1√
2πβp̂p(i)

e
− 1

2β2

(
p̂a(i)
p̂p(i)

)2

(K.49)

which is defined for all cases of Hi assuming no background noise (see Ishizuka et al. [2010]).
The VAD decision is based on the likelihood ratio Λ(i)

Λ(i) =
L(Hi = 1)

L(Hi = 0)
=
α

β
· 1

µ(i)
e

1
2α2

µ(i)2− 1
2β2
· 1
µ(i)2 (K.50)

µ(i) =
p̂p(i)

p̂a(i)
(K.51)

Using α = 1 and β = 1, equation K.50 can be simplified to

Λ(i) =
1

2µ(i)
e

1
2
(µ(i)2− 1

µ(i)2
)

(K.52)

where Λ(i) ≥ Threshold describes frames containing speech components and Λ(i) < Threshold
describes non-speech frames.

K.3.3 HOS Algorithm

To avoid initial background noise guesses which are usually required for automatic threshold
determination, the algorithm proposed in Shuyin et al. [2009] uses high order statistic (HOS).
To separate speech from non-speech, the background noise is assumed to have almost Gaussian
distribution, for which third and higher order statistics tend to vanish. In contrast, speech is
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regarded as non-Gaussian distributed signal, which makes HOS a robust feature to distinguish
between speech and non-speech components in both - time and frequency domain.
The algorithm is generalized to work in time-varying noisy environments where the noise may be
described as white additive noise or as colored additive noise. The main steps of the algorithm’s
data stream are outlined in the pipline diagram in figure K.9.

+
Windowing
(Hanning)

LPx[n] Buffer

Average
-

FFT
Gaussian Noise

ExtractionKurtosis

Hangover Scheme VAD

Figure K.9: The basic steps of the VAD algorithm proposed in Shuyin et al. [2009] include: Filtering, local
average subtraction and windowing (LP,Buffer,Average, Windowing), STFT (FFT), extraction
of zero-mean Gaussian distributed information from colored environmental noise (Gaussian
Noise Extraction), calculation of the main decision feature (Kurtosis) and the speech/non-speech
decision based on a simple hangover scheme and a fixed threshold value (Hangover Scheme, cd ).

Basic Extractor

In Shuyin et al. [2009] speech signal is modeled by a zero-mean random variable. Furthermore
only additive Gaussian noise with zero mean is assumed in the first step. The author math-
ematically proved that the noise signal is zero for all “high-order cumulants” (also known as
eigenfunctions, see Li et al. [2005]), which means only speech information remains in cases where
speech is superimposed with zero mean Gaussian noise. In the paper the 4th order cumulant is
approximated by the Spectral Domain Kurtosis kurt(x):

kurt(x) = c
(x)
4 (0, 0, 0) = E[x4(n)]− 3E2[x2(n)] (K.53)

where E[X] is the expectation of the zero-mean random variable X. Applying a simple threshold
method, the Spectral Domain Kurtosis can be used as voiced/unvoiced decision rule. The
final calculation of the Spectral Domain Kurtosis may be formalized using short -term fourier
transform (STFT) for the current frame l:

kurtl(i) =
1

NFFT

NFFT−1∑

k=0

X4
l (k)− 3 ·

[
1

NFFT

NFFT−1∑

k=0

X2
l (k)

]2
(K.54)

where Xl(k) is the frequency domain representation of the speech signal at frame l.

Mathematical principles which are required for the derivation of the proposed formulas are given
in Shuyin et al. [2009].
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Generalizing to Colored Noise

Gaussian information can be extracted from colored noise, which is required to remain reliable
speech/non-speech decision results when colored background noise is present:

X ′l(k) = Xl(k)− µ̂l(k), k = 0, 1...NFFT − 1 (K.55)

µ̂l(k) =
1

M

l∑

i=l−M+1

Xi(k) (K.56)

where µ̂l(k) is the average spectral amplitude and X ′l(k) the spectral amplitude sequence with
zero-mean Gaussian distribution, l the frame index and M the average computation size. The
Spectral Domain Kurtosis kurt(x) is calculated according to equation K.54.

Post-Processing

To avoid misclassification of unvoiced sounds, a hangover scheme is required. In Shuyin et al.
[2009] a very simple method similar to average filtering (Smith [2007]) is used:

kurt(i) = α · kurt(i− 1) + (1− α) · kurt(i) (K.57)

where α is known as forgetting factor and kurt(i) is the feature used for speech/non-speech
decision.

K.3.4 G729B VAD Algorithm

In Benyassine et al. [1997] a VAD algorithm is proposed which is based on multi-feature pattern
matching, noise-estimation and a special hangover (smoothing) scheme. Basically four features
are extracted for each frame (instantaneous pattern): linear prediction (LP) spectrum, full-band
energy, low-band energy, and zero-crossing rate. Beside this features a long-term energy is cal-
culated for a window length of about 1 secound to avoid a deadlock which may be injected by
the algorithm’s feedback loop. Additionally a global threshold for the short-term energy is used
to avoid result glitches for very low signal amplitudes.

The primary VAD decision is based on pattern matching: The four features described above are
bundled to a instantaneous signal pattern, which is calculated for each frame. Within speech
absence, the background pattern is updated (which require a simple VAD in advance). The cur-
rent signal pattern then is compared in the hyperspace. Time-varying influences are considered
by the smoothing/hangover step, which forms the final VAD decision.

The main steps of the algorithm’s data stream are outlined in the pipline diagram in figure K.10.
As the algorithm is provided as source-code and the implementation is fairly simple, no further
description is given here.
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+
WindowingLPx[n] Buffer

Average
-

Signal Parameter
Estimation

Pattern Matching
(Diff, Hyperspace)

BufferAverage

Hangover Scheme
(Smoothing)

resetvad

noise path

signal path

VAD

Short-Term Energy

Signal Parameter Estimation

LP Energy

Energy

Zero-Crossing
Rate

LP Spectrum

Long-Term Energy

anti-glitch
Threshold

Figure K.10: The basic steps of the VAD algorithm proposed in Benyassine et al. [1997] include: Filtering,
local average subtraction and windowing (LP,Buffer,Average, Windowing), extraction of the
four main speech features used for pattern matching (Zero-Crossing Rate, Full-Band Energy,
Low-Band Energy, LP Spectrum Parameters), background noise - pattern estimation, and the
pattern matching itself. Short-term energy estimation is used to avoid result glitches, long-term
energy estimation is used to avoid a possible deadlock due adverse conditions (hidden feedback
loop). The final result is formed by a 4-state post-processing step.

K.3.5 LRT based Algorithm

An implementation according to K.2.2 is provided in Brookers [2011] , which mainly implements
the algorithm proposed in Sohn et al. [1999]. The VAD algorithm estimates the background
noise in the spectral domain, calculates the so-called a priori signal to noise ratio (SNR) and a
posteriori SNR values and defines a related statistical likelihood ratio test (LRT). An sufficient
hangover scheme forms the final VAD decision. The main steps of the algorithm’s data stream
are outlined in the pipeline diagram in figure K.11.
The algorithm is provided in source-code, so no further description is given here. Details about
the algorithm and implementation are provided in Brookers [2011] and Sohn et al. [1999].
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+
WindowingLPx[n] Buffer

Average
-

Average Hangover Scheme VAD

FFT

Noise Estimator
a posteriori 

SNR

a priori 
SNR

LRT Threshold

Figure K.11: The basic steps of the VAD algorithm proposed in Sohn et al. [1999] include: Filtering, local
average subtraction and windowing (LP,Buffer,Average, Windowing). Furthermore noise es-
timation is done to estimate the a priori SNR and the a posteriori SNR . The initial VAD
decision is based on the smoothed result of the LRT, the final decision rule is formed by a
hangover scheme.

K.3.6 Entropy based Algorithm

In Lei et al. [2009] Wiener filtering (Lim and Oppenheim [1979], Benesty and Huang [2008],
Mendel [1999]), a mel-filterbank and spectral entropy is used to improve the robustness of the
VAD within noisy environments. In the current implementation Wiener filtering is replaced by
the speech enhancement method of Brookers [2011] which generally implements the de-noising
method proposed in Ephraim and Malah [1984]. The main steps of the algorithm’s data stream
are outlined in the pipeline diagram in figure K.12.
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+
Windowing
(Hanning)

Buffer

Average
-

|FFT|2
Filterbank

(Mel)

Hangover Scheme

De-Noising
(SSUB-MMSE)

PMF

LPx[n]

Filterbank 2
(Mel)

Entropy MFB-Feature OF

VAD Envelope
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Figure K.12: The basic steps of the implemented algorithm related to Lei et al. [2009] and Nordholm et al.
[2005] are: Signal conditioning (LP, De-Noising, Buffer, Average), applying a Hanning window
function (Windowing), calculating the energy in the frequency space (|FFT |2), calculating the
PMF (Filterbank, PMF, cd ); the main VAD feature is based on calculating the MFB frequency-
space entropy (Entropy) and the MFB-Feature; post-processing includes ordered statistic filter-
ing (median filter, OF), feature envelope approximation (Envelope), a hangover scheme and a
VAD decision based on thresholding.

Basic Extractor

In theory, spectral entropy is not very much influenced by the total energy if the signal distribu-
tion of the signal doesn’t change much. Therefore different speech enhancement methods may
be used without standing to loose significant information for the speech/non-speech decision.
Using short-time fast fourier transform (FFT), a mel-scaled triangular filter-bank is applied in
the frequency domain for each frame:

p′i =
Mel(fi)
M∑
k=1

Mel(fk)

(K.58)

pi =

{
0 p′i > 0.9

p′i otherwise
(K.59)

where M is the number of filters used, Mel(fi) is the filter-bank coefficient for component fi
and p′i the corresponding probability density function. Applying equation K.59 leads to a more
accurate speech/non-speech decision since noise-parts at specific frequency-bands are eliminated
(for further information, see Lei et al. [2009]). A slightly different method is used in Nordholm
et al. [2005], where a PMF is calculated by normalizing the spectrum in each sub-band with the
total spectral energy:

p′i =
Xi

NFFT−1∑
i=0

Xi

i = 0, 1..NFFT − 1 (K.60)
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where Xi is the energy of the ith frequency bin and p′i the corresponding PMF.

The mel filter-bank spectral entropy H at each frame is defined as

H = −
M∑

i=1

pi log pi (K.61)

Energy based information is added by frame-wise calculation of the spectral energy

Es =

NFFT−1∑

i=0

|X̂i|2 (K.62)

Finally both, the spectral entropy H and the spectral energy Es are combined to the so-called
MFB feature (Lei et al. [2009]):

MFB − feature =
√
H.Es (K.63)

Post-Processing

A long term envelope of the MFB feature is calculated which may be used immediately for
a simple VAD-threshold method. Nevertheless, additional improvements (calculation and se-
lection of sub-band based MFB-feature results, adding information of the feature’s envelope -
time derivation,...) are added before thresholding is applied to increase the reliability of the
algorithm.
Finally, a hangover scheme would be required to form the final VAD decision.

K.3.7 Variance based Algorithm

A new method proposed in this project leads to a very robust VAD algorithm. If noise free
sound is assumed and noise-like speech sounds can be eliminated, the data spread can be used
as voiced/non-voiced decision criterion. Such spread can be measured using for example variance,
standard derivation or absolute derivation.

Assuming that most syllables consist of a voiced core sound, usually embedded in non-voiced
speech-sounds, and smooth transitions between speech sounds are common within connected
speech, one may define a VAD algorithm using massive low-pass filtering, the spread-feature,
and a kind of “time region markers”.

A main part of this algorithm is the integration of the variance over time, which makes the
algorithm very robust against outliers and bursts. A drawback is the delayed VAD-decision.
When using this method in real-time scenarios, the maximum latency introduced by the inte-
gration may be set to a constant value by forcing the VAD-decision if a specified time-period
has expired.

Low-pass filtering within the pre-processing step is another essential part of this algorithm. To
prevent this step of blurring the audio signal, which can make the information unextractable,
an edge preventing filter is used instead of a common low-pass filter. Additionally the speech
signals may be locally amplified using an adaptive gain factors.
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The main steps of such an algorithm’s data stream are outlined in the pipeline diagram in figure
K.13.

+
Windowing
(Hanning)

LP
(Bilateral)

x[n] Buffer

Average
-

Variance

Hangover 
Scheme

VAD

Energy

k

∫

Maximum
Filter

d/dt

OR

|x|

reset

Figure K.13: The basic steps of the variance-based algorithm are: Signal conditioning using a bilateral filter
as edge preventing low-pass filter (LP, De-Noising, Buffer, Average), applying a Hanning
window function (Windowing), calculating the energy for adaptive (automatic) gain control;
the main VAD feature is based on variance calculation, ordered-statistic filtering (maximum
filter), and integration over time. Simple post-processing steps form the final VAD decision.

Pre-Processing

Beside the common pre-processing steps like windowing, local average subtraction or applying
a Hanning window function, the low-pass filtering is a very important step for the current
algorithm. Edge preventing low-pass filtering avoids signal-blur. Here a 1-D bilateral filter (as
proposed in Matsumoto and Hashimoto [2009]) is used:

y[n] = k[n] ·
bN/2c∑

m=−bN/2c
x[n] · c[n,m] · s(x[n], x[m]) (K.64)

k[n] =

bN/2c∑

m=−bN/2c
c[n,m] · s(x[n], x[m]) (K.65)

(K.66)

whereby y[n] is the filtered signal sample at position n, k[n] the weight for sample position n,
c[n,m] the temporal closeness of sample positions n and m, and s(x[n], x[m]) the amplitude
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value closeness. The closeness calculations are based on Gaussian functions:

c[n,m] = e
1
2

(
d[n,m]
σd

)2

(K.67)

s(a, b) = e
1
2

(
δ(a,b)
σδ

)2

(K.68)

d[n,m] = d[n−m] = |n−m| (K.69)

δ(x[n], x[m]) = |x[n]− x[m]| (K.70)

with the temporal spread factor σd, the amplitude spread factor σδ, and the distance functions
d[n,m] and δ(x[n], x[m]). In a straight forward implementation, the temporal closeness function
can be precomputed and provided as lookup table, whereby the amplitude value closeness needs
to be calculated for each sample separately. A common speedup technique is the quantization
of the amplitude distance values. The amplitude value closeness may then be estimated by
interpolation of the two closest precomputed values.

Basic Extractor

The basic extractor calculates the variance of the absolute sample values for a single frame. The
variance of frame i is given by:

σ2y [i] =
1

M − 1

M−1∑

n=0


|y[n]| −

M−1∑
m=0
|y[m]|

M




2

(K.71)

where M > 1 is the frame length, n the sample offset within frame i, and y[n] the filtered speech
sample at sample index i∗SZ+n, using a constant step size SZ. For the current implementation
a frame length of 512 samples (64 ms) and a step size of 33 samples (4 ms) is used.
The first VAD decision is based on comparison of the variance envelope against an constant
threshold value. The envelope is computed over 51 samples (6.4 ms), using a maximum filter.

Post-Processing

A time marker is set where the basic extractor classifies a frame as voiced part. Until the next
non-voiced part, the variance is summed up and compared against a certain threshold value. If
the sum exceeds the threshold, the whole region is classified as speech. A new region starts if
the basic extractor classifies a frame as non-speech.

K.4 Evaluation

The TIMIT database is used for the evaluation of the VAD algorithms. The VAD reference
signal is extracted from the phonetic transcription files of the database. These audio samples
are referred to as “single sentence tracks”. To balance the overall amount of speech parts and
non-speech parts, concatenated speech samples, filled with silence of arbitrary length between
the speech parts, are analyzed. These audio samples are referred to as “multi sentence tracks”.

The VAD estimation results are automatically shifted in time to get the minimum error between
the reference signal and the estimated signal. This method is used for the evaluation-processes
in de Cheveigné and Kawahara [2002] to ease the comparison between different algorithms, using
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different databases where the total latency in the audio-recording-process is unknown.
Main advantage of this auto-alignment is the independence of the results from recording-delays,
signal-shifts and result-alignment within the analyzing windows. On the other hand it has a
negative impact on the results because incorrect alignments are possible. Nevertheless this errors
are expected to occur seldom which would make their statistical influence negligible.

Even if some algorithms are used “as-is” (black-boxes), an uniform pre-processing and post-
processing step is intended to make the results more comparable. Therefore the basic extraction
algorithms are embedded in an uniform framework, which is shown in figure K.14.

Post-Processing

Correction

Basic Extraction

VAD EstimationExtraction

Pre-Processing

WindowingFiltering
Encoding
(mplayer)

HP

LP

Bilateral

mp3 Enc

mp3 Dec

k  

Denoise Framing

HOS

Zero Crossing

NCCF

k  

x<k*max=0

abs(x)

Forward Hangover

Backward Hangover

Onset Correlation

Offset Correlation

Median Filter

Database Processing

Uniform Processing

Algorithm Specific
Processing

- Average

1/max

HanningHanning

Peak-Find

Grouping

Threshold

Sum

Refining

Cost Function

Threshold

Median Filter

Correction

Threshold

Entropy

Energy Envelope

Usually not Used

Not Used Yet, But 
Prepared for Evaluation

......

Figure K.14: Uniform VAD evaluation framework: Mp3-coding, mp3-decoding, amplifying and
filtering/down-sampling is applied on the speech samples of the databases using Mplayer
(MPlayer [2011]). The main filtering and windowing process is similar in all VAD algorithms.
Special filter-operations like edge-preventing low-pass-filtering (e.g. bilateral filter), spectral
whitening or window-related amplifying are implemented mainly for prospective purposes. The
basic feature extraction step and parts of the post-processing step are formed by the individual
algorithms. Finally uniform post-processing-steps like VAD onset and offset correction (using
correlation around the boundaries), common hangover schemes and ordinary median filtering
refine the VAD feature results.

Table K.1 includes the algorithms’ name mapping between the specific names used in this report
and the short labels used in the plots of the evaluational framework. Furthermore it is indicated
if an algorithm was available in source-code or is re-implemented according to the related paper
and the modifications stated in the corresponding section of this report.
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Report Label
Short Label

(Used for Plots)
Source-Code

Freely Available

G729B VAD Algorithm,
section K.3.4

ECSE412B
ECSE

yes,
not re-implemented

HOS Algorithm,
section K.3.3

HOS
no,

implemented as Matlab Script

Entropy based Algorithm,
section K.3.6

ENTROPY
no,

implemented as Matlab Script

LTSD Algorithm,
section K.3.1

LTSD
no,

implemented as Matlab Script

periodic -component to
aperiodic -component ratio

based activity detection
(PARADE) Algorithm,

section K.3.2

PARADE
no,

implemented as Matlab Script

Variance based Algorithm,
section K.3.7

BILAT
no,

implemented as Matlab Script

LRT based Algorithm,
section K.3.5

SOHN
yes,

not re-implemented
Table K.1: Algorithms’ name mapping between the specific names used in this report and the short labels

used in the plots of the evaluational framework. Furthermore it is indicated if an algorithm was
available in source-code or is re-implemented according to the related paper and the modifications
stated in the corresponding section of this report.

K.4.1 Evaluation Databases

From the TIMIT database 1393 audio samples, spoken by men, and 758 audio samples, spoken
by women are used. As all these audio samples contain silence within the spoken sequence, they
are used twice: once as single sentence track where one file is exactly one speech sample and
once as a fraction of the multi-sentence tracks.

The later one results in 464 (concatenated) audio samples, containing male voice, and 189
(concatenated) audio samples, containing female voice, whereby for each audio sample three
base-audio tracks of the TIMIT database and five silence-parts (three in-between the audio
samples, one at the beginning and one at the end) with arbitrary length between 0.05 seconds
and 0.5 seconds are used.

The single sentence audio tracks have an average-length of 4.5 seconds, enclosed in leading and
trailing silence with an average-length of about 0.1 seconds. the multi sentence audio tracks
have an average-length of 11.7 seconds, enclosed in leading and trailing silence with an average
length of about 0.4 seconds. Leading and trailing silence is assumed during the signal is lower
than -60 dB related to the global maximum of the audio-file.

K.4.2 Evaluation Conditions

To test the algorithms in more realistic scenarios, background noise is added to the audio-tracks,
leading to following evaluational conditions:

• Evaluation of male and female tracks without background noise

– lvi – October 1, 2012 Rev.: 1.1



Christoph Klug
RAPF

K.4 Evaluation

• Evaluation of male and female tracks with white noise, 10 dB and 20 dB SNR

• Evaluation of male and female tracks with babble noise, 10 dB and 20 dB SNR

• With and without mp3-coding and decoding (to simulate a common transmission- or
storage-scenario)

Background noise is taken from the noise database proposed in Johnson and Shami [1993].
Using perceptive comparison (listening to audio tracks with noise which are generated in the
laboratory and audio tracks from political speeches, see J.2) a realistic environment for speech
analysis may be declared using babble noise and speech signals with 20 dB SNR. A worst-case
scenario is declared using 10 dB SNR, where the algorithms still should lead to reliable results.

Mp3 coding and decoding is done using Mplayer (MPlayer [2011]). The mp3 coding step involves
filtering and down-sampling to 16 kHz sampling frequency, the mp3 decoding step results in
wav-formated audio files (raw) with 8 kHz sampling frequency. The two-step filtering and down-
sampling is required because most audio-samples are recorded with 48 kHz sampling frequency,
and the direct conversion from raw (wav) audio format, using 48 kHz sampling frequency, down
to mp3 coded audio files with 8 kHz sampling frequency leads to many acoustic disturbances if
Mplayer is used.

The final audio-tracks for the algorithm-evaluation are constructed by following equations:

x[q] = s[q] + ñ[q] (K.72)

ñ[q] = k.
max (|s[q]|))
max (|n[q]|) · n[q] (K.73)

k = 10−
SNRdB,A

20 (K.74)

where x[q] is the final audio track (test sample), ñ is the additive noise, s[q] a spoken sound
record from the database (or a concatenated audio track), SNRdB the SNR according the the
predefined conditions and n[q] the noise signal.

In equation K.74 the SNR is defined by maximum amplitude values calculated over a single file:

SNRdB,A = 20 · log
(
max(|s[q]|)
max(|n[q]|)

)
(K.75)

where SNRdB,A is the SNR defined by maximum amplitude values, and can be interpreted as
the “worst case scenario” for a given sound sample, as background noise is assumed to be almost
uniform distributed and not to have significant bursts. One may use signal energy values for
calculating the SNR, which would lead to a slightly different definition:

SNRdB,E = 10 · log
(
Es
En

)
(not used) (K.76)

where SNRdB,E is the SNR defined by energies, Es is the total signal energy and En is the total
noise energy.

To provide a better comparability to related papers, the evaluational framework also implements
the so-called segmental signal to noise ratio (SSNR) method for the calculation of the background
noise gain factor k, used in equation K.73. The SSNR is calculated according to Vary [2006,
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page 226]:

SSNRdB,E [l] =





10 · log
(
Es[l]
En[l]

)
En[l] 6= 0

∞ otherwise
(K.77)

where Es[l] is the speech energy, En[l] is the noise energy and SSNRdB,E [l] is the SNR value at
frame l. For the current implementation a frame size of 15 ms and a step size of half the frame
size is used. For the final noise-gain factor, the average of SSNRdB,E [l] over a single file is used.
The process how the different environment conditions are simulated in laboratory is shown in
figure K.15.

SSNRdB,E

SNR

|x| |x|Windowing

Energy

Frame Dropping

Windowing

Energy

VAD

SNR per Frame

Invalid Value Dropping

Average
SNRdB,A

 Clean Speech

Noise k  

+

Noisy Speech 
Signal

Speech Noise Speech Noise

max max

Median FilterMedian Filter

SNR Calculation 
Method Selection

Figure K.15: For simulating different environmental conditions, the framework provides 2 different methods
for calculating the SNR of the speech and the background noise: The first method uses the
amplitude maxima of the related speech and noise files to calculate the SNR, which results in
SNRdB,A. As single signal bursts have strong influence on the SNR value, a second method is
provided, which is based on the SSNR calculation, where a window length of 15 ms and a step
size of half the window length is used.

Furthermore all algorithms are tested with and without denoising. For denoising, the spectral
subtraction method from the VOICEBOX is used, which mainly implements the algorithm
proposed in Martin [2001].
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K.4.3 Results

Statistical comparison of the total error results within the different conditions are shown in
figure K.16. The total error E[algi] of a specific algorithm algi is calculated as follows:

Ej [algi] =
EN1j [algi] + EN0j [algi]

N
(K.78)

E[algi] =

∑M−1
j=0 Ej [algi]

M
(K.79)

where M is the total count of test-files, N is the number of samples within file j, EN1j [algi] is
the count of silence-samples which the specific algorithm algi incorrectly detect as voiced parts,
EN0j [algi] is the count of the voiced parts which the algorithm algi incorrectly detect as silence,
and Ej [algi] is the error ratio of file j. Not all algorithms are trimmed to result in the lowest
possible total error. Adjusting the parameters so that the count of incorrect detected silence
parts is low would increase the count of incorrect detected voice parts, and vice versa. This
behavior is visualized in figure K.5 and also can be seen in table K.2, which is a small part of
the VAD evaluation result.

Algorithms: ECSE412B HOS ENTROPY LTSD PARADE BILAT SOHN

Gender: [m]ale, [f]emale m f m f m f m f m f m f m f

Database, Conditions TIMIT Database, Single Sentence Samples, Clean Speech Conditions, no Denoising

Total Error 0.11 0.10 0.44 0.33 0.35 0.29 0.28 0.23 0.28 0.21 0.09 0.08 0.11 0.10

Incorrect Detected Silence 0.00 0.00 0.44 0.32 0.35 0.29 0.27 0.22 0.27 0.20 0.02 0.02 0.02 0.02

Incorrect Detected Voice 0.11 0.10 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.07 0.06 0.09 0.09

Database, Conditions TIMIT Database, Multi Sentence Samples, Clean Speech Conditions, no Denoising

Total Error 0.10 0.10 0.39 0.30 0.32 0.27 0.25 0.21 0.24 0.19 0.07 0.07 0.12 0.11

Incorrect Detected Silence 0.00 0.00 0.39 0.29 0.32 0.27 0.25 0.21 0.23 0.18 0.03 0.03 0.01 0.01

Incorrect Detected Voice 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.05 0.11 0.10

Balanced (Silence vs. VAD) no no no no no yes no

Table K.2: Error-Estimations of the VAD algorithms, where the balance between voiced and unvoiced de-
tection errors can be figured out. The total error is the sum of the incorrect detected voice ratio
(incorrect detected voice samples related to the total sample count) and the incorrect detected
silence ratio (incorrect detected silence samples related to the total sample count). If both ratios
are similar, the parameters of the specific algorithm are trimmed to get the lowest total error.
This behavior is known as ROC. For this table the SNRdB,A method is used.

In figure K.17 all algorithms with a total estimation error lower than 25% in any condition
(using denoised sound samples) are shown, where the SNRdB,A method is used.
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Errorsum: Average of False−Estimation Ratios 
 (minimum=0.08, maximum =0.49)
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(d) Denoised Input, Multi Sentence Samples

Figure K.16: Comparison of VAD algorithms, applied on different conditions (no noise, white noise, babble
noise) and different genders (male, female); The algorithms are assigned to the ordinates, the
conditions are shown at the abscissas.
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(b) Denoised Input, Single Sentence Samples
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(c) No Denoising, Multi Sentence Samples
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Figure K.17: Comparison of selected VAD algorithms, applied on different conditions (no noise, white noise,
babble noise) and different genders (male, female); The total error rates are are assigned to
the ordinates, the conditions are shown at the abscissas. Here, the SNRdB,A method is used.
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The same evaluations are repeated, using SSNRdB,E , but only 100 audio tracks for a single
condition, which also should be enough for statistical evaluations. In figure K.18, the results of
the evaluation are shown. The best three algorithms are extracted and shown in figure K.19.
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(d) Denoised Input, Multi Sentence Samples

Figure K.18: Comparison of the VAD algorithms, applied on different conditions (no noise, white noise,
babble noise) and different genders (male, female); The algorithms are assigned to the ordi-
nates, the conditions are shown at the abscissas. Here, SSNR is used to calculate the noise
levels, but only 100 audio files are analyzed.
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(b) Denoised Input, Single Sentence Samples
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(c) No Denoising, Multi Sentence Samples
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(d) Denoised Input, Multi Sentence Samples

Figure K.19: Comparison of selected VAD algorithms, applied on different conditions (no noise, white noise,
babble noise) and different genders (male, female); The total error rates are are assigned to
the ordinates, the conditions are shown at the abscissas. Here, SSNR is used to calculate the
noise levels, but only 100 audio files are analyzed.

Bilateral Filter Influence

“BILAT” is designed to outsource the main computational complexity to the preprocessing step
(bilateral filtering, denoising). Tests have shown that the core feature extraction also work well
without bilateral filtering: Analyzing the total error rate of the algorithm, using the multi
sentence track database (combined TIMIT samples), 20 dB SNRdB,A with white noise and
applied denoising, and only male speakers, would lead to the total error of approximately 6%,
which is almost the same result as if bilateral filtering would have been applied (see figure K.20).
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Figure K.20: Testing the algorithm proposed in section K.3.7 with and without bilateral filtering. In envi-
ronments with ’harmless conditions’ (only additive and white noise, high SNR, AGC of speech
is applied,...) the algorithm doesn’t require bilateral filtering as de-noising step. For more chal-
lenging conditions (babble noise, non-stationary environment, low SNR, no AGC ...) bilateral
filtering has positive impact on the results.

K.4.4 Discussion

VAD Parameter Adjustments

The evaluation results of all algorithms are highly dependent on their parameter settings, on
the preparation of the database and the error definitions. The results proposed in this paper are
much worse compared to previous comparative publications like Wu and Zhang [2011], Ramirez
et al. [2004a], Ramirez et al. [2004b], Fujimoto et al. [2008], especially when the error is calculated
using SNRdB,A. The reasons for this are:

• The VAD results proposed in this work are all interpolated and (thresholded to get binary
results) to fit the reference signals, which introduce an additional error, mainly influenced
by the algorithms’ step sizes. This method avoids whitewashing the results: Bigger step
sizes lead to bigger errors.

• As proposed in Wu and Zhang [2011], the TIMIT database is not well balanced according
to speech and non-speech parts. Extending the non-speech part boundaries is a common
way to deal with this problem, but would relax the algorithms’ requirements. In this work
this method is avoided to take the problems of short non-speech parts into account.

• When source code was available, the algorithms are mainly used with default parameters,
which not always let to the minimum error for the evaluated conditions. An example for
this is the algorithm proposed in Sohn et al. [1999]. It is designed to work well for speech
enhancement, ASR or similar requirements. Adjusting the parameters in such way that
the values for “incorrect detected voice” (false alarm rate) and “incorrect detected silence”
are balanced would lower the total error approximately from 22% to 16% when analyzing
the multi sentence track database, 20 dB SNR with white noise and applied denoising,
and only male speakers. This behavior is expressed by the so called “ROC”, as discussed
in Perńıa et al. [2007]).
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L.1 Introduction

A very important feature of speech signals is the perceptual feature pitch level. The related
physical quality to pitch level is the F0 or even the corresponding fundamental period (T0).
Usually, in literature no distinction between F0 and pitch level is made. Keep in mind that all
methods referred in this work as PDAs rather calculate the physical features F0 or T0 than the
perceptual feature pitch level itself. Depending on their calculation methods different definitions
for pitch level, F0 and T0 are used. Common definitions are summarized in Hess [2007].

Using a laryngograph signal as pitch reference base, following definition may be used:

“T0 is defined as the elapsed time between two successive laryngeal pulses. Measure-
ment starts at a well-specified point within the glottal cycle, preferably at the instant
of glottal closure.”

Without laboratory laryngograph signal measurement is not practicable. Nevertheless the laryn-
geal pulses can be reconstructed using advanced speech signal analysis techniques. The following
definition of T0 covers this approach:

“T0 is defined as the elapsed time between two successive laryngeal pulses. Measure-
ment starts at an arbitrary point within an excitation cycle. The choice of this point
depends on the individual method, but for a given PDA it is always located at the
same position within the cycle.”

Even if laryngeal pulses are very useful for PDA evaluations, measurements in more realistic
environments usually are based on other approaches. The algorithms proposed and implemented
in this work follow the following definition:

“T0 is defined as the average length of several periods. The way in which averag-
ing is performed, and how many periods are involved, is a matter of the individual
algorithm.”

A historical overview of PDAs is given in Gerhard [2003], whereby a more detailed and a more
up to date comparison is provided in Hess [2007]. In this chapter only a subset of common
concepts for pitch determination are reviewed.

L.2 Algorithm Overview

As presented in Hess [2007], each PDA can be structured in 3 parts:

1. Pre-processor

2. Basic extractor

3. Post-processor
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Taking the basic extractor as criterion, 2 basic types of PDAs exist:

1. Time domain PDAs which share the same signal time base in all processing steps.

2. Short-term PDAs which translate the signals time base in the pre-processor step.

L.2.1 Short-Term Analysis PDAs

Speech is a non-stationary process. The pre-processor step of short-term based analysis algo-
rithms split the speech signal into a series of overlapping frames. Within a single frame, the
signal parameters are assumed to be quasi-stationary. Basically 3 pitch periods should fit into
one frame. With this approach phase information as well as sensitivity to phase errors are lost.
Power spectrum methods focus the information of one frame in a single sample. Related tech-
niques have the same focusing effect. To this algorithm family belong correlation techniques,
frequency domain analysis, active modeling and some statistical approaches (figure L.1).

                

   

Short-term analysis pitch determination

Correlation

Frequency-domain 
analysis

Distance function Cepstrum

Autocorrelation Least-squares 
methods

Active modeling Harmonic analysis

d d d

d d

f

f

Figure L.1: Short-term analysis based pitch determination algorithms (Hess [2007]).

PDAs based on the Short-Term ACF

The discrete short-term ACF r[d, q] for lag d at position q is usually given by

r[d, q] =

q+N−1∑

n=q

s[n]s[n+ d] (L.1)

where N denotes the integration window, d defines the correlation lag and s[n] is the speech
signal. A different definition for the short-term ACF is given by (de Cheveigné and Kawahara
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[2002]):

r[d, q] =

q+N−d∑

n=q

s[n]s[n+ d] (L.2)

where the integration window shrinks with increasing values for the lag d. If the signal is zero
outside n = [q...q + N − 1], both equations lead to the same result, but differ otherwise. The
influence of the equations are shown in figure L.2. Other slightly different definitions may be
used (non-biased ACF, centered results...). Details about the used ACF for a specific algorithm
are provided in the related publications.

Usually windowed input signal is used, so the sample offset q is calculated by:

q = k ·Nstep (L.3)

where Nstep is the step size of the framing procedure, given in samples, and k is the frame index.

0 500 1000 1500 2000 2500 3000 3500 4000
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Input Speech Signal 
(Filename = a.wav, fs = 8000 Hz, Sample Count = 4000) 

0 100 200 300 400 500 600
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 (Window Size = 500, Window Start Position = 1000)
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 (Window Size = 500, Window Start Position = 1000)

 

 
ACF
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Figure L.2: Influence of different short-term ACFs. The audio signal is the vowel “a”, spoken from a man,
whereby the total duration is extended with Matlab. The methods used for the ACF calculations
are equation L.1 and equation L.2, analyzed for the ACF lag range =. 0...500. Note that the
calculations results in a biased ACF and is not centered within the integration window.

When the signal is (quasi-) periodic, a strong maximum peak can be observed at lag d equals
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the period T/T0, T being the time-domain sampling interval of the speech signal. This method
is often combined with nonlinear pre-processing.

PDAs based on Distance Functions

The AMDF as counterpart to the ACF if given by

AMDF [d, q] =

q+N−1∑

n=q

|s[n]− s[n+ d]|. (L.4)

where q is the sample offset, d the “distance function lag”, N the analyze window and s[n] the
speech signal. When the signal is (quasi-) periodic, a strong minimum can be observed at lag
d = T

T0
. This method doesn’t require stationarity therefore small frame-length can be used.

PDAs based on ACF and Distance Function

Using the reciprocal of a distance function as weight for the ACF leads to robust pitch estima-
tion algorithms for noisy environments (Shimamura and Kobayashi [2001], de Cheveigné and
Kawahara [2002]). Normalized distance functions have increased values at lower lags:

DF [d, q] =

q+N−1∑
n=q

(s[n]− s[n+ d])2

1
d

d∑
σ=1

q+N−1∑
n=q

(s[n]− s[n+ σ])2
; d > 0 (L.5)

r[d, q] =

1
N

q+N−d∑
n=q

s[n]s[n+ d]

DF [d, q] + k
; k > 0. (L.6)

When the signal is (quasi-) periodic, a strong maximum peak of r[d, q] can be observed at lag
d = T

T0
.

PDAs formulated as Optimization Problem Respected to the Analysis Window Length

Improper frame-length (too few or too many pitch periods within a single frame) introduces a
significant error. Without adaption of the frame-length according to the pitch level the algo-
rithms are non-optimal.
Assumed that the frame-length matches exactly 2 pitch periods, a similarity function expresses
the relationship of two periods within a single frame:

s[n, q] = a · s[n+ p, q] + e[n, q]; n = q, ..., q + p− 1. (L.7)

According to this equation an optimization problem with an error function J can be formulated
and rewritten as least square approach:

p̂ = argmin
a,e


J =

q+p−1∑
n=q

(s[n]− as[n+ p])2

q+p−1∑
n=q

s2[n]


 (L.8)
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The trial period p̂ to obtain the frame-length and the speech pitch can be found by solving the
optimization problem

p̂ = argmax
p



J =

(∑q+p−1
n=q s[n]s[n+ p]

)2
(
q+p−1∑
n=q

s2[n]

)(
q+p−1∑
n=q

s2[n+ p]

)




(L.9)

for an finite range pmin < p < pmax.

PDAs based on Double-Transform Methods

Spectral flatting suitable meet the problem of algorithms’ sensitivity against strong first for-
mants. PDAs including such a procedure are referred as double-transform methods. Common
spectral flatting techniques are:

1. Time-Domain nonlinear distortion (e.g. center clipping; Rabiner [1977], Sondhi [1968])

2. Linear spectral distortion by inverse filtering (Markel [1972])

3. Frequency-Domain amplitude compression by nonlinear distortion of the spectrum (Hess
[2007])

Frequency-Domain amplitude compression by nonlinear distortion of the spectrum is shown in
figure L.3:

• Applying the log-operator, the well known power-cepstrum is calculated (Noll [1967], Op-
penheim and Schafer [2004]). This PDA is insensitive against strong first formants, but
sensitive against additive noise.

• Using the squared-magnitude of the complex spectrum as nonlinear distortion operator
instead of the log-operator, the ACF is computed (Rabiner [1977]). As mentioned above,
ACF based PDAs are insensitive against white noise, but sensitive against strong first
formants.

• Using different nonlinear distortion operators is also suitable
(Sreenivas [1984], Weiss et al. [1966]).
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DFT log  | . | DFT -1

d=T0 / T

d

f
Figure L.3: Cepstrum pitch determination. Hess [2007]

PDAs based on Frequency Domain Methods

A better estimation of the F0 can be obtained if the harmonics of F0 contribute to the calcula-
tion. With harmonic pattern matching using compressed spectral signals the greatest common
divider of the harmonics can be calculated, which is an estimation for F0 (figure L.4). Spe-
cial mathematical methods decrease the required huge window length to make this technique
applicable for speech signal processing (Martin [1982], Schroeder [1968], Brown and Puckette
[1993]).
Applying the ACF to the filter-bank output of the amplitude spectrum is another way to esti-
mate F0 of noise-corrupted speech (Lahat et al. [1987]).
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Decimate to 4kHz
weight

128 point FFT
compute amplitude spectrum

Select significant extremes
set everything else to zero

Interpolate around maxima
refine spectral resolution

Spectral comb filter
compute estimator A (  p)

within F0 range

p= arg max [A p ](   )^

t

f

f

f

f

p

Signal (32 ms)

Amplitude spectrum
(0-2kHz, 64 samples)

After maximum selection

Spectrum after interpolation
(0-2kHz, 2048 samples)

Spectral comb filter (example)

Harmonic estimator

F0= p= 124Hz^

Figure L.4: Frequency-domain PDA using harmonic compression and pattern matching (Martin [1982], Hess
[2007]).

PDAs based on Active Modeling

LP can be used to model the transfer function of the vocal tract or, if higher order filters are
applied, to match the signal’s harmonics. From the impulse response of the calculated linear
prediction filter T0 can be obtained.
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Figure L.5: PDA based on active modeling. In (a), the vowel [e] of a male voice is shown. After low-pass-

filtering, the LP polynomial is calculated. In (b) the zeros of the polynomial are represented in
the z-plane (upper half). (c) shows the reconstructed impulse response of the LP-filter. Taken
from Hess [2007].

PDAs based on HOS

Moreno and Fonollosa Moreno and Fonollosa [1992] proposed and noise-robust PDA using a
third-order cumulant

C[0, d] =
∑

n

s[n]2s[n+ d]. (L.10)

Equation L.10 is used as ordinary input to common ACF based PDAs.
Wells [1985] presented a similar approach using the so-called bispectrum, which is defined as the
Fourier transform of an third-order moment function.

L.2.2 Time-Domain Analysis PDAs

With time-domain approaches, the signal is tracked period by period which leads to so-called
pitch markers (sequence of periodic boundaries). The underlying theory declares the pitch pe-
riod as truncated response of the vocal tract to an individual glottal response. The vocal tract
behaviour is approximated by a lossy linear system: The impulse response can be expressed as
the sum of exponentially damped oscillations.

Local information on pitch is taken from each period individually which makes the algorithms
sensitive to local signal degrations. On the other hand correct results can be expected even
if the signal is aperiodic. Time-domain analysis PDAs are preferential used for high precision
determination algorithms of the instant of glottal closure.

PDAs based on Fundamental Harmonic Processing

Applying extensive low-pass filtering in the pre-processor step, the F0 can be detected via the
waveform of the fundamental harmonic. The analysis can be done with simple algorithms based
on zero-crossing, nonzero-threshold or threshold with hysteresis.
A drawback of this algorithm is the required extensive low-pass filter.

PDAs based on Temporal Structure Simplification by Inverse Filtering

Suggesting that the temporal structure of the laryngeal excitation function is much simpler then
the speech signal itself, signal simplification can be applied. Inverse filters try to cancel the
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transfer function of the vocal tract and the laryngeal excitation function can be reconstructed.
Such an algorithm is present in Hess [1976].
Problems occur if F0 comes near the first formant. Workarounds have to be applied to overcome
this issue. This problems are not existent for methods based on glottal statistical properties.

L.3 Implementation

A small subset of the wide range of different PDAs types are implemented in Matlab. In this
section, a more precise description of implemented algorithms is provided. The Matlab-scripts
are well-structured and well-documented, so exact implementation details can be gained from
the code itself. Existing implementations are not re-implemented at this state of the project.
Again, the algorithms are chosen according to aspects like real-time capabilities, level of aware-
ness, implementation availability, complexity level, reliability of the results in noisy environments
and if their usage is suitable.

L.3.1 ACF Algorithm

A PDA based on short-term analysis technique is present in Huang et al. [2001, page 321 ff.].
Generally expressed, the algorithm calculates T0 for each frame:

T0[k] = arg max
T

f(T |x[k]) (L.11)

where x[k] describes the windowed speech signal for frame k.
The main steps of the algorithm’s data stream are implied in the pipeline diagram in figure L.6.

LPx[n] Buffer

Average

+

- Windowing
(Hanning)

Correlation
Skip/Blend
(mainpeak)

ArgMax
T01/T0F0

Figure L.6: The main steps of the algorithm proposed in Huang et al. [2001, page 321 ff.] are: Low-pass
filtering (LP) within the pre-processor step, splitting the signal into frames (Buffer), local average
subtraction, applying a Hanning window function (Hanning), ACF (Correlation), searching the
main peaks whereby the signal energy peak at lag d = 0 is skipped (Skip/Blend and ArgMax) and
result conditioning (1/T0). Remark that splitting the signal frames and applying the Hanning
window can be combined to one step, subtracting the local average afterwards. For simplification,
required delay-blocks are hidden.

Basic Processor

Interpreding speech signal as random process, where voiced signal is approximated with a sinu-
soidal random process and unvoiced signal is approximated with an zero mean Gaussian signal,
candidates for T0 can be derived from the ACF as they result in significant maxima.
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The statistical ACF may be approximated with the short-term ACF of equation L.1. To avoid
biased results when applying the algorithm on speech signals, the local average of each frame is
calculated and subtracted before the ACF is evaluated.

Using a rectangle window for the framing procedure leads to a problem known as spectral leakage.
To decrease this influence, framing is done with an overlapping Hanning window function.

Window Size

This method requires a window size N which is at least N ≥ 2 · T0. For high values of T0 the
stationary assumption fails. A possible solution for this problem is proposed in Huang et al.
[2001, page 323], where different window sizes N for different lags d are recommended.

Strong First Formants

In Benesty [2004, page 186], algorithms based on ACF are reported to be error-prone when
strong first formants exist.

L.3.2 PRAAT Related Algorithm

The algorithm presented in Boersma [1993] calculates the HNR in the ACF lag domain. If the
value exceeds an certain threshold, the corresponding F0 candidate is trusted. The main steps
of the algorithm’s data stream are outlined in the pipeline diagram in figure L.7. To overcome
problems introduced by windowing and to deal with the non-stationary nature of speech signals,
normalized short-term ACF r[d, q]′ is used:

r[d, q]′ =
r[d, q]

r[0, q]
(L.12)

where r[d, q] is the discrete short-term ACF for sample-offset q and lag d, according to equation
L.2. Signals which have periodic parts show maxima at d = n · T0Ts , whereby Ts denotes the signal
sampling interval. The ACF at lag d = 0 represents the signal energy, the normalized ACF at
lag d = T0

Ts
= dmax represents the relative power of the periodic signal, called the harmonic

strength R0. The (logarithmic) HNR can be calculated with

HNRdB = 10 · log10
(

r′x[dmax]

1− r′x[dmax]

)
(L.13)

where r′x[dmax] is the relative signal energy of an estimated T0 candidate. To make the results
more accurate, interpolation around the T0 candidates is applied. As framed input signals are
used, the mean of each frame is calculated and subtracted before ACF calculation is done. The
effect of windowing, introduced by the framing process, is canceled by following approximation:

r[d, q] ≈ rx[d, q]′

rw[d, 0]′
(L.14)

whereby rx[d, q]′ is the normalized short-term ACF for sample-offset q, and rw[d, 0]′ the ACF
of the applied window. For performance reasons the ACF is calculated using the FFT. Remark
that the equations in Boersma [1993] differ from the equations proposed here as the short-term
ACF calculations in the paper are centered around the middle of the framing window function.
Boersma compared different windowing functions (Hanning window, rectangular window, Welch
window and Hamming window) and found out that the Hanning window outperforms the other
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Correlationa/b
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b
a

ra[d]rx[d]

Unbuffer1/T0
candidates Path-Finder

(global)

Threshold
Estimator

Max
peak

rw[d]

pm

pm

thsoft

thsoft

Figure L.7: The block diagram explains the main steps of the algorithm proposed in Boersma [1993]: Low-
pass filtering done in the pre-processor step (LP), splitting the signal into frames (Buffer),
subtraction of the local average, applying a Hanning window (Windowing), up-sampling and
correlation, done by usage of FFT (Zero Padding, Correlation), canceling the errors introduced
by windowing (a/b); The remaining steps calculate candidates for T0 which results in F0 can-
didates with associated harmonic strength values (Peak Finder, 1/T0) and estimate an global
F0 course (Path-Finder). Global peak (Max peak) and automatic threshold selection (Threshold
Estimator) increase the reliability of the T0 candidates and also are used to find the resulting
F0 path. The correlation of the Hanning window, resulting in rw[d] is calculated once. For
simplification, required delay blocks are hidden.

ones (Boersma [1993]). He also compared his algorithm among others against the cepstrum
method (Noll [1967]) and noticed a more robust behavior of his algorithm within noisy environ-
ments.

Reference Implementation

The algorithm is implemented in PRAAT - doing phonetics by computer Boersma and Weenink
[2011] (PRAAT). An global post-processing step based on is used to estimate the final F0 course.
For real-time applications this post-processing step have to be approximated by a local approach.

L.3.3 Modified ACF Algorithm

A more robust algorithm can be designed by combining different approaches. This is done for the
ACF algorithm proposed in Huang et al. [2001] (see section L.3.1) and the HNR based algorithm
proposed in Boersma [1993] (see section L.3.2). An order statistic filter (OSF) (median-filter;
discussed in Rabiner and Schafer [1978, page 158-161]), is used within the post-processor step.
The main steps of the algorithm’s data stream are implied in the pipeline-diagram in figure L.8.
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ra[d]

Peak
Finder 1/T0

Path-Finder
(local, global)

candidates F0

in

out

Figure L.8: The main steps of this compound algorithm are: Band-pass filtering (LP, HP), splitting the
input signal into frames (Buffer), local average subtraction, center clipping, windowing with
and Hanning window (Windowing) and applying normalized ACF (Correlation, a/b); The F0
course is estimated by an two pass path-finder (Peak-Finder, 1/T0, Path-Finder), which is a
very course post-processing implementation and not prepared to use it within realistic conditions.

Pre-Processing

The pre-processing step consists of band-bass filtering (a low-pass filter followed by a high-pass
filter), splitting the signal into frames and subtracting the local average which is done for each
frame separately. Then the maximum signal amplitude peak within a single frame is obtained.
To decrease the system’s latency, this function can be combined with the subtraction of the local
average.

Basic Extractor

A threshold function rejects too weak signal portions. The threshold is formed by the frame-wise
calculated global maximum:

y[k ·N + n] =




x[k ·N + n] |x[k ·N + n]| > K · max

i=0...M−1
(|x[k ·N + i]|)

0 otherwise
(L.15)

where x[n] is the pre-processed speech signal, k the actual frame index, N the step size of
the framing procedure, M the related frame size and y[n] the speech signal after the applied
threshold function. With 0 < K < 1 the (local) threshold valued is calculated for each single
frame. It turned out that equation can be simplified to:

y[k ·N + n] =





1 |x[k ·N + n]| > K · max
i=0...M−1

(|x[k ·N + i]|)
0 otherwise

(L.16)
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L.3 Implementation

Equations L.3.3 and L.16 are also known as center clipping (Rabiner and Schafer [1978, page
151 ff.]). The core calculation is based on normalized ACF as done in equation L.14. To avoid
numerical errors, the windowed signal is clamped to zero near the frame boundaries.

Post-Processing

The final F0 course is estimated with two passes: The first pass collects the best local estimation
for F0 by maximizing the harmonic strength value (see text passage L.3.2). The second pass
forms a global average and estimates the final F0 course by picking the local F0 values. This is
done by minimizing the distances function

F0[k] = argmin
f
|faverage − fcandidates[k]| (L.17)

were k is the frame index, faverage the global averaged course of F0 estimated in the first pass,
fcandidates[k] are the F0 candidates for the fundamental period at frame k, and f the selected
frequency candidate.
The path-finder described here is a very rude method and not practicable in real environments.
It is only implemented for proof-of-concept and to ease the comparison between the different
algorithm results.

L.3.4 NCCF Algorithm

Algorithms based on ACF depends on the analyzed window size, which leads to biased results.
Furthermore border problems and incorrect assumptions of stationarity for huge window sizes
lead to another type of PDAs using normalized cross -correlation function (NCCF) (Huang et al.
[2001, page 324 ff.]).
The main steps of the algorithms’ data stream is outlined in the pipeline diagram in figure
L.9. (Remark that it differs from the algorithm proposed in Huang et al. [2001] in some steps,
especially the post-processing is not implemented according to the paper.)
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NCCF

Peak
Finder 1/T0

Path-Finder
(local, global)

candidates F0

Buffer

in

out

in
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Figure L.9: The main steps of the implemented NCCF algorithm, related to Huang et al. [2001]: Band-
pass filtering (LP,HP), splitting the input signal into frames (Buffer), local average subtraction,
center clipping, NCCF (NCCF, Buffer), second center clipping operation, and a very coarse
F0-path finder (Peak Finder, 1/T0, Path-Finder).

Basic Extractor

When interpreting the sampled and framed speech signal as data vectors, the NCCF can be
formalized by the inner product of two vectors:

NCCF [d, q] =
< xq, xq−d >
|xq||xq−d|

(L.18)

< xn, yl > =

N−1∑

m=0

x[n+m] · y[l +m] (L.19)

where xq is th signal vector with N samples and < xn, yl > is the inner product of two vectors.
Using equations L.18 and L.19 leads to

NCCF [d, q] =

q+N−1∑
n=q

x[n] · x[n− d]

√
N−1∑
n=q

x2[n]
N−1∑
m=q

x2[m+ d]

(L.20)

Huang et al. noted that the constant number of samples involved in the calculation eliminates
the bias-problem which is present when using ACF (see section L.3.1). The window size could
be even lower than the pitch period which reduces the problem of non-stationarity signals.
A drawback is the increased computational effort compared to ACF since ACF can be efficiently
calculated using FFT.
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L.3.5 RAPT

Brookers [2011] provide a PDA called FXRAPT which implements the algorithm proposed in
Talkin [1995]. The robust algorithm for pitch tracking (RAPT) uses NCCF and a global search
function based on dynamic programming. The main steps of the algorithm’s data stream are
outlined in the pipeline diagram in figure L.10.

Buffer

Average

+
-

F0

NCCF

LP
-

Partial
InterpolatenNCCF

LPx[n]

Path-Finder
Linear Programming (global)

Peak
Finder

Peak
Finder

1/T0 Unbuffer
candidates

Figure L.10: The block diagram shows the main stepsof the algorithm proposed in Talkin [1995]: Optional
low-pass filtering (LP), framing and local average subtraction (Buffer, Average, ⊕), down-
sampling and a rude T0 estimation (LP, ↓, NCCF, Peak-Finder), parabolic interpolation
around T0 candidates (Parabolic Interpolation), second pass NCCF and an accurate T0 can-
didate estimation applied on speech portions with a high sampling rate (NCCF, Peak-Finder),
result conditioning (1/T0); The final F0 course is estimated with an global approach using linear
programming (Unbuffer, Path-Finder). For simplification, required delay-blocks are hidden.

NCCF (Basic Extractor)

The NCCF is calculated at each frame k:

NCCF [d, q] = NCCF [d, k · SZ] =

q+N+1∑
n=q

s[n]s[n+ d]

√
A FACT + e[q]e[q + d]

(L.21)

e[q] =

q+N−1∑

n=q

s2[n] (L.22)

d = 0...D − 1, q = k · SZ k = 0...K − 1 (L.23)

where s[q] is the sampled signal with zero mean at sample-offset q, N is the analyze window
length, K represents the total number of frames, D is the maximum value for the computed lags
d, and k is the frame index. The frame step size is given in samples by the constant value SZ. To
decrease the periodic parts for non-voiced speech frames, the constant A FACT is introduced,
which represents the absolute signal level.
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Speech Transitions

Between the frames, local results need to be related. The time-domain distortion is modeled
using the root mean square (RMS) ratio rr[k]:

rr[k] =
RMS[k, h]

RMS[k − 1,−h]
(L.24)

RMS[h, k] =

√√√√√
J−1∑
j=0

(w[j]s[k · SZ + j + h])2

J
(L.25)

A Hanning window w[q] of length J = 0.03Fs is applied, whereby Fs denotes the sampling
frequency. h is used to adjust the window centers of two sequential windows which should be
20 ms apart.
The spectral domain distortion is analyzed by calculating the spectral stationary function S[k],
using the Itakura Distortion (Itakura [1975]):

S[k] =
0.2

intakura(k, k − 1)
− 0.8 (L.26)

itakura[k, k − 1] =
aV a

âV â
(L.27)

where V is the ACF matrix with signal windows from the root mean square (RMS) ratio cal-
culation (see equation L.25), a and â are linear prediction coding (LPC) coefficients using the
LPC order P . The order P can be calculated with:

P = 2 + round

(
Fs

1000

)
(L.28)

Dynamic Programming (Post-Processing)

The RAPT algorithm uses dynamic programming (Bellman [1957], Bellman [2003]) within the
post-processor step to estimate the optimum voiced state and the optimum F0. The cost function
includes weights for voiced and unvoiced frames as well as for inter-frame transitions. The
approach is related to global optimum decisions which have been re-implemented for real-time
applications. Details of the post-processing step can be reviewed in Brookers [2011], Talkin
[1995] and Luo et al. [2003].

L.3.6 YIN Algorithm

The F0 estimation algorithm proposed in de Cheveigné and Kawahara [2002] adds important
modifications to the ACF which leads to a very robust algorithm: It calculates a modified version
of the well-known distance function (DF) by usage of the ACF (see section L.3.6). Furthermore
A feature called “cumulative mean normalized DF” (see section L.3.6) is extracted and prepared
for robust F0 estimation. The main steps of the algorithm’s data stream are outlined in the
pipeline diagram in figure L.11.

When interpreting the ACF as the Fourier transform of the power spectrum, it measures the
regular spacing of the harmonics. Replacing the power spectrum by the log magnitude spectrum
leads to the well-known cepstrum method which can be seen as a spectral whitening method (Noll
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CmN-DF
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Average

+

F0

CmN-DF
-

Partial
Interpolaten

LPx[n]

Minimum Peak 
Finder1/T0 Refiner

Buffer
Path-Finder

(lobal)

Threshold

ACF DIFF

CumNorm

Buffer ∑
τ

τ

size

τ

Figure L.11: The block diagram shows the main steps of the algorithm proposed in de Cheveigné and Kawa-
hara [2002]: Low-pass filtering (LP), framing and local average subtraction (Buffer, Average,
⊕), the calculation of the “cumulative mean normalized DF” (CmN-DF, see section L.3.6) and
the F0 estimation steps (Minimum-Peak-Finder, Interpolation,...). The main steps of the cu-
mulative mean normalized DF are outlined in a separate block: The ACF if calculated from the
windowed input signal, the difference function block (DIFF) simply implements equation L.30.
The feature is extracted for increasing delays (τ) until a certain delay-threshold is exceeded
(defined by minimum F0) or a suitable value for F0 is found (feature falls below a defined
threshold).

[1967]). de Cheveigné and Kawahara enumerate further algorithms with similar effects. They
evaluated the algorithm alterations regarding to the gross (pitch) error rate: The estimation is
classified as wrong if the calculated value differs from a laryngeal-derived estimate by more than
20% (de Cheveigné and Kawahara [2002], Nakatani et al. [2008]). Furthermore gross errors are
classified as too low or too high.

In de Cheveigné and Kawahara [2002], the algorithm is represented in six main steps. Each step
adds significant improvements. These steps are summarized in the following part.

Step 1: Basic ACF Analysis

In de Cheveigné and Kawahara [2002] it is reported that applying ACF only (according to
equation L.1) leads to a gross error rate of 10.0%. This evaluation served as reference for further
improvements.
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Step 2: DF

Adding the advantages of the DF to the algorithm, the gross error rate could be reduced to
1.95%:

x[q]− x[q + T ] = 0 ∀q (L.29)

for exact periodic signal with period T . Expressing the equation in terms of ACF (according to
L.1) leads to:

DF [d, q] = r[0, q] + r[0, q + d]− 2r[d, q + d] (L.30)

where r[d, q] is the short-term ACF for lag d, evaluated at sample offset q. T0 results are
obtained from finding minima or maxima of DF [d, q].

Step 3: Cumulative Mean Normalized Difference Function

To overcome errors introduced by the non-periodic nature of speech signal, cumulative mean
normalized DF is used. This leads to a gross error rate of 1.69%. The modified distance function
DF ′[d, q] is defined as

DF ′[d, q] =

{
1 d = 0

DF [d,q]/DF [d,q] otherwise
(L.31)

DF [d, q] =
1

d

d∑

n=1

DF [n, q] (L.32)

Step 4: Absolute Threshold

To decrease an influence of subharmonic errors (octave errors) an absolute threshold method is
applied, which reduced the gross error rate to 0.78%. If present, the minimum lag d is chosen
so that DF ′[d, q] < threshold. If the criterion can’t be fulfilled, the global minimum is taken
instead.

Step 5: Parabolic Interpolation

Parabolic interpolation around each local minimum of DF ′[d, q] is used to lower errors which
are introduced if T0 is no multiple of the sampling period. In terms of computational effort the
interpolation and evaluation around minima of DF ′[d, q] is cheaper than up-sampling the signal
itself. Here, only a small gross error rate reduction (from 0.78% to 0.77%) is observed.

Step 6: Best Local Estimate

This describes a technique which deals with fluctuations of the F0 estimations. By evaluation
of the vicinity of DF ′[d, q] the gross error rate is reduced to 0.50%.

L.4 Evaluation

For evaluation of the PDAs the PTDB-TUG database (see section J.3) is used. The F0 reference
signal is extracted from the laryngograph signal and is provided by the database.
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L.4 Evaluation

Again, according to de Cheveigné and Kawahara [2002], the PDA results are automatically
shifted in time to get the minimum error between the reference signal and the estimated signal.

Even if some algorithms are used “as-is” (black-boxes), an uniform pre-processing and post-
processing step is intended to make the results more comparable. Therefore the basic extraction
algorithms are embedded in an uniform framework, which is shown in figure L.12.

Post-Processing

Correction

Basic Extraction

F0 EstimationExtraction

Pre-Processing

WindowingFiltering
Encoding
(mplayer)

HP

LP

Bilateral

mp3 Enc

mp3 Dec

k  

Denoise Framing

ACF(x)

ACF(x)/ACF(w)

NCCF

k  

x<k*max=0

abs(x)

Median Filter

- Average

1/max

HanningHanning

Peak-Find

Grouping

Threshold

Sum

Harmonics

Refining

Cost Function

Threshold

Median Filter

Correction

Threshold

NCCF

...

Database Processing

Uniform Processing

Algorithm Specific
Processing

Usually not Used

Not Used Yet, But 
Prepared for Evaluation

Harmonics

...

Figure L.12: Uniform PDA evaluation framework: Mp3-coding, mp3-decoding, amplifying and
filtering/down-sampling is applied on the speech samples of the databases using Mplayer
(MPlayer [2011]). The main filtering and windowing process is similar in all PDA algorithms.
Special filter-operations like edge-preventing low-pass-filtering (e.g. bilateral filter), spectral
whitening or window-related amplifying is implemented mainly for prospective purposes.
The basic feature extraction step and parts of the post-processing step is formed by the
individual algorithms. Finally median filtering refine the PDA feature results in an uniform
post-processing-step.

Table L.1 includes the algorithms’ name mapping between the specific names used in this report
and the short labels used in the plots of the evaluational framework. Furthermore it is indicated
if an algorithm was available in source-code or is re-implemented according to the related paper
and the modifications stated in the corresponding section of this report.
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Report Label
Short Label

(Used for Plots)
Source-Code

Freely Available

PRAAT related Algorithm,
section L.3.2

HNR
yes, but

re-implemented as Matlab Script

NCCF Algorithm,
section L.3.4

NCCF
no,

implemented as Matlab Script

RAPT Algorithm,
section L.3.5

RAPT
yes,

not re-implemented

ACF Algorithm,
section L.3.1

XCORR1
no,

implemented as Matlab Script

Modified ACF Algorithm,
section L.3.3

XCORR2
no,

implemented as Matlab Script

YIN Algorithm,
section L.3.6

YIN
yes,

not re-implemented
Table L.1: Algorithms’ name mapping between the specific names used in this report and the short labels

used in the plots of the evaluational framework. Furthermore it is indicated if an algorithm was
available in source-code or is re-implemented according to the related paper and the modifications
stated in the corresponding section of this report.

L.4.1 Evaluation Databases

From the PTDB-TUG database 2360 audio samples, spoken from men, and 1905 audio samples,
spoken from women are used. The audio tracks have an average length of 7.3 seconds, enclosed
in leading and trailing silence with an average length of about 0.1 seconds. Leading and trailing
silence is assumed during the signal is lower than -60 dB related to the global maximum of the
audio-file.

L.4.2 Evaluation Conditions

To test the algorithms in more realistic scenarios, the same conditions as proposed in section
K.4.2 are used. Again, the evaluations are done with to different SNR definitions: Once using
SNRdB,A and all available audio samples, and once using SSNRdB,E with a reduced audio set
of 100 samples for each condition.

L.4.3 Results

A PDA estimation sample is defined as incorrect if the PDA estimation sample est[n] differs
from the reference signal sample ref [n] more than 20%:

E[n] =

{
1 |est[n]− ref [n]| > 0.2 · ref [n]

0 otherwise
(L.33)

where E[n] is 1 if the PDA estimation result is incorrect, and 0 if the estimation result is within
the allowed spread-range of 20%. As the window length and step sizes of the algorithms are
different, the PDA results are interpolated so that they correspond with the reference signal.
The reference signal itself provides a F0 estimation every 10 ms (which means the step size of
the used PDA algorithm is 10 ms).

Statistical comparison of the total errors within the different conditions are shown in figure
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L.13, where SNRdB is used. The total error E(algi) of a specific algorithm algi is calculated as
follows:

E[algi] =

∑M−1
j=0 Ej [algi]

M
(L.34)

Ej [algi] =

∑N−1
n=0 Ej [n]

N
(L.35)

where M is the total count of test files, N is the number of F0 estimations within file j, Ej [algi]
is the estimation error of the specific algorithm algi for file j and Ej [n] the estimation error
count according to equation L.33.
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Figure L.13: Comparison of the PDAs, applied on different conditions (no noise, white noise, babble noise)
and different genders (male, female); The algorithms are assigned to the ordinates, the condi-
tions are shown at the abscissas.

In figure L.14 all algorithms with a total estimation error E(algi) lower than 15% in any condition
(using non-denoised sound samples of plot L.13) are shown (plot a).
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Figure L.14: Comparison of selected PDAs, applied on different conditions (no noise, white noise, babble
noise) and different genders (male, female); The total error rates are assigned to the ordinates,
the conditions are shown at the abscissas.

SSNR

Again, the same evaluations are repeated, using SSNRdB,E , but only 100 audio tracks for
a single condition. In figure L.15, the results of the evaluation are shown. The best three
algorithms are extracted and shown in figure L.16.
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Figure L.15: Comparison of the PDAs, applied on different conditions (no noise, white noise, babble noise)
and different genders (male, female); The algorithms are assigned to the ordinates, the con-
ditions are shown at the abscissas. Here, SSNR is used to calculate the noise levels, but only
100 audio files are analyzed.
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L.4 Evaluation
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Figure L.16: Comparison of selected PDAs, applied on different conditions (no noise, white noise, babble
noise) and different genders (male, female); The total error rates are are assigned to the
ordinates, the conditions are shown at the abscissas. Here, SSNR is used to calculate the noise
levels, but only 100 audio files are analyzed.
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M Discussion and Conclusion

In this chapter the results of the project are summarized and a prospect on future work is given.
Regarding to the project goals a subset of “best matching algorithms” are chosen to provide a
good basis for follow-up projects.

M.1 Evaluational Framework

For the project, a Matlab framework is designed, which provides different methods for F0 esti-
mations and VAD, speech database management, statistical evaluation of speech features and
interfaces to common speech processing tools like PRAAT. The design is based on multipro-
cessor simulation concepts and provide a semi-automatic task management. All algorithms use
uniform preprocessing and post-processing steps, which can be enabled or disabled according to
the evaluational requirements.

The algorithm implementations are not optimized for runtime, but provide a step-by-step com-
putation according to the related papers. This is useful for understanding what is going on, but
requires a re-implementation if runtime or even real-time is a criterion.

If source code of algorithms were available, those are used. Information about if an algorithm
was implemented or available source code was used is provided in the tables L.1 and K.1.

M.2 Preferred Algorithms

The essential features for all algorithms are reliability in noisy environments, real-time capability
(with low latency), and low computational complexity to decrease the total power consumption
when using a mobile device. Another determining factor is if implementations of the algorithms
are freely available and evaluated, whereby the preferred programming languages are ANSI-C
and C++.

According to this requirements, the preferred algorithms are discussed and suggestions for the
best-matching candidates are provided.

M.2.1 VAD Algorithms

Selection According to “Reliability in Noisy Environments”
As shown in figure K.16, the algorithm based on LRT (“SOHN”, section K.3.5), the al-
gorithm based on pattern matching, using common speech signal parameters (“ECSE”,
section K.3.4) and the new designed method using signal variance and bilateral prepro-
cessing (“BILAT”, section K.3.7) outperformed all other evaluated VAD algorithms.
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M.2 Preferred Algorithms

As denoising is usually provided in serious speech processing devices, only conditions with
denoised signals participated in the final algorithm selection.

Adjusting the parameters of freely-available algorithms (SOHN, ECSE) would decrease
the total error rates (see figure K.17), and similar results are expected from all three
algorithms. That may be the reason why in Sohn et al. [1999] it is denoted that the SOHN
algorithm outperforms the ECSE algorithm.

Selection According to “Availability of Implementation”
Most parts of the ECSE algorithm are available in Matlab and C++ source code, the
SOHN algorithm is only available in Matlab source code.
As the BILAT algorithm is developed in this paper, only a Matlab source code implemen-
tation exists yet.

Selection According to “Complexity”
ECSE calculates an instantaneous pattern for each frame, which exists of 4 features. Ad-
ditionally short-term and long-term energy is used. The hangover scheme itself doesn’t
introduce much complexity.
SOHN is based on statistical estimations, using sub-band features, and a simple noise
estimation algorithm. The hangover scheme is based on a hidden markov model (HMM).
BILAT is designed to outsource the main computational complexity to the preprocessing
step (bilateral filtering, denoising). Tests have shown that the core feature extraction also
work well without bilateral filtering within “harmless conditions” (if only additive,
white noise is present, and if the SNRdB,A value is at least 20 dB).

From the results discussed above, the BILAT algorithm seems to be a very good choice. In
a more advanced implementation, bilateral filtering may be switched on or off according to
the background conditions, which would save power and lower the average of the algorithm’s
latency. If a graphics processing unit (GPU) is available on the hardware device, the filter can
be implemented very efficient with low latency.

M.2.2 F0 Algorithms

Selection According to “Reliability in Noisy Environments”
It is shown in figure L.13 that the algorithms based on ACF (“XCORR1”, see section L.3.1,
“XCORR2”, see section L.3.3, and “YIN”, L.3.6) outperformed all other algorithms. When
denoising is used, the results of all three algorithms were very similar. Even if it denoted in
de Cheveigné and Kawahara [2002] that the YIN algorithm should be significantly better
and more robust than simple ACF algorithms, this wasn’t the case in this evaluation.

Selection According to “Availability of Implementation”
The algorithms XCORR1 and XCORR2 are implemented in Matlab for the current work.
The YIN algorithm is available as source code, which is basically Matlab code, whereby
parts of the implementation are ANSI-C.

Selection According to “Real-Time Capability”
For the evaluation process, all global estimations are disabled. As all three algorithms are
based on ACF, the estimations have similar runtime. Real-time would be easy to archive
for all three algorithms, even if the YIN algorithm adds many modifications to the basic
ACF.
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From the results discussed above, non of the PDA algorithms really beats the other ones. As the
XCORR1 method is very simple, it has the lowest computational complexity. The XCORR2 is a
very similar method, but worked slightly better in very noisy environments. As in de Cheveigné
and Kawahara [2002] the YIN algorithm is evaluated against standard correlation algorithms
like XCORR1 and XCORR2, and many improvements are added and evaluated, it might would
be the best choice.

M.3 Further Work

Speech analysis is a very important research area for all speech processing tasks. While different
F0 and VAD algorithms are addressed in this work, many estimation concepts are not discussed
here. One possible further direction is the extension of the framework with other state-of-the-art
algorithms. If this goal is addressed, Matlab’s object oriented programming capabilities should
be taken into account. For database management, SQL would be a good choice.

To allow easy inspection, the evaluated algorithms aren’t implemented efficiently. If runtime or
even real-time is a criterion, re-implementation would be required.

Smartphones are a new type of mobile computing platforms, including many different capabilities
for real-time speech analysis. Evaluating the proposed algorithms on such devices might be a
further goal.

Beside special audio processing hardware, GPUs of conventional computers can be used for
speech processing. Outsourcing computationally intensive parts of algorithms to GPUs is an
increasing research field. As such GPUs also available on smartphones, this method may solve
many real-time issues.
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